

Faculty of Health, Engineering and Sciences

COMPARISON BETWEEN TERRESTRIAL CLOSE RANGE PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING

A dissertation submitted by Lachlan Broome

Student Number 0061007782

Supervisor **Dr Albert Chong**

In fulfilment of the requirements of **Bachelor of Spatial Science (Honours) (Surveying)**

October 2016

Abstract

Remote sensing has been around since the concept was first theorised by Leonardo da Vinci in 1480. Today due to advancements in technology and computing power it is now more accessible than ever to conduct a survey on a grand scale measuring millions of points in minutes using a variety of techniques. This research project aims to evaluate and compare two remote sensing techniques known as terrestrial laser scanning and photogrammetry.

Surveying is an integral part of any development and as technologies advance more information is expected out of a survey. Photogrammetry and laser scanning are two technologies that are proving invaluable for fast and accurate data collection. In the author's research an abundance of information was found on individual techniques, however very limited information was found that compared these two technologies together. This research paper is being conducted to help bridge the informational gap between the two technologies and serve as a decision making tool for surveyors to choose which technique will best suite an individual project's needs.

In order to achieve this both techniques where tested under two different scenarios-

- 1. Site A-Block 11 is an as built survey of a bulk excavation site surrounded by a secant pile wall.
- 2. Site B-The office is a building façade comprised of concrete beams/columns and glass windows.

The data was then processed and compared using free open source software known as cloud compare.

This study found that when done correctly both techniques have proven to be as successful as each other in the test scenarios. Ultimately, the accuracy of any measurement performed using either technique will depend greatly on a combination of correct instrument operation/technique and a firm understanding of the limitations of each technology. This project will serve as a how too guide for surveyors conducting similar remote sensing surveys and aid in the selection of technique for the project at hand.

University of Southern Queensland Faculty of Health, Engineering and Sciences ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

University of Southern Queensland Faculty of Health, Engineering and Sciences ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Lachlan Edward Broome

Mit

Student ID: 0061007782

Acknowledgements

Firstly I would like to thank my supervisor Dr Albert Chong from the University of Southern Queensland for his guidance throughout the year.

My employer Degotardi, Smith and Partners for the use of equipment and software licences throughout the project.

Ultimate positioning group for being generous enough to lend a laser scanner free of charge for the purposes of this project.

My brother Andrew for donating his time to assist with field work.

Finally I would like to thank my wife for her encouragement and my young son Axel for knowing when to drag me away from the computer screen for a sanity check.

Table of Contents

Abstract	i
Limitations of	Useii
Certification o	f Dissertationiii
Acknowledge	mentsiv
Table of Conte	entsv
List of Figures	sviii
List of Tables	xi
List of Appen	dicesxiii
Chapter 1 – In	troduction1
1.1 Intro	oduction1
1.2 Rese	earch Aim & Objectives1
1.3 Just	fication2
Chapter 2 – Li	terature Review
2.1 Terr	estrial Photogrammetry
2.1.1	What is Photogrammetry
2.1.2	How Photogrammetry works
2.1.3	Mathematical concepts
2.1.4	Camera calibration
2.1.5	Geo-referencing9
2.1.6	Imaging sensor
2.1.7	Lens selection
2.1.8	Image scale
2.1.9	Determining accuracy11
2.1.10	Photogrammetry networks
2.1.1	Photogrammetry reduction software
2.2 Terr	estrial laser scanning
2.2.1	What is terrestrial laser scanning
2.2.2	Types of laser scanners17
2.2.3	Influences on accuracy18
2.2.3	Faro Model Focus3D X 33019
2.2.4	Resolution and quality20
2.2.5	Scan registration and geo-referencing
2.2.6	Laser scanning reduction software
Chapter 3 – To	est Sites And Equipment
3.1 Site	selection

3.1.1	Site A - Block 11	23
3.1.2	Site B - The Office	24
3.2	Equipment	
3.2.1	Photogrammetry	
3.2.2	Laser Scanning	
3.2.3	Geo-referencing	29
3.2.4	Reductions	
Chapter 4	– Methodology – Field work	
4.1	Testing	
4.1.1	Laser Scanning	
4.1.2	Photogrammetry	
4.2	Site A – Block 11 Field Work	
4.2.1	Traversing Geo-Referencing Control	
4.2.2	Photogrammetry	
4.2.3	Laser Scanning	
4.3	Site B – The Office	40
4.3.1	Traversing Geo-Referencing Control	40
4.3.2	Photogrammetry	41
4.3.3	Laser Scanning	
Chapter 5	- Methodology - Processing	43
5.1	Site A – Blk11 Reductions	43
5.1.1	Geo-Referencing Control Reductions	43
5.1.2	Photogrammetry Data Reductions	45
5.1.3	Laser Scanning Data Reductions	
5.2	Site B – The Office	53
5.2.1	Geo-Referencing Control Reductions	53
5.2.2	Photogrammetry Data Reductions	54
5.2.3	Laser Scanning Data Reductions	57
Chapter 6	– Analysis	59
6.1	Comparisons	59
6.1.1	Site A – Blk11	59
6.1.2	Site B – The Office	69
6.2	Cost/Benefit Analysis	72
Chapter 7	- Further Research And Conclusion	74
7.1	Further Research	74
7.2	Conclusion	74

List of References	
Appendix A	
Appendix B	
Appendix C	
Appendix D	
Appendix E	
Appendix F	
Appendix G	
Appendix H	
Appendix I	
Appendix J	
Appendix K	
Appendix L	
Appendix M	
Appendix N	

List of Figures

Figure 2.1	Image showing what happens when electromagnetic energy hits a	
	material	4
Figure 2.2	The central perspective projection	4
Figure 2.3	The concept of image and object space	5
Figure 2.4	Image depicting the different kinds of radial lens distortions	6
Figure 2.5	Image depicting decentring lens distortions	7
Figure 2.6	Computer generated tie points	8
Figure 2.7	An example of a checkerboard control target	9
Figure 2.8	Image showing the relationship between focal length and	
	distance to the object being measured	11
Figure 2.9	Minimising the area of uncertainty	13
Figure 2.10	Image networking techniques	14
Figure 2.11	Image showing the difference between phase based and time	
	of flight scanners	18
Figure 2.12	Image of a Faro Focus 3D X330	19
Figure 3.1	Image of Site A-Blk11	23
Figure 3.2	Image of Site A-Blk11	23
Figure 3.3	Scan preview of Site A-Blk11	24
Figure 3.4	Image of Site B-The Office	24
Figure 3.5	Image of Site B-The Office	25
Figure 3.6	Scan preview of B-The Office	25
Figure 3.7	Image of a Sony A7R camera body	26
Figure 3.8	Image of a Carl Zeiss 35mm f2.8 lens	26
Figure 3.9	Image of a Faro Focus 3D X330	28
Figure 3.10	Image of 138mm referencing spheres	28

Figure 3.11	Image of checkerboard control target	29
Figure 3.12	Image of a retro tape control target	29
Figure 3.13	Image of a coded control target for photomodeler	29
Figure 3.14	Image of a non-coded control target for photomodeler	29
Figure 4.1	Image of parallel method in Pix4D	32
Figure 4.2	Image of convergent method in Pix4D	33
Figure 4.3	Image showing camera calibration matrix	33
Figure 4.4	Images showing camera orientations for camera calibration	34
Figure 4.5	Image showing control network diagram for Site A-Blk11	
	in Elfy V2.4	37
Figure 4.6	Image showing photographic control network for Site	
	A-Blk11 in Pix4D	38
Figure 4.7	Image showing scan station control network for Site	
	A-Blk11 in Trimble Realworks 8.1	39
Figure 4.8	Image showing control network diagram for Site B-The	
	Office in Elfy V2.4	40
Figure 4.9	Image showing photographic control network for Site	
	B-The Office in Pix4D	42
Figure 4.10	Image showing scan station control network for Site	
	B-The Office	42
Figure 6.1	Image showing pile prolongation for Site A-Blk11	
	In Cloud Compare	59
Figure 6.2	Image showing pile prolongation for Site A-Blk11	
	In Trimble Realworks	60
Figure 6.3	Image showing pile reflectance on water at Site A-Blk11	60
Figure 6.4	Image showing Site A-Blk11 Northern wall comparison	
	In Cloud Compare	62

Figure 6.5	Image showing Site A-Blk11 Southern wall comparison	
	In Cloud Compare	63
Figure 6.6	Image showing Site A-Blk11 Eastern wall comparison	
	In Cloud Compare	64
Figure 6.7	Image showing Site A-Blk11 Western wall comparison	
	In Cloud Compare	65
Figure 6.8	Image showing Site A-Blk11 Excavated floor comparison	
	In Cloud Compare	66
Figure 6.9	Image showing Site A-Blk11 Excavated floor comparison	
	between conventional survey and Photogrammetry	
	In Cloud Compare	67
Figure 6.10	Image showing Site A-Blk11 Excavated floor comparison	
	between conventional survey and Laser Scanning	
	in Cloud Compare	68
Figure 6.11	Image showing Photogrammetry derived point cloud	
	Of Site B-The Office in Cloud Compare	69
Figure 6.12	Image showing Laser Scanned derived point cloud of	
	Site B-The Office in Cloud Compare	70
Figure 6.13	Image showing Site B-The Office comparison in	
	Cloud Compare	71

List of Tables

Table 3.1	Factory specifications for Sony A7R	27
Table 5.1	Least squares conventional control output for Site A-Blk11	43
Table 5.2	Minimally constrained camera calibration for Site A-Blk11	
	-3 fixed points, Pix4D	46
Table 5.3	Minimally constrained fixed point residuals for Site A-Blk11	
	-3 fixed points, Pix4D	46
Table 5.4	Minimally constrained check point residuals for Site A-Blk11	
	-3 fixed points, Pix4D	46
Table 5.5	Minimally constrained camera calibration for Site A-Blk11	
	-4 fixed points, Pix4D	47
Table 5.6	Minimally constrained fixed point residuals for Site A-Blk11	
	-4 fixed points, Pix4D	47
Table 5.7	Minimally constrained check point residuals for Site A-Blk11	
	-4 fixed points, Pix4D	48
Table 5.8	Fully constrained camera calibration for Site A-Blk11, Pix4D	49
Table 5.9	Fully constrained fixed point residuals for Site A-Blk11, Pix4D	49
Table 5.10	Minimally constrained point residuals for Site A-Blk11	
	-3 fixed points, Trimble Realworks	50
Table 5.11	Minimally constrained scan station residuals for Site A-Blk11	
	-3 fixed points, Trimble Realworks	51
Table 5.12	Fully constrained point residuals for Site A-Blk11,	
	Trimble Realworks	52
Table 5.13	Least squares conventional control output for Site B-The Office	53
Table 5.14	Minimally constrained camera calibration for Site B-The Office	
	-3 fixed points, Pix4D	54

Table 5.15	Minimally constrained fixed point residuals for Site B-The	
	Office-3 fixed points, Pix4D	54
Table 5.16	Minimally constrained Check point residuals for Site B-The	
	Office-3 fixed points, Pix4D	55
Table 5.17	Fully constrained camera calibration for Site B-The Office,	
	Pix4D	55
Table 5.18	Fully constrained fixed point residuals for Site B-The Office,	
	Pix4D	56
Table 5.19	Minimally constrained point residuals for Site B-The Office	
	-3 fixed points, Trimble Realworks	57
Table 5.20	Fully constrained point residuals for Site B-The Office,	
	Trimble Realworks	58
Table 6.1	Cost benefit analysis for Site A-Blk11	73
Table 6.2	Cost benefit analysis for Site B-The Office	73

List of Appendices

Appendix A	Project specification	80
Appendix B	Site A-Blk11 convergence test report from Pix4D	82
Appendix C	Site A-Blk11 conventional surveying least squares adjustment	
	report from Elfy V2.4	86
Appendix D	Site A-Blk11 minimally constrained report, 3 fixed points	
	from Pix4D	101
Appendix E	Site A-Blk11 minimally constrained report, 4 fixed points	
	from Pix4D	109
Appendix F	Site A-Blk11 fully constrained report from Pix4D	118
Appendix G	Site A-Blk11 minimally constrained report, 3 fixed points	
	from Trimble Realworks	137
Appendix H	Site A-Blk11 fully constrained report from Trimble Realworks	151
Appendix I	Site B-The Office conventional surveying least squares	
	Adjustment from Elfy V2.4	168
Appendix J	Site B-The Office minimally constrained report, 3 fixed points	
	from Pix4D	179
Appendix K	Site B-The Office fully constrained report from Pix4D	185
Appendix L	Site B-The Office minimally constrained report, 3 fixed points	
	from Trimble Realworks	191
Appendix M	Site B-The Office fully constrained report from Trimble	
	Realworks	199
Appendix N	Safety documentation	208

Chapter 1 – Introduction

1.1 Introduction

Surveying is one of the oldest professions in the world and as technology improves so does the demand for more data captured accurately, safely, cost effectively and under unrealistic time constraints. Traditional surveying techniques though fulfilling the accuracy requirement of the modern era it is not always delivered safely, timely or cost effectively and is generally sparse in its collection. Two alternatives to traditional surveying techniques otherwise known as remote sensing include terrestrial laser scanning (TLS) and terrestrial photogrammetry (TP).

Both Terrestrial laser scanning and terrestrial photogrammetry are techniques that when carried out correctly will yield millions of high precision and accurate points in minutes. The collected data can be used for a variety of applications from initial conception phase's right through to completion in the construction industry, medical applications, manufacturing, monitoring etc.

Both techniques provide excellent visual representations in the forms of point clouds and textured triangulated meshes that are generated from the point clouds. The advantage of these styles of outputs is that anyone can look at the data and recognise the subject based on its visual content as opposed to traditional survey data that can require some training or guidance. The high accuracies and precision of the data collected combined with the visual impact that both these techniques allows for comprehensive data acquisition and data manipulation that satisfies the needs for a broad range of potential users.

1.2 Research Aims & Objectives

This dissertation aims to:

-Test TLS and TP against one another to determine their accuracies and whether they are appropriate for use in various survey applications.

This will be achieved by executing the following objectives:

1. Research for any existing literature relevant to the project topic title.

- 2. Search for some suitable sites to conduct the field work.
- 3. Conduct the field surveys with respect to best practice field techniques for each form of survey.
- 4. Analyse Field data and compare results with regards to accuracy.
- 5. Conduct Time/cost/benefit analysis of each survey method. To
- 6. Aid surveyors considering either TLS or TP techniques for a project by demonstrating their abilities in real world applications
- 7. Identify strengths and weaknesses of each technique.

1.3 Justification

Completing a conventional survey can be tedious, time consuming and as technologies increase so do the expectations of the end users of survey data. This increased expectation can place surveyors in unsafe situations such as live traffic, steep embankments etc. this is where remote sensing come in. Terrestrial laser scanning and photogrammetry are two potential remote sensing techniques that can fulfil the increased expectations of the end users while maintaining a comprehensive collection of data in a safe and efficient manner.

This dissertation seeks to identify strengths and weaknesses of each technique by analysing each technique against the other whilst being mindful of other constraints such as cost, time, benefit and safety. In doing so this paper will help to educate the industry so that anyone seeking to use one of these techniques will be able to make an informed decision as to which technique they employ in order to fulfil their individual requirements.

Chapter 2 – Literature Review

2.1 Terrestrial Photogrammetry

2.1.1 What is Photogrammetry

Photogrammetry is the science of taking 2 or more photographs of an object and measuring/analysing the individual two-dimensional photographs to determine three-dimensional geometry of the object (Jiang, 2008). These photographs must be taken from different positions in order to measure the three-dimensional geometry of the object (Jáuregui, 2003). As there is usually more than one point of interest being measured the photographs must be taken in such a way that the same points of interest are visible in each photograph. Historically images where analysed as hard copy Film prints using analog devises. Today with the advancement of computers and digital photography those processes are now obsolete hence this literature review will focus on modern techniques.

Photogrammetry is comprised of two fields – terrestrial and aerial photogrammetry. Terrestrial implies that the images are taken from the ground while aerial photogrammetry is usually taken from an aerial platform such as a UAV or satellite. Terrestrial photogrammetry is classified as being close range photogrammetry if the object being photographed is within 100m (Jiang, 2008).

2.1.2 How Photogrammetry works

When an image is captured the camera is essentially capturing one of the byproducts of electromagnetic energy that can come from a multiple of sources. In most cases however this energy originates from the sun. When the electromagnetic energy hits an object three types of interactions occur – reflection, absorption and/or transmission as depicted in figure 2.1. In terms of capturing a photograph the reflective energy is what the camera captures (IDRISI, no date).

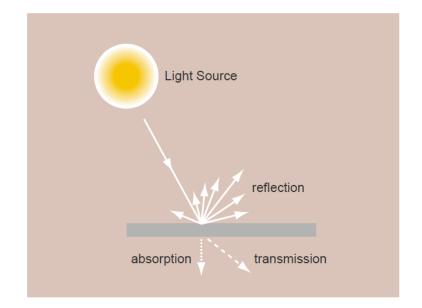


Figure 2.1 an image showing what happens when electromagnetic energy hits a material.

Source (IDRISI, no date)

The science of photogrammetry relies on Central Perspective model geometry. This projection is determined when a picture is taken in its actual space and transferred onto the sensor within the camera (Mikhail, 2001). This statement implies that you are taking the object of interest at a full tree-dimensional scale and reducing it to a smaller scale two-dimensional platform i.e. the imaging sensor. When this occurs the object becomes captured in an individual scale, coordinate system, projection and orientation. A pinholes camera model is calculated to model the perspective projections where the reflected electromagnetic energy travels from the object of interest through the aperture (i.e. the pinhole) of the camera onto the image plane (Alshadli, 2015).

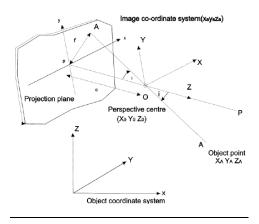


Figure 2.2 The central perspective projection. Source (Luhmann, 2010)

This concept is further defined by saying that the centre of the object space is the same as the centre of the image space. The two spaces are separated by the entrance and exit of the aperture (Schenk, 2005) as shown in figure 2.3.

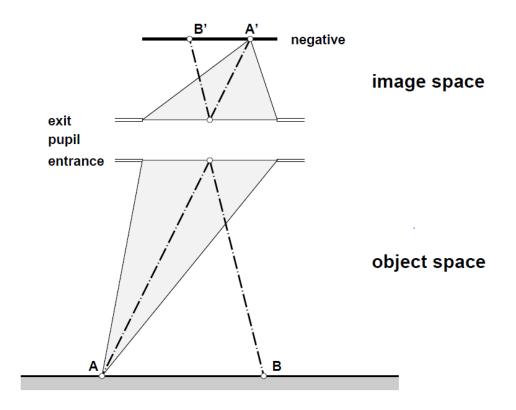
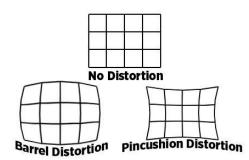


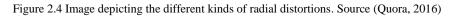
Figure 2.3 The concept of image and object space. Source (Schenk, 2005)

When this technique is done over two or more images relationships between the images can be calculated by co-ordinating the images off this central point and relating these same points in each photo from here a three-dimensional transformation can be calculated and a model formed. Note that the model at this stage will be unscaled and on its own rotation about the X, Y and Z axis until a relationship to the real world is established, this will be covered in more detail in the subsequent sections.

2.1.3 Mathematical concepts

In order to come up with a solution in photogrammetry a multitude of complex calculations are undertaken. These usually take the form of matrices and linear equations solving everything from camera parameters, transformations, lens distortions etc. with today's modern software and hardware these equations are done automatically as part of a bundled series of calculations within the software. As these operations happen autonomously a detailed explanation will not be required as part of this dissertation.


2.1.4 Camera calibration


Camera calibration is an important part of the photogrammetric process and has facilitated the use of inexpensive non-metric off the shelf cameras to be used in photogrammetry. It involves calculating -

• Offsets to the principle point or the point where the true centre of the lens projects a straight line to the image plane (Fryer, 2001)

• Lens distortions - there are two main types of lens distortions-

 Radial distortions can be barrel or pin cushion in nature (Fryer, 2001). Figure 2.4 represents this by showing the distortion on a rectangular grid.

2. Decentring distortions are caused by the misalignment of the lens on the camera as seen in figure 2.5. The result of this is a rotational or vertical displacement on the image. (Fryer, 2001)

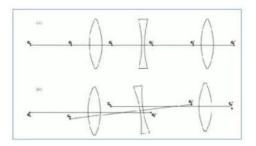


Figure 2.5 Image depicting decentring distortions. Source (Muhammad, 2016)

• Accurate focal length or the distance between the imaging sensor and the point where light intersects inside the lens. (Jiang & Jáuregui, 2010).

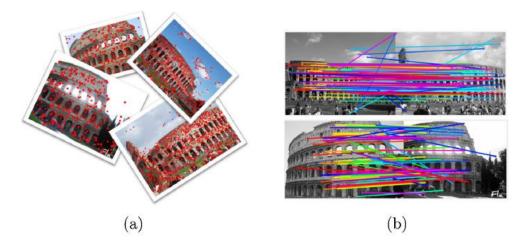
These parameters are crucial to calculating the perspective transformation. The bundle adjustment calibration technique is the most common used today. Brown (1989) discussed the requirements for a successful calibration as needing the following-

• A single camera must be used to take at least three images of the object.

• Both the interior geometry of the camera and the point to be measured on the object must remain stable during the measurement process.

• The photogrammetric network must have strong and exercise a high level of convergence.

• At least one image must have a roll angle that is significantly different from the others.


• A relatively large number of well distributed points should be used.

With these minimum requirements in mind there is a further two alternative options to calibration. A calibration conducted prior to the survey using coded targets also known as a stand-alone calibration or a self-calibration method where sufficient common points are found in the images taken conducting the survey (Jiang & Jáuregui, 2010).

As modern software will autonomously locate common points (known as tie points) between photographs it is possible to calibrate a camera without control points (Deseilliguy, 2012). This method can be advantageous as the calibration occurs at the same time as the survey the same camera settings and environmental conditions such as distance to the object being surveyed shall be the same. Therefore a greater accuracy may be achieved (Jiang & Jáuregui, 2010). There are three main steps in calculating automatic tie points-

- Partially locate reliable and dense tie points between images.
- Automatic orientation of images using the previously located tie points.
- The dense automatic matching of orientated images.

This method is becoming increasingly popular especially in the field of "Unmanned Aerial Vehicle" known as UAV's because in order to utilise coded targets for calibration would require the targets to be inconveniently large and present on the ground in the hundreds or thousands (depending on the camera setting and the scale of the job) (Luhmann, Fraser, & Maas, 2016).

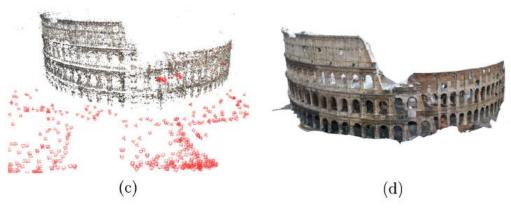


Figure 2.6 Computer generated tie points. Source (Hartmann, Havlena, & Schindler, 2015)

2.1.5 Geo-referencing

As mentioned in previous sections when a model is first created it has no scale or orientation in relation to the X, Y and Z axis. In order to scale and orientate the model there are 7 unknowns that need to be solved for, three co-ordinates shifts, three rotations and a scale. The minimum requirement for solving this is at least 2 control points containing an X, Y and Z value and one more containing a Z value or two control points containing X and Y co-ordinates and three containing Z values (Schenk, 2005).

The definition of a control point is a point with known three-dimensional coordinates with a sufficient statistical accuracy to satisfy the requirements of the survey being undertaken. In photogrammetry a ground control point is usually high contrast and easily identifiable as a control point (see figure 2.7 for an example). The positioning of the targets must be done in such a way that it optimises the geometry of the photogrammetric measurements (Woodhouse, Robson, & Eyre, *1999*).

A common method of measuring a ground control point is the use of a theodolite measuring the control points in relationship to each other and an adjoining control network (Woodhouse, Robson, & Eyre, 1999). Note that more observations taken to each control point from several stations will increase redundancies and therefore lower the uncertainties of the control point in question i.e. the stronger the network the less uncertainty in the network. Once the survey is complete it can be reduced preferably in a least squares program so that associated standard deviations can be computed and imported into the photogrammetry software.

Figure 2.7 An example of a checkerboard ground control point.

2.1.6 Imaging sensor

When the shutter of a digital camera opens it exposes light to a chip known as a sensor. There are two main types of sensors, the 'charged coupled device (CCD)' and the 'Complementary metal oxide semiconductor (CMOS)'. Both these sensors are used to capture reflective energy and convert it into an electrical charge to produce an image (Teledyne, 2016).

Although CDD sensors where the sensor of choice in the beginning due to their smaller production costs today CMOS sensors are the sensor of choice in most imaging applications today (Teledyne, 2016).

These chips can vary in size however the bigger the sensor, the more information that sensor can collect i.e. a wider frame. In addition to varying sizes of sensors different sensor will also have a different resolution or number of pixels per image (Schenk, 2005), (Teledyne, 2016).

2.1.7 Lens selection

When a camera calibration has been undertaken it has been done with certain fixed parameters in mind. Lens length or focal length is one of the fixed parameters therefore if a multi-zoom or multi-focal lens is to be used than it should be fixed to one length. This is because when the focal length is changed it also changes the key parameters used to process the images. Alternatively a fixed or prime lens can be used. This is a lens that has fixed internal geometry and is the preferred type of lens for photogrammetry because with fixed geometry the processing parameters will remain a constant and therefore a better result will be achieved (Schenk, 2005).

2.1.8 Image scale

The image scale is a ratio of the distance from the object being measured, the focal length of the lens being used (Schenk, 2005), (USQ, 2011).

The formula for image scale is $d \div f=1$ ÷scale. This ratio is important to determining accuracies of a project.

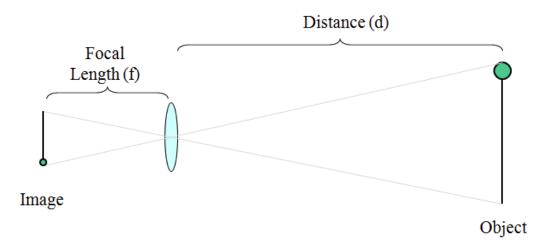


Figure 2.8 Image showing the relationship between focal length and distance to the object being measured. Source (Adam Technology, 2010)

Ground sampling distance (GSD) also referred to as photo resolution is the size of a pixel in the object space scale. To calculate the pixel size in the object space three variables must be know.

- The size of the pixels on the image sensor.
- The focal length
- The distance of the camera to the object.

Once these three variables are known it becomes a simple ratio equation.

 $pixelsize_{ground} = (d \div f) \times pixelsize_{image}$

(Schenk, 2005), (USQ, 2011)

2.1.9 Determining accuracy

It is possible given the right conditions and the right subject to achieve almost any accuracy using photogrammetry techniques. Determining the accuracy of a job both for pre planning and end results are important to ensure the survey is fit for the intended purpose and that the results meet the requirement of that purpose. The formulas to determining the accuracy are as follows.

$$\sigma_z = \frac{Z^2}{cB} \sigma_p = \frac{Z}{s_p B} \sigma_p = \frac{Z}{b} \sigma_p$$

$$\sigma_x = \sqrt{\left(\frac{x_i}{c \ S_p}, \frac{Z}{B}\sigma_p\right)^2 + \left(\frac{\sigma_{x_i}}{S_p}\right)^2} \text{ or } = \sqrt{\left(\frac{x_i}{c}\sigma_z\right)^2}$$

$$\sigma_y = \sqrt{\left(\frac{y_i}{c S_p} \cdot \frac{Z}{B} \sigma_p\right)^2 + \left(\frac{\sigma_{y_i}}{S_p}\right)^2} \text{ or } = \sqrt{\left(\frac{y_i}{c} \sigma_z\right)^2}$$

Where

xi is the image '*x*-axis' co-ordinate *yi* is the image '*y*-axis' co-ordinate *σp* is accuracy of measuring parallax ('instrument error') *σz* is mean square error in the *z* co-ordinates (heighting accuracy) *σx*, *σy* are respectively the mean square errors in the *X* and *Y* co-ordinates *B* is the ground/air base distance between camera stations *b* = distance between PPs (or photograph camera station positions) *c* is principle distance *Sp* is the scale ratio e.g. 1:5000 *Z*= the mean distance of the object to the camera station

(USQ, 2011)

Note that in terms of photogrammetry the X and Y axis are referring to the image plane and the Y axis is referring to the distance of the object to the image plane i.e. the depth of view.

2.1.10 Photogrammetry networks

When a point is measured between a stereo pair of photographs what you are doing is intersecting two vectors. As with conventional surveying Jiang & Jáuregui (2010) stated that camera placement should be done in such a way that the angle between the intersecting point should be as close to a right angle as possible. By doing this you are minimising the area of uncertainty or the error elipse as shown in figure 2.9.

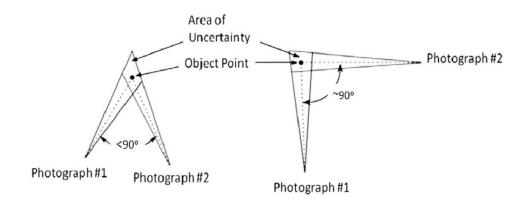


Figure 2.9 Minimising the area of uncertainty. Source (Jiang & Jáuregui, 2010)

This can be done either using one or two cameras noting that if two cameras are used there will be a separate calibration for each camera. By adding more images of the same point the amount of redundancy at that point is increased and the area of uncertainty is further decreased (Jiang & Jáuregui, 2010).

There are three main techniques of terrestrial photogrammetry to creating images where three-dimensional information can be taken i.e. a pair or series of photographs taken from different stand points that can see the same point of interest in each photo.

• The normal technique - this technique is where photographs are taken along a line and are generally parallel with the subject (see figure 2.10a).

• The convergent technique– this technique is where the image plane is angled towards the subject while maintaining the same distance from the subject (see figure 2.10b). This technique is useful for achieving 360 degree views of an object.

• The shifted technique – this technique is where photographs are taken at different distances to the subject and are parallel to the subject (see figure 2.10c).

(Luhmann, Robson, Kyle, & Hartley, 2006)

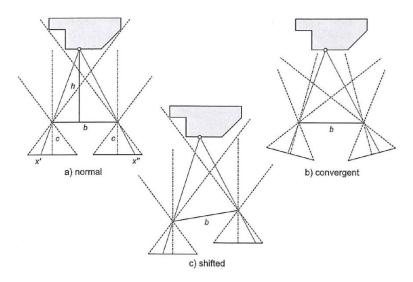


Figure 2.10 Image networking techniques. Source (Luhmann, Robson, Kyle, & Hartley, 2006)

A multi convergent network is the preferred in terms of achieving greater accuracies as it allows for a greater variety of intersecting angles, therefore is generating more redundancies about a point and reducing the area of uncertainty (Luhmann, Robson, Kyle, & Hartley, 2006), (Jiang e. a., 2008). A multi convergent network also attains the best results with regards to a simultaneous calibration of cameras in photogrammetry software by a self-calibrating bundles adjustment (Luhmann, Robson, Kyle, & Hartley, 2006).

2.1.1 Photogrammetry reduction software

<u>Photomodeler</u> is professional photogrammetry reduction software used in the following fields-

- Accident Reconstruction & Forensics
- Archaeology
- Architecture & Preservation
- Biology
- Engineering
- Film, Gaming and Animation
- Geology
- Surveying
- UAS / Drones

This software can be used with coded targets (generated within the software) and is capable of performing a camera calibration. These coded targets can also be used where more precise measurements are required at a specific spot such as monitoring surveys where consistent measurements to specific spots are required to compare the results to a base survey. This software is also used to generate a variety of outputs including-

• Three-dimensional models (geo-referenced to the real world, scaled or not scaled) such as point clouds and triangulated meshes.

- Digital surface models
- Contours.
- Orthorectified images i.e. mosaics and jpegs.

(EOS Systems Inc., 2015).

<u>Pix4D</u> is professional photogrammetry reduction software catering to the following fields-

- Construction
- Mining
- Inspection
- Environment monitoring
- Agriculture
- Emergency response
- Aerial photogrammetry
- Real Estate

This software is primarily focused on use with unmanned aerial vehicles but can also be utilised with terrestrial photogrammetry. PIX4D does not have a camera calibration routine however it performs self-calibrations based on tie points generated from the actual images taken of the subject. This software is used to generate a variety of outputs including-

• Three-dimensional models (geo-referenced to the real world, scaled or not scaled) such as point clouds and triangulated meshes.

- Contours.
- Orthorectified images i.e. mosaics and jpegs.

• Digital surface models.

• NDVI maps or vegetation index maps primarily used for agricultural applications.

(Pix4D, unknown).

2.2 Terrestrial laser scanning

2.2.1 What is terrestrial laser scanning

A terrestrial laser scanner is a device that captures dense point clouds of objects/structures of interest in a short amount of time. The rate at which data is captured is so quick that it ranges around one million three-dimensional points per second (Faro, unknown).

A laser scanner works by a central rotating prism reflecting a laser one vertical line at a time (Ebrahim, 2011). The laser beam will bounce off the object being surveyed and return to the laser scanners sensors. From the return signal the scanner will calculate accurate three-dimensional points. Some scanners will also take a panoramic image of the scene being scanned. This data in conjunction with the scan data during post processing can be used to assign a colour value to each of the scanned points. The result is an array of points in true to life colour.

Although laser scanning technology has been around since the 1960's (Ebrahim, 2011) it has only really started to take off since the late 1990's (Ebrahim, 2011). Advancements in computer storage and computing power have also been a major driving force with this technology being used in full scale survey scenarios.

2.2.2 Types of laser scanners

There are two primary variations of this technology-

• Pulse time of flight is the most rapid form of data capture in the laser scanning range. It involves sending a pulse laser to the target object and measuring the time the laser takes to return to the scanners receiver (Thiel & Wehr, 2012). This is a two way measurement so the time of flight is halved for the calculation. This type of scanning is subject to an increased amount of noise (false measurements) due to the pulse signals ability to bounce of additional objects thus increasing the time of flight (Thiel & Wehr, 2012). The amount of noise will very between scanner models and the sampling methods of the individual scanner. The accuracy of this type of scanning is independent of the distance to the object being measured i.e. the accuracy of this type of scanning does not change due to the distance of the object making this scanner popular for short to long range scanning (Callieri, Cignoni, Dellepiane, & Scopigno, 2009) . Refer to figure 2.11 for a diagrammatic representation of time of flight scanning.

• Phase modulation is a scanner that will emit a continuous laser at the same intensity. The distance is determined by measuring the difference in the wave length from the transmitted signal to the received signal (Thiel & Wehr, 2012). The shorter the transmitted wavelength the better the range resolution however this also means reduced maximum unambiguous ranges. The way to counter this is by sending multi frequency ranging i.e. sending a range of wave lengths where the highest frequency determines the resolution and the lowest frequency the unambiguous range (Thiel & Wehr, 2012) this is also known as modulation. The draw back to this is an unsustainable increase in power usage making this type of scanner more suited to mid to close range scanning (Thiel & Wehr, 2012). Although there is a decreased range with this type of scanner it will yield a greater accuracy than a pulse time of flight scanner (Callieri, Cignoni, Dellepiane, & Scopigno, 2009). Refer to figure 2.11 for a diagrammatic representation of phase modulation scanning.

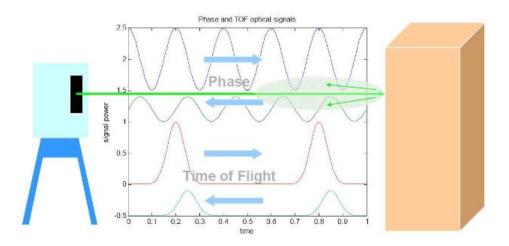


Figure 2.11 image showing the difference between phase base and time of flight scanners. Source (California department of transport, 2011)

2.2.3 Influences on accuracy

• Reflective object properties - Both scanners rely on the on the returned signal reflected back from the object of interest i.e. a white surface has much more reflective properties that a black surface and a shiny surface will not record easily (Boehler & Marbs, Unknown).

• Atmospherics – As with all measuring devices temperature, humidity and pressure will affect the measurement. This type of error will usually be an error in the form of parts per million applied over the distance. This error can be counted by the user inputting the correct atmospheric variables into the instrument at the time of the survey so the instrument can take them into account when measuring (Boehler & Marbs, Unknown).

• Interfering radiation – Laser scanners generally operate on limited frequency bandwidths. This facilitates the use of filters on the instrument to eliminate other bandwidths however if there is an additional source of radiation radiating at the same frequency it may affect the measurement creating noise or prevent the measurement from being recorded thanks to on board noise reduction routines of the scanner (Boehler & Marbs, Unknown).

• Angle of incidence – When the laser hits an object of interest at an acute angle the laser will be spread out over the object affecting the return signal and accuracy (Boehler & Marbs, Unknown).

A comparison study undertaken by Thiel and Wehr (2012) found that Phase based measurement was the more consistent measuring technique and made recommendations that pulse time of flight scanners should be used in long range applications while phase modulation scanners should be used to obtain higher accuracies over short to mid ranges.

2.2.3 Faro Model Focus3D X 330

Due to the varying capabilities and accuracies of individual scanners the remainder of section 2.2 will focus on the scanner being used for this experiment, the Faro model Focus3D X 330.

Figure 2.12 image of a Faro model Focus3D X 330. Source (Faro, unknown)

The focus3D X 330 is a phase based scanner with a factory features as follows-

- Range Focus3D X 330: 0.6 330m
- Measurement speed: up to 976,000 points/second
- Ranging error: ± 2mm
- Integrated colour camera: Up to 70 mio. pixel
- Laser class: Laser class 1
- Weight: 5,2kg
- Multi-Sensor: GPS, Compass, Height Sensor, Dual Axis Compensator
- Size: 240 x 200 x 100mm
- Scanner control: via touchscreen display and WLAN
- Noise reduction 50%

(Faro, unknown)

2.2.4 Resolution and quality

• Resolution – The Focus3D X 330 allows you to choose the point density of data collected known as resolution of the data. It is represented as a fraction of the maximum point density over 10m for example 1/1 has a point every 1.534mm over 10 m and at 20m this value will double (Faro, 2011). The trade of is with increased point density the time it take to scan will increase.

• Quality - The Focus3D X 330 has on board noise reduction algorithms and routines that are used to reduce the amount of noise recorded during a scan therefore reducing reduction times (Faro, 2011). As with resolution there is a trade off with the time taken to scan i.e. the higher the quality setting the less noise will be recorded and the longer the scan will take. Conversely the lower quality setting more noise will be recorded and the scan will take less time.

Users have to make a judgement call as to the project requirements, time/cost constraints and balance out the resolution and quality settings so the survey will meet the requirements of the survey being under taken.

2.2.5 Scan registration and geo-referencing

When a Focus3D X 330 is setup it is generally done so on an unknown point with an unknown orientation it is however usually setup so that the scan is perpendicular to earth's gravity with an on board tilt compensator (Faro, 2011). This means that in order to define the scan plane only an additional 2 co-ordinated control points will be required to co-ordinate and orientate the scan. These coordinated control points like with photogrammetry are placed using conventional surveying.

Since laser scanning locates a specific resolution and not the entire scene it will not locate the exact centre of a control point, the target is scanned. Then a best fit of the centre of the target is calculated (Harvey, 2004). On the example shown in Figure 2.7 a minimum of 4 points per quadrant are required and the angle of incidence needs to be less than 45° to determine the centre (Faro, 2011).

It is not uncommon to require more than one scan to capture a full scene and seeing how they are done so with unknown orientations and positions during the reduction stage the scans will need to be linked together, this is known as registration. Registration can happen in one of three ways-

• Cloud based registration is where individual scans are linked by the scan data itself. The software is given some approximate common areas and will search for commonalities between the two scans (Trimble, unknown).

• Known instrument co-ordinates and target of orientation (Trimble, unknown).

• Selecting the reference points in each scan and aligning each scan to these common points (Trimble, unknown). This is the most common and recommended practice by ultimate positioning group. The common reference points are fixed diameter spheres placed during the survey and the centres defined within the reduction software. This has proven to be the most effective method as it relies on multiple of points to define the centre. The drawback of this technique is that in order for the software to calculate the centre of the sphere accurately a certain number of points on the sphere will need to be captured. For example using the Focus3D X 330 at ¹/₄ resolution, a 138mm sphere will need to be within 18m so enough points will be measured to define it (Faro, 2011). This means that although the scanner has a factory stated effective range of 330m it is limited to 30m station jumps when you factor in a reasonable geometry for the spheres. Thus making its extended range only useful if you can do a scan and geo-reference it from the one setup.

2.2.6 Laser scanning reduction software

Trimble realworks is reduction software specifically designed for point cloud processing and analysis. This software facilitates scan registration, analysis, modelling and deliverable creation (Trimble, 2016). The software is flexible to various point cloud formats which lends itself to being utilised for analysis of point clouds generated using photogrammetry.

This software lends itself to the following fields-

- Oil and gas
- Building and construction
- Civil and architecture
- Historical preservation
- Industrial facilities
- Law enforcement

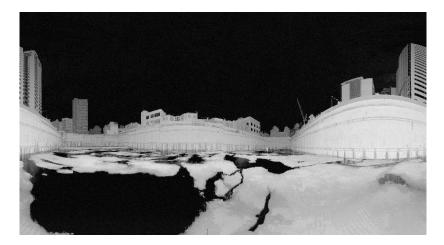
(Trimble, 2016)

Chapter 3 – Test Sites And Equipment

3.1 Site selection

In order to perform the comparison two sites have been selected with the aim of testing the performance of the two remote sensing capabilities.

3.1.1 Site A - Block 11


The first site is a large construction site at the end of the bulk excavation phase of construction, known as Block 11 located within the City of Sydney cbd. Block 11 is approximately 130m long in an east west direction by a varying width of 30m to 60m in the north south direction. The site is currently dormant due to the civil bulk excavation works being completed and the building still being designed. Therefore quiet uninterrupted access to block 11 can be enjoyed for the duration of the experiment which is the ideal scenario.

The method of excavation used on this site is secant pile walls and capping beams around the outside of the excavation design area and to dig out the centre using bull dozers, excavators and rock saws. Along the face of the secant walls two stratums of whaler beams and anchor bolts where fix as the hole was excavated to bring the wall into equilibrium with the forces pushing the secant wall towards the excavation. The entry to the hole is via a scaffold on the north western end of the site.

The finished excavated floor of Block 11 consists of Sydney sandstone. This mixed with the rough edges of the secant wall makes Block 11 the perfect candidate for both laser scanning and photogrammetry.

Figures 3.1-3.3 images and scan preview of Site A - Block 11

3.1.2 Site B - The Office

The second site is the back of a two storey office building located in Pymble, NSW. The façade itself consists of a concrete frame with windows throughout, two doorways and an underpass for vehicles to gain access to the back of the building. This site was chosen because the bulk of the façade is made up of windows. Neither laser scanning nor photogrammetry measure accurately on transparent or reflective surfaces such as glass. This makes site B the perfect test on both techniques as it will highlight both of their inherit weaknesses.

Figures 3.4-3.6 images and scan preview of Site B – The Office

3.2 Equipment

3.2.1 Photogrammetry

The digital camera used for the project was a Sony A7R camera body coupled with a Carl Zeiss 35mm f2.8 lens. Both the camera and the lens are owned by the author.

Figure 3.7 an image a Sony A7R camera body Source (CNET, 2016)

Figure 3.8 an image of a Carl Zeiss 35mm f2.8 lens, Source (DpReview, 2016)

The Sony A7R is a relatively new type of camera which uses a mirrorless system. Unlike a traditional DSRL camera the Sony A7R uses the camera sensor to relay the image to the view finder. This reduced the size and weight of the camera significantly which is why mirrorless systems are proving popular with Arial photogrammetry using UAV's.

