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ABSTRACT 

 

There has been much research completed during recent years on the topic of 

geopolymer concrete. What has been missing is the combination of this 

research in a way that would allow use of geopolymer concrete as a 

replacement to concrete based on Ordinary Portland Cement. This 

dissertation addresses this requirement for a standard mix design for 

geopolymer concrete.  

The research data was combined into a database and manipulated to give the 

ratios of sodium hydroxide solution to sodium silicate solution, alkaline liquid 

to fly ash or binder, water to geopolymer solids, superplasticizer to binder and 

also the molar weight of the sodium hydroxide solution. 

These ratios were then input into Matlab, along with their measured 

compressive strength, to create artificial neural networks (ANNs). These 

ANNs learnt from the input data and output a compressive strength for each 

input line of data. This output value was obtained via set algorithms based on 

the input data.  

It was then possible to select a mix design for standard grades of Geopolymer 

concrete. The Class F Fly Ash and Ground-granulated Blast-furnace Slag 

mixture was selected to test these outputs of the ANNs.    
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CHAPTER 1 INTRODUCTION 

1.1 Background  

 

As the population of the world increases so too does the requirement for 

housing and development of infrastructure. Berkelmans and Wang (2012) 

estimated that 1.9 billion square metres of residential floor space was built in 

China alone in 2011. To put this into perspective in one year China built as 

much floor space as there is in all of Spain (nearly 2bn sq metres) (Economist, 

2011).  

It is also estimated that this growth will not peak until 2017 (Berkelmans, 

2012), although others believe that this decline in construction will be short 

lived due to the underlying demand which is driven by higher salaries and 

increased urban population (Economist 2011). 

This increased demand for housing, not only in China but world-wide, is 

feeding the global demand for building materials, in particular ordinary 

Portland cement (OPC) for the binder in concrete. Globally, we currently use 

approximately 2.8 billion tonnes of cement per annum and this is expected to 

increase to at least 4 billion tonnes per annum. For each tonne of cement 

produced, one tonne of carbon dioxide is released into our atmosphere 

(Radlinski, 2011). Suhendro (2014) estimates that this figure equates to 8-

10% of the world’s total Carbon Dioxide (CO2) emissions.   

 The damage that this level of pollution is doing to the atmosphere is 

unsustainable and as such we need to create a substitute for OPC. This 

substitute comes in the form of Geopolymer Concrete (GPC).  

GPC uses industry by-products as a substitute binder for OPC. There are 

many materials that can be used as this binder such as fly ash (FA), Ground-

granulated Blast-furnace Slag (GGBFS) and even clay. Currently, millions of 

tonnes of these by-products are being disposed of into landfill, whilst OPC is 

being produced at the highest volumes recorded.  With these pozzolanic 

materials and an Alkaline Activator we can partially or completely remove 

the need for OPC in concrete production.  
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Some companies such as Wagners in Toowoomba, are currently utilising 

GPC. Wagners’ Earth Friendly Concrete (EFC) was used for the Global 

Change Institute building at University of Queensland in Brisbane.  EFC is 

the only geopolymer concrete currently available for commercial purchase in 

Queensland (Glasby, 2012). Glasby (2012) goes on to mention that EFC was 

not only used for its carbon emission reduction but for its superior 

performance in comparison to OPC. The EFC was batched and mixed in 

Toowoomba and then transported to a casting yard in Brisbane where the 

precast elements were fabricated.  

 

Figure 1-1 Production of Precast Concrete Products (Glasby 2012) 

The use of GPC by Wagners is a great step towards a low carbon concrete 

industry, but the only way to truly reduce the reliance upon OPC is to make 

the mix design for GPC available to the public. It is understandable that 

companies as such do not want to release their intellectual property because 

there is a lot of time and money spent on research and development of these 

products. To simply release this information would not only reduce the 

monopoly that these companies have on the market, but would also hand their 

competitors free research that in some parts may have taken decades to 

perfect. This is an issue that needs to be solved before any such data would 

be available for public use and until then, OPC will continue to be used.  

It is the hope of this report that a standard mix design for 32MPa GPC is made 

available for public use and as such incorporated into the Australian 

construction industry and subsequently global construction practices.  It is 

through the use of a mix design, based on commonly available materials, that 

carbon emissions from the concrete industry can be reduced. However, due 
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to the time limitations, more research will be required to complete the range 

of commonly available concrete grades.  

 

1.2 Aims and Objectives 

 

The overall aim of this project is to identify a suitable mix design for 32MPa 

GPC that can be used by anyone in Australia or even worldwide.  

The research objectives are as follows: 

1. Obtain GPC mix design data from available journals and publications, 

paying close attention to materials that can be easily obtained and are 

therefore more common.  

2. From obtained data, identify trends for various strengths of concrete 

using Artificial Neural Network (ANN) Analysis through Matlab.  

3. Refine data obtained from Matlab and produce mix design procedure 

for 32MPa GPC.  

4. Test a chosen mix design for compressive strength.  

 

1.3 Scope of Study 

 

The scope of this study will identify a suitable mix design to be used for the 

creation of GPC.  

Limitations of research include: 

 Only available data will be collected, limiting the amount of 

refinement available for the mix design. As such the outcomes are 

mostly reliant on the work of others.  

 Only a mix design procedure for 32MPa GPC will be found. This is a 

common grade of concrete used but not the only one. More research 

into all grades should be done to allow the use of GPC in all facets of 

the concrete industry.  
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 Mix design will be based on materials available in the research area, 

Toowoomba. This will be kept as close to national and international 

availability as possible but may need more research to incorporate 

materials available in lieu of the chosen materials.   

 

1.4 Dissertation Outline 

 

There are 7 chapters in this dissertation. A short outline for each chapter is 

detailed below.  

Chapter 2 – Literature Review 

The literature review is one of the most important parts of this dissertation. 

Without the data collected from existing publications it would be a gigantic 

task to trial different estimated mix designs and as such would be out of reach 

for the time frame of this study.   

The literature review will: 

 Establish the need for a substitute for concrete made with OPC by 

reporting the environmental effects of producing cement  

 Provide existing means of producing GPC 

 Define the materials required in the production of GPC  

 Indicate the reaction of chemicals required to produce GPC 

 Also denote the lack of available information for GPC and possible 

reasons for this.  
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Chapter 3 – Mix Proportions and Database 

This chapter will discuss the mix proportions found in the literature review 

and define which of these are appropriate for use in Australia and globally.  

It will also define the database collected and the characteristics required to 

produce comparable concrete as to that made with OPC.  

These characteristics include but are not limited to: 

 Aggregate size and distribution 

 Alkaline solution used and ratio of nano silicate to sodium silicate 

 Water/binder ratio 

 Alkaline solution/fly ash ratio 

 Alkaline solution/slag ratio 

 Compressive strength 

Chapter 4 – Artificial Neural Network Development  

This chapter will show the ANNs developed for the GPC. It will also provide 

the output ratios of materials required for standard concrete grades.  

Chapter 5 - Testing 

This section will discuss the testing procedure for GPC based on existing 

industry standards. Items discussed will include but are not limited to: 

 Materials used, their procurement and quantities required 

 Procedure for mixing materials  

 Required time for curing of concrete samples 

 Testing devices used  

 Compressive strength of samples  

 

Chapter 6 – Results and Discussion 

 The results of the tests will then be defined and discussed in terms of use for 

industry in Australia and worldwide.  
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Chapter 7 – Conclusion 

Chapter 7 recognizes the work completed in this dissertation in terms of 

filling the gaps found in literature regarding a mix design procedure for GPC. 

It will also compare existing mix designs found in the literature review. The 

results will then be summarized and defined for use in direct substitute for 

OPC concrete. Further research is recommended for better understanding of 

the conclusions made and to determine mix designs for other commonly used 

grades of concrete.   
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction  

 

The purpose of this literature review is to identify the need for a suitable 

substitute for concrete made with OPC by reporting the environmental effects 

of producing cement. It will provide a background into current cement 

production, current GPC production methods and materials, cost comparisons 

to concrete made with OPC and also the chemical reactions required for GPC.  

 

2.2 What is Geopolymer Concrete? 

 

Geopolymer concrete (GPC) is a fairly new material in the construction 

industry. Geopolymers have been around since the 1950’s but is wasn’t until 

1978 that the term geopolymer was invented by Joseph Davidovits (1994). 

Geopolymers are very similar to regular polymers in that they are 

transformed, they undergo polycondensation and set within minutes at low 

temperatures. Davidovits (1994) describes that in addition to the above, 

geopolymers are inorganic, hard, and able to withstand high temperatures due 

to their inflammable nature. GPC is made by mixing aluminosilicate oxides 

with inorganic alkali polysilicates to produce polymeric Silicate-Oxygen-

Alkaline (Si-O-Al) bonds, the key chemical reactions required for the binding 

process.  
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Figure 2-1 Exothermic Geopolymerization Process Chemical Reaction (Davidovits 1994) 

Figure 2-1 depicts the exothermic geopolymerization process. It is considered 

that the reaction is a result of still hypothetical monomers being 

polycondensated. It is noted that the use of water is still required, as is with 

OPC (Davidovits, 1994). 

Geopolymers were initially desired for the fast setting time. Davidovits gives 

the example of a runway prepared with GPC. Within one hour the concrete is 

strong enough to be walked on, at 4 hours strong enough for vehicle loads and 

finally at 6 hours, the concrete runway is ready to sustain the weight of a 

commercial jet, as shown in Figure 2-2. It is in recent years that the desire for 

GPC has been more focused on the environmental impact of traditional 

cement production methods.  

 

Figure 2-2 Early Setting Example (Davidovits, 1994) 
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2.3 Environmental Impact 

 

With the global focus on greenhouse gas emission reduction it is 

understandable that construction methods and materials are scrutinised. It is 

estimated that worldwide concrete consumption is currently at 1m3 per 

person. This in turns marks concrete as the world’s highest consumed 

building material (Turner and Collins, 2013). Estimates vary but it is assumed 

that nearly one tonne of CO2 is emitted for every tonne of cement produced. 

This means, based on current global population estimates, that around 7 

billion tonnes of CO2 is released into our atmosphere (Radlinski, 2011). 

Suhendro (2014) estimates that this figure equates to 8-10% of the world’s 

total CO2 emissions.  

The crushing and treatment of limestone, one key component of OPC, is the 

main cause for the greenhouse gasses created during production. The 

limestone and other quarried rocks are ground into fine particles, dried and 

fed into a large rotating kiln where the materials are heated from 70 to 800°

Celsius (CCANZ 1989).  

GPC on the other hand contains little to no OPC. Instead, it uses industry 

waste products such as Fly Ash and Ground-granulated Blast-furnace Slag 

along with Alkaline Activators to create the binder. It is through the use of 

these binder alternatives that a reduction in CO2 emissions created by OPC 

production could be decreased by as much as 80% (Turner and Collins 2013). 

This reduction equates to approximately 5.6 billion tonnes of CO2 not 

entering our atmosphere.  
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2.4 Fly Ash 

 

Fly Ash (FA) is the by-product of coal fired power stations. It is commonly 

being used as a cost effective substitute for some of the OPC required for 

standard concrete mixes. It is the goal of GPC to effectively replace OPC 

entirely with binder alternatives. It is estimated that over a billion tonnes of 

FA is currently produced worldwide with a utilization rate of only 20%  

(Sumajouw and Rangan, 2006). 

Fly Ash is gathered from coal fired power stations all over the world for use 

in concrete mixes. It is created after the coal is fed into a series of mills which 

reduce the coal into a fine powder. The powder is then combusted in a boiler 

to produce the steam required for generation of power. It is during this process 

that minerals within the coal bind together to form spheres of a glassy 

alumina-silicate nature. Micrographs of the spheres are shown in Figure 2-3 

through a scanning electron microscope.  

 

Figure 2-3 Glassy Fly Ash Spheres through Electron Microscope (Fly Ash Australia, 2010) 

These spheres are collected by precipitation downstream of the boiler (Fly 

Ash Australia, 2010).  Figure 2-4 illustrates the process described above.  
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Figure 2-4 Fly Ash Retrieval Process (Fly Ash Australia, 2010) 

There are two types of FA available worldwide, class C and class F. The 

calcium (CaO) content of FA is typically the greatest indicator for the 

behaviour of concrete. Generally, the higher the CaO content, the more FA is 

required to offset (Thomas, 2007). Wallah and Rangan (2006) stated that the 

use of higher calcium FA interferes with the polymerisation setting rate and 

alters the microstructure, therefore making it less desirable for use. Concrete 

Australia (2011) noted that class C was the least effective as it can cause early 

set if not blended with a retarder.  

The classes are generally differentiated by the CaO content of the FA. 

Table 2-1 denotes the different calcium percentages based on mass.  

Table 2-1 Fly Ash Classes and CaO content (Thomas 2007)  

Fly Ash Type Calcium Content 

Class F < 8% CaO 

Class C >8% Cao 

 

In most articles reviewed the amount of FA present in the mix was between 

400-500 kg for every cubic metre of GPC (Hardjito 2005) (Lloyd and Rangan, 

2010). This value decreases with the introduction of secondary binder 

material such GGBFS (Deb et al., 2014).  
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2.5 Ground-granulated Blast-furnace Slag  

 

Ground-granulated Blast-furnace Slag (GGBFS) is another by-product of 

industry commonly used in the OPC concrete mix design. It is generally used 

to lower heat hydration, resist abrasion wearing from ground water or combat 

other adverse environmental conditions (Cement Australia, 2014). GGBFS is 

created during steel manufacturing when iron ore, coke and a flux are heated 

to melting point in a blast furnace. Upon completion of the smelting process, 

the remnants of the melting materials are collected and rapidly cooled. This 

melted material contains the lime in the flux and the aluminates and silicates 

of the ore and coke ash which have been chemically combined to form blast 

furnace slag. The slag is then cooled off and ground for use in concrete 

applications.  

