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Abstract

Energy consumption is a significant cost to all business with the countries large industrial

plants consuming 75 % of all energy produced in Australia. This cost is not only a finan-

cial burden but it has an environmental cost. The energy consumption within coal-fired

power stations that is directly associated with generation is called auxiliary power. Ap-

proximately 10 % of all power produced is used to drive power stations internal auxiliary

power needs. It is the auxiliary power consumption at Tarong Power Station that is the

focus of this dissertation.

This dissertation first seeks to understand the stations energy consumption through a

comprehensive review of auxiliary power issues worldwide and the creation of control

system tracking logic. The next stage of the dissertation then models that consumption

in MATLAB and finally proposes ways in which to reduce that consumption without

capital investment.

The auxiliary power consumption within Tarong Power Station is recorded by two energy

meters per unit on the main high voltage unit transformer feeds. The energy consumed is

then reported each week as a percentage of unit generation. It is at this high level that the

consumption is currently understood. This project has created energy tracking logic in the

unit control system, a Siemens T3000 installation, to provide additional usage knowledge.

A number of MATLAB models have been produced. The first of these reproduces the

energy usage map of a running unit. The final Simulink model allows modification of the

major component loading to trial energy reduction options. Using this model a reduction

of 10 % at low loads has been achieved. The accuracy of the energy tracking logic and

models created is proven to be within 2 % of the field energy metering.

This dissertation has concluded that meaningful energy efficiency improvement can be

obtained through operational improvement at Tarong Power Station.
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Chapter 1

Introduction

This chapter aims to introduce the project, its drivers, its key aims, objectives and how

they are proposed to be achieved.

In an ever more energy hungry austere world the way in which energy is produced and

consumed is under constant scrutiny. Every Megawatt (MW) produced in a coal fired

power station consumes valuable finite resources, coal and oil. The production of electric-

ity emits pollution into the atmosphere leaving an indelible footprint on the landscape

and atmosphere. This carbon footprint, as it is known, that the Tarong Power Station

(TPS) leaves is larger than most energy consumers in Australia. TPS is ranked in the

top ten Australian polluters and as such is always under pressure to improve its envi-

ronmental performance. TPS is run by Stanwell Corporation (Stanwell), a Government

Owned Corporation (GOC). As such it is owned by the people of Queensland and while

environmental performance is important so is financial stainability. Couple these two

factors with global downturns, market oversupply and low price in the electricity market

you have a business that is always actively looking to reduce costs. Time and energy

is spent to improve fuel burn returns, reduce water usage, implement reduced manning

practices, improve market share and reduce the cost of maintenance work. One of the

last major cost influences, auxiliary power consumption, has only been lightly touched on

during the recent stakeholder driven cost reduction exercises. It is this cost of internal

energy consumed through auxiliary power consumption that is the focus of this project.
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1.1 Project Outline

This section outlines some further detail on the issue of auxiliary power consumption

to give context to the project direction. It will also detail the projects aims, scope and

objectives.

Auxiliary energy consumption is a large contributor to the cost of power production.

Within Tarong Power Station it is not fully understood, that is, it is understood to a basic

level. It is known that of the energy produced at TPS approximately 10 % is required to

run in house auxiliaries and therefore cannot be exported for sale. This auxiliary energy

usage is a significant cost to the business and adds to the cost of producing one MW of

electricity. This auxiliary power usage is metered on each unit and is reported on each

month. If a unit has an increased energy usage at the end of the month not only is it

accepted and unchallenged but there is no easy way to understand the underlying cause.

Therefore there is no way to prevent a future high energy usage occurrence of the same

nature. Since the usage is metered at a high level, unit level, there is also no reasonable

way to assess the usage and implement changes to the plant to reduce the usage. It can

also be noted that the energy usage whilst visible is generally lost in the other concerns

of the station.

The major contributors to the auxiliary energy consumption are already broadly known

and loosely understood. It is the plants large high voltage (HV) motors which consume

a huge amount of electricity to produce the motive forces required by the electricity

generation process. Reducing this consumption via major plant upgrade would require

enormous capital investment and plant redesign. Further to this it is widely accepted that

the current level of unit energy consumption, as part of the designed efficiency figure, is

the minimum achievable usage. It is essentially viewed as unavoidable byproduct of the

process requirements. The plant was designed in the mid 1970’s with a strong reliability

focus. To ensure high plant availability the plant design included many redundant and

oversized drives. The station was also designed to be a base load 350 MW unit. The

energy consumption across the full load range of the plant was not the primary focus of

the design phase of the station. Peak efficiency at 350 MW was the primary aim of the

station design.
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1.1.1 Aims

The questions that this project seeks to address are two stage, firstly can the auxiliary

energy consumption of unit at Tarong Power Station be fully understood? Secondly can

this energy usage be reduced solely through control optimisation? That is to reduce the

auxiliary energy consumption without capital investment and solely by control system

logic modification. This leads to the creation of the aims of this project. The first

primary project aim is to better understand the auxiliary energy consumption at Tarong

Power Station. Once understood the second primary aim of reducing the usage through

control optimisation can be addressed.

In building the tools to understand the stations auxiliary usage the project will create

valuable data in T3000. The created logic will be able to monitor and report on usage

for the project and into the future. This had led to a secondary aim of leaving in place

lasting a energy information source.

These aims are summarised here for reference.

Primary Aim 1 To understand the auxiliary consumption within Tarong Power Sta-

tions 350 MW coal fired units;

Primary Aim 2 Identify potential control based energy reduction strategies;

Secondary Aim 1 To leave in place energy consumption information that the station

can utilise into the future.

Notes The primary aims are those that drive the project objectives. The secondary

aims are those that will be achieved through the primary aims.

1.1.2 Objectives

The project objectives drive how the project aims will be achieved. This leads to the

project and the associated dissertation having four primary objectives. The first is to

understand the associated project topics more deeply and uncover any existing work that

can be used to assist the completion of this project. This will be achieved through a wide

ranging literature review. The next two objectives will be to model the auxiliary energy

usage of a 350 MW coal fired unit using MATLAB and to create energy tracking logic in
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the T3000 Distributed Control System (DCS). Using this model and T3000 data the final

primary objective is to propose control changes to reduce the internal electrical energy

consumed to produce electricity. Proposed changes will be implemented in the MATLAB

model to confirm the energy impact. The secondary objectives of this project are to

utilise the T3000 simulator and the TPS generating plant to implement the proposed

control changes. The achievement of these secondary objectives will depend heavily on

the outcomes of the first stages and the risk assessment of any proposed changes. These

secondary aims are an extension to the primary stated objectives and will be proven

theoretically if implementation is not possible.

Primary Objective 1 Complete a literature review of issues pertinent to the project;

Primary Objective 2 Create a SIMULINK model, in MATLAB, of the energy profile

of a single unit;

Primary Objective 3 Create energy tracking logic in the T3000 Digital Control Sys-

tem;

Primary Objective 4 Identify potential control based energy reduction strategies and

propose changes to the operational plant;

Secondary Objective 1 Trial energy reduction options on the T3000 Unit simulator;

Secondary Objective 2 Implement energy reduction strategy on an operational Unit.

Note Primary objectives are those that drive this project and the secondary objectives

are extension tasks if time and plant risk assessment permit.

1.1.3 Scope

The scope of this project is limited to the Unit Auxiliary energy usage. Specifically

the energy usage on the 350 MW coal fired units location at Tarong Power Station,

Queensland, Australia. The Power Station Ancillary energy usage ie Coal Handling Plant,

Tarong North, Administration areas and Meandu mine energy usage is excluded from this

project.
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1.2 Overview of the Dissertation

This dissertation is organised as follows:

Preface has a list of abbreviations that will be used throughout the dissertation;

Chapter 1 is an introduction to the problem of auxiliary energy usage in coal fired power

stations;

Chapter 2 is a background information on the various facets of this project;

Chapter 3 is a discussion of the existing knowledge on the dissertation topic and is

presented through discussion of existing literature;

Chapter 4 discusses the methods utilised in the completion of this project;

Chapter 5 presents the results of the created T3000 logic and MATLAB models;

Chapter 6 analyses and evaluates the data collected from all sources;

Chapter 7 discusses the reduction options and presents the results of these options im-

plemented using the MATLAB models;

Chapter 8 concludes the dissertation with a concise presentation of the project achieve-

ments and suggests further work that could be undertaken in the area of ‘energy

modeling and reduction in the power station environment’.

1.3 Conclusion

In this chapter the project overview was explored from many perspectives to allow a

solid understanding of the drivers for this project, its aims and the final outcomes it will

produce. The next chapter will provide the background information required on auxiliary

power usage within Tarong Power Station to allow the reader the basis on which to better

understand the future project outputs.



Chapter 2

Background - Tarong Power

Station

This chapter is to provide background information that relates to the topic. The majority

of the information within this chapter is a summary of the Operations and Maintenance

manuals for the Tarong Power Station plant (Hitachi 2003). Further detail is based on the

experience of the project author Jason Lang who has 20 years experience in the electricity

generation industry (Lang 2015).

2.1 History

This section outlines the brief history of Tarong Power Station from construction through

to current day.

Tarong Power Station construction started in 1979 after it was commissioned to be built

as part of 10 coal fired units in Queensland by then Queensland Premier Sir Joh Bjelke-

Peterson. Tarong had four 350 MW units fully commissioned by November 1986 with Unit

1 in full operation during 1981. These units were designed to be base load for Queensland

for 25 years. The units design efficiency was 28 % at 350 MW and were installed with

the best technology available at the time (Brady 1996) (Thiess 2015).

Move forward to the modern day, Tarong is past its design life and there have been

many evolutions in the Queensland Electricity Industry. Larger, more efficient units have
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been built, the industry is partly deregulated and gas is now a significant factor in the

marketplace. Tarong has established itself in the middle of the Australian Electricity

Market Operator (AEMO) trading dispatch order of merit. The Queensland electricity

market has been depressed with state load reducing, an oversupply and solar all impacting

price and load profiles. To extend the station life and to remain a competitive force Tarong

Power Station has undergone a major capital works program. These include a full control

systems refit, field device upgrade, burner front upgrade to low Nitrite Oxide (NOX),

major turbine refurbishment program and generator rewinds (Australia 2015).

The half-life refit work has significantly improved the underlying long term life on the plant

but has only slightly improved the efficiency factor. TPS is also no longer a base load

station with the plant being regularly requested to load ramp. This mode of operation is

outside of the original plant design specification and therefore not the most efficient plant

operation. To return to base load the overall cost to produce one MW of energy needs to

be reduced to allow the plant to be bid in lower in the market dispatch order.

2.2 Production Costs

This section outlines the cost of producing one MW of electricity at TPS. The cost of

this electricity production process has many contributing factors. Tarong Power Station’s

major contributing factors are the cost of fuel, water, overhaul maintenance, auxiliary

energy consumption, ancillary energy consumption and fixed overheads. The estimate of

the breakdown of the cost contributions to each MW are shown in table 2.1.

Cost Contributor Contribution

Fuel 30 %

Water 30 %

Overhaul Maintenance 20 %

Auxiliary Energy Usage 15 %

Ancillary Energy Usage 4 %

Fixed Overheads 1 %

Table 2.1: Cost Contribution of Major Factors to the Cost of Producing 1 MW (Breda 2014).

The fuel and water costs are fixed by long term contract and therefore cannot be readily
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reduced. However the amount of fuel and water consumed can be reduced through effi-

cient practices. Overhaul costs are strongly linked to long term asset strategy which are

locked down by multiple year strategy. Moves to reduce this overhaul cost are possible

but hold a high level of risk to plant performance and reliability. Auxiliary energy usage

costs are those directly associated with the energy required to generate power. This power

usage is wide spread from control system power requirements, through to High Voltage

Drives and generator excitation. This cost is considered to be fixed during the initial

design process but is monitored. Ancillary energy usage costs are those associated with

common processes like coal handling plant, air compression, demineralised water produc-

tion, chemical plants and water distribution. The fixed costs are those support items

that a company generating electricity requires. All manner of costs make up this factor

including head office, payroll, market and trading, procurement, operations, maintenance,

and engineering. These fixed costs are a small percentage of the overall cost of 1 MW but

are relatively easily influenced by plant management. They are therefore under constant

scrutiny and downward pressure (Economy 2013).

Key parameters are reported on each month to track the items that affect the amount

and cost of the saleable product, in this case electricity exported to the grid. These key

parameters align with the key cost contributors above. Figure 2.1 is a sample of the data

presented in monthly reports.

The data shows, per unit, the energy and performance results for the month. While they

are all impacted by the unit load profile they also indicate other unit qualities which are

explored briefly below. Megawatt hours (MWhr) produced or generated energy exported

is metered at the 275 kV level as the power is leaving the unit transformer to meet the

grid. Auxiliary energy usage is a measure of the electricity used to produce the MWhrs

exported in the month. It is metered at the unit 20 kV to 6.6 kV transformers that feed

the majority of energy consuming devices on the units. Capacity factor is an indication of

how the plant is loaded in relation to its full capacity. Efficiency and heat rate shows how

effectively the coal consumed is utilised. It is a combination of many factors including coal

quality, ash content, moisture content, mill grind quality, air leakage etc. Availability is

the measure, in percentage, of the amount of time the unit is available to meet the

demands of the market. Availability is impacted by breakdowns, plant trips and outages.

Solid long term maintenance practices and underlying plant design influence this figure.

The grid and export requirements are managed by Australian Electricity Market Opera-
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Figure 2.1: Monthly Report is a Snapshot of the Data Produced to Track Unit Performance

(Sands & Blake 2015).
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tors (AEMO). The unit load, its available capacity and metered energy is communicated

in real time to AEMO. The station transformer’s usage is measured and read by Ergon

Energy and Stanwell is billed for its use. The station transformer energy is used to run the

ancillary services of the station like administration buildings, coal handling plant drives,

air compression and water treatment. The station boards also link to each unit to assist

in unit start-up until it can sustain its own load. Tarong also has a 15 MW Gas Turbine

(GT) connected to the station switchboards which is used for start-up power during black

start operations. This is a situation when the state grid is unable to supply the station

power. The GT can also be used to generate back to the grid. All metering is audited

and certified by a third party at routine intervals to ensure transparency.

2.3 Electricity Generation Process

This section outlines the power generation process or what is known as the cycle. The

Tarong Power Station is a closed cycle regeneration sub critical thermal unit utilising coal

as its primary fuel source. The cycle consists primarily of 11 major components. A broad

understanding of these components will assist to better understand the future discussion

this project will undertake.

Cooling Water Cycle: Used to convert the steam back to condensate once it has

passed through the low pressure turbine, heat absorbed is removed by the associated

cooling towers.

Condensate and Feedwater System: Collects the condensate and transports it through

the heater stages to the boiler drum;

Steam Cycle: This cycle converts the preheated feedwater to steam and superheats it

to precise pressure and temperature require by the turbine. The steam cycle also

includes supplying heat to the low and high pressure heaters.

Turbine System: Produces the mechanical motive force required to drive the generator

through conversion of steam energy;

Generator System: Produces power via a 6 pole generator with a stationary stator

and rotating DC field. The generator output is 20 kV which is stepped up for

transmission and stepped down for internal unit auxiliary power usage.
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Fuel System: This system supplies the fuel for the boiler flame via oil supply, coal

pulverisers and associated burner fronts.

Boiler: Produces the heat required for steam generation and consists of multiple stages

of tubing.

Air and Gas: Forced Draft, Induced Draft, Primary Air and Air Heaters all combine

with dampers to supply the necessary air for the mills and boiler operation.

Control System: Servers, processors, control cabinets, field power supplies, field de-

vices, unit control desks and operator workstations that are required to monitor

and control the unit.

HV/LV Distribution; Switchboards, cabling and circuit breakers that control the dis-

tribution of electricity for the unit;

Chemical: Chemical instrumentation, wetracks, chemical dosing, and condensate pol-

ishing plants required to monitor and maintain the unit cycle chemistry.

Figure 2.2 is a realtime capture of the TPS Unit 4 HMI overview page which shows the

major processes that combine to generate power in a thermal unit.

The cycle is considered closed as once the steam energy is utilised by the Low Pressure

(LP) turbine it is then recondensed and used in the cycle again. Fresh demineralised

water is only required to be added to the system to make up for losses. The paragraphs

below explain the cycle operation in more detail.

The Cooling Water, Condensate and Feedwater Cycle

Cooling water is used in the condenser to recondense the steam into water. The cooling

water picks up heat during this process; this heat is then removed by circulation through

the natural draft cooling towers. This circulation is achieved by Circulating Water (CW)

Pumps. The condensed steam is then considered condensate and is extracted from the

condenser hotwell by the Condensate Extraction Pumps (CEPs). The CEPs transport

the condensate through the gland seal condenser and three low pressure heaters. The

condensate picks up heat as it passes through each heater. This heat is supplied by

gland seal steam and steam picked off the LP turbine stages. Once the condensate has
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Figure 2.2: Unit 4 T3000 Overview - Screen Capture from Tarong Power Station DCS

(Siemens 2015).



2.3 Electricity Generation Process 13

passed through the LP heaters it arrives in heater 4 or a vessel better known as the

Deaerator (DA). It is a known as the Deaerator as part of its function is to remove any

CO2 from the condensate as it enters the vessel. The Boiler Feed Pumps (BFPs) draw

their feed water from the DA then transport it through two high pressure (HP) heaters

and economiser tubing into the boiler drum. Through this part of the cycle the water is

known as feedwater and picks up further heat. The heat for HP heater 5 (HP5) and 6

(HP6) is supplied by steam tapped off the higher temperature Intermediate Pressure (IP)

turbine stage and the cold reheat line respectively. The economiser tubing heat is supplied

by the waste heat extracted from the boiler air as it makes its way to the chimney stack.

From the boiler drum the feedwater is converted to saturated steam and enters the steam

cycle. The steam builds enthalpy as it works its way through the primary, secondary and

tertiary superheater stages to arrive at the HP turbine at 535◦C and 17 MPa. The steam

drops pressure and temperature as its stored energy is imparted on the HP turbine. The

steam is then fed back into the boiler as cold reheat steam to boost the pressure and

temperature again in the reheat boiler stages. Once the temperature has reached 535◦C

and 3.8 MPa it returns as hot reheat steam to drive through the intermediate and low

pressure turbine into the condenser to complete the cycle.

The Boiler, Air and Gas Cycle

The boiler flame is supported by the fuel, air, and gas systems. The air and gas cycle

consists of two Forced Draft (FD) Fans, two Induced Draft (ID) Fans, two Primary Air

(PA) Fans, two Air Heaters, Electrostatic Precipitator (ESP) and the chimney stack. This

air and gas system supplies air to the boiler and pulverisers. The fuel system consists of

six coal pulverisers and the interconnecting pipework to take the Pulverised Fuel (PF)

to the six burner fronts. There is 3 to 5 of these 6 pulverisers in service at any point

in time depending on load requirements. The Tarong pulverisers are ball grinding mills

that grind the coal to fine dust to be transported by the 100◦C PA to the burner front.

The PF enters the boiler and is lit off by either the existing flame or by gas ignition

supported oil flame. The rate of PF added supports the floating boiler flame to provide

the required heat to the boiler tubing transporting the steam. The boiler requires large

amounts of air to feed the flame and to carry away ash from the combustion process. This

air is supplied from two FD fans drawing in fresh air and two ID fans drawing air out

through the precipitator then expelling it through the chimney stack. The precipitators
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are located between the boiler and the stack. The ESP removes particulate matter via

attraction to plates with pulsed direct current (DC).

Minor Auxiliary Systems

There are many other smaller systems that contribute to the Tarong thermal cycle. Below

are some of the smaller systems;

Condensate Polisher: Chemically cleans the unit cycle water;

Flame Detector Cooling Fans: Supplies cooling air to burner front flame detectors;

Oil Systems: Supplies oil for bearings, hydraulic equipment and burner front ignition

needs;

Coal Feeders: Controls the feed rate of coal into pulverisers;

Stator Cooling Water: Supplies water for generator cooling.

2.4 Unit Energy Requirements - Auxiliary Consumption

This section outlines the major items of energy use within the unit cycle that are deemed

to be auxiliary. The major energy consuming devices are those associated with the major

functions of the unit. They are condensate and feedwater, fuel supply, air supply, cooling

water and generator excitation. Primarily these are large Direct on Line (DOL) 6.6 kV

motor driven devices.

The functions of the units boiler are to combine the fuel, air and heat required to sustain

combustion thus providing heat to the boiler tubing. This combustion process requires

large amounts of air which is supplied by two 2.95 MW 6.6 kV motor driven Forced Draft

Fans through an air heater into the boiler. The fuel is supplied to the boiler by coal

pulverisers or mills. Each mill is driven by a 200 kW 415 V motor to drive the grinding

table via a speed reduction gearbox. The coal is supplied into each mill via a coal feeder

driven by a smaller 4 kW variable speed motor. Once ground the coal is picked up and

transported to the boiler by the air supplied by two 0.9 MW 6.6 kV motors that drive

the Primary Air Fans. Some of this air is heated by the air heater, hot PA, and some
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is cold PA. The hot and cold PA are then combined to ensure the optimal combustion

temperature is maintained. All of this air needs to be removed from the boiler at the

correct rate to ensure a vacuum is always maintained in the boiler enclosure. This is

achieved by two 4.55 MW motors that drive the Induced Draft Fans. These fans draw

air and non-combusted waste material out of the boiler through the air heater and over

the economiser tubing. The air then passes through the electrostatic precipitator, which

remove particulate matter before discharging the air out of the chimney. The boiler tubing

requires water which is converted to driving steam energy of a thermal sub critical power

plant. This boiler water is fed up to the boiler drum by pump units in two stages. During

the first stage water is extracted from the hotwell with one of two 1.1 MW 6.6 kV motor

driven condensate extraction pumps. The CEP then pushes the water through the LP

heaters into the DA. The second stage is two of the three 5.65 MW 6.6kV motor driven

boiler feed pumps deliver the feedwater at the correct rate through the economiser into

the boiler drum. The rate of feedwater is controlled by the variable speed nature of the

pump section of the BFPs. An actuated scoop element controls the oil flow inside the

fluid coupling to link the DOL motor to the pump element. Cooling water is circulated

through the condenser and out to the cooling tower for heat removal. This is achieved by

two 1.35 MW 6.6 kV motor driven circulating water pumps. The final large consumer of

energy is the generator excitation system. This system uses an excitation transformer to

reduce the 6.6 kV to 700 V AC which in turn is fed into the Automatic Voltage Regulation

(AVR) system to convert to high current DC. The current level of this DC is varied and

applied to the rotor of the generator (Hitachi 2003).

Table 2.2 is a listing of the major drives and their ratings as discussed in the section

above.

Many other smaller loads contribute to the total auxiliary power usage of a unit including

control system power supplies, flame detection cooling fans, lube oil pumps, stator cooling

water pumps, air heater drive motors, polisher booster pumps and deaerator booster

pumps.
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Drive Rating

Force Draft Fan 2.95 MW

Induced Draft Fan 4.55 MW

Primary Air Fan 0.9 MW

Boiler Feed Pump 5.65 MW

Circulating Water Pump 1.35 MW

Condensate Extraction Pump 1.1 MW

Automatic Voltage Regulator 1.1 MW

Table 2.2: Major Drives as summarised from Hitachi Operations and Maintenance Manuals

(Hitachi 2003).

2.5 Energy Monitoring

This section outlines the way in which energy has been and is currently monitored on the

Tarong Power Station site.

In the year 2000 the station was approaching the end of its design life. It was still part

of the Queensland Electricity Commission (QEC) and a move to a deregulated electricity

market was being proposed. As part of this change the state government was looking

at breaking up the generators to ensure they were competitive when they moved to the

market environment. This network evolution was an important step as the electricity

generators now would be treated as a business and would be required to return profit. Up

until then they had been solely government controlled and were treated as an essential

service. Being solely government owned their primary drivers were long-term availability

rather than profit. Once this breakup began Tarong Power Station ultimately became

part of Tarong Energy as a standalone business in the electricity market (Australia 2015).

Hence Tarong Energy wanted to better understand its business costs and part of this was

the need to understand its in-house electricity usage. Below is an outline of the level that

Tarong Energy and now Stanwell Corporation understand their internal energy usage. It

will start with an overview of the stations electrical distribution.

Figure 2.3 is a high level single line diagram showing the electrical distribution of a single

unit.
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Figure 2.3: Unit 1 Distribution Overview (Hitachi 2003).

It can be seen that the Unit 6.6 kV switchboards are fed from the step-down transformers

connected to the generator output. These are the A and B Unit Transformers and together

they supply all the major drives and auxiliarys for a single unit. The station ancillary

supplies are shown in figure 2.4. Some of the station supplies are coal handling, air

compression, administration, water treatment and ashing.

The four unit generator transformers feed into the grid and also supply their own in

house auxiliary energy requirements via 25 kV/6.6 kV step down transformers, the unit

transformers. The ancillary services common to all units are supplied by the station

transformers A and B which draw their power directly from the grid. The station trans-

former also can be linked to the unit 6.6kV switchboards to assist in unit start-up until

it can supply its own auxiliaries. Each of the four generator transformers and eight unit

transformers have an energy meter installed. It is these meters that are directly connected

to AEMO for market purposes. These meters have been updated routinely as part of the

stations network connection agreement. The then Tarong Energy implemented metering

on the major drives across one unit, Unit 4, and all primary feeds on the station switch-

boards. The approach would give them a good picture of site usage on which to base

future strategy. Some additional meters have been added to individual areas such as ash

and chemical plants loads. Administration building supplies had more metering installed

in recent years under the government reporting guidelines of the National Greenhouse En-

ergy Reporting Scheme (NGERS). Each segment of the energy metering was connected
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Figure 2.4: Station Ancillary Distribution Overview (Hitachi 2003).

to the station Supervisory Control and Data Acquisition (SCADA) system via local Mo-

mentum Programmable Logic Controllers (PLCs). The local PLC polls the individual

meters to retrieve the blocks of relevant data from the energy meter via RS-485. This

data includes current, voltage, power factor and running totalisers. All data retrieved is

then read out of the PLC’s by the plant data historian.

