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Abstract 

Photovoltaic technology began in 1876 with the development of the selenium solar cell, 

although the limited electrical energy generated was not enough to power any useful 

machine. Experimentation during the 1950’s with alternate materials led to the 

development of the first silicon based cell. The new silicon cell was selected for use in 

space exploration to provide a longer lasting energy supply. Modern solar panels are 

commonly used across the country as part of a distributed electricity supply network. 

The electrical power generated by a photovoltaic solar panel will be affected by a large 

number of factors, ranging from light irradiance level, light angle, location, electrical load 

on the panels and the configuration of the connection with adjacent panels. 

Simulations conducted within Matlab were used to assess the effect of various energy 

reduction factors when a multiple direction oriented panels are connected in common. 

The series connected system provided the best level of immunity for the case having 

unequal levels of shading. The parallel configuration performed better for each of the 

other cases tested, including mismatched voltage and current specifications, irradiance 

level, ambient temperature and only angular offset. 

The efficiency of a solar panel decreases with increased cell temperature. Natural 

convection currents surrounding the panel assist with cooling and are increase with a 

larger panel tilt angle. Experimentation results indicated a linear increase in the panel 

efficiency of approximately 0.05% per degree tilt increase. 

The optimum azimuth and tilt angles vary depending on the installation location. Data 

obtained using the Homer microgrid modelling package was used to identify the optimum 

installation angles for four locations throughout Australia. A mathematical model was 

developed to describe the azimuth and tilt relationship. Further modelling conducted 

using Homer included a second photovoltaic string. Simulations of different inverter 

configurations indicated the dual power point tracking provided the best efficiency for all 

situations. Single power point tracking and separate inverters were able to demonstrate 

similar efficiencies when components of the installation were matched, and panels were 

installed on a common orientation. 
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The goal of this project was to provide information which could assist designers of solar 

generation installations maximise the electrical energy generated over the life of the 

system. 

The recommendations are the correct inverter selection, prioritisation of the most north 

facing roof surface, and setting tilt angle relative to the actual installation azimuth will 

deliver superior energy yields than a generalised installation approach. 
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1. Introduction 

Solar panels are widely used throughout our community for the generation of electrical 

power. The aim of this project will be to determine the installation parameters for solar 

panel installations which maximises the energy generated throughout the life of the 

installation, and reducing carbon emissions from electrical power generation. Matlab will 

be used to model the effect of various environmental factors, installation parameters and 

connection configurations on the output of a small scale solar system. Homer microgrid 

software will be used to determine the parameters for optimum installation, and the effect 

of various configurations to the annual power generation. The final section will include 

guidelines for installation to achieve maximum power generation. 
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2. Literature review. 

The main focus of this project is to optimise the operating efficiency of solar energy 

systems throughout Australia. There is a large amount of literature available relating to 

factors which affect the efficiency photovoltaic cells. Standardised test parameters have 

been adopted by the industry for the testing of solar panels. (National Instruments, 2009a) 

A majority of the information relating to solar panel efficiency has been sourced from 

works where the author or sponsoring organisation is involved in research of photovoltaic 

technology. 

 

 History of photovoltaic technology. 

The discovery of the photoelectric effect was the result of experiments conducted by 

William Grylls Adams and Richard Evans Day in 1876. The experimentation involved 

subjecting selenium to a light source and observing the resulting electrical current 

produced. The power generated by solar cells manufactured using selenium was 

insufficient to power any equipment. (Perlin, n.d) 

In 1953, scientists at Bell Laboratories produced a silicon based solar cell while 

researching possible uses of silicon within the electronic industry. The resulting cell 

generated significantly more power than the selenium cell. The demand for silicon solar 

cells for power generation applications was limited due to the high cost of manufacturing 

the cells. (Perlin, n.d) 

With the development of earth orbiting satellites and the associated electronic systems, 

an energy supply lasting longer than conventional batteries was required. Silicon based 

solar cells provided the solution, leading to a demand for the technology. (Perlin, n.d) 

Throughout the 1970’s continued development into silicon based solar technology led to 

a deduction of the per watt unit cost. The cost limited demand for use in remote locations, 

not serviced through mains power grids. (Perlin, n.d) 
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Recent years has seen the technology expanded to small scale distributed electricity 

generation. Each month, over 15000 systems are installed throughout Australia. The total 

installed capacity exceeded 4GW prior to the end of 2014. (Renew Economy, 2015) 

 

 Construction of photovoltaic systems. 

2.2.1. Cell construction. 

Polycrystalline photovoltaic cells are manufactured from a thin wafer of boron doped 

silicon which form a P-type semiconductor. This doping process is achieved by heating 

the poly-silicon to the melting point, and adding trace amounts of boron. This is then 

formed into a block before being cut into thin wafers and surface etched to provide a 

smooth outer surface. A diffusion furnace is then used to create a thin layer of 

phosphorous on the outside of the wafer to serve as an N-type semiconductor. A 

conductive material is then attached to the one side of the wafer, removing the N--type 

material and creating a P plane. Electrical connections are added, enabling the connection 

of the cell to various other components. (The Florida Solar Energy Centre, 2014b) The 

cross section of a typical solar cell is shown in figure 2.1. (National Instruments, 2009a) 

Typical open circuit voltages produced by photovoltaic cells are usually 0.5 – 0.6 V dc, 

and the current output will be determined by the size of the cell. (The Florida Solar Energy 

Centre, 2014c) 

 

 

Figure 2.1 – Photovoltaic cell cross section    National Instruments, 2009a 
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2.2.2. Panel construction. 

Photovoltaic modules are constructed by interconnecting a number of cells, and further 

connected with additional modules to form a panel. These connections may be either 

series or parallel depending on the output voltage, current or power requirements. (The 

Florida Solar Energy Centre, 2014a) Both Tindo Solar and Hareon Solar produce panels 

which are have 60 individual cells connected in series, and specification sheets for each 

manufacturer are located in Appendix G. (Tindo Solar, 2015; Jiangyin Hareon Power Co 

Ltd, n.d) The connection of multiple panels is referred to as an array. Figure 2.2 shows 

the relationship between cells, modules, panels and an array. (The Florida Solar Energy 

Centre, 2014a) 

 

 

Figure 2.2 – Cell, Module, Panel and array relationship The Florida Solar Energy Centre, 2014a 

 

2.2.3. Series or parallel connected cells. 

The effect of connecting photovoltaic cells in parallel or series it to increase the power 

generated to levels above the capability of a single cell. Parallel connections are used to 

increase the current, while the voltage will be common. The current generated by the 

parallel connected cells must not exceed the rated current input of the inverter. Any 

imbalance in cell voltage may lead to circulating currents and heating within some of the 
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cells. (MPPT Solar, n.d a) Cells which are connected in series increase the current, while 

maintaining a common voltage throughout the series link. The series connected string 

must be configured so the maximum voltage output does not exceed the specified voltage 

rating of the inverter. (MPPT Solar, n.d.b) 

 

2.2.4. Inverters. 

Inverters are electronic devices which are used to convert DC power into AC for use 

throughout the home, or exporting to the mains electricity grid. (Ahfock, 2011) Maximum 

power point tracking is a feature associated with modern solar inverters. This maximises 

the power generated by a photovoltaic panel. (National Instruments, 2009c) 

 

 Principle of photovoltaic operation 

The photovoltaic effect is the principle of converting energy stored within light photons 

into electrical energy is shown in figure 2.3 (The Florida Solar Energy Centre, 2014c), 

using silicon based semiconductor materials. Photons within the spectrum of energy 

emitted by the sun, and colliding with a photovoltaic cell cause an energy increase of the 

electrons within the outer level of the semiconductor atoms. When this energy reaches a 

threshold known as the bandgap energy, electrons break away from their atoms moving 

through the semiconductor forming a flow of current. (National Instruments, 2009a) 
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Figure 2.3 – Photovoltaic operation  The Florida Solar Energy Centre, 2014c 

 

2.3.1. PV cell power output. 

The power output from a photovoltaic cell is variable, and will be influenced by a large 

number of factors. (National Instruments, 2009b) These factors include; 

 Panel loading, 

 Incident solar energy 

o Light spectrum, 

o Current density, 

o Angle to the cell, (National Instruments, 2009b) 

 Cell size, (National Instruments, 2009a) 

 Panel / Cell design and manufacturing. (National Instruments, 2009b) 

 Panel shading, (Sargosis Solar & electric, 2014b) 

 Panel efficiency, (National Instruments, 2009b) 

 Panel age, (Jordan & Kurtz, 2012) 

 Temperature, (National Instruments, 2009b) 

 Installation design, (Honsberg & Bowden, 2013k) 

 Air mass, (National Instruments, 2009a) 

 Optical losses. (Honsberg & Bowden, 2013m) 
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 Incident solar energy. 

Solar irradiance is a measurement of energy radiated by the sun, measured in watts per 

square metre. (Honsberg & Bowden, 2013p) Flat plate solar panels are commonly tested 

using a light energy input equal to 1000 watts per square metre and an air mass of 1.5. 

(The Florida Solar Energy Centre, 2014a) 

Radiated energy which forms part of the electromagnetic spectrum can be described as a 

wave with defined wavelength, or a particle of energy called a photon. (Honsberg & 

Bowden, 2013o) Only a small region of the electromagnetic spectrum is visible to the 

human eye, known as the visible spectrum, and shown in figure 2.4 (Green Rhino Energy 

Ltd, 2013). The visible spectrum begins at beginning at a wavelength of approximately 

400nm for blue light and ending about 700nm for red light. The energy contained within 

photons vary depending on the wavelength as shown in equation 2.1. (Honsberg & 

Bowden, 2013o) 

 

 

Figure 2.4 – Solar radiation and electromagnetic spectrum  Green Rhino Energy Ltd, 2013 
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𝐸 = ℎ𝑓 =  
ℎ𝑐

𝜆
          (2.1) 

 

where  h is Planck’s constant [ℎ = 6.626 × 10−34 𝐽𝑜𝑢𝑙𝑒. 𝑠]; 

  c is Speed of light in a vacuum [𝑐 = 2.998 × 108 𝑚. 𝑠−1]; and 

  λ is the light wavelength   (Honsberg & Bowden, 2013h) 

 

Photon flux is a term used to define the density of photons from a light source. The greater 

the number of photons being absorbed into the semiconductor material, the higher the 

current density within the panel as more electrons available within the conduction band. 

Multiplying the photon energy together with the photon flux for a given wavelength will 

provide the available energy for such wavelength. (Honsberg & Bowden, 2013n) 

 

 Cell size. 

The energy transmitted through light is defined as being the total radiated energy in watts, 

distributed evenly across a square metre on a plane perpendicular to the direction of light. 

The electrical energy generated by the cell will be proportional the area of the collection 

area. (Green Rhino Energy Ltd, 2013) 

 

 Light angle. 

The angle of the light source is a factor which will determine the electrical energy output. 

Efficiency of the panel will be at maximum when the light source in perpendicular with 

the surface of the panel, and increasing the angle of incidence of the light leads to the 

energy being distributed over a larger area, of reduced energy input for the same area. 
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(Green Rhino Energy Ltd, 2013) The factor of this reduction is described by equation 2.2 

(Honsberg & Bowden, 2013s) 

 

𝐼(𝜗) = 𝐼𝑜 cos(𝜗)         (2.2) 

 

where I is the intensity of the light source and 𝜗 is the angular difference between the 

source of light and perpendicular to the panel. (Honsberg & Bowden, 2013s) 

The electromagnetic waves emitted by the sun are not polarised, meaning they are random 

in rotation about axis of travel.  The energy component on the parallel polarisation is 

equal to the energy component in the perpendicular polarisation plane. (Howell et al, 

2010) 

The angle at which light reflected from the surface of an object, and light refracted 

through are perpendicular to each other is called the Brewster angle. This is also the angle 

at which maximum polarisation will occur. (Encyclopædia Britannica, Inc, 2015a) The 

energy available to the cell will be greatly reduced due to the polarising effect. The 

Brewster angle can be defined in terms of the refractive indexes of the two medium which 

the light is transitioning, and described by equation 2.3. (Howell et al, 2010) Values of 

refractive index for air is 1.0002 and for crown glass is 1.517. Encyclopædia Britannica, 

Inc, 2015b) 

 

Brewster’s angle 𝜌 = 𝑡𝑎𝑛−1 (
𝑛2

𝑛1
)       (2.3) 

 

Where n is the refractive indexes for each medium. 
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Substitution of the above refraction values into equation 2.3 provides an angle of 56.6° 

for light transferring from air into crown glass. 

 

 Light reflection. 

Light energy which is reflected from the surface of a solar panel is lost, providing no 

benefit to the electrical power output of the panel. The volume of reflected energy from 

a silicon solar cell may exceed 30% which may be reduced by adding an anti-reflective 

layer or texturing the surface. The anti-reflective coating is a thin dielectric layer applied 

to the surface of the cell. The thickness of the layer is designed to reflect light out of phase 

from the light reflected from the surface of the cell. (Honsberg & Bowden, 2013b) Surface 

texturing is the process of etching the surface of the cell to produce a rough texture. The 

angles of the etched surface are intended direct any reflected light back to the cell surface. 

(Honsberg & Bowden, 2013t) 

 

 

Figure 2.5 – Light reflection characteristics    Honsberg & Bowden, 2013b 
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The level of reflection is shown in Figure 2.5. The use of properly designed reflection 

minimisation techniques may reduce the volume of lost energy to negligible levels for a 

given light wavelength. (Honsberg & Bowden, 2013b)  

 

 Panel loading  

The energy generated by a PV cell is represented by the IV curve. Figure 2.6 shows the 

relationship between voltage and current at several irradiance values, and can easily be 

converted to an equivalent voltage power curve shown to the right hand side of the figure. 

The voltage power curve allows for easy identification of the maximum power point of 

the panel. (Sargosis Solar & Electric, 2014a) One function of the inverter is varying the 

load on the PV panels to maintain operation at the maximum power output, and will be 

discussed in further detail later. (Xue et al 2004) 

 

 

Figure 2.6 – Generalised IV curve power voltage curve  Sargosis Solar & Electric, 2014a 

 

 Panel / Cell design and manufacturing 

Intelligent design and care in manufacturing PV cells can aid in the reduction of internal 

energy losses. The power output of a PV cell will be at maximum at the point load 

impedance is equal to the characteristic impedance of the cell. (Honsberg & Bowden, 
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2013d) Parasitic resistance is the term given to the internal series and (shunt) parallel 

resistances of a PV cell, reducing the energy output through internal dissipation of power. 

(Honsberg & Bowden, 2013e) 

Cells which have a low shunt resistance are often the result of manufacturing defects. The 

low resistance creates an additional current path, allowing circulating currents to be 

generated within the cell. (Honsberg & Bowden, 2013r) 

Series resistances are formed by the connection of the semiconductor to the metallic 

output contacts, as well as current flow through the cell. The voltage drop caused by a 

series resistance will be proportional to the current, therefore the open circuit voltage will 

not be affected. (Honsberg & Bowden, 2013q) 

Light energy which is reflected, not absorbed or shaded from a PV cell do not add any 

value to the output power. Reflection is reduced through the addition of anti-reflective 

coatings to the front surface of a PV panel. (Honsberg & Bowden, 2013m) Etching the 

front surface of the crystalline wafers produces a rough increases the chance of reflected 

light being redirected onto another surface of the cell. (Honsberg & Bowden, 2013t) 

Preventing reflection off the rear of the wafer may be achieved by increasing the 

thickness, although this may lead to a reduction in the probability the light will generate 

a current in the cell. (Honsberg & Bowden, 2013m) 

Series connected cells can be affected when the output of one or more cells are reduced. 