 

Figure 2-5 Blast Furnace Slag before grinding process (www.phxslag.com) 

The typical quantities of GGBFS used in GPC production range from 10-80 

kg for every cubic metre of GPC when combined with FA or up to 400 kg per 

cubic metre of GPC alone (Bernal et al., 2012) (Deb et al., 2014).  

There are many alternative materials that can be used in the production of 

GPC such as kaolinite, palm oil and red mud. However, these materials are 

not as commonly available as FA and GGBFS and as such will not be 

considered for this study.  
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2.6 Alkaline Activators 

 

The activators required to complete the polymerisation process are typically 

sodium silicate (SiO2/Na2O) and sodium hydroxide (NaOH) solutions. The 

higher the NaOH content the higher the resultant compressive strength 

(Hardjito, 2005). Potassium based hydroxide solutions are able to be used 

instead of the NaOH solutions but are generally ignored due to the higher 

associated costs, (Hardjito and Rangan, 2005).  

From the literature reviewed the quantities of NaOH and SiO2/Na2O are as 

shown in the table below.  

Table 2-2 Alkaline Activator Quantities 

Activator Type Content Range  

(kg/m3 of GPC) 

Average Content  

(kg/m3 of GPC) 

NaOH 0-170 53.3 

SiO2/Na2O 0-256 110.5 

 

Some of the data collected during the literature review indicated no NaOH or 

no SiO2/Na2O was used, these are extreme cases aimed at testing the limits of 

the materials. Out of 217 case study results, the average NaOH was 53.3 kg 

per m3 of GPC and 110.5 kg per m3 of GPC of SiO2/Na2O  (M. Fareed Ahmed, 

2011, Barber, 2010, Bernal et al., 2012, Chi, 2012, Chindaprasirt et al., 2007, 

Deb et al., 2014, Deevasan and Ranganath, 2011, Hardjito, 2005, Galvin and 

Lloyd, 2011, Hardjito et al., 2005, Joseph and Mathew, 2012, Talha Junaid et 

al., 2015, Kong and Sanjayan, 2010, Kusbiantoro et al., 2012, Lloyd and 

Rangan, 2010, Memon et al., 2011, Nath and Sarker, 2014, Olivia and Nikraz, 

2011, Rahman and Sarker, 2011, Vora and Dave, 2013, Topark-Ngarm et al., 

2014, T. Sujatha, 2012, Shi et al., 2012, Sumajouw and Rangan, 2006, Shojaei 

et al., 2015, Rangan, 2006, Xie and Ozbakkaloglu, 2015, Sarker et al., 2013). 
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2.7 Aggregates 

 

Concrete Australia (2011) recommend that the aggregate content of GPC is 

that same as any other type of concrete with a blend consistent with the 

recommendations in AS2758.1 – 2014 as shown below.  

Table 2-3 Coarse Aggregate Gradings (Table B1 AS2758.1-2014) 

 

 

Table 2-4 Fine Aggregate Gradings (Table B2 AS2758.1-2014) 

 

From the data collected, Hardjito (2005) displayed the most common blend 

of aggregates which are as follows.  

Table 2-5 Typical Geopolymer Concrete Aggregate Blend 

20mm 

(kg/m3) 

14mm 

(kg/m3) 

10mm 

(kg/m3) 

7mm 

(kg/m3) 

Fine Sand 

(kg/m3) 

277 370 0 647 554 

 

Whereas, Kong and Sanjayan (2010) and Chindaprasirt et al. (2014) did not 

use any coarse aggregates. Kong and Sanjayan (2010) instead used a high 
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volume of slag to compensate, and Chindaprasirt et al. (2014) used higher 

volumes FA and fine sand. Both resulted in comparable compression 

strengths.  

Others used no 20mm or 14mm aggregates and instead made up the quanities 

using more 10mm, 7mm and Fine Sand. All total quantities of aggregates 

were approximately 1850kg per m3 of GPC which is approximately 80% of 

the total weight (Deevasan and Ranganath 2011, Hardjito, D., et al. 2005, 

Olivia and Nikraz 2011, Bernal, Mejía de Gutiérrez et al. 2012, Chi 2012, 

Shojaei, Behfarnia et al. 2015, Deb, Nath et al. 2014, Nath and Sarker 2014, 

Topark-Ngarm, Chindaprasirt et al. 2014).  

 

2.8 Super Plasticizer  

 

Wallah and Rangan (2006) describes that super plasticizers (SP) were 

required to improve the workability of the fresh GPC concrete. As such, “a 

high-range water-reducing Naphthalene based super plasticizer was added to 

the mixture” (Wallah and Rangan 2006).  

Wallah and Rangan (2006) added 6kg per m3 of GPC to all of their mixes. 

This quantity was also similar to other research, with SP ranging from 6-12 

kg per m3 of GPC (Hardjito 2005, Hardjito, Wallah et al. 2005, Rangan 2006, 

Barber 2010, Kong and Sanjayan 2010, Lloyd and Rangan 2010, Galvin and 

Lloyd 2011, M. Fareed Ahmed 2011, Memon, Nuruddin et al. 2011, Olivia 

and Nikraz 2011, Rahman and Sarker 2011, Joseph and Mathew 2012, 

Kusbiantoro, Nuruddin et al. 2012, T. Sujatha 2012, Sarker, Haque et al. 

2013, Vora and Dave 2013, Deb, Nath et al. 2014, Nath and Sarker 2014, 

Topark-Ngarm, Chindaprasirt et al. 2014, Shojaei, Behfarnia et al. 2015, 

Talha Junaid, Kayali et al. 2015, Xie and Ozbakkaloglu 2015). 

Chindaprasirt, Chareerat et al. (2007) had quantities of SP ranging from 0-60 

kg per m3 of GPC, the higher quantities were used to compensate for the high 

calcium content of the class C FA used.  
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2.9 Compressive Strength Prediction  

 

Recent studies have relied on the use of Artificial Neural Networks (ANN) to 

help predict compressive strength of GPC with different binding materials 

(Nazari and Torgal, 2012, Bondar, 2011). ANNs are described as a series of 

parallel architectures that work cooperatively to solve complex problems by 

connecting simple computing elements (Nazari and Torgal, 2012). The 

networks utilise learning capabilities obtained from example inputs, which 

make them perfect for use for the prediction of GPC compressive strength as 

available data is fairly limited.  

An artificial neuron contains five main parts: inputs, weights, sum function, 

activation function and outputs (Topçu and Sarıdemir, 2008). The inputs are 

the known data collected from previous test results. Weights are values that 

demonstrate the effect that the input values have on the outputs. The effect of 

the weights is calculated by the sum function. The weighted sums of inputs 

are calculated by the following equation: 

 

Figure 2-6 Artificial Neural Network Weighted Sum Function (Topcu and Saridemir 2008) 

where “(net)j is the weighted sum of the j. neuron for the input received from 

the preceding layer with n neurons, wij is the weight between the j. neuron in 

the preceding layer, xi is the output of the i. neuron in the preceding layer, b 

is a fix value as internal addition and Σrepresents the sum function” (Topçu 

and Sarıdemir, 2008). The activation function is one which processes the net 

input obtained through the sum function and defines the output values. The 

output is created using a sigmoid function as follows 

 

Figure 2-7 The Activation Function (Topcu and Saridemir 2008) 
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Where α is a constant used to control the slope of the semi-linear region 

(Topcu and Saridemir 2008).  

In recent years, ANNs have been used in the civil engineering industry to 

overcome many problems such as determining structural damage, the 

modelling of material behaviour, and ground water monitoring (Topçu et al., 

2008).  

Topcu, Karakurt et al. (2008) used ANNs along with fuzzy logic to predict 

the strength development of GPC with different binding materials. They 

found that compressive strengths can be predicted through the use of ANNs 

in a short period of time with minimal error in comparison to test results.  

Bondar (2011) concluded that the optimum network architecture to predict 

compressive strength of GPC was one with a three-layer feed forward 

network with tan-sigmoid function as the hidden layer transfer function and 

a linear function as the output layer.  

Nazari and Torgal (2012) similarly concluded that the use of ANNs to predict 

the compressive strength of different GPC mixes was able to be done in a 

relatively short span of time with minimal error rates. They utilised a two-

layer feed forward-back propagating network.  

 It was decided to use a three-layer feed forward network with a tan-sigmoid 

function as the hidden layer function, similar to that by Bondar (2011), in this 

study to predict the compressive strength of 32MPa GPC. 

 

Figure 2-8 Class F Fly Ash Artificial Neural Network Diagram 

  



18 

 

CHAPTER 3 MIX PROPORTIONS AND DATABASE 

 

3.1 Mix designs from collected works 

 

As previously mentioned, many different materials and quantities were used 

in the reviewed literature. The following sections show the impact of these 

differences on the compressive strength of the Geopolymer Concrete (GPC).  

The compressive strength of the database entries were separated into groups 

that reflected a 28 day compression test result equal to or below the grade 

above in accordance with table 1 from AS 1379-2007, as shown below.  

Table 3-1 Standard Strength Grades (AS1379-2007) 

 

According to Talha Junaid, Kayali et al. (2015), the key components that 

depict the strength of the GPC mix are as follows: 

 Water to geopolymer solid ratio (W/GPS) 

 Alkaline liquid to Fly Ash ratio (AL/FA) 

 Strength increases with time and temperature 

 Dry curing results in higher strengths than wet curing 

 Higher silicates to hydroxide ratios result in higher strength  

 Ratio of SiO2/Na2O in sodium silicate solution should be 

approximately 2.  
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3.1.1 Water to Geopolymer Solid Ratio 

 

The water to geopolymer solid ratio (W/GPS) is the total mass of water in the 

system, including that used in the alkaline solution and extra water, divided 

by the total mass of the Fly Ash, Ground-granulated Blast-furnace Slag 

(GGBFS), sodium hydroxide pellets/flakes and sodium silicate solids 

(Ferdous et al., 2015). This ratio works in the same fashion as the 

water/cement ratio in OPC.  

 

Figure 3-1 Compressive Strength to Water/Geopolymer Solids Ratio (Ferdous, Manalo et al. 2015) 

As shown in Figure 3-1Error! Reference source not found., the W/GPS 

atio has a direct effect on the strength of the concrete. The lower W/GPS 

results in higher strength concrete but is difficult to work with due to the 

dryness of the mix (Ferdous, Manalo et al. 2015). Based on Error! Reference 

ource not found., the W/GPS ratio for 32MPa concrete is approximately 

0.37. Lloyd, N. A. and B. V. Rangan (2010) indicated that the W/GPS ratio 

need not be this high to achieve 32MPa concrete. As shown in Table 3-2, the 

W/GPS ratio should be approximately 0.23. This would result in a highly 

workable mix based on 400kg of FA per cubic metre of GPC.  The values 

given are dependent on the notion that all aggregates are in the saturated 

surface dry condition.  
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Table 3-2 Water to Geopolymer Solid Ratio (Lloyd, N. A. and B. V. Rangan 2010) 

 

 

3.1.2 Alkaline Liquid to Fly Ash Ratio 

 

The Alkaline liquid to Fly Ash ratio (AL/FA) depicts the total amount of 

sodium hydroxide and sodium silicate solutions that are required for 

geopolymerization of the FA. Lloyd, N. A. and B. V. Rangan (2010) 

recommend a range of 0.3-0.45 by mass. Talha Junaid, Kayali et al. (2015) 

expand this notion to depict how much hydroxide solution and silicate 

solution is required, as shown below. 

 

 

Figure 3-2 Hydroxide and Silicate Solution ratio (Talha Junaid, Kayali et al. 2015) 

This equation indicates that approximately 2.5 times the quantity of 

hydroxide solution is required for the silicate part of the alkaline liquid. Talha 

Junaid, Kayali et al. (2015) indicated that the AL/FA ratio is linear with 

respect to the 7 day strength. A mix with 12M Sodium Hydroxide (NaOH) 

solution was cured for 24 hours at 80°C with the results shown in Figure 3-3.  
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Figure 3-3 Alkaline/Fly Ash Vs 7 Day Strength for 12M Sodium Hydroxide Solution after 24 hours 

curing (Talha Junaid, Kayali et al. 2015) 

Based on 32MPa concrete for medium workability and a W/GPS ratio of 0.27, 

the graph above would indicate an AL/FA ratio of approximately 0.4 which 

corresponds to the research by Lloyd, N. A. and B. V. Rangan (2010). This 

value is also used by Shojaei, M., et al. (2015) for the AL/GGBFS ratio. For 

this report the value of 0.4 will be the desired ratio for all mixes whether they 

be based on FA only, Ground-granulated Blast-furnace Slag (GGBFS) only, 

or a combination of FA and GGBFS.  
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3.1.3 Mix Design Database 

After the literature review was complete, a database was established from a 

number of published articles based on the following criterion: 

1. Only FA and GGBFS mixes would be included 

2. A mix design could only be included once, duplicates from same 

authors were excluded 

3. Extreme or out-of-the-ordinary mixes were excluded  

As previously established, only FA and GGBFS mixes would be used as these 

materials are readily available in the Australian construction industry. Mixes 

containing other materials were not included due to ease of access and 

therefore cost.  

Many authors re-used mix designs for different research purposes such as acid 

resistance, fire resistance, etc. Each mix still gave the same compressive 

strength. As such a mix design could only be included once.  

Some authors used extremely high percentages of materials to test the impact 

on the overall mix. These mixes were excluded as they did not represent 

typical construction purposes. 
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3.1.4 Class F Fly Ash Concrete Mix Design from database 

 

The data shown in this section is a portion of the database for GPC based on 

class F Fly Ash. For formatting reasons, the entire table is too large to fit 

within this section and can therefore be found in Appendix B: Database.  

The key ratios for the establishment of the mix design are: 

 Hydroxide/Silicate 

 Alkaline/Fly Ash 

 Water/Geopolymer Solids 

The mixes contain no OPC or GGBFS. For the purposes of this report only 

the grades N20, N25, N32 and N40 will be shown (Wallah and Rangan 2006, 

Hardjito 2005, Hardjito, Wallah et al. 2005, Rangan 2006, Barber 2010, 

Lloyd and Rangan 2010, Galvin and Lloyd 2011, M. Fareed Ahmed 2011, 

Olivia and Nikraz 2011, Rahman and Sarker 2011, Joseph and Mathew 2012, 

Kusbiantoro, Nuruddin et al. 2012, T. Sujatha 2012, Sarker, Haque et al. 