2.6 Control System

This section outlines an overview of the Tarong Power Station site control system and

some of its features that will assist this project.

The control system is central to all industrial plants. In this way Tarong is no different.

The control system allows a high level of automatic responses to the raw signal inputs from

the field. It is this automated system that enables the plant operators to oversee and run

the plant. The control system and associated data historians allows engineers to monitor,

improve and optimise the plant. Tarong is now 30 years old and is operating past its

design life. The original Hitachi control system has been upgraded to the Siemens T3000

Distributed Control System (DCS). The majority of plant’s, station and units based, now
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run on T3000 with a project currently running to migrate the remaining plants across to

T3000.

T3000 is Siemens flagship product that allows both logic and Human Machine Interface

(HMI) creation to occur whilst the plant processes are running. Operators can continue

to monitor and control the plant while engineering staff work on the system (Ltd 2015).

It is a powerful all in one product with hundreds of individual blocks available from which

to create screens, logic and sequences. T3000 can be easily altered, optimised or expanded

up to the resource limitation of each individual Central Processing Unit (CPU).

The unit plant energy usage is the focus of this project so the T3000 structure for one

unit will now be briefly described; this description is true for all units. The unit T3000

architecture consists of a central server and two major buses. The first bus is the automa-

tion bus which looks after communications between the Automation Processors (AP).

The second bus is the application bus which handles the communication from the plant

APs to the operator workstations and other services that requires plant data access. The

central server is a multiple slice high redundancy server that sits between the two buses

and runs the T3000 processes. There are eight APs on a unit application bus to handle

the large number of Inputs/Outputs (I/O) required to safely and affectively manage the

running the unit, around 7000 I/O in total. Each AP handles a specific area of plant to

reduce the level of inter AP communication required. For example AP 3 is Fuel and AP

1 is Turbine. There are separate high integrity I/O for Safety System control loops. An

additional virtual AP exists in the central server. In this virtual AP logic can be created

without consuming resources. At TPS the logic space that this virtual machine provides

is used to run plant performance calculation and other functions that are not directly

related to plant functionality.

Some of the I/O relate to the control and monitoring of drives. These drives are a variety

of valves, dampers, pumps and fans. The drive data that exists within T3000 is position,

status, current, voltage and power factor when available. The data from this I/O is ported

from T3000 through to the data historians. It is this drive data around auxiliary energy

consumption devices that will be utilised during this project.



2.7 Conclusion 20

2.7 Conclusion

In this chapter the background and operation of Tarong Power Station was explored.

Both a brief history and a plant overview builds a picture of the current plant status.

It demonstrates the need to understand the unit auxiliary energy consumption and the

control system tools available for use during the project. This overview of the energy

information assists in understanding the gaps that this projects outcomes aim to fill, and

the drivers behind them. The next chapter reviews the existing literature related to the

project aims.



Chapter 3

Literature Review

This chapter reviews relevant literature that is key to understanding previous work that

has been completed in the field of the project. The review will focus on the outcomes of

previous work to uncover any gaps and learning that can be utilised during this project.

The standards and best practice required in the field measurements of energy calculation

inputs will also be reviewed to assess Tarong Power Stations energy practices. Power

calculations, control optimisation and power station modeling techniques round out the

chapter.

3.1 Auxiliary Power Usage and Reduction

This section reviews the knowledge base of auxiliary power usage and the ways in which

auxiliary power reduction has been approached around the world. While there are some

common themes in the approach to energy reduction, each country has developed a unique

focus. Their focus is directed by the current issues that are seen to be the top contributors

to the problem.

The first steps in any attempt to reduce power usage is to understand the energy con-

sumption within a plant. This understanding often takes the form of an energy audit. A

Chinese study of energy auditing and its coal-fired power plant application by the Jilin

Province Science and Technology Department states that the concept of energy audit is

to inspect, examine and analyze the physical, financial and other high-energy using units.
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This study continues to state the targets of energy audit are investigating problems and

weaknesses in using energy, tapping of energy-saving potential, finding rectification mea-

sures and formulating saving goals (Li, Wang, Jiang & Zhang 2009). This project, whilst

not framed as an audit, will address the shortfalls in Tarong Power stations current lev-

els of energy usage knowledge. This current lack of knowledge is a primary barrier to

achieving meaningful energy reduction at TPS.

United States of America Network Experience

The 2011 Technical Report published by Electric Power Research Institute (EPRI) (EPRI

2011) focuses on the opportunities to enhance electric energy efficiency in the production

and delivery of electricity. The pertinent sections of the report are the chapters that

focus on electricity used for power plant auxiliaries. The report is centered around power

stations in the American grid. The discussions in this paper by EPRI are significant as

the American power industry, whilst considerably larger, is at a similar evolutionary state

as Australia. The report states that 11 % of electricity produced is used in delivering

the electricity to the customer of that 40 % is consumed in power production. The figure

3.1 shows some of the typically uses of auxiliaries or so called “parasitic loads” in ther-

mal power plants. EPRI states that “These auxiliaries are designed based on maximum

performance and environmental compliance, not on minimum use of in-house electricity

use.” (EPRI 2011). It is this statement which demonstrates that past design focus leaves

room for energy improvement which will be explored by this project. The paper discusses

that many auxiliaries have an opportunity to improve on their energy consumption due

to factors such as oversized auxiliaries, use of modulating mechanical mechanisms, design

trade offs between efficiency and cost, and tuning based on a particular parameter. It

is also noted that as is the case with Tarong the auxiliary load is monitored but not

generally considered separately as there are greater efficiency opportunities possible in

the boiler and turbine plant. EPRI consider plant auxiliaries as part of heat rate and

they contribute approximately 90.8 kHJ/kWh to the overall average heat rate of 1000

kHJ/kWh. This linkage may help lift the profile at Tarong. EPRI continue to say that

this amounts to 5-10 % of total generation depending on unit size, fuel type and ambient

temperature. This is a figure that is reflected in Tarong’s monthly reports. These reports

show that between 7.3 and 10.3 percent of generated energy is consumed by in house

auxiliary loads. These monthly figures are presented in table 3.1 (Sands & Blake 2015).
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Figure 3.1: Typical Auxiliary Loads in Coal Fired Power Plant (EPRI 2011).

Two facts that EPRI presented which are of particular relevance to the TPS situation.

The first was that the more base loaded and therefore higher capacity factor of the plant

the lower the internal usage. The second fact revealed by the figures is that age of the

plant is not as relevant as once thought. This is partly due to the additional of overall

auxiliary plant load by emission control equipment. The EPRI data is considered high

quality as it was collected over a 5 year period across 350 fossil fuel power stations.

World Comparison

The level of auxiliary energy consumption recorded in America by EPRI (EPRI 2011), of

5-10 %, is reinforced as an average level of consumption through the findings of Mandi

(Mandi et al. 2012) and India (Cornerstone 2014) in Indian power grid. Mandi reported

that within Indian sub-critical power stations, 30-500MW, an average auxiliary consump-

tion of 9.5 % existed. Mandi continued to state that this figure offers ample room for

improvement. This auxiliary energy usage level is also reflected in the recorded European

auxiliary energy consumption. ABB’s European productivity group states that between

7 and 15 % of coal-fired power generation is consumed in-house by auxiliary systems

(Boveri 2015). These figures reflect the levels recorded at Tarong Power Station in their

monthly reports (Sands & Blake 2015). Tarong’s Monthly reports over the last 12 months

show a range of 7.3 % to 10.3 % depending on the load profile of the month. Below in table
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Month Unit 1 Unit 2 Unit 3 Unit 4 Tarong Total

August 2015 7.7% offline 7.9% 8.0% 7.9%

July 2015 8.1% offline 7.9% 8.2% 8.1%

June 2015 8.8% offline 8.0% 8.3% 8.3%

May 2015 8.1% offline 7.3% 8.0% 7.8%

April 2015 8.1% offline 8.2% 8.2% 8.2%

March 2015 8.7% offline 8.7% 9.1% 8.8%

February 2015 8.6% offline 8.7% 8.9% 8.7%

January 2015 8.9% offline 8.9% 9.8% 9.2%

December 2014 9.0% offline 9.1% 9.3% 9.1%

November 2014 8.8% offline 10.3% 10.3% 9.7%

Table 3.1: Auxiliary Energy Usage Figures in Percentage by Unit for the Last 10 Months

(Sands & Blake 2015).

3.2 is a summary of the results uncovered from different countries. This identifies a key

point, which is that Tarong’s auxiliary energy consumption is consistent with recorded

levels of internal power usage in coal fired power stations around the world.

Location America India Europe TPS

Auxiliary Energy Usage Level 5-10 % 9.5 % 7-15 % 7.3 - 10.3 %

Table 3.2: A Sample of Auxiliary Energy Consumption figures from Around the World.

(EPRI 2011) (Mandi et al. 2012) (Boveri 2015) (Sands & Blake 2015)

Figure 3.2 shows the breakdown of the auxiliary power consumption for a typical coal fired

power plant (EPRI 2011). The EPRI figure shows that the BFP group is the primary

power consumer at approximately 37 % of the total load. The CW and ID fans make

up the next 30 %. This breakdown will be compared to the results found during this

project and will be used to drive the investigation portion of this project. The EPRI

report also presents some suggested methods for auxiliary power consumption reduction.

Its primary recommendation are the installation of adjustable speed drives (ASD) this

is also a recommendation made by ABB European Division (EPRI 2011) (Boveri 2015).

This is a major capital works investment but can, particularly at lower loads, deliver large

savings of up to 85 % reduction in drive power. The investigation of the application of
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Figure 3.2: Typical Auxiliary Loads and their Breakdown of Usage in Coal Fired Power Plant

(EPRI 2011).

this innovation to Tarong plant is outside of the scope of this project. Though it should

be noted that while drive replacement is not to be investigated by this project the idea

has merit and should be investigated by Tarong in the future. This project will instead

consider control optimisation of the high usage drives to reduce energy consumption.

Indian Network Experience

The concept of reducing the auxiliary power usage of coal fired power stations was explored

in Indian power stations by Rajasheker, Mandi, Udaykumar and Yaragatti. The focus

was how to reduce auxiliary power usage without major capital investment. Their study

was undertaken across twenty three 210 MW sub-bituminous coal fired power stations

giving a large base for data collection and comparisons (Mandi et al. 2012). The data

within the paper is closely representative of the Tarong units as the cycle, depicted in

figure 3.3, is very similar to the Tarong cycle previously outlined. This study is highly

relevant to the Tarong Power Station situation as Mandi discusses that the Indian power

stations are routinely requested by the network controller to run at sub-optimal partial

load. As discussed previously this is routinely the case for TPS as it is no longer always
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Figure 3.3: 210MW Coal Fired Power Plant Cycle (Mandi et al. 2012).

a base load station in the AEMO dispatch order of merit.

The major contributors to auxiliary power usage are the BFPs, IDs, FDs, PAs, Mills,

CW pumps and CEPs. Mandi’s work showed a strong link between plant load factor

and auxiliary power usage. Load factor is the actual running power level versus the

peak running power level expressed as a percentage. The work undertaken by Mandi

and associates show that when the plant is running at higher loads all major drives are

operating at a high load factors. This leads to the plant operating more efficiently and is

reflected in the overall reduction of auxiliary power usage (Mandi et al. 2012). The graph

in figure 3.4 is extracted from the study which shows the positive impact of load factor

on each major power contributor.

Mandi’s concludes that the auxiliary power consumption within the Indian power gener-

ation plant is on the high side compared to other developed countries and that low load

factor is a primary cause of running with higher auxiliary power usage than the benchmark

(Mandi et al. 2012). The Tarong monthly reports reflect this occurrence as when running

at higher unit loads, therefore higher load factor, TPS shows lower recorded auxiliary

power usage (Sands & Blake 2015). Mandi lists the following Indian specific factors that

affect load factor: Coal quality, lack of equipment optimisation, excess steam and water

flow, hesitation to upgrade equipment, as well as poor initial design with many oversized

drives. All of these factors, coupled with inefficient controls, have a degrading effect on
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Figure 3.4: Auxiliary Power Consumption Against Load Factor in Coal Fired Power Plant

(Mandi et al. 2012).

the plants overall power factor. There are many reasons presented for the lower power

factor of the units across India. Mandi gives reasons like inadequate coal supply, poor

coal quality, ID fan erosion, inadequate PA supply and non-availability of mills are all

related to the low level of development in the Indian power generation industry (Mandi

et al. 2012). These factors are largely not present within Tarong Power Station. If these

do occur i.e. intermittent lower coal quality, which does occur in the form of high iron or

ash content coal, it is well prepared for and effectively managed. During these lower coal

quality periods the plant does show downgrading effects. Some other factors they discuss

are still a large concern within the Tarong plant, however it should be mentioned that they

are more quickly and effectively addressed due to the developed nature of the Queensland

electricity industry. Factors such as poor electrostatic precipitator performance (ESP),

poor condenser vacuum, air leakage in the air heater and duct system, inadequate circu-

lating water temperature and less demand in the power grid all negatively influence the

efficiency of the Tarong Power Station and Stations worldwide. Many of these factors are

also identified in the 2011 EPRI report on American power generation as negative influ-

ences on auxiliary energy usage levels (EPRI 2011). This suggests that the case Mandi

puts forward of these being solely Indian specific factors is somewhat overstated.
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The Indian paper also presents some methods to improve plant load factor for each of the

major drive groups. Primarily Mandi focuses on health and capacity adequacy of major

auxiliaries, especially the Mills and ID fans (Mandi et al. 2012). This focus is interesting

and leaves out the major contributor to the auxiliary load and that is the BFP units.

The BFP influence and potential reduction will be explored more during this project.

The majority of energy conservation measures Mandi suggested to improve load factor

are already in place within Tarong to some extent or are not relevant due to local factors.

They are however relevant for discussion. In the paragraphs below each of the factors

discussed by Mandi are broken down by plant group. They are then reviewed for potential

relevance to this current project and Tarong in general.

Coal Pulveriser Improvement

Suggested mill group improvement factors, including improvements to coal quality, coal

grind sizing quality and raw coal sizing are all in place at Tarong. Coal quality is contin-

ually monitored but is limited by the available mine coal quality and contractual obliga-

tions. The station’s overall design is linked strongly to the station’s Meandu mine coal

characteristics. Trials of different coal quality have caused high heat pick up and ash build

up problems proving that TPS cannot cope with higher calorific value coal. The coal at

Tarong is sent through sizers to ensure that only coal under 25 mm diameter enters the

mills. As noted by Mandi the size of the coal entering the mill has a profound effect on

the mill group power consumption. The coal grind quality is monitored at Tarong and the

classifiers are a fixed design with regular inspections to ensure that the adjustment and

wear rates do not degrade the mill performance to greatly. Mandi suggests that hi-chrome

liners, wear plates and ball ring sets be utilised to reduce wear rates and improve mill

performance. This suggestion has merit within the broader mill management at Tarong

as wear rates and material review is continuous but is not in the scope of this paper. The

measure of periodic purging of mills to enhance the capacity and reduce auxiliary power

usage is a concept that has potential merit at Tarong and is in the scope of this project as

it can be fully implemented with control system modification (Mandi et al. 2012). This

being the case it will be fully investigated to evaluate the potential energy reduction value

in the Tarong environment.
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Induced Draft Fan Improvement

Most measures identified by Mandi to improve the ID fans capacity factor are strongly

linked to coal quality and plant overhauls (Mandi et al. 2012). As with the suggested

mill factors, most ID fan factors the Indian paper suggest are already in place at Tarong.

Reducing ash content in the coal, reducing pressure drops across the Precipitator and

Air Heaters, reducing furnace ingress and air ingress in flue gas ducts, improvement

of electrostatic precipitator performance and air heater performance are all in place on

Tarong units in some form (Hitachi 2003). Improving Ash content of coal through washing

the coal has always been a key part of the Tarong coal management strategy. It is achieved

through passing the coal through a wash plant on the mine site prior to being sent to the

Tarong stockpile. As noted by Mandi the ash content can be reduced through washing

which reinforces the Tarong practice. This reduction of ash content assists in the reduction

of pressure drops across precipitator and air heaters. Coupled with good soot blowing,

ashing and overhaul processes the pressure drop is addressed in these important high wear

portions of the process.

Another factor in ID fan energy usage is reducing furnace and air heater air ingress, tramp

air. This is managed at Tarong through O2 monitoring and the overhaul routines. This

is a major factor in ID fan performance and is largely out of the day to day control of the

operator. There is little that can be done from a control system perspective in relation to

tramp air. Mandi suggests that hard facing of the ID fan impellers to reduce the erosion

rate and enhance the capacity the ID fans (Mandi et al. 2012). This has merit within the

broader air management at Tarong as wear rates and material review is continuous but

is not in the scope of this project.

Another item raised by Mandi is the dosing of ammonia into the flue gas to assist the ESP

to collect particulate matter, this also has potential gains at Tarong but is not within the

scope of this project. There are no clear control system optimisation recommendations

for the ID fan group in the Indian paper (Mandi et al. 2012). This will be explored further

during this project as the ID fans are a significant contributor to auxiliary power load of

the coal fired stations.
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General Improvements

The remaining plant areas were viewed by Mandi under the section on other measures to

improve load factor. The improvements were very broad based wide reaching statements

that apply to all thermal plants but without any specific examples that could be directly

utilised during this project. Some improvements listed were improve boiler efficiency,

improve turbine efficiency, maintain circulating water temperature through cooling tower

maintenance, maintain regenerative heaters, use higher calorific value low ash coal, reduce

specific steam consumption and fuel consumption (Mandi et al. 2012). One improvement

suggestion that has control optimisation merit is to maintain generator performance by

enhancing cooling systems. This will be explored further during this project.

Whilst the majority of the auxiliary power reduction options explored by Mandi cannot

be realised without capital investment the concept of reduction through improving plant

load factor, operational optimization, adoption of advance control techniques and imple-

mentation of energy conservation techniques is certainly a target worth spending time

investigating as the repayment in considerable (Mandi et al. 2012). Most of the sugges-

tions within this key paper will not be pursued in the form raised. These suggestions will

be instead explored from the angle of capital free control modification.

Europe and South American Experience

ABB Europe suggests there are many ways that a reduction in auxiliary power can be

addressed. Primarily their focus is on installation of Medium Voltage (MV) variable speed

electrical drives. They claim a significant reduction in power consumption is possible if

the power required to drive the fans and pumps is generated in the right way. This

however requires significant capital outlay, whilst this may be repaid it is a major works

program to achieve (Boveri 2015). This has potential on the Tarong site but will not be

explored during this project.

In Brazil the focus of one research group into the reduction of auxiliary power in coal

fired plants was to investigate the influence of displacement power factor (DF) and total

harmonic distortion (THD) (Schwanz, Silva, Leborgne, Bretas & Gaidzinski 2014). The

paper concludes that the ESP section of the plant was the main source of THD and that

the major drive induction motors are the source of low power factor. They propose that
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these two factors combined are a source of energy consumption that could be addressed

through filters and capacitor banks. As Tarong has a similar pulsed DC precipitator and

multiple large induction motor loads it is a strong possibility that these two situations

exist within the TPS plant. This means that there is a potential to reduce power usage

at TPS with the capacitor and filter banks. This is outside of the scope of this project

and will not be explored further.

Auxiliary Power Usage and Reduction Conclusion

The literature discussed in this section has demonstrated that the auxiliary power is a

worldwide issue that causes the industry considerable problems each year. The EPRI

report suggests that if the auxiliary load in America could be reduced by just 5 % the

industry could delay the need for building new coal fired power plant by 10 years (EPRI

2011). There is clearly a need and incentive for this project and continuing research to

assist the industry move forward.

3.2 Power Calculations

This section outlines the theoretical background information that relates to power mea-

surement in a 3 phase AC system. Primarily all drives that relate directly to the auxiliary

energy consumption of the Tarong Power Station are 3 phase AC and generally are 6.6

kV or 415 V DOL drives.

When a load is connected to an AC power source it draws current. This current varies

sinusoidally depending on the load requirements and will lead or lag the voltage depending

on the load. The voltage supply system maintains the sinusoidal supply voltage that

originates at the generator. In a power generation environment, such as Tarong, it can be

noted that the voltage supply system is very robust being fed directly from the generator

output and a system of low impedance transformers. The other note is that loads within

the power generation environment tend to be inductive with a lagging current.

The information in this section is summarised from the text “Introductory Circuit Anal-

ysis” Chapters 14 and 19 (Boylestad 2003). There are 6 major concepts that need to

be comprehended in order to understand the power calculations. This understanding is
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required to enable the in-depth exploration of auxiliary power usage of a power station.

These are:

1. Average or Real Power;

2. Power Factor;

3. Apparent Power;

4. Reactive Power;

5. Power Triangle;

6. Wattmeters.

Each of these 6 will be mathematically explained in the sections below.

3.2.1 Average or Real Power

(Boylestad 2003) shows that Average or Real Power is defined as

p = vi (3.1)

Where

v = Vm sin (ωt+ θv) (3.2)

i = Im sin (ωt+ θi) (3.3)

Once manipulated using trigonometric identities the following represents the power de-

livered to a network.

p =

(
(VmIm)

2
cos (θv − θi)

)
−
(

(VmIm)

2
cos (2ωt+ θv + θi)

)
(3.4)

It can be noted that the first portion of equation 3.4 is fixed i.e. not time varying and the

second portion varies with time t. This can be extended that the time varying portion

of equation 3.4, over a period of one AC cycle, will be equal to zero. Therefore the first
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portion of equation 3.4 is referred to as the average or real power delivered to the load.

This fixed portion becomes equation 3.5 below.

p =
VmIm

2
cos (θv − θi) (3.5)

As the difference between the angle of the voltage and the angle of the current is defined

as

θ = |θv − θi| (3.6)

Therefore the average power calculation becomes

P =
VmIm

2
cos θ (3.7)

The symbol for real or average power is P. Since the effective voltage and current equations

are

Veff =
Vm√

2
(3.8)

Ieff =
Im√

2
(3.9)

Therefore the average power calculation can also be written as

P = VeffIeff cos θ (3.10)

Where

P - is the average power in watts [W];

Veff - is the effective voltage applied to the load in volts [V];

Ieff - is the effective current drawn by the load in amperes [I];

cos θ - is the displacement angle between the voltage and current waveforms [degrees].

It is worth noting that if the load is purely resistive the voltage and current are in phase.

In this situation the phase angle is θ = 0 therefore cos θ = 1 and the average power is the

product of voltage and current. If the load is purely inductive the voltage and current are

in 90◦ out of phase. Since the i lags v by 90◦ the phase angle θ is −90◦ therefore cos θ = 0

and the average power is zero. If the load is purely capacitive the voltage and current are

90◦ out of phase. Since the i leads v by 90◦ the phase angle θ is +90◦ therefore cos θ = 0



3.2 Power Calculations 34

and the average power is zero. In situations where all components are not ideal the phase

angle will rarely reach +/− 90◦

Within Tarong it is the average or real power reading that is utilised to measure auxiliary

power consumption.

3.2.2 Power Factor

From 3.2.1 it can be seen that the displacement angle cos θ causes significant impact on

the final power value and it is therefore known as the power factor.

PowerFactor = PF = cos θ =
P

VeffIeff
(3.11)

Where

PF - is the power factor which is either leading or lagging [dimensionless];

θ - is the displacement angle between the voltage and current waveforms [degrees];

P - is the average power in watts [W];

Veff - is the effective voltage applied to the load in volts [V];

Ieff - is the effective current drawn by the load in amperes [I].

The terms leading and lagging power factor are used to describe if the current leads the

voltage or lags it. Capacitive loads have a leading power factor and an inductive loads

have a lagging power factor. As the auxiliary power consumption at Tarong is primarily

inductive loads it is expected the system power factor would be lagging.

3.2.3 Apparent Power

Is the result of the applied voltage and current without the influence of power factor.

This apparent power is generally used as equipment power rating in VA. The equation

for apparent power is shown below in equation 3.12.

S = V I (3.12)
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Where

S - is the apparent power [VA];

V - is the voltage applied to the load in volts [V];

I - is the current drawn by the load in amperes [I].

3.2.4 Reactive Power

The reactive power is the peak value of power that produces no net power transfer, either

in an inductive or capacitive load, during a complete cycle. The formula for reactive

power is shown in equation 3.13.

Q = V I sin θ (3.13)

Where

Q - is the reactive power [VAR];

V - is the voltage applied to the load in volts [V];

I - is the current drawn by the load in amperes [I];

θ - is the displacement angle between the voltage and current waveforms [degrees].

While the net value of this power is zero it is significant in that the load must be supplied

power every half cycle and return the power source during the other half cycle. This

reactive power calculation influences the peak level of power required to be supplied to

the network.

3.2.5 Power Triangle

Average power, Reactive power and Real power relate together in the vector domain as

in the equation 3.14 below

S = P +Q (3.14)
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Figure 3.5: The Power Triangle relates Apparent, Reactive and Average Power with Power

Factor (Boylestad 2003).

The power triangle is shown in figure 3.5. It visually displays the vector relationship

between the three powers and the power factor.

The individual power components of separate loads can be summated in the vector form

to give an overall resultant power vectors. If one quantity is not known then Pythagorass

theorem can be applied to the system to solve for the missing quantity. This is possible

as the real power and reactive power vectors always form a right angle.