Under the condition of a short circuit load, shaded or faulty cells will become reverse 

biased, dissipating the energy of all other cells as heat. The localised heating may lead to 

a burnout within the cell. (Honsberg & Bowden, 2013j) Adding a bypass diode reduced 

the reverse bias voltage of a cell, minimising current, and limiting the effect of local heat 

dissipation. (Honsberg & Bowden, 2013c) 

Circulating currents are formed when differing voltage sources are connected in parallel. 

When the output from an individual parallel connected cell is reduced, the chance of 

circulating currents is high. Energy from the circulating current is dissipated within the 

panel, reducing the power output and potentially damaging the cells. The inclusion of a 

current blocking diode in series with each parallel connected the cell eliminates the 

chance of circulating currents from occurring. (Pandit & Chaurasia, 2014)  
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 Panel shading. 

Shading of a photovoltaic cell occurs in two types. Soft shading refers to the reduction of 

radiated energy incident on the cell. The cell current will decrease proportionally with the 

reduction of the light intensity. The change in cell voltage would be negligible provided 

the average irradiance over the entire cell remains above approximately 50 watts per 

square metre. (Sargosis Solar & Electric, 2014b) 

Hard shading is the complete obstruction of light to an area on the surface of a cell. Cells 

which have light exposure forming a path between the electrodes of the cell will generate 

the full cell voltage, and a current which is proportionate to the light exposed area. When 

a cell is completely covered, the voltage and current output will fail. Shaded cells will 

present as a high resistance to the circuit, limiting the output current. (Sargosis Solar & 

Electric, 2014b) Current flowing through the high resistance shaded cell will be dissipated 

as heat. The localised heating effect could permanently damage the cell. Bypass diodes 

provide an alternate path for current protecting the panel and improving efficiency, 

effectively removing the non-performing cells from the circuit. The effect of shading on 

energy generation may be greater when panels are interconnected. (Solar edge, 2010) 

 

 Panel efficiency 

Panel efficiency can be described as the percentage of electrical energy produced relative 

to the energy contained within the solar radiation. Panels are tested using a set of standard 

parameters. (Honsberg & Bowden, 2013g) The energy conversion efficiency will be 

affected by the panel design. Efficiencies listed on the Hareon Solar specification sheet 

in appendix G range from 11.71% through to 15.40%. 

 Light power  1000 W/m² 

 Ambient temperature 25°C 

 Air mass condition 1.5   (Honsberg & Bowden, 2013g) 
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 Panel age 

Throughout the lifecycle of a PV cell, the efficiency of the cell to convert solar energy 

into electrical energy is reduced. The rate at which degradation occurs is determined by 

the construction and materials used to construct the PV cell, as well as the location and 

climate in which the cell was to be installed. There is no industry standard on what level 

of reduction is required before the cell is deemed to have failed although for most cell 

technologies, 20% is considered to be a failure. (Jordan & Kurtz, 2012) 

 

 Temperature 

Temperature changes affect the energy generated by a solar cell. Increases in temperature 

of a cell lead to a reduction of the band gap energy, leading to an increase of the short 

circuit current. The intrinsic carrier concentration is determined by the band gap energy, 

leading to a reduction in the open circuit voltage of the cell. The result of the change to 

the short circuit current and the open circuit voltage is a decrease in output power. 

(Honsberg & Bowden, 2013f) The generalised effect of temperature on the IV and PV 

curves are shown in figure 2.7. (Sargosis Solar & Electric, 2014a) 

 

 

Figure 2.7 – Generalised IV curve power voltage curve, varied temperature   

       Sargosis Solar & Electric, 2014a 
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The temperature coefficients listed for Hareon solar panel models HR190D6P – 

HR250D6P, 

 Pmax -0.44% per 1°C 

 VOC -0.32% per 1°C 

 ISC 0.055% per 1°C   (Jiangyin Hareon Power Co Ltd, n.d.) 

 

The electrical energy generated by a photovoltaic cell is only a small percentage of the 

received solar radiation. Reflected light may account for approximately 4% of the incident 

solar radiation, and 5% will be absorbed within the front glass. These losses do not 

contribute to the heating of the cells. ((Migan, 2013)The energy converted into electrical 

power is dependent on the location on the IV curve and individual panel specifications. 

This is commonly around 10 – 15% at the maximum power point, reducing to zero at both 

short circuit and open circuit conditions. Remaining solar energy may be absorbed into 

the panel, generating internal heating. (Honsberg & Bowden, 2013i) 

Heat energy will be lost from the panel into the surrounding environment through three 

separate methods. (Honsberg, & Bowden, 2013u) The rate of temperature change will 

vary as the differential increases, and will remain constant when the rate of thermal energy 

received by the panel is equal to the thermal energy lost. ((Migan, 2013)The angle of the 

panes will affect the rate of thermal loss due to convective cooling. The air surrounding 

the panel is heated by the panel through convection, which is assisted by the inclined 

surface. (Yakoob & Abbas, 2014) 

 Conduction occurs when the two points of an object are at different temperatures. The 

thermal resistance of an object limits the rate of temperature change, creating a 

thermal gradient across the object. (Honsberg, & Bowden, 2013u) 

 Convection is the transfer of heat energy between the surfaces of two objects while in 

relative motion. Wind blowing over an object is an example of convection cooling.  

Measurement of convection is usually achieved by experimentation as it is often 

difficult to calculate. (Honsberg, & Bowden, 2013u) 
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 Radiation will be emitted from any object around us. The power of this radiated 

energy is determined by the temperature and emissivity of the object. (Honsberg, & 

Bowden, 2013u)  

 

 Installation design 

Mismatch is the situation when one or more cells possess different electrical properties 

to the remainder of the cells. The effect of mismatch is a reduction of system efficiency 

and potential for permanent damage to the PV cells. There are numerous causes of 

mismatch which should be properly assessed during the design of a system, these may 

include, connection of non-identical cells and panels, shading of a portion of the PV 

system and connection of differently orientated panels. (Honsberg & Bowden, 2013k) 

Parallel connection of solar panels is possible provided the following conditions are met, 

 Panel voltage specifications match, 

 Panels are installed adjacent and at a common orientation, 

 Panels are not subject to uneven shading. (MPPT Solar, n.d. a) 

Solar cells are commonly connected in series. Cells which have been shaded present a 

high resistance to the series connection which may lead to increased heat dissipation. The 

inclusion of a bypass diode in parallel with a cell, or group of cells will allow current to 

bypass cells which have been shaded. (MPPT Solar, n.d. b) 

 

 Air mass 

Air mass is a relative value used to account for the energy absorbed by particles within 

our atmosphere. As light passes through earths’ atmosphere, air and dust particles absorb 

some of the energy. The magnitude of energy absorbed is related to the path length of the 

light. (Honsberg & Bowden, 2013a) 
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 Inverter design 

2.4.1. Introduction to converters. 

The development of power electronics has enabled the development of converters which 

are devices used to convert an electrical input into a more desirable form. Rectifiers, 

inverters and D.C. to D.C. converters are examples of different types of converters. 

(Ahfock, 2011) 

 Rectifiers are used to convert an alternating current input into a direct current output. 

The output is dependent on the shape and amplitude of the input. (Ahfock, 2011) 

 Inverters are used to convert a direct current input into an alternating current output. 

The output frequency and voltage are variable. (Ahfock, 2011) 

 D.C. to D.C. converters are similar to inverters, except the output is direct current. 

The voltage is adjustable. (Ahfock, 2011) 

 

2.4.2. Operation of inverters. 

Inverters which are commonly used for PV systems normally use a two stage 

configuration. The first stage of the inverter is used to boost the input voltage, as well as 

maintaining the PV array at the maximum power point. The conversion from D.C. to A.C. 

occurs within stage two. (Rosenblatt, L 2015) The inversion process involves the 

connection of four transistors in a bridge configuration. Switching specific transistors in 

the correct sequence will provide a square wave output. Adjustment of the switching cycle 

time and duty cycle will affect the output of the inverter. The addition of frequency filters 

and the inductance of the load will assist smoothing of the output waveform. The 

characteristics of the transistors will lead to energy losses of the inverter, consisting of 

power losses and switching losses. Power losses will be affected by the magnitude of 

current, and the impedance of the transistor. Switching losses influenced by the time for 

a transistor to switch from off to on and from on to off, as well as the rate at which the 

transistor is being switched. (Ahfock, 2011) Single stage inverters perform one voltage 

change, while multiple stage inverters will perform a larger number of voltage changes. 

(Xue et al 2004)  
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2.4.3. Grid fed inverters. 

The connection of a PV array to the public utility grid requires the use of an inverter 

capable of converting the variable direct current power generated by the array into a fixed 

frequency alternating current supply which is compatible with the grid. This connection 

is made possible through the use of a grid fed inverter. (Rosenblatt, L 2015) The function 

of a grid fed inverter is more than performing a voltage conversion. Power delivered to 

the grid must maintain the same frequency and voltage at the grid while maintaining a 

sufficiently low level of harmonic distortion. The inverter must be able to protect 

connected equipment against conditions and energy levels which are outside the normal 

parameters. (Xue et al 2004) 

 

2.4.4. Single stage inverters. 

Single stage inverters provide one point at which voltage change occurs. This stage is 

responsible for converting the variable dc input from the array to a fixed frequency power 

output which is compatible with the public utility grid supply, in addition to ensuring 

isolation between the PV array and the grid and maintaining the operation of the array at 

the maximum power point. (Xue et al 2004) 

 

2.4.5. Multiple stage inverters. 

Inverters which have more than one stage of voltage change are classed as multiple stage. 

A two stage inverter may provide the required electrical isolation, and convert the variable 

voltage d.c. from the array into a constant voltage d.c. output. The second stage of the 

inverter will be used to generate the a.c. output. There are various multi stage inverter 

configurations which can be used for (Xue et al 2004) 
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2.4.6. Inverter efficiency. 

The voltage and power generated by a solar string may have an adverse effect on the 

efficiency of an inverter. (Folsom Labs, 2014) 

 Over voltage 

The string voltage will be limited by the inverter, preventing any damage due to excessive 

voltage levels. When the maximum power point voltage for the string is greater than the 

inverter maximum input voltage, the limiting effect causes the string to operate at a 

reduced power output. (Folsom Labs, 2014) 

 

 Under voltage 

Inverters will continue to function if the voltage input falls slightly below the nominal 

operating point, although the generated power will be below the maximum power output 

of the connected string. Inverters will not function for all voltage levels. Below a 

minimum voltage threshold, the power supplied from the panels is insufficient to drive 

the circuitry of the inverter. The inverter does not produce any power under this condition. 

(Folsom Labs, 2014) 

 

 Over power 

The design of an inverter includes a maximum power rating, and control to prevent this 

situation from occurring. When the supply from a string begins to exceed this rating, the 

inverter adjusts the voltage away from the maximum power point, reducing power output. 

(Folsom Labs, 2014) 
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 Under power 

Data provided by the California Energy Commission indicate the efficiency of an inverter 

remains relatively constant when the inverter is operating above 30% of full load. The 

inverter efficiency reduces as the string power is reduced to between 30 - 10%. (Folsom 

Labs, 2014) 

 

2.4.7. Maximum power point tracking. 

The power generated by a PV array is dependent on a number of factors, and displayed 

by the IV curve. The point on the IV curve where the PV array is greatest is called the 

maximum power point. Environmental factors will influence the solar energy input on a 

PV array, and hence the output power. The maximum power point does not occur at a 

fixed position on the IV curve, therefore is unable to be determined in advance. Maximum 

power point tracking is a function included in modern solar inverters, commonly 

implemented through constant adjustment of the system operating voltage. There are a 

number of methods which can be used to monitor and maintain operation at the maximum 

power point. Two methods of maintaining maximum power are perturb and observe and 

incremental conductance. (National Instruments, 2009c) 

 

 Perturb and observe. 

The Perturb and Observe method maintains the output of the array at the maximum power 

output by continually monitoring and adjusting the operating voltage or current supplied 

by the array. After an adjustment of the operating point of the array, the change in power 

determined. When the result is an increase in power, the process is repeated. Likewise 

when the result is a decrease in power, the adjustment is performed in the opposite 

direction. During steady state operation, the continual adjustment of the operating point 

will lead to oscillation about the maximum power point. The simple implementation for 

the Perturb and observe method have led to this being the most widely used form of 

maximum power point tracking. (National Instruments, 2009c)  
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Figure 2.8 – Perturb and observe flowchart    National Instruments, 2009c 

 

 Incremental conductance. 

The incremental conductance operates by monitoring the difference on power output for 

a difference on system operating voltage. The slope of the power change is assessed, and 

operating voltage is adjusted accordingly. (National Instruments, 2009c) 

 

 
𝑑𝑃

𝑑𝑉
= 0  No change required, system is at maximum power point. 

 
𝑑𝑃

𝑑𝑉
> 0  Increase system voltage. 

 
𝑑𝑃

𝑑𝑉
< 0  Decrease system voltage. (National Instruments, 2009c) 

 

The analysis which is performed by the incremental conductance method allows the 

controller to detect when the maximum power point has been reached, removing the need 

for the inverter to oscillate about this point. The system responds more accurately to rapid 

changes in environmental conditions compared to the Perturb and observe method. The 
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sampling rate of power is reduced compared to the Perturb and Observe as the data 

processing time is greater. (National Instruments, 2009c) 

 

 

Figure 2.9 – Incremental conductance flowchart   National Instruments, 2009c 

 

 Modelling 

2.5.1. IV Curve Modelling 

The IV curve of a solar cell is used to display the relationship of current output versus 

terminal voltage. Multiplying values along the curve by the respective voltage values will 

provide a power versus voltage curve. (Sargosis Solar & Electric, 2014a) The IV curve 

modelling will be used to assess the reduction in panel efficiency for the connection of 

multiple solar panels in both series and parallel connection. 

The effect of light reflection will not be considered during the IV curve modelling, as the 

effect may be reduced to negligible levels by texturing the cell surface and adding anti-

reflective coatings. (Honsberg & Bowden, 2013b)  
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 IV and PV curves. 

Determining the relationship between current and resistance of a solar cell requires 

knowledge of a number of parameters. (Tayyan, 2006) Equations 2.4a and 2.4b depict the 

solar cell model developed by Bellini et al. (n.d.). The model allows for the approximation 

of the relationship between voltage current and power, requiring data which is commonly 

located on manufacturers datasheets. Tindo solar (2015) and Hareon Solar (Jiangyin 

Hareon Power Co Ltd, n.d) datasheets located in appendix G provide this data for each 

respective panel including maximum power point voltage and current, short circuit 

current and open circuit voltage and normalised to a set of standardised testing conditions. 

Neither of these sheets provided any information of the internal resistances of the panels. 

