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i 

Abstract 

 

Flood Frequency Analysis is key to the prediction of frequency and magnitude of 

extreme flood events in given catchments. Floods can cause millions of dollars damage 

to communities and since it is important to have adequate flood protection measures, it 

is desirable to obtain accurate estimates of flood recurrence. 

The aim of this project is to investigate the suitability of the Power Law frequency 

model as a more accurate way of the peak discharges of flood events. Using two 

goodness of fit tests, the Chi-Squared test and the R-Squared test, the Power Law 

relationship has been tested against the more conventional methods used in Australian, 

the Log Pearson type 3 distribution and the exponential distribution for ten stream 

gauge stations located throughout Queensland.  

The results of the analysis of the ten stream gauges found that generally the Log 

Pearson type 3 distribution was more accurate in predicting the peak discharges of the 

observed historical flows for sites of which the floods are expected to occur in intervals 

greater than ten years. The Power Law frequency model however produces a more 

conservative estimate for the return period of the larger floods and hence increasing the 

estimated likelihood of severe floods.  

Therefore the use of the Power Law relationship as procedure for flood frequency 

analysis for the extreme events would create more conservative infrastructure designs 

and land use restrictions.  
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Chapter 1 – Introduction 

 

 

1.1 Introduction 

 

This report outlines the background, objectives, methodologies, results and conclusions 

pertaining to the investigation of flood frequency analysis models. In particularly, 

identifying the effectiveness of a simple Power Law relationship model for predicting 

the pear discharges of selected floods opposed to the current conventional in use today. 

This investigation is based on historical flood data collected from ten stream gauge 

stations across Queensland. This project aims to supplement previous research findings, 

as well as provide engineering guidance on the use of the Power Law relationship for 

the predictions of peak flood discharges. 

 

 

1.2 Background 

 

Floods are one of the worst natural disasters and each year can cause millions of dollars 

of damage and loss of human lives. A flood is considered to be an unusually high stage 

of the river. Surface runoff invariably produces a stream rise, but it does not necessarily 

cause a flood, the difference being in magnitude only. It is important to differentiate 

rigidly between surface runoff and a flood, a flood is commonly defined as being an 
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unusually or abnormally high stage of the river or when at the stage at which the stream 

channel becomes filled and overflows its banks and inundates the adjacent lands. 

Although it is true that the latter condition usually accompanies floods, it is not an 

essential characteristic as streams flowing through deep ravines, gorges or canyons 

would never be subject to floods. Streams are commonly recognised as being in flood 

when their stage is unusually high. 

The study of floods and flood flows demonstrate there is a succession of floods of ever-

varying size. There is a flood that is expected to be exceeded every year, while there is 

also a greater flood that may be expected to occur, on an average, once in ten years, not 

at regular ten year intervals, but say ten times in a century. A great flood again may be 

expected as often as once in a century and there is assumed to be floods that occur only 

at intervals of several centuries. 

If a flood of a certain magnitude occurs approximately once in a hundred years, there is 

a one percent chance or a one chance in a hundred that that flood will occur during a 

year.  A flood with a magnitude that is likely to be exceeded on average of once every 

twenty-five years is a four percent chance flood.  

Floods have very low frequency or probability of occurrence are large, catastrophic 

floods whereas smaller floods will occur more often. The larger recurrence interval is 

the less of a chance there is for experiencing that flood in a particular year. However, 

the probability of occurrence cannot be zero, a very large, uncommon flood could occur 

every few years. 

This recurrence interval gives a means of expressing the likelihood of in specified 

number of years, a certain magnitude of flood will be exceeded and hence is vital in 

flood control, emergency planning, land-use regulation and insurance considerations.  
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To avoid destruction, dams need to have sufficient spillway capacity and protection, 

bridges must have a waterway opening, flood walls and embankments that are high 

enough so they will not be overtopped and reservoirs must have the required capacity. 

The maximum flood these structures can safely accommodate for is called the design 

flood. The most direct way of estimating this design flood is to use a process called 

flood frequency analysis. 

Historical records of past river heights and flows are generally used in the estimation of 

the largest floods that could occur in a given time period. These historical records only 

cover a very short amount of time and according to Malamud and Turcotte (2006), there 

is no general basis for extrapolation.   

There is a wide range of statistical distributions used to analysis the frequency of floods 

and in current practise, the standard approach is to use the maximum annual flood for 

each year of flood data and obtain the best fit for the chosen statistical distribution. A 

Power Law relationship has been suggested by several authors as a better estimation of 

the flood hazard and this project will investigate the Power Law relationship for flood 

frequency analysis. 
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1.3 Project Aim 

 

The main purpose of flood frequency analysis is the prediction of the frequency and 

magnitude of extreme events in a given catchment. Conventional analysis methods have 

been criticized for its questionable theoretical basis and failure in prediction of extreme 

flood events.  

The aim of this research is to investigate the suitability of the Power Law statistical 

model as a preferred model to estimate flood frequency. To accurately confirm the 

suitability of the Power Law model, an analysis will be undertaken comparing the 

Power Law model against more conventional methods currently in use. Since no 

theoretical distribution can be considered to adequately fit the stream flow data of all the 

streams, selected streams will be considered individually for their suitability with the 

Power Law model. 

 

 

1.4 Project Objectives 

 

The project aim was reviewed and split into a number of objectives for completion. 

 To research existing literature on the limitations and drawbacks of the 

current flood frequency analysis methods, the power law frequency 

model as well as background knowledge necessary to compare the 

different methods. 
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 Construct the annual and partial flood series from the peak discharges 

data obtained from the Queensland Department of Natural Resources and 

Mine‟s Water Monitoring website for ten unregulated gauging stations. 

 Apply a Log Pearson type 3 distribution to the annual flood data and a 

negative exponential distribution to the partial series data as identified as 

conventional flood frequency distributions by the Australian Rainfall and 

Runoff (1987).  

 Apply the power law distribution model to the partial flood data from 

each station 

 Compare the peak discharges at similar average recurrence intervals 

(ARIs) as well as the overall fit of each distribution model for each 

station location  

 

 

1.5 Justification 

 

It is important to the civic society for accurate and reliable flood magnitude predictions, 

especially since local and regional communities have to make independent judgments 

regarding the actions that are required to prevent and manage natural disasters. 

Middelmann et al. (2000) estimates that more than 80% of the buildings that are at risk 

of flooding in Australia are located in New South Wales and Queensland and 

Queensland has the highest average annual damages from floods. Due to the importance 

for Queensland to have adequate flood protection measures, it is desirable to obtain 

accurate estimates of flood recurrence.  
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If a Power Law model is the underlying model for the flood behaviour of the 

Queensland rivers, then the industry standard 100-year estimated flood discharge will 

require revision and planning, making the design decisions more accurate and probably 

more conservative.  

 

 

1.6 Consequential Effects 

 

The overall improvement of the flood frequency analysis procedures used in identifying 

the probability model of flood peaks in some of Queensland‟s catchments is the main 

effect of this project. This will be achieved through investigating the accuracy of the 

Power Law relationship in regards to floods and comparing it with conventional 

analysis techniques.  

 

1.6.1 Safety 

The Power Law model has been proposed as a more conservative model in terms of 

estimating the peak discharges of the more extreme floods. This project could therefore 

improve the industry standard one hundred year flood, which is the basis for many 

design and planning decisions. The floodplain map for each community can be review 

for the new peak discharges and in turn reduce the impact of flooding. Emergency 

service organisations will also have a better understanding of the scale of flood risk and 

the logistical and access problems that may exist. Therefore in determining the more 

accurate model in predicting the frequencies of peak discharges of floods will help to 
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lessen the flood hazard where it is economic and socially acceptable, and reduce the 

devastating impacts on the communities.  

1.6.2 Cost 

Having an accurate flood frequency analysis procedure will reduce the costs associated 

with the construction and maintenance of infrastructure in the long term. Reviewing the 

floodplain maps to identify the flood areas of the 100-year flood with the Power Law 

model will better help the communities to reduce the frequency of damage as residents 

know to protect themselves and the recovery costs associated with flooding. 

Flooding can affect everyone, through direct water damage through to disruptions to 

transport services, communication and power. Studies by the National Flood Risk 

Advisory Group (2008) show a household believes they cannot recover from a financial 

shock of more than $10,000 with their own capital (National Flood Risk Advisory 

Group 2008). A minor flood that is just over the floor is likely to cause damages greater 

than $10,000 and making minor flood events financially devastating. The floodplain 

map created using the discharges from the Power Law model will help with the 

awareness and readiness of the community and hence reduce the cost of repairs to the 

infrastructure. There are specifications set out in the Building Code of Australia and in 

the relevant Standards that give guidance on use of materials to reduce flood damages in 

new developments and in renovations. People who know they are in the floodplains can 

use these codes to reduce the impact of flood debris and to maintain structural integrity 

after a flood event, therefore reducing the long term cost of the infrastructure (National 

Flood Risk Advisory Group 2008). 
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1.7 Overview of Dissertation 

 

This project dissertation is organised as follows: 

Chapter 2 Literature Review 

This chapter investigates the relevant literature on the topic of flood frequency analysis 

to provide an informative briefing on the subject. It presents current findings and 

opinions of professionals as a result of their investigative work on the more 

conventional flood frequency as well as the Power Law model. 

Chapter 3 Methodology 

This chapter discusses the methodologies undertaken in order for project completion. In 

particular, the criteria used to select the stream gauge stations and the process involved 

in determining the distribution models for each of these stations. 

Chapter 4 Results 

This section provides the output data from the methodology for each individual stream 

gauge station. It also discusses the accuracy of each distribution is terms of goodness of 

fit to the historical stream flows for those stations. 

Chapter 5 Discussion 

Using the results for each station identified in the previous chapter, this chapter 

discusses prevalent trends between the distribution models and identifies the 

effectiveness of each flood frequency model tested. Limitations of this study have also 

been identified in this chapter. 
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Chapter 6 Conclusions 

A summary of the conclusions of the project are presented in this chapter, along with 

further work and recommendations. 
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Chapter 2 – Literature Review 

 

 

2.1 Chapter Overview 

 

A literature review of the topics relevant to this project is presented here. While this 

study was largely a statistical analysis, the literature review was necessary to gain 

background knowledge on a number of key topics. The chapter examines the basic 

concepts of flood frequency analysis, in particular the types of time series and current 

probability distributions recommended by the Australian Rainfall and Runoff (1987) 

guide. It also looks at the work conducted in the past to applying the Power Law to 

flood frequency analysis and methods of assessing the fit of a probability distribution 

models to the historic flood data. 

 

 

2.2 Types of Data Series 

 

With starting with just a basic time step, a range of types of time series that can be 

found that can be used for flood frequency analysis (Meylan, Favre & Musy 2012). 

These include: 

 A complete series 

 Annual flood duration series 
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 Partial flood duration series (or Peaks Over Threshold) 

The Australian Rainfall and Runoff (1987) specifies which series is to be used when 

selecting floods that are to be used in the frequency analysis in Australian conditions. 

The annual series is preferred when the average recurrence interval of flood discharge is 

greater than or equal to 10 years, which is generally used in design, as the higher 

recurrence intervals are used for determining the design flood for infrastructure at a 

particular location. The partial series is preferred when all floods are less than 10-year 

floods and is used for flows of low recurrence intervals, particularly in urban storm 

water environments. However, in conventional flood frequency analysis, it is common 

practice to apply both methods in order to determine the difference that data choice 

decisions make for prediction (Australian Rainfall and Runoff 1987). Therefore this 

investigation will use the annual flood series and the partial flood series in the analysis. 

 

2.2.1 Annual Flood Series 

The annual flood series is the more commonly used time series and is created using the 

largest discharge in each water year. The discharges in Australia are highly seasonal, 

therefore a water year is preferred to be used over a calendar year. (Australian Rainfall 

and Runoff 2010) A water year commences when the average discharge is lowest 

during the year, which for Queensland is defined as a 12 month period from July 1, 

through to June 30, of the following year (Kollmorgen et al. 2007). The highest flow in 

each water year is selected for the flood series, with all other smaller floods ignored.  
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According to the review of the Australian Rainfall and Runoff (2006), there are three 

major advantages in using the annual series for flood frequency analysis, these were 

expressed as:  

 The flood peaks are independent of each other, as the peaks are generally 

separated by significant time intervals 

 The annual series can be easily and unambiguously taken from Government 

websites, that are widely available 

 Frequency distributions generally follow available theoretical distributions 

A major drawback is that it could exclude floods from each year that are significant, 

especially if several large floods have occurred during the same water year. According 

to Armstrong, Collins and Snyder (2012), the annual series can include some small 

annual floods, causing small floods to occur more often than indicated by the annual 

series (Armstrong, Collins & Snyder 2012).  

Keast and Ellison (2013) identify during a study involving the Northern Tasmanian 

stream gauging station data found that the annual series estimates at an average 

recurrence interval of 1.1 years were one third of the magnitude provided by the partial 

series estimations, demonstrating the annual flood series significantly underestimates 

the magnitude of the low scale floods. Keast and Ellison (2013) recommend the annual 

series is not to be used for recurrence intervals that are smaller than five years and 

instead use the partial series (Keast & Ellison 2013). 

 

 

  



13 

2.2.2 Partial Series 

It is possible for the second or third largest peak in a particular year be greater than the 

maximum flood for another year. In an annual series, such additional events are ignored 

since only the largest annual event is allowed. The partial series model (also denoted the 

Peak Over Threshold model) is created with all the floods that have a peak discharges 

which is above a selected value, irrespective of the number of other floods that have 

occurred during the year. 

Linsley et al. (1982) states that since the partial series is arbitrarily selected, it cannot be 

expected to fit a standard distribution (Linsley, Kohler & Paulhaus 1982). The 

Australian Rainfall and Runoff (2006) suggests a graphical interpolation of the 

historical flood data is sufficiently accurate to determine the distribution of flood 

recurrence of less than ten years. (Australian Rainfall and Runoff 2010). Inferences 

made for events greater than 10 years should be fitted with a probability distribution. 

The Generalized Pareto distribution has also been commonly used in flood frequency 

studies (Rosbjerg, Madsen & Rasmussen 1992); however, this analysis on the 

Queensland stream gauges only explored the graphical interpolation method. 