2013, Vora and Dave 2013, Deb, Nath et al. 2014, Nath and Sarker 2014, 

Sumajouw, M. D. J. and B. V. Rangan 2006, Xie and Ozbakkaloglu 2015). 

 

Table 3-3 Class F Fly Ash Mix Design from database 

Grade Fly 

Ash/Tot 

Weight 

Coarse 

Agg/Tot 

Weight 

Sand/Tot 

Weight 

Hydroxide/ 

Silicate 

AL/FA W/GPS f'c 

(MPa) 

N20 0.142857 0.489796 0.263265 0.40 0.41 0.297 20 

N20 0.155102 0.43 0.33 0.36 0.39 0.188 24 

N20 0.174694 0.477551 0.257143 0.50 0.40 0.295 24 

N25 0.163265 0.498776 0.268571 0.40 0.35 0.180 25 

N25 0.163265 0.498776 0.268571 0.67 0.35 0.180 27 

N25 0.174694 0.477551 0.257143 0.40 0.40 0.251 29 

N25 0.174694 0.477551 0.257143 0.40 0.40 0.251 30 

N32 0.166531 0.528163 0.226122 0.40 0.35 0.220 32 

N32 0.174694 0.477551 0.257143 0.40 0.40 0.251 32 

N32 0.174694 0.477551 0.257143 0.50 0.40 0.253 32 

N32 0.166531 0.528163 0.226122 0.40 0.35 0.197 35 

N32 0.174694 0.477551 0.257143 0.50 0.40 0.253 35 

N32 0.166894 0.480408 0.254286 0.67 0.35 0.226 35.73 

N32 0.166531 0.528163 0.226122 0.50 0.38 0.221 36 
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N32 0.166531 0.528163 0.226122 0.40 0.35 0.228 36 

N32 0.165714 0.487347 0.262449 0.40 0.35 0.232 37 

N32 0.164898 0.485714 0.261224 0.40 0.35 0.230 37 

N32 0.195918 0.470612 0.24449 0.50 0.35 0.217 37.09 

N32 0.166531 0.490204 0.264082 0.40 0.35 0.205 38 

N32 0.181404 0.480408 0.254286 0.40 0.35 0.211 38.69 

N40 0.166531 0.490204 0.264082 0.40 0.35 0.219 40 

N40 0.166531 0.528163 0.226122 0.40 0.35 0.210 40 

N40 0.166531 0.528163 0.226122 0.50 0.38 0.221 42 

N40 0.166531 0.490204 0.264082 0.40 0.35 0.205 42 

N40 0.188384 0.480408 0.254286 0.50 0.30 0.188 42.51 

N40 0.166531 0.528163 0.226122 0.40 0.35 0.175 44 

N40 0.166531 0.490204 0.264082 0.40 0.35 0.190 45 

N40 0.166531 0.490204 0.264082 0.40 0.35 0.175 47 

N40 0.163265 0.39 0.35 0.40 0.50 0.328 47.99 

N40 0.194286 0.528163 0.226122 2.50 0.35 0.180 48 

N40 0.166531 0.490204 0.264082 0.66 0.42 0.220 48 

N40 0.155102 0.503265 0.220408 0.40 0.52 0.230 49 

 

As noted from Table 3-3, the W/GPS ratio generally decreases as the 

compressive strength increases, which corresponds to Chapter 3.1.1. The 

AL/FA ratio is typically within the range of 0.3-0.45 as denoted in Chapter 

3.1.2. The Fly Ash/Total Weight, Coarse Agg/Total Weight and Sand/Total 

weight are based on a concrete density of 2400kg/m3. This may not be entirely 

accurate as the weight of the materials and water may be more or less than 

this figure. It is recommended that these ratios be taken as an estimate.  
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3.1.5 Class C Fly Ash Concrete Mix Design from database 

 

The data shown in this section is a portion of the database for GPC based on 

class C Fly Ash, see Appendix B: Database for the full database. The mixes 

contain no OPC or GGBFS. For the purposes of this report only the grades 

N25, N32 and N40 will be shown (Chindaprasirt, P., et al. 2007, Topark-

Ngarm, P., et al. 2014).  

Table 3-4 Class C Fly Ash Mix Design from database 

Grade Fly 

Ash/Tot 

Weight 

Coarse 

Agg/Tot 

Weight 

Sand/Tot 

Weight 

Hydroxide/ 

Silicate 

AL/FA W/GPS f'c (MPa) 

N25 0.21 0.00 0.56 0.49 0.51 0.295 26 

N25 0.21 0.00 0.56 1.00 0.51 0.293 30 

N32 0.21 0.00 0.56 0.50 0.51 0.295 32 

N32 0.17 0.45 0.24 0.50 0.50 0.222 33.8 

N32 0.21 0.00 0.56 0.49 0.51 0.239 36 

N32 0.17 0.45 0.24 1.00 0.50 0.229 37.64 

N32 0.21 0.00 0.56 0.49 0.51 0.267 38 

N32 0.17 0.45 0.24 0.50 0.50 0.222 39.02 

N40 0.17 0.45 0.24 1.00 0.50 0.229 39.67 

N40 0.21 0.00 0.56 2.00 0.51 0.272 40 

N40 0.21 0.00 0.56 2.00 0.51 0.300 42 

N40 0.21 0.00 0.56 0.50 0.51 0.267 43 

N40 0.21 0.00 0.56 1.00 0.51 0.265 45 

N40 0.17 0.45 0.24 1.00 0.50 0.229 45.34 

N40 0.17 0.45 0.24 0.50 0.50 0.222 46.69 

N40 0.21 0.00 0.56 1.00 0.51 0.237 48 

N40 0.21 0.00 0.56 2.00 0.51 0.254 48 

 

As noted in Table 3-4, there are many differences in comparison to the Class 

F mix design database. These differences are as follows 

 Hydroxide/Silicate ratios are much higher for Class C FA 

 AL/FA ratios are much higher for Class C FA   

 W/GPS is also higher for Class C FA 

This coincides with that denoted in Chapter 2.4 and would explain why the 

cost of working with Class C FA would be greater than that found with Class 

F FA.  
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3.1.6 Class F Fly Ash and Ground-granulated Blast-furnace Slag 

Concrete Mix Design from database 

 

The data shown in this section is a portion of the database for GPC based on 

class F FA and GGBFS from the database, see Appendix B: Database for the 

full database. The mixes contain no OPC. For the purposes of this report only 

the grades N25, N32 and N40 will be shown (Deb, P. S., et al. 2014, Nath, P. 

and P. K. Sarker 2014, Kusbiantoro, A., et al. 2012, Kong, D. L. Y. and J. G. 

Sanjayan 2010). 

Table 3-5 Class F Fly Ash and Ground-granulated Blast-furnace Slag Concrete Mix Design from 

database 

Grade FA/ 
Tot 

Weight 

Slag/ 
Tot 

Weight 

Coarse 
Agg/Tot 

Weight 

Sand/Tot 
Weight 

Hydroxide/ 
Silicate 

AL/ 
FA 

AL/ 
Slag 

AL/ 
binder 

W/ 
GPS 

f'c 
(MPa) 

N25 0.15 0.02 0.50 0.27 0.40 0.39 3.50 0.35 0.20 27 

N25 0.15 0.02 0.50 0.27 0.67 0.39 3.50 0.35 0.20 27 

N25 0.15 0.02 0.49 0.27 0.40 0.50 4.50 0.45 0.22 30 

N32 0.14 0.00 0.49 0.26 0.40 0.42 13.7 0.41 0.30 32 

N32 0.15 0.02 0.49 0.27 0.40 0.44 4.00 0.40 0.20 33 

N32 0.15 0.02 0.49 0.27 0.50 0.44 4.00 0.40 0.20 34 

N32 0.15 0.02 0.49 0.27 0.67 0.44 4.00 0.40 0.19 35 

N32 0.13 0.03 0.50 0.27 0.40 0.44 1.75 0.35 0.20 35 

N32 0.16 0.03 0.53 0.22 0.00 0.29 1.29 0.23 0.21 35 

N32 0.13 0.01 0.49 0.26 0.40 0.44 5.88 0.41 0.30 38 

N40 0.15 0.02 0.49 0.27 0.40 0.44 4.00 0.40 0.20 40 

N40 0.15 0.02 0.49 0.27 0.67 0.44 4.00 0.40 0.20 43 

N40 0.15 0.02 0.49 0.27 0.40 0.39 3.50 0.35 0.17 44 

N40 0.13 0.03 0.50 0.27 0.67 0.44 1.75 0.35 0.20 45 

N40 0.13 0.03 0.49 0.27 0.40 0.50 2.00 0.40 0.20 45 

N40 0.13 0.03 0.49 0.27 0.40 0.50 2.00 0.40 0.20 47 

N40 0.07 0.14 0.00 0.63 0.40 0.91 0.41 0.28 0.14 48.6 

 

The W/GPS ratio, shown in Table 3-5, is fairly consistent for all grades of 

GPC. This is different to that shown for Class F FA in Table 3-3. 

The AL/binder ratio is within the range of 0.3-0.45 as denoted in Chapter 

3.1.2 and the Hydroxide/Silicate ratio is fairly similar to that in Table 3-3.  

  



27 

 

3.1.7 Ground-granulated Blast-furnace Slag Concrete Mix Design 

from database 

 

The data shown in this section is a portion of the database for GPC based on 

GGBFS, see Appendix B: Database for the full database.  The mixes contain 

no FA (Bernal, S. A., et al. 2012, Shojaei, M., et al. 2015, Chi, M. 2012).  

Table 3-6 Concrete Mix Design from database for Ground-granulated Blast-furnace Slag 

Grade Slag/Tot 

Weight 

Coarse 

Agg/Tot 

Weight 

Sand/Tot 

Weight 

Hydroxide/ 

Silicate 

AL/Slag W/GPS f'c 

(MPa) 

N20 0.16 0.35 0.35 3.00 0.28 0.49 22 

N32 0.16 0.34 0.34 1.00 0.38 0.49 35 

N32 0.16 0.50 0.25 5.00 0.40 0.33 38.1 

N40 0.17 0.44 0.23 0.28 0.14 0.55 40 

N40 0.17 0.44 0.23 0.28 0.18 0.56 46 

N40 0.17 0.44 0.23 0.28 0.21 0.56 48 

 

It is noticed from Table 3-6 that the W/GPS ratio increases as the compressive 

strength increases, which is opposite to that for the mix design for Class F FA 

and GGBFS. The AL/Slag ratio is also typically less than that shown in 

Chapter 3.1.2.  

This would suggest that a mix design for GPC based on GGBFS without FA 

would behave differently to that found with Class F FA based GPC. 
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CHAPTER 4 ARTIFICIAL NEURAL NETWORK 

DEVELOPMENT 

 

As previously mentioned, the study will use Artificial Neural Networks 

(ANN) to ascertain an optimum mix design for 32MPa Geopolymer Concrete 

(GPC). It was decided to create ANNs for all available mix design options for 

Fly Ash (FA) and Ground-granulated Blast-furnace Slag (GGBFS) for 

comparison of the mix designs and give the option to use either mix of 

materials.  

To create the networks, the following inputs were taken from the database 

and fed into the neural network toolbox in Matlab.  

1. Hydroxide /Sodium Silicate ratio  

2. Alkaline Liquid/Fly Ash Ratio or Alkaline Liquid/Binder Ratio 

3. Water/Geopolymer Solids 

4. The Molarity of the Hydroxide solution 

5. Superplasticizers/binder ratio 

As mentioned in Chapter 2.9, it was decided to use a three-layer feed forward 

network with a tan-sigmoid function as the hidden layer function in this study 

to predict the compressive strength of 32MPa GPC.  

Once the input and target data were arranged and entered into Matlab the 

ANNs were then able to be created. This was done by using the Matlab 

NNTOOL function. The NN toolbox allows you to enter data, train it and also 

simulate it, as well as many other functions which are not the focus of this 

project.  

Bondar (2011) describes the feed forward and back propagation method as, 

for every interval, an output compressive strength is calculated from the 

current weights and biases based on the input data. Then for the second step, 

the weights and biases are modified by the back propagation algorithm. The 

performance function, mean square error in this case, are also minimised by 

this change of weights and biases in each step.  
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The training algorithm used in this project is the traingda algorithm, as offered 

in the NN toolbox. Bondar (2011) showed that the traingda algorithm stops 

training the data if any of the following conditions are met: 

 The maximum repetitions or epochs are met 

 The maximum timeframe has expired 

 The performance is minimised to suit the target data 

 The gradient of performance falls below min_grad 

The training performances and outputs for the ANNs are shown in the 

following sections.  
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4.1 Class F Fly Ash and Ground-granulated Blast-furnace Slag 

Artificial Neural Network 

 

The ANN was created based on Class F Fly Ash (FA) and Ground-granulated 

Blast-furnace Slag (GGBFS) as the binding material input presented in Table 

3-5 and Appendix B: Database. As shown in Table 4-1, this network had 7 

inputs and 1 output, being the compressive strengths.   

 

Table 4-1 Class F Fly Ash and Ground-granulated Blast-furnace Slag Artificial Neural Network Inputs 

and Predicted Outputs 

NaOH/ 

Sodium 

Silicate 

AL/FA AL/Slag AL/Binder W/GPS Super/ 

Binder 

NaOH 

Molarity 

Actual 

Comp. 

Strength 

(MPa) 

Predicted 

Comp. 

