
University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

Operational Characteristics of Surge 
Arresters within High Voltage 

Substations 

A dissertation submitted by 

Mr Andrew James Close 

In fulfilment of the requirements of 

ENG4112 Research Project 

Bachelor of Engineering (Honours) 

Power Major 

Submitted October, 2016 



(Page Left Intentionally Blank)



P a g e  | ii 

ABSTRACT 

Surge arresters form a critical component in the safe and reliable operation of electrical 

zone substations. Overvoltages resulting from a lightning strike pose the greatest risk of 

damage to substation equipment reaching peak values of over 100 times the nominal line 

voltage within microseconds. During such overvoltage events, the surge arrester limits the 

level of voltage that the equipment is subjected to, thus providing protection to very 

expensive, and specialised electrical infrastructure. 

Correct arrester specification is the first step in determining the type of surge arrester 

required for each installation. A second, but no less important step is determination of its 

physical location and connection method. The distance a surge arrester is located from 

equipment is a significant factor in its ability in protecting equipment. 

Through the undertaking of this detailed research project, optimum arrester location, 

connection methods and insulation co-ordination derived from software simulation will 

be compared to standard design principles utilised by Essential Energy (EE) and verified 

using equivalent circuit analysis. 
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NOMENCLATURE 

Aluminium Flange  The base on which the arrester housing is secured. 
Mounting holes in the flange allow the arrester to be 
fixed to an appropriately designed structure. 

Arrester disconnector test Applicable to surge arresters fitted with 
disconnectors. 

Arrester Housing  Porcelain housings may be either quartz or alumina 
porcelain. Higher mechanical strength may be 
achieved with the latter. The housing is designed with 
sheds to ensure the creepage distance between the 
active terminal and the base is adequate. 

Back Flash Rate The product of flashover probability and the number 
of strokes terminating on the OHEW (or OPGW). 

Capacitive Coupling Voltages between long lines that are isolated from 
earth, and nearby clouds may rise to damaging levels 
due to capacitance between them. 

Cement Joint  Sulphur cement provides superior mechanical 
properties over Portland cement typically used in 
insulator construction. Modern techniques allow for 
cement joints stronger than porcelain housings. 

Compression spring  A brace for the column of MO resistors, metallic 
spacers, supporting rods and holding plates. 

Conductive Coupling  (Refer to Residual Voltage) 

Continuous Operating Voltage The voltage that the arrester may be operated at 
continuously, without any restrictions. Uc > u  

Effectively Earthed Where the ratio of zero sequence reactance to positive 
sequence reactance (X0/X1) is greater than zero and 
less than three, and, the ratio of zero sequence 
resistance to positive sequence reactance (R0/X1) is 
greater than zero and less than one.  

External Insulation The insulation component of equipment that is in 
direct contact with the surrounding atmosphere. For 
example porcelain bushing. 

Holding Plate Manufactured from FRP, the holding rods provide 
additional mechanical strength to the supporting rods, 
limiting sagging. 

Inductive Coupling A large magnetic field is produced around the 
lightning strike due to large values of discharge 
current (thousands of amps). Voltages are induced 
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into nearby conductors intersecting the magnetic field  

Inductive Voltage Drops  The inductive characteristics of the conductor 
between the line, surge arrester and the earth result in 
significant voltage drops. Lead length plays a 
significant part in the magnitude of this voltage. 
Example: With an inductance of 1μH/m and a 
lightning current impulse of 10kA / μs: 
 
  u=L*di»dt=10μH*10kA/μs = 100kV (Hinrichsen 
2012) 

Insulation withstand test Determines the surge arrester housings ability to 
withstands voltage stresses in both wet and dry 
conditions. 

Internal Insulation The insulation component of equipment which is not 
in contact with the surrounding atmosphere. For 
example transformer insulating oil. 

Lightning Flash Density The number of lightning flashes across an area, over a 
time period (AS1768-2007) 

Lightning Impulse Protective 
Level 

(Refer to Residual Voltage) 

Lightning Impulse Withstand 
Level 

For non-restoring type arresters, this is the maximum 
(test) voltage the arrester may experience. This 
voltage level should never be reached in operation 
although inductive voltage drops, travelling waves 
and excessive discharge currents may cause a voltage 
greater than LIWL to be experienced. 

Lightning Protection System A system used to reduce the probability of danger 
from direct lightning strikes (AS1768-2007) 

Long duration current impulse 
withstand test 

Determines the resistive surge arrester elements 
ability to withstand dielectric and energy stresses 
without experiencing flashover. 

Mean Time Between Failure The probability of a surge exceeding a determined 
level which would result in equipment failure 

Mean Time Between Surge The reciprocal of the number of surges used in the 
determination of BFR. 

Metal Oxide Resistor Column Comprises of approximately 90% ZnO and the 
remaining 10% of rare earths; Bi, Sb, Co and Mn. The 
resister blocks give the arrester its non-linear UI 
characteristic.  A Typical block height is 45 mm with 
diameters ranging from approximately 30 mm through 
to 100 mm. 
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Metallic Spacers Predominantly aluminium tubes with end covers 
designed to ensure even contact pressure with the  
MO resistor. 

Multi column arrester current 
distribution test 

Determines the current flowing through each column 
of parallel resistors. 

Non Self Restoring Insulation Internal insulation which does not contain the ability 
to recover after a flashover has occurred. 

Operating duty test Determines the surge arresters thermal ability when 
exposed to pre-defined conditions. 

Partial discharge test Determines partial discharge measured within the 
surge arrester. 

Power Flow Current The current which continues to flow following the 
discharge of the arrester. 

Power Frequency Voltage The highest phase-to-earth voltage of the system. 

Pressure relief test Applicable to surge arrester fitted with pressure relief 
devices, determines the arresters ability to withstand 
short circuit conditions without failure to the housing. 

Rated Voltage The highest voltage the arrester may temporarily 
handle. The ratio between Uc & Ur is generally 1.25. 

Residual Voltage The voltage dropped across the surge arrester 
terminals when nominal discharge current flows 
through the arrester.   

Residual voltage test Determines the protective levels of the surge arrester. 

Resistive Coupling  A cloud to ground lightning strike raises the earth 
potential of all bonded equipment and conductors. 
Separately earthed equipment may still be subjected 
to resistively coupled transients when separated by 
short distances  

Seal test Determines the integrity of the surge arrester seals. 

Sealing Ring and Pressure Relief 
Diaphragm  

Appearing at both the top and bottom of the arrester, 
these integral components deter water ingress, provide 
a mechanism for pressure relief allow the build-up of 
high-pressure gasses before failure of the housing is 
reached and maintain an electrical path through to the 
MO resister column. 

Self Restoring Insulation External insulation which consists of the ability to 
return to pre fault condition after a flashover has 
occurred. 
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Single Impulse Energy Handling 
Capability 

The ability of the arrester to withstand the initial 
energy causing initial sudden temperature rises. The 
arrester will experience mechanical tensile and 
compressive forces that may cause physical damage 
such as cracking or shattering of porcelain type units. 

Supporting Rods Surrounding cage manufactured from FRP for the MO 
resister blocks. 

Thermal Energy Handling 
Capability 

The maximum energy an arrester can handle and 
return to normal operating temperature. 

Venting Outlet  Mechanism within an arrester to allow the venting of 
pressurised hot gasses. 

Verification of spark production Determines the surge arrester ability to limit sparks 
produced during the operation of pressure relief 
devices. This test is applicable to distribution type 
arresters. 
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 INTRODUCTION 

Essential Energy is a NSW state owned corporation that owns and operates the electricity 

network supplying power to over 800,000 residences and businesses across 95% of the 

state. The network consists of approximately 350 zone substations at operating voltages 

ranging from 132kV to 11kV (Essential Energy 2015a). When construction work is to be 

undertaken at any one of these sites or when a new substation is required, standard design 

practices and templates have been created. Delivering consistent, safe and cost effective 

designs through the use of templates ensures conformance to relevant Australian 

standards, corporate guidelines, policies and procedures.  

 

Figure 1-1 Essential Energy Regional Area (Essential Energy 2015b) 

 

The Australian Energy Regulator (AER) provides Essential Energy financial incentives 

for maintaining and improving reliability of the electricity network. Electricity outages as 

a result of damage to electrical infrastructure caused by overvoltages have the potential to 

disrupt many thousands of Essential Energy’s customers and significantly contribute to 

loss of income to businesses across a wide area simultaneously. The three most common 

types of overvoltages are lightning, switching and temporary. Lightning is the most 

commonly experienced overvoltage across Essential Energy’s network and has the 

potential to inflict the most damage both physically and financially. 
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 Background 

To date, there has been no recorded investigation by Essential Energy into the operational 

performance of surge arresters installed within their zone substations. Additionally, no 

consistent approach towards the assessment on surge arrester performance arising from 

modifications to electrical connections or equipment positions within the zone substation 

exists. This effectively leads to uncertainty, and excessive safety margins are factored 

into the template designs in an attempt to mitigate any increased risk of damage, loss of 

supply or injury to people. Such increased safety margins have the tendency to add 

unnecessary costs to projects, without quantifiable or measurable benefits.  

The majority of studies into the performance of electrical networks during overvoltage 

events such as lightning or switching surges have been undertaken using software such as 

EMTP/ATP. This project presents an opportunity to investigate the viability of using the 

existing Essential Energy corporate approved software package known as Current 

Distribution Electromagnetic fields Grounding and Soil structure analysis (CDEGS) to 

determine if overvoltages are present within zone substations during the transient. Such 

suitability would present significant cost savings to the business, reduce staff training 

requirements applicable to new software and present an alternative simulation method for 

engineers within the industry. 

 Research Objectives 

There are Four main objectives to this research.  

The first objective is to adopt a suitable computer software package to complete the 

network modelling and lightning simulation. Research into frequency domain (CDEGS) 

and time domain (ATP) methods shall be undertaken to make this determination. 

The second objective is to determine: 

a) The effectiveness of the existing surge arrester protective zones whilst 

maintaining the surge arresters in their present locations. 

b)  What impacts the surge arrester location and connection methods have in 

maintaining overvoltage levels below equipment BIL ratings when subjected 

lightning surges. 

The third objective shall identify any improvements to zone substation designs that may 

be achieved through changes to Essential Energy’s contract surge arrester specification.  

The fourth objective will present recommendations to Essential Energy design engineers 

relating to the results obtained in the second and third objectives detailed above.  
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Objectives two, three and four shall be achieved through the undertaking of two case 

studies. The first is to incorporate Essential Energy’s standard 66/11kV zone substation 

whilst the second shall be the rural 66/11kV zone substation located at Kywong in the 

New South Wales Riverina region. Results are to be obtained through detailed computer 

simulations and validated against analytical calculations derived from the application of 

simplified equivalent circuits. 
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 LITERATURE REVIEW 

 Introduction 

This chapter aims to: 

a) Describe the various transient overvoltages that result in disturbances to 

electrical networks.  

b) Distinguish between the various types of lightning and the properties relating to 

each, to allow an accurate representation during the computer simulation.  

c) Document the history of surge arrester technology and research the electrical and 

physical characteristics of surge arresters influencing their operation during both 

real world and computer-simulated events. 

d) Identify the differences between surge arrester classes and establish the influence 

the surge arrester protective zone has on the equipment. 

e) Introduce insulation co-ordination and the factors affecting performance of 

equipment insulation. 

f) Provide background into relevant Australian standards relating to both surge 

arresters, and the design of zone substations and transmission lines they are 

installed to protect. 

g) Determine a suitable computer program to perform the simulation of the network 

during a transient lightning overvoltage.  
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 Surge Voltages 

2.2.1 Lightning Overvoltages 

Overvoltages resulting from a lightning strike pose the greatest risk of damage to 

substation equipment reaching a peak value over 100 times the nominal line voltage 

within microseconds (Hinrichsen 2012). The lightning overvoltage may arise due to 

either backflash or shielding failure with each resulting in slightly differing wave fronts. 

Such waveshape variations are a result of a number of key factors such as magnitude, 

polarity and shape of the lightning stroke current, line and tower surge impedances, tower 

footing impedance and the critical flashover rating of the line insulation (IEEE 1998).  

There are two scenarios by which a lightning overvoltage may be inflicted upon the High 

Voltage (HV) electricity network. The first, and most damaging, is through a direct strike 

to the network infrastructure. The second, less severe surge, is when an adjacent strike is 

conducted onto the equipment through the ground. 

Lightning overvoltages are transient in nature and are also referred to as fast front 

transients covering a frequency range 10kHz to 1MHz (Imece et al. 1996). Waveshapes 

generally consist of a steep front and a long decaying tail. The unpredictability and 

random nature exhibited by lightning results in many variations to the overvoltage 

waveshape. AS1768-2007 details the most common waveshapes to represent transients 

are the 1.2/50s voltage and the 8/20s current waveforms. 

2.2.2 Switching Overvoltages 

There are a number of factors that may initiate a switching overvoltage of up to double 

the nominal line voltage. These high magnitude events pose a risk to insulation 

breakdown of equipment and include: 

a) Circuit breaker operation to clear network faults  

b) Switching of HV capacitor banks 

Switching overvoltages tend to present more of a problem at voltages above 345kV 

(Hileman 1999). The maximum voltage of Essential Energy’s network is 132kV. 

Additionally, this dissertation is primarily focused on surge arrester performance on the 

66kV subtransmission network, and therefore switching surges will not be included 

within this report. 
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2.2.3 Temporary Overvoltages  

Lasting for short durations in the order of tenth of seconds, through to a number of hours, 

temporary overvoltages may occur due to earth connection faults, energisation of 

unloaded lines, resonance or during load rejection. The system temporary overvoltage 

rating must be equal to or less than that of the surge arrester (Hileman 1999).  

2.2.4 Travelling Wave 

A transient disturbance to an overhead transmission line, such as lightning or switching 

surge will propagate throughout the electrical network in the form of a travelling (or 

incident) wave. The velocity at which the wave travels is proportional to the impedance 

of the conductor and is inversely proportional to the permittivity of the medium.  

2.2.4.1 Reflection and Transmission of Travelling Waves 

The incident wave may approach a junction within the network that appears as either 

open circuit, short circuit or a change in surge impedance. In each of these cases a 

fraction of the incident wave is either reflected back toward the source, or transmitted 

through to the adjacent section of line. The reflection and transmission factors of the 

incident wave are defined in section 2.2.4.2. 

2.2.4.2 Bewley Lattice Diagram 

The Bewley lattice diagram provides a convenient method to represent the position and 

direction of each incident, reflected and transmitted wave at each network junction. The 

lattice diagram is to be used in the validation of computer simulation results and an 

illustrative example containing two differing surge impedances (Z1 & Z2) connected in 

series along with a resistive load (R) at the end of the line is shown in Figure 2-1. 
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Figure 2-1 Bewley Lattice diagram 

Where transmission factors: 

 Φ = (ܼଵ − ܼଶ)/(ܼଵ + ܼଶ)  2-1 

 β = 2(ܼଶ)/(ܼଵ + ܼଶ) 2-2 

 ω = 2ܴ/(ܴ + ܼଶ )  2-3 

 

and reflection factors: 

 δ = 2(ܼଵ)/(ܼଵ + ܼଶ)  2-4 

 γ = (ܼଶ − ܼଵ)/(ܼଵ + ܼଶ) 2-5 

 α = (ܴ − ܼଶ)/(ܴ + ܼଶ)  2-6 

 

2.2.5 Surge Impedance and Velocity 

The speed at which the voltage and current travelling waves propagates due to a transient 

event (such as lightning or switching overvoltages) is proportional to the cable or 

conductors surge impedance. The surge impedance is purely resistive meaning the 

voltage and current waveforms have the same shape.  

The surge impedance and velocity is described within may be derived from the line 

inductance and capacitance as follows: 

 

δ Φ

e γ β α ω
R

Z1 Z2

TIME e
0

βe
γe ωβe

αβe
τ1

Φαβe
δαβe ωΦαβe

Φα2βe
τ2

Φ2α2βe
δΦα2βe ωΦ2α2βe

Φ2α3βe
τ3

δΦ2α3βe
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Surge Impedance: 

 Z = ܮ√ ∗  Ω  2-7 ܥ

 v = ܮ√/1 ∗  8-2 ݏ/݉ ܥ

 

Where: 

 .is the inductance measured in H/m ܮ

 .is the capacitance measured in F/m ܥ

2.2.5.1 Overhead Lines 

The inductance and capacitance of overhead conductors may be defined as: 

 L = (2 ∗ 10ି଻) ∗ ln (2ℎ/ݎ) μH/m  2-9 

ܥ  = (10ିଷ/18) ∗ ln (2ℎ/ݎ) μF/m  2-10 

 

Where: 

h is the conductor height above the ground measured in m. 

r is the radius of the conductor measured in m. 

The surge impedance and velocity therefore equates to: 

 ܼ = 60 ∗ ln (2ℎ/ݎ) Ω 2-11 

 v =  12-2 (ݐℎ݈݃݅ ݂݋ ݀݁݁݌ݏ) ݏߤ/݉ 300

2.2.5.2 Cables 

The permittivity of the cables insulation medium significantly influences the resultant 

surge impedance and velocity. The inductance and capacitance of cable may be defined 

as: 

 L = (2 ∗ 10ି଻) ∗ ln (ݎଶ/ݎଵ)/√݇ μH/m  2-13 

ܥ  = (10ିଷ/18) ∗ ln (ݎଶ/ݎଵ) μF/m  2-14 
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Where: 

r1 is the radius of the current carrying conductors measured in m. 

r2 is the radius of the outside cable insulation measured in m. 

݇ is permittivity of the medium which varies from 2.4 to 4. 

The surge impedance and velocity therefore equates to: 

 ܼ = 60/√݇ ∗ ln (2ℎ/ݎ) Ω 2-15 

 v =  16-2 ݏߤ/݉ ݇√/300

 

2.2.6 Sequence Components 

In normal (steady state) operation, an electrical power system operates in a balanced state. 

During a transient event such as lightning strike, the system becomes unbalanced and the 

displacement between each phase is no longer equal.  

 

Figure 2-2 Balanced and Unbalance System (Marx & Bender 2013) 

The method to solve unbalanced systems is by means of transforming the three phase 

voltages or currents into three sets of balanced vectors also referred to as positive, 

negative and zero sequence components (Figure 2-3).  

 

Figure 2-3 Sequence Components (Electrical4u 2011) 
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The complex operator ‘a’ is often utilised in the definition of symmetrical components 

and represents a unit phasor with a magnitude of 1 and an angle of 120°. The relationship 

between phase and sequence components is therefore: 

 E௥ = E௥଴ + E௥ଵ + E௥ଶ  2-17 

 E௬ = E௬଴ + E௬ଵ + E௬ଶ = E௥଴ + ܽଶE௥ଵ + ܽE௥ଶ 2-18 

 E௕ = E௕଴ + E௕ଵ + E௕ଶ = E௥଴ + ܽE௥ଵ + ܽଶE௥ଶ 2-19 

 E௥଴ =
1
3

(E௥ + E௬ + E௕) 2-20 

 E௥ଵ =
1
3

(E௥ + E௬ݎ +  ଶE௕) 2-21ݎ

 E௥ଶ =
1
3

(E௥ + ଶE௬ݎ +  E௕) 2-22ݎ

 

Positive (Z1) and negative (Z2) sequence impedances are equal in power system 

components such as transformers and overhead lines. For rotating machines they are 

different. Zero sequence (Z0) impedance value may vary significantly depending on the 

physical arrangement of the circuit (Electrical4u 2011). 

A lightning strike to overhead conductors is essentially either a phase to earth fault, or in 

some instances a double phase to earth fault. The equations to calculate sequence currents 

for earth faults are as follows: 

Phase to Earth Fault Current (Electrical4u 2011) 

 I௥଴ = ௥ଵܫ = )௥ଶܫ
ܧ

ܼ଴ + ܼଵ + ܼଶ
) 2-23 

 

Double Phase to Earth Fault Current (Electrical4u 2011) 

 I௥ଵ =
ܧ

(Zଵ +
ܼଶܼ଴

ܼଶ + ܼ଴
)
 2-24 

 I௥ଶ = I௥ଵ(
ܼ଴

ܼଶ + ܼ଴
) 2-25 

 I௥଴ = I௥ଶ(
ܼଶ

ܼଶ + ܼ଴
) 2-26 
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2.2.7 Steepness of Incoming Surge 

The steepness of the incoming surge refers to the rate at which the surge reaches the peak 

or crest value.  

Two different methods for deriving the steepness of the incoming surge have been 

presented: 

 ܵ =  27-2 ݏߤ  ݀/௖ܭ

(Hileman 1999) 

 ܵ = 1/((1/ܵ଴) + ௖ܭ ∗  28-2 ݏߤ/ܸ݇  ݀

(ABB high voltage technologies 1999) 

Where: 

௖ܭ  is the co-ordination factor. 

 ܵ଴ is the initial surge steepness. 

݀ is the incoming line length 

Hileman’s method uses assumed surge impedance values as shown in Table 2-1 for 

௖ܭ  (expressed in pF/kV-m) and calculates the length of the incoming line using the 

following: 

 ݀ = ܴܨܤ)/1 ∗ + (ܨܤܶܯ  29-2 ݉݇ ݔ

Where: 

 .is the backflash rate measured in flashovers/100km-years ܴܨܤ

 .is the mean time between failures measured in years ܨܤܶܯ 

 .is an additional length added to align with the designed span length measured in km ݔ

Table 2-1 Assumed Z0 and Kc (Hileman 1999) 

 

 

 

ABB approximates the value for ܭ௖  as 5 ∗ 10ି଺ s/kV-m and requires the incoming 

length of the line to be expressed in meters. 

No. of 
conductors 

Z0 
(Assumed) 

Kc 
(Suggested) 

1 450 700 
2 350 1000 

3 or 4 320 1700 
6 or 8 300 2500 
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 Lightning 

There are around 2000 thunderstorms occurring simultaneously across the globe. This 

equates to an estimated 100 lightning flashes to ground every second, or 8 million per day 

(Hileman 1999). Despite this, the likelihood of a fatality due to being struck by lightning 

is in the order of 1 in 2,000,000 (AS1768 2007).  

Average lightning density throughout Australia is highest across the northern coast of 

Western Australia and Northern Territory with 12 flashes per km2, per year. In contrast, 

the New South Wales maximum is between 3 and 4 flashes per km2, per year, 

coincidently located within Essential Energy’s franchise area. 

Electrical infrastructure is more susceptible to lightning strikes, which, when subjected to 

a lightning strike, results in a sudden disturbance to the system. Such transient events are 

akin to “closing a big switch” (Abdulwadood 2013) between the power line and a current 

source.  

Figure 2-4 Lightning Density Map of Australia (AS1768 2007) 
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2.3.1 Lightning Process 

As warm air close to the earth’s surface rises into the atmosphere a resulting cloud 

formation develops with regions of positive and negatively charged particles. With the 

positive charged particles residing at the top of the cloud, and the negative charged 

particles at the bottom, both charges continue to increases until the air gap breaks down 

and a subsequent lightning strike develops.  

The formation of a lightning strike may be categorized into two stages. The first stage 

begins with what is known as the stepped leader. Progressing slowly from the cloud 

towards the earth in intermittent steps of around 50m, this leader is not visible to the 

naked eye and contains comparatively small current between 50-200 amperes. The final 

stage involves an upward leader meeting the stepped downward leader resulting in the 

visible flash. Shockwaves produced as a result of the rapid rise of temperature in the 

upward leader (exceeding 25,000 degrees Celsius). The upward leader typically averages 

5-6km in length and may discharge hundreds of thousands of amps. The extreme 

temperature rise as a result of this discharge current produces shockwaves that is heard as 

thunder. It is common for subsequent strikes to follow with the average being three per 

flash. Typically, the first strike is higher in magnitude than subsequent strokes. 

2.3.2 Lightning Categories 

Intra-cloud, cloud to cloud, and cloud to ground, are three common categories of 

lightning.  

2.3.2.1 Intra-Cloud Lightning 

Intra-cloud lighting, or IC lightning, is the most common category of lightning. The 

lightning discharge occurs between areas of differing potential within a single cloud with 

the corresponding lightning flash illuminating the night sky with a “sheet” of light, thus 

leading to intra-cloud lightning commonly referred to as sheet lightning.  

2.3.2.2 Cloud to Cloud Lightning 

The least common category of lightning is cloud-to-cloud or CC lightning. It occurs when 

there is an electrical discharge between two or more individual clouds.  

2.3.2.3 Cloud to Ground Lightning 

The lightning discharge in cloud to ground, or CG lightning, is defined by two terms. 

First is the lightning direction, which may be either downward (cloud to ground), or 

upward (ground to cloud) and secondly, the polarity of the charge, which may also be 

positive or negative in nature.  
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It wasn’t until 1975, when Karl Berger undertook a study to record the parameters of 

lightning strokes. The data was analysed and initially, three types of lightning strokes 

were discovered; negative downward, negative upward and positive downward. A fourth 

type, positive upward was identified after Berger’s initial study (Hileman 1999). 

2.3.2.4 Negative Downward Stroke 

Exhibiting a high median current value of around 33kA, the negative downward flash has 

been recorded as the most predominant type of lightning stroke, accounting for 

approximately 85-95% of flashes to structures less than 100m (Berger, Anderson & 

Kroninger 1975). 

2.3.2.5 Negative Upward Stroke 

More frequently observed with taller structures. In 1975, Berger found the negative 

upward stroke to have contributed to approximately 75% of the 1196 recorded lightning 

strikes upon both 70m and 80m masts installed at the summit of the 650m Mt San 

Salvadore in Switzerland. A lower median current value of less than 25kA is typical for 

this type of stroke (Berger, Anderson & Kroninger 1975). 

2.3.2.6 Positive Upward Stroke 

Known also as a “Super Flash”, the positive upward stroke exhibits current magnitudes 

approximately 1.2 to 2.2 times those found during a negative downward stroke. More 

prolific during the winter season, and found over oceans, positive upward strokes 

generally exhibit a greater time from crest to half value (Berger, Anderson & Kroninger 

1975).  

2.3.2.7 Positive Downward stroke 

Further analysis of Berger’s study resulted in reclassification of positive upward stokes to 

a positive downward type.  It is therefore taken that a positive stroke may be either 

upward or downward in nature (Hileman 1999). 



LITERATURE REVIEW    P a g e  | 15 
 

 

 

Figure 2-5 Lightning Strokes (a) Negative Downward (b) Positive Downward (c) Positive Upward 
(d) Negative Upward (Heidler et al. 2008) 

2.3.3 Back Flashover 

When lightning strikes the overhead earth wire, the discharge current flows through to 

earth, during which a voltage builds up across the line insulation. At the point this voltage 

exceeds (or equals) the line’s critical flash over voltage, back flashover will occur 

(Hileman 1999). 

2.3.4 Direct Lightning Strike 

A direct lightning strike onto electrical equipment or overhead conductors will conduct to 

earth through the lightning protection system, or along any other metallic path, often 

resulting in unpredictable back flashovers (Thompson 2008). For 66kV systems, 

significant overvoltages are produced only by direct strikes (AS1824.2 1985). Such 

overvoltages may occur between the conductor and ground (VCG) and conductor to 

conductor (VCC). 

The maximum overvoltages may be calculated by (Darveniza 2006):  

 
஼ܸீ =  2-30 ܸ  (௣ܼܫ)0.5

And 

 
஼ܸ஼ = 1)(௣ܼܫ)0.5 −  31-2 ܸ  (ܨܥ

Where: 

ܼ is the surge impedance. 

 .௣ is the peak lightning currentܫ

 .is the coupling factor between conductors ܨܥ
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2.3.5 Indirect Lightning Strike 

Transient overvoltages induced onto adjacent or nearby conductors may result from 

resistive, inductive and capacitive coupling (Thompson 2008).  

The maximum induced voltage may be expressed as (Darveniza 2006): 

 ܷ௠ = ܼ ∗ ௣ܭ ∗ ௣ܫ ∗ (ℎ + 0.15ඥ2-32 ܸ  ݀/(ߩ 

Where: 

ܼ is the surge impedance. 

 .௩ is the return stroke velocity factorܭ

 .௣ is the peak lightning currentܫ

 .is the ground resistivity ߩ

݀ is the distance from the line. 

ℎ is the height of the line. 

It is universally agreed that induced overvoltages above 200kV are rare (Darveniza 2006), 

and as such would be of concern only to overhead lines and equipment less than 33kV. 

2.3.6 Lightning Parameters 

The geography across Essential Energy’s network varies from low lying coastal areas to 

mountainous regions above 1000m. Positive strokes have been discounted from this study 

on the basis that they are predominantly found over oceans, during winter and at the 

beginning and end of storms (Hileman 1999). Of the remaining negative polarity strokes, 

negative downward type is chosen due the higher median discharge current and the 

proven higher likelihood for striking structures less than 100m in height (typical of 

substation equipment). 

2.3.6.1 Crest Current 

The median crest (or peak) current for negative downward strokes has been recorded at 

34kA (Hileman 1999). This value was derived through analysis of lightning strikes to 

structures below 60m in height across seven countries; Czechoslovakia (123), Australia 

(18), Poland (3), United States of America (44), Sweden (14), South Africa (11) and 

Switzerland (125).  
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Published lightning currents across Australia were not widely available. A more accurate 

representation of peak lightning current in south-eastern Australia is proposed. Reviewing 

Kuleshov (2012) identified a positive relationship between rainfall and cloud to ground 

lightning, with lightning activity across south-eastern Australia to be most prevalent 

between the six months from October to March.  

 

Figure 2-6 Seasonal Distribution of Monthly Mean Thunderstorm Days – Melbourne (Kuleshov 
2012) 

To derive a lightning magnitude value which represents an average of what would be 

expected across Essential Energy’s network area, data on all recorded negative polarity, 

cloud to ground lightning strikes within an 800km radius of the regional city of Dubbo 

New South Wales, between October 2015 and March 2016 was obtained using Essential 

Energy’s licence from Weather Zone online. The regional city of Dubbo was chosen as 

the location due to the geographical proximity to the centre of New South Wales, and 

ensured Essential Energy’s entire network was captured. 

 

Figure 2-7 Lightning Capture Area (Google Earth 2013a) 
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The results found a total of 2,670,262 negative polarity cloud to ground strikes were 

recorded. The maximum magnitude was recorded at -383.5 kA, whilst the minimum was 

-0.1 kA. The average (mean) magnitude was calculated at -13.7 kA. This value shall be 

rounded to -14 kA for inclusion in simulations. Figure 2-8 below provides a probability 

density plot of the recorded lightning magnitudes from 0 kA to -46.5 kA (3 standard 

deviations from the mean). 