S2 = P 2 +Q2 (3.15)

It is also noted that from the power triangle the power factor can be found and vice versa

as

PF = cos θ =
P

S
(3.16)

3.2.6 Wattmeters/Watthour Meters

A wattmeter is a type of meter that measures the number of watts consumed by a load in

a measure of time. The meter inputs are the voltage and current relating to the load. The

meter also measures the displacement angle between the two waveforms. It utilises these

three measurements to calculate the forms of power required to be displayed. Typically

the units of measure of this style of meter is kWhr or kilowatts consumed in an hour. The

meters normally totalise the kW consumed to allow billing or other monitoring to occur.

It is typical for the modern version of this style of meter to be connected to a remote

system to record and/or display consumption data.
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The mathematical representation of this meter is

EWh = PW th (3.17)

Where

EWh - is the average or real power consumed by the load in watt hours [W/hr];

PW - is the instantaneous power consumed by the load in watts [W];

th - is the time in hours over which the measurement is taken [hr].

3.3 Practical Industrial Power Measurement

This section outlines the way in which power measurement is undertaken in industrial

plants and more specifically the way in which it is measured within Tarong Power Station

unit auxiliary plant.

From the late 1970’s until the turn of the century the primary means of achieving both

electrical drive protection and load metering was via a meter involving an analogue device

generally an induction disk type. These meters function by utilising the magnetic field

generated by passing a sample of the circuit load current through a coil which in turn

spins the induction disk. The field strength increases with increased current flow which

in turn spins the disk faster. In drive protection once the disk is moved far enough the

relay will trip the feeder. In energy measurement the speed of the disk can be used to

meter the loads energy consumption. Today the primary method installed in new plant

is digital based metering. These use the load voltage and current measurements together

with digital sampling times to calculate power flow. The meter than can process this data

in many ways to perform protection functions or measurement recording (IEEE 2013).

The key inputs to calculate power are voltage, current and power factor or the magnitude

of the phase angle θ. The measurement of these will now be discussed.

The first key measurement is the supply voltage to the load of interest. This voltage

measurement is difficult to measure directly in most cases as the supply voltage is high

voltage. It is generally too high for direct measurement or input into electronic compo-

nents. This being the case the voltage that is required to be measured is stepped down to
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a safe level. In most cases the voltage is reduced to 110 V AC and is achieved by step down

transformers commonly known as a voltage transformer or VT. These transformers have a

primary winding that is connected to the higher level voltage and the secondary winding

is connected to the energy metering device or control system interface module. VT’s have

a fast response and high resistance to saturation with fuses to provide protection from

over voltage or failure events (IEEE 2013).

The next key measurement of interest is the load current. Similar to load voltage the value

of the current is normally too high for safe measurement without an interface device. The

interface device in the case of current is a current transformer or commonly known as a

CT. The CT is directly wrapped around the conductor of which the measurement is to

be made. This conductor can be a core of a supply cable or in higher current situations

it is common to be a busbar. This CT steps the high current value down to a lower value

that can be directly fed through an energy meter or control system interface module.

The final measurement is power factor and this is not measured as such, it is extracted

from the voltage and current measurement. It is the displacement angle between the two

measurements.

The accuracy of measurement is a combination of the accuracy, repeatability and linearity

of the pickup devices, namely CTs and VTs and the quality of the energy meter being

utilised to totalise the measurement. CT’s come in different classes, protection, metering

and general purpose. Protection class CT have a high saturation level as they are re-

quired to accurately measure high current under fault conditions. Metering CTs are high

accuracy and have good linearity in the region of interest. General purpose CTs have an

average level of accuracy across a wide operating range and are generally used for control

system feedbacks (IEEE 2013).

An article produced by Power Logic in conjunction with the University of Missouri-

Columbia describes the way in which energy metering can be combined with local Pro-

gramable Logic Controller (PLC) and computer based data historian to create a power

measurement network (Asumadu, Devaney, Wallis & Bond 1990). This is precisely the

way that energy metering data is collected at Tarong. Tarong Power Stations unit auxil-

iary power usage is recorded by two primary meters per unit, one on each of the two unit

transformer feeds into the unit 6.6 kV switchboards. It is these two meters that totalise

the auxiliary power usage on the unit. The meters are Power Logic model DM6200 which
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get their voltage and current inputs from the metering class CTs and VTs mounted in the

unit switchboard 6.6 kV incoming cubicle. These power logic meters are then connected

to the plant data historian via Modbus over ethernet. The unit power meters are in good

working order and are regularly certified. It is the readings from these meters that are

used to report on the unit auxiliary usage each week, month and for annual reporting.

On Unit 4 additional metering devices are installed on each 6.6 kV drive and the major

415 V drives. These meters are Electrex branc and are connected together on a RS-

485 network whose data communications is controlled by a local PLC. This PLC is then

connected to the plant data historian via ethernet. The individual drive data network

has been left decay. The local meters are generally operational but the communications

network to retrieve data from the meters has failed. This has in the past been related to

individual meter failures dragging a segment of the RS-485 network down. Attempts to

repair this system are current underway but are unlikely to be completed by the end of

this project.

This section has summarised some of the key points of industrial power measurement.

3.4 Standards

This section outlines the standards relating to the measurement of energy metering.

The most relevant standard uncovered during the literature review was IEEE Standard

3001.8 - IEEE Recommended Practice for the Instrumentation and Metering of Industrial

and Commercial Power Systems (IEEE 2013). This standard covers Instrumentation

and Metering. It outlines the importance of metering including considerations to apply

the latest metering technology. It discusses examples of ideal installations, instruments,

permanent and portable meters, recording instruments an auxiliary devices such as CT’s

and VT’s. The standard provides guidance on the class of CT’ and VT’s for reliable

measurement.

As this project will utilise data from an existing metering network the standard has been

used to review the metering network and its overall capacity for accurate readings as

compared to the standards recommended practice. The TPS installation conforms well

to the standards outlined in IEEE 3001.8 - 2013. The majority of installation practices
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are closely aligned with the example installations given in the standard. In particular the

class of CT being utilised is better than recommended, the VT’s limit the voltage and

have the relevant fuse protection recommended by the standard. The digital power meters

themselves are integrated into the industrial plant supervisory system as recommended

in the previous section, though current plant failures need to be addressed (IEEE 2013).

The device used for DCS feedback do not comply with the metering class standard outline

in IEEE standard. The devices accuracy combined with the 100 ms sampling time of the

control system makes them accurate to approximately 1 % meaning that they comply

with the standard expected accuracy under IEEE 3001.8.

As as result it is confirmed that the readings available in the TPS DCS are of a reasonable

standard from which to base calculations but will have a level of inherited error.

3.5 Control Optimisation

This section outlines the control optimisation and the recent research in the field.

Control optimisation is defined as the process of tuning a process to give an ideal response

in relation to a specific parameter. In the power station environment the units control

is optimised or tuned to give the optimum energy return for the coal being fed into the

boiler. This involves multiple loop tuning with the end aim being the lowest amount of coal

required to deliver the high pressure steam at the ideal temperature and pressure to the

turbine. During this tuning process the level of energy consumption is not monitored or

reviewed in any way. It is considered a byproduct of running the unit efficiently. Simon

and associates discuss in their 2010 control conference paper that primarily industrial

control and specifically power station control is based on multiple Single Input Single

Output(SISO). Often these loops are Proportional Integral Derivative (PID) that require

independent tuning even though they all influence the same final overall system output

(Simon et al. 2010). Simon’s focus was on adding in a overall controller to coordinate the

effort of the multiple SISO loops in achieving the steam temperature at minimum coal

input.

A simplified control scheme of a coal-fired power plant is shown in Figure 3.6. It visually

displays the primary inputs and outputs of the overall power station control system.

This simplified system shows the final drivers on which normal power station control
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Figure 3.6: The Simplified Control Scheme of a Coal-fired Power Plant (Simon et al. 2010).

optimisation is focused.

3.6 Power Station Modelling

This section outlines the styles of modelling recently utilised to represent power station

processes for the means of research or investigation. This project will require a robust

MATLAB model of auxiliary energy usage to be created. This model will be used to not

only better understand the energy consuming devices on the Tarong coal-fired units but

also to trial any possible reduction options that will be generated later in the project. The

intention of this section is to review the information known about power station modeling

techniques.

In 2011 a paper was presented to a Mechatronics seminar in China which gave an

overview of modelling and simulation of thermal power plant (Changliang, Hong, Jin-

liang & Chenggang 2011). This paper was reviewed as a starting point to understanding

the challenges of modelling power plant. The paper firstly reviews thermal process and
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its modelling. It acknowledges that whilst approaches are widespread from step-response

models to predictive control models there is always a large gap between the model out-

put and the reality of the plant process. This is primarily due to the complexity of the

thermal process. Zhen and associates next cover simulation of the thermal plant though

Distributed Control System (DCS) interface. These simulators use the actual DCS logic

and learned values from running the logic in the simulation environment to create a sim-

ulator that can be driven in real-time. Tarong Power Station has just such a simulator

for their 350 MW units based on the T3000 DCS platform. It is proposed as part of this

project to use this simulator to test in near real-time any proposed energy saving modifi-

cations to confirm the control system response. The paper discusses the fact that whilst

many solid modelling results have achieved there are many challenges to be resolved. The

primary issue is achieving a model that accurately reflects the real plant. Another is how

to best use the abundance of operational data that is stored by the plant historians. The

final challenge presented is how to best control access to the data to allow simulation

development to continue. The balance between open access to data and secure access still

needs to be addressed.

The creation of a non-linear model in Simulink for a 300 MW coal-fired unit is dis-

cussed in a paper presented to the IEEE Industrial Electronic Society Conference in 2004

(Changliang, Jizhen, Yuguang & Xiuzhang 2004). The basis of the model is to break

down the power production process into smaller systems in the complex S-plane envi-

ronment and then combine as a total model. The model is heavily reliant on parameter

adjustments to ensure the model closely reflects the running plant. It also required large

amounts of development to get a relatively close working model before parameter tuning

can begin. They concluded that much future work is required to develop usable models.

With a considerable amount of data tracked and stored in the modern era it is a nat-

ural progression that this data is utilised as the basis of models (Yang, Wang, Zhang

& Chen 2010). The Beijing University paper explores this potential by focusing on the

real-time data collected at 600 MW coal-fired units in China to produce a model that

focuses on determining energy-saving potential in the plant. They explain that as the

power generation process is complex and non-linear environment the creation of models

which accurately reflect the real plant is extremely difficult. This leads to the creation

of models that only focus on individual equipment items or on steady state process as

the dynamic nature of power generation process cannot be reflected accurately. Their
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modelling efforts extract data from the plant historian and then apply rules to classify

and correlate the data to provide theoretical guidelines for energy conservation within

coal fired power generation. Chen and associates use the cleansed data through a Spatial-

temporal Distribution Model of Energy Consumption based on Support Vector Regression

algorithm. Their conclusions were that the process of data mining can support real-time

or historical review of power generation process under many possible algorithms setup to

reflect the user requirements. They propose that it could be linked to real-time plant data

to reflect the current status of the plant energy consumption. The modelling technique

based on data mining holds particular interest as the modern control system at TPS hold

vast quantities of data that can be readily accessed. The data is not only available in

realtime though data links to T3000 but historical data is able to be accessed, via the

plant data historian PIMS which holds the last 6 years data.

This section has reviewed a cross section of literature relating to potential modeling

techniques that the could be utilised in achieving this projects aims. The discussion

has highlighted the challenges of ensuring that the final model matches the actual plant

response. This was identified as being particulary challenging in the complex non-linear

power station environment with many modelling techniques requiring multiple parameter

tuning to achieve any decent level of accuracy. The key discovery of the literature review

on power station modelling was that the environment lends itself to models based on plant

data. This data based model technique has many advantages, the main one is the link

ensures that the model inputs are actual plant data not calculated or estimated. This

real data input basis means that when constructed properly the final model outputs have

strong ties to the actual plant.

3.7 Conclusion

In this chapter the literature related this project has been explored. The use and im-

portance of energy monitoring was reviewed with the main finding that monitoring and

reporting is a key step to reduction of energy usage.

It has been demonstrated that auxiliary energy consumption in power stations worldwide

is an issue which remains largely unresolved. Many of the solutions proposed require

capital works to achieve energy reduction. These solutions, as with all unproven capital
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works programs, come with risks. The primary risks are that the outlay does not yield

the return expected, along with project cost and time over runs. Potential short and long

term plant issues associated with changes to an isolated section of the plant design also

pose a creditable risk. These reasons combine to mean most plant owners are reluctant to

take on large scale plant changes in the pursuit of energy reduction. This lends support

to undertaking projects such as this that look at ways to reduce energy consumption

without capital investment.

Energy metering calculations were covered as these will form the backbone of this projects

outcomes. The way in which practical industrial measurement is achieved was explored.

Confidence was gained that the energy input measurements made in the Tarong Power

plant are reliable. This is an important point as it is these DCS inputs that will be utilised

for both the creation of energy tracking logic in T3000 and to prove the MATLAB models.

The IEEE energy measurement standard was reviewed with respect to the installed equip-

ment and this showed that the installed measurement devices are suitable on which to

base calculations. The chapter was concluded with a discussion on the possible power

station modeling techniques. These were explored and the conclusion was that using data

mining as the model basis is not only robust but the ideal way to represent the complex

non-linear environment of power generation processes.

The next chapter will explore the project methodologies employed to achieve the project

aims.



Chapter 4

Methodology

This chapter will outline the methodology utilised to reach the project aims. It will begin

with a justification of the project methodology selection then move onto detail of how

each of the methods were achieved. Being a highly dynamic power station environment

the method chosen must be able to be compared to the installed energy meters to give

the confidence needed to propose long term plant change.

4.1 Selection

This section will outline the development of the project methodology. The methodology

was completed after analysing the literature review, the available plant data and the

required outputs from this project. The use of both MATLAB modelling and T3000

energy tracking logic was decided upon after investigation of other methodologies. This

method allows both a calculated and real world insight into the auxiliary power usage of

the power station. The dual approach will allow robust confirmation of the MATLAB

models as there will be a running total, on the actual plant, to compare it against.

The primary method chosen is the creation of plant data based MATLAB models that

will reflect the actual plant energy consumption throughout the model running period.

MATLAB models of the auxiliary energy consumption of the power station electricity

generation process will be created. This method will assist with both understanding the

high usage items and in testing of potential energy reduction options. MATLAB has been
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selected as the software in which to develop the required models due to its flexibility and

common use in engineering environments. It is a proven software that is known to perform

this function well and is regularly referenced in power station modeling IEEE papers found

during the literature review (Yang et al. 2010). This will align with Objective 2 to “Create

a SIMULINK model, in MATLAB, of the energy profile of a single unit”. These models

will be valuable tools for achieving project Primary Aims 1 and 2 being “To understand

the auxiliary consumption within Tarong Power Stations 350 MW coal fired units” and

to “Identify potential control based energy reduction strategies”.

The approach of creating a purely mathematical based model in MATLAB was discounted

as not being linked strongly enough to the running plant to enable justification for change

in the control system on the actual plant. It also became obvious during the literature

review that the power generation process is extremely dynamic making the creation of an

accurate model very difficult. Most modeling paper outlined previously discussed concerns

that the end product was unlikely to reflect the actual plant. The process of creation of a

plant data based model is seen to be more robust and fit for purpose (Yang et al. 2010).

One of the secondary objectives of this project is to achieve real energy reduction on the

running plant and therefore the method chosen needed to reflect the requirement to be

able to present data to Stanwell management in support of any proposed change. Another

method that was considered was solely utilising the historical data in the plant historian

to create trends and graphs of the usage in certain situations. This method may have

been robust in giving some resultant data to work with and base potential improvement

options on but it lacks the ability to be able to test the impact of any proposed changes.

Therefore the data available will still be assessed as part of the project process as it

can assist in guiding the creation of potential energy reduction options. Data stored in

the plants historical databases, Process Information Management Solutions (PIMS) and

InSQL, will be extracted to explore the plants energy usage under different operational

conditions. The data extracted from the historian was used as an input into the MATLAB

models created.

The second primary method will be the creation of real time energy tracking logic within

T3000. This project methodology will utilise the real time plant current and voltage

measurements available in the T3000 DCS to calculate power usage on all drives related

to auxiliary power usage. The field measurements have been confirmed as suitable for use

in this method. The literature review confirmed that the measurement devices comply
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with standard expected accuracy levels. The digital control system sampling rate and

CPU cycle rate whilst high will still have a low level of sampling error. This method

will align with Objective 3 - “Create energy tracking logic in the T3000 Digital Control

System”. The tracking logic will calculate and totalise the power usage of auxiliary power

devices with available feedback. This data can then be summated in a number of ways

to assist in investigation of usage under certain conditions. This will create valuable

data for achieving project Primary Aims 1 and 2 being “To understand the auxiliary

consumption within Tarong Power Stations 350 MW coal fired units” and to “Identify

potential control based energy reduction strategies”. Another driver for creation of the

T3000 tracking logic was creating something that can be used during this project and into

the future. This logic will progress toward the Secondary Aim 1 “To leave in place energy

consumption information that the station can utilised into the future”. Once the tracking

logic is created it can forever be used by the plant owners engineering staff to look at

short and long term energy usage of individual drives across all units. This tracking logic

can potentially assist in short term rectification of high power consumption events and

in long term planning to reduce the overall level of auxiliary energy consumption. There

is the potential to setup alarms based on this logic to warn the operator of the unit of a

high energy consumption event. This would allow operator assessment and response to

occur during the event rather than solely reviewing the data at the end of each week or

month.

The tracking logic and MATLAB modeling will be validated against the limited installed

energy metering which strengthens the method selection. The tracking logic will be

installed on Tarong Unit 4 initially and the MATLAB models will represent one units

auxiliary energy consumption. The tracking logic will be installed on the other 3 Units

once confirmed as correct and functional.

This MATLAB model and T3000 tracking logic findings will complement the comprehen-

sive literature review that focused on energy calculations, coal fired power plant auxiliary

energy usage, auxiliary power reduction techniques, relevant standards and control op-

timisation. The literature review had a broad approach to uncover as much relevant

information as practical.

Building on this the methodology selected is shown below

Primary Method 1 Extract the mechanical and electrical parameters from the data
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historian e.g. vane positions, scoop positions, current, voltage and power factor

data;

Primary Method 2 Create MATLAB models based on the extracted data. The first

group of models summate the voltage and current data to ensure it matches the

monthly energy meter reported value. The second group of models will be able to

alter vane and scoop position to alter the energy consumption pattern;

Primary Method 3 Collate all potential energy reduction strategies and assess the

resulting strategies utilising the MATLAB model;

Primary Method 4 Create energy tracking logic in T3000 for all drives where field

measurements are available;

Primary Method 5 Compare T3000 energy tracking and MATLAB model results

against the installed energy metering;

Primary Method 6 Propose advantageous low risk changes to the operational plant;

Secondary Method 1 Test proposed changes to the operational plant on the unit

simulator;

Secondary Method 2 Implement proposed changes on the operational plant;

Secondary Method 3 Create HMI and reporting based on the T3000 tracking logic.

Note The primary methods are those that are required to complete the project pri-

mary objectives. The secondary methods are those that will achieve the projects

secondary aims if time and risk assessment permits.

The next sections will describe the process of implementation of the chosen methods.

Firstly a section discussing the mechanics of the initial data gathering exercise will be

presented. This then leads into discussions of the MATLAB model and T3000 logic

creation processes. These processes are laid out in order of completion to build a picture

of how the validity of the created outputs was confirmed.

4.2 Initial Data Gathering

The first stage of the design process comprised exploration and collection of data. This

required a multifaceted approach to locate any data that was loosely or specifically re-
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lated to the auxiliary energy consumption at TPS. The approach was to first collate the

information then later sort for relevance and decide on whether inclusion was warranted.

The primary sources that where consulted were

1. Drawings - Electrical, Mechanical and Process Instrumentation(P&ID);

2. Operations and Maintenance Manuals - Boiler, Turbine and Generator;

3. Energy Meter Data - Manual, InSQL data and PLC code of the site energy metering;

4. T3000 - PIMS Data and I/O relating to energy usage;

5. Plant Performance Reports - Weekly and monthly editions.

Each of these areas will now be expanded on in the sections below. It should be noted

that each area was revisites as new information or path of enquiry became available.

4.2.1 Drawings

Mechanical, Electrical and P&ID drawings exist for the majority of TPS plant areas. The

majority of drawings were supplied with the construction contract. These drawings have

been progressively expanded and modified to reflect the current installation as changes

have occurred on the plant. Each drawing has a revision number or letter to track the

revisions as they occur. Majority of the drawings accessed have had minimal revision

and reviewing the revision detail blocks show that the changes have not changed the

original design intent. These drawings are stored in electronic form within a software

package called Projectwise, a Bentley drawing management package. A smaller selection

of electrical drawings are stored in hard copy form in drawing libraries across the site.

These two locations were searched to locate relevant drawings. The drawings located were

in two main categories, heavy power and instrumentation and control (I&C).

The unit auxiliary power is measured at the unit transformer level. The heavy power elec-

trical drawings of the power feeds radiating from these transformers were located. From

there drawing detailing of the size and type of loads was determined. Interconnections

between boards were identified for later use in models and tracking logic. A sample of

identified drawings is listed in Appendix G.
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Below in table 4.1 all of the auxiliary loads that emanate from the unit 6.6 kV transformers

are listing including there key rating data.

Load Rating Duty Voltage Ampere Power Factor

A Primary Air Fan 990kW 1 of 2 6.6kV 103A 0.6-0.85

A Forced Draft Fan 2950kW 1 of 2 6.6kV 311A N/A

A Induced Draft Fan 4550kW 1 of 2 6.6kV 503A N/A

A Unit 415V Transformer 2000kVA 1 of 1 6.6kV 175A N/A

A Precipitator Transformer 2500kVA 1 of 2 6.6kV 220A N/A

A Condensate Extraction Pump 1100kW 1 of 2 6.6kV 116A N/A

A Circulating Water Pump 1350kW 1 of 2 6.6kV 158A 0.7-0.75

A Boiler Feed Pump 5650kW 1 of 3 6.6kV 550A 0.65-0.87

C Boiler Feed Pump 5650kW 1 of 3 6.6kV 550A 0.65-0.87

Bunkering Transformer 1000kVA 1 of 1 6.6kV 88A N/A

C Unit 415V Transformer 2000kVA 1 of 1 6.6kV 175A N/A

B Primary Air Fan 990kW 1 of 2 6.6kV 103A 0.6-0.85

B Forced Draft Fan 2950kW 1 of 2 6.6kV 311A N/A

B Induced Draft Fan 4550kW 1 of 2 6.6kV 503A N/A

B Unit 415V Transformer 2000kVA 1 of 1 6.6kV 175A N/A

B Precipitator Transformer 2500kVA 1 of 2 6.6kV 220A N/A

B Condensate Extraction Pump 1100kW 1 of 2 6.6kV 116A N/A

B Circulating Water Pump 1350kW 1 of 2 6.6kV 158A 0.7-0.75

B Boiler Feed Pump 5650kW 1 of 3 6.6kV 550A 0.65-0.87

Table 4.1: Auxiliary Load - Detail of all Loads that Contribute to the Auxiliary Power

Consumption of the Unit (Alstrom 1981). Note N/A (Not Available) Power Factors were

Unable to be Located.

The second part of the drawing review was a search for signals relating to the power

calculations. It was found the majority of drives had a current feedback but there was

limited voltage and power factor feedback. These I&C drawings show the T3000 loop

from the field device through to the analogue input card. The drawings located are also

listed in Appendix G.
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4.2.2 Operation and Maintenance Manuals

When TPS was constructed the contract included the supply of multiple sets of oper-

ations and maintenance manuals. The manuals were supplied with each contract area.

The primary areas of interest for auxiliary power consumption are the Boiler, Turbine

and Generator Operations and Maintenance manuals. The operations sections of these

manuals describe to the plant operator the way the plant process works and how to drive

each of the individual components. The maintenance sections of the manuals detail the

individual plant devices spare parts, recommended maintenance schedules, fault finding

information, and the manufacturers literature at the time of installation. These manuals

have been updated and expanded as the plant has been modified or as the plant has been

made redundant. The manuals also contain the initial commissioning and testing results

for the plant drives.

Where available, manufacturer data on the major auxiliary energy consuming motors,

pumps and fans were gathered from the respective manuals. This was found to be limited

with data being unavailable for many drives. The operational descriptions of each of the

items identified from the drawings were also obtained and reviewed. These describe the

preferred operational limits and plant configurations for each system. In the vast majority

of cases this is still how the plant is operated. Discussions were held with operations staff

and the plant control logic was reviewed to confirm the plant function. This occurred

during data gathering with a view to understand the plant limitations and operational

practices to be considered during the creation of any proposed energy reduction options.

4.2.3 Energy Metering Data

A specific energy metering manual was located during the data gathering exercise. This

manual contains details of the installation of Electrix meters onto the Unit 4 and Station

6.6 kV switchboard feeders (Godsmark 2001). A full list of drives and CT sizes was

located. This is included in Appendix H along with some installation drawings. This

manual showed the detail of the RS485 and PLC network that was installed. The available

registers that were setup to be retrieved from the energy meters is shown, a sample of

this is included in Appendix H.

InSQL is the oldest plant data historian that exists on the Tarong site for SCADA/PLC
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data collection. Using the detail found in the energy metering manual a review of available

data in InSQL was then carried out. It was hoped that this would yield recorded data

for the Unit 4 auxiliary energy drives. It was found that the Station 6.6 kV energy meter

installation was active with large amounts of data available. The Unit 4 system has

fallen into disrepair as the only figures being actively reported on are the high level unit

transformers which have there own communications network. The unit data has only

recorded null values for many years with old data being written over. This has meant

no meaningful data relating to the auxiliary energy consumption was able to be collected

from the InSQL system.