In creating a partial flood series a selected base discharge is chosen and the discharges 

exceeding this base value are classified as floods. The number of floods (K) is different 

to the number of years of record (N) and depends on the base discharge. Rustomji, 

Bennett and Chiew (2009) determined that having more floods in the partial series is 

advantageous. Whereas a study by Keast (2013) on stream gauges in Northern 

Tasmania found the chosen base discharge had little effect on the partial series estimates 

at these low recurrence intervals (Keast & Ellison 2013). However, the greater number 

of small floods included, the distribution tends to match with the annual flood series. 
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Small events are excluded in the partial series as the selected base value is sufficiently 

high enough to exclude them, whereas the annual series includes the non-floods from 

the dry years influencing the shape of the distribution. In Australia, the range of flows 

and the time between floods is greater in there than in countries like the United 

Kingdom or the United States (Grayson et al. 1996). It is expected that in Australia, the 

ratio of floods, K, to years of record, N, be lower than the United States or the United 

Kingdom. 

As recommended by the American Society of Civil Engineers (1949), the base 

discharge is chosen so that the number of floods is greater than the number of years of 

record, however, there also needs to be no more than four floods used in a water year 

(Meylan, Favre & Musy 2012). The United States Geological Survey (Dalrymple, 1960) 

on the other hand, recommended there should be three times the number of floods as 

years of record (K = 3N).  

The American Society of Civil Engineers (1949) suggests the number of flood each year 

and therefore the base discharge should depend on the distribution being used. For 

fitting the Log Pearson 3 distribution, studies conducted by McDermott and Pilgrim 

(1982) and also by Jayasuriya and Mein (1985) determined the distribution models 

fitted more effectively when the number of floods equalled the number of years of 

record (K = N).  

A single flood may have multiple peaks and therefore a minimum amount of time is 

needed for the river‟s discharge to be considered a separate flood peak. The partial flood 

series therefore may have floods that are not independent events and instead be all one 

flood. Some floods can be short lived and only inundation properties, whereas other 

floods cause the destruction of annual crops and can last as long as a year (Baker 1994). 
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Flood damage is caused by the highest flood; the secondary peaks therefore should not 

be included in the flood frequency analysis. Therefore is no specific criterion in 

determining when flood peaks are independent of each other. Malamud et al. (1996) 

found that using a time interval between 7 and 60 days between successive peaks gave 

reasonably robust flood frequency estimation (Malamud, Turcotte & Barton 1996). 

Some of the criteria used in past studies have included: 

 According to a Uniting Kingdom Flood Studies Report, flood peaks are to be 

separated by three times the time taken for the flow to peak and the flow have 

decreased to two-thirds of the original peak between the two peaks. (Natural 

Environment Research Council 1975) 

 Studies conducted by Pilgrim and McDermott (1982) and McDermott and 

Pilgrim (1983) used the monthly maximum peaks for a small to medium sized 

catchment. Basing this assumption on the fact that only minor additional damage 

would be caused by floods that have occurring within the same month and closer 

together flood peaks could not be classed as independent in terms of their 

effects. (Australian Rainfall and Runoff 1987) 

 Malamud and Turcotte (2006) specified that each peak must be separated by at 

least 30 days either side of the peak to maintain independence (Malamud & 

Turcotte 2006). 

 Kundzewicz et al. (2005) used a time period to determine the independent flood 

peaks based on the size of the catchment:  

o 5 days for the size of catchments less than 45,000 km² 

o 10 days for the size of catchments between 45,000 - 100,000 km²  

o 20 days for the size of catchments greater than 100,000 km² 
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The time period needs to be as short as possible while only including „statistically 

independent‟ floods. While the flood series created for this project is not strictly 

uncorrelated, for the purposes of this analysis they are sufficiently independent. 

 

 

2.3 Probability Distributions 

 

The most commonly used method in the determination of the frequency at which peak 

stream flow occurs is statistical flood frequency analysis. This method involves fitting 

historical flood records to an extreme value probability distribution function and 

therefore relies on having long stream flow records.  

An article by Ott and Linsley (1972) concluded that for flood frequency analysis to be 

performed accurately there needs to be a sufficiently long stream flow record, otherwise 

there is a high probability of uncertainty of the fitting of the distribution to the historical 

data. “Only extremely long-term records divulge the true frequency characteristic of a 

watershed. Moreover, there is a high probability (as much as 80 percent) that the flood 

peaks will be over-estimated when using the stream flow record as short as 20 years.” 

(Ott & Linsley 1972). Determining the average frequency of a once in 100-year flood 

when there is only 50 years of records available, the probable error is very high and 

suggested by Wisler and Brater (1959) be several hundred percent error because the not 

even one whole sample or period of observation is available upon which to base the 

judgement on. The probable error of the distribution is dependent on the number of 



17 

independent samples of data that is available and no amount of juggling or manipulation 

to the data can reduce the error (Wisler & Brater 1959). 

The commonly used probability distributions for flood frequency analysis can be 

divided into four distinct groups (Malamud, Turcotte & Barton 1996): 

 Generalized Pareto distribution 

 General Extreme Value (GEV) family  

o includes the GEV, Weibull, Gumbel and Log Gumbel 

 Normal family  

o includes the Normal, Log Normal, Log Normal type 3 

 Pearson type 3 family  

o includes Pearson type 3, Log Pearson type 3 

The federally adopted methodology in the United States is to fit an annual flood series 

to a Log Pearson type 3 distribution (USGS 1982). For Australia, it is suggested using 

the Generalized Extreme Value (GEV) and the Log Pearson type 3 distributions 

(Australian Rainfall and Runoff 2010).  

Constructing an empirical distribution function or the probability plot is important for 

flood frequency estimation, as the probability plot estimates the average exceedence 

probability and plots it in regards to the observed peak discharges. It is then easier to 

draw the probability distribution as a smooth curve to allow for visually checking of the 

effectiveness of the proposed fitted flood distribution. 

For plotting purposes, a general formula (shown below) is used to estimate the annual 

exceedence probability of an observed flood. 
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(2.3-1) 

     
   

      
 

where, 

   = the number of years of flood data 

   = the rank of the flood 

   = selected constant  

There has been put forward several choices by a range of researchers for the constant α, 

which is chosen to maintain desirable statistical properties in the plotting position. 

Various values of the constant α are summarized in Table 2.3.1. 

Table 2.3.1 Plotting Position Formulas (Shabri 2002) 

Proponent α 
Plotting Position 

Formula 
Parent Distribution 

Weibull (1939) 0 
 

   
 All distributions 

Beard (1943) 0.3175 
        

       
 All distributions 

APL 0.35 
      

 
 

Used with Probability Weighted 

Moment Method (PWM) 

Blom (1958) 0.375 
     

     
 Normal distributions 

Cunnane (1977) 0.40 
     

     
 

General Extreme Value and 

Pearson type 3 distributions 

Gringorten (1963) 0.44 
      

      
 

Exponential, Extreme Value 

and General Extreme Value 

distributions 

Hazen (1914) 0.50 
     

 
 Extreme Value distributions 
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The plotting position of top ranked flood events is sensitive to the choice of plotting 

formula. According to Shabri (2002), these plotting position formula are design to 

correct bias and return a systematic underestimation of the recurrence interval of the top 

ranked floods. To maintain consistency, the Australian Rainfall and Runoff guide 

(2006) recommends that the Cunnane plotting position be used as it produces plotting 

positions that yield unbiased quantiles.  

(2.3-2) 

     
     

     
 

The probability plot for the partial flood series is prepared similar to the annual flood 

series. However, it involves estimating of the average recurrence interval for each 

historical flood instead of the annual exceedence probability and plotting that against 

the observed historical discharges, with the average recurrence interval of each flood 

calculated by: 

(2.3-3) 

       
     

     
 

where, 

   = Number of years of flood data 

   = Rank of flood (sorted in descending order) 

 

The flood frequency curve is completed when a suitable distribution is fitted to the 

historical flood data (Figure 2.3.1). The distribution‟s curve correlates the return period 

(as shown on the x axis), to a specified flood magnitude (as shown on the y axis). Using 
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this curve, the peak discharge of a „design flood‟ in relation to the designed lifespan of 

the proposed infrastructure can be found.  

 

Figure 2.3.1 Typical Flood Frequency Curve (Sivandran 2002) 

 

2.3.1 Log Pearson type 3 Distribution 

The most common applied frequency distribution is the Log Pearson 3 distribution as it 

is recommended by the United States Water Resource Council (1982) for flood peak 

analysis (USGS 1982). 

Studies conducted by Conway for New South Wales coastal streams and Kolittke et al. 

for Queensland streams established the Log Pearson 3 distribution as the most suitable 

distribution for their catchments (Rahman, Haddad & Rahman 2014). Based on findings 

from these studies, it was recommended in the Australian Rainfall and Runoff (1987) 

guide that flood frequency analysis in Australia should follow the United States of 

America and adopt the use of the Log Pearson type 3 distribution. 
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A study done by Boughton (1975) of the statistical frequency distribution of annual 

maximum flows in Queensland showed that of the distributions tested (Log Person type 

3, Pearson 3, log-Normal, Gumbel and Potter), Pearson 3 and Log Pearson 3 

distributions fitted the Queensland data most accurately due to their ability to change 

depending on the skew of the data (Boughton 1975). 

This distribution is a three parameter distribution, meaning that it is flexible and can 

take on a many shapes, hence the reason for its wide use. Determining shape, scale and 

location of the Log Pearson 3 distribution requires calculating from the logarithms of 

the annual series, the skew, standard deviation and mean. These three statistical values 

determine a trend line and when it is plotted on a semi-log plot, it passed through the 

observed discharges. Some of these discharges are found to be outliers, not fitting with 

the general trend of the data. Since the data is ranked from the highest discharge to the 

smallest, these outliers occur at the low or high end of the distribution. Due to this, 

Cooper (2005) identified that the Log Pearson 3 distribution struggles to represent the 

outliers and the general trend of the discharges causing the distribution to significantly 

under or over-estimate the largest discharges. 

The partial derivative function of the Log Pearson 3 distribution is given as (Ewemoje 

& Ewemooje 2011): 

(2.3-4) 

     
                  

     
,        

where, 
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√ 
 

     ∫          
 

 
,     

where,  

 x = Observed flow (   ⁄ ) 

y = Logarithm of observed flow (   ⁄ ) 

 S = Standard deviation of floods 

 λ = Mean rate of recurrence 

β = Shape parameter 

Γ(β)  = Gamma function 

ε =  Lower bound of gamma distribution 

 

For Australian streams, excluding those in the arid zone, McMahon found that the 

annual peak flows had a mean standard deviation of the logarithms of 0.35 (range 0.12-

1.3), while the world‟s non-arid zone average is 0.15 (range 0.06-0.36), hence indicating 

that the Australian streams are more than twice the world‟s average deviation (Hall 

1984). Australian streams are considerably more variable than the rivers throughout the 

world, giving the Log Pearson 3 distribution an advantage as it can vary depending 

upon the standard deviation of the data. 

However with a negative skew value, which is common for Australian flood data, there 

is an upper bound with the Log Pearson 3 distribution, causing difficulties in estimating 

floods of high recurrence intervals. 
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2.4 Power Law Flood Frequency Analysis 

 

The conventional analysis methods often used to predict the return periods of extreme 

outlier events are highly unrealistic and have led many authors (Baker 1994) to be 

critical of these conventional techniques. The Power Law model offers a simpler 

alternative to the more complex probability models.  

The Power Law relationship for flood frequency takes the form: 

(2.4-1) 

         

where C and α are regression coefficients in a log-log space. 

The Power Law approach has found successful predictive and descriptive applications 

across a wide range of natural phenomenon. Turcotte (1997) presents a number of case 

studies using the Power Law relationship to model a variety of natural events including 

earthquakes and volcanic eruptions, while Scheidegger (1998) provides examples of its 

uses from landslides and Birkeland and Landry (2002) from avalanches (Kidson, 

Richards & Carling 2005). Malamud and Turcotte (1999) provided examples of the 

Power Law model with forest fires and Tzanis and Makropoulos (2002) provided more 

evidence of the use of the Power Law model for earthquakes. 

A prominent application of the Power Law relationship to flood frequency was 

presented by Malamud et al., (1996), who demonstrated a close fit of the discharge to 

the recurrence interval of the extreme 1993 flood event on the Mississippi river with a 

Power Law model. Similar close fits were also demonstrated with historic data for the 

Colorado river.  
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Kidson et al. (2006) compared the Power Law model with conventional distributions 

(Log Pearson 3) for the prediction of the outlier flood events (large rainfall events). His 

study focussed on 50 United States rivers and 12 United Kingdom long term rainfall 

stations. It was demonstrated that the Power Law model produces a far more 

conservative return period estimates than the Log Pearson 3 at the higher discharge 

events.  

The forecasted 100-year flood event using the Log Pearson 3 distribution has been 

found to be considerably smaller than forecasting using the Power Law approach. This 

difference was illustrated in the study by Malamud et al. (1996) on the 1993 Mississippi 

River flood. Where using the data at the Keukuk, Iowa gauging station found the flood 

to be a typical 100-year flood using the Power Law distribution and a 1000 to 10,000 

year flood using the Log Pearson 3 distribution. 

Malamud and Turcotte (2006) noted the Power Law relationship typically fitted better 

with the partial series flood record than the annual flood record, as the partial series is a 

better statistical sample. Kidson and Richards (2005) modelled a Power Law 

relationship to the partial duration series data which correlated with the extreme events 

better than the annual series data. 

Studies conducted by both Kidson et al. (2006) and Malamud and Turcotte (2006) used 

the Weibull plotting position to calculate the recurrence intervals for the discharge 

values instead of Cunnane plotting position given in (2.3-3), recommended for use with 

the Log Pearson type 3 distribution. Kidson et al. (2006) states the Weibull plotting 

position formula was selected for their study due to its ability to provide simple 

unbiased exceedence probabilities independent of any distribution. This study has 
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however used the Cunnane plotting position for the Power Law model to maintain 

comparable results with the Log Pearson distribution. 

According to an article by Malamud and Turotte (2006)  a flood frequency factor can be 

found using the Power Law relationship. This factor is the ratio between the peak 10-

year discharge and the peak 1-year discharge, which is the same as the ratio of the peak 

discharge of the 100-year event to the peak discharge of the 10-year event. 

(2.4-2) 

  
     

    
 

      

     
          

According to Malamud and Turcotte (2006), this flood frequency factor is directly 

associated with the catchment‟s climate. Where it was found that for arid climates, the 

factor is relatively large. while for maritime climates the factor is relatively small 

(Malamud & Turcotte 2006).  

 

 

2.5 Goodness of Fit 

 

Cunnane (1985) describes how there is no analytical way of proving that a particular 

distribution is the correct distribution. For design purposes, the effectiveness of several 

types of probability distributions are able to be tested by identifying the fit of that the 

distribution has with the historical flood records. 

