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Abstract 
Constructed treatment wetlands are used globally to treat stormwater and a variety 

of wastewater for the effective removal of nutrients and pollutants. This technology 

is a proven method for water treatment and is gaining greater momentum in its 

application in Australia. The technology allows for reductions in construction and 

ongoing capital costs such as energy consumption as is seen in traditional 

wastewater treatment works. In addition, this technology can reduce the need for 

chemical dosing treatment of waste water management systems.  

Treatment wetlands are a passive system capable of treating primary, secondary and 

tertiary effluent, however, predominantly they have been employed to treat 

wastewater beyond the secondary level, often referred to as effluent polishing 

(Kadlec and Knight, 1996). Treatment wetlands are more commonly applied to the 

treatment of stormwater runoff however are also effective for treating human 

wastewater, industrial, mining and agricultural effluent. The reuse and reclamation 

of treated waste water is gaining momentum especially in countries where water is 

or is becoming more of a scarce and expensive resource but will also provide a 

benefit in terms of environmental sustainability with respect to the health of our 

waterways and our water resources in general. 

Investigation into the feasibility of a passive treatment system was undertaken for a 

large urban population to determine if civil costs, operational costs and EPA load 

based license fees have the potential to be reduced. Specifically the comparison of 

the efficacy of two types of constructed wetland systems was undertaken. A 

traditional constructed wetland and a floating treatment wetland were compared, as 

part of the treatment process for municipal wastewater to meet discharge limits and 

to determine which type of wetland has greater viability with regard to its actual 

footprint, land availability and also treatment efficiency. The Constructed Wetlands 

Manual (DLWC, 1998) as well as sizing methodology put forward by Kadlec and 

Knight (1996) and Reed et al. (1995) were utilised to determine wetland surface 

area. 
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Floating treatment wetlands appear to be the most feasible option in terms of land 

footprint and enabling the retrofitting of existing structures, however in terms of 

treatment efficiency and installation costs have resulted, in this study, not to be a 

feasible option or alternative to the current wastewater treatment systems for 

Bathurst Regional Council without further trials and being undertaken both in terms 

of refining the treatment efficiency and also investigations in how to reduce the 

capital costs of installing a floating treatment wetland. 
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1. Introduction 
 

Constructed treatment wetlands have been implemented globally to improve the 

water quality from a wide range of industries; two most notably include stormwater 

runoff and the treatment of agricultural and municipal wastewater for the effective 

removal of nutrients and pollutants. This method of effluent treatment has wide 

ranging applications in North America and Europe although it has not been widely 

adopted in Australia; however, it is growing in popularity due to its effectiveness as 

a proven method for water treatment. Australian interest in the treatment method 

was seen to decrease in the 1990s which is thought to have been attributed to data 

reporting relatively low capacity for phosphorous removal in combination with more 

stringent discharge requirements put in place by the governments in terms of high 

quality tertiary treatment of effluent. There was also some concern as to the 

potentially for constructed wetlands to provide an ideal environment for mosquitos 

(Greenway, 2005). If constructed wetlands are correctly designed and managed then 

they will not serve as a breeding ground for mosquitoes (Greenway, 2005). 

Treatment wetlands, when properly designed, have the ability to enhance 

environmental protection opportunities. They demonstrate optimized assimilation 

capabilities, as wetlands, both natural and constructed, exhibit a higher rate a 

biological activity than most natural systems and have the ability to transform 

pollutants into harmless by-products and even nutrients that can be utilised in further 

applications. In their different forms, constructed wetland technology can remove a 

high level of nutrients without leaving behind chemical sludge residue. Constructed 

wetlands also provide valuable habitat and additional public use functions (Kadlec 

and Knight, 1996). 

Treatment wetland technology is capable of treating stormwater runoff from urban, 

agriculture and industry as well as wastewater from the same types of sources. 

Primary and secondary and tertiary components of municipal wastewater can be 

treated effectively using constructed treatment wetlands, however, predominantly 

they have been employed to treat wastewater beyond the secondary level, often 

referred to as effluent polishing. For small to medium communities, constructed 
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treatment wetlands may provide a relatively low cost alternative for treatment and 

disposal of wastewater as opposed to conventional treatment technologies. For 

medium to larger cities a more viable alternative is to combine conventional 

treatment technologies with natural systems such a constructed treatment wetlands 

for further polishing of the effluent to meet discharge requirements (Kadlec and 

Knight, 1996). 

The reuse and reclamation of treated wastewater is gaining momentum especially in 

countries where water is or is becoming more of a scarce and expensive resource. In 

addition to providing a basic resource, municipal wastewater that has been treated 

can also provide nutrients essential for plant growth and can be further utilised as a 

fertiliser for agricultural purposes as well as parklands and sporting fields which in 

return reduces the cost in terms of purchasing and the manual application of 

fertilisers.  

The costs associated with the implementation of wetland treatment technology has 

the potential to be much less than construction costs associated with conventional 

treatment systems as they generally only consist of earthworks, pipes and associated 

inlet/outlet structures and vegetation planting. Conventional wastewater treatment 

technology utilises a combination of biological, chemical physical processes to 

achieve a standard of effluent that meets discharge limit requirements. Initial 

construction costs and ongoing capital costs for such technology can far exceed 

those of a constructed treatment wetland. Constructed wetland costs however, may 

or may not be cost effective if additional costs are incurred when available land 

space is limited and further land is needed to be acquired for construction purposes 

or if the geology and landform of a site is such that extensive earthworks are 

required. 

A solution to the limitations in terms of land area and land acquisition costs is the 

emerging technology of floating treatment wetlands providing an alternative option. 

This technology employs the concept of placing rooted emergent macrophytes on a 

floating pontoon that is placed on the water surface where the roots extend into the 

water column of a wetland or pond rather than into the sediments. The roots provide 

an extensive surface area for the attachment of biofilms and particulate matter and in 

turn the plants uptake nutrients from the water (Weragoda et al., 2012). There is 
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flexibility in terms of water depth with this technology and fluctuations in water 

levels are tolerated to a higher degree than with plantings in typical constructed 

wetlands where water inundation can cause significant plant losses. Greater water 

depth capacity also enhances treatment efficiency in that more water can be stored 

and detention times can be extended (Tanner and Headley, 2011). 

 

1.1. The Bathurst Region 
 

Bathurst is located approximately 200 kilometres west of Sydney at the junction of 

the Great Western, Mid-Western and Mitchell Highways. The Local Government 

Area (LGA) of Bathurst covers an area of 3821 square kilometre and includes 

village and rural communities from Hill End to the north, Trunkey Creek to the 

south, Sunny Corner to the east and Fitzgerald’s Mount to the west. The City of 

Bathurst is the main urban centre within the LGA and is the oldest inland settlement 

in Australia, being declared a town site in 1815 and proclaimed a town in 1852. An 

overall map of the Bathurst LGA is provided in Figure 1.1-1. 

Industries in Bathurst include education, being one of the largest, pet food, timber, 

food manufacturing and transport. These industries, along with retail, agriculture 

and health provide Bathurst with a diverse economy and employment opportunities 

and potential for economic growth. 

Bathurst has a varied and unique natural environment with land based and aquatic 

ecosystems providing a diverse habitat for a wide variety of natural flora and fauna. 

Widespread clearing, land use changes and other habitat modification has placed 

increasing pressure on many of these ecosystems causing widespread degradation. 
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Source: BRC (2015) 

Figure 1.1-1 Bathurst Regional Council Local Government Area 
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The Bathurst region is located in a cool temperate climate zone which experiences a 

variable climate with mild to warm summers and cool to cold winters and can 

experience light snow falls. The average minimum and maximum temperatures for 

the period of 1991 to 2015 are presented in Table 1.1-1. 

 

Table 1.1-1 Average Temperatures for Bathurst for the period 1991-2015 

Month Mean Minimum Temp (̊ C ) Mean Maximum Temp (̊ C ) 

January 13.6 28.5 

February 13.5 27.2 

March 10.4 24.5 

April 6.3 20.6 

May 3.0 16.3 

June 1.9 12.6 

July 0.8 11.9 

August 1.2 13.8 

September 3.7 17.1 

October 6.0 20.2 

November 9.3 23.6 

December 11.5 26.4 

Average 6.7 20.2 

Source: BOM (2015) 
 

1.1.1. Bathurst Wastewater Treatment Plant  

 

The first treatment system was completed in 1920. It was composed of large septic 

tanks with the effluent outflow passing over rubble filters before being directly 

discharged into the Macquarie River. By 1930 a more complex system was 

developed that still incorporated the septic tanks but in combination with trickling 

filters and an experimental system in the form of Imhoff tanks. Additional facilities 

for the drying of solid waste in the form of sludge and as well chlorination of the 

effluent were also developed. The septic tanks were completely abandoned in 1965 

with the development of a conventional trickling filter system. 

Inlet works consist of a number of step screens which incorporate the processes of 

screening, washing and dewatering as well as a grit removal system to remove and 
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wash fine particles, sand and grit. These inlet works improve the efficiencies in the 

remainder of the treatment processes. 

Intermittently decanted extended aeration tanks (IDEA) were introduced in 1976 

with a further four added in 1982. This addition was in conjunction with the 

construction of a new inlet works, sludge lagoons and effluent ponds. The IDEAs 

were further investigated for the removal of phosphorous which resulted in two 17 

500 litre IDEA Boo-P tanks being commissioned in the early 1990’s This was 

technologically significant in that it enabled the effluent quality to achieve results 

that were well within the EPA licensing limits. The sewage undergoes periodic 

diffused aeration via pipes on the beds of the tanks. Sludge and microorganisms 

settle during the periods when aeration is halted and the treated effluent is decanted. 

During the periods of no aeration allows the promotion of bacteria for nitrification. 

This combination of process removes 90% or more of the solids and organic matter 

from the raw sewage while at the same time reducing nitrogen and phosphorous.  

Sludge is pumped out on a regular basis to maintain the required proportions of raw 

sewage and active bacteria. With an increase in the production of sludge due to 

population increases the existing sludge lagoons were decommissioned due to being 

unable to cope with the increasing demands. They were replaced with a sludge 

handling plant that incorporates two sludge dewatering belt presses. The dewatering 

belt press enables wet sludge to be reduced to ‘cake’ which consists of 

approximately 14% solids and is currently disposed of off-site.  

The advantage of a system incorporating IDEA tanks is that the biological 

stabilisation process and the settling of solids can be achieved with sewerage that 

has had grit and rags removed. Separate settling tanks, as a result, are no longer 

required.  

 An overview of the layout of the wastewater treatment works (WWTW) is shown in 

Figure 1.1-2. 
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Figure 1.1-2 BRC WWTW Layout  

 

The WWTW currently operates under a NSW Environmental Protection License 

that sets the discharge limits on BOD, faecal coliforms, nitrogen, oil and grease, pH, 

phosphorous and total suspended solids (TSS). The current system utilises three 

extended aeration tanks (EATs or IDEAs), two of which receive alum dosing when 

required and one of which receives no chemical treatment. For the 2014-2015 

reporting period the concentration of pollutants, as regulated by the NSW 

Environmental Protection License is provided in Table 1.1-2. 
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Table 1.1-2 BRC WWTW EPA Pollutant Loads for 2014-2015. 

Pollutant Percentile 

% 

Pollutant Load Limit 

mg/L 

Pollutant Concentration 

mg/L 

BOD 50 15 2.0 

 90 20 3.7 

 100 30 7.0 

Total N 90 15 8.1 

 100 20 16.8 

Oil & Grease 100 10 5.0 

Total P 90 1 0.6 

 100 2 1.8 

Total SS 50 20 6.0 

 90 25 11.0 

 100 30 17.0 

pH 100 6.5 7.1 

 100 8.5 8.5 

Faecal coliforms 90 200 140 

 100 600 1400 

    

Source: BRC (2015) 

 

Disinfection of sewerage effluent is undertaken through the injection of chlorine and 

in addition to this, prior to discharge into the Macquarie River, effluent is processed 

through a fully automated UV disinfection process. 

The load based license fees for the BRC WWTW for the 2014-2015 reporting period 

are presented in Table 1.1-3. 
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Table 1.1-3 BRC WWTW EPA Load Based License Fees for 2014-2015. 

Month Load Limit (kg) Actual Load (kg) Load Based Fee 

BOD 31600 6227 $26.54 

Total N 44231 18197 $5 351.34 

Oil & Grease 29511 0 $0.00 

Total P 2937 1414 $16 571.08 

Total SS 58987 20342 $6 762.41 

   Total $28 711.37 

Source: BRC (2015) 
 

The challenges posed in the protection of human and environmental health within a 

developed world with significant population sizes has led to the development of 

advanced treatment technologies for waste storage and treatment as well as in 

relation to the prevention of pollution through methods of conservation, recycling 

and the re use of by-products (Kadlec and Knight, 1996). 

The municipal wastewater of Bathurst is a combination of domestic wastewater 

from general households to businesses and education facilities as well as from 

commercial and local industrial sources. Municipal wastewater has been described 

as being composed of approximately 33 percent soaps and soil solids, 20 percent 

urine, 18 percent ground food wastes, 16 percent faeces and 7 percent paper with the 

remaining 5 percent being composed of solids that were already in the water supply 

(Metcalfe & Eddy, 1991).  

The inflow received through the wastewater treatment works for the 2014-215 

sampling period is presented in Figure 1.1-3. This is equivalent to an average daily 

flow of approximately 10 000 m3/day. 
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Figure 1.1-3  BRC WWTW 2014-2015 Inflow Volumes  

 

Bathurst Regional Council currently has an effluent reuse scheme in operation for 

water and cost saving benefits. The scheme treats effluent by pumping it through a 

10 micron automatic backwash filter which then undergoes ultra violet disinfection. 

This treated effluent is then chlorinated and stored for the use as wash down and 

irrigation onsite. The quality of this reuse water is monitored daily. In addition to 

this the bio-solids generated through the sludge treatment facility are distributed on a 

local rural property for the improvement of soil structure, moisture holding capacity 

as well as improving crop quality translating to improved crop yields. An aerial view 

of the BRC WWTW is provided in Figure 1.1-4. 
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Figure 1.1-4  BRC WWTW Aerial View  

 

While Bathurst Regional Council is successfully meeting the EPA load limit targets, 

Council is still required to pay a fee on what is actually discharged, even after 

meeting those limits. Figure 1.1-5 presents the Assessable Loads (AL) of pollutants, 

in kilograms, for the discharge of effluent into the Macquarie River by BRC 

between the reporting periods of 2011 to 2015. 
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Figure 1.1-5 BRC Pollutant Assessable Loads (AL) 2011-2015 

 

Figure 1.1-5 shows that the majority of the assessable loads recorded had a 

decreasing trend over the period of 2011 to 2015, with the exception of TSS which 

showed a consistent increase from 2011 to 2013 and then decreased from 2013 to 

2015. The increasing trend of TSS was attributed to high levels of algae being 

produced during the retention time in the pond and the subsequent exposure to 

temperature and sunlight and the resulting decrease can be attributed to the 

introduction of aeration measures to the maturation pond to address the TSS issue in 

this case. Other treatments such as barely straw being placed in contained bales, in 

the maturation pond, had been trialled for the removal of TSS however the results 

show that aeration was most successful at reducing TSS overall. 

The assessable loads in kilograms, of the target pollutants for the 2014-2015 

reporting period are provided in Table 1.1-4. 
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Table 1.1-4 Bathurst Regional Council Assessable Pollutant Loads 2014-2015. 

Pollutant Pollutant Load 

(kg) 

BOD 6 227 

TN 1 8197 

TP 1 414 

TSS 20 342 

  

Source: BRC (2015) 

 

The EPA 2014-2015 reporting period discharge concentrations for discharge to the 

Macquarie River were addressed for the potential of further effluent polishing. It is 

interesting to note that the effluent being discharged from the maturation pond into 

the Macquarie River increases somewhat from the effluent that is discharged from 

the EATs to the maturation pond and these are provided in Table 1.1-5. 

 

Table 1.1-5 Pollutant Discharge Concentrations to Macquarie River 2014-2015. 

Pollutant 90 percentile Primary Treated 

Effluent 

(mg/L) 

 

Effluent Discharged to 

Macquarie River 2014-2015 

(mg/L) 

TN 6.0 8.1 

TP 0.3 0.6 

   

Source: BRC (2015) 

 

The 90 percentile for TN and TP of the effluent leaving the EATs was 6 mg/L and 

0.3 mg/L respectively, while the final effluent discharged to the Macquarie River 

showed an increase of TN to 8.1 mg/L and TP to 0.6mg/L. This increase is assumed 

to be attributed to the additional nutrients being introduced to the maturation pond 

from birds, fish and turtles as well as algal growth content. In light of this, 

investigation into the floating treatment wetland option has used the data as reported 

in the calculations for the EPA load license determination of fees. Figure 1.1-6 and 
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Figure 1.1-7 provide the EPA load based fee for nitrogen and phosphorous, 

respectively for reporting periods from 2011 to 2015. 

 

 

Figure 1.1-6 EPA Load Fee – Nitrogen 

 

Figure 1.1-7 EPA Load Fee – Phosphorous 

 

The EPA load fees for phosphorous increased during the period 2013 to 2015 due to 

a local industry, Devro Pty Ltd winding down and ultimately terminating 

production. Devro Pty Ltd was a leading international supplier of collagen casings 

for the food industry. During this shut down process Devro Pty Ltd acquired 
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approval to increase the amount of effluent discharged to the BRC WWTW and this 

effluent contained higher levels of phosphorous than was had been previously 

discharged. While the discharge loads to the Macquarie River during this period did 

increase, and there by increasing the EPA load fees, the effluent discharged to the 

Macquarie River was still below the limits for discharge as set by the EPA. 

 

1.2.  Water Quality Treatment Requirements – Problem 

Statement 
 

The population of Bathurst consists of approximately 35 000 people and related 

industry. The Bathurst Regional Council’s WWTW has been designed to treat 

effluent generated by approximately 50 000 equivalent persons (EP). 