4.2.4 T3000

T3000 is the very broad title given to the DCS monitoring and controlling the majority

of the plant within TPS. The T3000 monitors and actively drives all of the loads that

consume auxiliary power on the units. Within the T3000 function block code there is an

archiving function that stores selected values at the rate of the solve of the block involved.

The archive data is stored on the T3000 application server. This storage is finite and only

three years available within the system at any point in time. Each month the oldest data

is archived off onto DVD. There also exists a plant historian PIMS which accesses and

logs points of data from within the T3000 code. This then allows long term retrieval and

viewing of plant data without needing to access historical DVD data.

During the drawing collection and analysis process I/O was identified that pertain to the

flow of energy on the plant. These are listed in Appendix G and are primarily voltages

and currents within the power system. These I/O were then investigated in T3000 to see

if they were archived. Any points archived are then read out and stored in PIMS. All

points identified in the drawing review were found to be archived at 200 ms in T3000.

The PIMS archive settings for these points set to record at 1 second intervals. This means

that rapid changes in T3000 will not be recorded in PIMS. This will give a low level of

sampling error in the PIMS data as it is being archived. It is worth noting that as data

is retrieved by the PIMS interface, interpolation of stored data will occur if the data

requested is not available at the point in time requested.

As it was now identified that the energy calculation data was available the next stage was

to locate those points within the process that effect the load on the auxiliary drives. These
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include damper, vane and valve positions that affect the air and water flows within the unit

processes. While it it a highly dynamic process that is influenced by multiple functions

the points identified are the primary influence and for the purposes of this project are

suitable for MATLAB data input. The identified process points were investigated to

confirm the T3000 and PIMS archiving rates. All points identified in the process review

were found to be archived at 100 ms in T3000. The PIMS archive settings for these points

set to record at points were investigated to look at T3000 and PIMS archiving rates. All

points identified in the process review were found to be archived at 50 ms intervals.

Once all relevant PIMS points were identified 24 hour blocks of information were requested

of PIMS. These blocks were chosen to reflect the varying loads and situations that the

plant is routinely requested to perform. The blocks of data were requested from PIMS

with an interval of 1 second. This gave output excel files of 86402 rows of data which 2

rows of header data showing the PIMS tag name and the tag description. A sample of

this data is located in Appendix F.

4.2.5 Plant Performance Reports

Performance of the TPS is always under constant scrutiny as small changes in performance

can cause large variations in running costs. To effectively collate and disseminate the

plant performance data the responsible engineer creates a weekly report highlighting the

key performance indicators. This weekly report is a a short 2 page presentation of data

relating to capacity factor, availability, coal consumed, fuel oil consumption, generated

MWhrs, exported MWhrs (AEMO), auxiliary energy MWhrs, efficiency and fuel oil stock

levels. Graphs relating to water, fuel and emissions round out the report. The plant

performance engineer also prepares a far more detailed 35 page monthly report which

rolls up all of the details of the weekly reports and dissects them further. The auxiliary

energy usage is presented here as an overall figure per unit in MWhrs and in percentage

of generation.

The level of information contained in these reports is of use to the project aim of under-

standing the unit auxiliary energy consumption. Twelve months worth of these reports

has been collected and the key factors summarised for later reference. These summaries

are analysed in the results and data analysis chapter 5.
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4.3 T3000 Energy Tracking Logic Creation

This section details the way in which the T3000 energy tracking logic was created. The

creation of energy tracking logic in T3000 was addressed in a staged approach to build

confidence in the accuracy of the logic before applying it to all loads of interest.

As discussed in the sections above it was identified that the majority of drives had realtime

current feedback available. There is limited voltage feedback into the DCS with realtime

voltages available at the 20 kV and 6.6 kV level but none at the 415 V level. The power

factor readings are very limited with only the 2 available. They are read out of the unit

transformer energy meters at a slow poll rate.

The first item that was built in T3000 was a set of test logic to implement equation 3.10,

real or average power. It is repeated here for convenient reference.

P = VeffIeff cos θ (4.1)

This formula was implemented using basic blocks from the T3000 library such as add,

multiply and divide blocks. This logic was then tested by simulating the input parameters

with known values. Applying these simulation values allowed a known current, voltage

and power factor to be input into the logic. This allowed the logic accuracy to be confirmed

against the result of manual calculations. This allowed testing of a variety of function

blocks to reduce the logic complexity to a minimum. This initial test logic is shown in

figure 4.1.

Once this test logic was confirmed as functional a page of logic was created for the A

Unit Transformer. This drive was chosen as it has a functional energy meter whose value

also exists in T3000. This allowed comparison logic to be created for logic confirmation.

The test logic was copied and the real plant 20 kV level power factor, voltage and current

inputs were connected to the blocks in place of the simulated test inputs. The realtime

power reading from the energy meter was then compared to the realtime calculated reading

generated from the logic. The initial logic instantaneous power matched the energy meter

realtime power reading. The same logic was then created using the voltage and current

readings on the 6.6 kV side of the A Unit Transformer. As there is no 6.6 kV level power

factor reading the same 20 kV power factor has been utilised. These two reading were
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the compared to confirm accuracy. The accuracy of the calculated logic was found to be

within 1 % of the the 20 kV energy meter reading.

The next stage of the tracking logic creation was to expand on the realtime calculated logic

to include blocks for totalisation of the energy consumption. The T3000 integration blocks

were utilised as part of the totalisation function to implement equation 3.17, watthour

meter. This was then fed into a series of first in first out (FIFO) and addition blocks

to allow daily, weekly and monthly figures to be captured. Resets and progression of

these blocks required the connection of logic to a “Time” block that has realtime links

to the application server clock. Since this meter is one of the two meters utilised for

reporting there is a daily, weekly and monthly totalised figures to which the tracking

logic can be compared. The logic shown in figure 4.2 shows the final configuration of the

logic blocks required to achieve the MWhr totalisation. This stage of the project took

some weeks to achieve the required accuracy. This was primarily because the multiple

delays required between the FIFO blocks took many iterations to achieve the required

reset order. After each logic change the logic was tested using the simulation function but

a full 24 hour, midnight to midnight bock, was required to confirm the function. Often

the results reflected in testing by simulation were not reflected in the actual logic response

to the change of day. This was due to the speed of applying simulations is different to

the speed of input changes during realtime solve of the blocks.

The accuracy of this A Unit Transformer logic was proven to be within 2 % of the energy

meter readings for a period of two weeks. Then a page of logic was then created for the

B Unit Transformer at the 20 kV and 6.6 kV level. This was chosen to be the second

drive as it also has field energy metering that exists in T3000. Once B Unit Transformer

24 hour readings were proven logic pages were then created for each feed on the unit 6.6

kV switchboards.

The naming conventions of the current readings in the T3000 caused some confusion as to

which voltage level the current reading was being measured. The confusion was unable to

be clarified by drawings as the poor T3000 naming convention exists on the drawings also.

Physical inspection of the plant was possible in some cases and this assisted in identifying

the current measurement location. This situation mainly occurred on the current readings

on the transformer feeds as it was unclear as to which side of the transformer they were

being taken. The final calculated results guided the final current reading designation.
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Figure 4.1: Initial Test Real Power Calculation Logic - Screen Capture from Tarong Power

Station DCS (Siemens 2015).
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Figure 4.2: Unit 4 A Unit Transformer Energy Tracking Logic - Screen Capture from Tarong

Power Station DCS (Siemens 2015).
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At this point a new page of logic was created to compare the daily totals from the different

sources. The aim of this logic was to ensure that all the calculated data across the drives

is accurate. Once the data was initially summated a large discrepancy existed between

the final sum and the real energy metering reading. Two main reasons for this existed.

The first was that some current readings assumed to be taken at the 6.6 kV level were

actually measured at the 415 V level. This was resolved by replacing the 6.6 kV voltages

with fixed 415 V levels. The second was that no allowance for the switchboard bus ties

existed. To resolve the bus tie error, logic had to be added to account for the status of

the C 6.6 kV bus interconnection to either A or B 6.6 kV bus. The bus tie statuses have

been used to modify the addition of the C bus energy consumption to the correct bus

total. The logic shown below in figure 4.3 is the final configuration of this code for A bus

connected to C bus. Similar logic exists for the B bus. The logic compares the 24 hour

total from the energy meters with the calculated values at the 20 kV level. On the same

page all of the auxiliary loads that feed out of the 6.6 kV unit switchboards are summated

together and then compared with the unit transformer energy meter reading that feeds

them. The summation of the MWhr totals of each bus section agreed with the overall

supply energy meters with an error of under 2 %.

When this tracking logic was complete all energy consuming loads at the layer below the

official auxiliary energy meters were being monitored. This was a major milestone of

the project as data was now available to achieve the aim of understanding the auxiliary

energy usage on a TPS unit.

4.4 MATLAB Models Creation

This section details the way in which the MATLAB models were created. The end aim of

the MATLAB model creation process is to have a model that firstly, accurately represent

the auxiliary energy consumption of a running unit across a wide range of loads. Secondly

it must display the individual load contribution to enable full understanding of the energy

consumption and finally it must be able to be manipulated to test energy reduction options

later in the project.

The order in which the MATLAB models were created was to ensure that the accuracy

of the models was confirmed at every stage of development.
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Figure 4.3: Unit 4 A and C Energy Tracking Logic - Screen Capture from Tarong Power

Station DCS (Siemens 2015).
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4.4.1 Conceptional MATLAB Script Creation

The first stage of the MATLAB model creation process was to create a small script that

would firstly import the voltage, current and power factor data from the 24 hour PIMS

Excel export. The script, InitialAuxPower.m then calculates the daily auxiliary energy

total. In this case the 7th of July was used as both PIMS and T3000 energy tracking

data was available.

Once the data has been imported the script next manipulates the data into separate

vectors to allow power usage calculations to be performed. Array multiplication using

element-by-element multiplication is then used to implement equation 3.10, real or average

power. This calculation gives an output array, for each drive, that contains a second by

second energy consumption value. The script next totals each drive array to give a overall

energy consumption for the 24 hour period. These drive totals are then added together

to give an overall bus total. To prove the script accuracy the result was then compared

to the T3000 tracking logic total and the energy metering total for the 7th of July. The

full script and its output from the 7th of July input file are in Appendix B. The final

values from the July 7th script outputs and the actual plant energy meters are included

below for reference in table 4.2. The table shows that there is only a small error between

the created MATLAB script and the real plant energy meter the percentage difference is

shown in brackets to be at worst 1 %. This confirms the accuracy of the script for future

use in cross checking the accuracy of any future models created.

Plant Energy Meter Total Tracking Logic Total MATLAB Script Output

A Bus 239.04 234.10 (-2 %) 240.37 (+1 %)

B Bus 225.08 223.65 (-0.6 %) 226.39 (+0.5 %)

Aux Total 464.12 457.76 (-1 %) 466.76 (+0.6 %)

Table 4.2: Auxiliary Energy Usage Figures Comparison between Plant Energy Meter, Tracking

Logic and the MATLAB Script Output. Totals are in MW/hr and the Percentage Error in

Presented in Brackets.

The methodology selected was to utilise a data input based model in MATLAB. One

challenge was that 24 hour periods of running at a fixed load do not occur in the TPS

plant. TPS units are constantly tracking the AEMO dispatch requirements after the

bidding process is complete. Stanwell units are no longer the top of the dispatch order
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due to running cost and are more often at partial load rather than full load. Therefore

it was decided to take samples of data from the plant at different loads to determine the

state of the process at various loads. This data was then used as the basis to create 24

hour fixed load files.

The next step in the process was to then create multiple import files for the different load

profiles. Data was retrieved from PIMS for loads between 140 MW and 365 MW. A row

of data at 13 separate load points across the range were selected out of the data. These

rows of data were used to create Excel files of a 24 hour length at those 13 load points.

These files represent the voltage, current and power factor of the plant if it was to remain

locked at a fixed load for the 24 hour duration. It should be noted that when the PIMS

data was reviewed there were small variations in all parameters at the same load. This

is due to the dynamic nature of power production and in particular the continual small

variations in heat generated through the combustion process. That is no two kilograms

of coal consumed by the process are the same. The data around the load points was

reviewed and an average response was selected to be expanded out to a full 24 hour file.

These 13 load files were then fed through the initial import and manipulation script

discussed above. The outputs of the script at the 13 load points will later be used to

compare the to the output of the SIMULINK models to be created at the next stage of

the MATLAB creation process. This was essentially a baseline to use as a comparison

when the SIMULINK models were created. The results are presented below in table 4.3.

Plant 140MW 150MW 175MW 190MW 200MW 225MW

A Bus 193 196 210 211 216 223

B Bus 172 173 182 199 206 212

Aux Total 363 369 396 416 423 437

Plant 250MW 275MW 300MW 310MW 325MW 350MW 365MW

A Bus 237 253 269 271 282 297 303

B Bus 228 243 259 265 266 282 289

Aux Total 474 510 538 545 548 579 592

Table 4.3: MATLAB Script Output - Auxiliary Energy Usage Figures at the 13 Load Points.

The next stage was to create a MATLAB SIMULINK model of the auxiliary energy usage

process for a single unit.
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4.4.2 SIMULINK Auxiliary Power Model Creation

The SIMULINK creation process started with implementing equation 3.10, real or average

power for a single drive. This was achieved using the basic maths blocks in SIMULINK to

solve the power calculation. The result of this calculation gives an instantaneous power

value for the drive in watts. This instantaneous power value is then divide by a constant

1000000 to convert it from watts to megawatts. This instantaneous MW value is then

integrated up over the time of the model simulation, in this case 86401 seconds or 24 hours

1 second, midnight to midnight. The integrated figure is then divided by the number of

seconds in one hour to convert it to MWhrs. In an approach similar to the T3000 test

tracking logic creation the voltage, current and power factor inputs were set to fixed values

to allow testing to occur. Once the testing was successful test logic for a full drive was

completed. In this case the drive selected was A ID Fan. Shown in figure 4.4 below is the

initial test SIMULINK model of A ID Fan at 190 MW. The resulting SIMULINK energy

consumption for the 24 hour period was 52.49 MWhrs with the MATLAB script result

being 52.4854 MWhrs. This proved the concept in SIMULINK and gave a much better

visual display of both the instantaneous and total energy usage with a much reduced

model running time.

Next a lookup table was added to allow selection of the input current value based on a

one dimensional lookup table that cross references the generator load set point, in MW’s,

with the current of the drive. The lookup table contents were obtained from the PIMS

data Excel files. Figure 4.5 below shows the test SIMULINK model of A ID Fan at 190

MW utilising the lookup table to select the correct current required. The resulting energy

consumed was 52.49 MWhrs which proved the accuracy of the lookup table concept.

With the concept of utilising SIMULINK and lookup tables proven the next task was to

create a model of the full unit. The concept was to be expanded to have all voltages,

currents and power factors selected from lookup tables based on the required load set

point. All table data was extracted from the 13 load files created from PIMS data.

The full unit model was created based on the A 6.6kV bus being tied to the C 6.6 kV

bus. This was the state of the 6.6 kV boards when the data was exported from PIMS.

Creating code to select which bus is tied together was not created as it was assessed as

adding no value to achieving the overall project aims. The model was laid out in sections

for clarity and to avoid high levels of crossed lines or repetition in the model structure.
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Figure 4.4: Initial SIMULINK model of Induced Draft Fan - Basic Concept Version.
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Figure 4.5: Initial SIMULINK model of Induced Draft Fan - Lookup Table Concept Version.
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Figure 4.6: Auxiliary SIMULINK Model - Power Version of Full Unit - A Bus Common

Calculations.

A common power supply section was first setup for each bus section. Figure 4.6 is the

power supply calculations for A 6.6 kV bus. Note that the bus voltage and power factor

are selected from one dimensional lookup tables. The same code was used for B 6.6 kV

bus and both A and B 415 V bus. As discussed in previous sections the 415 V bus power

supply calculations require the use of a fixed value of 415 V as no field measurement is

available to create a lookup table.

Beneath each of the common power supply sections the drives that are fed from that

particular bus section were laid out in order. Each drive then takes the corrected bus

voltage feed from the common calculations section. This bus voltage is then multiplied

with the current output from the MW to current lookup table to give an instantaneous

energy consumption reading in watts. This is then converted and totalised to give MWhrs

in the same way as the trial model. All loads on the one bus section are then summated to

give an overall energy consumption for the bus. The two bus section energy consumption

figures are then added together to give a total MWhr usage for the 24 hour period at

that load set point. Data links to the workspace were added to allow results to be more
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easily accessed and reviewed. Below in Figure 4.7 is a section of the power model showing

a couple of the A bus load calculations and the load totals. The data for the MW to

current, voltage and power factor lookup tables was taken from the plant PIMS data

utilised during the concept script creation stage of the project. Each table spans the 140

MW and 365 MW load range.

Table 4.4 below contains part of the results data from the power model at 190 MW.

The result from the script at 190 MW has also been included. It shows that there is

only a small discrepancy, about 200 kW(0.04 %), between the load sum calculations from

the script and the load sum calculations from the model. This proves the accuracy of

the SIMULINK power based model as the script accuracy was previously proven against

the plant energy meter reading. There is a slightly larger discrepancy between the total

power and the supply transformer sum of about 6 MW(1.5 %). This discrepancy also

occurs in the T3000 tracking logic with the load summation being slightly different to

the transformer calculation and the transformer calculation being closest to the energy

metering measurement. The fact that the power factors are only measured at these

transformers leads to the comment the transformer calculation is more accurate. It is

surmised that the same error is apparent in both the T3000 logic and the model because

the same common power factor, raw current and voltage values are being used therefore

the error is very similar.

Plant Power Model Load Sum Script Load Sum Script Transformer Sum

A Bus 210.55 210.65 (0.05 %) 214.89 (2.02 %)

B Bus 199.22 199.28 (0.03 %) 201.51 (1.14 %)

Aux Total 409.77 409.93 (0.4 %) 416.39 (1.5 %)

Table 4.4: Auxiliary Energy Usage Figures Comparison between the MATLAB Script Output

and the Power Based Model Output at 190 MW. Totals are in MWhrs and the Percentage

Error in Presented in Brackets.

Below are some assumptions and additional notes that are relevant to the use of the power

model. The assumptions were required as not all drives were in service when the PIMS

data was captured, that is there were some drives with missing data. The additional

notes guide the user and outline the limits of the model. The full power model is located

in Appendix C.
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Figure 4.7: Auxiliary SIMULINK Model - Power Version of Full Unit - A Bus Load Calcula-

tions.
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Model Setup - Duty Pump Sections and Generator Load Set Point need to be setup

using file AuxModel Setup Results.m for a single load set point or AuxPowerMW-

Step.m to step through a range of loads;

Model Limits - The Load Range of the model is 140 MW to 356 MW, which reflects

the operational range of the plant;

Model Outputs - The Model Outputs the Total MW/hrs from each drive and overall

totals to the workspace as arrays;

CEPs - A CEP load table is a copy of B CEP as B was duty during data capture,

only one pump is in service at any time, both motor and pump arrangements are

identical;

BFPs - A BFP load table is an average of B BFP and C BFP as B-C were duty during

data capture, two of the three pumps are in service at any time, all three motor and

pump arrangements are identical;

415V Loads - No field 415 V level voltage measurement available in PIMS so a fixed

voltage used, 415 V;

CW Pumps - CW Pump switch inserted to allow isolation of 1 drive below a selected

MW level;

Pulverisers - Pulveriser loads are under the 415V transformer loads. There are 3 to 5

mills are in service across the load range.

The auxiliary power usage SIMULINK model based on the drive power consumption was

found, that while accurate, was limited in its application for investigating potential energy

reduction options. This was due to only one drive set being able to be freely manipulated,

this being the CW pumps. This could be achieved though modification of the generator

load at which the model utilises one or two pumps. The next step was seen to be the

creation of a model that included the position of the drive load elements such as vanes,

dampers, scoops and valves. The next section is an outline of the modifications to the

power model that were made to include both the load element positions and bias inputs

to allow load modification.
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4.4.3 SIMULINK Auxiliary Position Model Creation

Firstly all of the loads were assessed to see if a direct link could be made between them and

a variable load element. This assessment included if the manipulation of these elements

then allowed load to be shifted to another drive without disrupting the overall power

generation process. It did not assess any potential long term plant impacts from the load

shifting. The load assessment in shown below in table 4.5.

Plant Area Drive Element Plant Configuration Capable of Load Share

A FD Fan Outlet Vane 1/2 of 2 Yes

A ID Fan Inlet Vane 1/2 of 2 Yes

A PA Fan Outlet Vane 1/2 of 2 Yes

A CEP Outlet Valve 1 of 2 No

C BFP Scoop Thruster 2/3 of 3 Yes

A BFP Scoop Thruster 2/3 of 3 Yes

A CW Pump Outlet Valve 1/2 of 2 Yes

A Precip DC Pulse 2 of 2 No

Bunkering Multiple Motors 1 of 1 No

A 415V Bd Multiple Motors 1 of 1 No

C 415V Bd Multiple Motors 1 of 1 No

B 415V Bd Multiple Motors 1 of 1 No

B FD Fan Outlet Vane 1/2 of 2 Yes

B ID Fan Inlet Vane 1/2 of 2 Yes

B PA Fan Outlet Vane 1/2 of 2 Yes

B CEP Outlet Valve 1 of 2 No

B BFP Scoop Thruster 2 of 3 Yes

B CW Pump Outlet Valve 1/2 of 2 Yes

B Precip DC Pulse 2 of 2 No

Table 4.5: Assessment of Auxiliary Load Drive Elements, Plant Configuration and there

Capacity for Load Share.

Once it was established which drives could load share, time was then spent to find PIMS

data on the controlling element for those drives. These elements positions were found to

archived in both T3000 and PIMS. The PIMS data for the load elements was exported
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for the same periods of time that the load data was exported. From this data, look up

tables were built to allow selection of load element position at different loads. These look

up tables were added to the SIMULINK power based model in front of the existing MW

to current tables. This meant that for those elements that were assessed as being able to

load share the look up tables were then split into two parts. Firstly a MW to position

table and secondly a position to current table. This split allowed a point at which bias

inputs could added. The bias inputs were added in such a way that if load was removed

from one drive it is automatically added to the corresponding drive with whom it can load

share. In this way it was proposed that the overall motive load would remain the same.

An example is if the “A” FD fan load is increased by 10 % of vane position then the “B”

vane position is decreased by 10 %. Below in Figure 4.8 is a section of the position model

showing a couple of the drive load calculations with the split look up tables and the bias

inputs to allow load variation. The setup script was expanded to add the bias inputs

which allows the plant configuration to be modified before the running of the model.

The script also output the key figures for the plant loads to allow later interpretation.

The same assumptions and application notes from the power model apply to the position

model. The full position model is located in Appendix D.

The investigation of the auxiliary load manipulation through bias of load elements was

found to be accurate and assisted in building a clearer picture unit auxiliary load con-

sumption. The model was found to be limited in the sense that while load element position

was able to be manipulated it was not clear whether transferring the same position change

to another load element would give the same drive capacity to the other drive. To give an

example if the scoop position on one BFP was reduced by 10 % and the scoop position

of another BFP was increase by 10 % would the net feedwater flow required by the unit

remain the same? If all element responses were linear this would be the case but this is

unlikely with the known characteristics of the elements involved. It was decided to create

a SIMULINK process based model. The process of creating the process based model will

be presented in the next section.

4.4.4 SIMULINK Auxiliary Process Model Creation

Firstly, all of the loads previously identified as being able to load share were assessed to

see which process measurement would best reflect a change to the load element. The load
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Figure 4.8: Auxiliary SIMULINK Model - Position Version of Full Unit - A Bus Load Calcu-

lations.
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assessment in shown below in table 4.6 only includes those that can load share.

Plant Area Drive Element Process Measurement Capable of Load Share

A FD Fan Outlet Vane Air Flow Yes

A ID Fan Inlet Vane Furnace Pressure Yes

A PA Fan Outlet Vane Bus Pressure Yes

C BFP Scoop Thruster Suction Water Flow Yes

A BFP Scoop Thruster Suction Water Flow Yes

B FD Fan Outlet Vane Air Flow Yes

B ID Fan Inlet Vane Furnace Pressure Yes

B PA Fan Outlet Vane Bus Pressure Yes

B BFP Scoop Thruster Suction Water Flow Yes

Table 4.6: Auxiliary Loads and their Identified Process Measurement.

Once the loads were assessed and the process measurement identified, the data relating

to those processes was exported from PIMS. The data was then processed and points

were identified that reflected the state of the process across the load range of the model.

Specifically at the same 13 load points utilised in the power model. The SIMULINK

position based model was used as the basis of the creation of the SIMULINK process

based model. The position model was modified to replace the position data with process

data. This meant that the split look up tables then became MW to process and then

process to current. This then allowed the auxiliary power usage profile to be modified by

the bias blocks by sharing process flow. The model was then able to reflect the impact of

the load sharing on the running processes required by the unit to ensure load generation

was not interrupted. This was not possible with either the power or position models. The

same bias names were used so no modification of the setup script was required. The use of

the bias input then changed from 0-100% to the process scale for example the feedwater

flow 0-566 kilograms per second.

The same assumptions and application notes from the power and position model apply

to the process model with the relevant additional assumptions below. The additional

assumptions were required as not all the process measurements being modified exist in

the field as measurements. The full process model is located in Appendix E.

ID Fans - There is no available flow measurement to assist in process sharing of this
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plant group, control is to furnace pressure but flow is the loading factor of the ID

fan. Hence position sharing was left in place for these drives;

PA Fans - There is no direct PA fan flow measurement to assist in process sharing of

this plant group, control is to PA bus pressure but flow is the loading factor of the

PA fan. Air flow readings where PA enters the mills are available and these are

combined in T3000 to give a total PA flow reading. This has been assumed as being

equally shared between the PA fans. Hence the total PA flow reading was halved

and used for the lookup table points.