The accurately of flood frequency analysis models are typically measured according to 

goodness of fit of the predicted values from the model against the observed data points. 
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These tests assist in determining the best fitting distribution to the given data and to 

describe differences between each distribution‟s expected values and the observed data 

values (Meylan, Favre & Musy 2012). However, goodness of fit tests can only conclude 

from the available data, whether to reject the hypothesis stating that a particular model 

is suitable and therefore these tests should not be used to pick the best distribution, 

rather to reject possible distributions. 

The goodness of fit approach is flawed for a number of reasons. It assumes that the 

observed data taken from the stream gauges are precisely measured. Very high flows 

may be subjected to large absolute errors because of the difficulties of measurement and 

the lack of numerous confirming measurements.  

Different goodness of fit tests will favour different models and not all models can be 

evaluated by the same test. Kidson and Richards (2005) demonstrated where different 

goodness of fit tests (absolute error and least squares error) favour alternative models. 

Therefore flood frequency analysis must be aware of the sensitivity to choice of 

goodness of fit tests and it is useful to employ a number of different tests to reduce the 

sensitivity. The goodness of fit test subjectivity can also be introduced through the 

choice of different plotting position formula for the distribution (Schertzer, Lovejoy & 

Lavallee 1993). These tests also tend to be insensitive in the prediction of extreme 

events. 

The most commonly applied goodness of fit tests are the Chi-Squared test, the 

Kolmogorov-Smirnov test and the Anderson-Darling test (Meylan, Favre & Musy 

2012). Due to the Power Law relationship not being a probability distribution, the 

Kolmogorov-Smirnov and Anderson-Darling tests were unable to be used and instead 

the more simple R-Squared test was used. 
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2.5.1 Chi-Squared Test, x
2
 

The Chi-Squared test is a goodness of fit test as well as a conformity test, used to 

identify if the sample is from a specific distribution. According to D'Agostino and 

Stephens (1986) the Chi-Squared test is the most practical test of fit in many situations 

when the parameters are non-location-scale families or in uncommon distribution.  If x
2
 

equals zero, the distribution predicts the historical discharges, if x
2
 is greater than zero, 

it does not. The calculated chi squared value is the compared with a critical value at 

selected significance level using degrees of freedom (Uregina n.d.). The chi square 

critical values are shown in table D.1 in Appendix D. A small chi squared value shows a 

close match between the observed values and the frequency distribution (Uregina n.d.). 

Therefore x
2
 < x

2
crit, the fit is assumed to be satisfactory.  

 

2.5.2 R-squared test, R
2
 

The R-squared test is a statistical measure of how close the observed data is to the fitted 

regression line.  

The value of R
2
 is a fraction that lies between 1 and 0. As demonstrated in Figure 2.5.1, 

when there is a R
2
 value of 0, it means there is no relationship between the average 

recurrence interval and the historical stream discharges. When R
2
 equals 1, the historical 

stream discharges all lie on the straight line provided by the probability distribution. 

(GraphPad Software n.d.) 
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Figure 2.5.1 Examples of different values of R
2
 (GraphPad Software n.d.) 

 

The R-squared test is used in linear models. If the model is not linear, the R-squared test 

should not be used as the total sum-of-squares is will not be equal to the regression 

sum-of-squares and the residual sum-of-squares (Spiess & Neumeyer 2010). Therefore 

the R-squared can easily be applied to the Power Law model. However, the majority of 

the statistical distributions including the Log Pearson 3 distribution are nonlinear and 

hence the R-squared test cannot be used. Ewemoje and Ewemooje (2011) in their study 

used the R-squared test to identify which plotting position fitted which statistical 

distribution best. To use this test Ewemoje and Ewemooje converted the predicted 

values from the probability distribution of the Normal distribution, Log Normal 

distributon and the Log Pearson 3 distribution into regression equations which were 

linear. 
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2.6 Poor Fits 

 

A poor fit of the flood data to the probability distribution are characterised in two ways, 

according to the Australian Rainfall and Runoff (1987) guide. Firstly, by the presence of 

outliers in the distribution that is inconsistent with the overall trend of the remaining 

data and also by the discrepancies between the observed discharges and the fitted 

distribution.  

There are a variety of reasons for poor fits of the probability distribution to plotting 

position and observed discharges (Australian Rainfall and Runoff 2010): 

1) The smaller annual series maximums are not significant floods. 

2) Rating curve extensions is biased causing over or under-estimate of the larger 

floods 

3) Some of the observed floods could be unusually rare for the record length. 

4) A change in the hydraulic control with discharge affecting the shape of the 

frequency curve 

5) The flooding could be caused by multiple meteorological events (a storm and a 

tropical cyclone together), which is not responsive to most distributions.  

6) Non-homogeneity of the flood record.  

There are strategies are available to assist with a poor fit of the flood frequency 

distribution. A more flexible probability model could be fitted or the responsible data 

for the poor fit could be weighted less (Australian Rainfall and Runoff 2010). 
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2.7 Summary 

 

This section has covered a large amount of literature regarding the conventional 

methods of flood frequency analysis used in Australia according to the Australian 

Rainfall and Runoff (1987) guide. It initially describes the types of data series used in 

flood analysis, in particular the annual flood series and the partial flood series.  

The conventional methods of analysis using in Australia was identified as the Log 

Pearson type 3 probability distribution and this chapter also explains the limitations and 

complications of this distribution. The Power Law model was explained and previous 

studies of this model were discussed.  

This chapter also describe a number of goodness of fit tests that will used to determine 

the accuracy of each model as compared to the historical peak discharges by the use of 

the Chi-Squared goodness of fit test and the R-Squared test.  

Finally, research was conducted regarding poor fit of the flood data to the probability 

distributions. A variety of reasons for possible poor fits had been identified and along 

with strategies to deal with them. 
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Chapter 3 – Methodology 

 

 

3.1 Chapter Overview 

 

This chapter details the methods and procedures that were undertaken to complete this 

research project. In particular the selection criterion used for choosing the ten stream 

gauge stations from catchments across Queensland, as well as the specific approach 

taken to prepare both the annual flood series and the partial flood series. The approach 

used in creating the three frequency models to be analysed has also be stated. The 

chapter concludes with the methodology of applying the goodness of fit tests to the 

frequency models. 

 

 

3.2 Resource Analysis 

 

The number of resources that are required for this project is small. The data for the 

analysis will be obtain through two online databases, the Water Monitoring Data Portal 

produced by the Queensland Department of Natural Resources and Mines and the 

Hydrological Reference Station database produced by the Australian Government 

Bureau of Meteorology. 
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The spread sheet and data analysis software will be utilised in the form of Microsoft 

Office‟s Excel package and Mathwave‟s EasyFit, an Excel add-in which automates the 

process of fitting probability distributions to the data selection.  

 

 

3.3 Station Selection 

 

This project analyses peak flood discharges from generally unregulated gauging stations 

from catchments across Queensland. A strict criterion was set for the selection of stream 

gauges and analysis of stream gauge data. For this project, data sources were restricted 

to the Water Monitoring Data Portal, a database of stream gauging data produced by the 

Queensland Department of Natural Resources and Mines and the Hydrological 

Reference Station database, a database showing Australian stream flow trends by the 

Australian Government Bureau of Meteorology. This source produced an initial pool of 

approximately 410 potential stream gauges across Queensland. The stream gauge data 

was sorted according to the following criteria, which reduced the number of stations to a 

final list of ten stations; see Figure 3.3.1.  

The initial criterion for gauge selection was that all data had to be concurrent for at least 

thirty water years from the 1 July 1984 to 30 June 2015. Data files were checked using 

the station summary reports to identify stations that suited this criterion. Gauging 

stations were not included if their data had a gap at a time when the stream flow had 

possibly peaked above the mean daily flow (or if the magnitude of a missing flow peak 

could not be estimated by linear interpolation). To check this, the flow records for the 
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nearby and/or upstream stations were examined to see if significant flow events had 

been recorded for the relevant period. 

There was limited time was available for this project and in a more detailed study it 

should be possible to include more gauging stations because there would be more time 

to track down high quality stream gauging data. 

 

Table 3.3.1 Summary of the final stream gauge stations used in this analysis 

Station 

ID 
Station Name Basin 

Catchment 

Area 

(km
2
) 

Distance 

from 

Stream 

mouth 

(km) 

Record 

Length 

(years) 

Record 

Period 

(1 July 

to 30 

June) 

922101B 
Coen River at 

Racecourse 

Archer 

Basin 
172 154.5 47 

1968 –

2015 

112002A 
Fisher Creek 

at Nerada 

Johnstone 

Basin 
16 2.9 40 

1975 – 

2015 

116006B 
Herbert River 

at Abergowrie 

Herbert 

Basin 
7454 71.8 45 

1970 –

2015 

126003A 
Carmila Creek 

at Carmila 

Plane 

Basin 
84 11.8 42 

1973 –

2015 

137201A 

Isis River at 

Bruce 

Highway 

Burrum 

Basin 
446 22.7 49 

1966 –

2015 

138001A 
Mary River at 

Miva 

Mary 

Basin 
4755 126 105 

1910 –

2015 

142001A 

Caboolture 

River at Upper 

Caboolture 

Pine Basin 94 31.4 49 
1966 –

2015 

143303A 
Stanley River 

at Peachester 

Brisbane 

Basin 
104 89.2 88 

1927 – 

2015 

146010A 

Coomera 

River at Army 

Camp 

South 

Coast 

Basin 

88 45.2 52 
1963 – 

2015 

422394A 

Condamine 

River at 

Elbow Valley 

Balonne-

Condamine 

Basin 

325 1136.8 42 
1973 – 

2015 

 



34 

The median start year for the stream gauge stations used was 1967, with a mean record 

length of 56 years. In total 559 years of flood data was analysed across the 10 

Queensland stations. The location of these ten stream gauge stations can be seen on the 

map below in Figure 3.3.1. 

 

Figure 3.3.1 The location of the ten stream gauge stations used in this analysis 
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3.4 Annual Series and Log Pearson 3 Distribution 

 

The annual flood maxima for each site were ranked in descending order so that the 

floods range from largest to smallest. For the annual series, missing record periods is of 

no importance and is able to be included in analysis if it is determined that the largest 

discharge for that year did not occur during the missing record period (Australian 

Rainfall and Runoff 1987). The rainfall records and stream flows of nearby catchments 

were used in determine if a large flood occurred during the missing record period.  

The average exceedence probability for each flood was estimated using the Cunnane 

plotting position recommended by the Australian Rainfall and Runoff guide for the Log 

Pearson 3 distribution. This plotting position formula is stated earlier as equation 

(2.3-2). 

Engineers Australia recommends in the Australian Rainfall and Runoff guide (2006) 

that the fitting procedure of the method of moments is to be used for the Log Pearson 

distribution. This procedure is outlined here. 

Firstly the logarithm of the observed flow data is needed. 

(3.4-1) 

         

where; 

     Observed historical flow data (   ⁄ ) 

    Observed flow data logarithm 
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The key statistics of the observed dataset is then calculated from the logarithms, this 

includes the calculation of the mean, standard deviation and coefficient of skewness.  

(3.4-2) 

Mean      
 

 
∑   

 
    

(3.4-3) 

Standard Deviation    [
∑       

   
]
   

 

(3.4-4) 

Coefficient of Skewness   
 ∑       

             

where; 

    Number of years of record 

    Logarithm of observation i 

If the coefficient of skewness is between -1 and +1, the value of the frequency factors 

for the distribution,   , can be determined using the equation (Chin 2006).  

(3.4-5) 

   
 

  
                

Where,  

  
 

 
 

 

The standard variable z is computing by taking the inverse of the normal cumulative 

density function. (Abramowitz & Stegun 1965) 
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(3.4-6) 

    
                            

                                 
 

Where,  

  √   
 

  
           

With P equal to the observed return periods. The value of z is computed using (3.4-6) 

and given as a negative sign. Using equation (3.4-6) to estimate the frequency factor 

there is an error of less than 0.00045 (Chin 2006). 

The values of    is more easily found using Table B.1 and Table B.2 shown in 

Appendix B from Water Resources Council (1967), these    values can also be found 

in the Australian Rainfall and Runoff (1987) guide.  

The flood discharges at various return intervals is then determined using the expression:  

(3.4-7) 

            

Where, 

      Mean logarithm value of floods 

       Standard deviation of the logarithm of the peak floods 

     Frequency factor for the distribution corresponding to T years recurrence 

interval 

 

      is the logarithm of a flood discharge having the same recurrence interval or 

percent chance. Find the antilog of       to get the flood discharge,   . 
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3.4.1 Outliers 

Outliers that are significantly different from the trend of the data can greatly affect the 

fitted distribution and the estimate of flood peaks from the distributions. The following 

formulas are used to identify the high and low outliers in the historical flood data. 

The equation used to indicate high outliers is (Australian Rainfall and Runoff 1987): 

(3.4-8) 

          

Where, 

    High outlier threshold in log units 

      Mean logarithm value of floods 

       Standard deviation of the logarithm of the peak floods 

    Values from Table C. correlating to the number of years of data (N) 

   An adjustment factor depending on the number of years of data (N) and 

the skew of the logarithms of the flood data (g) given in Table D.2 

If any of the values calculated used equation (3.4-1) are above the value of XH from 

equation (3.4-8), then it is most likely an outlier, while values below the value of XH 

have no statistical evidence of being an outlier. The omission or deletion of a value in 

the flood series, is regarding as an extreme step and only done when no other course of 

action is justifiable. If a value is omitted, the analysis should be completed as if the data 

omitted was not part of the series and the number of years of recorded data is reduced 

by one. 

The equation used in determined low outliers is (Australian Rainfall and Runoff 1987): 
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(3.4-9) 

          

Where, 

     Low outlier threshold in log units 

      Mean logarithm value of floods 

       Standard deviation of the logarithm of the peak floods 

     Values from Table C. correlating to the number of years of data (N) 

   An adjustment factor depending on the number of years of data (N) and 

the skew of the logarithms of the flood data (g) given in Table D.3 

If the logarithms of any peaks in the annual series are less than XL, the data is 

considered as a low outlier and omitted from the data series.  

 

 

3.5 Partial Series and Exponential Distribution 

 

As stated in Chapter 2, the partial series requires firstly that a base discharge is chosen 

so that the series consists of all independent floods above the base value. To be classed 

as an independent flood peak, the maximum daily stream discharge needs to be 

separated by a certain number of days.  