This study investigates the feasibility of using constructed wetland technology 

options for additional effluent treatment or polishing for municipal wastewater to 

incorporate this with the current treatment system at BRC’s WWTW. The first 

option to be investigated is the construction of a typical constructed wetland with the 

second option being the retrofitting of the existing maturation pond with floating 

treatment wetlands. 

The feasibility of these options for a large urban population will be investigated to 

determine if civil costs, operational costs and the EPA loaded based license fees 

have the potential to be reduced when such a system is developed to complement the 

existing WWTW.  
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1.3 Objectives 
 

The objectives of the study were to: 

1. Determine the efficacy of using a constructed wetland system or a floating 

treatment wetland system as part of the treatment process for municipal wastewater 

to meet discharge limits. 

2. Identify the key design requirements of the two main constructed wetland 

systems that could be used at the BRC WWTW. 

3. Quantify the benefits and costs of using constructed wetland systems 

compared to the current treatment method. 

4. Identify a preferred wetland system for the BRC WWTW. 

The study will investigate two main options: 

1. Design and construction of a new constructed wetland system for the 

treatment of wastewater with the following issues to be considered: 

a. Sizing and layout of a free water surface (FWS) wetland system. 

b. Treatment efficiency with regard to different climatic conditions and 

seasonal changes in terms of control to algal growth, temperature extremes and 

periods of wet and dry. 

c. Construction and operating costs and space limitations. 

 

2.  Retrofitting the existing maturation pond with a system of vegetated floating 

pontoons with the following issues to be considered ( for secondary treated effluent): 

a. Plant selection and pontoon area requirement for current loadings. 

b. Treatment efficiency and capability of such a system to cope with current 

loadings. 

c. Construction and operating costs. 
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2. Literature Review 
 

2.1. Introduction  
 

There are multiple definitions of a wetland, as a wetland can vary widely depending 

on the natural environment, industry or context to which it is being referred or 

applied to. The Convention of Wetlands of International Importance (Ramsar 

Convention 1971) puts forward the following definition of a Wetland, ‘Wetlands are 

areas of marsh, fen, peatland or water, whether natural or artificial, permanent or 

temporary, with water that is static or flowing, fresh, brackish or salt, including 

areas of marine water the depth at which at low tide does not exceed six metres 

(Article 1.1 of the Convention). This definition is very broad in nature and could be 

simplified by characterising a wetland as having the presence of water, a unique 

combination of soils for nutrient assimilation and the presence of vegetation that can 

survive in a water logged environment (Scholz and Lee, 2005). 

Historically wetlands have been recognised and appreciated by humans as a useful 

resource, both in their natural state and in constructed forms, to aid in the treatment 

of water. Natural wetland systems were utilised by the Marsh Arabs on the Tigris 

and Euphrates Rivers in southern Iraq and constructed wetland systems are still 

being utilised in South East Asia in the form of rice paddies (Scholz and Lee, 2005). 

Natural wetlands are an integral part of the natural hydrological cycle and provide 

water to sustain biological diversity, agricultural production of food for human 

consumption, recreation and as an important habitat for a multitude of species. 

Due to the destruction of our natural resources, and to add to that, climate change, 

water is being increasingly recognised as a delicate resource, both in terms of 

volume and in terms of quality due to increasing population and land use pressure. 

Constructed wetlands are presenting as not only an aesthetic and important feature 

of the natural environment but as a cost effective application for towns and 

industries requiring varying levels of stormwater, wastewater and effluent treatment 

and/or polishing. Constructed wetlands, in their various forms, have the ability of 

being able to function in conditions from the tropics to the artic and as standalone 
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systems or as complementary components to traditional wastewater and stormwater 

management systems. It has also been suggested that looking even further into the 

future, past just the idea that constructed wetlands just perform as a water treatment 

option, that they may also be utilised for the installation of floating solar collection 

to run the systems energy needs or to be transferred to other applications energy 

requirements. In addition, the problematic issue of excessive algal growth that can 

be experienced could further be harnessed for the development of biofuels or as 

livestock feed supplementation with the potential to replace irrigated feed crops 

(USEPA, 2011) 

 

2.2. Natural and Constructed Wetlands 
 

Natural wetlands receive waters via the processes of stream flow, precipitation, 

runoff and Groundwater discharge. These waters define a wetland and also 

determine the constituent species, both plant and animal, that occur there as well as 

determining the nature of soils, and water chemistry that will be present. 

Constructed or treatment wetlands will exhibit similar characteristics, with the 

noticeable absence of water being received via streamflow and groundwater 

discharge which is an important factor in ensuring that contaminants do not enter 

groundwater or natural water bodies. 

Water within natural and constructed wetlands will vary in volume due to natural 

wetlands being dry for extended periods of time whereas with constructed wetlands, 

inflow and outflow is regulated through various types of inlet and outlet control 

structures and therefore there is less, if no variability in the volume of water 

contained within a constructed wetland. 

Kadlec and Knight (1996) emphasises that the treatment efficiency of a wetland, 

whether natural or constructed, is in terms of the hydraulic retention times (HRT – 

length of time that a soluble compound remains within the system), hydraulic 

loading rates (HLR– a ratio of flow divided by the surface area), and the proximity 

of the water borne substances to the sites within the wetland where biological and 

physical actions and processes take place. 
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In terms of water chemistry a pristine natural wetland could be expected to have a 

total phosphorous level of less than 0.1mg/L which is well below regulatory levels 

however it is also important to note that a pristine wetland is a rarity as most would 

be susceptible to agricultural, industrial and urban runoff in most cases so a more 

realistic value would be in the range of 0.1 to 0.7 mg/L (Kadlec and Knight, 1996). 

It is also noted by Kadlec and Knight (1996) that when the wetland water budget is 

dominated by rainfall then the total phosphorus present will be at relatively low 

levels and in an extremely pristine example in Florida, USA, the total phosphorus 

present was at a level of approximately 0.01 mg/L. Phosphorous within a wetland 

occurs as soluble and insoluble as well as organic and inorganic (Scholz and Lee, 

2005). Phosphorous assimilation within a wetland is via sedimentation and 

adsorption into the soils, it is present in both floating and substrate plants. Due to the 

phosphorous occurring in varying processes within the wetland system, successful 

removal cannot be assured. Mackney (1991) comments that as long as the sediment 

zones remain oxidised the phosphorous should have a low biological activity and if 

sorbtion is the primary removal method then contact opportunities between the 

wastewater and the soil will be the limiting factor. Studies conducted by Mackney 

(1991) on wetlands in Byron Bay support the suggestion that removal of 

phosphorous occurs in the first section of the wetland and after that the levels remain 

essentially the same. Other studies also put forward the idea that phosphorous 

removal may also be limited by nitrogen (Post. et al., 1989). 

The decomposition of organic matter produces organic nitrogen at low 

concentrations of approximately 1 to 2 mg/L. Organic nitrogen is further 

decomposed to form amines and ammonium nitrogen, under either aerobic or 

anaerobic conditions (Scholz and Lee, 2005). Ammonium nitrogen is essential for 

plant growth. During periods of high plant growth, ammonium nitrogen is taken up 

and will be present in very low levels in the water, in the order of approximately 

0.05 to 0.10 mg/L. This soil bound ammonium nitrate is absorbed via plant roots. 

Increased temperatures also contribute to the reduction in ammonium nitrogen levels 

in the water via microbial processes (Kadlec and Knight, 1996). Ammonium 

nitrogen is further converted to other forms within the aerobic layers of the soil 

forming firstly nitrites (NO2
-) and then nitrates (NO3

-). This nitrification process will 

also take place within the plant root systems. This process is of particular interest in 
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constructed wetlands to ensure that eutrophication in receiving waters are managed 

effectively. Nitrate and nitrates are commonly absent or at levels so low so as not 

able to be detected in natural wetland systems. 

Natural and constructed wetlands are contrasted in terms of their carbon compounds 

with natural wetland carbon being represented by total organic carbon (TOC) and 

for constructed wetlands the carbon is presented in the form of biological oxygen 

demand (BOD) and chemical oxygen demand (COD). As many wetland plant 

species have root systems extending into anaerobic sediments the plants have 

developed the ability to transport dissolved oxygen into their root zone where it is 

metabolised, and if in excess it is utilised to sustain an aerobic layer around the root 

systems which in turn will support aerobic, heterotrophic and autotrophic bacteria. 

These forms of bacteria serve a function to oxidise organic material and also to 

nitrify ammonia in the wastewater (Mackney, 1991). 

Constructed wetlands are known to be effective in the removal of total suspended 

solids (TSS), a component not commonly measured in natural wetland systems. 

Algal blooms can have a significant effect on the levels of TSS, dissolved oxygen 

(DO) and also affect the pH levels of the water. 

Climatic and seasonal changes can impact the water chemistry of a wetland through 

changes in temperature, photoperiod (period of time each day during which an 

organism receives illumination), hydroperiod (seasonal pattern of water levels) and 

plant growth. Plant growth increases in warmer months which see an increase in the 

reduction of nutrients such as nitrogen, and this is slowed as plant growth slows in 

the cooler months. A dry season may reflect an increase in the decomposition of 

organic matter and a wet season will exhibit dilution processes. 
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2.3. Constructed Wetlands for Effluent Polishing 
 

Constructed wetland applications are typically directed towards the removal of the 

following: 

• Biochemical Oxygen Demand (BOD) 

• Suspended solids (SS) 

• Nitrogen (N) 

• Phosphorous (P) 

• Heavy metals 

• Pathogenic bacteria and viruses 

• Pharmaceutical chemicals and personal care products (PPCPs) removal is 

also gaining momentum. 

Wetlands are known for their cycle of carbon compounds with the amounts 

processed within a wetland exceeding those actually contributed to by the addition 

to wastewaters even though wetlands exhibit non-zero background levels of both 

BOD and COD. Biological oxygen demand is a measurement of the oxygen 

consumption of microorganisms in the oxidation of organic matter and is typically 

measured in a test with duration of 5 days and there by termed BOD5  (Kadlec and 

Knight, 1996).  Biological oxygen demand is the most frequent supply of carbon in 

municipal wastewater with background levels  reported to be within the range of 1 to 

6 mg/L (Kadlec and Knight, 1996). 

The efficiency of a constructed wetland to remove BOD5 and SS is well documented 

as being consistently achieved. BOD5 is effectively removed as long as the BOD5 in 

the influent is greater than the background level of BOD5 at which the wetland 

operates and consideration must be given to the processes that both consume and 

generate BOD5 (Kadlec and Knight, 1996). Studies conducted in countries such as 

North America, Austria, Australia and Belgium show high removal performance in 

terms of BOD5 with removal rates within the range of 70% to 96%, with the 

majority of results at the higher end of that range (Sundaravadivel and Vigneswaran, 

2001). Kadlec and Knight (1996) support the view that the majority of constructed 
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wetlands are overdesigned for the removal of BOD5 with effluent concentrations 

within the range of background levels being achieved.  

A constructed wetland environment is one in with total suspended solids are both 

produced and removed. Production is from the death of resident invertebrates and 

plant matter and the subsequent breaking up and distribution of these particles. In 

addition to this is the production of plankton and microbes that are found either in 

the water column or attached to the plant matter (USEPA, 2000). Removal of total 

suspended solids is via physical methods such as flocculation and sedimentation as 

well as filtration and interception. Idris (2010) suggests that constructed wetlands 

have limitations in the removal of SS when in the form of non-settling and colloidal 

solids. The size and nature of these solids are often such that wetland plants have an 

insignificant impact. SS removal should rely on measured settling rates for the 

wastewater in question as well as consideration as to the processes within the 

wetland that may produce variability in removal results (Kadlec and Knight, 1996). 

Nitrogen forms associated with wetland environments consist of ammonia (NH4
+), 

nitrite (NO2
-), nitrate (NO3

-), nitrous oxide (N20) and dissolved elemental nitrogen 

(N2). There are multiple factors that affect the total nitrogen removal rates in 

wetlands and they include the total nitrogen loading rate, climatic conditions, and 

the composition of the plant community as well as soil characteristics. Studies have 

reported that total nitrogen is reduced at a rate of about 46% to 72% in most wetland 

systems (Knight et al., 1985a). The removal rate of total nitrogen in a wetland 

system can be highly variable with dependencies on factors such as the makeup of 

the nitrogen in the influent, water depth, amount of dissolved oxygen present as well 

as the total nitrogen mass loading rate (Kadlec and Knight, 1996). Reduced 

efficiencies in the removal of total nitrogen have been observed at higher loading 

rates and are reported to be inversely related. Optimisation of nitrogen reduction can 

be achieved in specific design aspects of a wetland through the distribution of flow 

and residence times via deep water zones constructed perpendicular to the path of 

the inflow (Kadlec and Knight, 1996). This opinion is further supported by research 

in the US which has shown that the harvesting of wetland vegetation can remove 

less than 20% of influent nitrogen leaving nitrification and denitrification as the 

primary removal mechanisms and these mechanism are only effective if constructed 

wetlands are designed such that sufficient open water zones, providing aerobic 
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conditions and vegetated zones, providing anaerobic conditions are provided 

(USEPA, 2000). Temperature and seasonal influences have been shown to affect the 

different processes involved in the removal of nitrogen forms. Lower temperatures 

are reported to introduce limiting conditions for effective removal (Kadlec and 

Knight, 1996). 

The existing literature supports the theory that ammonia is a limiting factor when it 

comes to wetland design and is what predominantly drives the design process 

(Kadlec and Knight, 1996). Ammonia is an important in the wetland design process 

as it is known as the preferred nutrient form of nitrogen for most plant species and 

autotropic bacteria species, it can be readily oxidised in natural waters which can 

require significant oxygen consumption and in addition to this the un-ionised 

ammonia is toxic to many forms of aquatic life, even at low concentrations (Kadlec 

and Knight, 1996). 

Nitrate is the most highly oxidized form of nitrogen present in wetland systems and 

due to this oxidation state it is chemically stable. Nitrate is an essential nutrient for 

plant growth however when in excess can cause eutrophication of surface waters 

(Kadlec and Knight, 1996). Nitrate exists and an intermediate oxidation state of 

nitrogen and as such is not chemically stable so is only found at low concentrations 

in wetland environments (Kadlec and Knight, 1996). 

Microbial nitrification and denitrification are the primary removal processes of 

nitrogen in a constructed wetland. The reduction in nitrogen to the order of 70 to 

90% is commonly reported across of wide range of loading rates and site conditions. 

Removal rates can also be tailored depending on the end product that is required. 

For instance, if the treated wastewater is for discharge into natural water ways then 

lower levels of nitrogen need to be achieved to meet licensing standards in contrast 

to treated wastewater that is to be used for irrigation purposes, as a higher nitrogen 

level will be required for plant/crop growth. A large majority of the research is in 

agreement to the successful removal of nitrogen in constructed wetlands as long as 

design configurations and other conditions are met. In opposition to this, a study by 

Verhoeven and Meuleman (1999) suggests that removal rates of nitrogen in 

constructed wetlands is limited in effectiveness much in the same way that the 

removal of phosphorous has been reported. For larger volumes of wastewater the 
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view of Verhoeven and Meuleman (1999) may be more applicable in that 

constructed wetlands would be more suited to effluent polishing of secondary 

treated effluent from a conventional wastewater treatment system to further refine 

the effluent for a reuse/discharge capability.  

Although consistency in the removal of total nitrogen in wastewaters can be 

achieved in wetland environments, not all factors that contribute to the removal 

efficiency are able to be effectively incorporated into design calculations and it is on 

this basis that caution needs to be taken and that limiting variables and conservative 

design in the sizing of wetlands should be acknowledged and applied. 

The importance of phosphorous in a wetland environment is as an essential 

component for plant growth and as such, excessive levels discharged into natural 

aquatic environments can have a negative impact on those environments. 

Historically wetlands are not the most successful at removing phosphorous due to 

the complex nature of the biochemical processes in terms of inputs, cycling, storages 

and removal from the wetland environments and results can often be highly variable. 

As such it is this parameter that often requires the greatest area in terms of design 

(Kadlec and Knight, 1996). 

Phosphorous removal in a wetland is via adsorption of soluble phosphorous onto soil 

particles, sedimentation of particulate phosphorous, precipitation and uptake by 

plants. Mackney (1991) reported that many studies reflect results similar to those 

found from a twenty one reed bed study in Denmark, where by an average removal 

success of phosphorous was approximately 20%. Verhoeven and Meuleman (1999) 

also comment that as phosphorous removal is dependent on the adsorption success 

as the process is reversible in nature as soon as the soil redox or base status changes. 

In addition to this, soils can become saturated which will limit further phosphorous 

adsorption. Constructed wetland systems can be effective in the removal of 

phosphorous if effluent polishing is the design aim, attributing reports of poor 

phosphorous removal results in the literature to a wetland system being optimised 

for the removal of a different priority pollutant rather than it being an unsatisfactory 

design concept (Bavor et al., 1995). Research results show that phosphorous 

removal efficiencies of 60% and in some instances >90% in constructed wetland 

systems receiving well treated effluent with phosphorous concentrations of 1.0mg/L 
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over a period of four years (Bavor et al., 1995). This result is further supported by 

studies that show a mean phosphorous input level of 1-2mg/L being reduced to 

output levels of 0.005-0.3 mg/L (Knight, 1994). Further consensus for the limited 

capacity of constructed wetlands to remove phosphorous is that removal is limited to 

seasonal uptake by plants and that these levels would be much less than what the 

influent loading would be in municipal wastewater. In addition to this, phosphorus 

removal in the short term, within newly constructed wetlands would depict a greater 

uptake due to new vegetation, soils and media being able to uptake phosphorous at a 

greater efficiency rate than a more established wetland due to a greater saturation of 

sorption sites (USEPA, 2000). 

Information on the heavy metal removal capability of constructed is not extensive 

however they are known to act as effective traps or sinks with relation to the wetland 

soils. Heavy metals are also taken up by wetland plants although this has its 

limitations in that if the concentrations of heavy metals in some plants become too 

high it will result in the plants dying. 

