
Russell Johnsen Birkett ENG4112

- 2 -

ENG4112 – DISSERTATION

VIDEO PROCESSING ROAD SAFETY SYSTEM

RUSSELL JOHNSEN BIRKETT – U1046481

SUPERVISOR: TOBIAS LOW

Russell Johnsen Birkett ENG4112

- 3 -

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering and

Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or associated

with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its Faculty of Health, Engineering and

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitles “Research Project” is to contribute to the

overall education within the student‟s chosen degree program. This document, the associated

hardware, software, drawings, and any other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Russell Johnsen Birkett ENG4112

- 4 -

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out

in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in

any other course or institution, except where specifically stated.

Russell Johnsen Birkett

Student Number: 0061046481

Russell Johnsen Birkett ENG4112

- 5 -

Contents

ABSTRACT ...6

AIMS ...7

OBJECTIVES ...8

INTRODUCTION ..9

LITERATURE REVIEW ...10

Background Subtraction .. 11

Morphological Filters .. 16

Tracking Algorithms ... 17

EVALUATION ...21

IMPLICATIONS ..25

FEASIBILITY ..26

METHODOLOGY ...27

DESIGN APPLICATION ..29

RISK ...31

RESOURCE REQUIRMENTS ..32

DEVELOMENT ...33

Iteration 1 .. 34

Iteration 2 ... 36

Russell Johnsen Birkett ENG4112

- 6 -

Final Iteration .. 42

RESULTS ...46

FUTURE WORK ..47

CONCLUSION ...48

APPENDICES ..49

APPENDICES ..49

APPENDICES ..49

Appendix A – Project Specification ... 49

Appendix B – Kalman Filter ... 53

Appendix C – Foreground Detector .. 56

Appendix D –Iteration 1 .. 64

Appendix E – Comparison .. 68

Appendix F – Final Iteration ... 69

BIBLIOGRAPHY ...71

Russell Johnsen Birkett ENG4112

- 7 -

Abstract

The purpose of this report was to investigate the possible applications of computer vision

processing in roadway safety. With the huge expansion of computer vision software as well as

affordable processing hardware opportunity to apply established methods to new areas has

arisen. A literature review was undertaken investigating and comparing algorithms in computer

vision and their possible application for roadway safety. Through the literature review it was

decided the most effective application for pedestrian tracking would be a combination of

Gaussian Mixture Modeling for background subtraction and a Kalman filter for tracking. This in

conjunction with a range of morphological filters was the final design decision. This design was

cemented as a Simulink model and was run against a series of scenarios. The most important

results were testing against a dynamic roadway showing extremely promising outcomes. The

model was able to detect and track pedestrians over a range of designated areas. This in addition

to its ability to differentiate between cars and pedestrians and the location of those pedestrians in

relation to the road made the system a success. With simple counting and regions of interest

changes the model can be applied to range of different environments and scenarios. However

problems did emerge in the implementation of the Kalman filter causing issues in its application

and track association. This report was dedicated to investigating and applying current methods

and techniques in computer vision that could benefit pedestrian safety, in this regard it has

successfully represented the possible uses and application of such a model.

Russell Johnsen Birkett ENG4112

- 8 -

Aims

The focus of this project will be directed at making robust video processing software that can be

run through road footage to detect entities and obstructions on the roads and surrounding areas.

This in turn can be used to warn drivers and pedestrians to avert accidents. Safety is the most

important aspect in designing a road network for both pedestrians and motorists. Therefore any

improvements or added systems that can reduce the risk and increase the safety must be

considered and evaluated to ensure that any safety aspects are not overlooked. With the sudden

increase in small affordable computing devices and cameras alike the possibility for an

integrated road safety network monitoring roadways and detecting obstructions and possible risk

has become achievable.

The central element in the design and implementation of this system will be based on how

adaptive and flexible the program will be, needing to be applied and utilized on a range of

different environments and camera capabilities. Current technologies for both the hardware and

software will need to be analyzed in order to determine what methods and processes will be the

most effective. The aim of this project will be determining how to effectively develop and apply

these processes to the Australian road network. However a huge component of this project will

be in the comparison of the developed code against one already existing comparing them in a

range of different datasets and environments. With the comparisons and analysis completed the

project can then move to an iteration stage where further improvements can be implemented

consistently throughout its development.

With a competent and fully developed process of analysis the further implication and uses of the

program can then be expanded. Looking at what types and different applications the system can

be applied to and its comparison to what is available in that field. This is to determine what

possible further modifications can be made and what future work can be applied and built upon

the model.

Russell Johnsen Birkett ENG4112

- 9 -

Objectives

The overall objectives of this project are very straight forward. The basis of this can be outlined

in four steps

1. Literature analysis and review – look into current form of 2d monocular camera tracking

and find similar and necessary elements to implement into a working code

2. Develop a working code through Matlab with the incorporation of leant and proven

techniques demonstrated and analyzed through the literature review

3. Compare current version of the code to current technologies – Analysis its current

strengths and weaknesses and further improve until satisfied

4. Apply in a real world scenario‟s at a range of different environments

The bulk of the work of this project is centralized around comparing the current technologies and

determining which method is the best suited to the project. This will require an in-depth literature

review looking at and discussing all the current applications of visual tracking and their overall

success. This background research will be critical in developing a working code and an overall

successful project.

The field of video processing is one that has expanded massively over the past few decades with

the implementation of security cameras and visual systems throughout many different industries.

This has inevitably led to new possibilities in developing programs which can be run through

footage to create a very inexpensive interactive system.

The current research around this topic is extensive with the field of machine vision being a huge

overlaying topic. The application of this technology to road safety could open new possibilities

ways in how accidents are averted, monitored and studied. The two main components of this

system creation would be hardware development and software and the software development.

Both these sections have many intricate parts and details that need to be analyzed in order to

create the most effective prototype.

The development stage will rely heavily on the results and analysis take from the literature

analysis. These results will then have to be applied to my current build making sure to evaluate

and modify the body of the code for the desire output. This must then be constantly compared

against current methods to see if the results are up standard. Seeking out and finding literature

with comparisons and testing on each different type and method of tracking will be paramount

on the design of a successful project.

Russell Johnsen Birkett ENG4112

- 10 -

Introduction

The need for tracking and trajectory prediction of dynamic objects is one that applies itself to a

very broad range of situations and solutions. The ability to successfully plan and record the

movements of pedestrians is becoming an extremely relevant technique in road safety. Simply

detection of the amount of pedestrian traffic through a road way could be easily used in the

decision making and implementation of safer road networks.

The current technologies available for application in this environment are near endless with

many different methods each with their own individual characteristics. This is where the extreme

diversity in different algorithms for not only background subtraction and entity tracking come

into play with many of these being interchangeable giving a range of different strength and

weaknesses for each combination.

The focus of this project will be on 2d monocular stationary cameras. This form of camera has

been chosen for its comparable and similarities to modern security cameras. This gives the

project a large base of possible applications as well a range of different testing opportunities.

This form of camera however only receives information from direct video feed having no outside

information such as depth being applied. This forces whatever method that is to be applied to use

no outside data sources and must perform all operations within information provided. This in

comparison to utilizing multiple cameras for such methods stereovision or applying information

taken from sensors will not be applicable within the scope of this project.

Russell Johnsen Birkett ENG4112

- 11 -

Literature Review

Basic tracking systems can be broken down into three central stages. The first is object detection;

this stage is essentially separates the background from the desired targets. This initial step is

extremely important in developing the ground work for the rest of the operations. The second

stage is noise removal and reduction, utilizing various methods to clear up the overall quality of

information that can then be used in the final stage of tracking. These three stages have a massive

range of various ways to approach and conduct them all with different attributes and

disadvantages.

Initial investigation into the possible methods showed a range of different goals different papers

wanted to achieve. These goals can be placing into two main sections; increased accuracy and

quick response. Specific papers focused on making the accuracy of detection more important

than having the ability for live analysis. An example of this can be seen in a paper by Führ

Gustavo on calibrated monocular pedestrian tracking. This report utilized a median filter and a

range of post processing to calculate the position of the pedestrians. When run this code was

extremely accurate detecting all the required targets and estimating there dimensions. However

heavy calibration needs to be conducted on the camera and environmental dimensions entered

into its operation. Not only this but the time taken to evaluate each passing frame was upwards

five seconds, destroying its possibility for live relay (Fuhr, 2012). This in contrast to a paper

based on surveillance systems utilizing live footage to analyze and track targets showed the two

different goals. The Kalman Filter based tracking system was designed to be extremely efficient

attempting to use as little computational resources as possible. It explains that the two biggest

factors in tracking are “the accuracy to distinguish between contacts passing through the scene

and the speed to process the video feed in real-time” (SULIMAN, CRUCERU, &

MOLDOVEANU, 2010). It overcame this problem by selecting the specific algorithms that work

most effectively however not exceptionally accurate. This is the balance that is needed in

designing this system looking at how much accuracy you can achieve while still acquiring real

time performance. With the goal of creating a system that can instantly warn pedestrians and

motorist of hazards the live analysis method will need to be taken ensure that any formulas

utilized are optimized. This will require looking at all the stages of detection and tracking and

comparing the available methods and there overall benefits and disadvantages.

.

Russell Johnsen Birkett ENG4112

- 12 -

Background Subtraction

One of the necessary decisions in creating effective tracking software understands what best type

of background subtraction or foreground detection method to apply. This initial step separates

the background from the desired targeted entities. This can be argued is the most crucial step

becoming the foundations and base in which the rest of the program will be built upon.

Background subtraction is a way of localizing moving objects in a video shot by a static camera.

This is the initial step in motion detection of a multi-stage computer vision system (Benezeth,

Jodoin, Emile, & Laurent, 2012).

Background subtraction can be done in a myriad of different ways with each having its own

specific advantages. Some of the simplest methods such as color separation rely heavily on what

target you are attempting to track. Having a target that can be replicated in size and color lends

its self perfectly to simpler methods. In most cases the simplest method is usually the best for

most effective over a range of different areas. For example in color separation and detection the

colors that most appropriately match the target are taken as the foreground removing all other

colors into background. This simple method applied with post processing can be extremely

effective in separating what is to be tracked. With most tracking methods stationary cameras are

required however with color separation having the changing background being taken as all the

wrong color and ignored opens it up to the possibility of tracking through a moving image (Su &

Fang, 2012). This single example begins to illustrate how each specific method has is benefits

and problems. The problem with color tracking being the need for a predetermined color

constraint on the targeted entity with little opportunity for variable change after setup. This

limitation makes it unviable for tracking pedestrians due to the varying color attributes. This

forces techniques that need other possible indicators to be used to determine targets.

Figure 1 - Color separation Histogram

Russell Johnsen Birkett ENG4112

- 13 -

The next step up in complexity is edge detection. This form of detection creates boundaries and

outlines throughout the image by finding discontinuities in the brightness (Ray, 2013). This can

then be used to detect and segment between each of the objects in the frame and its background.

This can then look at if the edges are in motion and highlight them for tracking. This method

works exceptionally well in stationary environments where there is little movement in the

background frame. However when a large background movement is applied it cannot

differentiate between what is to be targeted and what is the background. Due the central

detection being around changes in brightness between the background and the moving image

further noise cancelation has problems with the resultant edge detection being much similar

intensities to those of the background. With this in mind however edge detection can be done

through range of different algorithms each of which changing and affecting on the output

(MathWorks, 2015).