The construction of the partial flood series, the dataset consisting of daily stream 

discharge were obtained from the Department of Natural Resources and Mines and the 

Hydrological Reference Station database for each station and period of time considered. 
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The approach take to maintain independent of the flood peaks was based on the 

approach taken by Malamud and Turcotte (2006) in their article, where the maximum 

daily discharge for the entire time period was found and all of the discharges found 30 

days either side of this value was deleted, giving the largest „flood‟ for that stream. 

Following of from that, the next maximum discharge of the values remaining was 

identified and all values that are within 30 days of it were deleted, to provide the second 

largest flood in the flood series. (Malamud & Turcotte 2006) The process was continued 

until there were K number of largest floods for the period considered. If possible, the 

base discharge for this approach should be selected so that the number of floods, K is 

two to three times N, which is the number of years of record, according to the 

Australian Runoff and Runoff (1987) guidelines. However, when the number of floods 

is low in regions due to low rainfall, it may be necessary to use a smaller value of K. 

The base value for the peak discharges was chosen so that the number of floods (K) 

used for the partial series was approximately equal to 1.5 – 2 times the number of years 

of record (N). Due to the number of years of drought in the recent times in Queensland, 

the rainfall is low and hence a smaller ratio of K to N was used than the recommended 

by the Australian Runoff and Runoff (1987) guidelines. 

There is several methods suggest by the Australian Rainfall and Runoff (2010) guide for 

the treatment of missing record periods in partial duration flood series. In this analysis 

where a nearby station record exists which covers the missing record period; the 

correlated data was used from the nearby station to predict the discharges in gap. Where 

there was no nearby station with covered the missing record period, the missing data 

was ignored in the analysis and the overall period of the record was left missing that 

record period. 
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A plotting position in the form of an average recurrence interval is needed for the partial 

series, this is estimated using equation (2.3-3). The design discharges for the partial 

series are calculated from the regression equation: 

(3.5-1) 

               

where, a and b are regression constants. 

The partial series data should be plotted on a semi-log (or log-linear) scale where an 

exponential distribution plots as a straight line. Each observed flood peak is plotted on 

the linear scale and the average recurrence interval calculated using (2.3-3) is plotted on 

the logarithmic scale. A regression line can be drawn and the regression constants are 

identified.  

 

3.6 Power Law Relationship 

 

The Power Law relationship is constructed using for the most part the partial duration 

flood series, as described in section 3.5. However for the construction of this 

relationship the number of floods K used in the partial series is equal to the number of 

years of record N for each station, so that the Power Law relationship is not heavily 

influenced by low magnitude floods. 

The plotting position for the Power Law model used the Cunnane plotting position. 

Hence the plotting position used is the same as (2.3-3) as the plotting position needs to 

be in the form of an average recurrence interval. 
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The design discharges for the Power Law distribution are calculated from the regression 

equation which was stated earlier in equation (2.4-1).  

The partial series data should be plotted on a log-log scale, turning the Power Law 

relationship into a straight line when plotted. Where the each flood peak is plotted 

against the average recurrence interval calculated using (2.4-1). A regression line can be 

drawn and the regression constants are identified.  

 

 

3.7 Applying Goodness of Fit tests 

 

Goodness of fit tests were applied to each of the flood frequency models for each 

individual station. They involved comparing the results of each model to the historically 

observed flood records for each station to determine the effectiveness of the frequency 

model in predicted previous flood event‟s discharges. 

 

3.7.1 Chi-Squared 

This test is applied to binned data, so the value of the test statistic depends on how the 

data is binned. The following formula was used to determine the number of bins used in 

the calculation. 

(3.7-1) 

          

where,  
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    The number of bins 

     Number of years of flood 

The peak discharges are then grouped into bins of equal widths and the frequency of 

discharges in each bin are calculated. The Chi-Squared goodness of fit test requires that 

there be at least five data points in each bin, so some adjacent bins may need to be 

joined together to make sure there is at least five data points in the bin or it may be 

necessary to group the data into large bins (Singh 1986).  

The Chi-Square test statistic is then able to be calculated by taking an observed 

discharge frequency (Oi), subtracting the expected discharge frequency given from the 

probability distribution (Ei) and then squaring this difference. Squaring the differences 

makes the error positive and then can be divided by the expected discharge frequency. 

The standardised difference for each discharge is then summed.  

The Chi-Squared test statistic (  ) given as: 

(3.7-2) 

   ∑
       

 

  

 

   
 

where, 

    = the observed frequency for bin   

    = the expected frequency for bin    

 

The test statistic is then compared to the critical value found in table D.1, where the 

degrees of freedom is one less than the number of discharges used to calculate the test 

statistic. The selected significance level for the analysis is 80 percent, so that a 

distribution model is rejected when the test statistic is greater than the critical test 
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statistic value at χ2
.80 in Appendix D. When comparing the three models for each station, 

the lower the test statistic value is the closer the match is between the probability 

distribution model and the historic observed values for the flood data. 

 

For the Log Pearson type 3 distribution and the exponential distribution, EasyFit 

software produced by Mathwave was used to calculate the Chi-Squared value for the 

goodness of fit test, whereas the Chi-Squared value for the Power Law model was 

calculated in Microsoft Excel using the equation (3.7-2).  

 

3.7.2 R-Squared 

R-Squared values range from zero to one, with a value of one meaning that the 

historical flood discharges are completely explained by the frequency distribution. A 

high R-squared (usually 0.85 to 1) indicates a correlation between the historical data and 

the distribution; while a low R-squared (0.7 of less) indicates the model does not 

provide an effective estimate of the historical flood record (Invetopedia 2015).  

To complete this test, the discharges were calculated from each of the distribution 

model for each of the recurrence intervals given by the plotting position for each station. 

That way the historical discharges are compared directly with the model‟s predicted 

discharge at the same recurrence interval.  

The R-Squared value is calculated by (Khan Academy 2010): 

 (3.7-3) 

    ∑
           

 

(       
̅̅ ̅̅ )
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where, 

      = The historical discharge 

     = The discharge provided by the model 

  
̅̅ ̅̅  = The mean of discharges provided by the model 

   Number of years of flood 

 

This formula was applied to three data sets for each frequency model. The first dataset 

was the full number of year of flood data from the annual and partial series, the R-

squared value found from this can be compared with the Chi-Squared test result. The 

next dataset uses the discharges which have a plotting position of less than ten years, 

this will be used to identify if the exponential distribution is the frequency model that is 

most effective in predicting the more common floods as suggested by the Australian 

Rainfall and Runoff (1987) guide. The final R-Squared value calculated is for the floods 

that have a plotted position that is greater than a ten year recurrence interval and used to 

identify the effectiveness of the Log Pearson 3 distribution and the Power Law model 

for the higher discharge flood. 

 

3.7.3 Graphical Comparison 

For each of the stream gauge stations, graphical comparison of the observed peaks 

discharges to the model predicted discharges was also completed to assist with the 

determination of the effectiveness of the three model types.  

The values for the model predicted discharges were obtained with the plotting position 

formula from equation (2.3-3). The recurrence interval (in years) from each of the 

observed floods was used as the time period in each of the model‟s calculations to find 
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their respective discharges. The discharges then given by the models for each stream 

gauge can then be compared with the observed discharge from the historical data.  

A one-to-one reference line was used in the graphical comparison to help identify where 

the observed discharges matches the model predicted discharges. The model which has 

their discharge predictions closest to the one-to-one reference line provides the most 

accurate prediction of the peak discharge according to the historical flood data. The 

average location of the ten year recurrence interval was also included in the graphs to 

help identify the effectiveness of the model with both the less than ten year floods and 

the greater than ten year floods. 

This graphical comparison identifies the accuracy of each model to predicting the 

observed discharge using the Cunnane‟s plotting position formula as the average 

recurrence interval for each flood. Since this plotting position is an estimate of the 

return period of the historical floods, this graphical comparison has its limitations which 

are discussed in the discussion chapter. 

 

 

3.8 Summary 

 

This chapter has describes the processes used to generate the annual and partial flood 

duration series‟ and applying the probability distributions to them. The final part of this 

chapter covers goodness of fit testing procedures for each distribution type for each of 

the selected stream gauge stations and the critical values associated with these tests have 

also been identified. 
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Chapter 4 – Results 

 

 

4.1 Chapter Overview 

 

The previous chapter described methods of generating each frequency model for this 

project, along with the processes used in the analysis of each model for its effectiveness.  

This chapter looks at the analysis that was performed on the historical stream gauge data 

with respect to the three distributions, Log-Pearson type 3, Exponential and Power Law. 

Each model has been identified for the ten stream gauge station and goodness of fit 

values for distribution‟s fit has also identified in this chapter both figuratively and 

graphically.  

 

 

4.2 Stream Gauge Results 

 

The section provides the individual results of each of the stream gauges used in this 

analysis so that the three flood frequency models can be discussed in in relation to each 

individual stream gauge station. 

The ten stream gauges that have been used in this analysis and their results shown in 

this chapter are: 
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 922101B – Coen River at Racecourse 

 112002A – Fisher Creek at Nerada 

 116006B – Herbert River at Abergowrie 

 126003A – Carmila Creek at Carmila 

 137201A – Isis River at the Bruce Highway 

 138001A – Mary River at Miva 

 142001A – Caboolture River at Upper Caboolture 

 143303A – Stanley River at Peachester 

 146010A – Coomera River at Army Camp 

 422394A – Condamine River at Elbow Valley 

More details regarding each station can be found in Table 3.3.1 and Figure 3.3.1 in 

Chapter 3. 

 

4.2.1 Coen River at Racecourse (922101B) 

The Coen River stream gauging station at Racecourse is situated in the Archer basin in 

far north Queensland and has a catchment area of 172 km². The mean of the logarithms 

of the annual peak flows was found to be 2.388, while the standard deviation is 0.371 

which is twice the world non-arid zone average deviation (Hall 1984). The skew of the 

logarithms of the flood data series is -0.268, which means the that mean of the flood 

peaks is less than the median value.  

The flood series data was checked for high outliers. The high outlier threshold (XH) was 

found to be 3.347, which correlates to a peak discharge of 2225 m
3
/s. The highest peak 

discharge for the Coen River stream gauge is 1100 m
3
/s, hence there are no high outliers 
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for this data series. The low outlier threshold (XL) was found to be 1.233, which 

correlates to a peak discharge of 17.08 m
3
/s. The lowest peak discharge in the annual 

series is 38.09 m
3
/s, therefore there is no low outliers in the Coen River annual series 

data.  

The Log Pearson type 3 distribution parameters for the Coen River at Racecourse found 

using MathWave Technologies‟ Easyfit software  is                 and 

       .  

The exponential equation formed from the partial series data is, determining the peak 

discharge in cubic metres per second for a selected average recurrence interval in years 

is:                        

The Power Law model is formed using the equation:                      , with a 

flood frequency factor of 2.31 between the associated 100-year flood to the 10-year 

flood discharge. Since the flood frequency factor is relatively small and the station 

under maritime climate.  
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Figure 4.2.1 Coen River stream gauge model predicted peak discharges at Racecourse 

fitted to the average recurrence intervals 

 

Figure 4.2.1 shows the results of each of the flood frequency models differs over a 

range of years of recurrence. It is noted that the Power Law model provides that highest 

predicted discharges for floods that are greater than the 200-year recurrence interval, 

while the exponential distribution provides the lowest predicted discharges. 

The results of the goodness of fit tests are shown in Table 4.2.1 and Table 4.2.2. Table 

4.2.1 gives the Chi-Squared critical test statistic value for the Coen River stream gauge 

at Racecourse, calculated using equation (3.7-2). It can clearly be seen that the model 

provided by the exponential distribution matches most closely with the historical data 

for this station as it has the lower test score. Both the Log Pearson 3 distribution and the 

Power Law provide high critical test statistic values and hence a probability that is 

under 80 percent, therefore according to the Chi-Squared test these models should be 

rejected as a poor fit for the Coen River.  
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Table 4.2.1 Coen River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
4.3025 0.367 

Exponential 

(partial series) 
2.2823 0.809 

Power Law 

(partial series) 
3.3968 0.639 

 

Table 4.2.2 Coen River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.968 0.904 0.937 

Exponential 

(partial series) 
0.989 0.987 0.988 

Power Law 

(partial series) 
0.796 0.964 0.889 

 

The R-Squared values for the Coen River are shown in Table 4.2.2. In the column 

labelled „overall‟ in Table 4.2.2, gives the values of the R-Squared test using the entire 

flood data series. It can be identified that the goodness of fit from the R-Squared test of 

each of the distribution models matches the results of the Chi-Squared test in which the 

exponential distribution has the highest probability. However, the R-Squared test has 

the Log Pearson distribution a closer match to the historical data according to the R-

Squared test than the Power Law, while the Chi-Squared test has the Power Law as the 

more accurate model. Since there the Log Pearson matches more closely with the 

smaller floods and there are more of them, the overall R-Squared test is biased towards 

the smaller floods. 
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The R-Squared values when the time period is less than the 10-year average recurrence 

interval shows the exponential distribution has the closest match to the historical flood 

data, reinforcing that the exponential distribution is sufficiently accurate when using the 

partial series where the recurrence interval is less than 10-years. 

Lastly, Table 4.2.2 also shows the goodness of fit when the average recurrence interval 

plotted position is greater than 10-years.  R-Squared values show that the exponential 

distribution of the partial series is again the closest fit to the historical flood data, 

however more interestingly is that the Power Law relationship was found by this 

goodness of fit test to be closer to the historical flood data than the Log Pearson type 3 

distribution for floods great than the 10-year recurrence interval.  

 

Figure 4.2.2 Coen River stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 
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The graphical demonstration shown in Figure 4.2.2, gives the predicted peak discharges 

of each model compared to the observed historical peak discharges for the Coen River 

stream gauge. The one-to-one line is given for reference and the approximate location of 

10 percent average exceedence probability. It is identifiable that the exponential 

distribution predicts the peak discharges most accurately as the exponential plots closest 

to the one-to-one reference line, reinforcing the results obtained from the goodness of fit 

tests.  

 

4.2.2 Fisher Creek at Nerada (112002A) 

The stream gauge station on Fisher creek at Nerada is in the Johnstone basin in the far 

north region of Queensland, with a catchment area of 16 km
2
. The mean of the 

logarithms of the annual peak flows was found to be 1.821, while the standard deviation 

is 0.386, reinforcing McMahon‟s article stating that the streams in Australia are more 

variable that the rivers throughout the world (Hall 1984). The skew of the flood data 

series is -0.098, which is similar to a normal distribution (skew = 0).  