Kadlec and Knight (1996) outline the following processes by which pathogens are 

effectively removed from wastewater in constructed wetlands: 

• Natural die off 

• Sedimentation 

• Filtration through direct contact with plants and biofilms 

• Ultra violet radiation through extensive exposure to natural sunlight 

• Unfavourable water chemistry 

• Temperature 

• Predation via zooplanktons 

Other literature supports the success of constructed wetlands in the removal of 

pathogens in which primary treated domestic wastewater was put through a 

constructed wetland system incorporating both horizontal and vertical flow beds 

with results showing that this method was superior to the conventional treatment 

system (Gesberg et al., 1990). It was also noted in the study that vegetated beds 

produced the most effective results. Constructed wetland configurations and 

environmental conditions create a favourable environment in which to remove 
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pathogenic bacteria and viruses that are derived predominantly from human and 

animal faeces. In conventional wastewater treatment systems the removal of 

pathogens is not effective without the additional processes of chlorination, ozonation 

or UV treatment being employed. Wetlands provide an effective removal 

mechanism compared to traditional processes with longer residence times (greater 

than 10 days) shown to provide disinfection with vegetated wetlands providing 

higher efficiencies due to the physical contact between the pathogens and solid 

surfaces of the plant matter (Kadlec and Knight, 1996).  

Constructed wetlands are an effective method for wastewater treatment however 

their application can have limitations in terms of the area required for effective 

removal to take place. Availability of land and land acquisition costs are often the 

limiting factors where larger volumes of wastewater are to be treated as the size of 

the wetlands required become too large to be feasible. 

An aspect of municipal wastewater treatment that is gaining momentum is in the 

removal of a variety of PPCPs and their metabolites. The ecotoxicological effects of 

these substances are still relatively unknown in terms of discharge into waterways 

and conventional wastewater treatment plants are not designed for their removal. 

Although evident in low concentrations these substances have the potential to 

exhibit an unpredictability due to a large number of compounds currently discharged 

and also there is the problem that their interactions in natural systems, as loadings 

increase, are yet to be widely studied and understood. Recent small scale trials of 

various types of natural systems have shown evidence of success (Conkle et al., 

2008, Hijosa-Valser et al., 2010, Matamoros et al., 2005) with greater removal 

efficiency from vegetated constructed wetlands as opposed to ponds. One of these 

trials consisted of seven mesocosms-scale constructed wetlands over a period of 

nine months and results in successful removal of PPCPs such as ketoprofen, 

naproxen, ibuprofen, caffeine and salicylic acid, just to name a few (Hijosa-Valser et 

al., 2010).  The study assumed that constructed wetlands offer a multitude of 

microenvironments that provides various pathways for the degradation of the PPCPs 

(Hijosa-Valser et al., 2010). It was also concluded that the degradation was linked to 

physico-chemical parameters such as higher temperatures, high oxidant conditions, 

anaerobic conditions and that microbiological pathways are the most likely of 

pathways for the degradation of PPCPs (Hijosa-Valser et al., 2010). 
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2.4. Floating Treatment Wetlands for Effluent Polishing 
 

Floating treatment wetlands (FTWs) are a relatively new and emerging technology 

to the constructed treatment wetland concept and they can overcome the constraints 

of required area and minimum depth experienced in the traditional constructed 

treatment wetlands approach to potentially achieve an improved treatment 

performance (Headley and Tanner, 2008). FTWs are currently applied to areas such 

as human wastewater treatment, stormwater runoff in retention ponds, agricultural, 

mining and industrial wastewater treatment. The FTW technology provides an 

opportunity to retrofit existing facilities with floating vegetated mats/pontoons 

supporting terrestrial macrophytes (Wang and Sample, 2014). Figure 2.4-1 provides 

an example of a floating pontoon planted with vegetation for water treatment. 

 

Source: FIA (2015) 

Figure 2.4-1 Floating Treatment Wetland Pontoon  
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In addition to overcoming typical constraints in area and depth, floating treatment 

wetland systems also require less input in terms of construction and ongoing 

maintenance such as chemical or energy inputs and as such the costs are 

predominantly associated with the installation of the floating pontoons, plants and 

labour costs for planting and harvesting (Wang and Sample, 2014). Harvesting 

requirement is dependent on the type of plants selected and in terms of ongoing 

management, if no harvesting is required, then occasional spraying for introduced 

weeds from birds or overhanging vegetation would be required. Sediment removal 

and disposal may also need to be a consideration in with respect to long term costs, 

with stormwater ponds requiring a clean out every 15-25 years (USEPA, 1999).  

A floating treatment wetland incorporates the traditional benefits of utilising 

emergent macrophyte species, such as rushes, reeds and sedges, grown on a floating 

mat or pontoon where the root zone of the macrophyte extends into the body of 

water requiring treatment while the rest of the macrophyte remains above the water 

level. The minimum water depth is recommended to be between 0.8m to 1.0m to 

ensure that no roots are able to anchor onto the bottom of the pond introducing the 

risk of the pontoon being inundated if the water levels rise causing death of the 

plants (Headley and Tanner, 2008). This increased depth capability also increases 

the hydraulic retention time of the wetland without increasing its footprint. Another 

advantage is that after a period of accumulation of sediment in the pond, the material 

can be excavated without any disturbance or damage to the plant systems on the 

floating pontoons. 

Plant nutrition is derived directly from the water column beneath the pontoon on 

which they are grown. The submerged root network provides a large surface area on 

which biofilms can grow thus creating an active surface on which flocculation of 

suspended matter can take place and in turn enhancing the process of the settling of 

materials (Khan et al., 2013). The water column beneath the pontoon contributes to 

the removal of heavy metals and nutrients due to plant uptake as well as there being 

anaerobic conditions in this zone  (Headley and Tanner, 2008) and (Hubbard et al., 

2004). Figure 2.4-2 provides a schematic diagram of the pollutant removal 

processes that can be expected with floating wetland treatment technology. 
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Source: Borne et al. (2015) 

Figure 2.4-2 FTW Pollutant Removal Processes  

 

Research into the effects of vegetation, season and temperature on the removal 

efficiency of various pollutants in floating treatment wetlands showed that the 

removal efficiency of total nitrogen, ammonia, nitrate, phosphorous, chemical 

oxygen demand, total organic carbon and heavy metals was measured for a floating 

treatment wetland against a control pond of the same configuration that contained no 

floating vegetation (Van de Moortel et al., 2010). Results showed that the floating 

treatment wetland had greater removal efficiency than the control, the averaged 

results are provided in Table 2.4-1. 
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Table 2.4-1 FTW Removal Efficiency 

Parameter FTW 

% removal 

Control 

% removal 

NH4-N 35 3 

TN 42 15 

P 22 6 

COD 53 33 

   

Source: Van de Moortel et al. (2010)  
 

Over the testing period pH was reported to be lower in the FTW than the control, 

and it was also noted that the removal of TN, NH4-N and P was highest when the 

temperature was in the range of 5̊C and15̊C, with lower removal rates exhibited at 

lower and higher temperatures outside of this range. It was concluded that 

temperature, more so than season, had more effect over removal efficiencies. 

Hydraulic retention time is an important factor in the design of a FTW in that the 

longer the residence time of the water in the wetland the more effective are the 

processes settling of sediments and other pollutants whether that be via biological 

and chemical reactions or physical settling processes (Khan et al., 2013). The plug 

flow model of uniform velocity for a wetland is not something that is seen in a 

natural wetland however can be designed into a FTW to achieve a particular flow 

path to ensure a determined residence time and also to eliminate dead zones where 

the flow short circuits a particular pathway and exits the wetland before effective 

polishing can take place (Khan et al., 2013). To avoid this short circuiting of flow, 

the design of the FTW could include baffles, walls and subsurface berms. Baffles 

have also been reported to cause short circuiting so correct design placement of the 

pontoons needs to be considered so that pollutant removal efficiency is not 

compromised (Khan et al., 2013). The study also described the optimal placement 

for a single large FTW as being x/Lm=0.125 for a side inlet pond and x/Lm=0.25 for 

a centred inlet pond, where x is the distance of the FTW from the inlet and Lm is the 

overall length of the pond. Pollutant removal was more effective with one large 

FTW as opposed to multiple smaller ones and also that the position of the FTW was 

more important in terms of hydraulic performance that the actual size of the FTW 

(Khan et al., 2013). Additional research into pond coverage reported that a 50% 
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surface area coverage induced greater dissolved oxygen depletion giving rise to a 

more favourable environment for denitrification as opposed to a water body with 

only 18% surface area coverage (Borne et al., 2015). Dissolved oxygen depletion 

creates a non-favourable environment for freshwater organisms and once the 

required effluent polishing is achieved, measures to re oxygenate the water for 

discharge would need to be considered. In terms of effluent polishing and the 

removal of nitrates and metals, large FTWs, with a surface area of 50m2 are 

suggested, whereas for stormwater quality and creating a favourable natural habitat 

smaller FTWs, in the range of 1-3m2 are advisable (Borne et al., 2015). 

Water pH also plays an important role in the removal of nutrients, and should be in 

the range  of between 6 to 8 to allow for sorption of positively charged metals on 

particles and for denitrification and nitrification processes the pH should be within a 

range of 7 to 8.5 (Borne et al., 2015). These pH ranges are well within the NSW 

EPA load limits set for the Bathurst WWTW which for the 100 percentile 

concentration state the pH range to be within 6.5 to 8.5. It has been reported that to 

maintain a pH between 7 and 8, for wastewater treatment systems, that a 

concentration above 35mg/L CaCO3 is recommended (Borne et al., 2015). 

 

2.5. Conventional Treatment for Municipal Wastewater 
 

Traditional applications to the treatment of municipal wastewater typically employ 

the methods of biological, chemical and physical removal technologies. These 

treatment processes partially remove the solids and assist in the decomposition from 

highly complex putrescible organic solids to more stable organic compounds. 

Primary treatment consists of grit removal, screening, grinding, sedimentation and 

flotation. In this treatment stage Sonune and Ghate (2004) describes that 

approximately 25% to 50% of the BOD and 50% to 70% of the SS are removed 

which is further supported by similar result ranges in the data provided Kadlec and 

Knight (1996) presented in Table 2.5-1. Some organic nitrogen and phosphorus is 

removed during this primary treatment stage however it is not successful in 

removing the colloidal and dissolved constituents (Sonune and Ghate, 2004). 
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This primary effluent then undergoes secondary treatment processes with the aim of 

removing residual organics and additional suspended solids. Sonune and Ghate 

(2004) describes the distribution as being approximately 65% dissolved solids, 30% 

suspended solids with a remaining 6% made up of colloidal solids. Biological 

treatment during this stage aims to remove a variety of microorganisms through the 

supply of oxygen allowing for the organisms to metabolize the organic matter 

present (Sonune and Ghate, 2004). 

As effluent standards became more rigorous, further treatment was required to meet 

discharge standards and as such more advanced systems of treatment needed to be 

applied. Primary and secondary treatment processes are effective at removing BOD 

and SS but exhibit a lower removal efficiency with phosphorous in the order of 10% 

to 20% removal and 15% to 25% removal for total nitrogen (Muga and Mihelcic, 

2008). Tertiary treatment can consist of physiochemical treatment and a 

combination of biological and physical treatment technologies to remove additional 

organic and suspended solids, nutrient removal as well as the removal of any toxic 

substances that may be present (Sonune and Ghate, 2004).  

Other applications of traditional wastewater treatment have included the use of 

lagoons. Lagoons either being aerobic or facultative in terms of their operation. 

Aerobic lagoons typically have a hydraulic retention time in the order of 3 to 10 

days where as facultative lagoons have a hydraulic retention time in the range of 5 to 

30 days (Reed et al., 1995). The longer the hydraulic retention time the higher the 

removal efficiency seems to be and if correctly constructed the removal efficiency of 

a lagoon system can be comparable to traditional mechanical systems (Muga and 

Mihelcic, 2008). Lagoons have shown a SS solids removal capacity in the range of 

90% to 95% but a lower BOD removal capacity in the range of 75% to 95%. 

Phosphorous and nitrogen removal is also reported to be lower with removal 

efficiencies in the range of 10% to 50% for phosphorous and 10% to 60% for total 

nitrogen. Land treatment technology shows medium to high removal for BOD (67% 

to 100%), SS removal in the range of 58% to 99% and 40% to 99% for phosphorous 

removal and 38% to 95% for total nitrogen (Muga and Mihelcic, 2008). 

A summary of approximate removal ranges of conventional treatment methods are 

provided in Table 2.5-1. 
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Table 2.5-1 Percentage Removal Efficiency for Conventional Wastewater Treatment Methods 

Treatment 

Process 

BOD COD TSS TP ORG-N NH3-N TN 

Grit Removal 0-5 0-5 0-10 <1 <1 <1 <1 

Primary 

Sedimentation 

without 

coagulation 

30-40 30-40 50-65 10-20 10-20 0-20 10-20 

Primary 

Sedimentation 

with coagulation 

40-70 30-60 60-90 70-90 - - - 

Activated Sludge 80-95 70-85 80-90 10-50 15-20 8-65 - 

Trickling Filters 65-80 55-80 60-85 8-12 15-50 8-15 - 

Rotating 

biological 

contactors 

80-85 80-85 80-85 10-25 15-50 8-15 - 

Oxidation Ditch 86-99 - 81-98 - - 20-80 - 

Tertiary 

Treatment 

80 80 80 60-95 0-20 80-95 80-85 

        

Source: Kadlec and Knight (1996) 
 

Odour nuisance can be a negative impact relating to traditional treatment methods, 

both from mechanical treatment as well as from lagoon and land application 

systems. Less odour issues are reported from land treatment methods if the 

wastewater is adequately pre-treated with the removal or solids and algae land 

application. Odour issues often occur at the points of pumping stations, inlets and 

outlets or in lagoon system in periods of overloading or excessive sludge build up 

(Muga and Mihelcic, 2008). 

Bathurst Regional Council’s WWTW employs the activated sludge treatment 

method and it is a treatment method that has been widely used for both municipal 

and industrial wastewater treatment. Activated sludge treatment is popular due to 

being an efficient method, it has operational flexibility effective in terms of nutrient 

removal. However, disadvantages are also acknowledge and those consist of the 

need for a high level of mechanisation, high costs are reflected both in terms of 

44 
 



construction and ongoing operation and ultimately the need to treat a large amount 

of sludge (Sperling et al., 2001).  

In addition to the traditional systems already discussed are the land treatment 

systems incorporating methods such as slow rate (SR) systems, overland flow (OF) 

and rapid infiltration (RI) systems (Reed et al., 1995). These forms of land treatment 

consist of controlled application of wastewater to the soil to achieve the wastewater 

treatment targets required.  

Slow rate systems have been utilised for municipal wastewater and also industrial 

wastewater and are similar to conventional agricultural irrigation with mass nutrient 

balances and loadings taken into consideration.  

Overland flow systems incorporate a land treatment process by which wastewater is 

discharged to flow down ad graded and grass covered slope with the treatment 

runoff being collected at the bottom of the slope (Reed et al., 1995).  Soils must 

have properties that enable slow permeability rates, or be compacted to limit the 

level of percolation or consist of an impermeable layer and the wastewater is applied 

via irrigation or directly to the surface. This treatment process is able to successfully 

remove BOD, SS and nitrogen and with the potential for phosphorous removal with 

some alum application (Reed et al., 1995). A local example of this treatment process 

was undertaken as a joint project with the Scenic Rim Regional Council in 

Queensland and Queensland Urban Utilities. This comprised of a system of vetiver 

grass plots for the overland flow treatment of the municipal wastewater for the 

township of Boonah, Queensland. 

The third method of land application treatment options consists of rapid infiltration 

and this process treats wastewater by allowing it to percolate through a permeable 

soil via intermittent applications often in shallow spreading basins. Some systems 

recover the percolated treated wastewater for further use through collection and 

pumping methods if the indirect surface discharge to receiving waters is not 

allowable by regulators (Reed et al., 1995). 
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2.6. Wetland Technology for Wastewater Treatment – Case 

Studies 
 

Constructed wetlands are a proven method for managing contaminated waters which 

in turn results in the benefit of being able to recycle water for a variety of human 

applications and for discharge back into the natural environment to assist in the 

rehabilitation of natural flows in rivers and streams. Constructed wetlands have been 

applied to the following areas: 

• Primary and secondary sewage treatment 

• Effluent polishing of secondary and tertiary treated effluent for discharge, 

recycling and reuse 

• Disinfection 

• Stormwater treatment 

• Land fill and mining leachate treatment 

• Industrial runoff 

• Agricultural runoff 

Floating treatment wetlands for water treatment has so far been applied in the 

following areas: 

• Stormwater treatment 

• Combined sewer-stormwater overflow 

• Sewage 

• Acid mine drainage 

• Piggery effluent 

• Poultry processing wastewater 

• Water supply reservoirs 
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2.6.1. Case Study 1 – Columbia, Missouri USA 

 

The Columbia wastewater treatment plant wetland system was designed in the late 

1980’s when the concept of using wetlands for wastewater treatment was still in its 

infancy. The City contracted with engineering firm Metcalf & Eddy Inc. for the 

design, and it was the first design of this type that they had undertaken (Cuvellier, 

2015). The reason for the wetland concept was due to the wastewater treatment plant 

becoming hydraulically overloaded and the wetland concept was initiated to increase 

the capacity of the plant and to achieve the typical secondary wastewater quality 

standards of 30mg/L per monthly average of BOD and TSS. At this early time in the 

development nutrient removal was not a consideration and was therefore not 

designed specifically for nutrient reduction. To illustrate this, in the first twenty 

years only an average of 3% reduction in ammonia occurred (Cuvellier, 2015). 