The Sony A7R utilises an E-mount system to attach lenses. This limited the selection of lenses considerably and the Carl Zeiss 35mm f2.8 was the highest quality lens available that matched the specifications required to undertake both surveys.

Also worthy of note is that both the camera and lens do not have image stabilisation which is highly recommended by the photogrammetry reduction software packages investigated for this project.

		-	
Sensor Size	35.9 x 24.0mm	Focus Points	25 points (CDAF)
Sensor Resolution	36.4 MP	Electronic Front Curtain Shutter	No
Sensor Pixel Size	4.88µm	Video Maximum Resolution	1920×1080 (1080p) @ Up to 60p
Sensor Anti- Aliasing Filter	No	4K Output	No
In-Body Image Stabilization	No	LCD Size and Resolution	3.0", 921,600 dots
Image Size	7,360 x 4,912	Built-in GPS	No
Viewfinder Type, Dots, Coverage	EVF, 2.4 M dots, 100%	Built-in Wi-Fi	Yes
Built-in Flash	No	Construction	Full Magnesium Alloy
Storage Media, Type	1x SD, UHS-1	Battery Life	340 shots (CIPA)
Continuous Shooting Speed	4.0 FPS	Weight (Body Only)	407g
Native ISO Sensitivity	ISO 100-6,400	Dimensions	126.9 x 94.4 x 48.2mm
Boosted ISO Sensitivity	ISO 50, 12,800- 25,600	Price As Announced (MSRP)	\$2,299
Autofocus System	Contrast- detection AF		

Table 3.1 shows the factory specifications of the Sony A7R.

 Table 3.1 Source (Photographylife, 2016)

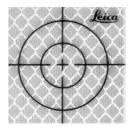
3.2.2 Laser Scanning

The terrestrial laser scanner utilised for this project is a Faro Focus 3D X330. The X330 is a phased based laser scanner with a range of 0.6m-330m and from 300° vertically to 360° horizontally, with a factory specified ranging error of +-2mm. the scanner is also equipped with a 70 mega pixel camera which can be combined with the scan data the give a true to life colour palette to the point cloud output. The scanner has been generously loaned to the author free of change for this project by UPG Sydney.

Figure 3.9 an image of a Faro Focus 3D X330 laser scanner, Source (Pentland, 2016).

Each site will require several scans to compile the 3D models. In order to stitch each scan together in the reduction software a series of spheres will be placed in the field of view bearing in mind best practice geometry. The spheres are 138mm in diameter and have a magnetic base that can be placed on a metal structure or on a mini magnetic tripod on the ground.

Figure 3.10 an image of 138mm reference spheres, Source (Surveying Epic, 2016)


3.2.3 Geo-referencing

Both Laser scanning and photogrammetry require additional survey information in order to transform the data from a relative space into a real world co-ordinate system. In the case of laser scanning it is required to perform 3 co-ordinate shifts and 3 rotations, photogrammetry requires an addition of a scale value. To achieve this ground control points will be placed using a TS15 1" instrument with an R1000 EDM. As the targets to be used will not be made out of retro tape and will not be reflective prisms the experiment will rely on the instruments reflective and angular capabilities. The reflective capabilities range to 1000 metres with an accuracy of 2mm + 2 ppm. Meaning that in ideal conditions measuring a target at 1000m the quoted reflectorless accuracy of this instrument is 4mm.

Types of targets to be used-

•The control targets to be measured for geo-referencing the photogrammetry and laser scanning will be checkerboard targets printed on waterproof paper. This target can then be glued onto any number of surfaces using an adhesive. As shown in figure 3.11 on the left.

•The ground control used as fixed control points will be an existing network of tape targets. The targets are stickers with a removable backing, which when removed the target me be stuck onto any number of surfaces. As shown in figure 3.12 on the left.

•A coded target for geo-referencing photogrammetry produced through Photomodeler. This target is automatically located and matched in each image thanks to its unique design for each target. This target can be printed and glued onto the subject target using adhesive. As shown in figure 3.13 on the left.

•A black dot target for geo-referencing photogrammetry produced through Photomodeler. This target is automatically located in each image but requires manual matching. This target can be printed and glued onto the subject target using adhesive. As shown in figure 3.14 on the left.

3.2.4 Reductions

The reductions will take place on the authors PC with the specifications as follows-

- Intel i7-3770 CPU @ 3.40GHz
- 32GB of ram upgraded from 16GB for this project
- 64-bit operating system
- NVIDIA Geforce GTX 550 Ti graphics card
- 240 GB solid state drive and a 1TB disk drive

4.1 Testing

4.1.1 Laser Scanning

Due to the limited window in which the scanner could be borrowed no pre field testing could be undertaken. Therefore the surveys involving the laser scanner had to be planned based on available literature and advice from UPG (who loaned the scanner).

4.1.2 Photogrammetry

Testing for photogrammetry involved solving two initial problems. One being whether to use PhotoModeler or Pix4D and the other was to determine whether to use a parallel or convergent method of data capture. As site A – Block 11 was visited regularly by the author it was the perfect test case to determine which combination of the above stated variables would be adopted for the project.

Parallel and Convergent image capture-

For this test the eastern wall and a portion of the southern/northern walls of Block 11 where selected. The eastern wall contains varying depths which will test the software's ability to populate automated tie points. While the portions of the northern and southern walls are to see how the software will handle turning corners.

As the wall is approximately 12 metres high at its highest point this distance will be used to calculate to required scale and thus the planned distance away from the wall line.

Scale= height of the wall ÷ height of the camera sensor

=12÷0.024=500

Distance off the wall line = scale x focal length

 $= 500 \ge 0.035 = 17.5$

Pixel size = pixel size on camera sensor x scale

= 0.0048mm x 500 = 2.4mm

X axis object length = scale x X axis image space

= 500 x 0.0359 = 17.95

The distance off the wall being 17.5 metres was measured out and images where every 2 metres for the parallel method which will provide an image overlap of 88.9%. The convergent method involved taking a photo at approximately a 45° angle to the wall, walking forward 14 metres and angling the camera at a 45° angle in the opposite direction along the wall. The next step is to walk 12 metres back and repeat the process. This method takes a lot longer however due to the angle of the camera a far greater overlap is achieved and the area of uncertainty is decreased thanks to the resulting angle of incidence being close to 90° .

To get around the corners the images where taken at the fixed offset as far as would allow and then taken on a sweeping arc until in line with the next wall to be captured. This technique was used for both methods.

As it would take far too long to measure out each stand point a pacing method was used. All photographs were also taken on a tripod and a camera remote control used to minimise any blur in the photos caused by vibrations or the user not holding the camera steady. Figure 4.1 depicts the parallel method while figure 4.2 depicts the convergent method.

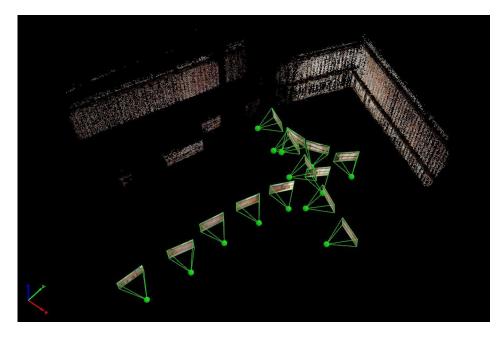


Figure 4.1 an image of the parallel method from Pix4D

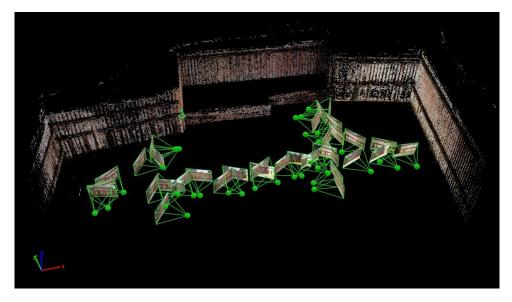


Figure 4.2 an image of the convergent method from Pix4D

The photos where then run through the reduction software, see the results section on page 35 for the selected technique.

Photomodeler or Pix4D-

Prior to any field work Photomodeler recommends conducting a camera calibration although it is capable of calibrating from the subject photos. Pix4D conversely calibrates each job based on the photos taken.

To calibrate a camera for Photomodeler a series of coded targets where created in the software and printed off with each page containing 5 coded targets. The target sheets where arrange in a matrix like configuration with varying heights in a welllit room sealed off from external influences such as wind. As shown in figure 4.3 below.

Figure 4.3 an image of the camera calibration matrix

The camera was set up on a tripod looking down at the targets and a series of photos were taken. The photos were taken approximately parallel to each side of

the target matrix using 3 different camera orientations. Four photos were taken holding the camera normally. The camera was turned 90 degrees to take another 4 photos, then turning the camera a further 180 degrees to take the last 4 photos.

Figure 4.4 images of the camera orientations for camera calibration

The photos where then imported to Photomodeler for processing. The software automatically recognised the coded targets, processed the photos and outputted a calibration report. This process took approximately 30 minutes per attempt (from start to finish) and was repeated 12 times with the best results selected and stored within the software for use in future projects. Table 4.1 shows the calculated camera calibration variables computed with an overall RMS of 0.215 pixels (or 0.52mm based on the pixel size calculations) and a maximum of 0.850 pixels (or 2.04mm based on the pixel size calculations).-

Principle point X	Principle point Y	R1	R2	R3	T1	T2
18.156143 mm	11.932496 mm	-4.899e- 005	1.085e-007	0.000e+000	-3.431e- 005	-2.001e- 005

Table 4.1 camera calibration results for attempt 9

With the calibration results the test project was run through Photomodeler. The software as a default assumes all the photos were taken in order and therefore looks for points of interest in the adjoining photo based on each photos time stamp. With the available computing hardware the software took an inordinate amount of time for the parallel photos to stitch and orientate and when completed only half the project had matches meaning the remaining photos had to be matched manually and the project re-optimised.

The above procedure was repeated for the convergent photos. This time the photos where matched, optimised and orientated autonomously without the need for the author to manually match photos.

The next step was to create the densified point clouds and mesh the densified surfaces. On this step the software crashed repeatedly on each technique with the longest computing time being approximately 5 hours before the processes where terminated. The reasoning behind terminating the process was because this was only a sample set of photos. For the whole site it was estimated based of the size of the site and the amount of photos taken in the test samples, being 33 for convergent and 50 for the parallel technique. The required number of photos to create a point cloud over the site would exceed 250 photos which would require an indeterminable processing time with no guarantee that the program would not crash.

Pix4d was trialled next, unlike Photomodeler no camera calibration values are require to run the project as these values are calculated based on the images taken and the automatic tie points calculated/matched in each photo.

Pix4d is primarily used for areal photogrammetry and upon importing the photos looks for a geo-tag. The Sony A7r however does not have an inbuilt GPS receiver and is therefore unable to geo-tag photos. As a default Pix4d will import the photos with a coordinate geo-tag of Easting=0, Northing=0, Elevation=0 and the software recognised this and will begin to stitch the photos together based on the time the photo was taken e.g. in time stamp order.

The parallel technique photos where imported into the software and the stitching process started. The software failed to stitch half the photos together with the author manually tying the remaining photos, a densified point cloud was then generated. The time taken to output the initial processing, densified point and mesh was approximately 1.5 hours. Figure 4.1 shows the extent of the autonomous stitching for the parallel method while figure 4.2 shows the extent of the test site.

The convergent method imported and stitched the photos together seamlessly and the dense point cloud and mesh created in approximately 27 minutes. See appendix B for the Pix4d quality report.

Results-

-The convergent method was selected because it naturally decreases the area of uncertainty by increasing the angle of incidence and the photos stitched together in both Pix4d and Photomodeler with minimal user effort resulting in less reduction time. -Pix4d was selected over Photomodeler because it works far more efficiently i.e. requires less computing power than Photomodeler and created an output in far less time.

4.2 Site A – Block 11 Field Work

4.2.1 Traversing Geo-Referencing Control

As this is a real job the existing site control will be adopted consisting of tape targets situated around the excavation hole primarily on the capping beams or whalers. The author is confident in doing so as 2 weeks prior to the field work being carried out the existing survey control for the site was readjusted to take out any uncertainty. This was done as part of the usual due diligence as the control is situated on the secant pile walls which are prone to movement. If any movement occurs between the readjustment and the control survey it will be highlighted in the least squares adjustment. This is because when the secant pile walls do move they tend to move in one direction which is towards the hole due the forces of the materials on the outside of the walls pushing in e.g. water pressure, soil, tucks etc. using tape targets will also help to eliminate plumb errors and spread existing errors across the control.

Prior to any field work being undertaken a hazard assessment and tool box discussion was undertaken for the required tasks and an appropriate safe work method statement altered accordingly and signed.

Checkboard targets where placed in various location around the site. Some were glued on the capping beam using an adhesive spray. Placing these marks required the use of a harness as the existing protective barrier at the edge of the excavation had to be removed in order to reach the capping beam to glue the target on. Other checker targets where placed on whalers around 2 metres from the toe of the excavation and on timber boards prepared the day before laid at ground level against the secant pile walls.

The Total station (TS15 1" R1000) was set up in the middle of the excavation in the North south direction and on the western end inside the excavation. From there the on board sets of angles program was used to take a set of face left and face right observations to the existing control and to the checkerboard targets placed. Only the visible and marks with reasonable geometry from the setup where measured. The instrument was then moved to the East along the hole to repeat this process. The idea was to try and measure each checkboard at least twice from a different setup in order to create a redundancy both as a check and to achieve a smaller standard deviation. Figure 4.5 shows the network diagram of the

control traverse, note that the marks in the middle are the station setups and the marks highlighted red are the existing control points.

Figure 4.5 image showing the control network diagram from Elfy V2.4

This process took approximately 2 hours to set up and 1.5 hours to measure. The data was then exported for processing.

4.2.2 Photogrammetry

The same planning calculations from 4.1.2 apply for this data capture as it is the same site. A starting point was selected on a straight wall line and where a control checker target was located to serve as a network close for the photos. The same spacing and convergent technique as stated in 4.1.2 was used until a full circuit of the excavation hole was completed. In order to capture sufficient images on the floor of the excavation images where taken along the top of the excavation looking downward. These images where taken using the parallel technique due to the following safety reasons-

- The side of the excavation is bounded by hoarding and required a ladder in order to see inside the hole.

- To minimise the amount of time spent near the edge of the excavation.

310 images where captured during the survey and took 2 hours to complete due to using the convergent technique. If the parallel method was utilised it is conceivable that the survey could have been completed in half that time.

Figure 4.6 shows the image network as a snap shot from Pix4d with the green lines indicating an image projection.

Figure 4.6 an image showing the Photogrammetric control network

4.2.3 Laser Scanning

The planning for the scan of Site A – Blk11 was based around the Faro 3D focus being set at $\frac{1}{2}$ resolution and 4x quality. This resolution setting captures a point cloud of 3.068mm over 10m with a scan time of 12 minutes. Based on the Faro and Trimble Realworks user manuals with a $\frac{1}{2}$ resolution setting a checkerboard target need to be within 18m and a 138mm reference ball within 15m of the scanning station. The intention is to use the same checkerboard targets as the photogrammetry to geo-reference the scans and the reference balls to stitch each scan together while maintaining a 15m parallel line with the excavations secant pile wall lines.

The narrowest section of the site was selected as the starting point with 138mm reference balls placed along the centre line between intended scan stations. From there the scans where leapfrogged along the site moving the reference balls so as to keep the balls within 15m from the next planned stations. Figure 4.7 shows the locations of the scanning stations relative to the site. 9 scan stations where require to capture the site taking 15 minutes setup time per scan, with 12 minutes per scan it took a total of 4 hours field work to complete the site.

Figure 4.7 an image showing scan station locations in Trimble Realworks

4.3 Site B – The Office

4.3.1 Traversing Geo-Referencing Control

Prior to any field work being undertaken a hazard assessment was undertaken for the required tasks. As a result of the hazard assessment it was deemed that a safe work method statement will not be required.

Four tape targets where placed as primary control, 2 at either end of the job. Checkboard targets where placed at the ends of the façade and along the face. Due to lack of access only one target was able to be placed at the second level of the façade. The targets were glued on to the façade using an adhesive spray.

The Total station (TS15 1" R1000) was set up at the south end of the. From there the on board sets of angles program was used to take a set of face left and face right observations to the primary control and to the checkerboard targets placed. Only the visible and marks with reasonable geometry from the setup where measured with the primary control being measured at every setup. The instrument was then moved to the North along the façade to repeat this process a further 5 times. The idea was to try and measure each checkboard at least twice from a different setup in order to create a redundancy both as a check and to achieve a smaller standard deviation. Figure 4.8 shows the network diagram of the control traverse, note that the marks in the middle are the station setups and the marks prefixed with T are the primary control points.

This process took approximately 1 hour to set up and a 1/2 hour to measure. The data was then exported for processing.

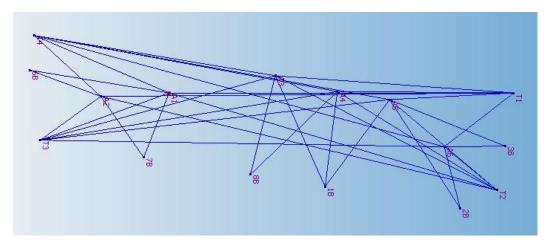


Figure 4.8 image showing the control network diagram orientated East West from Elfy V2.4

4.3.2 Photogrammetry

As the Building is approximately 10 metres high this distance will be used to calculate to required scale and thus the planned distance away from the wall line.

Scale= height of the wall ÷ height of the camera sensor

=10÷0.024=416.67

Distance off the wall line = scale x focal length

= 416.67 x 0.035 = 14.6

Pixel size = pixel size on camera sensor x scale

= 0.0048mm x 416.67 = 2mm

X axis object length = scale x X axis image space

= 416.67 x 0.0359 = 15

The distance off the wall being 14.6 metres was measured out in the field and the camera view finder checked. It was decided that another 1.5 metres away from the target was required to capture the whole façade.

The convergent method was used taking a photo at approximately a 20° angle to the wall, walking forward 12 metres and angling the camera at a 20° angle in the opposite direction along the wall. The next step is to walk 10 metres back and repeat the process. To get around the two corners at either end the images where taken at the fixed offset as far as would allow and then taken on a sweeping arc until in line with the next wall.

As it would take far too long to measure out each stand point a pacing method was used. All photographs were also taken on a tripod and a camera remote control used to minimise any blur in the photos caused by vibrations or the user not holding the camera steady. 56 images where captured during the survey and took 1/2 an hour to complete due to using the convergent technique. If the parallel method was utilised it is conceivable that the survey could have been completed in half that time. Figure 4.9 depicts the Photogrammetric network taken from Pix4d with the green lines indicating a camera station projection.

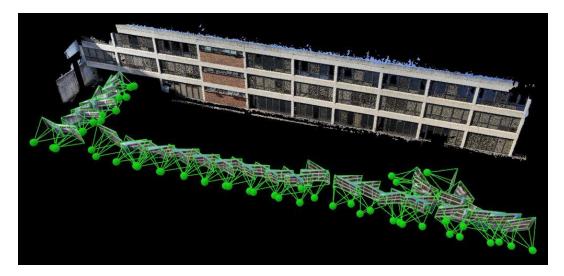


Figure 4.9 an image showing the Photogrammetric control network

4.3.3 Laser Scanning

The planning for the scan of Site B – The Office was based on the same resolution and quality settings as used for Site A – Blk11.

The intention is to use the same checkerboard targets as the photogrammetry to geo-reference the scans and the reference balls to stitch each scan together while maintaining an 8m parallel line with the façade of the building.

The Southern end of the building was selected as the starting point with 138mm reference balls placed along the centre line placed high and low between the next intended scan station. From there the scans where leapfrogged along the site moving the reference balls so as to keep the balls within 15m from the next planned stations. Figure 4.10 shows the locations of the scanning stations relative to the site. 4 scan stations where require to capture the site taking 5 minutes setup time per scan, with 12 minutes per scan it took a total of 1 hour 8 minutes field work to complete the site.

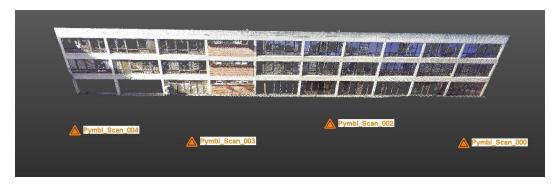


Figure 4.10 an image showing scan station locations in Trimble Realworks

5.1 Site A – Blk11 Reductions

5.1.1 Geo-Referencing Control Reductions

The traverse data was run through Elfy V2.4 a least squares reduction software. The first step is to reduce the traverse observations i.e. average out the measurements from each station. The control coordinates where then entered into the control data base and held fixed for Easting, Northing and Reduced level then a 2D and 1D least squares adjustment calculated. The calculations took approximately 0.5 hours to complete. Table 5.1 shows the computed reduced coordinates; note that there are no Standard deviations for the control tape targets as these are fixed marks. See appendix C for the full Elfy reduction report.

	Table 5.1 Least Squares Control Output For Site A - Blk11									
Pt No	Easting	Northing	RL	Description	Std Dev E	Std Dev N	Std Dev RL			
T97	333682.5690	6248972.4860	11.5690	Control Tape	NA	NA	NA			
Т98	333647.6100	6248977.3430	11.0210	Control Tape	NA	NA	NA			
T99	333606.4010	6248982.9570	10.7340	Control Tape	NA	NA	NA			
T100	333581.6470	6248986.3470	10.6560	Control Tape	NA	NA	NA			
T101	333562.3960	6249000.4580	9.9700	Control Tape	NA	NA	NA			
T102	333581.6760	6249016.8240	9.9890	Control Tape	NA	NA	NA			
T103	333605.9870	6249018.2560	10.0220	Control Tape	NA	NA	NA			
T104	333658.3730	6249021.3090	10.0200	Control Tape	NA	NA	NA			
T150	333689.4720	6249006.8310	12.3700	Control Tape	NA	NA	NA			

T310	333681.6590	6248972.4370	18.1590	Control Tape	NA	NA	NA
T315	333641.5670	6249020.5330	16.1280	Control Tape	NA	NA	NA
AB1	333675.0762	6248999.2852	10.9746	Stand Point	0.5	0.6	0.7
AB2	333647.4523	6248998.3214	10.3867	Stand Point	0.5	0.5	0.7
AB3	333603.8922	6249001.0359	10.0265	Stand Point	0.5	0.6	0.7
AB4	333581.7200	6249002.4196	10.0785	Stand Point	0.6	0.7	0.8
1A	333662.1297	6249021.9912	17.3778	Checker Board Target	1.2	1.2	1.5
1C	333680.3207	6249015.1462	9.4051	Checker Board Target	1.1	1.2	1.5
1D	333691.9527	6248999.2860	10.4443	Checker Board Target	1.2	1.2	1.5
1E	333695.1988	6248983.6946	17.5890	Checker Board Target	1.2	1.2	1.5
1F	333681.2718	6248985.2715	9.3973	Checker Board Target	1.1	1.2	2.1
1G	333682.1205	6248972.3745	18.1493	Checker Board Target	1.2	1.2	1.5
1H	333643.3714	6248977.8905	10.8457	Checker Board Target	1.6	1.7	2.1
11	333672.9746	6248998.0611	9.2990	Checker Board Target	1.6	1.5	2.1
1J	333633.2585	6249019.8061	9.7791	Checker Board Target	1.1	1.1	1.5
1K	333619.7728	6249019.1711	8.8177	Checker Board Target	1.0	0.9	1.3
1L	333629.5074	6248979.5909	16.9574	Checker Board Target	1.1	1.1	1.5
1M	333626.6687	6248980.0294	9.0679	Checker Board Target	1.1	1.1	1.5
1N	333610.4202	6248982.3910	10.8515	Checker Board Target	1.2	1.2	1.6
10	333591.0971	6248984.8714	8.4770	Checker Board Target	1.1	1.2	1.6

1P	333583.4972	6248985.9292	16.0445	Checker Board Target	1.1	1.2	1.6
1Q	333565.4782	6248988.5994	10.7679	Checker Board Target	1.2	1.2	1.6
1R	333562.1710	6249002.3979	10.0814	Checker Board Target	1.2	1.2	1.6
15	333571.0954	6249016.1959	10.0232	Checker Board Target	1.2	1.2	1.6

5.1.2 Photogrammetry Data Reductions

A total of 310 photos were taken of site A and were imported onto a new Pix4d job. As mentioned earlier the images are not geo-referenced so they import with zeroed coordinates. From this stage the processing can be broken up into several steps.-

Step 1-At the importing stage the software gives an option to state what coordinate system the job will be reduced on. The control co-ordinates are on a local MGA system i.e. they were reduced on MGA ground, so an arbitrary co-ordinate system was selected.

Step 2- This step is to run an initial processing routine. The purpose of this is to allow the software to stitch all the photos together which makes finding the georeferencing marks much easier. This process took 24 minutes and successfully stitched 85% of the photos together. The photos that could not be positioned were the photos taken using the parallel method from around the top edge of Blk11. These photos required manual matching.

Pix4d will compute tie points for the unresolved images and make approximate image matches among the remaining photos. So by manual matching the user is confirming that the best guess matches are correct. This process took a further 30 minutes to complete.

Step 3- Once all the images are stitched together it produces what is known as a ray cloud. This ray cloud is an unscaled representation of all the tie points used to stitch the images together. It is at this point that the geo-referencing stations are registered on each individual image that shows an individual station. The easiest way to achieve this is by clicking on a tie point that is near a check board station. This action will bring up all the photos that show the area selected on a side panel. The user simply selects the option to create a new tie point and picks the centre of

the checker target in each image and assigning the new points their unique point id. This process was repeated for all of the checker targets.

Step 4- the ground control point/manual tie point manager was accessed and all the checker targets had their co-ordinates and standard deviations updated as per the listing under heading 5.1.1. Of all the checker targets three were initially held fixed with the remaining left as check points to test how accurate the processing would be when minimally constrained. A target was selected on the East, West and half way along the southern wall. These three targets where selected due to there even spread throughout the job. The initial processing routine was then rerun with a resulting ground sampling distance of 2.8mm which is greater than calculated because of the additional images taken from the top of the excavation. Tables 5.2-5.4 show initial results see appendix D for the full report.

<u>Focal</u> <u>Length</u>	<u>Principle</u> <u>Point X</u>	<u>Principle</u> <u>Point y</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>T1</u>	<u>T2</u>
35.223 [mm]	17.563 [mm]	11.629 [mm]	0.054	-0.245	0.031	-0.000	0.001

Table 5.2 Camera calibration results-3 fixed points

<u>GCP Name</u>	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
1D (3D)	0.000	0.000	0.000	0.209	15 / 15
1R (3D)	0.000	0.000	0.000	0.183	15 / 15
1L (3D)	0.000	0.000	0.000	0.307	29 / 29
Mean (m)	-0.000057	-0.00004	0.000013		
Std Dev (m)	0.000168	0.000138	0.000105		
RMS Error (m)	0.000177	0.000144	0.000105		

Table 5.3 Fixed point residuals-3 fixed points

<u>Check Point</u> <u>Name</u>	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
1A	-0.0053	0.0048	0.0311	0.2128	30 / 30
1S	0.0006	-0.0006	0.0029	0.2023	19/19
1K	-0.0061	0.0025	0.0324	0.2394	32/32
1J	-0.0088	0.0059	0.0325	0.1957	32/32
1E	0.0028	-0.0116	-0.0100	0.3249	13/13
1G	-0.0054	-0.0042	-0.0117	0.2986	16/16

1F	-0.0099	0.0015	0.0011	0.2253	19/19
1M	0.0012	0.0041	0.0011	0.3036	25/25
1N	0.0037	0.0025	0.0010	0.3365	24/24
10	0.0064	-0.0005	0.0008	0.4707	24/24
1P	0.0096	-0.0020	0.0011	0.2344	17/17
1Q	0.0084	-0.0034	0.0033	0.3302	21/21
11	-0.0107	0.0080	0.0105	0.1884	15/15
Mean (m)	-0.001047	0.000530	0.007398		
Std Dev (m)	0.006771	0.004949	0.014513		
RMS Error (m)	0.006851	0.004977	0.016290		

Table 5.4 Check point residuals-3 fixed points

The initial results are better than expected with the exception of points 1A, 1K and 1J. These points lie on the northern wall which is outside of the 3 fixed points projected plane. It is most likely that this is the reason that there Z values are lying around 30mm's. To test this theory an additional fixed point was selected '1K' and the initial processing re-run. Tables 5.5-5.7 show the results see appendix E for the full report.

<u>Focal</u> <u>Length</u>	<u>Principle</u> <u>Point X</u>	<u>Principle</u> <u>Point y</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>T1</u>	<u>T2</u>
35.223 [mm]	17.564 [mm]	11.614 [mm]	0.054	-0.245	0.031	0.000	0.001

Table 5.5 Camera calibration results-4 fixed points

GCP Name	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
1D (3D)	0.000	0.000	0.000	0.201	15 / 15
1R (3D)	0.000	0.000	0.000	0.187	15 / 15
1L (3D)	0.000	0.000	0.000	0.315	29 / 29
1K (3D)	0.000	0.000	0.000	0.249	32/32
Mean (m)	-0.00003	-0.000033	-0.000061		
Std Dev (m)	0.000139	0.000108	0.000368		
RMS Error (m)	0.000142	0.000113	0.000373		

Table 5.6 Fixed point residuals-4 fixed points

<u>Check Point</u> <u>Name</u>	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
1A	-0.0032	0.0062	0.0006	0.2172	30 / 30
1S	0.0027	-0.0008	-0.0129	0.2004	19/19
1J	-0.0025	0.0031	-0.0002	0.2031	32/32
1E	-0.0007	-0.0025	0.0033	0.3267	13/13
1G	-0.0047	0.0021	0.0053	0.3034	16/16
1F	-0.0068	0.0018	0.0076	0.2239	19/19
1M	0.0011	-0.0029	0.0008	0.3069	25/25
1N	0.0032	-0.0025	0.0000	0.3387	24/24
10	0.0050	-0.0064	0.0020	0.4666	24/24
1P	0.0109	-0.0002	0.0043	0.2339	17/17
1Q	0.0071	-0.0036	0.0125	0.3267	21/21
1I	-0.0072	0.0065	0.0033	0.1922	15/15
Mean (m)	0.0004	0.0001	0.0022		
Std Dev (m)	0.0054	0.0038	0.0057		
RMS Error (m)	0.0054	0.0038	0.0061		

Table 5.7 Check point residuals-4 fixed points.

Holding the fourth point fixed has confirmed that the error was due to the point lying outside the previous results fixed point plane as 1A and 1J's Z values are now less than a millimetre. These results indicate that by just holding the four points fixed a user can expect to achieve an accuracy of around 5mm on the three axis in the majority of the model. The exemptions to be the X value for point 1P and the Z Values for points 1S and 1Q.

Given the nature of the subject being measured these results more than meet the accuracy requirements of a work as executed survey with the camera setup used. Now that the expected accuracy between marks has been established the project was re-run holding all control points fixed. As the distance between control marks will be lessened, it is likely that a proportionately greater accuracy could be achieved. This however cannot be checked without placing more targets. Tables 5.8-5.9 show the results see appendix F for the full report.

A point cloud was produced with the results looking promising however it appears that due to the water on the floor of the excavation the resulting floor point cloud will likely require further analysis to assess its reliability as survey data.

<u>Focal</u> <u>Length</u>	<u>Principle</u> <u>Point X</u>	<u>Principle</u> <u>Point y</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>T1</u>	<u>T2</u>
35.222 [mm]	17.571 [mm]	11.614 [mm]	0.054	-0.246	0.033	0.000	0.001

Table 5.8 Camera of	calibration	results-fully	constrained
---------------------	-------------	---------------	-------------

GCP Name	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
1D	0.000	0.000	0.001	0.206	15/15
1A	0.000	0.000	0.000	0.219	30/30
1R	-0.001	0.001	0.000	0.220	15/15
1S	0.000	0.000	-0.002	0.191	19/19
1K	0.000	0.000	0.001	0.265	32/32
1J	0.000	0.000	0.000	0.222	32/32
1L	0.000	0.000	0.000	0.297	29/29
1E	0.000	0.000	-0.001	0.337	13/13
1G	0.000	0.000	-0.001	0.300	16/16
1F	0.000	0.000	0.003	0.241	19/19
1M	0.000	0.000	0.000	0.293	25/25
1N	0.000	0.000	0.000	0.326	24/24
10	-0.001	0.000	-0.001	0.483	24/24
1P	0.001	-0.001	0.000	0.234	17/17
1Q	0.001	0.000	0.002	0.358	21/21
1I	0.000	0.001	0.000	0.193	15/15
Mean (m)	-0.000039	-0.000001	-0.000101		
Std Dev (m)	0.000556	0.000437	0.001160		
RMS Error (m)	0.000558	0.000437	0.001164		

Table 5.9 fixed point residuals-fully constrained.

The point cloud data was then segmented to the areas of interest for further processing. The data was then exported as las/laz files for the point cloud data and Ply/Dxf formats for the textured mesh. These files will be used for further analysis in cloud compare.

5.1.3 Laser Scanning Data Reductions

Trimble Realworks 8.1 was used to reduce the scan data with the following steps used-

- 1. The raw FLS files where imported and converted into a Realworks format. The conversion process took 55 minutes or about 6 minutes per scan.
- 2. Once imported the scans where auto registered by stating the types of target used, In the case of Blk11 138mm spheres and black and white checker targets where selected. In this step the software detects the stated targets and by analysing there vectors will stitch the scans together.
- 3. The control co-ordinates where imported.
- 4. The geo-referencing tool was then used to match 3 control targets with the automatically detected checkerboard targets. Table 5.10 shows the control residuals for the minimally constrained adjustment. As Realworks does not report on these residuals the co-ordinates had to be pulled out manually from the auto detected checkerboard targets. See appendix G for the full Trimble Realworks report.

Blk 11 M	inimally C	Constraine	d	
Pt ID.	ΔΧ	ΔΥ	ΔZ	
Ft ID.	(mm)	(mm)	(mm)	
1A	1.8	7.3	8.6	
1B		Destroyed		
1C	-4.1	4.1	19.3	
1D	0.4	9.2	5.5	
1E	0.5	-0.1	0.0	
1F	2.1	3.7	6.0	
1G	-6.5	0.4	-7.6	
1H	Destroyed			
11	N	ot Measur	ed	
1J	-2.8	7.3	15.9	
1K	-3.5	6.0	14.3	
1L	3.0	-0.9	0.3	
1M	-1.1	6.7	-1.3	
1N	-2.0	4.4	2.4	
10	N	ot Measur	ed	
1P	1.3	-2.4	-0.6	
1Q	-5.1	7.2	-5.9	
1R	-3.5	1.0	-0.3	

1 S	-3.7	2.8	9.2
Mean (mm)	-1.5	3.8	4.4
Std Dev (mm)	2.8	3.4	7.6
RMS Error (mm)	3.22	5.10	8.78

Table 5.10 Checkerboard target residuals-minimally constrained.

Table 5.11 was produced to show how the residuals in table 5.10 are distributed throughout the scanning stations due to the larger than expected values for 1C, 1J and 1K.

Table 5.11 shows a RMS error of 2.3mm within the 3 fixed control points; however table 5.10 indicates that the RMS error on the check control is closer to 5.7mm. As a scanner is rated to +-0.002 m distance accuracy some of this error may be explained by the angle of incidence of some of the checkerboard targets to the scanner. All the targets however where measured within a >45° angle of incidence recommended by Faro suggesting the white paper on this instrument was being a little optimistic.

Scan Station	Mean Residual Error (m)
Cub_blk11003	0.0014
Cub_blk11004	0.0017
Cub_blk11005	0.0020
Cub_blk11006	0.0019
Cub_blk11007	0.0013
Cub_blk11008	0.0017
Cub_blk11009	0.0038
Cub_blk11010	0.0022
Cub_blk11011	0.0034
Mean (mm)	0.0022
Std Dev (mm)	0.0009
RMS Error (mm)	0.0023

Table 5.11 Scan station residuals-minimally constrained

- The previous step was repeated holding all of the checkerboard target control fixed with table 5.12 showing the resulting checkerboard station residuals. See appendix H for the full Trimble Realworks report.

- As the point clouds shift with the scan stations the point cloud was produced automatically with the results looking promising however it appears that due to the water on the floor of the excavation the resulting floor point cloud will likely require further analysis to assess its reliability as survey data. There also appears to be far more holes in the scan data of this section then that of the photogrammetry.

Blk 11	Fully Cor	nstrained		
Pt ID.	ΔX (mm)	ΔY (mm)	ΔZ (mm)	
1A	4.2	5.2	-5.9	
1B	Destroyed			
1C	-2.4	-2.0	5.2	
1D	1.9	2.9	-5.2	
1E	1.7	-3.5	-3.4	
1F	3.0	-2.2	2.6	
1G	-5.7	-2.3	-6.3	
1H		Destroyed	l	
11	Not Measured			
1J	-1.1	2.8	1.8	
1K	-1.6	1.9	1.5	
1L	4.0	-2.3	1.4	
1 M	-0.4	2.5	-0.1	
1N	-1.1	1.3	3.4	
10	Ν	ot Measur	ed	
1P	2.6	-2.8	1.6	
1Q	-1.2	-1.3	-1.1	
1R	-2.1	-0.8	-4.4	
1S	-1.8	0.7	-0.3	
Mean (mm)	0.0	0.0	-0.6	
Std Dev (mm)	2.7	2.5	3.5	
RMS Error (mm)	2.69	2.55	3.16	

Table 5.12 Checkerboard target residuals-Fully constrained

The scan data was segmented to the areas of interest and then further segmented into individual walls and the floor for ease of further processing. The data was then exported in their individual sections as DXF files for further analysis.

5.2 Site B – The Office

5.2.1 Geo-Referencing Control Reductions

The traverse data was run through Elfy V2.4, a least squares reduction software. The first step is to reduce the traverse observations i.e. average out the measurements from each station. As the job was conducted on an assumed orientation and co-ordinate system in order to process the data the first temporary station was held fixed along with an azimuth from that station to the furthest tape target.

The next step was to conduct a 2D and 1D least squares adjustment. The calculations took approximately 0.5 hours to complete. Table 5.13 shows the computed reduced co-ordinates; note that there is no Standard deviation for station A1 as this mark was held fixed mark. See appendix I for the full Elfy reduction report.

	Tabl	e 5.13 Least	Squares C	ontrol Output For S	ite B - Th	e Office	
Pt No	Easting	Northing	RL	Description	Std Dev E	Std Dev N	Std Dev H
T1	500.0000	2043.1815	20.5651	Control Tape	1.4	0.9	1.1
T2	512.1517	2041.0904	20.7072	Control Tape	1.6	1.0	1.1
T3	505.9126	1983.8672	20.7442	Control Tape	1.2	0.9	1.1
T4	492.8098	1983.0838	18.9352	Control Tape	1.2	0.9	1.1
A1	500.0000	2000.0000	20.0000	Stand Point	NA	NA	NA
A2	500.4324	1991.4511	20.0090	Stand Point	0.9	0.8	1.1
A3	497.8552	2013.3195	20.0557	Stand Point	0.9	1.0	1.3
A4	499.8308	2021.0885	20.0402	Stand Point	1.0	1.0	1.3
A5	500.8365	2027.6362	20.0627	Stand Point	1.2	0.9	1.2
A6	506.7262	2034.4783	20.0376	Stand Point	1.4	1.0	1.3
1B	511.7060	2019.5506	26.6524	Checker Board Target	1.2	1.2	1.6
2B	514.4280	2036.4845	22.1277	Checker Board Target	1.8	1.4	1.8
3B	506.6520	2042.1050	20.3919	Checker Board Target	1.9	1.4	1.8
6B	497.1490	1982.5070	18.4220	Checker Board Target	1.3	1.1	1.5
7B	508.0605	1996.8282	20.6520	Checker Board Target	1.1	1.1	1.5
8B	510.2058	2010.1851	19.5238	Checker Board Target	1.3	1.4	1.8

5.2.2 Photogrammetry Data Reductions

A total of 56 photos were taken of site B and were imported into a new Pix4d job. As mentioned earlier the images are not geo-referenced so they import with zeroed coordinates. The same step from 5.1.2 where followed.-

Step 1- The control co-ordinates are on a local co-ordinate system and orientation so an arbitrary co-ordinate system was selected.

Step 2- The initial processing routine was run. This process took 5.5 minutes and successfully stitched all of the photos together.

Step 3- The geo-referencing checkerboard stations where registered on each individual image that shows an individual station on the raycloud. This process was repeated for all 6 of the checker targets.

Step 4- the ground control point/manual tie point manager was accessed and all the checker targets had their co-ordinates and standard deviations updated as per the listing under heading 5.2.1. Three checkboard targets where held fixed with the remaining left as check points to test how accurate the processing would be when minimally constrained. The targets where selected so that one target on either end on the job and one in the middle where held fixed. These three targets where selected due to there even spread throughout the job. The initial processing routine was then re-run with a resulting ground sampling distance of 2.2mm which is more than pre-calculated because the distance off the wall was increase to capture a larger area in each image. Tables 5.14-5.16 show initial results see appendix J for the full report.

<u>Focal</u> <u>Length</u>	<u>Principle</u> <u>Point X</u>	<u>Principle</u> <u>Point y</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>T1</u>	<u>T2</u>
35.208 [mm]	17.552 [mm]	11.659 [mm]	0.055	-0.242	0.031	0.000	0.001

Table 5.14 Camera calibration results-minimally constrained

<u>GCP Name</u>	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
A1 (3D)	0.000	0.001	0.000	0.139	11/11
A3 (3D)	0.000	-0.001	0.000	0.188	4/4

A6 (3D)	0.000	-0.001	0.000	0.398	6/6
Mean (m)	0.000	0.000	0.000		
Sigma (m)	0	0.0008165	0		
RMS Error (m)	0	0.001	0		

Table 5.15 Fixed point residuals-3 fixed point	s
--	---

<u>Check Point</u> <u>Name</u>	Error X [m]	<u>Error Y</u> [<u>m]</u>	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
A2	-0.0020	-0.0070	-0.0150	0.302	9/9
A7	-0.0120	0.0050	0.0090	0.325	15/15
A8	-0.0200	0.0010	0.0070	0.269	14/14
Mean (m)	-0.011333	-0.000333	0.000333		
Sigma (m)	0.007364	0.004989	0.010873		
RMS Error (m)	0.013515	0.005000	0.010878		

Table 5.16 Check point residuals-3 fixed points

The results show a reasonable amount of error highlighted on the check shots in table 5.16. There are two conceivable reasons for this enlargement in the error residual compared to Site A Blk11-

- Images are not stitching/orientating correctly due to the amount of glass on the façade. As highlighted in the literature review photogrammetry does not perform well when measuring to reflective or transparent surfaces.
- Station A6 was located on a low concrete wall with a tree adjacent. It is possible that the tree is causing issues with image stitching in this area and the error is translating through the rest of the project. To test this theory the initial processing was re-run leaving station A6 as a check point and adopting the next available target on the façade itself.

The results came back only marginally better so it can be assumed that the additional error is creeping in due to the surface being measured, the geometry of the photographic network and the geometry of the control used. All control points where then held fixed and the process re-run. Tables 5.17 & 5.18 show the results, see appendix K for the full report from Pix4d.