The flood series data was firstly checked for high outliers. The high outlier threshold 

(XH) was found to be 2.884, which correlates to a peak discharge of 765 m
3
/s. The 

highest peak discharge for the Fisher Creek stream gauge is 416.5 m
3
/s; hence there are 

no high outliers for this data series. The low outlier threshold (XL) was found to be 

0.708, which correlates to a peak discharge of 5.10 m
3
/s. The lowest peak discharge in 

the annual series is 11.998 m
3
/s, therefore there is no low outliers in the Fisher Creek 

annual series data.  
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The Log Pearson type 3 distribution parameters for the Fisher Creek at Nerada found 

using MathWave Technologies‟ Easyfit software  is                  and 

       .  

The exponential equation formed from the partial series data is: 

                       

While the Power Law model is found by:                     . The estimated 

discharge associated with the 100-year flood is 2.79 times larger than the discharge 

associated with the 10-year flood, according to the frequency factor of the Stanley River 

stream gauge. Since the flood frequency factor is relatively small and the station under 

maritime climate. 

 

Figure 4.2.3 Fisher Creek stream gauge model predicted peak discharges at Nerada fitted 

to the average recurrence intervals 

 

Figure 4.2.3 shows how each of the flood frequency models differs over the range of 

years of recurrence. It is noted that the Power Law model provides that highest 
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predicted discharges for floods that are greater than the 50-year recurrence interval, 

while the exponential distribution of the partial series data provides the lowest predicted 

discharges. From Figure 4.2.3, it can be seen that the Log Pearson 3 distribution seems 

to be closest to the partial series dataset, particularly for the floods of high recurrence 

intervals. 

Table 4.2.3 gives the Chi-Squared critical test statistic values for the Fisher Creek 

stream gauge at Nerada, calculated using equation (3.7-2). The Log Pearson type 3 

distribution of the annual series matches more closely to the historical data as it has the 

lower test statistic value, while the Power Law model has the highest Chi-Squared test 

value and has the least accurate fit with the historical flood partial series. 

Table 4.2.3 Fisher Creek results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
1.035 0.960 

Exponential 

(partial series) 
2.2963 0.807 

Power Law 

(partial series) 
2.3096 0.805 

 

Table 4.2.4 Fisher Creek analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.992 0.987 0.989 

Exponential 

(partial series) 
0.990 0.953 0.962 

Power Law 

(partial series) 
0.913 0.970 0.952 
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The R-Squared values for the Fisher Creek stream gauge models are shown in Table 

4.2.4. From the values of the R-Squared test over the entire flood data series, it can be 

identified that the probabilities from the overall R-Squared test matches the probabilities 

of the Chi-Squared test with the Log Pearson distribution having the highest probability. 

The R-Squared values when the time period is less than 10 years shows the Log Pearson 

distribution has the closest match, closely followed by the exponential distribution. 

Table 4.2.4 also shows the goodness of fit when the average recurrence interval plotted 

position is great than 10 years.  The R-Squared values show the Log Pearson is again 

the closest fit to the historical flood data, while the Power Law relationship was found 

to be closer than the exponential distribution.  

 

Figure 4.2.4 Fisher Creek stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 
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The results discussed in Table 4.2.3 and Table 4.2.4 are shown graphically in Figure 

4.2.4. This graphical demonstration shows the predicted peak discharges of each model 

compared to the observed historical peak discharges for the Fisher Creek stream gauge. 

It is identified that the Log Pearson distribution, given as the red squares are the closest 

data range to the purple reference line. This is appropriate for the discharges both less 

than and greater than the 10-year average recurrence interval line. 

 

4.2.3  Herbert River at Abergowrie (116006B) 

The Herbert River stream gauging station at Abergowrie is situated in the Herbert basin 

in the North Queensland region and has a catchment area of 7454 km². The mean of the 

logarithms of the annual peak flows was found to be 3.299, while the standard deviation 

is 0.412 which is greater than twice the world non-arid zone‟s average deviation (Hall 

1984). The skew of the logarithms of the flood data series is -0.230, giving the mean of 

the flood peaks is less than the median value.  

The flood series data was checked for high outliers. The high outlier threshold (XH) was 

found to be 4.375, correlating to a peak discharge of 23,695 m
3
/s. The highest peak 

discharge for the Herbert River stream gauge is 9,458 m
3
/s, therefore there are no high 

outliers for this data series. The low outlier threshold (XL) was found to be 2.036, which 

correlates to a peak discharge of 109 m
3
/s. The lowest peak discharge in the annual 

series is 241 m
3
/s, therefore there are no low outliers in the Herbert River annual series 

data either.  
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The Log Pearson type 3 distribution parameters for the Herbert River at Abergowrie 

found using MathWave Technologies‟ Easyfit software  is                     

and         .  

The exponential equation formed from the partial series data is calculated to be: 

                         

The Power Law model is defined as:                     , with a flood frequency 

factor of     . Hence the estimate for the discharge associated with the 100-year flood 

is 2.47 times larger than the discharge associated with the 10-year flood. Since the flood 

frequency factor is relatively small and the station under maritime climate. 

 

Figure 4.2.5 Herbert River stream gauge model predicted peak discharges at Abergowrie 

fitted to the average recurrence intervals 

 

Figure 4.2.5 shows how each of the flood frequency models differs over the range of 

years of recurrence. It is noted that the Log Pearson distribution provides that highest 
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predicted discharges for floods; however, for the more extreme floods the Power Law 

model provides the large peak discharges, while the exponential distribution provides 

the lowest predicted peak discharges.  

Table 4.2.5 gives the Chi-Squared critical test statistic value for the Herbert River 

stream gauge at Abergowrie, calculated using equation (3.7-2). The model provided by 

the exponential distribution has the probability closest to one and hence matches more 

closely with the historical flood data. The Power Law model on the other hand, has the 

highest Chi-Squared test value and therefore has the least accurate fit. Since the Power 

Law has a probability of less than the critical 80 percent, according to the Chi-Squared 

test show, the Power Law relationship should be rejected for the Herbert River. 

Table 4.2.5 Herbert River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
1.1715 0.883 

Exponential 

(partial series) 
1.0425 0.903 

Power Law 

(partial series) 
2.696 0.610 

 

Table 4.2.6 Herbert River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.952 0.791 0.882 

Exponential 

(partial series) 
0.980 0.911 0.949 

Power Law 

(partial series) 
0.742 0.874 0.801 
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The R-Squared values for the Herbert River are shown in Table 4.2.6 show that the 

goodness of fit from the overall R-Squared test matches the results of the Chi-Squared 

test as the exponential distribution of the partial series data fits the historical data most 

accurately. The R-Squared values when the time period is less than 10-year average 

recurrence interval gives similar results to the overall data results, the exponential 

distribution has the closest match reinforcing the idea that the exponential distribution is 

sufficiently accurate when the recurrence interval is less than 10 years. 

The goodness of fit when the average recurrence interval plotted position is great than 

10 years shows the exponential distribution is again the closest fit to the historical flood 

data, however more interestingly is that the Power Law relationship was found by this 

goodness of fit test to be closer to the historical flood data than the Log Pearson type 3 

distribution for floods great than the 10-year recurrence interval. 

 

Figure 4.2.6 Herbert River stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 
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The graphical demonstration in Figure 4.2.6 shows the exponential distribution‟s 

predicted peak discharges provide a closer estimate to the historical data than both the 

Log Pearson and Power Law model, as the exponential distribution plots closer to the 

one-to-one reference line. Also seen from Figure 4.2.6, the discharge of largest flood 

that has occurred at the Herbert River stream gauge is most accurately predicted by the 

Power Law relationship. 

 

4.2.4 Carmila Creek at Carmila (126003A) 

The Carmila Creek stream gauging station at Carmila is situated in the Plane basin in 

the Central Queensland region and has a catchment area of 84 km². The mean of the 

logarithms of the annual peak flows was found to be 0.717, while the standard deviation 

is 2.247 which is significantly larger than the world non-arid zone‟s average deviation 

of 0.15 (Hall 1984). The skew of the logarithms of the annual flood data series for 

Carmila Creek is -2.16.  

The flood series data was checked for low outliers first since the skew of the logarithms 

is less than -0.4. The low outlier threshold (XL) was found to be -1.588, which correlates 

to a peak discharge of 0.026 m
3
/s. The lowest peak discharge in the annual series is 0.32 

m
3
/s, therefore there is no low outliers for this data series. The high outlier threshold 

(XH) was found to be 3.470, correlating to a peak discharge of 2,954 m
3
/s. The highest 

peak discharge for the Carmila Creek stream gauge is 1,304 m
3
/s, hence there are no 

high outliers in the Carmila Creek annual series data.  
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The Log Pearson type 3 distribution parameters for the Carmila Creek at Carmila found 

using MathWave Technologies‟ Easyfit software  is                  and 

       .  

The exponential distribution equation was determined from the partial series to be: 

                           

While the Power Law model isn:                        The flood frequency factor 

of the Stanley River stream gauge is 2.37 and since this frequency factor is relatively 

small, the station under maritime climate. 

 

Figure 4.2.7 Carmila Creek stream gauge model predicted peak discharges at Carmila 

fitted to the average recurrence intervals 

 

It is noted from Figure 4.2.7, that the Power Law model provides that highest predicted 

discharges for floods that are greater than the 20-year recurrence interval, while unlike 

the other stream gauge stations, the Log Pearson distribution provides the lowest 
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predicted discharges. The partial series data point can be seen to be closest to the Power 

Law model in Figure 4.2.7, especially for the discharges with higher recurrence 

intervals. 

Chi-Squared critical test statistic results found in Table 4.2.7 show that the model 

provided by the exponential distribution matches more closely with the historical data 

for the Carmila Creek than the other models as the probability calculated is closest to 

one. The Log Pearson Chi-Squared test could not be calculated using the Easyfit 

software, as the standard deviation of the logarithms of the annual flood series is so 

high. 

Table 4.2.7 Carmila Creek results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ
2
 

Probability 

Log-Pearson type 3 

(annual series) 
 NA 

Exponential 

(partial series) 
0.31481 0.989 

Power Law 

(partial series) 
0.9465 0.9465 

 

Table 4.2.8 Carmila Creek analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.904 0.802 0.851 

Exponential 

(partial series) 
0.961 0.908 0.923 

Power Law 

(partial series) 
0.951 0.992 0.981 
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The R-Squared test over the entire flood series determined the Power Law model most 

closely fitted with the historical data, as it has the highest value shown in Table 4.2.8. 

The R-Squared values when the recurrence interval is less than 10 years, show that 

according to the R-Squared test, the exponential distribution‟s predicted discharges are 

the closest match to the historical floods when the recurrence interval is less than 10 

years. This supports the Australian Rainfall and Runoff (1987) suggestion that a 

graphical interpolation of the exponential distribution for floods of recurrence less than 

10 years is adequate for making frequency estimates.  

The goodness of fit as floods greater than 10 years shows the Power Law model is a 

closer fit with the historical flood peaks than the other two models.  

 

Figure 4.2.8 Carmila Creek stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 
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It is identified from Figure 4.2.8, the Power Law relationship (green triangles) and the 

exponential distribution (blue diamonds) are the closest to the reference line for the 

discharges less than the 10-year recurrence interval line. While the Power Law model 

appears to be closer to the reference line for the discharges above the 10-year recurrence 

interval.  

 

4.2.5 Isis River at Bruce Highway (137201A) 

The Isis River stream gauging station at the Bruce Highway is situated in the Burrum 

basin in the Central Queensland region and has a catchment area of 446 km². The mean 

standard deviation of the logarithms of the annual peak flows was found to be 0.819 

which is within the range of the annual peak flows found in Australia specified in 

McMahon‟s article (Hall 1984). The average value of the logarithms of the annual peak 

flows for the Isis River is 1.994, while the skew is -0.915, meaning of the flood peaks is 

less than the median value.  

The flood series data was checked for low outliers first since the skew of the logarithms 

is less than -0.4. The low outlier threshold (XL) was found to be -1.205, correlating to a 

peak discharge of 0.062 m
3
/s. The lowest peak discharge in the annual series is 0.364 

m
3
/s, therefore there is no low outliers for this data series. The high outlier threshold 

(XH) was found to be 3.754, which correlates to a peak discharge of 5,680 m
3
/s. The 

highest historical peak discharge for the Isis River stream gauge is 1,629 m
3
/s, hence 

there are no high outliers in the Isis River annual series data.  

The Log Pearson type 3 distribution parameters found using MathWave Technologies‟ 

Easyfit software  is                  and        .  



66 

The exponential distribution expression formed from the partial series data was 

determined to be:                           

The Power Law model is formed from:                       . The flood frequency 

factor was calculated as 3.30, meaning there is a factor of 3.30 between the associated 

100-year flood to the 10-year flood discharge. Since the flood frequency factor is 

relatively high and the station under arid climate.  

 

Figure 4.2.9 Isis River stream gauge model predicted peak discharges at the Bruce 

Highway fitted to the average recurrence intervals 

 

Figure 4.2.9 shows how the three flood frequency models differ over a range of 

recurrence intervals for the Isis River stream gauge at the Bruce Highway. It should be 

noted that the Power Law model produces the highest predicted peak discharges for 

floods that have a recurrence interval greater than 80 years, therefore becoming the 

more conservative model for the rarer flood events. The exponential distribution of the 

partial series provides the lowest peak discharges for the same recurrence intervals. 
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Figure 4.2.9 also shows the data point of the partial series, it can be seen the discharges 

between 10 years and 40 years are historical higher than any of the model predictions. 

Table 4.2.9 shows the results of the Chi-Squared test for the Isis River stream gauge at 

the Bruce Highway. The lowest critical test statistic value and hence best fitting model 

out of the three is the Log Pearson 3 distribution, followed by the Power Law model and 

lastly the exponential distribution. The probability of all three frequency models is 

below the critical probability of 80 percent and therefore according to the Chi-Squared 

test, all are poor fits for the Isis River.  

Table 4.2.9 Isis River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
2.4792 0.780 

Exponential 

(partial series) 
3.2111 0.523 

Power Law 

(partial series) 
2.5481 0.636 

 

Table 4.2.10 Isis River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.959 0.939 0.946 

Exponential 

(partial series) 
0.981 0.817 0.838 

Power Law 

(partial series) 
0.946 0.862 0.835 
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The R-Squared test results for the Isis River station are shown in Table 4.2.10. The 

overall R-Squared test which used all of the historical flood years in the analysis found 

that the Log Pearson type 3 distribution fits the most closely with the historical data, 

while the Power Law fits the least accurately. This is different to the Chi-Squared test, 

as according to the Chi-Squared test the Power Law model was more accurate than the 

exponential distribution. For the R-Squared goodness of fit test which the flood events 

that have a probability of recurrence in less than ten years, the exponential distribution 

of the partial series most closely fits with the historical flood peaks. The results also 

show that when the recurrence interval is greater than ten years, the Log Pearson 

distribution fits the best out of the three models.  