The Columbia wastewater treatment plant completed upgrades in 2001 which 

included the construction of a series of four wetland treatment ponds. The total 

design capacity of the plant is approximately 75 000 cubic metres per day 

(Columbia, 2015). These upgrades enabled the decommissioning of more than 75 

small wastewater treatment facilities throughout Columbia. Figure 2.6-1 provides 

an aerial view of the plant. 
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Source: Columbia (2015) 

Figure 2.6-1 Aerial Photo of Columbia Regional Wastewater Treatment Plant 

 

The wetland treatment facility was incorporated into the overall plant due to 

community demand for more environmentally sound systems of effluent disposal 

into the nearby Missouri Department of Conservation Area of restored riverine 

wetland, to which is provides a source of water (Columbia, 2015). This conservation 

area has an area of approximately 530 hectares of emergent marsh wetland that are 

seasonally flooded.  The effluent discharged to the conservation area is monitored 

daily to conform to the pollution guidelines as set by the National Pollution 

Discharge System criteria (Columbia, 2015).  

The total water surface area of the wetland is approximately 53 hectares and each 

cell has a clay liner that is 300mm thick for the prevention of potential leachates 

entering the surrounding environment, which is then topped with the same thickness 

of topsoil into which cattails have been planted. Cattails were the vegetation of 

choice to due to being suitable for the local environmental conditions, they exhibit 

fast growth rates and can be densely planted. In times of heavy rain to prevent over 

topping of effluent from the wetlands, flood control berms have been constructed 
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around each treatment unit and a Figure 2.6-2 provides an aerial view of their layout 

(Columbia, 2015). 

 

 

Source:Columbia (2015) 

Figure 2.6-2 Aerial Photo of Columbia Regional Wastewater Treatment Plant Wetlands  

 

The basic limits set on wastewater treatment plants by the USEPA are on BOD, TSS 

and pH. Approximately ten years ago the USEPA also set limits on ammonia giving 

treatment plants a period of seven years to upgrade infrastructure to meet these new 

requirements. Nitrogen has recently had limits set by the USEPA however there are 

currently no limits set for the discharge of phosphorous. Each State is free, however 

to set their own limits on phosphorous on a case by case basis (Cuvellier, 2015). The 

effectiveness of this treatment systems and subsequent discharge into a natural 

ecosystem has gained the support of the community, environmentalists and 

regulatory agencies. 
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2.6.2. Case Study 2 – Pasco County, Florida USA 

 

Floating treatment wetlands were used in this study conducted as part of the Pasco 

County Master Reuse System (PCMRS) for the provision of water treatment for 

effluent disposal for the county. PCMRS is a regional reclaimed water distribution 

system providing treated effluent from all wastewater treatment facilities in the 

Pasco Country through irrigation and rapid rate infiltration basin systems. The 

specific goals included the further reduction in nutrient levels in reclaimed 

municipal wastewater to meet total maximum daily load limits, with the parameters 

being studies including total nitrogen, total phosphorous, ammonia, nitrate, 

biological oxygen demand, total suspended solids, dissolved oxygen, pH and 

temperature. The sampling period was over the period of one year. 

The total surface of the wetland area was 149m2 with floating wetland pontoons of 

2.4m x 3.0m in area covering a total area of 1122m2 which represented 7% of the 

total ponds surface area. Figure 2.6-3 shows the FTW configuration in relation to 

the pond inlet and outlet (Vazquez-Burney et al., 2015).  The depth of the pond 

varied from 1m to 2m, with a volume of approximately 19ML. The pond received 

continuous inflow through a 100mm pipe containing a flow meter. A total of 18 

different local plant species were chosen for planting into the pontoons (Vazquez-

Burney et al., 2015).  
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Source: Vazquez-Burney et al. (2015) 

Figure 2.6-3 Pasco County Floating Treatment Wetland  

 

Sampling of the water was undertaken every two weeks at the pond inflow and 

outflow and analysed for ammonium nitrogen, nitrate, nitrite, organic nitrogen and 

total phosphorous. This sampling period consisted of three distinct project phases 

consisting of a growth phase (July 2012 to December 2012), performance phase 

(January 2013 to August 2013) and a control period which consisted of the removal 

of the planted pontoons (September 2013 to November 2013). Plant tissue sampling 

and analysis of harvested materials were also conducted to determine dry weight and 

percent total nitrogen (Vazquez-Burney et al., 2015). Results showed that the 

efficiency of the floating wetland to remove total nitrogen was 61% during the 

performance phase compared to 30% removal efficiency during the control period. 

A tracer was also utilised to monitor the hydraulic efficiency of the pond and from 

this dead zones and short circuiting of flow was observed, algal growth in these 

areas were also noted and as such showed that improvement in the flow 

characteristics of the pond would be warranted to ensure a higher removal efficiency 

than what was actually documented. It was also recommended that ponds with 

different sizes, depth and shape configurations must be assessed uniquely in order to 

achieve a consistent and effective TN removal (Vazquez-Burney et al., 2015). 
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2.7. Methods for Sizing Treatment Wetlands 
 

2.7.1. Traditional Constructed Wetlands 

 

The Department of Land and Water Conservation NSW (1998) provides a guide for 

the design of constructed wetlands – ‘The Constructed Wetlands Manual’, using 

models by Kadlec and Knight (1996), Reed et al. (1995) and a general ‘rule of 

thumb’ guide to sizing. The rule of thumb method of sizing will not be discussed in 

detail here other than to mention that the UK has employed this method in the 

design of constructed wetland systems. It is useful for preliminary sizing estimation 

suggesting that the area required is approximately 10-20m2/m3 of effluent per day. 

DLWC NSW 1998 suggests that this is a reasonable method for preliminary sizing 

where BOD and SS removal is being considered. 

Kadlec and Knight (1996) and Reed et al. (1995) both employ the concept that the 

rate of removal of a particular component in a wetland is directly proportional to the 

remaining concentration of that component. This is referred to as a first-order plug 

flow kinetic model. Plug flow being an idealised mixing theory defined by the 

concentration of a reactant decreasing along the length of the flow path of a wetland. 

This is as opposed to a completely mixed reactor where by at any point in the 

wetland the concentration is the same as the effluent concentration. It is also 

suggested that ideal plug flow is not able to be achieved but is more a case of an 

infinite series of completely mixed flow wetlands (DLWC, 1998). 

The methods of Kadlec and Knight (1996) and Reed et al. (1995) differ in the basis 

for the rate constant. Reed et al. (1995) have based their equations on the available 

volume and average temperature of the wetland whereas Kadlec and Knight (1996) 

equations are based on the surface area of the wetland with temperature only 

considered significant in the calculation for nitrogen removal. Another difference in 

the two approaches is that Kadlec and Knight (1996) include a minimum possible 

pollutant concentration in their calculations whereas Reed et al. (1995) use the 

minimum possible pollutant concentration as a checkpoint after the fact. The 

limitation in the equations including the minimum pollutant level is that when the 
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required effluent concentration approached this minimum value the estimated size of 

the wetland increases exponentially which can result in an overly conservative 

wetland sizing.  

It is important to note that these models were developed in the US with Kadlec and 

Knight (1996) using average water temperatures that would be generally lower than 

what is experienced in Australia. This could introduce the risk of overdosing 

(DLWC, 1998). Sizing of the wetland is determined by using the pollutant requiring 

the greatest area for removal.  

The method proposed by Reed et al. (1995) is a first order plug flow model 

incorporating the assumption that the pollutants BOD, NH4 and NO3 are removed by 

biological processes. A different approach to the equations are assumed for the 

pollutants such as SS and TP, these equations being based on a regression analysis 

from early data on constructed wetlands from the North American Database 

(NADB). In terms of pathogen removal Reed et al. (1995) suggests that the 

approach is the same as if using waste stabilisation ponds and DLWC NSW 1998 

suggest that this is supported through constructed wetlands investigations and tends 

to be on the conservative side however is useful as a guide. Calculations using the 

Reed model are based on the worst case scenario, using minimum temperatures for 

the reason that reaction rates will be slowest during the cooler months. The 

calculations are also based on the limiting factor which Reed et al. (1995) proposed 

to be ammonia removal, as the availability of oxygen through natural aeration is 

known to be a slow process. 

In terms of TN it has been reported that ammonia can comprise up to greater than 

half the TN content in effluent from municipal and domestic sources with levels 

reported to be in the range of 20-60mg/L (Kadlec and Wallace, 2009). Effluent from 

food processing and landfill leachates have reported levels >100mg/L. As nitrogen 

plays a significant role in the degradation of environmental conditions in wetlands 

and natural water systems the reduction of ammonia in wetland processes often 

drives the design of a wetland and is a common limiting factor. 
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2.7.2. Floating Treatment Wetlands 

 

Significant data for the design of floating treatment wetlands is minimal in the 

current literature with limited full scale experiments being published (Borne, 2014, 

Borne et al., 2013a, De Stefani et al., 2011). The majority of the literature is focused 

on the application of FTWs for stormwater treatment; however the basic processes 

for water treatment within the FTW remain the same. A trial conducted in New 

Zealand  (Borne, 2014) illustrated factors that may contribute to the overall pond 

efficiency as being the provision of a dense root network for the attachment of 

biofilms through acting as a physical barrier to the flow for particulate particle 

removal. In addition, this was also thought improve the hydraulic efficiency of the 

pond encouraging particle settlement. The release of root detritus and organics acts 

as a bio solvent for dissolved metals and phosphorous while at the same time 

promoting floc formation which in turn promotes particulate pollutant as well as 

encouraging target bacteria for mineralisation, denitrification, nitrification and 

sulphate reduction. A neutral pH, reduced sediment and an anoxic water column 

contributes to increasing metal and phosphorous accumulation in the sediments 

(Borne et al., 2015). 

As mentioned previously the size of the FTW and the pond surface coverage ratio 

determine the degree to which DO is depleted in the water column as the FTW 

provides shade to the water column inhibiting photosynthetic organism activity and 

the subsequent production of DO (Borne et al., 2015). Results from the New 

Zealand trial showed that with the FTW of 50m2 the denitrification process was 

enhanced due to the lower DO concentrations over summer as opposed to the 23m2 

replicate set up in North Carolina, concluding that for promoting nitrate removal a 

greater coverage ratio of FTW is advised (Borne et al., 2015). 

The removal processes dependent on pH levels are affected when there is a 

reduction in pH caused when bacteria that develop in the rhizosphere cause the 

release of H+ ions. The plants roots in themselves can release acidic substances into 

the water columns as can they alter the pH through anion and cation exchange. A 

good understanding of pH and DO is an importance factor when design the layout of 

the FTW (Borne et al., 2015). 
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There are Australian companies providing floating treatment wetland technology 

installation, and available information suggests that a surface area coverage of 3% to 

7% is recommended and total nitrogen removal can be estimated as 3 to 5 kg/m2 

FTW/year and total phosphorous removal at a rate of 1 to 2 kg/m2 FTW/year. 

Aeration is recommended for the removal of ammonia and thereby increasing the 

amount of nitrogen able to be removed via the FTW. It is assumed that 

approximately half of the total nitrogen in the effluent is ammonia. 

Installation recommendations consist of a configuration of FTWs that are 

perpendicular to the inflow of effluent to both maximise the contact between the 

effluent and the plant roots (Headley and Tanner, 2006), while enhancing the 

hydraulic retention capacity of the wetland (Khan et al., 2013). This is also limits the 

possibility of short circuiting of the flow around the FTWs which would minimise 

plant root contact with effluent, reducing the possible treatment capacity (Headley 

and Tanner, 2006). This perpendicular configuration when applied to the New 

Zealand trial was shown to exhibited greater total zinc, total copper and total 

nitrogen sediment concentrations below the upstream edge of the FTW suggesting 

an effective removal due to accumulation on the plant roots in contact with the 

initial flows. Total phosphorous, however was not shown to exhibit similar removal 

in this section of the sediments of the FTW and this was attributed to the different 

removal mechanisms of different pollutants (Borne et al., 2015). It can be expected, 

that with this FTW configuration that the majority of sediment accumulation will 

occur under the FTW which is also a guide in terms of FTW placement for the ease 

of maintenance in terms of sediment removal (Borne et al., 2015). 

Anchorage of plant pontoons is recommended to ensure the FTW is kept in the 

desired location within the pond and also the selection of tall plants is discouraged in 

order to avoid wind damage and excessive movement or the potential tipping of 

pontoons (Borne et al., 2015). Plants with significant fibrous roots are also 

recommended to enhance the entrapment of particulates and also enables to 

establishment of a dense root network (Cheng et al., 2009).  
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2.8. Macrophytes 
 

2.8.1. The Role of Plants 

 

An important component of wetland design is the role that plants play in the removal 

of nutrients and other pollutants from the water column, whether that be in a typical 

constructed wetland, or in the case here of the floating treatment wetlands. With 

biological processes of nitrification and denitrification as well as plant uptake 

presenting as the two predominant removal processes for the removal of nitrogen in 

constructed wetlands (Fisher, 1990).  Plants assist the processes of nitrification, 

denitrification and BOD removal through a variety of complex processes and it has 

been reported by Dunbabin et al. (1988) that vegetated constructed wetlands showed 

a higher level of oxygen concentration, redox potential, pH and metal retention as 

opposed to constructed wetlands devoid of vegetation. Micro-organisms within the 

aerobic zone of the root masses assist in the stabilisation of organics as well as 

contributing to the nitrifying of ammonia to form nitrate. The removal of this nitrate 

is dependent on the process of denitrification which is promoted by the vegetation 

supplying organic carbon (Weisner et al., 1994) which is released from plant litter as 

well as from the living vegetation supplying attachment surfaces for epiphytes that 

in turn produce their own organic matter.  

While the FTW concept is a relatively new application in water treatment, the 

application of aquaculture systems in general is not and has been used in treatment 

systems around the world, utilising both plant and animal monocultures or 

polycultures (Reed et al., 1995). The treatment response is via either the direct 

uptake by the plants or animals, or in the case of floating plants and FTW the 

attached biofilms on the plant roots. Traditionally with treatment systems 

incorporating floating aquatic plants have used species such as hyacinths, 

duckweeds, pennyworts and water ferns and are known to have the greatest potential 

for wastewater in such systems (Reed et al., 1995). 

The floating treatment wetlands enable the roots of the planted vegetation to extend 

vertically down into the water column of the pond and the plants obtain their and 
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nutrition directly from the water column (Headley and Tanner, 2008). This root 

extension into the water column provides both a physical filtration capability as well 

as providing a surface on which biofilms can accumulate. As such, under the 

pontoons of the floating wetlands, develops a hanging environment consisting of 

plant roots, rhizomes and the attached biofilms providing a complex surface area of 

biologically active regions for biological and physical removal processes to take 

place. The uptake of nutrients by the plants themselves is low in comparison to the 

contribution plants provide in terms sites for biofilm development which results in 

the efficient removal of nutrients (Masters, 2012). 

 

2.8.2. Species Selection and Performance 

 

Tanner (1996) provides an outline of the general attributes that are required of a 

particular plants species for them to be suitable for use in a constructed wetland 

environments for the encouragement of physical and biological processes for 

nutrient removal and uptake. These attributes consist of the plant being ecologically 

acceptable in terms of not presenting any threat to the local environment in terms of 

being a significant weed that may have the potential to affect local ecosystems and 

to avoid this issue the selection of indigenous species would mitigate this. The 

selected species must display a tolerance for local climatic conditions, pests and 

diseases as well as a tolerance for pollutants and hypertrophic conditions in a 

waterlogged environment. The plants must be able to be propagated and established 

with relative ease as well as have acceptable growth rates both for ease of 

establishment as well as economic viability. A high pollutant removal capability 

through direct assimilation and storage, or indirectly through the production of 

biofilms is also of importance. Rooting depth is also an important factor such that 

the plant roots are unable to attached to the substrate of the wetland as this has 

negative implications in terms of the floating treatment wetland being unable to 

respond to increases in water level such that the plants and substrate on the pontoon 

are inundated which can result in the death of the vegetation mat (Borne et al., 

2015). 
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In the case of the floating treatment wetlands the plant species should be selected so 

as to maximise the surface area available for the attachment of biofilms and it has 

been suggested that plants that can develop dense and fine roots with numerous 

secondary lateral roots are optimal compared to species that only develop non-

fibrous roots as they are not likely to have the ability to entrap incoming particles 

(Borne et al., 2015). As well as being resilient and slow growing with a low seasonal 

biomass turnover with persistent slowly decomposing litter (Tanner, 1996). Species 

selection based on their ability to form a dense perennial mat above the water with 

heights between 1 to 1.5m showed some success in a study conducted by Tanner and 

Headley (2011). A selection with these attributes also enabled the plant mat to 

successfully compete with weeds which assists in the reduction in costs of ongoing 

maintenance with weed removal and spraying. As well it enables the plant 

community to resist trampling by wildlife such as bird if bird covers are not 

provided and with plant selection within the range of height mentioned, also reduced 

the risk of the pontoons tipping in high winds. (Tanner and Headley, 2011) 

conducted field trials with a number of different species in New Zealand with 

temperate conditions that are similar to those experienced in Bathurst. It was 

reported that those species that exhibited a year round growth of shoots without 

significant senescence in winter were more favourable for floating treatment 

wetlands and also made them easier to maintain. Borne et al. (2015) also supports 

the avoidance of selecting plants species exhibiting a large degree of above ground 

biomass senescence to limit the release of additional accumulated pollutants in the 

plant matter to the water column. However it is also suggested that a thin litter layer 

on the surface of the pontoon may assist the denitrifying bacteria through the supply 

of organic carbon.  

It is advantageous to select a range of plant species tolerant to local climatic 

conditions, possibly endemic to the local area and species that are capable of 

tolerating a range of incoming pollutant loads that may consist of sulphides, anoxic 

conditions and high rates of deoxygenation. A selection will also provide a greater 

robustness in the event of pest infestations as different species exhibit varying 

tolerances (Borne et al., 2015). Headley and Tanner (2012) provide a list of wetland 

plants which have shown successful performance for a number of floating treatment 
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wetland applications and Appendix F provides some information of species relevant 

to Australia (FIA, 2015).  
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3. Methodology 
 

3.1. The Reed Method 
 

The Reed et al. (1995) method will be applied to size a wetland using the primary 

treated effluent data of ammonia, total nitrogen and phosphorous from the BRC 

WWTW. The wetland size achieved through the calculations of the limiting 

pollutant, ammonia, will be the size designated for the wetland. The following 

calculations are to be performed utilising the parameters that are defined in Table 

3.1-1 and the temperature rate coefficients are provided in Table 3.1-2. 