Strength 

(MPa) 

0.40 0.44 5.88 0.41 0.30 0 8 15 31.45674 

0.40 0.42 13.71 0.41 0.30 0 8 18 26.20466 

0.40 0.39 3.50 0.35 0.20 0.015 14 27 30.10456 

0.67 0.39 3.50 0.35 0.20 0.015 14 27 24.92903 

0.40 0.50 4.50 0.45 0.22 0 12 30 32.28533 

0.40 0.42 13.71 0.41 0.30 0 8 32 26.20466 

0.40 0.44 4.00 0.40 0.20 0 12 33 32.98397 

0.50 0.44 4.00 0.40 0.20 0 12 34 31.15133 

0.67 0.44 4.00 0.40 0.19 0 12 35 30.55009 

0.40 0.44 1.75 0.35 0.20 0.015 14 35 28.77511 

0.00 0.29 1.29 0.23 0.21 0 12 35 40.98999 

0.40 0.44 5.88 0.41 0.30 0 8 38 31.45674 

0.40 0.44 4.00 0.40 0.20 0 14 40 43.13738 

0.67 0.44 4.00 0.40 0.20 0 14 43 39.28931 

0.40 0.39 3.50 0.35 0.17 0 12 44 35.40669 

0.67 0.44 1.75 0.35 0.20 0.015 14 45 25.59835 

0.40 0.50 2.00 0.40 0.20 0 12 45 31.07638 

0.40 0.50 2.00 0.40 0.20 0 14 47 41.65267 

0.40 0.91 0.41 0.28 0.14 0 8 48.6 44.11854 

0.40 0.92 0.42 0.29 0.14 0 8 52.8 43.82771 

0.67 0.50 2.00 0.40 0.20 0 14 54 39.70501 

0.40 0.92 0.42 0.29 0.14 0 8 54 43.82771 

0.40 0.57 1.33 0.40 0.20 0 12 55 30.99393 

0.40 1.36 0.62 0.42 0.20 0 8 55.4 49.46125 

0.40 0.33 0.12 0.09 0.05 0 12 61.8 55.15615 
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Figure 4-1 Class F Fly Ash and Ground-granulated Blast-furnace Slag Artificial Neural Network - 

Training Results 

The selected algorithms used for the Class F FA and GGBFS ANN are shown 

at the top of Figure 4-1. At the end of the training: 

 17 epochs out of a maximum 1000 were used 

 The time taken was 0:00:01.  

 Performance was 49.2 out of 189 

 The gradient was 345 

 And 6 validation checks were performed 

 Figure 4-1 indicates that the validation checks were the reason why the 

training was stopped.  
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Figure 4-2 - Class F Fly Ash and Ground-granulated Blast-furnace Slag Artificial Neural Network - 

Training Performance Plot 

As shown in Figure 4-2, the performance of the training was best at epoch 10 

with the best validation being 21.8925.  
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Figure 4-3 - Class F Fly Ash and Ground-granulated Blast-furnace Slag Artificial Neural Network - 

Training State Plot 

The plots shown in Figure 4-3 form the training state plot. It shows the pattern 

of the results shown in Figure 4-1. At epoch 17: 

 the gradient  = 344.8687 

 the validation checks reach 6   

 the learning rate = 0.00039747 
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Figure 4-4- Class F Fly Ash and Ground-granulated Blast-furnace Slag Artificial Neural Network - 

Training Regression Plots 

The regression plots shown in Figure 4-4 show the process in which the 

output data was computed. The first plot shows the outputs are calculated 

based on training, the second on validation and the third on test data. The final 

plot combines all three initial plots. The output data is then calculated from 

the formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 ≅ 0.47 × 𝑇𝑎𝑟𝑔𝑒𝑡 + 17 

The output data was then plotted along with the inputs to give input values of 

the materials required to create specific compressive strengths of GPC.  
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Figure 4-5 - Class F Fly Ash and Ground-granulated Blast-furnace Slag – Sodium Hydroxide/Sodium 

Silicate Vs Alkaline/Binder 

An Alkaline/Binder ratio of 0.35 – 0.45 would be sufficient to create N32 

GPC. With this range in mind, a NaOH/Sodium Silicate ratio of 0.4 would 

indicate an AL/Binder ratio of 0.4 would be ideal for N32 GPC.  

The following table indicates material quantities for common concrete grades 

of GPC. 

Table 4-2 Class F Fly Ash and Ground-granulated Blast-furnace Slag - Common Concrete Grade 

Quantities for Alkaline/Binder and Sodium Hydroxide/Sodium Silicate 

Strength (MPa) AL/Binder NaOH/Sodium 

Silicate 

32 0.35 – 0.45 0.3 – 0.5 

40 0.25 – 0.3 0.28 – 0.55 

50 0.12 – 0.16 0.2 – 0.6 
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Figure 4-6 - Class F Fly Ash and Ground-granulated Blast-furnace Slag - Alkaline/Binder Vs 

Water/Geopolymer Solids 

With an AL/Binder ratio of 0.4, Figure 4-6 indicates a range of W/GPS of 

0.18 – 0.27. This range is similar to that shown in Table 3-2 and would 

indicate a W/GPS of 0.25 would be suitable for N32 GPC.  

The following table indicates material quantities for common concrete grades 

of GPC. 

Table 4-3 Class F Fly Ash and Ground-granulated Blast-furnace Slag - Common Concrete Grade 

Quantities for Alkaline/Binder and Water/Geopolymer Solids 

Strength (MPa) AL/Binder W/GPS 

32 0.35 – 0.45 0.18 – 0.27 

40 0.25 – 0.3 0.17 – 0.18 

50 0.12 – 0.16 0.07 – 0.09 
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Figure 4-7 - Class F Fly Ash and Ground-granulated Blast-furnace Slag - Superplasticizer/Binder Vs 

Sodium Hydroxide Molarity 

The results shown in Figure 4-7, the molarity of the NaOH solution can range 

from 8-12 for N32 GPC.  

Choosing a NaOH molar weight of 8, the superplasticizer/binder ratio is from 

0-0.005.  

The following table indicates material quantities for common concrete grades 

of GPC. 

Table 4-4 Class F Fly Ash and Ground-granulated Blast-furnace Slag - Common Concrete Grade 

Quantities for Superplasticizer/Binder and Sodium Hydroxide Molarity 

Strength (MPa) Superplasticizer/Binder NaOH Molarity 

32 0 – 0.005 8 – 12 

40 0 – 0.005 ≧14 

 

Table 4-5  Class F Fly Ash and Ground-granulated Blast-furnace Slag – Artificial Neural Network 

Summary for N32 Geopolymer Concrete 

AL/Binder W/GPS NaOH/Sodium 

Silicate 

NaOH 

Molarity 

Superplasticizer/Binder 

0.3 - 0.45 0.18 – 0.27 0.3 – 0.5 8 - 12 0 - 0.05 
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This will be the only mixture tested for compressive strength due to time and 

material constraint. Six cylinders of 100mm diameter x 200mm high will be 

created to test for compressive strength of N32 GPC. This equates to 

approximately 0.0094m3 of GPC, with some extra for spillage. Based on a 

concrete density of 2500kg/m3, the weight of concrete required is 

approximately 35kg. 

As the aggregates are based on OPC quantities, the percentages of course and 

fine aggregates will be the same as that for the Class F mix. Therefore, the 

total weight of aggregates is 28kg, with fine sands equalling 9.8kg of that.  

From the database, the average fly ash/total weight ratio is 0.13, whilst the 

average slag/total weight ratio is 0.06. Therefore, 4.55kg of Class F FA and 

2.1kg of GGBFS are required for this mix.  

For the alkaline solution, the ratio of AL/Binder will be taken as 0.4. This 

would indicate a quantity of alkaline solution to be 2.66kg. Taking the 

NaOH/Sodium Silicate ratio as 0.4, this would indicate quantities: 

 NaOH solution = 1.064kg 

 Sodium Silicate solution = 1.596kg 

Based on a W/GPS ratio of 0.25 and average percentages from the database: 

 55.9% water for hydroxide solution = 0.595L of water 

 57.9% water for silicate solution = 0.924L of water 

 Extra Water = Approximately 0.43L 

 Total water required = 1.95 litres 

For the Superplasticizer, the super/binder ratio of 0.0025 will be used. 

Therefore, 0.02kg of Superplasticizer may be required.  

  



39 

 

Table 4-6 shows a summary of all materials required for the Class F FA and 

GGBFS test mix.  

Table 4-6 Class F Fly Ash and Ground-granulated Blast-furnace Slag Mix Design Summary 

Fly 

Ash 

(kg) 

Slag 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticiser 

(kg) 

4.55 2.1 18.2 9.8 1.06 8M 0.595 1.596 0.924 0.43 0.02 
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4.2 Class F Fly Ash Artificial Neural Network 

 

The inputs were based on Class F Fly Ash (FA) being the binding material. 

The targets used for the neural network were the compressive strength of the 

mixes as found by others.  

The inputs and outputs from the ANN for Class F FA are as shown in Table 

4-7. For formatting reasons, only a sample of the complete table is shown 

here. For the complete table refer to Appendix C: Artificial Neural Network 

Data.   

Table 4-7 Class F Fly Ash – Artificial Neural Network Inputs and Predicted Outputs 

NaOh/Sodium 

Silicate 

AL/FA W/GPS Super/Binder NaOH 

Molarity 

Actual 

Compressive 

Strength 

(Mpa) 

Predicted 

Compressive 

Strength 

(MPa) 

0.50 0.40 0.295 0.010 14 24 32.2044 

0.40 0.40 0.251 0.020 14 30 35.3362 

0.50 0.40 0.253 0.010 14 30 35.5241 

0.40 0.35 0.220 0.020 14 32 40.7442 

0.40 0.40 0.251 0.020 14 32 35.3362 

0.50 0.40 0.253 0.010 8 32 34.5394 

0.47 0.28 0.368 0.020 10 33.75 35.1475 

0.40 0.46 0.209 0.021 12 34.59 41.8601 

0.50 0.40 0.253 0.010 10 35 31.9175 

0.47 0.29 0.384 0.020 10 35.25 33.5923 

0.40 0.35 0.228 0.015 14 36 37.4533 

0.50 0.35 0.217 0.013 14 37.09 38.8008 

0.40 0.35 0.205 0.015 12 38 37.7634 

0.50 0.40 0.253 0.010 14 38 35.5241 

0.40 0.35 0.231 0.015 16 40 41.4564 

0.40 0.35 0.210 0.015 14 40 39.9553 

0.50 0.38 0.221 0.020 14 41 39.796 

0.54 0.39 0.190 0.015 8 41.25 45.4373 

0.40 0.35 0.230 0.015 16 42 41.6119 

0.50 0.30 0.188 0.013 14 42.51 47.4435 

0.40 0.50 0.328 0.070 12 44.81 45.3939 

0.40 0.35 0.190 0.015 10 45 41.2809 

0.40 0.35 0.219 0.015 14 45 38.6231 

0.40 0.35 0.222 0.015 14 45 38.2155 

0.50 0.40 0.253 0.010 14 46 35.5241 

0.40 0.35 0.175 0.015 8 47 48.9683 

0.40 0.50 0.328 0.070 12 47.99 45.3939 
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Figure 4-8 - Class F Fly Ash Artificial Neural Network - Training Results 

The selected algorithms used for the Class F Fly Ash ANN are shown at the 

top of Figure 4-8. This reflects that previously mentioned, with the traingda 

and mean square error algorithms used. At the end of the training: 

 27 epochs out of a maximum 1000 were used 

 The time taken was instantanous 

 Performance was 150 out of 189 

 The gradient was 261 

 And 6 validation checks were performed 
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 Figure 4-8 indicates that the validation checks were the reason why the 

training was stopped.  

 

Figure 4-9 - Class F Fly Ash Artificial Neural Network - Training Performance Plot 

As shown in Figure 4-9, the performance of the training was best at epoch 21 

with the best validation being 80.49.  
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Figure 4-10 - Class F Fly Ash Artificial Neural Network - Training State Plot 

The plots shown in Figure 4-10 from the training state plot. It shows the 

pattern of the results shown in Figure 4-8. At epoch 27: 

 the gradient = 260.9853 

 the validation checks reach 6   

 the learning rate = 0.00015782 
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Figure 4-11 - Class F Fly Ash Artificial Neural Network Regression Plots 

The regression plots shown in Figure 4-11 show the process in which the 

output data was computed. The first plot shows the outputs are calculated 

based on training, the second on validation and the third on test data. The final 

plot combines all three initial plots. The output data is then calculated from 

the formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 ≅ 0.11 × 𝑇𝑎𝑟𝑔𝑒𝑡 + 36 

The output data was then plotted along with the inputs to give input values of 

the materials required to create specific compressive strengths of GPC.  
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Figure 4-12 - Class F Fly Ash – Sodium Hydroxide/Sodium Silicate Vs Alkaline/Fly Ash 

As shown in Chapter 3.1.2, an AL/FA ratio of 0.4 - 0.6 is what is required to 

create a mix design for N32 GPC. Using this value in Figure 4-12 to align 

with the contours, which represent compressive strength, would indicate a 

range for sodium hydroxide/sodium silicate ratio of 0.4 - 0.6.  

Other common grades of concrete are as follows: 

Table 4-8 Class F Fly Ash - Common Concrete Grade Quantities for Alkaline/Fly Ash and Sodium 

Hydroxide/Sodium Silicate 

Strength (MPa) AL/FA NaOH/Sodium Silicate 

25 0.7 – 0.9 0.1 – 0.25 

32 0.4 – 0.6 0.4 – 0.6 

40 0.5– 0.8 0.4 – 0.6 

50 0.1 – 0.25 0.27 – 0.38 
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Figure 4-13 - Class F Fly Ash - Alkaline/Fly Ash Vs Water/Geopolymer Solids 

The results shown in Figure 4-13, along with that from Figure 4-12, indicate 

that the ratio of water to geopolymer solids would need to be approximately 

0.45 to create N32 GPC. This result concurs that shown by Ferdous, Manalo 

et al. (2015), in that the lower W/GPS ratio results in higher strength concrete. 