 

Figure 4.2.10 Isis River stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 
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Figure 4.2.10 shows the observed peak discharges for the Isis River stream gauge 

station against each model‟s predicted peak discharges at the plotting positions assigned 

in equation (2.3-3). It can be seen that the Log Pearson distribution is closest to the 

reference line for the peak discharges that are greater than the ten year recurrence line.  

 

4.2.6 Mary River at Miva (138001A) 

The Mary River stream gauging station at Miva is situated in the Mary basin in the 

Central Queensland region and has a catchment area of 4755 km². The Mary River 

stream gauge provided the largest number of years to analyse, as there is 106 years of 

flood peak data used from this station. The mean of the logarithms of the annual peak 

flows was found to be 2.943, while the standard deviation is 0.495 which reinforces 

McMahon‟s article stating that the streams in Australia are more variable that the rivers 

throughout the world (Hall 1984). The skew of the logarithms of the annual flood data 

series for Mary River stream gauge station at Miva is -0.487. 

Since the skew of the logarithms of the annual flood series is less than -0.4, a test for 

low outliers was commuted first. The low outlier threshold (XL) was found to be 1.128, 

which correlates to a peak discharge of 13.413 m³/s. The lowest peak discharge in the 

annual series for the Mary River at Miva is 12.358 m³/s, with the second lowest peak 

being 45.537 m³/s. Due the lowest peak being less than the lower threshold, the 12.358 

m³/s flood peak was deleted and the frequency analysis was recomputed with 105 years 

of flood record. After taking the 2006-2007 flood peak out, the mean, standard 

deviation and skew statistics of the logarithms were recalculated to be 2.961, 0.464 and 

-0.094 respectfully. The high outlier threshold (XH) was then found to be 4.319, which 

correlates to a peak discharge of 20,857 m
3
/s. The highest peak discharge for the Mary 
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River stream gauge is 7,566 m
3
/s, hence there are no high outliers in the Mary River 

annual series data.  

The Log Pearson type 3 distribution parameters found using MathWave Technologies‟ 

Easyfit software  is                   and         .  

The exponential distribution expression formed from the partial series data is 

determined as:                         

While the Power Law model is formed using the equation:                      

and has a flood frequency factor of 2.72. Since the flood frequency factor is relatively 

small and the station under maritime climate. 

 

Figure 4.2.11 Mary River stream gauge model predicted peak discharges at Miva fitted to 

the average recurrence intervals 

 

The three flood frequency models are shown in Figure 4.2.11 against a range of 

recurrence intervals for the Mary River stream gauge station at Miva. It can be seen in 
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Figure 4.2.11, the Log Pearson model returns the highest peak discharges and is 

therefore the most conservative. You can also see the data point of the partial series, it 

can be seen the discharges between 10 years and 40 years are historical higher than any 

of the model predictions. 

The Chi-Squared goodness of fit test shown in Table 4.2.11 shows the Log Pearson type 

3 distribution of the annual data series matches more closely with the historical data for 

the Mary River station. The exponential distribution of the partial series gave the least 

accurate fit to the historical flood data. The probabilities given for all three frequency 

models are below the critical probability of 80 percent and therefore according to the 

Chi-Squared test, are poor fits for modelling the Mary River flood data. 

Table 4.2.11 Mary River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
2.4792 0.780 

Exponential 

(partial series) 
12.535 0.051 

Power Law 

(partial series) 
4.3104 0.635 

 

Table 4.2.12 Mary River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.997 0.853 0.893 

Exponential 

(partial series) 
0.982 0.825 0.866 

Power Law 

(partial series) 
0.844 0.806 0.816 
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The overall R-Squared test shows that the Log Pearson distribution best fits with the 

historical flood data. It can also be seen that the Log Pearson fit best with the historical 

data when just looking at the floods that have an expectancy to return at less than 10-

year intervals and also when the floods are expected to return at intervals greater than 

ten years. In all cases, the Power Law model, according to the results in Table 4.2.12, 

has the least accurate fit.  

 

Figure 4.2.12 Mary River stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 

 

The predicted peak discharge results of the three models at the plotting position 

assigned in equation (2.3-3) are shown in Figure 4.2.12, plotted against the historical 

peak discharges. When the model predicted peak discharge is the equal to the historical 

discharge, the data point lies on the one-to-one reference line. It can be seen that the 
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Log Pearson 3 distribution has the data points the closest to the reference line, hence 

graphically reinforcing the results obtained from the goodness of fit tests. 

 

4.2.7 Caboolture River at Upper Caboolture (142001A) 

The Caboolture River stream gauging station at Upper Caboolture is situated in the Pine 

basin in the South Queensland region and has a catchment area of 94 km². The mean 

standard deviation of the logarithms of the annual peak flows was found to be 0.525 

which is almost twice that of the world non-arid zone average deviation given in Hall 

(1984). The skew of the logarithms of the annual flood data series for Caboolture River 

is -1.06, which means the mean of the flood peaks is less than the median value.  

The flood series data was checked for low outliers first since the skew of the logarithms 

is less than -0.4. The low outlier threshold (XL) was found to be 0.038, correlating to a 

peak discharge of 1.092 m
3
/s. The lowest peak discharge in the annual series is 3.77 

m
3
/s, therefore there is no low outliers for this data series. The high outlier threshold 

(XH) was found to be 3.274, correlating to a peak discharge of 2,878 m
3
/s. The highest 

peak discharge for the Caboolture River stream gauge is 1,055 m
3
/s, hence there are no 

high outliers in the Caboolture River annual series data.  

The Log Pearson type 3 distribution parameters for the Caboolture River at Upper 

Caboolture found using MathWave Technologies‟ Easyfit software  is           

        and         .  

The exponential equation created from the partial series data was calculated to be: 
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While the Power Law relationship is expressed by:                      , with a 

flood frequency factor of 2.49. As the flood frequency factor is relatively small, the 

station under maritime climate conditions. 

 

Figure 4.2.13 Caboolture River stream gauge model predicted peak discharges at Upper 

Caboolture fitted to the average recurrence intervals 

 

Figure 4.2.13 shows how each of the flood frequency models differs over the range of 

years of recurrence. It is noted that the Power Law model provides that highest 

predicted discharges for floods that are greater than the 40-year recurrence interval, 

while the Log Pearson 3 and the exponential distribution provide very similar peak 

discharges. 

Table 4.2.13 below displays the Chi-Squared critical test statistic values for the 

Caboolture River stream gauge at Upper Caboolture, calculated using equation (3.7-2). 

The Log Pearson type 3 distribution created with the annual flood series matches more 
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closely with the historical flood data. While the Power Law model has the highest Chi-

Squared test value and therefore has the least accurate fit. 

Table 4.2.13 Caboolture River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
1.4052 0.924 

Exponential 

(partial series) 
1.7472 0.883 

Power Law 

(partial series) 
1.9097 0.861 

 

Table 4.2.14 Caboolture River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI overall 

Log-Pearson type 3 

(annual series) 
0.980 0.986 0.983 

Exponential 

(partial series) 
0.930 0.983 0.960 

Power Law 

(partial series) 
0.766 0.967 0.880 

 

The R-Squared values for the Caboolture River stream gauge models are shown in 

Table 4.14. It can be identified that the goodness of fit results from the overall R-

Squared test matches the results of the Chi-Squared test, as the closer the R-Squared 

value is to one, the close the model matches the historical flood data. Demonstrating 

that Log Pearson 3 distribution fits with the historical discharges better for the 

Caboolture river than the other models.  
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The R-Squared values when the recurrence interval is less than ten years, shows the Log 

Pearson distribution is the closest match with the smaller flood discharge predictions, 

closely followed by the exponential distribution. The goodness of fit for the flood 

greater than ten years also show the Log Pearson fits closest and the Power Law model 

having the least accurate fit. 

 

Figure 4.2.14 Caboolture River stream gauge graphical comparison of the flood model’s 

peak predicted discharges compared to the observed historical data 

 

The graphical demonstration in Figure 4.2.14, shows the predicted peak discharges of 

each model at the plotting position from equation (2.3-3) compared to the observed 

historical peak discharges for the Caboolture River stream gauge. It is identified that the 

Log Pearson distribution, given as the red square points are the closest to the purple 

reference line. Since the reference line displays the point where the historical discharges 

is equal to the model predicted peak discharges, the peak discharges predicted by the 

Log Pearson 3 distribution fits historical data most accurately.  
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4.2.8 Stanley River at Peachester (143303A) 

The Stanley River stream gauging station at Peachester is situated in the Brisbane basin 

in the South Queensland region and has a catchment area of 104 km². The mean of the 

logarithms of the annual peak flows was found to be 2.163, while the standard deviation 

is 0.404 which is twice that of the world non-arid zone‟s average deviation. The skew of 

the logarithms of the annual flood data series for Caboolture River is -0.529. 

Since the skew is identified as less than -0.4, the flood series data was checked for low 

outliers first. The low outlier threshold (XL) was found to be 0.689, which correlates to 

a peak discharge of 4.88 m
3
/s. The lowest peak discharge in the annual series is 12.6 

m
3
/s, therefore there is no low outliers for this data series. The high outlier threshold 

(XH) was found to be 3.151, which correlates to a peak discharge of 1,417 m
3
/s. The 

highest peak discharge for the Stanley River stream gauge is 707 m
3
/s, hence no high 

outliers are in the Stanley River annual series data.  

The Log Pearson type 3 distribution parameters for the Stanley River at Peachester from 

the MathWave Technologies‟ Easyfit software is                   and 

       .  

The exponential distribution equation is:                         and the 

Power Law model equation is:                      . The flood frequency factor 

of the Stanley River stream gauge is 2.13, which is relatively small meaning the station 

under maritime climate conditions. 
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Figure 4.2.15 Stanley River stream gauge model predicted peak discharges at Peachester 

fitted to the average recurrence intervals 

 

The peak discharges from each flood frequency model is shown in Figure 4.2.15, over a 

range of recurrence years. It should be noted that the Power Law model provides the 

highest predicted peak discharges for the floods that have a recurrence interval greater 

than 200 years and as expected the exponential distribution provides the lowest 

predicted discharges for the larger flood events 

Table 4.2.15 clearly shows the model provided by the Log Pearson 3 distribution has 

the lowest statistic value and hence the highest probability, indicating the Log Pearson 3 

distribution most accurately fits with the historical flood data according to the Chi-

Squared test. The Power Law has the least accurate fit.  
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The probability of all three frequency models is below the critical probability of 80 

percent and therefore according to the Chi-Squared test, should be rejected as an 

effective fit for the Isis River.  

Table 4.2.15 Stanley River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
5.4608 0.486 

Exponential 

(partial series) 
5.4523 0.487 

Power Law 

(partial series) 
10.096 0.121 

 

Table 4.2.16 Stanley River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI Overall 

Log-Pearson type 3 

(annual series) 
0.987 0.921 0.955 

Exponential 

(partial series) 
0.988 0.940 0.948 

Power Law 

(partial series) 
0.776 0.916 0.850 

 

The R-Squared test using the entire flood series matches with the results of the Chi-

Squared test, in which the Log Pearson 3 distribution most closely fits with the 

historical data for the Stanley River stream gauge. The R-Squared test completed of the 

floods with a recurrence interval of less than 10 years, shows the exponential 

distribution predicts the most accurate discharges, closely followed by the Log Pearson 

3 distribution. The goodness of fit when the recurrence interval is greater than 10 years, 
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displays the Log Pearson 3 distribution as the best fitting model, but very closely 

followed by the Power Law model. 

 

Figure 4.2.16 Stanley River stream gauge graphical comparison of the flood model’s peak 

predicted discharges compared to the observed historical data 

 

The results discussed in Table 4.2.15 and Table 4.2.16 are shown graphically in Figure 

4.2.16. It is identified from Figure 4.2.16, the Log Pearson 3 distribution (red squares) is 

clearly the closest to the purple reference line, especially for the discharges less than the 

ten year recurrence interval line. For the discharges that are over the ten year recurrence 

line, the Power Law model generally predicts under-estimates the peak discharge of the 

flood, while the exponential distribution and the Log Pearson 3 distribution are more 

conservative and over-estimate the peak discharges.  
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4.2.9 Coomera River at Army Camp (146010A) 

The Coomera River stream gauging station at Army Camp is situated in the South Coast 

basin in the South Queensland region and has a catchment area of 88 km². The mean of 

the logarithms of the annual peak flows was found to be 1.961, while the standard 

deviation is 0.684 which is much greater than the world non-arid zone‟s average 

deviation of 0.15 (Hall 1984). The skew of the logarithms of the annual flood data series 

for Caboolture River is -0.951. 

The flood series data was checked for low outliers first since the skew of the logarithms 

is less than -0.4. The low outlier threshold (XL) was found to be -0.769, correlating to a 

peak discharge of 0.17 m
3
/s. The lowest peak discharge in the annual series is 0.955 

m
3
/s, therefore no low outliers are present in this data series. The high outlier threshold 

(XH) was found to be 3.422, which correlates to a peak discharge of 2,642 m
3
/s. The 

highest peak discharge for the Coomera River stream gauge is 905 m
3
/s, hence there are 

no high outliers in the Coomera River annual series data.  

The Log Pearson type 3 distribution parameters for the Coomera River at Army Camp 

found using MathWave Technologies‟ Easyfit software  as:                 and 

      .  

The exponential distribution equation to determine the peak discharges formed from the 

partial series is:                        

While the Power Law model equation is:                    . The flood frequency 

factor is calculated as 2.95 and since the factor is relatively small, the station is under 

maritime climate conditions. 
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Figure 4.2.17 Coomera River stream gauge model predicted peak discharges at Army 

Camp fitted to the average recurrence intervals 

 

It should be noted from Figure 4.2.17, the Power Law model provides the highest 

predicted discharges for floods that are greater than the 100-year recurrence interval, 

while the exponential distribution processes the lowest predicted discharges.  

Table 4.2.17 gives the Chi-Squared critical test statistic values and can clearly identify 

the Log Pearson 3 distribution matches more closely with the historical flood data. The 

Power Law model on the other hand, is the model with the least accurate fit for the 

partial series.  