<u>Focal</u> <u>Length</u>	<u>Principle</u> <u>Point X</u>	<u>Principle</u> <u>Point y</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>T1</u>	<u>T2</u>
35.218 [mm]	17.556 [mm]	11.599 [mm]	0.055	-0.242	0.031	0.000	0.001

Table 5.17 Camera calibration results-Fully constrained

<u>GCP</u> <u>Name</u>	Error X [m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	<u>Verified</u> <u>Number</u> <u>of</u> <u>Images</u>
A1 (3D)	0.000	0.000	0.001	0.194	11/11
A2 (3D)	-0.001	-0.001	-0.001	0.299	9/9
A3 (3D)	0.001	0.001	-0.001	0.139	4/4
A6 (3D)	0.000	-0.001	-0.001	0.452	6/6
A7 (3D)	0.000	0.000	0.003	0.287	15/15
A8 (3D)	-0.002	0.000	0.000	0.255	14/14
Mean (m)	-0.000333	-0.000167	0.000167		
Sigma (m)	0.000943	0.000687	0.001462		
RMS Error (m)	0.001155	0.000577	0.001826		

Table 5.18 Fixed point residuals-Fully constrained

The point cloud data was then generated and segmented to the areas of interest for further processing. The data was then exported as las/laz files for the point cloud data and Ply/Dxf formats for the textured mesh. These files will be used for further analysis in cloud compare.

5.2.3 Laser Scanning Data Reductions

Trimble Realworks 8.1 was used to reduce the scan data with the following steps used-

- 1. The raw FLS files where imported and converted into a Realworks format. The conversion process took 24 minutes or about 6 minutes per scan.
- 2. Once imported the scans where auto registered by stating the types of target used i.e. 138mm spheres and black and white checker targets where selected.
- 3. The control co-ordinates where imported.
- 4. The geo-referencing tool was then used to match 3 control targets with the automatically detected checkerboard targets. Table 5.19 shows the control residuals for the minimally constrained adjustment. As Realworks does not report on these residuals the co-ordinates had to be pulled out manually from the auto detected checkerboard targets. See appendix L for the full Trimble Realworks report.

Site B - The Office_ Minimally Constrained				
Pt ID.	ΔΧ	ΔΥ	ΔZ	
TTE.	(mm)	(mm)	(mm)	
1B	2.0	-3.0	1.9	
2B	-0.4	-1.4	1.2	
3B	-1.8	-0.4	5.4	
6B	-0.1	2.3	-0.3	
7B	1.1	1.8	2.5	
8B	1.7	0.3	0.2	
Mean (mm)	0.4	-0.1	1.8	
Std Dev (mm)	1.3	1.8	1.9	
RMS Error	-1.4	-1.8	-2.6	
(mm)				

Table 5.19 Checkerboard target residuals-minimally constrained.

Table 5.19 shows that the minimally constrained adjustment has yielded excellent results compared with the photogrammetry.

5. The previous step was repeated holding all of the checkerboard target control fixed with table 5.20 showing the resulting checkerboard station residuals. See appendix M for the full Trimble Realworks report. As can be seen in table 5.20 there is not really a great improvement between

registrations, in this case three targets where more than adequate for the	
task being undertaken.	

Site B - The Office_ Fully Constrained				
Pt ID.	ΔX (mm)	ΔY (mm)	ΔZ (mm)	
1B	2.2	-3.3	1.0	
2B	-0.6	-1.6	0.4	
3B	-2.2	0.6	-1.4	
6B	-0.9	2.3	-0.6	
7B	0.5	1.7	1.5	
8B	1.1	0.2	-0.8	
Mean (mm)	0.0	0.0	0.0	
Std Dev (mm)	1.4	1.9	1.0	
RMS Error (mm)	-1.4	-1.9	-1.0	

Table 5.20 Checkerboard target residuals-Fully constrained.

The scan data was then segmented to the areas of interest and then further segmented into individual walls and the floor for ease of further processing. The data was then exported in as a DXF file for further analysis.

Chapter 6 – Analysis

6.1 Comparisons

To examine the accuracy of the data collected for the point cloud datasets an open source software known as Cloud Compare was utilised. This software will measure the distance between two point clouds and or surface models and reassign one of the point clouds to a colour scale. This colour scale will increase intensity the further away the two datasets are from each other with the range being adjustable which aids in filtering out noise.

The disadvantage of measuring a distance between point clouds is the output is non-directional meaning that it will only represent a magnitude. The other option, to measure between a surface and point cloud will show both a magnitude and a direction in the form of a different coloured scalar field i.e. one colour for one direction and a different colour for the other. Due to the computing power and time required to generate a surface from such dense point clouds the author conducted all comparisons on a point cloud to point cloud based analysis.

6.1.1 Site A – Blk11

An initial visual analysis on both laser scanning and photogrammetry datasets revealed an obvious flaw in both of them. Due to the floor of the excavation being covered with water to various degrees the base of the pile wall has been project well below the finished floor level of the hole. Figures 6.1 and 6.2 show the prolongations highlighted by red arrows note the darker colour tones.

Figures 6.1 image showing pile prolongation Site A - Block 11-Photogrammetry-Cloud Compare

Figures 6.2 image showing pile prolongation Site A – Block 11-Laser Scanning-Trimble Realworks

Interestingly the laser scan data had a prolongation of approximately twice that of the photogrammetry. This phenomenon can be explained by the water adjacent to the secant pile walls. Figure 6.3 it shows the walls being prolonged in a reflection on the water. It appears that the resulting scan and photogrammetry have located the prolongation in the same way i.e. by the reflection of the water.

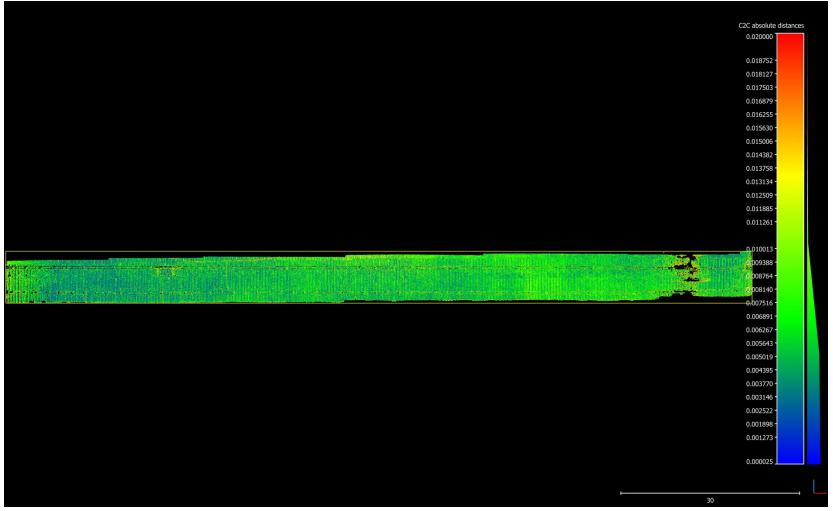
Figures 6.3 image showing reflection of piles in water Site A - Block 11

These anomalies where removed along with any other superfluous surrounding data.

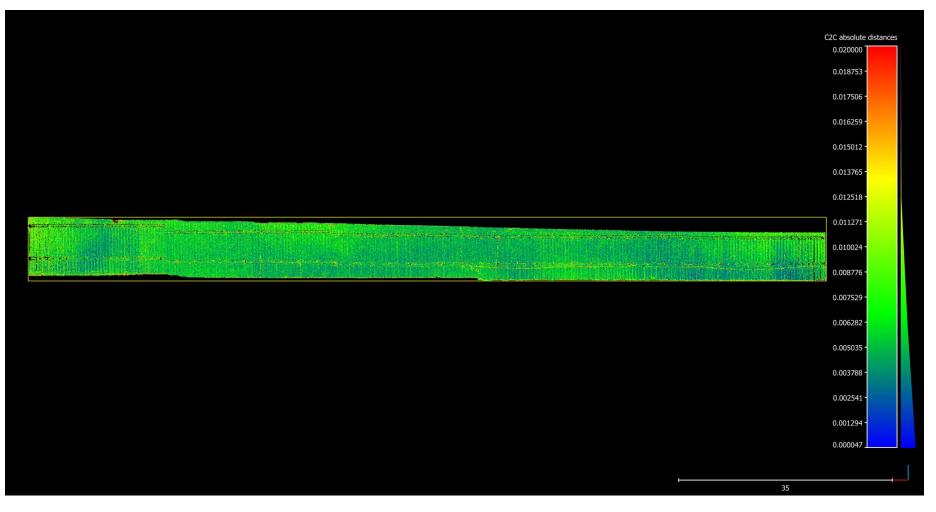
With the presence of water on the excavation floor any information extrapolated from the point cloud datasets will require a more thorough investigation to ascertain accuracy with any kind certainty

For ease of calculations in cloud compare the datasets were also segmented into 5 smaller sections, one for the floor and four for the walls. The individual sections were then processed in Cloud Compare with figures 6.4-6.8 being the respective outputs.

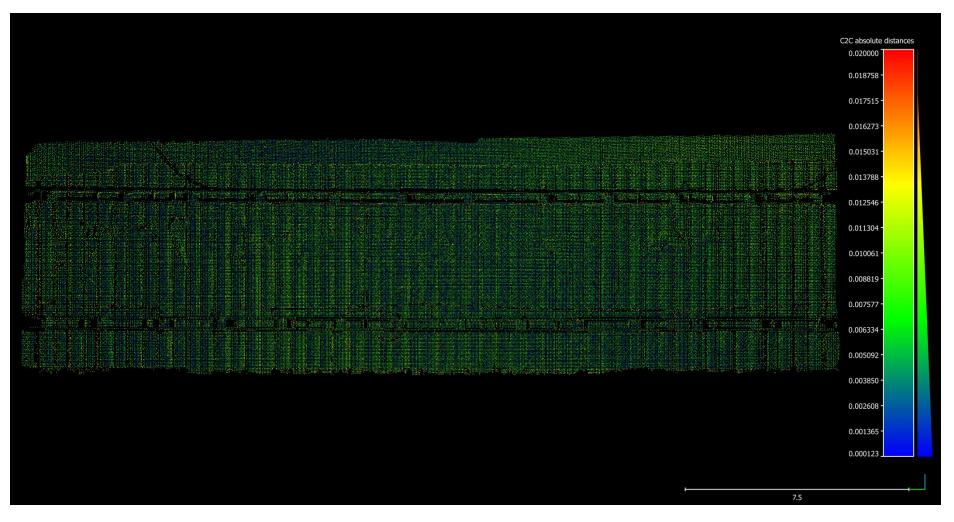
The comparison results for the secant pile walls between Laser Scanning and Photogrammetry appear to be in the range of 0-7mm of each other. These results are well within tolerance for this style of survey and given that the surface rough and undulating 3mm out sideways could easily affect the result by that much. As the shape of the excavation is a closed figure no further checking of length or width is necessary. It would appear to be conclusive that when measuring the wall surface with the equipment and settings used a surveyor could expect to get the same result from either technique.

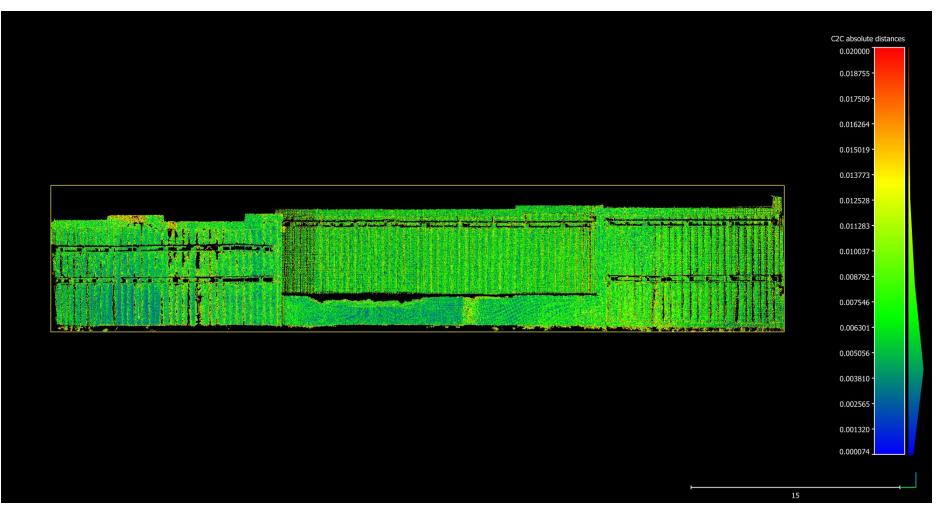

The data collected on the floor of Site A - Blk11 was far more ambiguous as figure 6.8 reveals the spread of the comparison between Photogrammetry and Laser Scanning is in the range of 7mm-20mm. The most unity between the two data sets appears to be along the middle of the excavation in an East West direction with the larger differences show along the North and South of the hole. This result together with the sparseness of the scanning data required more testing to be conclusive of its accuracy.

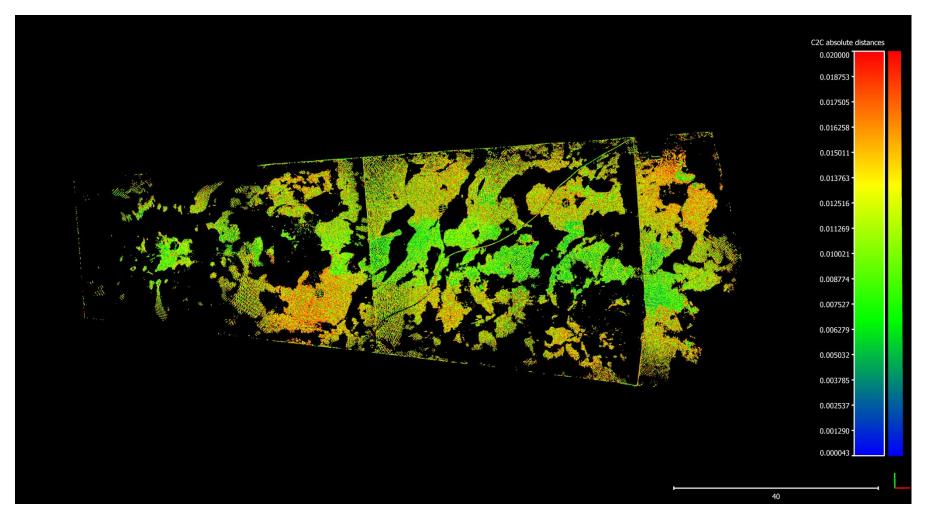
A level grid of natural surface RLs at 3m intervals was taken across the site, although it is a relatively small data set compared to the scanning and Photogrammetry point clouds it shall serve as the point of truth for the comparison.

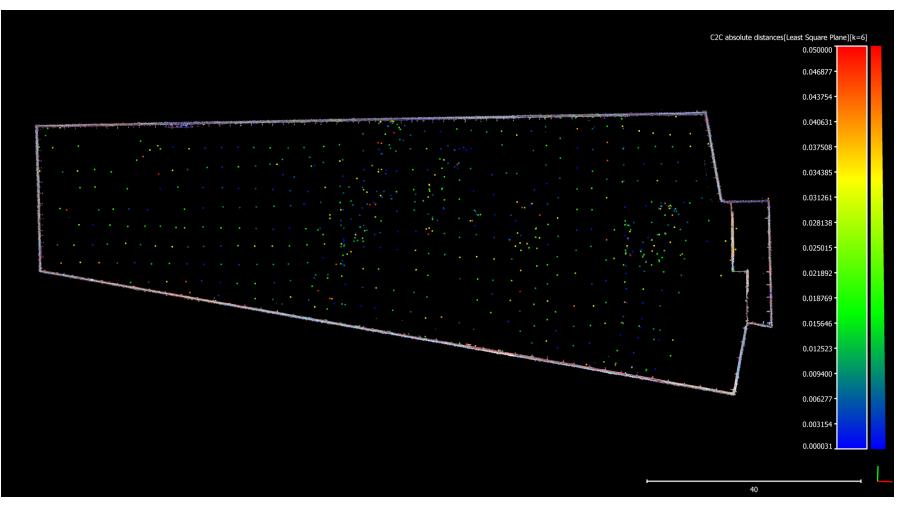

Figures 6.9 show the comparison between the conventionally surveyed excavation floor and the Photogrammetry point cloud. The resulting average ranges are 0mm-20mm with random spikes of separation of up to 50mm across the site.

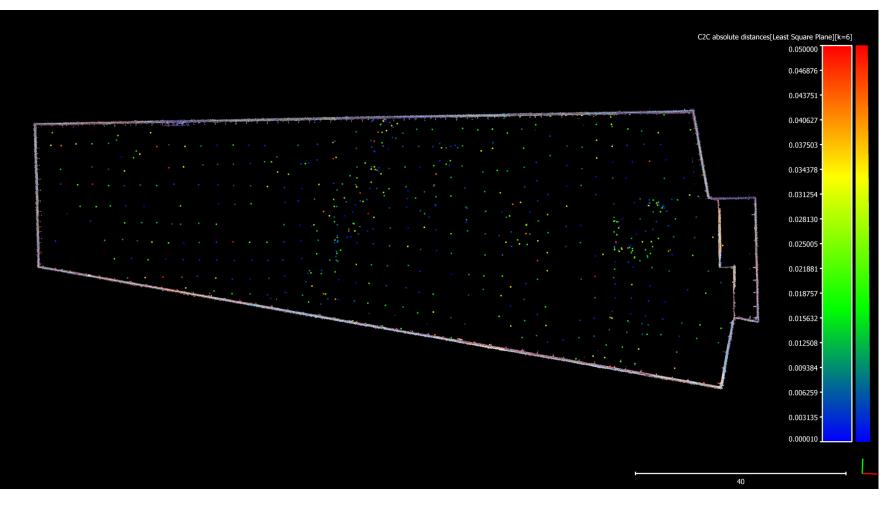
Figures 6.10 show the comparison between the conventionally surveyed excavation floor and the Laser Scanned point cloud. The resulting average ranges are 0mm-20mm with random spikes of separation of up to 50mm across the site. There appears to be slightly more points closer to 0mm separation then was shown in the photogrammetry comparison.


Regardless of the scan dataset being a slight improvement to the Photogrammetry, because of the magnitude of the anomalies and there random distribution it is clear that neither Photogrammetry nor scan derived data would be suitable for survey standard outputs under a wet floor condition.


Figures 6.4 image showing northern wall comparison Site A – Block 11-Cloud Compare


Figures 6.5 image showing southern wall comparison Site A – Block 11-Photogrammetry to Laser Scanning-Cloud Compare


Figures 6.6 image showing Eastern wall comparison Site A - Block 11-Photogrammetry to Laser Scanning-Cloud Compare


Figures 6.7 image showing Western wall comparison Site A – Block 11-Photogrammetry to Laser Scanning-Cloud Compare

Figures 6.8 image showing finished floor comparison Site A – Block 11-Photogrammetry to Laser Scanning-Cloud Compare

Figures 6.9 image showing finished floor comparison Site A – Block 11-Conventional Surveying to Photogrammetry-Cloud Compare

Figures 6.10 image showing finished floor comparison Site A – Block 11-Conventional Surveying to Laser Scanning-Cloud Compare

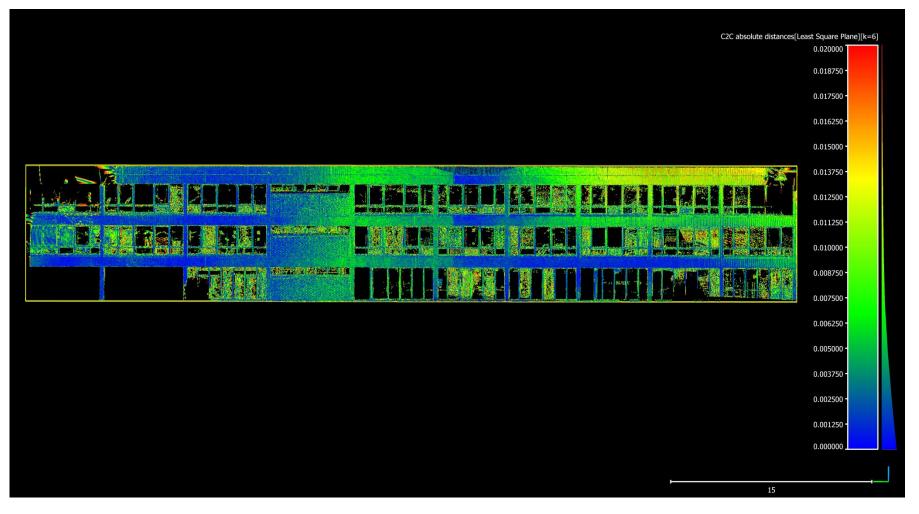
6.1.2 Site B – The Office

In the initial visual inspection of the Photogrammetry point cloud, it appears that the weaker photographic network of photos Pix4d was unable to resolve the two top corners of the building. The corner on the right could be explained by the low wall, tree and void adjoining the building when coming around the corner to close off onto some control. The left hand corner may be due to the void underneath the building causing the photo reductions a 1/3 loss in potential quality tie points. Neither off these too missing sections comes as a surprise as the photographic network was one directional and the lack of available tie points due to the amount of glass on the building. There are also some missing sections along the base which have been cut out as a car and some garbage bins blocked the view of the building at the time of survey.

The colour and cloud density are excellent as Seen in figure 6.11 for the Photogrammetry derived point cloud.

		्म
	15	

Figures 6.11 image showing Photogrammetry derived point cloud-Cloud Compare


The scan data however resolved with what appears to be a comprehensive point cloud. The point cloud colour quality however is dull and of poor quality. See figure 6.12 for scan derived point cloud.

Both clouds resolved for points within the windows most likely due to the blinds being visible from the outside.

·	

Figures 6.12 image showing Scan derived point cloud-Cloud Compare

A comparison was then run in Cloud Compare as seen in figure 6.13. As the author did not have enough time to run any conventional surveying checks the laser scan data shall be considered the point of truth for this comparison. The majority of this comparison is within 0-6mm which is well within excepted limits for an elevation style survey. The exception to this is the missing data on the top left corner and the top right corner appears to be peeling away by 12mm. This is still an acceptable outcome for this style of survey and could be easily rectified by improving on the camera geometry or measuring in an additional control mark in the corner to pull the data back into line. This was not done due to time constraints however the missing sections of the building would require further work to resolve in a real world application.

Figures 6.13 image showing compared point clouds-Cloud Compare

6.2 Cost/Benefit Analysis

Now that the fieldwork and reductions have been completed it is time to consider the objective 'Aid surveyors considering either TLS or TP techniques for a project by demonstrating their abilities in real world applications'. In considering how to evaluate each technique it was decided to break down each technique into several categories and assign a numerical score to each category. The idea being that the user can select the categories that are most important to their task, add up the scores with the lowest score being the indicator that this technique will best suit the task. Conventional surveying is the bench mark for measurement within the industry and has been used as the benchmark for this analysis. The following categories where considered for each site -

•Equipment cost- As equipment costs will fluctuate depending on what is utilised only the equipment used will be considered in this analysis. The theodolite used on both sites was a Ts15 1" R1000 valued at approximately \$40000 and assigned a value of 10. As both Laser scanning and Photogrammetry both require Georeferencing the value of the additional equipment was applied to the value of the theodolite as a ratio to its score.

•**Reduction software cost**- This field was populated using the same technique as in the equipment cost, by applying a ratio to the value of the theodolite being used to the costs of the software's being used.

•Field time & Reduction time- To populate these categories ten points was assigned to a standard 8 hour day. As Site A-Blk11 is a real job the quantity of field time was known to the author, Site B-The Office however was assigned a time value based on the author's experience.

•Skill Level Field & Office- These categories where populated based on the authors professional opinion with conventional surveying being considered to require the highest skill level being assigned a value of 10.

•Accuracy- Again as conventional surveying is considered the industry standard it was assigned a score of 1 with Laser Scanning and Photogrammetry receiving higher scores due to the tendency for noise, noise being additional random points in space to a non-existent object.

•Data Richness- This category refers the amount of data captured i.e. the separation between point clouds. In the field tests conducted Photogrammetry had the tightest point groupings it was assigned the lowest score with scanning and conventional surveying being assigned proportional values.

See tables 6.1 and 6.2 for the category ratings of each site.

	Equipment Cost	Reduction Software Cost	Field time	Skill Lvl Required Field	Reduction Time	Skill Lvl Required Office	Accuracy	Data Richness	Total
Conventional Surveying	10	1.25	30	10	30	10	1	10	102.3
Laser Scanning	30	1.25	5	3	10	6	3	3	61.25
Photogrammetry	11	2.5	2.5	6	10	2	4	1	39

Table 6.1 Cost benefit analysis of Site A-Blk11

	Equipment Cost	Reduction Software Cost	Field time	Skill Lvl Required Field	Reduction Time	Skill Lvl Required Office	Accuracy	Data Richness	Total
Conventional Surveying	10	1.25	5	10	5	10	1	10	52.25
Laser Scanning	30	1.25	1.25	3	5	6	3	3	52.5
Photogrammetry	11	2.5	0.62	6	5	2	4	1	32.12

Table 6.2 Cost benefit analysis of Site B-The Office

As can be seen in table 6.1 and 6.2 when all the evaluating categories are considered Photogrammetry is the clear overall winner. However in using these tables the author stresses that only the important categories of the proposed venture should be considered. For example if accuracy is the number one priority than conventional surveying should be used. Conversely if a lower field skill level is prioritised than laser scanning should be used. A combination of important priority could also to use.

Chapter 7 – Further Research And Conclusion

7.1 Further Research

Some possible further research topics include-

• Experimenting with 4K videogrammetry.

• Repeat the same experiments using longer distances. Theoretically the Laser scanner will lose accuracy over longer distances however using the right equipment setup Photogrammetry will maintain accuracy.

• Trialling different equipment setups. The experiments in this dissertation where aimed at matching the two technologies into the same accuracy class.

• Trialling close range aerial Photogrammetry against terrestrial laser scanning. In theory because the angle of incidence on the terrestrial laser scanner is quite acute the aerial photos should yield better results.

7.2 Conclusion

The Literature review was conducted primarily to ascertain best practice techniques for both Laser Scanning and Photogrammetry. However it was discovered that very little peer reviewed literature existed that compared one technique to the other. It is the hope that this dissertation helps place another link in the chain that helps bridge the gap in the existing knowledge bank and to serve as a decision making aid for professionals.

The results of the fieldwork suggest that there are no significant differences between Laser scanning and Photogrammetry under the conditions of the test subjects surveyed with the equipment used. The analysis showed measured differences of between 0 - 7mm with two exemptions-

• A section in site B-The Office where the photographic network and perhaps the placement of the control were insufficient due to the author's inexperience with the field techniques of this style of survey. This error was highlighted early in the reduction stage where a minimally constrained adjustment took place and in a real working scenario would have required further fieldwork to rectify the issue.

• Both techniques failed to achieve consistent results on site A-Blk11 excavation floor. Both techniques where proven to be inconsistent with the actual basement

floor by comparing both techniques to a sample of conventionally surveyed data. Even though the data collected was relatively sparse it highlighted that neither technique yielded reliable results. This is due to the varying levels of water on the excavations floor at the time of the survey and was the expected result for both techniques as neither technique is recommended to be used to collect data through water instead conventional surveying should be utilised.

During the reduction phase it was apparent that laser scanning resulted in a dull colour pallet while photogrammetry yielded a true to life coloured point cloud.

A cost benefit analysis was conducted based on the equipment used and the tests conducted for the comparison. This analysis was done in the form of a marking matrix with several key deciding factors given a score. In both test cases photogrammetry was the clear overall winner due to the equipment being relatively inexpensive. It is recommended however those users of the marking matrix select the fields that are most important to their needs add up the scores to aid in making the decision. The marking matrix was developed as a guide only based on the experiences while conducting field tests and is not a standalone decision tool.

Based on the results achieved in this dissertation using the equipment setups both Laser Scanning and Photogrammetry are excellent choices for creating point cloud models.

List of References

- Adam Technology. (2010, October 19). *Adam Technology team blog*. Retrieved May 20, 2016, from How Accurate is Photogrammetry? — Part 2: http://www.adamtech.com.au/Blog/?p=167
- Alshadli, D. (2015). A 3D image-based measurement approach for analysing dynamic foot posture and mobility. University of Southern Queensland.
- Boehler, & Marbs. (Unknown). *Investigating laser scanner accuracy*. Mainz, Germany: Institute for spacial information and surveying technology and the university of applied sciences.
- Brown, D. (1989). A strategy for multi-camera on-the-job self-calibration. *Geburtstag. 302*, 9-21.
- California department of transport. (2011, unknown unknown). *terrestrial laser scanning specifications*. Retrieved May 22, 2016, from terrestrial laser scanning specifications: http://www.dot.ca.gov/hq/row/landsurveys/SurveysManual/15_Surveys.pd f
- Callieri, Cignoni, Dellepiane, & Scopigno. (2009). Pushing time-of-flight scanner to the limit. *The 10th international symposium on the virtual reality, Archaeology and curtural heritage* (p. unknown). Italy: Unknown.
- Cloud compare. (Unknown). *Cloud compare user manual V2.6.1*. unknown: Cloud compare.
- Dai, F., Rashidi, A., & Brilakis, I. (2012). Comparison of image-based and timeof-flight-based technologies for 3D reconstruction of infrustructure. *Construction engineering and management*, 929-939.
- Deseilliguy, M. P. (2012). APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES. International archives of the photogrammetry, remote sensing and spacial information vol38, 269-276.
- Ebrahim, D. M.-B. (2011). *3D laser scanning: history, apllications and future.* Assiut, Egypt: Assiut University.
- EOS Systems Inc. (2015, unknown unknown). *Photomodeler*. Retrieved May 20, 2016, from Photomodeler: http://www.photomodeler.com/index.html
- Faro. (2011). Faro laser scanner focus3D Manual. Unknown: Faro.
- Faro. (unknown, unknown unknown). *Faro Focus 3D*. Retrieved May 21, 2016, from Faro: http://www.faro.com/products/3d-surveying/laser-scanner-farofocus-3d/features#main

- Fryer, J. (2001). Close range photogrammetry and machine vision. *Whitt;es, Caithness*, 158.
- Hartmann, Havlena, & Schindler. (2015). Recent developments in large-scale tiepoint matching. *ISPRS Journal of Photogrammetry and Remote Sensing Vol115*, 47-62.
- Harvey, D. (2004). Registration and transformation of multiple site terrestrial laser scanning. *Geomatics research, Aust., ISSN 1324-9983, No.80*, 33-55.
- IDRISI. (no date). Guide to GIS and image processing volume 1.
- Jáuregui, e. a. (2003). non contact measurement of vertical bridge deflection. *bridge engineering*, 212-222.
- Jiang, e. a. (2008). Close-range photogrammetry applications in bridge measurement: Literature review. *Measurement Vol 41*, 823-834.
- Jiang, R., & Jáuregui, D. (2010). Development of a digital close-range photogrammetric bridge deflection measurement system. *measurement*, *vol 43*, 1431-1438.
- Luhmann, Fraser, & Maas. (2016). Sensor modelling and camera calibration for close range photogrammetry. *ISPRS Journal of photogrammetry and remote sensing vol 115*, 37-46.
- Luhmann, T. (2010). Close range photogrammetry for industrial applications. *ISPRS journal of photogrammetry and remote sensing*, 65, 558-569.
- Luhmann, T., Robson, S., Kyle, S., & Hartley, I. (2006). *close range photogrammetry:Principles, techniques and applications.* Dunbeath, Scotland: Whittles Publishing.
- Mikhail, e. a. (2001). *introduction to modern photogrammetry*. John Wiley and Sons, Inc.
- Muhammad, G. (2016, September 11). *Garda Muhammad*. Retrieved from https://gardamuhammad.wordpress.com/analytical-photogrammetry-andremote-sensing/
- Pix4D. (unknown, unknown). *Pix4D*. Retrieved May 20, 2016, from Pix4D: https://pix4d.com/
- Quora. (2016, September 11). *Quora*. Retrieved from https://www.quora.com/Some-images-taken-with-smartphones-tend-tobroaden-at-the-corners-Is-this-the-photographers-error-or-are-smartphonelenses-not-100-suitable-for-capturing-true-images

Schenk, T. (2005). Introduction to Photogrammetry. The Ihio State University.

- Soni, A., Robson, S., & Gleeson, B. (2015). Structural monitory for the rail industry using conventional surveying, laser scanning and photogrammetry. *Appl Goemat*, 123-138.
- Teledyne, D. (2016, May 19). *CDD vs. CMOS*. Retrieved from https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccdvs-cmos/
- Thiel, & Wehr. (2012). Performance capabilities of laser scanners An overview and measurment principle analisis. *International archives of photogrammetry, remote sensing and spatial information sciences Vol.XXXVI*, 8/W2.
- Trimble. (2016, unknown unknown). *Trimble realworks*. Retrieved May 22, 2016, from Trimble: http://www.trimble.com/3d-laser-scanning/realworks.aspx
- Trimble. (unknown). Trimble real works user guide V6.5. unknown: Trimble.
- USQ. (2011). *Photogrammerty and remote sensing study book*. Toowoomba: USQ.
- Woodhouse, Robson, & Eyre. (1999). Vision metrology and three dimensional visualisation in structural testing and monitoring. *Photgrammetric record Vol16 No. 94*, 625-641.
- Woodhouse, Robson, & Eyre. (1999). Vision metrology and three dimensional visulisation in structural testing and monitoring. *Photogrammetric record Vol 16(94)*, 625-641.
- CNET. (2016, July 28). Sony Alpha ILCE-7R (A7R) review. Retrieved from https://www.google.com.au/search?q=sony+a7r+body&client=firefox-bab&biw=1920&bih=947&tbm=isch&imgil=F9apJsBMgVf-6M%253A%253B1-8-OC60lyxRTM%253Bhttp%25253A%25252F%25252Fwww.cnet.com%2 5252Fproducts%25252Fsony-alpha-a7r-bodyonly%25252F&source=iu&pf=m&fir=F

DpReview. (2016, July 28). Sony FE 35mm F2.8 ZA Carl Zeiss Sonnar Lab Test. Retrieved from https://www.google.com.au/search?q=carl+zeiss+35mm+lens&client=firef oxb&biw=1920&bih=947&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi oyc_FnpXOAhXDDMAKHdx0BGwQ_AUIBigB#imgrc=Tyv9qVG9n5Z 9qM%3A

- Pentland. (2016, July 28). *Faro Focus 3D X330 laser scanner*. Retrieved from https://www.google.com.au/search?q=focus+3d+x330&biw=1536&bih=7 83&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj975DFsZXOAhXnIc AKHc1LC9cQ_AUIBigB#tbm=isch&q=faro+x330&imgrc=Ft6aPoWaQd VJrM%3A
- Photographylife. (2016, July 28). *Sony A7R Review*. Retrieved from Photographylife: https://photographylife.com/reviews/sony-a7r
- Surveying Epic. (2016, 8 11). *Surveying Epic*. Retrieved from http://surveyingepic.com/?16,faro-focus-3d-s120-laser-scanner

Appendix A

Project specification

ENG4111/4112 Research Project

Project Specification

For:	Lachlan Edward Broome
Title:	A comparison between 3d laser scanning and close range terrestrial Photogrammetry for 3d modelling
Major:	Surveying
Supervisor:	Albert Chong
Enrolment:	ENG4111 - EXT S1, 2016
	ENG4112 – EXT S2, 2016
Project Aim:	To test the methods, speed and accuracy of 3d laser scanning against close range terrestrial photogrammetry

Programme: Issue A, 15th March 2016

- 1. Research for any existing literature relevant to the project topic title.
- 2. Search for some suitable sites to conduct the field work.
- 3. Based off Research prepare work instruction and safety documentation.
- 4. Conduct the field surveys with respect to best practice techniques for each form of survey.
- 5. Analyse Field data and compare results.
- 6. Conduct Time/cost/benefit analysis of each survey method.

Appendix B

Site A-Blk11 convergence test report from Pix4D

Quality Report

Generated with Discovery version 2.1.49

Pelp to analyze the results in the Quality Report	Important: Click on the different icons for:
	Help to analyze the results in the Quality Report
Additional information about the sections	Odditional information about the sections

Click <u>here</u> for additional tips to analyze the Quality Report

Summary

Ŷ

Project	blk11_test2_convergence
Processed	2016-04-14 19:40:03
Average Ground Sampling Distance (GSD)	undefined
Time for Initial Processing (without report)	08m:47s

Quality Check

Images	median of 70908 keypoints per image	0
② Dataset	33 out of 33 images calibrated (100%), all images enabled	0
Camera Optimization	0.67% relative difference between initial and optimized internal camera parameters	0
? Matching	median of 26025.9 matches per calibrated image	0
② Georeferencing	no, no 3D GCP	Δ

Calibration Details

Number of Calibrated Images	33 out of 33
Number of Geolocated Images	0 out of 33

Initial Image Positions

The preview is not generated for images without geolocation.

Computed Image/GCPs/Manual Tie Points Positions

The preview is not generated for images without geolocation.

Bundle Block Adjustment Details

Number of 2D Keypoint Observations for Bundle Block Adjustment	844643
Number of 3D Points for Bundle Block Adjustment	337922
Mean Reprojection Error [pixels]	0.118103

Internal Camera Parameters

ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB). Sensor Dimensions: 35.000 [mm] x 23.359 [mm]

EXIF ID: ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912

0

0

6

6

0

6

6

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	7360.000 [pixel] 35.000 [mm]	3680.000 [pixel] 17.500 [mm]	2456.000 [pixel] 11.679 [mm]	0.000	0.000	0.000	0.000	0.000
Optimized Values	7409.729 [pixel] 35.236 [mm]	3680.684 [pixel] 17.503 [mm]	2443.788 [pixel] 11.621 [mm]	0.055	-0.261	0.089	-0.000	0.000

The number of Automatic Tie Points (ATPs) per pixel averaged over all images of the camera model is color coded between black and white. White indicates that, in average, more than 16 ATPs are extracted at this pixel location. Black indicates that, in average, 0 ATP has been extracted at this pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization.

2D Keypoints Table

6

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	70908	26026
Min	49728	11111
Max	83392	37360
Mean	69989	25595

3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	241534
In 3 Images	55563
In 4 Images	22048
In 5 Images	10137
In 6 Images	5392
In 7 Images	2390
In 8 Images	797
In 9 Images	59
In 10 Images	2

② 2D Keypoint Matches

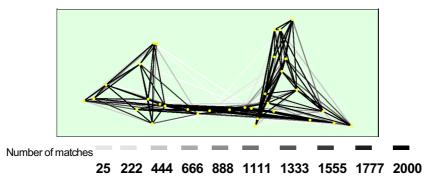


Figure 5: Top view of the image computed positions with a link between matching images. The darkness of the links indicates the number of matched 2D keypoints between the images. Bright links indicate weak links and require manual tie points or more images.