 

Table 3.1-1 Parameters Required for Reed’s Method. 

Parameter Definition Units 

As Treatment area of wetland  m2 

KT Rate constant at temperature TW
 

 

d-1 

KR Rate constant at reference temperature 

 

 

ci Influent concentration  

 

mg/L 

co Outlet effluent pollutant concentration  mg/L 

Q Average flow rate through the wetland  

 

m3/day 

y Depth of wetland m 

n Porosity (space available for water to flow through the wetland in 
terms of space also taken up by litter and vegetation. Typical  Range 

0.65 – 0.95) 

 

θR Temperature coefficient for rate constant , refer Table 3.1-2 

 

 

TW Water temperature in wetland  °C 

 

TR Reference temperature  

 

°C 

 

   

Source: Reed et al. (1995) 
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Determine the rate constant (𝐾𝐾𝑇𝑇) for ammonia removal at specified temperature: 

1)     𝐾𝐾𝑇𝑇  =  𝐾𝐾𝑅𝑅 .𝜃𝜃𝑅𝑅𝑅𝑅 (𝑇𝑇𝑊𝑊 – 𝑇𝑇𝑅𝑅)  

Determine wetland treatment area (𝐴𝐴𝑆𝑆) for ammonia removal: 

2)     𝐴𝐴𝑆𝑆 =  (𝑄𝑄 . 𝑙𝑙𝑙𝑙 (𝑐𝑐𝑖𝑖/𝑐𝑐𝑜𝑜))/ 𝐾𝐾𝑇𝑇 .𝑦𝑦 .𝑙𝑙  

Determine detention time (𝑡𝑡) in wetland: 

3)     𝑡𝑡 =  (𝐴𝐴𝑆𝑆 .𝑦𝑦 .𝑙𝑙)/𝑄𝑄  

To check is there is sufficient area available for denitrification: 

4)     𝐾𝐾𝑇𝑇  =  𝐾𝐾𝑅𝑅 .𝜃𝜃𝑅𝑅  (𝑇𝑇𝑊𝑊 – 𝑇𝑇𝑅𝑅)  

Determine the area required for denitrification: 

5)     𝐴𝐴𝑆𝑆  =  (𝑄𝑄 . 𝑙𝑙𝑙𝑙 (𝑐𝑐𝑖𝑖/𝑐𝑐𝑜𝑜))/ 𝐾𝐾𝑇𝑇 .𝑦𝑦 .𝑙𝑙  

 

From this series of calculations the area required for denitrification, the removal of 

ammonia (𝐴𝐴𝑆𝑆) is achieved. This same calculation is performed using the influent 

data for nitrogen which results in an area for nitrification, or removal of TN.  

To determine the extent to which phosphorous can be reduced in the wetland, the 

following calculation is performed: 

Determine the hydraulic loading rate using the area (𝐴𝐴𝑆𝑆) calculated for 

denitrification: 

6)     𝐻𝐻𝐻𝐻𝑅𝑅 =  100 ∗ 𝑄𝑄/𝐴𝐴𝑆𝑆   

The rate constant for phosphorous is 𝐾𝐾𝑝𝑝  =  2.73𝑐𝑐𝑐𝑐/𝑑𝑑 (Reed et al., 1995). 

To determine the outlet concentration of phosphorous (𝑐𝑐𝑜𝑜): 

7)     𝑐𝑐𝑜𝑜  =  𝑐𝑐𝑖𝑖  ∗  𝑒𝑒𝑒𝑒𝑒𝑒(− 𝐾𝐾𝐾𝐾
𝐻𝐻𝐻𝐻𝐻𝐻) 
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Table 3.1-2 Temperature Coefficient Rate Constants for Reed’s Method  

Parameter BOD NH4
a NO3

 a Pathogen Removal 

For Free Water Surface Wetlands 
TR, °C  20 20 20 20 

Residual mg/L 6 0.2 0.2 - 

KR, d-1  0.678 0.2187 1.00 2.6 

θR 1.06 1.048 1.15 1.19 

a. Nitrification and denitrification not possible below 0°C 
Source:DLWC (1998)  
 

DLWC (1998) suggest that for the treatment of municipal wastewater, the area 

required for denitrification is smaller than for nitrification and for the purpose of 

cost reduction, as well as the potential requirement for mechanical aeration, it would 

be useful to consider achieving partial or even complete nitrification in a preliminary 

treatment step prior to entry into the wetland. A case study with a target ammonia 

effluent concentration to be achieved of 0.5mg/L received influent with an ammonia 

concentration of 8mg/L (DLWC, 1998). The required area for ammonia removal 

using the above calculations was 12.3 hectares with a detention time of 16 days. The 

area required for denitrification was 3.2 hectares. The Kadlec and Knight (1996) 

method was used, for the same effluent target, and resulted in a wetland area of 13.9 

hectares with ammonia removal also being the limiting pollutant (DLWC, 1998). 

Appendix B provides the results for the application of the Reed method. 
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3.2. Kadlec & Knight Method 
 

Kadlec and Knight’s method will also be applied to determine wetland areas based 

on primary treated effluent data of ammonia, nitrogen and phosphorous obtained 

from the BRC WWTW and the equations utilise the parameters defined in Table 

3.2-1. 

 

Table 3.2-1 Parameters required for Kadlec and Knight’s Method.  

Parameter Definition Units 

As Treatment area of wetland m2 

KT Rate constant at temperature TW d-1 

 

KR Rate constant at reference temperature 

 

 

ci Influent concentration  mg/L 

 

co Outlet effluent pollutant concentration  mg/L 

ce Target effluent pollutant concentration mg/L 

Q Average flow rate through the wetland  

 

m3/day 

q Hydraulic loading rate m/year 

y Depth of wetland m 

n Porosity - space available for water to flow 
through the wetland in terms of space also taken 
up by litter and vegetation. Typical  Range 0.65 – 

0.95 (DLWC, 1998)  

 

θR Temperature coefficient for rate constant , same 

as for Reed’s method refer Table 3.1-2 (DLWC, 

1998) 

 

 

TW Water temperature in wetland  

 

°C 

TR Reference temperature  

 

°C 

   

Source: DLWC (1998) 
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The general form of the model is: 

8)     𝑙𝑙𝑙𝑙(𝑐𝑐𝑒𝑒 − 𝑐𝑐∗/𝑐𝑐𝑖𝑖 − 𝑐𝑐∗)  =  −𝑘𝑘/𝑞𝑞 

Where 𝑘𝑘 is the first order areal rate constant in m/yr. The reference temperature 

being 20°C and 𝑐𝑐∗ being the wetland background limit. 

The hydraulic loading rate is determined by: 

9)      𝑞𝑞 =  365.𝑄𝑄/𝐴𝐴𝑆𝑆 

Where 𝑄𝑄 is the average flowrate through the wetland in m3/day. 

Determine the treatment area of the wetland 𝐴𝐴𝑆𝑆 

10)     𝐴𝐴𝑆𝑆  =  (365.𝑄𝑄/𝑘𝑘)𝑙𝑙𝑙𝑙(𝑐𝑐𝑖𝑖 − 𝑐𝑐∗/𝑐𝑐𝑒𝑒 − 𝑐𝑐∗) 

Or alternatively 

11)      𝑐𝑐𝑒𝑒 =  𝑐𝑐∗  +  (𝑐𝑐𝑖𝑖 − 𝑐𝑐∗)𝑒𝑒𝑒𝑒𝑒𝑒(−𝐴𝐴𝐴𝐴. 𝐾𝐾365.𝑄𝑄) 

  

Table 3.2-2 Preliminary model parameter values for Kadlec & Knight’s (1996) Method.  

Parameter BOD TSS Org N NH4-N NOx-N T

N 

TP FC 

For Free Water Surface Wetlands 
k20 m/yr 34 1000a 17 18 35 22 12 75 

θc  1.00 1.00 1.05 1.04 1.09 1.05 1.00 1.00 

c* mg/L  3.5+0.053
Ci 

5.1+0.16C
i 

1.50 0.00 0.00 1.50 0.02 300b 

θc 1.00 1.065       

Notes 
a. rough unsubstantiated estimate, settling rater determination preferred (Kadlec and Knight, 

1996)  
b. central tendency of widely variable values 
c. Temperature coefficient 

Source: DLWC (1998) 
 

The New South Wales Department of Land and Water Conservation, as it was then 

known, acknowledge that both the Reed method and the Kadlec and Knight method 

will result in an effective wetland for functional wastewater treatment with the 
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Kadlec and Knight method resulting in slightly larger surface areas being calculated 

(DLWC, 1998). It is the opinion of the DLWC, in the Constructed Wetlands 

Manual, that the Reed method is favoured and on this basis the Reed method was 

chosen for the purposes of sizing calculations for this study and no further reference 

to the Kadlec and Knight method will be made other than to compare the resulting 

surface area calculations in the results. Appendix C provides the detailed results the 

Kadlec and Knight method. 

 

3.3. Floating Treatment Wetlands 
 

The floating treatment wetland approach will be applied to determine how much 

further the effluent in the existing maturation pond could be further polished to 

reduce the annual fees charged by the EPA on the effluent discharged to the 

Macquarie River.  

As there is no accurately defined methodology in the literature for the sizing of  

floating treatment wetlands  it was determined that sizing would be in  accordance 

with the assumption that a floating treatment wetland can achieve a removal rate of 

approximately 3kg/m2/year of TN and approximately 1kg/m2/year of TP as advised 

by FIA (2015). 

To achieve these removal rates, a surface area coverage of 3% to 7% is required and 

for the purpose of this investigation the higher surface area coverage rate of 7% was 

selected due to the technology being applied to secondary treated effluent as 

opposed to stormwater that would exhibit lighter pollutant loads. 

The existing 1.05 hectare maturation pond would be retrofitted with the pontoons.. 

The pontoons have a total area of 1.16m2 and Australian distributors recommend 12 

emergent macrophytes of varied species per pontoon. The pontoons would be 

configured perpendicular to the treated effluent flow within the maturation pond at 

the downstream end of the pond in the vicinity of the outlet (Headley and Tanner, 

2006). 
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3.3.1. Cost Benefit Analysis 

 

Cost benefit analysis provides a technique for the measurement of whether or not a 

the costs of a particular action outweigh the benefits of the action, with ‘action’ 

being defined as a deliberated decision to commit resources (Hanley and Barnier, 

2009). The analysis adds up the benefits of a project and compares them to the 

associated costs of the project to determine a numerical ratio of cost versus benefit. 

The costs, once determined, are added and then expressed in present value (PV) 

terms. Time is factored into the calculation by way of expressing all costs and 

benefits being discounted by an assumed rate of interest ‘𝑖𝑖’. The present value of a 

cost or benefit ‘𝑋𝑋’ received in time ‘𝑡𝑡’ can be calculated using the following 

expression: 

1)     𝑃𝑃𝑃𝑃 (𝑋𝑋𝑡𝑡)  =  𝑋𝑋𝑡𝑡 [ (1 − 𝑖𝑖)−𝑡𝑡]  

The discount factor within this expression is shown within the square brackets. To 

determine if a project will be efficient in terms of its use of resources the net present 

value term requires calculation and it simply determines if the sum of discounted 

gains exceeds the sum of discounted losses, using the following expression: 

2)     𝑁𝑁𝑃𝑃𝑃𝑃 =  ∑𝐵𝐵𝑡𝑡(1 + 1)−𝑡𝑡  −  ∑𝐶𝐶𝑡𝑡(1 + 𝑖𝑖)−𝑡𝑡  

With t running from 𝑡𝑡 = 0 being the start of the project to 𝑡𝑡 = 𝑇𝑇, the end of the 

project. 

It is assumed that if 𝑁𝑁𝑃𝑃𝑃𝑃 > 0 then the project should proceed and the project can be 

considered as an improvement to social welfare (Hanley and Barnier, 2009).  

The benefit cost ratio simply becomes a ratio of the discounted benefits to the 

discounted costs and if this ratio exceeds one (>1) then this gives a basis on which to 

proceed with a project (Hanley and Barnier, 2009). 

A cost benefit analysis will be undertaken for the floating treatment wetland option 

to determine the feasibility in terms of providing an additional method for municipal 

wastewater treatment for the BRC WWTW 
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4. Results and Discussion 
 

4.1. Preliminary Feasibility 
 

Geographic and economic constraints are two main factors that affect whether or not 

a constructed wetland is a viable option for effluent treatment or polishing. 

Geographic in terms of natural landform and whether or not the wetland can be sized 

fit within the proposed area and economic in terms of construction and land 

availability and whether or not the purchase of additional land for construction 

would be required. Technical constraints also need to be considered when applying 

this technology and typically include aspects pertaining to soils types, risks to 

ground water and climatic conditions that may affect biological processes and also 

plant growth and nutrient uptake. 

The concept of a constructed wetland appears to be simple in nature both in terms of 

the application capability as well as the ease of design, however constructed 

wetlands are complex in nature such that much thought and investigation is required 

for all aspects of a wetlands functioning, processes and consistency of design in 

order to avoid a system that is inappropriate and under performs for its intended 

purpose. 

The land area available at the BRC WWTW for the application of constructed 

wetland technology is approximately 2.2 hectares. Of this area, approximately 1.05 

hectares consists of an existing maturation pond that could be utilised for retrofitting 

purposes and can be seen in the aerial view of the BRC WWTW provided in Figure 

1.1-4. 

With reference to the floating treatment wetland option, the existing 1.05 hectares 

maturation pond could be retrofitted with floating pontoons and the remaining land 

area is available for the construction of two new ponds to be fitted out with 

additional floating pontoons. As discussed previously, the costs associated with 

retrofitting an existing pond with vegetated pontoons to create a FTW are much less 

compared to the construction of a completely new structure for conventional 
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wetland treatment. The footprint for a FTW would be much less than a typical 

constructed wetland with the capability of treating greater flows of effluent to 

achieve a similar polishing result. 

 

4.2. Sizing of a Typical Constructed Wetland 
 

Reed et al. (1995) proposed a method for the sizing of treatment wetlands in terms 

of the water quality goals that needed to be achieved. For the purpose of sizing the 

wetland for this study the parameters of total nitrogen, total phosphorous and 

ammonia were used for the sizing calculations, with ammonia removal efficiency 

being the limiting factor on which the size of the wetland was ultimately decided. 

The water quality targets to be achieved for the Bathurst WWTW as set by the NSW 

EPA are listed in Table 4.2-1. 

 

Table 4.2-1 NSW EPA Load Limits for the Bathurst WWTW. 

Pollutant 90 percentile concentration limit 

 

100 percentile concentration limit 

 

BOD 20 30 

TN 15 20 

pH - 6.5-8.5 

TP 1 2 

TSS 25 30 

   

Source: BRC (2015) 

 

The Reed et al. (1995) method for wetland sizing was applied to the 90 percentile 

primary and secondary treated effluent data. The primary treated effluent is post grit 

screening and the secondary effluent is post treatment through the EATs. The 

average daily flow of effluent being treated is 10 000m3 per day. 
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The 90 percentile concentration of pollutants in the primary and secondary treated 

effluent is provided in Table 4.2-2. 

 

Table 4.2-2 Pollutant Concentrations. 

Origin Of 

Flow 

Total Nitrogen 

(TN) 

(mg/L) 

Total Phosphorous 

(TP) 

(mg/L) 

Ammonia 

(NH4) 

(mg/L) 

Primary Treated 

Effluent 

(90 percentile) 

77.0 11.8 43 

Secondary Treated 

Effluent 

(Discharged to 

Macquarie River) 

8.1 0.6 4 
 

    

Source: BRC (2015) 

 

The wetland area required for the treatment of the primary effluent to achieve 

discharge levels of 7.5mg/L for NH4, 15mg/L for TN and 1mg/L for TP, by applying 

the Reed method are provided in Table 4.2-3. The discharge targets here are set to 

meet the EPA license discharge limits. 

For the secondary treated effluent the Reed method was applied to achieve discharge 

levels of 1mg/L NH4, 1mg/L TN and 0.1mg/L TP. The discharge targets here were 

determined in terms of providing further effluent polishing as the EPA license 

discharge targets have already been achieved. The goal here would be to reduce the 

EPA license fees for what is actually discharged which for the 2014-2015 reporting 

period were 8.1mg/L for TN and 0.6mg/L for TP and an assumed 4mg/L of NH4. 

The results are provided in Table 4.2-3. 

The assumption is being made that of the total nitrogen concentration; 

approximately 50% can be attributed to ammonia. The assumption was based on 

sampling results for ammonia and total nitrogen for the secondary treated effluent at 

the BRC WWTW. The results for the application of Kadlec and Knight’s method are 
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also presented in Table 4.2-3 only for the purpose of illustrating the greater areas 

that result compared to Reed’s method. 

 

Table 4.2-3 Wetland Areas Required for Pollutant Removal. 

Pollutant Reed’s 

Method 

Area 

For Primary 

Treated 

Effluent 

(ha) 

Reed’s Method 

Area 

Secondary Treated 

Effluent 

(ha) 

Kadlec & Knight’s 

Method 

Area 

For Primary 

Treated Effluent 

(ha) 

Kadlec & Knight’s 

Method 

Area 

Secondary Treated 

Effluent 

(ha) 

TN 12.7 
 

13.9 71.7 31.1 

TP 26.5 21.1 151.8 38.1 

NH4-N 26.5 21.1 57.7 9.5 

     

 

Table 4.2-3 clearly demonstrates the differences in treatment areas resulting from 

the two methods in that the Kadlec & Knight method is overly conservative and 

does result in significantly larger areas for the same treatment capability. These 

results demonstrate why the Reed method was chosen for this investigation and that 

they align with the opinion put forward by DLWC (1998) in that the Kadlec & 

Knight method is overly conservative. 

