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Abstract  
 
Construction of a bridge pier in a flow of water will cause a disruption to the flow.  

Scour around bridge piers arises due to the separation of this water causing erosion of 

the sediment at the bridge pier and leading to the development of both horseshoe and 

wake vortices around the pier. The relationship between water and bridge piers in 

flowing streams creates a three dimensional field of flow. There is an additional 

pressure head upstream of the pier as the water hits the bridge pier which then curves 

downwards into the scour hole and a horseshoe vortex is formed.  The accumulation 

of flowing water on the surface pushes back and creates a bow wave. The water also 

deviates around the pier as it continues its downstream flow and produces a shedding 

wake vortex.  Local scouring occurs due to the action of the horseshoe and wake 

vortices.  Local scour is the immediate change in the bed level surrounding an 

obstruction due to the restriction or change in the natural flow path. This reduction in 

the depth of bed level is called scour depth. Scour causes significant structural 

unpredictability.  The bridge foundations are weakened and may eventually cause 

overall failure of the structure especially when there are floods as the volume and 

intensity of the moving flow increases so rapidly. Researchers have been trying for 

quite a long time now to find ways to reduce this scour occurring and thus increase 

the safety of bridge piers.   

 

Experimentation to understand the scour process and the damage a horseshoe vortex 

causes is usually conducted in laboratories using straight flumes. Results of some 

studies noted in this literature review showed that the maximum depth of scour was 

highly dependent on the amount of time for which the experiment was conducted. It 

also identified that as the flow rate increased so did the level of erosion. Several 

engineering designs relating to this topic have been tested over the years and they are 

becoming more successful with time and research.  Bridges are very necessary in our 

modern world so engineers must study the best ways to install bridge piers to create 

the least disturbance to natural or man-made waterways in turn reducing erosion 

around the pier.   

 

This research was developed to understand and consequently aim to reduce scour 

through the economical design and best use of countermeasures around bridge piers.  
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The project identified, through a literature review and design analysis, three combined 

countermeasures for bridge piers. Initially countermeasures were built for testing in 

the large flume. After preparing the large flume for testing and commencing the 

control test the large flume unfortunately failed. Due to this misfortune models were 

then built and tested in the small flume. The results compared the control pier and 

each separate countermeasure with the amount of erosion which occurred. A control 

pier for the purpose of this research was a circular pier without any countermeasure.   

Volumes and dimensions were calculated using a laser scanner (FARO) then further 

processed and modelled using mining software.  These volumes were used identify 

the greatest reduction in erosion. These outcomes all showed a decrease in erosion 

when compared with the control pier but one combined countermeasure in particular, 

three collars and a plate, showed the greatest reduction but did not totally deny scour.   

  

Results show that an effective reduction in local scour can be achieved through the 

use of three collars as a combined countermeasure but not totally eliminated.  
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1.0 Introduction  
 

Bridges have been built for a millennium. They provide an essential link over 

many types of obstructions such as waterways and railways permitting 

transportation to take the most direct route.  Bridge failures due to scour have 

caused destruction to vital infrastructure resulting in financial stress to both 

governments and the general public. “Man who overlook water under bridge will 

find bridge under water” (Neill 1973).  This study investigates the effects of scour 

around bridge piers and assesses potential countermeasures to reduce scour. 

Scour is the removal of existing sediment because of a change in the velocity of 

the flow and or restriction in the flow path.  This can cause structural integrity of 

the bridge pier to be undermined resulting in bridge failure. see, e.g., Raudkivi 

1986; Dey et al. 1995; Dey and Raikar 2007(Grimaldi 2009a). Scour research is 

quite extensive however the use of combined countermeasures is limited.  This is 

probably due to each channel being different in size, velocity of flow and 

sediment size.  

 

This research aimed to investigate, through a literature review of current 

countermeasures used within the industry, an evaluation and subsequent 

elimination of these countermeasures.  Elimination of these countermeasures 

was determined by a rating system in which constructability, cost and efficiency 

were measured. The most suitable countermeasures to be combined for testing 

were determined through this rating system. Models of the countermeasures 

were constructed for testing in the small flume at USQ Toowoomba.  The 

efficiency of each combined countermeasure was measured by volume and 

depth of scour to provide results in which the performance was rated.  This 

performance will be available for industry information.  

 

 

1.1 Objectives  
 
The aim of this research was to investigate the best countermeasure or combined 

countermeasure to mitigate local scouring and vortex shedding around bridge piers in 
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open channels. A design matrix using a rating system to classify constructability, 

feasibility and an efficiency factor was employed to identify the most efficient 

countermeasure. As bridges are necessary for everyday travel this topic is of vital 

importance to ensure the structural integrity of bridge piers and safety to all who use 

this infrastructure. Bridges collapse due to the undermining of bridge piers because of 

the scouring caused by horseshoe and wake vortices.   

 

This research examined the effect of scouring on scale models of bridge piers with 

countermeasures in a flume.  It also examined the best countermeasure to be 

employed to reduce scour and ensure cohesion of the bedding material around the 

pier.   

 

Research conducted and literature already published furthered the understanding of 

the scouring process. Studies completed by others were reviewed so that the strengths 

and weakness of existing scour mitigation methods could be recognised. By grouping 

and analysing the strengths and weakness of other designs, a new design could 

potentially be developed.  

 

This project tested three countermeasures which from analysis within the literature 

review achieved the highest rating. Testing took place to determine the efficiency of 

the various combined countermeasures in mitigating the scour depth allowing 

conclusions to be drawn.     
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2.0 Literature Review 
 
This literature review presents background information and previous understanding 

within this field of study.  Before physically investigating effective methods to reduce 

scour at bridge piers, it was important to review existing techniques, their efficiencies 

and weakness.  This review investigated local scour and the causes of bridge pier 

failure.  It also provided information about the basics of hydraulic theory relating to 

open channels offering the reader knowledge to understand the problem at hand. The 

following points were outlined as part of the literature review:  

 

 General information on scour 

 Vortex Shedding  

 Sediment Transportation 

 Flow Around Piers 

 Hydraulic Theory 

 Theoretical Checks   

 Countermeasures –Pier Attachments, Bed Attachments & Other Devices 

 Combined countermeasures 

 Conclusion of the literature review 

 

 

2.1 Outline of Scour 
 
In channel flows when an object such as a bridge pier obstructs the flow, scour 

results. “Scour is defined as the erosion of streambed around an obstruction in a flow 

field” (Chang,1988). Scour is a process that occurs when there is a rapid and 

unexpected change in this water flow or an obstruction impedes the flow (Williams 

2009). Bridge scour is the removal of sand, soil and pebbles by fast moving water 

from around the foundations of bridge piers (figure 2.1).  The pier impedes the natural 

flow causing high shear stresses and turbulence which creates horseshoe vortex 

causing scour to the riverbed.   This  scour creates a serious threat to bridge piers (Qi 

2013).  
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Scour can occur as contraction scour, local scour or general scour. Contraction scour 

is when the flow of fluid is reduced either naturally or by human intervention.  Local 

scour is created at the pier simply due to the obstruction being present (Davis 2001).  

This obstruction causes acceleration to the flow, resulting in vortices created by this 

restriction. General scour is the lowering of the bedding layer at the obstruction. 

General scour is often caused by a change in the river flow upstream or may be 

caused by a manmade barrier.  This fluid then flows around the pier and creates a 

horseshoe vortex (Davis 2001).   

 

Scouring around a bridge pier will reach a maximum where no more bedding material 

can be eroded from the scour hole. This is called the maximum scour depth and 

depending on the flow will be reached at different times (eg Days, weeks, Months & 

years) (Davis 2001). The bedding material also contributes to the rate in which scour 

occurs. If the bedding material is soft then erosion will occur more quickly.  

 

 

 
Figure 2.1 Scour Hole (SSC 2010) 
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2.1.1 Clear Water Scour 

 
Clear water scour occurs when the fluid does not transport sediment material from the 

bedding upstream.   Clear water scour occurs when the bedding material cannot be 

carried by the normal flow(Davis 2001).   

 

 

2.1.2 Live Bed Scour  

 
Live bed scour occurs when the bedding material is carried downstream with the flow 

of the water.  Scour holes in live beds are more prevalent during flood occurrences. 

This is because of the presence of bedding material in the fluid causing shearing to the 

current bedding layer. When the intensity of the flood decreases the sediment refills 

the scour hole due to a drop in velocity (Davis 2001).  

 

 

2.2 Vortex shedding  
 
When any water flow is disturbed by a solid object the result downstream is called 

vortex shedding. The object causes a disruption to the speed and pressure of the water 

both around the object and downstream (Stoesser 2010). These changes in pressure 

result in the boundary layer of water separating from the bluff body. Vortices occur in 

the separated boundary layer of water (Stern 2009).  The stream of water disconnects 

when it impacts on the obstruction causing an unsteady flow downstream.  

 

 

2.2.1 Horseshoe Vortex  

 
“Results show that the shape and size of the pier columns have a significant effect on 

the spatial and temporal distributions of the bed friction velocity induced by the 

horseshoe vortex system”(Chang 2013).  The horseshoe vortex is created by the flow 

of water separating at the upstream face of the bridge pier where the initial scour hole 

has developed. The flow slows down as it approaches the pier hits the upstream face 

of the pier travels vertically down the pier towards the bedding layer and pier 

foundation as in figure 2.2 below.  This vertical down flow erodes the surface and 
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continues forming the scour hole in a semicircular direction (Masjedi 2010). This then 

hits the oncoming flow of water to form a horseshoe vortex as seen in the diagram 

below. The sediment is carried away downstream by the horseshoe vortex (Masjedi 

2010).  

 

 

 

Figure 2.2 Horseshoe and Wake Vortices (Masjedi 2010) 

 

 

2.2.2 Wake Vortex  

 
Wake vortices form behind a bridge pier and affect the downstream flow pattern 

(Younis 2006). This phenomenon is caused by the separation of flow around the 

bridge pier (figure 2.2 above). Melville (1975) wrote, “each of the concentrated 

vortices acts with its low pressure center as a vacuum cleaner” (Melville 1975).  

Wake vortices only cause problems with scour when piers are shielded by riprap or 

other countermeasures upstream of the bridge pier (Stevens 1991). This effect of 

scour causes little concern compared to the effect of horseshoe vortices. When the 

bridge pier is large in diameter the effect of the horseshoe vortices is negligible, but 

once again the wake vortices cause scour downstream (Stevens 1991).   
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2.3 Sediment transportation  
Sand, soil, rocks and other solid debris are transported when the flow of water is 

increased and or disturbed due to bluff bodies. This results in a natural reduction of 

soil matter around the bluff body and creates an increase of soil matter further 

downstream (SSC 2010).  

 

 

2.4 Flow around piers and how piers affect flow 
 
The flow around bridge piers will be turbulent for scour and vortex shedding. This 

turbulent flow is the most critical condition that will affect the structural integrity of 

the bridge if not controlled through innovative design.  The flow in front of the pier is 

moving in a downwards direction as it hits the pier as seen below.  

 

 

 
Figure 2.3 Flow around piers (Esfandi 2010) 

 

 

The speed of the water pushes the vortex around the pier as seen in the above figure 

2.3 as horseshoe and wake vortices.  To try and combat the effect of the horseshoe 

vortex the use of larger materials such as large rocks can be used to secure the 

bedding material. Another option to limit the creation of horseshoe vortices is to use a 

collar around the bridge pier thus abating the downwards flow of water (Esfandi 

2010).  
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2.5 Hydraulic theory  
 
An open channel can be defined by one surface of water being bound by atmospheric 

pressure and free flowing. Open channels can either be constructed or formed by a 

natural occurrence. Examples of open channels are rivers and streams.  A channel can 

be classified into prismatic or non-prismatic channel. Prismatic channels contain 

features which remain constant and are usually associated with manmade structures. 

Non-prismatic channels are categorized by fluctuating features which do not remain 

constant (Unitec 2011). These are commonly identified with natural channels.  

 

 

2.5.1 Flow Classifications and Flow Regimes.  
 

2.5.2 Steady and Unsteady Flows 

 
Steady flow is defined as one with flow properties that do not change with time. 

Unsteady flow is classified by flow properties that change with time. This unsteady 

flow may contain surges. An example of when unsteady flow occurs is during a flood.   

 

 

2.5.3 Uniform and Non-uniform Flows 

 
Uniform flow occurs when velocity and depth of the channel does not change 

with distance. Steady uniform flows transpire in long channels where there are 

no extra entries or exit points and where the water mass remains constant due 

to the uniform slope. This steady uniform flow is the result of the balanced 

condition where the energy loss due to friction is the same as the potential 

energy created from the decline of the slope. The flow depth under this condition 

is known as normal depth. Steady non-uniform flow fluctuates when the 

conditions vary with distance but not with time (Unitec 2011).  The mean 

velocity will change with distance and not with time.  
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2.5.4 Flow classification  

 
There are three classifications of flow.  They are Laminar, Transitional and Turbulent 

flows. Laminar flows occur when the fluid is moving slowly in smooth parallel layers 

(streamline flow).  Turbulent flow is when the fluid travels at speed where flows are 

erratic. This type of flow is often associated with flooding conditions. It is also most 

evident around structures due to the disturbance in flow path. Turbulent flows are 

unpredictable due to the changing velocities and direction, making analysis difficult. 

The turbulent motion of water moves in a vortex motion. Transitional flow occurs as a 

mix between turbulent and laminar flows (Richards 2010). Transitional flows are 

obvious when unsteadiness starts to be evident within the flow (figure 2.4).  

 

 

Figure 2.4 Flow Charts (Sydney 2005) 

 

 

2.5.5 Reynold’s Number  

 
Reynold’s number (Re) is the numerical method to determine the flow condition 

within a channel. The equation is a ratio of the momentum forces to viscous forces 

(Chadwick 2013).  The equation is dimensionless.  

 

𝑅𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙  =
𝜌𝑅𝑉

𝑣
 (2.1) 
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𝑊ℎ𝑒𝑟𝑒, 
𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  
𝑅 = 𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑅𝑎𝑑𝑖𝑢𝑠   
𝑉 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦      
𝑣 = 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦      
 
The hydraulic radius is a function of the area over the wetted perimeter.  

 

Table 1 below outlines the open channel Reynolds number for the different flows.  

 

 

Table 1 Open Channel Reynolds Number 

 

 
 

 

 

2.5.6 Velocity Disturbance across an Open Channel 

 
Friction created along the boundaries of an open channel will cause the measured 

velocity to fluctuate.  The velocity also varies due to the secondary currents which 

rebound off the boundaries of the channel (Unitec 2011). Figure 2.5 depicts the 

change in velocity in an open channel. The atmospheric pressure contributes to the 

variance.  The maximum velocity is found to be just below the surface. 

