
 

 

 

 

 

University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

 

 

Optimisation of Long Line GNSS Networks using 

Geoscience Australia’s AUSPOS service and Static 

Baselines 

 

A dissertation submitted by 

Mr Nicholas Lund 

 

In fulfilment of the requirements of  

ENG4111 and 4112 Research Project 

towards the degree of 

Bachelor of Spatial Science Honours (Surveying) 

 

October 2016 



i 

 

 

Abstract 

Global Navigation Satellite Systems (GNSS) are commonly used in the surveying industry 

for establishing large geodetic networks where conventional terrestrial methods are 

considered insufficient. A primary example of this is long line control networks, typical of 

a pipeline project, rail corridor, or long line easement survey. The nature of these surveys 

often mean that they require careful pre-planning and increased resourcing, resulting large 

overhead costs to complete. 

The aim of this research is to analyse the current adopted techniques for establishing long 

line control networks via GNSS methods, and to expand on these methods by determining 

new methods that would optimise the process. Recommendations can then be made 

regarding the establishment of long line networks via GNSS based on the desired time 

constraints and network quality in terms of uncertainty and network redundancy. 

Testing the different configurations determined in the methods chapter of this dissertation 

revealed that configurations that adopt a conventional approach to GNSS static and quick 

static are likely to provide a higher quality network that is also cost effective. Furthermore, 

network configurations that adopted a less conventional approach lacked network quality, 

and were also less cost effective, despite the reduced number of observations required to 

complete the network. 
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Glossary of Terms 

CORS: Continuously Operating Reference Station – a permanent GNSS station 

Datum: A spatial reference system or surface to which measurements or coordinates upon 

the earth may be defined or related 

Fully Constrained: A least squares adjustment that is constrained to an existing set of 

parameters, used to propagate datum and uncertainty for the survey network 

GDA94: Geocentric Datum of Australia 1994 

GLONASS: A Russian Federation operated GNSS 

GNSS: Global Navigation Satellite System 

GPS: Global Positioning System - A United States operated GNSS 

ICSM: Intergovernmental Committee on Surveying and Mapping – The body responsible 

for surveying and mapping standards in Australia and New Zealand 

ITRF92: International Terrestrial Reference Frame 1992 – the reference frame that 

GDA94 is based upon 

MGA94: Map Grid of Australia 1994 

Minimally Constrained: A least squares adjustment that constrained to none or only one 

station to test the reliability of the surveyed network 

Positional Uncertainty (PU): The uncertainty of the horizontal and/or vertical coordinates 

of a survey mark with respect to datum 

ppm: Parts Per Million 

PSM: Permanent Survey Mark 

Relative Uncertainty (RU): The uncertainty between two horizontal and/or vertical 

coordinates of any two survey marks. 

RINEX: Receiver Independent EXchange – a universally accepted GNSS observation file 

RTK: Real Time Kinematic 

SP1: Special Publication 1 – the standard for the Australian survey control network, 

published by ICSM  

Survey Uncertainty (SU): The uncertainty of the horizontal and/or vertical coordinates of 

a survey control mark irrespective of an underlying datum definition. The SU of a 

coordinate is relative to the survey in which it was observed in 
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1.0 Introduction 

1.1 Context 

The Global Positioning System (GPS) was originally designed by the United States (US) 

Government for military and other government applications. In 1984 the first standards 

allowing civilian use of GPS were published which resulted in almost all geodetic standards 

around the world being GPS based (Pace et al. 1995).  

Geodesy is defined by University of Southern Queensland (2013) as a category of applied 

mathematics and science that studies the size and shape of the Earth, particularly for 

making measurements of the Earth so large that the roundness of the Earth needs to be 

considered. Since the introduction of GNSS, which is a generic term for the combined use 

of different satellite navigation systems including GPS, GLONASS, BeiDou, Galileo, and 

QZSS (Venezia 2015), it has become the preferred tool for geodetic surveys undertaken on 

a regional, national, and continental scale (Ebner & Featherstone 2008). This is due to its 

lack of requiring line of sight to measure baselines, reducing the effort it takes to establish 

such networks that would normally be established terrestrially. 

In 1995, the Russian Federation developed the GLObal NAvigation Satellite System 

(GLONASS). Consisting of 24 satellites, GLONASS was primarily developed for military 

purposes. However, in 1999, it was made available for civilian use (Polischuk & Revnivykh 

2004). In 2009, GLONASS became fully operational (Sergey, Sergey & Suriya 2007) 

allowing users to utilise both the GPS and GLONASS satellite constellations for navigation 

and positioning purposes. 