 

Figure 2-8 Negative Polarity Lightning Magnitude Probability Density Plot 

2.3.6.2 Current Waveshape 

As shown in Figure 2-9, the industry accepted lightning current waveshape is represented 

by the 8/20s curve (AS1768 2007). This curve represents the lightning current 

increasing from 10% to 90% of its peak (crest) value in 8s, and decaying to 50% of the 

crest value after 20s.  

 

Figure 2-9 Discharge Current Waveshape (AS1768 2007) 
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2.3.6.3 Voltage Waveshape 

As shown in Figure 2-10, the industry accepted lightning voltage waveshape is 

represented by the 1.2/50s curve (AS1768 2007). This curve represents the lightning 

voltage increasing from 30% to 90% of its peak (crest) value in 1.2s, and then decaying 

to 50% of the crest value after 50s. 

 

Figure 2-10 Open-Circuit Voltage Waveshape (AS1768 2007) 

 

2.3.6.4 Number of Strokes per Flash 

For positive lightning strokes, it is uncommon for more than a single stroke per flash 

(Hileman 1999). For negative polarity lightning strokes, Anderson and Eriksson (1980) 

have deduced from Berger’s initial study that the average number of strokes is three. The 

time between each strike is between 40 to 50ms (Uman 1986) 

2.3.6.5 Flash Incidence 

Also known as Lightning Flash Density. It is used primarily to ascertain the level of risk 

lightning may pose to people and equipment. AS1768-2007 describes a risk analysis 

method, the need for lightning protection and protection levels applicable to structure 

types.  
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 History of Surge Arresters 

The first surge arresters (also known as lightning arresters) were developed over 100 

years ago. They included a simple air gap between the line and the ground and provided 

excellent lightning protection, but could not clear power follow current without a large 

enough linear resistance connected in series (Sakshaug 1991). A surge arrester or fuse 

was therefore needed to break this current. 

From the early 1900’s through till around 1930, the first ‘non-linear resister’ type arrester 

was used. It comprised of an array of aluminium cells (inverted cones), each rated at 

300V, separated by approximately 0.3 inches of electrolyte and placed in a tank of oil, 

which is connected in series to a sphere or horn gap (Sakshaug 1991). This type of 

arrester was very large, and required continual maintenance, but exhibited good current 

limitation properties.  

Prior to the superseding of aluminium cell type arresters, 1920 to 1930 saw ‘Oxide Film 

Arresters’ introduced, with a modified version remaining in service until approximately 

1954. An array of cells that contained lead peroxide and coated in an insulating film made 

up the internals of the arrester. Once subjected to a voltage surge, the resistance lowered 

allowing current to flow. This type of arrester allowed for many operations to be 

performed before reduction of the performance characteristics was experienced. Unlike 

the nonlinear resister type arresters of the early 1900’s, the ability to handle power follow 

currents was achieved with the oxide film arrester (Sakshaug 1991). 

The introduction of SiC arresters in 1954 heralded a major improvement in arrester 

design. Improvements to heating and erosion characteristics resulted in a reduction to the 

BIL of substation equipment protected by the arrester. The use of a porous gap plate 

material resulted in an arrester that was capable of withstanding high fault current 

(Sakshaug 1991) and significant reductions in the size of the arresters led to further 

economic benefits.  

Modern day arresters are typically ZnO type units. They were introduced around 1976 

and are also known as MO type without gaps (Hinrichsen 2012). ZnO arresters exhibit 

improved handling characteristics for switching surges as compared to SiC types. 

Improvements have been made in the reduction of arrester currents where SiC arresters 

would once have equalled 300 A, are now in the order of 1mA  in MO type arresters. 

Arrester lead lengths have subsequently been reduced by approximately 10% (Sakshaug 

1991). 
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 Surge Arrester Design 

There are a number of basic parameters that influence the design and operation of metal 

oxide surge arresters. Split into two categories, Electrical and Construction, they are listed 

below: 

2.5.1 Electrical Characteristics 

Defined by Australian Standards AS1842.1-1995 and AS1307.2-1996, key characteristics 

include:  

a. Power Frequency Voltage (u) 

b. Continuous Operating Voltage (Uc) Note: Uc > u  

c. Rated Voltage (Ut) 

d. Rated Frequency (fr)  

e. Lightning Impulse Protective Level (Uref)  

f. Lightning Impulse Withstand Level (LIWL)  

g. Single Impulse Energy Handling Capability 

h. Thermal Energy Handling Capability 

2.5.2 Construction Characteristics 

The construction of MO surge arresters has been simplified significantly since the silicon 

carbide types used prior to the mid 1970’s.  Modern surge arresters tend to be of either 

porcelain or polymer construction.  

The active components of both porcelain and polymer arresters operate in a similar 

fashion. The main difference is in the outer housing. The silicone rubber housing of 

polymer type surge arresters exhibit much improved hydrophobicity (Hinrichsen 2012). 

Suppression of contaminants forming a conductive path along the outer sheds is greatly 

reduced. Porcelain housed surge arresters are prone to explosive damage. In the event of 

failure to the outer housing, polymer surge arresters reduce the risk of damage to nearby 

equipment and injury to persons in close proximity.  

Weight savings are achieved with utilising polymer type arresters when compared to 

porcelain. This of course will lead to more efficient handling and transportation along 

with reduced production and delivery costs. 
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2.5.2.1 Porcelain Construction  

Components include: 

a. Metallic Spacers  

b. MO Resistor Column  

c. Supporting Rods 

d. Holding Plate  

e. Compression spring 

f. Cement Joint 

g. Arrester Housing 

h. Sealing Ring 

i. Pressure Relief Diaphragm 

j. Venting Outlet 

k. Aluminium Flange  

 

 

2.5.2.2 Polymer Construction  

Key components include: 

a. End Fitting 

b. Outer housing 

c. Metal Oxide resister stack 

d. Fibre reinforced plastic support rods. 

 

 

 

2.5.3 Energy Handling Capability 

The energy handling capability of surge arresters are related to the line discharge class of 

the arrester. There are five line discharge classes defined with AS1307.2-1996. Figure 

2-13 shows the energy handling of each line discharge against the ratio of switching 

impulse to rated voltage of the arrester.  

Figure 2-11 Porcelain MO arrester 
cross section (Hinrichsen 2012) 

Figure 2-12 Polymer MO arrester 
cross section (Hinrichsen 2012) 



LITERATURE REVIEW    P a g e  | 23 
 

 

 

Figure 2-13 Surge Arrester Line Discharge Class (AS1307.2 1996) 

 

2.5.4 Surge Arrester Models 

The application of accurate surge arrester models is dependent on the chosen software 

package. For common software such as ATP/EMTP and Matlab, there are numerous 

papers comparing the V-I characteristics and accuracy of surge arresters through 

simulated models. The IEEE, Pincetti-Gianettoni, Fernando-Diaz and the Alternative 

Transients Program (ATP) developed model are four of the more common types that have 

been included for comparison in this report.  

The following surge arrester models are relevant only to programs which derive solutions 

using time domain methods (for example ATP).  

2.5.4.1 IEEE Model 

Developed by the IEEE WG 3.4.11, this surge arrester model is often known as the 

‘conventional, or non-linear resistor’ model for MOV type surge arresters (Bayadi et al. 

2003). 

As shown in Figure 2-14, the circuit consists of two non-linear resistances designated by 

A0 and A1 that are separated by an RL low pass filter. The values for A0 and A1 are given 

in Table 2-2. When subjected to fast rising transients, the RL circuit impedance becomes 
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significant. Matching the dynamic characteristics of MOV type surge arresters, inductor 

L1 derives greater current through A0, and subsequently, a larger voltage across the 

arrester terminals. It is important to note that the value of L1 will require adjustment until 

measured voltages match manufacturers data. 

 For slow transients, the two resistances are in parallel simulating arrester behaviour 

during normal system operation. Additionally, R0 eliminates numerical oscillations, 

which may arise when using computer simulation, and C is the surge arrester external 

capacitance (Zadeh, Abniki & Akmal 2009). 

 

Figure 2-14 IEEE ‘Conventional’ Model (Abdulwadood 2013) 

 L଴ = 0.2 ∗  33-2  ܪߤ (݊/݀)

 R଴ = 100 ∗ (݀/݊) Ω 2-34 

 Lଵ = 15 ∗  35-2 ܪߤ (݊/݀)

 Rଵ = 65 ∗ (݀/݊) Ω 2-36 

 C = 100 ∗ ቀ
݊
݀

ቁ  37-2 ܨ݌

 

Where: 

d is the surge arrester height. 

n is the number of parallel metal oxide columns within the surge arrester. 

2.5.5 Pincetti-Gianettoni Model 

A variation to the IEEE model, R0 and R1 are replaced with a single shunt resistance R0. 

As per the IEEE model, R0 is included to eliminate numerical oscillations when running 

computer simulations. One advantage the Pincetti-Gianettoni model has when compared 

to the IEEE model is that the physical characteristics of the arrester are not required, 

simply manufacturers electrical data only (Christodoulou et al. 2008).  
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Figure 2-15 Pincetti-Gianettoni Model (Abdulwadood 2013) 

 L଴ =
1

12
ቆ

௥ܷଵ/ଶ − ௥଼ܷ/ଶ଴

௥଼ܷ/ଶ଴
ቇ ∗ ௥ܷ  38-2 ܪߤ 

 Lଵ =
1
4

ቆ
௥ܷଵ/ଶ − ௥଼ܷ/ଶ଴

௥଼ܷ/ଶ଴
ቇ ∗ ௥ܷ 39-2 ܪߤ 

 R଴ =  Ω 2-40ܯ 1

 

Where: 

௥ܷଵ/ଶ is the residual voltage at 10kA for a 1/2 s fast front current surge in kV. 

௥଼ܷ/ଶ଴ is the residual voltage at 10kA for a 8/20 s fast front current surge in kV. 

௥ܷ  is the rated voltage. 

2.5.6 Fernandez-Diaz Model 

A variation of both IEEE and Pincetti-Gianettoni models, the Fernandez-Diaz model has 

been developed to simulate arrester characteristics when subjected to time to crest values 

8s and greater (Bayadi et al. 2003). Two non-linear resistances designated by A0 and A1 

are separated by a single inductance L1 whilst a single resistance R0, and capacitance C0 

are connected across the arrester terminals. Again R0 is included to eliminate numerical 

oscillations when running computer simulations, and C is the surge arrester external 

capacitance (Christodoulou et al. 2008).  

 

Figure 2-16 Fernandez-Diaz (Abdulwadood 2013) 
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 L଴ =
2
5

ቆ
௥ܷଵ/ଶ − ௌܷௌ

௥଼ܷ/ଶ଴
ቇ ∗ ௥ܷ 41-2 ܪߤ 

ܥ  =
1

55
ቆ

௥ܷଵ/ଶ − ௌܷௌ

௥଼ܷ/ଶ଴
ቇ ∗ ௥ܷ  42-2 ܨ݌ 

 R଴ =  Ω 2-43ܯ 1

 

Where: 

ௌܷௌ is the residual voltage at 500A for a 60/2000 s current surge or 30/70 s in kV . 

௥ܷଵ/ଶ is the residual voltage at 10kA for a 1/2 s fast front current surge in kV. 

௥଼ܷ/ଶ଴ is the residual voltage at 10kA for a 8/20 s fast front current surge 

௥ܷ is the rated voltage in kV. 

 

2.5.7 ATP Model 

Utilised with computer software package ATP, the model consists of a number 

exponential, non-linear devices defined as: 

ܫ  = )݌
ݒ

௥௘௙ݒ
)௤ 44-2 ܣ 

(Meister, Shayani & de Oliveira 2011) 

Where: 

  .is a coefficient ݌

 .is the exponent defining the shape of the V-I characteristic ݍ

 is the residual voltage ݒ

 .௥௘௙ is an arbitrary voltage to normalize the equationݒ

A true representation of the surge arrester’s non-linear V-I characteristic is given with this 

model however the arresters dynamic characteristic is not included (Abdulwadood 2013) 

The crest current and voltage are therefore calculated by the software as occurring at the 

same time. 
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2.5.8 Model Parameters 

The values for non-linear devices A0 and A1 have been derived from experiments 

conducted by the IEEE WG 3.4.11. Their non-linear characteristics are shown in Table 

2-2. 

 

Figure 2-17 A0 and A1 V-I Characteristics (Abdulwadood 2013) 

 

 

Table 2-2 A0 and A1 V-I Characteristics (Abdulwadood 2013) 

 

 

 

 

 

 

 

 

 

 

* The per unit voltage values are based on the 8.20 µs residual voltage of the arrester. 

 

 

 

 

 

 

I (kA) 
V* (p.u)  

A0 A1 

0.1 0.963 0.769 
1 1.05 0.85 
2 1.088 0.894 
4 1.125 0.925 
6 1.138 0.938 
8 1.169 0.956 
10 1.188 0.969 
12 1.206 0.975 
14 1.231 0.988 
16 1.25 0.994 
18 1.281 1 
20 1.313 1.006 
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2.5.9 Model Accuracy 

The recorded accuracy between the abovementioned surge arrester models is presented in 
Table 2-3. These results have been compared against measured results from actual surge 
arrester units within each respective reference. 

Table 2-3 Surge Arrester Model Errors using 20kA 8/20s surge 

I = 20kA (8/20s) IEEE 
Pincetti-

Gianettoni 
Fernandez-

Diaz 
ATP 

Zadeh, Abniki and Akmal 
(2009) 

6.21% 10.92% 0.008% - 

Bayadi et al. (2003) 2.56% 2.89% 0.89% 0.56% 
Christodoulou et al. (2008) 1.38% 0.87% 2.04% - 

Meister, Shayani and de 
Oliveira (2011) 

0.84% 0.25% 1.6% 1.3% 

Average Error 2.75% 3.73% 1.13% 0.93% 
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 Surge Arrester Operation 

A typical lightning strike may consist of one or more lightning strikes (or discharge) over 

a period of up to 1/3 of a second (Woodworth 2008). Surge arresters do not operate any 

differently between any of the four types of lightning described in section 2.3.2.  

The surge arrester limits the surge magnitude seen by the equipment by ‘dropping’ 

voltage across its terminal to ground. This is known as its lightning impulse protective 

level or arrester discharge voltage. Figure 2-18 has been adapted from ABB high voltage 

technologies (1999) and provides a simple diagram to show the voltage drop across the 

arrester (Ed) and the remaining voltage (Eeq) that will be seen by downstream equipment.  

 

 

 

 

 

 

 

 

Where: 

E is the crest voltage of the incoming surge. 

v is the velocity of the incoming surge. 

S is the steepness of the incoming surge. 

A is the surge arrester. 

la and lb are the connecting line lengths between the equipment and the surge arrester. 

Ed is the voltage drop across the arrester. 

Eeq is the overvoltage seen at the downstream equipment. 

 

 

Figure 2-18 Simplified overvoltage diagram (ABB high voltage technologies 1999) 
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 Insulation Co-ordination 

2.7.1 Insulation Types 

Insulation types may be classified as Internal or External, and be either self-restoring or 

non-self-restoring in nature.  

2.7.2 Basic Lightning Impulse Insulation Level (BIL) 

Insulation co-ordination is critical to the reliability, longevity and effective operation of 

zone substation equipment and overhead power lines. The BIL rating of equipment 

defines “the electrical strength of insulation expressed in terms of the crest value of a 

standard lightning impulse” (Hileman 1999). It is also referred to as the equipment’s 

Lightning Impulse Withstand Voltage. Effective co-ordination ensures the chosen surge 

arrester will adequately protect equipment. An example is shown in Figure 2-18 where if 

the overvoltage at point Eeq is greater than the equipment BIL rating, then damage to the 

equipment, network outages and inconvenience to large numbers of customers may result. 

BIL may be split into two categories; Statistical and Conventional. Statistical BIL 

represents the impulse level by which there is a 90% probability of withstand, and 10% 

probability of failure, whilst Conventional BIL describes the level at which the equipment 

insulation is not affected after subjection to a number of impulses.  

2.7.2.1 Insulation Degradation  

The insulating medium in equipment such as transformers (paper, oil) deteriorate over 

time. Moisture absorption into paper insulation around the windings, contaminants (dirt, 

moisture, dissolved gasses) and expansion and contraction of the windings due to heat are 

common factors contributing toward this degradation (modulesdirect.com 2011). 

2.7.2.2 Standard BIL Values 

Table 3.1 within AS2067 (2016) defines the minimum lightning impulse withstand 

voltage (BIL) levels for equipment  across various voltages. This table is included in 

APPENDIX B. These values are identical to those specified within IEEE Standard 

C62.81.1, and the procedure for selection of a suitable BIL rating is included in 

AS1824.1-1996. The standard BIL level for 66kV equipment is 325kV.  
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2.7.3 Critical Flash Over 

An equipment’s Critical Flash Over (CFO) rating is the voltage whereby there is a 50% 

probability that the insulation may fail. The CFO may be taken from a Gaussian 

cumulative distribution plot of insulation strength against probability of flashover (Figure 

2-19), however calculation of the CFO can also be derived from the statistical BIL 

equation as shown by Hileman (1999) : 

ܮܫܤ  = 1)ܱܨܥ −  45-2 ܸ݇ (ܱܨܥ/௙ߪ)1.28

Where: 

 ௙ is the coefficient of variation. For lightning, typical values for  = 2 - 3% (Hilemanߪ

1999) 

 

Figure 2-19 Insulation Strength Characteristic (Hileman 1999) 

 

2.7.4 Basic Switching Impulse Level (BSL) 

The BSL of equipment may be described similarly to BIL, however with respect to 

switching impulse in place of lightning. As described in section 2.2.2, switching impulses 

do not affect the operation of equipment at 66kV and are not included for study under this 

dissertation of literature review. 
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 Surge Arrester Classification 

The three classes of surge arresters commonly used on electricity networks are Station, 

Intermediate and Distribution class. Australian standard AS1307.2-1999 defines each 

arrester class based on standard nominal discharge current. 

The minimum information a surge arrester must display on a permanently attached 

nameplate defined by AS1307.2-1999 is as follows: 

a. Continuous operating voltage, 

b. Rated voltage, 

c. Rated frequency, 

d. Nominal discharge current, 

e. Pressure relief current (kA r.m.s) 

f. Spark production class, 

g. Manufacturers name and arrester type identification, 

h. Assembling position of the arrester, 

i. Year of manufacture, 

j. Serial number.  

2.8.1 Station Class 

Exhibits superior electrical performance due to greater Basic Insulation Level (BIL), 

higher energy absorption, lower discharge voltages and greater pressure relief (Pryor n.d). 

Essential Energy utilise station class surge arresters within their zone substations as a 

standard. 

2.8.2 Intermediate Class 

Similar to station class, albeit with slightly reduced capabilities, intermediate class 

arresters are traditionally used within smaller substations, dry type transformers and 

underground cable protection (Pryor n.d). 

2.8.3 Distribution Class 

Essential Energy utilise this class of surge arrester on 11/22/33 kV distribution 

transformers and lines throughout its network. 
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 Surge Arrester Protective Zone 

The protective zone of the surge arrester defines the maximum distance the arrester may 

be located whilst limiting the residual voltage of the transient event below the BIL or 

BSL rating of the equipment. The further away the arrester is from the equipment 

terminals, increases the time that the equipment is subjected to the transient. The velocity, 

or propagation speed of the travelling wave and the rate at which the travelling wave peak 

is proportional to the peak value of the overvoltage at the equipment terminals.  

Henriksen (2007) provides an example to estimate the protective zone of a surge arrester 

located near a transformer at the end of a single feeder:  

௦ݔ  =
௥ܷ௘௙/(1.15 − ௣ܷ௟)

2 ∗ ݏ
∗  46-2 ݉ ݒ

 

Where, 

 .௦    = Protective zone in metersݔ

௥ܷ௘௙ = Standard Lightning Impulse Withstand Level (BIL) of the equipment in kV. 

௣ܷ௟ = Lightning Impulse Protective Level in kV. 

 .Front steepness of the overvoltage in kV/μs =   ݏ

(Typical lightning values = 1000kV/μs for overhead line & 300kV/μs for underground 

cable (Hinrichsen 2012))  

 .Propagation speed of the travelling wave in m/μs =   ݒ

(Typical overhead line = 300m/μs & Underground cable = 150-210 m/μs (Hinrichsen 

2012)) 
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 Australian and International Standards 

2.10.1 AS1307 Surge Arresters 

AS1307 consists of four parts: 

 Part 1: Silicon Carbide type for a.c. systems 

 Part 2:  Metal-oxide surge arresters without gaps for a.c. systems 

 Part 3: Distribution type metal-oxide surge arresters with gaps for a.c. systems 

 Part 4: Application guide 

2.10.1.1 AS1307.2-1996 Part 2: Metal-oxide surge arresters without gaps for a.c. 

systems 

This standard is based on, and contains in full, IEC99-4 Surge Arresters, Part 4: Metal-

oxide surge arresters without gaps for a.c. systems. It has been modified to suit Australian 

conditions, the objective of the standard is to detail the minimum requirements for testing 

gapless metal oxide surge arresters that are applied to a.c. systems (AS1307.2 1996).  

Design, routine and acceptance tests described in this standard include: 

a. Insulation withstand test 

b. Residual voltage test 

c. Long duration current impulse withstand test 

d. Operating duty test 

e. Pressure relief test 

f. Arrester disconnector test  

g. Partial discharge test 

h. Seal test 

i. Multi column arrester current distribution test  

j. Verification of spark production 

2.10.2 AS2067-2016 Substations and High Voltage Installations Exceeding 1kV a.c 

Providing the minimum requirements for the design and construction of high voltage 

installations including zone substations, this standard is used extensively by Essential 

Energy, and forms the basis for the company’s zone substation design guidelines; 

CEOP8032 – Transmission and Zone Substation Design Guidelines.  The objective of 

this standard, and CEOP8032, is to ensure a consistent approach to the design and 

construction of installations such as zone substations, whilst also providing minimum 
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safety and electrical clearances, BIL ratings, installation methods, equipment protection, 

labelling, building requirements, oil containment and earthing systems.  

Minimum electrical and safety clearances to which equipment such as surge arresters 

shall comply (prior to additional dielectric tests) have been derived from AS1842.1-1995 

and AS60038-2012 and tabled under table 3.1 of AS2067-2016 (APPENDIX B). 

AS1768-2007 is referred to under the section of AS2067-2016 to describe methods for 

the protection of equipment against lightning strikes. 

2.10.3 AS1768-2007 Lightning Protection 

This standard defines the “guidelines for the protection of persons and property from 

hazards arising from exposure to lightning” (AS1768 2007). The standard adopts a risk 

assessment method for the determination of total risk against a direct lightning strike. 

Should this total risk be greater than an accepted level of risk, additional lightning 

protection schemes are required.   

The primary method of reducing the risk utilises the rolling sphere technique, whereby an 

imaginary sphere is brought up to and rolled over the equipment. Any part of the structure 

that has been in contact, or protrudes through the surface of the sphere, is not protected 

from a direct lightning strike. The diameter of the sphere is based upon the protection 

level required to reduce the risk to below or equal to an acceptable level. Surge arresters 

installed on high voltage systems are included in this standard as additional protection 

measures against overvoltages and overcurrent’s. 

Table 2-4 Protection Level and Rolling Sphere Radius (AS1768 2007) 

Protection Level  
(PL) 

Sphere Radius 
 (m) 

Interception Current 
Imin (kA) 

I 20 2.9 
II 30 5.4 
III 45 10.1 
IV 60 15.7 

 

2.10.4 AS1824 Insulation Co-ordination 

AS1824 Consisting of two parts: 

Part 1: Definition, principles and rules 

Part 2: Application guide 
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2.10.4.1 AS1824.1-1995 Part 1: Definitions, Principles and Rules 

The definitions and classifications presented in this standard form an integral link with 

not only part 2 of AS1824, but related standards such as AS1307, AS1931 and AS2067 

that refer to terminology defined in AS1824 Part 1. The technical content of this standard 

has been derived from international standard IEC 71.1-1993 Insulation co-ordination, Part 

1: Definitions, principles and rules. 

Part 1 of AS1824 allows for the determination of standard insulation levels, and the 

requirements for testing, of equipment classified between two defined voltage ranges.  

Range I: 1ܸ݇ < ܷ௠ ≤ 245ܸ݇ Range II: ܷ௠ > 245ܸ݇ 

2.10.5 AS1824.2-1985 Part 2: Application Guide 

Similar to AS1824 Part 1, this standard is derived from international standards IEC 71.2-

1976 Insulation co-ordination, Part 2: Application guide, and IEC 71.3-1982 Insulation 

co-ordination, Part 3: Phase-phase insulation co-ordination, principles, rules and 

application guide. Three voltage ranges are individually addressed providing guidance on 

the selection of equipment insulation strengths.  

Range A: 52 & ܸ݇ 1 ݊݁݁ݓݐ݁ܤ ܸ݇  

Range B: 300 & ܸ݇ 52 ݊݁݁ݓݐ݁ܤ ܸ݇  

Range C: ݐ ݎ݁ݐܽ݁ݎܩℎܽ݊ 300 ܸ݇ 

2.10.6 AS7000-2010 Overhead Line Design 

In similar fashion to AS2067, this standard aims to provide an industry standard for new 

overhead line designs. The standard includes measures to improve the performance of the 

line against lightning overvoltages and provides guidance on insulation co-ordination 

between the overhead line and the zone substation. It is important to note however, that 

for the most part, the standard provides minimum requirements. Essential Energy has 

used AS7000-2010 as the basis for CEOP8032 Transmission and Zone Substation Design 

Guidelines. This corporate manual details all electrical, mechanical and civil design 

criteria for overhead and underground feeders. To cater to site specific, environmental 

and construction tolerances, Essential Energy guidelines exceed the specifications set out 

in AS7000-2010 in a number of areas such as electrical clearances to ground. 
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Table 2-5 Minimum 66kV Conductor Clearances to Ground 

Standard 

Distance to ground in any direction (m) 

Over road or 
carriageway 

Over land accessible by 
vehicles other than road 

or carriageway  

Land not traversable by 
vehicles 

CEOP8032 8.0 7.3 6.0 
AS7000 6.7 6.7 5.5 
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 Computer Simulation Programs 

There are a number of software packages available to simulate the response of power 

systems during a high frequency transient event such as lightning. Alternative Transients 

Program (ATP) and the graphical user interface ATPDraw, Electromagnetic Transients 

Program (EMTP), Matlab-Simulink and TFlash are examples of the more common 

programs used extensively within literature documenting the effectiveness and suitability 

of each. 

2.11.1 Simulation Accuracy 

Using ATP-EMTP and Matlab-Simulink software, Danyek, Handl and Raisz (2002) 

simulated a single phase fault on a 60km, 120kV 3phase transmission line, connected to a 

40MVA, 10kV load. Comparison of the results found ATP-EMTP performed superior to 

Matlab in a key areas such as constructability of the models, and in simulation run times. 

Calculation times took less than a quarter of the time at 15 seconds for ATP-EMTP 

versus 77 seconds for Matlab-Simulink. Both software packages obtained very similar 

results with the differences measured at less than 0.15% (Danyek, Handl & Raisz 2002). 

Another popular software package used for analysis of lightning surges is TFlash. In 

order to determine insulator CFO and surge arrester energy discharge on a typical 22kV 

overhead distribution line 200m total length (four 40m spans), Thanasaksiri (n.d) 

compared models created in both ATP and TFlash which concluded similar results 

obtained by both programs. 

2.11.2 Alternative Transients Program 

Developed in 1984, ATP is a royalty free version of EMTP which provides a mechanism 

for simulation of electromagnetic and electromechanical system transients (Kizilcoy 

2015). Of the common software packages noted in section 0 ATP shall be used as one of 

the simulation tools in this project. 

To solve high frequency transient solutions ATP adopts time domain methods. The time 

domain method is applicable to solving for any unknown variables. Ordinary and partial 

differential equations are solved using implicit integration (trapezoidal rule – second 

order). The resultant simultaneous equations (nodal admittance form) are then solved by 

means of ordered triangular factorisation to obtain the unknown voltages (University of 

the Witwatersrand 2015).   
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2.11.3 ATPDraw 

ATPDraw is a add on program providing a more convenient method of creating and 

working with ATP. The user has the ability to create and edit the ATP model, 

components and objects via the familiar Windows environment. 

2.11.4 CDEGS 

CDEGS is a comprehensive software package primarily designed to analyse earthing 

systems, electromagnetic interference, line and cable parameter computations, cathodic 

protection, lightning shielding and switching/lightning surges. Presently, Essential 

Energy utilise CDEGS to perform analysis on network earthing system performance. 

Several computational models are available within the software: 

a) Soil Resistivity Analysis (RESAP) 

b) Low Frequency Grounding/Earthing Analysis (MALT) 

c) Frequency Domain Grounding/Earthing (MALZ) 

d) Line and Cable Constants (TRALIN) 

e) Electromagnetic Fields Analysis (HIFREQ) 

f) Automated Fast Fourier Transform Analysis (FFTSES) 

g) Simplified Fault Current Distribution analysis (FCDIST) 

h) Fault Current Distribution and EMI Analysis (SPLITS) 

2.11.4.1 Transient Analysis in CDEGS 

Analysis of the lightning transient is undertaken over three main computational steps 

(SES Technologies 2006): 

Step 1: Frequency decomposition of the time domain signal. 

The lightning current defined by the double exponential type function is selected in the 

time domain: 

(ݐ)ܫ  = ௠(݁ିఈ௧ܫ − ݁ିఉ௧) 47-2 ܣ 

where, 

 .௠ = peak current valueܫ

 .time constants to determine rise and decay times = ߚ & ߙ
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Figure 2-20 Example of Double Exponential Lightning Surge (SES Technologies 2006) 

 

A Fast Fourier Transform (FFT) analysis is performed to represent the lightning source in 

the frequency domain. The recommended computational frequencies are then utilised by 

the software for the determination of electromagnetic field response in step 2. 

Step 2: Computation of the frequency domain electromagnetic field response. 

The construction of the physical network model is at the beginning of this step. 

Scalar potential, electric and magnetic fields in the time domain are given as: 

(ݐ)ܸ  =
1

ߨ2
න ଴ܸ(߱)ܫ(߱)

ାஶ

ିஶ
݁௜ఠ௧݀߱ 2-48 

(ݐ)ܧ  =
1

ߨ2
න (߱)ܫ(߱)଴ܧ

ାஶ

ିஶ
݁௜ఠ௧݀߱ 2-49 

(ݐ)ܪ  =
1

ߨ2
න (߱)ܫ(߱)଴ܪ

ାஶ

ିஶ
݁௜ఠ௧݀߱ 2-50 

 

where, 

(߱)ܫ  = න (ݐ)ܫ
ାஶ

ିஶ
݁௜ఠ௧݀51-2 ݐ 

 

The physical quantities of the network are solved by fast fourier transform at the 

frequencies identified in step 1 obtaining: 

଴ܸ(߱) = unmodulated scalar potential 

 ଴(߱) = unmodulated electric fieldܧ

 ଴(߱) = unmodulated magnetic fieldܪ
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Step 3: Computation of the time domain electromagnetic field response. 