Processing Options

Hardware	CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz RAVt 16GB GPU: NMDIA GeForce GTX 550 Ti (Driver: 10.18.13.5382)
Operating System	Windows 10 Home, 64-bit
Camera Model Name	ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB)
Output Coordinate System	Arbitrary(m)
Detected template:	B 3D Models

6

Keypoints Image Scale	Full, Image Scale: 1
Advanced: Matching Image Pairs	Free Flight or Terrestrial
Advanced: Matching Strategy	Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction	Targeted Number of Keypoints: Automatic
Advanced: Calibration	Calibration Method: Standard, Internal Parameters Optimization: All, External Parameters Optimization: All, Rematch: Auto yes

(

6

6

Point Cloud Densification details

Processing Options

Image Scale	multiscale, 1/2 (Half image size, Default)
Point Density	Optimal
Minimum Number of Matches	3
3D Textured Mesh Generation	yes, Maximum Number of Triangles: 1000000, Texture Size: 8192x8192
Advanced: Matching Window Size	9x9 pixels
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Advanced: Limit Camera Depth Automatically	yes
Time for Point Cloud Densification	13m:12s
Time for 3D Textured Mesh Generation	04m:46s

Results

Number of Generated Tiles	1
Number of 3D Densified Points	10000506
Average Density (per m ³)	244.96

Appendix C

Site A-Blk11 conventional surveying least squares adjustment report from Elfy V2.4

-> Refraction corrections applied for orthometric height differences

-> Coefficient of refraction of light, k = 0.13

_

* DIRECTIONS *

Target		FL		Diff		FR		1	lear	n	Redu	JCeo	d Mean	v '	v	V ²
	0	,	"	"	0	,		0	,	"	0	,	"			
T104	48	44	18	+02	228	44	20	48	44	19.0	0	00	00.0	+00.0	+00.0	0.0
T150	148	15	17	-03	328	15	14	148	15	15.5	99	30	56.5	+00.0	+00.0	0.0
Т97	250	17	22	+03	70	17	25	250	17	23.5	201	33	04.5	+00.0	+00.0	0.0
T310	252	80	00	-04	72	07	56	252	07	58.0	203	23	39.0	+00.0	+00.0	0.0
Т98	317	17	36	+00	137	17	36	317	17	36.0	268	33	17.0	+00.0	+00.0	0.0
1A	56	13	20	-05	236	13	15	56	13	17.5	7	28	58.5	+00.0	+00.0	0.0
1C	104	12	45	+05	284	12	50	104	12	47.5	55	28	28.5	+00.0	+00.0	0.0
1D	175	54	43	+02	355	54	45	175	54	44.0	127	10	25.0	+00.0	+00.0	0.0
1E	213	41	00	-06	33	40	54	213	40	57.0	164	56	38.0	+00.0	+00.0	0.0
1F	242	04	09	-02	62	04	07	242	04	08.0	193	19	49.0	+00.0	+00.0	0.0
1G	251	14	46	-06	71	14	40	251	14	43.0	202	30	24.0	+00.0	+00.0	0.0
1H	321	54	04	+04	141	54	80	321	54	06.0	273	09	47.0	+00.0	+00.0	0.0

Sum +00.0 +00.0

⁻⁻⁻⁻⁻Sum 00.0

um	0	υ	•	υ

Target	Grand Means								
	o	,	"						
T104	0	00	00.0						
T150	99	30	56.5						
Т97	201	33	04.5						
T310	203	23	39.0						
T98	268	33	17.0						
1A	7	28	58.5						
1C	55	28	28.5						
1D	127	10	25.0						
1E	164	56	38.0						
1F	193	19	49.0						
1G	202	30	24.0						
1H	273	09	47.0						

*	VERTICAL	ANGLES	AND	SLOPE	DISTANCES	*
---	----------	--------	-----	-------	-----------	---

Target		FL		Diff		FR		1	lear	n	SDist(FL)	SDist(FR)	H.Dist
	0	,	"	"	0	,	"	0	,	"			 m
T104	91	58	38	-06	268	01	16	91	58	41.0	27.659	27.658	27.6420
T150	85	05	29	+00	274	54	31	85	05	29.0	16.314	16.313	16.2537
Т97	88	46	37	+00	271	13	23	88	46	37.0	27.837	27.836	27.8302
T310	75	25	53	-01	284	34	06	75	25	53.5	28.560	28.559	27.6412
T98	89	55	32	-01	270	04	27	89	55	32.5	35.156	35.156	35.1560
1A	76	14	80	+00	283	45	52	76	14	08.0	26.910	26.912	26.1382
1C	95	20	47	-02	264	39	11	95	20	48.0	16.758	16.758	16.6851
1D	91	48	03	+00	268	11	57	91	48	03.0	16.885	16.886	16.8772
1E	75	26	05	+00	284	33	55	75	26	05.0	26.303	26.301	25.4567
1F	95	48	37	+04	264	11	27	95	48	35.0	15.400	15.399	15.3204

1G 1H	75 3 90 1	2 15 1 32	-01 -07	284 269	27 4 48 2	4 75 1 90	32 15. 11 35.	5 5	28.728 38.250	28.728 38.247		27.8177 38.2483
						Granc	l Means					
Target	o V.	A		-					Occ.			
T104	91 5	8 41	.0		m .6585					0.000		m -0.955
T150 T97	85 0 88 4		.0.0	16 27	.3135 .8365		16.2 27.8		0.000 0.000	0.000 0.000		1.396 0.594
T310 T98	75 2 89 5		.5	28	.5595		27.6 35.1	412	0.000 0.000	0.000 0.000		7.184 0.046
1A	76 1	4 08	.0	26	.9110		26.1	382	0.000	0.000		6.403
1C 1D	95 2 91 4	8 03	.0	16	.7580 .8855 .3020		16.6 16.8		0.000 0.000	0.000 0.000		-1.562 -0.531
1E 1F	75 2 95 4		.0	26 15	.3020 .3995		25.4 15.3	567 204	0.000 0.000 0.000	0.000 0.000		6.615
1G 1H	75 3 90 1		.5 .5	28 38	.7280 .2485			177	0.000 0.000	0.000 0.000		7.175 -0.129
* TRAVERSE						(26) ons Fro	om :	1	AB1 =====			
* DIRECTIO	NS *											
Target	F	L	Diff		FR	I	lean	Red	duced Mean	v '	v	V ²
					 Tar		Grand	 Means	-		Sum	00.0
									-			
						T101 1I	0 00 329 11	00.0 03.5				
* VERTICAL	ANGL	ES A	ND SLO	PE Di	ISTAN	CES *						
									Dist(FL)			
T101 1I	。 90 3 124 3	' " 0 37 3 43	" -02 -11	。 269 235	, 29 2 26 0	" ° 1 90 6 124	, 30 38. 33 48.	" 0 1 5	m 112.693 2.954	m 112.692 2.953	1	m 12.6880 2.4322
						Granc	l Means					
Target	۷. م	A		Slop	pe Di	st	Horiz.	Dist	Occ.	Target		
T101 1I	90 3	0 38	.0	112 2			m 112.6 2.4	880 322	Stn Ht 0.000 0.000	Height 0.000 0.000		-1.003 -1.676

* DIRECTIONS *

Target		FL		Diff		FR		I	Mear	ı	Red	uce	d Mean	v '	v	V ²
T101 1C	356	30	34	" +01 +02	176	30	35	356	30	" 34.5 29.0	0	, 00 41	" 00.0 54.5	+00.0 +00.0	+00.+00.	0 0.0
													Sum	+00.0	+00.	0
															Su	m 00.0
						Та	arge	t	Gra	and M	eans					
									(, ,) 00 7 41	00.0					
* VERTICA	L AN(GLES	S AI	ND SLO	PE DI	IST	ANCE	IS *								
Target													(FL)		FR) 	H.Dist
T101 1C	90	30	37	" -05 +02	269	29	18	90	30	39.5	1	m 12. 16.	692 779	m 112.6 16.7	91 80	m 112.6870 16.7059
								Gran	d Me	ans						
Target	0	VA			Slop	pe I	Dist		Ноз	ciz.	Dist	0	Occ.	Targ	et	Ht Diff
T101 1C	90 95	30 22	39 03	.5 .0	112 16	. 691 . 771	15 95		11	12.68 16.70	70 59	0 0	.000 .000	0.00	0	Ht Diff m -1.004 -1.570
* TRAVERS									om :	:	A	В2				
* DIRECTI				-												<u>_</u>
Target 		F.T.							Mear 			uce		v'	v 	V ²
T315 T104 T150 T98 T101 1A 1C 1D 1E 1F 1G	239 279 332 73 165 286 317 343 1 5 21	30 45 54 55 47 09 14 06 22 27 09	27 43 10 09 21 18 36 28 52 00		59 99 152 253 345 106 137 163 181 185 201 40	30 45 55 47 09 14 06 22 27 09 53	25 46 10 24 12 39 28 53 01 43	239 279 332 73 165 286 317 343 1 5 21 220	30 45 54 55 47 09 14 06 22 27 09 53		0 40 93 194 286 46 77 103 121 125 141 341	00 15 23 24 16 38 44 36 52 56 39 23		$\begin{array}{c} +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ +00.0\\ \end{array}$	+00. +00. +00. +00. +00. +00. +00. +00.	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$

Sum 00.0

Target	Gran	nd N	leans
	0		"
T315	0	00	00.0
T104	40	15	18.5
T150	93	23	44.0

T98	194	24	43.5
T101	286	16	56.5
1A	46	38	49.0
1C	77	44	11.5
1D	103	36	02.0
1E	121	52	26.5
1F	125	56	34.5
1G	141	39	18.0
1J	341	23	29.0
1K	321	49	48.5
1L	238	37	01.5
1M	243	29	33.0

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target	I	FL	Dif	E FR	Mean	SDist(FL)	SDist(FR)	H.Dist
	0	,		° I II	0 I II	m	 m	 m
T315	75 5			284 01 34	°''" 75 58 24.5	23.686	23.686	22.9798
T104	90 4	49	27 -06	269 10 27	90 49 30.0	25.453	25.454	25.4509
T150	87 2			272 38 54	87 21 03.0	42.920	42.920	42.8741
T98	88 3	16	10 -05	271 43 45	88 16 12.5	20.989	20.989	20.9794
T101	90 3	16	49 -04	269 43 07	90 16 51.0	85.085	85.084	85.0835
1A	75 5	54	30 -02	284 05 28	75 54 31.0	28.717	28.714	27.8514
1C	91 3	31	19 -06	268 28 35	91 31 22.0	36.939	36.936	36.9245
1D	89 5	55	32 +00	270 04 28	89 55 32.0	44.510	44.510	44.5100
1E	81 4	47	35 +01	278 12 26	81 47 34.5	50.453	50.452	49.9358
1F	91 3	33	50 +03	268 26 13	91 33 48.5	36.266	36.266	36.2525
1G	79 5	50	13 +00	280 09 47	79 50 13.0	43.991	43.995	43.302
1J	91 2	21	06 -03	268 38 51	91 21 07.5	43.991	25.758	25.7498
1K	92 3	35	34 +01	267 24 27	92 35 33.5 75 47 09.5	34.688	34.690 26.758	34.653
1L	75 4	47	10 +01	284 12 51	75 47 09.5	26.761	26.758	25.9403
1M	92 4	43	35 -04	267 16 21	92 43 37.0	27.720	27.718	27.6870
					Grand Means			
Target	7			Slope Dist	Horiz. Di	lst Occ.	Target	Ht Dif:
			"	m	m 22.9798	Stn Ht		
T315			24.5				0.000	5.741
T104			30.0	25.4535				-0.366
T150			03.0	42.9200			0.000	1.984
T98				20.9890	20.9794		0.000	0.634
T101			51.0	85.0845	85.0835		0.000	-0.417
1A			31.0	28.7155	27.8514		0.000	6.991
1C			22.0	36.9375	36.9245		0.000	-0.981
1D			32.0	44.5100	44.5100		0.000	0.058
1E			34.5	50.4525	49.9358		0.000	7.202
1F			48.5	36.2660	36.2525		0.000	-0.989
1G			13.0	43.9930	43.3027		0.000	7.763
1J			07.5	25.7570	25.7498		0.000	-0.608
1K			33.5	34.6890 26.7595	34.6535	5 0.000 3 0.000	0.000	-1.569
1L								6.571
1M	92 4	43	37.0	27.7190	27.6876	0.000	0.000	-1.319
TRAVERSE	ROUI	NDS	FOUND	* - Line (6	57) ns From :			
				Observation	ns From :	AB3 =====		
	NS *							

Target		FL		Diff		FR		1	lear	n	Redu	JCeo	d Mean	v '	v	V ²
	0	,		"	o	,		0	,	"	0	,	"			
T150	211	05	07	+04	31	05	11	211	05	09.0	0	00	00.0	+00.0	+00.0	0.0
Т99	297	03	31	+03	117	03	34	297	03	32.5	85	58	23.5	+00.0	+00.0	0.0
T101	34	09	35	+11	214	09	46	34	09	40.5	183	04	31.5	+00.0	+00.0	0.0
T103	131	53	25	+12	311	53	37	131	53	31.0	280	48	22.0	+00.0	+00.0	0.0
1K	166	09	56	+10	346	10	06	166	10	01.0	315	04	52.0	+00.0	+00.0	0.0

1J	182 22	21	+08	2	22	29	182	22	25.0	331	17	16.0	+00.0	+00.0	0.0
1L	254 53	39	-01	74	53	38	254	53	38.5	43	48	29.5	+00.0	+00.0	0.0
1M	257 38	33	+04	77	38	37	257	38	35.0	46	33	26.0	+00.0	+00.0	0.0
1N	285 39	49	+00	105	39	49	285	39	49.0	74	34	40.0	+00.0	+00.0	0.0
10	343 19	27	-01	163	19	26	343	19	26.5	132	14	17.5	+00.0	+00.0	0.0
1P	358 26	01	-05	178	25	56	358	25	58.5	147	20	49.5	+00.0	+00.0	0.0
1Q	17 01	16	-03	197	01	13	17	01	14.5	165	56	05.5	+00.0	+00.0	0.0
1R	36 49	49	-02	216	49	47	36	49	48.0	185	44	39.0	+00.0	+00.0	0.0
1S	59 46	05	-02	239	46	03	59	46	04.0	208	40	55.0	+00.0	+00.0	0.0

Sum +00.0 +00.0

_____ Sum 00.0

Target	Gra	nd I	leans
	0		
T150	0	00	00.0
Т99	85	58	23.5
T101	183	04	31.5
T103	280	48	22.0
1K	315	04	52.0
1J	331	17	16.0
1L	43	48	29.5
1M	46	33	26.0
1N	74	34	40.0
10	132	14	17.5
1P	147	20	49.5
1Q	165	56	05.5
1R	185	44	39.0
1S	208	40	55.0

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target	FL	Diff	FR	Mean			1	SD	ist(FL)	SDist(FR)	H.Dist
	0 I II	"	• •	"	0	,	"		 m	 m	 m
T150	88 26 06	+02 2	271 33	56	88	26	05.0		85.808	85.808	85.7760
Т99	87 46 47	-01 2	272 13	12	87	46	47.5		18.268	18.267	18.2538
T101	90 04 43	-02 2	269 55	15	90	04	44.0		41.502	41.501	41.5015
T103	90 00 55	-05 2	269 59	00	90	00	57.5		17.347	17.348	17.3475
1K	92 52 15	+00 2	267 07	45	92		15.0		24.134	24.138	24.1057
1J	90 24 21	-05 2	269 35	34	90		23.5		34.855	34.853	34.8531
1L	78 16 45		281 43	12			46.5		34.118	34.120	33.4076
1M	91 46 20		268 13	39	91		20.5		31.000	31.000	30.9852
1N	87 36 32		272 23	30	87		31.0		19.773	19.772	19.7553
10	94 17 53		265 42	00	94		56.5		20.674	20.674	20.6158
1P	76 39 41		283 20	17	76		42.0		26.085	26.084	25.3809
1Q	88 56 54		271 03	04	88		55.0		40.385	40.382	40.3767
1R	89 55 29		270 04	29			30.0		41.743	41.743	41.7430
1S	90 00 18	-02 2	269 59	40	90	00	19.0		36.129	36.133	36.1310
				Gı	ranc	l M∈	ans				
Target	VA ° '	۔۔۔۔۔ ۲	Slope I	Dist		Hor	ciz. D	Dist	Occ.	Target	Ht Diff
T 1 C 0			m OF OOC	20			m NE 77(<u> </u>	Stn Ht	Height	m
T150 T99	88 26 05 87 46 47		85.808				35.776 8.253		0.000 0.000	0.000 0.000	2.344 0.708
T101	90 04 44		41.501				1.501		0.000	0.000	-0.057
T101 T103	90 04 44 90 00 57		17.347				.7.347		0.000	0.000	-0.005
1103 1K	92 52 15		24.136				24.105		0.000	0.000	-1.209
1J	90 24 23		34.854				34.853		0.000	0.000	-0.247
15 1L	78 16 46		34.119				3.407		0.000	0.000	6.931
1M	91 46 20		31.000				30.985		0.000	0.000	-0.959
1N 1N	87 36 31		19.772				.9.755		0.000	0.000	0.825
10	94 17 56		20.674				20.615		0.000	0.000	-1.550
10 1P	76 39 42		26.084				25.380		0.000	0.000	6.018
		• •	-0.00			~			0.000	0.000	0.010

1Q	88 56 55.0	40.3835	40.3767	0.000	0.000	0.741
1R	89 55 30.0	41.7430	41.7430	0.000	0.000	0.055
1S	90 00 19.0	36.1310	36.1310	0.000	0.000	-0.003

* DIRECTIONS *

Target		FL		Diff		FR		1	Mean	n	Redu	JCe	d Mean	v '	v	V ²
	0	,	"	"	0	,	"	0	,	"	0	,	"			
T100	60	02	00	-01	240	01	59	60	01	59.5	0	00	00.0	+00.0	+00.0	0.0
T101	143	58	42	+00	323	58	42	143	58	42.0	83	56	42.5	+00.0	+00.0	0.0
T102	239	35	49	-02	59	35	47	239	35	48.0	179	33	48.5	+00.0	+00.0	0.0
T150	327	25	49	-03	147	25	46	327	25	47.5	267	23	48.0	+00.0	+00.0	0.0
1N	4	40	57	+01	184	40	58	4	40	57.5	304	38	58.0	+00.0	+00.0	0.0
10	31	39	18	+00	211	39	18	31	39	18.0	331	37	18.5	+00.0	+00.0	0.0
1P	53	37	18	-04	233	37	14	53	37	16.0	353	35	16.5	+00.0	+00.0	0.0
1Q	109	22	42	+03	289	22	45	109	22	43.5	49	20	44.0	+00.0	+00.0	0.0
1R	149	42	31	+03	329	42	34	149	42	32.5	89	40	33.0	+00.0	+00.0	0.0
1S	202	07	58	+05	22	08	03	202	08	00.5	142	06	01.0	+00.0	+00.0	0.0
1K	306	00	48	+02	126	00	50	306	00	49.0	245	58	49.5	+00.0	+00.0	0.0

Sum +00.0 +00.0

_____ Sum 00.0

Target	Gran	nd I	leans
	0		
T100	0	00	00.0
T101	83	56	42.5
T102	179	33	48.5
T150	267	23	48.0
1N	304	38	58.0
10	331	37	18.5
1P	353	35	16.5
1Q	49	20	44.0
1R	89	40	33.0
1S	142	06	01.0
1K	245	58	49.5

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target	FL	Diff	FR	Mean	SDist(FL)	SDist(FR)	H.Dist
	0 I II	II (> ı ıı	0 I II			 m
T100	87 56 33	+01 272	2 03 28	87 56 32.5	16.085	16.084	16.0741
T101	90 19 15	-03 269	9 40 42	90 19 16.5	19.425	19.425	19.4247
T102	90 21 30	-01 269	38 29	90 21 30.5	14.407	14.406	14.4062
T150	88 46 59	+01 271	L 13 02	88 46 58.5	107.867	107.867	107.8427
1N	88 44 08	+04 271	L 15 56	88 44 06.0	35.005	35.007	34.9975
10	94 36 05	+00 265	5 23 55	94 36 05.0	19.961	19.961	19.8967
1P	70 12 58	+00 289	9 47 02	70 12 58.0	17.627	17.626	16.5861
1Q	88 08 48	-10 271	L 51 02	88 08 53.0	21.338	21.337	21.3264
1R	89 59 28	-04 270	00 28	89 59 30.0	19.550	19.549	19.5495
1S	90 10 58	-01 269	9 49 01	90 10 58.5	17.397	17.398	17.3974
1K	91 44 10	-05 268	3 15 45	91 44 12.5	41.598	41.596	41.5779

Grand Means											
Target T100 T101			" 32.5 16.5	Slope Dist m 16.0845 19.4250	Horiz. Dist m 16.0741 19.4247	Occ. Stn Ht 0.000 0.000	Target Height 0.000 0.000	Ht Diff m 0.578 -0.109			

T102	90 21 30.5	14.4065	14.4062	0.000	0.000	-0.090
T150	88 46 58.5	107.8670	107.8427	0.000	0.000	2.292
1N	88 44 06.0	35.0060	34.9975	0.000	0.000	0.773
10	94 36 05.0	19.9610	19.8967	0.000	0.000	-1.601
1P	70 12 58.0	17.6265	16.5861	0.000	0.000	5.966
1Q	88 08 53.0	21.3375	21.3264	0.000	0.000	0.690
1R	89 59 30.0	19.5495	19.5495	0.000	0.000	0.003
1S	90 10 58.5	17.3975	17.3974	0.000	0.000	-0.056
1K	91 44 12.5	41.5970	41.5779	0.000	0.000	-1.261

```
Elfy - [E:\UNI\uni class's\year 7 (2016)\project_semester 1\Field work\elfy\blk11-
usq1.elf] Version 2.4.0.39
2D Least Squares Adjustment
Date: 01/09/2016
Time: 1:45:25 PM
2D Parametric Least Squares Adjustment Results
There are: 44 coordinate parameters.
       : 6 orientation paramenters.
        : 55 directions.
        : 55 horizontal distances.
Total number of unknowns = 50
Total number of observations = 110
Default Standard Deviations are:
                            : 1.5 mm for horizontal distances.
                             : 1.0 ppm for horizontal distances.
                             : 1.0 secs for Directions.
                             : 1.0 mm for instrument centring errors.
                             : 1.0 mm for target centring errors.
Iteration: 1 had a maximum coordinate shift of 6.3mm for Point 1C
Iteration: 2 had a maximum coordinate shift of 0.0mm for Point 1C
GROUP VARIANCE FACTORS:
     _____
           sum(v/s)<sup>2</sup> Sum of Group VF
Redundancies
Obs Type
                         _____
Directions 11.84
                                                          0.44
                                    26.69
Horiz Distances
                    24.70
                                      33.31
                                                            0.74
                 After iteration 2, Variance Factor = 0.61
Adjusted Coordinates after iteration 2
  _____
                          Local Std Dev's & Error Ellipses (mm)
) North(m) E N S-Maj S-Min Brg°
 Point ID Status East(m)
     T150FIXED333689.47206249006.8310T97FIXED333682.56906248972.4860
     T104 FIXED 333658.3730 6249021.3090
     T98FIXED333647.61006248977.3430T101FIXED333562.39606249000.4580
     T315 FIXED 333641.5670 6249020.5330
     T99FIXED333606.40106248982.9570T103FIXED333605.98706249018.2560
     T102 FIXED 333581.6760 6249016.8240
     T100 FIXED 333581.6470 6248986.3470
                                             0.50.60.60.51800.50.50.50.530.50.60.60.51790.60.70.70.61
                 333675.0762 6248999.2852
      AB1
      AB2
                 333647.4523 6248998.3214
             333603.89226249001.0359333581.72006249002.4196
      AB3
      AB4
     T310 FIXED 333681.6590 6248972.4370
                333662.12976249021.99121.21.21.21.237333680.32076249015.14621.11.21.21.15333691.95276248999.28601.21.21.21.212333695.19886248983.69461.21.21.21.27
       1A
       1C
       1D
       1 E
```

1F	333681.2718	6248985.2715	1.1	1.2	1.2	1.1	176
1G	333682.1205	6248972.3745	1.2	1.2	1.2	1.1	20
1H	333643.3714	6248977.8905	1.6	1.7	1.7	1.6	171
11	333672.9746	6248998.0611	1.6	1.5	1.6	1.5	53
1J	333633.2585	6249019.8061	1.1	1.1	1.1	1.1	153
1K	333619.7728	6249019.1711	1.0	0.9	1.0	0.9	63
1L	333629.5074	6248979.5909	1.1	1.1	1.1	1.1	80
1M	333626.6687	6248980.0294	1.1	1.1	1.1	1.1	106
1N	333610.4202	6248982.3910	1.2	1.2	1.2	1.1	136
10	333591.0971	6248984.8714	1.1	1.2	1.2	1.1	162
1P	333583.4972	6248985.9292	1.1	1.2	1.2	1.1	172
1Q	333565.4782	6248988.5994	1.2	1.2	1.2	1.2	179
1R	333562.1710	6249002.3979	1.2	1.2	1.2	1.2	180
15	333571.0954	6249016.1959	1.2	1.2	1.2	1.2	176

Coordinate Database has been updated with the adjusted coords.

Measurement = observed value a-c = arc to chord correction v = residual = correction s = input standard deviation of observation, incl. centring and ppm where appl. r = redundancy number for observation

Residuals after iteration 2

Туре	From	То	a-c	Measurement	v	S	v/s	r
DIRECTION	AB1	T104	0.0"	0 0 0.0	-9.2"	10.6"	-0.9	0.63
DIRECTION	AB1	T150	0.0"	99 30 56.5	-10.5"	18.0"	-0.6	0.74
DIRECTION	AB1	Т97	0.0"	201 33 4.5	11.4"	10.5"	1.1	0.76
DIRECTION	AB1	T310	0.0"	203 23 39.0	15.8"	10.6"	1.5	0.77
DIRECTION	AB1	T98	0.0"	268 33 17.0	-2.0"	8.4"	-0.2	0.66
DIRECTION	AB1	1A	0.0"	7 28 58.5	3.6"	11.2"	0.3	0.38
DIRECTION	AB1	1D	0.0"	127 10 25.0	-5.3"	17.3"	-0.3	0.43
DIRECTION	AB1	1E	0.0"	164 56 38.0	-4.2"	11.5"	-0.4	0.41
DIRECTION	AB1	1F	0.0"	193 19 49.0	-21.4"	19.1"	-1.1	0.43
DIRECTION	AB1	1G	0.0"	202 30 24.0	-2.2"	10.5"	-0.2	0.41
DIRECTION	AB1	1H	0.0"	273 9 47.0	0.0"	7.7"	0.0	0.00
DIRECTION	AB1	T101	0.0"	0 0 0.0	0.0"	2.8"	0.0	0.00
DIRECTION	AB1	11	0.0"	329 11 3.5	0.0"	119.9"	0.0	0.00
DIRECTION	AB1	T101	0.0"	0 0 0.0	-0.1"	2.8"	-0.1	0.01
DIRECTION	AB1	1C	0.0"	107 41 54.5	5.9"	17.5"	0.3	0.43
DIRECTION	AB2	T315	0.0"	0 0 0.0	9.5"	12.7"	0.7	0.85
DIRECTION	AB2	T104	0.0"	40 15 18.5	-4.6"	11.5"	-0.4	0.84
DIRECTION	AB2	T150	0.0"	93 23 44.0	-3.7"	6.9"	-0.5	0.74
DIRECTION	AB2	Т98	0.0"	194 24 43.5	0.9"	13.9"	0.1	0.83
DIRECTION	AB2	T101	0.0"	286 16 56.5	-1.4"	3.6"	-0.4	0.42
DIRECTION	AB2	1A	0.0"	46 38 49.0	-4.9"	10.5"	-0.5	0.42
DIRECTION	AB2	1C	0.0"	77 44 11.5	-3.1"	8.0"	-0.4	0.43
DIRECTION	AB2	1D	0.0"	103 36 2.0	2.1"	6.6"	0.3	0.43
DIRECTION	AB2	1E	0.0"	121 52 26.5	3.5"	5.9"	0.6	0.42
DIRECTION	AB2	1F	0.0"	125 56 34.5	0.2"	8.1"	0.0	0.43
DIRECTION	AB2	1G	0.0"	141 39 18.0	1.8"	6.8"	0.3	0.42
DIRECTION	AB2	1J	0.0"	341 23 29.0	3.7"	11.4"	0.3	0.41
DIRECTION	AB2	1K	0.0"	321 49 48.5	6.8"	8.5"	0.8	0.54
DIRECTION	AB2	1L	0.0"	238 37 1.5	-3.8"	11.3"	-0.3	0.41
DIRECTION	AB2	1M	0.0"	243 29 33.0	-3.5"	10.6"	-0.3	0.41
DIRECTION	AB3	T150	0.0"	0 0 0.0	-1.0"	3.5"	-0.3	0.40
DIRECTION	AB3	Т99	0.0"	85 58 23.5	-0.2"	16.0"	0.0	0.83
DIRECTION	AB3	T101	0.0"	183 4 31.5	1.3"	7.1"	0.2	0.66
DIRECTION	AB3	T103	0.0"	280 48 22.0	12.5"	16.8"	0.7	0.82
DIRECTION	AB3	1K	0.0"	315 4 52.0	2.0"	12.1"	0.2	0.56

DIRECTION	AB3	1J	0.0"	331 17 16.0	0.7"	8.4"	0.1	0.41
DIRECTION	AB3	1L	0.0"	43 48 29.5	5.0"	8.8"	0.6	0.41
DIRECTION	AB3	1M	0.0"	46 33 26.0	4.9"	9.5"	0.5	0.41
DIRECTION	AB3	1N	0.0"	74 34 40.0	-2.1"	14.8"	-0.1	0.43
DIRECTION	AB3	10	0.0"	132 14 17.5	-3.1"	14.2"	-0.2	0.43
DIRECTION DIRECTION DIRECTION DIRECTION DIRECTION	AB3 AB3 AB3 AB3 AB4	1P 1Q 1R 1S T100	0.0" 0.0" 0.0" 0.0" 0.0"	$\begin{array}{ccccccc} 147 & 20 & 49.5 \\ 165 & 56 & 5.5 \\ 185 & 44 & 39.0 \\ 208 & 40 & 55.0 \\ 0 & 0 & 0.0 \end{array}$	-3.5" -1.9" -2.4" -0.1" 3.6"	11.5" 7.3" 7.1" 8.1" 18.2"	-0.3 -0.3 -0.3 0.0 0.2	0.42 0.42 0.42 0.42 0.42 0.81
DIRECTION	AB4	T101	0.0"	83 56 42.5	-2.6"	15.1"	-0.2	0.70
DIRECTION	AB4	T102	0.0"	179 33 48.5	7.7"	20.3"	0.4	0.81
DIRECTION	AB4	T150	0.0"	267 23 48.0	-1.3"	2.9"	-0.4	0.22
DIRECTION	AB4	1N	0.0"	304 38 58.0	2.8"	8.4"	0.3	0.43
DIRECTION	AB4	10	0.0"	331 37 18.5	2.4"	14.7"	0.2	0.43
DIRECTION DIRECTION DIRECTION DIRECTION DIRECTION	AB4 AB4 AB4 AB4 AB4	1P 1Q 1R 1S 1K	0.0" 0.0" 0.0" 0.0"	353 35 16.5 49 20 44.0 89 40 33.0 142 6 1.0 245 58 49.5	6.6" 2.3" 4.9" 0.4" 1.5"	17.6" 13.7" 15.0" 16.8" 7.1"	0.4 0.2 0.3 0.0 0.2	0.43 0.42 0.41 0.42 0.54
H DISTANCE	AB1	T104		27.6420	-0.6mm	1.5mm	-0.4	0.87
H DISTANCE	AB1	T150		16.2537	-0.2mm	1.5mm	-0.1	0.88
H DISTANCE	AB1	T97		27.8302	-3.2mm	1.5mm	-2.1	0.86
H DISTANCE	AB1	T310		27.6412	2.2mm	1.5mm	1.5	0.86
H DISTANCE	AB1	T98		35.1560	-1.3mm	1.5mm	-0.8	0.88
H DISTANCE	AB1	1A		26.1382	-0.6mm	1.5mm	-0.4	0.48
H DISTANCE	AB1	1D		16.8772	-0.8mm	1.5mm	-0.5	0.45
H DISTANCE	AB1	1E		25.4567	-1.1mm	1.5mm	-0.7	0.46
H DISTANCE	AB1	1F		15.3204	1.8mm	1.5mm	1.2	0.47
H DISTANCE	AB1	1G		27.8177	-0.2mm	1.5mm	-0.2	0.47
H DISTANCE	AB1	1H		38.2483	0.0mm	1.5mm	0.0	0.00
H DISTANCE	AB1	T101		112.6880	-1.7mm	1.6mm	-1.0	0.90
H DISTANCE	AB1	1I		2.4322	0.0mm	1.5mm	0.0	0.00
H DISTANCE	AB1	T101		112.6870	-0.7mm	1.6mm	-0.4	0.90
H DISTANCE	AB1	1C		16.7059	-0.3mm	1.5mm	-0.2	0.46
H DISTANCE	AB2	T315		22.9798	-1.7mm	1.5mm	-1.1	0.89
H DISTANCE	AB2	T104		25.4509	-1.1mm	1.5mm	-0.7	0.89
H DISTANCE	AB2	T150		42.8741	-1.4mm	1.5mm	-0.9	0.89
H DISTANCE	AB2	T98		20.9794	-0.5mm	1.5mm	-0.3	0.89
H DISTANCE	AB2	T101		85.0835	-0.4mm	1.6mm	-0.2	0.90
H DISTANCE	AB2	1A		27.8514	-0.2mm	1.5mm	-0.1	0.44
H DISTANCE	AB2	1C		36.9245	-0.2mm	1.5mm	-0.1	0.48
H DISTANCE	AB2	1D		44.5100	0.8mm	1.5mm	0.5	0.47
H DISTANCE	AB2	1E		49.9358	0.9mm	1.5mm	0.6	0.47
H DISTANCE	AB2	1F		36.2525	-2.6mm	1.5mm	-1.7	0.48
H DISTANCE	AB2	1G		43.3027	0.0mm	1.5mm	0.0	0.47
H DISTANCE	AB2	1J		25.7498	0.1mm	1.5mm	0.1	0.47
H DISTANCE	AB2	1K		34.6535	0.0mm	1.5mm	0.0	0.61
H DISTANCE	AB2	1L		25.9403	-1.0mm	1.5mm	-0.6	0.47
H DISTANCE	AB2	1M		27.6876	-0.9mm	1.5mm	-0.6	0.47
H DISTANCE	AB3	T150		85.7760	-0.2mm	1.6mm	-0.1	0.88
H DISTANCE	AB3	T99		18.2538	-1.7mm	1.5mm	-1.1	0.86
H DISTANCE	AB3	T101		41.5015	-1.3mm	1.5mm	-0.8	0.87
H DISTANCE	AB3	T103		17.3475	-0.4mm	1.5mm	-0.3	0.86
H DISTANCE	AB3	1K		24.1057	-0.1mm	1.5mm	-0.1	0.62
H DISTANCE	AB3	1J		34.8531	-0.5mm	1.5mm	-0.3	0.48
H DISTANCE	AB3	1L		33.4076	-0.6mm	1.5mm	-0.4	0.47
H DISTANCE	AB3	1M		30.9852	-0.6mm	1.5mm	-0.4	0.47
H DISTANCE	AB3	1N		19.7553	-0.6mm	1.5mm	-0.4	0.46
H DISTANCE	AB3	10		20.6158	-0.1mm	1.5mm	-0.1	0.48

H DISTANCE	AB3	1P	25.3809	-0.4mm	1.5mm	-0.3	0.48
H DISTANCE	AB3	1Q	40.3767	0.3mm	1.5mm	0.2	0.47
H DISTANCE	AB3	1R	41.7430	0.4mm	1.5mm	0.3	0.47
H DISTANCE	AB3	1S	36.1310	0.1mm	1.5mm	0.0	0.47
H DISTANCE	AB4	T100	16.0741	-1.3mm	1.5mm	-0.9	0.82
H DISTANCE	AB4	T101	19.4247	-1.4mm	1.5mm	-0.9	0.85
H DISTANCE	AB4	T102	14.4062	-1.7mm	1.5mm	-1.1	0.81
H DISTANCE	AB4	T150	107.8427	-0.5mm	1.6mm	-0.3	0.87
H DISTANCE	AB4	1N	34.9975	0.3mm	1.5mm	0.2	0.47
H DISTANCE	AB4	10	19.8967	-0.3mm	1.5mm	-0.2	0.48
H DISTANCE	AB4	1P	16.5861	-0.2mm	1.5mm	-0.1	0.47
H DISTANCE	AB4	1Q	21.3264	-0.4mm	1.5mm	-0.3	0.45
H DISTANCE	AB4	1R	19.5495	-0.4mm	1.5mm	-0.3	0.45
H DISTANCE	AB4	1S	17.3974	0.0mm	1.5mm	0.0	0.46
H DISTANCE	AB4	1K	41.5779	-1.2mm	1.5mm	-0.8	0.61
Largest Residu	uals						

Туре	Obs No.	Correction
Direction	9	-21.4"
Horizontal Distance	14	-3.2mm

After iteration 1, Variance Factor = 0.05

Adjusted Heights after iteration 1

Point ID	Status	Height(m)	Stdev(mm)
	FIXED	12.3700	
Т97	FIXED	11.5690	
T104	FIXED	10.0200	
	FIXED	11.0210	
	FIXED	9.9700	
Т315	FIXED	16.1280	
		10.7340	
T103	FIXED	10.0220	
T102	FIXED	9.9890	
T100	FIXED	10.6560	
AB1		10.9746	0.7
AB2		10.3867	0.7
AB3		10.0265	0.7
AB4		10.0785	0.8
Т310	FIXED	18.1590	
1A		17.3778	1.5
1C		9.4051	1.5
1D		10.4443	1.5
1E		17.5890	1.5
1F		9.3973	2.1
1G		18.1493	1.5
1H		10.8457	2.1
11		9.2990	2.1
1J		9.7791	1.5
1K		8.8177	1.3
1L		16.9574	1.5
1M		9.0679	
1N		10.8515	1.6
10		8.4770	1.6
1P		16.0445	1.6
1Q		10.7679	1.6
1R		10.0814	1.6
1S		10.0232	1.6

Coordinate Database has been updated with the adjusted levels

Measurement = observed value v = residual = correction s = input standard deviation of observation, incl. centring and ppm where appl. r = redundancy number for observation Type = method of observation, where: 'T' denotes trignometric observation 'S' denotes spirit level observation 'U' denotes unknown observation - manual entry

Type From To Measurement s v/s r Type v _____

 AB1
 T104

 AB1
 T150

 AB1
 T97

 AB1
 T310

 AB1
 T98

 -0.9546
 0.0mm
 2.0mm
 0.0
 0.9

 1.3959
 -0.5mm
 2.0mm
 -0.2
 0.9

 0.5942
 0.2mm
 2.0mm
 0.1
 0.9

 7.1838
 0.6mm
 2.0mm
 0.3
 0.9

 0.457
 0.7mm
 0.4
 0.9
 HT DIFF Т 1.3959 HT DJFF т HT DIFF AB1 HT DIFF AB1 HT DIFF AB1 Т т 0.0457 0.7mm 2.0mm 0.4 0.9 т HTDIFFAB11AHTDIFFAB11DHTDIFFAB11EHTDIFFAB11GHTDIFFAB11H 6.4030 0.2mm 2.0mm 0.1 т 0.5 -0.5306 6.6145 7.1747 0.3mm 2.0mm 0.2 0.5 т 6.6145 7.1747 -0.1mm 2.0mm 0.0 0.0 0.5 0.0 0.5 0.0 0.0 т 0.0mm 2.0mm Т 0.0mm 2.0mm 0.0mm 2.0mm -0.1289т HT DIFFAB1T101HT DIFFAB111HT DIFFAB1T101HT DIFFAB11CHT DIFFAB2T315 -1.3mm 2.0mm -0.6 0.0mm 2.0mm 0.0 -1.0033 0.9 Т 0.0 -1.6756 0.0 т -1.0041 -0.5mm 2.0mm -0.2 0.9 Т 0.1mm 2.0mm 0.0 0.5 0.5mm 2.0mm 0.3 0.9 -1.5696 5.7408 т Т T104 T150 T98 T101 HTDIFFAB2HTDIFFAB2HTDIFFAB2HTDIFFAB2HTDIFFAB2 -0.5mm -0.6mm 0.7mm 2.0mm 0.4 0.5 -0.2mm 2.0mm -0.1 0.5 -0.2mm 2.0mm -0.1 0.5 0.9 -0.3664 Т 1.9839 т т -0.4165 Т 1A 6.9914 Т HTDIFFAB2HTDIFFAB2HTDIFFAB2HTDIFFAB2HTDIFFAB2 1C 1D 1E 1F 1G -0.9815 Т 0.0580 7.2023 0.5 -0.2 -0.3mm 2.0mm Т 0.0 0.1mm 2.0mm 0.0mm 2.0mm 0.5 Т -0.9894 0.0 т 0.0mm 2.0mm 7.7627 0.0 0.5 т HT DIFFAB21JHT DIFFAB21KHT DIFFAB21LHT DIFFAB21MHT DIFFAB3T150 0.2mm 2.0mm 0.1 -0.6077 0.5 Т 0.2mm 2.0mm 0.1 0.6 -1.5691 т 6.5707 0.0mm 2.0mm 0.0 0.5 Т -0.1mm 2.0mm -0.9mm 2.0mm 0.0 -0.5 -1.3187 0.5 Т 0.9 2.3444 т HT DIFFAB3HT DIFFAB3HT DIFFAB3HT DIFFAB3HT DIFFAB3 T99 T101 T103 1K 0.7077 -0.0570 -0.2mm 2.0mm -0.1 0.9 Т 0.9 0.5mm 2.0mm 0.3mm 2.0mm 0.2 Т -0.0048 0.1 0.9 т 0.0mm 2.0mm -0.2mm 2.0mm -1.2088 0.0 0.6 т HT DIFF AB3 1J-0.2472 -0.1 0.5 Т 1L 1M 1N 10 1P HTDIFFAB3HTDIFFAB3HTDIFFAB3HTDIFFAB3HTDIFFAB3 6.9309 0.0mm 2.0mm 0.0 0.5 Т 0.1mm 0.5 0.0 -0.9587 2.0mm Т 0.020 -1.5497 -0178 2.0mm -0.1mm т 0.2mm 2.0mm 0.1 0.5 т AB3 1P 0.1mm 2.0mm 0.1 0.5 Т 0.7411 0.0548 0.0032 AB31QAB31RAB31SAB4T100AB4T101 HT DIFF 0.2mm 2.0mm 0.1 0.5 т HT DIFF 0.0mm 2.0mm 0.0 0.5 Т -0.2mm 2.0mm 2.0mm HT DIFF -0.1 0.5 Т 0.8 0.0mm 0.0 HT DIFF т 0.4mm 2.0mm 0.2 HT DIFF -0.1089 0.8 Т T102 IIIDIFFAB4HTDIFFAB4HTDIFFAB4HTDIFFAB4 HT DIFF AB4 T102 T150 1N 10 -0.0901 0.6mm 2.0mm 0.3 0.8 Т
 -0.0901
 0.6mm
 2.0mm
 0.3
 0.8

 2.2919
 -0.4mm
 2.0mm
 -0.2
 0.8

 0.7729
 0.1mm
 2.0mm
 0.0
 0.5

 -1.6013
 -0.2mm
 2.0mm
 -0.1
 0.5
 -0.2 0.8 Т т Т

Residuals after iteration 1

HT DIFF	AB4	1P	5.9661	-0.1mm	2.0mm	-0.1	0.5	Т	
HT DIFF	AB4	1Q	0.6896	-0.2mm	2.0mm	-0.1	0.5	Т	
HT DIFF	AB4	1R	0.0029	0.0mm	2.0mm	0.0	0.5	Т	
HT DIFF	AB4	1S	-0.0555	0.2mm	2.0mm	0.1	0.5	Т	
HT DIFF	AB4	1K	-1.2606	-0.2mm	2.0mm	-0.1	0.6	Т	
Largest Res Type	duals	(Dbs No.			Correct	ion		
Height Diff			41			-1.3mm	l		

Appendix D

Site A-Blk11 minimally constrained report, 3 fixed points from Pix4D

Quality Report

Generated with Discovery version 2.1.61

6

6

0

0

6

Important: Click on the different icons for:
Pelp to analyze the results in the Quality Report
Additional information about the sections

Click here for additional ti	os to analyze the Qua	ality Report
------------------------------	-----------------------	--------------

Summary

P

Project	cub_final
Processed	2016-09-01 19:44:17
Average Ground Sampling Distance (GSD)	0.28 cm / 0.11 in
Time for Initial Processing (without report)	28m:26s

Quality Check

Images	median of 67675 keypoints per image	0
② Dataset	310 out of 310 images calibrated (100%), all images enabled	0
Camera Optimization	0.63% relative difference between initial and optimized internal camera parameters	0
? Matching	median of 34207.7 matches per calibrated image	0
② Georeferencing	yes, 3 GCPs (3 3D), mean RMS error = 0 m	\bigcirc

Calibration Details

Number of Calibrated Images	310 out of 310
Number of Geolocated Images	0 out of 310

Initial Image Positions

The preview is not generated for images without geolocation.

Ocomputed Image/GCPs/Manual Tie Points Positions

ж		ж 🔻
	*	*

Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane).

Ж

Bundle Block Adjustment Details

Number of 2D Keypoint Observations for Bundle Block Adjustment	10625327
Number of 3D Points for Bundle Block Adjustment	3207977
Mean Reprojection Error [pixels]	0.139589

Internal Camera Parameters

Ж

ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB). Sensor Dimensions: 35.000 [mm] x 23.359 [mm]

EXIF ID: ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	7360.000 [pixel] 35.000 [mm]	3680.000 [pixel] 17.500 [mm]	2456.000 [pixel] 11.679 [mm]	0.000	0.000	0.000	0.000	0.000
Optimized Values	7406.888 [pixel] 35.223 [mm]	3693.252 [pixel] 17.563 [mm]	2445.331 [pixel] 11.629 [mm]	0.054	-0.245	0.031	-0.000	0.001

ĸ		The number of Automatic Tie Points (ATPs) per pixel averaged over all images of the camera model is color coded between black and white. White indicates that, in average, more than 16 ATPs are extracted at this pixel location. Black indicates that, in average, 0 ATP has been extracted at this pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization.
---	--	--

2D Keypoints Table

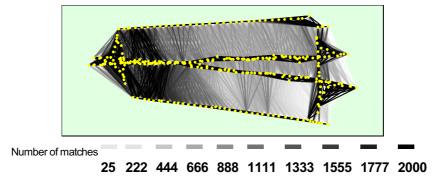
	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	67675	34208
Min	38047	13535
Max	87607	50311
Mean	65610	34275

3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	1769307
In 3 Images	579216
In 4 Images	291379
In 5 Images	177155
In 6 Images	114718
In 7 Images	79486
In 8 Images	56759
In 9 Images	40612
In 10 Images	29046
In 11 Images	20866
In 12 Images	14420
In 13 Images	10391

6

6


6

Ж

In 14 Images	7709	
In 15 Images	5327	
In 16 Images	3268	
In 17 Images	2197	
In 18 Images	1602	
In 19 Images	1175	
In 20 Images	847	
In 21 Images	654	
In 22 Images	475	
In 23 Images	324	
In 24 Images	262	
In 25 Images	178	
In 26 Images	154	
In 27 Images	104	
In 28 Images	91	
In 29 Images	57	
In 30 Images	52	
In 31 Images	50	
In 32 Images	27	
In 33 Images	18	
In 34 Images	15	
In 35 Images	9	
In 36 Images	8	
In 37 Images	7	
In 38 Images	3	
In 39 Images	4	
In 40 Images	1	
In 41 Images	2	
In 43 Images	1	
In 44 Images	1	

2D Keypoint Matches

6

6

6

Figure 5: Top view of the image computed positions with a link between matching images. The darkness of the links indicates the number of matched 2D keypoints between the images. Bright links indicate weak links and require manual tie points or more images.