Figure 2 - Sobel Method

Figure 3 - Canny Method

Figure 4 - Furry Logic Method

Russell Johnsen Birkett ENG4112

- 14 -

One of the biggest categories of background subtraction however for stationary 2d monocular

vision is focused around the changing of pixels though out frames. This method is confined to a

stationary camera with its ability to operate very much dependent on the frame motion

comparing one frame to another. If the video frames are in constant motion it is unable to

successfully filter out the background and foreground with the detected motion being merged

into one. This process of looking at pixel changes has been a highly researched and experimented

topic yielding many different techniques that can be experimented with. In a basic study of

comparing the background subtraction methods conducted by Yannick Benezeth and published

in the Journal of Electronic Imaging showed how these difference formulas affected the overall

output of the projection. This paper specifically analyzes seven different techniques rating them

against different environments and computational requirements. The seven methods they used

included:

1. Basic Motion Detection

2. One Gaussian modeling

3. Inter-Frame Difference

4. Gaussian Mixture Modeling

5. Kernel Density Estimation

6. Codebook Method

7. Eigen Backgrounds

Each of these methods have their own specific formula‟s and algorithms however they all share a

common denominator that being the assumption that the observed video sequence is separated

into two different parts. These being a static background in which the moving objects and

entities can be observed. This can be summarized in the formula

Where τ is a threshold, Xt is the motion label field at time t, d is the distance between Is,t the

color at time t and pixel s, and Bs ,the background model at pixel s. This essentially explains that

to break into the threshold there has to registration of a comparative change from the background

model and the subsequent next frame. This is the central basis in which all the different

algorithms are based off finding more accurate detection or quicker less computational taxing

algorithms (Benezeth, Jodoin, Emile, & Laurent, 2012).

Russell Johnsen Birkett ENG4112

- 15 -

Through testing these seven techniques over a range of different environments began to expose

the expose the more effective and versatile models.

In a noise free background the results showed very little difference in the overall ability of the

algorithms. This however changed drastically with the introduction of noise in the background

separating the more effective models out.

With the addition of noise specific method become significantly better and more effective than

others. This conclusion of this study comparing the various background subtraction methods

weighted each method against the three various environments and further against its computation

requirements.

Figure 5 - Low noise environment

Figure 6 - High noise environment

Russell Johnsen Birkett ENG4112

- 16 -

The final results explained that each various technique had its own specific strengths and

weakness although some forms were much more robust in applying to different situations. The

standout algorithm from this paper was the Gaussian Mixture Modeling (GMM) performing

extremely well in the range environments and as well in computational requirements.

This consensus in the robustness of GMM is further explained in another background subtraction

comparative study by Andrews Sobral of the University of De La Eochelle in France shown in

appendix E. This Study again focused on a comparison of background subtraction algorithms on

synthetic and real environments (Sobral & Vacacant, 2013).This selected the five best algorithms

with Gaussian Mixture Modeling being one of the strongest of the five. The paper further

explained that “Gaussian Mixture Modeling has shown good performance for the analysis of

outdoor scenes, and has become a very popular BS algorithm. Even if this method is able to

handle with low illumination variations, rapid variations of illumination and shadows are still

problematic” (Sobral & Vacacant, 2013). These problems however are relatively small with the

majority of detection and the higher precision of the algorithm much more effective than the

majority of others. This can be further collaborated with another paper titled “Implementation

and Performance Evaluation of Background Subtraction Algorithms” where three chosen

methods derived from prominent proven papers. These three methods again were compared in a

range of situations coming to the conclusion that “This method has the best result among all the

above method discussed because it can deal with slow lighting changes and other challenges. It

also deals with multi-modal distributions caused by moving branches of tress, snow falls,

shadows, flying birds and other troublesome features” (Das & Saharia, 2014).

From these comparative studies Gaussian Mixture Modeling stand out as the most effective

background subtraction and foreground detection method. Its ability to reduce noise in an

environment with small changing factors such as light changes and its all-round robustness

shown through the three comparative studies makes it an extremely promising method. For this

reason the details on what factor affect it and the most effective way to implement will need to

be analyzed.

Figure 7 - Background subtraction Comparison

Russell Johnsen Birkett ENG4112

- 17 -

Morphological Filters

After the primary separation between the background and foreground is conducted secondary

processing may take effect. The goals of these processes are to reduce the overall amount of

noise in the image resulting in a cleaner and easier to detect targeted entity. Mathematical

morphology is the branch of image processing and analysis that employs morphology as the key

instrument to interpret and extract features from images (Roeder, 2012). This outlines that the

various different mathematical choices each have their own respective effect on the type of

morphology.

One of the biggest aspects in using these filters is the range and ratio of how much each

individually should be applied. By using a combination of these operations the user can fine tune

for a myriad of different environments. This is why these processes are so necessary giving the

system the ability to be applied in range of different environment with simple adjustment being

made to the post processing.

Figure 8 - Morphological Operations

Figure 9 - Morphological Application

Russell Johnsen Birkett ENG4112

- 18 -

Tracking algorithms

From detection and secondary processing the next stage is applying a tracking algorithm. This is

done to accommodate the problem of collision and divergence. With the use of monocular

cameras depth is extremely to attribute to entities and in the process of passing or standing very

close relation to each other this can cause the model to register them as a single unit. This can

cause huge issues in more advanced areas other than detection. For example needing to

accurately count and differentiate between pedestrians is a critical element in advanced tracking

and association. Not having the ability to give identities and labels to a specific unit when

introduced to a cluttered environment is a massive weakness of the system. For this reason the

introduction of tracking algorithms are implemented in a large amount of surveillance systems to

ensure and add another level of security to the level of information being received. For this

reason the use of predictive tracking filers are applied in order to remove this problem and

successfully identify each target before and after their foregrounds diverge or collide.

Points Tracking

Object tracking can be broken down into three direct categories; Point tracking, Kernel tracking

and silhouette tracking. Point tracking is the process of representing moving object features as

points during tracking. Recognition can be done relatively simple, by thresholding, at of

identification of these points (Athanesious, 2012). This essentially takes the targeted entity and

represents it a series of points over a specific times.

Russell Johnsen Birkett ENG4112

- 19 -

From these points further analysis can be completed looking into various characteristics such as

the point‟s proximity in relation to others, Changes in velocity both minor and major and its

mutual motion when looking at points in the surrounding area and time intervals. These applied

in practice gives the three distinct point tracking types.

(a) Kalman Filter: This specific filter is based on Optimal Recursive Data Processing

Algorithm. In other words, they are tracked based on the criteria chosen to evaluate

performance. Optimal point will be taken based on criteria that make sense. The Kalman

Filter performs the restrictive probability density propagation (Athanesious, 2012). This

ability to have two phases of prediction and correction combined together to achieve a

result with a higher probability. It does this through having specific weighted values for

noise and environmental conditions. Using these values to weight the equation towards a

more predicted state in which high noise causes the equation to predict when the point is

or low noise causing the algorithm to use the observed information. With this ability the

Kalman filter always gives the most optimal solutions (Parekh, Thakore, & Jaliya, 2014).

(b) Particle Filter: The particle filter generates all the models for one variable before moving

to the next variable. This algorithm usually uses contours, color features, or texture

mapping to determine its points. The particle filter is a Bayesian sequential importance

Sample technique, which recursively approaches the later distribution using a finite set of

weighted trials (Athanesious, 2012). Like the Kalman Filter this method also uses a

predictive and update filtering making is very effective in giving optimal solutions.

However unlike the Kalman Filter is does not rely heavily on variable that are normally

distributed (Poole & Mackworth, 2010).

(c) Multiple Hypothesis Tracking: If motion correspondence is recognized using only two

frames, there is always a limited chance of an incorrect correspondence. Better tracking

outcomes can be acquired if the correspondence choice is overdue until several frames

have been observed (Athanesious, 2012). Essentially this means that Multiple Hypothesis

tracking is an iterative algorithm. With each hypothesis the algorithm predicts the objects

position in the next frame and then these predictions are compared by calculating what

the distance change in feeding this information back into the iterations. This then

suggests based of the comparison in the previous frames what the most like set of

correspondences will be over the observed time period tracking the object.

Russell Johnsen Birkett ENG4112

- 20 -

Kernel Based Tracking

Kernel tracking is the method of using real-time illustration of objects geometric features,

appearance and shape of the object (Athanesious, 2012). The object can be detected in rigid and

non-rigid states and are tracked based on what representation was given of the desired targeted

entity. This tracking has a massive range of different methods all of which changing drastically

in how they implement the kernel tracking.

(a) Simple Template Matching: Template Matching is a technique for processing digital

images to find small parts of an image that matches in corresponding frames. The

matching procedure contains the image template for all possible positions in the source

image and calculates a numerical index that specifies how well the model fits the picture

that position (Parekh, Thakore, & Jaliya, 2014). Basically a template of the targeted

entity is input into the algorithm and comparisons are made to identify the position of that

target from its represented features. This forces this method to only be compatible with a

small number of tracking targets and the overall identity and features of the target to be

known.

(b) Mean Shift Method: Mean-shift tracking tries to find the area of a video frame that is

locally most similar to a previously initialized model. The image region to be tracked is

represented by a histogram. A gradient ascent procedure is used to move the tracker to

the location that maximizes a similarity score between the model and the current image

region. (Parekh, Thakore, & Jaliya, 2014). This again limits the number of tracking

targets possible with the identity histograms needed of each desired target. However if

the target and its representation is well defined tracking is very effective especially in

partial occlusion.

(c) Support Vector Machine: This method utilizes a set of positive and negative training

values to distinguish between the tracked object. This forces all samples that correspond

with the negative values to be ignored and the remaining value to be compared between

was represented in the positive values (Athanesious, 2012). This again required the

definition of the targeted entity forcing down the overall amount of possible tracked

targets.

(d) Layering Based tracking: This method has the ability to track multiple targets through

the kernel method however a representation is still needed to be input. This input is a

layered representation of the target at various different rotations, translations and

intensities. This then analyses the probability of each possible outcome and compares it

to the tracked entity (Athanesious, 2012). This algorithms use of multiple representations

gives it‟s the ability to successfully identify the target over significantly more

environments.

Russell Johnsen Birkett ENG4112

- 21 -

Silhouette Based Tracking

Silhouette Based tracking utilizes the objects composite shape and defines it into an object

model. This model is then used as to verify the tracked object in each frame by comparing it to

the designated models. This can be done in two central ways either though matching the shapes

of the represented and tracked object or through contour tracking (Athanesious, 2012). This is

also furthered by the ability to redefine the silhouette depending on the previous frames. With

represented object definitions occlusion, divergence and merging of targets can be easily handled

making it extremely useful in high unit environments.

(a) Contour Tracking: Contour tracking uses state space models to continuously update its

targeted model over a series of frames. Initially developing an original contour in the

foregoing frame the comparing its new position in the present frame through overlapping

of object between the current and next frame. This then redefines the new contour and

uses this new representation for the subsequent frames updating based off probability

each time (Athanesious, 2012).This expands the scope of what targets can be tracked and

what the targets translations can be throughout the frames.