An inverse fast fourier transform operation is conducted on ଴ܸ(߱), ܧ଴(߱) and ܪ଴(߱) to 

obtain their respective time domain response ܸ(ݐ), (ݐ)ܧ and (ݐ)ܪ.  

 

Figure 2-21 Example of Transient Voltage Response using CDEGS (SES Technologies 2006) 

 

2.11.4.2 Analysis of non-linear devices in the frequency domain 

Non-linear devices, such as switches and surge arresters, are quite difficult to model by 

means of frequency based solvers such as the Electromagnetic Fields Analysis (HIFREQ) 

module within CDEGS 

An initial investigation was undertaken using CDEGS to model the system response to a 

20kA lightning strike on an overhead line, 10km in length, with a 10mH inductor 

connected at the end. 

The results appeared promising when compared to those calculated using ATP and are 

shown in Figure 2-22 and Figure 2-23 to validate the CDEGS. There were some minor 

discrepancies in the peak value of the reflected voltage surge (Dashed blue line in Figure 

2-22 and green line in Figure 2-23) but overall the results were similar and considered 

acceptable.  
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Figure 2-22 CDEGS Results 20kA, 10000m, 10mH Simulation 

 

 Figure 2-23 ATP Results 20kA, 10000m, 10mH Simulation 

 

In 2001, a technique to model non-linear elements in the frequency domain was 

developed by W Ruan et al. (2001). This approach, utilising the fixed-point method to 

derive arrester currents was found to be an effective technique for purely resistive 

networks, but introducing inductive or capacitive elements often resulted in a failure to 

obtain a solution. Additionally, the method involved manual input of parameters by the 

user throughout the process.  

In an attempt to address the issues presented by the fixed-point method, Stephane 

Franiette et al. (2015) applied a stochastic method called Simulated Annealing to the 

process of modelling non-linear devices. 

The simulated annealing method was first developed in 1983 and is essentially an 

optimisation algorithm that “searches” for the best solution to the problem. The problem 

when modelling the surge arrester in CDEGS is the nonlinearity of a coefficient α, which 

is included in equation 2.52 to derive the arrester current, and defines the “squareness” of 

the V-I curve shown in Figure 2-24: 
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ܫ  = ݅଴ ൬
ݒ
଴ݒ

൰
ఈ

 52-2 ܣ 

(Stephane Franiette et al. 2015) 

Where: 

i is the current through the arrester in amps. 

v is the voltage across the arrester in volts. 

v0 is the open circuit voltage of the network in volts. 

α is the exponent defining the squareness of the arrester V-I characteristic. 

 

The 2015 study by (Stephane Franiette et al. 2015) successfully modelled a network with 

five surge arresters. The simulated annealing process did however require the use of 

Matlab software and simulation time took approximately 60 seconds to converge for 

values of α ranging from 2 to 25.  

 

Further studies into the techniques developed by Stephane Franiette et al. (2015) were 

continued by Stephane Franiette et al. (2016) and improvements were made which saw 

solutions for values of α up to 45 achieved. Matlab was still required to perform the 

simulated annealing. 

A promising aspect of this research is based around the improved accuracies of 

representing the impedances of elements such as poles using the frequency domain 

methods against time domain methods employed by programs such as ATP. Stephane 

Figure 2-24 Typical MOV arrester V-I characteristics for various values of α 
(Stephane Franiette et al. 2015) 
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Franiette et al. (2016) showed that in their simulation, an inherent inaccuracy might be 

present when utilising time domain solution methods. For example, when using ATP a 

24Ω pole impedance remains constant across a wide frequency range. Frequency domain 

methods take the physical and electrical characteristics of the pole into account and at low 

frequencies, calculate the impedance similar to the 24Ω of ATP. At higher frequencies, 

close to the components resonant frequency ~1.7MHZ, the calculated impedance within 

CDEGS was 274.3Ω. It was noted that these inaccuracies could extend to all components. 

2.11.5 Software Determination 

It would appear at this stage that CDEGS has not quite reached a stage where it may be 

used as an efficient tool in the calculation of peak overvoltages when non linear devices 

are included in the simulation. The multi-staged approach involving the use of additional 

software such as Matlab to complete, and limitations of the simulated annealing method 

which as of today do not have the ability to solve for all typical values of α contribute to 

the determination that the software used to complete the network simulations in this 

report shall incorporate time domain solution methods. 

ATP/EMTP, Matlab-Simulink and TFlash all possess the capability to be used accurately, 

but of the three, ATP is free to use and requires no licences to run. This provides cost 

savings to Essential Energy. Additionally, although training will be required, this is 

common for all software. 
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 CASE STUDIES 

 Introduction 

Two case studies are presented in this report. The first has been developed from standard 

design templates both for the incoming 66kV overhead line and the 66/11kV 20/30MVA 

zone substation. The second case study is an in-service 66/11kV substation, located at 

Kywong, a rural locality in south-western NSW. 

 Case Study 1 - Standard Overhead Line and Zone Substation 

3.2.1 Standard Overhead Line 

There are approximately 12000 km of subtransmission lines across Essential Energy’s 

franchise area of which 66kV lines contribute to approximately 64% (Essential Energy 

2014i). Of the many differing overhead line constructions presently in service across the 

66kV subtransmission network, the most common construction types include: Delta, 

vertical, cross arm and a half, Wishbone, Suspension and H-pole.  

Essential Energy utilise a number of standard design templates for 66kV line 

constructions are included in APPENDIX C. For this report the standard 66kV 

intermediate delta construction method CEOM7401.24 (including OHEW) is chosen, and 

included in APPENDIX D. Whilst a single construction has been used in this case study, 

in reality, a combination of many construction types would be required. This would be 

based on factors which include the line route, span length, underbuilt distribution circuits, 

environmental factors including river and railway crossings and, the required line design 

temperature to name but a few. Typically, surge arresters are not installed along the 

overhead line. Further detail on the overhead line design methodologies has been 

included in section 4.2. 

3.2.2 Standard Zone Substation 

The standard 66/11kV substation arrangement consists of two incoming HV feeder bays, 

a transverse HV busbar, two HV transformer bays, and two 20/30MVA DYn1 power 

transformers. Surge arresters are installed at the substation entrance and on the primary 

and secondary sides of each transformer. A single line diagram, general arrangement and 

section views of the primary equipment are included in APPENDIX F.  

The standard substation design shall be modelled with only a single incoming feeder, and 

single transformer in service. This arrangement is commonly used in practice and ensures 

the maximum possible distance between surge arrester sets. Further detail regarding the 

substation design methodologies has been included in section 4.3. 
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 Case Study 2 - Kywong Zone Substation 

3.3.1 Overhead Line 840/3 and 840/4 

Kywong zone substation may be supplied via either the 66kV line 840/3 Lockhart Tee 

Regulator to Kywong Tee or line 840/4 Narrandera to Kywong Tee. Both feeders are 

connected one span outside the substation, from which a single line (tee) then extends 

into the substation. 

The line construction primarily utilises cross arm and a half construction with suspension 

insulators similar to Figure 3-1. No OHEW exists on either feeder 840/3 or 840/4. 

 

Figure 3-1 Typical 66kV Construction Feeder 840/3 & 4 

Further detail regarding the overhead line design methodologies has been included in 

section 4.2.   

3.3.2 Zone Substation 

The 66/11kV Kywong zone substation is a typical example of a small rural substation 

within Essential Energy’s network. It is located approximately 66km west of the city of 

Wagga Wagga and 36km east of the town of Narrandera. The substation reaches a peak 

load of close to 1MVA. It possesses the following characteristics that have contributed to 

the determination as a viable case study in this report:  

 Susceptible to prolonged outage times. Response time for nearest Essential 

Energy staff is between 30 minutes to one hour.  

 Wheat storage silos are located opposite the substation and, in the event of a 

substation fire, they could be at risk of significant damage. 

 A single line diagram, general arrangement and section views of the primary equipment 

are included in APPENDIX F. 

Further detail regarding the substation design methodologies has been included in section 

4.3. 
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 DESIGN METHODOLOGIES 

 Introduction 

This chapter aims to detail the characteristics and methodologies associated with the 

overhead transmission line and zone substation designs used in creation of ATP models 

of both case studies defined in chapter 3.  

 66kV Subtransmission Lines 

4.2.1 Standard 66kV Intermediate Delta Construction 

The standard 66kV intermediate delta construction method detailed in APPENDIX D has 

been developed from Essential Energy Subtransmission Line Design Manual CEOM7081 

(Essential Energy 2015c), which in turn has been based upon specifications contained 

within AS7000-2010.  

The delta configuration allows for greater ground clearance when compared to alternative 

constructions such as vertical arrangements. Figure 4-1 provides an overview of the pole 

top arrangement chosen for case study 1. 

 

Figure 4-1 66kV Intermediate Delta Construction (Essential Energy 2014h) 
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With a large number of different pole heights and strengths available to ensure minimum 

electrical clearances are maintained, Essential Energy has specified two standard pole 

heights. 21m tall Type 1 poles are used on intermediate structures, and 24m tall type 2 

poles for flying angle and strain structures (Essential Energy 2015c). 

Prestressed concrete or steel poles have been Essential Energy’s preference until late 

2015. Ease of transport, installation, lower cost, and proven longevity has changed this 

preference to timber.  The simulation shall be made using 21m tall timber poles. Pole 

embedment into the ground is calculated using: 

 ݀ = 0.8 + (0.1 ∗ ℎ) ݉ 4-1 

Where: 

d is the pole embedment depth (m) 

h is the pole height (m) 

Therefore using a 21m tall pole: 

 ݀ = 0.8 + (0.1 ∗ 21) ݉ 

݀ = 2.9 ݉ 
∴ ݀ ൎ 3  ݉ 

 
 

With the pole top height aboveground reducing by almost 3 meters, the conductor and 

OPGW attachment heights become: 

A-Phase (Top) = 21-3-1*=17m 

B-Phase (Middle) = 21-3-2*=16m 

C-Phase (Bottom) = 21-3-3*=15m 

OPGW = 21-3+1*=19m 

*Dimensions have been estimated from Essential Energy (2014h) 

4.2.2 66kV Feeders 840/3 & 840/4 Construction 

The 66kV overhead lines supplying Kywong zone substation are made up of several 

different construction types. The most common type, known as cross arm and a half 

(Figure 1-1) has been selected as the construction type for the simulation models of case 

study 2. 
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Both feeders were initially constructed in the late 1960’s and have undergone a number of 

upgrades such as insulator and cross arm replacements to rectify defects or replacement 

due to failure. No detailed design or construction drawings exist, therefore the pole height 

has been estimated to establish simulation model parameters. 

An 18.5m pole length is commonly used when replacing condemned poles. This height 

ensures minimum ground clearances are maintained and applying equation 4.1 the pole 

embedment is calculated at 2.5m.  

There is no OHEW or OPGW on these lines and the phase conductor attachment heights 

are: 

 A-Phase (Top) = 18.5-2.5-1*=15m 

B-Phase (Bottom Left) = 18.5-2.5-2.5*=13.5m 

C-Phase (Bottom Right) = 18.5-2.5-2.5*=13.5m  

* Estimated dimensions.  

4.2.3 Maximum Operating Temperature  

The maximum operating temperature is proportional to the required load capacity of the 

line. An increase to the operating temperature will cause greater conductor sag, ultimately 

requiring a reduced span length. Typical operating temperatures for 66kV lines include 

50C, 65C, 75C or 85C (Essential Energy 2015c). 85C has been chosen for case study 

1 and 50C for case study 2. 

4.2.4 Maximum Span Length 

An assumed span length of 200m has been used for case study 1. This is typical of 

average span lengths along semi-rural and rural feeders within Essential Energy’s 

network.  

Case study 2 incorporates a span length of 160m. The average span length of the first 10 

poles along each of the 840/3 and 840/4 feeders was obtained from Essential Energy’s 

Graphical Information System (GIS), known as Smallworld and is detailed in Table 4-1.  
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Table 4-1 Feeder 840/3 and 840/4 Span Lengths 

Span 
Span Length (m) 

840/3 840/4 
1 174 183 
2 196 182 
3 179 176 
4 38 202 
5 38 202 
6 196 183 
7 192 183 
8 67 176 
9 87 182 

10 199 160 
 

4.2.5 Phase Conductors 

For transmission lines older than 40 years, common conductor types include 6/0.186 + 

7/0.062 Aluminium Conductor Steel Reinforced (ACSR), 7/0.104 Galvanised Steel 

(SC/GZ), 19/2.00 and 7/0.104 Hard Drawn Bare Copper (HDBC). For new 

subtransmission lines, Essential Energy specifies two similar conductor types suitable for 

use as the standard 66kV conductor, 37/3.00 Nitrogen and 37/3.75 Phosphorous All 

Aluminium Alloy Conductor (AAAC) (Essential Energy 2015c).  

Phosphorous is chosen for case study 1 whilst 19/2.00 HDBC is installed on both 840/3 

and 840/4 feeders (case study 2). 

Physical and electrical properties for both case studies are shown below in Table 4-2 and 

Table 4-3.  

Table 4-2 66kV Phase Conductor Physical Properties  

Case 
Study 

Conductor 
Strands/Wire 

Diameter (mm) 
Conductor 

Type 
Cross Sectional 

Area (mm2) 
Diameter 

(mm) 

1 
Phosphorous 

(Essential 
Energy 2015c) 

37/3.75 AAAC/1120 409 26.3 

2 
19/2.00 

(Nexans 2012) 
19/2.00 HDBC 59.7 10.0 
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Table 4-3 66kV Phase Conductor Electrical Properties  

Case 
Study 

Conductor 

Resistance 
Current 
Rating 

D.C. @ 20C 
(/km) 

Summer 
Noon 

(Amps) 

1 
Phosphorous 

(Essential Energy 2015c) 
0.090 809 

2 
19/2.00 

(Nexans 2012) 
0.303 337 

 

4.2.6 Overhead Earth Wire 

Overhead earth wires provide an effective method to shield phase conductors against 

direct lightning strikes. The shielding angle () is the angle between the overhead earth 

wire, and each outside phase conductor. The determination of the perfect shielding angle 

has been the subject of many studies. Hileman (1999) deduces the perfect value for  as:   

௣ߙ  =
௚ݎ

௖ݎ
−

1
௖((ℎݎ + (2/(ݕ

 2-4 ݏ݁݁ݎ݃݁݀ 

 

Where: 

 .௚ = Height above ground where intersection of arcs of radii rc is made (Figure 4-3)ݎ

௖ݎ =  ଴.଻ସ  (Phase Conductors)ܫ଴.଺ݕ0.67

௖ݎ = 0.67ℎ଴.଺ܫ଴.଻ସ  (Earth Wire) 

I = Maximum shielding failure current. 

h = Earth wire height above ground. 

y = Phase wire height above ground. 

Figure 4-2 Shielding Angle () (Hileman 1999) 
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Figure 4-3 Geometric model depicting angle alpha (Hileman 1999) 

Conservative values for varying structure heights have been tabulated by Darveniza 

(2006) and reproduced in Table 4-4. These compare with Essential Energy designs that 

have resultant shielding angles for Type 1 construction of 25 & 29 (Figure 4-4). 

Overhead feeders that incorporate effective overhead earth wires achieve lightning outage 

rates exceeding 1/100km years, essentially becoming “lightning resistant” lines 

(Darveniza 2006).  

Table 4-4 Overhead Earth Wire Shielding Angles (Darveniza 2006) 

Height (m) () 
20 35 - 40 
30 25 – 30 
40 15 – 20 
50 5 - 10 

 
Figure 4-4 Essential Energy Type 1 Construction Shielding Angles  

(Essential Energy 2014h) 
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4.2.7 Optical Fibre Ground Wire 

Essential Energy incorporates 48 or 96 core Optical Fibre Ground Wires (OPGW) in lieu 

of typical overhead earth wires as standard on all new 66kV subtransmission lines. The 

optical fibre communication path provides additional benefits compared to traditional 

overhead earth wires through improved unit protection schemes and substation 

communication paths as per requirements set out by the Australian Energy Market 

Operator (AEMO). The OPGW conductor consists of an outer, conductive layer used for 

the transmission of fault current, with the optical fibres contained within an inner, second 

layer. 96 core OPGW is the most common size installed on new Essential Energy 

transmission lines and is chosen as the overhead shielding wire for case study 1. 

As previously mentioned in Sections 3.3.1 and 4.2.2, no OHEW exists on the 840/3 and 

840/4 feeders in case study 2. 

 

Table 4-5 66kV OPGW Conductor Physical Properties  

Case 
Study 

Conductor 
Strands/Wire 

Diameter (mm) 

Cross 
Sectional 

Area (mm2) 

Diameter 
(mm) 

1 
96 Fibre OPGW 

(Essential Energy 
2015c) 

4/3.35 (Layer 1) 
13/3.05 (Layer 2) 

2/3.3 (Centre Tube) 
139.6 16.25 

 

Table 4-6 66kV OPGW Conductor Electrical Properties  

Case 
Study 

Conductor 
Resistance 

D.C. @ 20C (/km) 

1 
96 Fibre OPGW 

(Essential Energy 
2015c) 

0.284 

 

4.2.8 Conductor Sag 

The method used to calculate conductor sag has been included in Appendix H. For both 

case studies this equated to 3 m for phase conductors. The sag on the OPGW conductor of 

case study 1 was 2 m. 

4.2.9 Insulators 

The 66kV insulators used for case study 1 have been specified as part of Essential 

Energy’s current period contract. The physical and electrical properties are shown in 

Table 4-7. 
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Table 4-7 Case Study 1 - Insulator Properties 

Insulator Manufacturer Apex Insulator Systems 
Catalogue Number H2 90 10 027 MX SS 014 

Pos. Critical Impulse flashover (kV) 495 
Neg. Critical Impulse flashover (kV)  589 

Pos. Minimum Withstand (kV) 443 
Neg. Minimum Withstand (kV) 478 

Length (L) (mm) 955 
 

 

 

A variety of insulators are present along 66kV feeders 840/3 and 840/4. The selected type 

chosen for inclusion in case study 2 is a porcelain four disc suspension type similar to 

shown in Figure 4-8Figure 4-8 Case Study 2 - 66kV Insulator. Installed insulator 

characteristics are unknown, however physical and electrical properties used in 

simulations have been derived from Preformed Line Products (2014) and shown in Table 

4-8. 

Table 4-8 Case Study 2 - Insulator Properties (Preformed Line Products 2014) 

 Single Disc Total 
Pos. Minimum Withstand (kV) 100 400 
Neg. Minimum Withstand (kV) 100 400 

Length (L) (mm) 146 585 

  

Figure 4-5 Case Study 1 - Insulator Arrangement 

Figure 4-6 Case Study 2 - Insulator Arrangement (Preformed Line Products 2014) 
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 Template Zone Substation Design 

4.3.1 Introduction 

The physical layout, equipment specifications, and electrical characteristics such as 

thevenin impedance values, earth grid resistance and fault levels vary considerably from 

one zone substation to another. Case study 1 is representative of Essential Energy’s most 

recent standard design for construction and augmentations to zone substations across its 

network. Case study 2 (Kywong zone substation) is far less complex and represents a 

typical rural zone substation. 

4.3.2 Minimum Electrical Clearances 

In both case studies, the minimum electrical clearances for 66kV equipment meet or 

exceed those set out within AS2067-2010 and are summarised in Table 4-9. 

Table 4-9 66kV Minimum Electrical Clearances 

Case Study 
Nominal Voltage 

(kV) 

Minimum Phase 
to Earth 

Clearance (mm) 

Minimum Phase 
to Phase 

Clearance (mm) 
1 66 770 1500 
2 66 770 1500 

AS2067-2010 66 630 725 
 

4.3.3 Lightning Protection 

The substation lightning protection has been determined using the 30m rolling sphere 

method defined within AS1768-2007 with protection of equipment to a maximum height 

of 7m is maintained throughout the entire yard (Essential Energy 2014g).  

For case study 1 this consists of; 66kV landing span structures for each incoming feeder, 

a 20m high communication tower and 13m tall galvanised steel lightning masts, (each 

complete with an additional 1.2m high spire). 

With case study 2, the Kywong zone substation does not achieve the minimum standards 

for lightning protection although two lightning spires provide coverage for the 

transformer. 
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Figure 4-7 Case Study 1 - Lightning Protection Using 30m Rolling Sphere (Essential Energy 
2014f) 

4.3.4 Lightning Protection Level 

AS1768-2007 defines four lightning protection levels against direct lightning strikes. In 

accordance with AS1768-2007 Table 4.2, Essential Energy’s standard substation design 

provides a protection level of II, and thus a lightning interception current of 5.4 kA. 

Interception efficiency of protection level II is 97% and, the resulting lightning protection 

system efficiency becomes 95%. 

4.3.5 Insulators 

Both case studies utilise the same porcelain post insulators detailed in Table 4-10. 

Table 4-10 66kV Zone Substation Post Insulators (AK Power Solutions PTY LTD 2012) 

Insulator Manufacturer NK Power Solutions 
Lightning Impulse Withstand Voltage 

(kVp) 
340 

Dry Power Frequency Withstand Voltage 
(kV) 

205 

Wet Power Frequency Withstand Voltage 
(kV) 160 

Length (L) (mm) 770 

30m Rolling Sphere 

7m 

Figure 4-8 Case Study 2 - 66kV Insulator 
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4.3.6 Equipment 

Major equipment included in both case studies consist of air break switches also known 

as disconnectors, voltage transformers, gas insulated circuit breakers (case study 2 

contains a 66kV fuse in lieu of a circuit breaker), power transformers and busbar support 

structures. The layout of the equipment is included in APPENDIX E (case study 1) and 

APPENDIX F (case study 2).  

4.3.7 Zone Substation Primary Conductors 

For spans less than 4 m in length, AAAC/1120 61/3.25 Selenium conductor is used for 

the zone substation flexible primary conductor of case study 1. Where 4 m spans are 

exceeded, hollow aluminium (rigid) tubular busbar is used.  

No recorded information is available for identification of the conductors used in case 

study 2. Refurbishment of Kywong zone substation has been completed within the last 10 

years and recent photographs indicate CCT used throughout the 66 kV section of the zone 

substation. 180 mm2 (19/3.50) 19/33 kV rated CCT is assumed for case study 2. 

Additionally, no rigid busbar is installed at Kywong zone substation. 

Table 4-11 66kV Zone Substation Primary Conductor Physical Characteristics 

Case 
Study 

Conductor 
Strands/Wire 

Diameter (mm) 
Conductor 

Type 
Cross Sectional 

Area (mm2) 
Diameter 

(mm) 

1 
Selenium 

(Nexans 2012) 
61/3.25 AAAC/1120 506 29.3 

1 
Tubular Busbar 
(Preformed Line 
Products 2012) 

100mm OD 
& 4mm WT 

6101 T6 
Aluminium 

Alloy 
1206 100 

1 
Nitrogen 

(Nexans 2012) 
37/3.00 AAAC/1120 262 21.0 

2 
180 CCT 

(Nexans 2012) 
19/3.50 

AAAC/1120 
CCT 

180 34.2 

Table 4-12 66kV Zone Substation Primary Conductor Electrical Characteristics 

Case 
Study 

Conductor 
D.C. Resistance Current Rating 

 (/km) Summer Noon (Amps) 

1 
Selenium 

(Nexans 2012) 0.0592 (@ 75C) 912 

1 
Tubular Busbar 
(Preformed Line 
Products 2012) 

0.030 (@ 20C) 2064 

1 
Nitrogen 

(Nexans 2012) 0.114 (@ 20C) 336 

2 
180 CCT 

(Nexans 2012) 0.163 (@20C) 430 
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4.3.8 Substation Earth Grid 

To ensure electrical hazards arising through fault currents to ground are not transferred to 

people, the substation earth grid is designed to ensure maximum EPR levels and step & 

touch potentials do not exceed the limits set out within AS1768-2007.  

Essential Energy standards recommend 95mm2 Hard Drawn Bare Conductor (HDBC) 

buried at a depth of approximately 500mm to be installed throughout the substation and 

around the perimeter of the security fence to form the earth grid. A number of vertical 

copper clad steel electrodes are also positioned throughout the grid. Essential Energy’s 

substation earth grid impedances vary from less than one ohm up to 10 ohms. For each 

case study an earth grid resistance of one ohm is used. 

4.3.8.1 Effectively Earthed System 

Essential Energy’s network has been designed as an effectively earthed system. Positive, 

negative and zero sequence network impedances at several substation sites have been 

obtained from Essential Energy’s CAPE database and results of R0/X1 and X0/X1 

calculations are shown in Table 4-13. 

Table 4-13 Zone Substation Effectively Earthed Calculations 

Zone 
Substation 

Positive 
Sequence 

Negative 
Sequence 

Zero 
Sequence R0/X1 X0/X1 

Z1 (R1+X1) Z2 (R2+X2) Z0 (R0+X0) 
Boronia St 6.769+23.389i 6.768+23.395i 9.74+58.896i 0.416 2.518 
Hanwood 12.4+36.7i 12.4+36.7i 19.75+104.3i 0.538 2.842 
East 
Tamworth 

1.133+9.885i 1.132+9.894i 1.93+7.846i 0.195 0.794 

Grafton 
North 

3.731+16.433i 3.731+16.435i 2.578+12.913i 0.157 0.786 

Temora 132 2.746+9.046i 2.748+9.057i 1.208+8.844i 0.134 0.978 
Suffolk Park 2.018+8.076i 2.017+8.073i 2.839+15.885i 0.352 1.967 
Oberon 132 3.988+12.012i 3.989+12.019i 2.795+15.885i 0.233 1.322 

4.3.9 Surge Arrester Locations 

Surge arresters are positioned to ensure equipment is protected against overvoltages (Hill 

2000). For both case studies surge arresters included in the simulations are located at the 

landing span of each incoming or outgoing 66kV feeder (station entrance) and the 66kV 

power transformer bushings. Figure 4-9 through to Figure 4-13 have been taken from 

Essential Energy designs included for case study 1 (APPENDIX E) and case study 2 

(APPENDIX F) 
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Figure 4-10 Case Study 1 - Surge Arresters Located at Station Entrance (Essential Energy 2014f) 

Figure 4-9 Case Study 1 - Surge Arrester Locations (Plan View) (Essential Energy 2014a) 
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Figure 4-11 Case Study 1 - Surge Arresters at HV Side of  Transformer (Essential Energy 
2014e) 

  

Figure 4-12 Case Study 2 - Surge Arrester Locations (Plan View) (Essential Energy 2016d) 

 

Figure 4-13 Case Study 2 - Surge Arresters Located at Station Entrance and Transformer 
(Essential Energy 2016c) 
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 Essential Energy Period Contract Surge Arrester 

Essential Energy have four different period contract surge arresters for protection of 

66kV zone substation equipment: 

Table 4-14 Essential Energy Period Contract 66kV Surge Arresters 

Item Description Manufacturer Model Number 

1 Effectively Earthed, Regular Strength Siemens 3EL1 060-1PH21-
4XA5 

2 
Non-Effectively Earthed, Regular 
Strength 

Siemens 
3EL1 060-1PK21-

4XA5 

3 Effectively Earthed, High Strength Siemens 
3EL2 060-2PF31-

4KA0 

4 
Non-Effectively Earthed, High 
Strength 

Siemens 
3EQ1 072-2PB31-

4KA0 
 

As previously described in section 4.3.8.1, the majority of Essential Energy’s network 

maintains an effectively earthed system, thus eliminating items 2 and 4 as suitable surge 

arresters for use in simulations. The standard substation design specifies Item 1 as the 

typical surge arrester installed.  

Two types of surge arresters are installed at Kywong zone substation. Bowthorpe 

2HSRCP60 type surge arresters are installed at the substation entrance whilst Item 1 

above is installed at the transformer. 

Table 4-15 Period Contract Surge Arrester Specifications (Siemens 2011),  (Tyco Electronics 
2001) 

Arrester Type 
3EL1 060-

1PH21-
4XA5 

3EL2060-
2PF21 - 
4KA0 

BOW-
2HSRCP60-

xxx 
Highest Voltage for 

Equipment 
Um kV 72.5 72.5 72.5 

Rated Voltage Ur kV 60 60 60 
Continuous 

Operating Voltage 
Uc kV 48 48 48 

Line Discharge Class LD Class 2 2 2 
Maximum Values of 
Residual Voltages at 
Discharge currents 

of the Following 
Impulses 

8/20μs 5kA (kV) 142 127 148 
8/20μs 10kA (kV) 153 135 159 
8/20μs 15kA (kV) 164 143 n/a 
8/20μs 20kA (kV) 171 150 175 
8/20μs 40kA (kV) 196 170 199 

 
 

Lightning Impulse 
Withstand Voltage 

1.2/50μs kV 
365 365 503 

Power Frequency 
Withstand Voltage  

1 min. wet kV 
170 170 273 

Creepage Distance mm 2050 2340 2650 
Flashover Distance mm 630 630 964 

Weight kg 12.9 25.4 11.2 
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 MODELLING METHODOLOGIES 

 ATP 

Network models will be developed using the Alternative Transients Program, and version 

6.1 of the graphical pre-processor to ATP, ATP-Draw on a laptop with the following 

specifications: 

 Manufacturer - Leader Computers 

 Processor – Intel ® Celeron ® CPU N2807 @ 1.58GHz 

 RAM – 2Gb 

 Operating System – 64 bit, Windows 10 

5.1.1 ATP Settings 

The following simulation settings were used for all models: 

 Minimum Time Step (Delta T) – 1E-9  

 Simulation Run Time (T max) – 5E-5 

 System Frequency (Freq) – 50 

 Simulation type – Time Domain 

 Power Frequency – Yes 

ATP component settings for scenario one of each case study have been included in 

APPENDIX H.  

5.1.2 IEEE Modelling Guidelines for Fast Front Transients 

The Fast Front Transients Task Force of the IEEE Modelling and Analysis of System 

Transients Working Group (Imece et al. 1996) developed the modelling guidelines for 

computer simulated lightning studies. These guidelines have formed the basis of the 

development of all included ATP models in this project. Summaries of key components 

from the guideline are included below. 

5.1.2.1 Overhead Transmission Line, Substation Busbars, Conductors and Cables 

All overhead lines (including overhead earth wires), busbars and overhead conductors 

within the zone substation are to be modelled as a three phase distributed parameter line 

component. No underground cables are included in either case study model.  
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The positive and zero sequence values for the components resistance per unit length (R/l), 

surge impedance (Z) and surge velocity (v) are first calculated by entering the physical 

and electrical characteristics of the section of overhead conductor into an additional 

component known as LCC or Line Cable Constant before executing ATP.  The 

resistances, surge impedances and surge velocities are displayed within a DOS prompt 

screen pop-up.Table 5-1 contains an extract of calculated positive and zero sequence 

values for the case study 1 overhead line. The complete list of ATP calculated figures is 

included in APPENDIX I. 