 

 

Figure 2.5 Velocity disturbance across an open channel (Sierra 2009) 
 

Flow Classification  Re Channels  
Laminar Flow  Re<500 
Transitional Flow  500< Re <2000 
Turbulent Flow  2000 < Re 
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2.5.7 Froude Number 

 
Froude number (Fr) is a dimensionless parameter that describes the type of flow 

within an open channel (Nalluri 2009). The Froude number is proportional between 

gravitational and inert forces.  

 

𝐹𝑟 =  
𝑉

√𝑔𝑦
  Eq. (2.2) 

 
𝑊ℎ𝑒𝑟𝑒, 
 𝑉 =  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦   
𝑦 = 𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑚𝑒𝑎𝑛 𝑑𝑒𝑝𝑡ℎ 
𝑔 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦  
 

2.5.8 Flow Separation  

 
The real fluid flow around a non-streamlined shape (eg. cylindrical pier) is only 

symmetrical before the obstruction in the upstream flow. As fluid passes the 

downstream face of the obstruction the streamlines start to diverge (figure 2.6). 

Maximum constriction occurs at the Y Axis line between the boundary layer and the 

upstream face (Chadwick 2013). As the fluid passes the midway point the flow 

decreases in intensity.  The streamlined flow disappears and strong eddies appear 

causing energy loss.  The fluid in the boundary layer is travelling slower than fluid in 

the stream.  At this point negative velocities occur in the inner part of the boundary 

layer as seen in figure 2.6.  There is a distinct line where the body of the flow is 

separated into negative and positive velocity showing flow separation.  
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Figure 2.6 Flow Separation (Chadwick 2013) 
 
 

2.6 Theoretical Checks 
 

2.6.1 Critical Mean Velocity  

 
Before any practical testing is carried out, flow conditions within the large flume must 

be considered. This is to ensure that the critical mean velocity is checked so the 

threshold for sediment transportation is reached. This is calculated using Neill’s 

Equation  (Administration 1993):  

 
Neill's equation 
 

𝑉𝑐 = 1.41√(𝑠𝑠 − 1)𝑔𝑑50  (
𝑦

𝑑50
)

1

6
 Eq. (2.3) 

 
Where,  
Ss = Specific gravity of sediment particles 

 y= flow depth (m)  

 𝑑50 = Median size of bed material (m)  

g = Acceleration due to gravity  
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2.6.2 Pier Scour depth 

 

The formula below has been developed to predict the maximum scour depth around a 

bridge pier (Administration 1993).  It can be used for both cases of scour either live 

bed or clear bed scour conditions.  

 
𝑦𝑠

𝑦1
= 2.0 𝑘1𝑘2𝑘3 [

𝑎

𝑦1
]

0.65

𝐹𝑟1
0.43 Eq. (2.4) 

 
Where,  
L = Pier Length (m) 
a = Pier width (m) 
𝐹𝑟1 = Froude Number directly upstream of the pier  
𝑉1 = Mean velocity of flow upstream of the pier  
g = Acceleration of gravity  
𝑘1= Correction for pier nose shape  
𝑘2=Correction for the angle of attacked of flow  
𝑘3=Correction factor for bed condition 
𝑦1 = Depth upstream  
𝑦𝑠 = Depth of Scour  
 
 

2.6.3 Sediment Size  

 
The theoretical check of the size of the sediment to the diameter of the bridge pier 

will be checked. This is to ensure independence between sediment size and bridge 

pier diameter.  

 
𝑏

𝑑50
> 50 Eq. (2.5) 

 
If this equation is greater than 50 then there is no relationship between sediment size 

and scour depth (Ettema 1980).  

 

 

2.7 Countermeasures Review  
 
Studies have identified two principal countermeasure categories used to minimize  

scour around bridge piers (Tafarojnoruz 2010) 

 
 Flow altering 
 Bed armouring 
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2.7.1 Flow altering measures 

 
Flow altering measures are designed to reduce the strength of the downflow and 

the horseshoe vortex, the primary instigators of scour (Tafarojnoruz et al., 

2010). “using flow altering devices, the shear stresses on the riverbed, in vicinity 

of the pier, are reduced by altering the flow pattern around a pier which in turn 

reduces the scour depth” (Mubeen 2013). 

 
Tafarojnoruz, Gaudio and Dey (2010) grouped flow-altering techniques into the 

following four categories:  

 

1. Pier Slots 

2. Pier attachments  

3. Bed attachments 

4. Other devices  

 

 

2.7.2 Pier Slots   

 
Slots allow approaching water to pass through the pier (Tafarojnoruz 2010). Reduced 

resistance created by the more direct path, weakens the horseshoe vortex and strength 

of the downflow.  Openings may be created in the pier itself or by gaps between 

several smaller piers acting to support a single area. Both techniques work to reduce 

resistance to the waters flow and subsequent scour. Scour reduction efficiencies for 

techniques investigated by Tafarojnoruz et al. (2010) were around 35% to 39% 

(Tafarojnoruz 2010).  

 

Pier slots reduce the friction area of the pier allowing water to flow through 

minimizing the downflow that will reach the bedding surface (Mubeen 2013). This 

method is an indirect method that allows less contraction pressure to occur as the 

natural flow is more freely dispersed.  The slot design is critical. If the slot is placed 

too high then the ability to divert the downflow to the bed is minimal (Chiew 1992). 

When the slot is below the surface, the water passing through acts as a jetstream and 

erodes the bed downstream of the pier.   Debris is a major concern as the slot can very 



19 
Andrew C Raleigh 

easily be filled making this countermeasure unproductive (Mubeen 2013).   Regular 

maintenance is required to ensure that blockage doesn’t occur making this option an 

expensive exercise. Placing a slot into a pier is also a strength concern as structural 

capacity is reduced.  The placement of the slot is critical to structural integrity and 

thus requires considerable calculations before implementation (Mubeen 2013).  

 

 

2.8 Pier attachments  
 
Pier attachments include threading, collars or horizontal plates and pier-attached 

plates (Tafarojnoruz 2010). 

 

 

2.8.1 Threading  

 
Threading involves wrapping cable around the pier from top to bottom so that the 

cable is sloping downwards. Scour reduction efficiency is directly proportionate to the 

amount of cable installed. Efficiency increases as more cable is applied and the slope 

of the cable reduced (Tafarojnoruz 2010). Dey et al. (2006) suggested that the best 

configuration is a triple thread with a thread angle of fifteen degrees (Dey 2006; 

Tafarojnoruz 2012).  Results using threading show minimal changes to scour 

reduction when compared to a bridge pier with no countermeasure. The results 

obtained from studies showed that similar scour shapes developed. Threading reduces 

the downflow pressure by acting as a frictional component against the  downward 

flow (Tafarojnoruz 2012).  Threading has been utilised to lessen the downward flow 

which contributes to the development of horseshoe vortices. This method is 

inexpensive and easy to apply.   

 

 

2.8.2 Collars and horizontal plates  

 
Collars are attached to the bridge pier and are used to deflect the flow of water  

(Melville 1999). Several studies have been conducted to determine the best position 

for placement and size of the collar. Installing a collar impacts directly on the 
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downflow reducing both scour depth and the rate of scour (Mubeen 2013).  Collars 

encompass the whole pier, whereas a plate is usually only attached to the front of the 

pier.  

 

Collars and or horizontal plates are placed at or just below the original bed level to 

deny scour continuing beyond the depth of the collar or plate (Tafarojnoruz 2010).  

When the collar width was increased and it was placed below the bed level the 

reduction of scour depth increased considerably. The size of particles in the sediment 

also affected the performance of the collar (Gogus 2010).   

 

Plates are generally positioned on the upstream side of the pier whereas collars are 

circular disks that surround the pier (Tafarojnoruz 2010). The plates/collars width 

controls the scour reduction efficiency; however size is dictated by practicality. Plates 

help alleviate the downflow at the face of the pier from forming a horseshoe vortex.  

Studies by Kumar (1999) showed that a larger scour hole formed at the upstream face 

of the pier when using a smaller diameter of collar at a greater height rather than 

using a larger diameter of collar at a lower height (Kumar 1999).   

 

Experiments have also been conducted using a rectangular and a circular collar.   

Results showed scour decreased using either collar but a rectangular collar was 

superior decreasing scour depth by 79%.  This same experiment also showed that the 

greatest reduction in scour depth was gained by placing the collar under the river bed 

(Jahangirzadeh 2014). 

 

 

2.8.3 Pier Attached Plates  

 
Plates (vanes) are placed on the pier at an angle to divert the downflow away from the 

bed level. By diverting the downflow away from the bed, the horseshoe vortex is 

denied. Scour depth reduction efficiency was recorded as high as 90% in good 

conditions (Tafarojnoruz 2010). The angle investigated by Tafarojnoruz et al. (2010) 

was 45 º.  Plates sloping upward were more efficient.  
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2.9 Bed attachments  
 
Bed attachments include sacrificial piles, vanes, bed sills, surface guide panels 

and sleeve and collared sleeve. Bed armouring utilizes physical barriers to 

negate scour (Tafarojnoruz 2010).  

 

 

2.9.1 Sacrificial piles 

 
Sacrificial piles, as the name suggests, are piles positioned in front of the bridge pier 

as a barrier/deterrent of heavy flows.  They consist of a group of piles upstream of the 

bridge pier which causes a smaller velocity of wake which in turn reduces any 

horseshoe vortex immediately upstream of the pier and consequently a reduction in 

scour depth. The efficiency of sacrificial piles is dictated by the configuration, size 

and number of piles used (Tafarojnoruz 2010). Recent research concluded that the 

effectiveness of sacrificial piles as a scour countermeasure is also dependent on the 

velocity flow angle and the flow intensity (Melville 1999).  Studies determined scour 

volume reduction efficiency between 40% and 50% (Tafarojnoruz 2010).    

 

Sacrificial piles are said to be ineffective as scour countermeasures in live-bed 

conditions. The only time sacrificial piles are effective is when the flow is straight and 

the intensity of the flow is negligible (Mubeen 2013).   

 

 

2.9.2 Sacrificial sheet piles  

 
Sacrificial sheet piles are another countermeasure employed to reduce scour at bridge 

piers. The sheet piles are joined and positioned in a way that the join forms a peak in 

the direction of the oncoming flow. This method diverts the flow from the pier 

reducing the velocity of flow impacting the pier. The highest scour reduction was 

47% (Tafarojnoruz 2010).  
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2.9.3 Vanes  

 
Vanes are blades situated before the pier to alter the flow velocity, direction and 

distribution (Tafarojnoruz 2010).  Vane efficiency is determined by the vanes height, 

orientation in relation to flow, length and the lateral distance between each 

(Tafarojnoruz 2010). Rock vanes are placed at an angle so the tip of the vane is 

immersed even during times of low flows in the channel or stream. Vanes, by aligning 

the flow of water can effectively move the scour away from the bridge support and 

into the centre of the channel.  Vanes are an economical method of reducing scour 

when the bridge and waterway are only small (Johnson 2001).  When the bridge is a 

single span, options to reduce scour such as riprap and bed armouring may interrupt 

the flow of the water and cause contraction scour so the use of vanes has proven 

effective (Johnson 2001). Scour reduction efficiency according to studies reviewed 

was 30% to 50% (Tafarojnoruz 2010). Two vanes placed opposite to each other at a 

short distance away from the front of the pier proved more effective than a single 

vane (Kells 2008; Tafarojnoruz 2012).  

 

 

2.9.4 Surface guide panels  

 
Panels are positioned in a similar orientation and location as the sacrificial sheet piles 

only the panels are not set into the bed of the waterway directly. The panels are 

anchored into the bed to allow water to pass underneath the panel. This forces the 

water downwards, causing erosion directly beneath the panel. The erosion creates a 

bowl in the bed level. The end of the bowl then acts as a jump, pushing the water 

upwards as it approaches the pier. This reduces the downflow at the pier and scour 

intensity. Reduced downflow correlates to weakened horseshoe vortex (Tafarojnoruz 

2010). 

 

 

2.9.5 Sleeve and collared sleeve    

 
A sleeve is a cylindrical steel container used to contain the horseshoe vortex 

(Tafarojnoruz 2010). The container has a solid base. The horseshoe vortex occurs 

inside the sleeve and the base and sides of the sleeve deny scour. Sleeve only methods 
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have demonstrated failure to deny scour around the outside of the sleeve 

(Tafarojnoruz 2010). To improve the sleeve capability, a collar is placed around the 

sleeve. The collar denies scour outside the sleeve while the sleeve contains the 

primary horseshoe vortex/scour potential.  

 

 

2.9.6 Bed Sills 

 
Grimaldi et al (2009), conducted experiments which concluded that placing a bed sill 

a short distance downstream of the pier decreased the size and depth of the scour hole 

(Grimaldi 2009b). It was noted, if the distance between the bed sill and pier was less, 

the efficiency of this countermeasure increased.  This countermeasure does not come 

into effect immediately. The scour behind the pier must develop sufficiently before 

the bed sill starts to counteract the scour process (Grimaldi 2009b).  The best 

positioning of the bed sill as stated by Grimaldi et al (2009a), suggested that the bed 

sill should be adjacent to the downstream face of a circular pier (Tafarojnoruz 2012).  

The bed sill acts as a barrier against the removal of sediment and therefore an 

increased scour hole. In a recent study the buildup of debris at the face of the bed sill 

caused a greater scour depth meaning this countermeasure can be detrimental to the 

reduction of scour (Tafarojnoruz 2012).  

 

 

2.10 Other Devices  
 
Other devices noted by Tafarojnoruz et al (2010) include suction and modifying the 

pier shape. The use of riprap is also a method of preventing scour build up around 

bridge piers. 

 

 

2.10.1 Suction applied to pier 

 
Holes are drilled through the lower part of the pier and water is suctioned through the 

pier using pumps. This method showed positive scour reduction outcomes but did 

contribute to minor scour downstream (Tafarojnoruz 2010). 
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2.10.2 Modifying pier shape  

 
Pier shape can change the strength of the downflow and the horseshoe vortex 

(Tafarojnoruz 2010). Sharp-nosed piers can reduce the downflow and weaken the 

horseshoe vortex provided the flow direction matches the orientation of the sharp 

nose. If the flow direction changes and meets the flat faces of the pier, scour intensity 

increases dramatically (Tafarojnoruz 2010). If a blunt nose pier is implemented there 

will be no variation in scour intensity with flow direction changes. Industry 

professionals support this predictability and blunt nosed piers are used most 

frequently. 