 

Current as function of voltage 

𝐼(𝑉) = 𝐼𝑆𝐶 [1 −  𝐶1 (𝑒
(

𝑉

𝐶2×𝑉𝑜𝑐
)

− 1)]     (2.4a) 

Voltage as function of current 

𝑉(𝐼) = 𝐶2 × 𝑉𝑜𝑐 × 𝑙𝑛 [1 +  
(1−

𝐼

𝐼𝑠𝑐
)

𝐶1
]     (2.4b) 

Power as a function of voltage 

𝑃(𝑉) = 𝑉 × 𝐼        (2.5) 

 

The procedure for this model is located in appendix C, and related Matlab code in 

Appendix D. 

The electrical energy generated by a solar panel will be influenced by a number of factors, 

including angle of the panel normal to the solar source, irradiance level, ambient air 

temperature, area of the panel subjected to shading and the voltage and current properties 
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of the individual panel. The IV curve modelling will be used to assess the efficiency of a 

system with multiple panels connected in either series or parallel while subjected to 

different input influences. Equation 2.4a will be used with a common voltage vector to 

model parallel connected systems, and equation 2.4b will be used for series connected 

systems with a common current vector. Equation 2.5 will be used to form a power vector. 

 

 Location of maximum power point. 

The process to identify the maximum power point will be derived from the Perturb and 

observe method as stated by National Instruments (2009c). The voltage vector will be 

checked for a value matching the calculated maximum power point voltage. The value of 

the corresponding position on the power vector will be checked and assessed against both 

adjacent values, indexing the position to the highest value of power. When the selected 

value of power is greater than both adjacent values, the program loop will be terminated. 
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3. Project planning. 

The successful completion of any major is heavily influenced by the project planning 

conducted through the early stages of the project. During this phase, the project planner 

should divide the overall project down into a smaller set of tasks, and develop a 

methodology for the project completion. Consideration must also be given to the required 

resources, and their availability. The inclusion of a timeline for the completion of 

specified tasks will assist in maintaining the project to be completed by the required 

deadline. (ENG4111 Research project part 1: Project reference book, 2014) 

 

 Ethics. 

The intention of this project is to improve the annual energy generated by new 

photovoltaic installations throughout Australia. The installation parameters detailed 

within are intended to comply with all regulatory requirements, as well as the 

requirements of the Engineers Australia code of ethics. 

 

 Methodology. 

The steps required for the investigation of different solar panel and inverter 

configurations, and the development of optimised installation parameters will be detailed 

within the following methodology section. 

 

3.2.1. Required resources. 

MATLAB is a text based computer programming language, specialising in numerical, 

signal and image processing. The language commonly used throughout various 
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engineering disciplines, as custom scripts can be written to perform repeated calculations. 

(Palm, 2009) 

Designed by the National Renewable Energy Laboratory, Homer is a software modelling 

tool specialising in the optimisation of electrical microrgids. The package has the 

capability to model a variety of supply source options and load profiles. Simulations are 

conducted to cover each combination of design elements, providing an analysis for the 

energy generation and consumption together with financial details for each system design 

option. (Homer Energy, 2015) 

 

3.2.2. Identification and sourcing of relevant literature. 

The accuracy of the sourced information is an important factor to maintain the integrity 

of the finished project. Inaccurate or misleading information may possibly lead to an 

invalid course of investigation, even an unsubstantiated final outcome. (ENG4111 

Research project part 1: Project reference book, 2014) 

During the search for information, there will be an emphasis on information sources 

where the author/s are associated with educational institutions or government. This is 

intended to remove a potential source of bias, focussing more on information provided 

by non-commercial sources. 

 

3.2.3. Modelling multiple interconnected solar panels. 

The relationship between voltage, current and power will be calculated within MATLAB 

using the IV curve approximation detailed in appendix C. The combined output from 

multiple energy sources can be determined by summing the voltage or current for series 

or parallel connections respectively. The simulation was used to calculate the IV curve 

for each individual panel, reflecting the output under specific instantaneous installation 

conditions. The resulting currents will be added along a common voltage vector for 

parallel and voltage on common current for series connection, along with corresponding 
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power curves. The slope of each power curve generated are analysed to identify the 

localised maximum power value. The angle of one panel is indexed, test repeated and 

power values recorded forming a power to vector relative to angular offset. The resulting 

information is intended to provide an understanding into the energy losses which are 

likely to occur when multiple connected panels are installed at differing angles. 

 

3.2.4. Modelling solar panel optimum angle. 

Homer Energy will be used to determine the energy produced by a solar energy system 

with panels orientated at a variety of azimuth and tilt angles at four location throughout 

Australia. In the first stage of modelling, the azimuth will be assessed at 15° intervals 

over a complete 360° range, and tilt at 15° intervals and a 90° range. This stage is intended 

to demonstrate the effect of azimuth and tilt have on the annual energy production of solar 

systems. The second modelling stage will assess the azimuth and tilt angles over a smaller 

range at 1° intervals. Energy generation data from Homer will be used to identify the tilt 

angle providing the highest energy yield over the azimuth vector. The derivation of a 

polynomial curve function requires knowledge of certain points on the curve. (Larson & 

Falvo, 2009) The optimum azimuth variable and longitude for each site will form the 

optimum azimuth function, while the optimum tilt and the site latitude will be used for 

the tilt function. 
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3.2.5. Modelling multiple string systems. 

Annual energy generation for multi string systems will be determined using Homer. The 

different inverter configurations will be used for the multi string simulations. 

 Single inverter with single channel maximum power point tracking 

 Single inverter with dual channel maximum power point tracking 

 Two inverters, each with single channel maximum power point tracking 

Data extracted from the Homer simulations will be used to determine the conditions 

required for specific inverter configurations. Changes in different installation angles will 

also be assessed to determine if the optimum installation angles identified for single string 

systems can be applied to multiple string systems.  

 

3.2.6. Selection of installation locations. 

Multiple sites were selected ranging from Darwin, Northern Territory as a northern 

location through to Hobart, Tasmania as a southern location. Toowoomba, Queensland 

and Brooklyn Park, South Australia were included as intermediate locations. The 

optimum angle of installation is to be determined for each site using solar data available 

through the Homer energy modelling software, and temperature data from the Australian 

Bureau of Meteorology for the year 2014. Sites were selected to provide a range of 

locations covering a large portion of the country, weather data available nearby. 
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 Brooklyn Park, S.A. 

Site:   Brooklyn Apartments, Brooklyn Park. 

Location:  34.93°S, 138.55°E  (Google, 2015) 

Weather data site: 34.95°S, 138.52°E.  (Commonwealth of Australia, 2015) 

Brooklyn Park is a suburb of Adelaide, located approximately 5km west if the city. 

Located on approximately 5km south west is the Bureau of meteorology weather 

monitoring station, providing historic temperature data. (Google, 2015) 

 

 

Figure 3.1 – Brooklyn Park site overview    Google, 2015 

 

Building Azimuth: 177°  
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 Toowoomba, Qld. 

Site:   USQ, Toowoomba: Engineering (Z block) 

Location:  27.60°S, 151.93°E  (Google, 2015) 

Weather data site: 27.54°S, 151.91°E.  (Commonwealth of Australia, 2015) 

The University of Southern Queensland is located in Toowoomba, approximately 125km 

east by road from the city of Brisbane. Approximately 10km north of the university is the 

site of the Bureau of Meteorology weather monitoring station. (Google, 2015) 

 

 

Figure 3.2 – Toowoomba site overview    Google, 2015 

 

Building Azimuth 195° / 217° / 246°  
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 .Darwin, N.T. 

Site:  Darwin Airport. 

Location: 12.42°S, 130.89°E   (Commonwealth of Australia, 2015) 

As the most northerly Australian major city, Darwin was selected as the northern 

modelling location. The Darwin airport terminal is located 12km by road from the city 

(Google, 2015), and within close proximity to the Bureau of Meteorology weather 

monitoring station. (Commonwealth of Australia, 2015) 

 

 

Figure 3.3 – Darwin site overview.     Google, 2015 

 

Building Azimuth 199° 
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 Hobart, Tas. 

Site:   Ellerslie Road, Battery Point. 

Location:  42.89°S, 147.33°E  (Commonwealth of Australia, 2015) 

As the most southerly Australian major city, Hobart was selected as the southern 

modelling location. Ellerslie Road is located less than 2km by road from the city. (Google, 

2015) The Bureau of Meteorology weather monitoring station is also located on Ellerslie 

road. (Commonwealth of Australia, 2015) 

 

 

Figure 3.4 – Hobart site overview     Google, 2015 

 

Building Azimuth 201° 
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3.2.7. Panel angle effect on cooling. 

The effect panel tilt angle has on the convective cooling will be determined through 

experimentation. 

1. The panel should remain open circuit throughout this experiment. 

2. Ensure panel is sheltered from wind. 

3. Align the panel to 0° relative to horizontal. 

4. Record cell temperature using FLIR thermal camera 

5. Repeat cell temperature measurement every 5 minutes until steady state is 

reached. 

6. Align panel to an angle greater than 0° and repeat test steps 2 through 5 

The global solar irradiance available from the USQ weather station, combined with the 

angle of the sun relative to the panel will be used to calculate the panel energy input. 

The cell temperature rise values recorded using the FLIR camera will then be used to 

determine the cell temperature. Since cell temperature is a function of the irradiance, the 

resulting values can be scaled to reflect a solar irradiance value of 1000W/m². ((Migan, 

2013)A line of best fit will used to be approximate the angle versus temperature rise and 

related efficiency decrease, with the resulting efficiency changes factored into the Homer 

modelling outputs. 

 

3.2.8. Development of installation guidelines. 

The modelling process is expected to generate a large amount of energy output data. The 

data will need to be analysed to identify the parameters which provide the greatest energy 

yields, and will be used to form the basis for the recommended installation guidelines. 
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Parameters which will be included in the final recommendations are listed below. 

 Preferred inverter configurations. 

 This will detail the best inverter configuration which should be selected for a range 

of solar panel installation parameters.  

 Maximum permissible angles between strings on the same maximum power point 

tracking circuit. 

 This details the maximum installation azimuth and tilt angles which should be 

permitted if two strings are connected to a common maximum power point tracking 

circuit. 

 Optimum tilt angles for the installation of solar panels. 

The use of renewable energies, and reduction of fossil fuel generated power should could 

lead to a Greenhouse Installing solar panels at angles which provide the largest annual 

energy generation  a greater annual generation The optimum angle for installation will be 

used to define the best panel tilt angle for a range of azimuth angles. , providing maximum 

power. 

 

 Project timeline. 

Some of the major project milestones are listed below, and a detailed project 

timeline is located in appendix B. 

 Completion of project allocation 

 Completion of Project specification 

 Selection of potential sites 

 Completion of IV curve modelling 

 Commencement of site modelling 

 Submission of project preliminary report  

 Project completion 
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 Assessment of consequential effects. 

The work health safety act require health and safety be maintained through the 

identification of safety hazards. If the elimination of a safety hazard is not possible, the 

risk must be reduced to as safe level as possible. (Safe work Australia, 2011) Used under 

a Creative Commons Attribution 3.0 (http://creativecommons.org/licenses/by-

nc/3.0/au/). 

 

Responsibility for the effective implementation of risk elimination and control is 

normally initiated by company management, although does extend to all persons on site. 

(Safe work Australia, 2011) Used under a Creative Commons Attribution 3.0 

(http://creativecommons.org/licenses/by-nc/3.0/au/). 

The risk management process consists of four steps. 

i. Identify any hazard associated with the project. 

ii. Assess the risk of all identified hazards, including details on seriousness of injury 

if an accident were to occur, and the chance of an accident occurring. 

iii. Determine the required measures to eliminate or reduce the severity of the risk, 

and implement the solution.  

iv. Review the risk management measures which have been implemented to ensure 

effectiveness of the solution, and new hazards have not been introduced. 

(Safe work Australia, 2011) Used under a Creative Commons Attribution 3.0 

(http://creativecommons.org/licenses/by-nc/3.0/au/). 

During the risk management, the work health safety act also requires an appropriate level 

of consultation with any person who may be affected by the work carried out. (Safe work 

Australia, 2011) Used under a Creative Commons Attribution 3.0 

(http://creativecommons.org/licenses/by-nc/3.0/au/)  
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3.4.1. Identification of hazards. 

Identification of hazards is simply an analysis of a product, process or situation which has 

the potential to cause harm to any person. This may require an observation of a specific 

processes being conducted, consultation with workers regarding near misses or an 

assessment of a piece of equipment being commissioned. (Safe work Australia, 2011) 

Used under a Creative Commons Attribution 3.0 

(http://creativecommons.org/licenses/by-nc/3.0/au/). 

 

3.4.2. Risk assessment. 

Following the identification of potential hazards, each hazard is then assessed for the 

potential to cause harm. The risk assessment may assist in determining the severity of a 

potential risk, effectiveness of current risk mitigation measures, what corrective action is 

most appropriate and urgency of the urgency of corrective action. (Safe work Australia, 

2011) Used under a Creative Commons Attribution 3.0 

(http://creativecommons.org/licenses/by-nc/3.0/au/). 

Risk assessments should be conducted prior to the introduction of a new piece of 

equipment, modification to existing processes, when there is no information of the risk of 

a specific task or equipment, or how specific hazards will interact. (Safe work Australia, 

2011) Used under a Creative Commons Attribution 3.0 

(http://creativecommons.org/licenses/by-nc/3.0/au/). 
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3.4.3. Risk matrix scores. 

The overall risk is then identified using a scoring system. Each hazard is assessed, and 

assigned an individual score for time of exposure to the hazard, chance of an accident 

occurring and the potential consequence if an accident were to occur. (University of 

Melbourne, 2004) 

Tables relating to the risk assessment scores can be located in Appendix F. 

 

3.4.4. Risk assessment outcomes. 

Following the assignment of the risk scores, control measured need to be identified for 

each of the hazard. (University of Melbourne, 2004)  

Control measures should be selected for each hazard in a hierarchical manner, 

1. Elimination of the hazard 

2. Substitution of the process with a reduced risk process. 

3. Providing a barrier between the worker and the hazard in the form of guarding or 

fencing. 

4. Engineering controls include the use of mechanical aids to reduce manual 

handling, or setting work output requirements to a level which is more suited to 

the task. 

5. Administrative controls include the introduction of work processes designed to 

reduce the workers exposure to certain hazards, or informing workers of the 

potential hazard. 

6. Requiring the use of personal protective equipment. 
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 Steps 5 & 6 should only be used when all other possible solutions have been 

exhausted, or as a short term control measure until more suitable measures can be 

introduced. (Safe work Australia, 2011) Used under a Creative Commons Attribution 

3.0 (http://creativecommons.org/licenses/by-nc/3.0/au/). 

 

3.4.5. Project hazard identification and risk assessment. 

Hazard identification and risk assessments which have been conducted for this project are 

located in Appendix F. 
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4. Results 

 IV Curve modelling. 

The photovoltaic panel specifications, and environmental input specifications used 

throughout the modelling were from the Hareon Solar model HR-250W, which has a 

maximum power output of 250W under standard test conditions. (Jiangyin Hareon Power 

Co Ltd, n.d.) 

 Maximum power voltage  29.90V 

 Open circuit voltage  37.10V 

 Maximum power current  8.36A 

 Short circuit current  8.81A 

 Irradiance    1000W/m² 

 Ambient temperature  25°C (Jiangyin Hareon Power Co Ltd, n.d.) 

 No shading on the panel surface. 

Full specifications are available in appendix G. 