 

Table 5-1 Conductor Positive and Zero Sequence Values 

Sequence 
Surge Impedance Velocity Resistance 

Magnitude () Angle () km/sec /km 
Zero 9.27694E+02 -4.61662E+00 2.00221E+05 2.34319E-01 

Positive 2.77312E+02 -8.63386E+00 2.87733E+05 9.09069E-02 
 

Figure 5-1 ATP-Draw Distributed Parameter Line Component 

Figure 5-2 ATP-Draw LCC Component 



MODELLING METHODOLOGIES    P a g e  | 64 
 

 

5.1.2.2 Substation Equipment 

Power transformers may be represented by its surge capacitance that increases in value as 

the BIL level decreases. The actual surge capacitance of transformers in each case study 

is calculated using the following equation taken from Hileman (1999): 

்ܥ  = ஻(ܣܸܯ)ܣ  1-5 ܨ݊ 

Where: 

 .Transformer MVA rating per phase = ܣܸܯ

Hileman (1999) defines ܤ ݀݊ܽ ܣ as 1.1 and 0.52 respectively. Note these values are 

given for BIL rating of 350kV. The 350kV values are suitable for use in lieu of 325kV 

that is not given. For comparison, the next lowest BIL of 250kV is 1.2 (A) and 0.56 (B).  

The calculated transformer surge capacitance for case study 1 equals: 

 
்ܥ = 1.1(20)଴.ହଶ ݊ܨ 

்ܥ =  ܨ݊ 5.22
∴ ்ܥ ൎ  ܨ݊ 5

 
 

The calculated transformer surge capacitance for case study 2 therefore equals: 

 
்ܥ = 1.1(3)଴.ହଶ ݊ܨ 

்ܥ =  ܨ݊ 1.95
∴ ்ܥ ൎ  ܨ݊ 2

 
 

Remaining equipment within the substation such as circuit breakers, current transformers, 

insulators, busbar support structures and outdoor bushings (terminals) are also 

recommended by Imece et al. (1996) to be represented by surge capacitance values. 

Equipment included in models used in this report align with the method presented by 

Hileman (1999) which states that with the exception of very fast transients (surge rise 

times less than 300nS), surge capacitances may be neglected.  

5.1.2.3 Surge Arresters 

Imece et al. (1996) state that the arrester may be modelled as a non-linear resistor with 

8/20s V-I characteristics. The accuracy of various methods to represent surge arresters 

detailed in Table 2-3 concludes that the ATP model allows for very accurate results. As 

such the non-linear resister component NLRES92 represents each surge arrester in the 

models. Surge arrester V-I characteristics for all surge arrester types have been sourced 

from the manufacturers and included in Table 7-13.  
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The surge arrester ground leads are included as a lumped parameter inductance of 

1.0H/m ensuring the voltage drop across the leads is captured. The surge arrester 

incoming leads are included as three phase distributed parameter line components similar 

to 5.1.2.1. 

5.1.3 Lightning Surge 

5.1.3.1 Lightning Model 

The lightning surge is modelled within ATP using source component; Heidler type 15.  

As previously defined in section 2.3.6 the lightning is of negative polarity. For clarity, the 

lightning surge shall be modelled as a positive value. An example of the difference in the 

presentation of calculated voltages between negative and positive polarity lightning 

surges is illustrated in Figure 5-3. The magnitude of the surge remains unchanged. 

5.1.3.2 Model Validation 

 The lightning surge parameters used in validating the ATP model of both case studies 

was derived from the analytical calculation of the lightning surge steepness and 

waveform crest value outlined in APPENDIX K (case study 1) and APPENDIX L (case 

study 2).  

The lightning surge parameters for the validation of case study 1are as follows: 

 Amplitude (crest) equivalent to two times the crest voltage of incoming surge or, 

2 x 707 kV = 1414 kV (Hileman 1999) 

 Rise Time (T_f) of 4 s  

 Decay Time (tau) of 50 s 

 Voltage Source 

Figure 5-3 Resultant ATP Calculated Voltage Waveform Comparison. 
Negative Polarity (Left), Positive Polarity (Right) 
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The lightning surge parameters for the validation of case study 2 are as follows: 

 Amplitude (crest) equivalent to two times the crest voltage of incoming surge or, 

2 x 707 kV = 1414 kV (Hileman 1999) 

 Rise Time (T_f) of 3.25 s 

 Decay Time (tau) of 50 s 

 Voltage Source 

5.1.3.3 Model Simulations 

With the exception of the lightning surge waveforms used in the validation of the ATP 

models, lightning surges shall conform to the standard 8/20 s current waveform.  

 Amplitude – Scenario dependant. 

 Rise Time (T_f) of 14 s  

 Decay Time (tau) of 7.5 s 

 Current Source 

 
(file kywong_5_2m.pl4; x-var t)  c:E_LGHT-X0001B   
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Figure 5-4 Case Study 1 Validation Lightning Waveform 

Figure 5-5 14 kA 8/20 s Lightning Current Waveform 
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Note. The 14 s rise time is equal to the time to reach 100% of the peak. The time taken 

to rise from 10% to 90% of the peak is approximately 8 s. Similarly, the 7.5 s decay 

time results in approximately 20 s timeframe to rise from 10%, through to the peak 

value and decay to 50% value.  

As detailed in section 2.3.6.1, the mean negative polarity lightning strike magnitude 

across New South Wales in the six-month period from October 2015 to March 2016 was 

recorded as -13.7kA. This has been rounded to 14 kA and is the amplitude typically used 

in each scenario (excludes model validation) unless stated otherwise. 

5.1.4 Power Frequency Voltage  

The power frequency voltage is defined within Hinrichsen (2012) as “the highest phase-

to-earth voltage of the system” and is typically referred to as VPF. Using 72.5 kV as the 

highest phase-to-phase voltage, VPF equates to 41.86 kV, which is rounded to 40 kV for 

both case studies. 

VPF is added to the resultant voltage to ground values. This represents the worst-case 

scenario whereby the peak of the power frequency voltage coincides with the peak of the 

transient overvoltage. The term opposite polarity power frequency voltage relates to the 

polarity between VPF and the lightning surge. The results taking the opposite polarity 

power frequency voltage into account shall be referred to as “surge” voltage. 
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 MODEL VALIDATION 

 Introduction 

6.1.1 Aim 

This chapter aims to determine the accuracy of the computer models for each case study 

through a comparison between simulated and analytical calculations. 

6.1.2 Objectives 

The acceptable variance between simulated and analytical results is to be less than 10%. 

 Validation Case Study 1 

 

 

Figure 6-1 Case Study 1, Validation - ATP Model 

 

6.2.1 Methodology 

ATP Simulation: Referring to Figure 6-1 a 1414 kV lightning surge is applied to “B” 

phase of the overhead line (A), three spans or 600m away from the substation entrance – 

“ENT1” (B).  The resultant voltages to ground are calculated at the circuit breaker “5B1” 

(C), surge arrester 2 junction “EJ2” (D), line terminal of surge arrester 2 “EA2” (E), and 

the transformer “ET2” (G). The voltage drop across the earth conductor between the 

surge arrester 2 and the substation earth grid “GND2” (F) is subtracted from “EA2” to 

determine the surge arrester discharge voltage “ED2”. The lightning surge parameters and 

the strike distance away from the zone substation have been selected based on the 

theoretical calculation method detailed in APPENDIX K.  
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Analytical Calculation: APPENDIX K was compiled using Mathcad software version 

Prime 3.0 and includes mathematical calculations and process as presented in Hileman 

(1999) to estimate the voltage to ground and surge voltages at locations B to G in Figure 

6-1. A comparison between the calculated and simulated surge voltages are presented in 

Table 6-1 and Table 6-2. 

6.2.2 Case Study 1, Validation Results 

 

Figure 6-2 Case Study 1, Validation - ATP Voltage to Ground Measurements   

 

Table 6-1 Case Study 1, Validation - Comparison of Simulated and Calculated Voltages to Ground 

Circuit Location 
Voltage to Ground 

(kV) 
Variance 

(ATP-Calculated) 
ATP Calculated kV % 

B Station Entrance “ENT1” 484 455.4 28.6 5.9 
C Circuit Breaker  “5B1” 388 373.4 14.6 3 
D Surge Arrester Junction “EJ2” 189 190.5 -1.5 -0.3 

E-F 
Surge Arrester Discharge Voltage 
“ED2” 

158 165 -7 -4.4 

G Transformer 2 “ET2” 192 210.3 -18.3 -3.8 
 

Table 6-2 Case Study 1, Validation - Comparison of Simulated and Calculated Surge Voltages 

Circuit Location 
Surge Voltage 

(kV) 
Variance 

(ATP-Calculated) 
ATP Calculated kV % 

B Station Entrance “ENT1” 524 495.4 28.6 5.8 
C Circuit Breaker  “5B1” 428 413.4 14.6 3.5 
D Surge Arrester Junction “EJ2” 229 230.5 -1.5 -0.7 
E Surge Arrester “EA2” 223 205 18 8.8 

F 
Surge Arrester Earth Conductor 
“GND2” 

66 - 66 - 

G Transformer 2 “ET2” 232 250.3 -18.3 -7.3 
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6.2.3 Case Study 1, Validation Results Discussion 

The comparison between the calculated ATP and analytical results reveal the maximum 

recorded error was the peak surge voltage at the surge arrester terminal with a variation of 

8.8%.  

The ATP calculated plot shows the travel time for the incoming surge to reach the 

substation is approximately 2.1 μs. This is consistent with the estimated calculated time 

of 2.08 μs derived from:  

 
௦ܶ௨௥௚௘ =  ݏߤ ݒ/݀

௦ܶ௨௥௚௘ =  ݏߤ 600/288

௦ܶ௨௥௚௘ =  ݏߤ 2.08
 

 
 

Where. 

Tsurge = Surge travel time (s) 

d = Strike distance from substation (m) 

v = Surge velocity derived from ATP software (APPENDIX ) (m/s) 

Reflections are quite pronounced on the “ENT1” and “5B1” plots. This may be 

contributed to the travelling wave reflecting between the power transformer and the strike 

point as well as effects of the power frequency voltage source.  

Additionally, the standard voltage waveshape consisting of a 50 μs decay (tail) time is 

extending the surge arrester operating time greater than the simulation run time of 50μs. 

The arrester discharge voltage is relatively constant throughout the simulation. The initial 

reflections have a minor influence on the surge arrester discharge voltage which settles to 

approximately 160 kV. This is consistent with the calculated results. 

The aim of this scenario was not to identify any gaps in the substation equipment 

insulation co-ordination, however it is noted that the both the surge voltage and the 

voltage to ground at the circuit breaker “5B1” and station entrance “ENT1” is above the 

substation’s BIL level of 325 kV. 

The results therefore validate the accuracy of the ATP model to be utilised with  the 

remaining case study 1 scenarios.  
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 Validation Case Study 2  

 

Figure 6-3 Case Study 2, Validation - ATP Model 

6.3.1 Methodology  

ATP: Referring to Figure 6-3 above, a 1414 kV lightning surge is applied to “B” phase of 

the overhead line (A), four spans or 640m away from the substation entrance – “ENT1” 

(B).  The resultant voltages to ground are calculated at the surge arrester 1 junction “EJ1” 

(C), line terminal of surge arrester 1 “EA1” (D), and the power transformer “ET1” (F). 

The voltage drop across the earth conductor between the surge arrester 1 and the 

substation earth grid “GND1” (F) is subtracted from “EA1” to determine the surge 

arrester discharge voltage “ED1”. The lightning surge parameters and the strike distance 

away from the zone substation have been selected based on the theoretical calculation 

method detailed in APPENDIX L.  

Calculated: APPENDIX L was compiled using Mathcad software version Prime 3.0 and 

includes mathematical calculations and process as presented in Hileman (1999) to 

estimate the voltage to ground and surge voltages at locations B to F in Figure 6-3. A 

comparison between the calculated and simulated voltage to ground and surge voltages 

are presented in Table 6-3 and Table 6-4. 
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6.3.2 Case Study 2, Validation Results  

 

Figure 6-4 Case Study 2, Validation - ATP Voltage to Ground Measurements  

  

Table 6-3 Case Study 2, Validation - Comparison of Simulated and Calculated Voltages to Ground 

 
Circuit Location  

Voltage to Ground (kV)  Variance (ATP-
Calculated)  

ATP  Calculated  kV  %  
B  Station Entrance “ENT1”  401 386.5 14.5 3 

C Surge Arrester Junction “EJ1”  198 183.9 14.1 2.9 

G  Transformer 2 “ET1”  226 297.7 -71.7 -14.7 

D-E  
Surge Arrester Discharge Voltage 
“ED1”  

155  158.7 -3.7 -0.8 

  

Table 6-4 Case Study 2, Validation - Comparison of Simulated and Calculated Surge Voltages 

 
Circuit Location  

Surge Voltage (kV)  Variance (ATP-
Calculated)  

ATP  Calculated  kV  %  
B  Station Entrance “ENT1”  441  426.5 14.5 3.4 

C  Surge Arrester Junction “EJ1”  238 223.9 14.1 6.3 

F Transformer 2 “ET1”  266 337.7 -71.7 -21.2 

D  Surge Arrester “EA1”  217  198.7 18.3 9.2 

E  Earth Conductor “GND1”  62 -  -  -  

  

6.3.3 Case Study 2, Validation Results Discussion  

The comparison between the calculated ATP and analytical results reveal the maximum 

recorded error was the peak surge voltage at the transformer with a variation of -21.3%. 

The transformer voltage to ground also varied from the calculated estimate by -14.7%. 

Investigation into the transformer voltage discrepancy revealed a point of significant 

discontinuity exists near the surge arrester junction ”EJ1”. It is at this point the overhead 

V
ol

ta
ge

 –
 G

ro
un

d 
(k

V
) 

Time (µs) 



MODEL VALIDATION    P a g e  | 73 
 

 

line changes from 7/2.00 HDBC to 185mm2 AAAC1120 covered conductor. The surge 

impedance decreases from 372.317Ω to 265.454Ω. Application of equation 2.2 (section 

2.2.4.2) results in a transmission factor β=0.83. If the voltage to ground result of 

297.7kV, derived by calculation, is adjusted by β, then this value becomes 247.1kV. This 

is within acceptable tolerance with a variance of 8.5% to the ATP calculated result. The 

subsequent surge voltage is 287.1kV with a variance of 7.4%. That the cause of the 

discrepancy error was therefore not a result of the ATP model, but inherent within the 

limitations of the simplified estimate calculations.  

The ATP plot shows the travel time for the incoming surge to reach the substation is 

approximately 2.5μs. This is consistent with the estimated calculated time of 2.37μs 

derived from:  

 
௦ܶ௨௥௚௘ =  ݏߤ ݒ/݀

௦ܶ௨௥௚௘ =  ݏߤ 640/270

௦ܶ௨௥௚௘ =  ݏߤ 2.37
 

 
 

Similar to case study 1 validation, reflections are quite pronounced on the station entrance 

“ENT1” plot and to a lesser extent, the power transformer “ET1”. This again may be 

contributed to the travelling wave reflecting between the power transformer and the strike 

point and the known point of discontinuity as well as effects of the power frequency 

voltage source. Additionally, the standard voltage wave shape consisting of a 50μs fall 

(tail) time is extending the surge arrester operating time greater than the simulation run 

time of 50μs. 

The arrester discharge voltage is relatively constant throughout the simulation. The initial 

reflections have a minor influence on the response due to the resultant voltage dropping 

below the arrester discharge voltage after the initial reflection, settling to approximately 

160kV.   

Similar to case study 1, scenario 1, the aim of this scenario was not to identify any gaps in 

the substation equipment insulation co-ordination, however it is noted that the both the 

surge voltage and the voltage to ground at the station entrance “ENT1” and the 

transformer “ET1” exceed the substation’s BIL level of 325kV. 

The results therefore validate the accuracy of the ATP model to be utilised with  the 

remaining case study 2 scenarios.  
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 SIMULATION RESULTS 

 Introduction 

Simulations were run for a number of different scenarios listed below for each case study. 

These scenarios aim to answer the following points: 

a. If standard surge arrester locations provide a suitable zone of protection for major 

plant. 

b. If standard connection methods reduce the surge arrester’s operational 

effectiveness. 

c. Identify any improvements to zone substation designs that may be achieved 

through changes to Essential Energy’s standard design or period contract surge 

arrester specification. 

Case Study 1 Case Study 2 

1. Standard design configuration. 

2. Single surge arrester at transformer 

only. 

3. Single surge arrester at station 

entrance only. 

4. Standard design configuration.  

Comparison of varying incoming 

lead and earth connection lengths. 

5. Comparison of transformer surge 

arrester connection techniques. 

6. Comparison of surge arrester 

models. 

7. Lightning strike onto substation 

conductors. 

1. In service substation configuration. 

2. Recorded lightning strike 

3. Lightning strike to substation 

conductors. 

 

 

All ATP plots have been included in Appendix N or each scenario listed above. 
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7.1.1 Surge Arrester Connection Leads 

Case study 1, scenario 4 investigates the impact varying the incoming and earth 

connection lead of each set of surge arresters has on their performance. Figure 7-1 

provides a typical overview of these leads and how they connect to the surge arrester.  

 

Figure 7-1 Typical Surge Arrester Incoming Lead (Red) and Earth Lead (Green) 

  

Surge Arrester 

Connected to substation earth grid 

Incoming Lead 

Earth Lead 
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 Case Study 1, Scenario 1 – Standard Design Configuration. 

 

Figure 7-2 Case Study 1, Scenario 1 - ATP Model 

7.2.1 Objective 

To determine if the placement of surge arresters maintain a suitable zone of protection 

across all equipment and identify any voltages that exceed 80% of the substation 

equipment BIL rating of 325 kV (260 kV) at terminals of equipment located as per the 

standard design for case study 1. 

7.2.2 Methodology 

ATP: Referring to Figure 7-2 above, a 14 kA, 8/20µs lightning surge is applied to “B” 

phase of the overhead line (A), three spans or 600 m away from the substation entrance 

“ENT1” (B). The resultant voltages to ground are calculated at the substation entrance 

and surge arrester 1 junction “EJ1” (B), surge arrester 1 “EA1” (C), surge arrester 1 

ground lead “GND1” (D), voltage transformer 1 “5VT1” (E), circuit breaker “5B1” (F), 

air break switch “5J1” (G), air break switch “5F1”(H), air break switch “5F2” (I), air 

break switch “5C2” (J), air break switch “5J2” (K), circuit breaker “5K2” (L), surge 

arrester 2 junction “EJ2” (M), surge arrester 2 “EA2” (N), surge arrester 2 ground lead 

“GND2” (O) and power transformer 2 “ET2” (P).  

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester.  
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7.2.3 Case Study 1, Scenario 1 Results 

 

Figure 7-3 Case Study 1, Scenario 1 - ATP Voltage to Ground Measurements 

 

Figure 7-4 Case Study 1, Scenario 1 - ATP Arrester Currents 
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Table 7-1 Case Study 1, Scenario 1 – ATP Results 

Circuit Location 
Voltage (kV) 

V – G Surge 

B 
Station Entrance “ENT1” 

195 235 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 183 223 
D Surge Arrester 1 Earth Conductor “GND1” 26 66 

C-D Surge Arrester 1 Discharge Voltage “ED1” 157 - 
E Voltage Transformer 1 “5VT1” 180 220 
F Circuit Breaker  “5B1” 177 217 
G Air Break Switch “5J1” 171 211 
H Air Break Switch “5F1” 162 202 
I Air Break Switch “5F2” 153 193 
J Air Break Switch “5C2” 151 191 
K Air Break Switch “5J2” 150 190 
L Circuit Breaker “5K2” 149 189 
M Surge Arrester Junction “EJ2” 146 186 
N Surge Arrester 2  “EA2” 145 185 
O Surge Arrester 2 Earth Conductor “GND2” 3 43 

N-O Surge Arrester Discharge Voltage “ED2” 142 - 
P Transformer 2 “ET2” 146 186 

 

7.2.4 Case Study 1, Scenario 1 Result Discussion 

As expected, the comparison between the validation scenario and scenario 1 finds the 

resultant travel time of the surge is similar to the validation results calculated in section 

6.2.3. This is due to no changes to the location of the strike point or the overhead line 

configuration and surge velocity. The differences in time to reach the peak overvoltage (8 

µs v’s 4 µs) align with the lightning waveform parameters of each respective scenario. 

The shorter tail time of the lightning waveform in this scenario results in a faster decay of 

the overvoltages when compared to the validation scenario. 

Effects of the opposite polarity power frequency voltage is present in the voltage 

oscillations present until the operation of the surge arrester (approximately 2.5 µs) and 

continue on the station entrance ATP calculated voltage to ground plot (Figure 7-3).  

The surge impedances throughout network modelled in case study 1 do not vary by a 

significant amount. This results in minimisation of reflections at points of discontinuity, 

and the predicted surge arrester discharge voltages may be estimated and compared 

against calculated results and manufacturer’s data. Referring to the equivalent circuit 

(Figure 7-5), when all impedances are equal two thirds of the lightning current would 

flow through the station entrance surge arrester “EA1”, whilst the remaining third would 

be discharged to earth through the transformer 2 surge arrester “EA2” (Kirchhoff’s 

Current Law).  
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Figure 7-5 Network Equivalent Circuit 

 

With the 14 kA lightning surge this equates to 9.3 kA through EA1 and 4.7 kA through 

EA2. The ATP calculated current plots Figure 7-4 support this estimate with peaks of 9.9 

kA (EA1) and 4.1 kA (EA2).  A comparison of the calculated discharge voltages of 157 

kV (ED1) and 142 kV (ED2), and the respective discharge currents against the 

manufacturers data in APPENDIX J reveals only a very minor variance of  -1% (ED1) 

and -4% (ED2) 

Estimates of the each surge arrester zone of protection using equation 2.36 equate to 

approximately 18 m for ED1 and 20 m for ED2. The outcome from this is a gap in the 

protection zones as the station entrance surge arrester zone of protection extends to circuit 

breaker 5B1, whilst the transformer 2 surge arresters zone of protection extends to air 

break switch 5F2. This would suggest that the elimination of either set of surge arresters 

will result in damage to substation equipment as will be examined in case study 1, 

scenario’s 2 and 3. 

Maintaining the standard design configuration results in a high level of protection against 

an average magnitude lightning surge with a maximum voltage calculated at surge 

arrester 1 of 183 kV (V-G) and 223 kV (surge). This represents 70% and 86% of the 

substation equipment’s maximum BIL threshold of 260 kV. The calculated voltages at 

transformer 2 remained well within the acceptable limit at 146 kV (V-G) and 186 kV 

(surge).   
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R R 

Z2 Z2 

Surge Arrester 
Equivalent Resistance

Earth Lead 
Surge Impedance 
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The results of case study 1, scenario 1 forms a benchmark for all case study 1 scenarios. 

This shall allow for a determination to be made on the level of surge arrester performance 

when changes are made to the standard substation design. 
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 Case Study 1, Scenario 2 – Standard Design, Transformer 
Surge Arrester Only. 

 

Figure 7-6 Case Study 1, Scenario 2 - ATP Model 

7.3.1 Objective 

To identify the impact due to the removal of the station entrance surge arresters has on 

the calculated peak overvoltage levels throughout the substation and identify any voltages 

exceeding 80% of the substation equipment BIL rating of 325 kV (260 kV) at terminals 

of equipment located as per the standard design for case study 1. 

7.3.2 Methodology 

ATP: Referring to Figure 7-6 above, a 14kA, 8/20µs lightning surge is applied to “B” 

phase of the overhead line (A), three spans or 600m away from the substation entrance 

“ENT1” (B).  The resultant voltages to ground are calculated at the substation entrance 

“ENT1” (B), voltage transformer 1 “5VT1” (E), circuit breaker “5B1” (F), air break 

switch “5J1” (G), air break switch “5F1”(H), air break switch “5F2” (I), air break 

switch “5C2” (J), air break switch “5J2” (K), circuit breaker “5K2” (L), surge arrester 2 

junction “EJ2” (M), surge arrester 2 “EA2” (N), surge arrester 2 ground lead “GND2” 

(O) and power transformer 2 “ET2” (P).  

Changes made to case study 1, scenario 1 include: 

 Removal of surge arrester EA1.  

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the surge arrester and the substation earth grid is subtracted from the voltage 

recorded at the surge arrester.  
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7.3.3 Case Study 1, Scenario 2 Results 

 

Figure 7-7 Case Study 1, Scenario 2 - ATP Voltage to Ground Measurements 

 

Table 7-2 Case Study 1, Scenario 2 – ATP Results 

Circuit Location 
Voltage (kV) 

V – G Surge 

B 
Station Entrance “ENT1” 

550 590 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” - - 
D Surge Arrester 1 Earth Conductor “GND1” - - 

C-D Surge Arrester 1 Discharge Voltage “ED1” - - 
E Voltage Transformer 1 “5VT1” 457 497 
F Circuit Breaker  “5B1” 438 478 
G Air Break Switch “5J1” 400 440 
H Air Break Switch “5F1” 355 395 
I Air Break Switch “5F2” 310 350 
J Air Break Switch “5C2” 270 310 
K Air Break Switch “5J2” 250 290 
L Circuit Breaker “5K2” 232 272 
M Surge Arrester Junction “EJ2” 198 238 
N Surge Arrester 2  “EA2” 192 232 
O Surge Arrester 2 Earth Conductor “GND2” 24 64 

N-O Surge Arrester Discharge Voltage “ED2” 168 - 
P Transformer 2 “ET2” 199 239 
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7.3.4 Case Study 1, Scenario 2 Result Discussion 

Removal of the station entrance surge arresters has resulted in the calculated peak 

voltages at circuit breaker “5B1” increasing to 250% (V-G) and 220% (surge) of case 

study 1, scenario 1 levels. At the transformer terminals, the peak voltages are below the 

260kV threshold, but have also increased to 136% (V-G) and 128% (Surge) of those 

calculated in case study 1, scenario 1.  

In a similar fashion to case study 1, scenario 1, the effects of the opposite polarity power 

frequency voltage are still present, however the significantly larger overvoltage peak 

makes their influence appear smaller in comparison. 

With just the single set of surge arresters installed, the entire lightning current is 

discharged through the transformer surge arrester (EA2). A comparison of the 168 kV 

calculated discharge voltage (ED2), and the respective discharge current of 14 kA against 

manufacturer data included in APPENDIX J reveal only a very minor variance of -0.1% 

is present.  

The transformer surge arrester zone of protection is estimated at approximately 16 m, 

which does not provide adequate coverage for all substation equipment. Without the 

station entrance surge arresters, the substation equipment is therefore subjected to the 

overvoltage for a greater period of time resulting in the higher calculated overvoltages. 

It is clear from these results that the single set of surge arresters at the transformer is not 

sufficient to protect any of the substation equipment other than the adjacent transformer. 

The average magnitude lightning surge produced overvoltages greater than the 260kV 

(80%) equipment BIL limit through to the circuit breaker “5K1”. Maximum voltages 

present at equipment terminals were calculated at the voltage transformer “5VT1” and 

reached 457kV (V-G) and 497kV (Surge). The surge arresters limit the over voltages at 

the transformer to 199kV (V-G) and 239kV (Surge). This is equivalent to 77% and 92% 

of the 260kV voltage limit maintaining greater than a 20% BIL protective margin. 
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 Case Study 1, Scenario 3 – Standard Design, Station 
Entrance Surge Arrester Only. 

 

Figure 7-8 Case Study 1, Scenario 3 - ATP Model 

7.4.1 Objective 

To identify the impact removal of the transformer surge arresters has on the calculated 

peak overvoltage levels throughout the substation and identify any voltages exceeding 

80% of the substation equipment BIL rating of 325Kv (260kV) at terminals of equipment 

located as per the standard design for case study 1. 

7.4.2 Methodology 

ATP: Referring to Figure 7-8 above, a 14kA, 8/20µs lightning surge is applied to “B” 

phase of the overhead line (A), three spans or 600m away from the substation entrance 

“ENT1” (B). The resultant voltages to ground are calculated at the substation entrance 

and surge arrester 1 junction “EJ1” (B), surge arrester 1 “EA1” (C), surge arrester 1 

ground lead “GND1” (D), voltage transformer 1 “5VT1” (E), circuit breaker “5B1” (F), 

air break switch “5J1” (G), air break switch “5F1”(H), air break switch “5F2” (I), air 

break switch “5C2” (J), air break switch “5J2” (K), circuit breaker “5K2” (L) and power 

transformer 2 “ET2” (P).  

Changes made to case study 1, scenario 1 include: 

 Removal of surge arrester EA2. 

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the surge arrester and the substation earth grid is subtracted from the voltage 

recorded at the surge arrester.  
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7.4.3 Case Study 1, Scenario 3 Results 

 

Figure 7-9 Case Study 1, Scenario 3 - ATP Voltage to Ground Measurements 

 

Table 7-3 Case Study 1, Scenario 3 – ATP Results 

Circuit Location 
Voltage (kV) 

V – G Surge 

B 
Station Entrance “ENT1” 

226 266 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 202 242 
D Surge Arrester 1 Earth Conductor “GND1” 37 77 

C-D Surge Arrester 1 Discharge Voltage “ED1” 165 - 
E Voltage Transformer 1 “5VT1” 229 269 
F Circuit Breaker  “5B1” 229 269 
G Air Break Switch “5J1” 233 273 
H Air Break Switch “5F1” 236 276 
I Air Break Switch “5F2” 240 280 
J Air Break Switch “5C2” 243 283 
K Air Break Switch “5J2” 244 284 
L Circuit Breaker “5K2” 245 285 
M Surge Arrester Junction “EJ2” - - 
N Surge Arrester 2  “EA2” - - 
O Surge Arrester 2 Earth Conductor “GND2” - - 

N-O Surge Arrester Discharge Voltage “ED2” - - 
P Transformer 2 “ET2” 247 287 
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7.4.4 Case Study 1, Scenario 3 Result Discussion 

The removal of the transformer surge arresters has resulted in the calculated surge voltage 

values exceeding the 260kV (80%) BIL limit at all points within the substation except at 

the terminals of the station entrance surge arrester (EA1).  

The voltage plots share similar characteristics to scenario 2 with the major difference 

being higher calculated voltage peaks in scenario 2. This is a result of the increased time 

for the surge to travel to the surge arrester, and therefore an increased time until the surge 

arrester operates. With the full lightning surge current flowing through the single arrester, 

the surge arrester discharge voltage of 165 kV (ED1) remained almost constant between 

scenarios 2 and 3 with a variation of only 1%. The protective zone of the surge arresters 

is again inadequate to encompass all equipment in the substation with a calculated 

protective zone of 17 m. 