As previously outlined, the total area available for the construction of treatment 

wetlands is approximately 2.2 hectares. The calculated results presented in Table 

4.2-3 show that for primary treated effluent, an area of 26.5 hectares is required for 

the removal of ammonia to a level of 7.5mg/L, where the primary treated effluent 

concentration was 43mg/L.  

For the removal of total nitrogen, with a primary treated effluent concentration of  

77.0 mg/L an area of 12.7 hectares would be required to reduce the concentration to 

15mg/L as required by the EPA. If 50% of the total nitrogen concentration was 

attributed to ammonia then a recalculation based on 38.4mg/L of nitrogen results in 

an area of 7.3 hectares required to reduce the concentration to 15mg/L. In making 
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this assumption about nitrogen, further mechanical aeration would need to be 

incorporated into the wetland to address the removal of ammonia, in addition to 

what has been removed through the EAT process.  

The Reed calculation for the removal of total phosphorous incorporates the 

calculated area for the limiting pollutant ammonia, and as such, the removal of total 

phosphorous that can be achieved with a surface area of 26.5 hectares is 5.9mg/L 

which is well above the load limit set by the EPA of 1mg/L, noting that the primary 

treated effluent concentration of total phosphorous was 11.8 mg/L.  

Proposed treatment areas through the application of the Reed method to the 

secondary treated effluent resulted in areas in excess of land available. For TN 

removal to 1mg/L, 13.9 hectares would be required, for NH4 to 1mg/L and TP to 0.1 

mg/L removal, 21.1 hectares would be required. However it is noted that for the 

removal of TP the concentration able to be reduced to 0.17mg/L with 21.1 hectares 

and not 0.1mg/L. 

The Reed method has also been manipulated further in order to determine what 

removal capacity of TN, TP and NH4 could be achieved with the surface are already 

available with the existing maturation pond of 1.05 hectares. In order to do this 

Equation 10 was rearranged to determine the final effluent concentration  𝑐𝑐𝑜𝑜. 

12)     𝑐𝑐𝑜𝑜 =  𝑐𝑐𝑖𝑖 /(𝑒𝑒𝑒𝑒𝑒𝑒((𝐾𝐾𝑇𝑇.𝑦𝑦.𝑛𝑛.𝐴𝐴𝑆𝑆)/𝑄𝑄)   

The results of the final effluent concentration (co) using Equation 12, for TN, TP 

and NH4 are provided in Table 4.2-4. 
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Table 4.2-4 Constructed Treatment Wetland results (co) using existing area of 1.05ha  

Origin Of 

Flow 
ci 

 (TN) 

(mg/L) 

co 

 (TN) 

(mg/L) 

ci 

 (TP) 

(mg/L) 

co 

 (TP) 

(mg/L) 

ci 

 (NH4) 

(mg/L) 

co 

 (NH4) 

(mg/L) 

Primary 

Treated 

Effluent 

 

77.0 67.2 11.8 11.5 38.5 35.9 

Secondary 

Treated 

Effluent 

 

6.0 5.2 0.6 0.58 4.0 3.7 
 

       

 

The results provided in Table 4.2-4 clearly show that when the Reed method is 

applied to the already available surface area of 1.05 hectares of the existing 

maturation pond that minimal pollutant removal (co) is achieved in comparison to 

the influent concentration (ci) being received. For the primary treated effluent TN 

was only able to be reduced by 9.7mg/L, TP by 0.3mg/L and NH4 was reduced by 

0.4mg/L. For the secondary treated effluent TN was reduced by 0.6mg/L, NH4 was 

reduced by 0.3mg/L and there was a very minimal reduction in TP of 0.02mg/L. The 

results for both the primary and secondary treated effluent using this approach 

further emphasises that constructed wetland technology will not adequately service 

the needs of the BRC WWTW for effluent treatment. 

The results for both the primary and secondary treated effluent illustrate that the area 

required to successfully remove pollutants, to meet the EPA Guidelines, as well as 

further polishing of the effluent for the reduction of EPA license fees, exceed the 

area available both in terms of utilising existing ponds as well as land area available 

for the construction of new wetlands. The area has been exceeded to an extent that 

for the current conditions it would not provide a viable option. On this basis, further 

calculations to determine the removal efficiencies in primary and secondary treated 

effluent for the removal of BOD, TSS and faecal coliforms has been excluded from 

this study. In addition, the investigation into the construction and operational costs 
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of a traditional constructed wetland has not been incorporated due to the 

impracticality in terms of size and land limitations. 

 

4.3. Floating Treatment Wetland 
 

4.3.1. Removal Efficiency 

 

The alternative to providing adequate area for effluent treatment with a constructed 

wetland would be to retrofit the existing concrete lined maturation pond that has a 

surface area of 1.05 hectares, an average depth of 1.5 m and a total volume of 13 

ML. 

While the literature reported successful removal rates of TN and TP (Borne et al., 

2015) this also translated to pond coverage ratios in the order of 18%-50% which is 

later discussed as a cost prohibitive option for the current treatment proposition. 

With the provision of a 7% surface area coverage to the existing 1.05 hectare 

maturation pond with floating pontoons that have an area 1.16m2 results in a total 

area of approximately 736m2 of the pond being taken up by floating treatment 

wetland. Applying the removal rate of 3kg/m2/year to the actual load of TN of 17, 

156 kilograms resulted in a removal efficiency of approximately 25%. Assuming 

again that 50% of the TN is composed of NH4 then the provision of an aeration 

treatment in the upstream section of the maturation pond would allow for the 

nitrification process to remove the NH4 content allowing for more effective 

denitrification process to take place through the floating treatment wetlands. This 

50% reduction in TN is reflected in Table 4.3-1 with the nutrient load of TN being 

8578 kilograms of nitrogen per year as opposed to 17, 156 kg of nitrogen per year 

For TP, applying the removal rate of 3kg/m2/year to the actual load of 1,415 

kilograms resulted in a removal efficiency of approximately 52%. 
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4.3.2. Financial Analysis 

 

Table 4.3-1 provides a summary of the removal efficiency as applied to the 2014-

2015 pollutant loads and the subsequent calculations that converts the load removed 

to a revised assessable load (AL2) and the pollutant fee (PF) that this removal 

efficiency translates to in terms of a cost saving. Further details of these calculations 

are provided in Appendix D. 

 

Table 4.3-1 Floating Treatment Wetland Removal Efficiency and Cost Savings 

Parameter TN 

Removal Results 

TP 

Removal Results 

Nutrient In (kg nutrient/year) 8578 1415.87 
   

2014-2015  Pollutant Fee ($) 5351.34 16571.07 
   

Pond Surface Area Coverage (%) 7 7 
   

Total Pond Coverage with FTW 736.54 736.54 
   

Total Nutrient removed (kg/m2) 3.0 1.0 
   

Nutrient removed (kg nutrient/year) 2209.62 736.54 
   

AL2 = AL – Nutrient In  
(kg nutrient/year) 

6368.38 490.06 

   
Revised PF = AL2 x CFa ($) 1872.30 4260.81 

   
Cost Saving ($) 3479.04 12310.26 

   
Achieved nutrient removal (%) 25.76 52.02 

a. CF is calculation factor set by the EPA see details in APPENDIX E 
 

The results present a 25% removal efficiency for TN and a 52% removal efficiency 

for TP with the 7% surface area coverage with the floating treatment wetlands. To 

express these removal efficiencies in terms of kilograms of nutrient removed per 

year translates to approximately 2, 209 kg of TN per year and approximately 736 

kilograms of TP per year.  
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Converting the nutrient load removed per year to a pollutant fee shows that for TN 

the pollutant fee is $1, 872.30 and for TP the pollutant fee is $4, 260.81. This results 

in a cost saving of $3, 479.04 for TN and $12, 310.26 for TP, which in total equates 

to approximately $16, 000 in EPA load based license fees. Appendix E provides the 

EPA load based license fees paid by BRC for the period 2011 to 2015. 

Preliminary cost estimates, on advice from distributors of floating treatment 

wetlands was sought to determine the establishment costs of the floating pontoons. 

Initial estimates of the pontoons came in at approximately $475 per pontoon. It was 

recommended to provide 12 plants per pontoon with an estimated cost of $2.00 per 

plant. A single pontoon has an approximate area of 1.16m2 which for a 7% pond 

surface area coverage amounts to 635 pontoons and a total cost of approximately 

$301 000. This initial figure does not reflect additional costs that would be 

associated for installation, bird and turtle protectors, or factoring in salaries for staff 

as well as ongoing maintenance such as plant replacement and weed removal and 

spraying. These additional costs, however, have been factored in the cost benefit 

analysis to follow. 

EPA license load fees for TN and TP (only) were reduced by approximately $16 

000, which highlights a significant difference in terms of financial outlay with 

respect to any financial gains and would therefore not warrant the installation of a 

floating treatment wetland based on these preliminary calculations. Based on the 

costs of the pontoons alone and the amount of savings achieved in EPA load based 

license fees, a pontoon costing approximately $30 would bring the costs and savings 

into closer alignment. However this significant reduction in price of a pontoon is not 

able to be realistically reflected in the cost benefit analysis. 
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4.3.3. Cost Benefit Analysis 

 

A cost benefit analysis was undertaken for the option of a floating treatment wetland 

which consists of retrofitting the existing maturation pond that has a surface area of 

1.05 hectares with vegetated pontoons. The net present value of the option was 

annualised over 20 years at a discount rate of 7% with a rate of 15% applied to all 

capital costs. Appendix G provides the data for the cost benefit analysis undertaken. 

Capital costs included items such as mobilisation/demobilisation which would 

consist of an area set aside at the WWTW for construction materials and equipment 

as well as plant stocks. This area may require some environmental controls for any 

soil disturbance and runoff. 

The number of wetland pontoons required is 635 at a rate of $475 each and in 

addition to the pontoons there would be materials required for anchorage of the 

pontoons both for design configurations yet to be determined and also to prevent 

disturbance by winds such that the pontoons cannot float freely around the surface 

area of the pond with the likelihood of damage occurring. These materials would 

consist of items such as stainless steel cables, anchorage attachments and bollards 

for attachment. Pontoon installation, wetland plants, bird guard kits and the costs for 

planting have also been included. A pond aeration device would be required for the 

removal of ammonia through the nitrification process. This would also include some 

electrical and control equipment. 

Operating costs have been determined by assuming that ongoing floating treatment 

wetland maintenance would require 25% of an employee’s time with the rest of the 

employee’s time spent working on other tasks at the WWTW. This ongoing 

maintenance would include weeding of pontoons and spraying of herbicides as 

required and also ensuring that any damage to the pontoons over time was rectified. 

Clean out of the maturation pond would be required on a basis that has been 

estimated to be every three years, the cost here included the requirement for plant 

and equipment as well as relocation of wastes to landfill. 

All these factors combined in terms of building the floating treatment wetland and 

operation over a 20 year period shows that in today’s dollars it would cost Council 
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$803,930. A savings in load based license discharge fees of only $16,000 can be 

recovered annually which results in the present value of the FTW savings being 

$169,504. The comparison of the present value and the present value of savings 

results in a cost benefit ratio of only 0.21 which clearly indicated that this option 

would not be feasible for Council. 

Council may want to consider the procurement of grant funding for the capital costs 

of the works which in this option assessment was $613,731. This would leave 

operating costs to the amount of $190,199 which when compared to the present 

value of FTW savings of $169, 504 would result in the project being a more viable 

option. 
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5. Conclusions and Recommendations 
 

Two options of constructed wetland technology were investigated for the purpose of 

this study to determine the efficacy of the technology for its potential application to 

the treatment of the municipal wastewater at the Bathurst Regional Council 

wastewater treatment works. 

Option 1 investigated the site suitability and treatment capability of a traditional 

constructed wetland when applied to the treatment of primary and secondary treated 

effluent at the WWTW. Two methodologies were applied to the treatment data to 

determine a size suitable for the level of treatment required as specified by the EPA 

load limits for discharge focusing on total nitrogen, total phosphorous and ammonia. 

The methodologies consisted of first order plug flow models put forward by Kadlec 

and Knight (1996) and Reed et al. (1995).  

The results showed that for the Kadlec and Knight method the resulting areas for the 

primary treated effluent were 71.7 hectares for the removal of total nitrogen, 151.8 

hectares for the removal of total phosphorous and 57.7 hectares for the removal of 

ammonia. For the secondary treated effluent, from the extended aeration tank 

systems the resulting areas from the Kadlec and Knight method were 31.1 hectares 

for the removal of total nitrogen, 38.1 hectares for total phosphorous and 9.5 

hectares for ammonia. 

Results from the application of the Reed method to both primary and secondary 

treated effluent showed that for the primary treated effluent an area of 12.7 hectares 

would be required for the removal of total nitrogen and 26.6 hectares would be 

required for the removal or total phosphorous and ammonia respectively. For total 

phosphorous removal, the area of 26.6 hectares would only be able to reduce the 

effluent concentration from 11.8mg/L to 5.9mg/L which would not be sufficient to 

meet the EPA target for phosphorous of 1mg/L.  

Application of the Reed method to the secondary treated effluent resulted in areas 

for the removal of total nitrogen being 13.9 hectares and for the removal of total 

phosphorous and ammonia, 21.2 hectares. The level of phosphorous was able to be 
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reduced from 0.3mg/L to 0.17mg/L which was above the goal of reducing it to 

0.1mg/L. 

The Reed method was further manipulated to determine the treatment capability of 

the existing surface area available with the 1.05 hectare maturation pond. This was 

undertaken by rearranging the equation for the area determination such that the final 

effluent concentration became the unknown. The results from this showed that for 

primary treated effluent the reduction in the pollutants of total nitrogen, total 

phosphorus and ammonia were 9.7mg/L, 0.3mg/L and 0.4mg/L respectively. For the 

secondary treated effluent the reduction in total nitrogen was 0.6mg/L, ammonia 

reduction was 0.3mg/L and the reduction for total phosphorous was approximately 

0.02mg/L. These reductions clearly show that with the existing surface area 

available constructed wetland technology is not able to be effectively applied to 

achieve any useful level of effluent treatment. 

The resulting areas from applying both the Kadlec and Knight Method and the Reed 

Method to both the primary and secondary treated effluent were far in excess of the 

land area available, of only 2.2 hectares, at the BRC WWTW for the construction of 

wetland infrastructure to achieve the effluent treatment goals set out in this 

investigation. These areas would be in excess of land available for the majority of 

WWTWs looking to achieve similar treatment goals with effluent loadings 

representative of what is treated through the BRC system.  

The Reed method results in less conservative areas of wetland sizing and is the 

method that is recommended by the Department of Land and Water Conservation. 

For the case of the BRC WWTW the Reed method would be the method of choice if 

the resulting areas were more suited to the available land areas of the current site. 

Recommendations and consideration of alternatives with respect to a traditional 

constructed wetland would be that the application of the Reed method would be 

more suited to treatment plants that experience lower flows, such as those on 

peripheral villages to regional towns and cities as well as in developing countries for 

their water treatment requirements, this is also supported in the literature This would 

allow for less area being required for treatment capability and the ability of 

incorporating a system that does not have a significant economic cost compared to 

the installation of a traditional wastewater treatment plant. Area requirement is seen 
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as one of the major limitations of a traditional constructed wetland for the treatment 

of municipal and other wastewater treatment and management. 

Option 2 investigated the relatively new technology of floating treatment wetlands 

consisting of vegetated pontoons that float on the surface of the water allowing the 

roots of the plants to extend into the water column to aid in the removal of 

pollutants. Advantages of this technology are that less area is required to achieve the 

same treatment capability of traditional constructed wetlands and existing structures, 

such as maturation ponds, can be retrofitted with the pontoons. This ability to 

retrofit existing structures allows for additional capital costs such as those associated 

with the construction of new wetland ponds, are able to be avoided. 

The investigation into option 2 looked at retrofitting the existing 1.05 hectare, 

concrete lined maturation pond at the BRC WWTW with floating pontoons to allow 

for the treatment of the secondary treated effluent that is discharged to the pond for 

settling and further UV sterilisation before being discharge into the Macquarie 

River. 

The goal was to treat the secondary treated effluent to a level such that the EPA load 

based fees were able to be reduced with respect to the amount in kilograms of 

pollutants discharged to the Macquarie River each year. Investigation into the 

feasibility of this option was conducted with focus on pollutant removal capability 

of the pontoons with regard to surface area coverage and the subsequent costs 

involved in the installation of this treatment technology. 

The amount of total nitrogen that was discharged to the Macquarie River for the 

2014-2015 reporting period was 8.1mg/L which translates to a calculated assessable 

load of approximately 18,198kg and 0.6mg/L of total phosphorous, or a calculated 

assessable load of 1,414kg. 

In the investigation into the removal efficiency of the FTW, as applied to the 

existing 1.05 hectare maturation pond, 3kg per metre squared of floating treatment 

wetland per year would be a likely outcome for the removal of total nitrogen and for 

total phosphorous the FTW would be expected to achieve approximately 1kg 

removal per metre squared of floating treatment wetland per year. 
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In applying these removal rates to the pollutants the study achieved a removal 

efficiency of approximately 25% for total nitrogen and approximately 52% for total 

phosphorous. This reduced the amount of total nitrogen to be discharged to the 

Macquarie River to 6.1mg/L and total phosphorous to only 0.3mg/L. This reduction 

was then expressed in terms of the reduction in EPA load based license fees and for 

total nitrogen and total phosphorous combined, the cost savings were only in the 

order of approximately $16,000 off the total of $28,711.37 for the 2014-2015 

reporting period for BRC.  

A cost benefit analysis was undertaken for the floating treatment wetland option to 

determine if this treatment technology had the potential to be a feasible option for 

Council for their wastewater treatment requirements in term of reducing the annual 

load based license fees.  

Cost benefit ratios of >2 and >3 indicate the likelihood of a decent profit margin and 

would be feasible in terms of attracting investment opportunities providing a level of 

risk avoidance. A cost benefit ratio of >1 would not necessarily be regarded as 

viable option as risk would be high and significant profits potentially would not be 

achievable, however a project could still be based around this in terms of benefit to 

the community type projects such that a local Council might consider..  