(b) Shape Matching: Shape Matching is extremely similar to kernel based template tracking

in that a representation of the targeted entity is entered and the algorithm matches its

shape to the target entity in the frame. This method also looks at successive frames for

matching silhouettes. Attempting to find if the designated silhouette continues on the path

similar to point tracking (Parekh, Thakore, & Jaliya, 2014).

The most effective class of tracking was determined to be the point tracking. Without the need

for any reference images and its simple application made it the most desirable choice. The

problems facing Kernel and Silhouette tracking is the small number of target that can be tracked

as well as need for references of the desired targets. The type of point tracking however will need

to be investigated further and how the algorithm may be applied for video processing.

Russell Johnsen Birkett ENG4112

- 22 -

Evaluation

The literature review yielded large amount of useful information as well as cementing a number

of algorithms and techniques that should be used in the latter project work. Background

subtraction had huge amounts of material all of which included in depths analysis and

comparative studies. These comparative studies outline and explaining the strength and weakness

of the various algorithms made the decision of Gaussian Mixture Modeling a well thought out

explained and credible one. However information based around special aggregators was fairly

scarce, with only small amount of papers explaining the comparing the various techniques.

Although there was a lack of comparative studies on these second stage filters the overwhelming

response from them was implementation of a morphological filter. This filter was deemed to be

superior in its ability to preserve, uncover and detect geometric structure of image objects

making it significantly better than any other linear filters (Maragos, 2005). The fluidity and

cooperation between Gaussian Mixture modeling and Kalman filters made its choice extremely

easy and well founded. Its ability was outlined in the journal of Transactions on Signal

Processing exclaiming that ” For a particular problem, if the assumptions of the Kalman filter

or grid-based filters hold, then no other algorithm can outperform them” (Arulampalam,

Maskell, Neil, & Clapp, 2002). Unlike Kernel based and Silhouette based tracking the particle

filters needs little inputs in order to begin tracking summarizing the detected entities into single

set of points which can then have tracking performed on them. However the exact formulas for

each of the step in both the Gaussian Mixture Modeling and how to successfully apply a Kalman

Filter must be investigated.

Gaussian Mixture Modeling (GMM) and special aggregation

Gaussian Mixture modeling is probabilistic based model that has been used in a range of

different areas and applications. It utilizes functions that represent itself as a weighted sum of

Gaussian component densities that can then be applied to create a dimensioned representation of

the data (Reynolds, 2009). This given GMM the ability to create form smooth approximation of

arbitrarily shaped densities applying itself perfectly to detecting the change in pixels. The

equation determine if these pixels are background is described by

Russell Johnsen Birkett ENG4112

- 23 -

Where Zt is the dimensioned pixel at the dimension, d at a specific time, t

Each Gaussian, n is described by both its mean µn and covariance matrix Σn

 αn is the prior probability or the weight of the Gaussian (Sobral & Vacacant, 2013)

This shows how it separate from foreground and background. This is done by determining its

weighted probability ie that it has been affected in the previous frames and multiplying it by not

only its mean but also by the covariance matrix. By creating a probability based network small

changing in singular pixels by unwanted factors are ignored not having enough to create a

sizeable probability factor.

This given the GMM an advantage over simple frame difference models by letting it adapt and

ignore unwanted noise though the use of Gaussian probability. This as explained earlier lets the

model create smooth approximations of the shapes by removing jarring outliers and smoothing

rough edges through weighting differences. This can be further improved through the influence

of spatial aggregation, a process that eliminated small isolated abnormalities reinforcing the

smoothness of the foreground detection (Benezeth, Jodoin, Emile, & Laurent, 2012).

These spatial aggregators work as extra filters that are applied after the bulk of the work is done

in this case after Gaussian Mixture Modeling. This is explained by Jinanbin Feng in his report on

Decision-based adaptive morphological filters explaining “In the process of image formation,

image recording, image transmission via sensors or communication channels, image will be

inevitably corrupted by impulse noise due to sensor malfunction, transmission errors, storage

faults, and difficult acquisition conditions. Characterized by short, abrupt alterations of the

intensity values in the images, impulse noise will cause image degradation by producing the

significant intensity difference between the corrupted pixel and its local neighborhood” (Feng ,

Ding, & Zhang, 2013). This is extremely relevant with faults and anomalies still know to make it

through the Gaussian mixture model. The type of filter recommended in this paper is a

morphological filter explaining it benefits over median based filters. The reason for the choice

of a morphological filter is due to its capability of detecting the corrupted or false pixels and

using erosion to reduce their effect. This however cannot be done with median based filter due to

the fact they cannot differentiate between the required pixels and the false positives (Feng , Ding,

& Zhang, 2013). This view point is expressed further with a paper outlining morphological

filtering and its rivals of median, rand and stack filters. This paper named “Morphological

filtering for Image and Feature Detection” and published in “The Image and Video Processing

Handbook” explains that its ability to preserve, uncover and detect geometric structure of

image objects is significantly better than any other linear filters (Maragos, 2005).

Russell Johnsen Birkett ENG4112

- 24 -

Point tracking - Kalman Filter

Another huge problem in tracking pedestrians and objects is collision and divergence. With this

happens a basic detection algorithm will not be able to determine which entity was which and

cause immense problems in counting and prediction there movements. With the use of

monocular cameras depth is impossible to attribute to entities and in the process of passing or

standing very close can cause the model to register them as a single entity. For this reason the

use of predictive tracking filers are applied in order to remove this problem and successfully

identify each target before and after their foregrounds diverge or collide. With the targeted

entities being pedestrian and their movement being somewhat linear and predictable it makes

sense to apply a linear based particle filter. In a paper published in the Journal “Transactions on

Signal Processing” Dr. Arulmaplam conducts a comparison and analysis on the different types

of filtering methods both linear and non-linear. In his conclusions he exclaims that” For a

particular problem, if the assumptions of the Kalman filter or grid-based filters hold, then no

other algorithm can outperform them” (Arulampalam, Maskell, Neil, & Clapp, 2002). This

relates perfectly to the requirement of a prediction tracking in which the targeting entities will be

bound by specific laws and requirements that can be inputted into the Kalman filter.

The basic concept of the Kalman filter can be summarized as a particle filter that utilizes a

weighted particle set to estimate the system state in conjunction with the sequential importance

sampling method (Zhou, Wu, & Zhu, 2016). This essentially states that the filter finds the most

optimum factors from the each state while add/including date from the previous states. This is

perfect in the case of detecting entities diverging and moving though each other with the filter

tracking the last states and using linear preset laws to determine which entity is which. The

algorithms defining this filter are as follows

ẋk is the state prediction

A ẋk-1 is the prior pixel matrix state

Buk is the control input

K is steps in frames

Ṗk is the predicted co-variance

APk-1A
T
 is the previous co-variance

Q is the expected co-variance

Kk is the Kalman gain

Russell Johnsen Birkett ENG4112

- 25 -

H is the observed pixel matrix

R is the error co-variance

xk is the final state

Pk is the final co-variance

I is an identity matrix

How these formulas apply to the Gaussian Mixture modeling is extremely effective and

ingenious. Firstly the state prediction is made through the addition of the previously measured

pixel state and added to the control input defined in the model. Then the predicted co-variances

are calculated through the similar process of adding the previous variance state an expected co-

variance.

 The Kalman gain formula is essentially a measurement of the information given. It can be dived

into two separate parts; firstly Ṗk * H which is simply the predicted co-variance multiplied by the

observed and (H* Ṗk * H
T
 + R)

-1
which is extremely important. The seconds half of this equation

incorporates the Error (R) this error factor has a huge effect on the Kalman gain. The larger the

error calculated the smaller the Kalman gain. This makes perfect sense as the gain will be used to

determine how much and how accurate the information from the new pixel matrixes are.

However this can also being used the other way with an extremely low error value giving the

Kalman gain a larger number directly relating to how accurate the information is in comparison

from the predicted and observer matrixes.

This is all incorporated into the final state where the prediction is added to the Kalman gain

weighting which is multiplied by the correction. The final step determines the final co-variance.

This formula utilizes an identity matrix to formulate how accurate and how much impact the

measure values (Kk*H) will have on the predicted co-variance. With a larger (Kk*H) the smaller

the final co-variance will be and the better the estimation. The smaller the measured value the

larger the co-variance will be relying more on the predicted co-variance.

Russell Johnsen Birkett ENG4112

- 26 -

Implications and Consequential effects

The implication of creating a working model would be extremely beneficial in accelerating and

furthering the research and development of safety systems. The current technology is on the

verge of being applicable to huge different areas and situations all with their own specific needed

and environments. Simply creating a software that can count, monitor and record pedestrian

movements could be immensely important in a huge range of situations. Detection how many

pedestrians move past a camera on a certain day or if there is a sudden large influx of pedestrians

can be used not only as data for statistics but also how to deal with rapidly changing situations.

An example of this is if a sports game suddenly finished and a huge amount of pedestrians are

pushed out onto the reads. This information could be relayed directly to an arrangement of areas

to increase pedestrian crossing times and frequencies and alert public transport to these

unforeseen circumstances. Situations such as monitoring roadways for pedestrians or simply

counting traffic autonomously all have huge benefits in a multitude of areas. Having a system

that can automatously count and relay information back to a central hub or simple processing on

site can benefit a massive range of traffic and safety systems.

The further applications of a system in which detections, counting and tracking can be applied

are enormous. The surveillance applications are extensive having a simple system to detect when

people enter undesired locations or apply to basic counting of pedestrians walking down a path.

This information could then be utilized in a myriad of ways in crowd analytic and further

research. With security camera becoming a bigger and bigger part of government tools there

application towards safety seems an inevitable application. Looking at and designing a cost

effective system that can be applied to a range of environments will do nothing but benefit

anyone under its care.

Russell Johnsen Birkett ENG4112

- 27 -

Feasibility

The goal of this project would be to develop a working system that can detect, track and warn

cars of incoming obstacles. This system in concept is very achievable with many of the

technologies already being applied in various different industries. The goal of this project would

be in applying them technologies successfully to improve roadway safety. This will require

heavy adjustments in order to create system that can be applied to many different environments.

This will be down the effectiveness of how the algorithms are applied the sensitivity of the

program.

Currently there is various surveillance based computer vision systems applied in in the field of

security. This field has had massive expansion over the last 20 years with the advancements of

cheap micro-computers and cameras reducing the cost of implementing an integrated system.

This advancement has also opened the application of these systems into a range of other fields.

This has increase the feasibly of applying this detection and tracking to roadway safety

exponentially with many problems already been resolved. The two central elements of this

project will be designing a working program and then applying that program to hardware.

The requirements of applying a working system to a range of roadways will require the design

and contemplation of how the system will operate. With the low cost approach cheap and readily

available components will need to be utilized. This will require looking at what new technologies

in the way of micro-computers, cameras and networked systems can be applied in order to make

the project feasible for application into the real world.