The above specification have been used throughout each modelling section, unless 

otherwise specified. 

The modelling consisted of two photovoltaic panels connected in parallel, or in series and 

compared to the benchmark condition. Panel 1 was set at a fixed angle with a normal 

vector relative to the light source. Panel 2 was set with the normal facing the light source, 

and rotated through to 56° during the simulation. Each panel consisted of three modules 

with bypass diode, and the panel was fitted with a blocking diode. 

This section is intended to compare the effect of differing panel angles on the maximum 

power generated. The benchmark for maximum power capability used throughout the 

modelling is the sum total of maximum power capabilities with the same installation 

parameters. This is to compare the effect of offset panel angles on the maximum power 

capability, irrespective of the installation or environmental conditions.  
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4.1.1. Differing panel angle. 

The differing panel angle simulation is intended to assess the maximum power capability 

of a solar installation with panels installed at different angles relative to a light source. 

Figure 4.1a represents a parallel connected system with panel 1 at 0° and panel 2 rotated 

from 0° through to 56°, and figure 4.1b represents the series connected equivalent. 

 

 

Figure 4.1a –Parallel MPPT: Panel 1: 0°, Panel 2: 0°-56°. 
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Figure 4.1b –Series MPPT: Panel 1: 0°, Panel 2: 0°-56°. 

 

Panels connected in parallel displayed a minor reduction in the maximum power 

capability of the system compared to the benchmark. When panel 2 was angled to 56°, 

the benchmark maximum power was 385W. The reduction of 1W at this angle 

represented 0.26% of the benchmark output. 

The maximum power capability of the series connected panels displayed a high level of 

immunity to the angle of panel 2 up to 10°. The benchmark maximum power was 495W, 

and the reduction was 1W or 0.2%. From 20° through to 56°, the maximum power 

reduction changed from approximately 5W to 85W. The reduction represented 22% of 

the benchmark value when panel 2 was angled to 56°. 
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4.1.2. Hard shading panels with varied panel angle. 

The hard shading simulation is intended to assess the maximum power capability of a 

solar installation with offset panel angles, and a variety of shading patterns. Each module 

within the panel was considered to be fully illuminated, or fully shaded. 

 

 Equal shaded area. 

When offset panels were subjected to an equal shading pattern, the resulting maximum 

power capability resembled the unshaded equivalent. The power generated by the shaded 

system was scaled by the percentage of panel exposed to the light source. Figure 4.2a 

shows the maximum power capability for a parallel connected system with both panels 

subjected to a 1/3 shading, and the series connected equivalent shown in figure 4.2b. 

The maximum parallel system output was 335W, observed with both panels directly 

facing the light source. Rotating panel 2 to an angle of 56° from the light source resulted 

in a system output of 255W, 0.6W below the benchmark. This represented 0.24% of the 

system capability. 

The series connected system with 1/3 shading demonstrated a similar level of immunity 

to the unshaded system. The maximum output of 335W occurred with both panels facing 

the light source. As panel 2 was rotated more than 20° from the light source, the maximum 

power capability decreased rapidly. With panel 2 facing 56° to the light source, the 

maximum power output was 200W, 21% below the benchmark value. 
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Figure 4.2a –Parallel MPPT: 1/3 panel shading. 

 

 

Figure 4.2b –Series MPPT: 1/3 panel shading.  
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 Unequal shaded area: Parallel connected. 

The maximum power capability of parallel connected panels subjected to an uneven area 

of shading is heavily reduced when compared to the individual capability of each panel. 

The difference in angle to the light source provided minimal effect on the maximum 

power. Shading a greater area on the panel angle closer to the light source caused a 

significant reduction in the maximum power capability of the system. Changes to the light 

incidence angle of the second panel resulted in negligible changes to the maximum power. 

Figure 4.3a shows the capability of a parallel connected system with 2/3 of panel 1 

shaded, and panel 2 completely unshaded, and figure 4.3b shows the same system with 

1/3 of panel 2 shaded. 

The maximum power capability losses shown in figure 4.3b represent 33% of the system 

benchmark when the panels are both aligned to the sun, through to 48% with the second 

panel angled 56° from the light source. 

 

 

Figure 4.3a –Parallel MPPT: Panel 1 @ 2/3 & Panel 2 @ unshaded.  
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Figure 4.3b – Parallel MPPT: Panel 1 @ 2/3 & Panel 2 @ 1/3 shading. 

 

Rotating the second panel away from the light source, presented a slightly larger effect to 

the maximum power capability of the system when the shading was changed to cover 

more area of the panel angled further from the light source. The maximum power 

capability of a system with 2/3 shading applied to panel 2 and no shading on panel 1 is 

shown in figure 4.4a, and the system which has 1/3 shading applied to panel 1 is shown 

in figure 4.4b. 

The maximum power capability losses shown in figure 4.4a represent 46% of the system 

benchmark when the panels are both aligned to the sun, through to 53% with the second 

panel angled 56° from the light source. 
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Figure 4.4a – Parallel MPPT: Panel 1 unshaded & Panel 2 @ 2/3 shading. 

 

 

Figure 4.4b – Parallel MPPT: Panel 1 @ 1/3 & Panel 2 @ 2/3 shading. 
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 Unequal shaded area: Series connected. 

Series connected systems subjected to unequal shading performed better than the parallel 

equivalent when both panels were angled within approximately 30° difference to the light 

source. As the second panel was angled further from the light source, the maximum power 

capability declined rapidly. This resulted in the series connected system being less 

efficient than the parallel equivalent at high levels of angle offset. Shading a greater area 

of one panel changed only the magnitude for the losses. Rotating panel 2 away from the 

light source provided the same effect for both cases. The reduction of the maximum power 

capability ranged from 0% for aligned panels through to 27% for a system with 1/3 

shading on panel 2 which is shown in figure 4.5a. The system with 2/3 shading on the 

second panel is shown in figure 4.5b. 

 

 

Figure 4.5a – Series MPPT: Panel 1 @ unshaded & Panel 2 @ 1/3 shading. 
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Figure 4.5b – Series MPPT: Panel 1 @ unshaded & Panel 2 @ 2/3 shading. 

 

The reduction in the maximum power capability for the system with a greater area of 

shading fixed angle panel ranged from 0% for aligned panels through to 14% for a system 

with 2/3 shading on panel 1 which is shown in figure 4.6a. The system with 1/3 shading 

added to the second panel is shown in figure 4.6b. 
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Figure 4.6a – Series MPPT: Panel 1 @ 2/3 shaded & Panel 2 @ unshaded. 

 

 

Figure 4.6b – Series MPPT: Panel 1 @ 2/3 shaded & Panel 2 @ 1/3 shading. 
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4.1.3. Mismatched panel specifications. 

The connection of non-identical panels together may lead to mismatch losses. (Honsberg 

& Bowden, 2013k) This section will analyse the effect of connecting panels with different 

specifications in both series and parallel configurations. Voltage values used are based on 

the Hareon solar panel specifications ±10%. 

 

 Mismatched voltage specifications: Parallel connection 

The maximum power capability of a parallel connected system was showed only a minor 

reduction change as the second panel was rotated away from the light source when 

compared to the benchmark test. Orienting both panels to face the light source, the offset 

voltage characteristic caused a 0.6% reduction of the system maximum power capability. 

Rotating the higher voltage specification panel away from the light source resulted in an 

improvement in the maximum power capability compared to the benchmark test. Figure 

4.7a shows the maximum system power for a panel with the lower voltage specifications 

facing the light source, and the second panel with the higher voltage specifications rotated 

from 0° through 56° where the reduction of the maximum power was 0.1%. Figure 4.7b 

shows the same system with the voltage specifications switched. Rotating panel 2 

increased the magnitude of maximum power reduction. At 56° the reduction was equal to 

1.7%. 
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Figure 4.7a –Parallel MPPT: Voc @ 29.0V & 30.8V. 

 

Figure 4.7b – Parallel MPPT: Voc @ 30.8V & 29.0V 
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 Mismatched voltage specifications: Series connection 

The connection of photovoltaic panels in series with mismatched voltage specifications 

showed little effect on the maximum power capability of the system. The effect of rotating 

one of the panels had limited effect on the system for differences in angle of 10°. The 

losses grew in magnitude as the angular difference was moved beyond 20°. Irrespective 

of which panel was specified with the higher voltage output, the reduction of the system 

capability increased to 22% of the benchmark value at 56°. Figure 4.8a shows the system 

having a panel with lower voltage specification facing the light source, and panel rotated 

from the light source through to 56° with the higher voltage specification. The system 

with switched voltage specifications is shown in figure 4.8b. 

 

Figure 

4.8a – Series MPPT: Voc @ 29.0V & 30.8V. 

 



53 

 

Figure 4.8b –Series MPPT: Voc @ 30.8V & 29.0V 

 

 Mismatched current specifications: Parallel connection. 

The effect of mismatched current specifications on the maximum power of the system 

was minor as either panel is rotated from the light source to 56° and compared to the 

benchmark simulation. The mismatched current specifications caused a reduction of the 

maximum power capability of 0.4W with one panel rotated 56° from the light source, 

equalling 0.3% of the maximum system output.  

Figure 4.9a shows the system having a panel with lower current specification facing the 

light source, and panel rotated from the light source through to 56° having a higher current 

specification. The system with switched current specifications is shown in figure 4.9b. 
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Figure 4.9a –Parallel MPPT: ISC @ 8.11A & 8.61A 

 

 

Figure 4.9b – Parallel MPPT: ISC @ 8.61A & 8.11A 
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 Mismatched current specifications: Series connection. 

The connection of photovoltaic panels in series with mismatched current specifications 

generated substantial losses, especially when the second panel was rotated beyond 30°. 

Figure 4.10a shows the effect of angling the lower rated panel to the light source, and 

rotating the panel with the higher current specification. The effect was an initial 

improvement compared to the benchmark simulation. The increased angle led to a 

reduction of the second panel output, eventually reaching a point where the maximum 

output was equal to the benchmark. Further rotation led to a reduction in the maximum 

capability of the system. 

Figure 4.10b shows the effect of angling the higher rated panel to the light source, rotating 

the panel with the lower current specification. The effect on the maximum capability of 

the system was a loss of 1% for both panels aimed at the light source, increasing to 25% 

when the second panel is angled 56° from the light source. 

 

Figure 4.10a –Series MPPT: ISC @ 8.11A & 8.61A 
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Figure 4.10b – Series MPPT: ISC @ 8.61A & 8.11A 

 

4.1.4. Varied temperature. 

Analysis of the Bellini et.al. (n.d.) model that the panel voltage is affected by temperature 

at a rate determined by the characteristic of the panel. Temperature related changes in the 

current output of a panel also affected by the characteristic of the panels in addition being 

scaled by the ratio of irradiance to the test condition irradiance and the specified current 

parameter of the panel. (Bellini et. al, n.d.) Throughout the simulation, both panels are 

exposed to the same ambient temperature. 
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 Varied temperature: Parallel connection 

The parallel connected panels demonstrated a reasonable level of immunity to offset panel 

installation angles irrespective of the ambient temperature when compared to the 

benchmark model. Figure 4.11a, 4.11b and 4.11c represent a system installed with one 

panel angled to the light source, and a second rotated from the light source to 56° using 

ambient temperatures of 25°C, 15°C and 35°C respectively.  

Changes to the maximum power point can be seen as the temperature is varied. The 

maximum power capability is reduced by 0.27% compared to the benchmark at a 

temperature of 25°C, increasing to 0.33% at 15°C and 0.32° at 35°C. 

 

 

Figure 4.11a – Parallel MPPT: T @ 25°C 
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Figure 4.11b – Parallel MPPT: T @ 15°C 

 

 

Figure 4.11c – Parallel MPPT: T @ 35°C  
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 Varied temperature: Series connection 

The maximum power capability of a series shows minimal effect due to temperature 

variations. One panel was aimed at the light source, and a second rotated from the light 

source through 56°. Figure 4.12a, 4.12b and 4.12c represent the system with ambient 

temperatures of 25°C, 15°C and 15°C respectively.  

The largest reduction of the maximum power capability remained approximately 80W 

below the benchmark simulation regardless of the ambient temperature, occurring when 

the second panel was rotated to 56°. With panel 2 at 56° rotation, the losses compared to 

the benchmark were 22% of the system output at 25°C, 21% at 15° and 35°. 

 

 

Figure 4.12a – Series MPPT: T @ 25°C 
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Figure 4.12b – Series MPPT: T @ 15°C 

 

 

Figure 4.12c – Series MPPT: T @ 35°C  
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4.1.5. Varied irradiance. 

Analysis of the Bellini et al. (n.d.) photovoltaic model indicate the panel current output is 

proportional to the irradiance input. The model also shows a minor change in output 

voltage with changes in the irradiance. (Bellini et. al, n.d.) The combined result of 

irradiance changes using this model is an approximately proportional change in power 

output as the irradiance changes. 

 

 Varied irradiance: Parallel connection 

This section demonstrates the maximum power capability of a parallel connected system 

with irradiance variations, one fixed panel angled to the light source, and a second rotated 

from the light source through 56°. Figure 4.13a, 4.13b and 4.13c represent the system 

exposed to 1000W/m², 800W/m² and 400W/m² respectively.  

Comparison of each of the figures below, the proportional nature of the maximum power 

becomes evident. The reduction of the maximum power capability compared to the 

respective benchmark simulation indicate an increase on losses as the irradiance falls. The 

maximum reduction for the 1000W/m² simulation was approximately 0.25% of the 

system output, and 1.25% for the 200W/m² system. 
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Figure 4.13a – Parallel MPPT: G @ 1000W/m² 

 

 

Figure 4.13b – Parallel MPPT: G @ 800W/m²  
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Figure 4.13c – Parallel MPPT: G @ 400W/m² 

 

 Varied irradiance: Series connection 

The maximum power capability of a series connected system with irradiance variations, 

one fixed panel angled to the light source, and a second rotated from the light source 

through 56°. Figure 4.14a, 4.14b and 4.14c represent the system exposed to 1000W/m², 

800W/m² and 400W/m² respectively.  

Again the comparing each of the figures below indicates the proportional nature of the 

maximum power. The reduction of the maximum power capability increased as the 

irradiance increased, when compared to the respective benchmark simulation remained 

relatively stable. At an offset angle from through to approximately 10°, the reduction was 

close to zero, increasing to approximately 22% at 56°. 
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Figure 4.14a – Series MPPT: G @ 1000W/m² 

 

 

Figure 4.14b – Series MPPT: G @ 800W/m²  
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Figure 4.14c – Series MPPT: G @ 400W/m² 

 

 Thermal cooling experimentation. 

Thermal measurements taken from an open circuit photovoltaic panel exposed to direct 

solar radiation indicated the installation tilt angle of a panel will affect the rate of cooling. 

Testing was conducted with the panel angled to the sun, and tilted to 0°, 14° and 24°. 

Temperature data obtained through the University of Southern Queensland, Faculty of 

Engineering and Surveying weather station, was interpolated to one minute intervals. 