 

The shape of the bridge pier greatly influences the amount of scour.  A cylindrical 

shape was the most common but a round nosed pier, a sharp nosed pier or a girder 

design are all now well-known shapes for pier design (Figure 2.7).  If the shape is 

sharp nosed or rectangular the flow must align with the pier face for scour to be 

reduced.  If there is even a small change in flow a cylindrical pier is safer to be used 

as scour will increase with the other pier shapes (Lauchlan 1999). Figure 2.7 below 

shows the most commonly used shapes for bridge pier design as per the Queensland 

Main Roads and Transport Manual (2013). 

 

 

 

Figure 2.7 Varying pier shapes (Roads 2013)  
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2.10.3 Riprap  

 
Riprap is the most commonly used method for reducing the effect of scour around a 

bridge pier (Mubeen 2013). This method is both efficient and cost effective.  Riprap 

stones are commonly used to stop horseshoe vortex where the downflow from the pier 

face is prevented from eroding the bedding due to the armoring in place. Failure can 

follow using riprap stones, most likely evident during flood events where the 

sediment within the water moves the riprap stones (live bed condition) further 

downstream (Lauchlan 2001).  Under live-bed conditions the riprap moves 

downstream defeating the original placement of the riprap layer. Placing the riprap 

layer below a sediment bed was identified as a possible solution by Chiew and Lim 

(Chiew et al., 2000).  

 

Failure may also occur in clear water conditions where the stones are not large 

enough to withstand the shear stress caused from the downflow from the front of the 

pier (Lauchlan 2001). Riprap stones vary in size and thus voids are created due to the 

uneven shapes which allow the flow to erode the bed layer below. This can cause 

subsidence of the riprap layer (Lauchlan 2001).  

 

 

2.11 Combination of countermeasures   
 
Tafarojnoruz et al (2010) explored the efficiency of combinations and found that the 

practicality of employing some of these combinations was difficult or required very 

specific conditions to improve efficiency.  The following combinations were tested 

and improvements though sometimes small were noted:  

 
 Submerged vanes and a bed sill 

 Sacrificial piles and a collar 

 Sacrificial piles and a slot  

 Slot and collar 

 Multiple collars 

 Bed sill and collar 

 Slot and bed sill  

 
Gaudio (2012) suggests that a higher reduction in scour is achieved through a 

combination of mitigating techniques. Chiew (1992) noted that in clear water 
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conditions a combination of slot and collar eliminated scour around the bridge pier.  

Parker et al (1998). In live-bed conditions the combination of permeable sheet piles 

with riprap reduced scour by up to 91% (Gaudio 2012). This article also concludes 

that an incorrect combination of countermeasures can be less effective than a single 

countermeasure (Gaudio 2012).  The results obtained from this current project could 

prove very helpful in mitigation techniques for future use.  

 
 

2.11.1 Submerged vanes and a bed sill 

 
These countermeasures used singly in previous research only showed reductions of 

below 20% so were not considered effective. This configuration positioned two vanes 

submerged upstream of the pier to catch sediment between them and prevent the scour 

hole growing. A bed sill was placed downstream to avoid any build up to the back of 

the pier. Testing with this combination only saw an eight percent greater reduction 

than if a single bed sill had been used (Gaudio 2012).  

 

 

2.11.2 Combination of sacrificial piles and a collar  

 
Sacrificial piles in combination with a collar can help alleviate the scour depth 

because the scour which occurs at the base of the sacrificial pile deposits this scour 

into the scour hole around the pier.  This method reduces the equilibrium and the rate 

of scour at the pier (Gaudio 2012). In this combination the collar’s usual performance 

to reduce scour at the pier face didn’t transpire. The results showed an undermining 

upstream of the collar at the face of the pier (Gaudio 2012). This mitigating 

combination only reduced the effect of scour marginally more than the individual 

mechanisms and is therefore not a recommended solution.  

 

 

2.11.3 Combination of Sacrificial piles and a Slot 

 
The insertion of a slot into a pier reduces the force of the water lessening the 

horseshoe vortex created and results in a reduction of scour depth.  The 

sacrificial piers again reduce scour at the pier by depositing crosswise sediment 
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into the pier scour holes.  The performance of this combined method was minor 

in relation to the performance of each single countermeasure(Gaudio 2012).  

 

 

2.11.4 Combination of a slot and collar  

 
Studies have also taken place to include a collar and slot (Mubeen 2013). This 

combination of a slot combined with a collar proved greater efficiency than just the 

individual slot or collar but the slot created scour downstream at the rear of the pier 

and the outflow from the slot can also affect the structure of wake vortices and 

diverge them further down the watercourse (Gaudio 2012).  

 

Experiments conducted by Chiew (1992) showed that if a slot was cut into the pier at 

a quarter of the diameter of the pier at bed level and a collar placed around the pier 

then scour could be eliminated Chiew (1992) (Moncada 2009). 

 

 

2.11.5 Multiple collars  

 
Garg et al. (2005) experimented with various sizes of collars around a bridge pier. 

Studies showed that a collar three times the diameter of the pier and placed at bed 

level reduced scour to zero.  Due to concern of normal degradation of the riverbed 

Garg et al. (2005), experimented using three collars one and a half times the diameter 

of the pier.  This reduced the scour by 83%. Concern arose with this first experiment 

where the collar was three times greater than the pier diameter as it could prohibit any 

traffic beneath the bridge (Garg et al. 2005).  

 

 

2.11.6 Bed Sill and Collar 

 
This combination varies in its effectiveness.   The sill helps prevent the grooves that 

appear under the collar and cause the scour hole around the pier.  The difference is 

noted to be dependent upon the placing of the bed sill in relation to the pier and also 

the width of the bed sill (Gaudio 2012).   
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2.11.7 Slot and bed sill  

 
A slot reduces scour by decreasing the strength of the down flow, therefore limits the 

horseshoe and wake vortices.  The important design aspects of the slot to enable scour 

reduction are the slot width, length, sinking depth and the skew angle (Grimaldi 

2009a). The bed sill reduces the extent of the vortices at the rear of the bridge pier. 

Scour will still occur to some degree as far as the bed sill is located. The best option 

for placement of the bed sill was found to be adjacent to the bridge pier. As a 

combined countermeasure the performance proved to be an effective combination 

(Grimaldi 2009a).  

 

 

2.12 Conclusion of Literature Review  
 
This literature review provided the basis of an understanding of various 

countermeasures used within the hydraulic industry to reduce scour around bridge 

piers. The literature provided information on previous results stating both the 

efficiencies and failures of various countermeasures. Further reading offered evidence 

of combined countermeasures mostly proving to be more effective in the reduction of 

scour. Dependent upon the way the countermeasures were combined, a greater 

reduction in scour generally occurred, but at times a combination provided lower 

effectiveness, compared to an individual performance.  By using the literature review 

the studies of individual and combined countermeasures suggests the following 

recommendations.  

 

The performance of pier slots was shown to be an effective countermeasure but costly 

to maintain. Collars and plates were reviewed as a good countermeasure in reducing 

the scour depth. The reduction in the downflow at the face of the pier was one of the 

main advantages and collars and or plates were one of the highly recommended 

countermeasures previously tested. Pier attached plates also presented positively from 

the literature review. Vanes are another suggestion recommended from the literature 

mainly due to their cost efficiency and performance. Two vanes mirroring each other 

at a 45 º angle to the flow proved to be effective.  The literature showed riprap to be 

an effective countermeasure also, but only in limited situations. Bed sills are noted to 
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mainly be effective in combinations and are primarily limited to small channels due to 

cost.   

 

From the literature above combinations in the optimum configuration were commonly 

found to perform better.  From these readings slot and collars and/or multiple collars 

used in the right combination appear to be very effective. The literature also suggests 

that the most effective groupings are dependent on the channel conditions.   

 

From the analysis matrix, the combination of vane and plate could prove to be an 

effective combined countermeasure therefore testing was performed using this 

permutation. Both inward and outward facing vanes combined with a plate were 

chosen to determine the optimum measure for the reduction of erosion.   Multiple 

collars have already been discussed in the literature review but were shown to be 

effective in the implementation of this combined countermeasure and were therefore 

also selected to be tested against a control pier.    

 

To provide a performance indicator as to which combined countermeasures would 

offer the greatest efficiency, the volume of erosion would be measured and compared.  

The greatest reduction in erosion using the chosen combined countermeasures when 

compared to the control pier would be recommended for implementation. 
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3.0 Design Analysis  
 

3.1 Elimination of Countermeasures and Choosing a Design  
 
To choose combined countermeasures, elimination through a design matrix rating 

system was used. The ratings were measured using a scale of 1 to 5 with five being 

the most suitable. A countermeasure was rated on the basis of three criteria. 

Constructability was judged on how easily the model could be built and implemented 

at the site. It was also necessary to rate each model on the basis of ease of 

construction. In practice if a pier is already constructed trying to cut a slot into this 

pier would not be suitable. However placing a vane in front of an already constructed 

pier would be possible. Cost was assessed on the affordability of the countermeasure 

in terms of construction, material cost, maintenance costs and the life expectancy of 

the countermeasure.  Efficiency was the final criteria assessed. Efficiency was based 

on previous results obtained from the literature review.  

 
Table 2 Rating System 

Point 

value 

Construction   Cost  Efficiency  

1 Hard to construct  Very expensive, 

materials difficult to 

source, labour intensive 

to build 

Inefficient except in 

limited cases,  

2 Not as difficult to 

construct 

Expensive to construct 

and maintain  

Limited change in 

scale 

3 Moderately difficult  

to construct 

Moderately expensive Moderately efficient 

4 Easy to construct Reasonably cost 

effective 

Efficient in some 

situations 

5 Very easy to 

construct  

Very cost effective  Very efficient in most 

situations 
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3.2 Design Matrix – Evaluation of strength and weakness  
 
The aim of the tables shown below was to rate and then by process of elimination establish the most effective and efficient pier, bed attachment, 

and or pier attachment to provide the outcomes to be tested.  Further evaluation then determined the combinations of countermeasures which 

were tested.  The information below was taken from the literature review above and grouped accordingly. Using the information in Table 3 

allowed for the creation of further tables (Tables 4 – 7) to pinpoint the most effective pier and combined countermeasures.   

 

 

Table 3 Advantages & Disadvantages of countermeasures 

 Strength  Weakness  Evaluation/summary  

Pier Shape  

 Blunt Nosed  

Used to create greater structural 

integrity  

No variation in scour intensity with 

flow direction changes 

 

 Sharp Nosed  Weakens the horseshoe vortex 

provided the flow direction 

matches the orientation of the 

sharp nose 

If the flow direction changes and 

meets the flat faces of the pier, scour 

intensity increases dramatically 

This design would be recommended 

when the flow direction is the same 

as the orientation of the sharp nosed 

pier.  
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 Circular 

  

Direction of flow doesn’t matter 

with this design. 

Without pier or bed attachments 

scour holes are formed. 

This design is used when the 

direction of flow is unknown or too 

unpredictable. Good for majority of 

scenarios  

 Pier Slot  

 

Reduces downwards flow 

weakening the horseshoe vortex 

Debris is often caught in the slot 

making it less effective and 

reduction of scour is dependent on 

the positioning of the slot. 

This countermeasure will be tested as 

part of this research with one or more 

other countermeasures. The pier slot 

size and location must be taken into 

account to ensure structural stability.  

Bed Attachments  

 Sacrificial piles  

Reduces horseshoe vortex 

immediately upstream of the 

pier and therefore a reduction in 

scour depth. 

Efficiency of sacrificial piles is 

dictated by the configuration, size 

and number of piles used and is also 

dependent on the velocity flow angle 

and flow intensity. Ineffective as a 

countermeasure in live- bed 

conditions. The only time sacrificial 

piles are effective is when the flow 

is straight. 

This method is good for clear water 

scour but not effective in live bed 

conditions.   
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 Sacrificial sheet 

piles  

Reduces the velocity of the 

flow.  Good in flood conditions   

Scour can occur locally at the sheets. 

Difficult to construct and rust is a 

concern.  

Studies suggest the usage with riprap 

protection. Good combination in 

reducing high scour conditions  

 Vanes  Blades situated before the pier 

to alter the flow velocity, 

direction and distribution of the 

water. Very economical. 

Two vanes are more effective than 

one. 

Other studies showed positioning, 

including angular positioning of 

vanes was found to be difficult. 

 Surface panels  Reduces downflow at the pier 

and scour intensity and 

correlates to a weakened 

horseshoe vortex. 

Creates a bowl at the site of the 

sheet causing the water to be pushed 

upwards towards the pier. 

Not the best option from literature 

reviewed.  

 Sleeve and 

collared sleeve  

This causes the horseshoe 

vortex to occur inside the sleeve 

and scour is denied by the base 

and sides of the sleeve.  The 

collar negates scour outside the 

sleeve. 

Incorrect positioning of the sleeve 

can lead to greater scour  

Position of this countermeasure under 

live bed conditions can cause issues.  
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 Bed sill  Reduction in velocity and 

resultant scour reduction occurs 

at the pier due to the sills 

influence. Best configuration is 

when the bed sill is adjacent to 

the back of the pier.  

Buildup of debris can occur at the 

face of the bed sill rendering this 

countermeasure ineffective. Scour 

still occurs downstream of the pier. 

This countermeasure must span 

across the width of the streambed 

and therefore can be expensive.   

Scour will still occur at the rear of the 

pier but the extent of scour will be 

restricted by the sill. Debris can also 

be of concern with this 

countermeasure.  

 Riprap  Most commonly used, efficient 

and effective.  Prevents 

horseshoe vortex.  

In event of floods riprap is moved 

downstream and defeats the purpose.  

It can cause shear failure when the 

downwards pressure is too great 

causing subsidence of the riprap 

layer once again defeating its 

purpose.   

Riprap stones are most commonly 

used and are an inexpensive method 

of mitigating scour. However are not 

suitable for small streams.  

Pier Attachments  

 Threading  

Inexpensive but reasonably 

ineffective.  Reduces the 

downward velocity and 

therefore less horseshoe 

Threading shows minimal change to 

scour reduction when compared to a 

bridge pier with no countermeasure. 

This method is inexpensive but 

ineffective.  
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vortices 

 Collars  or 

Horizontal 

plates 

Collars reduce both scour depth 

and the rate of scour. Plates are 

generally positioned on the 

upstream side of the pier 

whereas collars are circular 

disks that surround the pier.The 

greatest reduction in scour was 

found when the collar was 

placed under the river bed. 