At circuit breaker “5B1”, the calculated voltage increased to 129% (V-G) and 124% 

(surge) of the calculated voltages in case study 1, scenario 2. At the transformer “ET2”, 

this extends to 169% (V-G) and 154% (surge).  This highlights that the surge arresters 

installed at the station entrance has what may be described as the primary, or dominant 

effect on limiting overvoltages in the substation. This is to be expected considering the 

station entrance surge arresters would be subjected to the overvoltages for a longer time 

period. 

The single set of surge arresters at the substation entrance do not provide suitable 

protection to the substation equipment if the protection margin of 80% is to be 

maintained. The transformer “ET2” had the highest calculated surge voltage of 287kV, 

110% of the 260kV limit. 
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 Case Study 1, Scenario 4 – Standard Design Configuration. 
Comparison of Varying Incoming Lead and Earth 
Connection Lengths.  

 

Figure 7-10 Case Study 1, Scenario 4 - ATP Model 

7.5.1 Objectives 

To establish the impact modifications to the standard design has on the effectiveness of 

the surge arrester and identify any voltages that exceed 80% of the substation equipment 

BIL rating of 325Kv (260kV) at terminals of equipment whilst varying the incoming and 

earth connection leads from the original design for case study 1. 

7.5.2 Methodology 

ATP: The surge arrester lead lengths are to be modified from case study 1, scenario 1 as 

follows: 

a. Station Entrance surge arrester incoming lead: 1 m, 2.5 m, 5 m, 10 m, 15m 

b. Transformer surge arrester incoming connection: 1 m, 2.5 m, 5 m, 10 m, 15 m 

c. Station Entrance surge arrester earth lead: 1 m, 2 m, 4 m, 8 m, 15 m, 30 m 

d. Transformer surge arrester earth lead: 1 m, 2 m, 4 m, 8 m, 15 m, 30 m 

e. Station Entrance and transformer surge arrester incoming lead: 1 m, 2.5 m, 5 m, 

10 m, 15 m 

f. Station Entrance and transformer surge arrester earth lead: 1 m, 2 m, 4 m, 8 m, 15 

m, 30 m 

For a to f above, a 14 kA, 8/20µs lightning surge is applied to “B” phase of the overhead 

line (A), three spans or 600 m away from the substation entrance “ENT1” (B). The 

resultant voltages to ground are calculated at the substation entrance and surge arrester 1 
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junction “EJ1” (B), surge arrester 1 “EA1” (C), surge arrester 1 ground lead “GND1” 

(D), voltage transformer 1 “5VT1” (E), circuit breaker “5B1” (F), air break switch “5J1” 

(G), air break switch “5F1”(H), air break switch “5F2” (I), air break switch “5C2” (J), 

air break switch “5J2” (K), circuit breaker “5K2” (L), surge arrester 2 junction “EJ2” 

(M), surge arrester 2 “EA2” (N), surge arrester 2 ground lead “GND2” (O) and power 

transformer 2 “ET2” (P).   

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester.  

7.5.3 Case Study 1 Scenario 4a Results 

Table 7-4 Case Study 1, Scenario 4a – ATP Results 

Circuit Location 

Voltage (kV) 
1 m 2.5m 5 m 10 m 15 m 

V
–G

 

Su
rg

e 

V
-G

 

Su
rg

e 

V
–G

 

Su
rg

e 

V
–G

 

Su
rg

e 

V
–G

 

Su
rg

e 

B 

Station Entrance 
“ENT1” 

194 234 202 242 210 250 235 275 250 290 
Surge Arrester 1 
Junction “EJ1” 

C Surge Arrester 1  “EA1” 183 223 184 224 182 222 180 220 178 218 

D 
Surge Arrester 1 Earth 
Conductor “GND1” 

27 67 25 65 25 65 24 64 23 63 

C-D 
Surge Arrester 1 
Discharge Voltage 
“ED1” 

156 - 159 - 157 - 156 - 155 - 

E Voltage Tx 1 “5VT1” 175 215 180 220 190 230 209 249 225 265 
F Circuit Breaker  “5B1” 172 212 177 217 187 227 205 245 220 260 
G Air Break Switch “5J1” 165 205 171 211 181 221 198 238 213 253 
H Air Break Switch “5F1” 156 196 162 202 170 210 186 226 200 240 
I Air Break Switch “5F2” 152 192 153 193 160 200 175 215 188 288 
J Air Break Switch “5C2” 150 190 151 191 153 193 165 205 177 217 
K Air Break Switch “5J2” 149 189 150 190 152 192 160 200 172 212 
L Circuit Breaker “5K2” 148 188 149 189 151 191 155 195 167 207 

M 
Surge Arrester Junction 
“EJ2” 

145 185 146 186 148 188 151 191 158 198 

N Surge Arrester 2  “EA2” 144 184 145 185 147 187 150 190 156 196 

O 
Surge Arrester 2 Earth 
Conductor “GND2” 

5 45 3 43 4 44 3 43 8 48 

N-O 
Surge Arrester 
Discharge Voltage 
“ED2” 

139 - 142 - 143 - 147 - 147 - 

P Transformer 2 “ET2” 145 185 146 186 148 188 151 191 158 198 
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Figure 7-11 Case Study 1, Scenario 4a – 1m ATP Voltage to Ground Measurements 

 

Figure 7-12 Case Study 1, Scenario 4a –15m ATP Voltage to Ground Measurements 

 

7.5.3.1 Case Study 1, Scenario 4a Result Discussion 

Reducing the station entrance incoming lead length from 2.5m to 1 m, resulted in  almost 

identical arrester dicharge voltages of 156 kV (ED1) and 139 kV (ED2) which in turn 

equates to surge arrester protective zones of 18 m and 21 m respectively. At 15 m, the 

arrester discharge voltages became 157 kV (ED1) and 148 kV (ED2). Each respective 

surge arrester’s zone of protection does not change significantly at 18 m (ED1) and 19 m 

(ED2). 

No voltages exceeding the 260 kV (80%) equipment BIL level was recorded after 

reducing the incoming lead length to 1 m. Increasing the station entrance surge arrester 

incoming lead length from 2.5 m to 15 m resulted in significant inductive voltage drops 

across the incoming lead. This was calculated in ATP as the difference in voltage 
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between EJ1 and EA1, and at 5 m produced a 72 kV voltage drop. A 15 m incoming lead 

length equated to an average peak overvoltage increase of 43 kV recorded at all 

substation equipment terminals within the station entrance surge arrester zone of 

protection (5VT1 through to 5F2). Using the ATP calculated surge velocity of 287 m/µs 

and an assumed typical lightning surge voltage surge steepness of 1000 kV/µs, an 

estimated change in voltage per meter increase to the lead length may be determined as 

follows: 

 
ݒ =  ݏߤ/݉ 287

∴ = 1݉ ݈݁ݒܽݎݐ ݋ݐ ݁݃ݎݑݏ ݎ݋݂ ݁݉݅ܶ  ݏߤ 0.0035

∴  12.5݉ ݈ܽ݊݋݅ݐ݅݀݀ܽ ݈݁ݒܽݎݐ ݋ݐ ݁݃ݎݑݏ ݎ݋݂ ݁݉݅ܶ
=  ݏߤ 0.044

1000 ݃݊݅݉ݑݏݏܣ
ܸ݇
ݏߤ

 ݏݏ݁݊݌݁݁ݐݏ ݁݃ݎݑݏ

∴ ݁ݏܽ݁ݎܿ݊݅ ݁݃ܽݐ݈݋ݒ = 1000 ∗ 0.044 = 43.75 ܸ݇ 

∴  ݎ݁݌ ݏ݈ܽ݊݅݉ݎ݁ݐ ݐ݊݁݉݌݅ݑݍ݁ ݐܽ ℎܽ݊݃݁ܿ ݁݃ܽݐ݈݋ݒ ܸ݇ 3.5

 ℎݐ݈݃݊݁ ݈݀ܽ݁ ݊݅ ݁ݏܽ݁ݎܿ݊݅ ݎ݁ݐ݁݉

 

 

 
 

The ATP calculated results in Table 7-4 show at 10 m the maximum peak overvoltage 

level of 260 kV is exceeded at the station entrance (ENT1). Using the method shown 

above, a theoretical maximum surge arrester incoming lead length may be derived 

assuming no change to the existing surge arrester earth lead length of 8 m is made. 

Utilising the highest calculated overvoltage for a 2.5 m lead length (as per case study 1, 

scenario 1) of 242 kV, the maximum allowable increase in the peak overvoltage is 18 kV. 

The division of the 18 kV maximum allowable voltage increase by 3.5 kV/m, it may be 

estimated the maximum allowable incoming station entrance surge arrester lead length is 

5.1 m. This aligns with the ATP results at 5 m that calculated a maximum peak 

overvoltage 250 kV (surge) at the station entrance (ENT1).  
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7.5.4 Case Study 1 Scenario 4b Results 

 

Table 7-5 Case Study 1, Scenario 4b – ATP Results 

Circuit Location 

Voltage (kV) 
1 m 2.5m 5 m 10 m 15 m 

V
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Su
rg
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V
-G
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V
–G
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V
–G
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V
–G
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rg
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B 
Station Entrance “ENT1” 

202 242 200 240 198 138 202 242 202 242 Surge Arrester 1 Junction 
“EJ1” 

C Surge Arrester 1  “EA1” 184 224 183 224 184 224 184 224 185 225 

D 
Surge Arrester 1 Earth 
Conductor “GND1” 

25 65 26 66 27 67 27 67 28 68 

C-D 
Surge Arrester 1 
Discharge Voltage “ED1” 

159 - 157 - 157 - 157 - 157 - 

E Voltage Tx 1 “5VT1” 180 220 181 221 183 223 184 224 184 224 
F Circuit Breaker  “5B1” 177 217 178 218 179 219 181 221 181 221 
G Air Break Switch “5J1” 171 211 170 210 173 213 174 214 174 214 
H Air Break Switch “5F1” 162 202 162 202 164 204 165 205 165 205 
I Air Break Switch “5F2” 153 193 154 194 154 194 157 197 157 197 
J Air Break Switch “5C2” 151 191 147 187 153 183 154 194 154 194 
K Air Break Switch “5J2” 150 190 151 191 152 192 152 192 152 192 
L Circuit Breaker “5K2” 149 189 150 190 150 190 150 190 150 190 

M 
Surge Arrester Junction 
“EJ2” 

146 186 146 186 146 186 146 186 146 186 

N Surge Arrester 2  “EA2” 145 185 145 185 143 183 139 179 136 176 

O 
Surge Arrester 2 Earth 
Conductor “GND2” 

3 43 4 44 4 44 3 43 4 44 

N-O 
Surge Arrester Discharge 
Voltage “ED2” 

142 - 141 - 139 - 136 - 132 - 

P Transformer 2 “ET2” 146 186 146 186 146 186 146 186 146 186 
 

 

 

Figure 7-13 Case Study 1, Scenario 4b – 1m ATP Voltage to Ground Measurements 
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Figure 7-14 Case Study 1, Scenario 4b – 15m ATP Voltage to Ground Measurements 

 

7.5.4.1 Case Study 1, Scenario 4b Result Discussion 

As previously discussed in case study 1, scenario 3, it is apparent from the ATP 

calculated results that the station entrance surge arrester (EA1) is the dominant 

component in supressing the peak incoming surge overvoltage throughout the substation. 

Consequently, modifications to the transformer surge arrester incoming lead produce very 

minor variances in the the peak overvoltages at the substation equipment within the 

protective zone of the transformer surge arrester (EA2). A 10 kV reduction in the arrester 

discharge voltage at ED2 was observed in the ATP results. This may be contributed to the 

corrosponding inductive voltage drop across the incoming lead and the susequent lower 

current discharged through the transformer surge arrester EA2. Each surge arrester 

protective zone becomes 18 m (EA1) and 20 m (EA2).  

No voltages were identified that exceeded the 260 kV (80%) equipment BIL level when 

the transformer surge arrester incoming lead length was varied between 1 m and 15 m. 

This is expected based on the previously mentioned dominant attributes of the station 

entrance surge arrester.  

Despite the appearance that the lead lengths may in fact be increased to 15 m or greater, it 

is recommended that the lead length be increased to no greater than 5 m. This is based on 

the possibility that the station entrance surge arresters may either fail, or be damaged 

unknowingly by a previous overvoltage transient. It was demonstrated in case study 1, 

scenario 2 that insulation coordination was unable to be maintained without the station 

entrance surge arrester. The peak overvoltage values calculated at transformer 2 was 199 

kV (V-G) and 239 kV (surge). Therefore in an effort to maintain insulation coordination 

with the transformer, a further 21 kV allowable voltage  increase at the transformer 
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terminals is possible before the maximum allowable limit is reached. Using the derived 

3.5 kV/m voltage rise per meter increase of the arrester lead shown in the result 

discussion of case study 1, scenario 2, the maximum incoming lead length then becomes 

21/3.5 = 6 m. Taking into account  there is a 1 m lead from the surge arrester junction 

(EJ2), the maximum incoming lead length for the transformer 2 surge arrester (EA2) is 5 

m. This is dependant on keeping the earth lead length unchanged at 4 m, Modelling this 

in ATP produced the following plot of the calculated overvoltage (V-G) at the terminals 

of transformer 2 (ET2). 

 

Figure 7-15 Case Study 1, Scenario 2 – 5 m Lead Length at Transformer 2 ATP V - G 
Measurement 
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7.5.5 Case Study 1, Scenario 4c Results 

Table 7-6 Case Study 1, Scenario 4c – 1 m, 2.5 m & 5 m ATP Results 

Circuit Location 

Voltage (kV) 
1 m 2m 4 m 

V
–G
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e 

V
-G

 

Su
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e 

V
–G

 

Su
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B 
Station Entrance “ENT1” 

185 225 190 230 193 233 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 172 212 173 213 176 216 
D Surge Arrester 1 Earth Conductor “GND1” 13 53 15 55 19 59 

C-D Surge Arrester 1 Discharge Voltage “ED1” 159 - 158 - 157 - 
E Voltage Tx 1 “5VT1” 170 210 172 212 174 214 
F Circuit Breaker  “5B1” 167 207 170 210 172 212 
G Air Break Switch “5J1” 163 203 164 204 166 206 
H Air Break Switch “5F1” 157 197 156 196 156 196 
I Air Break Switch “5F2” 155 195 155 195 154 194 
J Air Break Switch “5C2” 153 193 153 193 152 192 
K Air Break Switch “5J2” 152 192 151 191 151 191 
L Circuit Breaker “5K2” 150 190 150 190 150 190 
M Surge Arrester Junction “EJ2” 147 187 147 187 147 187 
N Surge Arrester 2  “EA2” 147 187 147 187 146 186 
O Surge Arrester 2 Earth Conductor “GND2” 3 43 3 43 4 44 

N-O Surge Arrester Discharge Voltage “ED2” 144 - 144 - 142 - 
P Transformer 2 “ET2” 147 187 147 187 147 187 

 

Table 7-7 Case Study 1, Scenario 4c – 10 m, 15 m & 30 m ATP Results 

Circuit Location 

Voltage (kV) 
8 m 15m 30 m 

V
–G
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rg
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V
-G
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V
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B 
Station Entrance “ENT1” 

195 235 210 250 235 275 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 183 223 195 235 220 260 
D Surge Arrester 1 Earth Conductor “GND1” 26 66 38 78 63 103 

C-D Surge Arrester 1 Discharge Voltage “ED1” 157 - 157 - 157 - 
E Voltage Tx 1 “5VT1” 180 220 190 230 210 250 
F Circuit Breaker  “5B1” 177 217 186 226 205 245 
G Air Break Switch “5J1” 171 211 180 220 197 237 
H Air Break Switch “5F1” 162 202 170 210 185 225 
I Air Break Switch “5F2” 153 193 160 200 175 215 
J Air Break Switch “5C2” 151 191 152 192 165 205 
K Air Break Switch “5J2” 150 190 147 187 160 200 
L Circuit Breaker “5K2” 149 189 148 188 156 196 
M Surge Arrester Junction “EJ2” 146 186 145 185 147 187 
N Surge Arrester 2  “EA2” 145 185 144 184 145 185 
O Surge Arrester 2 Earth Conductor “GND2” 3 43 4 44 7 47 

N-O Surge Arrester Discharge Voltage “ED2” 142 - 140 - 138 - 
P Transformer 2 “ET2” 146 186 145 185 147 187 
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Figure 7-16 Case Study 1, Scenario 4c – 1m ATP Voltage to Ground Measurements 

 

Figure 7-17 Case Study 1, Scenario 4c – 30m ATP Voltage to Ground Measurements 

 

7.5.5.1 Case Study 1, Scenario 4c Result Discussion 

It should first be noted that in reality, a reduction of the the station entrance ground lead 

length from 8 m to 1 m would not be possible without installing the surge arresters below 

statutory clearances as defined in AS2067. Barriers to maintain clearances from live 

conductors would be required at additional expense. Despite the results of a 1 m earth 

lead providing the greatest reduction in peak overvoltages; 20% (V-G) and 16% (Surge) 

at the station entrance (ENT1), 4 m is the recommended minimum length of station 

entrance earth lead to maintain safe electrical clearances. 

No recorded voltages exceeded the 260kV (80%)  threshold at any of the modelled earth 

lead lengths until 15 m was reached. Analysis of the average change in voltage at the 

station entrance surge arrester terminals (EA1) reveals that for every meter in length 
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change to the earth lead, the voltaged varied 1.7 kV. This is not consistant with the 

voltage change of 3.5 kV per meter for the surge arrester incoming lead derived in case 

study 1, scenario 2 due to the differences in the electrical properties of each conductor 

type. The incoming lead is AAAC1120 37/3.00 Nitrogen conductor (Table 4-11) whilst 

the earth lead is 95 mm2 covered copper conductor represented as a 0.1 µF/m inductance. 

There was no significant difference in either surge arrester discharge voltages when 

compared to Case Study 1, scenario 1. 

As is to be expected, increasing the ground lead length from 8m to 30m resulted in the 

largest peak voltage increases. 20% (V-G) and 17% (Surge) at the terminals of the station 

entrance surge arrester “EA1” were observed in the calculated ATP plots. The only 

location where the peak surge voltages exceeded the 260 kV (80%) maximum voltage 

level was at the station entrance (ENT1) and the station entrance surge arrester (EA1).  

The peak surge overvoltage recorded with a 15 m earth connection lead was 250 kV. In 

an effort to maintain insulation coordination with the station entrance (ENT1), a further 

10 kV allowable voltage  increase at the station entrance is possible before the 260 kV 

(220 kV V-G) maximum allowable BIL limit is reached. Using the observed 1.7 kV per 

meter variance of the arrester ground lead, the maximum theoretical ground lead length 

then becomes 15 + 10/1.7 = 21 m. This is dependant on keeping the incoming lead length 

unchanged at 2.5 m, Modelling in ATP confirmed these results with the following plot of 

the calculated overvoltage (V-G) at the terminals of the substation entrance (ENT1). 

 

Figure 7-18 Case Study 1, Scenario 4c – 21m ATP Voltage to Ground Measurements 
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7.5.6 Case Study 1, Scenario 4d Results 

Table 7-8 Case Study 1, Scenario 4d – 1 m, 2.5 m & 5 m ATP Results 

Circuit Location 

Voltage (kV) 
1 m 2m 4 m 

V
–G

 

Su
rg
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V
-G

 

Su
rg
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V
–G

 

Su
rg
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B 
Station Entrance “ENT1” 

197 237 197 237 195 235 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 183 223 183 223 183 223 
D Surge Arrester 1 Earth Conductor “GND1” 26 66 26 66 26 66 

C-D Surge Arrester 1 Discharge Voltage “ED1” 157 - 157 - 157 - 
E Voltage Tx 1 “5VT1” 180 220 178 218 180 220 
F Circuit Breaker  “5B1” 177 217 176 216 177 217 
G Air Break Switch “5J1” 170 210 171 211 171 211 
H Air Break Switch “5F1” 161 201 161 201 162 202 
I Air Break Switch “5F2” 160 200 154 194 153 193 
J Air Break Switch “5C2” 151 191 151 191 151 191 
K Air Break Switch “5J2” 150 190 150 190 150 190 
L Circuit Breaker “5K2” 149 189 149 189 149 189 
M Surge Arrester Junction “EJ2” 147 187 146 186 146 186 
N Surge Arrester 2  “EA2” 146 186 145 185 145 185 
O Surge Arrester 2 Earth Conductor “GND2” 4 44 4 44 3 43 

N-O Surge Arrester Discharge Voltage “ED2” 142 - 141 - 142 - 
P Transformer 2 “ET2” 147 187 146 186 146 186 

 

Table 7-9 Case Study 1, Scenario 4d – 10 m, 15 m & 30 m ATP Results 

Circuit Location 

Voltage (kV) 
8 m 15m 30 m 

V
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B 
Station Entrance “ENT1” 

195 235 195 235 197 237 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 183 223 183 223 184 223 
D Surge Arrester 1 Earth Conductor “GND1” 26 66 26 66 27 67 

C-D Surge Arrester 1 Discharge Voltage “ED1” 157 - 157 - 157 - 
E Voltage Tx 1 “5VT1” 180 220 182 222 183 223 
F Circuit Breaker  “5B1” 178 218 180 220 181 221 
G Air Break Switch “5J1” 173 213 174 214 175 215 
H Air Break Switch “5F1” 162 202 164 204 166 206 
I Air Break Switch “5F2” 154 194 155 195 157 197 
J Air Break Switch “5C2” 151 191 152 192 153 193 
K Air Break Switch “5J2” 148 188 149 199 150 190 
L Circuit Breaker “5K2” 147 187 148 188 148 188 
M Surge Arrester Junction “EJ2” 146 186 145 185 148 188 
N Surge Arrester 2  “EA2” 145 185 144 184 147 187 
O Surge Arrester 2 Earth Conductor “GND2” 4 44 3 43 7 47 

N-O Surge Arrester Discharge Voltage “ED2” 141 - 141 - 140 - 
P Transformer 2 “ET2” 146 186 145 185 148 188 
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Figure 7-19 Case Study 1, Scenario 4d – 1 m ATP Voltage to Ground Measurements 

 

Figure 7-20 Case Study 1, Scenario 4d – 30 m ATP Voltage to Ground Measurements 

 

7.5.7 Case Study 1, Scenario 4d Result Discussion 

In similar fashion to case study 1, scenario 4c, a reduction of the the station entrance 

ground lead length from 4 m to 1 m would not be possible without installing the surge 

arresters below statutory clearances as defined in AS2067. Barriers to maintain clearances 

from live conductors would be required at additional expense. A minimum ground lead 

length of 4 m is again recommended to maintain safe electrical clearances. 

No recorded voltages exceeded the 260 kV (80%)  threshold at any of the modelled earth 

lead lengths even at 30 m. This distance is a highly improbable and impractical distance 

to design the transformer surge arrester ground lead length to. Despite this, the maximum 

recommended transformer surge arrester (EA2) ground lead length shall be such, that a 

failure to the station entrance surge arresters (EA1) the transformer maintains adequate 
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insulation coordination. If the maximum overvoltage at transformer 2 calculated in case 

study 2, scenario 2 (199 kV V-G) is used as a baseline, a further 21 kV allowable voltage  

increase at transformer 2 (ET2) is possible before the 260 kV (220 kV V-G) maximum 

allowable BIL limit is reached. Using the observed 1.7 kV per meter variance of the 

arrester ground lead derived in the case study 1, scenario 4c, the maximum recommended 

ground lead length then becomes 21/1.7 = 12 m. This is dependant on keeping the 

incoming lead length and the surge arrester junction (EJ2) distance from transformer 2 

(ET2) each unchanged at 1 m. Modelling this in ATP confirmed these results with the 

following plot of the calculated overvoltage (V-G) at the terminals of transformer 2 

(ET2). 

 

Figure 7-21 Case Study 1, Scenario 4d – 12m ATP Voltage to Ground Measurements 
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7.5.8 Case Study 1, Scenario 4e Results 

Table 7-10 Case Study 1, Scenario 4e – ATP Results 

Circuit Location 

Voltage (kV) 
1 m 2.5m 5 m 10 m 15 m 

V
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V
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V
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V
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B 
Station Entrance “ENT1” 

190 230 197 237 210 250 233 273 255 295 Surge Arrester 1 
Junction “EJ1” 

C Surge Arrester 1  “EA1” 184 224 184 224 182 222 181 221 180 220 

D 
Surge Arrester 1 Earth 
Conductor “GND1” 

27 67 27 67 26 66 25 65 24 64 

C-D 
Surge Arrester 1 
Discharge Voltage “ED1” 

157 - 157 - 156 - 156 - 156 - 

E Voltage Tx 1 “5VT1” 175 215 181 221 192 232 215 255 234 274 
F Circuit Breaker  “5B1” 172 212 179 219 187 227 210 250 227 267 
G Air Break Switch “5J1” 166 206 172 212 183 223 200 240 217 257 
H Air Break Switch “5F1” 156 196 163 203 174 214 191 231 205 245 
I Air Break Switch “5F2” 152 192 154 194 164 204 180 220 197 237 
J Air Break Switch “5C2” 150 190 151 191 156 196 170 210 187 227 
K Air Break Switch “5J2” 149 189 150 190 152 192 165 205 182 222 
L Circuit Breaker “5K2” 148 188 149 189 151 191 161 201 177 217 

M 
Surge Arrester Junction 
“EJ2” 

145 185 146 186 148 188 154 194 171 210 

N Surge Arrester 2  “EA2” 144 184 144 184 144 184 144 184 145 185 

O 
Surge Arrester 2 Earth 
Conductor “GND2” 

3 43 3 43 3 43 6 46 7 47 

N-O 
Surge Arrester Discharge 
Voltage “ED2” 

141 - 141 - 141 - 138 - 138 - 

P Transformer 2 “ET2” 145 185 146 186 148 188 154 194 170 210 
 

 

 

Figure 7-22 Case Study 1, Scenario 4e – 1 m ATP Voltage to Ground Measurements 
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Figure 7-23 Case Study 1, Scenario 4e – 15 m ATP Voltage to Ground Measurements 

 

7.5.9  Case Study 1, Scenario 4e Result Discussion 

As expected, the ATP calculated results between case study 1, scenario 4a, and case study 

1, scenario 4e are identical. As previously documented in the results for case study 1, 

scenario 4b, changes to the transformer surge arrester (EA2) incoming leads had very 

little effect on the resultant peak overvoltages throughout the substation. The calculated 

results align to those of case study 1, scenario 4a are therefore attributed to the dominant 

effects of the station entrance surge arrester (EA1). This dominance is as a result of 

approximately two-thirds of the lightning current being discharged through the station 

entrance surge arrester (EA1) discussed in case study 1, scenario 1 results. 

A maximum of 5 m is recommended for the station entrance surge arrester (EA1) 

incoming leads. This relies on the earth lead length not exceeding the standard design 

length of 8 m and aligns with the recommendation given for case study 1, scenario 4a to 

ensure the maximum peak overvoltage level of 260 kV is not exceeded at the station 

entrance (ENT1). 

Similarly, the maximum incoming lead length for the transformer surge arrester (EA2) is 

also recommended at 5 m. As discussed in the results of case study 1, scenario 4b, this is 

dependant on keeping the earth lead length unchanged at 4 m and ensures insulation 

coordination is maintained with the transformer in the event that the station entrance 

surge arresters (EA1) fail. 
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7.5.10 Case Study 1, Scenario 4f Results 

Table 7-11 Case Study 1, Scenario 4f – 1 m, 2.5 m & 5 m ATP Results 

Circuit Location 

Voltage (kV) 
1 m 2.5m 5 m 

V
–G

 

Su
rg

e 

V
-G

 

Su
rg

e 

V
–G

 

Su
rg

e 

B 
Station Entrance “ENT1” 

187 227 188 228 193 233 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 171 211 173 213 176 216 
D Surge Arrester 1 Earth Conductor “GND1” 13 53 15 55 18 58 

C-D Surge Arrester 1 Discharge Voltage “ED1” 158 - 158 - 158 - 
E Voltage Tx 1 “5VT1” 168 208 170 210 173 213 
F Circuit Breaker  “5B1” 166 206 168 208 171 211 
G Air Break Switch “5J1” 160 200 163 203 165 205 
H Air Break Switch “5F1” 157 197 155 195 156 196 
I Air Break Switch “5F2” 154 194 154 194 155 195 
J Air Break Switch “5C2” 153 193 152 192 152 192 
K Air Break Switch “5J2” 152 192 150 190 151 191 
L Circuit Breaker “5K2” 151 191 150 190 149 189 
M Surge Arrester Junction “EJ2” 148 188 148 188 147 187 
N Surge Arrester 2  “EA2” 147 187 147 187 146 186 
O Surge Arrester 2 Earth Conductor “GND2” 4 44 4 44 3 43 

N-O Surge Arrester Discharge Voltage “ED2” 143 - 143 - 143 - 
P Transformer 2 “ET2” 148 188 148 188 147 187 

 

Table 7-12 Case Study 1, Scenario 4f – 10 m, 15 m & 30 m ATP Results 

Circuit Location 

Voltage (kV) 
10 m 15m 30 m 

V
–G

 

S
u

rg
e 

V
-G

 

S
u

rg
e 

V
–G

 

S
u

rg
e 

B 
Station Entrance “ENT1” 

200 240 210 250 235 275 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 183 223 195 235 220 260 
D Surge Arrester 1 Earth Conductor “GND1” 26 66 40 80 65 105 

C-D Surge Arrester 1 Discharge Voltage “ED1” 157 - 155 - 155 - 
E Voltage Tx 1 “5VT1” 180 220 189 229 210 250 
F Circuit Breaker  “5B1” 178 218 185 225 206 246 
G Air Break Switch “5J1” 172 212 180 220 197 237 
H Air Break Switch “5F1” 162 202 170 210 185 225 
I Air Break Switch “5F2” 154 194 160 200 176 216 
J Air Break Switch “5C2” 151 191 151 191 182 222 
K Air Break Switch “5J2” 149 189 148 188 160 200 
L Circuit Breaker “5K2” 148 188 147 187 155 195 
M Surge Arrester Junction “EJ2” 146 186 145 185 145 185 
N Surge Arrester 2  “EA2” 145 185 144 184 144 184 
O Surge Arrester 2 Earth Conductor “GND2” 3 33 4 44 7 47 

N-O Surge Arrester Discharge Voltage “ED2” 142 - 140 - 137 - 
P Transformer 2 “ET2” 146 186 145 185 145 185 
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Figure 7-24 Case Study 1, Scenario 4f – 1 m ATP Voltage to Ground Measurements 

 

Figure 7-25 Case Study 1, Scenario 4f – 30 m ATP Voltage to Ground Measurements 

 

7.5.11 Case Study 1, Scenario 4f Result Discussion 

Identical results have been calculated between case study1, scenario’s 4f and 4c. This is 

the result of the dominance of the station entrance surge arresters (EA1).  