Relative angle between the sun and panel was calculated using data obtained through the 

National Oceanic and Atmospheric Administration. (Cornwall, et. al, 2015) The 

calculated temperature rise values were scaled by the solar irradiance to provide cell 

temperature values normalised to 1000W/m², and results are shown in figure 4.15. 
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Figure 4.15 – Normalised cell temperature 

 

The worst case cell temperatures for each angle were used to determine the efficiency of 

the cell. The cell characteristic is nominal temperature of 45°C and thermal power 

reduction of 0.44% per degree. Figure 4.16 shows the extrapolated efficiency values for 

panel tilt angles ranging from horizontal through to 45°. Increasing the panel tilt angle 

provided improved cell cooling and therefore higher energy outputs should occur. Panel 

efficiencies increased at a rate approximately 0.058% per degree of tilt increased from 

horizontal through to 24° tilt, starting at 95.37% when horizontal. 
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Figure 4.16 – Tilt angle efficiency 

 

 Homer energy modelling. 

4.3.1. Single string 

Simulations conducted at each of the selected sites were used to determine the optimum 

azimuth and tilt angles. Homer version 2.68 was used to simulate a 1kW photovoltaic 

system at each of the installation sites. The system modelled consisted of a four 

photovoltaic panels connected in series, connected to a single channel grid fed inverter. 

Annual power values results from Homer simulations have been scaled according to the 

panel cooling efficiency detailed in section 4.2. Optimum installation angles will be 

defined as those producing the greatest annual energy yield. 

Inverter and panel specifications used for the simulations. 

 Panel rating:  250W 

 Module efficiency: 15.4% 

 Nominal Temperature: 45°C  (Jiangyin Hareon Power Co Ltd, n.d.) 
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 No of MPPT:  1 

 Maximum Input Power: 1100W 

 Maximum efficiency: 97% (Foshan ASEP Industrial Electronics Co, Ltd, 

2015) 

 

 Optimum installation angle: 15 degree resolution. 

Installing solar panels facing north provides the highest annual energy yield. Figure 4.17a 

shows the installation tilt angle relative to the installation azimuth for the Brooklyn Park 

site. As the installation azimuth angle is varied from the north, the maximum capability 

of the system is reduced. In order to maintain maximum power, the tilt angle must be 

reduced for azimuth angles other than the optimum. The maximum capability of panels 

installed at an azimuth 90° or more either direction from north occurs when the panels 

are parallel with the surface of the earth, occurring on all of the sites modelled. Graphs 

for each site can be located in appendix E. 
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Figure 4.17a – Brooklyn Park optimum tilt angle and generated power. 

 

 Optimum installation angle: 1 degree resolution. 

The identification of the optimum installation angles with an accuracy within one degree, 

was achieved by repeating the simulations using one degree changes of both azimuth and 

tilt angle. The range of azimuth and tilt angles covered were reduced to minimise the 

number of data points to be simulated. 

Figure 4.17b shows the optimum panel tilt and azimuth angles for the Brooklyn Park site. 

The simulation was limited to an azimuth range of 90° through to 270° measured from 

due south and tilt angles ranging from flat to 35°, as the 15 degree modelling identified 

the optimum values for this site within this range. Table 4.1 shows the optimum 

installation angles for each site, and graphs for each location are located in appendix E. 

 

1100

1150

1200

1250

1300

1350

1400

0

5

10

15

20

25

30

35

0

1
5

3
0

4
5

6
0

7
5

9
0

1
0

5

1
2

0

1
3

5

1
5

0

1
6

5

1
8

0

1
9

5

2
1

0

2
2

5

2
4

0

2
5

5

2
7

0

2
8

5

3
0

0

3
1

5

3
3

0

3
4

5

3
6

0

P
o

w
er

 (
 W

 )

P
an

el
 T

ilt
 a

n
g;

e 
( 

°
)

Panel Azimuth angle from South ( ° )

Optimum panel tilt: Brooklyn Park, S.A.

Optimum Tilt Angle Annual power



70 

 

Figure 4.17b – Brooklyn Park optimum tilt angle and generated power. 

 

Table 4.1 – Optimum installation angles and generated power. 

Location 

Panel tilt angle 

( degrees ) 

Panel 

azimuth 

( degrees ) 

Annual power generated 

( kWh ) 

Brooklyn Park 33 182 1353.7 

Toowoomba 29 178 1538.3 

Darwin 19 195 1649.2 

Hobart 38 181 1136.2 
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 Site position effect on optimum installation angle. 

The effect of site location was investigated by repeating the simulation for each of the 

four sites to the north, south, east and west. Temperature data remained unchanged, 

however the solar radiation was updated to reflect the modified location. 

The installation angles providing the greatest annual energy yield were affected by a 

change to the geographic location of the site, with results shown in table 4.2. Minimal 

effect was observed on the optimum azimuth angle with changes to the latitude, similarly 

the effect of the tilt angle was minor for changes to the site longitude. The change in 

optimum azimuth angle for Darwin was vastly different to the remaining sites, therefore 

omitted from the average difference. This may be due to the close proximity to the equator 

and will need further investigation.  

Changes in site latitude presented a noticeable effect to the tilt angle, while changes in 

the longitude showed similar results for changes to the longitude. Simulations indicated 

a change to the optimum tilt angle of 0.85° per degree of latitude, while results for the 

azimuth indicated a change of 0.9° per degree of longitude. With the other angle set to 

the optimum position. These results were averaged across all four simulated sites.  

Increasing the site latitude required an increased angle of tilt to maintain optimum power 

generation while moving the site to an increased longitude (east) required a decrease of 

the installation azimuth.  
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Table 4.2 – Optimum installation at varied site location. 

 

Location 

B
ro

o
k
ly

n
 P

ark
 

T
o
o
w

o
o
m

b
a 

D
arw

in
 

H
o
b
art 

Original 

Simulation 

Azimuth 182 178 195 181 

Tilt 33 29 19 38 

      

Northern 

Simulation 

Azimuth 182 177 213 182 

Change per degree latitude 0 -0.2 3.6 0.2 

Tilt 30 24 12 36 

Change per degree latitude -0.6 -1 -1.4 -0.4 

      

Southern 

Simulation 

Azimuth 182 179 192 181 

Change per degree latitude 0 0.2 -0.6 0 

Tilt 37 32 22 39 

Change per degree latitude 0.8 0.6 0.6 0.2 

North – 

South  

Tilt 

Change per degree latitude 

0.7 0.8 1 0.3 

      

Eastern 

Simulation 

Azimuth 179 173 188 178 

Change per degree longitude -0.6 -1 -1.4 -0.6 

Tilt 33 28 17 39 

Change per degree longitude 0 -0.2 -0.4 0.2 

      

Western 

Simulation 

Azimuth 186 182 202 184 

Change per degree longitude 0.8 0.8 1.4 0.6 

Tilt 34 29 18 38 

Change per degree longitude 0.2 0 -0.2 0 

East – West  
Azimuth 

Change per degree longitude 

0.7 0.9 1.4 0.6 
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 Site position effect on optimum tilt without optimum azimuth. 

The data generated through the simulations at locations surrounding each of the sites 

indicated change in panel tilt was relatively constant, irrespective of the panel installation 

azimuth. Figure 4.18 shows the change in panel tilt per degree of latitude for azimuth 

angles 60 degrees either side of the optimum value. 

 

 

Figure 4.18 – Optimum tilt angle change per° of latitude versus panel azimuth. 

 

 Model for determination of optimum tilt and azimuth. 

The location of an installation site affected both the optimum azimuth angle and the 

optimum tilt angle for the panels. Changes in latitude affected the tilt angle, while changes 
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provided to compensate for the effect of installation azimuth angles other than the 

optimum, valid for any value producing a non-negative result. 

 

𝐴(𝑃𝐿𝑜)  = 19500.882191 − 402.912829 × 𝑃𝐿𝑜 + 2.800723 × 𝑃𝐿𝑜
2 − 0.006489 ×

𝑃𝐿𝑜
3           (4.1a) 

𝑇(𝑃𝐿𝐴)  = (5.288730 + 1.418184 × 𝑃𝐿𝐴 − 0.029227 × 𝑃𝐿𝐴
2 + 0.000325 × 𝑃𝐿𝐴

3) ×

𝐶            (4.1b) 

 

𝐶(𝐴𝐸𝑟) = {1 + 0.002381 × |𝐴𝐸𝑟| − 0.000132 × |𝐴𝐸𝑟|2 |−90 ≤ 𝐴𝐸𝑟 ≤ 90 

           (4.1c) 

 

𝑃𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 and 𝑃𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 are geographic location coordinates for the installation site, and 

𝐴𝑧°𝐸𝑟𝑟 is the difference between optimum and actual installation azimuth angle. 

The optimum results calculated using equations 4.1a to 4.1c are close to the values 

identified for the majority of simulations conducted. Figure 4.19 shows error in calculated 

optimum azimuth for each site, including the 5° offset sites. The average error was 

slightly under 3°, with Darwin being the most inaccurate at 18°. 
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Figure 4.19 – Optimum azimuth calculated model error. 

 

Figure 4.20 shows error in calculated optimum tilt for each site at optimum azimuth. The 

average error was 1° compared to the simulations, and only 2 locations exceeding 2° error. 
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Figure 4.20 – Optimum tilt calculated model error. 

 

 Single panel model using calculated tilt installation angles. 

Table 4.3 lists each potentially suitable installation surface identified from aerial images. 

The listed azimuth values relate to the direction of the most northern face of each building, 

as a clockwise rotation from south. Tilt is the angle of the panel relative to horizontal 

toward the selected azimuth. The annual power generation was determined for a generic 

1kW single direction using Homer Energy 2.68. Resulting annual power generated was 

compared to an equivalent system with optimum installation orientation 
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Table 4.3 – Calculated optimum installation angles. 

  

Surface 

azimuth 

(degrees) 

Absolute 

Azimuth 

error 

(degrees) 

Calculated 

Panel tilt 

angle 

(degrees) 

Annual 

power 

generated 

( kWh ) 

Percentage 

of optimum 

installation 

Brooklyn 

Park 

177 5 33 1352.8 99.94 

267 85 8 1208.2 89.25 

357 175 0 1201.9 88.79 

87 95 0 1201.9 88.78 

 

Toowoomba 

195 17 29 1530.2 99.48 

217 39 26 1497.8 97.37 

246 68 16 1437.4 93.45 

66 112 0 1404.2 91.29 

37 141 0 1404.2 91.29 

15 163 0 1404.2 91.29 

 
Darwin 

199 4 19 1648.9 99.98 

19 176 0 1586.0 96.17 

 
Hobart 

201 20 38 1123.0 98.83 

21 160 0 971.1 85.46 
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4.3.2. Dual string modelling. 

The optimum installation angle results from simulations with two independent 

photovoltaic strings resembled the results of the equivalent single string installation, 

while confirming the results of the IV curve simulations for panels at different angles. 

Maximum power generation occurred when both strings installed at the single string 

optimum installation angles. Figure 4.21 shows the annual energy generated with 2 

strings, each installed at 177° from south. The reduction of generated power occurs when 

the tilt angle of either of the strings is varied from the optimum, and also occurs with 

changes to the azimuth. The further the installation angle is from the optimum installation, 

the greater the magnitude of the reduction in power generation. 

 

 

Figure 4.21 – Generated power: 2 string 3kW at Azimuth 177. 
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5. Conclusion 

There are many factors identified throughout this dissertation which affect the volume of 

energy generated by a photovoltaic installation. The design of such systems can be used 

to accommodate some of these factors including but not limited to, panel angle, panel 

efficiency and inverter configuration. Factors such as temperature and solar irradiance are 

beyond our control. 

The connection of a number of solar panels together will lead to an increase in the system 

output. Differences from one panel to the next combined with unequal energy input and 

variations in installation conditions. The effect parallel and series connected panels 

installed at two separate angles leads to energy losses within the system, and generally 

increases as the difference in angle is increased. Under most conditions, the magnitude of 

these losses remained constant while the difference in angle was less than 10°. 

Panels which have been installed within 15 degrees from north should generate more 

energy over a year than other azimuth ranges. Therefore installation should be prioritised 

to the roof surface facing nearest to north, and the tilt angle should be set relative to the 

actual installation azimuth. Equations 4.1a, 4.1b and 4.1c can assist in the determination 

of the optimum angles for installation. 

Wherever possible, the installation of solar panels in locations which are subjected to a 

large amount of shading should be avoided. Where there is no possibility of installing the 

system in a location completely free of shade, the D.C. connection between must not be 

connected in parallel as this will lead to substantial energy losses. 

The selection of the inverter is an equally important factor in the design of a solar energy 

system. The system designer must take care to ensure the maximum voltage generated 

within each string does not exceed the maximum input of the inverter, at the same time 

maximising the time where the string voltage will exceed the minimum voltage required 

to drive the circuitry of the inverter. The maximum power capable of being delivered to 

the input of the inverter should remain within a range 30 - 100% of the rating of the input. 

Operating outside of this range will lead to a decreased efficiency of the system Inverters 

with dual maximum power point tracking provided the lowest efficiency losses for two 
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string systems. The use of two inverters, or a single channel power point tracking inverters 

were able to demonstrate similar efficiency values, generally only when all panels were 

installed on common orientation. 

 

 Further work. 

Information identified throughout the course of this research has provided opportunity for 

further work into the optimisation of solar power systems. 

Modelling which was conducted within Matlab was limited to two separate panels 

connected in either series or parallel. Shading was modelled by reducing the panel output 

relative to the shaded area. The model could be revised to include the effect of partial 

shading over the panel. Modelling the IV curve of each cell separately using a common 

voltage vector could assist in the analysis of more complex shading patterns, and the 

effect of a combination of connection methods. 

The intention of the energy optimisation model was to maximise the power generated 

using photovoltaic solar power systems, although this approach may not provide 

maximum benefit for all circumstances. The model could be revised to include a profile 

of electrical demand to identify, allowing customisation of the model to a consumers 

requirements. 

The geographic locations used for the optimisation simulations covered a wide range of 

latitudes, ranging from the far north through to the south. The locations were limited in 

longitude covering a range from central Australia through to the east coast. The model 

could be extended to include locations across to the west coast. 
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 Current voltage relationship: IV curve 

 Solar panel model 

Generalised procedure of the solar panel model developed by Bellini et al. (n.d.) 

1. The function of panel current is defined as, 

𝐼𝑝 = 𝐼𝑆𝐶 [1 −  𝐶1 (𝑒
(

𝑉𝑝

𝐶2×𝑉𝑂𝐶
)

− 1)]      (C.1a) 

𝑉𝑝 = 𝐶2 × 𝑉𝑂𝐶 × 𝑙𝑛 (1 +  
(1 −  

𝐼𝑃
𝐼𝑆𝐶

)

𝐶1
)      (C.1b) 

 

2. Determine the panel voltage and current specifications for the given temperature 

and irradiance. 

𝐼𝑆𝐶(𝐺, 𝑇) = 𝐼𝑆𝐶𝑆
𝐺

𝐺𝑠
[1 + 𝛼 (𝑇 −  𝑇𝑠)]      (C.2) 

𝑉𝑂𝐶(𝑇) = 𝑉𝑂𝐶𝑆 + 𝛽(𝑇 −  𝑇𝑠)       (C.3) 

𝐼𝑀𝑃𝑃(𝐺, 𝑇) = 𝐼𝑀𝑃𝑃𝑆
𝐺

𝐺𝑠
[1 + 𝛼 (𝑇 − 𝑇𝑠)]     (C.4) 

𝑉𝑀𝑃𝑃(𝑇) = 𝑉𝑀𝑃𝑃𝑆 + 𝛽(𝑇 −  𝑇𝑠)      (C.5) 

 

3. Determine the values of coefficients C1 and C2. 

𝐶2 =
(

𝑉𝑀𝑃𝑃
𝑉𝑂𝐶

 − 1)

𝑙𝑛(1 − 
𝐼𝑀𝑃𝑃

𝐼𝑆𝐶
)
         (C.6) 
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𝐶1 = (1 − 
𝐼𝑀𝑃𝑃

𝐼𝑆𝐶
) 𝑒

(
−𝑉𝑀𝑃𝑃
𝐶2×𝑉𝑂𝐶

)
        (C.7) 

 

4. Determine the open circuit voltage value at the irradiance value, and voltage 

correction value. 