Geolocation Details

Oround Control Points

GCP Name	Accuracy XY/Z [m]	Error X[m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	Verified/Marked
1D (3D)	0.001/0.002	-0.000	0.000	-0.000	0.209	15/15
1R (3D)	0.001/0.002	-0.000	0.000	-0.000	0.183	15/15
1L (3D)	0.001/0.002	0.000	-0.000	0.000	0.307	29/29
Mean [m]		-0.000057	-0.000040	0.000013		

Sigma [m]		0.000168	0.000138	0.000105		
RMS Error [m]		0.000177	0.000144	0.000105		
0 out of 13 check points have been labeled as inaccurate.						
Check Point Name	Accuracy XY/Z [m]	Error X[m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	Verified/Marked
1.0	0.0010/0.0020	0.0052	0.0049	0.0211	0.0100	20/20

Checki Unitivanie	Accuracy XI/2 [III]					vernieu/ivarkeu
1A	0.0010/0.0020	-0.0053	0.0048	0.0311	0.2128	30 / 30
1S	0.0030/0.0030	0.0006	-0.0006	0.0029	0.2023	19/19
1K	0.0030/0.0030	-0.0061	0.0025	0.0324	0.2394	32/32
1J	0.0030/0.0030	-0.0088	0.0059	0.0325	0.1957	32/32
1E	0.0010/0.0020	0.0028	-0.0116	-0.0100	0.3249	13/13
1G	0.0030/0.0030	-0.0054	-0.0042	-0.0117	0.2986	16/16
1F	0.0030/0.0030	-0.0099	0.0015	0.0011	0.2253	19/19
1M	0.0030/0.0030	0.0012	0.0041	0.0011	0.3036	25/25
1N	0.0030/0.0030	0.0037	0.0025	0.0010	0.3365	24/24
10	0.0030/0.0030	0.0064	-0.0005	0.0008	0.4707	24/24
1P	0.0030/0.0030	0.0096	-0.0020	0.0011	0.2344	17/17
1Q	0.0030/0.0030	0.0084	-0.0034	0.0033	0.3302	21/21
11	0.0030/0.0030	-0.0107	0.0080	0.0105	0.1884	15/15
Mean [m]		-0.001047	0.000530	0.007398		
Sigma [m]		0.006771	0.004949	0.014513		
RMS Error [m]		0.006851	0.004977	0.016290		

Localisation accuracy per GCP and mean errors in the three coordinate directions. The last column counts the number of calibrated images where the GCP has been automatically verified vs. manually marked.

③ Georeference Verification

GCP Name: 1D (333691.9530,6248999.2860,10.4440) • DSC01423.JPG • • 5 DSC01424.JPG DSC01425.JPG DSC01426.JPG DSC01427.JPG DSC01428.JPG DSC01429.JPG • DSC01430.JPG 6 DSC01434.JPG DSC01592.JPG DSC01593.JPG DSC01594.JPG DSC01595.JPG DSC01596.JPG DSC01597.JPG 1 1 GCP 1D was not marked on the following images (only up to 6 images shown). If the circle is too far away from the initial GCP position, also measure the GCP in these images to improve the accuracy. DSC01432.JPG

0

GCP Name: 1R (333562.1710,6249002.3980,10.0810)

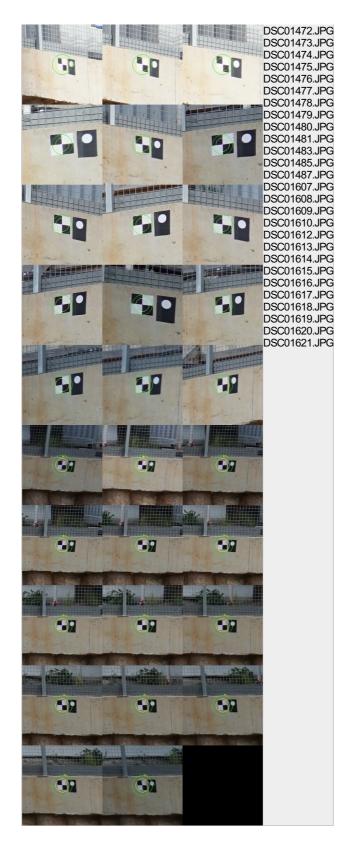


Figure 7: Images in which GCPs have been marked (yellow circle) and in which their computed 3D points have been projected (green circle). A green circle outside of the yellow circle indicates either an accuracy issue or a GCP issue.

Processing Options

	-	
(÷)
ς.	2	/

Hardware	CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz RAM: 32GB GPU: NVIDIA GeForce GTX 550 Ti (Driver: 10.18.13.5382)
Operating System	Windows 10 Home, 64-bit
Camera Model Name	ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB)
Ground Control Point (GCP) Coordinate System	Arbitrary (m)
Output Coordinate System	Arbitrary (m)

Detected template:	No template available
Keypoints Image Scale	Full, Image Scale: 1
Advanced: Matching Image Pairs	Free Flight or Terrestrial
Advanced: Matching Strategy	Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction	Targeted Number of Keypoints: Automatic
Advanced: Calibration	Calibration Method: Standard, Internal Parameters Optimization: AII, External Parameters Optimization: AII, Rematch: Auto yes

Appendix E

Site A-Blk11 minimally constrained report, 4 fixed points from Pix4D

Quality Report

Generated with Discovery version 2.1.61

6

6

0

0

6

Important: Click on the different icons for:	
Pelp to analyze the results in the Quality Report	
Additional information about the sections	

Click here for additional tips to analyze the Qua	uality Report
---	---------------

Summary

P

Project	cub_final
Processed	2016-09-01 21:04:19
Average Ground Sampling Distance (GSD)	0.28 cm / 0.11 in
Time for Initial Processing (without report)	28m:27s

Quality Check

Images	median of 67675 keypoints per image	0
② Dataset	310 out of 310 images calibrated (100%), all images enabled	0
Camera Optimization	0.63% relative difference between initial and optimized internal camera parameters	0
? Matching	median of 34213.9 matches per calibrated image	0
② Georeferencing	yes, 4 GCPs (4 3D), mean RMS error = 0 m	\bigcirc

Calibration Details

Number of Calibrated Images	310 out of 310
Number of Geolocated Images	0 out of 310

Initial Image Positions

The preview is not generated for images without geolocation.

Ocomputed Image/GCPs/Manual Tie Points Positions

	Ж		Ж
*		Ж	¥
	${}^{\!$		*

Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane).

Bundle Block Adjustment Details

Number of 2D Keypoint Observations for Bundle Block Adjustment	10625181
Number of 3D Points for Bundle Block Adjustment	3207900
Mean Reprojection Error [pixels]	0.139573

Internal Camera Parameters

ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB). Sensor Dimensions: 35.000 [mm] x 23.359 [mm]

EXIF ID: ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	7360.000 [pixel] 35.000 [mm]	3680.000 [pixel] 17.500 [mm]	2456.000 [pixel] 11.679 [mm]	0.000	0.000	0.000	0.000	0.000
Optimized Values	7406.966 [pixel] 35.223 [mm]	3693.491 [pixel] 17.564 [mm]	2442.286 [pixel] 11.614 [mm]	0.054	-0.245	0.031	-0.000	0.001

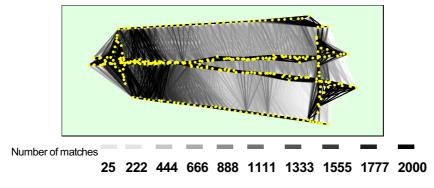
	The number of Automatic Tie Points (ATPs) per pixel averaged over all images of the camera model is color coded between black and white. White indicates that, in average, more than 16 ATPs are extracted at this pixel location. Black indicates that, in average, 0 ATP has been extracted at this pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization.

2D Keypoints Table

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	67675	34214
Min	38047	13535
Max	87607	50312
Mean	65610	34275

3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	1769235
In 3 Images	579201
In 4 Images	291387
In 5 Images	177159
In 6 Images	114714
In 7 Images	79487
In 8 Images	56760
In 9 Images	40611
In 10 Images	29047
In 11 Images	20866
In 12 Images	14421
In 13 Images	10390


6

6

6

In 14 Images	7709	
In 15 Images	5327	
In 16 Images	3268	
In 17 Images	2197	
In 18 Images	1602	
In 19 Images	1175	
In 20 Images	847	
In 21 Images	654	
In 22 Images	475	
In 23 Images	324	
In 24 Images	262	
In 25 Images	178	
In 26 Images	154	
In 27 Images	104	
In 28 Images	91	
In 29 Images	57	
In 30 Images	52	
In 31 Images	50	
In 32 Images	27	
In 33 Images	18	
In 34 Images	15	
In 35 Images	9	
In 36 Images	8	
In 37 Images	7	
In 38 Images	3	
In 39 Images	4	
In 40 Images	1	
In 41 Images	2	
In 43 Images	1	
In 44 Images	1	

2D Keypoint Matches

6

6

6

Figure 5: Top view of the image computed positions with a link between matching images. The darkness of the links indicates the number of matched 2D keypoints between the images. Bright links indicate weak links and require manual tie points or more images.

Geolocation Details

Oround Control Points

GCP Name	Accuracy XY/Z [m]	Error X[m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	Verified/Marked
1D (3D)	0.001/0.002	-0.000	0.000	-0.000	0.201	15/15
1R (3D)	0.001/0.002	-0.000	0.000	-0.000	0.187	15/15
1K (3D)	0.001/0.001	-0.000	-0.000	0.000	0.249	32/32
1L (3D)	0.001/0.002	0.000	-0.000	0.000	0.315	29/29

Mean [m]	-0.000030	-0.000033	-0.000061
Sigma [m]	0.000139	0.000108	0.000368
RMS Error [m]	0.000142	0.000113	0.000373

0 out of 12 check points have been labeled as inaccurate.						
Check Point Name	Accuracy XY/Z [m]	Error X[m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	Verified/Marked
1A	0.0010/0.0020	-0.0032	0.0062	0.0006	0.2172	30 / 30
1S	0.0030/0.0030	0.0027	-0.0008	-0.0129	0.2004	19/19
1J	0.0030/0.0030	-0.0025	0.0031	-0.0002	0.2031	32/32
1E	0.0010/0.0020	-0.0007	-0.0025	0.0033	0.3267	13/13
1G	0.0030/0.0030	-0.0047	0.0021	0.0053	0.3034	16/16
1F	0.0030/0.0030	-0.0068	0.0018	0.0076	0.2239	19/19
1M	0.0030/0.0030	0.0011	-0.0029	0.0008	0.3069	25/25
1N	0.0030/0.0030	0.0032	-0.0025	0.0000	0.3387	24/24
10	0.0030/0.0030	0.0050	-0.0064	0.0020	0.4666	24/24
1P	0.0030/0.0030	0.0109	-0.0002	0.0043	0.2339	17/17
1Q	0.0030/0.0030	0.0071	-0.0036	0.0125	0.3267	21/21
11	0.0030/0.0030	-0.0072	0.0065	0.0033	0.1922	15/15
Mean [m]		0.000408	0.000082	0.002218		
Sigma [m]		0.005382	0.003788	0.005742		
RMS Error [m]		0.005397	0.003789	0.006155		

Localisation accuracy per GCP and mean errors in the three coordinate directions. The last column counts the number of calibrated images where the GCP has been automatically verified vs. manually marked.

④ Georeference Verification

GCP Name: 1D (333691.9530,6248999.2860,10.4440) DSC01423.JPG • • 1 6 DSC01424.JPG DSC01425.JPG DSC01426.JPG DSC01427.JPG DSC01428.JPG DSC01429.JPG • DSC01430.JPG 6 DSC01434.JPG DSC01592.JPG DSC01593.JPG DSC01594.JPG DSC01595.JPG DSC01596.JPG DSC01597.JPG 16 1 GCP 1D was not marked on the following images (only up to 6 images shown). If the circle is too far away from the initial GCP position, also measure the GCP in these images to improve the accuracy. DSC01432.JPG

GCP Name: 1R (333562.1710,6249002.3980,10.0810)

GCP Name: 1L (333629.5070,6248979.5910,16.9570)

Figure 7: Images in which GCPs have been marked (yellow circle) and in which their computed 3D points have been projected (green circle). A green circle outside of the yellow circle indicates either an accuracy issue or a GCP issue.

Processing Options

	_	
1		٦
٦		,
	-	-

Hardware	CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz RAW 32GB GPU: NMDIA GeForce GTX 550 Ti (Driver: 10.18.13.5382)
Operating System	Windows 10 Home, 64-bit
Camera Model Name	ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB)
Ground Control Point (GCP) Coordinate System	Arbitrary (m)
Output Coordinate System	Arbitrary (m)

Detected template:	No template available
Keypoints Image Scale	Full, Image Scale: 1
Advanced: Matching Image Pairs	Free Flight or Terrestrial
Advanced: Matching Strategy	Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction	Targeted Number of Keypoints: Automatic
Advanced: Calibration	Calibration Method: Standard, Internal Parameters Optimization: AII, External Parameters Optimization: AII, Rematch: Auto yes

Appendix F

Site A-Blk11 fully constrained report from Pix4D

Quality Report

Generated with Discovery version 2.1.61

6

6

0

0

6

Important: Click on the different icons for:
Pelp to analyze the results in the Quality Report
Additional information about the sections

Click <u>here</u> for additional tips to analyze the Quality Report

Summary

P

Project	cub_final
Processed	2016-09-01 21:50:15
Average Ground Sampling Distance (GSD)	0.28 cm / 0.11 in
Time for Initial Processing (without report)	28m:31s

Quality Check

Images	median of 67675 keypoints per image	0
② Dataset	310 out of 310 images calibrated (100%), all images enabled	0
Camera Optimization	0.63% relative difference between initial and optimized internal camera parameters	0
? Matching	median of 34221.4 matches per calibrated image	0
② Georeferencing	yes, 16 GCPs (16 3D), mean RMS error = 0 m	\bigcirc

Calibration Details

Number of Calibrated Images	310 out of 310
Number of Geolocated Images	0 out of 310

Initial Image Positions

The preview is not generated for images without geolocation.

Ocomputed Image/GCPs/Manual Tie Points Positions

*		*	Ж	*			Ж	*
*					*	*		$\frac{1}{2}$
Ж	₩ Ж	*	**		*	Ж		****
					*		* *	

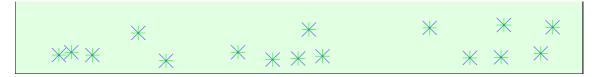


Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane).

Bundle Block Adjustment Details

Number of 2D Keypoint Observations for Bundle Block Adjustment	10624875
Number of 3D Points for Bundle Block Adjustment	3207750
Mean Reprojection Error [pixels]	0.1397

Internal Camera Parameters

ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB). Sensor Dimensions: 35.000 [mm] x 23.359 [mm]

EXIF ID: ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	7360.000 [pixel] 35.000 [mm]	3680.000 [pixel] 17.500 [mm]	2456.000 [pixel] 11.679 [mm]	0.000	0.000	0.000	0.000	0.000
Optimized Values	7406.741 [pixel] 35.222 [mm]	3695.020 [pixel] 17.571 [mm]	2442.336 [pixel] 11.614 [mm]	0.054	-0.246	0.033	-0.000	0.001

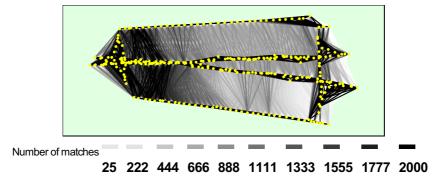
	The number of Automatic Tie Points (ATPs) per pixel averaged over all images of the camera model is color coded between black and white. White indicates that, in average, more than 16 ATPs are extracted at this pixel location. Black indicates that, in average, 0 ATP has been extracted at this pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization.
the second se	

2D Keypoints Table

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	67675	34221
Min	38047	13532
Max	87607	50311
Mean	65610	34274

3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	1769087
In 3 Images	579203
In 4 Images	291381
In 5 Images	177161
In 6 Images	114714
In 7 Images	79489
In 8 Images	56758
In 9 Images	40613
In 10 Images	29043
In 11 Images	20867
In 12 Images	14422
In 13 Images	10390


6

6

6

In 14 Images	7708	
In 15 Images	5328	
In 16 Images	3269	
In 17 Images	2196	
In 18 Images	1603	
In 19 Images	1174	
In 20 Images	847	
In 21 Images	654	
In 22 Images	475	
In 23 Images	324	
In 24 Images	262	
In 25 Images	178	
In 26 Images	154	
In 27 Images	104	
In 28 Images	91	
In 29 Images	57	
In 30 Images	52	
In 31 Images	50	
In 32 Images	27	
In 33 Images	18	
In 34 Images	15	
In 35 Images	9	
In 36 Images	8	
In 37 Images	7	
In 38 Images	3	
In 39 Images	4	
In 40 Images	1	
In 41 Images	2	
In 43 Images	1	
In 44 Images	1	

2D Keypoint Matches

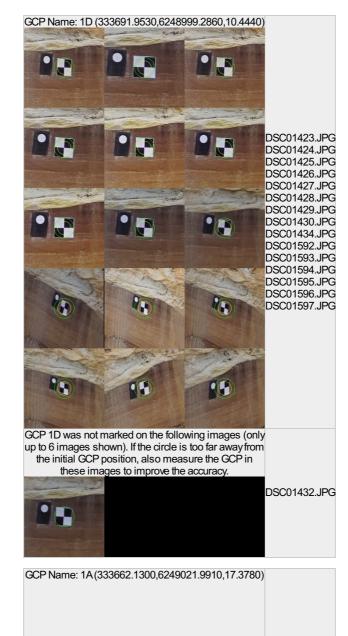
6

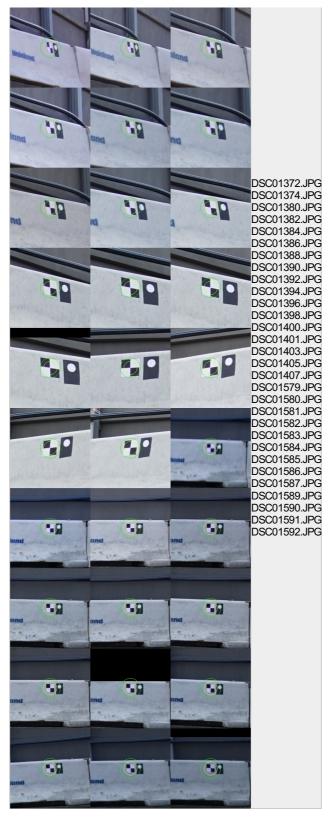
6

6

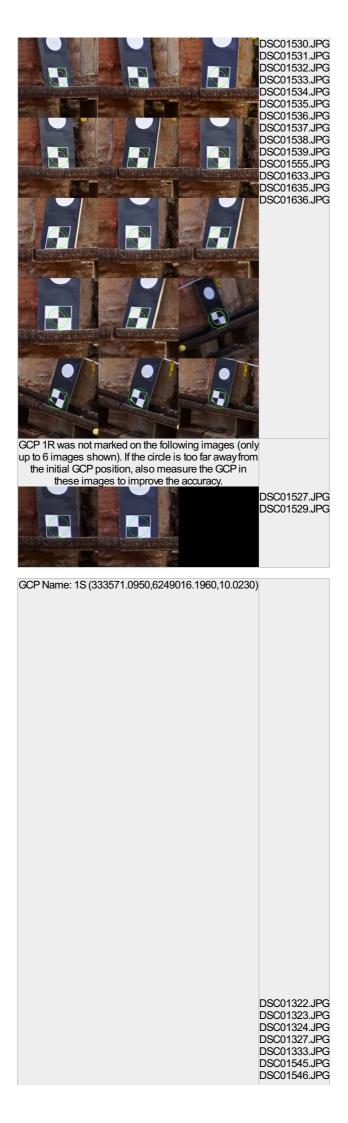
Figure 5: Top view of the image computed positions with a link between matching images. The darkness of the links indicates the number of matched 2D keypoints between the images. Bright links indicate weak links and require manual tie points or more images.

Geolocation Details


Oround Control Points


Accuracy XY/Z [m]	Error X[m]	Error Y [m]	Error Z [m]	Projection Error [pixel]	Verified/Marked
0.001/0.002	0.000	-0.000	-0.001	0.206	15/15
0.001/0.002	-0.000	-0.000	0.000	0.219	30 / 30
0.001/0.002	-0.001	0.001	-0.000	0.220	15/15
0.001/0.002	-0.000	-0.000	-0.002	0.191	19/19
	0.001/ 0.002 0.001/ 0.002 0.001/ 0.002	0.001/0.002 0.000 0.001/0.002 -0.000 0.001/0.002 -0.001	0.001/0.002 0.000 -0.000 0.001/0.002 -0.000 -0.000 0.001/0.002 -0.001 0.001	0.001/0.002 0.000 -0.000 -0.001 0.001/0.002 -0.000 -0.000 0.000 0.001/0.002 -0.001 0.001 -0.000	0.001/0.002 0.000 -0.000 -0.001 0.206 0.001/0.002 -0.000 -0.000 0.000 0.219 0.001/0.002 -0.001 0.001 0.220

RMS Error [m]		0.000558	0.000437	0.001164		
Sigma [m]		0.000556	0.000437	0.001160		
Mean [m]		-0.000039	-0.000001	-0.000101		
1I (3D)	0.002/ 0.002	-0.000	0.001	-0.000	0.193	15/15
1Q (3D)	0.001/0.002	0.001	-0.000	0.002	0.358	21/21
1P (3D)	0.001/0.002	0.001	-0.001	-0.000	0.234	17 / 17
10 (3D)	0.001/0.002	-0.001	-0.000	-0.001	0.483	24/24
1N (3D)	0.001/0.002	-0.000	0.000	-0.000	0.326	24/24
1M(3D)	0.001/0.002	0.000	0.000	-0.000	0.293	25/25
1F (3D)	0.001/0.002	-0.000	0.000	0.003	0.241	19/19
1G (3D)	0.001/0.002	0.000	0.000	-0.001	0.300	16/16
1E (3D)	0.001/0.002	-0.000	-0.000	-0.001	0.337	13/13
1L (3D)	0.001/0.002	-0.000	-0.000	0.000	0.297	29/29
1J (3D)	0.001/0.002	-0.000	0.000	-0.000	0.222	32/32
1K (3D)	0.001/0.001	-0.000	-0.000	0.001	0.265	32/32


Localisation accuracy per GCP and mean errors in the three coordinate directions. The last column counts the number of calibrated images where the GCP has been automatically verified vs. manually marked.

③ Georeference Verification

GCP Name: 1R (333562.1710,6249002.3980,10.0810)

GCP Name: 1K (333619.7730,6249019.1710,8.8180)

GCP Name: 1J (333633.2590,6249019.8060,9.7790)

GCP Name: 1L (333629.5070,6248979.5910,16.9570)

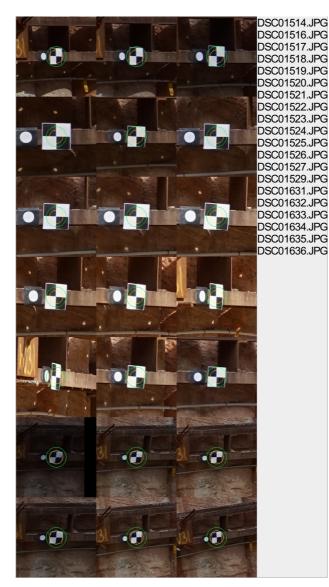
GCP Name: 1E (333695.1990,6248983.6950,17.5890)

GCP Name: 1G (333682.1210,6248972.3750,18.1494)

GCP Name: 1F (333681.2720,6248985.2720,9.3973)

GCP Name: 1N (333610.4200,6248982.3910,10.8520)

GCP Name: 10 (333591.0970,6248984.8710,8.4770)



GCP Name: 1P (333583.4970,6248985.9290,16.0450)

DSC01498.JPG DSC01500.JPG DSC01501.JPG DSC01502.JPG

DSC01512.JPG

GCP Name: 1I (333672.9750,6248998.0610,9.2990)

GCP 1I was not marked on the following images (only up to 6 images shown). If the circle is too far away from the initial GCP position, also measure the GCP in these images to improve the accuracy.

Figure 7: Images in which GCPs have been marked (yellow circle) and in which their computed 3D points have been projected (green circle). A green circle outside of the yellow circle indicates either an accuracy issue or a GCP issue.

6

6

0

0

Processing Options

Hardware	CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz RAM: 32GB GPU: NVIDIA GeForce GTX 550 Ti (Driver: 10.18.13.5382)
Operating System	Windows 10 Home, 64-bit
Camera Model Name	ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB)
Ground Control Point (GCP) Coordinate System	Arbitrary (m)
Output Coordinate System	Arbitrary (m)
Detected template:	No template available
Keypoints Image Scale	Full, Image Scale: 1
Advanced: Matching Image Pairs	Free Flight or Terrestrial
Advanced: Matching Strategy	Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction	Targeted Number of Keypoints: Automatic
Advanced: Calibration	Calibration Method: Standard, Internal Parameters Optimization: AI, External Parameters Optimization: AI, Rematch: Auto yes

Point Cloud Densification details

Processing Options

Image Scale	multiscale, 1/2 (Half image size, Default)
Point Density	Optimal
Minimum Number of Matches	6
3D Textured Mesh Generation	yes, Maximum Number of Triangles: 1000000, Texture Size: 8192x8192
Advanced: Matching Window Size	9x9 pixels
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Advanced: Limit Camera Depth Automatically	yes
Time for Point Cloud Densification	02h:21m:41s
Time for 3D Textured Mesh Generation	14m:40s

Results

Number of Generated Tiles	3
Number of 3D Densified Points	42933292
Average Density (per m ³)	59579.3

Appendix G

Site A-Blk11 minimally constrained report, 3 fixed points from Trimble Realworks

Registration Report (Target-Based) Report by station

User Name: lbroome

Date: Sat Jun 18 16:23:53 2016 Project Name: blk11

Linear Measurement Units: Meters Coordinates System: X, Y, Z

10	STATION(S)	-	Mean Distance:	0.0019	Max Distance:	0.0038
27	TARGET (S)	-	Mean Distance:	0.0023	Max Distance:	0.0071

Cub blk11003 - 9 Scanned Objects - Mean Distance: 0.0014

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	<u> </u>	Z	Error	to Scanner
027	060	2	0.0004 m	-0.0000 m	-0.0001 m	-0.0004 m	0.0007 m	18.8609 m
007	040	3	0.0006 m	-0.0000 m	0.0002 m	0.0005 m	0.0002 m	13.6981 m
001	034	3	0.0010 m	-0.0002 m	-0.0003 m	0.0010 m	0.0005 m	16.6783 m
Target13							0.0009 m	29.3030 m
005	038	3	0.0012 m	0.0003 m	0.0002 m	-0.0011 m	0.0002 m	11.9761 m
028							0.0016 m	16.6689 m
029	067	2	0.0037 m	0.0035 m	-0.0010 m	0.0003 m	0.0005 m	18.4479 m
Target108							0.0284 m	20.5818 m
Target110							0.0005 m	17.8934 m

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	<u> </u>	Z	Error	to Scanner
008	041	4	0.0019 m	0.0006 m	0.0000 m	-0.0018 m	0.0002 m	13.1340 m
001	034	3	0.0007 m	0.0005 m	0.0004 m	0.0001 m	0.0002 m	11.3791 m
005	038	3	0.0007 m	0.0000 m	-0.0004 m	0.0005 m	0.0002 m	14.7748 m
027	060	2	0.0004 m	0.0000 m	0.0001 m	0.0004 m	0.0007 m	17.1625 m
006	039	3	0.0028 m	-0.0004 m	0.0005 m	-0.0028 m	0.0005 m	17.6535 m
002	035	3	0.0047 m	-0.0003 m	-0.0006 m	0.0046 m	0.0005 m	24.6605 m
004	037	4	0.0009 m	-0.0003 m	0.0003 m	0.0008 m	0.0008 m	17.2992 m
007	040	3	0.0011 m	0.0002 m	-0.0001 m	0.0011 m	0.0007 m	18.3876 m
003	036	4	0.0020 m	-0.0004 m	-0.0003 m	-0.0020 m	0.0003 m	7.6219 m
Target113							0.0011 m	32.4096 m

Cub_blk11004 - 10 Scanned Objects - Mean Distance: 0.0017

Cub_blk11005 - 11 Scanned Objects - Mean Distance: 0.0020

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	x	Y	Z	Error	to Scanner
001	034	3	0.0011 m	-0.0004 m	-0.0001 m	-0.0011 m	0.0002 m	14.7169 m
Target29							0.0006 m	15.2313 m
002	035	3	0.0026 m	-0.0001 m	-0.0003 m	-0.0026 m	0.0002 m	14.9541 m
003	036	4	0.0028 m	0.0005 m	-0.0000 m	-0.0027 m	0.0002 m	8.6487 m
004	037	4	0.0007 m	-0.0002 m	-0.0001 m	-0.0007 m	0.0002 m	15.1173 m
005	038	3	0.0007 m	-0.0004 m	0.0002 m	0.0006 m	0.0009 m	20.1230 m
006	039	3	0.0047 m	-0.0000 m	-0.0005 m	0.0047 m	0.0008 m	28.7037 m
026	059	2	0.0008 m	0.0005 m	0.0005 m	0.0004 m	0.0007 m	19.1735 m
007	040	3	0.0017 m	-0.0002 m	-0.0001 m	-0.0016 m	0.0006 m	16.6008 m
008	041	4	0.0032 m	0.0003 m	0.0005 m	0.0032 m	0.0004 m	21.2096 m
Target38							0.0003 m	10.4394 m

Cub_blk1100	6 -	12	Scanned	Objects -	- Me	ean	Distance:	0.0019
-------------	-----	----	---------	-----------	------	-----	-----------	--------

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
002	035	3	0.0023 m	0.0004 m	0.0009 m	-0.0021 m	0.0002 m	12.9029 m
004	037	4	0.0006 m	0.0000 m	-0.0006 m	0.0001 m	0.0005 m	16.5745 m
024	057	2	0.0006 m	0.0004 m	-0.0003 m	-0.0002 m	0.0002 m	9.9631 m
023	056	4	0.0019 m	0.0004 m	0.0002 m	-0.0019 m	0.0003 m	12.9981 m
026	059	2	0.0008 m	-0.0005 m	-0.0005 m	-0.0004 m	0.0005 m	16.4011 m
003	036	4	0.0033 m	-0.0002 m	0.0007 m	0.0032 m	0.0004 m	28.0630 m
016	049	3	0.0013 m	0.0006 m	-0.0005 m	-0.0010 m	0.0002 m	12.5428 m
008	041	4	0.0012 m	-0.0007 m	-0.0005 m	-0.0008 m	0.0006 m	25.8709 m
032	065	2	0.0042 m	-0.0005 m	0.0008 m	0.0040 m	0.0007 m	19.2416 m
Target48	069	2	0.0031 m	-0.0030 m	0.0009 m	-0.0003 m	0.0002 m	15.1124 m
Target49							0.0003 m	14.8594 m
Target50							0.0011 m	6.0031 m

Cub_blk11007 - 9 Scanned Objects - Mean Distance: 0.0013

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
006	039	3	0.0020 m	0.0005 m	-0.0000 m	-0.0020 m	0.0006 m	16.2111 m
004	037	4	0.0007 m	0.0005 m	0.0004 m	-0.0002 m	0.0001 m	14.3400 m
003	036	4	0.0016 m	0.0001 m	-0.0004 m	0.0015 m	0.0008 m	24.5672 m
033	066	2	0.0026 m	-0.0001 m	0.0003 m	0.0026 m	0.0007 m	20.6194 m
023	056	4	0.0009 m	-0.0005 m	-0.0003 m	-0.0007 m	0.0003 m	14.9623 m
024	057	2	0.0006 m	-0.0004 m	0.0003 m	0.0002 m	0.0002 m	10.0177 m
008	041	4	0.0006 m	-0.0002 m	0.0000 m	-0.0005 m	0.0002 m	14.0090 m
Target114							0.0007 m	16.8532 m
Target115							0.0003 m	10.9254 m

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
033	066	2	0.0026 m	0.0001 m	-0.0003 m	-0.0026 m	0.0002 m	3.9097 m
Target59							0.0001 m	14.0003 m
019	052	2	0.0004 m	-0.0003 m	0.0001 m	0.0003 m	0.0002 m	12.3396 m
015	048	3	0.0037 m	-0.0005 m	0.0003 m	0.0037 m	0.0006 m	15.4087 m
018	051	4	0.0004 m	0.0003 m	-0.0003 m	0.0002 m	0.0001 m	10.9252 m
017	050	4	0.0003 m	0.0003 m	0.0001 m	-0.0002 m	0.0005 m	18.4628 m
016	049	3	0.0016 m	-0.0007 m	0.0003 m	0.0014 m	0.0007 m	21.5990 m
023	056	4	0.0027 m	0.0005 m	-0.0001 m	-0.0026 m	0.0005 m	15.0771 m
Target116							0.0006 m	15.0534 m

Cub_blk11008 - 9 Scanned Objects - Mean Distance: 0.0017

Cub_blk11009 - 10 Scanned Objects - Mean Distance: 0.0038

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
032	065	2	0.0042 m	0.0005 m	-0.0008 m	-0.0040 m	0.0002 m	14.5054 m
015	048	3	0.0054 m	0.0002 m	0.0006 m	0.0054 m	0.0007 m	27.4771 m
013	046	3	0.0078 m	-0.0019 m	-0.0005 m	-0.0076 m	0.0002 m	14.0592 m
016	049	3	0.0005 m	0.0002 m	0.0002 m	-0.0004 m	0.0002 m	12.3900 m
017	050	4	0.0023 m	-0.0001 m	0.0010 m	0.0020 m	0.0005 m	19.5390 m
031	064	2	0.0071 m	0.0006 m	-0.0009 m	-0.0070 m	0.0008 m	17.9076 m
018	051	4	0.0012 m	0.0009 m	-0.0006 m	0.0005 m	0.0002 m	13.7730 m
019	052	2	0.0004 m	0.0003 m	-0.0001 m	-0.0003 m	0.0002 m	11.7476 m
023	056	4	0.0052 m	-0.0004 m	0.0003 m	0.0052 m	0.0008 m	20.5282 m
Target75							0.0008 m	2.7768 m

Cub_blk11010	-	11	Scanned	Objects	-	Mean Distance:	0.0022
--------------	---	----	---------	---------	---	----------------	--------

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
031	064	2	0.0071 m	-0.0006 m	0.0009 m	0.0070 m	0.0005 m	15.7308 m
017	050	4	0.0022 m	-0.0002 m	-0.0008 m	-0.0021 m	0.0002 m	14.7879 m
014	047	2	0.0010 m	0.0006 m	-0.0005 m	-0.0006 m	0.0002 m	14.4129 m
009	042	2	0.0017 m	0.0004 m	-0.0001 m	-0.0016 m	0.0002 m	13.7715 m
018	051	4	0.0014 m	-0.0010 m	0.0003 m	0.0009 m	0.0004 m	21.8945 m
010	043	2	0.0027 m	0.0004 m	-0.0000 m	-0.0026 m	0.0002 m	12.1938 m
013	046	3	0.0013 m	0.0012 m	0.0005 m	0.0002 m	0.0002 m	6.4864 m
Target84							0.0002 m	3.1901 m
Target85	068	2	0.0006 m	-0.0005 m	0.0001 m	-0.0000 m	0.0005 m	16.8581 m
Target86							0.0004 m	17.2175 m
Target87							0.0008 m	2.6538 m

Cub_blk11011 - 11 Scanned Objects - Mean Distance: 0.0034

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	<u> </u>	Z	Error	to Scanner
009	042	2	0.0017 m	-0.0004 m	0.0001 m	0.0016 m	0.0002 m	10.8005 m
010	043	2	0.0027 m	-0.0004 m	0.0000 m	0.0026 m	0.0002 m	14.8592 m
017	050	4	0.0004 m	0.0000 m	-0.0003 m	0.0003 m	0.0002 m	10.5412 m
Target91							0.0006 m	16.4939 m
018	051	4	0.0016 m	-0.0001 m	0.0006 m	-0.0015 m	0.0005 m	19.1121 m
013	046	3	0.0075 m	0.0006 m	-0.0000 m	0.0074 m	0.0008 m	24.5760 m
014	047	2	0.0010 m	-0.0006 m	0.0005 m	0.0006 m	0.0002 m	8.1190 m
015	048	3	0.0091 m	0.0003 m	-0.0008 m	-0.0090 m	0.0002 m	6.0769 m
Target96							0.0024 m	3.4937 m
Target117							0.0008 m	17.4382 m
Target118							0.0055 m	5.5745 m

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
1A			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1B			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1C			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1D			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1E	068	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1F			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1G			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1H			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
11			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1J			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1K			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1L	069	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1M			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1N			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
10			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1P			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1Q			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1R	067	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1S			0.0000 m	0.0000 m	0.0000 m	0.0000 m		

BLK11-USQ1 - 19 Scanned Objects - Mean Distance: 0.0000

Report by target

User Name: lbroome

Date: Sat Jun 18 16:23:53 2016 Project Name: blk11

Linear Measurement Units: Meters Coordinates System: X, Y, Z

10 STATION(S) - Mean Distance: 0.0019 **Max Distance:** 0.0038 **27 TARGET(S) - Mean Distance:** 0.0023 **Max Distance:** 0.0071

034 - 3 Scanned Objects - Mean Distance: 0.0009 - Mean Position X=333597.2034 Y=6249001.6208 Z=8.4071

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
001	Cub_blk11004	0.0007 m	0.0005 m	0.0004 m	0.0001 m	0.0002 m	11.3791 m
001	Cub_blk11005	0.0011 m	-0.0004 m	-0.0001 m	-0.0011 m	0.0002 m	14.7169 m
001	Cub_blk11003	0.0010 m	-0.0002 m	-0.0003 m	0.0010 m	0.0005 m	16.6783 m

035 - 3 Scanned Objects - Mean Distance: 0.0032 - Mean Position X=333623.3951 Y=6248989.7821 Z=8.8508

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
002	Cub_blk11004	0.0047 m	-0.0003 m	-0.0006 m	0.0046 m	0.0005 m	24.6605 m
002	Cub_blk11005	0.0026 m	-0.0001 m	-0.0003 m	-0.0026 m	0.0002 m	14.9541 m
002	Cub_blk11006	0.0023 m	0.0004 m	0.0009 m	-0.0021 m	0.0002 m	12.9029 m

- 4 Scanned Objects - Mean Distance: 0.0024 - Mean Position X=333609.8308 Y=6249001.0905 Z=8.4036

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
003	Cub_blk11004	0.0020 m	-0.0004 m	-0.0003 m	-0.0020 m	0.0003 m	7.6219 m
003	Cub_blk11005	0.0028 m	0.0005 m	-0.0000 m	-0.0027 m	0.0002 m	8.6487 m
003	Cub_blk11006	0.0033 m	-0.0002 m	0.0007 m	0.0032 m	0.0004 m	28.0630 m
003	Cub_blk11007	0.0016 m	0.0001 m	-0.0004 m	0.0015 m	0.0008 m	24.5672 m

- 4 Scanned Objects - Mean Distance: 0.0007 - Mean Position X=333621.9626 Y=6248999.9275 Z=8.7536

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
004	Cub_blk11004	0.0009 m	-0.0003 m	0.0003 m	0.0008 m	0.0008 m	17.2992 m
004	Cub blk11005	0.0007 m	-0.0002 m	-0.0001 m	-0.0007 m	0.0002 m	15.1173 m
004	Cub_blk11006	0.0006 m	0.0000 m	-0.0006 m	0.0001 m	0.0005 m	16.5745 m
004	Cub_blk11007	0.0007 m	0.0005 m	0.0004 m	-0.0002 m	0.0001 m	14.3400 m

- 3 Scanned Objects - Mean Distance: 0.0009 - Mean Position X=333592.3730 Y=6249004.2190 Z=8.4124

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
005	Cub_blk11004	0.0007 m	0.0000 m	-0.0004 m	0.0005 m	0.0002 m	14.7748 m
005	Cub blk11005	0.0007 m	-0.0004 m	0.0002 m	0.0006 m	0.0009 m	20.1230 m
005	Cub_blk11003	0.0012 m	0.0003 m	0.0002 m	-0.0011 m	0.0002 m	11.9761 m

- 3 Scanned Objects - Mean Distance: 0.0032 - Mean Position X=333620.3344 Y=6249018.9279 Z=9.6984

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	х	Y	Z	Error	to Scanner
006	Cub_blk11004	0.0028 m	-0.0004 m	0.0005 m	-0.0028 m	0.0005 m	17.6535 m
006	Cub blk11005	0.0047 m	-0.0000 m	-0.0005 m	0.0047 m	0.0008 m	28.7037 m
006	Cub_blk11007	0.0020 m	0.0005 m	-0.0000 m	-0.0020 m	0.0006 m	16.2111 m

040 - 3 Scanned Objects - Mean Distance: 0.0011 - Mean Position X=333592.5905 Y=6248996.0322 Z=8.4155

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
007	Cub blk11004	0.0011 m	0.0002 m	-0.0001 m	0.0011 m	0.0007 m	18.3876 m
007	Cub blk11005	0.0017 m	-0.0002 m	-0.0001 m	-0.0016 m	0.0006 m	16.6008 m
007	Cub_blk11003	0.0006 m	-0.0000 m	0.0002 m	0.0005 m	0.0002 m	13.6981 m

041 - 4 Scanned Objects - Mean Distance: 0.0017 - Mean Position X=333619.2928 Y=6249011.0295 Z=8.7539

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
008	Cub_blk11004	0.0019 m	0.0006 m	0.0000 m	-0.0018 m	0.0002 m	13.1340 m
008	Cub_blk11005	0.0032 m	0.0003 m	0.0005 m	0.0032 m	0.0004 m	21.2096 m
008	Cub_blk11006	0.0012 m	-0.0007 m	-0.0005 m	-0.0008 m	0.0006 m	25.8709 m
008	Cub_blk11007	0.0006 m	-0.0002 m	0.0000 m	-0.0005 m	0.0002 m	14.0090 m

042 - 2 Scanned Objects - Mean Distance: 0.0017 - Mean Position X=333684.0088 Y=6249001.0657 Z=9.4262

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
009	Cub blk11010	0.0017 m	0.0004 m	-0.0001 m	-0.0016 m	0.0002 m	13.7715 m
009	Cub_blk11011	0.0017 m	-0.0004 m	0.0001 m	0.0016 m	0.0002 m	10.8005 m

043 - 2 Scanned Objects - Mean Distance: 0.0027 - Mean Position X=333686.8566 Y=6248998.0575 Z=9.4334

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
010	Cub blk11010	0.0027 m	0.0004 m	-0.0000 m	-0.0026 m	0.0002 m	12.1938 m
010	Cub_blk11011	0.0027 m	-0.0004 m	0.0000 m	0.0026 m	0.0002 m	14.8592 m

- 3 Scanned Objects - Mean Distance: 0.0055 - Mean Position X=333674.2892 Y=6248985.9319 Z=9.4373

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
013	Cub blk11010	0.0013 m	0.0012 m	0.0005 m	0.0002 m	0.0002 m	6.4864 m
013	Cub blk11011	0.0075 m	0.0006 m	-0.0000 m	0.0074 m	0.0008 m	24.5760 m
013	Cub_blk11009	0.0078 m	-0.0019 m	-0.0005 m	-0.0076 m	0.0002 m	14.0592 m

- 2 Scanned Objects - Mean Distance: 0.0010 - Mean Position X=333679.0382 Y=6249002.1704 Z=9.4284

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
014	Cub blk11010	0.0010 m	0.0006 m	-0.0005 m	-0.0006 m	0.0002 m	14.4129 m
014	Cub_blk11011	0.0010 m	-0.0006 m	0.0005 m	0.0006 m	0.0002 m	8.1190 m

- 3 Scanned Objects - Mean Distance: 0.0061 - Mean Position X=333672.5002 Y=6249011.0744 Z=9.3280

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
015	Cub_blk11008	0.0037 m	-0.0005 m	0.0003 m	0.0037 m	0.0006 m	15.4087 m
015	Cub_blk11009	0.0054 m	0.0002 m	0.0006 m	0.0054 m	0.0007 m	27.4771 m
015	Cub_blk11011	0.0091 m	0.0003 m	-0.0008 m	-0.0090 m	0.0002 m	6.0769 m

- 3 Scanned Objects - Mean Distance: 0.0011 - Mean Position X=333648.4698 Y=6248989.9386 Z=8.7509