This however, is very high in comparison to that shown by Lloyd, N. A. and 

B. V. Rangan (2010). If a AL/FA ratio of 0.4 – 0.6 is used then the W/GPS 

ratio would be 0.4. For the purpose of this report a W/GPS ratio of 0.4 will  

be used. The values shown in Table 4-9 are similar to that by previous 

research except for 50MPa concrete. This value seems a little high and as such 

would require testing to check.  

Table 4-9 Class F Fly Ash - Common Concrete Grade Quantities for Alkaline/Fly Ash Vs 

Water/Geopolymer Solids 

Strength (MPa) AL/FA W/GPS 

25 0.7 – 0.9 0.4 – 0.45 

32 0.4 – 0.6 0.27 – 0.35 

40 0.5 – 0.8 0.25 – 0.3 

50 0.1 – 0.25 0.35 – 0.38 

 



47 

 

 

Figure 4-14 - Class F Fly Ash - Superplasticizer/Binder Ratio Vs Sodium Hydroxide Molarity 

Figure 4-14 shows the relationship between superplasticizer/binder ratio and 

the molarity of the NaOH solution. It is evident that as the molarity of the 

NaOH solution increases, so too does the ratio of the superplasticizer to 

binder. For N32 concrete, NaOH molarity range of 12–14 with 

superplasticizer/binder ratio range of 0.04 – 0.1.  

Table 4-10 Class F Fly Ash - Common Concrete Grade Quantities for Superplasticizer/Binder and 

Sodium Hydroxide Molarity 

Strength (MPa) Superplasticizer/Binder NaOH Molarity 

32 0.04 – 0.1 12 - 14 

40 0.02 – 0.1 9 - 12 

50 0.035 – 0.06 8 - 10 

 

Table 4-11 Class F Fly Ash Artificial Neural Network Summary for N32 Geopolymer Concrete 

AL/FA W/GPS NaOH/Sodium 

Silicate 

NaOH 

Molarity 

Superplasticizer/Binder 

0.4 - 0.6 0.27 – 0.35 0.4 – 0.6 12 – 14 0.04 – 0.1 
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4.3 Class C Fly Ash Artificial Neural Network 

Similarly to the Class F Fly Ash ANN, the inputs were based on Class C Fly 

Ash (FA) being the binding material. The targets used for the neural network 

were the compressive strength of the mixes as found by others.   

The inputs and outputs from the ANN for Class C Fly Ash are as shown in 

Table 4-12.  

Table 4-12 Class C Fly Ash - Artificial Neural Network Inputs and Predicted Outputs 

NaOH/Sodium 

Silicate 
AL/FA W/GPS Super/Binder 

NaOH 

Molarity 

Compressive 

Strength 

(MPa) 

Predicted 

0.49 0.51 0.295 0.12 20 26 26.00858 

1.00 0.51 0.293 0.08 20 30 26.01635 

0.50 0.51 0.295 0.1 20 32 26.00763 

0.50 0.50 0.222 0 10 33.8 51.97201 

0.49 0.51 0.239 0 10 36 51.99943 

1.00 0.50 0.229 0 20 37.64 50.51782 

0.49 0.51 0.267 0.03 15 38 40.01598 

0.50 0.50 0.222 0 15 39.02 51.9274 

1.00 0.50 0.229 0 10 39.67 51.99362 

2.00 0.51 0.272 0.06 15 40 38.03645 

2.00 0.51 0.300 0.1 20 42 26.25172 

0.50 0.51 0.267 0.05 15 43 36.20412 

1.00 0.51 0.265 0.04 15 45 44.38765 

1.00 0.50 0.229 0 15 45.34 51.9729 

0.50 0.50 0.222 0 20 46.69 51.66551 

1.00 0.51 0.237 0 10 48 51.99888 

2.00 0.51 0.254 0.03 10 48 51.98213 

0.50 0.51 0.239 0 10 52 51.99943 

 

The data range available for Class C FA was relatively miniscule in 

comparison to that shown from the Class F FA database. As such, the results 

from the ANN were not as accurate as that shown in the Class F ANN.   
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Figure 4-15 Class C Fly Ash Artificial Neural Network - Training Results 

The training results shown above indicate an adequate level of data training 

was performed. The selected algorithms used for the Class C FA ANN are 

shown at the top of Figure 4-15. This is the same process performed for Class 

F FA ANN. At the end of the training: 

 21 epochs out of a maximum 1000 were used 

 The time taken was 0:00:01.  

 Performance was 69.1 out of 180 

 The gradient was 80.2 

 And 6 validation checks were performed 
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Figure 4-16 Class C Fly Ash Artificial Neural Network - Training Performance Plot 

As shown in Figure 4-16, the performance of the training was best at epoch 

15 with the best validation being 82.7944.  

 



51 

 

 

Figure 4-17 Class C Fly Ash Artificial Neural Network - Training State Plot 

The plots shown in Figure 4-17 from the training state plot. It shows the 

pattern of the results shown in Figure 4-15. At epoch 21: 

 the gradient = 80.2254 

 the validation checks reach 6   

 the learning rate = 0.0027377 
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Figure 4-18 Class C Fly Ash Artificial Neural Network Regression Plots 

The regression plots shown in Figure 4-18 show the process in which the 

output data was computed. The first plot shows the outputs are calculated 

based on training, the second on validation and the third on test data. The final 

plot combines all three initial plots.  As shown in all plots, the line of best-fit 

is not very accurate to most of the data points, this is because the input data 

was very limited and not many consistencies could be noted in the material 

quantities used. The equation for the line of best-fit is as shown below: 

𝑂𝑢𝑡𝑝𝑢𝑡 ≅ 0.91 × 𝑇𝑎𝑟𝑔𝑒𝑡 + 6.7 

The output data was then plotted along with the inputs to give input values of 

the materials required to create specific compressive strengths of GPC.  
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Figure 4-19 Class C Fly Ash – Sodium Hydroxide/Sodium Silicate Vs Alkaline/Fly Ash 

As the data was fairly limited, the contour plot as shown in Figure 4-19, is 

not very limiting in the range of materials that could be chosen. It does 

however, indicate that a minimum AL/FA ratio of 0.51 shall be required to 

create a mix design for N32 concrete. The selection of an appropriate amount 

of hydroxide/silicate is not as simple. As such, a review of Table 4-12, and 

comparing the predicted compressive strengths and that of previous research, 

would be required to obtain the ultimate mix. The quantities of NaOH/Sodium 

Silicate in Table 4-12 vary quite a lot. Taking the ratios of the closest 

predicted strengths, indicates that a range of 0.4-0.51 is required for all grades 

of concrete. This, combined with Figure 4-19, shows that as the grade of 

concrete increases so too does the quantity of FA. This would be similar to 

that of OPC, where the cement content would increase with the strength.  
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 The quantities for common grades of concrete are as follows: 

Table 4-13 Class C Fly Ash - Common Concrete Grade Quantities for Alkaline/Fly Ash and Sodium 

Hydroxide/Sodium Silicate 

Strength (MPa) AL/FA NaOH/Sodium Silicate 

25 0.515 0.4 – 0.51 

32 0.51 0.4 – 0.51 

40 0.505 0.4 – 0.51 

50 0.5 0.4 – 0.51 

 

 

Figure 4-20  Class C Fly Ash - Alkaline/Fly Ash Vs Water/Geopolymer Solids 

The results shown in Figure 4-20, along with that from Figure 4-19, indicate 

that the ratio of water to geopolymer solids would need to be approximately 

0.29 to create N32 GPC. This result concurs that shown by Chindaprasirt, et 

al (2007).  

Table 4-14 Class C Fly Ash - Common Concrete Grade Quantities for Alkaline/Fly Ash Vs 

Water/Geopolymer Solids 

Strength (MPa) AL/FA W/GPS 

25 0.515 0.3 

32 0.51 0.29 

40 0.505 0.275 

50 0.5 0.25 
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Figure 4-21  Class C Fly Ash - Superplasticizer/Binder Ratio Vs Sodium Hydroxide Molarity 

Figure 4-21 shows the relationship between superplasticizer/binder ratio and 

the molarity of the NaOH solution. It indicates that as the molarity of the 

NaOH solution decreases, the compressive strength increases. It also shows 

that superplasticizer is required for all mixes. This would indicate that the 

workability of the mix is low, which concurs with that shown by 

Chindaprasirt, et al (2007). For N32 GPC, NaOH molarity range of 13–15 

with superplasticizer/binder ratio range of 0.065 – 0.1.  

Table 4-15 Class C Fly Ash - Common Concrete Grade Quantities for Superplasticizer/Binder and 

Sodium Hydroxide Molarity 

Strength (MPa) Superplasticizer/Binder NaOH Molarity 

32 0.065 – 0.1 13 - 15 

40 0.05 – 0.1 12 - 14 

50 0.025 – 0.045 11 - 12 
 

Table 4-16 Class C Fly Ash Artificial Neural Network Summary for N32 Geopolymer Concrete 

AL/FA W/GPS NaOH/Sodium 

Silicate 

NaOH 

Molarity 

Superplasticizer/Binder 

0.51 0.29 0.4 – 0.51 13 – 15 0.065 – 0.1 
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4.4 Ground-granulated Blast-furnace Slag Artificial Neural Network 

Similarly to the Class F fly ash ANN, the inputs were based on GGBFS being 

the binding material. The targets used for the neural network were the 

compressive strength of the mixes as found by others.   

The inputs and outputs from the ANN for GGBFS are as shown in Table 4-17.  

Table 4-17 Ground-granulated Blast-furnace Slag – Artificial Neural Network Inputs and Predicted 

Outputs 

Slag/Total 

Weight 

Coarse 

Agg/Total 

Weight 

Sand/total 

weight 

NaOH 

/Sodium 

Silicate 

AL/Slag W/GPS 

Actual 

Compressive 

Strength 

(MPa) 

Predicted 

Compressive 

Strength 

(MPa) 

0.16 0.35 0.35 3.00 0.28 0.49 22 24.4 

0.16 0.34 0.34 1.00 0.38 0.49 35 24.1 

0.16 0.50 0.25 5.00 0.40 0.33 38.1 49.6 

0.16 0.50 0.25 3.00 0.45 0.29 50.26 55.5 

0.15 0.52 0.26 3.00 0.40 0.32 53.8 59.0 

0.14 0.52 0.26 5.00 0.50 0.26 56.67 56.4 

0.15 0.50 0.25 1.00 0.50 0.33 57.18 60.0 

0.17 0.49 0.24 1.00 0.40 0.33 57.4 54.6 

0.17 0.49 0.24 5.01 0.45 0.30 58.11 46.5 

0.16 0.49 0.24 3.00 0.50 0.32 60.8 52.5 

0.14 0.52 0.26 1.00 0.45 0.35 65.02 62.9 

 

Due to the limited amount of available research data, it was decided to 

increase the amount of inputs for the ANN by including the ratios of slag, 

coarse aggregate and sand to the total weight respectively. It was also noted 

that no superplasticizer was used in any of the mixes and as such it was left 

out of the inputs for the ANN. The molarity of the NaOH solution was not 

mentioned in most research papers either so it was left out for all inputs.  
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Figure 4-22 Ground-granulated Blast-furnace Slag Artificial Neural Network - Training Results 

 The training results shown above indicate an adequate level of data training 

was performed. The selected algorithms used for the GGBFS ANN are shown 

at the top of Figure 4-22. At the end of the training: 

 22 epochs out of a maximum 1000 were used 

 The time taken was 0:00:00.  

 Performance was 15.5 out of 1090 

 The gradient was 82.9 

 And 6 validation checks were performed 
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Figure 4-23 Ground-granulated Blast-furnace Slag Artificial Neural Network - Training Performance 

Plot 

As shown above, the performance of the training was best at epoch 15 with 

the best validation being 133.7274.  

 



59 

 

 

Figure 4-24 Ground-granulated Blast-furnace Slag Artificial Neural Network - Training State Plot 

The plots shown in Figure 4-24 are from the training state plot. It shows the 

pattern of the results shown in Figure 4-22. At epoch 22: 

 the gradient = 82.9209 

 the validation checks reach 6   

 the learning rate = 0.0016306 

 

 

  



60 

 

 

Figure 4-25 Ground-granulated Blast-furnace Slag Artificial Neural Network Regression Plots 

The regression plots shown in Figure 4-25 show the process in which the 

output data was computed. Similar to the Class C FA ANN results, the line 

of best-fit is not very accurate to most of the data points, this is because the 

input data was very limited and not many consistencies could be noted in the 

material quantities used. The equation for the line of best-fit is as shown 

below: 

𝑂𝑢𝑡𝑝𝑢𝑡 ≅ 0.86 × 𝑇𝑎𝑟𝑔𝑒𝑡 + 6.1 

 

The output data was then plotted along with the inputs to give input values of 

the materials required to create specific compressive strengths of GPC.  
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Figure 4-26 Ground-granulated Blast-furnace Slag – Sodium Hydroxide/Sodium Silicate Vs 

Alkaline/Slag 

From Figure 4-26, the ratios of AL/slag and NaOH/Sodium silicate can be 

determined for standard concrete grades.  

The quantities for common grades of concrete are as follows: 

Table 4-18 Ground-granulated Blast-furnace Slag - Common Concrete Grade Quantities for 

Alkaline/Slag and Sodium Hydroxide/Sodium Silicate 

Strength (MPa) AL/Slag NaOH/Sodium Silicate 

32 0.32 0.4-0.7 

40 0.38 0.4-0.7 

50 0.42 0.4-0.7 
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Figure 4-27  Ground-granulated Blast-furnace Slag - Alkaline/Slag Vs Water/Geopolymer Solids 

The results shown in Figure 4-27, along with that from Figure 4-26, indicate 

that the ratio of water to geopolymer solids would need to be approximately 

0.47 to create N32 concrete. This result concurs that shown by Bernal et al 

(2012).  