𝑉𝑂𝐶𝑀 = 𝐶2 × 𝑉𝑂𝐶𝑆 × 𝑙𝑛 (1 +  
(1 −  

𝐺

𝐺𝑆
)

𝐶1
)     (C.8a) 

∆𝑉(𝐺) = 𝑉𝑂𝐶𝑆 − 𝑉𝑂𝐶𝑀       (C.9) 

 

5. Revise equations C.3 and C.5 to include the voltage correction value. 

𝑉𝑂𝐶(𝐺, 𝑇) = 𝑉𝑂𝐶𝑆 + 𝛽(𝑇 −  𝑇𝑠) −  ∆𝑉(𝐺)     (C.3a) 

𝑉𝑀𝑃𝑃(𝐺, 𝑇) = 𝑉𝑀𝑃𝑃𝑆 + 𝛽(𝑇 − 𝑇𝑠) −  ∆𝑉(𝐺)    (C.5a) 

 

 Solar panel model error 

The IV curves generated using the procedure described by Bellini at al. shown in figure 

C.1a and C.1b for varied irradiance and temperature levels respectively were significantly 

different to figures C.2a and C.2b listed within the paper. The input specified by Bellini 

et al. (n.d.) are listed in table C.1. 
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Table C.1 – IV curve input parameters. 

Parameter Value Unit 

ISC 5.30 A 

VOC 44.60 V 

VMPP 35.40 V 

IMPP 4.95 A 

α 1.46 mA/ °C 

β -158 mV / °C 

TS 25 °C 

GS 1000 W/m² 

 

 

Figure C.1a – Varied irradiance model. 

 



C4 

 

Figure C.1b – Bellini et al. Varied irradiance. 

 

 

Figure C.2a – Varied temperature model. 

 



C5 

 

Figure C.2b – Bellini et al. Varied temperature. 

 

Analysis of the model using varying levels of irradiation identified equation C.8 as the 

source of the error. This equation represents the open circuit voltage at irradiance levels 

other than the standard test conditions. (Bellini et al, n.d.) Figure C.3a details the open 

circuit voltage versus irradiance for the uncorrected model using equation C.8a, and 

figure C.3b for the corrected model using equation C.8b. 

 

𝑉𝑂𝐶𝑀 = 𝐶2 × 𝑉𝑂𝐶𝑆 × 𝑙𝑛 (1 +  
( 

𝐺

𝐺𝑆
)

𝐶1
)      (C.8b)  

The IV curves which have been generated using the method detailed by Bellini et al. (n.d.) 

and the corrected equation C.8b are shown in figure C.4a for varied irradiance and figure 

C.4b for varied temperature. 
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Figure C.3a – Model VOCM vs irradiance. 

 

 

Figure C.3b – Corrected VOCM vs irradiance 
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Figure C.4a – Varied irradiance corrected. 

 

Figure C.4b – Varied temperature corrected. 
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 Optimum azimuth 

The function used to describe the optimum installation azimuth was defined using a polynomial curve fit based on the four locations which 

were simulated in Homer. 

Using the generic equation 

 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 =  𝑦0             (C.10) 

Converting to augmented matrix form, 
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Let, 
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Therefore, 

𝐴𝑧(𝑃𝐿𝑜) = 19500.882191 − 402.912829 × 𝑃𝐿𝑜 + 2.800273 × 𝑃𝐿𝑜
2 − 0.006489 × 𝑃𝐿𝑜

3     (C.11) 
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 Optimum tilt 

The function used to describe the optimum installation tilt was defined using a polynomial curve fit based on the four locations which were 

simulated in Homer. The variable C is included as a tilt angle reduction factor for installation at non optimum azimuth. 

Using the generic equation 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 =  𝑦0             (C.10) 

 

Converting to augmented matrix form, 
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a

 

 

Therefore, 

𝑇𝑖(𝑃𝐿𝐴) = 4.976936 − 1.458601 × 𝑃𝐿𝐴 − 0.030806 × 𝑃𝐿𝐴
2 + 0.000344 × 𝑃𝐿𝐴

3      (C.12a) 
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 Optimum tilt correction factor ( C ) 

Table C.2 – Non optimum tilt angle scaling relative to optimum tilt. 

Location 

Azimuth Error ( Degrees ) 

0 -90 90 -45 45 

Brooklyn Park 1 0.151515 0.151515 0.848485 0.848485 

Toowoomba 1 0.137931 0.137931 0.827586 0.827586 

Darwin 1 0.263158 0.105263 0.789474 0.789474 

Hobart 1 0.131579 0.131579 0.868421 0.868421 

Magnitude Average 1 0.151309 0.833492 

 

The correction factor function is used to account for changes to the optimum tilt angle for a variety of azimuth values. AEr is magnitude of 

the error in degrees between actual and optimum azimuth, while C is the decimal fraction of the tilt value relative to the optimum azimuth 

tilt value. 
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Using the generic equation 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 =  𝑦0             (C.10) 

Converting to augmented matrix form, 
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Therefore, 

𝐶(𝐴𝐸𝑟) = 1 + 0.002030 × |𝐴𝐸𝑟| − 0.000127 × |𝐴𝐸𝑟|2           (C.13) 
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Therefore equation C.11could be redefined, allowing for non-optimum azimuth installations. 

𝑇𝑖(𝑃𝐿𝐴) = (4.976936 − 1.458601 × 𝑃𝐿𝐴 − 0.030806 × 𝑃𝐿𝐴
2 + 0.000344 × 𝑃𝐿𝐴

3) × 𝐶(𝐴𝐸𝑟)     (C.12b) 
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 Function: Solar_Panel_Model_Par 

function [V,I,P] = 

Solar_panel_model_Par(V_Step,G,T,Vmps,Vocs,Imps,Iscs, Shaded_dec) 
%Function file  IV_PV_CURVE_MODEL.m 
%Name           Christopher Kirby  
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project: Part 1 
%Last Revised   11/06/2015 22:00 
% 
%Inputs 
%   G           Solar irradiation W/m^2 
%   T           Temperature Deg C 
%   Vmps        Specified MPPT voltage 
%   Vocs        Specified open circuit voltage 
%   Imps        Specified MPPT current 
%   Iscs        Specified short circuit current 
% 
%Outputs 
%   V           Vector: Terminal voltage 
%   I           Vector: Output current A 
%   P           Vector: Output power W 
% 
%Constant 
%   Gs          STC Solar irradiation W/m^2 
%   Ts          STC Temperature Deg C 
%   TCp_Voc     Voc Thermal coefficient percent 
%   TCp_Isc     Isc Thermal coefficient percent 
% 
%Variable 
%   Temp_Voc    Voc Thermal coefficient mV/DegC 
%   Temp_Isc    Isc Thermal coefficient mA/DegC 
%   Vmp         MPPT Voltage at tempeature 
%   Voc         Open circuit Voltage at tempeature 
%   Imp         MPPT current at temperature and irradiance 
%   Isc         Short circuit current at temperature and irradiance 
%   C1          Panel IV coefficient 
%   C2          Panel IV coefficient 

  
%Assign values to constant 
Gs = 1000; 
Ts = 25; 
TCp_Voc = -0.32; 
TCp_Isc = 0.055; 

  
Vocs = (1 - Shaded_dec ) * Vocs; 
Vmps = (1 - Shaded_dec ) * Vmps; 

  
% Determine Voltage and Current coefficients 
Temp_Voc = Vocs * TCp_Voc / 100; 
Temp_Isc = Iscs * TCp_Isc / 100; 

  
% Determine panel voltage and temperature characteristics 
Isc = Iscs * G / Gs * (1 + Temp_Isc * (T - Ts)); 
Imp = Imps * G / Gs * (1 + Temp_Isc * (T - Ts)); 
Voc = Vocs + Temp_Voc * (T - Ts); 
Vmp = Vmps + Temp_Voc * (T - Ts); 
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%Determine coefficient C2 & C1 
C2 = (Vmp / Voc - 1 ) / ( reallog(1 - Imp/Isc)); 
%Determiane coefficient C1 
C1 = ( 1- Imp / Isc ) * exp((-Vmp ) / (C2 * Voc)); 

  
Vocm = C2 * Vocs * reallog(1+(G/Gs)/C1); 
deltaV = Vocs-Vocm; 

  
%Modify Voc & Vmp to allow for irradiance 
Voc = Vocs + Temp_Voc * (T - Ts) - deltaV; 
Vmp = Vmps + Temp_Voc * (T - Ts) - deltaV; 

  
%Determine voltage vector 
V = 0:V_Step:Voc; 

  
%Calculate current and power as a function of voltage 
I = Isc * (1-C1*(exp(V ./ (C2*Voc))-1)); 
P = I .* V; 

 

 Function: Solar_Panel_Model_Ser 

function [V,I,P] = 

Solar_panel_model_Ser(I_Step,G,T,Vmps,Vocs,Imps,Iscs, Shaded_dec) 
%Function file  IV_PV_CURVE_MODEL.m 
%Name           Christopher Kirby 
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project: Part 1 
%Last Revised   11/06/2015 22:00 
% 
%Inputs 
%   G           Solar irradiation W/m^2 
%   T           Temperature Deg C 
%   Vmps        Specified MPPT voltage 
%   Vocs        Specified open circuit voltage 
%   Imps        Specified MPPT current 
%   Iscs        Specified short circuit current 
% 
%Outputs 
%   V           Vector: Terminal voltage 
%   I           Vector: Output current A 
%   P           Vector: Output power W 
% 
%Constant 
%   Gs          STC Solar irradiation W/m^2 
%   Ts          STC Temperature Deg C 
%   TCp_Voc     Voc Thermal coefficient percent 
%   TCp_Isc     Isc Thermal coefficient percent 
% 
%Variable 
%   Temp_Voc    Voc Thermal coefficient mV/DegC 
%   Temp_Isc    Isc Thermal coefficient mA/DegC 
%   Vmp         MPPT Voltage at tempeature 
%   Voc         Open circuit Voltage at tempeature 
%   Imp         MPPT current at temperature and irradiance 
%   Isc         Short circuit current at temperature and irradiance 
%   C1          Panel IV coefficient 
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%   C2          Panel IV coefficient 

  
%Assign values to constant 
Gs = 1000; 
Ts = 25; 
TCp_Voc = -0.32; 
TCp_Isc = 0.055; 

  
Vocs = (1 - Shaded_dec ) * Vocs; 
Vmps = (1 - Shaded_dec ) * Vmps; 

  
% Determine Voltage and Current coefficients 
Temp_Voc = Vocs * TCp_Voc / 100; 
Temp_Isc = Iscs * TCp_Isc / 100; 

  
% Determine panel voltage and temperature characteristics 
Isc = Iscs * G / Gs * (1 + Temp_Isc * (T - Ts)); 
Imp = Imps * G / Gs * (1 + Temp_Isc * (T - Ts)); 
Voc = Vocs + Temp_Voc * (T - Ts); 
Vmp = Vmps + Temp_Voc * (T - Ts); 

  
%Round Isc & Imp to 2 decomal places 
Isc = round(Isc*100)/100; 

  
%Determine coefficient C2 & C1 
C2 = (Vmp / Voc - 1 ) / ( reallog(1 - Imp/Isc)); 
%Determiane coefficient C1 
C1 = ( 1- Imp / Isc ) * exp((-Vmp ) / (C2 * Voc)); 

  
Vocm = C2 * Vocs * reallog(1+(G/Gs)/C1); 
deltaV = Vocs-Vocm; 

  
%Modify Voc & Vmp to allow for irradiance 
Voc = Vocs + Temp_Voc * (T - Ts) - deltaV; 
Vmp = Vmps + Temp_Voc * (T - Ts) - deltaV; 

  
%Determine current vector - Extending 20% past STC Isc 
%I = I_Step:I_Step:Isc; 
I = 0:I_Step:Isc; 
%Calculate Voltage and power as a function of Current 
V = C2 * Voc * reallog(1+(1-I/Isc)/C1); 

  
%I = [0, I] 
%V = [0, V] 

  
P = I .* V; 
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 Script: Efficiency_calculator_Par 

%Script file  Efficiency_calculator_Par.m 
%Name           Christopher Kirby 
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project 
%Last Revised   11/06/2015 22:00 
% 
%   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%clear all variables 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
clear all                                                                

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%define and calculate fixed variables 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
P1_Angle = input('Enter Panel 1 angle: ')                               %Panel 

angles to light source 
P2_Angle = 0; 

  
P1_Modules = 3;                                                         %Number 

of modules within panel 
P2_Modules = 3; 

                                                                         
P1_Shaded_Modules = input('Enter Panel 1 number of shaded modules: ')   

%Number of hard shaded panels 
P2_Shaded_Modules = input('Enter Panel 2 number of shaded modules: ') 

  
P1_Shaded_dec = ( P1_Shaded_Modules / P1_Modules );                     

%Calculate percent of shaded modules as a decimal value 
P2_Shaded_dec = ( P2_Shaded_Modules / P2_Modules ); 

  
G = input('Enter simulated irradiance value: ')                         

%Simulation irradiance 
T = input('Enter simulated temperature: ')                              

%Simulation temperature 

                                                     
Vmps1 = input('Enter panel 1 MP Voltage: ');                            %Panel 

1 specifications 
Vocs1 = input('Enter panel 1 OC Voltage: '); 
Imps1 = input('Enter panel 1 MP Current: '); 
Iscs1 = input('Enter panel 1 SC Current: ');     
Vmps2 = input('Enter panel 2 MP Voltage: ');                            %Panel 

2 specifications 
Vocs2 = input('Enter panel 2 OC Voltage: '); 
Imps2 = input('Enter panel 2 MP Current: '); 
Iscs2 = input('Enter panel 2 SC Current: '); 

  
K = P1_Angle;                                                           %Plot 

index constant 

  
Brewster_angle = 56.6;                                                  %Limiting 



D5 

angle - Brewster angle 
P2_Angle_Vector = [];                                                   %Rotated 

panel vector 
V_Step = 0.1;                                                           %Voltage 

vector step 

  
MP_Sep_Vector = [];                                                     %Non 

connected panel MP vector 
MP_Par_Vector = [];                                                     %Series 

connected panel MP vector 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%Model panel output 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
while P2_Angle <= Brewster_angle;                                       %Program 

loop for angles below limit 
G1 = G * cos( P1_Angle *pi / 180 );                                     

%Equlvalent irradiance due to angle 
G2 = G * cos( P2_Angle *pi / 180 ); 

  
                                                                        