This SIMULINK process based model was found to be robust model with which to explore

the possible energy reduction possibilities. Figure 4.9 shows a section of the process model

showing a couple of the drive load calculations with the split look up tables and the bias

inputs to allow load variation.

4.4.5 Model Comparison Data

Table 4.7 below shows the comparison of the results between the MATLAB script and

the three SIMULINK models.

Plant MATLAB

Script

Model

SIMULINK

Power

Model

SIMULINK

Position

Model

SIMULINK

Process

Model

A Bus 210.65 210.18 210.65 210.08

B Bus 199.29 199.22 198.45 205.08

Aux Total 409.93 409.77 408.63 415.15

Table 4.7: Auxiliary Energy Usage Figures Comparison between the Three SIMULINK Models

at 190MW. Totals are in MWhrs.

4.5 Conclusion

This chapter presented the detail of the methodology selected. The selection of the mul-

tifaceted approach of literature review, data based MATLAB modeling and T3000 logic
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Figure 4.9: Auxiliary SIMULINK Model - Process Version of Full Unit - A Bus Load Calcu-

lations
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creation approach was justified as being required due to the project outcomes secondary

aims to alter the running plant. Being a highly dynamic power station environment the

dual approach and comparison to the installed energy meters gives the confidence needed

to propose long term plant change. The steps taken to implement the methodology were

presented in the order undertaken to develop the understanding of the underlying pro-

cesses behind the high level methods. The next chapter will present the results of the

method outputs.



Chapter 5

Results and Data Analysis

This chapter presents in raw form the results from the T3000 tracking logic and the

MATLAB models.

This chapter is to analyse the data collected from all sources and evaluate for future use.

The validity of both the T3000 tracking logic and the MATLAB models will be explored

to assess their suitability for use in proposing and testing reduction options. A total cost

to the business and the environment will also be presented.

5.1 Performance Reports Data

This section presents the data collected from the weekly and monthly Tarong Power

Station performance reports for Unit 4. This unit has been presented as it was the first to

have T3000 tracking logic installed. The other units show very similar results. The data

shows the generated MWhrs of the unit along side the auxiliary MWhrs consumed and

the financial impact of the consumption. The average August Queensland pool price of

$55 per MWhr has been used for the financial impact value.(Zecevic & EEUAA 2015) The

environmental impact is also included to show the influence of the additional generation

required to run auxiliaries. If auxiliary usage was reduced then the additional generation

would not be required therefore reducing emissions and running costs. This additional

available generation could alternately be sold to the market. The Stanwell corporation

figure of 3.664 tonnes of CO2 per one tonne of coal consumed has been used as the
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environmental impact figure. (Sands & Blake 2015)

The data table below 5.1 below is an extract of the vital statistics from the monthly TPS

performance reports that relate to auxiliary energy consumption. An additional column

for the estimated financial cost of this auxiliary energy usage has been added. This table

then gives a complete snapshot of the financial and environmental impact of the auxiliary

energy consumption requirements of the Tarong Power Station Units.

Unit 4 Aux Usage Aux % Aux Cost Coal CO2

Sept 15 19071 MWhr 7.8 % $1,048,905 8915 t 32664 t

Aug 15 18499 MWhr 8.0 % $1,017,445 8679 t 31799 t

Jul 15 16586 MWhr 8.2 % $912,230 7883 t 28883 t

Jun 15 15839 MWhr 8.3 % $871,145 8083 t 29616 t

May 15 17632 MWhr 8.0 % $969,760 8242 t 30198 t

Apr 15 16197 MWhr 8.2 % $890,835 7318 t 26813 t

Mar 15 14474 MWhr 9.1 % $796,070 6792 t 24889 t

Feb 15 13265 MWhr 8.9 % $729,575 6234 t 22844 t

Jan 15 12993 MWhr 9.8 % $715,615 6425 t 23544 t

Dec 14 13847 MWhr 9.3 % $761,585 7162 t 26244 t

Nov 14 12022 MWhr 10.3 % $661,210 5917 t 21682 t

Table 5.1: Auxiliary Energy Usage Figures - Unit 4 for the Last 10 Months (Sands & Blake

2015)

This Unit 4 auxiliary energy usage figures shown in table 5.1 that the monthly cost both in

financial and environmental terms is significant and that even small reductions could give

tangible returns to the business. The auxiliary energy required for the month is given in

both MWhrs and as a percentage of total generation. The effect discussed in the literature

review chapter of overseas power station requiring less auxiliary energy, as a percentage,

when the plants are running at a higher load factor can be seen within these figures.

That is during months that the plant runs at a higher load profile the required auxiliary

energy, as a percentage of total generation, is reduced. For example in September 2015

the average load of the unit was 339 MW and the cost of running the auxiliaries was over

$1 million dollars but the percentage of generation was 7.8 %. Whereas during November

2014 the market was depressed with a lower load profile leading to an average unit load of

162 MW. During this month the percentage of generation required to run the auxiliaries



5.2 T3000 Daily Auxiliary Total Data 78

was 10.3 %. These figures show a clear link between the unit load profile and the unit

auxiliary energy usage efficiency.

5.2 T3000 Daily Auxiliary Total Data

This section presents a selection of the data collected from the T3000 tracking logic created

during this project. This data is then analysed.

The data table 5.3 at the end of this section is a selection of daily totals from the Unit 4

T3000 energy tracking logic created as part of this project. The dates selected represent

a cross section of the average generator load set points since the T3000 logic was made

active. The averages have been in the mid to high load range for the units. The table

also includes the real 24 hour totals from the plant installed energy meters, marked as

(Real), for comparison to the tracking figures.

The Unit 4 figures confirm that there is only a small difference between the calculated

and metered energy figures. The data shows that there a some plant areas contributions

that can be considered as negligible. The precipitator, bunkering and unit 415V boards,

which the mills are a part, only contribute relatively small amount of load to the overall

total. The PA fans and CEP contribute a medium amount of load to the overall total.

With the higher contributing loads being the CW pumps, BFP’s, FD fans and ID fans.

The load contributions of each plant area change over the load range of the generator but

the the four major auxiliary load consumers do not change.

This leads to the question “How does the load distribution of TPS’s auxiliary energy con-

sumption compare to other stations?” The load distribution of American power stations

was presented in the literature review chapter and will be used again now for comparison.

The figure 5.1 shows two pie charts, the first is the typical distribution of auxiliary power

consumption within American coal fired power plant (EPRI 2011). The second chart is

the average auxiliary load distribution at TPS. The load distribution shown here is based

on the average of results from the created T3000 energy tracking logics daily 24 hour

totals. The distribution shows that the four major contributors in America equates to

approximately 75 % of the total load and are the BFP, CW pumps, ID fans and PA fans.

When this is compared to the TPS result it can be seen that the four highest contributors

are the BFP’s, ID fans, CW pumps and FD fans. Together their contribution equates
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to approximately 80 % of the total auxiliary load. Whilst there is some differences the

primary contributor in both results is the BFP group. With the CW pumps and ID fans

being the next largest contributors, all be it in the reverse order.

The pulverisers or mills contribute approximately 9-10 % of the total load and as such

the project created T3000 tracking logic to monitor and totalise the mills energy usage.

The data table 5.2 below is a selection of daily totals, for the 415 V pulverisers, from

the T3000 energy tracking logic. It can be seen that generally the load is shared evenly

between the mills that are in service.

Date 6/07/2015 8/07/2015 28/07/2015 6/08/2015 8/10/2015

A Pulv 11.67 6.39 6.78 6.89 6.44

B Pulv 0 6 6.66 6.56 6.43

C Pulv 9.22 6.1 0 0 5.42

D Pulv 8.76 5.61 6.4 6.41 5.89

E Pulv 3.25 6.17 6.6 6.57 6.24

F Pulv 0 0 0 0 0

Table 5.2: Auxiliary Energy Usage Figures in MWhrs - Pulverisers - Output from T3000

Energy Tracking Logic Daily Totals.

This section has presented an overview of the data collected from the Unit 4 T3000

energy tracking logic at TPS created during this project. This has shown that the major

contributors and the load distribution of auxiliary energy consumption is comparable to

other stations around the world. The data has also identified that only four plant areas,

or nine major drives, contribute 80 % of the total auxiliary load consumption.
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Figure 5.1: A Comparison of the Typical Auxiliary Load Distribution in Coal Fired Power

Plant to the Average Tarong Auxiliary Load (EPRI 2011).
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Date 6/07/2015 8/07/2015 28/07/2015 6/08/2015 8/10/2015

Ave Gen Load 244.25 255.71 289.50 290.88 325.79

Generated 5982 6137 6948 6981 7819

A Tx (Real) 241.38 244.48 256.18 256.93 285.38

A Gen TX 242.83 245.83 257.59 258.38 286.98

A Unit TX 236.65 239.64 250.93 251.67 278.15

A PA Fan 14.79 15 15.69 15.75 15.58

A FD Fan 22.42 22.57 25.1 25.02 30.1

A ID Fan 54.15 54.36 56.15 55.9 57.08

A CEP 0 0 20.11 20.21 21

A CW Pump 33.33 33.44 34 34 34.04

A BFP 0 0 90.76 91.62 102.81

A 415 V Bd 27.72 28.4 11.33 11.42 18.92

A Precip 0.99 1 1.12 1.13 1.14

C 415 V Bd 8.65 8.73 15.99 15.77 15.47

C BFP 74.49 75.91 89.03 0 0

Bunkering 0.11 0.12 0.14 0.16 0.12

B Tx (Real) 228.67 231.28 262.72 263.53 278.2

B Gen TX 230 232.59 264.16 265.08 279.64

B Unit TX 224.24 226.8 256.82 257.57 270.94

B PA Fan 14.63 14.86 15.59 15.45 15.24

B FD Fan 22.17 22.29 24.49 24.41 26.32

B ID Fan 54.22 54.49 56.04 55.54 57.53

B CEP 18.9 19.09 0 0 0

B CW Pump 34.3 34.41 34.84 34.8 34.72

B BFP 75.66 77.08 0 90.54 101.89

B 415 V Bd 7.17 7.32 19.94 19.39 18.7

B Precip 0.07 0.08 0.07 0.07 0.07

Table 5.3: Unit 4 Auxiliary Energy Usage Figures in MWhrs - All Plant Areas - Output from

T3000 Energy Tracking Logic Daily Totals.
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5.3 MATLAB Model Output Data

This section presents the outputs from the MATLAB models created during this project.

The methodology section discussed the evolution of the models and proved the accuracy

of the overall auxiliary energy figure produced by the models against the plant installed

energy meters. Each of the models produced not only an overall auxiliary consumption

figure, at different generator load set points, but also the consumption figures for each of

the individual drives.

5.3.1 SIMULINK Auxiliary Power Model

Table 5.5 appears at the end of the section and is the output of the Power Model when

run through the auxiliary power MW step m script. This gives a baseline result for each

drive to use for future reference.

When these figures are combined into plant area totals the same trends in major energy

consumption identified in the T3000 energy tracking data becomes apparent in the model

output data also. Below in table 5.4 is the total energy consumption by plant area based

on the Power Model output data.

Gen Load 150 175 200 225 250 275 300 325 350

CEP Total 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

PA Total 25.1 28.7 26.1 28.0 29.5 30.2 34.0 33.7 34.1

Other Total 32.7 35.4 34.8 36.0 37.0 40.2 39.5 39.0 39.4

FD Total 36.3 37.8 38.1 40.0 43.8 46.5 51.4 56.3 62.8

CW Total 64.2 65.4 66.3 66.8 67.6 68.8 69.2 69.1 69.6

ID Total 97.3 101.2 103.4 106.4 109.7 110.8 114.3 115.2 117.3

BFP Total 93.7 103.8 127.7 131.3 150.1 171.4 189.2 198.5 217.6

Aux Total 368.1 391.8 421.8 435.2 465.2 496.6 527.5 548.0 578.4

Table 5.4: Auxiliary Energy Usage Figures in MWhrs - Plant Area Totals from SIMULINK

Power Model.

When these figures are presented graphically it can be seen that some loads do not increase
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Figure 5.2: Tarong Power Station Baseline Auxiliary Energy Consumption - Power Model

Plant Totals.

much of the load range, the CW pumps are good example of a static load. Other loads

however increase considerably as the machine loads up, the BFPs are an example of this

type of load. The power model plant totals are presented in figure 5.2.
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Gen Load 150 175 200 225 250 275 300 325 350

A FD Fan 18.3 19.1 19.0 20.0 22.0 23.2 25.9 28.3 31.5

A ID Fan 48.7 50.8 51.9 53.4 54.8 55.3 57.8 57.1 58.5

A PA Fan 12.7 14.4 13.1 14.1 14.9 15.1 17.0 16.8 17.0

A CEP 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

A BFP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C BFP 48.2 54.7 63.5 65.4 74.9 85.4 94.6 99.3 107.7

A CW Pmp 32.0 32.5 32.7 33.0 33.3 33.9 34.0 33.9 34.2

A Precip 1.0 1.5 0.8 0.9 0.8 1.1 1.3 1.1 1.0

Bunker 0.0 0.0 0.0 0.0 0.4 0.4 0.1 0.2 0.2

A 415V 15.8 17.2 26.6 27.7 27.6 30.2 28.8 30.4 30.7

C 415V 2.8 2.8 8.1 8.4 8.6 9.0 9.2 15.4 16.1

B FD Fan 18.0 18.7 19.0 20.0 21.9 23.2 25.5 28.0 31.3

B ID Fan 48.6 50.4 51.5 53.0 54.9 55.5 56.5 58.0 58.8

B PA Fan 12.4 14.3 12.9 13.9 14.7 15.1 17.0 16.9 17.1

B CEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B BFP 45.4 49.2 64.1 65.9 75.1 86.0 94.6 99.2 109.9

B CW Pmp 32.3 32.9 33.6 33.8 34.3 34.9 35.1 35.2 35.4

B Precip 0.9 1.1 1.2 0.8 1.2 1.0 1.1 1.3 1.2

B 415V 15.0 15.7 6.2 6.5 7.1 7.6 8.1 6.2 6.3

Gen Total 3600 4200 4800 5400 6000 6600 7200 7800 8400

Table 5.5: Auxiliary Energy Usage Figures per Drive in MWhrs - Output from SIMULINK

Power Model.
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5.3.2 SIMULINK Auxiliary Position Model

The output of the Position Model when run through the auxiliary power MW step m script

is presented in table 5.7 at the end of this section. This gives a baseline result output

from the Position Model. These drive level consumption figures match the outputs from

the Power model.

When these figures are combined into plant area totals the same trends in major energy

consumption identified in the T3000 energy tracking data becomes apparent in the model

output data also. Below in table 5.6 is the total energy consumption by plant area based

on the Position Model output data.

Gen Load 150 175 200 225 250 275 300 325 350

CEP Total 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

PA Total 25.1 28.7 26.1 28.0 29.5 30.2 34.0 33.7 34.1

Oth Total 32.7 35.4 34.8 36.0 37.0 40.2 39.5 39.0 39.4

FD Total 36.3 38.1 38.1 40.0 43.8 46.5 51.4 55.6 62.8

CW Total 64.2 65.4 66.3 66.8 67.6 68.8 69.2 69.1 69.6

ID Total 97.3 101.2 104.8 106.4 109.7 110.8 114.3 115.2 117.3

BFP Total 93.7 103.8 127.7 131.3 150.1 171.4 189.2 198.5 217.6

Aux Total 368.1 392.1 423.2 435.1 465.2 496.6 527.5 547.2 578.4

Table 5.6: Auxiliary Energy Usage Figures in MWhrs - Plant Area Totals from SIMULINK

Position Model.

Whilst the results of the position model are very similar they are presented here in an

alternate graphically form to examine them from another perspective. With the data

presented in this form it can be seen that the total auxiliary load consumed for a 24 hour

period, at different generator load set points, increases as the generator output increases.

It is however apparent that as the generator load increases the rate at which the auxiliary

power loads increases is reduced. An example is that as load increases from 150 MW or

200 MW the auxiliary power requirement increased by approximately 50 MWhrs. But

when the load increases from 300 MW to 350 MW the auxiliary load increase is only 44

MWhrs. The position model plant totals are presented in figure 5.3.
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Figure 5.3: Tarong Power Station Baseline Auxiliary Energy Consumption - Position Model

Plant Totals.
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Gen Load 150 175 200 225 250 275 300 325 350

A FD Fan 18.3 19.0 19.0 20.0 22.0 23.2 25.9 27.6 31.5

A ID Fan 48.7 50.8 52.5 53.4 54.8 55.3 57.8 57.1 58.5

A PA Fan 12.7 14.4 13.1 14.1 14.9 15.1 17.0 16.8 17.0

A CEP 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

A BFP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C BFP 48.3 54.6 63.5 65.4 74.9 85.4 94.6 99.3 107.7

A Precip 1.0 1.5 0.8 0.9 0.7 1.1 1.3 1.1 1.0

Bunker 0.0 0.0 0.0 0.0 0.4 0.4 0.1 0.2 0.1

A 415V 15.8 17.2 26.6 27.7 27.6 30.2 28.8 30.4 30.7

C 415V 2.8 2.8 8.1 8.4 8.6 9.0 9.2 15.4 16.1

B FD Fan 18.0 19.1 19.0 20.0 21.8 23.2 25.5 28.0 31.3

B ID Fan 48.6 50.4 52.3 53.0 54.9 55.5 56.5 58.0 58.8

B PA Fan 12.4 14.3 12.9 13.9 14.7 15.1 17.0 16.9 17.1

B CEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B BFP 45.4 49.2 64.1 65.9 75.1 86.0 94.6 99.2 109.9

B CW Pmp 32.3 32.9 33.6 33.8 34.3 34.9 35.1 35.2 35.4

B Precip 0.9 1.1 1.2 0.8 1.2 1.0 1.1 1.3 1.2

B 415V 15.0 15.7 6.2 6.5 7.1 7.6 8.1 6.2 6.3

Gen Total 3600 4200 4800 5400 6000 6600 7200 7800 8400

Table 5.7: Auxiliary Energy Usage Figures per Drive in MWhrs - Output from SIMULINK

Position Model.
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5.3.3 SIMULINK Auxiliary Process Model

The output from the Process model is presented in table 5.9 at the end of this section.

It contains the output of the Process Model when run through the auxiliary power MW

step m script. This gives a baseline result output from the Process Model. These drive

level consumption figures match the outputs from the Power and Position models.

When these figures are combined into plant area totals the same trends in major energy

consumption identified in the T3000 energy tracking data becomes apparent in the model

output data also. Below in table 5.8 is the total energy consumption by plant area based

on the Process Model output data.

Gen Load 150 175 200 225 250 275 300 325 350

FD Total 36.3 37.8 38.0 40.0 43.8 46.5 51.4 56.3 62.8

ID Total 97.3 101.2 104.8 106.4 109.7 110.8 114.3 115.2 117.3

PA Total 25.1 28.7 26.1 28.0 29.5 30.2 34.0 33.7 34.1

BFP Total 93.1 103.8 121.0 131.3 150.1 171.4 189.2 198.5 217.6

CEP Total 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

CW Total 64.2 65.4 66.3 66.8 67.6 68.8 69.2 69.1 69.6

Oth Total 32.7 35.4 34.8 36.0 37.0 40.2 39.5 39.0 39.4

A Total 195.6 209.7 233.8 241.2 256.1 273.5 289.5 303.2 318.3

B Total 172.0 182.1 182.7 193.9 209.1 223.1 238.0 244.8 260.1

Aux Total 367.5 391.8 416.5 435.1 465.2 496.6 527.5 548.0 578.4

Table 5.8: Auxiliary Energy Usage Figures in MWhrs - Plant Area Totals from SIMULINK

Process Model.

An third alternate presentation of the baseline results of the process model plant totals

are presented in figure 5.4. The steep increase of the BFP across the load range is a key

point. The other noticeable feature is the steady increase of the ID fan load in contrast

the to continually changing slope of the FD fan group.
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Figure 5.4: Tarong Power Station Baseline Auxiliary Energy Consumption - Process Model

Plant Totals.
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Gen Load 150 175 200 225 250 275 300 325 350

A FD Fan 18.3 19.1 19.0 20.0 22.0 23.2 25.9 28.3 31.5

A ID Fan 48.7 50.8 52.5 53.4 54.8 55.3 57.8 57.1 58.5

A PA Fan 12.7 14.4 13.1 14.1 14.9 15.1 17.0 16.8 17.0

A CEP 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

A BFP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C BFP 48.3 54.6 63.5 65.4 74.9 85.4 94.6 99.3 107.7

A CW Pmp 32.0 32.5 32.7 33.0 33.3 33.9 34.0 33.9 34.2

A Precip 1.0 1.5 0.8 0.9 0.7 1.1 1.3 1.1 1.0

Bunker 0.0 0.0 0.0 0.0 0.4 0.4 0.1 0.2 0.1

A 415V 15.8 17.2 26.6 27.7 27.6 30.2 28.8 30.4 30.7

C 415V 2.8 2.8 8.1 8.4 8.6 9.0 9.2 15.4 16.1

B FD Fan 18.0 18.6 19.0 20.0 21.8 23.2 25.5 28.0 31.3

B ID Fan 48.6 50.4 52.3 53.0 54.9 55.5 56.5 58.0 58.8

B PA Fan 12.4 14.3 12.9 13.9 14.7 15.1 17.0 16.9 17.1

B CEP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B BFP 44.9 49.2 57.5 65.9 75.1 86.0 94.6 99.2 109.9

B CW Pmp 32.3 32.9 33.6 33.8 34.3 34.9 35.1 35.2 35.4

B Precip 0.9 1.1 1.2 0.8 1.2 1.0 1.1 1.3 1.2

B 415V 15.0 15.7 6.2 6.5 7.1 7.6 8.1 6.2 6.3

Gen Total 3600 4200 4800 5400 6000 6600 7200 7800 8400

Table 5.9: Auxiliary Energy Usage Figures per Drive in MWhrs - Output from SIMULINK

Process Model.



5.4 Overall Auxiliary Energy Usage 91

5.4 Overall Auxiliary Energy Usage

This section is to discuss the overall auxiliary energy usage of Tarong Power Station and

present the baseline data against which future reduction options can be assessed.

The units auxiliary energy consumption at any single point in time can be represented

by a figure that is how many kWhrs auxiliary energy is required to produce 1 MWhr of

generator output. There is no single figure that can represent this value as the auxiliary

energy consumption efficiency improves as the generator load set point increases. The

baseline energy consumption has been calculated on the output of the process based

SIMULINK model. This auxiliary energy requirement is at a high of approximately 100

kWhrs per 1 MWhr generated at a generator load set point of 150 MW. The need for

auxiliary energy decays away to a low of approximately 70 kWhrs per 1 MWhr generated

at a generator load set point of 350 MW. This aligns with the discussion in earlier chapters

that the TPS units were design to be continuously running as a 350 MW base load station.

This baseline energy consumption pattern can be approximated by the mathematical

formula shown below.

y = 61 + 150e
−x
118 (5.1)

Where

y - is the average or real auxiliary power required by the unit to produce 1 MWhr of

power [kWhr];

x - is the generator load set point [MW].

When this equation is implemented across the generator load range the output plot is

shown in figure 5.5 being compared to the process model output across the same load

range. The result shows that the mathematical equation proposed can be utilised to

approximate the actual plant auxiliary energy needs.
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Figure 5.5: Tarong Power Station Baseline Auxiliary Energy Consumption - Process Model

versus Formula.
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5.5 Other Data

This section discusses other data collected that requires exploration before the reduction

proposals are discussed in the next chapter.

Boiler feed pump loading is area that additional data has been collected. Being a major

auxiliary power contributor some additional knowledge of the pump system has been

collected. It was uncovered during this investigation that the pump curve and the actual

loading of the pump against this curve is monitored in realtime within T3000. A snap

shot of the A BFP pump curve, with the unit running at 350 MW is include in figure 5.6.

This shows that with the unit running at full load that the pumps are running at almost

there design limits. At this load that scoop position is approximately 50 % and the load

current is approximately 500 A. This current is approaching the maximum limit of 540

A found in the pump design data and T3000 alarms.

Some of load profiles from Unit 4 over the past year were collected to demonstrate the

range of loads that occur during the normal running of a unit. Each profile is a 24 hour

snapshot of the unit generator load output in MW. These are presented in figure 5.7 and

show that a daily unit load profile can vary considerably depending on market conditions,

time of year and Stanwell’s portfolio status. A unit can run for long periods at a set load

or if the market is particularly active it can change load continually throughout the day.

The first trend, on the top left, shows the unit running half the time at high load and

half the time at medium to low load. The second trend on the top right shows a high

load day with the load only coming down from 365 MW during the night and only then

to medium load of 220 MW. The bottom left trend shows a day when the market is over

supplied during a low state load period, the unit is at 140 MW all day. The last trend on

the bottom right shows a fairly depressed market day with the load being primarily 200

MW with periods at 140 MW.
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Figure 5.6: A Boiler Feed Pump Curve with the Pump Loading Shown in Realtime - Unit 4A

BFP 350MW (Siemens 2015).
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Figure 5.7: Load Profiles of Unit 4 Tarong Power Station. Top Left, 365MW-190MW. Top

Right, 365MW-220MW. Bottom Left, 140MW. Bottom Right, 140-200MW (Siemens 2015).
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5.6 Data Shortcomings

This section discusses any identified shortcomings in the data collected from all sources.

In the area of the pulverisers or mills the MATLAB models created did not go down to

the level of individual mill loading. The total mill consumption calculated from T3000

tracking logic is 5.8 % of the total auxiliary consumption. The mill loading was included

in the higher level measurement of the unit 415 V transformers within the MATLAB

models. These transformers supply a 415 V distribution board that supplies multiple

drives. The mill motors are fed from these boards. Time was not spent on drives below

the 6.6 kV level as the data has shown that 80 % of the energy consumption is contributed

by the four major 6.6 kV drive groups, BFP’s, ID fans, FD fans and CW pumps.