Table 4-19 Ground-granulated Blast-furnace Slag - Common Concrete Grade Quantities for 

Alkaline/Slag and Water/Geopolymer Solids 

Strength (MPa) AL/Slag W/GPS 

32 0.32 0.47 

40 0.38 0.45 

50 0.42 0.42 

 

 

Table 4-20 Ground-granulated Blast-furnace Slag Artificial Neural Network Summary for N32 

Geopolymer Concrete 

AL/Slag W/GPS NaOH/Sodium 

Silicate 

0.32 0.47 0.4-0.7 
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CHAPTER 5 TESTING 

 

5.1 Mixing of Materials  

 

With the use of the material quantities established from the Artificial Neural 

Networks (ANNs) in Chapter 4, the mix could then be created and set into 

moulds for later testing. The materials were gathered and mixed in lab Z1 at 

University of Southern Queensland’s (USQ) Toowoomba Campus on 25 

August 2015. The materials that were used are as per that shown in Table 4-6 

except for the one item, the superplasticizer. The university did not hold any 

superplasticizer during the mixing period and as such it was left out of the 

mix. The remaining material quantities were as per Table 4-6.  

The first step was to mix the alkaline solution. The sodium hydroxide pellets 

from Chem Supply were added to water. As the pellets dissolved, the solution 

generated heat. As such it was left to cool down whilst the other materials 

were mixed.  

 

Figure 5-1 Sodium Hydroxide Pellets 
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Figure 5-2 Sodium Silicate 

     

After this, the sodium silicate solution was mixed with the appropriate water 

quantity. The sodium silicate used, as shown in Figure 5-2, was ‘N’ grade 

Liquid Sodium Silicate from PQ Corporation Australia. Once the sodium 

silicate solution was complete, it was added into the sodium hydroxide 

solution, along with the extra water required for the mix and left to cool down.  
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The next step was to gather all of the dry materials required for each mix. 

Each material was measured by weight on the electronic scales in the 

laboratory, as shown in Figure 5-3.  

 

Figure 5-3 Measuring dry materials on electronic scales 

Once the correct weight of each material was obtained it was placed into the 

cement mixer. All of the dry materials were then mixed together for one 

minute. After this, the alkaline mix and extra water were added to the cement 

mixer and mixed together until all of the dry materials were combined into 

the wet mixture. A slump test was performed after each material was 

completely mixed in accordance with AS 1012.3.1.  
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Figure 5-4 Slump Test Cone (AS1012.3.1) 

The cone was filled in three equal layers with each layer rodded 25 times for 

compaction reasons. The slump for the Class F Fly Ash (FA) and Ground-

granulated Blast-furnace Slag (GGBFS) mix was 160mm. 

This slump value is very high in comparison to Ordinary Portland Cement 

(OPC) mixes but are fairly similar to that shown by Hardjito (2005).  

After the slump test was performed, the mix was then placed into moulds. 

This was done so by filling the mould half way, rodding 25 times with an R24 

bar, then filling to the top and rodding again 25 times. Figure 5-5 depicts the 

compaction by rodding with the R24 bar.  
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Figure 5-5 Compaction by rodding 

In total, six moulds were created for FA & GGBFS. Of these six samples of 

FA & GGBFS, three will be tested at 7 days whilst the remaining three 

samples will be tested at 28 days.  

 

Figure 5-6 Fly Ash and Ground-granulated Blast-furnace Slag Mix in Moulds 
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Once the mould was completely full, the top was finished with a small trowl 

and then placed into the curing room for 36 hours at 27° as per AS1012.8.1-

2014. The samples were removed from the moulds after 24 hours, to free them 

up for other students. The samples were then placed back into the curing room 

for the rest of the 36 hour curing period. After the 36 hours had passed, the 

samples were removed from the curing room and left to cure at room 

temperature for the remainder of the waiting period until test day.  
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5.2 Testing Procedure 

 

Seven days after the moulds were set, 3 cylinders of FA and GGBFS were 

tested for compressive strength in accordance with AS1012.9-2014 Methods 

of testing concrete, Method 9: Compressive strength tests. These tests were 

performed in lab Z1 at USQ’s Toowoomba Campus on 2 September 2015.  

 

 

Figure 5-7 Sample setup for Compressive Strength Test 

Figure 5-7 shows the sample set into the machine ready for testing. The 

sample was locked in place with a rubber based cap which was placed on top 

of the sample. The cap then slotted into the machine’s top plate and lowered 

into position so that the base was resting on the bottom plate. The impact 

machine was then set to apply a force equivalent to 20 +/- 2MPa compressive 

stress per minute until there is no more increase in force, as per AS 1012.9-

2014. The maximum force applied to the sample was then noted from the 

display on the impact machine.  
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Of the three samples tested, it was noted that all samples fractured in a similar 

fashion. Figure 5-8 shows the elevation of the fractured sample with cracks 

running vertically towards the centroid of the sample. Figure 5-9 shows the 

plan view of the fractured sample with the crack running diagonally roughly 

through the centroid of the sample.  

 

 

Figure 5-8 Fractured Sample after Testing 

 

Figure 5-9 Plan view of the fractured sample 
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CHAPTER 6 RESULTS AND DISCUSSION 

 

Table 6-1 Compressive Test Results at 7 days 

Sample type 
Age 

Days 

Initial 

Curing 

Hours 

Ambient  

Curing 

Days 

Height 

(mm) 

Diameter 

(mm) 

Force (kN) Strength 

(MPa) 

1 FA + GGBFS 7 28 6 200 100 111.7 14.2 

2 FA + GGBFS 7 28 6 200 100 106.3 14.1 

3 FA + GGBFS 7 28 6 200 100 106.1 14.1 

 

The test results shown in Table 6-1 indicate a 7 day force required for fracture 

of the specimen of approximately 106kN. This would translate to a 

compressive strength of 14MPa. According to AS1379-2007 - Specification 

and supply of concrete, this would indicate a concrete grade of roughly 

28MPa at 28 days, as shown in Table 6-2. This table is based on OPC and the 

results of the 28 day compression tests will be required to compare these 

values.  

Table 6-2 Mean 7 day Compressive Strengths (AS1379-2007) 

 

 

Figure 6-1 Compressive Strengths over time for curing at ambient conditions (Rangan 2006) 
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Rangan (2006), showed that samples cured at ambient conditions had slightly 

different development of strength over time. The following table shows the 

relationship depicted by Rangan (2006) for the three different GPC grades 

shown in Figure 6-1. 

Table 6-3 Strength development relationship 

Grade 

Designation 

7 day Strength 28 day Strength Relationship 

N32 14 32 7 day = 0.4375 x Grade 

N40 23 44 7 day = 0.575 x Grade 

N50 35 48 7 day = 0.729 x Grade 

 

It was noted, based on Table 6-2, that the samples may not reach the required 

28 day compressive strength of 32MPa. Testing at 28 days will determine the 

accuracy of the mix design.  

 

6.1 28 day test results 

 

Table 6-4 Compressive Test Results at 28 days 

Sample type 
Age 

Days 

Initial 

Curing 

Hours 

Ambient  

Curing 

Days 

Height 

(mm) 

Diameter 

(mm) 

Force (kN) Strength 

(MPa) 

4 FA + GGBFS 28 28 6 200 100 121.8 15.51 

5 FA + GGBFS 28 28 6 200 100 145.4 18.51 

6 FA + GGBFS 28 28 6 200 100 131.3 16.72 

 

The compressive test results shown in Table 6-4, are not reflective of the 7 

day to 28 day strength development shown in either Table 6-2 or Figure 6-1. 

The 28 day strength is almost identical to that of the 7 day strength as shown 

in Table 6-1. This would indicate that the mix developed the maximum 

strength very early and will not increase greatly with time.  
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These results are obviously fair less than the 32MPa required for this mix, 

and as such, there are some possible reasons for the difference.  

The sodium silicate solution quantities taken from the database were based 

on the sodium silicate being in powder form. This was then to be mixed with 

water to provide the solution. The sodium silicate available at the time of 

testing was in a solution form already. As such the water required to form the 

solution should have been removed from the mix. This would also reduce the 

W/GPS ratio as the silicate is not a solid and should therefore be left out of 

the geopolymer solids total.  

The superplasticizer would have allowed greater workability of the mixture 

with a lowered water content.  

As the ANNs were based on sodium silicate with water and superplasticizer, 

it would be suggested to use silicate powder and include superplasticizer for 

any future possible mixtures.  

It was decided, even though there was not enough time to test, to revise the 

required materials for the Class F FA and GGBFS mix to see if a more 

appropriate mix could be found to provide a strength more closely to the 

32MPa expected value. Upon review of Figure 4-6 - Class F Fly Ash and 

Ground-granulated Blast-furnace Slag - Alkaline/Binder Vs 

Water/Geopolymer Solids, it was decided to reduce the W/GPS ratio to 0.20. 

Based on a W/GPS ratio of 0.20 for 6 cylinders and average percentages from 

the database: 

 55.9% water for hydroxide solution = 0.595L of water 

 57.9% water for silicate solution = 0.924L of water 

 Extra Water = Approximately 0.04L 

 Total water required = 1.56 litres 

If pre-made sodium silicate solution was to be used, the water content of 

0.924L for could be removed from the mix design. This would give a total 

water content of 0.636L. There is no doubt that the workability of this mix 

would be low and as such a superplasticizer would be required.  
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For the Superplasticizer, the super/binder ratio of 0.0025 will be used. 

Therefore, 0.02kg of Superplasticizer may be required.  

The following table shows a revised summary of all materials required for the 

Class F fly ash and Ground-granulated Blast-furnace Slag test mix of 6-

100mm diameter by 200mm high cylinders. 

Table 6-5 Revised Class F Fly Ash and Ground-granulated Blast-furnace Slag Mix Design Summary 

Fly 

Ash 

(kg) 

Slag 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticiser 

(kg) 

4.55 2.1 18.2 9.8 1.06 8M 0.595 1.596 0.924 0.04 0.02 
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CHAPTER 7 CONCLUSION 

 

It is obvious that global warming has had an effect on the world climate over 

the last decade. And with this recognition, we must acknowledge that we have 

the power to help rectify the damage that mankind is causing to the planet. 

One way of reducing the greenhouse gas emissions is to develop alternate 

methods for the production of concrete. Geopolymer Concrete (GPC) is the 

method in our salvation. Of course it will not remove the damage already 

done but it will help reduce any further harm. If the technology and materials 

are available for use today, then it is the responsibility of all within the 

construction industry to use these materials. The government should set 

targets for greenhouse gas emission reductions and each manufacturer should 

be monitored and penalised for exceeding the limits. 

It is not enough to say that it may cost a little more per cubic metre or may 

take a little longer to reach site. These issues should be taken into account at 

the start of the project and included in the cost and scheduling estimates 

before construction has begun.  

By using the works developed in this project, society is well on the way to 

implementing a sustainable replacement for Ordinary Portland Cement 

(OPC).  
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7.1 Achievements 

 

With the research data accumulated, there was enough information in the 

database to create Artificial Neural Networks (ANNs) and localise the 

ultimate mix of geopolymer materials to create a mix design that can be used 

in general construction.  

The types of geopolymer concrete (GPC) focused on in this project were that 

based on Class F Fly Ash (FA), Class C FA, Ground-granulated Blast-furnace 

Slag (GGBFS) and that on Class F FA and GGBFS. From the ANNs created, 

it was possible to pinpoint a mix design for several standard grades of GPC.  

The following tables represent the quantities of materials required for 1m3 of 

GPC based on the output of the ANN’s. It must be noted that these mix 

designs have not been tested and should be treated as such.  

Table 7-1 Material Quantities for 1m3 of Class F Fly Ash based Geopolymer Concrete 

Grade 

Fly 

Ash 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

N20 400 1222 658 15-54 8-14 8-30 285-306 160-171 72-79 - 

N25 400 1222 658 28-90 8-14 15-50 252-270 141-151 51-54 - 

N32 400 1222 658 64-144 8-14 36-80 96 54 98-119 16-40 

N40 400 1222 658 80-192 8-14 45-107 120-128 67-72 0 8-40 

N50 400 1222 658 11-30 8-14 6-17 29-70 16-39 113-124 14-24 

 

Table 7-2 Material Quantities for 1m3 of Class C Fly Ash based Geopolymer Concrete 

Grade 

Fly 

Ash 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass (kg) 

NaOH 

Molarity 

Water in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

N32 414 1091 588 85-108 13-15 47.5-60 103-127 59-74 15-37 26-41 

N40 414 1091 588 84-107 12-14 47-60 102-125 59-72.5 14-35 21-41 

N50 414 1091 588 83-106 11-12 46.5-59.3 101.5-124 59-72 13-32 10-19 
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Table 7-3 Material Quantities for 1m3 of Ground-granulated Blast-furnace Slag based Geopolymer 

Concrete 

Grade 
Slag 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

N32 424 1072 575 54-95 13-15 30-53 41-81 24-47 165 

N40 424 1072 575 64-113 12-14 36-63 48-97 28-56 163 

N50 424 1072 575 71-125 11-12 40-70 53-107 31-62 162 

 

 

Table 7-4 Material Quantities for 1m3 of Class F Fly Ash and Ground-granulated Blast-furnace Slag 

based Geopolymer Concrete 

Grade 

Fly 

Ash 

(kg) 

Slag 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

N32 320 80 1200 645 48-120 8-14 27-67 112-168 62-94 0-19 2 

N40 320 80 1200 645 28-66 8-14 16-37 54-72 30-40 6-28 2 

N50 320 80 1200 645 10-38 8-14 5-22 26-38 14-21 0-10 - 
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7.2 Future work 

 

It is noted that the curing methods from the database were not all consistent 

or reflective of ambient conditions, which would be expected in real world 

applications. With this acknowledgement, it is advised that more testing be 

carried out based around ambient curing temperatures and then repeat the 

ANN process to pinpoint an ultimate mix for GPC.  

As previously mentioned, the sodium silicate in the database and ANNs was 

based on the silicate as a powder and then mixed with water. To fully take 

advantage of the ANN results, it is suggested to use sodium silicate powder 

instead of pre-made sodium silicate solution. This would also ensure that the 

correct water content is used.  