Russell Johnsen Birkett ENG4112

- 28 -

Methodology

The project work and implementation have been broken down into

 Startup Phase – gathering research, resources and information based around the project

 Creation Phase – apply this knowledge to developing a working code that can be applied

to simple environments

 Enhancement Phase – from the rough working model developed start applying to more

difficult scenarios improving performance

 Comparison Phase – compared designed code against already developed models and

advance and improve current code

 Testing – Test in a real world environment

 Prototyping – Apply the developed software to hardware

 Write up – Dissertation

Phase 1 Startup Phase

1A Resource Check – Gather additional information on how other projects

attempted the problem

1B Comparison Check – Find key elements throughout predesigned projects

and make links in how they applied there algorithm

Phase 2 Creation Phase

2A Development - Create an outline of the needed elements gathered from

research

2B Implement – Being adding and creating the required sections shown in

other work

Phase 3 Enhancement Phase

3A Improvement – with a basic working program begin running through

different scenarios and environments

3B Analyze – Being noting what environment/conditions work best and worst

3C Compare check – Check back through research for solutions and example

of how to improve/ overcome problems

Phase 4 Comparison Phase

4A Testing - Compare research code against current and not differences

4B Analyze data - find how each code works and how similar technique s can

be applied

Russell Johnsen Birkett ENG4112

- 29 -

Phase 5 Testing

5A Test –Test current program in a real world situation

Phase 6 Prototyping

6A Design - Design a possible system that can operate on the program

Phase 7 Write Up

7 Dissertation – Summarize all gather knowledge and development

processes

Russell Johnsen Birkett ENG4112

- 30 -

Design Application

Before the program can be sufficiently designed it must first have what its specific goals and

operations outlined. With its application to road safety its must obviously perform operations

that benefit both the pedestrian and motorist. This implies that the system can identify the

locations and movements of both pedestrians and motorists signalizing when each enters warning

areas. For this reason placement and application of the camera its critical requiring a position

where it can monitor both traffic and pedestrian movements. This can be seen with current

security camera placements with high vantage points being the most common application of its

system. This is not the only problem that faces a system that will be applied to the real world.

Problems such as powering the devices as well as finding a way to have consistent light over the

required area all need to be addressed.

Looking at the most cost effective method of solving these problems come to the conclusion of

utilizing streetlights. This already abundant infrastructure would need very little modification to

solve the problems of not only powering the device but giving a consistent light levels needed in

video processing. This will need heavy testing to ensure that the lighting is sufficient and that it

can suffice in giving an accurate overview of the road way. However this is an extremely cost

effect strategy that overcomes a myriad of problems associated with applying the system.

The next step in application would be defining which areas of the roadway should be regarded as

unsafe or dangerous. This is a problem that will need to be analyzed and judged based on the

current environmental variables. Things such as pedestrian footpaths, crosswalks, car speeds and

distance from footpath to road must all be investigated individually.

 Figure 10 - Zoning of Roadway

Russell Johnsen Birkett ENG4112

- 31 -

Although powering the device could be powered through already established infrastructure the

ability for the system to be a self-contained and independent device opens opportunities in more

applications. This will require looking at power sources primarily at solar options making it

suitable for widespread application.

With cost being a huge factor in this design the prototype will need to mimic what hardware the

final device will have. Currently small computing devices are become more readily available and

easier to use. One of the most prominent of these devices is the Raspberry Pi. This computing

board has already begun it application into computer vision systems and is prices exceptionally

well. To successfully make this an independent system it would require a range of different

added devices to ensure its stable use. Although this is starting to leave the scope of this project;

with it being primarily biased on the software development it still needs to be considered how the

system will operate in the real world.

A Raspberry Pi based system is compatible with Matlab Simulink models and should have no

problem running the program. However further devices are needed for it to run autonomously.

Problems such as power creation and storage can be simply overcome by looking through the

massive range of photovoltaic cells and battery possibilities and finding the best fit. This can be

said for camera choices as well as networking options. The main focus of this report will be on

the computer vision side while showing its potential application and cost. Rather than

determining the most effective design.

Russell Johnsen Birkett ENG4112

- 32 -

Risk analysis

The risk associated with the project is extremely small with the majority of the work being done

indoors working with computers. One area were possible harm could be achieved is when

installing a camera for testing. This being near a road will need to have safety precaution taken.

TASK HAZARD RISK Minimization

1A NONE low Computer lab – Non applicable

1B NONE low Computer lab – Non applicable

2A NONE low Computer lab – Non applicable

2B NONE low Computer lab – Non applicable

3A NONE low Computer lab – Non applicable

3B NONE low Computer lab – Non applicable

3C NONE low Computer lab – Non applicable

4A NONE low Computer lab – Non applicable

4B NONE low Computer lab – Non applicable

4A NONE low Computer lab – Non applicable

5A NONE low Ensure appropriate safety standards are met

6A Installing Camera

around roadway

Medium 1. Have high vision clothing

2. Check for traffic when moving across

roadway

3. If installing at height ensure working with

partner

Russell Johnsen Birkett ENG4112

- 33 -

Resource Requirements

The resource requirements of this project are very small with the majority of the cost being

optional in the case of creating a working prototype. With USQ supplying Matlab software and

access to countless research papers the bulk of the research can be completed for little to no cost.

In the requirement of a working prototype build from scratch costing‟s will have to be completed

on different cameras and other electronic components. The video to be used in the testing phases

can be found and captured in a myriad of ways. However there are specific datasets that need to

be used in order to calculate the models effectiveness against other established methods.

As a rough estimate of the overall cost of building this project components already utilized in the

field of surveillance were used. All the components listed have been proven to work in systems

and represent what will be needed in the hardware application. However this hardware will be

shown as a proof of concept rather than the definitive design with a large amount of testing and

development needed on what will make the most effective device.

Task Item Amount Cost

Phase 2 – Phase 5 Matlab Software 1 $0.00

Phase 5 Raspberry Pi Model B 1 $69.00

Phase 5 Raspberry Pi Camera Board V2 1 $40.47

Phase 5 10400mAH Dual USB Battery 1 $25.15

Phase 5 6 Watt Solar Panel 1 $59.00

Phase 5 Wi-Fi Dongle - Ultra Long Range

High Gain w/ 5dBi Antenna

1 $19.55

Total $213.17

Russell Johnsen Birkett ENG4112

- 34 -

Development

The primary focus of this report is to effectively design a program that can detect and track

pedestrian in a roadway environment. This information can then be used in a range of ways to

prevent and analyze accidents and problems with pedestrians and motorists. The choice of

Matlab and Simulink was made for its extremely quick prototyping and prior knowledge. The

development for this project was done in three iterations all of which are documented. These

three show the elements that we focused on and the progression from one to another explaining

the reasons for each change. These were tested against multiple environments and there results

and performance outlined.

Model design

The process of how the model will work is one that follows a logical design.

Frame Acquisition – Video input separated into frame by frame in order to process changes in

pixels.

Gaussian Mixture Modeling – Using the Gaussian modeling to define the foreground and

background through the changing in pixels in the comparison of the current and previous frames.

Output is a matrix consisting of one and zeros defining where the changes are detected.

Morphological Filters – The process of clearing and removing undesired noise from the frame

difference matrix. This has many possible filters each having a specific effect on the overall

frame matrix.

Blob detection – Detection of clusters of blobs/ pixels from the frame difference matrix.

Kalman Filter – Applying a Kalman filter to the blob detection to give a weighting and tracking

estimates.

Detection and tracking Display – Outputting the detections and tracking into a video format

Frame Acquisition Gaussian Mixture

Modeling

Morphological Filters

Blob detection Kalman Filter Detection and tracking

Display

Russell Johnsen Birkett ENG4112

- 35 -

Iteration 1 – Appendix B

The initial code developed was from a series of tutorials through Matlab central. Running it

against PETS DATA SET 2009 shows it currently still needs a large amount of tweaking and

progress to get to an effective working model. This initial system utilized a few key features that

are already implemented in Matlab. These are some of the crucial elements in this program

reducing runtime and making the overall code run much more effectively. This program

followed the Model design exceptionally having all the elements required for detection and

tracking. Some of the most key functions have been outlined and explained

Detector = vision.ForegroundDetector (Name,Value)

This function utilizes the Gaussian Mixture modeling to successfully differentiate the

background and foreground moving targets. This has three major settings that were adjusted to

the environments and specific videos tested.

NumGaussians

Number of Gaussian models in the mixture model – Adjusted from range of 3 to 5

NumTrainingFrames

Number of frames given to differentiate between foreground and background. This was adjusted

to 10 to 20 frames and is utilized in the beginning of the program to acquire an initial reference

for the background.

MinimumBackgroundRatio

This setting was to determine the threshold for which would become the background model. This

threshold was changed constantly but left in a range of 0.5 – 0.9.

This initialization of the targeted objects was then run through the next important function of

blob analysis. Again a Matlab function was utilized and applied. This function bounds the

tracked areas of the detected targets. This information can then be passed onto further analysis

such as the Kalman filter.

obj.blobAnalyser = vision.BlobAnalysis

This output of this function as the centroid of the block giving the required points for Kalman

tracking. However morphological operations were performed before the final centroid was

created. This was done through the range of masks

 mask = imopen(IM,SE)

 mask = imclose(IM,SE)

 mask = imfill(IM,SE)

These operations worked by inputting what the required type of geometric shape to be applied

and that shapes scaling. This can be seen with rectangular fills and closes used at a scaling size

dependent on the environment.

Russell Johnsen Birkett ENG4112

- 36 -

From these operations the centroid could be easily defined and passed through the Kalman filter.

The Kalman filter worked just as described in the literature review with its inputs being acquired

from the centroids of blob analysis.

From this iteration a lot was leant in the limited capabilities of the Kalman filter. The Overall

operation of this code showed problems in defining individuals when they get to close together

and in groups. Although this is where the Kalman filter was supposed to separate and identify

each individual its effeteness was unnoticed. However detection through Gaussian mixture

modeling and the morphological filter all operated as expected. Looking at the accuracy in

detecting there were a range of small problems that force counting and identification down to

roughly 60% with the system only acquiring half of the pedestrians over the 2009 PETS Dataset.

This was the best result with a range of different combinations of values for both the Gaussian

modeling and the morphological filters.

One needed introduction into this system is the incorporation of regions of interest. In this

iteration the program has not defined which areas are important to monitor. This will need to be

implemented in order to identify the possible safety hazards for the pedestrian and where they

are in relation to them. For instants If they are crossing the road or if they are located in a safe

area. This iteration has also encountered another problem in the area of quick prototyping.

Without the utilization of Simulink any changes or alterations take a large amount of time

needed to be debugged and resolved every time. For this reason Simulink will be applied in the

further developments and remaining iterations.

Figure 11 - Iteration 1 - PETS2009

Russell Johnsen Birkett ENG4112

- 37 -

Iteration 2

This iteration is where the transfer was made to Simulink block based coding perfect for rapid

and experimental testing and design. The process however remains the same as before with all

the processing conducted in the code transferred into block based interactions. This made

conducting large changes and addition extremely easy being able to manipulate huge portions of

the code without large amount of debugging. From this iteration the regions of interest were

beginning to be implemented this meant segmenting the desired locations and areas for further

analysis such as counting and estimating. For testing with this new iteration a range of

improvements were made over iteration 1.

Clarity in detection and noise removal were significantly better. With the much quicker and more

effective Simulink model optimal designs and combinations were much easier to implement.

This as well as the region of interest implementation made the model much more useful in

application. Its design can be seen here:

Figure 12 - Comparison of Iteration 1 and Iteration 2

Russell Johnsen Birkett ENG4112

- 38 -

Figure 13 - Iteration 2 Simulink Model

Russell Johnsen Birkett ENG4112

- 39 -

The model broken up into its separate parts shows the process of how the blocks interacted to

create the detection and final tracking output.