Both the exponential distribution and the Power Law provide have a probability less 

than 80 percent, therefore according to the Chi-Squared test these models should be 

rejected as a poor fit for the Coomera River.  
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Table 4.2.17 Coomera River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
1.8752 0.866 

Exponential 

(partial series) 
4.4329 0.489 

Power Law 

(partial series) 
4.1341 0.388 

 

Table 4.2.18 Coomera River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI Overall 

Log-Pearson type 3 

(annual series) 
0.973 0.938 0.954 

Exponential 

(partial series) 
0.906 0.960 0.937 

Power Law 

(partial series) 
0.754 0.906 0.841 

 

The R-Squared values for the Coomera River station are shown in Table 4.2.18, which 

found that the overall R-Squared was highest with the Log Pearson 3 distribution, same 

with the flood event with recurrence intervals greater than ten years. The exponential 

distribution had the better fit for the more common occurring flood events.  

According to both the Chi-Squared test and all of the R-Squared tests, the Power Law 

relationship model for the Coomera River stream gauge has the least accurate fit to the 

historical flood data. 
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Figure 4.2.18 Coomera River stream gauge graphical comparison of the flood model’s 

peak predicted discharges compared to the observed historical data 

 

It is identified from Figure 4.2.18, the Log Pearson distribution, given as the red 

squares, is the closest to the purple reference line for the floods less than the 10-year 

average recurrence interval line. For the discharges greater than the 10-year line, the 

model which is closest varies. The Log Pearson 3 distribution is generally the closer fit 

to the predicted values for the flood discharges between 500 m³/s  and 700 m³/s, but as 

the discharge increases over 700 m³/s the Log Pearson 3 over-estimates the discharges. 

 

4.2.10 Condamine River at Elbow Valley (422394A) 

The Condamine River stream gauging station at Elbow Valley is situated in the 

Balonne-Condamine basin in the South Queensland region and has a catchment area of 

325 km². The mean of the logarithms of the annual peak flows was found to be 1.561, 
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while the standard deviation is 0.663 which is much greater than the world non-arid 

zone‟s average deviation and he skew of the logarithms of the annual flood data series 

for Caboolture River is -0.166, which means the mean of the flood peaks is less than the 

median value.  

The flood series data was firstly checked for high outliers, since the skew of the 

logarithms is between -.04 and 0.4. The high outlier threshold (XH) was found to be 

3.318, which correlates to a peak discharge of 2077 m
3
/s. The highest peak discharge 

for the Condamine River stream gauge is 790 m
3
/s; hence there are no high outliers for 

this data series. The low outlier threshold (XL) was found to be -0.400, which correlates 

to a peak discharge of 0.398 m
3
/s. The lowest peak discharge in the annual series is 

0.553 m
3
/s, therefore there is no low outliers in the Condamine River annual series data.  

The Log Pearson type 3 distribution parameters for the Condamine River at Elbow 

Valley found using MathWave Technologies‟ Easyfit software  is           

       and        .  

The exponential distribution equation formed from the partial series data was 

determined to be:                        and the Power Law model is formed 

from the equation:                     . The flood frequency factor of the Stanley 

River stream gauge is 4.73 and being a relatively high frequency factor, the station is 

under arid climate conditions. 
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Figure 4.2.19 Condamine River stream gauge model predicted peak discharges at Elbow 

Valley fitted to the average recurrence intervals 

 

The three flood frequency models have been shown in Figure 4.2.19, plotted against 

recurrence intervals for the Condamine River stream gauging station at Elbow Valley. It 

is clearly identifiable that the Power Law model returns the highest peak discharges for 

the recurrence intervals that are greater than 80 years and therefore making the Power 

Law model the more conservative model. It can also been that the exponential 

distribution produces the lowest peak discharges and therefore well under-estimates the  

The Chi-Squared test results in Table 4.2.19, identified that the Log Pearson 3 

distribution most accurately predicts the historical flood data for the river, while the 

exponential distribution provides the least accurate and with a probability of less than 

80 percent. 
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Table 4.2.19 Condamine River results of Chi-Squared test 

Model 
Critical Test 

Statistic Value, χ2
 

Probability 

Log-Pearson type 3 

(annual series) 
1.3631 0.928 

Exponential 

(partial series) 
8.8596 0.012 

Power Law 

(partial series) 
1.3992 0.844 

 

Table 4.2.20 Condamine River analysis of R-Squared values 

Model < 10-year ARI > 10-year ARI Overall 

Log-Pearson type 3 

(annual series) 
0.989 0.931 0.942 

Exponential 

(partial series) 
0.909 0.402 0.488 

Power Law 

(partial series) 
0.880 0.900 0.897 

 

The overall R-Squared test results in Table 4.2.20 agree with the results from the Chi-

Squared test, hence determining that the Log Pearson 3 distribution most accurately fits 

with the historical data for the Condamine River. In fact the Log Pearson 3 distribution 

processes the highest R-Squared values for all three R-Squared tests, making it the most 

accurate model for the general trend of the Condamine River.  
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Figure 4.2.20 Condamine River stream gauge graphical comparison of the flood model’s 

peak predicted discharges compared to the observed historical data 

 

To reinforce the results obtained from the goodness of fit tests for the Condamine River 

stream gauge, Figure 4.2.20 shows a graphical representation of the difference between 

the peak discharges calculated by the models from the plotting positions assigned in 

equation (2.3-3) and the observed peak discharges. Clearly identifiable in Figure 4.2.20, 

is that the data point for the Log Pearson 3 distribution is plotted closer to the reference 

line than the exponential distribution and the Power Law model.  
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4.3 Summary 

 

In this chapter, the results of each individual stream gauging station were discussed. For 

each of the ten stations analysed across Queensland, the three parameters (         ) 

were identified for the Log Pearson distribution as well as the regression coefficients for 

both the conventional exponential distributed partial series and the Power Law model. 

The first figures provided for each station gives each model plotted against recurrence 

intervals in years. As the recurrence interval increases, the Power Law becomes the 

most conservative model and predicts the highest peak discharges for the extreme 

events. Therefore supporting the findings from Kidson et. al (2006). The flood 

frequency factors were also identified from the Power Law model, relating the 

discharges associated with the 100-year flood to the discharge associated with the 10-

year flood. These factors ranged from 2.13 to 4.73. 

This chapter has also looked the goodness of fit of all three models to the historical 

peaks. Identifying which model fits best for each individual station by using the Chi-

Square goodness of fit test and also the R-Squared test. In chapter 5, Table 5.2.1 has 

been provided that summarises the best fitting model for each station according to both 

goodness of fit tests. 

Chapter 5 will also examine the results of each frequency model and provide a greater 

level of discussion and analysis. Each model will be analysed in terms of effectiveness 

of flood frequency analysis and the possible errors in analysis and limitations of the 

models and goodness of fit tests will be noted.  
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Chapter 5 – Discussion 

 

 

5.1 Chapter Overview 

 

Following on from the results detailed in Chapter 4, this chapter will provide a greater 

level of discussion and analysis of the overall effectiveness of each flood frequency 

model. 

Firstly exponential distribution of the partial series is looked at, identifying its 

effectiveness for the ten Queensland stream gauge stations and in particular for the 

floods that have a recurrence interval of less than ten years. The Log Pearson 3 

distribution will then be looked as in a similar approach, however with a greater focus 

on its effectiveness in predicting the larger floods.  

The Power Law relationship models will then also be analysed for its effectiveness in 

predicting the frequency of floods compared to the current conventional methods used 

in Queensland. 

Finally, the possible errors in the goodness of fit tests will be discussed and also the 

limitations of flood frequency analysis will be noted. 
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5.2 Summary of Results 

 

The key outputs of the results from the previous chapter have been summarised in Table 

5.2.1 for convenience. The table displays which of the three frequency models provided 

the highest test value for the Chi-Squared test and the multiple R-Squared tests. In the 

last column of Table 5.2.1 the model which most accurately predicted the maximum 

historical flood on record is displayed.  
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Table 5.2.1 Best fitting model of each stream gauge station found from the goodness of fit 

tests 

Station 

Chi-

Squared 

Test 

R-Squared Test Maximum 

Observed 

Flood 
< 10-year 

ARI 

> 10-year 

ARI 
overall 

Coen River at 

Racecourse  
Exponential Exponential Exponential Exponential Exponential 

Fisher Creek 

at Nerada 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Herbert River 

at Abergowrie 
Exponential Exponential Exponential Exponential Power Law 

Carmila Creek 

at Carmila 
Exponential Exponential Power Law Power Law Power Law 

Isis River at 

Bruce 

Highway 

Log-

Pearson 
Exponential 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Mary River at 

Miva 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 
Power Law 

Caboolture 

River at Upper 

Caboolture 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 
Power Law 

Stanley River 

at Peachester 
Exponential Exponential Exponential 

Log-

Pearson 

Log-

Pearson 

Coomera 

River at Army 

Camp 

Log-

Pearson 

Log-

Pearson 
Exponential 

Log-

Pearson 
Power Law 

Condamine 

River at 

Elbow Valley 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 

Log-

Pearson 
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5.3 Exponential Distribution 

 

It is noted in the Australian Rainfall and Runoff (1987) guide that a graphical 

interpolation for the exponential distribution of the partial series is a simple and safe 

method for determining the design floods with relatively low average recurrence 

intervals. Using the R-Squared test, the accuracy of this exponential distribution for the 

floods occurring every ten or less years was able to be tested. For all cases of these 

distribution, the R-Squared value for floods less than ten years was greater than 0.90, 

giving the exponential distribution at least a 90 percent accuracy in predicting these 

smaller peak discharges. According to the University Corporation for Atmospheric 

Research (2010), flood return periods for the ten year floods should have no more than 

10 percent error. However, there should be at least 90 years of flood data and when 

there is less data available, the higher the percentage error is expected. Since the error 

according to the R-Squared test for the floods less than ten year is less than 10 percent 

and majority of these stream gauges have less than 90 years of data available, a 

graphical interpolation for the exponential distribution is suitable for the predicted of 

flood discharges of floods with a recurrence interval of less than ten years. 

This R-Squared test found that five of the ten stream gauge stations had the exponential 

distribution providing the highest R-Squared value for the floods with recurrence 

intervals of less than ten years. These stations were Coen River at Racecourse, Herbert 

River at Abergowrie, Carmila Creek at Carmila, Isis River at the Bruce Highway and 

Stanley River at Peachester. The other five stations had the exponential as a close 

second. The design flood estimate of low recurrence intervals are rarely used in routine 

design and rarely cause large amount of damage to infrastructure, the peak discharge 
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predictions of these floods of recurrence intervals less than ten year is not as important 

in flood frequency analysis as the larger, less common floods. Hence the method of 

fitting an exponential distribution to the partial series data for the more common floods 

is effective and reliable if the peak of a flood of less than ten year recurrence is needed. 

Both the Coen River and Herbert River were from to the closest fit to the historical data 

using both the full R-Squared test and the Chi-Squared test. When looking the graphical 

comparison for both these stream gauges, it can be seen the Log Pearson distribution 

and the Power Law model overestimate the discharges. Since the analysis for the Coen 

River is only considers 47 years of flood data and the Herbert River considers 45 years, 

the accuracy of the plotting positions of the historical floods would be improved with a 

greater number of years of historical flood data. Since there is always the possibility of 

a larger flood occurring in the future, greater than the current highest historical flood on 

record, using the Power Law and Log Pearson 3 models to determine the design flood 

for infrastructure design opposed to the exponential distribution would therefore 

provide a more conservative estimate of peak river discharge for this station.  

 

 

5.4 Log Pearson 3 Distribution 

 

The national adopted approach for flood frequency analysis uses the Log Pearson type 3 

distribution to predict the peak discharge of future flood events. This study has used the 

Chi-Squared goodness of fit test and the R-Square test to identify the effectiveness of 

this probability model to the exponential distribution and the Power Law relationship 
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model. The results show that the Log Pearson 3 distribution appears to on the large part 

fit with the historical data, as six of the stations were found to have the highest 

possibility using the Chi-Squared test and seven stations using the R-Squared test with 

all the years of flood data. The Chi-Squared test found that five of these stations had an 

80 percent or higher probability that the historical data is modelled by a Log Person 3 

distribution. These results support the studies conducted by Kolittle et al. (Rahman, 

Haddad & Rahman 2014) and Boughton (1975) in stating the Log Pearson type 3 

distribution is the most suitable for Queensland stream gauges.  

The main objection to this approach, as identified in Section 2.3.1 is that the Log 

Pearson distribution cannot be fitted to predict both the outliers and the general trend of 

the peak discharges. As discussed, the Log Pearson 3 has most accurately predicted the 

peak discharges for majority of the chosen stream gauge stations. When looking at the 

R-Squared test to evaluate the goodness of fit of the Log Pearson 3 distribution to 

predict the flood event with a recurrence interval greater than ten years, the R-Squared 

test found that five of the stations had the highest value with the Log Pearson 3 model 

when compared to the goodness test results of the Power Law and exponential models. 

However, these floods are still part of the general trend of the data; therefore the 

maximum flood for each station should be looked at as the outlier event. From the 

graphical comparison figures shown in the results chapter, from the ten stream gauge 

station, seven of the stations were found that the Log Pearson distribution predicted the 

highest historical discharge most poorly by overestimated the peak discharge. These 

stream gauge stations were: Coen River at Racecourse, Herbert River at Abergowrie, 

Carmila Creek at Carmila, Isis River at the Bruce Highway, Mary River at Miva, 

Caboolture River at Upper Caboolture and Stanley River at Peachester. The last four of 

these stations also found R-Squared values for the floods greater than ten years, have 
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the Log Pearson distribution as more accurate than the Power Law, yet the Power Law 

model predicts the largest historical flood for the station more accurately. This 

reinforces Cooper‟s study (2005) in stating that the Log Pearson 3 distribution most 

commonly cannot fit with both the outlier events and the general trend, hence typically 

producing poor estimates of the extreme flood events. 

  

 

5.5 Power Law Model 

 

The return period of flood events has been said to follow a simple Power Law 

relationship and have been suggestion in recent literature to be the effective model in 

estimating event floods.  

From the figures in the results chapter showing the frequency models distribution 

against the average recurrence interval, it can be seen that generally the Power Law 

model provided the higher predicted discharges for the flood that are less frequent to 

occur (i.e. 100-year flood event). This means that the design flood used in infrastructure 

design will be more conservative if the Power Law model is used for the flood 

frequency study. A conservative estimate for the design flows also recognises that the 

climate in the future may change to conditions that are not like current conditions with 

larger floods occurring more and more frequently.  