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
016	Cub_blk11008	0.0016 m	-0.0007 m	0.0003 m	0.0014 m	0.0007 m	21.5990 m
016	Cub_blk11009	0.0005 m	0.0002 m	0.0002 m	-0.0004 m	0.0002 m	12.3900 m
016	Cub_blk11006	0.0013 m	0.0006 m	-0.0005 m	-0.0010 m	0.0002 m	12.5428 m

- 4 Scanned Objects - Mean Distance: 0.0013 - Mean Position X=333673.4301 Y=6249000.9020 Z=9.4161

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
017	Cub_blk11008	0.0003 m	0.0003 m	0.0001 m	-0.0002 m	0.0005 m	18.4628 m
017	Cub_blk11009	0.0023 m	-0.0001 m	0.0010 m	0.0020 m	0.0005 m	19.5390 m
017	Cub blk11010	0.0022 m	-0.0002 m	-0.0008 m	-0.0021 m	0.0002 m	14.7879 m
017	Cub_blk11011	0.0004 m	0.0000 m	-0.0003 m	0.0003 m	0.0002 m	10.5412 m

- 4 Scanned Objects - Mean Distance: 0.0012 - Mean Position X=333662.2055 Y=6249000.0462 Z=8.8298

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
018	Cub_blk11008	0.0004 m	0.0003 m	-0.0003 m	0.0002 m	0.0001 m	10.9252 m
018	Cub blk11009	0.0012 m	0.0009 m	-0.0006 m	0.0005 m	0.0002 m	13.7730 m
018	Cub_blk11010	0.0014 m	-0.0010 m	0.0003 m	0.0009 m	0.0004 m	21.8945 m
018	Cub_blk11011	0.0016 m	-0.0001 m	0.0006 m	-0.0015 m	0.0005 m	19.1121 m

- 2 Scanned Objects - Mean Distance: 0.0004 - Mean Position X=333656.2335 Y=6248997.4243 Z=8.8318

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
019	Cub_blk11008	0.0004 m	-0.0003 m	0.0001 m	0.0003 m	0.0002 m	12.3396 m
019	Cub_blk11009	0.0004 m	0.0003 m	-0.0001 m	-0.0003 m	0.0002 m	11.7476 m

- 4 Scanned Objects - Mean Distance: 0.0027 - Mean Position X=333645.3202 Y=6249000.4738 Z=8.7432

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
023	Cub_blk11006	0.0019 m	0.0004 m	0.0002 m	-0.0019 m	0.0003 m	12.9981 m
023	Cub_blk11007	0.0009 m	-0.0005 m	-0.0003 m	-0.0007 m	0.0003 m	14.9623 m
023	Cub_blk11008	0.0027 m	0.0005 m	-0.0001 m	-0.0026 m	0.0005 m	15.0771 m
023	Cub_blk11009	0.0052 m	-0.0004 m	0.0003 m	0.0052 m	0.0008 m	20.5282 m

- 2 Scanned Objects - Mean Distance: 0.0006 - Mean Position X=333638.8847 Y=6249000.8867 Z=8.8088

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
024	Cub blk11006	0.0006 m	0.0004 m	-0.0003 m	-0.0002 m	0.0002 m	9.9631 m
024	Cub_blk11007	0.0006 m	-0.0004 m	0.0003 m	0.0002 m	0.0002 m	10.0177 m

- 2 Scanned Objects - Mean Distance: 0.0008 - Mean Position X=333623.7268 Y=6248980.6904 Z=10.7473

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
026	Cub blk11005	0.0008 m	0.0005 m	0.0005 m	0.0004 m	0.0007 m	19.1735 m
026	Cub_blk11006	0.0008 m	-0.0005 m	-0.0005 m	-0.0004 m	0.0005 m	16.4011 m

- 2 Scanned Objects - Mean Distance: 0.0004 - Mean Position X=333592.3177 Y=6249017.3043 Z=9.6110

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
027	Cub blk11003	0.0004 m	-0.0000 m	-0.0001 m	-0.0004 m	0.0007 m	18.8609 m
027	Cub_blk11004	0.0004 m	0.0000 m	0.0001 m	0.0004 m	0.0007 m	17.1625 m

- 2 Scanned Objects - Mean Distance: 0.0071 - Mean Position X=333673.0017 Y=6248973.9669 Z=11.5961

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
031	Cub_blk11009	0.0071 m	0.0006 m	-0.0009 m	-0.0070 m	0.0008 m	17.9076 m
031	Cub_blk11010	0.0071 m	-0.0006 m	0.0009 m	0.0070 m	0.0005 m	15.7308 m

- 2 Scanned Objects - Mean Distance: 0.0042 - Mean Position X=333649.1036 Y=6248977.2569 Z=11.0336

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
032	Cub blk11006	0.0042 m	-0.0005 m	0.0008 m	0.0040 m	0.0007 m	19.2416 m
032	Cub_blk11009	0.0042 m	0.0005 m	-0.0008 m	-0.0040 m	0.0002 m	14.5054 m

066 - 2 Scanned Objects - Mean Distance: 0.0026 - Mean Position X=333653.5866 Y=6249009.9778 Z=8.8366

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
033	Cub blk11007	0.0026 m	-0.0001 m	0.0003 m	0.0026 m	0.0007 m	20.6194 m
033	Cub_blk11008	0.0026 m	0.0001 m	-0.0003 m	-0.0026 m	0.0002 m	3.9097 m

- 2 Scanned Objects - Mean Distance: 0.0037 - Mean Position X=333562.1708 Y=6249002.3980 Z=10.0817

Object	Corresponding	Residual	Delta	Delta Delta		Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
1R	BLK11-USQ1	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
029	Cub_blk11003	0.0037 m	0.0035 m	-0.0010 m	0.0003 m	0.0005 m	18.4479 m

- 2 Scanned Objects - Mean Distance: 0.0006 - Mean Position X=333695.1988 Y=6248983.6940 Z=17.5890

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
1E	BLK11-USQ1	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target85	Cub_blk11010	0.0006 m	-0.0005 m	0.0001 m	-0.0000 m	0.0005 m	16.8581 m

- 2 Scanned Objects - Mean Distance: 0.0031 - Mean Position X=333629.5074 Y=6248979.5900 Z=16.9582

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
1L	BLK11-USQ1	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target48	Cub_blk11006	0.0031 m	-0.0030 m	0.0009 m	-0.0003 m	0.0002 m	15.1124 m

Appendix H

Site A-Blk11 fully constrained report from Trimble Realworks

Registration Report (Target-Based) Report by station

User Name: lbroome

Date: Sun Jun 19 08:45:23 2016 Project Name: blk11

Linear Measurement Units: Meters Coordinates System: X, Y, Z

10 STATION(S) -	Mean Distance: 0.002	Max Distance: 0.004
39 TARGET(S) -	Mean Distance: 0.003	Max Distance: 0.012

Cub blk11003 - 11 Scanned Objects - Mean Distance: 0.002

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
027	060	2	0.000 m	-0.000 m	-0.000 m	-0.000 m	0.001 m	18.861 m
007	040	3	0.001 m	-0.000 m	0.000 m	0.001 m	0.000 m	13.698 m
001	034	3	0.001 m	-0.000 m	-0.000 m	0.001 m	0.000 m	16.678 m
Target13							0.001 m	29.303 m
005	038	3	0.001 m	0.000 m	0.000 m	-0.001 m	0.000 m	11.976 m
028	078	2	0.002 m	0.002 m	-0.001 m	0.000 m	0.002 m	16.669 m
Target16							0.001 m	2.978 m
029	077	2	0.005 m	0.002 m	0.001 m	0.004 m	0.000 m	18.448 m
030							0.000 m	17.066 m
Target107	076	2	0.002 m	0.001 m	0.001 m	0.001 m	0.031 m	20.579 m
Target108	075	2	0.004 m	-0.003 m	0.003 m	-0.002 m	0.000 m	17.893 m

Cub_blk11004 - 9	Scanned Objects -	Mean Distance:	0.002
------------------	-------------------	----------------	-------

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
008	041	4	0.002 m	0.001 m	0.000 m	-0.002 m	0.000 m	13.134 m
001	034	3	0.001 m	0.001 m	0.000 m	0.000 m	0.000 m	11.379 m
005	038	3	0.001 m	0.000 m	-0.000 m	0.001 m	0.000 m	14.775 m
027	060	2	0.000 m	0.000 m	0.000 m	0.000 m	0.001 m	17.162 m
006	039	3	0.003 m	-0.000 m	0.001 m	-0.003 m	0.000 m	17.653 m
002	035	3	0.005 m	-0.000 m	-0.001 m	0.005 m	0.000 m	24.660 m
004	037	4	0.001 m	-0.000 m	0.000 m	0.001 m	0.001 m	17.299 m
007	040	3	0.001 m	0.000 m	-0.000 m	0.001 m	0.001 m	18.388 m
003	036	4	0.002 m	-0.000 m	-0.000 m	-0.002 m	0.000 m	7.622 m

Cub_blk11005 - 11 Scanned Objects - Mean Distance: 0.002

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	Y	Z	Error	to Scanner
001	034	3	0.001 m	-0.000 m	-0.000 m	-0.001 m	0.000 m	14.717 m
Target29							0.001 m	15.231 m
002	035	3	0.003 m	-0.000 m	-0.000 m	-0.003 m	0.000 m	14.954 m
003	036	4	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	8.649 m
004	037	4	0.001 m	-0.000 m	-0.000 m	-0.001 m	0.000 m	15.117 m
005	038	3	0.001 m	-0.000 m	0.000 m	0.001 m	0.001 m	20.123 m
006	039	3	0.005 m	-0.000 m	-0.000 m	0.005 m	0.001 m	28.704 m
026	059	2	0.001 m	0.000 m	0.000 m	0.000 m	0.001 m	19.173 m
007	040	3	0.002 m	-0.000 m	-0.000 m	-0.002 m	0.001 m	16.601 m
008	041	4	0.003 m	0.000 m	0.000 m	0.003 m	0.000 m	21.210 m
Target38	074	2	0.004 m	0.001 m	-0.001 m	-0.003 m	0.000 m	10.439 m

Cub_blk11006 - 12 Scanned Objects - Mean Distance: 0.0)02
--	-----

Object Name	Corresponding	Scan	Residual Error	Delta	Delta Y	Delta Z	Fitting	Distance to Scanner
Name	Target	<u>Per Target</u>	FILOI	X	I		Error	to scanner
002	035	3	0.002 m	0.000 m	0.001 m	-0.002 m	0.000 m	12.903 m
004	037	4	0.001 m	0.000 m	-0.001 m	0.000 m	0.000 m	16.574 m
024	057	2	0.001 m	0.000 m	-0.000 m	-0.000 m	0.000 m	9.963 m
023	056	4	0.002 m	0.000 m	0.000 m	-0.002 m	0.000 m	12.998 m
026	059	2	0.001 m	-0.000 m	-0.000 m	-0.000 m	0.000 m	16.401 m
003	036	4	0.003 m	-0.000 m	0.001 m	0.003 m	0.000 m	28.063 m
016	049	3	0.001 m	0.001 m	-0.001 m	-0.001 m	0.000 m	12.543 m
008	041	4	0.001 m	-0.001 m	-0.001 m	-0.001 m	0.001 m	25.871 m
032	065	2	0.004 m	-0.001 m	0.001 m	0.004 m	0.001 m	19.242 m
Target48	072	2	0.005 m	-0.004 m	0.002 m	-0.001 m	0.000 m	15.112 m
Target49	073	2	0.003 m	0.000 m	-0.002 m	0.000 m	0.000 m	14.859 m
Target50							0.001 m	6.003 m

Cub_blk11007 - 9 Scanned Objects - Mean Distance: 0.002

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
006	039	3	0.002 m	0.000 m	-0.000 m	-0.002 m	0.001 m	16.211 m
004	037	4	0.001 m	0.000 m	0.000 m	-0.000 m	0.000 m	14.340 m
003	036	4	0.002 m	0.000 m	-0.000 m	0.002 m	0.001 m	24.567 m
033	066	2	0.003 m	-0.000 m	0.000 m	0.003 m	0.001 m	20.619 m
023	056	4	0.001 m	-0.000 m	-0.000 m	-0.001 m	0.000 m	14.962 m
024	057	2	0.001 m	-0.000 m	0.000 m	0.000 m	0.000 m	10.018 m
008	041	4	0.001 m	-0.000 m	0.000 m	-0.001 m	0.000 m	14.009 m
Target109	079	2	0.003 m	0.002 m	-0.002 m	-0.002 m	0.001 m	16.853 m
Target110	080	2	0.004 m	0.001 m	-0.003 m	-0.002 m	0.001 m	10.926 m

Cub_1	blk11008	-	9	Scanned	Objects	-	Mean Distance:	0.00	3
-------	----------	---	---	---------	---------	---	----------------	------	---

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
033	066	2	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	3.910 m
Target59							0.000 m	14.000 m
019	052	2	0.000 m	-0.000 m	0.000 m	0.000 m	0.000 m	12.340 m
015	048	3	0.004 m	-0.001 m	0.000 m	0.004 m	0.001 m	15.409 m
018	051	4	0.000 m	0.000 m	-0.000 m	0.000 m	0.000 m	10.925 m
017	050	4	0.000 m	0.000 m	0.000 m	-0.000 m	0.000 m	18.463 m
016	049	3	0.002 m	-0.001 m	0.000 m	0.001 m	0.001 m	21.599 m
023	056	4	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	15.077 m
Target111	081	2	0.009 m	-0.004 m	-0.005 m	0.006 m	0.001 m	15.053 m

Cub_blk11009 - 10 Scanned Objects - Mean Distance: 0.004

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	Y	Z	Error	to Scanner
032	065	2	0.004 m	0.001 m	-0.001 m	-0.004 m	0.000 m	14.505 m
015	048	3	0.005 m	0.000 m	0.001 m	0.005 m	0.001 m	27.477 m
013	046	3	0.008 m	-0.002 m	-0.000 m	-0.008 m	0.000 m	14.059 m
016	049	3	0.000 m	0.000 m	0.000 m	-0.000 m	0.000 m	12.390 m
017	050	4	0.002 m	-0.000 m	0.001 m	0.002 m	0.001 m	19.539 m
031	064	2	0.007 m	0.001 m	-0.001 m	-0.007 m	0.001 m	17.908 m
018	051	4	0.001 m	0.001 m	-0.001 m	0.000 m	0.000 m	13.773 m
019	052	2	0.000 m	0.000 m	-0.000 m	-0.000 m	0.000 m	11.748 m
023	056	4	0.005 m	-0.000 m	0.000 m	0.005 m	0.001 m	20.528 m
Target75							0.001 m	2.777 m

Cub_blk11010 - 12 Scanned Objects - Mean Distance: 0	0.004
--	-------

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	<u>Per Target</u>	Error	X	<u> </u>	Z	Error	to Scanner
031	064	2	0.007 m	-0.001 m	0.001 m	0.007 m	0.000 m	15.731 m
017	050	4	0.002 m	-0.000 m	-0.001 m	-0.002 m	0.000 m	14.788 m
014	047	2	0.001 m	0.001 m	-0.000 m	-0.001 m	0.000 m	14.413 m
009	042	2	0.002 m	0.000 m	-0.000 m	-0.002 m	0.000 m	13.772 m
018	051	4	0.001 m	-0.001 m	0.000 m	0.001 m	0.000 m	21.895 m
010	043	2	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	12.194 m
Target82							0.001 m	6.571 m
013	046	3	0.001 m	0.001 m	0.000 m	0.000 m	0.000 m	6.486 m
Target84	070	2	0.012 m	-0.003 m	0.002 m	-0.012 m	0.000 m	3.190 m
Target85	069	2	0.005 m	-0.002 m	0.003 m	0.003 m	0.000 m	16.858 m
Target86	071	2	0.009 m	0.006 m	0.002 m	0.006 m	0.000 m	17.218 m
Target87							0.001 m	2.654 m

Cub_blk11011 - 11 Scanned Objects - Mean Distance: 0.004

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	<u>Per Target</u>	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
009	042	2	0.002 m	-0.000 m	0.000 m	0.002 m	0.000 m	10.800 m
010	043	2	0.003 m	-0.000 m	0.000 m	0.003 m	0.000 m	14.859 m
017	050	4	0.000 m	0.000 m	-0.000 m	0.000 m	0.000 m	10.541 m
Target91							0.001 m	16.494 m
018	051	4	0.002 m	-0.000 m	0.001 m	-0.002 m	0.000 m	19.112 m
013	046	3	0.007 m	0.001 m	-0.000 m	0.007 m	0.001 m	24.576 m
014	047	2	0.001 m	-0.001 m	0.000 m	0.001 m	0.000 m	8.119 m
015	048	3	0.009 m	0.000 m	-0.001 m	-0.009 m	0.000 m	6.077 m
Target96							0.002 m	3.494 m
Target113	068	2	0.006 m	-0.002 m	-0.003 m	0.005 m	0.001 m	17.438 m
Target114	067	2	0.006 m	0.002 m	0.002 m	-0.005 m	0.004 m	5.575 m

BLK11-USQ1	_	19	Scanned	Objects -	Mean	Distance:	0 000
DTULT ODŐT		ТЭ	Scamed	objects -	mean	Distance.	0.000

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
1A	081	<u>2</u>	0.000 m	0.000 m	0.000 m	0.000 m		<u></u>
1B			0.000 m	0.000 m	0.000 m	0.000 m		
1C	067	2	0.000 m	0.000 m	0.000 m	0.000 m		
1D	068	2	0.000 m	0.000 m	0.000 m	0.000 m		
1E	069	2	0.000 m	0.000 m	0.000 m	0.000 m		
1F	070	2	0.000 m	0.000 m	0.000 m	0.000 m		
1G	071	2	0.000 m	0.000 m	0.000 m	0.000 m		
1H			0.000 m	0.000 m	0.000 m	0.000 m		
11			0.000 m	0.000 m	0.000 m	0.000 m		
1J	080	2	0.000 m	0.000 m	0.000 m	0.000 m		
1K	079	2	0.000 m	0.000 m	0.000 m	0.000 m		
1L	072	2	0.000 m	0.000 m	0.000 m	0.000 m		
1M	073	2	0.000 m	0.000 m	0.000 m	0.000 m		
1N	074	2	0.000 m	0.000 m	0.000 m	0.000 m		
10			0.000 m	0.000 m	0.000 m	0.000 m		
1P	075	2	0.000 m	0.000 m	0.000 m	0.000 m		
1Q	076	2	0.000 m	0.000 m	0.000 m	0.000 m		
1R	077	2	0.000 m	0.000 m	0.000 m	0.000 m		
1S	078	2	0.000 m	0.000 m	0.000 m	0.000 m		

Report by target

User Name: lbroome

Date: Sun Jun 19 08:45:23 2016 Project Name: blk11

Linear Measurement Units: Meters Coordinates System: X, Y, Z

10 STATION(S) -Mean Distance: 0.002Max Distance: 0.00439 TARGET(S) -Mean Distance: 0.003Max Distance: 0.012

034 - 3 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333597.202 Y=6249001.624 Z=8.413

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
001	Cub_blk11004	0.001 m	0.001 m	0.000 m	0.000 m	0.000 m	11.379 m
001	Cub_blk11005	0.001 m	-0.000 m	-0.000 m	-0.001 m	0.000 m	14.717 m
001	Cub_blk11003	0.001 m	-0.000 m	-0.000 m	0.001 m	0.000 m	16.678 m

035 - 3 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333623.394 Y=6248989.786 Z=8.853

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
002	Cub blk11004	0.005 m	-0.000 m	-0.001 m	0.005 m	0.000 m	24.660 m
002	Cub blk11005	0.003 m	-0.000 m	-0.000 m	-0.003 m	0.000 m	14.954 m
002	Cub_blk11006	0.002 m	0.000 m	0.001 m	-0.002 m	0.000 m	12.903 m

- 4 Scanned Objects - Mean Distance: 0.002 - Mean Position X=333609.829 Y=6249001.094 Z=8.409

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
003	Cub_blk11004	0.002 m	-0.000 m	-0.000 m	-0.002 m	0.000 m	7.622 m
003	Cub_blk11005	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	8.649 m
003	Cub_blk11006	0.003 m	-0.000 m	0.001 m	0.003 m	0.000 m	28.063 m
003	Cub_blk11007	0.002 m	0.000 m	-0.000 m	0.002 m	0.001 m	24.567 m

- 4 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333621.961 Y=6248999.932 Z=8.760

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
004	Cub_blk11004	0.001 m	-0.000 m	0.000 m	0.001 m	0.001 m	17.299 m
004	Cub_blk11005	0.001 m	-0.000 m	-0.000 m	-0.001 m	0.000 m	15.117 m
004	Cub_blk11006	0.001 m	0.000 m	-0.001 m	0.000 m	0.000 m	16.574 m
004	Cub_blk11007	0.001 m	0.000 m	0.000 m	-0.000 m	0.000 m	14.340 m

- 3 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333592.372 Y=6249004.222 Z=8.419

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
005	Cub_blk11004	0.001 m	0.000 m	-0.000 m	0.001 m	0.000 m	14.775 m
005	Cub blk11005	0.001 m	-0.000 m	0.000 m	0.001 m	0.001 m	20.123 m
005	Cub_blk11003	0.001 m	0.000 m	0.000 m	-0.001 m	0.000 m	11.976 m

- 3 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333620.332 Y=6249018.932 Z=9.711

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
006	Cub_blk11004	0.003 m	-0.000 m	0.001 m	-0.003 m	0.000 m	17.653 m
006	Cub blk11005	0.005 m	-0.000 m	-0.000 m	0.005 m	0.001 m	28.704 m
006	Cub_blk11007	0.002 m	0.000 m	-0.000 m	-0.002 m	0.001 m	16.211 m

040 - 3 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333592.589 Y=6248996.036 Z=8.419

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
007	Cub_blk11004	0.001 m	0.000 m	-0.000 m	0.001 m	0.001 m	18.388 m
007	Cub_blk11005	0.002 m	-0.000 m	-0.000 m	-0.002 m	0.001 m	16.601 m
007	Cub_blk11003	0.001 m	-0.000 m	0.000 m	0.001 m	0.000 m	13.698 m

041 - 4 Scanned Objects - Mean Distance: 0.002 - Mean Position X=333619.291 Y=6249011.034 Z=8.764

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
008	Cub_blk11004	0.002 m	0.001 m	0.000 m	-0.002 m	0.000 m	13.134 m
008	Cub_blk11005	0.003 m	0.000 m	0.000 m	0.003 m	0.000 m	21.210 m
008	Cub_blk11006	0.001 m	-0.001 m	-0.001 m	-0.001 m	0.001 m	25.871 m
008	Cub_blk11007	0.001 m	-0.000 m	0.000 m	-0.001 m	0.000 m	14.009 m

042 - 2 Scanned Objects - Mean Distance: 0.002 - Mean Position X=333684.007 Y=6249001.072 Z=9.436

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
009	Cub blk11010	0.002 m	0.000 m	-0.000 m	-0.002 m	0.000 m	13.772 m
009	Cub_blk11011	0.002 m	-0.000 m	0.000 m	0.002 m	0.000 m	10.800 m

043 - 2 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333686.855 Y=6248998.064 Z=9.442

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
010	Cub_blk11010	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	12.194 m
010	Cub_blk11011	0.003 m	-0.000 m	0.000 m	0.003 m	0.000 m	14.859 m

- 3 Scanned Objects - Mean Distance: 0.006 - Mean Position X=333674.288 Y=6248985.938 Z=9.441

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
013	Cub_blk11010	0.001 m	0.001 m	0.000 m	0.000 m	0.000 m	6.486 m
013	Cub_blk11011	0.007 m	0.001 m	-0.000 m	0.007 m	0.001 m	24.576 m
013	Cub_blk11009	0.008 m	-0.002 m	-0.000 m	-0.008 m	0.000 m	14.059 m

- 2 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333679.037 Y=6249002.176 Z=9.438

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
014	Cub blk11010	0.001 m	0.001 m	-0.000 m	-0.001 m	0.000 m	14.413 m
014	Cub_blk11011	0.001 m	-0.001 m	0.000 m	0.001 m	0.000 m	8.119 m

- 3 Scanned Objects - Mean Distance: 0.006 - Mean Position X=333672.498 Y=6249011.080 Z=9.341

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
015	Cub_blk11008	0.004 m	-0.001 m	0.000 m	0.004 m	0.001 m	15.409 m
015	Cub blk11009	0.005 m	0.000 m	0.001 m	0.005 m	0.001 m	27.477 m
015	Cub_blk11011	0.009 m	0.000 m	-0.001 m	-0.009 m	0.000 m	6.077 m

- 3 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333648.469 Y=6248989.944 Z=8.754

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
016	Cub blk11008	0.002 m	-0.001 m	0.000 m	0.001 m	0.001 m	21.599 m
016	Cub blk11009	0.000 m	0.000 m	0.000 m	-0.000 m	0.000 m	12.390 m
016	Cub_blk11006	0.001 m	0.001 m	-0.001 m	-0.001 m	0.000 m	12.543 m

- 4 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333673.429 Y=6249000.908 Z=9.425

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
017	Cub blk11008	0.000 m	0.000 m	0.000 m	-0.000 m	0.000 m	18.463 m
017	Cub blk11009	0.002 m	-0.000 m	0.001 m	0.002 m	0.001 m	19.539 m
017	Cub blk11010	0.002 m	-0.000 m	-0.001 m	-0.002 m	0.000 m	14.788 m
017	Cub_blk11011	0.000 m	0.000 m	-0.000 m	0.000 m	0.000 m	10.541 m

- 4 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333662.204 Y=6249000.052 Z=8.838

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
018	Cub_blk11008	0.000 m	0.000 m	-0.000 m	0.000 m	0.000 m	10.925 m
018	Cub blk11009	0.001 m	0.001 m	-0.001 m	0.000 m	0.000 m	13.773 m
018	Cub_blk11010	0.001 m	-0.001 m	0.000 m	0.001 m	0.000 m	21.895 m
018	Cub_blk11011	0.002 m	-0.000 m	0.001 m	-0.002 m	0.000 m	19.112 m

052 - 2 Scanned Objects - Mean Distance: 0.000 - Mean Position X=333656.232 Y=6248997.430 Z=8.838

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
019	Cub_blk11008	0.000 m	-0.000 m	0.000 m	0.000 m	0.000 m	12.340 m
019	Cub_blk11009	0.000 m	0.000 m	-0.000 m	-0.000 m	0.000 m	11.748 m

- 4 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333645.319 Y=6249000.479 Z=8.750

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
023	Cub blk11006	0.002 m	0.000 m	0.000 m	-0.002 m	0.000 m	12.998 m
023	Cub_blk11007	0.001 m	-0.000 m	-0.000 m	-0.001 m	0.000 m	14.962 m
023	Cub blk11008	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	15.077 m
023	Cub_blk11009	0.005 m	-0.000 m	0.000 m	0.005 m	0.001 m	20.528 m

057 - 2 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333638.883 Y=6249000.891 Z=8.816

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
024	Cub blk11006	0.001 m	0.000 m	-0.000 m	-0.000 m	0.000 m	9.963 m
024	Cub_blk11007	0.001 m	-0.000 m	0.000 m	0.000 m	0.000 m	10.018 m

059 - 2 Scanned Objects - Mean Distance: 0.001 - Mean Position X=333623.726 Y=6248980.694 Z=10.746

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
026	Cub_blk11005	0.001 m	0.000 m	0.000 m	0.000 m	0.001 m	19.173 m
026	Cub_blk11006	0.001 m	-0.000 m	-0.000 m	-0.000 m	0.000 m	16.401 m

060 - 2 Scanned Objects - Mean Distance: 0.000 - Mean Position X=333592.316 Y=6249017.307 Z=9.622

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
027	Cub blk11003	0.000 m	-0.000 m	-0.000 m	-0.000 m	0.001 m	18.861 m
027	Cub_blk11004	0.000 m	0.000 m	0.000 m	0.000 m	0.001 m	17.162 m

064 - 2 Scanned Objects - Mean Distance: 0.007 - Mean Position X=333673.001 Y=6248973.972 Z=11.595

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
031	Cub_blk11009	0.007 m	0.001 m	-0.001 m	-0.007 m	0.001 m	17.908 m
031	Cub_blk11010	0.007 m	-0.001 m	0.001 m	0.007 m	0.000 m	15.731 m

065 - 2 Scanned Objects - Mean Distance: 0.004 - Mean Position X=333649.103 Y=6248977.261 Z=11.032

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
032	Cub blk11006	0.004 m	-0.001 m	0.001 m	0.004 m	0.001 m	19.242 m
032	Cub_blk11009	0.004 m	0.001 m	-0.001 m	-0.004 m	0.000 m	14.505 m

066 - 2 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333653.585 Y=6249009.983 Z=8.848

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
033	Cub blk11007	0.003 m	-0.000 m	0.000 m	0.003 m	0.001 m	20.619 m
033	Cub_blk11008	0.003 m	0.000 m	-0.000 m	-0.003 m	0.000 m	3.910 m

- 2 Scanned Objects - Mean Distance: 0.006 - Mean Position X=333680.319 Y=6249015.140 Z=9.407

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1C	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target114	Cub_blk11011	0.006 m	0.002 m	0.002 m	-0.005 m	0.004 m	5.575 m

- 2 Scanned Objects - Mean Distance: 0.006 - Mean Position X=333691.953 Y=6248999.286 Z=10.444

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1D	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target113	Cub_blk11011	0.006 m	-0.002 m	-0.003 m	0.005 m	0.001 m	17.438 m

- 2 Scanned Objects - Mean Distance: 0.005 - Mean Position X=333695.199 Y=6248983.694 Z=17.589

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
1E	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target85	Cub_blk11010	0.005 m	-0.002 m	0.003 m	0.003 m	0.000 m	16.858 m

- 2 Scanned Objects - Mean Distance: 0.012 - Mean Position X=333681.272 Y=6248985.271 Z=9.406

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1F	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target84	Cub_blk11010	0.012 m	-0.003 m	0.002 m	-0.012 m	0.000 m	3.190 m

071 - 2 Scanned Objects - Mean Distance: 0.009 - Mean Position X=333682.120 Y=6248972.374 Z=18.149

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
1G	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target86	Cub_blk11010	0.009 m	0.006 m	0.002 m	0.006 m	0.000 m	17.218 m

072 - 2 Scanned Objects - Mean Distance: 0.005 - Mean Position X=333629.507 Y=6248979.590 Z=16.958

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
1L	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target48	Cub_blk11006	0.005 m	-0.004 m	0.002 m	-0.001 m	0.000 m	15.112 m

073 - 2 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333626.669 Y=6248980.029 Z=9.069

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1M	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target49	Cub_blk11006	0.003 m	0.000 m	-0.002 m	0.000 m	0.000 m	14.859 m

074 - 2 Scanned Objects - Mean Distance: 0.004 - Mean Position X=333610.420 Y=6248982.391 Z=10.852

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
1N	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target38	Cub_blk11005	0.004 m	0.001 m	-0.001 m	-0.003 m	0.000 m	10.439 m

075 - 2 Scanned Objects - Mean Distance: 0.004 - Mean Position X=333583.497 Y=6248985.929 Z=16.045

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	Y	Z	Error	to Scanner
1P	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target108	Cub_blk11003	0.004 m	-0.003 m	0.003 m	-0.002 m	0.000 m	17.893 m

- 2 Scanned Objects - Mean Distance: 0.002 - Mean Position X=333565.478 Y=6248988.599 Z=10.768

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
10	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target107	Cub_blk11003	0.002 m	0.001 m	0.001 m	0.001 m	0.031 m	20.579 m

- 2 Scanned Objects - Mean Distance: 0.005 - Mean Position X=333562.171 Y=6249002.398 Z=10.082

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
1R	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
029	Cub_blk11003	0.005 m	0.002 m	0.001 m	0.004 m	0.000 m	18.448 m

078 - 2 Scanned Objects - Mean Distance: 0.002 - Mean Position X=333571.095 Y=6249016.196 Z=10.024

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1S	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
028	Cub_blk11003	0.002 m	0.002 m	-0.001 m	0.000 m	0.002 m	16.669 m

- 2 Scanned Objects - Mean Distance: 0.003 - Mean Position X=333619.773 Y=6249019.171 Z=8.818

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
1K	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target109	Cub_blk11007	0.003 m	0.002 m	-0.002 m	-0.002 m	0.001 m	16.853 m

- 2 Scanned Objects - Mean Distance: 0.004 - Mean Position X=333633.259 Y=6249019.806 Z=9.780

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1J	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target110	Cub_blk11007	0.004 m	0.001 m	-0.003 m	-0.002 m	0.001 m	10.926 m

081 - 2 Scanned Objects - Mea	an Distance: (0.009 -	Mean Position	X=333662.130 Y=6249021.991 Z=17.378

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1A	BLK11-USQ1	0.000 m	0.000 m	0.000 m	0.000 m		
Target111	Cub_blk11008	0.009 m	-0.004 m	-0.005 m	0.006 m	0.001 m	15.053 m

Appendix I

Site B-The Office conventional surveying least squares Adjustment from Elfy V2.4 -> Refraction corrections applied for orthometric height differences -> Coefficient of refraction of light, k = 0.13

* DIRECTIONS *

Target		FL		Diff		FR		Mean		Reduced Mean			v '	v	V ²	
	 0	,		"	 0	,		0	,	"	0	,	"			
Τ1	323	38	25	-06	143	38	19	323	38	22.0	0	00	00.0	+00.0	+00.0	0.0
Т2	340	06	51	+00	160	06	51	340	06	51.0	16	28	29.0	+00.0	+00.0	0.0
Т3	123	30	40	+02	303	30	42	123	30	41.0	159	52	19.0	+00.0	+00.0	0.0
Т4	166	40	00	+02	346	40	02	166	40	01.0	203	01	39.0	+00.0	+00.0	0.0
6B	152	53	45	+00	332	53	45	152	53	45.0	189	15	23.0	+00.0	+00.0	0.0
7B	75	07	18	+05	255	07	23	75	07	20.5	111	28	58.5	+00.0	+00.0	0.0

Sum +00.0 +00.0

Sum 00.0

Target	Grand Means									
	0 I II									
Τ1	0 00 00.0									
Т2	16 28 29.0									
Т3	159 52 19.0									
Т4	203 01 39.0									
6B	189 15 23.0									
7B	111 28 58.5									

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target		FL		Diff		FR		Mean		SDist(FL)	SDist(FR)	H.Dist	
	0	,		"	0		"	0		"	m		 m
T1	89	15	09	+11	270	45	02	89	15	03.5	43.185	43.185	43.1813
Т2	89	03	18	+09	270	56	51	89	03	13.5	42.856	42.856	42.8502
Т3	87	31	12	-04	272	28	44	87	31	14.0	17.198	17.198	17.1819
Т4	93	18	57	+03	266	41	06	93	18	55.5	18.411	18.412	18.3807
6B	95	05	11	-07	264	54	42	95	05	14.5	17.794	17.794	17.7239
7B	85	41	46	+01	274	18	15	85	41	45.5	8.687	8.686	8.6620

Grand Means	

Target	VA	Slope Dist	Horiz. Dist	Occ.	Target	Ht Diff
	•	" m	m	Stn Ht	Height	m
T1	89 15 03.	5 43.1850	43.1813	0.000	0.000	0.565
Т2	89 03 13.	5 42.8560	42.8502	0.000	0.000	0.708
Т3	87 31 14.	0 17.1980	17.1819	0.000	0.000	0.744
Т4	93 18 55.	5 18.4115	18.3807	0.000	0.000	-1.065
6B	95 05 14.	5 17.7940	17.7239	0.000	0.000	-1.578
7B	85 41 45.	5 8.6865	8.6620	0.000	0.000	0.652

* TRAVERSE ROUNDS FOUND * - Line (14)

* DIRECTIONS *

Target		FL		Diff		FR		Mean			Reduced Mean			v '	v	V ²
	0	,		"	0	,		0	,	"	0	,	"			
Т1	329	58	32	-11	149	58	21	329	58	26.5	0	00	00.0	+00.0	+00.0	0.0
Т2	343	44	13	-02	163	44	11	343	44	12.0	13	45	45.5	+00.0	+00.0	0.0
Т3	114	36	80	+01	294	36	09	114	36	08.5	144	37	42.0	+00.0	+00.0	0.0
Т4	192	47	07	+01	12	47	08	192	47	07.5	222	48	41.0	+00.0	+00.0	0.0
6B	170	36	45	-06	350	36	39	170	36	42.0	200	38	15.5	+00.0	+00.0	0.0
7B	25	16	16	+04	205	16	20	25	16	18.0	55	17	51.5	+00.0	+00.0	0.0
													C			

Sum +00.0 +00.0

_____ Sum 00.0

Target	Grand Means									
	0									
T1	0	00	00.0							
Т2	13	45	45.5							
Т3	144	37	42.0							
Т4	222	48	41.0							
6B	200	38	15.5							
7B	55	17	51.5							

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target	FL		Diff		FR	Mean		SDist(FL)	SDist(FR)	H.Dist		
	• I	"	"	0	•	"	 0		"	m	m	 m
T1	89 23	07	+07	270	37	00	89	23	03.5	51.735	51.735	51.7320
Τ2	89 13	02	+08	270	47	06	89	12	58.0	51.008	51.009	51.0037
Т3	85 30	32	+07	274	29	35	85	30	28.5	9.385	9.386	9.3567
Т4	95 25	08	-02	264	34	50	95	25	09.0	11.370	11.370	11.3192
6B	99 27	27	+02	260	32	35	99	27	26.0	9.659	9.659	9.5277
7B	86 03	24	-12	273	56	24	86	03	30.0	9.356	9.355	9.3334

_____ Grand Means _____ _____ Target VA Slope Dist Horiz, Dist Occ. Target Ht Diff

Taryet		VA		STOPE DISC	HOLIZ. DISC	000.	Taryet	IIC DIII
	0	1		m	m	Stn Ht	Height	m
Τ1	89	23	03.5	51.7350	51.7320	0.000	0.000	0.556
Т2	89	12	58.0	51.0085	51.0037	0.000	0.000	0.698
Т3	85	30	28.5	9.3855	9.3567	0.000	0.000	0.735
Т4	95	25	09.0	11.3700	11.3192	0.000	0.000	-1.074
6B	99	27	26.0	9.6590	9.5277	0.000	0.000	-1.587
7B	86	03	30.0	9.3555	9.3334	0.000	0.000	0.643

* TRAVERSE ROUNDS FOUND * - Line (27) ----- Observations From : A3 -----

* DIRECTIONS *

Target		FL		Diff		FR		I	Mean			Reduced Mean			v	V ²
	0	,	"	"	0	,	"	0	,	"	0	,	"			
T1	294	15	39	+00	114	15	39	294	15	39.0	0	00	00.0	+00.0	+00.0	0.0
Т2	317	23	31	+00	137	23	31	317	23	31.0	23	07	52.0	+00.0	+00.0	0.0
Т3	94	51	13	-02	274	51	11	94	51	12.0	160	35	33.0	+00.0	+00.0	0.0
Т4	119	37	35	-05	299	37	30	119	37	32.5	185	21	53.5	+00.0	+00.0	0.0
8B	34	23	28	+07	214	23	35	34	23	31.5	100	07	52.5	+00.0	+00.0	0.0
1B	355	55	49	+03	175	55	52	355	55	50.5	61	40	11.5	+00.0	+00.0	0.0

Sum	+00.0	+00.0

_____ Sum 00.0

Target	Gran	nd I	leans
	0		
Τ1	0	00	00.0
Т2	23	07	52.0
Т3	160	35	33.0
Τ4	185	21	53.5
8B	100	07	52.5
1B	61	40	11.5

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target		FL		Diff		FR		I	Mean	n	SDist(FL)	SDist(FR)	H.Dist
	0	,		"	0	,	"	0	,	"	m		 m
T1	89	01	32	+03	270	58	31	89	01	30.5	29.943	29.943	29.9387
Т2	88	48	23	+02	271	11	39	88	48	22.0	31.242	31.242	31.2352
Т3	88	42	29	+01	271	17	32	88	42	28.5	30.543	30.543	30.5352
Т4	92	05	39	+03	267	54	24	92	05	37.5	30.674	30.674	30.6535
8B	92	23	25	+02	267	36	37	92	23	24.0	12.754	12.753	12.7424
1B	66	31	20	+02	293	28	42	66	31	19.0	16.559	16.558	15.1877

	Grand Means														
Target	 VA	Slope Dist	Horiz. Dist	0cc.	Target	Ht Diff									

Target		VA		Slope Dist	Horiz. Dist	Occ.	Target	Ht Diff
	0	1		m	m	Stn Ht	Height	m
T1	89	01	30.5	29.9430	29.9387	0.000	0.000	0.510
Т2	88	48	22.0	31.2420	31.2352	0.000	0.000	0.651
Т3	88	42	28.5	30.5430	30.5352	0.000	0.000	0.689
Т4	92	05	37.5	30.6740	30.6535	0.000	0.000	-1.121
8B	92	23	24.0	12.7535	12.7424	0.000	0.000	-0.532
1B	66	31	19.0	16.5585	15.1877	0.000	0.000	6.597

* TRAVERSE ROUNDS FOUND	* - Line (40)		
	Observations From :	A4	

* DIRECTIO	NS *
------------	------

Target		FL		Diff		FR		1	Mean	n	Redu	lceo	d Mean	v '	v	V ²
	o	,		"	0	,		0	,	"	0	,	"			
T1	177	52	21	-03	357	52	18	177	52	19.5	0	00	00.0	+00.0	+00.0	0.0
Т2	209	04	02	-04	29	03	58	209	04	10.0	31	11	40.5	+00.0	+00.0	0.0
Т3	348	09	10	-01	168	09	09	348	09	09.5	170	16	50.0	+00.0	+00.0	0.0
Т4	7	54	10	-08	187	54	02	7	54	06.0	190	01	46.5	+00.0	+00.0	0.0
8B	313	51	25	+05	133	51	30	313	51	27.5	135	59	08.0	+00.0	+00.0	0.0
1B	274	48	47	+09	94	48	56	274	48	51.5	96	56	32.0	+00.0	+00.0	0.0

Sum +00.0 +00.0

-----Sum 00.0

Target	Grai	nd I	nd Means				
	0						
Τ1	0	00	00.0				
Τ2	31	11	40.5				
Т3	170	16	50.0				
Τ4	190	01	46.5				
8B	135	59	08.0				

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target		FL		Diff		FR		I	Mean	n	SDist(FL)	SDist(FR)	H.Dist
	0			"	0			•			 m		 m
T1	88	38	21	+03	271	21	42	88	38	19.5	22.100	22.100	22.0938
Т2	88	22	32	+12	271	37	40	88	22	26.0	23.501	23.501	23.4915
Т3	88	55	52	+01	271	04	09	88	55	51.5	37.721	37.722	37.7149
Т4	91	38	17	+01	268	21	44	91	38	16.5	38.663	38.663	38.6472
8B	91	57	55	+02	268	02	07	91	57	54.0	15.059	15.060	15.0506
1B	61	05	34	+02	298	54	28	61	05	33.0	13.679	13.679	11.9746

Grand Means

Target	VA ° ' "	Slope Dist m	Horiz. Dist m	Occ. Stn Ht	Target Height	Ht Diff m
Т1	88 38 19.5	22.1000	22.0938	0.000	0.000	0.525
Т2	88 22 26.0	23.5010	23.4915	0.000	0.000	0.667
Т3	88 55 51.5	37.7215	37.7149	0.000	0.000	0.704
Т4	91 38 16.5	38.6630	38.6472	0.000	0.000	-1.105
8B	91 57 54.0	15.0595	15.0506	0.000	0.000	-0.516
1B	61 05 33.0	13.6790	11.9746	0.000	0.000	6.612