Plates/collars width controls the 

scour reduction efficiency. 

Using a rectangular collar was 

superior to a circular collar 

decreasing scour depth by 79% 

Using a small collar placed at the 

wrong height can actually increase 

the size of the scour hole. Vibration 

can be of concern when using a 

large collar. It is also difficult to 

install a large plate.  

Using multiple collars provides safety 

with concern to the lowering of the 

natural bed level.   Multiple plates 

reduce the effects of horse vortices.  

Using a single collar at a diameter 

three times of the pier size can see a 

reduction in scour up to 100%. 
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 Pier attached 

plates  

  

Plates (vanes) placed on the pier 

at an angle divert the downflow 

away from the bed level 

negating the formation of a  

horseshoe vortex. Scour depth 

reduction was recorded as high 

as 90%. The angle investigated 

was 45 º. Plates sloping upward 

were more efficient.  

 

Debris buildup on the plates can be 

an issue with this countermeasure   

 This method may be tested as a 

suitable countermeasure.  

            

 

 

The table below provides a recommendation for most effective and efficient design of pier and various countermeasures based on results using a 

rating system of 0 to 5 (with five being the most effective and efficient refer to Table 2).   
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3.2.1 Shape of the pier 

 
 
Table 4 Shapes of piers 

Countermeasure & 

Design 

Constructability   Cost Efficiency Overall Rating 

Blunt Nose  Requires more detailed 

form work – 3 points  

3 points – More material 

and construction detail 

required than circular 

4 points if the direction of 

the flow is the same 

orientation as the pier. 

10 points 

Sharp Nose  Requires more detailed 

form work - 3 points  

3 points – More material 

and Construction detail 

required than Circular  

4 points if the direction of 

the flow is the same 

orientation as the pier. 

10 points 

Circular  Easiest to construct – 5 

points  

5 points – least amount of 

material in designs chosen  

5 points as the direction of 

flow is not important 

15 points 

Slot  Requires greatest amount 

of form work – 2 points 

2 points – Requires more 

time and detail to 

construct 

5 points - height and 

direction of slot is crucial. 

Excellent countermeasure 

in reducing the downflow 

pressures.    

8 points 
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From the information in the table above the circular pier was chosen to be the most effective.  The direction of flow in the channel is irrelevant 

with this shape and therefore would permit the greatest amount of variation to size of channel, velocity of flow and live bed conditions available 

when building a pier in any open water channel. 

 

Selection: Circular pier as highlighted 

 

 

3.2.2 Bed attachments  

 
 
Table 5 Bed Attachments 

Countermeasure & 

Design 

Constructability  Cost Efficiency Overall Rating 

Sacrificial piles  5 points – easy to build  3 points – dependent on 

how many, their size and 

height.  

2 points – only effective in 

clear water conditions.  

10 Points 

Sacrificial sheet piles  2 points - difficult to 

construct and implement.   

2 points - rust easily so 

therefore not cost efficient.  

4 points – good in flood 

condition with aid of 

riprap stones. The singular 

8 Points 
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efficiency is not as 

effective. Scour can occur 

locally.  

Vanes  4 points – with the 

positions  of the vanes  

being crucial  

5 points  - cheap  to 

implement 

4 points – depends on the 

flow direction and the 

placement of the vane in 

relation to the flow 

direction  

13 points 

Surface panels  2 points – difficult to place 

and anchor 

 3 points – inexpensive to 

construct but expensive to 

implement  

2 points – creates bowls at 

the base of the panel and 

not very effective   

7 points 

Sleeve and collared 

sleeve  

3 points – moderately 

difficult to construct  

3 points –this measure is 

reasonably expensive if 

the sleeve is included   

3 points – can easily get 

clogged with debris and 

incorrect positioning can 

cause greater scour.  

9 points 

Bed sill  4 points – easy to 

construct  

2 points – expensive to 

construct due to 

countermeasure spanning 

2 points – Scour will occur 

to a certain degree before 

countermeasure is 

8 points 
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across entire channel  effective. Can also get 

clogged with debris  

Riprap  5 points – easy to 

construct and implement  

5 points – cheap and cost 

effective method   

3 points – mainly suitable 

for small channels. Not 

good in flood conditions  

13 points 

 

 

Bed attachments are a countermeasure that could be constructed in a channel at any given time. Sacrificial piles and riprap were the easiest to 

construct as shown in Table 5 above however sacrificial piles are only effective in clear bed conditions so were ruled out as ineffective for most 

river and channel situations.   Riprap, vanes and bed sills were the next easiest to construct.  Riprap is efficient and easy to construct however is 

limited in its efficiency as it is only suitable for small channels and not good in flood situations. This investigation aimed to establish 

countermeasures which will withstand flood situations as this is one of the most common reasons for bridge failure so riprap was ruled out as a 

combined countermeasure to be tested.  From the rating system shown in Table 5 vanes received the highest rating and would therefore be 

suggested as suitable for bed attachments.   From the above information vanes will be combined with another countermeasure and tested as part 

of this study. 

 

Selection:  Vanes as highlighted      
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3.2.3 Pier Attachments  

 
 
Table 6 Pier Attachments 

Countermeasure & 

Design 

Constructability  Cost Efficiency Overall Rating 

Threading  5 points –easy to construct  5 points – Cheap 

countermeasure to 

implement  

1 point – ineffective 

countermeasure to reduce 

scour.  

11 points 

Collars  or Horizontal 

plates 

4 points – reasonably 

simple to construct  

4 points – can be 

expensive depending on 

the number of collars and 

thickness of material 

5 Points –placement is 

crucial but when 

positioned at correct 

height and or spacing very 

effective   

13 points 

Pier attached plates  

  

4 points – reasonably easy 

to construct. Positioning is 

crucial  

4 point – reasonably cheap 

to implement 

5 points – can be really 

effective if positioned at 

the right angle  

13 points 
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Once again using Table 6 above collars and/or horizontal plates appear to be the most effective.  Both of these countermeasures will be tested as 

part of a combination. 

Selection:  Collars or pier attached plates as highlighted 

                

3.2.4 Combined Countermeasures  

 
 
Table 7 Combined Countermeasures 

Countermeasure & 

Design 

Constructability  Cost Efficiency Overall Rating 

Submerged vanes and a 

bed sill 

 

2 points – time consuming 

to construct 

2 points - This 

combination would be 

expensive to construct as 

the bed sill itself is 

expensive.  

1 point – as using the 

vanes actually caused 

larger scour holes 

downstream of the pier 

with the combination of 

bed sill  

5 points 

Sacrificial piles and a 

collar 

 

4 Points – construction is 

fairly easily with the 

 3 points – as a 

combination this would be 

1 point – did not improve 

scour compared to just a 

8 points 
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position of the collar being 

the most crucial and 

hardest part of 

construction  

a reasonably expensive 

process.  

collar.   

Sacrificial piles and a slot  

 

 

3 points – Construct is 

quite difficult especially 

creating the slot  

3 points – constructing a 

slot is time consuming and 

labour intensive.  

1 point – no improve using 

a combination  

7 points 

Slot and collar 

 

3 points – construction of 

this combination is 

moderately difficult  

3 points – slots are 

expensive to construct 

4 points – Debris can 

block the slot rendering 

this countermeasure 

ineffective.  However this 

combination is highly 

effective in clear water.   

10 points 

Multiple collars 

 

4 points – construction and 

position of the collars are 

paramount  

4 points – depending on 

the diameter of the collar 

this is a reasonably 

efficient and cost effective 

5 points – The efficiency 

of this countermeasure is 

very functional in reducing 

scour 

13 Points 
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method 

Bed sill and collar 

 

3 points – Bed sill is time 

consuming and labour 

intensive.   

3 points – the bed sill 

would be expensive to 

construct depending on the 

width of the channel.  

2 points – Fairly 

ineffective as a combined 

combination compared to 

individual performances    

8 points 

Slot and bed sill  

 

3 points – Construction of 

both countermeasure 

reasonably difficult and 

time consuming  

3 points – dependent on 

the width of the channel 

the bed sill can be 

expensive to construct. 

The slot  construction is 

expensive  

3 points – the slot can get 

blocked by debris 

rendering this 

countermeasure 

ineffective.  

9 points 

 

 

From Table 7 above which was information taken from the literature review multiple collars was deemed to be the most efficient and effective.  

Other combinations were not as efficient either in their cost or constructability so multiple collars was chosen to be tested.  Three rectangular 

collars was deemed to be effective as it allowed varying situations to occur within the channel and could still reduce the volume of scour.   

Selection:  Multiple collars as highlighted 
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To present another option for testing the highest rating of pier attachment was combined with the highest rating of bed attachment to provide a 

combined countermeasure to be tested.    

Selection:  Vanes with a pier attached plate          
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3.3 Design Matrix Summary and Chosen Design with 

Countermeasures  
 
From the rating process established above the following conclusions were drawn:  

 

This research eliminated designs through a logical process in which merit points were 

given based on constructability, feasibility (cost) and the efficiency of the design to 

reduce scour. From journal articles reviewed, individual efficiency of a single 

countermeasure in reducing the effects of scour was noted to be at best 50%. In stating 

this, the performance of some combined countermeasures proved less efficient than a 

single countermeasure.  However some combinations achieved much higher efficiency.  

 

The circular pier was chosen to be the most effective.  The direction of flow in the 

channel is irrelevant with this shape. The bed attachment of a vane was chosen due to 

efficient reduction in scour noted in the literature review.  The pier attachment showed 

both a collar and pier attached plate to be the most effective method to reduce scour.  

Reviewing the combinations presented in the above matrix provided the information 

that multiple collars were also an optimum choice.  

 

The testing conducted included using the highest rated bed attachment combined with 

the highest rated pier attachment to try and achieve the greatest reduction in scour.  

 
These combinations were: 

 

 Vanes placed upstream of the pier face with vane pointing inwards towards pier 

with pier attached plate   

 Vanes placed upstream of the pier face with vane pointing outwards from the 

pier with pier attached plate   

 Three Rectangular Collars  
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4. Methodology 
 

4.1 Introduction  
 
The aim of this project was to establish any minor improvement which may result from 

research conducted into ways to alleviate scour holes around bridge piers. “Predicting 

the maximum depth, area, and volume of the scour hole around a pier is important in 

order to design the pier foundations, avoiding pier and bridge failure” (Grimaldi 2009b). 

The majority of the literature review above confirmed that combinations prove to be a 

more efficient technique than a single countermeasure. This research used two or more 

combinations to determine a better outcome from countermeasures against scour around 

bridge piers.   

 

Data collection for this experiment was conducted in both the large and small flumes at 

USQ in Toowoomba.  Combined countermeasures were tested in a hydraulic flume to 

assess their efficiency. Non-cohesive material was used to form the bedding.  

 

The original intention of this research was to use the large flume. However after 

completing preparation of the flume and testing the control model for 45 minutes the 

pump ceased working and repair of the pump was outside the time constants available 

for this research. Due to this equipment failure the alternative of the small flume 

became the only method of testing.  

  

The research and results gathered from the testing undertaken are presented in this 

dissertation. It offers recommendations of combined countermeasures to mitigate the 

effects of local scouring.   

The stages below formed the basis of testing:  
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4.2 Experimental Process and Setup –Large Flume  
 

4.2.1 Large Flume  

 
The large flume which is 20m long, 2m wide and 0.9m depth was used to carry out 

testing of combined countermeasures against scouring of a bridge pier. This flume is 

located at USQ Toowoomba. Positioning of the bridge pier model in the correct location 

(centred) of the flume to minimise the flow effects of the side walls was vital. In these 

conditions examination of volume of erosion for each design was to be the focus of the 

experiment. The base material of the flume was silty clay and river washed sand was 

used around the pier to observe changes in scour depth.  A timber weir controlled the 

depth of water downstream and a gate valve controlled the upstream flow depth. Figure 

4.1 below shows the flume used for testing prior to weeds being removed.  

Stage 1

• Stage One - evaluate current strengths and weakness of 
bridge pier countermeasure designs noted in the literature via 
a matrix.

Stage 2

• Stage Two - test  piers with combined countermeasures 
based around the results obtained from the design matrix. 
These designs were then constructed and tested in the flumes 
at USQ Toowoomba.  

Stage 3

• Stage Three - collection of data for analysis of the different 
countermeasures tested. 

Stage 4

• Stage Four - compilation of the data collected to allow for 
the results to be presented in the dissertation.   
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Figure 4.1 Large Flume at University of Southern Queensland 

 

 

 

Figure 4.2 Control valve 
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The discharge was controlled by a valve at the start of the flume (Figure 4.2). Figure 4.3 

below details in L/s the discharge: 

 

 

 

Figure 4.3. Discharge Gauge L/s 

 

 

This gauge showed the discharge of the fluid. A new electrical pump was installed and 

tests were carried out to determine its capacity. 

 
 

4.2.2 Construction of Model Piers and Countermeasures  

 
These models were built at the University of Southern Queensland Faculty of 

Engineering and Surveying. The piers were built using plastic pipe with a diameter of 

225mm and were a length of 800mm.  The plastic pipe was filled with concrete to help 

stabilize each model once plates or collars were attached.  

 

The first test used a cylindrical pier to generate a standard for testing (Figure 4.4). This 

pier was built in the same way as described above.  Testing was revised based on the 

variations shown during this initial trial.  
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In the second test a slot was cut out of the pipe to allow the plate to be slotted into 

position. This plate was the same width as the pier and extruded 0.5D from the face of 

the pier in a rectangular shape.  The dimension of this plate was width of 225mm and 

length from the face of 112.5mm (the overall length to allow for the cantilever of this 

plate was 225mm). For construction of the vanes a sheet of plastic was cut at an angle 

of 45 degrees. This sheet was approximately a 100mm in length (Figure 4.8).  A 

concrete base of 75mm was formed for this vane which was then placed in the wet 

concrete.  The vanes were to be placed at a 45 degree angle inwards towards the pier in 

this first test approximately 200mm away from the face of the pier (Figure 4.6).  

 

In the third test the same procedure was to be carried out with the only alteration being 

the positioning of the vanes. In this test the vanes were to be placed outward at a 45 

degree angle at the same distance away from the pier (Figure 4.5).  

  

In the final combination of countermeasures to be tested, three rectangular collars 

attached to a circular pier were positioned as above in the centre of the flume. Collars 

were a length of 1.5D of the pier with the aim to reduce scour. The pier was constructed 

using a 225mm pipe in which collars were inserted at varying levels. The collar was 

situated below the surface at a depth of D/6 with the next collar being positioned at the 

surface and the final collar at a height of D/6 above the bedding material (Figure 4.9 & 

4.10).  Once the collars were connected to the pipe shell the centre was filled with 

concrete for support.   