The critical difference between the Power Law method and the conventional 

distributions is that the Power Law assumes a straight line rather than the Log Pearson‟s 

concave down scaling in log-log space. Since the plotted data of the flood discharges 
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with their recurrence intervals given by the plotting position generally concave 

downwards, the Log Pearson 3 distribution generally has a better fit for the historical 

floods for the majority of the flood series. 

 

Figure 5.5.1 Graphical comparison of the Power Law model and the Log Pearson 3 

distribution discharge predictions for the largest event compared to the observed largest 

event, for the ten stream gauge stations over Queensland. 

 

Figure 5.5.1 provides the highest discharges for each of the stream gauging stations with 

their plotting positions and compares it to the model predicted discharges at the same 

recurrence interval as specified by the plotting position. The crosses display the results 

using the Log Pearson distribution, while the circles show the Power Law model. Each 

stream gauge station is also represented by different colours. The Mary River and 

Herbert River stream gauge station are the points nearest the 10,000 m
3
/s discharges. 

From these two stations, it can be seen that the Power Law model provides a closer 

estimate of historical peak discharges than the Log Pearson 3 distribution as the data 
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points are closer to the one-to-one reference. The rest of the discharges from the other 

eight stations (around the 1,000 m
3
/s discharge) are more random is which of the two 

frequency models better predicted the historical data. Only the light blue data points, 

which are from the Carmila stream gauge station has a noticeable difference between 

the two model predicted values. Figure 5.5.1 suggests that the Power Law model is 

more accurate in predicting the extreme flood event‟s discharges when the average flow 

of the river is high, as both the Mary River and Herbert River have their average river 

flow higher than the other eight stations in this analysis. The repeatability of this result 

across a larger number of stations could be investigated to determine if this generalized 

pattern is accurate or a unique to individual stream gauge stations. 

The partial flood series and the annual flood series were determined to be similar for the 

larger floods, but significantly different for the smaller floods. As the Power Law model 

predicts the larger floods, the Power Law model could be used with the partial series or 

the annual series as both flood series‟ are similar for the larger events. 

 

 

5.6 Limitations 

 

In this study, the flood series data are both plotted using the unbiased plotting position 

formula provided by Cunnane. These plotting positions serve as an estimate of the 

probability of exceedence and allow a visual examination of fit provided by the flood 

frequency models. According to articles by Shabri (2002), Ewemoje and Ewemooje 

(2011) and Adeboye and Alatise (2007), distributions show a best fit to specific plotting 

positions. The choice of a plotting position formula is the same as choosing an 
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underlying probability distribution. The goodness of fit tests compares the outputs of the 

distribution models to the historical peak flood and their associated plotting position. 

Had the Weibull plotting position been used instead of the Cunnane plotting position, 

the position of the higher flood may have been 75 years instead of the 80 years and 

therefore each of the flood frequency models may have fitted better with the Weibull 

plotting position. While these goodness of fit tests looks to determine the best fitting 

frequency model for each station with the Cunnane plotting position as its bases flood 

distribution, there may be a better fitting distribution using a difference plotting position 

for the station.  

The overall R-Squared test is heavily weighted on the smaller floods that occur 

frequently as there is more of them in the flood series. Since the Power Law model is 

used to predict the larger and less frequent floods (Kidson, Richards & Carling 2006), 

the overall R-Squared value is not as accurate as the Chi-Squared test in identifying the 

model‟s effectiveness for the entire flood series.  

The results must also be considered for measurement errors in discharge estimates, 

particularly for outlier events, which is often estimated by extrapolation from a rating 

curve. Kidson, Richards and Carling (2006) suggests that a 20 percent error in 

measurement is quite common and since a record length of 50 years only provides five 

plotting positions with a recurrence interval of greater than ten years which to base a 

reliable regression, there is a diagnostic error in determining the effectiveness of the 

Power Law model. Predictive models for determine the magnutide verse the frequency 

are less reliable when the record period is short, which is a truism frequently mentioned 

in the literature. 
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For each of the stream gauge stations, the best fitting distributions according to the Chi-

Squared test were found using the Easyfit software. This results of this analysis are 

shown in Table 5.6.1. The results clearly show there is no one distribution that matches 

all the stream gauges or majority of them. Instead, the frequency of each river‟s flood 

events should be analysed for each station to verify the best fitting distribution. This 

clearly shows the limitations of the flood frequency distribution models as there is no 

correct answer for the best model for the Queensland stream gauges.  
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Table 5.6.1 The best fitting distribution for the annual and partial flood data series 

according to the Chi-Squared test performed using Mathwave’s Easyfit software 

Stream Gauge 

Station 

Annual Series Partial Series 

Name Probability Name Probability 

Coen River at 

Racecourse 

Nakagami 

distribution 
0.961 

Johnson SB 

distribution  
0.999 

Fisher Creek at 

Nerada 

Frechet 

distribution 
0.984 

Pearson type 6 

distribution 
0.941 

Herbert River at 

Abergowrie 

Pearson type 6 

distribution 
0.975 

Fatigue Life 

distribution 
0.951 

Carmila Creek at 

Carmila 

Cauchy 

distribution 
0.996 

Exponential 

distribution 
0.989 

Isis River at 

Bruce Highway 

Pareto 2 

distribution 
0.956 

Fatigue Life 

distribution 
0.983 

Mary River at 

Miva 

Phased Bi-

Exponential 

distribution 

0.953 
Frechet 

distribution 
0.987 

Caboolture River 

at Upper 

Caboolture 

Pearson type 6 

distribution 
0.977 

Nakagami 

distribution 
0.995 

Stanley River at 

Peachester 

Generalized 

Extreme Value 

distribution 

0.892 
Gamma 

distribution 
0.705 

Coomera River at 

Army Camp 

Generalized 

Gamma 

distribution 

0.938 
Fatigue Life 

distribution 
0.977 

Condamine River 

at Elbow Valley 

Generalized 

Logistic 

distribution 

0.967. 

General Extreme 

Value 

distribution 

0.859 

 

While Table 5.6.1 shows the best fitting distribution using the Chi-Squared goodness of 

fit test, if the Kolmogorov-Smirnov or Anderson-Darling test was used instead, the 

results would be completely different. 
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5.7 Summary 

 

This chapter has delivered a greater insight into the use of the exponential distribution, 

Log-Pearson type 3 distribution and the Power Law relationship on the ten selected 

stream gauge stations within Queensland.  

It has noted that the exponential distribution of the partial series data for the station is 

effective and reliable for the prediction of peak discharges of flood events that are 

estimated to occur in time periods of less than ten years. While the Log-Pearson type 3 

distribution, has the highest probability of predicting the peak discharges for the less 

commonly occurring flood events.  

It was also found that this analysis has supported suggestions made by Cooper (2005) in 

„Estimation of Peak Discharges for Rural, Unregulated Streams in Western Oregon‟, in 

stating that the Log Pearson 3 distribution produces poor estimates of the high outlier 

events and general trend of the peak discharges. As it was found that the Power Law 

relationship model produced a more accurate prediction of the largest historical flood on 

record for a number of the stream gauge stations, particularly for the rivers that have an 

average flow that is high.  

The limitations of this study were then included, taking note of the effects the choice of 

plotting position formula and goodness of fit tests have on the analysis results.  

Finally the best fitting distributions were specified according to Mathwave‟s Easyfit 

software analysis for the ten stream gauge stations, taking note that there no single 

distribution that describes the relationship between the peak discharge of a flood event 

and its return period.  
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Chapter 6 – Conclusion 

 

 

6.1 Chapter Overview 

This chapter outline the final result of this project, as well as recommendations for 

further improvement and research beyond the scope of this project. 

 

 

6.2 Project Conclusions 

The entire project objectives have been executed in this project. The project objects 

involved many steps for the successful completion of the aim of this research to 

investigate the suitability of the Power Law model to estimate flood frequency. 

The first objective was the exploration of relevant literature relating to the current 

conventional flood frequency methods and the Power Law frequency model. This was 

conducted and reported within Chapter 2 of this report. The literature was found 

through access to professional databases relevant to the project. This allowed for an 

appropriate analysis of any past work, techniques and relevant processes used in flood 

frequency analysis. It was found that the current conventional methods of predicting 

floods in Australia, according to the Australian Rainfall and Runoff (1987) guide is by 

probability distributions, more specifically the Log Pearson type 3 distribution for the 

larger floods and an exponential distribution for the smaller, more common events. 

Research has shown that the Log Pearson 3 distribution struggles to demonstrate the 

general trend of the peak discharge and the outlier and tends to significantly over or 
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under-estimate the largest peak discharge for the water way. Due to this, the Power Law 

model was investigated in other countries as a more effective method to estimate the 

largest peak discharge. 

Following on from Chapter 2, an appropriate methodology was implements in order to 

address the project specifications and complete the project objectives. This 

methodology included the criteria used in choosing the location of the ten stream gauges 

across Queensland to maintain a large number of years of flood records and also the 

process of using these flood records to provide the three frequency models; the Log 

Pearson type 3 distribution, the exponential distribution and the Power Law model. The 

analysis method based on the relevant literature was implemented in Chapter 3, which 

displays the results of each of the frequency models and their goodness of fit to the 

historical flood data for each of the individual stream gauges selected in Chapter 2. The 

three frequency model results for each station were displayed in Chapter 4 along with a 

discussion in term of the results for each individual sites. The general trends and 

conclusion made regarding each distribution type was discussed in Chapter 5. 

The determination from the Australian Rainfall and Runoff (1987) that the exponential 

distribution of the partial series is accurate enough for the flood events of recurrence 

less than ten years (small peak discharges) was verified through this analysis, as the ten 

stations analysed found that in majority of cases, the exponential distribution had the 

highest goodness of fit values for the smaller flood events. Hence generally the 

exponential distribution of the partial flood series most accurately predicts the peak 

discharge for the floods of less than ten year intervals, more so than the Log Pearson or 

Power Law models.  
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The general trend of the historical flood data was most effectively modelled with the 

Log Pearson type 3 distribution, especially for the floods that are expected to return in 

intervals that are greater than ten years. However, a large number of the stream gauges 

analysed were found to have the Power Law model predict the largest historical 

discharge better than the Log Pearson distribution, supporting the recent literature in 

regards to the suitability of the Power Law relationship for the extreme flood events. 

It was found that the main consequence of the Power Law model over the conventional 

models is that the Power Law model is a far more conservative estimate of the return 

period of large event. This has particular significance for managing the extreme flood 

events, as the current largest flood is expected to be exceeded over the course of time 

and the design of infrastructure should be designed conservatively.  

 

 

6.3 Further Work 

 

The ten stream gauge locations chosen in this study were found to have no high outlier 

discharges in the historical flood series data according to the high outlier test explain in 

Chapter 3.4.1. To accurately test the suitable of the Power Law relationship to the 

extremely outlier, stream gauges need to be used that contain these high outliers. More 

stream gauge station data should be used from other locations and tested for high 

outliers, so that the Power Law can be analysed with reference to them. Care needs to be 

taken to confirm that these high outliers are not just errors in the data and also that the 

data is homogeneous. These errors could be changes in the catchment conditions when 
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the extreme event occurred, unusual phenomenon causing the flood event and problems 

with the recording equipment. 

The estimation of flood frequencies for the Power Law model could be further refined 

by research investigating the relationship of the various separate factors that influence 

the Power Law model gradient including the catchment size, slope, shape and climate 

and also by regionalisation studies as in conventional flood frequency analysis methods.  

More recently, it has been suggested that the extreme flood events could be better 

predicted by the Pareto distribution, which has a „power like‟ relationship and hence it 

would be worthwhile comparing to the Power Law model to determine the more 

effective method in determining the discharges of the flood with low probability of 

occurring. 

Whilst research of effective flood frequency analysis methods can be complex, tedious 

and computationally expensive, the consequent results are important over the 

engineering industry. Accurate and reliable predictions of the peak discharges of large 

flood events are essential in the design of infrastructure and the safety of human life and 

it is envisioned that the findings of this project will assist in the continued research into 

an effective frequency model for predicting the discharges for the design storm.   
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Appendix A Project Specification 

 

University of Southern Queensland 

FACULTY OF HEALTH, ENGINEERING AND SCIENCES 

 

ENG 4111/4112 RESEARCH PROJECT 

PROJECT SPECIFICATION 

FOR:   Denika MOES 

TOPIC: POWER-LAW FLOOD FREQUENCY ANALYSIS OF 

SELECTED QUEENSLAND STREAMGAUGES 

SUPERVISOR: Dr Ian Brodie 

PROJECT AIM: This project will provide a power-law statistical model to show 

the relationship between discharge data from selected sites with 

Queensland‟s stream gauges network with the average recurrence 

interval. 

PROGRAMME: (Issue A, 18
th

 March 2015) 

1. Undertake a literature review relating to current flood frequency analysis 

methods, the power-law model and „goodness-of-fit‟ tests 

2. Obtain peak discharge data both annual and monthly from selected unregulated 

gauging stations (10 sites) from the Water Monitoring Portal provided by 

Queensland‟s Department of Natural Resources and Mines 

3. Determine the flood frequency distribution for each site by fitting a Log Pearson 

III distribution to the annual flood data as conventional method identified by 

AR&R 

4. Analysis for each site the partial series data using the negative exponential 

distribution as second conventional method identified by AR&R 

5. Applied the power-law distribution model to the partial flood data from each site 

6. Compare the results of each model for each site (peak discharge at similar ARIs) 

7. Apply Goodness of Fit testing to determine more accurate model using EasyFit 

Distribution Fitting Software from MathWave Technologies 

As time permits: 

8. Undertake analysis with other distribution formula (Weibull, Gumbel) 
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Appendix B  Frequency Factors KT for Log Pearson 3 

Distribution 

Table B.1 Frequency Factors KT for use with Log Pearson Type 3 Distribution (Positive 

Skew Coefficients) 

 

Source: Water Resources Council (1967) 
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Table B.2 Frequency Factors KT for use with Log Pearson Type 3 Distribution (Negative 

Skew Coefficients) 

 

Source: Water Resources Council (1967) 
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Appendix C Tables used for identifying high and low outliers 

Table C.1 Values of KN for outlier tests, 5% significance level values 

 

Source: Australian Rainfall and Runoff (1987) 
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Table C.2 Values of β given from values of skew (g) and years of flood data (n) 

 

Source: Australian Rainfall and Runoff (1987) 

Table C.3 Values of θ given from values of skew (g) and years of flood data (n) 

 

Source: Australian Rainfall and Runoff (1987) 
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Appendix D Chi-Square Distribution Table 

Table D.1 Critical values of chi-square distribution with degrees of freedom (df) 

 

Source: Filliben (2012) 