It would also be suggested that the revised mix design summary in Table 6-5 

be tested first before proceeding onto other mix designs for testing purposes.  

To fully cover the range of standard concrete grades, more testing of higher 

grades, i.e. 50MPa and above would need to be completed as well as more 

testing of slag only mixes and Class C FA mixes. This would overcome the 

inconsistencies with the ANN outputs due to lack of training data. It would 

then be advised to create ANNs again to determine the ultimate mix for each 

type of mixture. The quantities shown in Tables 7-1 to 7-4 would provide an 

excellent starting point for testing.  
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University of Southern Queensland 

FACULTY OF HEALTH, ENGINEERING & SCIENCES 

 

ENG 4111/4112 Research Project 

PROJECT SPECIFICATION 

FOR:  AARON WILSON 

TOPIC:  ESTABLISHING A MIX DESIGN PROCEDURE 

FOR GEOPOLYMER CONCRETE 

SUPERVISOR: Dr Weena Lokuge, Lecturer in Civil Engineering 

ENROLMENT: ENG 4111 – S1, 2015; ENG 4112 – S2, 2015 

PROJECT AIM: This project seeks to analyse available data on 

geopolymer concrete mix design and through trending, 

establish a procedure by which geopolymer concrete 

can be mixed to produce a constant compressive 

strength similar to that currently available for Portland 

cement concrete.    

PROGRAMME:  

1) Research geopolymer mix designs to suit easily available 

materials used in the creation of geopolymer concrete.  

2) Critically evaluate available data.  

3) Establish database of collected quantities of materials and 

compressive strengths.  

4) Review data and input into matlab to establish trends. 

5) Produce mix design procedure that defines the necessary steps 

clearly and accurately.  

6) Submit academic dissertation on the research.  
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As time permits: 

7) Choose 2 mix designs relating to 32MPa concrete for testing.  

8) Gather materials and mix concrete for testing.  

9) Test samples and compare results to the gathered data.  

 

AGREED  Student: Aaron Wilson  Date: 31/03/15 

   Supervisor: Weena Lokuge Date: 31/03/15 

   Examiner: Chris Snook   
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Appendix B: Database  

 

Table B-0-1 Geopolymer Concrete based on Class F Fly Ash 

Fly Ash 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

476 1294 554 120 8M 71.52 48 26.832 0 0 

350 1200 645 41 8M 28.823 103 57.1856 35 10.5 

428 1170 630 57 14M 33.972 114 52.8618 86 4.3 

400 950 850 57 12M 31.863 143 80.08 80 28 

380 1050 800 40 8M 22.36 110 61.6 0 0 

428 1170 630 57 14M 33.972 114 52.8618 64 4.3 

400 1222 658 40 14M 23.84 100 58.5 0 6 

408 1243 554 41 8M 24.436 103 45.423 20 0 

400 1209 651 45.7 12M 25.5463 114.3 66.1797 0 0 

400 1222 658 56 14M 33.376 84 49.14 0 6 

408 1232 616 48 14M 28.608 103 57.577 0 0 

428 1170 630 49 14M 29.204 122 56.5714 43 8.5 

428.57 1177 623 68.57 14M 38.33 102.86 59.56 28.5 6.1 

408 1246 554 41 8M 24.436 103 45.423 20 0 

408 1080 554 41 8M 24.436 103 45.423 20 0 

428 1170 630 49 14M 29.204 122 56.5714 43 17 

394.29 1201 647 52.57 14M 29.39 105.14 60.8 21.4 6.1 

428 1170 630 49 14M 29.204 122 56.5714 43 8.5 

444 1170 630 44 14M 26.224 111 51.4707 43 9 

428 1170 630 49 14M 29.204 122 56.5714 43 13 

428 1170 630 57 14M 33.972 114 52.8618 43 4.3 

408 1294 554 41 14M 24.436 103 57.577 21.3 8.2 

408 1232 616 41 14M 24.436 103 57.577 21.3 8 

408 1201 647 62 14M 36.952 93 57.66 4 0 

428 1170 630 49 14M 29.204 122 56.5714 43 8.5 

428 1170 630 49 14M 29.204 122 56.5714 43 8.5 

428 1170 630 57 8M 33.972 114 52.8618 43 4.3 

408 1243 554 41 8M 24.436 103 45.423 20 0 

408 1232 616 55.4 8M 33.0184 103 57.577 0 6 

420.57 1031.99 555.7 37.63 10M 22.4 80.126 39.3 113 8.41 

378 1294 554 50 12M 26 124 69.316 0 8 

378 1772 554 50 12M 26 124 69.316 0 8 

408 1294 554 41 14M 24.436 103 57.577 10.7 8.2 

408 1232 616 41 14M 24.436 103 57.577 10.6 8 

428 1170 630 57 10M 33.972 114 52.8618 43 4.3 

365.16 1117.99 602.04 34.30 10M 20.4445 73.04 35.8553 103 7.3 

408.89 1177 623 57.24 14M 31.997 85.87 49.718 24.4 6.1 
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408 1294 554 51.5 14M 30.694 103 57.577 16.5 16.3 

408 1294 554 41 14M 22.919 103 61.388 22.5 6 

408 1201 647 62 14M 36.952 93 57.66 0 0 

428 1170 630 49 14M 29.204 122 56.5714 43 8.5 

408 1294 554 41 14M 24.436 103 57.577 22.5 6 

254.54 1290 694.66 22.77 10M 13.5709 48.49 23.8037 68.7 5.1 

408 1201 647 41 14M 24.436 103 57.577 20.7 6.1 

406 1194 643 41 14M 24.436 102 57.018 26.8 6 

404 1190 640 41 14M 24.436 102 57.018 25.5 6 

480 1153 599 56 14M 31.304 112 64.848 23.7 6.1 

400 950 850 57 12M 31.863 143 80.08 60 28 

408 1201 647 41 12M 24.436 103 57.577 14.3 6.1 

428 1170 630 57 14M 33.972 114 52.8618 43 4.3 

444.44 1177 623 44.44 14M 24.8419 111.11 64.3327 18.6 6.1 

498.46 1153 599 59.82 14M 33.439 89.72 51.9478 26.5 6.1 

408 1201 647 41 12M 24.436 103 57.577 14.3 6.1 

408 1201 647 41 14M 24.436 103 57.577 20.7 6.1 

408 1201 647 41 16M 24.436 103 57.577 26.5 6.1 

408 1294 554 41 14M 24.436 103 57.577 16.5 6.1 

428 1170 630 57 14M 33.972 114 52.8618 43 8.5 

408 1294 554 51.5 14M 30.694 103 57.577 16.5 4.1 

408 1294 554 51.5 14M 30.694 103 57.577 16.5 8.2 

408 1232 616 55.4 8M 33.0184 103 57.577 0 6 

408 1294 554 51.5 14M 30.694 103 57.577 16.5 0 

408 1201 647 41 12M 24.436 103 57.577 14.4 6.1 

309.85 1204 648.35 27.73 10M 16.5270 59.03 28.97 83.6 6.2 

408 1202 647 41 16M 24.436 103 57.577 26 6 

461.54 1177 623 46.15 14M 25.7978 92.31 53.44 18.6 6.1 

408 1201 647 41 14M 24.436 103 57.577 17.6 6.1 

428 1170 630 57 12M 33.972 114 52.8618 43 4.3 

408 1294 554 41 14M 24.436 103 57.577 0 8.2 

408 1201 647 55.4 8M 33.0184 103 57.577 0 6.1 

400 1265 540 42.3 16M 25.2108 105.7 59.086 24.3 4.2 

400 950 850 57 12M 31.863 143 80.08 48 28 

408 1201 647 41 10M 24.436 103 57.577 7.5 6.1 

408 1232 616 41 14M 24.436 103 57.577 20.7 6 

408 1232 616 41 14M 24.436 103 57.577 0 8 

408 1294 554 41 14M 27.88 103 57.577 22.5 6 

428 1170 630 49 14M 29.204 122 56.5714 43 8.5 

408 1294 554 41 14M 24.436 103 57.577 22.5 6 

400 950 850 57 12M 31.863 143 80.08 48 28 

405 1235 545 52.9 16M 31.53 132.4 74.012 28 3 

404 1190 640 41 14M 24.436 102 57.018 17 6 

428 1170 630 57 14M 33.972 114 52.8618 43 4.3 
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428 1170 630 57 14M 33.972 114 52.8618 43 4.3 

408 1201 647 41 8M 24.436 103 57.577 0 6.1 

400 950 850 57 12M 31.863 143 80.08 48 28 

476 1294 554 120 14M 71.52 48 26.832 0 0 

408 1232 616 41 16M 24.436 103 57.577 26.5 6 

350 1200 645 41 8M 28.823 103 57.1856 35 0 

408 1201 647 68 14M 40.528 103 63.86 0 0 

400 950 850 57 12M 31.863 144 81.0864 48 28 

400 950 850 57 12M 31.863 143 80.08 48 28 

380 1233 540 56.5 16M 33.674 141.3 78.99 14.6 4 

428 1170 630 57 14M 33.972 114 52.8618 43 4.3 

462.86 1153 599 52.9 14M 29.5711 132.24 76.56 21.2 6.1 

404 1195 640 41 16M 24.436 102 57.018 20 6 

408 1232 616 41 12M 24.436 103 57.577 14.4 6 

408 1232 616 41 8M 24.436 103 57.577 0 6 

400 950 850 57 12M 31.863 143 80.08 48 28 

400 950 850 57 12M 31.863 143 80.08 48 28 

400 950 850 57 12M 31.863 143 80.08 48 28 

408 1232 616 41 10M 24.436 103 57.577 7.5 6 

400 1356 535 51.5 16M 30.694 128.6 71.89 12.7 4.2 

400 950 850 57 12M 31.863 143 80.08 40 28 

408 1201 647 63 12M 32.76 138 77.142 0 8 

408 723 647 63 12M 32.76 138 77.142 0 8 

368 1294 554 53 8M 31.588 131 73.229 0 0 

424.62 1177 623 36.4 14M 20.3476 90.99 52.68 15.9 6.1 

408 1201 647 55.4 8M 33.0184 103 57.577 0 6.1 

408 1232 616 41 8M 24.436 103 57.577 0 6 

408 1294 554 41 8M 22.919 103 61.388 0 6 

408 1294 554 41 8M 24.436 103 57.577 0 6 

532.8 0 1600.8 41 8M 22.919 102.5 57.2975 0 0 

476 1294 554 48 8M 28.608 120 67.08 0 0 

408 1294 554 41 8M 27.88 103 57.577 0 6 

408 1294 554 41 8M 24.436 103 57.577 0 6 

408 1232 616 48 8M 28.608 103 57.577 0 0 

408 1201 647 41 8M 24.436 103 57.577 0 6.1 

404 1190 640 41 14M 24.436 102 57.018 16.5 6 

408 1232 616 41 14M 24.436 103 57.577 0 8 

476 1294 554 48 14M 28.608 120 67.08 0 0 

408 1201 647 41 8M 24.436 103 57.577 0 6.1 

420 1125 750 40  22.36 100 55.9 0 0 

368 1294 554 53 8M 31.588 131 73.229 0 0 

404 1190 640 41 14M 24.436 102 57.018 13.5 6 

368 1294 554 53 8M 31.588 131 73.229 0 0 

408 1201 647 41 14M 24.436 103 57.577 0 8.2 
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Table B-0-2 Geopolymer Concrete based Class C Fly Ash 

Fly Ash 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

503 0 1382 84.15 20M 47.04 170.85 99.26 34.17 60.31 

503 0 1382 127.5 20M 71.27 127.50 74.08 34.17 40.20 

503 0 1382 85 20M 47.52 170.00 98.77 34.17 50.25 

414 1091 588 69 10M 41.12 138.00 71.50 0.00 0.00 

503 0 1382 84.15 10M 47.04 170.85 99.26 0.00 0.00 

414 1091 588 104 20M 61.98 104.00 53.88 0.00 0.00 

503 0 1382 84.15 15M 47.04 170.85 99.26 17.09 15.08 

414 1091 588 69 15M 41.12 138.00 71.50 0.00 0.00 

414 1091 588 104 10M 61.98 104.00 53.88 0.00 0.00 

503 0 1382 170 15M 95.03 85.00 49.39 22.61 30.15 

503 0 1382 170 20M 95.03 85.00 49.39 39.70 50.25 

503 0 1382 85 15M 47.52 170.00 98.77 17.09 25.13 

503 0 1382 127.5 15M 71.27 127.50 74.08 17.09 20.10 

414 1091 588 104 15M 61.98 104.00 53.88 0.00 0.00 

414 1091 588 69 20M 41.12 138.00 71.50 0.00 0.00 

503 0 1382 127.5 10M 71.27 127.50 74.08 0.00 0.00 

503 0 1382 170 10M 95.03 85.00 49.39 11.56 15.08 

503 0 1382 85 10M 47.52 170.00 98.77 0.00 0.00 
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Table B-0-3 Geopolymer Concrete based on Ground-granulated Blast-furnace Slag 

Slag 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

400 860 860 84 8M 46.96 28.00 15.68 156.0 0 

400 844 844 76 8M 42.48 76.00 42.56 144.0 0 

394.3 1232 616 131.4  73.45 26.30 12.10 67.60 0 

424 1072 575 13 8M 7.27 46.50 26.04 216.0 0 

424 1072 575 16.3 8M 9.11 58.10 32.54 212.0 0 

424 1072 575 19.5 8M 10.90 69.70 39.03 208.0 0 

380.7 1232 616 128.5  71.83 42.80 19.69 41.20 0 

360 1264 632 108  60.37 36.00 16.56 58.80 0 

336 1264 632 140  78.26 28.00 12.88 17.60 0 

368 1232 616 92  51.43 92.00 42.32 58.80 0 

428.6 1200 600 85.7  47.91 85.70 39.42 83.30 0 

413.8 1200 600 155.2  86.76 31.00 14.26 47.00 0 

400 1200 600 150  83.85 50.00 23.00 52.90 0 

400 832 832 68 8M 38.01 120.00 67.20 132.0 0 

347.6 1264 632 78.2  43.71 78.20 35.97 70.60 0 
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Table B-0-4 Geopolymer Concrete based on Class F Fly Ash and Ground-granulated Blast-furnace 