* DIRECTIONS *

Target		FL		Diff		FR		I	Mean	n	Redu	uceo	d Mean	v '	V	V ²
	 0	,		"	o	,	"	0	,	"	0	1	"			
Т1	174	28	02	-01	354	28	01	174	28	01.5	0	00	00.0	+00.0	+00.0	0.0
Т2	217	36	41	-02	37	36	39	217	36	40.0	43	08	38.5	+00.0	+00.0	0.0
Т3	350	55	52	+10	170	56	02	350	55	57.0	176	27	55.5	+00.0	+00.0	0.0
Т4	7	45	32	+02	187	45	34	7	45	33.0	193	17	31.5	+00.0	+00.0	0.0
1B	304	11	29	+01	124	11	30	304	11	29.5	129	43	28.0	+00.0	+00.0	0.0
2B	234	29	00	-06	54	28	54	234	28	57.0	60	00	55.5	+00.0	+00.0	0.0
3B	199	26	35	+02	19	26	37	199	26	36.0	24	58	34.5	+00.0	+00.0	0.0

Sum +00.0 +00.0

Sum 00.0

Target	Gran	nd N	leans
	0	,	"
Τ1	0	00	00.0
Τ2	43	80	38.5
Т3	176	27	55.5
Т4	193	17	31.5
1B	129	43	28.0
2B	60	00	55.5
3B	24	58	34.5

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target		FL		Diff		FR		1	Mear	r	SDist(FL)	SDist(FR)	H.Dist
	0	,	"	"	0	,	"	0		"	m		 m
T1	88	09	07	+03	271	50	56	88	09	05.5	15.576	15.576	15.5679
Т2	87	54	05	+04	272	05	59	87	54	03.0	17.591	17.591	17.5792
Т3	89	06	52	+04	270	53	12	89	06	50.0	44.068	44.068	44.0627
Т4	91	25	37	+03	268	34	26	91	25	35.5	45.284	45.284	45.2700

1B	64 03 37	-02	295 56 2	21 64	03	38.0	15.064	15.065	13.5469
2B	82 44 38	+00	277 15 2	22 82	44	38.0	16.350	16.349	16.2186
3B	88 47 28	+04	271 12 3	36 88	47	26.0	15.597	15.598	15.5940

Grand Means Target VA Slope Dist Horiz. Dist Occ. Target Ht Diff T1 88 09 05.5 15.5760 15.5679 0.000 0.000 0.502 T2 87 54 03.0 17.5910 17.5792 0.000 0.000 0.644 T3 89 06 50.0 44.0680 44.0627 0.000 0.600 -1.127 IB 64 03 38.0 15.0645 13.5469 0.000 0.000 6.590 2B 82 44 38.0 16.3495 16.2186 0.000 0.000 2.065 3B 88 47 26.0 15.5975 15.5940 0.000 0.000 0.329

* TRAVERSE ROUNDS FOUND * - Line (68)

----- A6 ------ Observations From : A6 -----

Target		FL		Diff		FR		I	Mean	n	Redu	lceo	d Mean	v '	v	V ²
	0	,		"	0	1		0	,	"	• •	,	"			
T1	80	57	54	-10	260	57	44	80	57	49.0	0	00	00.0	+00.0	+00.0	0.0
Т2	158	01	55	+04	338	01	59	158	01	57.0	77	04	08.0	+00.0	+00.0	0.0
Т3	299	34	53	+05	119	34	58	299	34	55.5	218	37	06.5	+00.0	+00.0	0.0
Т4	313	48	44	+02	133	48	46	313	48	45.0	232	50	56.0	+00.0	+00.0	0.0
2B	194	03	45	+00	14	03	45	194	03	45.0	113	05	56.0	+00.0	+00.0	0.0
3B	118	06	16	-02	298	06	14	118	06	15.0	37	80	26.0	+00.0	+00.0	0.0

Sum +00.0 +00.0

_____ Sum 00.0

Target	Grai	nd I	Means
	0		"
Τ1	0	00	00.0
Т2	77	04	08.0
Т3	218	37	06.5
Τ4	232	50	56.0
2B	113	05	56.0
3B	37	80	26.0

* VERTICAL ANGLES AND SLOPE DISTANCES *

Target		FL		Diff		FR		1	Mean	n	SDist(FL)	SDist(FR)	H.Dist
	0	,		"	0		"	0	,	"	m	m	 m
Τ1	87	15	18	+04	272	44	46	87	15	16.0	11.012	11.012	10.9994
Т2	85	31	27	+04	274	28	37	85	31	25.0	8.579	8.580	8.5533
Т3	89	12	01	+00	270	47	59	89	12	01.0	50.622	50.622	50.6171
Т4	91	11	14	+06	268	48	52	91	11	11.0	53.257	53.257	53.2456
2B	75	17	05	+03	284	42	58	75	17	03.5	8.228	8.228	7.9581
3B	87	20	25	+04	272	39	39	87	20	23.0	7.635	7.635	7.6268

	Grand Means									
Target T1 T2	VA 87 15 16.0 85 31 25.0	Slope Dist m 11.0120 8.5795	Horiz. Dist m 10.9994 8.5533	Occ. Stn Ht 0.000 0.000	Target Height 0.000 0.000	Ht Diff m 0.527 0.670				

ΤЗ	89 12 01.0	50.6220	50.6171	0.000	0.000	0.707
Т4	91 11 11.0	53.2570	53.2456	0.000	0.000	-1.102
2B	75 17 03.5	8.2280	7.9581	0.000	0.000	2.090
3B	87 20 23.0	7.6350	7.6268	0.000	0.000	0.354

Generation of Approximate Starting Coordinates by Least Squares

	East(m)	North(m)	
 T2	512.15	2041.()9
Т3	505.91	1983.8	37
Т4	492.81	1983.0)8
A2	500.43	1991.4	15
A3	497.86	2013.3	32
A4	499.83	2021.0)9
A5	500.84	2027.0	
A6	506.73	2034.4	18
6B	497.15	1982.5	51
7B	508.06	1996.8	33
8B	510.21	2010.3	L9
1B	511.71	2019.5	55
2B	514.43	2036.4	18
ЗВ	506.65	2042.3	L1
	2D Parametric Lea	ast Squares Adjustment	Results
30			
: 6 : 37 : 1	orientation paramenter directions. azimuths. horizontal distances.	S.	
Cotal number	of unknowns = 36 of observations = 75 ard Deviations are:		
Jeraurt Stanu		5 mm for horizontal d	istances.
	: 1. : 1.	0 ppm for horizontal of 0 secs for Directions 0 mm for instrument ce 0 mm for target centre	entring errors.
	: 1. : 1. : 1. had a maximum coordina had a maximum coordina	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: 	entring errors. ing errors. Point A5
Iteration: 2	: 1. : 1. : 1. had a maximum coordina had a maximum coordina	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: 	entring errors. ing errors. Point A5
Teration: 2 GROUP VARIANC Obs Type	: 1. : 1. : 1. had a maximum coordina had a maximum coordina E FACTORS: 	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: ate shift of 0.1mm for ate shift of 0.0mm for Sum of Redundancies	entring errors. ing errors. Point A5 Point 2B Group VF
Iteration: 2 GROUP VARIANC Obs Type Directions	: 1. : 1. : 1. had a maximum coordina had a maximum coordina E FACTORS: 	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: ate shift of 0.1mm for ate shift of 0.0mm for Sum of Redundancies 16.93	entring errors. ing errors. Point A5 Point 2B Group VF 0.10
teration: 2 ROUP VARIANC bs Type irections zimuths	: 1. : 1. : 1. had a maximum coordina had a maximum coordina E FACTORS: 	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: ate shift of 0.1mm for ate shift of 0.0mm for Sum of Redundancies	entring errors. ing errors. Point A5 Point 2B Group VF
Teration: 2 ROUP VARIANC Obs Type Directions Azimuths	: 1. : 1. : 1. had a maximum coordina had a maximum coordina E FACTORS: 	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: ate shift of 0.1mm for ate shift of 0.0mm for Sum of Redundancies 16.93 0.00	entring errors. ing errors. Point A5 Point 2B Group VF 0.10 NaN 0.09
Eteration: 2 SROUP VARIANC Obs Type Directions Azimuths Horiz Distanc	: 1. : 1. : 1. had a maximum coordina had a maximum coordina E FACTORS: 	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: ate shift of 0.1mm for ate shift of 0.0mm for Sum of Redundancies 16.93 0.00 22.07 h 2, Variance Factor =	entring errors. ing errors. Point A5 Point 2B Group VF 0.10 NaN 0.09
ROUP VARIANC SROUP VARIANC Obs Type Directions Noriz Distanc	<pre>: 1. : 1. : 1. : 1. had a maximum coordina had a maximum coordina E FACTORS: </pre>	0 secs for Directions 0 mm for instrument ce 0 mm for target centr: ate shift of 0.1mm for ate shift of 0.0mm for Sum of Redundancies 16.93 0.00 22.07 a 2, Variance Factor = on 2 Std De	entring errors. ing errors. Point A5 Point 2B Group VF 0.10 NaN 0.09

A1 FIXED 500.0000 2000.0000

Т1	500.0000	2043.1815	1.4	0.9	1.4	0.9	90
Τ2	512.1517	2041.0904	1.6	1.0	1.7	0.9	109
Т3	505.9126	1983.8672	1.2	0.9	1.2	0.9	75
Т4	492.8099	1983.0838	1.2	0.9	1.2	0.9	109
A2	500.4325	1991.4512	1.0	0.9	1.0	0.9	90
A3	497.8552	2013.3196	0.9	1.0	1.0	0.9	8
A4	499.8309	2021.0885	1.0	1.0	1.1	1.0	81
A5	500.8365	2027.6363	1.2	1.0	1.2	1.0	90
A6	506.7263	2034.4784	1.4	1.0	1.5	1.0	105
6B	497.1491	1982.5070	1.3	1.2	1.3	1.2	97
7B	508.0606	1996.8283	1.2	1.1	1.2	1.1	49
8B	510.2058	2010.1851	1.3	1.4	1.4	1.3	160
18	511.7060	2019.5506	1.2	1.2	1.3	1.1	138
2B	514.4280	2036.4845	1.8	1.5	1.8	1.3	116
3B	506.6520	2042.1051	1.9	1.4	1.9	1.4	101

Coordinate Database has been updated with the adjusted coords.

Measurement = observed value a-c = arc to chord correction v = residual = correction s = input standard deviation of ol

 ${\rm s}$ = input standard deviation of observation, incl. centring and ppm where appl.

r = redundancy number for observation

Residuals after iteration 2

Туре	From	То	a-c	Measurement	v	S	v/s	r
AZIMUTH	A1	T1	0.0"	0 0 0.0	0.0"	6.8"	0.0	0.00
DIRECTION	A1	Τ1	0.0"	0 0 0.0	0.3"	6.8"	0.0	0.42
DIRECTION	A1	Τ2	0.0"	16 28 29.0	-0.3"	6.9"	0.0	0.43
DIRECTION	A1	Т3	0.0"	159 52 19.0	1.4"	17.0"	0.1	0.54
DIRECTION	A1	Т4	0.0"	203 1 39.0	0.9"	15.9"	0.1	0.51
DIRECTION	A1	6B	0.0"	189 15 23.0	0.7"	16.5"	0.0	0.35
DIRECTION	A1	7в	0.0"	111 28 58.5	-13.6"	33.7"	-0.4	0.39
DIRECTION	A2	Τ1	0.0"	0 0 0.0	0.0"	5.7"	0.0	0.42
DIRECTION	A2	Т2	0.0"	13 45 45.5	-0.1"	5.8"	0.0	0.43
DIRECTION	A2	Т3	0.0"	144 37 42.0	-3.9"	31.2"	-0.1	0.55
DIRECTION	A2	Т4	0.0"	222 48 41.0	2.8"	25.8"	0.1	0.52
DIRECTION	A2	6B	0.0"	200 38 15.5	-1.8"	30.6"	-0.1	0.35
DIRECTION	A2	7в	0.0"	55 17 51.5	4.7"	31.3"	0.2	0.40
DIRECTION	A3	T1	0.0"	0 0 0.0	0.1"	9.8"	0.0	0.48
DIRECTION	A3	Τ2	0.0"	23 7 52.0	0.9"	9.4"	0.1	0.50
DIRECTION	A3	Т3	0.0"	160 35 33.0	-3.5"	9.6"	-0.4	0.48
DIRECTION	A3	Т4	0.0"	185 21 53.5	1.5"	9.6"	0.2	0.44
DIRECTION	A3	8B	0.0"	100 7 52.5	3.1"	22.9"	0.1	0.40
DIRECTION	A3	1B	0.0"	61 40 11.5	1.7"	19.2"	0.1	0.52
DIRECTION	A4	Τ1	0.0"	0 0 0.0	1.4"	13.2"	0.1	0.47
DIRECTION	A4	Т2	0.0"	31 11 40.5	-1.5"	12.5"	-0.1	0.50
DIRECTION	A4	Т3	0.0"	170 16 50.0	5.0"	7.8"	0.6	0.48
DIRECTION	A4	Т4	0.0"	190 1 46.5	-3.7"	7.6"	-0.5	0.44
DIRECTION	A4	8B	0.0"	135 59 8.0	-3.9"	19.4"	-0.2	0.40
DIRECTION	A4	1B	0.0"	96 56 32.0	-4.3"	24.4"	-0.2	0.53
DIRECTION	A5	Τ1	0.0"	0 0 0.0	-1.2"	18.8"	-0.1	0.55
DIRECTION	A5	Т2	0.0"	43 8 38.5	1.1"	16.6"	0.1	0.58
DIRECTION	A5	Т3	0.0"	176 27 55.5	-3.1"	6.7"	-0.5	0.46
DIRECTION	A5	Т4	0.0"	193 17 31.5	2.6"	6.5"	0.4	0.42
DIRECTION	A5	1B	0.0"	129 43 28.0	2.1"	21.6"	0.1	0.52
DIRECTION	A5	2B	0.0"	60 0 55.5	-0.6"	18.0"	0.0	0.39
DIRECTION	A5	3B	0.0"	24 58 34.5	1.9"	18.7"	0.1	0.37
DIRECTION	A6	Τ1	0.0"	0 0 0.0	-3.7"	26.5"	-0.1	0.54
DIRECTION	A6	Т2	0.0"	77 4 8.0	-3.3"	34.1"	-0.1	0.55

DIRECTION	A6	Т3	0.0"	218 37 6.5	1.1"	5.8"	0.2	0.44
DIRECTION	A6	Т4	0.0"	232 50 56.0	-0.6"	5.6"	-0.1	0.40
DIRECTION	A6	2B	0.0"	113 5 56.0	-3.8"	36.7"	-0.1	0.39
DIRECTION	A6	3B	0.0"	37 8 26.0	-1.6"	38.3"	0.0	0.37
H DISTANCE	A1	5D T1	0.0	43.1813	0.2mm	1.5mm	0.1	0.67
H DISTANCE	A1	T2		42.8502	-0.6mm	1.5mm	-0.4	0.68
II DIGIANCE	AT	12		42.0002	0.01111	1.01111	0.1	0.00
H DISTANCE	A1	Т3		17.1819	0.3mm	1.5mm	0.2	0.66
H DISTANCE	A1	Т4		18.3807	0.1mm	1.5mm	0.1	0.67
H DISTANCE	A1	6B		17.7239	-0.1mm	1.5mm	-0.1	0.42
H DISTANCE	A1	7B		8.6620	0.1mm	1.5mm	0.1	0.44
H DISTANCE	A2	T1		51.7320	0.1mm	1.6mm	0.1	0.68
H DISTANCE	A2	Т2		51.0037	0.2mm	1.6mm	0.1	0.68
H DISTANCE	A2	тЗ		9.3567	0.1mm	1.5mm	0.1	0.65
H DISTANCE	A2	т4		11.3192	-0.3mm	1.5mm	-0.2	0.65
H DISTANCE	A2	6B		9.5277	0.1mm	1.5mm	0.1	0.42
H DISTANCE	A2	7B		9.3334	-0.6mm	1.5mm	-0.4	0.43
H DISTANCE	A3	T1		29.9387	0.2mm	1.5mm	0.1	0.67
H DISTANCE	A3	T2		31.2352	-0.4mm	1.5mm	-0.3	0.67
H DISTANCE	A3	T3		30.5352	-0.6mm	1.5mm	-0.4	0.67
H DISTANCE	A3	13 T4		30.6535	0.3mm	1.5mm	0.2	0.67
H DISTANCE	A3	8B		12.7424	-0.3mm	1.5mm	-0.2	0.43
II DIGIANCE	A.J	0D		12.1121	0.5100	1.01111	0.2	0.45
H DISTANCE	A3	1B		15.1877	0.1mm	1.5mm	0.1	0.57
H DISTANCE	A4	Τ1		22.0938	-0.2mm	1.5mm	-0.1	0.67
H DISTANCE	A4	Т2		23.4915	0.6mm	1.5mm	0.4	0.67
H DISTANCE	A4	Т3		37.7149	0.0mm	1.5mm	0.0	0.68
H DISTANCE	A4	Т4		38.6472	0.6mm	1.5mm	0.4	0.68
H DISTANCE	A4	8B		15.0506	0.1mm	1.5mm	0.1	0.43
H DISTANCE	A4	1B		11.9746	-0.3mm	1.5mm	-0.2	0.56
H DISTANCE	A5	T1		15.5679	-0.2mm	1.5mm	-0.1	0.69
H DISTANCE	A5	T2		17.5792	0.5mm	1.5mm	0.4	0.68
H DISTANCE	A5	Т3		44.0627	-0.2mm	1.5mm	-0.2	0.70
H DISTANCE	A5	Т4		45.2700	-0.3mm	1.5mm	-0.2	0.69
H DISTANCE	A5	1B		13.5469	0.2mm	1.5mm	0.1	0.56
H DISTANCE	A5	2B		16.2186	-0.7mm	1.5mm	-0.5	0.42
H DISTANCE	A5	3B		15.5940	-0.2mm	1.5mm	-0.1	0.42
H DISTANCE	A6	T1		10.9994	0.0mm	1.5mm	0.0	0.65
H DISTANCE	A6	Т2		8.5533	-0.3mm	1.5mm	-0.2	0.66
H DISTANCE	A6	Т3		50.6171	0.6mm	1.6mm	0.4	0.68
H DISTANCE	A6	т4		53.2456	-0.3mm	1.6mm	-0.2	0.68
H DISTANCE	A6	2B		7.9581	0.7mm	1.5mm	0.4	0.41
H DISTANCE	A6	3B		7.6268	0.3mm	1.5mm	0.2	0.42

Largest Residuals Type	Obs No.	Correction
Direction	7	-13.6"
Horizontal Distance	62	-0.7mm

Elfy - [E:\UNI\uni class's\year 7 (2016)\project_semester 1\Field work\elfy\PYMBLE-USQ2.elf] Version 2.4.0.39 1D Least Squares Adjustment Date: 02/09/2016 Time: 3:54:20 PM 1D Parametric Least Squares Adjustment Results _____ There are: 15 height parameters. : 37 height differences. Total number of unknowns = 15 Total number of observations = 37 Default Standard Deviations are: 0.5 mm for height differences. (Spirit Level) : 2.0 mm for height differences. (Trig. Heights) Iteration: 1 had a maximum height shift of 26.7m for Point 1B Iteration: 2 had a maximum height shift of 0.0mm for Point 1B

After iteration 2, Variance Factor = 0.02

Adjusted Heights	after	iteration	2
	/		

Point ID	Status	Height(m)	Stdev(mm)	
A1	FIXED	20.0000		
Τ1		20.5651	1.2	
Т2		20.7072	1.2	
Т3		20.7442	1.2	
Τ4		18.9352	1.2	
A2		20.0091	1.2	
A3		20.0557	1.3	
A4		20.0402	1.3	
A5		20.0627	1.3	
A6		20.0376	1.3	
6B		18.4220	1.5	
7B		20.6520	1.5	
8B		19.5239	1.8	
1B		26.6525	1.6	
2B		22.1277	1.8	
3B		20.3920	1.8	

Coordinate Database has been updated with the adjusted levels

```
Measurement = observed value
v = residual = correction
s = input standard deviation of observation, incl. centring and ppm where appl.
r = redundancy number for observation
Type = method of observation, where: 'T' denotes trignometric observation
'S' denotes spirit level observation
'U' denotes unknown observation - manual entry
```

```
Residuals after iteration 2
```

Туре	From	То	Measurement	v	S	v/s	r	Туре
HT DIFF	A1	T1	0.5647	0.4mm	2.0mm	0.2	0.7	Т
HT DIFF	A1	Т2	0.7079	-0.7mm	2.0mm	-0.4	0.7	Т
HT DIFF	A1	Т3	0.7440	0.2mm	2.0mm	0.1	0.7	Т
HT DIFF	A1	Т4	-1.0648	0.0mm	2.0mm	0.0	0.7	Т
HT DIFF	A1	6B	-1.5779	-0.1mm	2.0mm	0.0	0.4	Т

Largest Res Type	iduals	(Obs No.			Correct	ion	
HT DIFF HT DIFF	A6 A6	2B 3B	2.0901 0.3544	0.0mm 0.0mm	2.0mm 2.0mm	0.0 0.0	0.4 0.4	T T
	2.6	25	0.0001	0.0.	0.0	0 0	0 1	
HT DIFF	A6	Т4	-1.1025	0.1mm	2.0mm	0.1	0.7	Т
HT DIFF	A6	Т3	0.7067	-0.1mm	2.0mm	0.0	0.7	Т
HT DIFF	A6	Т2	0.6696	0.0mm	2.0mm	0.0	0.7	Т
HT DIFF	A6	T1	0.5275	0.0mm	2.0mm	0.0	0.7	Т
HT DIFF	A5	3B	0.3292	0.0mm	2.0mm	0.0	0.4	Т
HT DIFF	A5	2B	2.0650	0.0mm	2.0mm	0.0	0.4	Т
HT DIFF	A5	1B	6.5895	0.3mm	2.0mm	0.1	0.5	Т
HT DIFF	A5	Τ4	-1.1272	-0.3mm	2.0mm	-0.1	0.7	Т
HT DIFF	A5	Т3	0.6816	-0.1mm	2.0mm	0.0	0.7	Т
HT DIFF	A5	Τ2	0.6444	0.1mm	2.0mm	0.0	0.7	Т
	110	± ±	0.0021	0.01111	2.01111	0.0	0.7	-
HT DIFF	A5	T1	0.5024	0.0mm	2.0mm	0.0	0.7	T
HT DIFF	A4	1B	6.6124	-0.1mm	2.0mm	-0.1	0.6	Ť
HT DIFF	A4	8B	-0.5164	0.1mm	2.0mm	0.0	0.4	T
HT DIFF	A4	13 T4	-1.1050	0.0mm	2.0mm	0.0	0.7	Ť
HT DIFF	A4	Т3	0.7039	0.1mm	2.0mm	0.1	0.7	Т
HT DIFF	A4	Τ2	0.6669	0.1mm	2.0mm	0.0	0.7	Т
HT DIFF	A4	T1	0.5250	-0.1mm	2.0mm	-0.1	0.7	Т
HT DIFF	A3	1B	6.5969	-0.1mm	2.0mm	-0.1	0.6	Т
HT DIFF	A3	8B	-0.5318	-0.1mm	2.0mm	0.0	0.4	Т
HT DIFF	A3	Τ4	-1.1206	0.1mm	2.0mm	0.1	0.7	Т
HT DIFF	A3	Т3	0.6888	-0.3mm	2.0mm	-0.1	0.7	Т
HT DIFF	A3	Т2	0.6510	0.5mm	2.0mm	0.2	0.7	Т
HT DIFF	A3	T1	0.5095	-0.1mm	2.0mm	-0.1	0.7	Т
HT DIFF	A2	7B	0.6431	-0.1mm	2.0mm	-0.1	0.4	Т
HT DIFF	A2	6B	-1.5871	0.1mm	2.0mm	0.0	0.4	Т
HT DIFF	A2	Τ4	-1.0738	0.0mm	2.0mm	0.0	0.7	Т
HT DIFF	A2	Т3	0.7351	0.1mm	2.0mm	0.0	0.7	Т
HT DIFF	A2	Т2	0.6980	0.1mm	2.Omm	0.1	0.7	Т
HT DIFF	A2	T1	0.5561	-0.1mm	2.Omm	0.0	0.7	1
					0 0	0 0	0 7	Т

Туре	Obs No.	Correction
Height Diff	15	-0.7mm

Appendix J

Site B-The Office minimally constrained report, 3 fixed points from Pix4D

Quality Report

6

0

6

6

0

!	Important: Click on the different icons for:
	Pelp to analyze the results in the Quality Report
	Additional information about the sections

Click here for additional tips to analyze the Quality Report

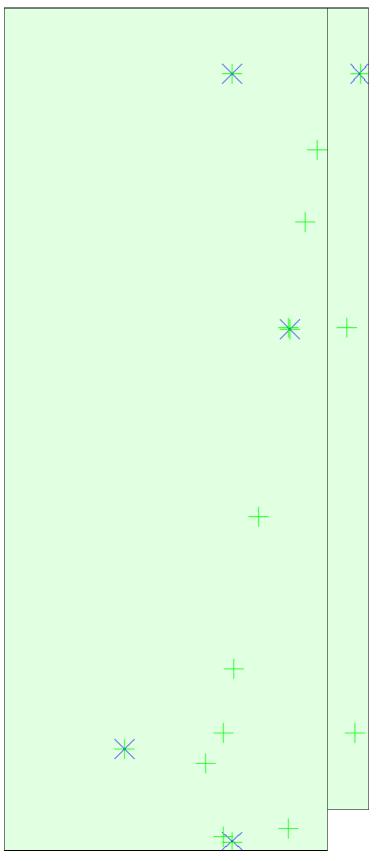
Summary

Ŷ

Project	office-final-2
Processed	2016-09-09 13:24:51
Camera Model Name(s)	ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB)
Average Ground Sampling Distance (GSD)	0.22 cm / 0.08 in
Time for Initial Processing (without report)	11m:11s

Quality Check

Images	median of 92033 keypoints per image	0
② Dataset	56 out of 56 images calibrated (100%), all images enabled	0
Camera Optimization	0.59% relative difference between initial and optimized internal camera parameters	0
Matching	median of 21128.8 matches per calibrated image	0
Georeferencing	yes, 3 GCPs (3 3D), mean RMS error = 0 m	0


Calibration Details

Number of Calibrated Images	56 out of 56
Number of Geolocated Images	0 out of 56

Initial Image Positions

The preview is not generated for images without geolocation.

Computed Image/GCPs/Manual Tie Points Positions

Uncertainty ellipses 100x magnified

Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane). Dark green ellipses indicate the absolute position uncertainty of the bundle block adjustment result.

Obsolute camera position and orientation uncertainties

6

	X[m]	Y[m]	Z[m]	Omega [degree]	Phi [degree]	Kappa [degree]
Mean	0.004	0.003	0.013	0.077	0.020	0.077
Sigma	0.001	0.000	0.006	0.048	0.007	0.062

Number of 2D Keypoint Observations for Bundle Block Adjustment	1136332
Number of 3D Points for Bundle Block Adjustment	434122
Mean Reprojection Error [pixels]	0.195

Internal Camera Parameters

ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB). Sensor Dimensions: 35.000 [mm] x 23.359 [mm]

EXIF ID: ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	7360.000 [pixel] 35.000 [mm]	3680.000 [pixel] 17.500 [mm]	2456.000 [pixel] 11.679 [mm]	0.000	0.000	0.000	0.000	0.000
Optimized Values	7403.745 [pixel] 35.208 [mm]	3690.940 [pixel] 17.552 [mm]	2451.734 [pixel] 11.659 [mm]	0.055	-0.242	0.031	0.000	0.001
Uncertainties (Sigma)	1.212 [pixel] 0.006 [mm]	1.026 [pixel] 0.005 [mm]	1.277 [pixel] 0.006 [mm]	0.001	0.005	0.010	0.000	0.000

The number of Automatic Tie Points (ATPs) per pixel averaged over all images of the camera model is color coded between black and white. White indicates that, in average, more than 16 ATPs are extracted at this pixel location. Black indicates that, in average, 0 ATP has been extracted at this pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization.

2D Keypoints Table

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	92033	21129
Min	65544	4018
Max	97659	29153
Mean	86436	20292

3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	310500
In 3 Images	62010
In 4 Images	26809
In 5 Images	14682
In 6 Images	8114
In 7 Images	4885
In 8 Images	2972
In 9 Images	1791
In 10 Images	1068
In 11 Images	664
In 12 Images	378
In 13 Images	152
In 14 Images	72
In 15 Images	22
In 16 Images	3

6

6

0

0

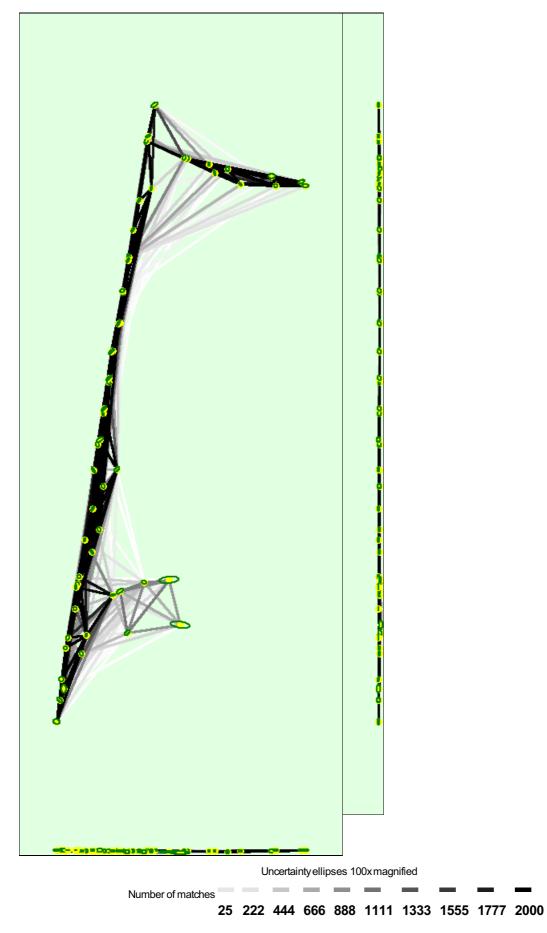


Figure 5: Computed image positions with links between matched images. The darkness of the links indicates the number of matched 2D keypoints between the images. Bright links indicate weak links and require manual tie points or more images. Dark green ellipses indicate the relative camera position uncertainty of the bundle block adjustment result.

Relative camera position and orientation uncertainties

X[m] Y[m] Z[m] Omega [degree] Phi [degree] Kappa [degree]

Mean	0.002	0.002	0.001	0.024	0.011	0.021
Sigma	0.001	0.001	0.000	0.013	0.008	0.023

② Manual Tie Points

MTP Name	Projection Error [pixel]	Verified/Marked
mtp7	0.376	12/12
mtp8	0.813	9/9
mtp9	0.283	6/6
mtp11	0.349	8/8
mtp12	0.354	10/10
mtp13	0.522	10/10
mtp14	0.315	8/8
mtp15	0.402	11/11

Projection errors for manual tie points. The last column counts the number of images where the manual tie point has been automatically verified vs. manually marked.

Initial Processing Details

System Information

Hardware	CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz RAVt 32GB GPU: NVDIA GeForce GTX 550 Ti (Driver: 10.18.13.5382)
Operating System	Windows 10 Home, 64-bit

Coordinate Systems

Ground Control Point (GCP) Coordinate System	Arbitrary (m)
Output Coordinate System	Arbitrary (m)

Processing Options

Detected Template	No Template Available
Keypoints Image Scale	Full, Image Scale: 1
Advanced: Matching Image Pairs	Free Flight or Terrestrial
Advanced: Matching Strategy	Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction	Targeted Number of Keypoints: Automatic
Advanced: Calibration	Calibration Method: Standard Internal Parameters Optimization: All External Parameters Optimization: All Rematch: Auto, yes

0

0

6

6

6

Appendix K

Site B-The Office fully constrained report from Pix4D

Quality Report

6

6

6

6

6

Phelp to analyze the results in the Quality Report

O Additional information about the sections

Click here for additional tips to analyze the Quality Report

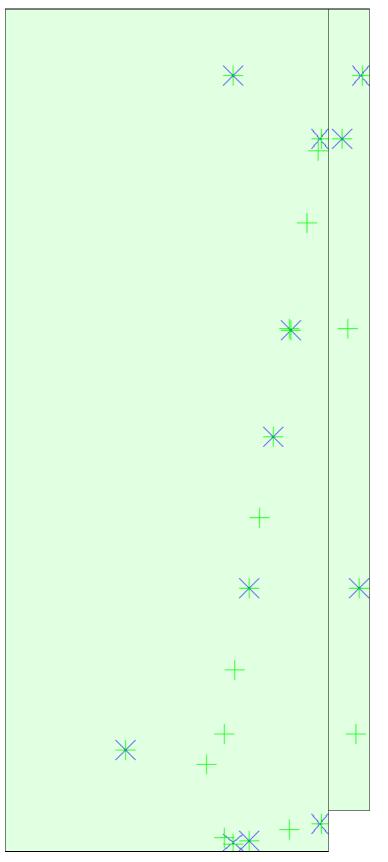
Summary

Q

Project	office-final-2
Processed	2016-09-09 13:51:37
Camera Model Name(s)	ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB)
Average Ground Sampling Distance (GSD)	0.22 cm / 0.08 in
Time for Initial Processing (without report)	11m:09s

Quality Check

Images	median of 92033 keypoints per image	0
② Dataset	56 out of 56 images calibrated (100%), all images enabled	0
Camera Optimization	0.62% relative difference between initial and optimized internal camera parameters	0
? Matching	median of 21140.4 matches per calibrated image	0
? Georeferencing	yes, 6 GCPs (6 3D), mean RMS error = 0 m	0


Calibration Details

Number of Calibrated Images	56 out of 56
Number of Geolocated Images	0 out of 56

Initial Image Positions

The preview is not generated for images without geolocation.

Ocmputed Image/GCPs/Manual Tie Points Positions

Uncertainty ellipses 100x magnified

Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane). Dark green ellipses indicate the absolute position uncertainty of the bundle block adjustment result.

6

	X[m]	Y[m]	Z[m]	Omega [degree]	Phi [degree]	Kappa [degree]
Mean	0.002	0.002	0.002	0.025	0.010	0.021
Sigma	0.001	0.001	0.000	0.013	0.006	0.022

326

Number of 2D Keypoint Observations for Bundle Block Adjustment	1135445
Number of 3D Points for Bundle Block Adjustment	433678
Mean Reprojection Error [pixels]	0.195

Internal Camera Parameters

ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912 (RGB). Sensor Dimensions: 35.000 [mm] x 23.359 [mm]

EXIF ID: ILCE-7R_FE35mmF2.8ZA_35.0_7360x4912

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	7360.000 [pixel] 35.000 [mm]	3680.000 [pixel] 17.500 [mm]	2456.000 [pixel] 11.679 [mm]	0.000	0.000	0.000	0.000	0.000
Optimized Values	7405.931 [pixel] 35.218 [mm]	3691.814 [pixel] 17.556 [mm]	2439.004 [pixel] 11.599 [mm]	0.055	-0.242	0.031	-0.000	0.001
Uncertainties (Sigma)	0.889 [pixel] 0.004 [mm]	0.919 [pixel] 0.004 [mm]	0.921 [pixel] 0.004 [mm]	0.001	0.005	0.010	0.000	0.000

The number of Automatic Tie Points (ATPs) per pixel averaged over all images of the camera model is color coded between black and white. White indicates that, in average, more than 16 ATPs are extracted at this pixel location. Black indicates that, in average, 0 ATP has been extracted at this pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization.

2D Keypoints Table

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	92033	21140
Min	65544	4018
Max	97659	29150
Mean	86436	20276

③ 3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	310049
In 3 Images	62020
In 4 Images	26808
In 5 Images	14679
In 6 Images	8117
In 7 Images	4884
In 8 Images	2971
In 9 Images	1791
In 10 Images	1067
In 11 Images	665
In 12 Images	378
In 13 Images	152
In 14 Images	72
In 15 Images	22
In 16 Images	3

6

0

6

6

0

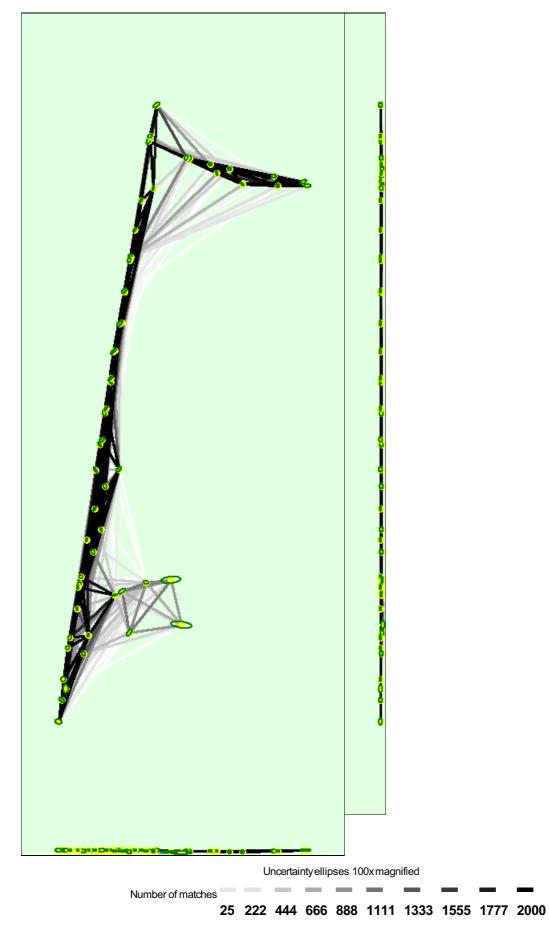


Figure 5: Computed image positions with links between matched images. The darkness of the links indicates the number of matched 2D keypoints between the images. Bright links indicate weak links and require manual tie points or more images. Dark green ellipses indicate the relative camera position uncertainty of the bundle block adjustment result.

Relative camera position and orientation uncertainties

X[m] Y	Y[m] Z[m]	Omega [degree]	Phi [degree]	Kappa [degree]	
--------	-----------	----------------	--------------	----------------	--

Mean	0.002	0.002	0.001	0.024	0.011	0.021
Sigma	0.001	0.001	0.000	0.013	0.008	0.023

② Manual Tie Points

MTP Name	Projection Error [pixel]	Verified/Marked
mtp7	0.370	12/12
mtp8	0.834	9/9
mtp9	0.258	6/6
mtp11	0.341	8/8
mtp12	0.380	10/10
mtp13	0.522	10/10
mtp14	0.372	8/8
mtp15	0.441	11/11

Projection errors for manual tie points. The last column counts the number of images where the manual tie point has been automatically verified vs. manually marked.