To maintain safe electrical clearances, the 4 m minimum station entrance surge arrester 

(EA1) earth lead length recommended for case study 1, scenario 4c remains applicable in 

this scenario. This also applies to the transformer surge arrester (EA2) as previously 

discussed in the results for case study 1, scenario 4d. 

To ensure 260 kV (220 kV V-G) maximum allowable BIL limit is not exceeded, the 

maxmum length for the station entrance surge arrester (EA1) earth lead based on the 

derived voltage increase rate of 1.7 kV/m discussed in case study 1, scenario 4c is equal 

to 21 m. 
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To ensure insulation coordination is maintained with the transformer (ET2) in the event 

failure of the station entrance surge arrester (EA1), the maximum transformer surge 

arrester (EA2) earth lead length is recommended at 12 m. This is detailed in the result 

discussion of  case study 1, scenario 4d. 
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Case Study 1, Scenario 5 – Alternate Surge Arrester Connection 
Arrangement.  

 

Figure 7-26 Case Study 1, Scenario 5 - ATP Model 

7.5.12 Objectives 

Modify the transformer surge arrester connection arrangement and identify differences in 

recorded peak voltages to determine a preferred transformer surge arrester connection 

arrangement. 

7.5.13 Methodology 

ATP: Case study 1, scenario 1 is used as the basis of this analysis. An identical lightning 

surge to scenario 2 is applied and resultant voltages to ground are calculated at the power 

transformer 2 “ET2” (a). This is repeated with the transformer surge arrester incoming 

lead connected directly to the terminals of the transformer (b). 

Changes made to case study 1, scenario 1 include: 

 Relocation of the transformer surge arrester (EA2) incoming lead from EJ2, to 

ET2. 

  

a b 
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7.5.14 Results 

 

  

Figure 7-27 Case Study 1, Scenario 5 - ATP Voltage to Ground Measurements 

 

7.5.15 Result Discussion 

An examination of the two results in Figure 7-27 reveals a negligible difference between 

the two different connection arrangements. Connecting the surge arrester lead directly 

onto the transformer terminals (Type ‘b’ - Figure 7-26) resulted in a slightly lower peak 

voltage (149kV versus 148kV). This may be attributed to an additional 1 m separation 

between the surge arrester and transformer terminals for connection type ‘a’ (Figure 7-26) 

due to the distance from transformer terminals to the surge arrester terminals equating to 

1m less in this configuration. The simulation was then run with the surge arrester 

connected to the transformer terminals and the incoming lead length increased to the 

maximum recommended length as defined in case study 1, scenario 4b (Figure 7-28). 

This equates to 4m for connection type ‘a’ and 5 m for connection type ‘b’. No 

discernible difference was calculated leading to the conclusion that at distances up to the 

maximum recommended in case study 1, scenario 4, the connection arrangement does not 

influence the effectiveness of the surge arrester.  
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Figure 7-28 Case Study 1, Scenario 5 – Extended Transformer Incoming Lead Length ATP 
Voltage to Ground Plot 
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 Case Study 1, Scenario 6 – Comparison of Surge Arrester 
Models  

7.6.1 Objectives 

To identify if any areas of deficiency exist with Essential Energy’s 66kV effectively 

earthed period contract surge arresters (Normal and High Strength), a comparison against 

alternate manufacturers units is proposed.  

Identify any improvements to zone substation designs that may be achieved through 

changes to Essential Energy’s standard design or period contract surge arrester 

specification 

7.6.2 Methodology 

ATP: Referring to Figure 7-2, case study 1, scenario 1, a 14kA, 8/20 µs lightning surge is 

applied to “B” phase of the overhead line (A), three spans or 600m away from the 

substation entrance “ENT1” (B).  

The resultant voltages to ground are calculated using ATP at surge arrester 1 “EA1” (C), 

surge arrester 1 ground lead “GND1” (D), circuit breaker “5B1” (F), surge arrester 2 

“EA2” (N), surge arrester 2 ground lead “GND2” (O) and power transformer 2 “ET2” 

(P).  Additionally, the discharge currents for each surge arrester are calculated in ATP for 

comparison against manufacturer data. 

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester. 

The five different surge arresters included in this comparison all maintain the following 

characteristics: 

 Maximum Continuous Overvoltage (MVOV) or Uc – 48 kV r.m.s 

 Duty Cycle Rating or Ur – 60 kV r.m.s 

 Line Discharge Class – 2 

 Housing Insulation - Polymer 

Manufacturer data for each surge arrester used in the ATP model is included in Table 

7-13. 

Opposite polarity power frequency voltage is not included in this comparison scenario. 

 



SIMULATION RESULTS    P a g e  | 109 
 

 

Table 7-13 Case Study 1, Scenario 6 - Surge Arrester Manufacturer Data 

ATP Prefix S H B C O 

Manufacturer 
Siemens 
(Tyree 
2015) 

Siemens 
(Siemens 

2011) 

Bowthorpe 
(Tyco 

Electronics 
2001) 

Cooper Power 
Systems 
(Cooper 

Industries 
2012) 

Ohio Brass 
(Hubbell 

Power 
Systems 
2013) 

Arrester Type 
3EL1 060-

1PH21-
4XA5 

3EL2 
060-

2PF21 - 
4KA0 

BOW-
2HSRCP60-

xxx 

UltraSIL 
VariSTAR 
Type U2 

PVI-LP 
30Y648 

Rated Voltage 60 60 60 60 60 
Continuous 
Operating 

Voltage 
48 48 48 48 48 

Line Discharge 
Class 

2 2 2 2 2 

Energy 
Capability 

(kJ/kV) 
5 5 4.5 3.4 3.4 

Residual 
Voltages  

 
(8/20 µs 
Current 
Impulse) 

1.5 
kA 

- - - 131 131 

3 kA - - - 138 138 
5 kA 148 127 148 145 145 

10 kA 159 135 159 156 156 
15 kA - 143 - - - 
20 kA 178 150 175 173 173 
40 kA 204 170 199 196 195 

 

 

Table 7-14 Case Study 1, Scenario 6 – Calculated Results 

Circuit Location 

Voltage to Ground (kV) 

Si
em

en
s 

3E
L

1 
(S

) 

Si
em

en
s 

3E
L

2 
(H

) 

B
ow

th
or

pe
 

(B
) 

C
oo

p
er

 (
C

) 

O
h

io
 B

ra
ss

 
(O

) 

C Surge Arrester 1  “EA1” 186 172 186 187 183 

D 
Surge Arrester 1 Earth Conductor 
“GND1” 

29 30 29 29 27 

C-D 
Surge Arrester 1 Discharge Voltage 
“ED1” 

157 132 157 145 148 

F Circuit Breaker  “5B1” 180 169 180 185 172 
N Surge Arrester 2  “EA2” 148 131 148 145 148 

O 
Surge Arrester 2 Earth Conductor 
“GND2” 

3 4 5 4 4 

N-O 
Surge Arrester Discharge Voltage 
“ED2” 

145 127 143 141 144 

P Transformer 2 “ET2” 147 132 157 158 156 
 Current (kA) 

C Surge Arrester 1  “EA1” 10.4 10.3 10.3 12.1 11.2 
N Surge Arrester 2  “EA2” 4.9 5.0 4.9 4.0 4.8 
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7.6.3 Case Study 1 Scenario 6 Results 

 

Figure 7-29 Case Study 1, Scenario 6 - CB 5B1 ATP Voltage to Ground Measurements 

 

Figure 7-30 Case Study 1, Scenario 6 - Transformer ET2 ATP Voltage to Ground Measurements 

 

7.6.4 Case Study 1, Scenario 6 Result Discussion 

Comparing the ATP calculated discharge voltages and arrester currents against 

manufacturers data, it is found the model accuracy is within 5% for all surge arresters. 

Station entrance EA1 (and transformer EA2) surge arrester discrepancies are as follows: 

 Siemens 3EL1 060-1PH21-4XA5: -1.2% (-1.9%) 

 Siemens 3EL2 060-2PF21 - 4KA0: 4.6% (0%) 

 Bowthorpe BOW-2HSRCP60-xxx: -1.6% (-3.3%) 

 Cooper Power Systems UltraSIL VariSTAR Type U2: -1% (-0.4%) 

 Ohio Brass PVI-LP 30Y648: -1.3% (-0.4%) 
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Examination of the voltage to ground plots at the circuit breaker “5B1” reveal a variance 

of 9.5% between the highest and lowest calculated voltages (185 kV Cooper Power 

System and 169 kV Siemens 3EL2).  At the transformer the variance increased to 19% 

(148kV Siemens 3EL1, Bowthorpe & Cooper Power System and 132 kV Siemens 3EL2).  

All surge arresters modelled were specified with a line discharge class of 2 which implies 

each surge arrester’s energy absorption capability has met the requirements set out in 

AS1307.2-1996 Table 7.2. It can be seen that even with an equal line discharge class, the 

specified energy handling capability varies amongst the five selected surge arresters from 

a minimum of 3.4 to 5 kJ/kV. The Essential Energy period contract arresters have the best 

energy handling capability at 5 kJ/kV. 

All of the surge arresters modelled limit the lightning overvoltage to acceptable levels. 

Both Essential Energy period contract 66 kV surge arresters compare favourably against 

each of the three alternative surge arresters. Interestingly, a lower discharge voltage was 

calculated across the Siemens 3EL2 high strength surge arrester compared to the regular 

strength 3EL1 unit at both sets of surge arresters. Both surge arresters are specified with 

an energy handling capability of 5 kJ/kV and therefore the difference may be attributed to 

the construction of the larger construction of the high strength arrester and subsequently 

the additional MOV discs internal to the arrester. An example of the MOV disc assembly 

is shown in Figure 2-12. The difference is a somewhat modest 11 kV at CB 5B1, but 

becomes a rather significant 25 kV at the transformer. Opportunities exist to utilise the 

3EL2 units to provide insulation co-ordination where the regular strength units do not. 

This may extend from increasing the maximum incoming and earth lead lengths 

recommended in case study 1, scenario 4 to providing greater protection to aged 

equipment where the BIL rating may have deteriorated over time. 
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 Case Study 1, Scenario 7 –Lightning Strike Onto Zone 
Substation 

 

Figure 7-31 Case Study 1, Scenario 7 - ATP Model 

  

7.7.1 Objectives 

The simulation of a lightning strike onto the overhead conductors connected to 

transformer 2 (ET2) terminals aims to determine: 

a. The level of protection the standard substation design provides by establishing 

voltages to ground and surge voltages at terminals of equipment. 

b. The level of protection station entrance (EA1) surge arresters only provide by 

establishing voltages to ground and surge voltages at terminals of equipment. 

c. The level of protection transformer (EA2) surge arresters only provide by 

establishing voltages to ground and surge voltages at terminals of equipment. 

7.7.2 Methodology 

ATP: As detailed in section 4.3.4, the zone substation lightning protection designed is 

97% effective against lightning up to 5.4 kA in magnitude. Referring to Figure 7-2, a 5.4 

kA, 8/20µs lightning surge is applied to “B” phase of the zone substation conductor’s 

overhead line (A). The resultant voltages to ground are calculated at the substation 

entrance and surge arrester 1 junction “EJ1” (B), surge arrester 1 “EA1” (C), surge 

arrester 1 ground lead “GND1” (D), voltage transformer 1 “5VT1” (E), circuit breaker 

“5B1” (F), air break switch “5J1” (G), air break switch “5F1”(H), air break switch 

A

B 

C

D

E F

H

I

J K L M

N

O

P

G



SIMULATION RESULTS    P a g e  | 113 
 

 

“5F2” (I), air break switch “5C2” (J), air break switch “5J2” (K), circuit breaker “5K2” 

(L), surge arrester 2 junction “EJ2” (M), surge arrester 2 “EA2” (N), surge arrester 2 

ground lead “GND2” (O) and power transformer 2 “ET2” (P).  

Changes made to case study 1, scenario 1 include: 

 Relocation of the lightning surge to EJ2. 

 5.4 kA lightning surge amplitude. 

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester. 

7.7.3 Case Study 1 Scenario 7 Results 

Table 7-15 Case Study 1, Scenario 7 – Calculated Results 

Circuit Location 

Voltage (kV) 
Station 

Entrance 
& Tx2 

Station 
Entrance 

Only 
Tx2 Only 

V
–G

 

Su
rg

e 

V
-G

 

Su
rg

e 

V
–G

 

Su
rg

e 

B 
Station Entrance “ENT1” 

72 112 160 200 162 202 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 70 110 155 195 - - 
D Surge Arrester 1 Earth Conductor “GND1” 3 43 8 47 - - 

C-D Surge Arrester 1 Discharge Voltage “ED1” 67 - 147 - - - 
E Voltage Tx 1 “5VT1” 75 115 173 213 161 201 
F Circuit Breaker  “5B1” 76 116 175 215 161 201 
G Air Break Switch “5J1” 79 119 181 221 160 200 
H Air Break Switch “5F1” 81 121 187 227 159 199 
I Air Break Switch “5F2” 84 124 192 232 158 198 
J Air Break Switch “5C2” 86 126 200 240 158 198 
K Air Break Switch “5J2” 87 127 203 243 157 197 
L Circuit Breaker “5K2” 88 128 205 245 156 196 
M Surge Arrester Junction “EJ2” 89 129 208 248 155 195 
N Surge Arrester 2  “EA2” 88 128 - - 153 193 
O Surge Arrester 2 Earth Conductor “GND2” 3 43 - - 6 46 

N-O Surge Arrester Discharge Voltage “ED2” 85 - - - 147 - 
P Transformer 2 “ET2” 89 - 208 248 155 197 

 

7.7.4 Case Study 1, Scenario 7 Result Discussion 

The results in Table 7-15 clearly show when two sets of surge arresters are installed, the 

standard design comfortably handles the 5.4 kA lightning surge. The travel time for the 

surge is almost instantaneous which is to be expected considering the very short distance 

between the strike point and the arresters (Figure 23-45). The power frequency voltage is 

appearing as a dominant transient, but this is somewhat misleading due to the low peak 

overvoltage levels.  
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Allowing for peak overvoltage increases at the rate of 3.5 kV/m (incoming lead) and 1.7 

kV/m (earth lead), the standard substation design could be modified with surge arrester 

leads at greater distances than recommended in case study 1, scenario 4. Insulation 

coordination would not be maintained, however for an average magnitude lightning strike 

to the incoming overhead line outside the substation.  

When only a single set of surge arresters are installed, the results for each (station 

entrance Figure 23-34 and transformer 2 Figure 23-35) show both configurations protect 

the substation equipment by limiting the peak overvoltages to below the 260 kV (80%) 

BIL threshold. Whilst the discharge voltages in each configuration were equal at 147 kV, 

higher peak overvoltages were calculated as expected in the station entrance surge 

arresters only example due to the longer time substation equipment is subjected to the 

lightning surge.   

No changes to the recommendations of case study 1, scenario 4 is therefore proposed to 

maintain insulation co-ordination for higher magnitude surges resulting from strikes to 

the overhead line, outside the substations lightning protection system. 
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 Case Study 2, Scenario 1 – In Service Substation 
Configuration.  

Figure 7-32 Case Study 2, Scenario 1 - ATP Model 

  

7.8.1 Objectives 

To determine if the placement of surge arresters within a typical small rural zone 

substation design maintains a suitable zone of protection across all equipment and 

identify any voltages that exceed 80% of the substation equipment BIL rating of 325 kV 

(260 kV) at terminals of equipment located as per the standard design for case study 2. 

7.8.2 Methodology  

ATP: Referring to Figure 7-32 above, a 14kA, 8/20 µs lightning surge is applied to “B” 

phase of the overhead line (A), four spans or 640m away from the substation entrance – 

“ENT1” (B).  The resultant voltages to ground are calculated at the surge arrester 1 

junction “EJ1” (C), line terminal of surge arrester 1 “EA1” (D), surge arrester 1 ground 

lead “GND1” (E), the power transformer “ET1” (F), the line terminal of surge arrester 2 

“EA2” (G) and surge arrester 2 ground lead “GND2” (E).  

To determine arrester discharge voltages, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester. 
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7.8.3 Case Study 2, Scenario 1 Results  

 

Figure 7-33 Case Study 2, Scenario 1- ATP Voltage to Ground Measurements 

 

Table 7-16 Case Study 2, Scenario 1 – Calculated Results 

 
Circuit Location  

Voltage (kV) 

V – G Surge 
B  Station Entrance “ENT1”  466 506 
C Surge Arrester 1 Junction “EJ1”  185 225 
D Surge Arrester 1“EA1”  181 221 
E Earth Conductor “GND1”  21 61 

D-E 
Surge Arrester 1 Discharge Voltage 
“ED1” 

160 - 

F Transformer 1 “ET1” 160 200 
G Surge Arrester 2“EA2”  159 199 
H Earth Conductor “GND2”  9 49 

G-H 
Surge Arrester 2 Discharge Voltage 
“ED2” 

150 - 

 

7.8.4 Case Study 2, Scenario 1 Result Discussion  

The substation is well protected from the incoming surge. The close proximity of all the 

substation equipment and the two sets of surge arresters have resulted in relatively 

constant peak overvoltages at the station entrance (ENT1) and the transformer (ET1). 

Such close proximity between each set of surge arrester contributes to similar discharge 

voltages of 159 kV (EA1) and 150 kV (EA2). Estimates of the each surge arrester zone of 

protection using equation 2.36 equate to approximately 18 m for both EA1 and EA2. This 

indicates that two sets of surge arresters provide no gaps in the zone of protection. If 

either set of surge arresters was to be removed however, the 14 kA current through the 
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single arrester would result in a discharge voltage similar to that calculated in case study 

1, scenario’s 2 and 3 of approximately 168 kV. The protective zone would then be 

reduced to 16 m, still maintaining protection for the transformer.  

In Figure 7-34, a comparison of the ATP calculated overvoltage (V-G) plot of the 

transformer (ET1) when the model is modified with only one of the surge arresters only 

resulted in an identical peak of 205 kV (V-G) and 245 kV (Surge). 

 

Figure 7-34 Case Study 2, Scenario 1 Station entrance Surge Arrester Only ATP Voltage to 
Ground Measurements  

 

A reduced number of reflections decaying at a faster rate are also observed when 

compared with the validation results in section 6.3.2. This is a result of the shorter tail 

time of the lightning surge waveform. The proximity of power frequency voltage source 

is resulting in additional reflected voltages transposed onto the resultant station entrance 

(ENT1) and surge arrester 1 junction (EJ1) overvoltage plots (Figure 7-33). 

For small substations of which case study 2 is representative of, the two sets of surge 

arresters provide very thorough protection from an average sized lightning surge. A single 

set of surge arresters at either the station entrance or the transformer still provides suitable 

protection in this example due to the transformer remaining within the zone of protection. 
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 Case Study 2, Scenario 2 – Recorded Lightning Strike Onto 
Overhead Line.  

 

 

Figure 7-35 Case Study 2, Scenario 2 - ATP Model 

 

7.9.1 Objectives 

Simulate the impact an 11.3 kA lightning strike that was recorded 1/11/2015 11:18:45 

(APPENDIX N) on the 66kV feeder 840/4 - Narrandera to Kywong Tee had on the 

Kywong zone substation. Establish voltages to ground and surge voltages at terminals of 

equipment located as per the arrangement of the substation at the time of strike to 

determine if voltages exceeded 260 kV (80%) of the substation equipment BIL. 

7.9.2  Methodology  

ATP: The ATP model has been developed from Case Study 2, scenario 1 with the 

following modifications: 

 Lightning amplitude 11.3kA. 

 Strike location 1590 meters from zone substation as measured in Google Earth  

 Removal of transformer surge arrester (EA2). At time of lightning strike, the 

substation was fitted with only a single set of surge arresters at the station 

entrance. 

 

BA C

D

E

F



SIMULATION RESULTS    P a g e  | 119 
 

 

Referring to Figure 7-35 above, an 11.3kA 8/20 μs lightning surge is applied to “B” phase 

of the overhead line (A), 1590m away from the substation entrance – “ENT1” (B).  The 

resultant voltages to ground are calculated at the substation entrance “ENT1” (B), surge 

arrester 1 junction “EJ1” (C), line terminal of surge arrester 1 “EA1” (D), surge arrester 

1 ground lead “GND1” (E) and the power transformer “ET1” (F).  

To determine arrester discharge voltages, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester. 

7.9.3 Case Study 2, Scenario 2 Results  

 

Figure 7-36 Case Study 2, Scenario 2 - ATP Voltage to Ground Measurements 

 

Table 7-17 Case Study 2, Scenario 2 – Calculated Results 

 
Circuit Location  

Voltage (kV) 

V – G Surge 
B  Station Entrance “ENT1”  335 375 
C Surge Arrester 1 Junction “EJ1”  195 235 
D Surge Arrester 1“EA1”  190 230 
E Earth Conductor “GND1”  20 60 

D-E 
Surge Arrester 1 Discharge Voltage 
“ED1” 

170 - 

F Transformer 1 “ET1” 196 236 
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7.9.4 Case Study 2, Scenario 2 Result Discussion  

Referring to the ATP calculated results in Figure 7-36, the time for the lightning surge to 

reach Kywong zone substation is approximately 7 µs. This is consistent with the ATP 

calculated surge velocity of 220 m/µs (1590 m / 220 µs = 7.2 µs). 

The reduction to the frequency of reflections seen in the calculated results may be 

attributed to the increased distance to the strike point form the zone substation. In 

addition, the increased strike distance has had the effect of amplifying the size of the 

reflected voltage, which now has a peak-to-peak voltage of over 500 kV. Additional 

reflected voltages transposed onto the resultant overvoltage as a result of the proximity of 

the power frequency voltage source are still prevalent on the station entrance (ENT1) 

voltage plot. To a lesser extent these reflections may also be seen on the surge arrester 

junction (EJ1) plot. 

The calculated results show the station entrance surge arrester has limited the peak 

overvoltage at the transformer to 196 kV, well below the equipment BIL rating. 

Further investigation into reports of power outages at the Kywong zone substation at the 

time of the recorded lightning strike failed to return any record of such events.   

It may therefore be concluded from these results that in this example, the single set of 

surge arresters provided suitable protection against the below average magnitude 

lightning strike. Despite this however, it is recommended that a typical small substation 

such as Kywong have surge arresters installed at the station entrance and the transformer. 

Comparing the results of case study 2 scenario’s 1 and 2, similar peak overvoltages are 

calculated at the station entrance surge arrester junction (EJ1), with a 15% reduction in 

the voltage at the transformer observed with the transformer surge arresters installed. 

With many of this substation type containing transformers in excess of 30 years in age, 

the added protection the transformer surge arresters provide is justified.  
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 Case Study 2, Scenario 3 – Lightning Strike Onto Zone 

Substation  

Figure 7-37 Case Study 2, Scenario 3 - ATP Model 

 

7.10.1 Objectives 

 Simulation of a lightning strike onto the overhead conductors inside the Kywong 

zone substation aims to determine The level of protection the Kywong zone 

substation design provides by establishing voltages to ground and surge voltages 

at terminals of equipment. 

7.10.2 Methodology 

ATP: The ATP model has been developed from Case Study 2, scenario 1 with the 

following modifications: 

 Lightning amplitude 38.8 kA. 

 Strike location 10 m  from transformer.  

At the time of the recorded 38.8 kA lightning strike, the substation was fitted with surge 

arresters at the station entrance only. This scenario will be conducted with: 

 Station entrance (EA1) and transformer (EA2) surge arresters installed. 
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 Station entrance (EA1) surge arresters only installed. 

 Transformer (EA2) surge arresters only installed. 

As previously described in section 4.3.3, Kywong zone substation does not presently have 

adequate lightning protection. The largest magnitude lightning strike recorded within 2 

km of the Kywong zone substation between October 2015 and March 2016 was 38.8 kA 

(APPENDIX N). Referring to Figure 7-2, a 38.8kA, 8/20 µs lightning surge is applied to 

“B” phase of the zone substation conductor’s overhead line adjacent to 66kV fuse 5I1. 

(A). The resultant voltages to ground are calculated at the substation entrance (B), and 

surge arrester 1 junction “EJ1” (C), surge arrester 1 “EA1” (D), surge arrester 1 ground 

lead “GND1” (E) and transformer “ET1” (F).  

To determine the arrester discharge voltage, the voltage drop across each earth conductor 

between the respective surge arrester and the substation earth grid is subtracted from the 

voltage recorded at the surge arrester. 

7.10.3 Case Study 2, Scenario 3 Results  

Table 7-18 Case Study 2, Scenario 3 – Calculated Results 

Circuit Location 

Voltage (kV) 
Station 

Entrance 
& Tx2 

Station 
Entrance 

Only 
Tx2 Only 

V
–G

 

Su
rg

e 

V
-G

 

Su
rg

e 

V
–G

 

Su
rg

e 

B 
Station Entrance “ENT1” 

230 270 255 295 375 415 
Surge Arrester 1 Junction “EJ1” 

C Surge Arrester 1  “EA1” 202 242 240 280 - - 
D Surge Arrester 1 Earth Conductor “GND1” 37 43 41 81 - - 

C-D Surge Arrester 1 Discharge Voltage “ED1” 165 - 199 - - - 
F Transformer 2 “ET2” 177 217 285 325 250 290 
G Surge Arrester 2  “EA2” 173 213 - - 238 278 
H Surge Arrester 2 Earth Conductor “GND2” 15 45 - - 42 82 

G-H Surge Arrester Discharge Voltage “ED2” 158 - - - 196 - 
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Figure 7-38 Case Study 2, Scenario 3 Station Entrance And Transformer Surge Arrester, ATP 
Voltage to Ground Measurements 

 

Figure 7-39 Case Study 2, Scenario 3 Station Entrance Surge Arrester Only, ATP Voltage to 
Ground Measurements 

 

Figure 7-40 Case Study 1, Scenario 7 Transformer Surge Arrester Only, ATP Voltage to Ground 
Measurements  
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7.10.4 Case Study 2, Scenario 3 Result Discussion  

With two sets of surge arresters installed, the above average magnitude lightning strike 

limits the peak overvoltage at the transformer to well below the 80% BIL threshold. 

Taking into account the location of the lightning strike is not equal distance from each 

surge arrester, the calculated discharge voltages are as expected.  

Comparing the calculated results of the station entrance surge arrester (EA1) only and 

transformer surge arrester (EA2) only, the effect of surge arrester separation distance is 

again highlighted. In the case of station entrance surge arresters only (EA1), the additional 

travel time for the lightning surge to reach the station entrance surge arrester (EA1) has 

resulted in a 35 kV increase in the peak overvoltages which becomes 285 kV (V-G) and 

325 kV (surge). It is extremely probable that loss of supply and permanent damage to the 

transformer would result. 

Reflections between the substation and both the lightning and power frequency sources 

are again observed. Whilst typically most prevalent at the station entrance (ENT1), it is 

clearly visible at the transformer when the station entrance surge arrester (EA1) only is 

installed (Figure 7-39). 

These results demonstrate the importance of ensuring transformer surge arresters are 

installed at a minimum. Prior to early 2016 the Kywong zone substation was reliant on 

station entrance surge arresters (EA1) only. The lack of adequate lightning protection 

combined with the results for this case study show that this places the substation at 

considerable risk. Recommendation is for all small rural substations to be upgraded with 

to include both station entrance and transformer surge arresters.  

The importance of adequate zone substation lightning protection is also highlighted in 

this scenario. If the lightning protection at Kywong were to AS1768-2007, the probability 

of an above average magnitude lightning strike direct to the substation conductors would 

be almost zero.    
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7.10.5 Results Summary 

 The ten scenarios presented across two case studies have provided a clear report into the 

effectiveness of surge arresters within Essential Energy standard substation designs, and 

small, typical, rural substations. 

It was found in scenario 1 of each case study, that when the designs remain unmodified, 

adequate protection of the equipment is maintained. Peak overvoltages were calculated 

below the 260 kV (80%) BIL threshold.  This was despite protective zones of surge 

arresters in case study 1 found to not encompass the entire zone substation. When 

removing one set of surge arresters, case study 1 scenario’s 2 and 3 showed that 

satisfactory insulation co-ordination is not possible for an average magnitude lightning 

strike on the incoming overhead line.  

In contrast to case study 1, the surge arrester protective zone calculated for case study 2 

incorporated all equipment within the zone substation. As a result of the small distances 

between the substation entrance and the transformer, removal of either set of surge 

arresters managed to maintain peak overvoltages to below 260 kV. This was found to be 

true through the additional simulation of a known recorded strike (case study 2, scenario 

2). The results of which showed with the station entrance surge arresters only, no damage 

to equipment or outages to customers would be encountered. In the case of a strike 

directly to the substation as shown in case study 2, scenario 3, it was demonstrated that 

both sets of surge arresters are required to limit the peak overvoltage at the transformer to 

below 260 kV.  

Investigations into the possibility of improvements to zone substation designs were 

conducted in the following scenarios. Case study 1, scenario 4 (a to f) involved 

modification to the incoming and earth lead lengths. Case study 1, scenario 5 with a 

comparison of two connection configurations onto the transformer, and scenario 6, 

through further comparison between surge arresters from different manufacturers. The 

calculated results from scenario 4, highlights the inherent limitations of the maximum and 

minimum surge arrester lead lengths associated with Essential Energy’s standard 

substation design. These lead lengths are given as follows: 
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Station Entrance Surge Arrester  

Incoming Lead Length 

 Minimum 1 m  
(Due to physical constraints) 

 Maximum 5 m 

Earth Lead Length 

 Minimum 4 m 
(Maintain min electrical 

clearances) 

 Maximum 21 m 

Transformer Surge Arrester  

Incoming Lead Length 

 Minimum 1 m 
(Due to physical constraints) 

 Maximum 5 m 

Earth Lead Length 

 Minimum 4 m 
(Maintain min electrical 

clearances) 

 Maximum 12 m 

 

Changes to the connection arrangements presented in case study 1, scenario 5 concluded 

that no discernible differences in calculated peak overvoltages were achieved. It is 

recommended that either option of connecting the surge arrester incoming lead directly 

onto the transformer terminals, or teeing off the conductors before the transformer is 

considered suitable. 

The period contract surge arresters utilised by Essential Energy have shown they perform 

well in comparison to other makes. No changes are recommended to the specifications of 

the surge arresters. The calculated peak overvoltage’s when simulating the high strength 

period contract surge arresters were considerably lower than all other units modelled. 