%Model Panel 1: Solar panel model_Par 
    [V1,I1,P1] = 

Solar_panel_model_Par(V_Step,G1,T,Vmps1,Vocs1,Imps1,Iscs1,P1_Shaded_de

c); 
    V1 = round(V1*100)/100; 
    I1 = round(I1*100)/100; 
    P1 = round(P1*100)/100; 
    I1(I1<0)=0; 
    P1(P1<0)=0; 
                                                                        

%Locate actual MPPT using incremental 
                                                                        

%method starting from panel spec MPPT 
P1_Pmp = 0; 
    if max(V1) > Vmps1; 
        index = find( V1( : ) == Vmps1 ); 
    else 
        index = length(V1) - 1; 
    end 
while P1_Pmp == 0; 

     
    if (P1(index-1)<=P1(index) & P1(index)>=P1(index+1)); 
        P1_Pmp = P1(index); 
    elseif (P1(index-1)>=P1(index) & P1(index)>=P1(index+1) ); 
        index = index - 1; 
    elseif (P1(index-1)<=P1(index) & P1(index)<=P1(index+1)); 
        index = index + 1; 
    elseif (P1(index-1)>=P1(index) & P1(index)<=P1(index+1)); 
        index = index + 1; 
    else 
         P1(index) = 0; 
         index = index - 1; 
    end 
end 
                                                                        

%Model Panel 2: Solar panel model_Ser 
    [V2,I2,P2] = 

Solar_panel_model_Par(V_Step,G2,T,Vmps2,Vocs2,Imps2,Iscs2,P2_Shaded_de



D6 

c); 
    V2 = round(V2*100)/100; 
    I2 = round(I2*100)/100; 
    P2 = round(P2*100)/100; 
    I2(I2<0)=0; 
    P2(P2<0)=0; 
                                                                        

%Locate actual MPPT using incremental 
                                                                        

%method starting from panel spec MPPT 
P2_Pmp = 0; 
    if max(V2) > Vmps2; 
        index = find( V2( : ) == Vmps2 ); 
    else 
        index = length(V2) - 1; 
    end 
while P2_Pmp == 0; 
    if (P2(index-1)<=P2(index) & P2(index)>=P2(index+1)); 
        P2_Pmp = P2(index); 
    elseif (P2(index-1)>=P2(index) & P2(index)>=P2(index+1)); 
        index = index - 1; 
    elseif (P2(index-1)<=P2(index) & P2(index)<=P2(index+1)); 
        index = index + 1; 
    elseif (P2(index-1)>=P2(index) & P2(index)<=P2(index+1)); 
        index = index + 1; 
    else 
         P2(index) = 0; 
         index = index - 1; 
    end 
end 

  
difference = abs(length (V1) - length (V2));                            

%Standardise vector lengths 
zero_vector = zeros(1,difference); 
if length (V1) < length (V2); 
V1 = V2; 
I1 = [I1,zero_vector]; 
P1 = [P1,zero_vector]; 
end 
if length (V1) > length (V2); 
V2 = V1; 
I2 = [I2,zero_vector]; 
P2 = [P2,zero_vector]; 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%MODEL PARALLEL COMBINATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
Vparallel = V1; 
Iparallel = I1 + I2; 
Pparallel = Vparallel .* Iparallel; 
Vparallel = round(Vparallel*100)/100; 
Iparallel = round(Iparallel*100)/100; 
Pparallel = round(Pparallel*100)/100; 

  

  
Parallel_Pmp = 0; 
while Parallel_Pmp == 0; 
    if (Pparallel(index-1)<=Pparallel(index) & 
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Pparallel(index)>=Pparallel(index+1)); 
        Parallel_Pmp = Pparallel(index); 
    elseif (Pparallel(index-1)>=Pparallel(index) & 

Pparallel(index)>=Pparallel(index+1)); 
        index = index - 1; 
    elseif (Pparallel(index-1)<=Pparallel(index) & 

Pparallel(index)<=Pparallel(index+1)); 
        index = index + 1; 
    elseif (Pparallel(index-1)>=Pparallel(index) & 

Pparallel(index)<=Pparallel(index+1)); 
        index = index + 1; 
    else 
         Pparallel(index) = 0; 
         index = index - 1; 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT RESULTING IV / PV curves for P1, P2 & Parallel COMBINATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
subplot(2,11,1:4); 
plt = plotyy (V1,I1,V1,P1); 
title('Panel 1: IV & PV'); 
xlabel('Voltage (V)'); 
ylabel(plt(1), 'Current (A)'); 
ylabel(plt(2), 'Power (W)'); 

  
subplot(2,11,8:11); 
plt = plotyy (V2,I2,V2,P2); 
title('Panel 2: IV & PV'); 
xlabel('Voltage (V)'); 
ylabel(plt(1), 'Current (A)'); 
ylabel(plt(2), 'Power (W)'); 

  
subplot(2,11,12:22); 
plt = plotyy (Vparallel,Iparallel,Vparallel,Pparallel); 
title('Parallel: IV & PV'); 
xlabel('Voltage (V)'); 
ylabel(plt(1), 'Current (A)'); 
ylabel(plt(2), 'Power (W)'); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%SAVE PLOT IMAGE at 10 degree INCREMENTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
if P2_Angle == 0; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
end; 

  
if P2_Angle == 10; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
end; 

  
if P2_Angle == 20; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
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end; 

  
if P2_Angle == 30; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
end; 

  
if P2_Angle == 40; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
end; 

  
if P2_Angle == 50; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
end; 

  
if P2_Angle == 56; 
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
end; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%CALCULATE MAX POWER AND EFFICIENCY VECTORS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
MP_Seperate = P1_Pmp + P2_Pmp;                                          %Non 

connected panel MP 
MP_Parallel = Parallel_Pmp;                                             %Parallel 

connected panel MP 
% 
                                                                        

%Efficiency vector 
Percent_Eff_to_Seperate(P2_Angle+1) =  Parallel_Pmp / (P1_Pmp + P2_Pmp) 

* 100; 
% 

  
P2_Angle_Vector = [P2_Angle_Vector,P2_Angle];                           %Panel 

angle vector 
P2_Angle = P2_Angle + 1;                                                %Increment 

panel 2 angle 

  
MP_Sep_Vector = [MP_Sep_Vector , MP_Seperate];                          %Non 

connected panel MP vector 
MP_Par_Vector = [MP_Par_Vector , MP_Parallel];                          

%Series connected panel MP vector 
% 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT MAX POWER Versus ANGLE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
% 
clf                                                                     %Clear 

plot Window 
plt = plotyy ( P2_Angle_Vector, [MP_Sep_Vector.' 

MP_Par_Vector.'],P2_Angle_Vector,MP_Sep_Vector- MP_Par_Vector); 
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title(sprintf('Panel output power vs Angle ( Panel 1 Angle %d degrees 

)', P1_Angle)); 
%title(sprintf('Panel output power vs Angle ( Ambient temperature %d 

degrees C )', T)); 
%title(sprintf('Panel output power vs Angle ( Irradiance %d W/m^2 )', 

G)); 
%title(sprintf('Panel output power vs Angle')); 

  
xlabel('Panel 2 Angle from solar normal'); 
ylabel(plt(1), 'Panel output power (W)'); 
ylabel(plt(2), 'Parallel connected power loss (W)'); 

  

  
K=K+1; 
print('-djpeg',sprintf('IV_PAR%d',K)); 
%Save Angle versus MP plot 

 

 Script: Efficiency_calculator_Ser 

%Script file  Efficiency_calculator_Ser.m 
%Name           Christopher Kirby 
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project 
%Last Revised   11/06/2015 22:00 
% 
%   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%clear all variables 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
clear all                                                                

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%define and calculate fixed variables 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
P1_Angle = input('Enter Panel 1 angle: ')                               %Panel 

angles to light source 
P2_Angle = 0; 

  
P1_Modules = 3;                                                         %Number 

of modules within panel 
P2_Modules = 3; 

                                                                         
P1_Shaded_Modules = input('Enter Panel 1 number of shaded modules: ')   

%Number of hard shaded panels 
P2_Shaded_Modules = input('Enter Panel 2 number of shaded modules: ') 

  
P1_Shaded_dec = ( P1_Shaded_Modules / P1_Modules );                     

%Calculate percent of shaded modules as a decimal value 
P2_Shaded_dec = ( P2_Shaded_Modules / P2_Modules ); 

  



D10 

G = input('Enter simulated irradiance value: ')                         

%Simulation irradiance 
T = input('Enter simulated temperature: ')                              

%Simulation temperature 

                                                     
Vmps1 = input('Enter panel 1 MP Voltage: ');                            %Panel 

1 specifications 
Vocs1 = input('Enter panel 1 OC Voltage: '); 
Imps1 = input('Enter panel 1 MP Current: '); 
Iscs1 = input('Enter panel 1 SC Current: ');     
Vmps2 = input('Enter panel 2 MP Voltage: ');                            %Panel 

2 specifications 
Vocs2 = input('Enter panel 2 OC Voltage: '); 
Imps2 = input('Enter panel 2 MP Current: '); 
Iscs2 = input('Enter panel 2 SC Current: '); 

  
K = P1_Angle;                                                           %Plot 

index constant 

  
Brewster_angle = 56.6;                                                  %Limiting 

angle - Brewster angle 
P2_Angle_Vector = [];                                                   %Rotated 

panel vector 
I_Step = 0.01;                                                          %Current 

vector step 

  
MP_Sep_Vector = [];                                                     %Non 

connected panel MP vector 
MP_Ser_Vector = [];                                                     %Series 

connected panel MP vector 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%Model panel output 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
while P2_Angle <= Brewster_angle;                                       %Program 

loop for angles below limit 
G1 = G * cos( P1_Angle *pi / 180 );                                     

%Equlvalent irradiance due to angle 
G2 = G * cos( P2_Angle *pi / 180 ); 
                                                                        

%Model Panel 1: Solar panel model_Ser 
[V1,I1,P1] = 

Solar_panel_model_Ser(I_Step,G1,T,Vmps1,Vocs1,Imps1,Iscs1,P1_Shaded_de

c); 
    V1 = round(V1*100)/100; 
    I1 = round(I1*100)/100; 
    P1 = round(P1*100)/100; 
    I1(I1<0)=0; 
    P1(P1<0)=0; 
                                                                        

%Locate actual MPPT using incremental 
                                                                        

%method starting from panel spec MPPT 
P1_Pmp = 0; 
    if max(I1) > Imps1; 
        index = find( I1( : ) == Imps1 ); 
    else 
        index = length(I1) - 1; 
    end 
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while P1_Pmp == 0; 

     
    if (P1(index-1)<=P1(index) & P1(index)>=P1(index+1)); 
        P1_Pmp = P1(index); 
    elseif (P1(index-1)>=P1(index) & P1(index)>=P1(index+1) ); 
        index = index - 1; 
    elseif (P1(index-1)<=P1(index) & P1(index)<=P1(index+1)); 
        index = index + 1; 
    else 
         P1(index) = 0; 
         index = index - 1; 
    end 
end 

  
                                                                        

%Model Panel 2: Solar panel model_Ser 
[V2,I2,P2] = 

Solar_panel_model_Ser(I_Step,G2,T,Vmps2,Vocs2,Imps2,Iscs2,P2_Shaded_de

c); 
    V2 = round(V2*100)/100; 
    I2 = round(I2*100)/100; 
    P2 = round(P2*100)/100; 
    I2(I2<0)=0; 
    P2(P2<0)=0; 
                                                                        

%Locate actual MPPT using incremental 
                                                                        

%method starting from panel spec MPPT 
P2_Pmp = 0; 
    if max(I2) > Imps2; 
        index = find( I2( : ) == Imps2 ); 
    else 
        index = length(I2) - 1; 
    end 
while P2_Pmp == 0; 
    if (P2(index-1)<=P2(index) & P2(index)>=P2(index+1)); 
        P2_Pmp = P2(index); 
    elseif (P2(index-1)>=P2(index) & P2(index)>=P2(index+1)); 
        index = index - 1; 
    elseif (P2(index-1)<=P2(index) & P2(index)<=P2(index+1)); 
        index = index + 1; 
    else 
         P2(index) = 0; 
         index = index - 1; 
    end 
end 

  
difference = abs(length (I1) - length (I2));                            

%Standardise vector lengths 
zero_vector = zeros(1,difference); 
if length (I1) < length (I2); 
I1 = I2; 
V1 = [V1,zero_vector]; 
P1 = [P1,zero_vector]; 
end 
if length (I1) > length (I2); 
I2 = I1; 
V2 = [V2,zero_vector]; 
P2 = [P2,zero_vector]; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%MODEL SERIES COMBINATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
Vseries = V1 + V2; 
Iseries = I1; 
Pseries = Vseries .* Iseries; 
Vseries = round(Vseries*100)/100; 
Iseries = round(Iseries*100)/100; 
Pseries = round(Pseries*100)/100; 

  
index = 2; 
Series_Pmp = 0; 
while Series_Pmp == 0; 
    if (Pseries(index-1)<=Pseries(index) & 

Pseries(index)>=Pseries(index+1)); 
        Series_Pmp = Pseries(index); 
    elseif (Pseries(index-1)>=Pseries(index) & 

Pseries(index)>=Pseries(index+1) ); 
        index = index - 1; 
    elseif (Pseries(index-1)<=Pseries(index) & 

Pseries(index)<=Pseries(index+1)); 
        index = index + 1; 
    else 
         Pseries(index) = 0; 
         index = index - 1; 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT RESULTING IV / PV curves for P1, P2 & SERIES COMBINATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
subplot(2,11,1:4); 
plt = plotyy (V1,I1,V1,P1); 
title('Panel 1: IV & PV'); 
xlabel('Voltage (V)'); 
ylabel(plt(1), 'Current (A)'); 
ylabel(plt(2), 'Power (W)'); 

  
subplot(2,11,8:11); 
plt = plotyy (V2,I2,V2,P2); 
title('Panel 2: IV & PV'); 
xlabel('Voltage (V)'); 
ylabel(plt(1), 'Current (A)'); 
ylabel(plt(2), 'Power (W)'); 

  
subplot(2,11,12:22); 
plt = plotyy (Vseries,Iseries,Vseries,Pseries); 
title('Series: IV & PV'); 
xlabel('Voltage (V)'); 
ylabel(plt(1), 'Current (A)'); 
ylabel(plt(2), 'Power (W)'); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%SAVE PLOT IMAGE at 10 degree INCREMENTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%% 
if P2_Angle == 0; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  
if P2_Angle == 10; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  
if P2_Angle == 20; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  
if P2_Angle == 30; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  
if P2_Angle == 40; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  
if P2_Angle == 50; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  
if P2_Angle == 56; 
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K)); 
end; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%CALCULATE MAX POWER AND EFFICIENCY VECTORS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
MP_Seperate = P1_Pmp + P2_Pmp;                                          %Non 

connected panel MP 
MP_Series = Series_Pmp;                                                 %Series 

connected panel MP 

  
                                                                        

%Efficiency vector 
Percent_Eff_to_Seperate(P2_Angle+1) =  Series_Pmp / (P1_Pmp + P2_Pmp) * 

100; 

  
P2_Angle_Vector = [P2_Angle_Vector,P2_Angle];                           %Panel 

angle vector 
P2_Angle = P2_Angle + 1;                                                %Increment 

panel 2 angle 

  
MP_Sep_Vector = [MP_Sep_Vector , MP_Seperate];                          %Non 

connected panel MP vector 
MP_Ser_Vector = [MP_Ser_Vector , MP_Series];                            
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%Series connected panel MP vector 
% 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT MAX POWER Versus ANGLE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
% 
clf                                                                     %Clear 

plot Window 
plt = plotyy ( P2_Angle_Vector, [MP_Sep_Vector.' 