The combined use of GPS and GLONASS has multiple advantages for users in the 

navigation and positioning field. With a combined total of 48 available satellites when 

using both the GPS and GLONASS constellations, users can expect improved productivity, 

integrity, and accuracy in the observations recorded (Martin & Ladd 2010). In the future, 

oncoming satellite constellations such as the European Union’s Galileo system, the Chinese 
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BeiDou system, and Japan’s Quasi-Zenith Satellite System (QZSS), means that users will 

experience even further improved productivity, integrity and accuracy. 

There are several ways to establish survey control networks, using both conventional 

terrestrial methods and with the use of GNSS. Typically, GNSS is used to establish large 

geodetic networks, where conventional terrestrial methods are inefficient due to issues 

relating to time, line of sight, or it is simply more efficient to establish the network with 

GNSS.  

Despite the obvious advantages, the use of GNSS for establishing control networks is still 

very labour intensive and requires immense logistical planning. These factors often result 

in high overhead expenses which are generally incurred by the client, however these costs 

can be reduced with careful time and resource planning. In addition to further planning, 

past research has found that a network optimisation method can be implemented to ease 

these costly factors without reducing the overall quality of the network. This is 

characterized by the overall precision, reliability and cost of the network (Amiri-Simkooei 

et al. 2012). 

In Australia, the quality of a control station or network is governed by Positional 

Uncertainty (PU), Survey Uncertainty (SU) and Relative Uncertainty (RU) referred to in 

Intergovernmental Committee on Surveying and Mapping’s (ICSM) Special Publication 1 

(SP1). ICSM (2014a) define PU, SU, and RU as the following: 

PU: The uncertainty of the horizontal and/or vertical coordinates of a survey 

control mark with respect to datum. 

SU:  The uncertainty of the horizontal and/or vertical coordinates of a survey 

control mark independent of datum. That is, the uncertainty of a coordinate 

relative to the survey in which it was observed, without the contribution of the 

uncertainty in the underlying datum realisation. 
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RU: The uncertainty between the horizontal and/or vertical coordinates of any two 

survey control marks.  

By calculating these uncertainties, surveyors are able to make judgements on the overall 

quality of their survey and whether or not more work is required. 

There is a vast array of research available comparing GNSS post-processing methods, and 

GNSS network optimisation. However, there is no current research available regarding the 

network optimisation in long line surveys using both the conventional post-processing 

technique and AUSPOS whereby these kinds of surveys would meet the SP1 Guideline for 

Control Surveys by GNSS and the Guideline for the Adjustment and Evaluation of Survey 

Control. Meeting the standards set out in this guideline is particularly important in 

Australia, as it is the guideline that certain legislation is based upon for GNSS surveys. 

Furthermore, there is a lack of research analysing network optimisation from a time/cost 

approach and the qualities that can be expected from reconfiguring the network. 

1.2 Research Aim 

The aim of this research is to determine an optimal configuration of a control network for 

a long line survey, typical of that of a long line easement, rail corridor, or infrastructure 

corridor. The network is to be established by GNSS measurement methods, but is to be 

post-processed using different methodologies. The data will be post-processed in a number 

of different configurations, which will ultimately achieve different positional, survey, and 

relative uncertainties. 

The results will then be analysed and tabulated to allow current and future surveyors and 

GNSS users to make informed decisions regarding network design, dependant on the 

desired uncertainties required for the survey. 

1.3 Justification 

After conducting a brief search of the literature, it became apparent that comparisons of the 

AUSPOS service and relative static networks that are conducted in accordance with 
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relevant Australian and Queensland standards is not widely documented. In addition, 

literature regarding combination of these processing techniques, and optimisation of these 

types of control networks is also very limited, resulting in a gap in the literature. 

This research will be undertaken with the intention to fill the current gap in the literature 

and more importantly to benefit the surveying industry in Australia by providing a 

guideline on carrying out long line surveys in a way that is time, cost and resource efficient. 