The net present value of the floating treatment wetland option was annualised over 

20 years at a discount rate of 7% with a contingency rate of 15% applied to all 

capital costs. All capital costs associated with the technology were investigated as 

were ongoing running and maintenance costs over the 20 year period. The resulting 

present value of the floating treatment wetland was calculated to be $803,930 with a 

present value of floating treatment wetland savings of $169,504. These two figures 

resulted in a cost benefit of only 0.21 clearly suggesting that this option would not 

be a feasible alternative to wastewater treatment at the BRC WWTW.  

In the consideration of alternatives, however, a recommendation would be that 

Council try to procure grant funding for such a proposal to cover the capital costs of 

the technology, and this would assist in aligning the cost benefit ratio closer to 1 

which would potentially be a more acceptable and feasible option for Council which 

would also provide additional benefits to the community into the future.  
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6. Future Work 
 

In undertaking a literature review, with regard to the floating treatment wetland 

technology it was determined that there was a lack of significant field trials 

undertaken in recent times incorporating full scale pilot trials and as such the results 

in the literature only reflected a high treatment efficacy with those trials that 

incorporated a large surface area coverage of the floating pontoons, from 18% to 

50% surface area coverage, in small scale ponds and study tanks. This feasibility 

study demonstrated that with the recommended surface area coverage of 3% to 7% 

the pollutant removal efficiency is not high enough to warrant the installation costs, 

at least for the treatment of municipal wastewater. It appears at this stage that the 

technology would be more suited to smaller treatment works to assist in avoiding the 

financial outlay of constructing a traditional treatment system as well as to smaller 

wetland ponds for agricultural and industrial wastewaters. The efficacy of this 

treatment technology however has been acknowledged in terms of its suitability for 

stormwater treatment for lighter flows and for providing aesthetically pleasing and 

environmentally appealing solutions to stormwater treatment. 

Looking to the future it would be recommended that a pilot study be incorporated at 

the BRC WWTW of a floating treatment wetland configuration to further investigate 

how greater pollutant removal effectiveness could be achieved and how to address 

the costs of building and installing the pontoons. The two maturation ponds at the 

BRC WWTW would provide an ideal study site for this to be incorporated to 

investigate and possibly determine how effective treatment of municipal wastewater, 

at this scale could be achieved. 

The literature consistently emphasises the importance of the complex biological 

processes that take place within a treatment wetland in terms of the interactions 

within and between the pollutants, water column, macrophytes, biofilms and the 

wetland substrates, as well as the impacts of temperature and season. In addition to 

these the consistency and diligence of design all need to be incorporated for further 

streamline the process of developing a treatment technology that can address 

ecologically sustainable development principles both now and into the future. 
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Appendix A – Project Specification 
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University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

  

Eng4111 Research Project Part 1 

Projection Specification 

For: Yvette Lieschke-Mercer 

Topic: The Feasibility of Using Constructed Wetland Systems for Urban 

Wastewater 

Supervisors: Assoc. Prof .Thomas Banhazi and Dr Elad Dafny 

Project Aim: To investigate the feasibility of using constructed wetland systems as 

a component of the treatment system at Bathurst Regional Council’s (BRC) sewage 

treatment plant (STP).  The passive treatment options to be presented would be 

incorporated to work in line with and complement the current traditional system of 

the STP. 

Programme: Revision A, 18
th

 March 2015 

1. Collate operational data for the previous 2 years from the BRC STP. This 

would include daily flows and treated effluent quality. 

 

2. Describe and review the existing treatment processes at the BRC STP and its 

treatment efficacy and ability to meet the EPL discharge limits. 

 

3. Undertake a literature review of constructed wetland systems and their 

treatment performance focusing on the main objective identified in the study. 

 

4. Prepare a concept design for the constructed wetland using published design 

methodologies and modelling. 

 

5. Prepare an estimate of construction and operating costs for the system. 

 

6.  Undertake and options analysis comparing the benefits and costs of the 

system (both options if time permits) compared to the existing STP process. 

 

7. Identify if a wetland system is feasible and identify a preferred wetland 

configuration. 
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REED METHOD FOR 

PRIMARY EFFLUENT

Pollutant

Primary Influent Conc. 

mg/L

90th percentile calc TP 11.8

90th percentile calc TN 77

90th percentile calc NH4 43

Area for NH4 Removal (Nitrification) Primary Effluent

KT (d¯¹) 0.17

KR 0.22

θR 1.05

y (m) 0.40

n (%) 0.95

Q (m³/day) 10000.00

Tw (°C) 15.00

TR (°C) 20.00

ci (mg/L) 43.00

co (mg/L) 7.50

t (days) 10.09

Area (m²) 265639.20

Area (ha) 26.56

Area for TN Removal (Denitrification) Primary Effluent

KT (d¯¹) 0.50

KR 1.00

θR 1.15

y (m) 0.40

n (%) 0.65

Q (m³/day) 10000.00

Tw (°C) 15.00

TR (°C) 20.00

ci (mg/L) 77.00

co (mg/L) 15.00

t (days) 3.29

Area (m²) 126541.85

Area (ha) 12.65

TP Removal Efficiency Units

HLR=100*Q/As 4.02 (cm/day)

TP ci 11.80 mg/L

EPA Target TP 1.00 mg/L

co=ci*exp^(-Kp/HLR) 5.98 mg/L

Kp=2.73cm/d
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REED METHOD FOR 

SECONDARY EFFLUENT

Pollutant

Secondary Influent 

Conc. mg/L

90th percentile calc TP 0.3

90th percentile calc TN 6

90th percentile calc NH4 4

Area for NH4 Removal (Nitrification) Primary Effluent

KT (d¯¹) 0.17

KR 0.22

θR 1.05

y (m) 0.40

n (%) 0.95

Q (m³/day) 10000.00

Tw (°C) 15.00

TR (°C) 20.00

ci (mg/L) 4.00

co (mg/L) 1.00

t (days) 8.01

Area (m²) 210877.13

Area (ha) 21.09

Area for TN Removal (Denitrification) Primary Effluent

KT (d¯¹) 0.50

KR 1.00

θR 1.15

y (m) 0.40

n (%) 0.65

Q (m³/day) 10000.00

Tw (°C) 15.00

TR (°C) 20.00

ci (mg/L) 6.00

co (mg/L) 1.00

t (days) 3.60

Area (m²) 138610.32

Area (ha) 13.86

TP Removal Efficiency Units

HLR=100*Q/As 4.74 (cm/day)

TP ci 0.30 mg/L

EPA Target TP 1.00 mg/L

co=ci*exp^(-Kp/HLR) 0.17 mg/L

Kp=2.73cm/d
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Appendix C – Kadlec & Knight’s Method 
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KADLEC & KNIGHT METHOD APPLIED TO 

PRIMARY TREATED EFFLUENT

Design Flow (m3/day) 10000

TN TP Ammonia

Influent Conc (mg/L) Ci 77 11.8 43

Target % Reduction

Target Effluent Conc (mg/L) (90th %'ile) Ce 2.5 0.1 2.5

Wetland Background Limit C* 1.5 0.02 0

Reduction fraction to target Fe 0.97 0.99 0.94

Fe= 1-Ce/Ci

Reduction fraction to background Fb 0.98 1.00 1.00

Fb = 1-C*/Ci

Areal Rate Constant (m/yr) k 22 12 18

Required Wetland Area (A) (ha) A 71.74 151.84 57.69

(A=[(0.0365*Q/k)(ln((Ci-C*)/(Ce-C*))]

Hydraulic Loading Rate (m/yr) q 1.05 1 1.04

KADLEC & KNIGHT METHOD APPLIED TO 

SECONDARY TREATED EFFLUENT

Design Flow (m3/day) 10000

TN TP Ammonia

Influent Conc (mg/L) Ci 8 0.3 4

Target % Reduction

Target Effluent Conc (mg/L) (90th %'ile) Ce 2.5 0.1 2.5

Wetland Background Limit C* 1.5 0.02 0

Reduction fraction to target Fe 0.69 0.67 0.38

Fe= 1-Ce/Ci

Reduction fraction to background Fb 0.81 0.93 1.00

Fb = 1-C*/Ci

Areal Rate Constant (m/yr) k 22 12 18

Required Wetland Area (A) (ha) A 31.05 38.10 9.53

(A=[(0.0365*Q/k)(ln((Ci-C*)/(Ce-C*))]

Hydraulic Loading Rate (m/yr) q 1.05 1 1.04
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Appendix D – FTW Sizing Based on EPA Discharge 
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For the 2014-2015 Reporting Period

Actual EPA Limit

Nutrient (mg/L) (mg/L)

TN 8.1 15

TP 0.6 1

Pond Area = 10522m² = 1.05ha

Nitrogen

Total Weekly N load (kg) 2725.00

Total Weekly N Flow (kL) 460208.00

Flow Weighted Conc. (FWC) (kg/kL) 0.01

N Pollutant Load (PL) 18199.28

Phosphorous

Total Weekly P load (kg) 212.00

Total Weekly P Flow (kL) 460208.00

Flow Weighted Conc. (FWC) (kg/kL) 0.00

P Pollutant Load (PL) 1415.87

Assumed Total N removal rate 3kg/m²/yr

Assumed Total P removal rate 1kg/m²/yr

Total P Load (kg) 1414.00

Total N Load (kg) 17156.00

Total Flow (kL) 3073562.00

N Assessable Load (kg) 18197.00

Calculation Factor N (CF) 0.29

Calculation Factor P (CF) 8.69

Nitrogen Pollutant Fee 2014-2015 ($) 5351.34

Phosporous Pollutant Fee 2014-2015 ($) 16571.07

P Assessable Load (kg) 1905.93

Phosphorous PF 2014-2015 ($) 16571.08

Nitrogen Removal Phosphorous Removal

Nin (kg Nutrient/year) 8578 1415.87

Pond Surface area ratio (7%) 0.07 0.07

Pond Coverage area (m²) 736.54 736.54

Total Nut removed (kg/m²) 3 1.00

Nutrient removed (kg Nut/year) 2209.62 736.54

Al2 = AL-Nin (kg Nut/year) 6368.38 490.06

Revised PF=Al2 x CF   ($) 1872.30 4260.81

Cost Saving $ 3479.04 12310.26

% removal 25.76 52.02

FTW Calculations

No.of Pontoons (area of 1.16m²) 634.95

Cost per pontoon ($) 475.00

Plants @ $1.00 ea 12 per pontoon 7619.38

0.5 person salary per yr ($) 25000.00

Total Cost ($) 334219.81

Nutrient Load (90 percentile)
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Appendix E – BRC EPA License Fees 
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Bathurst Regional Council Waste Water Treatment Works.

Data for, and Calculation of, Pollutant Loads 

Date Flow BOD PQL BOD O & G PQL O & G Total N PQL Total N Total P PQL Total P Total SS PQL Total SS pH

kL mg/L BOD kg mg/L O&G kg mg/L N kg mg/L P kg mg/L SS kg

1 2-Apr-14 8,164 3 24.49 2 0 0 5.0 40.82 0.33 2.69 7 57.15     7.44

2 9-Apr-14 9,798 3 29.39 2 0 0 8.2 80.34 0.49 4.80 5 48.99     7.46

3 16-Apr-14 9,067 2 1 9.07 2 0 0 6.1 55.31 0.35 3.17 6 54.40     7.43

4 23-Apr-14 8,829 3 26.49 2 0 0 8.4 74.16 0.28 2.47 8 70.63     7.39

5 30-Apr-14 8,721 2 17.44 2 0 0 3.6 31.40 0.45 3.92 7 61.05     7.35

6 7-May-14 8,851 2 17.70 2 0 0 5.6 49.57 0.32 2.83 3 26.55     7.45

7 14-May-14 8,434 2 1 8.43 2 0 0 5.6 47.23 0.28 2.36 7 59.04     7.44

8 21-May-14 8,494 2 1 8.49 2 0 0 7.4 62.86 0.30 2.55 2 1.5 12.74     7.33

9 28-May-14 10,331 2 1 10.33 2 0 0 5.3 54.75 0.39 4.03 5 51.66     7.41

10 4-Jun-14 8,490 2 1 8.49 2 0 0 4.5 38.21 0.35 2.97 6 50.94     7.36

11 11-Jun-14 8,487 4 33.95 2 0 0 6.0 50.92 0.34 2.89 9 76.38     7.40

12 18-Jun-14 15,976 3 47.93 2 0 0 5.5 87.87 0.40 6.39 14 223.66   7.41

13 25-Jun-14 9,168 2 18.34 2 0 0 7.0 64.18 0.35 3.21 10 91.68     7.98

14 2-Jul-14 8,379 2 1 8.38 2 0 0 9.8 82.11 0.28 2.35 6 50.27     7.36

15 9-Jul-14 8,696 2 1 8.70 2 0 0 8.7 75.66 0.42 3.65 10 86.96     7.33

16 16-Jul-14 10,339 2 20.68 2 0 0 6.8 70.31 0.44 4.55 9 93.05     7.22

17 23-Jul-14 9,367 2 1 9.37 2 0 0 3.8 35.59 0.45 4.22 7 65.57     7.24

18 30-Jul-14 9,344 3 28.03 2 0 0 3.6 33.64 0.55 5.14 17 158.85   7.31

19 6-Aug-14 9,717 3 29.15 2 0 0 10.3 100.09 0.55 5.34 8 77.74     7.06

20 13-Aug-14 5,576 2 1 5.58 2 0 0 3.6 20.07 0.54 3.01 10 55.76     7.22

21 20-Aug-14 9,444 2 18.89 2 0 0 5.3 50.05 0.65 6.14 12 113.33   7.30

22 27-Aug-14 9,082 2 18.16 5 0 0 5.1 46.32 0.59 5.36 11 99.90     7.40

23 3-Sep-14 8,721 2 17.44 2 0 0 3.9 34.01 0.54 4.71 6 52.33     7.70

24 10-Sep-14 9,343 2 1 9.34 2 0 0 5.6 52.32 0.44 4.11 10 93.43     7.30

25 17-Sep-14 8,953 2 17.91 2 0 0 4.4 39.39 0.48 4.30 3 1.5 13.43     7.30

26 24-Sep-14 8,584 2 17.17 2 0 0 2.4 20.60 0.43 3.69 3 1.5 12.88     7.30

27 1-Oct-14 7,951 2 1 7.95 2 0 0 5.2 41.35 0.52 4.13 1 1.5 7.95       7.40

28 8-Oct-14 9,056 2 1 9.06 2 0 0 3.9 35.32 0.45 4.08 1 1.5 9.06       7.50

29 15-Oct-14 11,006 2 22.01 2 0 0 16.8 184.90 0.54 5.94 4 44.02     7.30

30 22-Oct-14 7,796 2 1 7.80 2 0 0 4.6 35.86 0.51 3.98 4 31.18     7.40

31 29-Oct-14 8,264 2 1 8.26 2 0 0 5.8 47.93 0.58 4.79 5 41.32     7.30

32 3-Nov-14 6,876 2 1 6.88 2 0 0 4.1 28.19 1.30 8.94 6 41.26     7.50

33 5-Nov-14 7,635 3 22.91 2 0 0 5.9 45.05 0.56 4.28 8 61.08     7.30

34 12-Nov-14 7,203 2 14.41 2 0 0 5.5 39.62 0.60 4.32 6 43.22     7.40

35 19-Nov-14 7,169 2 14.34 2 0 0 7.2 51.62 0.37 2.65 5 35.85     7.60

36 26-Nov-14 8,807 3 26.42 2 0 0 5.3 46.68 0.46 4.05 5 44.04     7.60

37 3-Dec-14 7,940 7 55.58 2 0 0 5.8 46.05 0.41 3.26 12 95.28     7.90

38 10-Dec-14 8,548 2 1 8.55 5 0 0 6.9 58.98 1.80 15.39 4 34.19     7.60

39 17-Dec-14 7,965 5 39.83 2 0 0 7.9 62.92 0.39 3.11 9 71.69     7.70

40 22-Dec-14 7,060 3 21.18 2 0 0 3.6 25.42 0.18 1.27 10 70.60     7.80

41 29-Dec-14 6,628 2 1 6.63 2 0 0 4.0 26.51 0.29 1.92 2 1.5 9.94       7.60

42 5-Jan-15 7,098 5 35.49 2 0 0 3.5 24.84 0.21 1.49 13 92.27     8.50

43 7-Jan-15 6,786 4 27.14 2 0 0 4.0 27.14 0.35 2.38 7 47.50     7.80

44 14-Jan-15 8,278 2 1 8.28 2 0 0 6.6 54.63 0.37 3.06 2 1.5 12.42     7.50

45 21-Jan-15 6,279 4 25.12 2 0 0 5.9 37.05 0.40 2.51 5 31.40     7.43

46 28-Jan-15 10,184 2 1 10.18 2 0 0 6.1 62.12 0.59 6.01 2 1.5 15.28     7.20

47 4-Feb-15 8,165 2 1 8.17 2 0 0 7.5 61.24 0.60 4.90 8 65.32     7.50

48 11-Feb-15 7,797 2 1 7.80 2 0 0 4.7 36.65 0.34 2.65 4 31.19     8.40

49 18-Feb-15 7,285 2 14.57 2 0 0 5.3 38.61 0.35 2.55 5 36.43     7.70

50 25-Feb-15 9,598 2 1 9.60 2 0 0 5.1 48.95 0.37 3.55 11 105.58   7.60

51 4-Mar-15 6,704 2 13.41 2 0 0 5.3 35.53 0.36 2.41 3 1.5 10.06     7.60

52 11-Mar-15 7,799 2 1 7.80 2 0 0 7.3 56.93 0.32 2.50 7 54.59     7.60

53 18-Mar-15 7,668 2 15.34 2 0 0 4.7 36.04 0.31 2.38 3 1.5 11.50     7.50

54 25-Mar-15 8,308 2 1 8.31 2 0 0 3.7 30.74 0.27 2.24 4 33.23     7.50

Total 460,208  24 932.31 0 2,725      212        3,046     

2 2 2.4 0.18 1

2 5 0.3 0.02 3

Y Y N N Y

BOD O & G Total N Total P Total SS

FWC 0.002026 0.0000 0.005920 0.000460 0.006618

BOD O & G Total N Total P Total SS

PL (kg) 6,227     -       18,197    1,414     20,342   

Load Limit (kg) 31,600   29,511 44,231    2,937     58,987   

OK 20% OK 0% OK 41% OK 48% OK 34%

BOD O & G Total N Total P Total SS pH

Minimum 2.0 2.0 2.4 0.18 1 7.1

Mean 2.5 2.1 5.8 0.46 6.6 7.5

Maximum 7.0 5.0 16.8 1.80 17 8.5

BOD O & G Total N Total P Total SS pH

Actual Limit Actual Limit Actual Limit Actual Limit Actual Limit Actual Limit

50% 2.0 OK 15 0.4 OK 20

90% 3.7 OK 20 8.1 OK 15 8.1 OVER 1 0.6 OK 25

100% 7.0 OK 30 5 OK 10 16.8 OK 20 16.8 OVER 2 1.8 OK 30 8.5 OK 8.5

100% 7.1 OK 6.5

Notes:

Underlined values indicate less than.