There was no PA flow data available at the output of the PA fans themselves. The vane

position controls to the PA bus duct pressure so the flow is not directly required. The

individual PA air flows into the mills are measured and these six figures are combined into

an overall PA air flow. The data within the process model look up tables that relates to

the PA fans air flow used this combined figure divided by two as the required flow data.

This has assumed that the total air flow is supplied equally by the 2 fans. For this project

the equal distribution of flow is seen to be fit for purpose and allows the sharing of air

flows to be explored.

There is no ID fan air flow readings available with the vane position controlling the furnace

pressure as a negative. No individual air flows leaving the boiler are available meaning

that the position sharing arrangement from the position model has been left in place for

the process model.

The model makes no specific allowance for the BFP leak off operation. The leak off valves

operate between the BFP outlet and the DA to ensure minimum flow through the BFP is

always achieved. As the models range starts at 140MW the leak off valves are normally

closed.

The data within the models in relation to the precipitator and bunkering boards is con-

sidered to be slightly flawed. These flaws have been allowed to stay as the total auxiliary

power consumption of these systems is less than 0.5 % of the total. The models look-up

tables could not easily be made to accurately reflect the actual load characteristics of
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these process. This is primarily because of the irregular batch process nature of these

systems and the shared output of the bunkering routes. The bunkering routes 3 and 4 can

both feed Unit 3, Unit 4 and Tarong North boiler bunkers. These routes are only started,

on average, once per shift to top-up the boiler bunkers. This is further complicated by

the fact that route 4 may top-up Unit 3 and 4 but the auxiliary power consumption is

only registered on the Unit 4 switchboard from which it is fed. The precipitator load

sits at a low level of continuous consumption with irregular spikes of relatively higher

consumption. These spikes have been ignored for the simplicity of the model and the

overall negligible impact of them on the auxiliary usage.

5.7 Conclusion

In this chapter the collected data from all sources was presented. The data has shown

that the auxiliary energy consumption is a significant financial and environmental cost to

Stanwell corporation. The model results demonstrate the breakdown of this consumption

by plant area and identify the high level energy consumers. A mathematical relation was

established that reflect the baseline energy consumption patterns of the coal fired units

at Tarong. The chapter was rounded out with a brief discussion of data shortcomings.

The next chapter will examine potential reduction options and analyse their implications.



Chapter 6

Proposed Options of Energy

Reduction

This chapter is to present proposed options for energy reduction on the Tarong Power

Station 350 MW coal-fired generation units. A list of options for each plant area will be

presented along with an assessment via the MATLAB SIMULINK process model. The

options created will look solely at the energy reduction potential. Whilst the options

presented will be possible from a process requirement, the initial sections here will not

assess the potential long term impacts to the plant. Then a risk comment will broadly

discuss potential impacts.

The final section of the chapter on optimum solution will present a possible unit wide

low, medium, and high risk approach solution. The low risk will have minimal perceived

long term impact whilst the high risk proposal will have an perceived higher impact.

Each section will firstly outline the current operational method of the plant area and

its current auxiliary power consumption profile. The sections will end with a proposed

operational strategy and the energy impact as assessed by the MATLAB SIMULINK

process model result.
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6.1 Induced Draft Fans

This section is to look at potential ways in which possible energy reduction in the area of

ID Fans could be achieved.

The system consists of two fans that draw air from the boiler through the precipitator

passes and discharge the air through the chimney flu. Each fan is driven by a DOL motor

with the inlet of fan controlled by a damper vane. Currently the control system runs with

both fans in-service across the full load range. The figure 6.1 shows the configuration of

the unit Air and Gas systems at full load.

Below in table 6.1 is the current usage summary for the Induced Draft Fan system running

at different generator load set points for 24 hours.

Gen Load 150 175 200 225 250 275 300 325 350

ID Sys 97.3 101.2 104.8 106.4 109.7 110.8 114.3 115.2 117.3

Table 6.1: MATLAB Process Model Output - Induced Draft Fan System Energy Usage Figures

at 9 Load Points to be used as a Baseline. Generator Load Set Point in MW and Energy

Totals in MWhrs.

Below are the possible energy reduction strategies considered. Each option has three

sections, the strategy, the auxiliary MW result, and a risk comment.

Reduction Option 1

Strategy

This option is to lift the furnace pressure set point to reduce the differential pressure

across the ID fans.

Resultant Usage

This option is seen to viable since the Control System refit has given tighter control over

the furnace pressure. The influence of this strategy was unable to be tested with the

location of the fan running within the fan curve unknown. It is highly likely to have

a measurable positive impact on the energy consumption of this plant area warranting

future exploration and testing. For the purposes of this testing an assumption of 10
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Figure 6.1: Air and Gas System Components - Tarong Power Station (Siemens 2015).
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% reduction in ID fan energy consumption has been made. This figure is in line with

discussions with mechanical engineering staff regarding the potential influence of lifting

the furnace pressure set point. Below in table 6.2 is the resultant usage summary for the

Induced Draft Fan group after reduction option 1 is implemented.

Gen Load 150 175 200 225 250 275 300 325 350

ID Sys 87.6 91.1 94.3 95.8 98.8 99.7 102.9 103.65 105.6

Table 6.2: MATLAB Process Model Output - Induced Draft Fan System Energy Usage Figures

at 9 Load Points after Reduction Option 1 Implemented. Generator Load Set Point in MW

and Energy Totals in MWhrs.

Risk Comment

The primary risk is that during a furnace pressure excursion that the boiler would be more

likely to trip rather than ride through as the initial margin to the trip point is already

reduced. Additional logic to cope with this possibility and the risk associated with its

implementation would need to be considered for this option to become a reality.

Reduction Option 2

Strategy

At lower loads run with only one fan calling the second into service only once the process

requires more air than one fan can supply.

Resultant Usage

Below in table 6.3 is the resultant usage summary for the Induced Draft Fan group after

reduction option 2 is implemented. This strategy achieves a 45 % reduction to the ID

fan group at 150 MW. This strategy is only effective at low loads as the fan supply

limit is reached somewhere between 150 and 175 MW. This effective limit is reinforced by

anecdotal evidence from the unit operators experiences with only one fan group in-service.

Risk Comment

The primary risk is that the second fan will not start when required and delay the unit

load up. This is considered a low risk. The increased starts on the fan, motor and switch
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Gen Load 150 175 200 225 250 275 300 325 350

ID Sys 53.6 101.2 104.8 106.4 109.7 110.8 114.3 115.2 117.3

Table 6.3: MATLAB Process Model Output - Induced Draft Fan System Energy Usage Figures

at 9 Load Points after Reduction Option 2 Implemented. Generator Load Set Point in MW

and Energy Totals in MWhrs.

gear will cause increased maintenance concerned compared to the current running profile.

Reduction Option 3

Strategy

This is an extension of strategy 2 with only 1 fan in-service until 175 MW. Once the

second fan is in service the bias on the ID fan loading is setup to ensure that one fan is

always optimally loaded with the second varying as required by the process.

Resultant Usage

The most efficient point of the ID fan was unable to be identified from the documentation

located. The most efficient point was assumed to be the load at 350 MW. So for the

testing of this strategy the B ID fan was locked into the full load position as early as

practical, at 275 MW. It was unable to be locked in sooner due to the minimum position

set point of A ID fan. Table 6.4 below displays the resultant usage summary for the

Induced Draft Fan group under this strategy. This results in a 5 % reduction of energy

consumption in this plant area and an overall reduction of 1.1 %.

Gen Load 150 175 200 225 250 275 300 325 350

ID Sys 53.6 101.3 103.8 105.2 108.2 109.5 113.1 116.6 117.3

Table 6.4: MATLAB Process Model Output - Induced Draft Fan System Energy Usage Figures

at 9 Load Points after Reduction Option 3 Implemented. Generator Load Set Point in MW

and Energy Totals in MWhrs.

Risk Comment

The primary risk is that running with unbalanced air flows will cause uneven wear within

the unit airflow paths over long periods of time. The secondary risk is that the second
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fan will not start when required and delay the unit load up. This is considered a low

risk. The increased number starts on the fan, motor and switch gear will cause increased

maintenance concern when compared to the current running profile.

6.2 Forced Draft Fans

This section is to look at potential ways in which possible energy reduction in the area of

FD Fans could be achieved.

The system consists of two fans that draw air from the atmosphere and discharge it

through the air heater into the boiler. Each fan is driven by a DOL motor with the outlet

of fan controlled by a damper vane. Currently the control system runs with both fans

in-service across the full load range.

Below in table 6.5 is the current usage summary for the Forced Draft Fan system running

at different generator load set points for 24 hours.

Gen Load 150 175 200 225 250 275 300 325 350

FD Sys 36.3 37.8 38.0 40.0 43.9 46.5 51.4 56.3 62.8

Table 6.5: MATLAB Process Model Output - Forced Draft Fan System Energy Usage Figures

at 9 Load Points to be used as a Baseline. Generator Load Set Point in MW and Energy

Totals in MWhrs.

Below are the possible energy reduction strategies. Each option has three sections, the

strategy, the auxiliary MW result, and a risk comment.

Reduction Option 1

Strategy

This option is to run at lower loads with only one fan. The second fan is called into

service only once the process requires more air than one fan can supply.

Resultant Usage

The resulting effect of this option on the FD fan groups energy consumption is an 13.5
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% reduction at 150 MW. The second fan will still be called into service before the load

reaches 175 MW giving an overall 1.3 % reduction in unit auxiliary energy consumption.

Below in table 6.6 is the current usage summary for the Forced Draft Fan system.

Gen Load 150 175 200 225 250 275 300 325 350

FD Sys 31.4 37.8 38.0 40.0 43.9 46.5 51.4 56.3 62.8

Table 6.6: MATLAB Process Model Output - Forced Draft Fan System Energy Usage Figures

at 9 Load Points after Reduction Option 1. Generator Load Set Point in MW and Energy

Totals in MWhrs.

Risk Comment

The primary risk implementing this option is that the imbalance in airflow will cause

inconsistent wear and temperature imbalance within the boiler. There is a low risk that

the second fan will not start when called and delay the unit load up. Long term the

additional starts on the fans and switch gear holds and increase maintenance risk as

compared to the current running arrangements.

Reduction Option 2

Strategy

The second reduction option for this fan group is an extension of the first to initially

run with one fan below 175 MW. Once the second fan starts one fan is optimally loaded

through the remaining load range with the other fan modulating to deliver the required

air flow.

Resultant Usage

This strategy gives a 13.5 % reduction at 150 MW but overall leads to a 1.8 % increase

in the overall FD fan group consumption across the full load range. This amounts to an

overall increase of 0.18 % in the auxiliary energy usage of the unit.

Below in table 6.7 is the current usage summary for the Forced Draft Fan system.

Risk Comment
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Gen Load 150 175 200 225 250 275 300 325 350

FD Sys 31.4 37.9 38.7 41.5 46.4 50.8 52.6 58.4 62.8

Table 6.7: MATLAB Process Model Output - Forced Draft Fan System Energy Usage Figures

at 9 Load Points after Reduction Option 2. Generator Load Set Point in MW and Energy

Totals in MWhrs.

The primary risk is that the unit load up will be delayed if the second fan does not start

when called. The overall impact of this strategy is an increase energy usage.

6.3 Primary Air Fans

This section is to look at potential ways in which possible energy reduction in the area of

PA Fans could be achieved.

The system consists of two fans that draw air from the outlet of the FD fan and discharge

part of it through the air heater into the mills as hot PA. Some of the discharge bypasses

the air heater and is directed into the mills as cold PA. Each fan is driven by a DOL

motor with the outlet of fan controlled by a damper vane. Currently the control system

runs with both fans in-service across the full load range.

Below in table 6.8 is the current usage summary for the Primary Air Fan system running

at different generator load set points for 24 hours.

Gen Load 150 175 200 225 250 275 300 325 350

PA Sys 25.1 28.7 26.1 28.0 29.5 30.2 34.0 33.7 34.1

Table 6.8: MATLAB Process Model Output - Primary Air Fan System Energy Usage Figures

at 9 Load Points to be used as a Baseline. Generator Load Set Point in MW and Energy

Totals in MWhrs.

Below are the possible energy reduction strategies. Each option has three sections, the

strategy, the auxiliary MW result, and a risk comment.

Reduction Option 1
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Strategy

The first reduction strategy is to run with one fan in service until the process requires

the second fan.

Resultant Usage

The option give a 36 % reduction of the PA fan group power consumption at 150 MW.

This leads to a 0.22 % overall reduction in auxiliary energy consumption across the load

range. The second fan will be required at 175 MW.

Below in table 6.9 is the resultant usage summary for the Primary Air system

Gen Load 150 175 200 225 250 275 300 325 350

PA Sys 16.0 28.7 26.1 28.0 29.5 30.2 34.0 33.7 34.1

Table 6.9: MATLAB Process Model Output - Primary Air Fan System Energy Usage Figures

at 9 Load Points after Implementation of Option 1. Generator Load Set Point in MW and

Energy Totals in MWhrs.

Risk Comment

The primary risk is that the second fan will not start was required delaying the unit load

up.

Reduction Option 2

Strategy

This option is an extension of option 1 with one fan being run until the process calls

for the second fan. Once the second fan is called one is run at optimum with the other

modulating to match the process flow requirements.

Resultant Usage

This strategy gives a 36 % reduction of the energy consumption of the PA fan group at

150 MW. Over the full load range of the unit the resultant usage of the strategy is a 7

% increase of the PA fan group leading to a 0.45 % overall increase in auxiliary energy

consumption overall.
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Below in table 6.10 is the resultant usage summary for the Primary Air system

Gen Load 150 175 200 225 250 275 300 325 350

PA Sys 16.0 26.0 27.2 27.8 31.7 35.9 38.9 41.2 44.0

Table 6.10: MATLAB Process Model Output - Primary Air Fan System Energy Usage Figures

at 9 Load Points after Implementation of Option 2. Generator Load Set Point in MW and

Energy Totals in MWhrs.

Risk Comment

The primary risk is that the unit load up will be delayed if the second fan does not start

when called. The overall impact of this strategy is an increase energy usage.

6.4 Circulating Water Pumps

This section is to look at potential ways in which possible energy reduction in the area of

CW Pumps could be achieved.

This system consists of two pumps which have an hydraulic driven inlet valve and a

variable position outlet valve. A common variable position cooling tower bypass valve

exists in the system. The system circulates cooling tower bottom pond water through the

condenser and back to the top pond of the cooling tower. Currently the control system

runs with both pumps turned on DOL with the output valves open at 100 %. The cooling

tower bypass valve is used to control the condenser back pressure in the correct vacuum

range. The action of this valve allows some water to return directly to the bottom pond

and not be cooled by returning to the top pond. This in turn increases the temperature

of the bottom pond water that is to be circulated. The figure 6.2 shows the configuration

of the unit CW system at full load.

Below in table 6.11 is the current usage summary for the Circulating Water system running

at different generator load set points for 24 hours.

Below are the possible energy reduction strategies. Each option has three sections, the

strategy, the auxiliary MW result, and a risk comment.
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Figure 6.2: Circulating Water System Components - Tarong Power Station (Siemens 2015).
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Gen Load 150 175 200 225 250 275 300 325 350

CW Sys 64.2 65.4 66.3 66.8 67.6 68.8 69.2 69.1 69.6

Table 6.11: MATLAB Process Model Output - Circulating Water System Energy Usage

Figures at 9 Load Points to be used as a Baseline. Generator Load Set Point in MW and

Energy Totals in MWhrs.

Reduction Option 1

Strategy

Delay the start of the second pump until the unit as loaded up to the point of the process

requiring the two pumps. As the unit loads up use the condenser vacuum and bypass

valve position as an indicator to bring the second pump into service. On load down use

the bypass valve position as an indicator to remove the second pump from service.

Resultant Usage

Below in table 6.12 is the resultant usage summary for the Circulating Water system once

reduction option 1 is implemented using a conservative value of 200 MW to call the second

CW pump service requirement. This results in a reduction of 50 % energy consumption

in this plant area below 200 MW. The impact on the overall total auxiliary total is a 1

% reduction.

Gen Load 150 175 200 225 250 275 300 325 350

CW Sys 32.0 32.5 66.3 66.8 67.6 68.8 69.2 69.1 69.6

Table 6.12: MATLAB Process Model Output - Circulating Water System Energy Usage

Figures at 9 Load Points after Option 1 Implemented. Generator Load Set Point in MW and

Energy Totals in MWhrs

Risk Comment

The primary risk is that the second pump will fail to start when required holding up the

unit load up. This risk exists due to the CW hydraulic system requiring some upgrade

work. When this work is completed the call to start and stop a second CW pump would

be very low risk. Additional starts on the motor and pump set holds some increased risk
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compared to the current running arrangements.

Reduction Option 2

Strategy

Use the discharge valves to vary circulating water flow in line with the requirement of

condenser vacuum;

Resultant Usage

Below in table 6.13 is the resultant usage summary for the Circulating Water system

using a conservative value of 80 % for the reduction of loading below 200 MW. This was

difficult to accurately determine due to the lack of data available for these pumps. 80 %

was a figure determined based on generic pump load curves.

Gen Load 150 175 200 225 250 275 300 325 350

CW Sys 51.4 52.3 66.3 66.8 67.6 68.8 69.2 69.1 69.6

Table 6.13: MATLAB Process Model Output - Circulating Water System Energy Usage

Figures at 9 Load Points after Option 2 Implemented. Generator Load Set Point in MW and

Energy Totals in MW/hr

Risk Comment

This option is low risk as both pumps are in-service and the output valve can be manip-

ulated very quickly to give full flow to the condenser. Long term the increase wear is a

concern.

6.5 Condensate Extraction Pumps

This section is to look at potential ways in which possible energy reduction in the area of

CEPs could be achieved.

The system consists of two pumps that draw water from the condenser hotwell and dis-

charge it through the low pressure heaters into the deaerator. Each pump is driven by a

DOL motor with the outlet of pump controlled by a control valve. Currently the control



6.6 Boiler Feed Pumps 111

system runs with one pump in-service across the full load range.

Below in table 6.14 is the current usage summary for the Condensate Extraction system

running at different generator load set points for 24 hours.

Gen Load 150 175 200 225 250 275 300 325 350

CE Sys 16.0 16.7 17.4 18.2 18.8 19.9 20.7 20.7 21.5

Table 6.14: MATLAB Process Model Output - Condensate Extraction System Energy Usage

Figures at 9 Load Points to be used as a Baseline. Generator Load Set Point in MW and

Energy Totals in MWhrs.

There were no energy reduction strategies identified for this plant area.

6.6 Boiler Feed Pumps

This section is to look at potential ways in which possible energy reduction in the area of

BFPs could be achieved.

The system consists of three pumps that draw water from the deaerator and discharge it

through the high pressure heaters into the boiler drum. Each pump is driven by a DOL

motor with the outlet flow of pump controlled by a variable speed oil coupling. Currently

the control system runs with two pumps in-service across the full load range. The figure

6.3 shows the configuration of the unit BFP system at full unit load, 350 MW.

Below in table 6.15 is the current usage summary for the Boiler Feed Pump system running

at different generator load set points for 24 hours.

Gen Load 150 175 200 225 250 275 300 325 350

BFP Sys 93.1 103.8 121.0 131.3 150.1 171.4 189.2 198.5 217.6

Table 6.15: MATLAB Process Model Output - Boiler Feed Pump System Energy Usage

Figures at 9 Load Points to be used as a Baseline. Generator Load Set Point in MW and

Energy Totals in MWhrs.

Below are the possible energy reduction strategies. Each option has three sections, the

strategy, the auxiliary MW result, and a risk comment.
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Figure 6.3: Boiler Feed Pump System Components - Tarong Power Station (Siemens 2015).



6.6 Boiler Feed Pumps 113

Reduction Option 1

Strategy

This reduction option is to run at low load below 200 MW with only one BFP in service

rather than two running inefficiently.

Resultant Usage

Below in table 6.16 is the resultant usage summary for the Boiler Feed Pump system

using only one BFP to supply the full feedwater flow up to 200 MW. This strategy results

in a 10 % reduction of energy consumption for this plant area under 200 MW. The closer

to 140 MW the more effective this strategy is with the reduction being 12 % at 150 MW

generator load set point.

Gen Load 150 175 200 225 250 275 300 325 350

BFP Sys 82.9 92.7 112.3 131.3 150.1 171.4 189.2 198.5 217.6

Table 6.16: MATLAB Process Model Output - Boiler Feed Pump System Energy Usage

Figures at 9 Load Points after Option 1 Implemented. Generator Load Set Point in MW and

Energy Totals in MWhrs.

Risk Comment

The primary risk is that the second pump will fail to start when required holding up the

unit load up. This risk can be considered very low as failure to start issue with a BFP

is a rare occurrence. The risk is mitigate further when the third pump is also available.

Additional starts on the motor and pump set holds some increased risk compared to the

current running arrangements.

Reduction Option 2

Strategy

This option is an extension to BFP reduction option 1. This reduction option is to run

at low load below 200 MW with only one BFP in service. Then at 200 MW the second

pump is started. At this point the first pump is to be locked in to the optimum efficiency

point with the second pump controlling the drum level.
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Figure 6.4: Boiler Feed Pump Plant Area - Process Model versus Reduction Options

Resultant Usage

Below in table 6.17 is the resultant usage summary for the Boiler Feed Pump system using

only one BFP to supply the full feedwater flow up to 200 MW. Then an efficiency load

sharing option from this point upwards. This strategy results in a 0.46 % reduction of

energy consumption for this plant area across the full load range. The closer to 140 MW

the more effective this strategy is with the reduction being 12 % at 150 MW generator

load set point. A trend is included below in figure 6.4 to show the affect across the load

range.

Gen Load 150 175 200 225 250 275 300 325 350

BFP Sys 82.9 92.7 112.3 137.0 156.8 168.8 184.7 203.6 218.1

Table 6.17: MATLAB Process Model Output - Boiler Feed Pump System Energy Usage

Figures at 9 Load Points after Option 2 Implemented. Generator Load Set Point in MW and

Energy Totals in MWhrs.

Risk Comment
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The primary risk is that the second pump will fail to start when required holding up the

unit load up. This risk can be considered very low as failure to start issue with a BFP

is a rare occurrence. The risk is mitigate further when the third pump is also available.

Additional starts on the motor and pump set holds some increased risk compared to

the current running arrangements. The pumps are designed to run continuously at full

efficiency and often do when the unit is fully loaded.

6.7 Reduction Options Summary

This section presents a summary of the reduction options tested on the process SIMULINK

model and presented in the sections above.

The impacts of each reduction option tested is presented in the table 6.18 below. This

table shows the impact of each proposed reduction options on the energy consumption of

the plant area involved. The resulting reduction is expressed as a percentage.

Gen Load MW 150 175 200 225 250 275 300 325 350

Option 1 CW % -50.2 -50.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 CW % -20.0 -20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 1 BFP % -11.1 -10.8 -7.2 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 BFP % -11.1 -10.8 -7.2 +4.3 +4.4 -1.5 -2.4 +2.6 +0.2

Option 1 ID % -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0

Option 2 ID % -45.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 3 ID % -45.0 +0.2 -1.0 -1.1 -1.4 -1.2 -1.0 +1.2 0.0

Option 1 FD % -13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 FD % -13.5 +0.2 +1.9 +3.7 +5.8 +9.6 +2.3 +3.7 0.0

Option 1 PA % -36.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 PA % -36.2 -9.5 +4.3 -0.7 +7.2 +18.9 +14.4 +22.4 +29.0

Table 6.18: Impact of Reduction Options in Each Plant Area at Different Generator Load Set

Points in MW - Resulting Impact Presented as a Percentage.

The impacts of each reduction option tested is presented in the table 6.18 below. This

table shows the impact of each proposed reduction options on the overall auxiliary energy

consumption. The resulting reduction is expressed as a percentage.
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Gen Load 150 175 200 225 250 275 300 325 350

Option 1 CW % -8.8 -8.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 CW % -3.5 -3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 1 BFP % -2.8 -2.9 -2.1 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 BFP % -2.8 0.0 0.0 +1.3 +1.4 -0.5 -0.9 +0.9 +0.1

Option 1 ID % -2.7 -2.6 -2.5 -2.5 -2.4 -2.2 -2.2 -2.1 -2.0

Option 2 ID % -11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 3 ID % -11.4 +0.1 -0.3 -0.3 -0.3 -0.3 -0.2 +0.3 0.0

Option 1 FD % -1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 FD % -1.3 +0.1 +0.2 +0.3 +0.6 +0.9 +0.2 +0.4 0.0

Option 1 PA % -2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Option 2 PA % -2.5 -0.7 +0.3 -0.1 +0.5 +1.2 +0.9 +1.4 +1.7

Table 6.19: Impact of Reduction Options on the Overall Auxiliary Energy Consumption at

Different Generator Load Set Points in MW - Resulting Impact Presented as a Percentage.

6.8 Entire Unit - Optimum Solution

This section is to look at final combination of reduction options that gives the best final

resulting energy efficiency. The combinations presented below have taken into account

both the actual reduction achievable and the level of risk involved in implementation on

the plant.

The table 6.20 below contains a summary of the auxiliary power consumption totals at

different generator load set points for 24 hours. The data in this table represents the

baseline figure with which the proposed unit solutions can be compared.