 

 

 

 

 

 

 

 

 

Figure 4.4 Test one no countermeasure – Control Test  

 

 

225mm
M 
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Figure 4.5 Test Two Outward Vanes   Figure 4.6 Test Three Inward Vanes     

                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 Cross sectional View Pier with plate                  Figure 4.8 Cross sectional View Vane  

 

 -     –  

 
 
 
 
 
 
 
 
 
 
 
Figure 4.9 Multiple Collars top sectional View  

 
 
 
 
                            Figure 4.10 Cross sectional View -Multiple Collars 

D/6

D/6 

225mm
M 

1.5D 
1.5D 

225mm
M 

1.5D 
100mm
M 

225mm
M 

1.5D 
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4.2.3 Bedding Material –Sand  
 
The Standard used as a control for the size of bedding material is AS1141.11.1-2009 

(Incorporating Amendment No 1).   The methodology used was a sieving process in 

which particle size was determined.  A table was necessary to show particle size and 

identify a median particle grain size for bedding material.  A water absorption and 

density of particles test was conducted in accordance with AS 1141.5 “Method for 

sampling and testing aggregates”. This identified the apparent particle density of the 

bedding material allowing for the theoretical check using Neil’s Equation [Eq. (2.3)].  

The particle size distribution analysis was performed to determine the way in which the 

material would perform in situ.  The grading of a sediment material was chosen on the 

basis of being cohesionless allowing for optimum test conditions in which scour was 

likely to occur.  

This sieve analysis allowed for the grading of the bedding material and the calculation 

of the 𝑑50 (median particle size).   Five different samples of sand were tested to allow 

for a choice of sand with the least cohesion. The samples were tabulated showing the 

sieve size, mass retained and mass passing through.   

 

Table 8 - Sieve Analysis –Test  One 

 

 
Sample one – Garden City Landscape Centre – Coarse Sand  

Sieve 

Size 

(mm) 

Self-

Weig

ht of 

Apert

ure 

(g) 

Mass 

Retained 

including 

weight of 

Aperture  

(g) 

Mass 

Retaine

d (g) 

Mass 

Passing 

(g) 

Cumulative  

Mass 

Retained (g) 

Percent

age 

Retaine

d (%) 

Percenta

ge 

Passing 

(%) 

4.75 410.7 412.3 1.6 798.4 1.6 0.2 99.8 

3.35 462.8 485.2 22.4 776 24 3 97 

2.36 399.2 467.2 68 708 92 11.5 88.5 

2.00 441.3 498.5 57.2 650.8 149.2 18.65 81.35 

1.18 399.4 730.2 330.8 320 480 60 40 

0.600 430 659.7 229.7 90.3 709.7 88.71 11.29 

0.500 341.6 366.5 24.9 65.4 734.6 91.83 8.18 

0.425 331 345.3 14.3 51.1 748.9 93.61 6.39 

0.3 316.1 344.4 28.3 22.8 777.2 97.15 2.85 

0.25 320.1 331 10.9 11.9 788.1 98.51 1.49 

0.15 269 279.2 10.2 1.7 798.3 99.79 0.2125 

0.075 253.4 254.8 1.4 0.3 799.7 99.96 0.0375 
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0.052 254 254.1 0.1 0.2 799.8 99.98 0.025 

pan 517.8 518 0.2 0.000 800 100 0 

Total Weight of Sample 800 grams  

          

 

 
Table 9 - Sieve Analysis –Test Two 

 

 

Sample Two – Superior Sand Gravel – Coarse sand  

Sieve 

Size 

(mm) 

Self-

Weig

ht of 

Apert

ure 

(g) 

Mass 

Retained 

including 

weight of 

Aperture  

(g) 

Mass 

Retaine

d (g) 

Mass 

Passing 

(g) 

Cumulative  

Mass 

Retained (g) 

Percent

age 

Retaine

d (%) 

Percenta

ge 

Passing 

(%) 

4.75 410.6 425.7 15.5 784.5 15.5 1.94 98.06 

3.35 463 483.5 20.5 764 36 4.5 95.50 

2.36 399.4 442.1 42.7 721.3 78.7 9.84 90.16 

2.00 441.9 469.7 27.8 693.5 106.5 13.31 86.69 

1.18 399.5 512.7 113.2 580.3 219.7 27.46 72.54 

0.600 429.9 648.9 219 361.3 438.7 54.84 45.16 

0.500 341.7 421.1 79.4 281.9 518.1 64.76 35.24 

0.425 331.1 375.5 44.4 237.5 562.5 70.31 29.69 

0.3 316.1 429.8 113.7 123.8 676.2 84.53 15.48 

0.25 319.6 368.3 48.7 75.1 724.9 90.61 9.39 

0.15 268.7 333.0 64.3 10.8 789.2 98.65 1.35 

0.075 253.4 263 9.6 1.2 798.8 99.85 0.15 

0.052 254 254.6 0.6 0.6 799.4 99.93 0.07 

pan 518 518.6 0.6 0.000 800 100 0.00 

Total Weight of Sample 800 grams  

         

 

 
Table 10 - Sieve Analysis –Test 3 

 

 

Sample Three – D and D Sand & Gravel – Jacobs Well  

Sieve 

Size 

(mm) 

Self-

Weig

ht of 

Apert

ure 

(g) 

Mass 

Retained 

including 

weight of 

Aperture  

(g) 

Mass 

Retaine

d (g) 

Mass 

Passing 

(g) 

Cumulative  

Mass 

Retained (g) 

Percent

age 

Retaine

d (%) 

Percenta

ge 

Passing 

(%) 

4.75 618.2 618.6 0.4 631.3 0.4 0.06 99.94 

3.35 462.9 465.9 3 628.3 3.4 0.54 99.46 

2.36 400.9 403.5 2.6 625.7 6 0.95 99.05 

2 442.2 442.8 0.6 625.1 6.6 1.04 98.96 

1.18 438.7 442.5 3.8 621.3 10.4 1.65 98.35 

0.6 429.9 508.1 78.2 543.1 88.6 14.03 85.97 
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0.5 341.9 424.1 82.2 460.9 170.8 27.04 72.96 

0.425 331.6 417.3 85.7 375.2 256.5 40.60 59.40 

0.3 316.9 459.7 142.8 232.4 399.3 63.21 36.79 

0.25 319.1 453.2 134.1 98.3 533.4 84.44 15.56 

0.15 268.8 361.4 92.6 5.7 626 99.10 0.90 

0.075 283.7 289 5.3 0.4 631.3 99.94 0.06 

0.052 254.1 254.3 0.2 0.2 631.5 99.97 0.03 

pan 379.3 379.5 0.2 0 631.7 100.00 0.00 
Total Weight of Sample 631.7 grams  

     
 
Table 11 - Sieve Analysis –Test 4 

 

 
Sample Four – D and D Sand & Gravel – Medium Sand   

Sieve 

Size 

(mm) 

Self-

Weig

ht of 

Apert

ure 

(g) 

Mass 

Retained 

including 

weight of 

Aperture  

(g) 

Mass 

Retaine

d (g) 

Mass 

Passing 

(g) 

Cumulative  

Mass 

Retained (g) 

Percent

age 

Retaine

d (%) 

Percenta

ge 

Passing 

(%) 

4.75 618 618.3 0.3 675 0.3 0.04 99.96 

3.35 462.6 464.3 1.7 673.3 2 0.30 99.70 

2.36 400.6 406.2 5.6 667.7 7.6 1.13 98.87 

2 442 447.5 5.5 662.2 13.1 1.94 98.06 

1.18 438.7 480.5 41.8 620.4 54.9 8.13 91.87 

0.6 430.1 658 227.9 392.5 282.8 41.88 58.12 

0.5 341.7 462.7 121 271.5 403.8 59.80 40.20 

0.425 331.4 407 75.6 195.9 479.4 70.99 29.01 

0.3 316.2 403.6 87.4 108.5 566.8 83.93 16.07 

0.25 318.7 364.2 45.5 63 612.3 90.67 9.33 

0.15 268.7 313.9 45.2 17.8 657.5 97.36 2.64 

0.075 283.6 298.2 14.6 3.2 672.1 99.53 0.47 

0.052 254.1 255.9 1.8 1.4 673.9 99.79 0.21 

pan 379.3 380.7 1.4 0 675.3 100.00 0.00 
Total Weight of Sample 675.3 grams  
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Table 12 - Sieve Analysis -Test 5 

 

 

Sample Five– D and D Sand & Gravel – Rav Bourne White    

Sieve 

Size 

(mm) 

Self-

Weig

ht of 

Apert

ure 

(g) 

Mass 

Retained 

including 

weight of 

Aperture  

(g) 

Mass 

Retaine

d (g) 

Mass 

Passing 

(g) 

Cumulative  

Mass 

Retained (g) 

Percent

age 

Retaine

d (%) 

Percenta

ge 

Passing 

(%) 

4.75 617.8 619.6 1.8 692.5 1.8 0.26 99.74 
3.35 462.5 462.8 0.3 692.2 2.1 0.30 99.70 

2.36 400.6 400.9 0.3 691.9 2.4 0.35 99.65 
2 442 443.3 1.3 690.6 3.7 0.53 99.47 

1.18 438.6 455.7 37.7 652.9 41.4 5.96 94.04 
0.6 429.7 558.7 129 523.9 170.4 24.54 75.46 

0.5 341.5 432.9 91.4 432.5 261.8 37.71 62.29 

0.425 331.2 419.5 88.3 344.2 350.1 50.42 49.58 

0.3 316 453 137 207.2 487.1 70.16 29.84 

0.25 318.3 399.9 81.6 125.6 568.7 81.91 18.09 
0.15 268.5 366.3 97.8 27.8 666.5 96.00 4.00 

0.075 283.3 309.1 25.8 2 692.3 99.71 0.29 
0.052 253.9 255.3 1.4 0.6 693.7 99.91 0.09 

pan 379.1 379.7 0.6 0 694.3 100.00 0.00 
Total Weight of Sample 694.3 grams  

           
 
The above tabulated data has been graphed below on a log scale to show the particle 

distribution of each sample (Figure 4.11).  

 

 
Figure 4.11 Sieve Analysis 
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The median size grain (𝒅𝟓𝟎) has been tabulated below for each sample.  

 
 
Table 13 - Sieve Analysis – Median size grain distribution 𝒅𝟓𝟎 

Median size grain distribution 𝒅𝟓𝟎 
Sample 1 1.36mm 
Sample 2 0.59mm 
Sample 3 0.38mm 
Sample 4 0.41mm 
Sample 5 0.54mm 

      
 
From this analysis the bedding material chosen for testing was Jacob’s Well (Sample 3) 

which showed the greatest rise on the graph. This sharper rise compared to other 

samples indicated a lesser amount of cohesion.  The lesser amount of cohesion meant 

greater scour would occur during testing at a lower velocity. Sediment transportation 

would also occur at a lower velocity.  

 

The table below was completed for Jacob’s Well showing the apparent particle density, 

dry particle density and water absorption in accordance with AS 1141.5 “Method for 

sampling and testing aggregates”.  

 
 
Table 14 - Sieve Analysis- Jacob’s Well Density 

Sample Three – Jacobs Well 

Apparent particle density  1.4432 t/m³ 

Dry Particle density  1.3612 t/m³ 

Water Absorption  5.68% 

 

 

4.2.4 Excavation of Flume  

 
Initial clearing of the weeds and levelling of the ground within the flume began. Further 

excavation of bedding material at a distance 8m from the inlet and a depth of 0.300m 

for a width and length of 2m was dug to provide depth to assimilate conditions for a 

foundation and support for the pier as per figure 4.12. Once the pier placement was 

established the area was filled with Jacob’s Well sand.   
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Figure 4.12 Excavation of Flume showing area of interest dug at 0.300m below flume bedding level 

 

 

4.3 Testing method – Large Flume 

 
Boards were placed in slots in the sides of the flume (figure 4.13) to capture the water 

so that the depth required for testing was achieved.  The excavation of the centre of the 

flume to a measurement of 2m x 2m x.0.3m was then completed.  Once the control pier 

was in place washed river sand was filled in this area to the same height as the bed level 

of the flume. The pier was then anchored and tied provide stability and ensure that the 

model did not move during testing.  
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Figure 4.13 Flume showing control pier in positon, sand filled and slot for boards to water control 

depth  

 

 

The valve (figure 4.14) was then slowly released to allow the flow of water into the 

flume until the required depth of 250mm was achieved. The control valve was opened 

slowly to ensure a steady flow without any surges.  

 

 

Figure 4.14 Flume Control Valve slowly opening showing water flow 
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This intial test was conducted purely to understand and test the capacity of the newly 

installed pump.  Water was realeased slowly into the flume to reduce the effect of 

surges on the bedding layer.  After increasing the discharge the pump ceased working 

approximately 30mins later. As a result testing stopped  and the only results obtained 

are soon below. Figure 4.15 provides a panoramic view of water being pumped from the 

dam into the flume, flowing out over the weir and continuing around returning to the 

dam. Further testing in the large flume was unable to be completed within time 

constraints and testing was therefore moved to the small flume.  

 

 

Figure 4.15 Panoramic view of water flowing from dam into flume and returning to dam 

 

 

4.4 Experimental Process and Setup – Small Flume  
 
Due to the malfunctioning of the pump in the large flume testing was moved to the 

small flume.    The same bedding material as analyzed above was adopted.  The models 

were also scaled down, however the construction method was different, and this has 

been explained further below.  

 

 

4.4.1 Small Flume  

 
The small flume is 3.8m long, 0.615m wide with a maximum depth of 0.120m and 

located in the Hydraulic Lab at USQ Toowoomba. A floating floor was constructed 

from marine ply at a depth of 0.030m. This was constructed to ensure the approach flow 

from the inlet was as uniform as possible prior to reaching the bedding material. This 

approach flooring was 1.8m in length with the bedding material 1.4m in length and the 

last part of the floating floor continued to the end of the flume where a sediment trap 

collected the moving particles. Baffles were also placed at the inlet of the flume to help 
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control the flow from the pump. The baffles were introduced to provide a more uniform 

flow prior to fluid hitting the bedding material.  This however was ineffective so a fly 

screen mesh was added to the face of the baffles to achieve a uniform flow (figure 

4.16).  