The initial few steps were extremely simple especially the Gaussian models having a pre-defined

function block shown in Appendix C. The output of this block is the pixel matrix then goes

through the morphological altering and removing the noise of the matrix.

This subsystem is where a large amount of experimenting and fine tuning takes place with each

different environment and tracking targets having a massive effect on the levels of how much

each filter will effect and improve the image. The goal of the Gaussian model and the filters is to

create a noise free environment highlighting the specific entities that can then be used in further

analysis.

Frame Acquisition Gaussian Mixture

Modeling

Morphological Filters

Figure 14 - GMM and Morphological Filter Simulink Model

Figure 15 - Morphological filters subsystem

Russell Johnsen Birkett ENG4112

- 40 -

The blob detection is conducted through the block function blob analysis this block has a range

of different setting and output that can be used in tracking with the Kalman filter.

.

The import of these outputs is making sure the centroid of the tracked blob is outputted and

transmitted into the Kalman filtering process.

Blob detection Kalman Filter Detection and tracking

Display

Figure 16 - Blob analysis, Kalman Filter and Display Simulink Model

Figure 17 - Blob Analysis settings

Russell Johnsen Birkett ENG4112

- 41 -

The Kalman filter was conducted two different ways. One was through the predesigned block

available through Mathworks Simulink and the other was a function based block with the

individual formulas inputted. From testing the most effective block was the Mathworks

predesigned block. Huge problems of efficiency and tracking began immerging with the

implementation of the function block. The code shown in Appendix B had massive problems in

implementation. Both blocks had the same problem of blob association with them not being able

to successfully identify which tracking target they were assigned to. Not only this but the

function implemented block saw massive performance drop making the predesigned block the

most effective choice.

Figure 18 - Kalman Filter subsystem

Figure 19 - Display Subsystem

Figure 20 - Draw and ROI Subsystem

Russell Johnsen Birkett ENG4112

- 42 -

Displaying the information was done through a series of drawing and marker blocks. This

created the box identifying what are the target was in, its centroid and what the Kalman filter

prediction. The rectangular outline identifies the objects size and what designated area it is

located in by the color change. This is also fed into a counter in the top left corner monitoring

the numbers of targets in each region of interest. Added to this is the identification of the

centroid as a white „X‟ and the Kalman filter prediction as a black ‘+’.

To test this model a video was run though of a person walking up to a fence. The goal was to see

if the unit can be identified its position and how many units were there. The detection output a

green box when the target was a one zone to red when it became in proximity to the fence.

This was successful and could easily track and identify where units are in relation to the regions

of interest. Results from this iteration showed a serious improvement in the accuracy of both the

detection and the Kalman filter tracking. However a problem emerging is the difficulty in

associating Kalman filter tracks to the blob analysis. Meaning that utilizing the Kalman filter for

counting is extremely difficult with it dropping in and out creating an array of wrong counting

numbers. However the detection side is working extremely well with the incorporation of the

regions of interest. This has let the system identify two separate area both of which can detect

and count how many targets are in each.

Looking at the accuracy of the system it is reaching levels of 80%. Running it through the 2009

PETS dataset showed a massive increase in detection of close entities than in iteration one. All

round improvements have been made however the Kalman filter is still having trouble in

association and tracking. The next stage of this development will be in applying this system to a

roadway and monitoring its overall effectiveness.

Figure 21 - Iteration 2 test - Fence

Russell Johnsen Birkett ENG4112

- 43 -

Final Design

The final design was applying heavy improvement to iteration 2 in order for it to be capable to

run in a roadway situation. This meant applying multiple regions of interest as well as giving it

the ability to distinguish between pedestrians and automobiles. This was done by setting ranges

of pixel sizes of the tracked entities. This let the differentiation of cars and when they enter the

designated crossings.

Many of the central functions of the code have not changed from iteration two with the Gaussian

mixture modeling shown in appendix B being utilized again as well as the range of

morphological filters just in different values for the changes in environment.

Testing this iteration against the PETS 2009 dataset showed results exactly the same as iteration

two as expected due to the same overall methods being utilized. The results were showing an

accuracy of around 80% again however the reduction of close targets does increase that

accuracy. Determining an overall accuracy is extremely difficult because of the due to the

changing environment requiring heavy alteration towards the Gaussian modeling and the

morphological filters. However the systems accuracy increases substantially when it is utilized in

Figure 22 - Final Iteration Simulink Model

Russell Johnsen Birkett ENG4112

- 44 -

environments with low noise and clear concise moving patterns from the targets. Utilizing it in

highly crowed and dynamic environment showed a massive drop in the accuracy of the system.

Initial testing of the system it was run though a roadway situation of crossing pedestrians through

a road way. The success of this test would be if the program could count and identify not only

where the pedestrians were but also when a car enters the frame. To do this the environment was

divided into its three respected zones. First zone is designated safe with the pedestrians using the

sidewalk with a safe distance from the road shown as green. The second was the warning zone

outlining any area that is getting to close to the road designated yellow. Finally is the danger

zone where possible accidents between motorist and pedestrians may occur shown as red.

The count of how many pedestrian in each is calculated as well as when a car enters the frame.

This count can then be used in both instant signaling such as digital signage as well simple

counting analytics for future reference. Testing this scenario showed very promising results.

Detection of all pedestrians was acquired as well as the tracking from zone to zone. Counting

was consistent successfully numbering how many people are in are zone as well as the instant

detection when car enters the frame. Looking at the testing it was an overall success.

Figure 23 - Zoning Roadway Test

Russell Johnsen Birkett ENG4112

- 45 -

Figure 24 - Roadway Test - 1

Figure 25 - Roadway Test - 2

Russell Johnsen Birkett ENG4112

- 46 -

The added features in the finial iteration made the system a worthwhile addition for roadways to

improve safety. The system successfully identified the position s of each pedestrian as well as

when a car enter the environment. However problems with the Kalman tracking and blob

association still persist with the Kalman filter not being able to update the tracks when collision

and divergence occur. Other problems such as defining bicycles and motorcycles are also shown

with them being categorized into either cars or pedestrians.

Figure 26 - Roadway Test - 3

Russell Johnsen Birkett ENG4112

- 47 -

Results

The results from the three iterations showed a gradual improvement in the systems capabilities

moving from just basic detection to system that can identify between cars and pedestrians. Not

only this but the final iterations ability to detect various regions of interest lets the system track

when a pedestrian enters a dangerous area. The three iterations can really be reduced down to the

code based model and the Simulink model. The Simulink model ended up being the most

effective due to its extremely easy to manipulate and prototype friendly format. This let additions

such as the multiple regions of interest and counting systems to be implemented extremely

effortlessly. However both systems had major issues in the implementation of the Kalman filter.

In regard to computing cost it was extremely low having both models operating at a live footage

speed. This can obviously be manipulated with the introduction of larger video formats over the

chosen small resolutions.

Looking at the accuracy levels both were tested against the PETS 2009 dataset. This data set has

been used extensively as a common comparison in a range of different reports and was a solid

challenge for testing. With both these systems utilizing the same essential function in each there

is very little difference in the overall performance. With the same setting in the Gaussian Mixture

Modeling, morphological filters and blob analysis results from the two were almost identical as

expected. Running the codes through a range of other environments however showed that the

Simulink model was significantly easier to adapt.

In the case of running the system in a roadway scenario the model showed great promise. The

model performed extremely well detecting all pedestrians as well as differentiating between

automobiles. This in conjunction with the ability to outline dangerous areas and possible hazards

makes the system an overall success. However its application needs to be applied into

significantly more environments. High clutter environments with significantly increased numbers

of pedestrians moving through crosswalks need to be investigated, determining if the system can

uphold its accuracy. Although the system performed well in this specific environment it needs to

be run for an extended amount of time over a range of different scenarios.

Looking at how the filters were implemented shows the strength and weaknesses of the system.

The Gaussian Mixture Modeling was implemented through a function block shown in appendix

B. This was implemented extremely well performing all the require modeling and background

subtraction. This stable detection flowing into the morphological filter made the overall detection

of the targets extremely effective. The blob analysis was all conducted with ranging pixel limits

differentiating between the cars and the pedestrians worked well enough. However any sized

object in-between can be thrown into a group it does not belong such as monocycles. This also

forces the system to be calibrated in every new environment with the sizing of pedestrians and

their pixel sizes changing depending on the application. Furthermore any movement of the

camera will distort the calculated regions of interest.

Russell Johnsen Birkett ENG4112

- 48 -

Future Work

The area of computer vision is a massive expanse of rapidly improving technologies and

methods. The current model designed throughout this report has many positive attributes

however before it can be capable enough to be applied in real world scenarios huge

improvements need to be made. The biggest flaw and letdown throughout this project was the

implementation of the Kalman filter. This had serious problems in outputting concise and

useable data. Although it was run over the model its poor results throughout made it extremely

hard to be given any actual application. This will need to be investigated heavily as track

identification is necessary in high crowded and noisy environment.

The testing of this model was done over a small range of well lighted noise free environments.

For this system to be even remotely close for real application it must be tested in a range of not

only roadway scenarios but also weather and lighting conditions. Investigation must be made in

how much lighting is needed for the model and if I can operate with simple installation on a light

post. Not only this but what will be the most effect viewing angle, high considerations and data

retrieval all need to be considered. This requires a lot of analysis into how the system will be

mounted and all the environmental effects that it may have to endure. This would require a

massive review of available hardware and how each of them could be applied and there overall

performance. A quick estimate of costing was conducted however increase scrutiny and actual

application would be require for the system to be considered ready.

The possibly of cheap counting systems could be utilized in a range of different areas. However

massive hurdle will need to be overcome in order for it useful. Data retrieval would a huge part

of this problem in how would the counted and calculated data get to the sources it wants. An

interconnected network of cheap counting system could make huge advancements in city

planning as well a range of different areas. This can also be said for cheap security surveillance

systems being able to successfully identify and notify when targets have entered restricted areas.

The possible future applications for a cheap computer vision analysis system are massive. The

shear amount of future work and investigation that circles computer vision makes it a topic that

has near endless application. The choice of application to road safety is one that has already

begun and will continue to advance as the technologies and methods improve. The current model

detects tracks and identifies when and where pedestrians are and if they are in dangerous

circumstances. With improvements on the Kalman filter and hardware investigation this system

could reach a point where it becomes common in roadway safety.

Russell Johnsen Birkett ENG4112

- 49 -

Conclusion

The goal of this dissertation was to successfully design a roadway safety system that could be

applied and utilized in a range of different scenarios. The examination into current technologies

and algorithms showed the myriad of possible ways and solutions on how to approach this

problem. Through testing and prototyping a model was designed that could detect, track and

identify when pedestrians and motorists enter possible dangerous situations. Background

subtraction was conducted though a Gaussian Mixture model and performed extremely well

creating well defined entities to track. With the addition of a range of morphological filters the

resulting detection was to an extremely high standard. This detection was then processed through

a Kalman Filter which then predicted and tracked the required blobs. The overall operation of the

system was run through few different scenarios most notably a roadway with pedestrian and

motorist mixing. The system was successfully able to identify pedestrians from cars and the

location of those pedestrians in relation to the roadway. This information can then be applied to a

range of system to ensure notification to the motorist or display warning to the pedestrians. This

is capable due to the system‟s ability to be run of live video feeds.