Gen Load 150 175 200 225 250 275 300 325 350

Full Unit 368 392 417 435 465 497 528 548 578

kWhr/MW 102.09 93.28 86.77 80.58 77.54 75.24 73.27 70.25 68.86

Table 6.20: MATLAB Process Model Output - Full Unit Auxiliary Energy Usage Baseline

Figures at 9 Load Points. Generator Load Set Point in MW and Energy Totals in MWhrs.
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6.8.1 Low Risk

Optimal Unit Wide Reduction Option

Strategy

The low risk option to reduce the overall auxiliary power consumption is to implement

BFP reduction option 2 and CW reduction option 1 together. These options combine to

propose to run with only 1 BFP and 1 CW pump in service below 200 MW. Above 200

MW the circulating water system runs with the two pumps running and a second BFP

is called into service. The BFP’s are run with one at optimum loading and the second

modulating to maintain the required feedwater flow.

Resultant Usage

Below in table 6.21 is the resultant usage summary which presents the resulting full unit

24 hour auxiliary energy consumption after implementation of the low risk strategy. The

impact is compared to the current baseline running with the resulting change presented

as both a raw MWhr reduction and also as a percentage improvement. The final row

of the table presents the total kWhrs required to generate 1 MWhr of electricity at the

9 load set points. This low risk strategy gives an overall reduction in auxiliary energy

consumption of 10 % below 200 MW.

Gen Load 150 175 200 225 250 275 300 325 350

Full Unit 325 348 374 441 472 494 523 553 579

MWhr Impact -42.6 -44.1 -42.3 +5.6 +6.6 -2.6 -4.5 +5.1 +0.5

% Impact -11.6 -11.2 -10.2 +1.3 +1.4 -0.5 -0.9 +0.9 +0.1

kWhr/1MWhr 90.27 82.79 77.96 81.63 78.64 74.85 72.64 70.91 68.92

Table 6.21: MATLAB Process Model Output - Full Unit Energy Usage Figures at 9 Load

Points after Low Risk Options are Implemented. Generator Load Set Point in MW and

Energy Totals in MWhrs.

6.8.2 Medium Risk

Optimal Unit Wide Reduction Option
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Strategy

The medium risk strategy is an extension of the low risk strategy above. This strategy

is to implement the low risk drive running modifications and also to increase the furnace

pressure set point closer to the zero to reduce the load on the ID fans, reduction option

1. This set point change will reduce the ID fan load by 10% across the full load range of

the unit.

Resultant Usage

Below in table 6.22 is the resultant usage summary which presents the resulting full unit 24

hour auxiliary energy consumption after implementation of the medium risk strategy. The

impact is compared to the current baseline running with the resulting change presented

as both a raw MWhr reduction and also as a percentage improvement. The final row of

the table presents the total kWhrs required to generate 1 MWhr of electricity at the 9

load set points. This medium risk strategy gives an overall reduction in auxiliary energy

consumption of 10 - 15 % below 200 MW and a modest reduction of 1 - 3 % across the

remaining load range.

Gen Load 150 175 200 225 250 275 300 325 350

Full Unit 315 338 364 430 461 483 512 542 567

MWhr Impact -52.3 -54.2 -52.8 -5.0 -4.3 -13.7 -16.0 -6.4 -11.2

% Impact -14.2 -13.8 -12.7 -1.2 -0.9 -2.8 -3.0 -1.2 -1.9

kWhr/1MWhr 87.57 80.38 75.77 79.65 76.81 73.17 71.05 69.43 67.52

Table 6.22: MATLAB Process Model Output - Full Unit Energy Usage Figures at 9 Load

Points after Low and Medium Risk Options are Implemented. Generator Load Set Point in

MW and Energy Totals in MWhrs.

6.8.3 High Risk

Optimal Unit Wide Reduction Option

Strategy

The high risk strategy is an extension of the medium risk strategy above. This strategy
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is to implement the low risk drive running modifications, increase the furnace pressure

set point and also run with only one half of the fan groups in service until the process

requires them. This is reduction options ID fan 3, FD fan 1 and PA fan 1. This means

that until 175 MW only 1 CW pump, BFP, ID fan, FD fan and PA fan are in service.

At 175MW the second ID, FD and PA fans are started. The second CW pump and BFP

are brought into service at 200 MW. When the second fan groups starts ID fan loading

will be manipulated to share the load to ensure one drive is always optimally loaded.

Once the second FD and PA fans are started the loading will be shared as the modeling

investigation has found that to be the ideal energy efficiency strategy. To reduce the long

term chance of uneven wear rates within the air and gas paths it would be proposed to

alternate the fan group that is removed from service at low load. A high level monitoring

sequence to ensure long term run hours are matched would also be required.

Resultant Usage

Below in table 6.23 is the resultant usage summary which presents the resulting full unit

24 hour auxiliary energy consumption after implementation of the high risk strategy. The

impact is compared to the current baseline running with the resulting change presented

as both a raw MWhr reduction and also as a percentage improvement. The final row

of the table presents the total kWhrs required to generate 1 MWhr of electricity at the

9 load set points. This high risk strategy gives an overall reduction in auxiliary energy

consumption of 15 - 10 % below 200 MW and a reduction of 3 - 5 % across the remaining

load range.

Gen Load 150 175 200 225 250 275 300 325 350

Full Unit 259 335 355 421 451 473 501 527 551

MWhr Impact -108.5 -56.8 -61.9 -14.5 -14.3 -23.8 -26.2 -20.6 -27.3

% Impact -29.5 -14.5 -14.9 -3.3 -3.1 -4.8 -5.0 -3.8 -4.7

kWhr/1MWhr 71.96 79.76 73.89 77.89 75.15 71.64 69.62 67.61 65.61

Table 6.23: MATLAB Process Model Output - Full Unit Energy Usage Figures at 9 Load

Points after Low, Medium and High Risk Options are Implemented. Generator Load Set

Point in MW and Energy Totals in MWhrs.
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Figure 6.5: Full Unit Auxiliary Energy Consumption Comparison No 1 - Baseline versus Risk

Reduction Options.

6.8.4 Reduction Summary

The two trends included in figure 6.5 and 6.6 to show the affect across the load range of

the 3 unit wide solutions against the current running baseline.
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Figure 6.6: Full Unit Auxiliary Energy Consumption Comparison No 2 - Baseline versus Risk

Reduction Options.
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6.9 Conclusion

In this chapter the potential options for energy reduction through operational methods

were explored. Each plant area was explored individually with an overall unit wide ideal

solution proposed. Where possible the options proposed were theoretically implemented

utilising the created MATLAB models to measure the energy impact of the option. The

risk discussions have given grounding for broader discussions that may lead to full im-

plementation on running plant. The next chapter outlines the finial conclusions of the

project and the potential future work.



Chapter 7

Conclusion and Further Work

This chapter is to present the projects achievements, key findings and to outline any

opportunities for future work.

The project has successfully achieved the projects two primary aims of understanding

the auxiliary energy consumption at TPS and to identify potential control based energy

reduction strategies. The understanding of the auxiliary usage was achieved through

the completion of a comprehensive literature review, the successful creation of energy

tracking logic within the plant control system, Siemens T3000, and through the creation

of multiple MATLAB models. The process of identification of zero capital reduction

strategies utilised the knowledge gained during the completion of the primary aims and

the knowledge of the author. A memo to Stanwell regarding potential energy reduction

strategies and the steps required to implement was created. The creation of T3000 logic

achieved the projects secondary aim of leaving in place energy consumption information

that could be utilised into the future. The T3000 logic created will allow ongoing realtime

monitoring of auxiliary consumption within TPS.

7.1 Project Conclusions

The project successfully created multiple auxiliary energy models in MATLAB. The mod-

els were based on data that was extracted from the TPS data historian, PIMS. These

models were utilised to understand the auxiliary energy usage at TPS. The understand-
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ing and model accuracy was proven against the T3000 energy tracking logic that the

project also created. The T3000 logic was in turn confirmed against the permanently

installed energy meters. This proved that an accurate model of coal fired power station

auxiliary energy consumption is able to be created based on data mining techniques.

The project has concluded that reductions of auxiliary energy consumption at Tarong

Power Station is achievable without capital investment. This conclusion is supported by

the understanding gained through the comprehensive literature review completed, the

creation of T3000 tracking logic, and working MATLAB models. The ability to achieve

reduction was confirmed through the use of the created MATLAB SIMULINK process

model to successfully load share and prove the auxiliary power reduction. The proposed

unit wide reduction options, including results of the SIMULINK trials, is discussed in

chapter 6.

A summary and steps to implement the recommended reduction strategies on the actual

TPS unit plant are included in Appendix I Memo to Engineering Superintendent - Elec-

trical Maintenance - TPS. This memo also outlines that the reduction options proposed

can be applied to all 4 Tarong Power Station units and that there is a potential that

the same strategies could be applied to the 4 Stanwell Power Station units for similar

gains. This is due to the fact that Stanwell Power Station design and load profiles are

very similar to Tarong. This can be extended to say that the project has concluded that

any unit with a similar design could benefit from operational improvement based energy

efficiency strategies, particulary at low loads. All three possible options are outline below

with the Low and Medium risk options being proposed to be implemented within TPS

unit plant.

The final proposed low risk unit wide optimal reduction strategy has 2 key components;

1. Circulating Water pump control modification - only one CW pump in-service until

the process requirements call for the second pump - approximately 200 MW; and

2. Boiler Feed Pump control modification - only 1 BFP in-service until the process

calls for it - approximately 200 MW - a optimum trim solution up to 300 MW will

also give some benefit.

This low risk strategy gives an overall reduction in auxiliary energy consumption of 10
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% below 200 MW. The overall reduction will vary with load profile, ambient weather

conditions and status of the plant in the maintenance cycle. The CW and BFP drive

control modifications only give benefit in the low load range. The implementation of

these reduction strategies is considered low risk as the primary risk is that the second

drive will not start in the time required meaning that the unit load up may be delayed.

The project also found that if a medium risk profile was taken on then additional reduction

could be achieved. The additional item below needs to be added to the low risk strategy

above;

1. Induced Draft Fan control modification - lifting the furnace pressure set point closer

to zero.

The ID fan control modification will be effective across the full load range with an in-

creased risk that the boiler may trip on furnace pressure excursion. This risk is of particu-

lar concern when a clinker fall occurs and the pressure ripple it creates forces the pressure

high for greater than the 2 second delay time. This is the reason for the medium risk

rating of implementing this energy reduction strategy. This medium risk strategy gives

an overall reduction in auxiliary energy consumption of 10 - 15 % below 200 MW and a

modest reduction of 1 - 3 % across the remaining load range.

The project also found that if a higher risk profile was taken on then additional reduction

could be achieved. The additional items below need to be added to the medium risk

strategy above;

1. Primary Air fan control modification - only one PA fan in-service until the process

requirements call for the second fan - approximately 175 MW;

2. Forced Draft fan control modification - only one FD fan in-service until the process

requirements call for the second fan - approximately 175 MW; and

3. Induced Draft fan control modification - only one ID fan in-service until the process

requirements call for the second fan - approximately 175 MW. Once the second fan

is in service some load manipulation gives additional consumption reduction across

the remaining load range.
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These 3 higher risk control modifications would also require a duty/standby fan arrange-

ment to be implemented to ensure that wear rates are balanced out. It would be proposed

that only half the air and gas group be in-service up until 175 MW. Each time the load

cycles into the low load range the opposite side to last is removed from service. This would

assist in wear rate balance but a higher level runtime monitoring system would need to

sit over the top of this basic duty/standby control proposed to ensure long term balance.

This high risk strategy gives an overall reduction in auxiliary energy consumption of 15

- 10 % below 200 MW and a reduction of 3 - 5 % across the remaining load range.

The project has also found another key relating to auxiliary energy consumption at TPS

is that over 300 MW the unit is running at peak auxiliary power efficiency and there is

little that can be done to reduce the energy consumption rate. Attempts to share drive

loading at the higher generator set points have little to no positive effect. As discussed

earlier the ID fan load can be reduced across the full load range by lifting the furnace set

point.

While this project has made significant contribution to the industry there are items iden-

tified during this project that require additional work to complete, these will be outlined

in the next section.

7.2 Future Work

This section is to outline potential future work that may use this projects findings as a

basis.

The project has identified future work that would further benefit the Tarong Power Station

and the broader electricity industry. This future work is broadly grouped into 3 categories,

MATLAB, T3000 and Other. These potential areas for future work are outlined below.

MATLAB

The items below are possible enhancements that could be made to the created MATLAB

models to assist in continued expansion of the knowledge of auxiliary energy consumption.

The models could be expanded or modified to allow other plants to be more easily assessed.



7.2 Future Work 127

• addition of drive service select inputs similar to the BFP selections;

• creation of live links to the plant data from the MATLAB model to allow manipu-

lation of the load distribution in realtime;

• modify the models to make it more generic, so they can potentially be applied more

easily to other plants;

• addition of 415 V drives to the model to allow more detailed investigation of the im-

pacts of drives at that level. Examples of these drives are mill motors, air extraction

pumps and flame detection cooling fans;

• creation of not in-service switches for all drives similar to the BFP drives.

T3000

The items below will expand on the current work in T3000 by making the created data

more visible and potentially implementing the recommended energy reduction strategies.

• creation of auxiliary energy flow HMI;

• creation of auxiliary energy consumption alarms, realtime and 24 hour moving av-

erage;

• creation of auxiliary energy trends;

• BFP transfer logic at low loads;

• CW transfer logic at low loads;

• creation of boiler furnace ride though logic to allow the furnace set point to be lifted;

• BFP trim logic to ensure one pump is always at optimal.

Other

The items below will investigate those items identified during the literature review that

were outside of the scope of this project. These items are viewed as having potential

industry benefit but were either to wide ranging or requiring capital injection to be con-

sidered under this project. All of these items could be investigated from the perspective

of auxiliary energy reduction and life cycle of the components.
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• review the findings at Tarong for potential implementation at Stanwell Power Sta-

tion;

• investigate ID fan impeller hard facing to reduce wear rate and overall loading;

• investigate ASD’s for the BFP’s to reduce plant area energy consumption;

• investigate hard facing of milling components, balls and rings to reduce wear rate

and overall loading;

• investigate the potential of reducing size of coal entering the pulveriser to reduce

overall loading;

• investigate the energy savings in routinely sweeping the mills to reduce mill loading;

• investigate the impact of air heater overhaul intervals on ID fan loading;

• investigation of ammonia injection into the flu gas to reduce precipitator pressure

drop and in turn ID fan loading;

• investigation of installation of power factor correction devices.

Many suggestions above would make ideal stand alone projects or as a combined project

to look at reduction of auxiliary energy consumption through capital investment which is

the opposite perspective of this projects aims.

7.3 Conclusion

In this chapter the projects achievements, conclusions and opportunities for future work

were outlined. The project has concluded that reductions of auxiliary energy consumption

at Tarong Power Station is achievable without capital investment. This energy efficiency

improvement can be achieved solely through control optimisation using the existing in-

stalled infrastructure.
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Appendix A

Project Specification

ENG 4111/2 Research Project

Project Specification

For: Jason Lang

Topic: Energy Efficiency Improvement in Coal Fired Power Plant through

Operational Optimisation

Supervisors: Catherine Hills

Sponsorship: Stanwell Corporation Limited

Project Aim: This project aims to model the auxiliary energy usage of a 350MW

coal fired unit using MATLAB and T3000 Digital Control System

logic. Using this model it aims to propose control methods to re-

duce the internal electrical energy consumed to produce electricity.

Program:

1. Research into auxiliary energy, energy calculations, energy reduction and control

optimisation in coal fired power stations.

2. Collect energy data from existing plant operations and maintenance manuals.

3. Collect historical plant energy usage data for all unit conditions.

4. Create a SIMULINK model, in MATLAB, of the energy profile of a single unit.

5. Create energy tracking logic in the T3000 Digital Control System.
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6. Use local energy meter readings on Unit 4 to confirm/tune Digital Control System

tracking values.

7. Calibrate the results of the MATLAB model against the real overall measured power

for the unit.

8. Use the model to determine optimal solutions for energy reduction through control

optimisation.

9. Select the solutions with acceptable risk and good potential and analyse these

schemes for practicality and viability.

10. Propose control system modifications and operational guidelines in a report to be

delivered to site.

As time, resources and sponsor plant risk assessment permit:

1. Trial optimised energy scheme on the unit simulator and evaluate.

2. Implement optimised energy scheme on a running unit and evaluate.
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Conceptual MATLAB Auxiliary

Calculation Script
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%This file is to test the power calculation result for 1 full day 

%All voltage and current measurements have been exported from PIMS and 

%then imported into MATLAB. 

%Once imported the data is split into data arrays and the real power is 

%then calculated. 

%The results are roughly displayed on the workspace. 

% 

%Clean up workspace 

clear all 

close all 

% 

%Setup blank matrices 

row = 1; 

% 

%Import data from excel spreadsheet 

[numdata, txtdata, rawdata] = xlsread('U47thJulyAux.xlsx'); 

% 

%Manipulate column numerical data into individual vectors 

GEN_20KV_V = numdata(1:end,1);        %Generator 20kV Bus Volts 

MW = numdata(1:end,2);                %MW's Generated 

A_UNIT_TX_TOT_MW = numdata(1:end,3);  %'A' Unit Transformer MW 

A_UNIT_TX_TOT_PF = numdata(1:end,4);  %'A' Unit Transformer Power Factor 

A_UNIT_TX_AVG_I = numdata(1:end,5);   %'A' Unit Transformer Average Current 

B_UNIT_TX_TOT_MW = numdata(1:end,6);  %'B' Unit Transformer MW 

B_UNIT_TX_TOT_PF = numdata(1:end,7);  %'B' Unit Transformer Power Factor 

B_UNIT_TX_AVG_I = numdata(1:end,8);   %'B' Unit Transformer Average Current 

A_6_6_BUS_V = numdata(1:end,9);       %'A' 6.6kV Bus Volts 

A_6_6_BUS_I = numdata(1:end,10);      %'A' 6.6kV Bus Current 

B_6_6_BUS_V = numdata(1:end,11);      %'B' 6.6kV Bus Volts 

B_6_6_BUS_I = numdata(1:end,12);      %'B' 6.6kV Bus Current 

C_6_6_BUS_V = numdata(1:end,13);      %'C' 6.6kV Bus Volts 

BNKR_TX_6_6_I = numdata(1:end,14);    %Bunkering Transformer Current 

A_PRECIP_TX_6_6_I = numdata(1:end,15);%'A' Precip Transformer Current 

B_PRECIP_TX_6_6_I = numdata(1:end,16);%'B' Precip Transformer Current 

A_415V_UNIT_TX_I = numdata(1:end,17); %'A' 415V Unit Transformer Current 

B_415V_UNIT_TX_I = numdata(1:end,18); %'B' 415V Unit Transformer Current 

C_415V_UNIT_TX_I = numdata(1:end,19); %'C' 415V Unit Transformer Current 

A_PA_FAN_LD = numdata(1:end,20);      %'A' Primary Air Fan Motor Load 

B_PA_FAN_LD = numdata(1:end,21);      %'B' Primary Air Fan Motor Load 

A_FD_FAN_LD = numdata(1:end,22);      %'A' Forced Draft Air Fan Motor Load 

B_FD_FAN_LD = numdata(1:end,23);      %'B' Forced Draft Air Fan Motor Load 

A_ID_FAN_LD = numdata(1:end,24);     %'A' Induced Draft Air Fan Motor Load 

B_ID_FAN_LD = numdata(1:end,25);     %'B' Induced Draft Air Fan Motor Load 

A_BFP_LD = numdata(1:end,26);         %'A' Boiler Feed Pump Motor Load 

B_BFP_LD = numdata(1:end,27);         %'B' Boiler Feed Pump Motor Load 

C_BFP_LD = numdata(1:end,28);         %'C' Boiler Feed Pump Motor Load 

A_CEP_LD = numdata(1:end,29);   %'A' Condensate Extraction Pump Motor Load 

B_CEP_LD = numdata(1:end,30);   %'B' Condensate Extraction Pump Motor Load 

A_CW_LD = numdata(1:end,31);        %'A' Circulating Water Pump Motor Load 

B_CW_LD = numdata(1:end,32);        %'B' Circulating Water Pump Motor Load 

% 

%Calulate fixed variables 

sqrt3 = sqrt(3); 

LV_V = 415; 

% 

%E(kWh) = P(W) x t(hr)/1000 
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% 

%Calculate the daily power for 'A' Unit Transformer 

A_PWR = sqrt3.*(GEN_20KV_V*1000).*A_UNIT_TX_AVG_I.*A_UNIT_TX_TOT_PF; 

A_PWR_TOTAL = (sum(A_PWR)./1000000)/3600   %Total Calc 'A' Unit Transformer 

A_PWR_MET_TOTAL = sum(A_UNIT_TX_TOT_MW)    %Total Meas 'A' Unit Transformer 

A_PWR_ERROR = ((A_PWR_TOTAL - A_PWR_MET_TOTAL)/A_PWR_MET_TOTAL)*100 

% 

%Calculate the daily power for 'B' Unit Transformer 

B_PWR = sqrt3.*(GEN_20KV_V*1000).*B_UNIT_TX_AVG_I.*B_UNIT_TX_TOT_PF; 

B_PWR_TOTAL = (sum(B_PWR)./1000000)/3600   %Total Calc 'B' Unit Transformer 

B_PWR_MET_TOTAL = sum(B_UNIT_TX_TOT_MW)    %Total Meas 'B' Unit Transformer 

B_PWR_ERROR = ((B_PWR_TOTAL - B_PWR_MET_TOTAL)/B_PWR_MET_TOTAL)*100 

% 

%Calculate the daily power for Bunkering Transformer 

BUN_PWR = sqrt3.*LV_V.*BNKR_TX_6_6_I.*A_UNIT_TX_TOT_PF; 

BUN_PWR_TOTAL = (sum(BUN_PWR)./1000000)/3600 %Total Calc Bunkering Transf 

% 

%Calculate the daily power for 'A' Precip Transformer 

A_PRE_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_PRECIP_TX_6_6_I.*A_UNIT_TX_TOT_PF; 

A_PRE_PWR_TOTAL = (sum(A_PRE_PWR)./1000000)/3600%Total Calc A Precip Transf 

% 

%Calculate the daily power for 'B' Precip Transformer 

B_PRE_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_PRECIP_TX_6_6_I.*B_UNIT_TX_TOT_PF; 

B_PRE_PWR_TOTAL = (sum(B_PRE_PWR)./1000000)/3600%Total Calc B Precip Transf 

% 

%Calculate the daily power for 'A' 415V Unit Transformer 

A_415V_PWR = sqrt3.*LV_V.*A_415V_UNIT_TX_I.*A_UNIT_TX_TOT_PF; 

A_415V_PWR_TOTAL = (sum(A_415V_PWR)./1000000)/3600%Total Calc A 415V Transf 

% 

%Calculate the daily power for 'B' 415V Unit Transformer 

B_415V_PWR = sqrt3.*LV_V.*B_415V_UNIT_TX_I.*B_UNIT_TX_TOT_PF; 

B_415V_PWR_TOTAL = (sum(B_415V_PWR)./1000000)/3600%Total Calc B 415V Transf 

% 

%Calculate the daily power for 'C' 415V Unit Transformer 

C_415V_PWR = sqrt3.*LV_V.*C_415V_UNIT_TX_I.*A_UNIT_TX_TOT_PF; 

C_415V_PWR_TOTAL = (sum(C_415V_PWR)./1000000)/3600%Total Calc C 415V Transf 

% 

%Calculate the daily power for 'A' Primary Air Fan 

A_PA_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_PA_FAN_LD.*A_UNIT_TX_TOT_PF; 

A_PA_PWR_TOTAL = (sum(A_PA_PWR)./1000000)/3600   %Total Calc A PA Fan Load 

% 

%Calculate the daily power for 'B' Primary Air Fan 

B_PA_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_PA_FAN_LD.*A_UNIT_TX_TOT_PF; 

B_PA_PWR_TOTAL = (sum(B_PA_PWR)./1000000)/3600   %Total Calc B PA Fan Load 

% 

%Calculate the daily power for 'A' Forced Draft Fan 

A_FD_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_FD_FAN_LD.*A_UNIT_TX_TOT_PF; 

A_FD_PWR_TOTAL = (sum(A_FD_PWR)./1000000)/3600   %Total Calc A FD Fan Load 

% 

%Calculate the daily power for 'B' Forced Draft Fan 

B_FD_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_FD_FAN_LD.*B_UNIT_TX_TOT_PF; 

B_FD_PWR_TOTAL = (sum(B_FD_PWR)./1000000)/3600   %Total Calc B FD Fan Load 

% 

%Calculate the daily power for 'A' Induced Draft Fan 

A_ID_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_ID_FAN_LD.*A_UNIT_TX_TOT_PF; 

A_ID_PWR_TOTAL = (sum(A_ID_PWR)./1000000)/3600   %Total Calc A ID Fan Load 
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%Calculate the daily power for 'B' Induced Draft Fan 

B_ID_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_ID_FAN_LD.*B_UNIT_TX_TOT_PF; 

B_ID_PWR_TOTAL = (sum(B_ID_PWR)./1000000)/3600   %Total Calc B ID Fan Load 

% 

%Calculate the daily power for 'A' Boiler Feed Pump 

A_BFP_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_BFP_LD.*A_UNIT_TX_TOT_PF; 

A_BFP_PWR_TOTAL = (sum(A_BFP_PWR)./1000000)/3600   %Total Calc A BFP Load 

% 

%Calculate the daily power for 'B' Boiler Feed Pump 

B_BFP_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_BFP_LD.*B_UNIT_TX_TOT_PF; 

B_BFP_PWR_TOTAL = (sum(B_BFP_PWR)./1000000)/3600   %Total Calc B BFP Load 

% 

%Calculate the daily power for 'C' Boiler Feed Pump 

C_BFP_PWR = sqrt3.*(A_6_6_BUS_V*1000).*C_BFP_LD.*A_UNIT_TX_TOT_PF; 

C_BFP_PWR_TOTAL = (sum(C_BFP_PWR)./1000000)/3600   %Total Calc C BFP Load 

% 

%Calculate the daily power for 'A' Boiler Feed Pump 

A_CEP_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_CEP_LD.*A_UNIT_TX_TOT_PF; 

A_CEP_PWR_TOTAL = (sum(A_CEP_PWR)./1000000)/3600   %Total Calc A CEP Load 

% 

%Calculate the daily power for 'B' Boiler Feed Pump 

B_CEP_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_CEP_LD.*B_UNIT_TX_TOT_PF; 

B_CEP_PWR_TOTAL = (sum(B_CEP_PWR)./1000000)/3600  %Total Calc B CEP Load 

% 

%Calculate the daily power for 'A' Circulating Water Pump 

A_CW_PWR = sqrt3.*(A_6_6_BUS_V*1000).*A_CW_LD.*A_UNIT_TX_TOT_PF; 

A_CW_PWR_TOTAL = (sum(A_CW_PWR)./1000000)/3600   %Total Calc A CW Load 

% 

%Calculate the daily power for 'B' Circulating Water Pump 

B_CW_PWR = sqrt3.*(B_6_6_BUS_V*1000).*B_CW_LD.*B_UNIT_TX_TOT_PF; 

B_CW_PWR_TOTAL = (sum(B_CW_PWR)./1000000)/3600   %Total Calc B CW Load 

% 

%Calculate the 'A' bus load totals 

A_BUS_LD_TOTAL = BUN_PWR_TOTAL + A_PRE_PWR_TOTAL + A_415V_PWR_TOTAL... 