This will be achieved by carrying out a long line control network that would simulate a real 

world situation in a suitable area. In addition, this will also involve determining if similar 

positions and survey qualities can be achieved with the AUSPOS post-processing service, 

and whether a combination of these two processing methods is also a feasible outcome for 

these types of networks. Following this, an analysis on a time/cost basis would be carried 

out for each survey to determine the most practical outcome. These results will be laid out 

in a tabulated format so practitioners can make informed decisions on network optimisation 

methods to achieve the desired PU and SU. 
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2.0 Literature Review 

2.1 Introduction 

The purpose of the literature review is to analyse the current literature available to justify 

the need for this research and to critically analyse previous similar research. The literature 

review leads to a selection of testing methodologies, and also proves that the research being 

undertaken is contributing something new (Levy & Ellis 2006). This chapter will identify 

the background information required to analyse the extent and significance of the research 

problem; it identifies and discusses attempts by others to solve similar problems; and 

finally, it provides examples of methods previous researchers have employed in attempts 

to get to their solutions (Evans, Gruba & Zobel 2013).  

This literature review will provide a critical analysis of the current research available 

relating to GNSS survey methods, network optimization, post-processing methods and the 

current standards in Australia for GNSS control surveys. By doing this, an appropriate 

methodology will be selected for the testing phase of this project to provide data for the 

analysis phase. 

The overall aim of this chapter is to justify the need for this research and determine if the 

research can build upon the previous research available for determining a suitable method 

for establishing long line control networks with GNSS.  

This will incorporate looking at the available field methods and selecting the most relevant 

technique The relevant control survey standards in relation to field survey and post-

processing methodologies in Australia will also be addressed. In addition to these two 

topics, the literature review will also analyse past research on GNSS network optimisation 

and online post-processing services.  
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2.2 Standards for GNSS Control Surveys 

2.2.1 ICSM Special Publication 1 – Standard for the Australian Control 

Network 

The ICSM is the committee responsible for the development and maintenance of key 

national spatial datasets including geodetic, topographic and cadastral. The document SP1, 

published by ICSM, outlines the standards and best practices for undertaking control 

surveys in Australia and New Zealand. In SP1, ICSM provide guidelines for: 

 the adjustment and evaluation of survey control; 

 continuously operating reference stations; 

 control surveys by differential levelling; 

 control surveys by GNSS; 

 conventional traverse surveys; and 

 the installation and documentation of survey control marks. 

The intention of this research is to determine optimal configuration for long line control 

surveys by GNSS. This includes post-processing in a suitable software package capable of 

handling GNSS data, and processing with an online post-processing service such as 

AUSPOS (which is mentioned in SP1). For this reason, only the guideline for control 

surveys by GNSS and the guideline for adjustment and evaluation of survey control are 

relevant to this research. 

The guideline for control surveys by GNSS outlines the general considerations that the user 

should be aware of before carrying out a survey. There are many measurement and 

observation techniques available, however each has its own suitable applications. This 

literature review will analyse both the Quick Static and Classic Static methods. These 

methods allow the user to post-process the data, both online, and in a suitable software 

package. 
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SP1 often refers to the Positional Uncertainty (PU) of a station, and the Survey Uncertainty 

(SU) and Relative Uncertainty (RU) of the survey. PU is defined by ICSM (2014a) as the 

uncertainty of the horizontal and/or vertical coordinates of a survey control mark with 

respect to datum. RU is defined as the uncertainty between horizontal and/or vertical 

uncertainty of any two survey control marks. Finally, SU is defined as the uncertainty of 

the horizontal and/or vertical coordinates of a survey control mark independent of datum. 

This is the uncertainty of a coordinate relative to the survey in which it was observed, 

irrespective of datum (ICSM 2014a). 

Section 3.1 of the Guideline for Control Surveys by GNSS – SP1 published by ICSM 

(2014b) outlines some potential applications that would require the use of GNSS, it also 

includes the technique that should be used, and the survey uncertainties that can be 

expected using that method. Each method requires differing occupation times. In general, 

the longer the occupation, the better the survey uncertainty (Figure 2.2.1.1).  

 

Figure 2.2.1.1: GNSS survey techniques and their inherent survey uncertainties (ICSM 

2014b). 

A number of guidelines for selection of GNSS equipment and observation techniques are 

also provided based on the survey uncertainty the user wishes to achieve. As this research 
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intends to survey lines no longer than 10km and wishes to achieve an SU of less than 30mm 

for horizontal position, if possible the following guidelines will be adhered to when 

conducting the field survey: 

 use of a receiver capable of dual frequency code and carrier phase tracking; 

 minimum of a survey grade quality antenna (no choke-ring or ground-plane); 

 1 – 6 hours of occupation time (recommended 1 hour plus 5 minutes per kilometre); 

 15 – 30 second observation epoch interval; and 

 the use of a zero-degree elevation mask. 