The possible application of this system in not only roadway safety but in other industries such as

home security or data analytics is also apparent. With simple changes in defining the regions of

interest and pixel size ranges the system can be applied to almost any situations requiring

detection. The ability to easily count pedestrian numbers over long periods without human

intervention also applies itself to a range of different areas. However further work will need in

applying the system to new and challenging environments to successfully trial the system. This

type of investigation will also be needed in the development in hardware capable of house and

running the models.

In conclusion the overall development of this system was a success. The model could detect,

differentiate and track the pedestrians in situations that would be commonly encountered in

roadways. Although not all aspects of the model worked effectively; such as the Kalman filter

the system was operating as it was intended. The application of computer vision systems towards

roadways safety is inevitable with the rapid advancement and effectiveness of these systems

there uses and benefits are extensive. This report was dedicated to investigating and applying

current methods and techniques that could benefit pedestrians, in this regard it has successfully

represented the possible uses and application of such a model.

Russell Johnsen Birkett ENG4112

- 50 -

Appendices

Appendix A – Project Specification

Project Specification

For: Russell Birkett

Title: Video road processing road safety system

Major: Mechanical Engineering

Supervisors: Toby Low

Enrolment: ENG4111 ONC S1, 2016 ENG4111 ONC S1, 2016

Project aim: To develop and create robust video processing software that can be run through road

footage to detect entities and obstructions on the roads that could be subsequently avoided.

Programme: Issue A, 16th March 2016

The project work and implementation have been broken down into

 Startup Phase – gathering research, resources and information based around the project

 Creation Phase – apply this knowledge to developing a working code that can be applied to

simple environments

 Enhancement Phase – from the rough working model developed start applying to more difficult

scenarios improving performance

  Comparison Phase – compared designed code against already developed models and advance

and improve current code

 Testing – Test in a real world environment

 Write up – Dissertation

Phase 1 Startup Phase

1A Resource Check – Gather additional information on how other projects

attempted the problem

1B Comparison Check – Find key elements throughout predesigned projects

and make links in how they applied there algorithm

Russell Johnsen Birkett ENG4112

- 51 -

Phase 2 Creation Phase

2A Development - Create an outline of the needed elements gathered from

research

2B Implement – Being adding and creating the required sections shown in

other work

Phase 3 Enhancement Phase

3A Improvement – with a basic working program begin running through

different scenarios and environments

3B Analyze – Being noting what environment/conditions work best and worst

3C Compare check – Check back through research for solutions and example

of how to improve/ overcome problems

Phase 4 Comparison Phase

4A Testing - Compare research code against current and not differences

4B Analyze data - find how each code works and how similar technique s can

be applied

Phase 5 Testing

5A Test –Test current program in a real world situation

Phase 6 Prototyping

6A Design - Design a possible system that can operate on the program

Phase 7 Write Up

7 Dissertation – Summarize all gather knowledge and development

processes

RESOURCE REQUIREMENTS

The resource requirements of this project are very small with the majority of the cost being

optional in the case of creating a working prototype. With USQ supplying Matlab software and

access to countless research papers the bulk of the research can be completed for little to no cost.

In the requirement of a working prototype build from scratch costing‟s will have to be completed

on different cameras and other electronic components.

Russell Johnsen Birkett ENG4112

- 52 -

RISK ANALYSIS

The risk associated with the project is extremely small with the majority of the work being done

indoors working with computers. One area were possible harm could be achieved is when

installing a camera for testing. This being near a road will need to have safety precaution taken.

Task Item Amount Cost

Phase 2 – Phase 5 Matlab Software 1 NIL

Phase 5 Camera 1 UNKNOWN

Russell Johnsen Birkett ENG4112

- 53 -

Russell Johnsen Birkett ENG4112

- 54 -

Appendix B – Kalman Filter (Semko, 2007)

%kalman_10
%The following code processes the output measurements from the Optical
%Flow Analysis block (z) and the number of contacts (num) at the output
%of the same block and performs a Kalman Filter Tracking operation on
%each measurement to determine an estimated position (xhatOut). The
%code also monitors changes in the number of contacts and produces the
%last known location of a contact (lcpos) if a contact is lost.
function [lcpos, xhatOut]=KALMAN(z,num)
%The following variables are set as persistent in order to make them
%available frame after frame.
persistent XHAT
persistent PP
persistent lastmed
persistent numbin
persistent P
persistent index
persistent XHATtemp
%Initial conditions for various variables are set here for use throughout
%the embedded MATLAB function
if isempty(PP)
 XHAT = 0.1*ones(6,10); %Estimated pos./vel/accel.
 XHAT(1,:)=144*ones(1,10); %Estimated pos. (row)
 XHAT(2,:)=192*ones(1,10); %Estimated pos. (column)
 pp = diag([9 9 25 25 49 49]); %Initial P-covariance matrix (6x6)
 PP=[pp pp pp pp pp pp pp pp pp pp];%10 P matrices side by side
 numbin=num*ones(25,1); %Bin tracks num over succ.frames
 lastmed=num; %Bin median
 P=pp; %Initial value for P
 index=[1:10]'; %Index vector for filter assignment
 XHATtemp=zeros(6,10); %Temporary estimated pos.
end
%Numbin is continually updated to include information from the current
%frame and 24 previous frames. Median value for number of contacts (num)
%is calculated as mednum.
numbin(1:24,1)=numbin(2:25,1);
numbin(25,1)=num;
mednum=median(numbin);
64
%Each measurement (z) is compared to the position estimates which have
%remained persistent from last frame. Each measurement is paired with
%its closest position estimate and the index of said estimate is recorded.
%Two “for loops” are used to ensure that no two successive measurements are
%matched with the same filter and position estimate. The first loop
%calculates the index for the first measurement and the second calculates
%it for all subsequent measurements.
if mednum~=num
 normMIN=10e10;
 for j=1:lastmed
 normCALC=norm(z(:,1)-XHAT(1:2,j));
 if normCALC<normMIN
 index(1,1)=j;
 normMIN=normCALC-eps;
 end
 end

Russell Johnsen Birkett ENG4112

- 55 -

 for k=2:num
 normMIN=10e10;
 for j=1:lastmed
 normCALC=norm(z(:,k)-XHAT(1:2,j));
 if normCALC<normMIN && index(k-1)~=j
 index(k,1)=j;
 normMIN=normCALC-eps;
 end
 end
 end
end
%The measurements are adjusted here to account for the possibility that
%a contact was lost or gained for less than 13 frames. Any measurement
%that is missing is replaced with the position estimate from the previous
%frame.
ztemp=XHAT(1:2,:);
for i=1:num
 ztemp(:,index(i,1))=z(:,i);
end
z=ztemp;
65
%If lastmed is greater than mednum, then a contact has been missing for
%13 out of the past 25 frames and the contact is deemed lost. The index
%of that contact is determined and subsequently the position corresponding
%to that index is sent to the post-processing block. The filter which
%corresponded to the lost contact is re-set to the initial conditions.
%*If LCindex is less than or equal to zero then there is an error in the
%index assignments and no lost contact information is sent to the post-
%processing block.
if lastmed>mednum
 sumSOME=0;
 sumALL=0;
 for i=1:mednum
 sumSOME=sumSOME+index(i,1);
 end
 for j=1:lastmed
 sumALL=sumALL+j;
 end
 LCindex=sumALL-sumSOME;
 if LCindex>0
 LCpos=XHAT(1:2,LCindex);
 for i=1:10
 XHATtemp(:,i)=XHAT(:,index(i,1));
 end
 XHAT=XHATtemp;
 XHAT(:,num+1)=[144;192; 0.1; 0.1; 0.1; 0.1];
 index=[1:10]';
 else
 LCpos=[0;0];
 end
else
 LCindex=0;
 LCpos=[0;0];
end
%lastmed is updated for use in the processing of the next frame of video.
lastmed=mednum;

Russell Johnsen Birkett ENG4112

- 56 -

66
%The Kalman filter is implemented based on the number of adjusted data
%points that are present at the input of the block. Each data point is
%processed separately and filterindex is used to index the correct pos.
%estimates and covariance matrices.
for i=1:mednum
 if index(i,1)>0
 filterindex=index(i,1);
 else
 filterindex=10;
 end
 xhat=XHAT(:,filterindex);
 low=filterindex*6-5;
 P(:,1)=PP(:,low);
 P(:,2)=PP(:,low+1);
 P(:,3)=PP(:,low+2);
 P(:,4)=PP(:,low+3);
 P(:,5)=PP(:,low+4);
 P(:,6)=PP(:,low+5);

 % 1. Compute Phi, H, Q, and R
 Phi = [1 0 1 0 0.5 0; 0 1 0 1 0 0.5; 0 0 1 0 1 0; 0 0 0 1 0 1; 0 0 0 0 1 0; 0 0 0 0 0 1];
 H=zeros(2,6);
H(1:2,1:2)=diag(ones(1,2));H(1:2,3:4)=diag(ones(1,2));H(1:2,5:6)=0.5*diag(ones(1,2));
 Q =diag(0.5*ones(1,6));
 R =diag(ones(1,2));
 %2. Compute Kalman Gain and Update State Covariance
 K=P*H'*((H*P*H'+R)^-1);
 P = (eye(6,6)+K*H)*P;
 % 3. Propagate the track estimate::
 xhat = xhat+K*(z(:,i)-H*xhat);
 xhat=Phi*xhat;

 % 4. Update Covariance Matrix
 P = Phi*P*Phi'+Q;

 % 5. Refill filter bank
 XHAT(:,filterindex)=xhat;
 PP(:,low)=P(:,1);
 PP(:,low+1)=P(:,2);
 PP(:,low+2)=P(:,3);
 PP(:,low+3)=P(:,4);
 PP(:,low+4)=P(:,5);
 PP(:,low+5)=P(:,6);

end
67
%Updated position estimates and lost contact position (if any) are sent to
%the post-processor.
lcpos=LCpos;
xhatOut=XHAT(1:2,:);

Russell Johnsen Birkett ENG4112

- 57 -

Appendix C – ForgroundDetector (MathWorks, 2010)

classdef ForegroundDetector < matlab.System
 properties(Nontunable)
 NumGaussians = 5;
 MinimumBackgroundRatio = 0.7;
 InitialVariance = 'Auto';
 end

 properties (Nontunable, Logical)
 AdaptLearningRate = true;
 end

 properties (Nontunable)
 NumTrainingFrames = 150;
 end

 properties
 LearningRate = 0.005;
 end

 properties(Constant, Hidden, Nontunable)
 VarianceThreshold = 2.5*2.5;
 InitialWeight = 0.05;
 end

 properties(Access=private)
 Time;
 Weights;
 Variances;
 Means;
 end

 properties(Access=private, Nontunable)
 ClassToUse;
 FrameSize;
 NumChannels;
 pInitialVariance;
 end

 properties(Access=private, Hidden, Nontunable)
 ImageClass=coder.internal.const('double'); %only for codegen
 StatClass =coder.internal.const('double');
 end

 properties(Access=private, Hidden, Logical)
 hasConstructed = false; %only for codegen
 end

 methods(Access=private)
 function initializeStates(obj, classToUse)
 obj.Time = 0;
 numPixels = prod(obj.FrameSize);
 obj.Weights = zeros([obj.NumGaussians numPixels], classToUse);