Slag 

Fly 

Ash 

(kg) 

Slag 

(kg) 

Coarse 

Agg 

(kg) 

Fine 

Sand 

(kg) 

NaOH 

Mass 

(kg) 

NaOH 

Molarity 

Water 

in 

NaOH 

(kg) 

Sodium 

Silicate 

(kg) 

Water 

in 

Silicate 

(kg) 

Extra 

Water 

(kg) 

Super 

plasticizer 

(kg) 

325.5 24.5 1200 645 41 8M 28.82 103.00 57.19 35 0 

339.5 10.5 1200 645 41 8M 28.82 103.00 57.19 35 0 

360 40 1216 655 40 14M 23.84 100.00 58.50 8 6 

360 40 1216 655 56 14M 33.38 84.00 49.14 8 6 

360 40 1209 651 51.5 12M 28.79 128.50 74.40 0 0 

339.5 10.5 1200 645 41 8M 28.82 103.00 57.19 35 0 

360 40 1209 651 45.7 12M 25.55 114.30 66.18 0 0 

360 40 1209 651 53.3 12M 29.79 106.70 61.78 0 0 

360 40 1209 651 64 12M 35.78 96.00 55.58 0 0 

320 80 1216 655 40 14M 23.84 100.00 58.50 8 6 

385 85 1300 550 0 12M 0.00 110.00 61.49 45 0 

325.5 24.5 1200 645 41 8M 28.82 103.00 57.19 35 0 

360 40 1209 651 45.7 14M 27.24 114.30 66.87 0 0 

360 40 1209 651 64 14M 38.14 96.00 56.16 0 0 

360 40 1209 651 40 12M 22.36 100.00 57.90 0 0 

320 80 1216 655 56 14M 33.38 84.00 49.14 8 6 

320 80 1209 651 45.7 12M 25.55 114.30 66.18 0 0 

320 80 1209 651 45.7 14M 27.24 114.30 66.87 0 0 

158.4 350.4 0 1524 41 8M 22.92 102.50 57.30 0 0 

156 343.2 0 1502 41 8M 22.92 102.50 57.30 0 0 

320 80 1209 651 64 14M 38.14 96.00 56.16 0 0 

156 343.2 0 1500 41 8M 22.92 102.50 57.30 0 0 

280 120 1209 651 45.7 12M 25.55 114.30 66.18 0 0 

105.6 232.8 806.4 1032 41 8M 22.92 102.50 57.30 0 0 

420 1125 0 750 40 12M 22.36 100.00 55.90 0 0 
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Appendix C: Artificial Neural Network Data  

Table C-0-1 Class F Fly Ash Artificial Neural Network inputs, targets and predicted outputs 

NaOH/ 

Sodium 

Silicate 

AL/FA W/GPS Super/Binder NaOH 

Molarity 

Compressive 

Strength 

(MPa) 

Predicted 

Compressive 

Strength 

0.40 0.41 0.297 0.030 8 20 37.48716327 

0.50 0.40 0.337 0.010 14 20 32.35372186 

0.40 0.50 0.393 0.070 12 22.58 38.96193747 

0.36 0.39 0.188 0.000 8 24 47.78985368 

0.50 0.40 0.295 0.010 14 24 34.59840653 

0.40 0.35 0.180 0.015 14 25 39.36794657 

0.40 0.35 0.186 0.000 8 25 43.38942883 

0.40 0.40 0.196 0.000 12 26 37.12317855 

0.67 0.35 0.180 0.015 14 27 37.19333897 

0.47 0.37 0.182 0.000 14 28 41.77777243 

0.40 0.40 0.251 0.020 14 28 36.92748634 

0.67 0.40 0.252 0.014 14 28.64 37.29445203 

0.40 0.35 0.186 0.000 8 29 43.38942883 

0.40 0.35 0.186 0.000 8 29 43.38942883 

0.40 0.40 0.251 0.040 14 29 37.0594377 

0.50 0.40 0.242 0.015 14 29.71 37.92312669 

0.40 0.40 0.251 0.020 14 30 36.92748634 

0.40 0.35 0.232 0.020 14 30 37.80030647 

0.40 0.40 0.251 0.030 14 30 36.89654396 

0.50 0.40 0.253 0.010 14 30 37.32609112 

0.40 0.35 0.220 0.020 14 32 38.19369819 

0.40 0.35 0.220 0.020 14 32 38.19369819 

0.67 0.38 0.211 0.000 14 32 39.75294803 

0.40 0.40 0.251 0.020 14 32 36.92748634 

0.40 0.40 0.251 0.020 14 32 36.92748634 

0.50 0.40 0.253 0.010 8 32 35.15739869 

0.40 0.35 0.186 0.000 8 33 43.38942883 

0.54 0.39 0.190 0.015 8 33 46.7163224 

0.47 0.28 0.368 0.020 10 33.75 47.64114071 

0.40 0.46 0.209 0.021 12 34.59 35.63436209 

0.40 0.46 0.209 0.021 12 34.6 35.63436209 

0.40 0.35 0.197 0.020 14 35 38.96583658 

0.40 0.35 0.197 0.020 14 35 38.96583658 

0.50 0.40 0.253 0.010 10 35 31.35315684 

0.47 0.29 0.384 0.020 10 35.25 46.63194798 

0.67 0.35 0.226 0.015 14 35.73 36.40944601 

0.50 0.38 0.221 0.040 14 36 39.54479158 

0.40 0.35 0.228 0.015 14 36 37.47689344 

0.67 0.38 0.202 0.000 14 36 40.40615961 
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0.40 0.40 0.251 0.020 14 36 36.92748634 

0.40 0.35 0.222 0.015 14 36 37.68865322 

0.47 0.28 0.368 0.020 10 36.75 47.64114071 

0.40 0.35 0.219 0.015 14 37 37.796155 

0.40 0.35 0.232 0.015 14 37 37.33760238 

0.40 0.35 0.230 0.015 14 37 37.40709146 

0.50 0.35 0.217 0.013 14 37.09 37.32050817 

0.40 0.50 0.352 0.070 12 37.31 39.99400481 

0.40 0.35 0.205 0.015 12 38 34.80745995 

0.50 0.40 0.253 0.010 14 38 37.32609112 

0.40 0.35 0.211 0.014 14 38.69 38.01674644 

0.67 0.30 0.199 0.012 14 39.93 29.79373755 

0.40 0.35 0.205 0.015 12 40 34.80745995 

0.40 0.35 0.219 0.015 14 40 37.796155 

0.40 0.35 0.231 0.015 16 40 45.83729171 

0.40 0.35 0.210 0.015 14 40 38.12710502 

0.50 0.40 0.253 0.020 14 40 36.98795195 

0.50 0.38 0.221 0.010 14 41 38.99187962 

0.50 0.38 0.221 0.020 14 41 39.13584485 

0.54 0.39 0.190 0.015 8 41.25 46.7163224 

0.50 0.38 0.221 0.000 14 42 39.62596752 

0.40 0.35 0.205 0.015 12 42 34.80745995 

0.47 0.28 0.368 0.020 10 42 47.64114071 

0.40 0.35 0.230 0.015 16 42 45.92672298 

0.50 0.30 0.188 0.013 14 42.51 31.28817076 

0.40 0.35 0.212 0.015 14 43 38.0523257 

0.50 0.40 0.253 0.010 12 43 32.99430107 

0.40 0.35 0.175 0.020 14 44 39.78826155 

0.54 0.39 0.190 0.015 8 44 46.7163224 

0.40 0.37 0.228 0.011 16 44 49.46895111 

0.40 0.50 0.328 0.070 12 44.81 40.54382626 

0.40 0.35 0.190 0.015 10 45 37.49384185 

0.40 0.35 0.219 0.015 14 45 37.796155 

0.40 0.35 0.175 0.020 14 45 39.78826155 

0.40 0.35 0.231 0.015 14 45 37.37231075 

0.40 0.40 0.251 0.020 14 45 36.92748634 

0.40 0.35 0.222 0.015 14 45 37.68865322 

0.40 0.50 0.328 0.070 12 45.01 40.54382626 

0.40 0.46 0.268 0.007 16 46 47.27740674 

0.40 0.35 0.211 0.015 14 46 38.08961922 

0.50 0.40 0.253 0.010 14 46 37.32609112 

0.50 0.40 0.253 0.010 14 46 37.32609112 

0.40 0.35 0.175 0.015 8 47 52.1211135 

0.40 0.50 0.328 0.070 12 47.99 40.54382626 
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2.50 0.35 0.180 0.000 14 48 24.55164467 

0.40 0.35 0.231 0.015 16 48 45.83729171 

0.40 0.41 0.297 0.000 8 48 29.97233033 

0.66 0.42 0.220 0.000 14 48 42.04854653 

0.50 0.50 0.330 0.070 12 48.53 37.97773728 

0.40 0.50 0.328 0.070 12 48.56 40.54382626 

0.40 0.52 0.230 0.011 16 49 53.82809172 

0.50 0.40 0.253 0.010 14 49 37.32609112 

0.40 0.40 0.235 0.013 14 49.64 38.46335485 

0.40 0.35 0.218 0.015 16 50 46.9878921 

0.40 0.35 0.205 0.015 12 51 34.80745995 

0.40 0.35 0.175 0.015 8 51 52.1211135 

0.40 0.50 0.328 0.070 12 51.03 40.54382626 

0.40 0.50 0.328 0.070 12 51.41 40.54382626 

0.40 0.50 0.328 0.070 12 51.68 40.54382626 

0.40 0.35 0.190 0.015 10 52 37.49384185 

0.40 0.45 0.266 0.011 16 52 46.85240604 

0.40 0.50 0.311 0.070 12 53.46 40.99433246 

0.46 0.49 0.220 0.020 12 54.2 33.14327641 

0.46 0.49 0.220 0.020 12 54.2 33.14327641 

0.40 0.50 0.234 0.000 8 54.66 40.47888148 

0.40 0.30 0.186 0.014 14 54.89 32.37654495 

0.54 0.39 0.190 0.015 8 55 46.7163224 

0.40 0.35 0.175 0.015 8 55 52.1211135 

0.40 0.35 0.180 0.015 8 56 51.37753295 

0.40 0.35 0.175 0.015 8 56 52.1211135 

0.40 0.27 0.135 0.000 8 56.5 34.38740485 

0.40 0.35 0.175 0.000 8 57 45.12108091 

0.40 0.35 0.183 0.015 8 58 50.93078163 

0.40 0.35 0.175 0.015 8 58 52.1211135 

0.47 0.37 0.182 0.000 8 60 44.09692945 

0.40 0.35 0.175 0.015 8 63 52.1211135 

0.40 0.35 0.210 0.015 14 66 38.12710502 

0.40 0.35 0.175 0.020 14 66.75 39.78826155 

0.40 0.35 0.175 0.000 14 68 39.63181908 

0.40 0.35 0.175 0.015 8 68 52.1211135 

0.40 0.33 0.162 0.000 8 70.5 44.45760151 

0.40 0.50 0.234 0.000 8 71.59 40.47888148 

0.40 0.35 0.204 0.015 14 76 38.35638372 

0.40 0.50 0.234 0.000 8 85.66 40.47888148 

0.40 0.35 0.175 0.020 14 89 39.78826155 
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Appendix D: Sample Matlab Plotfile 

% Aaron Wilson Student Number 0050052015 
%GGBFS Plot File.  

  

  
%inputs 
%NaOH/Sodium Silicate Ratio 
NaS = slag_inputs(:,4)'; 
NaSnodes = 0.1:0.01:1; 

  
%AL/Slag Ratio 
ALslag = slag_inputs(:,5)'; 
ALslagnodes = 0:0.01:0.55; 

  
%Water/Geopolymer Solids Ratio  
WGPS = slag_inputs(:,6)'; 
WGPSnodes = 0.4:0.01:0.55; 

  
%Outputs 
z = ANN_slag_outputs'; 

  

  

  
%% 
%Al/Slag Vs W/GPS 

  
%fit data to surface 
Z = gridfit(ALslag,WGPS,z,ALslagnodes,WGPSnodes); 

  
%plot the file  

  
figure 
[A,b]= contourf(ALslagnodes,WGPSnodes,Z); 
clabel(A,b) 
title ('Ground Granulated Blast Furnace Slag - AL/Slag Vs 

Water/Geopolymer Solids') 
xlabel ('AL/Slag') 
ylabel ('W/GPS') 
print('slag - AL_Slag Vs W_GPS', '-djpeg', '-r300') 
%% 
%NaOh/Sodium Silicate Vs Al/Slag 

  
%fit data to surface 
Z2 = gridfit(NaS,ALslag,z,NaSnodes,ALslagnodes); 

  
%plot the file  

  
figure 
[B,c]= contourf(NaSnodes,ALslagnodes,Z2); 
clabel(B,c) 
title ('Ground Granulated Blast Furnace Slag - NaOH/Sodium 

Silicate Vs AL/Slag') 
xlabel ('NaOH/Sodium Silicate') 
ylabel ('AL/Slag') 
print('slag - NaOH_Silic Vs AL_Slag', '-djpeg', '-r300') 
%% 
%NaOh/Sodium Silicate Vs W/GPS 
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Z3 = gridfit(NaS,WGPS,z,NaSnodes,WGPSnodes); 

  
%plot the file  

  
figure 
[C,d]= contourf(NaSnodes,WGPSnodes,Z3); 
clabel(C,d) 
title ('Ground Granulated Blast Furnace Slag - NaOH/Sodium 

Silicate Vs Water/Geopolymer Solids') 
xlabel ('NaOH/Sodium Silicate') 
ylabel ('W/GPS') 
print('slag - NaOH_Silic Vs W_GPS', '-djpeg', '-r300') 

 