MP_Ser_Vector.'],P2_Angle_Vector,MP_Sep_Vector- MP_Ser_Vector); 

  
title(sprintf('Panel output power vs Angle ( Panel 1 Angle %d degrees 

)', P1_Angle)); 
%title(sprintf('Panel output power vs Angle ( Ambient temperature %d 

degrees C )', T)); 
%title(sprintf('Panel output power vs Angle ( Irradiance %d W/m^2 )', 

G)); 
%title(sprintf('Panel output power vs Angle')); 

  
xlabel('Panel 2 Angle from solar normal'); 
ylabel(plt(1), 'Panel output power (W)'); 
ylabel(plt(2), 'Series connected power loss (W)'); 

  

  
K=K+1; 
print('-djpeg',sprintf('IV_SER%d',K));                                  %Save 

Angle versus MP plot 

 

 Script: Error Search 

%Sctript file  Error_Search.m 
%Name           Christopher Kirby 
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project 
%Last Revised   14/06/2015 10:30 
% 
% 

  
%Define panel specifications and standard test conditions 
G=1000 
Gs=1000 
T = 25 
Vmps = 35.4 
Vocs = 44.6 
Imps = 4.95 
Iscs = 5.30 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%MODEL IV CURVE 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
[V,I,P,C1,C2] = Solar_panel_model(G,T,Vmps,Vocs,Imps,Iscs) 

  
%Set Irradiance vector 
G = 0:1000;  

  
%Calculate value for modified open circuit voltage 
Vocm = C2 * Vocs * reallog(1+(1-G/Gs)/C1) 
%Calculate open circuit voltage change 
deltaV = Vocs-Vocm 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT CALCULATED IV CURVE VALUES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
plot (G , Vocm ,'r') 
xlabel('Irradiance (W/m²)') 
ylabel('Open circuit voltage (V)') 
set(gca,'XTick',[0:100:1000]) 
set(gca,'YTick',[0:5:60]) 

 

 Script: Varied_Irradiance_Plot 

%Sctript file  Varied_Irradiance_Plot.m 
%Name           Christopher Kirby 
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project: Part 1 
%Last Revised   14/06/2015 10:30 
% 
%Define panel specifications and standard test conditions 
T = 25 
Vmps = 35.4 
Vocs = 44.6 
Imps = 4.95 
Iscs = 5.30 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%MODEL IV CURVE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
[V1000,I1000,P1000] = 

Solar_panel_model_Par(0.1,1000,T,Vmps,Vocs,Imps,Iscs,0) 
I1000(I1000<0)=0 

  
[V800,I800,P800] = 

Solar_panel_model_Par(0.1,800,T,Vmps,Vocs,Imps,Iscs,0) 
I800(I800<0)=0 

  
[V600,I600,P600] = 

Solar_panel_model_Par(0.1,600,T,Vmps,Vocs,Imps,Iscs,0) 
I600(I600<0)=0 
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[V500,I500,P500] = 

Solar_panel_model_Par(0.1,500,T,Vmps,Vocs,Imps,Iscs,0) 
I500(I500<0)=0 

  
[V400,I400,P400] = 

Solar_panel_model_Par(0.1,400,T,Vmps,Vocs,Imps,Iscs,0) 
I400(I400<0)=0 

  
[V200,I200,P200] = 

Solar_panel_model_Par(0.1,200,T,Vmps,Vocs,Imps,Iscs,0) 
I200(I200<0)=0 

  
[V100,I100,P100] = 

Solar_panel_model_Par(0.1,100,T,Vmps,Vocs,Imps,Iscs,0) 
I100(I100<0)=0 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT CALCULATED IV CURVE VALUES AT VARIOUS TEMPERATURE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
plot (V1000 , I1000 ,'r',V800 , I800 ,'g',V600 , I600 ,'b',V500 , I500 

,'m',V400 , I400 ,'r--',V200 , I200 ,'g--',V100 , I100 ,'b--') 
legend('1000W / m²','800W / m²','600W / m²','500W / m²','400W / m²','200W 

/ m²','100W / m²') 
xlabel('Voltage (V)') 
ylabel('Current (A)') 
set(gca,'XTick',[0:5:60]) 
set(gca,'YTick',[0:0.5:100]) 

 

 Script: Varied_Temperature_Plot 

%Script file  Varied_Temperature_Plot.m 
%Name           Christopher Kirby 
%Student No     0050093295 
%Subject        ENG4111 
%Assignment     Engineering research project: Part 1 
%Last Revised   14/06/2015 10:35 
% 
%Define panel specifications and standard test conditions 
G = 1000 
Vmps = 35.4 
Vocs = 44.6 
Imps = 4.95 
Iscs = 5.30 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%MODEL IV CURVE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
[Vn10,In10,Pn10] = Solar_panel_model_Par(0.1,G,-

10,Vmps,Vocs,Imps,Iscs,0) 
In10(In10<0)=0 
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[V0,I0,P0] = Solar_panel_model_Par(0.1,G,0,Vmps,Vocs,Imps,Iscs,0) 
I0(I0<0)=0 

  
[V10,I10,P10] = Solar_panel_model_Par(0.1,G,10,Vmps,Vocs,Imps,Iscs,0) 
I10(I10<0)=0 

  
[V20,I20,P20] = Solar_panel_model_Par(0.1,G,20,Vmps,Vocs,Imps,Iscs,0) 
I20(I20<0)=0 

  
[V25,I25,P25] = Solar_panel_model_Par(0.1,G,25,Vmps,Vocs,Imps,Iscs,0) 
I25(I25<0)=0 

  
[V45,I45,P45] = Solar_panel_model_Par(0.1,G,45,Vmps,Vocs,Imps,Iscs,0) 
I45(I45<0)=0 

  
[V65,I65,P65] = Solar_panel_model_Par(0.1,G,65,Vmps,Vocs,Imps,Iscs,0) 
I65(I65<0)=0 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
%PLOT CALCULATED IV CURVE VALUES AT VARIOUS TEMPERATURE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
plot (Vn10 , In10 ,'r',V0 , I0 ,'g',V10 , I10 ,'b',V20 , I20 ,'m',V25 , 

I25 ,'r--',V45 , I45 ,'g--',V65 , I65 ,'b--') 
legend('-10°C','0°C','10°C','20°C','25°C','45°C','65°C') 
xlabel('Voltage (V)') 
ylabel('Current (A)') 
set(gca,'XTick',[0:5:600]) 
set(gca,'YTick',[0:0.5:100]) 

 



 

 Modelling results 



E1 

 Optimum installation plots 

 Brooklyn Park. 

 

 

Figure E.1 – Brooklyn Park optimum tilt angle & generated power: 15° resolution 
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Figure E.2 – Brooklyn Park generated power surface plot: 15° resolution 

 

 

Figure E.3 – Brooklyn Park optimum tilt angle and generated power: 1° resolution 

 

  

Figure E.4 – Brooklyn Park generated power surface plot: 2° resolution 
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 Toowoomba 

 

Figure E.5 – Toowoomba optimum tilt angle and generated power: 15° resolution 

 

  

Figure E.6 – Toowoomba generated power surface plot: 15° resolution 
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Figure E.7 – Toowoomba optimum tilt angle and generated power: 1° resolution 

 

  

Figure E.8 – Toowoomba generated power surface plot: 2° resolution 

  

1300

1350

1400

1450

1500

1550

0

5

10

15

20

25

30

35

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

P
o

w
er

 (
 W

 )

P
an

el
 T

ilt
 a

n
g;

e 
( 

°
)

Panel Azimuth angle from South ( ° )

Optimum panel tilt: Toowoomba, Qld.

Optimum Tilt Angle Annual power



E5 

 Darwin. 

  

Figure E.9 – Darwin optimum tilt angle and generated power: 15° resolution 

 

  

Figure E.10 – Darwin generated power surface plot: 15° resolution 
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Figure E.11 – Darwin optimum tilt angle and generated power: 1° resolution 

 

  

Figure E.12 – Darwin generated power surface plot: 2° resolution 
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 Hobart. 

 

Figure E.13 – Hobart optimum tilt angle and generated power: 15° resolution 

 

  

Figure E.14 – Hobart generated power surface plot: 15° resolution 
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Figure E.15 – Hobart optimum tilt angle and generated power: 1° resolution 

 

  

Figure E.16 – Hobart generated power surface plot: 2° resolution 
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 Location offset plots 

 Brooklyn Park. 

 

  

Figure E.17 – Brooklyn Park 5°N generated power surface plot: 2° resolution 

 

  

Figure E.18 – Brooklyn Park 5°S generated power surface plot: 2° resolution 
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Figure E.19 – Brooklyn Park 5°E generated power surface plot: 2° resolution 

 

  

Figure E.20 – Brooklyn Park 5°W generated power surface plot: 2° resolution 
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 Toowoomba 

  

Figure E.21 – Toowoomba 5°N generated power surface plot: 2° resolution 

 

  

Figure E.22 – Toowoomba 5°S generated power surface plot: 2° resolution 
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Figure E.23 – Toowoomba 5°E generated power surface plot: 2° resolution 

 

  

Figure E.24 – Toowoomba 5°W generated power surface plot: 2° resolution 
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 Darwin. 

 

  

Figure E.25 – Darwin 5°N generated power surface plot: 2° resolution 

 

  

Figure E.26– Darwin 5°S generated power surface plot: 2° resolution 
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Figure E.27 – Darwin 5°E generated power surface plot: 2° resolution 

 

  

Figure E.28 – Darwin 5°W generated power surface plot: 2° resolution 
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 Hobart. 

 

 

Figure E.29 – Hobart 5°N generated power surface plot: 2° resolution 

 

 

Figure E.30 – Hobart 5°S generated power surface plot: 2° resolution 
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Figure E.31 – Hobart 5°E generated power surface plot: 2° resolution 

 

 

Figure E.32 – Hobart 5°W generated power surface plot: 2° resolution 



 

 Hazard identification and risk assessments 
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 Hazard identification. 

 Solar installations 

 Is there adequate information relating to, 

o Existing electrical installation, 

o Existing solar installation. (Applicable to site with existing solar system 

only) 

 Does the following exist, 

o Safe working procedure, 

o Installers certified to work at heights, 

o Installer licensed to perform work on mains electrical installation, 

o Installer licensed to install solar systems. 

 Have the following factors been considered during this risk assessment, 

o Input from installation workers, 

o Work related stress factors, 

o Requirements of different worker groups, 

o Requirement for PPE. 

 Can risk be minimised by the following, 

o Isolating power prior to connection to mains, 

o Avoid working alone. 

 Is there a risk of injury or illness due to the following, 

o Falling from heights, 

o Slipping or falling on unsuitable working surface, 

o Slipping or falling due to holes of skylights, 

o Suitability of ladder to assess working surface, 

o Tools or equipment being dropped from heights, 

o Lifting heavy items, 

o Water present around electrical work, 

o Failure to maintain minimum electrical clearance from HV power lines, 

o Electrical hazard from PV generated power, 

o Repetitive work process, 

o Prolonged kneeling or squatting. 

 Any other items which have not been covered. 
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 Project. 

 Has the following been considered throughout this hazard identification. 

o Work related stress factors, 

o Risk of data loss 

 Is there a risk of injury or illness due to the following, 

o Eye strain, 

o Repetitive movements, 

o Adequate lighting on the work surface, 

o Sitting for extended period of time, 

o Any other items which have not been covered. 

    (European Agency for Safety and Health at Work, n.d.) 

 

 Risk matrix scores. 

The relative priority of each identified item within the risk assessment is determined using 

a numerical scoring process. Values for this process are detailed in table F.1, and overall 

risk level is detailed in table F.2. (University of Melbourne, 2004) 
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Table F.1 – Risk management score. 

Likelihood  Exposure  Consequence 

Certain 1  Permanent 10  Fatality / Destruction of 

infrastructure 

10 

Likely 0.6  Frequent 6  Injury requiring hospitalisation or 

irreversible damage / Major damage 

to Infrastructure 

6 

Possible 0.3  Occasional 3  Injury requiring medical treatment / 

Minor damage to Infrastructure 

3 

Unlikely 0.1  Infrequent 2  Injury requiring first aid treatment / 

Minimal damage to Infrastructure 

2 

Rare 0.05  Rare 1  Negligible injury / Negligible 

damage to Infrastructure 

1 

 

Table F.2 – Risk score. 

Risk Score 

Extreme ≥ 20   

High ≥ 10 < 20 

Medium ≥ 3 < 10 

Low   < 3 

 

 Risk assessment. 

 Solar installations 

Date:  23/05/2015 

Location: Brooklyn Park, S.A. 
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Table F.3 – Risk assessment: Solar installation. 

Hazard 

Assessment of risk level Risk level 

Control measures 

L/hood Exp Conc Score Rating 

No safe working procedure 0.3 6 10 18 H Ensure S.W.P in place before work commencing. 

Input required by installation 

staff for the risk assessment 
0.1 6 6 3.6 M 

Consult installers for further input for the risk assessment and 

hazard identification. 

Installers working alone 0.3 6 10 18 H 
Installers to be within contact of another trained person at all 

times. 

Working at heights / Risk of 

falling 
0.6 10 10 60 E 

Barriers installed at all roof edges prior to work 

commencement. 

Safety harnesses to be used if barriers are not feasible. Lifting of heavy objects. 0.6 10 3 18 H Mechanical lifting aids to be used, or multiple person lift. 

Main switchboard not shielded 

from rain when open. 
0.3 6 6 10.8 H Cover to be installed above main switchboard. 

Kneeling for extended time 0.6 3 3 5.4 M 
Limit working time while kneeling and provide knee 

protection. 

Mobile phone communication 

equipment located on roof. 

0.3 10 6 18 H Access to roof space to be coordinated with mobile 

communications providers. (Required on this site.) 
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 Project. 

Date:  22/05/2015 

Location: Home office. 

 

Table F.4 – Risk assessment: Project. 

Hazard 

Assessment of risk level Risk level 

Control measures 

L/hood Exp Conc Score Rating 

Stress due to heavy workload 0.3 6 2 3.6 M Schedule time for rest away from study 

Risk of data loss 0.1 10 10 10 H Backup Copies of assignment on separate storage devices. 

Eye strain from long periods 

looking at a computer screen 
0.3 3 2 1.8 L 

Limit computer usage. 

Utilise written sources of information where possible. 

Repetitious movements 0.3 3 6 5.4 M Limit computer usage. 

Inadequate lighting in study 0.6 3 2 3.6 M Install desk light to increase lighting. 

Sitting for long time 0.3 3 2 1.8 L Limit working period. 



 

 Specification sheets 
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 Hareon Solar specification sheet 

  

Figure G.1a – Hareon solar specification sheet  Jiangyin Hareon Power Co Ltd, n.d. 
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Figure G.1b – Hareon solar specification sheet  Jiangyin Hareon Power Co Ltd, n.d.  
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 Tindo Solar specification sheet 

  

Figure G.2a – Tindo solar specification sheet    Tindo Solar, 2015 
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Figure G.2b – Tindo solar specification sheet    Tindo Solar, 2015 