Russell Johnsen Birkett ENG4112

- 58 -

 obj.Variances = obj.pInitialVariance *...
 ones([obj.NumChannels, obj.NumGaussians, numPixels], ...
 classToUse);

 obj.Means = zeros([obj.NumChannels, obj.NumGaussians, numPixels], ...
 classToUse);
 end

 function initializeParameters(obj, I)
 inputSize = size(I);
 obj.FrameSize = inputSize(1:2);
 if length(inputSize)<3
 obj.NumChannels = 1;
 else
 obj.NumChannels = inputSize(3);
 end

 initInitialVariance(obj, I);

 end

 function initInitialVariance(obj, I)
 if strcmpi(obj.InitialVariance,'Auto')
 if isfloat(I)
 obj.pInitialVariance = (30/255)^2;
 else
 obj.pInitialVariance = 30^2;
 end
 else
 obj.pInitialVariance = obj.InitialVariance;
 end
 end
 end

 properties (Transient,Access = private)
 pForegroundDetector = [];
 end

 methods
 function obj = ForegroundDetector(varargin)
 coder.allowpcode('plain');
 setProperties(obj, nargin, varargin{:});
 if isempty(coder.target)
 obj.pForegroundDetector = vision.internal.ForegroundDetector();
 else
 obj.hasConstructed = false;

 end
 end

 function set.AdaptLearningRate(obj, value)
 validateattributes(value, { 'logical' }, ...
 { 'finite', 'scalar', 'nonsparse', 'real' },...
 'ForegroundDetector', 'AdaptLearningRate');

Russell Johnsen Birkett ENG4112

- 59 -

 obj.AdaptLearningRate = value;
 end

 function set.NumTrainingFrames(obj, value)
 validateattributes(value, { 'numeric' }, ...
 { 'scalar', 'real', 'integer', 'positive', 'nonsparse' },...
 'ForegroundDetector', 'NumTrainingFrames');

 obj.NumTrainingFrames = value;
 end

 function set.LearningRate(obj, value)
 validateattributes(value, { 'double', 'single' }, ...
 { 'finite', 'scalar', '>', 0, '<=', 1, 'nonsparse', 'real' }, ...
 'ForegroundDetector', 'LearningRate');

 obj.LearningRate = value;
 end

 function set.MinimumBackgroundRatio(obj, value)
 validateattributes(value, { 'numeric' }, ...
 { 'finite', 'scalar', '>=', 0, '<=', 1, 'nonsparse', 'real' }, ...
 'ForegroundDetector', 'MinimumBackgroundRatio');

 obj.MinimumBackgroundRatio = value;
 end

 function set.NumGaussians(obj, value)
 validateattributes(value, { 'numeric' }, ...
 { 'real', 'integer', 'scalar', '>', 0, 'nonsparse' }, ...
 'ForegroundDetector', 'NumGaussians');

 obj.NumGaussians = value;
 end

 function set.InitialVariance(obj, value)
 if ischar(value)
 [numericValue, isValidNumeric] = vision.internal.codegen.str2num(value);

 if isValidNumeric
 validateInitialVariance(numericValue);
 obj.InitialVariance = numericValue;
 else
 str = validatestring(value, {'Auto'}, 'ForegroundDetector', 'InitialVariance');
 obj.InitialVariance = str;
 end
 else
 validateInitialVariance(value);
 obj.InitialVariance = value;
 end

 end

Russell Johnsen Birkett ENG4112

- 60 -

 end

 methods(Access=protected)
 function fgMask = stepImpl(obj, I, varargin)
 obj.Time = obj.Time+1;

 if isempty(varargin)
 if obj.Time < obj.NumTrainingFrames
 learningRate = 1/obj.Time;
 else
 learningRate = obj.LearningRate;
 end
 else
 learningRate = varargin{1};
 coder.internal.errorIf(learningRate <= 0 || learningRate > 1 || isnan(learningRate),...
 'vision:ForegroundDetector:invalidLearningRate');
 end

 if isempty(coder.target)
 fgMask = obj.pForegroundDetector.step(I, learningRate);
 else
 if coder.internal.isTargetMATLABHost
 fgMask = ...
 vision.internal.buildable.ForegroundDetectorBuildable.ForegroundDetector_step(...
 obj.pForegroundDetector, ...
 obj.ImageClass, ...
 obj.StatClass, ...
 I, cast(learningRate,obj.ClassToUse));

 else
 [fgMask, obj.Weights, obj.Means, obj.Variances] = ...
 vision.internal.detectForeground(I, learningRate, ...
 obj.Weights, obj.Means, obj.Variances, ...
 obj.ClassToUse, ...
 obj.NumGaussians, obj.VarianceThreshold, ...
 obj.MinimumBackgroundRatio, ...
 obj.InitialWeight, obj.pInitialVariance);
 end
 end
 end

 function setupImpl(obj, I, varargin)

 setupTypes(obj,I);
 initializeParameters(obj, I);

 if isempty(coder.target)
 obj.pForegroundDetector.initialize(I, obj.NumGaussians, ...
 obj.pInitialVariance, ...
 obj.InitialWeight, ...
 obj.VarianceThreshold,...
 obj.MinimumBackgroundRatio);
 else
 if coder.internal.isTargetMATLABHost

Russell Johnsen Birkett ENG4112

- 61 -

 obj.pForegroundDetector = ...
 vision.internal.buildable.ForegroundDetectorBuildable.ForegroundDetector_construct(...
 obj.ImageClass, obj.StatClass);
 obj.hasConstructed = true;
 vision.internal.buildable.ForegroundDetectorBuildable.ForegroundDetector_initialize(...
 obj.pForegroundDetector, ...
 obj.ImageClass, ...
 obj.StatClass, ...
 I, ...
 obj.NumGaussians, ...
 cast(obj.pInitialVariance,obj.ClassToUse), ...
 cast(obj.InitialWeight,obj.ClassToUse), ...
 cast(obj.VarianceThreshold,obj.ClassToUse),...
 cast(obj.MinimumBackgroundRatio,obj.ClassToUse));
 end
 end
 end

 function flag = isInputSizeLockedImpl(~,~)
 flag = true;
 end

 function flag = isInputComplexityLockedImpl(~,~)
 flag = true;
 end

 function flag = isOutputComplexityLockedImpl(~,~)
 flag = true;
 end

 function resetImpl(obj)
 initializeStates(obj, obj.ClassToUse);
 if isempty(coder.target)
 obj.pForegroundDetector.reset();
 else
 if coder.internal.isTargetMATLABHost
 if obj.hasConstructed
 vision.internal.buildable.ForegroundDetectorBuildable.ForegroundDetector_reset(...
 obj.pForegroundDetector, obj.ImageClass, obj.StatClass);
 end
 end
 end
 end

 function releaseImpl(obj)
 if isempty(coder.target)
 obj.pForegroundDetector.release();
 else
 if coder.internal.isTargetMATLABHost
 if obj.hasConstructed
 vision.internal.buildable.ForegroundDetectorBuildable.ForegroundDetector_release(...
 obj.pForegroundDetector, obj.ImageClass, obj.StatClass)
 vision.internal.buildable.ForegroundDetectorBuildable.ForegroundDetector_delete(...
 obj.pForegroundDetector, obj.ImageClass, obj.StatClass);
 obj.hasConstructed = false;

Russell Johnsen Birkett ENG4112

- 62 -

 end
 end
 end
 end

 function s = saveObjectImpl(obj)
 s.InitialVariance = obj.InitialVariance;
 s.LearningRate = obj.LearningRate;
 s.NumTrainingFrames = obj.NumTrainingFrames;
 s.NumGaussians = obj.NumGaussians;
 s.MinimumBackgroundRatio = obj.MinimumBackgroundRatio;
 s.AdaptLearningRate = obj.AdaptLearningRate;
 if obj.isLocked
 s.Time = obj.Time;
 s.ClassToUse = obj.ClassToUse;
 s.ImageClass = obj.ImageClass;
 s.StatClass = obj.StatClass;
 s.FrameSize = obj.FrameSize;
 s.NumChannels = obj.NumChannels;
 s.pInitialVariance = obj.pInitialVariance;
 if isempty(coder.target)
 [s.Weights, s.Means, s.Variances, s.NumActiveGaussians] =...
 getStates(obj.pForegroundDetector);
 end
 end
 end

 function loadObjectImpl(obj, s, wasLocked)
 obj.LearningRate = s.LearningRate;
 obj.InitialVariance = s.InitialVariance;
 obj.NumGaussians = s.NumGaussians;
 obj.MinimumBackgroundRatio = s.MinimumBackgroundRatio;
 obj.NumTrainingFrames = s.NumTrainingFrames;
 obj.AdaptLearningRate = s.AdaptLearningRate;

 if wasLocked
 obj.ClassToUse = s.ClassToUse;
 obj.ImageClass = s.ImageClass;
 obj.StatClass = s.StatClass;
 obj.FrameSize = s.FrameSize;
 obj.NumChannels = s.NumChannels;
 obj.Time = s.Time;

 if isfield(s,'pInitialVariance')
 obj.pInitialVariance = s.pInitialVariance;
 else
 obj.pInitialVariance = s.InitialVariance;
 end

 if isempty(coder.target)
 obj.pForegroundDetector.initialize(ones([obj.FrameSize obj.NumChannels],obj.ClassToUse),...
 obj.NumGaussians,...
 obj.pInitialVariance,...
 obj.InitialWeight,...
 obj.VarianceThreshold,...

Russell Johnsen Birkett ENG4112

- 63 -

 obj.MinimumBackgroundRatio);
 obj.pForegroundDetector.setStates(s.Weights, s.Means, s.Variances, s.NumActiveGaussians);

 end
 end
 end

 function validateInputsImpl(obj, I, varargin)
 validateattributes(I, {'double','single','uint8'},...
 {'real','nonsparse'},'vision.ForegroundDetector.step','', 2);

 if ~obj.AdaptLearningRate
 validateattributes(varargin{1}, {'double','single'},...
 {'scalar','real','nonsparse'},...
 'vision.ForegroundDetector.step','',3);
 end
 end

 function num = getNumInputsImpl(obj)
 if obj.AdaptLearningRate
 num = 1;
 else
 num = 2;
 end
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function flag = isInactivePropertyImpl(obj, prop)
 props = {'VarianceThreshold', 'InitialWeight'};

 if ~obj.AdaptLearningRate
 props{end+1} = 'NumTrainingFrames';
 props{end+1} = 'LearningRate';
 end
 flag = ismember(prop, props);
 end

 function setupTypes(obj,I)
 if (isa(I,'double'))
 obj.ClassToUse = 'double';
 obj.ImageClass = coder.internal.const('double');
 obj.StatClass = coder.internal.const('double');
 else
 obj.ClassToUse = 'single';
 obj.StatClass = coder.internal.const('float');
 if (isa(I,'uint8'))
 obj.ImageClass = coder.internal.const('uint8');
 else
 obj.ImageClass = coder.internal.const('float');
 end
 end

Russell Johnsen Birkett ENG4112

- 64 -

 end
 end

end

% ---
function validateInitialVariance(value)
validateattributes(value, { 'numeric' }, ...
 { 'finite', 'scalar', '>=', 0, 'nonsparse', 'real' }, ...
 'ForegroundDetector', 'InitialVariance');
end