    + C_415V_PWR_TOTAL + A_PA_PWR_TOTAL + A_FD_PWR_TOTAL + A_ID_PWR_TOTAL... 

    + A_BFP_PWR_TOTAL + C_BFP_PWR_TOTAL + A_CEP_PWR_TOTAL + A_CW_PWR_TOTAL 

A_PWR_ERROR_2 = ((A_PWR_TOTAL - A_BUS_LD_TOTAL)/A_BUS_LD_TOTAL)*100 

% 

%Calculate the 'B' bus load totals 

B_BUS_LD_TOTAL = B_PRE_PWR_TOTAL+ B_415V_PWR_TOTAL + B_PA_PWR_TOTAL... 

    + B_FD_PWR_TOTAL + B_ID_PWR_TOTAL + B_BFP_PWR_TOTAL + B_CEP_PWR_TOTAL... 

    + B_CW_PWR_TOTAL 

B_PWR_ERROR_2 = ((B_PWR_TOTAL - B_BUS_LD_TOTAL)/B_BUS_LD_TOTAL)*100 

% 

MW_GEN = sum(MW)/3600 

AUX_TOTAL = A_PWR_TOTAL + B_PWR_TOTAL 

 

 

A_PWR_TOTAL = 

 

  240.3747 

 

 

A_PWR_MET_TOTAL = 
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   8.6079e+05 

 

 

A_PWR_ERROR = 

 

  -99.9721 

 

 

B_PWR_TOTAL = 

 

  226.3892 

 

 

B_PWR_MET_TOTAL = 

 

   8.1075e+05 

 

 

B_PWR_ERROR = 

 

  -99.9721 

 

 

BUN_PWR_TOTAL = 

 

    0.1228 

 

 

A_PRE_PWR_TOTAL = 

 

    0.8783 

 

 

B_PRE_PWR_TOTAL = 

 

    1.1044 

 

 

A_415V_PWR_TOTAL = 

 

   27.9323 

 

 

B_415V_PWR_TOTAL = 

 

    7.0143 

 

 

C_415V_PWR_TOTAL = 

 

    8.6071 

 

 

A_PA_PWR_TOTAL = 

 

   14.6317 
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B_PA_PWR_TOTAL = 

 

   14.4754 

 

 

A_FD_PWR_TOTAL = 

 

   21.7526 

 

 

B_FD_PWR_TOTAL = 

 

   21.5251 

 

 

A_ID_PWR_TOTAL = 

 

   54.4733 

 

 

B_ID_PWR_TOTAL = 

 

   54.1522 

 

 

A_BFP_PWR_TOTAL = 

 

    0.0645 

 

 

B_BFP_PWR_TOTAL = 

 

   73.5466 

 

 

C_BFP_PWR_TOTAL = 

 

   72.2956 

 

 

A_CEP_PWR_TOTAL = 

 

     0 

 

 

B_CEP_PWR_TOTAL = 

 

   18.7002 

 

 

A_CW_PWR_TOTAL = 

 

   33.2420 

 

 

B_CW_PWR_TOTAL = 

 

   34.1969 
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A_BUS_LD_TOTAL = 

 

  234.0003 

 

 

A_PWR_ERROR_2 = 

 

    2.7241 

 

 

B_BUS_LD_TOTAL = 

 

  224.7152 

 

 

B_PWR_ERROR_2 = 

 

    0.7450 

 

 

MW_GEN = 

 

   5.8192e+03 

 

 

AUX_TOTAL = 

 

  466.7639 

 

 

 

 



Appendix C

Unit Auxiliary Power

Consumption Simulink Model -

Power Model
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Figure C.1: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 1



143

Figure C.2: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 2
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Figure C.3: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 3
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Figure C.4: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 4
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Figure C.5: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 5
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Figure C.6: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 6
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Figure C.7: Unit Auxiliary Power Consumption Simulink Model - Power Model Part 7



Appendix D

Unit Auxiliary Power

Consumption Simulink Model -

Position Model
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Figure D.1: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 1
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Figure D.2: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 2
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Figure D.3: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 3
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Figure D.4: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 4
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Figure D.5: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 5
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Figure D.6: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 6
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Figure D.7: Unit Auxiliary Power Consumption Simulink Model - Position Model Part 7



Appendix E

Unit Auxiliary Power

Consumption Simulink Model -

Process Model
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Figure E.1: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 1
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Figure E.2: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 2
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Figure E.3: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 3
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Figure E.4: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 4
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Figure E.5: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 5
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Figure E.6: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 6
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Figure E.7: Unit Auxiliary Power Consumption Simulink Model - Process Model Part 7



Appendix F

Process Information Management

System (PIMS) Extracted Data
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Figure F.1: Example of PIMS Data Extracted for the 7th of July 2015 (Siemens 2015)



Appendix G

Located Drawing Data

Below in table G.1 is a sample of the drawings collected during the data collection stage.

Drawing Number Drawing Title

A2-V-502446-01 Unit AC/DC Power Distribution: Single Line Diagram

A3-V-505763-01 Unit Single Line Diagram Typical for Four Units

A1-V-503115-01 Unit 6.6kV Board Switchgear Detail Diagram Tarong Power Station

A1-V-534312-036 Unit 4 A Boiler Feed Pump Suction Flow T4LAB11CF001 DCS Loop Diagram

A1-V-534312-040 Unit 4 B Boiler Feed Pump Suction Flow T4LAB12CF001 DCS Loop Diagram

A1-V-534312-044 Unit 4 C Boiler Feed Pump Suction Flow T4LAB13CF001 DCS Loop Diagram

A1-V-534311-115 Unit 4 A Forced Draft Fan Air Flow T4HLA01CF001 DCS Loop Diagram

Table G.1: A Sample of Drawings Located during the Data Gathering Stage (Hitachi 2003).



Appendix H

Energy Metering Manual Data
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MB Address Cubicle Tag Type Serial C/T Ratio V/T Ratio Locn PLC
1 #4A Unit 415 V Tx T0MET1030 KILO 59504 200/1 60/1 Unit 6.6kV MET2
2 #4A Precip Tx TOMET1031 KILO 59527 200/1 60/1 Unit 6.6kV MET2
3 #4A Unit 6.6 kV Tx T0MET1032 KILO 59528 2400/1 60/1 Unit 6.6kV MET2
4 #4 Bunkerinq Tx TOMET1033 KILO 59522 200/1 60/1 Unit 6.6kV MET2
5 #4C Unit 415 VTx T0MET1034 KILO 59530 200/1 60/1 Unit 6.6kV MET2
6 #4 Unit / Stn TIE T0MET1035 KILO 55149 2400/1 60/1 Unit 6.6kV MET2
7 #4B Unit 6.6 kV Tx T0MET1036 KILO 59523 2400/1 60/1 Unit 6.6kV MET2
8 #4B Unit 415 vTx T0MET1037 KILO 59525 200/1 60/1 Unit 6.6kV MET2
9 #4B Precip Tx T0MET1038 KILO 58529 300/1 60/1 Unit 6.6 V MET2

10 Fire Fighting 415 V Transf T0MET1001 KILO 59511 200/1 60/1 Stn 6.6kV MET1
11 B Ash Plant 415 V Transf T0MET1002 KILO 59514 200/1 60/1 Stn 6.6kV MET1
12 B Admin Area 415 V Tranf T0MET10O3 KILO 59519 200/1 60/1 Stn 6.6kV MET1
13 B1 Station 415 V Tranf T0MET1004 KILO 55156 200/1 60/1 Stn 6.6kV MET1
14 B Coal Recv 415 V Transf T0MET1005 KILO 59510 200/1 60/1 Stn 6.6kV MET1
15 D Ash Paint 415 v Transf T0MET1006 KILO 55151 200/1 60/1 Stn 6.6kV MET1
16 B2 Station 415 V Transf T0MET1007 KILO 59506 200/1 60/1 Stn 6.6kV MET1
17 B Cooling Tower 415 V Trf T0MET1008 KILO 59508 200/1 60/1 Stn 6.6kV MET1
18 B Station Transf T0MET1009 KILO 59537 2000/1 60/1 Stn 6.6kV MET1
19 C1 & C2 Station 415 V Transf T0MET1010 KILO 59512 200/1 60/1 Stn 6.6kV MET1
20 Gas Turbine Incomer T0MET1011 KILO 55152 2000/1 60/1 Stn 6.6kV MET1
21 Taron  North Supply T0MET1012 KILO 59516 200/1 60/1 Stn 6.6kV MET1
22 A Station Transf T0 ET1013 KILO 59520 2000/1 60/1 Stn 6.6kV MET1
23 A Ash Plant 415 V Transf T0MET1014 KILO 59513 200/1 60/1 Stn 6.6kV MET1
24 A Admin Area 415 VTrf T0MET1015 KILO 59521 200/1 60/1 Stn 6.6kV MET1
25 A1 Station 415 V Transf T0MET1016 KILO 55155 200/1 60/1 Stn 6.6kV MET1
26 A Coal Rec 415 V transf T0MET1017 KILO 59517 200/1 60/1 Stn 6.6kV MET1
27
28 CAsh Plant 415 V trf T0MET1018 KILO 55150 200/1 60/1 Stn 6.6kV MET1
29 A2 Station 415 v Trf T0MET1019 KILO 55147 200/1 60/1 Stn 6.6kV MET1
30 A Cooling Tower 415 V trf T0MET1020 KILO 59543 200/1 60/1 Stn 6.6kV MET1
31 CW Makeup 415 VTrf T0MET1021 KILO 59509 150/1 60/1 Stn 6.6kV MET1
32 #4A Unit Transf HV T0MET1039 KILO 59505 1600/1 60/1 X&Y PROT MET2
33 #4B Unit Transf HV T0MET1040 KILO 59505 1600/1 60/1 X&Y PROT MET2
34 #4 Exitation Trf HV T0MET1058 KILO 59526 200/1 60/1 X&Y PROT MET2
35 SPARE KILO 59518 200/1 60/1 Stn 6.6kV MET1
36 #4 Generator (Excitation Transf) T0MET1041 KILO 59531 12000/1 60/1 X&Y PROT MET2
37 #4A PA Fan T0 ET1042 EST-485 58803 150/1 60/1 Unit 6.6kV MET2
38 #4A FD Fan T0 ET1043 EST-485 58807 400/1 60 1 Unit 6.6kV MET 
39 #4A ID Fan T0MET1044 EST-485 58802 500/1 60/1 Unit Q.6kV MET2
40 #4A Cond Extraction P/P T0MET1045 EST-485 58804 150/1 60/1 Unit 6.6kV MET2
41 #4A CW P/P T0MET1046 EST-485 58798 200/1 60/1 Unit 6.6kV MET2
42 #4A BFP T0MET1047 EST-485 58790 600/1 60/1 Unit 6.6kV MET2
43 #4C BFP T0MET1048 EST-485 58797 600/1 60/1 Unit 6.6kV MET2
44 #4B PA Fan T0MET1049 EST-485 58796 150/1 60/1 Unit 6.6kV MET2
45 #4B FD Fan T0MET1050 EST-485 58805 400/1 6Q)/1 Unit 6.6kV MET2
46 #4B ID Fan T0MET1051 EST-485 58791 500/1 60/1 Unit 6.6kV MET2
47 #4B Cond Extraction P/P T0MET1052 EST-485 58792 150/1 60/1 Unit 6.6kV MET2
48 #4B CW P/P T0MET1053 EST-485 58789 200/1 S0/1 Unit 6.6kV MET2
49 #4B BFP T0MET1054 EST-485 58799 600/1 60/1 Unit 6.6kV MET2
50 B Ash Water Reclaim T0MET1022 EST-485 58784 60/1 60/1 Stn 6.6kV MET1
51 B CW  akeup Pump T0MET1023 EST-485 58800 75/1 §0/1 Stn 6.6kV MET1
52 R1 Conveyor Drive T0MET1024 EST-485 58793 75/1 ©0/1 Stn 6.6kV MET1
53 A CW Makeup Pump T0MET1025 EST-485 58787 75/1 60/1 Stn 6.6kV MET1
54 A Ash Water Makeup Pump T0MET1026 EST-485 58806 60/1 60/1 Stn 6.6kV MET1
55 #4A Treated Water Low Lift Pump T0MET1059 EST-485 58816 800/5 Not Reqd Unit 415V MET2
56 #4A Pulveriser T0MET1060 EST-485 58820 500/5 Not Reqd Unit 415V MET2
57 #4A Cond Polisher Booster Pmp T0MET1061 EST-485 58820 250/5 Not Fseqd Unit 415V ET2
58 #4C Pulveriser T0MET1062 EST-485 58822 500/5 Not Reqd Unit 415V MET2
59 #4Unit Pulv. A Sealing Air Fan T0MET1063 EST-485 58825 250/5 Not Reqd Unit 415V MET2
60 #4A Condenser Extraction pmp T0MET1064 EST-485 58827 200/5 60/1 Unit 6.6kV MET2
61 #4B Treated Water Low Lift Ppm T0MET1065 EST-485 51396 800/5 Not Reqd Unit 415V MET2
62 #4F Pulveriser T0MET1066 EST-485 51386 500/5 Not Reqd Unit 415V MET2
63 #4D Pulveriser T0MET1067 EST-485 58832 500/5 Not Reqd Unit 4i'5V MET2
64 #4B Cond Polisher Booster Pmp T0MET1068 EST-485 58833 250/5 Not Reqd Unit 415V MET2
65 #4Unit Pulv. B Sealing Air Fan T0MET1069 EST-485 58834 250/5 Not Reqd Unit 415V M5T2
66 #4B Condenser Air Extraction Pmp T0MET1070 EST-485 59122 200/5 Not Reqd Unit 415V MET2
67 #4E Pulveriser T0MET1071 EST-485 59124 500/5 Not Reqd Unit 415V MET2
68 #4B Pulveriser T0MET1072 EST-485 59123 500/5 Not Reqd Unit 415V MET2
69 #4Dearator Standby Pump T0MET1073 EST-485 58831 400/5 Not Reqd Unit 415V MET2
70 Pozzo Compressor No. 1 T0MET1027 KILO 59565 500/5 Not Reqd 1/2 Ash MET1
71 Pozzo Compressor No. 2 T0MET1028 KILO 59566 500/5 Not Reqd 1/2 Ash ME Cf
72 Pozzo 3/4 Transfer Compressor T0MET1056 KILO 59567 500/5 Not Reqd 3/4 Ash MET2
73 Pozzo Compressor No. 3 T0MET1057 KILO 59568 600/5 Not Reqd 3/4 Ash MET2
74 Pozzo Compressor No. 4 T0MET1058 KILO 59569 600/5 Not Reqd 3/4 Ash MET2

1 Raw Water Pumps T0MET1075 KILO 87804 150/5 Not Reqd CT Area MET3
2 Pretreatment Plant T0MET1076 KILO 87803 150/5 Not Reqd CT Area MET3
3 Demin 'A' Board T0MET1077 KILO 87811 600/5 ot Reqd CT Area MET3
4 Demin 'B' Board T0MET1078 KILO 87805 600/5 Not Reqd CT Area MET3
5 A1 CRA Pump T0MET1079 KILO 48766 'lot Reqd Not Reqd CT Area MET3
6 B' CRA Pump T0MET1080 KILO 87808 'Jot Reqd ot Reqd CT Area MET3
7 Hydrogen Plant T0MET1081 KILO 87804 300/5 Not Reqd CT Area MET3

Figure H.1: List of Energy Meters Installed at Tarong Power Station (Godsmark 2001)
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UNIT 4 6.6kV & 415V SWITCH ROOM
Unit 4 'C 415V Switchboard Unit   6.6kV Switchboard containing 21 Metering Devices

Unit 4 'B'  15V Switchboard Unit 4 'A' 415  Switchboard 
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Figure H.2: Drawing of Typical Energy Meter Installation at Tarong Power Station

(Godsmark 2001)
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ENERGY2 Msg69_Data_7 REAL
ENERGY2 Msg69_Data_9 REAL
ENERGY2 Msg70_Data_1 REAL
ENERGY2 Msg70_Data_3 REAL
ENERGY2 Msg70_Data_5 REAL
ENERGY2 Msg70_Data_7 REAL
ENERGY2 Msg70_Data_9 REAL
ENERGY2 Msg70_Data_11 REAL
ENERGY2 Msg71_Data_1 REAL
ENERGY2 Msg71_Data_3 REAL
ENERGY2 Msg71_Data_5 REAL
ENERGY2 Msg71_Data_7 REAL
E ERGY2 Msg72lbata_1 EAL-

ENERGY2 Msg72_Data_3 REAL
ENERGY2 Msg72_Data_5 REAL
ENERGY2 Msg72_Data_7 REAL
ENERGY2 Msg72_Data_9 REAL
ENERGY2 Msg72_Data_11 REAL
ENERGY2 Msg73_Data_1 REAL
ENERGY2 Msg73_Data_3 REAL
ENERGY2 Msg73_Data_5 REAL
ENERGY2 Msg73_Data_7 REAL
ENERGY2 Msg73_Data_9 REAL
ENERGY2 Msg74_Data_1 REAL
ENERGY2 Msg74_Data_3 REAL
ENERGY2 Msg74_Data_5 REAL
ENERGY2 Msg74_Data_7 REAL
jENERGY2 Msg74_Data_9 REAL
ENERGY2 Msg74_Data_11 REAL
ENERGY2 Msg75_Data_1 REAL
ENERGY2 Msg75_Data_3 REAL
ENERGY2 Msg75_Data_5 REAL
ENERGY2 Msg75_Data_7 REAL
ENERGY2 Msg r6_Data~T ~ TftAL  
ENERGY2 Msg76_Data_3 REAL
ENERGY2 Msg76_Data_5 REAL
ENERGY2 Msg76_Data_7 REAL
ENERGY2 Msg76_Data_9 REAL
ENERGY2 Msg76_Data_11 REAL
ENERGY2 Msg77_Data_1 REAL
ENERGY2 Msg77_Data_3 REAL
ENERGY2 Msg77_Data_5 REAL
ENERGY2 Msg77_Data_7 REAL
ENERGY2 Msg77_Data_9 REAL
ENERGY2 Msg78_Data_1 REAL
ENERGY2 Msg78_Data_3 REAL
ENERGY2 Msg78_Data_5 REAL
ENERGY2 Msg78_Data_7 REAL
ENERGY2 Msg78_Data_9 REAL
ENERGY2 Msg78_Data_11 REAL
ENERGY2 Msg79_Data_1 REAL
ENERGY2 Msg79_Data_3 REAL
ENERGY2 Msg79_Data_5 REAL
ENERGY2 Msg79_Data_7 REAL
EfTERGY? Msg80_Data_1 '   E L

,iNERGY2 Msg80_Data_3 REAL
ENERGY2 Msg80_Data_5 REAL
ENERGY2 Msg80_Data_7 REAL
ENERGY2 Msg80_Data_9 REAL
ENERGY2 Msg80_Data_11 REAL
ENERGY2 Msg81_Data_1 REAL
ENERGY2 Msg81 J0ata_3 REAL
ENERGY2 Msg81_Data_5 REAL
ENERGY2 Msg81_Data_7 REAL
ENERGY2 Msg81_Data_9 REAL
ENERGY2 Msg82_Data_1 REAL
ENERGY2 Msg82_Data_3 REAL
ENERGY2 Msg82_Data_5 REAL
ENERGY2 Msg82_Data_7 REAL
ENERGY2 Msg82_Data_9 REAL
ENERGY2 Msg82_Data_11 REAL
ENERGY2 Msg83_Data_1 REAL
ENERGY2 Msg83_Data_3 REAL
ENERGY2 Msg83_Data_5 REAL
ENERGY2 Msg83_Data_7 REAL

"  R'G?2 Msg84_Data_1 RIAL
ENERGY2 Msg84_Data_3 REAL
ENERGY2 Msg84_Data_5 REAL
ENERGY2 Msg84_Data_7 REAL
ENERGY2 Msg84_Data_9 REAL
ENERGY2 Msg84_Data_11 REAL
ENERGY2 Msg85_Data_1 REAL
ENERGY2 Msg85_Data_3 REAL
ENERGY2 Msg85_Data_5 REAL
ENERGY2 Msg85_Data_7 REAL

404726 4A PA Fan Not Used
404728 4A PA Fan Total VARs
404730 4A PA Fan A Ph Volts
404732 4A PA Fan B Ph Volts
404734 4A PA Fan C Ph Volts
404736 4A PA Fan A Ph Amps
404738 4A PA Fan B Ph Amps
404740 4A PA Fan C Ph Amps
404742 4A PA Fan A Ph Watts
404744 4A PA Fan B Ph Watts
404746 4A PA Fan C Ph Watts
404748 4A PA Fan Frequency

'404750  A PD Fan 3Ph  olts" 
404752 4A FD Fan 3Ph Amps
404754 4A FD Fan 3Ph Watts
404756 4A FD Fan 3Ph VARs
404758 4A FD Fan 3Ph VAs
404760 4A FD Fan 3Ph PF
404762 4A FD Fan Watts MD
404764 4A FD Fan VA MD
404766 4A FD Fan Total Watts
404768 4A FD Fan Not Used
404770 4A FD Fan Total VARs
404772 4A FD Fan A Ph Volts
404774 4A FD Fan B Ph Volts
404776 4A FD Fan C Ph Volts
404778 4A FD Fan A Ph Amps
404780 4A FD Fan B Ph Amps
404782 4A FD Fan C Ph Amps
404784 4A FD Fan A Ph Watts
404786 4A FD Fan B Ph Watts
404788 4A FD Fan C Ph Watts
404790 4A FD Fan Frequency

¦?OT7g2 4A'IU ah'3P 'V6irs 
404794 4A ID Fan 3Ph Amps
404796 4A ID Fan 3Ph Watts
404798 4A ID Fan 3Ph VARs
404800 4A ID Fan 3Ph VAs
404802 4A ID Fan 3Ph PF
404804 4A ID Fan Watts  D
404806 4A ID Fan VA MD
404808 4A ID Fan Total Watts
404810 4A ID Fan Not Used
404812 4A ID Fan Total VARs
404814 4A ID Fan A Ph Volts
404816 4A ID Fan BPh Volts
404818 4A ID Fan C Ph Volts
404820 4A ID Fan A Ph Amps
404822 4A ID Fan B Ph Amps
404824 4A ID Fan C Ph Amps
404826 4A ID Fan A Ph Watts
404828 4A ID Fan B Ph Watts
404830 4A ID Fan C Ph Watts
404832 4A ID Fan Frequency

NOT USED

A

NOT USED

jo ti 

NOT USED

(°i-   

404836 4A Cond Extr Pmp 3Ph Amps
404838 4A Cond Extr Pmp 3Ph Watts
404840 4A Cond Extr Pmp 3Ph VARs
404842 4A Cond Extr Pmp 3Ph VAs
404844 4A Cond Extr Pmp 3Ph PF
404846 4A Cond Extr Pmp Watts MD
404848 4A Cond Extr Pmp VA MD
404850 4A Cond Extr Pmp Total Watts
404852 4A Cond Extr Pmp Not Used
404854 4A Cond Extr Pmp Total VARs
404856 4A Cond Extr Pmp A Ph Volts
404858 4A Cond Extr Pmp B Ph Volts
404860 4A Cond Extr Pmp C Ph Volts
404862 4A Cond Extr Pmp A Ph Amps
404864 4A Cond Extr Pmp B Ph Amps
404866 4A Cond Extr Pmp C Ph Amps
404868 4A Cond Extr Pmp A Ph Watts
404870 4A Cond Extr Pmp B Ph Watts
404872 4A Cond Extr Pmp C Ph Watts
404874 4A Cond Extr Pmp Frequency
" OTSTBAa CWPmp~3PhVolts
404878 4A CW Pmp 3Ph Amps
404880 4A CW Pmp 3Ph Watts
404882 4A CW Pmp 3Ph VARs
404884 4A CW Pmp 3Ph VAs
404886 4A CW Pmp 3Ph PF
404888 4A CW Pmp Watts MD
404890 4A CW Pmp VA MD
404892 4A CW Pmp Total Watts
404894 4A CW Pmp Not Used

( -TB P

NOT USED

I  I  V

I of 

NOT USED

Figure H.3: Example of Typical Energy Meter PLC Registers and Functions (Godsmark 2001)
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Figure I.1: Part 1 of Energy Reduction Recommendations Memorandum to David Janes
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Figure I.2: Part 2 of Energy Reduction Recommendations Memorandum to David Janes
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