Initial Processing Details

System Information

Hardware	CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz RAVt 32GB GPU: NVDIA GeForce GTX 550 Ti (Driver: 10.18.13.5382)
Operating System	Windows 10 Home, 64-bit

Coordinate Systems

Ground Control Point (GCP) Coordinate System	Arbitrary (m)	
Output Coordinate System	Arbitrary (m)	

Processing Options

Detected Template	No Template Available
Keypoints Image Scale	Full, Image Scale: 1
Advanced: Matching Image Pairs	Free Flight or Terrestrial
Advanced: Matching Strategy	Use Geometrically Verified Matching: no
Advanced: Keypoint Extraction	Targeted Number of Keypoints: Automatic
Advanced: Calibration	Calibration Method: Standard Internal Parameters Optimization: All External Parameters Optimization: All Rematch: Auto, yes

0

0

6

6

6

Appendix L

Site B-The Office minimally constrained report, 3 fixed points from Trimble Realworks

Registration Report (Target-Based) Report by station

User Name: lbroome

Date: Tue Jul 05 18:58:55 2016 Project Name: pmble-2

Linear Measurement Units: Meters Coordinates System: X, Y, Z

5 STATION(S) -	Mean Distance: 0.0023	Max Distance: 0.0043
13 TARGET(S) -	Mean Distance: 0.0032	Max Distance: 0.0048

Pymbl_Scan_000 - 7 Scanned Objects - Mean Distance: 0.0011

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	Y	Z	Error	to Scanner
006	017	3	0.0005 m	-0.0002 m	-0.0000 m	0.0005 m	0.0002 m	11.4970 m
001	012	3	0.0004 m	-0.0002 m	-0.0003 m	0.0002 m	0.0001 m	11.8901 m
005	016	3	0.0011 m	-0.0001 m	-0.0001 m	0.0011 m	0.0002 m	10.8905 m
007	018	4	0.0014 m	0.0004 m	0.0003 m	-0.0013 m	0.0005 m	19.7875 m
Target5							0.0003 m	5.8399 m
Target6							0.0004 m	12.7020 m
Target7	024	2	0.0023 m	0.0001 m	-0.0023 m	0.0003 m	0.0004 m	12.1207 m

Pymbl_Scan_002	-	10 Scanned	Objects -	Mean	Distance:	0.0043
----------------	---	------------	-----------	------	-----------	--------

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
007	018	4	0.0056 m	-0.0005 m	0.0013 m	-0.0055 m	0.0001 m	8.2188 m
001	012	3	0.0042 m	0.0002 m	0.0005 m	-0.0042 m	0.0001 m	9.7991 m
004	015	3	0.0009 m	0.0003 m	-0.0008 m	0.0002 m	0.0002 m	10.1559 m
006	017	3	0.0040 m	-0.0001 m	-0.0004 m	-0.0040 m	0.0001 m	9.1408 m
005	016	3	0.0041 m	-0.0001 m	-0.0002 m	-0.0041 m	0.0001 m	6.1597 m
003	014	3	0.0034 m	-0.0008 m	-0.0001 m	0.0033 m	0.0002 m	14.2087 m
009	020	3	0.0046 m	0.0000 m	-0.0001 m	0.0046 m	0.0002 m	15.0756 m
002	013	3	0.0042 m	0.0005 m	-0.0004 m	0.0042 m	0.0003 m	15.3472 m
008	019	3	0.0073 m	0.0006 m	-0.0002 m	0.0072 m	0.0002 m	20.8934 m
Target17							0.0004 m	8.8092 m

Pymbl_Scan_003 - 13 Scanned Objects - Mean Distance: 0.0032

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	Y	Z	Error	to Scanner
001	012	3	0.0041 m	0.0000 m	-0.0002 m	0.0040 m	0.0004 m	25.8356 m
002	013	3	0.0025 m	-0.0002 m	0.0002 m	-0.0025 m	0.0001 m	7.9292 m
003	014	3	0.0049 m	0.0007 m	0.0001 m	-0.0048 m	0.0001 m	6.3883 m
004	015	3	0.0016 m	0.0005 m	0.0007 m	-0.0013 m	0.0001 m	11.9989 m
005	016	3	0.0030 m	0.0002 m	0.0003 m	0.0030 m	0.0005 m	20.9443 m
006	017	3	0.0035 m	0.0003 m	0.0004 m	0.0035 m	0.0006 m	21.5927 m
007	018	4	0.0013 m	-0.0006 m	-0.0007 m	0.0009 m	0.0005 m	19.3303 m
010	021	2	0.0034 m	-0.0008 m	0.0001 m	0.0033 m	0.0002 m	14.0177 m
008	019	3	0.0032 m	-0.0003 m	-0.0000 m	-0.0032 m	0.0001 m	7.6024 m
009	020	3	0.0045 m	0.0001 m	-0.0001 m	-0.0045 m	0.0002 m	2.2750 m
Target28							0.0003 m	6.1692 m
011	022	3	0.0025 m	0.0019 m	-0.0007 m	0.0016 m	0.0003 m	17.4414 m
Target46	023	2	0.0041 m	-0.0020 m	0.0030 m	-0.0019 m	0.0011 m	14.0217 m

Object Name	Corresponding Target	Scan Per Target	Residual Error	Delta X	Delta Y	Delta Z	Fitting Error	Distance to Scanner
008	019	202 202900 3	0.0040 m	-0.0003 m	0.0003 m	-0.0040 m	0.0001 m	10.2800 m
004	015	3	0.0014 m	-0.0008 m	0.0001 m	0.0011 m	0.0001 m	22.6895 m
003	014	3	0.0015 m	0.0001 m	-0.0001 m	0.0015 m	0.0007 m	19.0600 m
010	021	2	0.0034 m	0.0008 m	-0.0001 m	-0.0033 m	0.0002 m	3.2213 m
002	013	3	0.0018 m	-0.0004 m	0.0002 m	-0.0017 m	0.0007 m	16.3772 m
009	020	3	0.0003 m	-0.0001 m	0.0002 m	-0.0001 m	0.0004 m	15.4218 m
007	018	4	0.0060 m	0.0007 m	-0.0008 m	0.0059 m	0.0007 m	30.7065 m
011	022	3	0.0057 m	0.0018 m	0.0004 m	-0.0054 m	0.0002 m	3.8259 m
Target38							0.0019 m	9.9498 m
Target39							0.0002 m	3.7406 m
Target40							0.0022 m	16.6041 m

Pymbl_Scan_004 - 11 Scanned Objects - Mean Distance: 0.0030

pymble-usq2 - 6 Scanned Objects - Mean Distance: 0.0000

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	x	Y	Z	Error	to Scanner
6B	024	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
7B			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
8B			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1B	023	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
2B			0.0000 m	0.0000 m	0.0000 m	0.0000 m		
3в	022	3	0.0000 m	0.0000 m	0.0000 m	0.0000 m		

Report by target

User Name: lbroome

Date: Tue Jul 05 18:58:55 2016 Project Name: pmble-2

Linear Measurement Units: Meters Coordinates System: X, Y, Z

5 STATION(S) -	Mean Distance: 0.0023	Max Distance: 0.0043
13 TARGET(S) -	Mean Distance: 0.0032	Max Distance: 0.0048

012 - 3 Scanned Objects - Mean Distance: 0.0029 - Mean Position X=505.8909 Y=2000.2852 Z=18.8762

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
001	Pymbl_Scan_002	0.0042 m	0.0002 m	0.0005 m	-0.0042 m	0.0001 m	9.7991 m
001	Pymbl_Scan_003	0.0041 m	0.0000 m	-0.0002 m	0.0040 m	0.0004 m	25.8356 m
001	Pymbl_Scan_000	0.0004 m	-0.0002 m	-0.0003 m	0.0002 m	0.0001 m	11.8901 m

013 - 3 Scanned Objects - Mean Distance: 0.0028 - Mean Position X=508.1789 Y=2022.7119 Z=18.4554

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
002	Pymbl_Scan_002	0.0042 m	0.0005 m	-0.0004 m	0.0042 m	0.0003 m	15.3472 m
002	Pymbl_Scan_003	0.0025 m	-0.0002 m	0.0002 m	-0.0025 m	0.0001 m	7.9292 m
002	Pymbl_Scan_004	0.0018 m	-0.0004 m	0.0002 m	-0.0017 m	0.0007 m	16.3772 m

014 - 3 Scanned Objects - Mean Distance: 0.0032 - Mean Position X=495.9276 Y=2021.9784 Z=18.5139

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
003	Pymbl_Scan_002	0.0034 m	-0.0008 m	-0.0001 m	0.0033 m	0.0002 m	14.2087 m
003	Pymbl_Scan_003	0.0049 m	0.0007 m	0.0001 m	-0.0048 m	0.0001 m	6.3883 m
003	Pymbl_Scan_004	0.0015 m	0.0001 m	-0.0001 m	0.0015 m	0.0007 m	19.0600 m

- 3 Scanned Objects - Mean Distance: 0.0013 - Mean Position X=508.4294 Y=2016.3048 Z=18.7915

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
004	Pymbl_Scan_002	0.0009 m	0.0003 m	-0.0008 m	0.0002 m	0.0002 m	10.1559 m
004	Pymbl_Scan_003	0.0016 m	0.0005 m	0.0007 m	-0.0013 m	0.0001 m	11.9989 m
004	Pymbl_Scan_004	0.0014 m	-0.0008 m	0.0001 m	0.0011 m	0.0007 m	22.6895 m

- 3 Scanned Objects - Mean Distance: 0.0028 - Mean Position X=496.8977 Y=2005.1319 Z=18.4683

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
005	Pymbl_Scan_002	0.0041 m			-0.0041 m	0.0001 m	6.1597 m
005	Pymbl_Scan_003	0.0030 m	0.0002 m	0.0003 m	0.0030 m	0.0005 m	20.9443 m
005	Pymbl_Scan_000	0.0011 m	-0.0001 m	-0.0001 m	0.0011 m	0.0002 m	10.8905 m

- 3 Scanned Objects - Mean Distance: 0.0027 - Mean Position X=493.1291 Y=2005.5546 Z=18.5055

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
006	Pymbl_Scan_002	0.0040 m	-0.0001 m	-0.0004 m	-0.0040 m	0.0001 m	9.1408 m
006	Pymbl Scan 003	0.0035 m	0.0003 m	0.0004 m	0.0035 m	0.0006 m	21.5927 m
006	Pymbl_Scan_000	0.0005 m	-0.0002 m	-0.0000 m	0.0005 m	0.0002 m	11.4970 m

018 - 4 Scanned Objects - Mean Distance: 0.0036 - Mean Position X=509.5608 Y=2008.3729 Z=18.5030

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
007	Pymbl_Scan_002	0.0056 m	-0.0005 m	0.0013 m	-0.0055 m	0.0001 m	8.2188 m
007	Pymbl_Scan_003	0.0013 m	-0.0006 m	-0.0007 m	0.0009 m	0.0005 m	19.3303 m
007	Pymbl_Scan_004	0.0060 m	0.0007 m	-0.0008 m	0.0059 m	0.0007 m	30.7065 m
007	Pymbl_Scan_000	0.0014 m	0.0004 m	0.0003 m	-0.0013 m	0.0005 m	19.7875 m

019 - 3 Scanned Objects - Mean Distance: 0.0048 - Mean Position X=507.6823 Y=2028.8862 Z=18.5715

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
008	Pymbl_Scan_002	0.0073 m	0.0006 m	-0.0002 m	0.0072 m	0.0002 m	20.8934 m
008	Pymbl_Scan_003	0.0032 m	-0.0003 m	-0.0000 m	-0.0032 m	0.0001 m	7.6024 m
008	Pymbl_Scan_004	0.0040 m	-0.0003 m	0.0003 m	-0.0040 m	0.0001 m	10.2800 m

020 - 3 Scanned Objects - Mean Distance: 0.0032 - Mean Position X=500.6751 Y=2023.9615 Z=18.4620

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
009	Pymbl_Scan_002	0.0046 m	0.0000 m	-0.0001 m	0.0046 m	0.0002 m	15.0756 m
009	Pymbl_Scan_003	0.0045 m	0.0001 m	-0.0001 m	-0.0045 m	0.0002 m	2.2750 m
009	Pymbl_Scan_004	0.0003 m	-0.0001 m	0.0002 m	-0.0001 m	0.0004 m	15.4218 m

021 - 2 Scanned Objects - Mean Distance: 0.0034 - Mean Position X=502.2205 Y=2039.5070 Z=18.5230

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
010	Pymbl Scan 003	0.0034 m	-0.0008 m	0.0001 m	0.0033 m	0.0002 m	14.0177 m
010	Pymbl_Scan_004	0.0034 m	0.0008 m	-0.0001 m	-0.0033 m	0.0002 m	3.2213 m

022 - 3 Scanned Objects - Mean Distance: 0.0041 - Mean Position X=506.6520 Y=2042.1050 Z=20.3920

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	Y	Z	Error	to Scanner
011	Pymbl_Scan_003	0.0025 m	0.0019 m	-0.0007 m	0.0016 m	0.0003 m	17.4414 m
011	Pymbl_Scan_004	0.0057 m	0.0018 m	0.0004 m	-0.0054 m	0.0002 m	3.8259 m
3B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		

- 2 Scanned Objects - Mean Distance: 0.0041 - Mean Position X=511.7059 Y=2019.5504 Z=26.6524

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
1B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target46	Pymbl_Scan_003	0.0041 m	-0.0020 m	0.0030 m	-0.0019 m	0.0011 m	14.0217 m

- 2 Scanned Objects - Mean Distance: 0.0023 - Mean Position X=497.1489 Y=1982.5069 Z=18.4220

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
6B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target7	Pymbl_Scan_000	0.0023 m	0.0001 m	-0.0023 m	0.0003 m	0.0004 m	12.1207 m

Appendix M

Site B-The Office fully constrained report from Trimble Realworks

Registration Report (Target-Based) Report by station

User Name: lbroome

Date: Tue Jul 05 19:15:01 2016 Project Name: pmble-2

Linear Measurement Units: Meters Coordinates System: X, Y, Z

5 STATION(S) -	Mean Distance: 0.0023	Max Distance: 0.0040
16 TARGET(S) -	Mean Distance: 0.0029	Max Distance: 0.0048

Pymbl_Scan_000 - 7 Scanned Objects - Mean Distance: 0.0014

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	x	Y	Z	Error	to Scanner
006	017	3	0.0005 m	-0.0002 m	-0.0000 m	0.0005 m	0.0002 m	11.4970 m
001	012	3	0.0004 m	-0.0002 m	-0.0003 m	0.0002 m	0.0001 m	11.8901 m
005	016	3	0.0011 m	-0.0001 m	-0.0001 m	0.0011 m	0.0002 m	10.8905 m
007	018	4	0.0014 m	0.0004 m	0.0003 m	-0.0013 m	0.0005 m	19.7875 m
Target5							0.0003 m	5.8399 m
Target6	024	2	0.0023 m	-0.0005 m	-0.0017 m	-0.0015 m	0.0004 m	12.7020 m
Target7	023	2	0.0026 m	0.0009 m	-0.0023 m	0.0006 m	0.0004 m	12.1207 m

Pymbl_Scan_002	- 1	0 Scanned Ob	ojects -	Mean Distance:	0.0040
----------------	-----	--------------	----------	----------------	--------

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	X	<u> </u>	Z	Error	to Scanner
007	018	4	0.0056 m	-0.0005 m	0.0013 m	-0.0055 m	0.0001 m	8.2188 m
001	012	3	0.0042 m	0.0002 m	0.0005 m	-0.0042 m	0.0001 m	9.7991 m
004	015	3	0.0009 m	0.0003 m	-0.0008 m	0.0002 m	0.0002 m	10.1559 m
006	017	3	0.0040 m	-0.0001 m	-0.0004 m	-0.0040 m	0.0001 m	9.1408 m
005	016	3	0.0041 m	-0.0001 m	-0.0002 m	-0.0041 m	0.0001 m	6.1597 m
003	014	3	0.0034 m	-0.0008 m	-0.0001 m	0.0033 m	0.0002 m	14.2087 m
009	020	3	0.0046 m	0.0000 m	-0.0001 m	0.0046 m	0.0002 m	15.0756 m
002	013	3	0.0042 m	0.0005 m	-0.0004 m	0.0042 m	0.0003 m	15.3472 m
008	019	3	0.0073 m	0.0006 m	-0.0002 m	0.0072 m	0.0002 m	20.8934 m
Target17	025	2	0.0014 m	-0.0011 m	-0.0002 m	0.0008 m	0.0004 m	8.8092 m

Pymbl_Scan_003 - 13 Scanned Objects - Mean Distance: 0.0032

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
001	012	3	0.0041 m	0.0000 m	-0.0002 m	0.0040 m	0.0004 m	25.8356 m
002	013	3	0.0025 m	-0.0002 m	0.0002 m	-0.0025 m	0.0001 m	7.9292 m
003	014	3	0.0049 m	0.0007 m	0.0001 m	-0.0048 m	0.0001 m	6.3883 m
004	015	3	0.0016 m	0.0005 m	0.0007 m	-0.0013 m	0.0001 m	11.9989 m
005	016	3	0.0030 m	0.0002 m	0.0003 m	0.0030 m	0.0005 m	20.9443 m
006	017	3	0.0035 m	0.0003 m	0.0004 m	0.0035 m	0.0006 m	21.5927 m
007	018	4	0.0013 m	-0.0006 m	-0.0007 m	0.0009 m	0.0005 m	19.3303 m
010	021	2	0.0034 m	-0.0008 m	0.0001 m	0.0033 m	0.0002 m	14.0177 m
008	019	3	0.0032 m	-0.0003 m	-0.0000 m	-0.0032 m	0.0001 m	7.6024 m
009	020	3	0.0045 m	0.0001 m	-0.0001 m	-0.0045 m	0.0002 m	2.2750 m
Target28							0.0003 m	6.1692 m
011	022	3	0.0027 m	0.0022 m	-0.0006 m	0.0014 m	0.0003 m	17.4414 m
Target46	026	2	0.0040 m	-0.0022 m	0.0033 m	-0.0010 m	0.0011 m	14.0217 m

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	<u>Per Target</u>	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
008	019	3	0.0040 m	-0.0003 m	0.0003 m	-0.0040 m	0.0001 m	10.2800 m
004	015	3	0.0014 m	-0.0008 m	0.0001 m	0.0011 m	0.0007 m	22.6895 m
003	014	3	0.0015 m	0.0001 m	-0.0001 m	0.0015 m	0.0007 m	19.0600 m
010	021	2	0.0034 m	0.0008 m	-0.0001 m	-0.0033 m	0.0002 m	3.2213 m
002	013	3	0.0018 m	-0.0004 m	0.0002 m	-0.0017 m	0.0007 m	16.3772 m
009	020	3	0.0003 m	-0.0001 m	0.0002 m	-0.0001 m	0.0004 m	15.4218 m
007	018	4	0.0060 m	0.0007 m	-0.0008 m	0.0059 m	0.0007 m	30.7065 m
011	022	3	0.0060 m	0.0021 m	0.0005 m	-0.0056 m	0.0002 m	3.8259 m
Target38	027	2	0.0018 m	0.0006 m	0.0016 m	-0.0004 m	0.0019 m	9.9498 m
Target39							0.0002 m	3.7406 m
Target40							0.0022 m	16.6041 m

Pymbl_Scan_004 - 11 Scanned Objects - Mean Distance: 0.0029

pymble-usq2 - 6 Scanned Objects - Mean Distance: 0.0000

Object	Corresponding	Scan	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Target	Per Target	Error	x	Y	Z	Error	to Scanner
6B	023	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
7B	024	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
8B	025	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
1B	026	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
2B	027	2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
3B	022	3	0.0000 m	0.0000 m	0.0000 m	0.0000 m		

Report by target

User Name: lbroome

Date: Tue Jul 05 19:15:01 2016 Project Name: pmble-2

Linear Measurement Units: Meters Coordinates System: X, Y, Z

5 STATION(S) -	Mean Distance: 0.0023	Max Distance: 0.0040
16 TARGET(S) -	Mean Distance: 0.0029	Max Distance: 0.0048

012 - 3 Scanned Objects - Mean Distance: 0.0029 - Mean Position X=505.8916 Y=2000.2852 Z=18.8769

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
001	Pymbl_Scan_002	0.0042 m	0.0002 m	0.0005 m	-0.0042 m	0.0001 m	9.7991 m
001	Pymbl_Scan_003	0.0041 m	0.0000 m	-0.0002 m	0.0040 m	0.0004 m	25.8356 m
001	Pymbl_Scan_000	0.0004 m	-0.0002 m	-0.0003 m	0.0002 m	0.0001 m	11.8901 m

013 - 3 Scanned Objects - Mean Distance: 0.0028 - Mean Position X=508.1795 Y=2022.7120 Z=18.4558

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
002	Pymbl_Scan_002	0.0042 m	0.0005 m	-0.0004 m	0.0042 m	0.0003 m	15.3472 m
002	Pymbl_Scan_003	0.0025 m	-0.0002 m	0.0002 m	-0.0025 m	0.0001 m	7.9292 m
002	Pymbl_Scan_004	0.0018 m	-0.0004 m	0.0002 m	-0.0017 m	0.0007 m	16.3772 m

- 3 Scanned Objects - Mean Distance: 0.0032 - Mean Position X=495.9283 Y=2021.9784 Z=18.5131

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
003	Pymbl_Scan_002	0.0034 m	-0.0008 m	-0.0001 m	0.0033 m	0.0002 m	14.2087 m
003	Pymbl_Scan_003	0.0049 m	0.0007 m	0.0001 m	-0.0048 m	0.0001 m	6.3883 m
003	Pymbl_Scan_004	0.0015 m	0.0001 m	-0.0001 m	0.0015 m	0.0007 m	19.0600 m

- 3 Scanned Objects - Mean Distance: 0.0013 - Mean Position X=508.4300 Y=2016.3048 Z=18.7921

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
004	Pymbl Scan 002	0.0009 m	0.0003 m	-0.0008 m	0.0002 m	0.0002 m	10.1559 m
004	Pymbl Scan 003	0.0016 m	0.0005 m	0.0007 m	-0.0013 m	0.0001 m	11.9989 m
004	Pymbl_Scan_004	0.0014 m	-0.0008 m	0.0001 m	0.0011 m	0.0007 m	22.6895 m

- 3 Scanned Objects - Mean Distance: 0.0028 - Mean Position X=496.8984 Y=2005.1319 Z=18.4681

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
005	Pymbl_Scan_002	0.0041 m	-0.0001 m	-0.0002 m	-0.0041 m	0.0001 m	6.1597 m
005	Pymbl Scan 003	0.0030 m	0.0002 m	0.0003 m	0.0030 m	0.0005 m	20.9443 m
005	Pymbl_Scan_000	0.0011 m	-0.0001 m	-0.0001 m	0.0011 m	0.0002 m	10.8905 m

- 3 Scanned Objects - Mean Distance: 0.0027 - Mean Position X=493.1298 Y=2005.5546 Z=18.5049

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
006	Pymbl_Scan_002	0.0040 m	-0.0001 m	-0.0004 m	-0.0040 m	0.0001 m	9.1408 m
006	Pymbl Scan 003	0.0035 m	0.0003 m	0.0004 m	0.0035 m	0.0006 m	21.5927 m
006	Pymbl_Scan_000	0.0005 m	-0.0002 m	-0.0000 m	0.0005 m	0.0002 m	11.4970 m

018 - 4 Scanned Objects - Mean Distance: 0.0036 - Mean Position X=509.5615 Y=2008.3729 Z=18.5040

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
007	Pymbl_Scan_002	0.0056 m	-0.0005 m	0.0013 m	-0.0055 m	0.0001 m	8.2188 m
007	Pymbl_Scan_003	0.0013 m	-0.0006 m	-0.0007 m	0.0009 m	0.0005 m	19.3303 m
007	Pymbl_Scan_004	0.0060 m	0.0007 m	-0.0008 m	0.0059 m	0.0007 m	30.7065 m
007	Pymbl_Scan_000	0.0014 m	0.0004 m	0.0003 m	-0.0013 m	0.0005 m	19.7875 m

019 - 3 Scanned Objects - Mean Distance: 0.0048 - Mean Position X=507.6829 Y=2028.8863 Z=18.5718

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
008	Pymbl_Scan_002	0.0073 m	0.0006 m	-0.0002 m	0.0072 m	0.0002 m	20.8934 m
008	Pymbl_Scan_003	0.0032 m	-0.0003 m	-0.0000 m	-0.0032 m	0.0001 m	7.6024 m
008	Pymbl_Scan_004	0.0040 m	-0.0003 m	0.0003 m	-0.0040 m	0.0001 m	10.2800 m

020 - 3 Scanned Objects - Mean Distance: 0.0032 - Mean Position X=500.6758 Y=2023.9615 Z=18.4617

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
009	Pymbl_Scan_002	0.0046 m	0.0000 m	-0.0001 m	0.0046 m	0.0002 m	15.0756 m
009	Pymbl_Scan_003	0.0045 m	0.0001 m	-0.0001 m	-0.0045 m	0.0002 m	2.2750 m
009	Pymbl_Scan_004	0.0003 m	-0.0001 m	0.0002 m	-0.0001 m	0.0004 m	15.4218 m

021 - 2 Scanned Objects - Mean Distance: 0.0034 - Mean Position X=502.2211 Y=2039.5070 Z=18.5224

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
010	Pymbl Scan 003	0.0034 m	-0.0008 m	0.0001 m	0.0033 m	0.0002 m	14.0177 m
010	Pymbl_Scan_004	0.0034 m	0.0008 m	-0.0001 m	-0.0033 m	0.0002 m	3.2213 m

- 3 Scanned Objects - Mean Distance: 0.0043 - Mean Position X=506.6520 Y=2042.1050 Z=20.3920

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	Y	Z	Error	to Scanner
011	Pymbl_Scan_003	0.0027 m	0.0022 m	-0.0006 m	0.0014 m	0.0003 m	17.4414 m
011	Pymbl Scan 004	0.0060 m	0.0021 m	0.0005 m	-0.0056 m	0.0002 m	3.8259 m
3B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		

- 2 Scanned Objects - Mean Distance: 0.0026 - Mean Position X=497.1489 Y=1982.5069 Z=18.4220

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
6B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target7	Pymbl_Scan_000	0.0026 m	0.0009 m	-0.0023 m	0.0006 m	0.0004 m	12.1207 m

- 2 Scanned Objects - Mean Distance: 0.0023 - Mean Position X=508.0605 Y=1996.8281 Z=20.6520

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	<u> </u>	<u> </u>	Z	Error	to Scanner
7B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target6	Pymbl_Scan_000	0.0023 m	-0.0005 m	-0.0017 m	-0.0015 m	0.0004 m	12.7020 m

- 2 Scanned Objects - Mean Distance: 0.0014 - Mean Position X=510.2057 Y=2010.1850 Z=19.5238

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	Y	Z	Error	to Scanner
8B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target17	Pymbl_Scan_002	0.0014 m	-0.0011 m	-0.0002 m	0.0008 m	0.0004 m	8.8092 m

- 2 Scanned Objects - Mean Distance: 0.0040 - Mean Position X=511.7059 Y=2019.5504 Z=26.6524

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	X	<u> </u>	Z	Error	to Scanner
1B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target46	Pymbl_Scan_003	0.0040 m	-0.0022 m	0.0033 m	-0.0010 m	0.0011 m	14.0217 m

007			0 0010		
UZ/ -	Z Scanned Objects -	Mean Distance:	0.0018 -	Mean Position	X=514.4280 Y=2036.4844 Z=22.1277

Object	Corresponding	Residual	Delta	Delta	Delta	Fitting	Distance
Name	Station	Error	x	Y	Z	Error	to Scanner
2B	pymble-usq2	0.0000 m	0.0000 m	0.0000 m	0.0000 m		
Target38	Pymbl_Scan_004	0.0018 m	0.0006 m	0.0016 m	-0.0004 m	0.0019 m	9.9498 m

Appendix N

Safety documentation

OH&S PRE-JOB HAZARD ASSESSMENT

DSP-F-142 Issue 3 Issue Date: 2015 Page 1 of 2

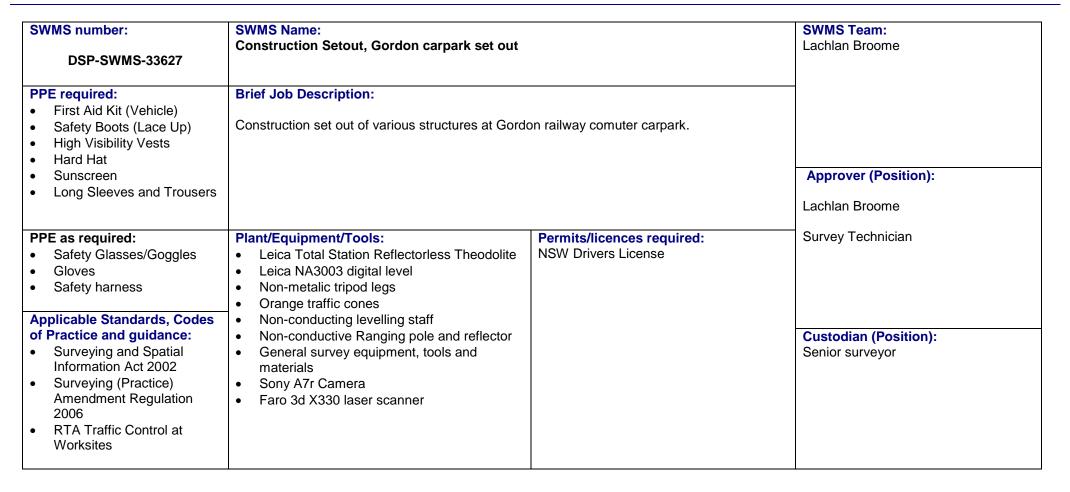
Degotardi Smith & Partners

JOB NO:	WORK LOCATIO	N: <u>Sit</u>	e A-Blk1	1			. F	FIELD PARTY LEADER:		
DATE:	JOB DESCRIPTI	ON_ <u>Con</u>	mparison of photogrammetry and laser scanning Lachlan Broome							
Site Specific	SWMS	□ 0	ther (Giv	e Det	ails)					
Pre- Work Di	scussions:		Ma	Mark with ✓				Comn	nents	
		Y	es	N	۱o					
Has Safe Wo been discuss	rk Method Statement	Ī	7							
	equipment, tools be	en 🔽	1	0						
	pection been done?	Ī	7							
Are there ine	xperienced staff on site	?]	ŀ	\checkmark					
Is the work si	te unusual/difficult?]	[\checkmark					
Is additional to perform tas	equipment/staff requi sk?	red]	[\checkmark					
Are you staff/contract	working with ot	her 🔽	1	[
Is access to t	he site safe?	Ī	7	[
Does everyor work?	ne agree on procedure	e of	7							
Can the tas professionally	sk be done safely a /?	and v	7	[
	have an emerge	ncy 💽	7	[
	it accessible?	Ī	1							
PERSONNEI	-:	PERSO	ONNEL S	SIGN	OFF:	PERSONNE	iL:		PERSONNEL SIGN OFF:	
Lachlan Broo				L.B						
Andrew Broo	me		A	\ .В.						
	INTIFICATION (identify	/ hazard	1		ng the office &		ou arrive o			
Field N	HAZARD loving Machinery		Fie		Hazardous	HAZARD Substances		Field	HAZARD Confined Spaces	
	ifficult Access			_	Chemicals/				Gases/explosion	
	lust			_	Hot Surface				Fire	
_	lectricity				Insect Bites	3			Manual Handling	
	leights				Sunburn				Noise/Vibration	
	Vater			_	Lone Work	er			Uneven/slippery surfaces	
	verhead Hazards			-	Pressure/V	acuum			Multiple staff or contractors	
	onstruction/Demolition]	Traffic/Veh	cles			Other	
CONTROLS	(apply generic controls	& ensu	re any ad	ldition	al hazards a	e controlled be	fore proce	eding with wo	ork)	
Traffic Co	ontrol Contractor			🗹 е	Boots			🗌 Lif	ting devices	
🗌 Manual H	landling Risk Assessm	ent		🗹 s	Sun protectior			☑ н	arness	
Traffic Sig	gnage +TCP (Approved	d by RM	S)	<u>۲</u> ۲	lats & protect	ive clothing		√ с	ommunication devices	
Lock out/	Tag out			S	upervision					
Dust Mas	ks			_	ar muffs					
Gloves				v 0	Goggles/sun g					
	<u>After</u> Controls (ma /ity if risk 1 or 2	trix ov	erleaf):			Office 3	Field		o Proceed Y	
	,					-	~			

Degotardi Smith & Partners

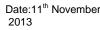
AFTER WORK COMPLETION							
Any new hazards identified :							
Office manager update Hazard Register	No:						
Office manager update checks Job File for Records (SWMS; xxxx)							
AFTER WORK COMPLETION INCIDENT MANAGEMENT AND NEAR MISSES							
PARTNER NOTIFIED:	TIME:						
DESCRIPTION of INCIDENT/NEAR MISS:							
ACTIONS &							
OBSERVATIONS:							

RISK MATRIX


			Likelihood					
	Summary	L1	L2	L3	L4			
	of Severity / Conse	quence	Imminent or routinely	Very Likely	Likely	Unlikely or Rare		
Catastrophic =	Death or permanent disability Long-term environmental damage	C1	1	1	2	3		
Critical =	Lost-time injury Medium term environmental impact	C2	1	2	3	4		
Minor =	Medical treatment or first aid Minor environmental harm being easily remediated	C3	2	3	4	5		
Minimal =	No injury, illness or environmental harm	C4	3	4	5	6		

High or Significant risk/impact (1-2)	 > Cease activity, bring to management attention > Discontinue until hazard / impact can be eliminated or risk reduced by substitution > Implement remedial or corrective action ASAP 	HIGHEST	Level 1 Eliminate the hazards Level 2	MOST
Substantial risk/impact (3)	 > Bring to management attention > Consider substitution, off- set strategy or control of hazard / impact 	th and safety pr	Substitute the hazard with something safer Isolate the hazard from people Reduce the risks through engineering controls	y of control mea
Moderate risk/impact (4)	 > Follow standard procedures > Where PPE if mandated > Consider submitting Environmental or OH&S Improvement Request 	Level of heal	Level 3	Reliability
Low risk (5-6)	> None or limited action necessary	LOWEST	Reduce exposure to the hazard using administrative actions Use personal protective equipment	LEAST

Established 1957


11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

 Work Health and Safety Act 2011 Work Health and Safety Regulation 2011 AS1742.3-Traffic Control Devices for Work on Roads Work Near Overhead Power Lines-Code of Practice 2006 Risk Assessment Code of Practice 2001 Equipment Maintenance Plant and equipment are serviced and tested in accordance with Degotardi Smith and Partners Quality Assurance. Copies of the Equipment Maintenance Schedule is available in the office on request, however these documents will not be made available unless some specific safety issue arises. 	
---	--

11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

Number	Step	Potential Hazard & Assessment (Safety/Environmental hazards identified, including physical environment, human errors, plant and equipment)	Risk ranking before controls	Safety Controls	Risk ranking after controls	Responsibility
1	Job Planning, organise resources	Identification of Hazards	Various	 Collate site information prior to entering field Contact relevant authorities for possible hazards Brief senior surveyor on potential hazards including OH&S and environmental hazards. 	Various	Job captain Surveyor
2	Drive vehicle to site	Fatigue Collision with other motorists Unfamiliar road conditions (4WD) Vehicle faults and defects Storage of equipment	1 1 3 3	 Pre-plan the trip and share the driving on longer trips. Have a break every 2 hours. Must have current drivers licence Visually inspect the vehicle prior to leaving the office Be aware of unusual road conditions which can change during the day (eg. Weather, sun glare, etc.) Equipment to be stored in the cargo area where possible. Survey equipment inside the vehicle must be secured with a strap or belt or stored on the floor if possible. 	3 3 5 5 5	Surveyor Assistant
3	Loading/Unloading Vehicle and transfer to worksite.	Traffic Manual Handling Trips and falls	1 2 3	 Use the non-traffic or rear of the vehicle to load/unload equipment. Avoid having the vehicle parked in an area that causes risks. Observe safe procedures for lifting and carrying. Wear slip resistant safety boots at all times Be aware of debris around the worksite Position tools and equipment clear of all pedestrian walkways and vehicular access routes Be aware of slippery surfaces, particularly after rain. Avoid carrying loads on steep embankments Share of minimise loads 	3 5 5	Surveyor Assistant

11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

Number	Step	Potential Hazard & Assessment (Safety/Environmental hazards identified, including physical environment, human errors, plant and equipment)	Risk ranking before controls	Safety Controls	Risk ranking after controls	Responsibility
4	Establishing and removing traffic control if required	Manual Handling Traffic	2	 Refer to Step 3 above Wear high visibility clothing/vest Activate flashing lights on vehicles Awareness of traffic speeds, volumes, pedestrians Use approved Traffic Control Company if required Refer to and place control devices in accordance with appropriate Traffic Control Plan Mobile phones not to be used whilst placing traffic control devices 	5 3	Surveyor Assistant
5	 Survey Fieldwork including: Setting up and removing theodolite and targets Locating survey marks and services Clearing Surveying of infrastructure and natural features Placing survey marks 	Manual Handling Fall from heights	2	 Refer to Step 3 above Use additional PPE if required Use job rotation. Fall arrest harness 	5	Surveyor Assistant
6		Trips and Falls	3	Refer to step 3 above	5	Surveyor Assistant
7		Snake bites, insect bites and stings	3	 Identify areas of high risk –long grass, dams, swampy areas, under rocks, logs Where gloves where appropriate Walk "heavily" Use appropriate PPE – long sleeves and trousers, gaters Use existing walking tracks 	5	Surveyor Assistant

11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

Number	Step	Potential Hazard & Assessment (Safety/Environmental hazards identified, including physical environment, human errors, plant and equipment)	Risk ranking before controls	Risk after after controls	Responsibility
		Heat Stress	3	Ensure personnel can notice the signs of heat stress	Surveyor
				Drink water at regular intervals	Assistant
8				Commence work early in the day to take advantage of cooler periods	
0				Where possible utlise the shade from trees or structures	
				Pace yourself	
				Monitor each others physical and mental responses	
		Exposure to UV Radiation	2	• "Slip, Slop, Slap". Use sunscreen and replace at the 5 required intervals	Surveyor Assistant
9				• Wear a wide brimmed hat. Use a hard hat brim when required.	
Ŭ				Wear long sleeve shirts and long trousers	
				Utilise shade where possible	
				Wear sunglasses	
		Weather Conditions	2	Use wet weather gear – rain jackets/trousers, gumboots	Surveyor
				Use warm winter clothing	Assistant
10				 Be aware of approaching storms (lightning and strong winds) 	
				 Remain in vehicles or in buildings during extreme weather conditions. 	
		Needle Sticks	3	Be aware at all times 5	Surveyor
				Do not place hands where they cannot be seen	Assistant
11				Where safety boots at all times	
				• If a needle is found, do not pick up or touch the needle	
				 If needles prevent safe work, arrange for trained personnel to remove them 	

11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

Number	Step	Potential Hazard & Assessment (Safety/Environmental hazards identified, including physical environment, human errors, plant and equipment)	Risk ranking before controls	Safety Controls	Risk ranking after controls	Responsibility
12		Use of Mobile phones	3	 Discuss the use of mobile phones at the "tool box" meeting before commencing work Leave the phones in the vehicles or turn them off if working on sites that require a greater need for awareness. If you need to take a call, cease work, stand in a safe place clear of traffic, hazards and pedestrians prior to answering the phone 	5	Surveyor Assistant
13		Hazardous substances - Spray paint, glues	2	 Refer to MSDS Ensure all staff are trained in the use of MSDS Wear gloves when using glues Point spray paint away from body and other personnel and use downwind when possible Replace lids and securely store in vehicles or equipment room when not in use. 	4	Surveyor Assistant
14		Contact with contaminated groundwater, sediments, contaminated soils and asbestos	2	 Use the correct PPE including gloves, safety glasses, long shirt and trousers Do not disturb asbestos under any circumstances Don't raise dust during survey work Don't excavate the soil or disturb the surface or groundwater 	4	Surveyor Assistant
15		Exposure to public utilities	1	 Use non-conducting equipment An invar levelling staff may be used if all electrical hazards are identified and the risk assessed to be low. Mininal clearance to electrical plant to be identified. Check with 'Dial Before You Dig' and visually inspect the site prior to driving any survey marks more than 150mm into the ground If service location is critical use an approved underground service locating company Do not use staves when wet or in rain 	4	Surveyor Assistant

11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

Number	Step	Potential Hazard & Assessment (Safety/Environmental hazards identified, including physical environment, human errors, plant and equipment)	Risk ranking before controls	Safety Controls	Risk ranking after controls	Responsibility
		Pedestrian and traffic hazard around theodolite	3	 Survey instrument to be set up greater than 1.5 metres from traffic lane Place orange traffic cones around instrument or use barriers 	5	Surveyor Assistant
16				Utilise lookouts if available		
				Position tools and equipment clear of pedestrian and vehicle routes		
				Plan surveys for work outside peak times in places of high pedestrian activity		
		Use of hand drill	4	Use only battery operated hand drill	5	All
				Read manufacturer's instructions and use accordingly		
17				Ensure chuck is firmly secured		
				Hold drill firmly when drilling		
				Wear safety glasses		
		Strike from swinging hammer or brush hook	3	Wear appropriate PPE – hardhat, safety boots, safety glasses	4	All
18				Remain clear of person using brush hook or hammer		
				• Person to act as lookout for other pedestrians and plant in the area		
		General vehicle traffic	1	Loading/unloading vehicle – refer to step 3 above	3	All
				Establish and removal of traffic control – refer to step 4 above		
				Be alert and vigilant at all times.		
19				• Be aware of changing conditions that may effect drivers – eg. Fog, sun glare, weather conditions		
				Use two-way radios to warn other personnel of traffic in the vicinity		
				Plan an escape route.		

11/19-23 Bridge Street, Pymble NSW 2073 Telephone (02) 9440 1100 Fax (02) 9440 1055 Web: www.degotardi.com.au Email: surveys@degotardi.com.au ABN 67 588 967 472

Number	Step	Potential Hazard & Assessment (Safety/Environmental hazards identified, including physical environment, human errors, plant and equipment)	Risk ranking before controls	Safety Controls	Risk ranking after controls	Responsibility
		Jumping over fences/electric fences	3	 If possible avoid jumping over or from fences. Use alternative methods such as going through access gates, going through, going around or use a ladder 	5	All
20				Always assume an electric fence is active		
				Use an additional person to separate wires when going through a fence, especially barb wire fences		
				Pass all equipment over or through a fence		
21		Placing nails in concrete	3	Nail can act as a projectile if struck incorrectly.	5	Assistant
21				Wear safety glasses		
22	Transfer equipment back to survey vehicle	See step 3 above				
23	Drive vehicle to office	See step 2 above	1	There may be an increase in fatigue at the completion of the job which may require increased controls. Eg. Rotate driving more regularly	3	All

NOTE: Each work group or team member must sign off on the SWMS to acknowledge they have been briefed about or instructed in the SWMS

Team member name (Please print)	Team Member signature	Instructor/ Briefer name	Date	Team member name (Please print)	Team Member signature	Instructor/ Briefer name	Date
Lachlan Broome	LB	LB					
Andrew Broome	AB	AB					

RISK ASSESSMENT RECKONER	Probability of Hazard Occurring								
Severity	Very Likely Could happen at any time	Likely Could happen some time	Unlikely Could happen but rarely	Very Unlikely Could happen but probably never will					
K or PD									
Kill or cause permanent disability or health	1	1	2	3					
LTI or SI Long term illness or serious injury	1	2	3	4					
MA Medical attention and several days off work	2	3	4	5					
FA First Aid needed	3	4	5	6					

High
Medium
Low

To score the risk, use the following steps:

- 1) Identify the possible outcome if the risk were to occur eg. K, LTI, etc.
- 2) Identify the probability of the risk occurring eg. Likely, Unlikely, etc.
- 3) Using a combination of the possible outcome and probability, determine the risk number using the matrix above.

OH&S PRE-JOB HAZARD ASSESSMENT

DSP-F-142 Issue 3 Issue Date: 2015 Page 1 of 2

Degotardi Smith & Partners

JOB NO:	WORK LOCATIO	N: <u>Sit</u>	te B-The	e Offic	<u>e</u>		F		LEADER:		
DATE:	JOB DESCRIPTION	ON_ <u>Cor</u>	npariso	n of pł	notogrammetry	/ and laser scar	nning L	achlan Broor	an Broome		
Site Specifi	ic SWMS	ve De	tails)								
	Discussions:		Ν	lark w	ith √			Comn	nents		
		Y	es		No						
Has Safe W been discus	/ork Method Statement ssed?				\checkmark	A safe work r	nethod sta	tement is not	t required for this task		
Have plant checked?	t, equipment, tools be	en 💽	7								
Has a site in	nspection been done?	5	4								
Are there in	experienced staff on site	?			\checkmark						
Is the work	site unusual/difficult?				\checkmark						
Is additionation to perform t	al equipment/staff requi ask?	red			\checkmark						
Are you staff/contrac	working with ot	her [\checkmark						
	the site safe?	5	Δ								
Does every work?	one agree on procedure	e of	7								
Can the taprofessiona	ask be done safely a	and	7								
Do you procedure/p	have an emerge	ncy 💽	2								
	kit accessible?	5	7								
PERSONNI	EL:	PERS	ONNEL	. SIGN OFF: PERSONNEL:			iL:		PERSONNEL SIGN OFF:		
Lachlan Bro	oome			L.B.							
	DENTIFICATION (identify	/ hazard			ng the office 8		ou arrive or				
Field	HAZARD Moving Machinery			eld	Hazardous	HAZARD		Field	HAZARD Confined Spaces		
	Difficult Access				Chemicals/				Gases/explosion		
	Dust				Hot Surface				Fire		
	Electricity		-	_ √	Insect Bites				Manual Handling		
	Heights		_	- 	Sunburn				Noise/Vibration		
	Water				Lone Work	er			Uneven/slippery surfaces		
	Overhead Hazards			 	Pressure/V				Multiple staff or contractors		
	Construction/Demolition		I	<u> </u>	Traffic/Veh				Other		
	S (apply generic controls	& ensu	re any a	dditio	nal hazards ar	e controlled be	fore procee		prk)		
Traffic C	Control Contractor				Boots			Lif	ting devices		
Manual Handling Risk Assessment					Sun protection)			arness		
□ Traffic Signage +TCP (Approved by RMS)					Hats & protect			✓ c	ommunication devices		
Lock out/Tag out					upervision						
Dust Masks					Ear muffs						
Gloves					Goggles/sun g	lasses					
Risk Scor	e After Controls (ma	trix ov	erleaf)			Office	Field				
Risk Score <u>After</u> Controls (matrix overleaf): Cease activity if risk 1 or 2						5	5	Safe to	o Proceed Y		

Degotardi Smith & Partners

AFTER WORK COMPLETION							
Any new hazards identified :							
Office manager update Hazard Register	No:						
Office manager update checks Job File for Records (SWMS; xxxx)							
AFTER WORK COMPLETION INCIDENT MANAGEMENT AND NEAR MISSES							
PARTNER NOTIFIED:	TIME:						
DESCRIPTION of INCIDENT/NEAR MISS:							
ACTIONS &							
OBSERVATIONS:							

RISK MATRIX

	Summary of Severity / Consequence		Likelihood				
			L1	L2	L3	L4	
			Imminent or routinely	Very Likely	Likely	Unlikely or Rare	
Catastrophic =	Death or permanent disability Long-term environmental damage	C1	1	1	2	3	
Critical =	Lost-time injury Medium term environmental impact	C2	1	2	3	4	
Minor =	Medical treatment or first aid Minor environmental harm being easily remediated	C3	2	3	4	5	
Minimal =	No injury, illness or environmental harm	C4	3	4	5	6	

High or Significant risk/impact (1-2)	 > Cease activity, bring to management attention > Discontinue until hazard / impact can be eliminated or risk reduced by substitution > Implement remedial or corrective action ASAP 	highest	Level 1 Eliminate the hazards Level 2	MOST
Substantial risk/impact (3)	 > Bring to management attention > Consider substitution, off- set strategy or control of hazard / impact 	h and safety pr	Substitute the hazard with something safer Isolate the hazard from people Reduce the risks through engineering controls	/ of control mee
Moderate risk/impact (4)	 > Follow standard procedures > Where PPE if mandated > Consider submitting Environmental or OH&S Improvement Request 	Level of healt	Level 3	Reliability
Low risk (5-6)	> None or limited action necessary	LOWEST	Reduce exposure to the hazard using administrative actions Use personal protective equipment	LEAST