Russell Johnsen Birkett ENG4112

- 65 -

Appendix D – Iteration 1 - Full code - (MathWorks, 2010)

%% ITERATION 1 - RUSSELL BIRKETT

function multiObjectTracking()
 %% Creating the system objects used in reading selected video
obj = setupSystemObjects();
tracks = initializeTracks();
nextId = 1;
 DETECTING THE MOVING OBJECTS ACROSS FRAMES
while ~isDone(obj.reader)
 frame = readFrame();
 [centroids, bboxes, mask] = detectObjects(frame);
 predictNewLocationsOfTracks();
 [assignments, unassignedTracks, unassignedDetections] = ...
 detectionToTrackAssignment();
 updateAssignedTracks();
 updateUnassignedTracks();
 deleteLostTracks();
 createNewTracks();
 displayTrackingResults();
end
%%
 function obj = setupSystemObjects()

 obj.reader = vision.VideoFileReader('PETS_2009_VIEW_001.avi');
 obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);
 obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);

%GAUSSIAN MIXTURE MODELING

 obj.detector = vision.ForegroundDetector('NumGaussians', 2, ...
 'NumTrainingFrames', 10, 'MinimumBackgroundRatio', 0.5);
%CREATING BOUNDING BOXES
 obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
 'AreaOutputPort', true, 'CentroidOutputPort', true, ...
 'MinimumBlobArea', 100);
 end
%CONVERTING MASK TO RGB
 function displayTrackingResults()
 frame = im2uint8(frame);
 mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
 minVisibleCount = 12;
 if ~isempty(tracks)
 reliableTrackInds = ...
 [tracks(:).totalVisibleCount] > minVisibleCount;
 reliableTracks = tracks(reliableTrackInds);
%DISPLAYING PREDICTED BOUNDRY BOX
 if ~isempty(reliableTracks)
 bboxes = cat(1, reliableTracks.bbox);
 ids = int32([reliableTracks(:).id]);
 labels = cellstr(int2str(ids'));
 predictedTrackInds = ...
 [reliableTracks(:).consecutiveInvisibleCount] > 0;

Russell Johnsen Birkett ENG4112

- 66 -

 isPredicted = cell(size(labels));
 isPredicted(predictedTrackInds) = {' predicted'};
 labels = strcat(labels, isPredicted);

%DRAWING ON PREDICTED BOXES ON FRAME AND MASK
 frame = insertObjectAnnotation(frame, 'rectangle', ...
 bboxes, labels);
 mask = insertObjectAnnotation(mask, 'rectangle', ...
 bboxes, labels);
 end
 end

 obj.maskPlayer.step(mask);
 obj.videoPlayer.step(frame);
 end
 %%
 function tracks = initializeTracks()

%% create an empty array of tracks
 tracks = struct(...
 'id', {}, ...
 'bbox', {}, ...
 'kalmanFilter', {}, ...
 'age', {}, ...
 'totalVisibleCount', {}, ...
 'consecutiveInvisibleCount', {});
 end
 %%
 function frame = readFrame()
 frame = obj.reader.step();
 end
%%DETECT THE FORGROUND FOR MORPHOLOGICAL FILTER
 function [centroids, bboxes, mask] = detectObjects(frame)

 mask = obj.detector.step(frame);

 mask = imopen(mask, strel('rectangle', [3,3]));
 mask = imclose(mask, strel('rectangle', [50, 50]));
 mask = imfill(mask, 'holes');
%% BLOB ANALYSIS TO FIND CONNECTED COMPONENTS
 [~, centroids, bboxes] = obj.blobAnalyser.step(mask);
 end
%% PREDICTING NEW LOCATIONS OF TRACK
 function predictNewLocationsOfTracks()
 for i = 1:length(tracks)
 bbox = tracks(i).bbox;
 predictedCentroid = predict(tracks(i).kalmanFilter);
 predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2;
 tracks(i).bbox = [predictedCentroid, bbox(3:4)];
 end
 end
 function [assignments, unassignedTracks, unassignedDetections] = ...
 detectionToTrackAssignment()
 nTracks = length(tracks);
 nDetections = size(centroids, 1);
%% COST OF ASSIGNING EACH DETECTION A TRACK
 cost = zeros(nTracks, nDetections);

Russell Johnsen Birkett ENG4112

- 67 -

 for i = 1:nTracks
 cost(i, :) = distance(tracks(i).kalmanFilter, centroids);
 end
 costOfNonAssignment = 20;
 [assignments, unassignedTracks, unassignedDetections] = ...
 assignDetectionsToTracks(cost, costOfNonAssignment);
 end
 %%
 function updateAssignedTracks()
 numAssignedTracks = size(assignments, 1);
 for i = 1:numAssignedTracks
 trackIdx = assignments(i, 1);
 detectionIdx = assignments(i, 2);
 centroid = centroids(detectionIdx, :);
 bbox = bboxes(detectionIdx, :);
%% REPLACING PREDICTED BOUNDING BOX WITH DETECTION ONE AND UPDATE
 correct(tracks(trackIdx).kalmanFilter, centroid);
 tracks(trackIdx).bbox = bbox;
 tracks(trackIdx).age = tracks(trackIdx).age + 1;
 tracks(trackIdx).totalVisibleCount = ...
 tracks(trackIdx).totalVisibleCount + 1;
 tracks(trackIdx).consecutiveInvisibleCount = 0;
 end
 end
 %%
 function updateUnassignedTracks()
 for i = 1:length(unassignedTracks)
 ind = unassignedTracks(i);
 tracks(ind).age = tracks(ind).age + 1;
 tracks(ind).consecutiveInvisibleCount = ...
 tracks(ind).consecutiveInvisibleCount + 1;
 end
 end
%% DELETING TRACK IS LOST
 function deleteLostTracks()
 if isempty(tracks)
 return;
 end
 invisibleForTooLong = 10;
 ageThreshold = 8;

 ages = [tracks(:).age];
 totalVisibleCounts = [tracks(:).totalVisibleCount];
 visibility = totalVisibleCounts ./ ages;

 lostInds = (ages < ageThreshold & visibility < 0.6) | ...
 [tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;

 tracks = tracks(~lostInds);
 end

%% CREATING NEW TRACKS WITH KALMAN FILTER
 function createNewTracks()
 centroids = centroids(unassignedDetections, :);
 bboxes = bboxes(unassignedDetections, :);
 for i = 1:size(centroids, 1)

Russell Johnsen Birkett ENG4112

- 68 -

 centroid = centroids(i,:);
 bbox = bboxes(i, :);

 kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
 centroid, [200, 50], [100, 25], 100);

 newTrack = struct(...
 'id', nextId, ...
 'bbox', bbox, ...
 'kalmanFilter', kalmanFilter, ...
 'age', 1, ...
 'totalVisibleCount', 1, ...
 'consecutiveInvisibleCount', 0);

 tracks(end + 1) = newTrack;

 nextId = nextId + 1;
 end
 end
end

Russell Johnsen Birkett ENG4112

- 69 -

Appendix E – Comparison (Sobral & Vacacant, 2013)

Russell Johnsen Birkett ENG4112

- 70 -

Appendix F – Finial Iteration

Morphological Filters

ROI_COUNT

Russell Johnsen Birkett ENG4112

- 71 -

Kalman Filter

Display

DRAW AND COUNT ROI - Subsystem

Russell Johnsen Birkett ENG4112

- 72 -

Bibliography

Arulampalam, S., Maskell, S., Neil, G., & Clapp, T. (2002). A Tutorial on Particle Filters for

Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE TRANSACTIONS ON SIGNAL

PROCESSING VOL 50, 174-188.

Athanesious, J. (2012). Systematic Survey on Object Tracking Methods in Video. International

Journal of Advanced Research in Computer Engineering & Technology, 242-247.

Benezeth, Y., Jodoin, P.-M., Emile, B., & Laurent, H. (2012). Comparative study of background

subtraction. Journal of Electronic Imaging, 2-4.

Das, D., & Saharia, S. (2014). Implementation And Performance Evaluation O fBackground

Subtraction Algorithms. International Journal on Computational Sciences &

Applications , 48-53.

Feng , J., Ding, M., & Zhang, X. (2013). Decision-based adaptive morphological filter for fixed-

value impulse. ScienceDirect, 2-8.

Fuhr, G. (2012). Robust Patch-Based Pedestrian Tracking using. Institute of Informatics, 1- 12.

Maragos, P. (2005). Morphological filtering for Image and Feature Detection. The Image and

Video Processing Handbook 2nd Edition, 135-156.

MathWorks. (2010). Motion-Based Multiple Object Tracking. Retrieved July 12, 2016, from

MathWorks: http://au.mathworks.com/help/vision/examples/motion-based-multiple-

object-tracking.html

MathWorks. (2010). Tracking Cars Using Foreground Detection. Retrieved August 2, 2016,

from ForegroundDetector: http://au.mathworks.com/help/vision/examples/tracking-cars-

using-foreground-detection.html#vision_product-viptraffic

MathWorks. (2015). Edge detection methods for finding object boundaries in images. Retrieved

October 1, 2016, from MathWords: https://au.mathworks.com/discovery/edge-

detection.html

MathWorks. (2016). Detecting Cars Using Gaussian Mixture Models. Retrieved August 12,

2015, from MathWorks.com: http://au.mathworks.com/help/vision/examples/detecting-

cars-using-gaussian-mixture-models.html

Parekh, H. S., Thakore, D. G., & Jaliya, U. K. (2014). A Survey on Object Detection and

Tracking Methods. International Journal of Innovative Research in Computer and

Communication Engineering, 2970 - 2978.

Russell Johnsen Birkett ENG4112

- 73 -

Poole, D., & Mackworth, A. (2010). Artificial Intelligence - Foundations of Computational

Agents. Cambridge: Cambridge University Press.

Ray, D. (2013). Edge Detection in Digital Image Processing. University Of Washington.

Reynolds, D. (2009). Gaussian Mixture Models∗. MIT Lincoln Laboratory, 2-4.

Roeder, A. (2012). A computational image analysis glossary for biologists. The Company of

Biologists, 3071-3080.

Semko, D. (2007, June). OPTICAL FLOW ANALYSIS AND KALMAN FILTER TRACKING

IN VIDEO SURVEILLANCE ALGORITHMS. CALIFORNIA , United States Of

America: Naval Postgraduate School MONTEREY CALIFORNIA .

Sobral, A., & Vacacant, A. (2013). A comprehensive review of background subtraction

algorithms. Computer Vision and Image Understanding, 8-19.

Su, F., & Fang, G. (2012). Adaptive Colour Feature Identification in. Mathematical Problems in

Engineering, 234-252.

SULIMAN, C., CRUCERU, C., & MOLDOVEANU, F. (2010). Kalman Filter Based Tracking

in an Video Surveillance System. 10th International Conference on DEVELOPMENT

AND APPLICATION SYSTEMS, 54-58.

University of Reading. (2009, June 25). PETS 2009 Benchmark Data. Retrieved January 26,

2016, from Computer Society Conference on Computer Vision and Pattern Recognition:

http://www.cvg.reading.ac.uk/PETS2009/a.html

Zhou, Z., Wu, D., & Zhu, Z. (2016). Object tracking based on Kalman particle filter with

LSSVR. Optik - International Journal for Light and Electron Optics, 613-619.