These units are recommended in situations where greater lead lengths are required as well 

as where increased protective margins to assist in protecting transformers where the 

internal paper insulation may have deteriorated over time.  
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 CONCLUSION 

This report provides the first investigation and technical analysis of both Essential Energy 

standard 66/11 kV zone substation and typical, small rural zone substation designs 

through network simulation and modelling using industry accepted ATP software. The 

models have been validated against analytical calculations and it is found that no changes 

to standard substation designs are required to ensure insulation co-ordination is 

maintained. Improvements in reduction of peak overvoltages through modification of 

surge arrester lead lengths have been presented with recommendations made in regards to 

minimum and maximum arrester lead lengths whilst ensuring insulation co-ordination is 

maintained. The results presented in chapter 7 provide substation designers answers to 

common issues surrounding methods of surge arrester connections, maximum lead 

lengths and preferred surge arrester type. All of which arise when changes are made to 

standard designs. The use of these validated ATP models provide Essential Energy with a 

template to aid in the accurate development of future substation designs. 

Research into the proposed use of Essential Energy corporate approved CDEGS software 

in an attempt to simulate network disturbances, such as those resulting from a lightning 

strike, found the frequency domain methods are unsuitable for accurate modelling. The 

requirement for additional software to complete complex calculations significantly 

reduces the efficiency of the simulation process. Secondly, the simulated annealing 

algorithm required to derive the current flowing through the surge arrester has not yet 

been refined to a level whereby typical surge arrester V-I characteristics may be 

replicated.   
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 FURTHER WORK 

The methodologies and recommendations put forward in Chapter 7 will be presented to 

Essential Energy’s zone substation design group for consideration in future designs. 

Building on the knowledge obtained whilst developing the 66 kV network models in 

ATP, there is an opportunity to create ATP models for standard 132/11 kV and 33/11 kV 

zone substation designs. These would contribute to the continual development of more 

comprehensive design guidelines an allow for further development of a tool to assist 

engineers to determine suitable surge arrester or equipment locations on future substation 

designs.  

The continual advancement of CDEGS towards successfully representing non-linear 

devices without the need for third party software suggests this may be achieved in the not 

too distant future. Once available, the possibility will exist for Essential Energy to 

undertake lightning and insulation co-ordination studies for each completed design using 

an existing corporate software package. 
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 APPENDIX A 

ENG4111/ ENG4112 RESEARCH PROJECT  

PROJECT SPECIFICATION. 

 

FOR:   Andrew Close  Student No. 0061021891 

TITLE:  Operational Characteristics of Surge Arresters within 
High Voltage Zone Substations. 

MAJOR:   Bachelor of Engineering (Honours) 

Power Major 

SUPERVISORS:   Assoc Prof Tony Ahfock. (USQ) 
   Luke Clout (Senior Engineer, Essential Energy) 

 Glen Barnes (Network Earthing Manager, Essential 
Energy) 

SPONSORSHIP:    Essential Energy. 

ENROLMENT:   Semesters 1 & 2, 2016 

PROJECT AIMS:  

a) Using equivalent circuits, aided by computer analysis, to determine if surge 
arresters within Essential Energy design templates and selected in-service 
substations are: 

a. Positioned so that a suitable zone of protection is provided for major 
plant. 

b. Connected in a manner that does not reduce their operational 
effectiveness. 

b) Determine if changes to surge arrester specifications improve the protection of 
equipment and/or provide savings to purchase, installation, and design or 
construction costs. 

PROGRAMME: Issue A 2nd March 2016  

1. Research suitable in-service Essential Energy substations to use as case studies. 
2. Research Essential Energy period contract, station class surge arresters. 
3. Research current standards for protection of substation equipment against 

voltage surges and compare with Essential Energy design templates. 
4. Research into surge arrester operation, construction and insulation co-

ordination. 
5. Using software such as Alternative Transients Program (ATP) and Current 

Distribution Electromagnetic Grounding and Soil (CDEGS), develop models of 
existing and modified Essential Energy’s in-service and template substations.    

6. Simulate and analyse surge arrester characteristics and identify peak voltage 
levels at equipment terminals to determine if effective insulation co-ordination 
is maintained. 

7. Validate and interpret simulation results.   

If time and resources permit: 

8. Develop a tool to assist engineers determine suitable surge arrester or 
equipment locations on future substation designs. 
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 APPENDIX B 

 

Figure 12-1 Zone Substation Minimum Electrical Clearances (AS2067 2016)
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 APPENDIX C 

 

Figure 13-1 Essential Energy Standard 66 kV Pole Constructions (Essential Energy 2014d) 
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 APPENDIX D 

 

Figure 14-1 Essential Energy 66kV Intermediate Delta Construction (Compact) (Essential Energy 
2014h) 
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 APPENDIX E 

 

Figure 15-1 Case Study 1, Essential Energy Standard 66/11kV Zone Substation Single Line 
Diagram (Essential Energy 2016b) 
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Figure 15-2 Case Study 1, Essential Energy Standard 66/11kV Zone Substation Plan View 
(Essential Energy 2014a) 
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Figure 15-3 Case Study 1, Essential Energy Standard 66/11kV Zone Substation Station Entrance 
Elevation (Essential Energy 2014f) 
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Figure 15-4 Case Study 1, Essential Energy Standard 66/11kV Zone Substation Transformer 
Elevation (Essential Energy 2014e) 

  



APPENDIX E  P a g e  | 144 
 

 

 

Figure 15-5 Case Study 1, Essential Energy Standard 66/11kV Zone Substation Transverse Busbar 
Elevation (Essential Energy 2014c) 
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Figure 15-6 Case Study 1, Essential Energy Standard 66/11kV Zone Substation Equipment Table 
(Essential Energy 2014b) 
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 APPENDIX F 

 

Figure 16-1 Case Study 2, Kywong 66/11kV Zone Substation Single Line Diagram (Essential 
Energy 2016a) 
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Figure 16-2 Case Study 2, Kywong 66/11kV Zone Substation Plan View (Essential Energy 2016d) 
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Figure 16-3 Case Study 2, Kywong 66/11kV Zone Substation Elevation (Essential Energy 2016c) 
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 APPENDIX G 

Conductor sag was calculated using the equation: 

  sag = L2 /8´ c  m 

where: 

L is the span length (m) 

c is the catenary constant equal to: 

  c =Tension /Weight   

where: 

Tension is calculated at a specified percentage of the Conductor Breaking Load (CBL) in 

Newtons (N) 

Weight is the conductor’s mass in kg/m converted to N/m 

The weight and CBL for conductors of both case studies was obtained from Nexans 

(2012) 

Case Study 1 - Phosphorous Phase Conductor. 

 

Calculation of the catenary constant: 

 

The sag therefore becomes: 

 

  

L=200 m 

Tension=21.5%

CBL = 93.1 kN

Weight =1.12 kg/m

=1.12kg ´9.8 m/s2

=10.976 Nm

  

c = (21.5%´93.1 Nm)/10.967 Nm

=20.016 kN/10.976 Nm

=1823.66

  

sag =2002 /8´1823.66 m

=2.727 m

»3 m
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Case Study 1 - 96 Fibre OPGW 

 

Calculation of the catenary constant: 

 

The sag therefore becomes: 

 

Case Study 2 - 7/2.00 HDBC Phase Conductor. 

 

Calculation of the catenary constant: 

 

The sag therefore becomes: 

 

  

L=200 m 

Tension=21.5%

CBL=75.8 kN

Weight =0.575 kg/m

=0.575kg ´9.8 m/s2

=5.635 Nm

  

c = (21.5%´75.8 Nm)/5.635 Nm

=16.297 kN/5.635 Nm

=2892.1

  

sag=2002 /8´2892.1 m

=1.73 m

»2 m

  

L=160 m 

Tension=21.5%

CBL=8.89 kN

Weight =0.197 kg/m

=0.197kg ´9.8 m/s2

=1.93 Nm

  

c = (21.5%´8.89 kN)/1.93 Nm

=1.911kN/1.93 Nm

=990.34

  

sag=1602 /8´990.34 m

=3.231 m

»3 m
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 APPENDIX H 

Table 18-1 Case Study 1 ATP Conductor Data 

 

 

 

  

 

  

Component LCC Template Component LCC Template Component LCC Template Component LCC Template Component LCC Template Component LCC Template
Name EEOH Name sel1 Name sel2 Name Bus1 Name Tx Name S/A

Conductor Type Overhead Line Conductor Type Overhead Line Conductor Type Overhead Line Conductor Type Overhead Line Conductor Type Overhead Line Conductor Type Overhead Line
#Ph 4 #Ph 3 #Ph 3 #Ph 3 #Ph 3 #Ph 3

Auto Bundling Yes Auto Bundling Yes Auto Bundling Yes Auto Bundling Yes Auto Bundling Yes Auto Bundling Yes
Skin Effect Yes Skin Effect Yes Skin Effect Yes Skin Effect Yes Skin Effect Yes Skin Effect Yes

Segmented Ground No Segmented Ground No Segmented Ground No Segmented Ground No Segmented Ground No Segmented Ground No
Real Transfo. Matrix Yes Real Transfo. Matrix Yes Real Transfo. Matrix Yes Real Transfo. Matrix Yes Real Transfo. Matrix Yes Real Transfo. Matrix Yes

Units Metric Units Metric Units Metric Units Metric Units Metric Units Metric
Rho (ohm*m) 100 Rho (ohm*m) 100 Rho (ohm*m) 100 Rho (ohm*m) 100 Rho (ohm*m) 100 Rho (ohm*m) 100

Freq init (Hz) 50 Freq init (Hz) 50 Freq init (Hz) 50 Freq init (Hz) 50 Freq init (Hz) 50 Freq init (Hz) 50
Length (km) 1 Length (km) 1 Length (km) 1 Length (km) 1 Length (km) 1 Length (km) 1

Model Type PI Model Type PI Model Type PI Model Type PI Model Type PI Model Type PI
Printed Output Yes Printed Output Yes Printed Output Yes Printed Output Yes Printed Output Yes Printed Output Yes
ω (C) Print out Yes ω (C) Print out Yes ω (C) Print out Yes ω (C) Print out Yes ω (C) Print out Yes ω (C) Print out Yes

Output Z Yes (All) Output Z Yes (All) Output Z Yes (All) Output Z Yes (All) Output Z Yes (All) Output Z Yes (All)
Output C Yes (All) Output C Yes (All) Output C Yes (All) Output C Yes (All) Output C Yes (All) Output C Yes (All)

Comment 66kV Overhead Line Comment
Selenium - template 

ZS 3m
Comment

Selenium - template 
ZS 5m

Comment
100mm Busbar - 
template ZS 5m

Comment 66kV Overhead Line Comment
Template ZS Incoming 

S/A lead
Order 0 Order 0 Order 0 Order 0 Order 0 Order 0
Label 66kV TL Label 66kV ZS1 Label 66kV ZS2 Label 66kV ZS3 Label 66kV ZS4 Label 66kV ZS5

Ph No 1 Ph No 1 Ph No 1 Ph No 1 Ph No 1 Ph No 1
Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0

Rout cm 2.63 Rout cm 2.93 Rout cm 2.93 Rout cm 10 Rout cm 2.93 Rout cm 2.1
Resis ohm/km DC 0.09 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.04 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.114
Horiz m 1 Horiz m 1.5 Horiz m 1.5 Horiz m 1.5 Horiz m 1.5 Horiz m 1.5

Vtower m 15 Vtower m 3.5 Vtower m 5 Vtower m 5 Vtower m 3.5 Vtower m 7
Vmid m 12 Vmid m 3.5 Vmid m 3.5 Vmid m 5 Vmid m 6.5 Vmid m 3.5
Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0
Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0
NB 1 NB 1 NB 1 NB 1 NB 1 NB 1

Ph No 2 Ph No 2 Ph No 2 Ph No 2 Ph No 2 Ph No 2
Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0

Rout cm 1 Rout cm 2.93 Rout cm 2.93 Rout cm 10 Rout cm 2.93 Rout cm 2.1
Resis ohm/km DC 0.09 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.04 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.114
Horiz m -1 Horiz m 0 Horiz m 0 Horiz m 0 Horiz m 0 Horiz m 0

Vtower m 13.5 Vtower m 3.5 Vtower m 5 Vtower m 5 Vtower m 3.5 Vtower m 7
Vmid m 10.5 Vmid m 3.5 Vmid m 3.5 Vmid m 5 Vmid m 6.5 Vmid m 3.5
Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0
Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0
NB 1 NB 1 NB 1 NB 1 NB 1 NB 1

Ph No 3 Ph No 3 Ph No 3 Ph No 3 Ph No 3 Ph No 3
Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0 Rin cm 0

Rout cm 1 Rout cm 2.93 Rout cm 2.93 Rout cm 10 Rout cm 2.93 Rout cm 2.1
Resis ohm/km DC 0.09 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.04 Resis ohm/km DC 0.0592 Resis ohm/km DC 0.114
Horiz m 1 Horiz m -1.5 Horiz m -1.5 Horiz m -1.5 Horiz m -1.5 Horiz m -1.5

Vtower m 13.5 Vtower m 3.5 Vtower m 5 Vtower m 5 Vtower m 3.5 Vtower m 7
Vmid m 10.5 Vmid m 3.5 Vmid m 3.5 Vmid m 5 Vmid m 6.5 Vmid m 3.5
Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0 Separ cm 0
Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0 Alpha deg 0
NB 1 NB 1 NB 1 NB 1 NB 1 NB 1

Ph No 4
Rin cm 0

Rout cm 1.625
Resis ohm/km DC 0.284
Horiz m -0.2

Vtower m 19
Vmid m 17
Separ cm 0
Alpha deg 0
NB 1
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Table 18-2 Case Study 1 Validation, ATP Component Data Part 1  

 

 

  

Component Heidler Component LINEZT_3 Component LINEZT_3 Component LINEZT_3 Component SWIT_3XT

Amplitude Volts/Amps 1414000 R/l+ Ohm/m 0.0605643 R/l+ Ohm/m 0.0605643 R/l+ Ohm/m 0.0606543 T-cl_1 s -1

T_f s 4.00E-06 R/l0 Ohm/m 0.207397 R/l0 Ohm/m 0.207397 R/l0 Ohm/m 0.207227 T-op_1 s 1000

tau s 5.00E-05 Z+ 257.235 Z+ 257.235 Z+ 257.484 T-cl_2 s -1

n 2 Z0 826.078 Z0 826.078 Z0 845.16 T-op_2 s 1000

Tstart s 0 v+ 286341000 v+ 286341000 v+ 286169000 T-cl_3 s -1

Tstop s 1000 v0 177945000 v0 177945000 v0 182036000 T-op_3 s 1000

Name E_LGHT From Name ENT1 IN1 Name 5VT1 IN1 Name X0098 Label 5F1

Source Voltage To Name X0095 OUT1 Name X0097 OUT1 Name X0102 Order 0

Order 0 Order 0 Order 0 Order 0 Output 0-No

Label Label 10m Label 2.5m Label 3m Component SWIT_3XT

Name E_LGHT ILINE Z,v ILINE Z,v ILINE Z,v T-cl_1 s -1

# Phases 1 Conductance G=0 Conductance G=0 Conductance G=0 T-op_1 s 1000

Monitor A-1 Length m 10 Length m 2.5 Length m 3 T-cl_2 s -1

Name E_LGHT Output No Output No Output No T-op_2 s 1000

# Phases 1 Component SWIT_3XT Component SWIT_3XT Name 5J1 T-cl_3 s -1

Monitor A-1 T-cl_1 s -1 T-cl_1 s -1 # Phases 3 T-op_3 s 1000

Amplitude Volts/Amps 80000 T-op_1 s 1000 T-op_1 s 1000 Monitor B-2 Label 5F2

f Hz 50 T-cl_2 s -1 T-cl_2 s -1 Component LINEZT_3 Order 0

pha Deg/Rad 0 T-op_2 s 1000 T-op_2 s 1000 R/l+ Ohm/m 0.0606543 Output 0-No

A1 0 T-cl_3 s -1 T-cl_3 s -1 R/l0 Ohm/m 0.207227 Component LINEZT_3

Tstart s -1 T-op_3 s 1000 T-op_3 s 1000 Z+ 257.484 R/l+ Ohm/m 0.0419758

Tstop s 1 Label 5A1 Label 5B1 Z0 845.16 R/l0 Ohm/m 0.188302

Name VPF Order 0 Order 0 v+ 286169000 Z+ 182.308

Source Voltage Output 0-No Output 0-No v0 182036000 Z0 792.85

Order 0 Component LINEZT_3 Name 5B1 IN1 Name X0102 v+ 281782000

Label R/l+ Ohm/m 0.0605643 # Phases 3 OUT1 Name 5J1 v0 180469000

Name VPF R/l0 Ohm/m 0.207397 Monitor B-2 Order 0 IN1 Name X0104

# Phases 3 Z+ 257.235 Component LINEZT_3 Label 3m OUT1 Name 5F2

Monitor B-2 Z0 826.078 R/l+ Ohm/m 0.0605643 ILINE Z,v Order 0

R Ohs 1 v+ 286341000 R/l0 Ohm/m 0.207397 Conductance G=0 Label 7m

L Ohm 50 v0 177945000 Z+ 257.235 Length m 3 ILINE Z,v

C μF 0 From Name X0099 Z0 826.078 Output No Conductance G=0

In1 X0001 To Name 5VT1 v+ 286341000 Component LINEZT_3 Length m 7

Out1 VPF Order 0 v0 177945000 R/l+ Ohm/m 0.0419758 Output No

Order 0 Label 3m IN1 Name 5B1 R/l0 Ohm/m 0.188302 Name 5F2

Output 0-No ILINE Z,v OUT1 Name 5C1 Z+ 182.308 # Phases 3

Component LINEZT_3 Conductance G=0 Order 0 Z0 792.85 Monitor B-2

R/l+ Ohm/m 0.0909069 Length m 3 Label 2.5m v+ 281782000 Component LINEZT_3

R/l0 Ohm/m 0.234319 Output No ILINE Z,v v0 180469000 R/l+ Ohm/m 0.0419758

Z+ 277.312 Component RLC3 Conductance G=0 IN1 Name X0105 R/l0 Ohm/m 0.188302

Z0 927.694 R_1 Ohms 0 Length m 2.5 OUT1 Name 5F1 Z+ 182.308

v+ 287733000 L_1 mH 0 Output No Order 0 Z0 792.85

v0 200221000 C_1 µF 0.0005 Name 5C1 Label 7m v+ 281782000

IN1 Name X0001 R_2 Ohms 0 # Phases 3 ILINE Z,v v0 180469000

OUT1 Name ENT1 L_2 mH 0 Monitor B-2 Conductance G=0 IN1 Name X0103

Order 0 C_2 µF 0.0005 Component SWIT_3XT Length m 7 OUT1 Name X0102

Label 0.6km R_3 Ohms 0 T-cl_1 s -1 Output No Order 0

ILINE Z,v L_3 mH 0 T-op_1 s 1000 Name 5F1 Label 7m

Conductance G=0 C_3 µF 0.0005 T-cl_2 s -1 # Phases 3 ILINE Z,v

Length m 600 Order 0 T-op_2 s 1000 Monitor B-2 Conductance G=0

Output No Label 5VT1 T-cl_3 s -1 Length m 7

Name ENT1 Comment T-op_3 s 1000 Output No

# Phases 3 Name 5VT1 Label 5C1 Name 5C2

Monitor B-2 # Phases 3 Order 0 # Phases 3

Monitor B-2 Output 0-No Monitor B-2

Case Study 1 Validation ATP Component Data
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Table 18-3 Case Study 1 Validation, ATP Component Data Part 2 

 

 

 

 

Component LINEZT_3 Component SWIT_3XT Component LINEZT_3 Component NLRES92 Name GND2

R/l+ Ohm/m 0.0606543 T-cl_1 s -1 R/l+ Ohm/m 0.114781 Nflash -1,0,+1 0 # Phases 1

R/l0 Ohm/m 0.207227 T-op_1 s 1000 R/l0 Ohm/m 0.261381 RLIN ohms 0 Monitor A-1

Z+ 257.484 T-cl_2 s -1 Z+ 284.292 Vflash Volts -1 Name GND2

Z0 845.16 T-op_2 s 1000 Z0 870.201 Vzero 0 # Phases "A" 1

v+ 286169000 T-cl_3 s -1 v+ 284155000 From Name GND2 Monitor A-1

v0 182036000 T-op_3 s 1000 v0 183986000 To Name XX0039 Name GND2

IN1 Name 5C2 Label 5K2 IN1 Name EA2 Order 0 # Phases "B" 1

OUT1 Name X0102 Order 0 OUT1 Name EJ2 Label Monitor A-1

Order 0 Output 0-No Order 0 Comment Name GND2

Label 3m Name 5K2 Label 1m # Phases "C" 1

ILINE Z,v # Phases 3 ILINE Z,v Output 0-No Monitor A-1

Conductance G=0 Monitor B-2 Conductance G=0 Characteristic R Ohms 1

Length m 3 Component LINEZT_3 Length m 1 -40000 / -204000 L Ohms 0.004

Output No R/l+ Ohm/m 0.0605643 Output No -20000 / -178000 C μF 0

Component LINEZT_3 R/l0 Ohm/m 0.207397 Name EA2 -10000 / -159000 In1
R/l+ Ohm/m 0.0606543 Z+ 257.883 # Phases 3 -5000 / -148000 Out1

R/l0 Ohm/m 0.207227 Z0 889.808 Monitor B-2 0 / 0 Order 0

Z+ 257.484 v+ 287062000 IN ABC EA2 5000 / 148000 Output 0-No

Z0 845.16 v0 180528000 OUTA A EA2 10000 / 159000 Component LINEZT_3

v+ 286169000 From Name 5K2 OUTB B EA2 20000 / 178000 R/l+ Ohm/m 0.0606543

v0 182036000 To Name X0114 OUTC C EA2 40000 / 204000 R/l0 Ohm/m 0.207227

IN1 Name X0102 Order 0 Order Component NLRES92 Z+ 257.484

OUT1 Name 5J2 Label 3m Label Nflash -1,0,+1 0 Z0 845.16

Order 0 ILINE Z,v Component NLRES92 RLIN ohms 0 v+ 286169000

Label 3m Conductance G=0 Nflash -1,0,+1 0 Vflash Volts -1 v0 182036000

ILINE Z,v Length m 3 RLIN ohms 0 Vzero 0 From Name EJ2

Conductance G=0 Output No Vflash Volts -1 From Name GND2 To Name ET2

Length m 3 Component LINEZT_3 Vzero 0 To Name XX0030 Order 0

Output No R/l+ Ohm/m 0.0419758 From Name GND2 Order 0 Label 1m

Name 5J2 R/l0 Ohm/m 0.188302 To Name XX0044 Label ILINE Z,v

# Phases 3 Z+ 182.308 Order 0 Comment Conductance G=0

Monitor B-2 Z0 792.85 Label Length m 1

Component SWIT_3XT v+ 281782000 Comment Output 0-No Output No

T-cl_1 s -1 v0 180469000 Characteristic Name ET2

T-op_1 s 1000 IN1 Name X0114 Output 0-No -40000 / -204000 # Phases 1

T-cl_2 s -1 OUT1 Name EJ2 Characteristic -20000 / -178000 Monitor A-1

T-op_2 s 1000 Order 0 -40000 / -204000 -10000 / -159000 Component RLC_3

T-cl_3 s -1 Label 3m -20000 / -178000 -5000 / -148000 R Ohms 0

T-op_3 s 1000 ILINE Z,v -10000 / -159000 0 / 0 L Ohms 0

Label 5J2 Conductance G=0 -5000 / -148000 5000 / 148000 C μF 0.002

Order 0 Length m 3 0 / 0 10000 / 159000 In1

Output 0-No Output No 5000 / 148000 20000 / 178000 Out1 ET2

Component LINEZT_3 Name EJ2 10000 / 159000 40000 / 204000 Order 0

R/l+ Ohm/m 0.0605643 # Phases 3 20000 / 178000 Output 0-No

R/l0 Ohm/m 0.207397 Monitor B-2 40000 / 204000

Z+ 257.235

Z0 826.078

v+ 286341000

v0 177945000

From Name X0113

To Name X0115

Order 0

Label 2.5m

ILINE Z,v

Conductance G=0

Length m 2.5
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Table 18-4 Case Study 1 Scenario 1, ATP Component Data Part 1 

 

  

Component Heidler Name ENT1 Component NLRES92 R Ohms 1 Component SWIT_3XT Component SWIT_3XT

Amplitude Volts/Amps 1414000 # Phases 3 Nflash -1,0,+1 0 L Ohms 0.004 T-cl_1 s -1 T-cl_1 s -1

T_f s 4.00E-06 Monitor B-2 RLIN ohms 0 C μF 0 T-op_1 s 1000 T-op_1 s 1000

tau s 5.00E-05 Component LINEZT_3 Vflash Volts -1 In1 T-cl_2 s -1 T-cl_2 s -1

n 2 R/l+ Ohm/m 0.114781 Vzero 0 Out1 T-op_2 s 1000 T-op_2 s 1000

Tstart s 0 R/l0 Ohm/m 0.261381 From Name GND1 Order 0 T-cl_3 s -1 T-cl_3 s -1

Tstop s 1000 Z+ 284.292 To Name EA1 Output 0-No T-op_3 s 1000 T-op_3 s 1000

Name E_LGHT Z0 870.201 Order 0 Name 5VT1 Label 5A1 Label 5C1

Source Voltage v+ 284155000 Label # Phases 3 Order 0 Order 0

Order 0 v0 183986000 Comment Monitor B-2 Output 0-No Output 0-No

Label IN1 Name EA2 Component RLC3 Component LINEZT_3 Component LINEZT_3

Name E_LGHT OUT1 Name EJ2 Output 0-No R_1 Ohms 0 R/l+ Ohm/m 0.0605643 R/l+ Ohm/m 0.0606543

# Phases 1 Order 0 Characteristic L_1 mH 0 R/l0 Ohm/m 0.207397 R/l0 Ohm/m 0.207227

Monitor A-1 Label 2.5m -40000 / -204000 C_1 µF 0.0005 Z+ 257.235 Z+ 257.484

Name E_LGHT ILINE Z,v -20000 / -178000 R_2 Ohms 0 Z0 826.078 Z0 845.16

# Phases 1 Conductance G=0 -10000 / -159000 L_2 mH 0 v+ 286341000 v+ 286169000

Monitor A-1 Length m 2.5 -5000 / -148000 C_2 µF 0.0005 v0 177945000 v0 182036000

Amplitude Volts/Amps 80000 Output No 0 / 0 R_3 Ohms 0 From Name X0099 IN1 Name X0098

f Hz 50 Name EA1 5000 / 148000 L_3 mH 0 To Name 5VT1 OUT1 Name X0102

pha Deg/Rad 0 # Phases 3 10000 / 159000 C_3 µF 0.0005 Order 0 Order 0

A1 0 Monitor B-2 20000 / 178000 Order 0 Label 3m Label 3m

Tstart s -1 IN ABC EA1 40000 / 204000 Label 5VT1 ILINE Z,v ILINE Z,v

Tstop s 1 OUTA A EA1 Component NLRES92 Comment Conductance G=0 Conductance G=0

Name VPF OUTB B EA1 Nflash -1,0,+1 0 Component LINEZT_3 Length m 3 Length m 3

Source Voltage OUTC C EA1 RLIN ohms 0 R/l+ Ohm/m 0.0605643 Output No Output No

Order 0 Order Vflash Volts -1 R/l0 Ohm/m 0.207397 Component SWIT_3XT Component LINEZT_3

Label Label Vzero 0 Z+ 257.235 T-cl_1 s -1 R/l+ Ohm/m 0.0606543

Name VPF Component NLRES92 From Name XX0081 Z0 826.078 T-op_1 s 1000 R/l0 Ohm/m 0.207227

# Phases 3 Nflash -1,0,+1 0 To Name EA1 v+ 286341000 T-cl_2 s -1 Z+ 257.484

Monitor B-2 RLIN ohms 0 Order 0 v0 177945000 T-op_2 s 1000 Z0 845.16

R Ohs 1 Vflash Volts -1 Label IN1 Name 5VT1 T-cl_3 s -1 v+ 286169000

L Ohm 50 Vzero 0 Comment OUT1 Name X0097 T-op_3 s 1000 v0 182036000

C μF 0 From Name XX0082 Order 0 Label 5B1 IN1 Name X0102

In1 X0001 To Name EA1 Output 0-No Label 2.5m Order 0 OUT1 Name 5J1

Out1 VPF Order 0 Characteristic ILINE Z,v Output 0-No Order 0

Order 0 Label -40000 / -204000 Conductance G=0 Name 5B1 Label 3m

Output 0-No Comment -20000 / -178000 Length m 2.5 # Phases 3 ILINE Z,v

Component LINEZT_3 -10000 / -159000 Output No Monitor B-2 Conductance G=0

R/l+ Ohm/m 0.0909069 Output 0-No -5000 / -148000 Component LINEZT_3 Component LINEZT_3 Length m 3

R/l0 Ohm/m 0.234319 Characteristic 0 / 0 R/l+ Ohm/m 0.0605643 R/l+ Ohm/m 0.0605643 Output No

Z+ 277.312 -40000 / -204000 5000 / 148000 R/l0 Ohm/m 0.207397 R/l0 Ohm/m 0.207397 Name 5J1

Z0 927.694 -20000 / -178000 10000 / 159000 Z+ 257.235 Z+ 257.235 # Phases 3

v+ 287733000 -10000 / -159000 20000 / 178000 Z0 826.078 Z0 826.078 Monitor B-2

v0 200221000 -5000 / -148000 40000 / 204000 v+ 286341000 v+ 286341000 Component LINEZT_3

IN1 Name X0001 0 / 0 Name GND1 v0 177945000 v0 177945000 R/l+ Ohm/m 0.0419758

OUT1 Name ENT1 5000 / 148000 # Phases 1 From Name ENT1 IN1 Name 5B1 R/l0 Ohm/m 0.188302

Order 0 10000 / 159000 Monitor A-1 To Name X0095 OUT1 Name 5C1 Z+ 182.308

Label 0.6km 20000 / 178000 Name GND1 Order 0 Order 0 Z0 792.85

ILINE Z,v 40000 / 204000 # Phases "A" 1 Label 10m Label 2.5m v+ 281782000

Conductance G=0 Monitor A-1 ILINE Z,v ILINE Z,v v0 180469000

Length m 600 Name GND1 Conductance G=0 Conductance G=0 IN1 Name X0105

Output No # Phases "B" 1 Length m 10 Length m 2.5 OUT1 Name 5F1

Monitor A-1 Output No Output No Order 0

Name GND1 Name 5C1 Label 7m

# Phases "C" 1 # Phases 3 ILINE Z,v

Monitor A-1 Monitor B-2 Conductance G=0

Length m 7

Output No

Name 5F1

# Phases 3

Monitor B-2
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Table 18-5 Case Study 1 scenario 1, ATP Component Data Part 2 