 

 

 

Figure 4.16 Baffles and Fly Screen Mesh for Laminar Flow 

 

 

The bridge pier was centred in the flume using a metre ruler and another straight edge to 

give a 90 º angle in which the pier could be positioned as illustrated below. Positioning 

of the bridge pier model in the correct location (centred) was vital to minimise the flow 

effects of the side walls (figure 4.17). 

 

Figure 4.17 Positioning of Pier 
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In these conditions the examination of scour for each design was the focus of the 

experiment. The base material of the flume was Jacob’s Well sand which was used 

around the pier to observe changes in scour depth.   

 

A weir controlled the depth of water downstream and a gate valve controlled the 

upstream flow depth.  The flow of the flume was measured through a flow meter which 

reports velocities from the pump in litres per minute (figure 4.18). The holding tank at 

the end of the flume required extra water due to its poor holding capacity.  A ruler was 

placed in the holding tank to ensure the height of water was at a consistent depth to 

maintain a constant flow for each experiment.  

 

 

 

Figure 4.18 ManuFlo Gauge 

 

 

4.4.2 Construction of Model Piers and Countermeasures  

 
 Models were built at the University of Southern Queensland.  The control pier was 

built using plastic pipe with a diameter of 68mm and a length of 180mm in total.  The 

plastic pipe was then filled with concrete to help stabilize this model. The first test used 

a cylindrical pier to generate a standard for testing (figure 4.19). This test then became 

the control and subsequent tests were conducted using the same parameters.  

 

The countermeasure models were constructed out of plastic using a 3D printer. The 

designs were created through Tinkercad. The first design using a countermeasure 

created a pier with a plate extruding 0.25D from the face of the pier in a rectangular 

shape.  The dimensions in total of this plate were a width of 68mm and length of 34mm 

at the same height as the sand (30mm).  
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For construction of the vanes a 3D printer was once again used for fabrication. The 

vanes were positioned at an angle of 45 º to the pier. Theses vanes were 70mm in height 

(figure 4.20 & 4.21).   The vanes were placed at a 45 ºangle inwards towards the pier in 

the first test at 100mm away from the face of the pier (figure 4.21).  

 

In the next test the same procedure was carried out with the only alteration being the 

positioning of the vanes. In this test the vanes were placed outwards at a 45 ºangle and 

the same distance away from the pier (figure 4.20).  

  

In the final combination of countermeasures tested, three rectangular collars were 

attached to a circular pier and positioned in the centre of the flume. Collars were a 

length of 1.5D of the pier with the aim to reduce scour. The pier was constructed using 

the 3D printer where collars were inserted at varying levels. The first collar was situated 

below the bed surface at a depth of D/6 with the next collar being positioned at the 

bedding surface and the final collar at a height of D/6 above the bedding material 

(figure 4.24).  The pipe shell was then filled with concrete to provide support.   All 

models have been painted with a bitumen membrane to ensure a consistent frictional 

surface for each pier.  This was also completed to model a more industrial finish.  

 

 

 

Figure 4.19 Test one no countermeasure – Control Test  
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Figure 4.20 Test Two Outward Vanes   Figure 4.21 Test Three Inward Vanes    

     
 
 

       
Figure 4.22 Cross sectional View                           Figure 4.23 Cross sectional View 

         Outward Vanes with                     Inward Vanes with 

         Pier attached plate                               Pier attached plate  
    

 
 

 
Figure 4.24 Cross sectional View -Multiple Collars 
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4.4.3 Installation of floating floor and bedding material   
 
The small flume required a floating floor constructed from marine ply to provide 

containment of the bedding material. This was also built to provide a run of clear flow 

before hitting the bedding material.  The first section of the flume prior to the start of 

the bedding sand was 1.8m long. Bedding sand of 0.258m3 was then placed in the 

flume and a further section of floating floor was constructed at the end of the pier at a 

length of 0.600m. The bedding sand section measured 1.4m in length.  

 

 

4.5 Theoretical Calculations 
 

4.5.1 Flow Conditions  

 
Steady flow was achieved by passing water through baffles and aluminum fly screen 

situated at the beginning of the flume. A depth of 70mm was established to allow for 

testing of the countermeasures. The testing was completed with a discharge of 

500Litres/min ( 8.33 × 10−3𝑚3/𝑠  ).With the gate valve open at this discharge the 

velocity was approximately 0.194m/s. The Reynold’s number was then calculated to 

ensure flow around the pier was turbulent.  

 

𝑅𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙 =
𝜌𝑅𝑉

𝑣
              (Eq 2.1) 

 

𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑅𝑎𝑑𝑖𝑢𝑠 𝑅 =
𝐴

𝑃
=  

𝑏𝑦

𝑏 +  2𝑦
 

 

𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑅𝑎𝑑𝑖𝑢𝑠 𝑅 =
0.615𝑚 × 0.070𝑚

0.615𝑚 +  2 × 0.070𝑚
 

 
𝑅 = 0.057𝑚 

 
 

𝑅𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙 =
𝑝𝑅𝑉

𝑣
 

 

𝑅𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙 =
0.057𝑚 × 0.194𝑚/𝑠

1 × 10−6
= 1.1058 × 104 

 
 ∴ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 
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Scour occurs in turbulent conditions caused by the obstruction of the pier.   

 

The Froude Number was calculated next to determine the flow regime of the channel. 

 

𝐹𝑟 =
𝑉

√𝑔𝑦
                  (Eq.2.2) 

 

𝐹𝑟 =
0.194𝑚/𝑠

√
9.81𝑚

𝑠2 ×0.070𝑚
     

              
𝐹𝑟 = 0.234  ∴ 𝑆𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐹𝑙𝑜𝑤     

 
 

4.5.2 Sediment Size  

 
The theoretical check of the size of the sediment to the diameter of the bridge pier was 

completed. This was to ensure independence between sediment size and bridge pier 

diameter. If this equation was greater than 50 then there would be no relationship 

between sediment size and scour depth.  

 

 
𝑏

𝑑50
> 50 Eq. (2.5) 

 
68𝑚𝑚

0.38𝑚𝑚
= 178.95 > 50 

 
∴ 𝑆𝑐𝑜𝑢𝑟 𝑑𝑒𝑝𝑡ℎ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 

 
 

4.5.3 Critical Mean Velocity 

 
As per the literature review the critical mean velocity was calculated to ensure particle 

transportation occurred. This was calculated using Neill’s Equation:  

 

Where,  

Specific gravity of sediment particles (Ss) =1.4432 t/m³, 

y= flow depth (m) = 0.070m (Test depth) 

 𝑑50 = Median size of bed material (m) =0.36mm 

 

𝑉𝑐 = 1.41√(𝑠𝑠 − 1)𝑔𝑑50  (
𝑦

𝑑50
)

1

6
 Eq. (2.3) 
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𝑉𝑐 = 1.41√(1.4432 t/m³ − 1) × 9.81𝑚/𝑠2 × 0.00036𝑚  (
0.070𝑚

0.00036𝑚
)

1
6
 

 

𝑉𝑐 = 0.137𝑚/𝑠 

 

The table below was calculated to show the different critical mean velocity (Vc) at 

various heights within the small flume.  

 

 

Table 15 Jacob’s Well – Critical Mean Velocity 

    

Jacob’s Well  

Critical Mean 
Velocity Vc (m/s) 

Y 
Depth  

Q(m3/s) Litres minute  

0.119 0.03 0.00219 131.40 

0.137 0.07 0.00589 353.12 

0.143 0.09 0.00790 473.43 

 

 

4.5.4 Pier Scour depth 

 
Equation 2.5 below was developed to predict the maximum scour depth around a bridge 

pier (Administration 1993).  It can be used for both cases of scour either live bed or 

clear bed scour conditions.  This was calculated to predict the theoretical scour depth.  

 
𝑦𝑠

𝑦1
= 2.0 𝑘1𝑘2𝑘3 [

𝑎

𝑦1
]

0.65

𝐹𝑟1
0.43 Eq. (2.4) 

 
Where, 
L = Pier Length (m) 
a = Pier width (m) 
𝐹𝑟1 = Froude Number directly upstream of the pier  
𝑉1 = Mean velocity of flow upstream of the pier  
g = Acceleration of gravity  
𝑘1= Correction for pier nose shape  
𝑘2=Correction for the angle of attacked of flow  
𝑘3=Correction factor for bed condition 
𝑦1 = Depth upstream  
𝑦𝑠 = Depth of Scour  
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𝑊ℎ𝑒𝑟𝑒, 𝑘1 = 1 𝑘2 = 1 𝑘3 = 1.1 
 

𝑦𝑠 = (2.0 ×  1 × 1 × 1.1 [
0.068

0.070
]

0.65

0.1130.43) × 0.070 

 
𝑦𝑠 = 0.059𝑚 

 
The Table below shows the theoretical scour depth for each critical velocity at the 

various water depths.  

 

 

Table 16 Jacob’s Well – Theoretical Depth 

Critical Mean 
Velocity  

𝑭𝒓𝟏 Y Depth  Q(m3/s) Litres 
minute  

YS (maximum  
depth of Scour 
theoretical 

YS 

Vc (m/s)  (m) (m3/s) L/min (m)  (mm)  

0.1187 0.064 0.03 0.00219 131.41 0.034 34 

0.1367 0.113 0.07 0.00589 353.12 0.059 59 

0.1426 0.134 0.09 0.00789 473.43 0.070 70 

  
 

4.6 FARO Laser scanner Focus 3D 
 
This laser scanner was used to assist in calculating the scour depth around each tested 

pier.  It ensured a greater degree of accuracy as it delivers very detailed 3D images 

when determining the scour depth and volume. This device allowed the analysis of the 

scour depth when compared to the theoretical calculation for the maximum scour depth 

forming a good starting point to compare efficiencies of the countermeasures (Eq 2.5).  

The laser is high speed with a 2mm tolerance level of accuracy (FARO 2015).   

 

The scanner was placed in two positions one upstream and one downstream and 

diagonally opposite to allow analysis of the scour effects at the face and directly behind 

the pier.  Scans were taken once the model was in place and prior to commencement of 

water flow. After completing the testing further scans were taken to allow comparison. 

The scans were processed into a software program called ‘Scene’ and then the data was 

further refined in I-Site. Vulcan, another surveying software program, then displayed 

the difference of scour in each scenario.   
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A FARO Scanner recognises spheres as datum points. Four spheres were strategically 

placed to allow the software to identify these spheres. This was completed as two scans 

were necessary each time to capture information from both ends of the pier. The 

software then detected these spheres as datum points merging the images into one.  

 

 

4.6.1 FARO Scene Software  

 
‘Scene’ was used to show 3D modelling of the scour holes. This program was used to 

transfer the images from the SD card into the computer to allow for further modelling.  

 

 

4.6.2 Maptek - I-Site 3D laser Scanning Software  

 
I-site was used to refine the image detail previously obtained by the FARO Scene 

software. The FARO scan captured a larger area of data than required so processing in 

I-Site was used to reduce the image to the area of interest.   

 

 

4.6.3 Maptek - Vulcan  

 
From I-Site the information was transferred to Vulcan, a mining software program.  

This software calculated the volume of scour. This program also allowed the images, 

before any water flow and after testing, to overlap showing the amount of scour 

occurring and the position of scour in relation to the bridge pier. 

 

 

4.7 Positioning of model pier and countermeasures  
 
The pier was positioned in the centre of the flume in the initial test 2.2m downstream 

from the inlet. A weight was placed on top of the pier to ensure no movement during 

testing.  Results around depth of water and movement of sediment were tested to 

provide a standard with which to compare.   
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The double submerged vanes were positioned upstream of the pier at a distance of 

100mm from the face of the pier.  The submerged vanes were set at 45º to the 

perpendicular to try and achieve a reduction in scour depth.  This test placed the end of 

the vane closest to the pier directing the flow inwards towards the pier face (figure 

4.23). The second configuration placed the end of the vane to the outside of the pier 

directing the flow away from the pier (figure 4.22).  

 
The third countermeasure tested was the combined collars. This pier was once again 

positioned at the centre of the flume. These collars were rectangular in shape and the 

first collar was situated below bed level at a distance of D/6 beneath the surface with the 

second being at the surface of the bedding material and last being D/6 above the surface 

of the bedding material.  

 
 

4.8 Testing method  
 
Preliminary tests were completed to gauge the correct depth and velocity of water due 

to the limiting capacity for storage of water within the flume. The control pier was then 

tested under the same experimental conditions.   The combined countermeasures, 

chosen from the process of elimination in the design tables, were also tested to allow for 

comparison of scour depth.  

 
After positioning the control model in the centre of the sand and leveling this between 

both false floors a smooth surface was achieved for testing. The wall of the weir was 

raised to full height to retain the maximum depth of water prior to increasing the 

discharge from the inlet. The next step involved taking the initial FARO scans from 

each side of the model. The spheres were placed at four points around the flume and 

positioned so that both scanning placements captured the spheres as datum points.  

These scans were taken to show the bedding surface prior to water flow.  

 

After these scans were completed water was introduced by slowly releasing the control 

valve until a rate of 20litre/min was achieved to ensure minimal disruption (e.g surge 

waves) to the bedding material. This rate was maintained until water started trickling 

over the weir which took approximately 4.30mins.  The height of water retained by the 

weir was 0.030m. To achieve a higher depth in the flume for testing due to the 
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restriction of the weir wall height the discharge was increased.  The discharge was 

increased in increments of 50litres/min every 30seconds until required discharge of 

500litres/min was achieved. The depth of water in the flume was maintained at 0.070m.  

 

The next step in testing was observation and monitoring of all the variable conditions 

during testing.  Photos of the models were taken every thirty minutes to illustrate if any 

changes in scour occurred. After testing for two hours the flume pump was turned off 

and the flume was drained of water. The bedding material was left to dry as the laser 

scanner could only identify changes in the bedding surface once devoid of water.  Once 

the surface was dry enough scans were completed from each separate end of the flume 

to provide information on the changes. This process was repeated for each 

countermeasure for two hours at a time.  

 

The main results were obtained by setting up the FARO scanner to capture the scour 

depth and volume around the pier.  This allowed for comparison of the different 

countermeasures being tested.   Once the results from the FARO scan were obtained 

they were then processed through three different software packages to show the 

differences in volume of scour. This allowed for the efficiency of the countermeasures 

to be interpreted.  

 

 

4.9 Variables 

 
The following variables could affect results and it was important to be aware when 

conducting analysis. 