Week 

#

Pollutant load (PL)  (kg) = FWC * total licence volume

Compliant?

Minimum

Practical Quantitation Limit (PQL)

If result < PQL, half the PQL can be used. If 50% or more samples <PQL, zero can be reported for those values.

Any changes required?

Flow weighted concentration (FWC) = kg/kL

Total volume of licence period (kL) 3,073,562



Pollutant Fee for Total N

D1 Pollutant load Result

18,197         See Data tab

actual load kg 18,197         

weighted load kg Not applicable; no effluent reuse

agreed load kg Not applicable; no load reduction agreements

D2 Assessable load (AL) kg 18,197         Smallest of above loads; use actual load

D3 Calculate fee rate threshold (FRT)

volume ML 3,073.562 See Data tab

volume ML 3,073.6        Actual quantity

calculated FRT 30,736         actual quantity x FRT factor (=10 for Total N)

D4 Apply fee rate threshold

Is D2 > D3? Y/N N

If Y, 2 x AL(D2) - FRT(D3) = AL
1

2*AL

FRT

AL
1

If N, go to D5, use AL 18,197

D5 Calculate Pollutant fee

PF = (AL or AL
1
) x CF AL 18,197

CF 0.294078

rounding to 7 decimal places CF 0.2940780

2

PF $5,351.34 Assessable load  x calculation factor (CF)

check number of decimal places

& beware rounding to7 places CF= P fee unit amount x P weighting x critical zone)/10,000

0.2940780 [CF = (42.62 x 23 x 3)/10,000]



Pollutant Fee for Total Phosphorous

D1 Pollutant load Result

1,414            See Data tab

actual load kg 1,414            

weighted load kg Not applicable; no effluent reuse

agreed load kg Not applicable; no load reduction agreements

D2 Assessable load (AL) kg 1,414            Smallest of above loads; use actual load

D3 Calculate fee rate threshold (FRT)

Volume ML 3,073.562 See Data tab

ML 3,073.6         Actual quantity

calculated FRT 922.07          actual quantity(total volume) x FRT factor (=0.3 for Total P)

actual FRT 922.07          

D4 Apply fee rate threshold

Is D2 > D3? Y/N Y

If Y, 2 x AL(D2) - FRT(D3) = AL
1

2*AL 2,828

FRT 922.07

AL
1

1,905.93

If N, go to D5, use AL

D5 Calculate Pollutant fee

PF = (AL or AL
1
) x CF AL

1
1,905.93       

CF 8.694480

rounding to 7 decimal places CF 8.6944800

PF $16,571.08 Assessable load  x calculation factor (CF)

check number of decimal places

& beware rounding to 7 places CF= P fee unit amount x P weighting x critical zone)/10,000

8.6944800 [CF = (42.62 x 680 x 3)/10,000]



Totals for LBL Fees 

EPA Licence 1647 2014-2015

2014-2015

Pfua $42.62

Afua $100.00

BOD $26.54

Total N $5,351.34

O & G $0.00

Total P $16,571.08

Total SS $6,762.41

Total Pollutant fees $28,711.37

Less admin fees paid $7,345.00

Load Based fee $21,366.37
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AN EXAMPLE OF AUSTRALIAN WETLAND PLANTS FOR FLOATING 

TREATMENT WETLAND AND SELECTION CONSIDERATIONS.  

 

Species should be selected with the following considerations: 

 Local to the area where floating islands are to be installed 

 Well suited to wet or moist root conditions 

 Readily available for purchase from nurseries or obtainable from other sources 

 Robust and able to withstand some damage from waterbirds 

 In heavily polluted wetlands, able to survive in high nutrient waters,  

 Perennial with no seasonal dieback of above-ground biomass and 

 Capable of developing an extensive root system. 

 

NOTES 

1. Species marked * are recommended. 

2. Species marked # are salt tolerant, although growth may be poor in high salinity 

water. 

3. A number of samphire plants such as Halosarcia and Tecticornia species are well 

adapted to growing in highly saline water, but their use on floating islands has not 

been evaluated.  

4. Persicaria species are likely to self-seed onto islands, so planting of this species 

from nursery stock should not be necessary.  

 

Agrostis avenacea - blown grass 

Amphibromus nervosus - common swamp wallaby grass 

Amphipogon turbinatus - a grass 

Anarthria prolifera - tangle rush 

Apium prostratum var prostratum - sea celery 

Aponogeton  species 

Astartea fascicularis 

# Austrostipa pycnostacha - salt speargrass 

Austrostipa trichophylla 

# Atriplex ammicola - swamp/river saltbush 

# Atriplex bunburyana  - silver saltbush 

# Atriplex hymenotheca  

# Atriplex hypoleuca  - a saltbush 

# Atriplex lindleyi subsp inflata  

 

 

Baumea acuta - pale twig rush 

*# Baumea arthrophylla - fine twig rush 

*# Baumea articulata - jointed twig rush 

# Baumea arthrophylla - sparse twig rush 

Baumea vaginalis - sheath twig rush 

# Baumea juncea - bare twig rush 

* Baumea preissii - broad twig rush 

# Baumea riparia - river twig rush 
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Baumea rubiginosa - river twig sedge 

Baumea vaginalis - sheath twig rush 

* Bolboschoenus medianus - marsh club rush 

 

Carex diversa is a declared weed and should not be used in any island or wetland 

plantings. 

* Carex appressa - tall sedge  

Carex bichenoviana - sedge 

* Carex fascicularis - tassel sedge 

Carex gaudichaudiana - fen sedge – may become invasive 

# Carex inversa - knob sedge 

Carex preissii 

*# Carex tereticaulis - common sedge 

Centella asiatica - herb 

Centella cordifolia - herb 

Ceratopteris thalictroides - water sprite 

Chaetanthus aristatus - bearded twine rush 

Chordifex amblycoleus - bristle cord rush 

Chordifex reseminans  - lax cord rush 

Chordifex sinuosus - twisted cord rush 

Chorizandra australis - southern bristle rush 

Chorizandra cymbaria - heron bristle rush 

* Chorizandra enodis - black bristle rush 

# Cladium procerum - leafy twig rush 

Cotula coronopifolia water buttons 

*#Crassula helmsii - swamp stonecrop 

Cyanthochaeta avenecea 

Cyanthochaeta stipoides 

Cyanthochaeta teretifolia 

 

Damasonium minus 

Desmocladus elongatus - spindle rush  

*# Distichilis disticophylla - Australian sea-grass 

 

Ecdeiocolea monostachya - mat rush 

Elantine gratioloides  

*# Eleocharis acuta - common spike rush 

Eleocharis keigheryi 

* Eleocharis sphacelata - tall spike rush 

Enteropogon acicularis - curly windmill grass 

# Eragrostis australasica - canegrass 

# Eragrostis dielsii - mallee lovegrass 

Eragrostis elongata - clustered lovegrass 

 

* Ficinia nodosa (previously Isolepis nodosa) - club sedge 

# Frankenia glomerata 
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# Frankenia pauciflora - sea heath 

 

# Gahnia trifida - coast sword sedge – best suited for use on larger islands 

Gratiola peruviana - brooklime 

Gymnoschoenus sphaerocephalus - button grass 

 

Hemarthria uncinata - mat grass 

# Hemichroa pentandra - trailing joint weed 

Hopkinsia anoectocolea - steel rush 

Hydrocotyle sibthorpoides - shiny pennywort 

Hypolaena humilis - kangaroo rush 

 

Isachne globosa - swamp millet  

* Isolepis cernula - nodding club rush 

Isolepis cyperoides 

* Isolepis fluitans - floating club rush 

Isolepis inundata - swamp club rush 

* Isolepis nodosa (now Ficinia nodosa) - club sedge 

Isolepis oldfieldiana  

Isolepis producta 

Isolepis prolifera - budding club rush 

Isolepis setiformis 

Isolepis stellata - star club rush 

 

Note: some Juncus species have the ability to invade wetlands and dominate, with several 

introduced species classified as weeds 

* Juncus amabilis - hollow rush 

* Juncus articulatis - jointed rush 

* Juncus australis - austral rush 

Juncus bufonius - toad rush 

# Juncus caespiticius - grassy rush 

*# Juncus flavidus - yellow rush 

Juncus fockei 

* Juncus gregiflorus - green rush 

Juncus holoschoenus – joint leaf rush 

Juncus ingens 

*# Juncus kraussii - shore or sea rush 

Juncus meianthus  

Juncus microcephalus  

*# Juncus pallidus - pale rush 

* Juncus pauciflorus - loose flower rush 

* Juncus planifolius - broadleaf rush 

Juncus radula 

* Juncus sarophorus - broom rush 

Juncus procerus - tall rush 

Juncus semisolidus - rush 
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# Juncus subsecundus - finger rush 

 

Lepidobolus chaetocephalus - fringe rush 

Lepidobolus - spiralis spiral rush 

# Lepidosperma gladiatum coastal sword sedge - best suited for use on larger islands 

Lepidosperma longitudinale - pithy saw sedge 

Lepidosperma scabrum - rough sedge 

# Leptinella reptans - creeping cotula 

Leptocarpus aristatus - bearded twine rush 

# Leptocarpus tenax 

# Leptochloa fusca - brown beetle grass 

# Lilaeopsis polyantha - creeping crantzia 

# Lobelia irrigua - salt pratia 

Ludwigia peruviana is classified as a weed. 

Ludwigia peploides - claimed to respond well to high nutrient levels 

Lyginia species 

Lythrum salicaria 

 

* Marsilea drummondii - common nardoo 

Meeboldina roycei 

# Meeboldina coangustata - velvet rush 

Meeboldina crassipes 

Meeboldina crebriculmis 

Meeboldina denmarkica 

Meeboldina kraussii 

Meeboldina roycei 

Meeboldina scariosa 

Meeboldina tephrina 

Melanostachya ustulata 

Mesomelaena pseudostygia - semaphore sedge 

Microlaena stipoides - weeping grass – found to be ineffective in nutrient removal in 

research trials 

# Mimulus repens - creeping monkey-flower 

Muehlenbeckia florulenta - tangled lignum 

# Myoporum caprarioides - slender Myoporum – many species are claimed to respond 

well to high nutrient levels 

Myriophyllum crispatum - upright milfoil 

# Myriophyllum salsugineum - lake milfoil 

Myriophyllum simulans - amphibious milfoil 

# Myriophyllum verrucosum - red water-milfoil 

 

Persicaria decipiens (synonym Polygonum decipiens) - slender knotweed  

Persicaria hydropiper - water pepper 

Persicaria praetermissa - spotted knotweed 

Persicaria prostrata - creeping knotweed 
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Platychorda applanata 

Poa ensiformis - sword tussock grass 

*# Poa labillardierei - common tussock grass 

# Poa poiformis - blue tussock grass 

#Porphyroclados - a perennial grass 

Pratia concolor 

# Puccinellia stricta - marsh grass 

 

# Ranunculus diminutus - dwarf river buttercup 

Ranunculus inundatus - buttercup 

# Ranunculus papulenthus 

Reedia spathacea 

Rumex bidens - water dock 

Rumex brownii - swamp dock 

Rumex dumosus - wiry dock 

# Ruppia species 

 

# Samolus junceus - a brookweed 

# Samolus repens - creeping brookweed 

Schoenoplectus species are claimed to respond well to high nutrient levels, with all native 

species  reported to be moderately salt tolerant 

*# Schoenoplectus pungens - sharp leaf rush 

*# Schoenoplectus validus - lake club rush 

* Schoenoplectus tabernaemontani - river club rush 

Schoenus acuminatus  

Schoenus asperocarpus - poison sedge 

Schoenus benthamii 

Schoenus bifidus 

Schoenus cruentus 

Schoenus discifer 

Schoenus efoliatus 

Schoenus elegans 

Schoenus fluitans 

Schoenus grandiflorus - large flowered bog rush 

Schoenus indutus 

Schoenus laevigatus 

Schoenus loliaceus 

Schoenus maschalinus 

Schoenus multiglumis 

Schoenus natans - floating bog rush 

Schoenus nitens - shiny bog rush 

Schoenus obtusifolius 

Schoenus pennisetis 

Schoenus plumosus 

Schoenus rigens 

Schoenus subbarbatus - bearded bog rush 
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# Schoenus subfascicularis - a bog rush 

Schoenus subflavus - yellow bog rush 

Schoenus sublateralis 

Schoenus sublaxus 

Schoenus submicrostachyus 

Schoenus tenellus  

Schoenus unispiculatis - grey sedge 

Schoenus variicellae 

Scirpus fluitans 

Scirpus hookeranus 

Scirpus inundatus 

Scirpus litoralis 

Scirpus nodosus 

Scirpus validus 

# Selliera radicans - shiny swamp-mat 

Sparganium subglobosum - native burr-reed 

Sporadanthus strictus - erect scale rush 

# Sporobolus virginicus - marine couch 

Stenotalis ramosissima 

# Suaeda australis seablite 

 

Tetraria australiensis 

Tremulina cracens 

Tremulina tremula - quivery cord rush 

Tricostularia neesii 

* Triglochin linearis -water ribbons 

Triglochin rheophilum 

# Triglochin striatum -streaked arrow grass 

 

Yillarsia albiflora  

Yillarsia exaltata - erect marsh flower 

Yillarsia parnassifolia 

 

* Villarsia reniformis running marsh-flower 

 

Some Typha species are introduced weeds which should not be used in island or wetland 

plantings.  

Bolboschoenus caldwellii sea or marsh club rush dies back over winter and should be 

avoided. 
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Wetland treatment systems: Option Assessment
Discount rate 7% pa

Contingency applied to capital items 15%

Survey, investigation and design (SID) 7.5%

Option Components Qty Units Unit Cost Cost Present Value 0 1 2 3 4 5 6 7 8 9 10 11

2 Captial Costs

Approvals 1 item 20000 20000 20,000$            20000

Mobilisation/demobilisation 1 item 15000 15000 15,000$            15000

Contractor Environmental Controls 1 item 5000 5000 5,000$               5000

Wetland Pontoons 635 item 475 301625 301,625$          301625

Pontoon Installation 635 item 100 63500 63,500$            63500

Pontoon Anchor System 1 item 10000 10000 10,000$            10000

Bird Guard Kits 635 item 40 25400 25,400$            25400

Wetland plants 7620 number 2 15240 15,240$            15240

Planting 7620 number 2 15240 15,240$            15240

Pond Aeration device 1 item 25000 25000 25,000$            25000

Electricals and Control 1 item 5000 5000 5,000$               5000

SID 7.5% item 37575 37,575$            37575

Contingency 15% item 75151 75,151$            75151

PV Capital Cost 613,731$         

Operating Costs

Wetland maintenance (Incl. 0.25 person salary) 15000 $/year 158,910$          0 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000

Clean out 15000 per event 31,289$            0 0 0 10000 0 0 10000 0 0 10000 0 0

PV Operating Cost 190,199$         

Present value of wetland system 803,930$  

Savings in LBL Discharge Fees 16000 $/year 169,504$          0 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000 16000

Present value of FTW savings 169,504$  

Benefit/cost ratio 0.21
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Wetland treatment systems: Option Assessment
Discount rate 7% pa

Contingency applied to capital items 15%

Survey, investigation and design (SID) 7.5%

Option Components Qty Units Unit Cost Cost Present Value 0 12 13 14 15 16 17 18 19 20

2 Captial Costs

Approvals 1 item 20000 20000 20,000$            20000

Mobilisation/demobilisation 1 item 15000 15000 15,000$            15000

Contractor Environmental Controls 1 item 5000 5000 5,000$               5000

Wetland Pontoons 635 item 475 301625 301,625$          301625

Pontoon Installation 635 item 100 63500 63,500$            63500

Pontoon Anchor System 1 item 10000 10000 10,000$            10000

Bird Guard Kits 635 item 40 25400 25,400$            25400

Wetland plants 7620 number 2 15240 15,240$            15240

Planting 7620 number 2 15240 15,240$            15240

Pond Aeration device 1 item 25000 25000 25,000$            25000

Electricals and Control 1 item 5000 5000 5,000$               5000

SID 7.5% item 37575 37,575$            37575

Contingency 15% item 75151 75,151$            75151

PV Capital Cost 613,731$         

Operating Costs

Wetland maintenance (Incl. 0.25 person salary) 15000 $/year 158,910$          0 15000 15000 15000 15000 15000 15000 15000 15000 15000

Clean out 15000 per event 31,289$            0 10000 0 0 10000 0 0 10000 0 0

PV Operating Cost 190,199$         

Present value of wetland system 803,930$      

Savings in LBL Discharge Fees 16000 $/year 169,504$          0 16000 16000 16000 16000 16000 16000 16000 16000 16000

Present value of FTW savings 169,504$      

Benefit/cost ratio 0.21
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