 

Component SWIT_3XT Component LINEZT_3 Component SWIT_3XT Name EA2 Component NLRES92

T-cl_1 s -1 R/l+ Ohm/m 0.0606543 T-cl_1 s -1 # Phases 3 Nflash -1,0,+1 0

T-op_1 s 1000 R/l0 Ohm/m 0.207227 T-op_1 s 1000 Monitor B-2 RLIN ohms 0

T-cl_2 s -1 Z+ 257.484 T-cl_2 s -1 IN ABC EA2 Vflash Volts -1

T-op_2 s 1000 Z0 845.16 T-op_2 s 1000 OUTA A EA2 Vzero 0

T-cl_3 s -1 v+ 286169000 T-cl_3 s -1 OUTB B EA2 From Name GND2

T-op_3 s 1000 v0 182036000 T-op_3 s 1000 OUTC C EA2 To Name XX0030

Label 5F1 IN1 Name 5C2 Label 5K2 Order Order 0

Order 0 OUT1 Name X0102 Order 0 Label Label

Output 0-No Order 0 Output 0-No Component NLRES92 Comment

Component LINEZT_3 Label 3m Name 5K2 Nflash -1,0,+1 0

R/l+ Ohm/m 0.0419758 ILINE Z,v # Phases 3 RLIN ohms 0 Output 0-No

R/l0 Ohm/m 0.188302 Conductance G=0 Monitor B-2 Vflash Volts -1 Characteristic

Z+ 182.308 Length m 3 Component LINEZT_3 Vzero 0 -40000 / -204000

Z0 792.85 Output No R/l+ Ohm/m 0.0605643 From Name GND2 -20000 / -178000
v+ 281782000 Component LINEZT_3 R/l0 Ohm/m 0.207397 To Name XX0044 -10000 / -159000

v0 180469000 R/l+ Ohm/m 0.0606543 Z+ 257.883 Order 0 -5000 / -148000

IN1 Name X0104 R/l0 Ohm/m 0.207227 Z0 889.808 Label 0 / 0

OUT1 Name 5F2 Z+ 257.484 v+ 287062000 Comment 5000 / 148000

Order 0 Z0 845.16 v0 180528000 10000 / 159000

Label 7m v+ 286169000 From Name 5K2 Output 0-No 20000 / 178000

ILINE Z,v v0 182036000 To Name X0114 Characteristic 40000 / 204000

Conductance G=0 IN1 Name X0102 Order 0 -40000 / -204000 Name GND2

Length m 7 OUT1 Name 5J2 Label 3m -20000 / -178000 # Phases 1

Output No Order 0 ILINE Z,v -10000 / -159000 Monitor A-1

Name 5F2 Label 3m Conductance G=0 -5000 / -148000 Name GND2

# Phases 3 ILINE Z,v Length m 3 0 / 0 # Phases "A" 1

Monitor B-2 Conductance G=0 Output No 5000 / 148000 Monitor A-1

Component SWIT_3XT Length m 3 Component LINEZT_3 10000 / 159000 Name GND2

T-cl_1 s -1 Output No R/l+ Ohm/m 0.0419758 20000 / 178000 # Phases "B" 1

T-op_1 s 1000 Name 5J2 R/l0 Ohm/m 0.188302 40000 / 204000 Monitor A-1

T-cl_2 s -1 # Phases 3 Z+ 182.308 Component NLRES92 Name GND2

T-op_2 s 1000 Monitor B-2 Z0 792.85 Nflash -1,0,+1 0 # Phases "C" 1

T-cl_3 s -1 Component SWIT_3XT v+ 281782000 RLIN ohms 0 Monitor A-1

T-op_3 s 1000 T-cl_1 s -1 v0 180469000 Vflash Volts -1 R Ohms 1

Label 5F2 T-op_1 s 1000 IN1 Name X0114 Vzero 0 L Ohms 0.004

Order 0 T-cl_2 s -1 OUT1 Name EJ2 From Name GND2 C μF 0

Output 0-No T-op_2 s 1000 Order 0 To Name XX0039 In1

Component LINEZT_3 T-cl_3 s -1 Label 3m Order 0 Out1

R/l+ Ohm/m 0.0419758 T-op_3 s 1000 ILINE Z,v Label Order 0

R/l0 Ohm/m 0.188302 Label 5J2 Conductance G=0 Comment Output 0-No

Z+ 182.308 Order 0 Length m 3 Component LINEZT_3

Z0 792.85 Output 0-No Output No Output 0-No R/l+ Ohm/m 0.0606543

v+ 281782000 Component LINEZT_3 Name EJ2 Characteristic R/l0 Ohm/m 0.207227

v0 180469000 R/l+ Ohm/m 0.0605643 # Phases 3 -40000 / -204000 Z+ 257.484

IN1 Name X0103 R/l0 Ohm/m 0.207397 Monitor B-2 -20000 / -178000 Z0 845.16

OUT1 Name X0102 Z+ 257.235 Component LINEZT_3 -10000 / -159000 v+ 286169000

Order 0 Z0 826.078 R/l+ Ohm/m 0.114781 -5000 / -148000 v0 182036000

Label 7m v+ 286341000 R/l0 Ohm/m 0.261381 0 / 0 From Name EJ2

ILINE Z,v v0 177945000 Z+ 284.292 5000 / 148000 To Name ET2

Conductance G=0 From Name X0113 Z0 870.201 10000 / 159000 Order 0

Length m 7 To Name X0115 v+ 284155000 20000 / 178000 Label 1m

Output No Order 0 v0 183986000 40000 / 204000 ILINE Z,v

Name 5C2 Label 2.5m IN1 Name EA2 Conductance G=0

# Phases 3 ILINE Z,v OUT1 Name EJ2 Length m 1

Monitor B-2 Conductance G=0 Order 0 Output No

Length m 2.5 Label 1m Name ET2

Output No ILINE Z,v # Phases 1

Conductance G=0 Monitor A-1

Length m 1 Component RLC_3

Output No R Ohms 0

L Ohms 0

C μF 0.002

In1

Out1 ET2

Order 0

Output 0-No
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Table 18-6 Case Study 2 ATP Conductor Data 

 

  

Component LCC Template Component LCC Template Component LCC Template
Name KWGOH Name KYZS1 Name KYZS2

Conductor Type Overhead Line Conductor Type Overhead Line Conductor Type Overhead Line
#Ph 3 #Ph 3 #Ph 3

Auto Bundling Yes Auto Bundling Yes Auto Bundling Yes
Skin Effect Yes Skin Effect Yes Skin Effect Yes

Segmented Ground No Segmented Ground No Segmented Ground No
Real Transfo. Matrix Yes Real Transfo. Matrix Yes Real Transfo. Matrix Yes

Units Metric Units Metric Units Metric
Rho (ohm*m) 100 Rho (ohm*m) 100 Rho (ohm*m) 100

Freq init (Hz) 50 Freq init (Hz) 50 Freq init (Hz) 50
Length (km) 1 Length (km) 1 Length (km) 1

Model Type PI Model Type PI Model Type PI
Printed Output Yes Printed Output Yes Printed Output Yes
ω (C) Print out Yes ω (C) Print out Yes ω (C) Print out Yes

Output Z Yes (All) Output Z Yes (All) Output Z Yes (All)
Output C Yes (All) Output C Yes (All) Output C Yes (All)
Comment 66kV Overhead Line Comment 66kV Overhead Line Comment 66kV Overhead Line

Order 0 Order 0 Order 0
Label 66kV TL Label 66kV TL Label 66kV TL

Ph No 1 Ph No 1 Ph No 1
Rin cm 0 Rin cm 0 Rin cm 0

Rout cm 1 Rout cm 3.42 Rout cm 3.42
Resis ohm/km DC 0.303 Resis ohm/km DC 0.163 Resis ohm/km DC 0.163
Horiz m 1 Horiz m 1.5 Horiz m 1.5

Vtower m 15 Vtower m 5 Vtower m 7
Vmid m 12 Vmid m 3.5 Vmid m 3.5
Separ cm 0 Separ cm 0 Separ cm 0
Alpha deg 0 Alpha deg 0 Alpha deg 0
NB 1 NB 1 NB 1

Ph No 2 Ph No 2 Ph No 2
Rin cm 0 Rin cm 0 Rin cm 0

Rout cm 1 Rout cm 3.42 Rout cm 3.42
Resis ohm/km DC 0.303 Resis ohm/km DC 0.163 Resis ohm/km DC 0.163
Horiz m -1 Horiz m 0 Horiz m 0

Vtower m 13.5 Vtower m 5 Vtower m 7
Vmid m 10.5 Vmid m 3.5 Vmid m 3.5
Separ cm 0 Separ cm 0 Separ cm 0
Alpha deg 0 Alpha deg 0 Alpha deg 0
NB 1 NB 1 NB 1

Ph No 3 Ph No 3 Ph No 3
Rin cm 0 Rin cm 0 Rin cm 0

Rout cm 1 Rout cm 3.42 Rout cm 3.42
Resis ohm/km DC 0.303 Resis ohm/km DC 0.163 Resis ohm/km DC 0.163
Horiz m 1 Horiz m -1.5 Horiz m -1.5

Vtower m 13.5 Vtower m 5 Vtower m 7
Vmid m 10.5 Vmid m 3.5 Vmid m 3.5
Separ cm 0 Separ cm 0 Separ cm 0
Alpha deg 0 Alpha deg 0 Alpha deg 0
NB 1 NB 1 NB 1
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Table 18-7 Case Study 2 Validation, ATP Component Data 

 

  

Component Heidler Name ENT1 Component NLRES92 Component NLRES92 Component SWIT_3XT

Amplitude Volts/Amps 1414000 # Phases 3 Nflash -1,0,+1 0 Nflash -1,0,+1 0 T-cl_1 s -1

T_f s 3.25E-06 Monitor B-2 RLIN ohms 0 RLIN ohms 0 T-op_1 s 1000

tau s 5.00E-05 Component LINEZT_3 Vflash Volts -1 Vflash Volts -1 T-cl_2 s -1

n 2 R/l+ Ohm/m 0.0303271 Vzero 0 Vzero 0 T-op_2 s 1000

Tstart s 0 R/l0 Ohm/m 0.0447474 From Name GND1 From Name GND1 T-cl_3 s -1

Tstop s 1000 Z+ 351.874 To Name XX0012 To Name XX0004 T-op_3 s 1000

Name E_LGHT Z0 1114.63 Order 0 Order 0 Label 5A1

Source Voltage v+ 267693000 Label Label Order 0

Order 0 v0 217960000 Comment Bowthorpe 2HSRCP60 Comment Bowthorpe 2HSRCP60 Output 0-No

Label From Name ENT1 Output 0-No Output 0-No Component LINEZT_3

Name E_LGHT To Name EJI R/l+ Ohm/m 0.063504

# Phases 1 Order 0 -40000 / -199000 -40000 / -199000 R/l0 Ohm/m 0.0310167

Monitor A-1 Label 25m -20000 / -175000 -20000 / -175000 Z+ 265.454

Name E_LGHT ILINE Z,v -10000 / -159000 -10000 / -159000 Z0 839.919

# Phases 1 Conductance G=0 -5000 / -148000 -5000 / -148000 v+ 276115000

Monitor A-1 Length m 25 0 / 0 0 / 0 v0 180393000

Amplitude Volts/Amps 80000 Output 0-No 5000 / 148000 5000 / 148000 IN1 Name XX0046

f Hz 50 Name EJ1 10000 / 159000 10000 / 159000 OUT1 Name ET1

pha Deg/Rad 0 # Phases 3 20000 / 175000 20000 / 175000 Order 0

A1 0 Monitor B-2 40000 / 199000 40000 / 199000 Label 10m

Tstart s -1 Component LINEZT_3 Component NLRES92 R Ohms 1 ILINE Z,v

Tstop s 1 R/l+ Ohm/m 0.063504 Nflash -1,0,+1 0 L Ohms 0.004 Conductance G=0

Name VPF R/l0 Ohm/m 0.0310167 RLIN ohms 0 C μF 0 Length m 10

Source Voltage Z+ 265.454 Vflash Volts -1 In1 Output 0-No

Order 0 Z0 839.919 Vzero 0 Out1 Name ET1

Label v+ 276115000 From Name GND1 Order 0 # Phases 3

Name VPF v0 180393000 To Name XX0012 Output 0-No Monitor B-2

# Phases 3 IN1 Name EA1 Order 0 Component SWIT_3XT R Ohms 0

Monitor B-2 OUT1 Name EJ1 Label T-cl_1 s -1 L Ohms 0

R Ohms 1 Order 0 Comment Bowthorpe 2HSRCP60 T-op_1 s 1000 C μF 0.002

L Ohms 50 Label 1m Output 0-No T-cl_2 s -1 In1

C μF 0 ILINE Z,v T-op_2 s 1000 Out1 ET1

In1 X0001 Conductance G=0 -40000 / -199000 T-cl_3 s -1 Order 0

Out1 VPF Length m 1 -20000 / -175000 T-op_3 s 1000 Output TX1

Order 0 Output 0-No -10000 / -159000 Label 5J1

Output 0-No Component LINEZT_3 -5000 / -148000 Order 0

Component LINEZT_3 R/l+ Ohm/m 0.063504 0 / 0 Output 0-No

R/l+ Ohm/m 0.0303272 R/l0 Ohm/m 0.0310167 5000 / 148000 Component LINEZT_3

R/l0 Ohm/m 0.0447315 Z+ 265.454 10000 / 159000 R/l+ Ohm/m 0.063504

Z+ 372.317 Z0 839.919 20000 / 175000 R/l0 Ohm/m 0.0310167

Z0 1074.66 v+ 276115000 40000 / 199000 Z+ 265.454

v+ 270972000 v0 180393000 Name GND1 Z0 839.919

v0 216133000 IN1 Name EA1 # Phases 1 v+ 276115000

IN1 Name X0001 OUT1 Name EJ1 Monitor A-1 v0 180393000

OUT1 Name ENT1 Order 0 Name GND1 IN1 Name XX0045

Order 0 Label 1m # Phases "A" 1 OUT1 Name EF

Label 0.64km ILINE Z,v Monitor A-1 Order 0

ILINE Z,v Conductance G=0 Name GND1 Label 5m

Conductance G=0 Length m 1 # Phases "B" 1 ILINE Z,v

Length m 640 Output 0-No Monitor A-1 Conductance G=0

Output 0-No Name GND1 Length m 5

# Phases "C" 1 Output No

Monitor A-1

Name
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Table 18-8 Case Study 2 Scenario 1, ATP Component Data 

  

Component Heidler Component LINEZT_3 Component NLRES92 R Ohms 1 Component LINEZT_3 Component NLRES92

Amplitude Volts/Amps 14000 R/l+ Ohm/m 0.0303271 Nflash -1,0,+1 0 L Ohms 0.004 R/l+ Ohm/m 0.063504 Nflash -1,0,+1 0

T_f s 1.40E-05 R/l0 Ohm/m 0.0447474 RLIN ohms 0 C μF 0 R/l0 Ohm/m 0.0310167 RLIN ohms 0

tau s 7.50E-06 Z+ 351.874 Vflash Volts -1 In1 Z+ 265.454 Vflash Volts -1

n 2 Z0 1114.63 Vzero 0 Out1 Z0 839.919 Vzero 0

Tstart s 0 v+ 267693000 From Name GND1 Order 0 v+ 276115000 From Name GND2

Tstop s 1000 v0 217960000 To Name XX0012 Output 0-No v0 180393000 To Name XX0030

Name E_LGHT From Name ENT1 Order 0 Component SWIT_3XT IN1 Name EA2 Order 0

Source Current To Name EJI Label T-cl_1 s -1 OUT1 Name ET1 Label

Order 0 Order 0 Comment Bowthorpe 2HSRCP60 T-op_1 s 1000 Order 0 Comment

Label Label 25m Output 0-No T-cl_2 s -1 Label 1m

Name E_LGHT ILINE Z,v Characteristic T-op_2 s 1000 ILINE Z,v Output 0-No

# Phases 1 Conductance G=0 -40000 / -199000 T-cl_3 s -1 Conductance G=0 Characteristic

Monitor A-1 Length m 25 -20000 / -175000 T-op_3 s 1000 Length m 1 -40000 / -204000

Name E_LGHT Output 0-No -10000 / -159000 Label 5J1 Output 0-No -20000 / -178000

# Phases 1 Name EJ1 -5000 / -148000 Order 0 Component NLRES92 -10000 / -159000

Monitor A-1 # Phases 3 0 / 0 Output 0-No Nflash -1,0,+1 0 -5000 / -148000

Amplitude Volts/Amps 80000 Monitor B-2 5000 / 148000 Component LINEZT_3 RLIN ohms 0 0 / 0

f Hz 50 Component LINEZT_3 10000 / 159000 R/l+ Ohm/m 0.063504 Vflash Volts -1 5000 / 148000

pha Deg/Rad 0 R/l+ Ohm/m 0.063504 20000 / 175000 R/l0 Ohm/m 0.0310167 Vzero 0 10000 / 159000

A1 0 R/l0 Ohm/m 0.0310167 40000 / 199000 Z+ 265.454 From Name GND2 20000 / 178000

Tstart s -1 Z+ 265.454 Component NLRES92 Z0 839.919 To Name XX0044 40000 / 204000

Tstop s 1 Z0 839.919 Nflash -1,0,+1 0 v+ 276115000 Order 0 Name GND2

Name VPF v+ 276115000 RLIN ohms 0 v0 180393000 Label # Phases 1

Source Voltage v0 180393000 Vflash Volts -1 IN1 Name XX0045 Comment Monitor A-1

Order 0 IN1 Name EA1 Vzero 0 OUT1 Name EF Name GND2

Label OUT1 Name EJ1 From Name GND1 Order 0 Output 0-No # Phases "A" 1

Name VPF Order 0 To Name XX0004 Label 5m Characteristic Monitor A-1

# Phases 3 Label 1m Order 0 ILINE Z,v -40000 / -204000 Name GND2

Monitor B-2 ILINE Z,v Label Conductance G=0 -20000 / -178000 # Phases "B" 1

R Ohs 1 Conductance G=0 Comment Bowthorpe 2HSRCP60 Length m 5 -10000 / -159000 Monitor A-1

L Ohm 50 Length m 1 Output 0-No Output 0-No -5000 / -148000 Name GND2

C μF 0 Output No Characteristic Component SWIT_3XT 0 / 0 # Phases "C" 1

In1 X0001 Component NLRES92 -40000 / -199000 T-cl_1 s -1 5000 / 148000 Monitor A-1

Out1 VPF Nflash -1,0,+1 0 -20000 / -175000 T-op_1 s 1000 10000 / 159000 R Ohms 1

Order 0 RLIN ohms 0 -10000 / -159000 T-cl_2 s -1 20000 / 178000 L Ohms 0.004

Output 0-No Vflash Volts -1 -5000 / -148000 T-op_2 s 1000 40000 / 204000 C μF 0

Component LINEZT_3 Vzero 0 0 / 0 T-cl_3 s -1 Component NLRES92 In1

R/l+ Ohm/m 0.0303272 From Name GND1 5000 / 148000 T-op_3 s 1000 Nflash -1,0,+1 0 Out1

R/l0 Ohm/m 0.0447315 To Name XX0012 10000 / 159000 Label 5A1 RLIN ohms 0 Order 0

Z+ 372.317 Order 0 20000 / 175000 Order 0 Vflash Volts -1 Output 0-No

Z0 1074.66 Label 40000 / 199000 Output 0-No Vzero 0

v+ 270972000 Comment Bowthorpe 2HSRCP60 Name GND1 Name ET1 From Name GND2

v0 216133000 Output 0-No # Phases 1 # Phases 3 To Name XX0039

IN1 Name X0001 Monitor A-1 Monitor B-2 Order 0

OUT1 Name ENT1 -40000 / -199000 Name GND1 Name EA2 Label

Order 0 -20000 / -175000 # Phases "A" 1 # Phases 3 Comment

Label 0.64km -10000 / -159000 Monitor A-1 Monitor B-2

ILINE Z,v -5000 / -148000 Name GND1 Output 0-No

Conductance G=0 0 / 0 # Phases "B" 1 Characteristic

Length m 640 5000 / 148000 Monitor A-1 -40000 / -204000

Output 0-No 10000 / 159000 Name GND1 -20000 / -178000

Name ENT1 20000 / 175000 # Phases "C" 1 -10000 / -159000

# Phases 3 40000 / 199000 Monitor A-1 -5000 / -148000

Monitor B-2 0 / 0

5000 / 148000

10000 / 159000

20000 / 178000

40000 / 204000
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 APPENDIX I 

Table 19-1 Case Study 1 Conductor Sequence Component Attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 927.694 -4.617 0.0011005 200221 4004.420 0.234 1.441 0.000001697
Positive 277.312 -8.634 0.0014400 287733 5754.660 0.091 0.292 0.000003982

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 826.078 -4.077 0.0010931 177945 3558.900 0.207 1.447 0.000002143
Positive 257.235 -6.160 0.0010285 286341 5726.830 0.061 0.277 0.000004290

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 845.160 -4.074 0.0010676 182036 3640.720 0.207 1.448 0.000002047
Positive 257.484 -6.160 0.0010275 286619 5732.370 0.061 0.277 0.000004282

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 792.850 -3.912 0.0010339 180469 3609.380 0.188 1.371 0.000002201
Positive 182.308 -5.927 0.0010053 281782 5635.640 0.042 0.200 0.000006148

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 889.808 -4.062 0.0010115 191591 3831.820 0.207 1.448 0.000001847
Positive 257.883 -6.160 0.0010259 287062 5741.240 0.061 0.277 0.000004268

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 918.565 -5.033 0.001238 194146 3882.930 0.261 1.469 0.000001768
Positive 284.732 -10.515 0.001780 284594 5691.890 0.115 0.298 0.000003943

Surge Arrester Incoming Lead (EA1, EA2)

Sequence

Sequence

Sequence

Sequence

Sequence

66kV Overhead Transmission Line

ZS Conductor (ENT1-5A1, 5A1-5VT1, 5VT1-5B1, 5B1-5C1, 5J2-5K2)

ZS Conductor (5C1-Transverse Bus, 5C2-Transverse Bus, 5J1-Transverse Bus, 5J2-Transverse Bus, ET2 Bus-ET2)

Tubular Busbar (Tranverse Bus-5F1, 5F1-5F2, Transverse Bus-5F2, ET2 Bus)

ZS Conductor (5K2-ET2 Bus)

Sequence
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Table 19-2 Case Study 1 Conductor Sequence Component Attributes 

 

 

  

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 1074.660 -8.232 0.0018265 216133 4322.650 0.447 1.514 0.000001367
Positive 372.317 -20.566 0.0037784 270972 5419.440 0.303 0.347 0.000003326

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 1114.630 -8.005 0.0017607 217960 4359.210 0.447 1.559 0.000001306
Positive 351.874 -21.543 0.0040242 267693 5353.850 0.303 0.324 0.000003586

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 839.919 -6.086 0.0016129 180393 3607.860 0.310 1.438 0.000002085
Positive 265.454 -15.705 0.0027787 276115 5522.300 0.164 0.268 0.000004452

Surge impedance Attenuation velocity Wavelength Resistance Reactance Susceptance
magnitude(Ohm) angle(degr.) db/km km/sec km Ohm/km Ohm/km mho/km

Zero 861.949 -6.081 0.0015705 185100 3702.000 0.310 1.438 0.000001980
Positive 265.690 -15.705 0.0027763 276361 5527.210 0.164 0.268 0.000004444

ZS Conductor (5I1-ET1)
Sequence

66kV Overhead Transmission Line
Sequence

ZS Conductor (ENT1-EJ1)
Sequence

ZS Conductor (EJ1-5I1, EJ1-EA1))
Sequence
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 APPENDIX J 

 

Figure 20-1 Essential Energy 66 kV Period Contract Surge Arrester Specification Part 1 (Tyree 
2015) 
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Figure 20-2 Essential Energy 66 kV Period Contract Surge Arrester Specification Part 2 (Tyree 
2015) 
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Figure 20-3 Essential Energy 66 kV Period Contract Surge Arrester Specification Part 3 (Tyree 
2015) 
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 APPENDIX M 

 

Figure 23-1 Case Study 1, Scenario 1 - ATP Voltage to Ground Plot 

 

Figure 23-2 Case Study 1, Scenario 1 - ATP Surge Arrester & Lightning Current Plot 

V
ol

ta
ge

 –
 G

ro
un

d 
(k

V
) 

Time (µs) 

C
ur

re
nt

 (
kA

) 

Time (µs) 

Lightning 

EA1 

EA2 



APPENDIX M  P a g e  | 173 
 

 

 

Figure 23-3 Case Study 1, Scenario 2 - ATP Voltage to Ground Plot 

 

Figure 23-4 Case Study 1, Scenario 3 - ATP Voltage to Ground Plot 

 

Figure 23-5 Case Study 1, Scenario 4a – 1m ATP Voltage to Ground Plot 
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Figure 23-6 Case Study 1, Scenario 4a – 2.5m ATP Voltage to Ground Plot 

 

Figure 23-7 Case Study 1, Scenario 4a – 5m ATP Voltage to Ground Plot 

 

Figure 23-8 Case Study 1, Scenario 4a – 10m ATP Voltage to Ground Plot 
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Figure 23-9 Case Study 1, Scenario 4a –15m ATP Voltage to Ground Plot 

 

Figure 23-10 Case Study 1, Scenario 4b – 1m ATP Voltage to Ground Plot 

 

Figure 23-11 Case Study 1, Scenario 4b – 2.5m ATP Voltage to Ground Plot 
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Figure 23-12 Case Study 1, Scenario 4b – 5m ATP Voltage to Ground Plot 

 

Figure 23-13 Case Study 1, Scenario 4b – 10m ATP Voltage to Ground Plot 

 

Figure 23-14 Case Study 1, Scenario 4b – 15m ATP Voltage to Ground Plot 
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Figure 23-15 Case Study 1, Scenario 4c – 1m ATP Voltage to Ground Plot 

 

Figure 23-16 Case Study 1, Scenario 4c – 2m ATP Voltage to Ground Plot 

 

Figure 23-17 Case Study 1, Scenario 4c – 4m ATP Voltage to Ground Plot 
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Figure 23-18 Case Study 1, Scenario 4c – 8m ATP Voltage to Ground Plot 

 

Figure 23-19 Case Study 1, Scenario 4c – 15m ATP Voltage to Ground Plot 

 

Figure 23-20 Case Study 1, Scenario 4c – 30m ATP Voltage to Ground Plot 
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Figure 23-21 Case Study 1, Scenario 4d – 1 m ATP Voltage to Ground Plot 

 

Figure 23-22 Case Study 1, Scenario 4d – 2 m ATP Voltage to Ground Plot 

 

Figure 23-23 Case Study 1, Scenario 4d – 4 m ATP Voltage to Ground Plot 
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Figure 23-24 Case Study 1, Scenario 4d – 8 m ATP Voltage to Ground Plot 

 

Figure 23-25 Case Study 1, Scenario 4d – 15 m ATP Voltage to Ground Plot 

 

Figure 23-26 Case Study 1, Scenario 4d – 30 m ATP Voltage to Ground Plot 
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Figure 23-27 Case Study 1, Scenario 4e – 1 m ATP Voltage to Ground Plot 

 

Figure 23-28 Case Study 1, Scenario 4e – 2.5 m ATP Voltage to Ground Plot 

 

Figure 23-29 Case Study 1, Scenario 4e– 5 m ATP Voltage to Ground Plot 
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Figure 23-30 Case Study 1, Scenario 4e – 10 m ATP Voltage to Ground Plot 

 

Figure 23-31 Case Study 1, Scenario 4e – 15 m ATP Voltage to Ground Plot 

 

Figure 23-32 Case Study 1, Scenario 4f – 1 m ATP Voltage to Ground Plot 
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Figure 23-33 Case Study 1, Scenario 4f – 2 m ATP Voltage to Ground Plot 

 

Figure 23-34 Case Study 1, Scenario 4f – 4 m ATP Voltage to Ground Plot 

 

 

Figure 23-35 Case Study 1, Scenario 4f – 8 m ATP Voltage to Ground Plot 

V
ol

ta
ge

 –
 G

ro
un

d 
(k

V
) 

Time (µs) 

V
ol

ta
ge

 –
 G

ro
un

d 
(k

V
) 

Time (µs) 

Time (µs) 

V
ol

ta
ge

 –
 G

ro
un

d 
(k

V
) 



APPENDIX M  P a g e  | 184 
 

 

 

Figure 23-36 Case Study 1, Scenario 4f – 15 m ATP Voltage to Ground Plot 

 

Figure 23-37 Case Study 1, Scenario 4f – 30 m ATP Voltage to Ground Plot 

 

 

Figure 23-38 Case Study 1, Scenario 5 - ATP Voltage to Ground Plot 
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Figure 23-39 Case Study 1, Scenario 6 - CB 5B1 ATP Voltage to Ground Plot 

 

Figure 23-40 Case Study 1, Scenario 6 - Transformer ET2 ATP Voltage to Ground Plot 

 

Figure 23-41 Case Study 1, Scenario 6 – Surge Arrester 1 (Station Entrance) ATP Discharge 
Voltage Plot 
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Figure 23-42 Case Study 1, Scenario 6 – Surge Arrester 2 (Transformer 2) ATP Discharge Voltage 
Plot 

 

Figure 23-43 Case Study 1, Scenario 6 – Surge Arrester 1 (Station Entrance) ATP Arrester Current 
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Figure 23-44 Case Study 1, Scenario 6 – Surge Arrester 2 (Transformer 2) ATP Arrester Current 
Plot 

 

Figure 23-45 Case Study 1, Scenario 7 Station Entrance And Transformer Surge Arrester, ATP 
Voltage to Ground Plot 

 

Figure 23-46 Case Study 1, Scenario 7 Station Entrance Surge Arrester Only, ATP Voltage to 
Ground Plot 
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Figure 23-47 Case Study 1, Scenario 7 Transformer Surge Arrester Only, ATP Voltage to Ground 
Plot 

 

Figure 23-48 Case Study 2, Scenario 1- ATP Voltage to Ground Plot 

 

Figure 23-49 Case Study 2, Scenario 2 - ATP Voltage to Ground Plot 
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Figure 23-50 Case Study 2, Scenario 3 Station Entrance And Transformer Surge Arrester, ATP 
Voltage to Ground Plot 

 

Figure 23-51 Case Study 2, Scenario 3 Station Entrance Surge Arrester Only, ATP Voltage to 
Ground Plot 

 

Figure 23-52 Case Study 2, Scenario 3 Transformer Surge Arrester Only, ATP Voltage to Ground 
Plot 
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Figure 24-1 Kywong ZS Recorded Lightning Strikes (Google Earth 2013b)  
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