 
 The water could be released too quickly causing a surge downstream; 

 The flow may vary in intensity and velocity for each individual experiment so it 

was important to complete readings at consistent intervals to ensure the same 

flow; 

 The time may run for a minute more or less on one experiment which may affect 

the outcome; 

 Positioning of the countermeasures and or pier  
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4.10 Conclusion Methodology 
 
Combinations generally tested more efficiently than countermeasure techniques 

working independently.  The most effective combinations appeared to cover the 

weakness of the other. It would be rational to study the strengths and weakness of all 

existing countermeasure methods working independently so that strengths could be 

matched with weakness. Due to time and construction constraints this was not possible. 

Using the literature review on the studies of individual countermeasures the 

combinations were formed. The aim of this research was to nullify the weakness of 

independent countermeasures by introducing another.  

 

 The performance of these countermeasures was measured by:  

 

 The FARO scanner was used to find the maximum depth of scour. The depth of 

scour from each test was compared with the control model. The scour reduction 

volume efficiency was compared to assess performance of the combined 

countermeasures.    

Once testing was completed the information collected above allowed for comparison of 

the three different combinations of countermeasures. Ranking by measurement of the 

scour reduction determined the success of this experiment. The design with the least 

amount of erosion will be recommended for use.  
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5.0 Results & Analysis 
 

5.1 Introduction  
 
This section explains the results obtained during testing in the large and small flume at 

USQ Toowoomba.  The results compared the scour reduction volume efficiency 

immediately around a control pier and piers using combined countermeasures. Three 

different combined countermeasures were tested to determine their efficiency.   

 

 

5.2 Initial results from the large flume 
 
Figures 5.1, 5.2 and 5.3 show the only results obtained from the large flume. Figure 5.1 

shows the flume in operation.  Figures 5.2 and 5.3 below show the deformation of sand 

immediately around the pier.  It is clear from the image that a deviation of the sand had 

started to occur behind the pier and this was due to the wake vortices. These figures, 5.2 

and 5.3, also clearly identify the initial signs of erosion around the base of the pier. 

After only 30 minutes of testing the pump failed and was unable to be fixed after many 

repeated attempts.  As this was no longer viable as a test measure new models were 

made to enable results to be obtained using the small flume. 

 

 

 

Figure 5.1 Large flume showing water flowing in the initial trial 
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Arrow indicates water flow 

Figure 5.2 Downstream view of erosion     Figure 5.3 Upstream view of erosion  

                   after initial testing of 30mins.                                    after initial testing of 30 mins.  

 

 

5.3 Initial Results from the small flume 
 
The small flume involved testing the control pier at different depths of flow and 

velocities to establish the correct parameters to use for testing. Experiments were 

conducted where critical mean velocity was achieved for the various depths to ensure 

sedimentation flow.    Initial testing at 600L/min occurred, in turn creating a higher 

depth of flow, equaling 90mm.  Deformation was extreme with the sand particles totally 

pushed downstream exposing a large portion of the bottom testing platform within an 

hour of testing.   Testing was then undertaken at the minimum point of critical velocity 

360L/min where sediment transportation in theory should occur.  After 2 hours only 

minimal disruption to the surface had occurred determining that this test parameter was 

too low.  It was seen that the horseshoe shape of erosion was occurring but after 2 hours 

of testing the deformation was only half way around the pier.  Testing was then 

commenced at 500L/min as this produced sufficient depth within the flume for a 

turbulent flow allowing realistic results to be obtained during a flood event.  These were 

the parameters adopted.   
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The velocities tested above were determined by using Table 16, Critical Mean 

Velocities. A restriction due to the retention capacity of the weir meant depths at 

varying velocities did not correlate directly to the theoretical critical velocities as stated 

in the table. Theoretically these figures were the minimum and were surpassed in 

velocity. This meant that the lower depths were tested with higher velocities to permit 

sediment transportation to occur.      

 

 

5.4 Theoretical calculation of scour depth  
 
The theoretical calculation was completed in Table 16 above to show the expected 

depth of erosion. Testing at these velocities proved to be on the cusp of minimal 

sediment transportation occurring, so velocity was increased until the sediment 

transportation rate was seen to occur more frequently.   To increase the rate of erosion 

the discharge was increased to 500L/min.  The calculation below shows the expected 

depth of scour at this discharge.  

 
𝑦𝑠

𝑦1
= 2.0 𝑘1𝑘2𝑘3 [

𝑎

𝑦1
]

0.65

𝐹𝑟1
0.43 Eq. (2.4) 

 

Where, 
L = Pier Length (m) 
a = Pier width (m) 
𝐹𝑟1 = Froude Number directly upstream of the pier  
𝑉1 = Mean velocity of flow upstream of the pier  
g = Acceleration of gravity  
𝑘1= Correction for pier nose shape  
𝑘2=Correction for the angle of attacked of flow  
𝑘3=Correction factor for bed condition 
𝑦1 = Depth upstream  
𝑦𝑠 = Depth of Scour  

 
𝑊ℎ𝑒𝑟𝑒, 𝑘1 = 1 𝑘2 = 1 𝑘3 = 1.1 

 
𝐹𝑟 = 0.234  ∴ 𝑆𝑢𝑏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐹𝑙𝑜𝑤     
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𝑦𝑠 = (2.0 ×  1 × 1 × 1.1 [
0.068

0.070
]

0.65

0.2340.43) × 0.070 

 

𝑦𝑠 = 0.081𝑚 
 
From this equation the expected theoretical depth was 81mm. 

 

The table below shows the theoretical critical mean velocity for sediment transportation 

to commence.  

 

Table 17 Theoretical calculation of scour for test depth and flow rate  

Critical Mean 
Velocity  

𝑭𝒓𝟏 Y Depth  Q(m3/s) Litres 
minute  

YS (maximum  
depth of Scour 
theoretical 

YS 

Vc (m/s)  (m) (m3/s) L/min (m)  (mm)  

0.1935 0.234 0.07 0.00833 500 0.081 81 

 
 

5.5 Control Pier  

 
The first test involved the cylindrical pier to provide a control against which the 

efficiency of the combined countermeasures could be quantified.   The following 

parameters were adopted for all tests: - average mean velocity of 0.194m/s and depth of 

70mm.  After reaching the required velocity and water depth, initial observations 

showed the commencement of scour at the face of the pier.  The scour formed in a 

shape similar to that of a horseshoe and continued to wrap around the face of the pier 

gradually encompassing the whole pier.  Scour occurred within the first 30 minutes and 

was well defined after the first hour (figures 5.4 & 5.5).  Sand particles formed a rolling 

movement as they were uplifted by the force of the flow.  Wake vortices occurred 

behind the pier and there was also a deposition of sand creating a crater effect at the 

base of, and in the wake of the pier.  
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Figure 5.4 Erosion around control pier after 2hrs of testing 

 

 

 

Figure 5.5 Erosion behind control pier after 2hrs of testing 

 

 

 

Below in figure 5.6 the FARO scan image provides an overview of the deposition in the 

area. Table 18 shows the depth of erosion and movement of sediment. 
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Table 18 Depth Colour Chart Control Pier   

  
Figure 5.6 Top View of Control Pier - Vulcan Software Depth Profile    

 

 

 
Figure 5.7 The distance of deposition of sand from the control pier after testing for 2 hours at 

500L/min 

 

 

Figure 5.8 shows the erosion in purple around the control pier.  This is quite a 

significant bowl shape with a definite deposit of sand after the wake in white.  

 

 

 
Figure 5.8 Side View of Control Pier – Vulcan Software showing the depth of erosion 

 
 

5.6 Countermeasure 1 -Inward facing vanes with plate attached to pier  
 
The next test involved a pier with a plate attached level with the bedding surface and 

inward facing vanes. As initially assumed there was a large amount of erosion occurring 

at the vanes with reduced scour depth at the face of the pier (figure 5.10). There was a 

buildup of sand in front of the diameter of the plate but erosion still occurred at the sides 

428.3mm 
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of the pier continuing in the horseshoe shape however this was certainly reduced in 

comparison to the control pier results.  A noticeable change was at the wake of the pier 

where there was a visible buildup of sand. The rear left side showed more turbulent 

deposition of sand and this could have been produced by flow alignment at the face of 

the pier causing an increase in erosion (figure 5.9). 

 
 

 
Figure 5.9 Inward vanes & attached plate upstream photo after 2hr testing  

 
 

 
Figure 5.10 Inward vanes & attached plate side view photo after 2hr testing 
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Figure 5.11 is a topographical view of the scour deformation over the bedding surface.  

Table 19 to the right indicates the depth profile. 

 

 
Table 19 Depth Colour Chart Inward vanes & attached plate  

 
Figure 5.11 Inward facing vanes and plate attached to pier - Vulcan Software Depth Profile    

 
 

 
Figure 5.12 The distance of deposition of sand from the pier with plate attached after testing for 2 

hours at 500L/min, 

 

 

Figure 5.13 shows the erosion in purple around the vanes at the front of the pier.  Scour 

is also obvious around the pier and there is as deposit of sand after the pier which shows 

as white. Some erosion has occurred to the both sides of the rear of the pier as a buildup 

of sediment. 

 

  

 
Figure 5.13 Sectional view of inward facing vanes and plate attached to pier, Vulcan Software  

 
 

328.5mm
m 
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5.7 Countermeasure 2 -Outward Facing Vanes with plate attached to 

pier 
 
The outward facing vanes were tested next and scour occurred at the face similar to the 

control pier but not to the same extent width wise (figure 5.14).  There was an obvious 

deposit of sand directly behind the pier mounding higher than the original level of sand 

prior to testing (figure 5.15).   

 
 

 
Figure 5.14 Outward vanes & attached plate upstream photos after 2hr testing  

 
 

 
Figure 5.15 Outward vanes & attached plate side view photo after 2hr testing 

 

 
Figure 5.16 is a topographical view of the scour deformation over the bedding surface.  

Table 20 to the right indicates the depth profile. 
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Table 20 Depth Colour Chart outward vanes & attached plate 

   
Figure 5.16 Outward facing vanes and plate attached to pier - Vulcan Software Depth Profile    

 

 

 
Figure 5.17 The distance of deposition of sand from the pier with plate attached after testing for 2 

hours at 500L/min, 

 

 

Figure 5.18 shows the erosion in purple around the vanes at the front of the pier.  Scour 

around the pier is also obvious.  There is as deposit of sand after the pier which shows 

as white with some erosion also occurring to the sides of the buildup of sediment 

immediately behind the pier.  The erosion depth looks to be more even from this 

sectional view. 

 

 

 
Figure 5.18 Sectional view of Outward facing vanes and plate attached to pier   

 

 

 

 

501.6mm
m 
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5.8 Countermeasure 3 –Three Collars 
 
The three collars was the final test undertaken.  This model exhibited the greatest 

reduction in scour immediately around the pier with a similar buildup of sand 

immediately behind as the outward facing vanes had shown (figures 5.19 & 5.20)   

 
 
 

 
Figure 5.19 Three collars upstream after 2hr testing 

 

 
Figure 5.20 Three Collars side view photo after 2hr testing 

 
 

Figure 5.21 is a topographical view of the scour deformation over the bedding surface.  

Table 21 to the right indicates the depth profile. 
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Table 21 Depth Colour Chart three collars 

 
Figure 5.21 Three Collars - Vulcan Software Depth Profile 

 

 

 
Figure 5.22The distance of deposition of sand from the pier with three collars after testing for 2 

hours at 500L/min, 

 

 

Figure 5.23 shows minimal scour around the front of the pier.    Downstream of the pier 

there is as deposit of sand which shows as white with some consistent erosion showing 

either side at the rear of the pier.  The erosion depth looks to be more even from this 

sectional view. 

 

 

 
Figure 5.23 Sectional view Three Collars 

 

 

 

615mmm 
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5.9 Volume of Erosion -Comparison of countermeasures with control 

pier   
 
Commencing with a datum point on top of the pier and using the relimiting tool 

available on the Vulcan software program a circle with a diameter of 26.32cm was 

chosen as the area of interest.  This area was chosen as it captured the full extent of 

local scour around the control pier as highlighted in Figure 5.25 below.  This same area 

was then identified for each countermeasure allowing for comparison of erosion of the 

models tested. 

 
 

5.10 Scour Hole Dimensions 
 

 

Table 22 Physical Modelling of scour holes 

 Illustrations showing 

measured distances   

Control 

Pier 

Inward 

Facing 

Vanes 

with 

Plate 

attached 

to Pier 

Outward 

Facing 

Vanes 

with 

Plate 

attached 

to Pier 

Three 

Collars 

attached 

to Pier  

Cross 

Sectional 

Width of 

Scour 

 

217. 2mm 149.1mm 147.7mm 175.6mm 

Bottom 

Scour 

Width  

 

106.3mm 104.2mm 

 

89.3mm 121.5mm 



86 
Andrew C Raleigh 

Distance of 

scour from 

upstream 

face of pier  

 

76.2mm 37.6mm 56.4mm 27.8mm 

Depth of 

scour hole 

at upstream 

face 

 

30 mm  14.8mm 19.8mm 5.5mm 

 

 

5.11 Measurement of volume of local scour  
 

Local scour around the pier was measured using Vulcan software from a datum point 

marked on all piers. Using images from this software a circle was extruded to include 

the greatest extent of scour seen around the control pier. Figure 5.24 below shows the 

extent of scour around the control pier. This is outlined in white.  

 

 

 

Figure 5.24 Outline of extent of local scour for comparison 

 

 

 

From the datum point in the centre of the pier, a circle was drawn with a radius of 

13.16cm to capture the majority of local scour.  This allowed for the initial volume to be 

calculated using the depth of 3cm. The volume equals area multiplied by depth. 

Volumes from Vulcan software were calculated in 𝑐𝑚3 
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𝐵𝑎𝑠𝑒 𝑎𝑟𝑒𝑎 = 𝜋 × 13.16𝑐𝑚2 = 544𝑐𝑚2 

Depth = 3cm 

𝑉𝑜𝑙𝑢𝑚𝑒 = 544𝑐𝑚2 × 3𝑐𝑚 = 1632𝑐𝑚3  

 
 

 
Figure 5.25 shows the radius capturing the extent of local scour around bridge pier 

 

 

From Table 23 when comparing percentages back to the volume of erosion of the 

control pier both vane and plate countermeasures reduced scour volume by 

approximately half of that of the control pier.  The combined countermeasure of three 

collars reduced this percentage again to approximately one quarter of the control pier in 

scour volume.  

  

 

Table 23 Percentage of scour over relimited area taken from Vulcan software  

 Relimited Test 

volume  prior to 

water flow= 

1632 𝑐𝑚3 

Scour Removed Image  

(Arrow indicates 

direction of flow)  

Percentage of scour 

when compared to 

before test volume  

Control 

Pier  

 
 

=642.743 𝑐𝑚3 

=
642.743𝑐𝑚3

1632𝑐𝑚3
× 100

= 39.38% 

Yellow arrow 
indicates radius of 
13.16cm 
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Inward 

facing 

vanes with 

pier 

attached 

plate 

 

 

= 391.916 𝑐𝑚3 

=
391.916𝑐𝑚3

1632𝑐𝑚3
× 100

= 24.01% 

Outward 

facing 

vanes with 

pier 

attached 

plate 

 
 

=358.133 𝑐𝑚3 

=
358.133𝑐𝑚3

1632𝑐𝑚3
× 100

= 21.94% 

Three 

Collars  

 

 

=137.437 𝑐𝑚3 

=
137.457𝑐𝑚3

1632𝑐𝑚3
× 100

= 8.42% 

 

 

Efficiencies below were tabulated against the control pier and based on erosion volume 

(Table 24).  The formula below has been derived to allow for comparison of the various 

combined countermeasures against the control pier scour volume efficiency.  

 

 

𝑟𝑉 =
𝑉𝑐−𝑉𝑎

𝑉𝑐
× 100 Eq. (5.1) 

 

 

Where, 𝑟𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑐𝑜𝑢𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑉𝑐 =
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑖𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑐𝑜𝑢𝑟, 𝑉𝑎 =
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑐𝑜𝑢𝑟  
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Table 24 Reduction of scour volume against control pier 

 

 Control Pier relimited 

section  

Combined 

countermeasure 

relimited section 

 

Inward 

facing 

vanes 

with pier 

attached 

plate 

 
= 642.743 𝑐𝑚3 

 
= 391.916 𝑐𝑚3 

𝑟𝑉

=
642.743 𝑐𝑚3 − 391.916 𝑐𝑚3

642.743 𝑐𝑚3

× 100 

=39% 

Outward 

facing 

vanes 

with pier 

attached 

plate 

 
= 642.743 𝑐𝑚3 

 
= 358.133 𝑐𝑚3 

𝑟𝑉

=
642.743 𝑐𝑚3 − 358.133𝑐𝑚3

642.743 𝑐𝑚3

× 100 
=44% 

Three 

Collars  

 
= 642.743 𝑐𝑚3 

 
= 137.457 𝑐𝑚3 

𝑟𝑉

=
642.743 𝑐𝑚3 − 137.457𝑐𝑚3

642.743 𝑐𝑚3

× 100 

=79% 

 

 

Using Vulcan software the whole bedding platform was scanned and the results over the 

entire volume of sand were tabulated. Table 25 below shows the amount of sand 

displaced eg volume of erosion removed.  

 

As the control pier is equal to the inward facing entire amount of erosion over the test 

surface. There is more erosion downstream but our focus is around local scour which 

affects the structural stability of the pier whereas scour over a greater test platform is 

not relevant to this research.  The figures below are all very similar because of the 

percentage of the total area they should not be taken into consideration.  Even though 

these numbers are small over the entire field but local scour is the significant measure 

where and these figures do not show the difference.   
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Table 25 Testing Platform – Entire Bedding surface 

  Reduction of Scour  

Control Pier  3.8% 

Inward Facing Vanes & Attached Plate  3.8% 

Outward Facing Vanes & Attached Plate 5.6% 

Three Collars  4.4% 

 

 

5.5 Conclusion 
 
From the results above all three combined countermeasures chosen through the design 

matrix in Chapter 3 could be implemented for use in existing structures.  The location, 

size of channel and known velocity of flow would help determine the best combined 

countermeasure in each circumstance.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Outward 

Vanes 

Three 

Collar 

Control 

Test 

Inward 

Vanes 
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6.0 Discussion  

 

6.1 Introduction  
 
The results above are further discussed as well as exploring any contributing factors to 

possible errors. Discussion also enters into the opportunity of the implementation of one 

or more of the combined countermeasures into field practice.  

 

All piers were tested at a depth of 70ml with an average velocity of 0.194m/s. 

 

 

6.2 Scour Hole Depth  
 
From the analysis of the models, through the Vulcan software program, the following 

measurements at the upstream face from the bedding surface to the bottom of the scour 

hole were measured. Table 26 shows a comparison of the depths between the control 

pier and the combined countermeasures.  

 

 
Table 26 - Upstream scour depth measurements  

 Illustrations showing 

measured distances 

Control 

Pier 

Inward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Outward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Three 

Collars 

attached 

to Pier  

Depth of 

scour hole 

at 

upstream 

face 

 

30 mm  14.8mm 19.8mm 5.5mm 

 
 
The control pier eroded to the bottom of the flume (30mm) whereas three collars 

(5.5mm) showed a significant reduction in the depth to which scour occurred. The vanes 

and attached plate in both configurations also showed a considerable reduction in the 

depth when compared to the control (Table 26).  
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Scour around the three collars was only 5.5mm.  The first collar was placed at D/6 

above the bedding surface, the second collar was placed at the bedding surface and the 

third one D/6 (11.33mm) below the bedding surface.  As these numbers show scour 

only developed up to half way between the collar at the bedding surface and the collar 

below the bedding surface (5.5mm).   

 

The plate attached to the pier in both configurations using vanes showed a reduction in 

the effect of the horseshoe vortices but scour still developed beneath the plate at 14.8 

and 19.8mm.  With this study it is unsure whether scour would have continued to 

develop to the same extent as the control pier if testing had continued.  However it does 

still show a significant decrease in the time period and could prove a useful tool in the 

reduction of scour.   

 
 
Table 27 - Bottom scour width  

 Illustrations showing 

measured distances 

Control 

Pier 

Inward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Outward 

Facing 

Vanes 

with 

Plate 

attached 

to Pier 

Three 

Collars 

attached 

to Pier  

Bottom 

Scour 

Width  

 

106.3mm 104.2mm 

 

89.3mm 121.5mm 

 
 
The bottom scour width as Table 27 shows for the three collars at 121.5mm is actually 

greater than all the other pier combinations including the control.  This is due to the fact 

that the collars themselves measured 102mm so even though scour occurred around the 

collar once again the total volume of erosion was less for the three collars.   
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Table 28 - Cross sectional width of scour  

 Illustrations showing 

measured distances 

Control 

Pier 

Inward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Outward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Three 

Collars 

attached 

to Pier  

Cross 

Sectional 

Width of 

Scour 

 

217.2mm 149.1mm 147.7mm 175.6mm 

 

 

Table 28 above measures the cross sectional width of scour at the bedding level for each 

diagram.  The three collars shows a greater width of scour in comparison to the plate 

and vane combination but the overall total volume of erosion is still considerably less 

for the combination of three collars than either vane combination and all combinations 

show less erosion than the control pier. 

 

Table 29 - Distance of scour from upstream face of pier  

 Illustrations showing 

measured distances 

Control 

Pier 

Inward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Outward 

Facing 

Vanes 

with Plate 

attached 

to Pier 

Three 

Collars 

attached 

to Pier  

Distance 

of scour 

from 

upstream 

face of 

pier  
 

76.2mm 37.6mm 56.4mm 27.8mm 
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Table 29 shows the scour distance from the upstream face of the pier. The three collars 

showed the least amount of scour at only 27.8mm which was considerable lower than 

the control pier at 76.2mm.  The inward vanes also showed a significant reduction when 

compared to control pier.   The reduction in scour at the front of the pier by using the 

combined countermeasures is due to weakened horseshoe vortices. 

 

The vanes have clearly shown a reduction in the width of scour around the pier by 

redirecting the flow path. The depth however remained considerable.  

  

Using the theoretical calculation for scour the expected scour depth was 66.80mm. 

Due to the testing platform only having a bedding thickness of 30mm no comparison 

could be made between the depth achieved and the theoretical depth.  Because of the 

limitation of the flume height and for the purpose of this research testing was 

undertaken at higher flow depths.  To compare to the theoretical calculation with the 

limitations of the flume height testing would have to have been conducted at a flow 

depth of 25mm or lower.   Testing was conducted at 70mm.   

 
 

6.3 Scour development and shape 
 
Table 24 shows the development of the horseshoe shape for each pier with a combined 

countermeasure. The control pier initially formed the traditional horseshoe shape but at 

the end of testing the control pier erosion appeared to be in a bowl shape with a pointy 

nose at the rear. The rear nose shape could relate to wake vortices forming a wing like 

shape (figure 2.2), but because the test didn’t run for a long enough period of time and 

the depth of the flume was too shallow the vortices didn’t develop.  Had testing 

continued for a longer period of time the usual winged formation at the back of the pier 

may have formed. Water as it hit the front of the pier was deviating around the sides of 

the pier and may have been crisscrossing at the back of the pier and so the true wake 

appearance had not yet developed.   

 

The horseshoe development however can be seen in the combined countermeasures. 

The horseshoe effect is suppressed by the plate and or collars in the figures xxxx. This 

in turn reduced the effect and shape of development of scour.  
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There is a clear buildup of sand behind each pier where a countermeasure has been 

employed. This is due to the weakened wake vortices. The deposition of sediment 

immediately behind the pier is associated with the movement of the wake vortices. Both 

vane configurations redirected the flow of water causing a diminishing effect on the 

production of wake vortices. 

 

The literature review also suggests that the formation of local scour around the pier 

forms in a horseshoe shape commencing at the upstream face of the pier then wraps 

around the base of the pier in the same direction of flow. This horseshoe is the most 

significant formation causing local scour.  The control pier shows a horseshoe shape 

occurring but the combined countermeasures show a weakened development of the 

horseshoe formation.  

 

In each of figures 5.7, 5.12, 5.17 and 5.22 above it is clear that disturbance of sediment 

occurs behind the pier for a maximum distance varying between models of 0.9m to 

1.2m.  The control pier and the three countermeasure designs all show a significantly 

greater amount of scour on the left side when looking downstream from the front of the 

pier.  This could be due to alignment issues but the pier is cylindrical making this 

suggestion invalid so the only other thought is that the flume may not have been 

perfectly balanced.   

 

 

6.4 Scour hole volume  
 

The vanes in conjunction with the plate have reduced the extent of erosion around the 

pier. The inward facing vanes directed the water flow towards the face of the pier; 

however the resultant horseshoe formed in figure 5.11 shows a 39% reduction in 

erosion compared to the control. When this is compared with the outward facing vanes 

the comparison is less favourable (figure 5.16). The outward facing vanes provided a 

44%   reduction in erosion compared to the control pier.  The most favourable result 

when compared to the control pier was the three collars.  The scour hole was reduced by 
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79% establishing that when this option is available during construction it would be an 

optimum choice (figure 5.21). 

 

 

6.5 Research Limitations  
 
The results presented must be considered on the basis of the limitations of testing in a 

flume. These results are accurate for the same configurations with the same testing 

parameters. As the conditions in a flume will vary to real conditions in the field these 

limitations must be considered.   It must be stated that most limitations were unexpected 

prior to undertaking this research and have been stated below.  

 

The capacity of the small flume was the first limitation as constant filling and draining 

was required. When testing commenced with 20L/min through the system it was 

necessary to fill the tank level above the invert inlet with a hose to stop the pump 

sucking air, thus minimising any surges through the system.  At the completion of each 

test to allow for scanning under dry conditions the tank had to be drained.   

 

Another constraint encountered prior to testing was the depth of the flume. This limiting 

factor played a major role in defining the testing parameters and duration. Testing was 

cut off at two hours due to exposure of the flume floor.   This meant that erosion ceased 

before reaching equilibrium where no more scour would occur.  

 

At the inlet of the flume the baffles did not provide sufficient uniform distribution of the 

flow over the width. To improve this, fly screen mesh was introduced to the face of the 

baffle to provide a more uniform flow.  

 

The Manuflow velocity meter attached to the small hydraulic flume showed fluctuations 

throughout testing of ± 4L/min meaning that the accuracy of discharge could not be 

maintained. This could have affected the comparison of erosion between models.  It was 

noted that this irregularity caused small surges further affecting the accuracy of results. 
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Data collected provided an acceptable picture for the purpose of this research.  Small 

improvements could be made in future research to improve upon the results presented in 

this dissertation.  

 
 

6.6 Areas of Future Research 
 
Through literature studied and this research paper the performance of collars as a 

combined countermeasure is shown to provide a significant improvement in the 

reduction of local scour.  Cost will continue to be a limitation for bridge piers already 

constructed however the knowledge that these improvements could provide greater 

confidence in times of flood is worth a thought.  Future research into a more in depth 

understanding as to how the collars and or vanes and plates reduce the effect of erosion 

on bridge piers is well worth considering.   

  

Future works relating to scour mitigation  

 

 Complete further testing using different shaped piers and countermeasures  

 Use varied depths and velocities for comparison  

 Complete testing in large agricultural flume and compare to lab results above 

 Test efficiency of individual countermeasures against  combined 

countermeasures   
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7.0 Conclusion  
 
This project has produced some interesting results providing information for scour 

mitigating techniques around bridge piers. 

 

The basis of this research aimed to reduce the effect of local scour around bridge piers 

through testing of combined countermeasures. Submerged vanes, bed sills, sacrificial 

piles, collars, threading and pier slots were evaluated with results concluding that single 

countermeasures did not always provide adequate protection to bridge piers. Previous 

results provided from other studies claimed to have good results but were shown to be 

unreliable due to inadequate design of testing (Tafarojnoruz 2012). In the reduction of 

local scour this research hopes to provide a safer bridge design and longer life 

expectancy of these structures thus minimising the cost associated with reconstruction 

or repairs.   

 

Combined countermeasures have been noted to provide improved results and can be 

modified to remain economical. Combined countermeasures were chosen based on 

affordability, practicality and constructability. The efficiency of these combined 

countermeasures to reduce the scour depth would be the factor upon which 

recommendations would be made.   

 

The three combined countermeasures could all be used in bridges in most 

circumstances. In small channels where there is a large volume of traffic beneath the 

bridge a vane and plate attached pier may prove to be a better countermeasure than 

collars which would extend further out around the pier.  If the piers are then close 

together the extra diameter of collar could be close to the next pier and prohibit traffic 

flow below the bridge.   

 

Where flood situations are not uncommon then the three collars would be an ideal 

combined countermeasure as when sediment transportation occurs during a flood event 

the collars would prevent any further erosion around the pier and make the pier safer 

than a pier without any countermeasure.   
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Future construction of bridge piers incorporating these combined countermeasures 

would be well advised by current engineers when designing new bridges.   
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Appendix A- Project Specification  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 
Andrew C Raleigh 

 