ICSM (2014b) also outlines the minimum processing software recommendations for the 

classic static and quick static method. In section 3.2.1 of the Guideline for Control Surveys 

by GNSS – SP1, ICSM (2014b) states that to achieve an SU of less than 30mm for 

horizontal position, processing must use broadcast ephemerides or better (available from 

IGS), software should have antenna models built into the software, and the software must 

be capable of generating a reliable variance-covariance matrix for each measurement. 

Based on the requirements to meet this standard, and the resources available at the time of 

research, an SU of less than 30mm for horizontal position will be the desired uncertainty 

for the purpose of this project. 

2.2.2 Department of Natural Resources and Mines  

The Queensland Government’s Department of Natural Resources and Mines (DNRM) is 

the governing body for all surveying and mapping in Queensland. The surveying standards 

are maintained by the Cadastral Survey Requirements (CSR) Version 7.1, a document 

which previous versions contained limited information and regulations on surveys using 

GNSS.  

Chapter 8 of Version 7.1 of the CSR relates to the use of GNSS for cadastral and control 

surveys undertaken in Queensland. The chapter heavily relies upon the concepts and 

methodologies outlined in ICSM’s Special Publication 1 (SP1) – Standard for the 
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Australian Control Network, and often refers the reader to that document for additional 

information. 

There are a number of sections in chapter 8 that will be relied upon throughout this research 

to test whether different processing techniques meet an acceptable quality which are 

outlined below:  

 Section 8.3 – GNSS Measurement Quality, addresses the nature of GNSS 

measurements and the effects that may influence observations. It outlines 

techniques to minimise site dependant effects, site selection, and observation time 

dependant on site obstructions. 

o Often, measurements are required in poor environments for GNSS, such 

as high multipath areas, urban canyons, obstructions, and vegetation. In 

this case, the CSR recommends making GNSS observations in an area 

suitable for GNSS occupation and then using conventional methods to 

make the observation in the required location. Additionally, a 15-degree 

elevation mask is recommended to exclude data between 0 and 15 degrees 

above the horizon to ensure good satellite geometry based on the dilution 

of precision (DOP) values to assist in minimising site dependant effects 

(DNRM 2015). 

o Where obstructions are present, and a GNSS observation is required, the 

mark must be occupied at least twice to ensure and outliers are detected. 

Furthermore, it is recommended that the observations are made at least 30 

minutes apart to allow for a change in satellite geometry. 

 Section 8.4.2 – Testing quality of GNSS measurements and their suitability for 

cadastral purposes, describes the methodologies used to calculate positional, 

relative and survey uncertainty, a large component of this research. However, these 

methods have been derived from SP1, and therefore, SP1 will be consulted for 

calculating the PU, SU, and RU. 
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 Section 8.7.2 – Data processing and archiving, provides clarity on how surveyors 

should approach data processing and archiving GNSS observations and related 

data. This includes analysis of how well the survey agrees with existing control 

networks (existing permanent marks and/or regulation 13 CORS sites). DNRM 

(2015) recommend that all project files including raw data, logging sheets, RINEX 

data, processing results, and configuration files should be correctly archived.  

The CSR Version 7.1 provides a brief outline of the GNSS survey methodologies that 

surveyors need to follow to ensure the correct survey uncertainty is achieved for the survey 

being carried out. It often refers readers to the ICSM’s SP1 which provides a much more in 

depth guideline for users to follow, and while the CSR provides some information 

regarding GNSS surveys, SP1 will be relied upon for the purpose of this research. 

2.3 GNSS Surveying Methods 

Since the introduction of GPS to the civilian market, GNSS use has grown in popularity. 

Its wide range of applications including agriculture, navigation, surveying, and geodesy 

makes it extremely desirable to many users around the world.  

There are a large number of measurement and processing techniques available to GNSS 

users, especially in the surveying and geodesy sectors. These include Pseudo-Kinematic, 

Kinematic, Real-Time Kinematic, Quick Static, and Classic Static. Based on the research 

conducted in section 2.2 Standards for GNSS Control Surveys only the classic static and 

quick static methods will be further researched. 

2.3.1 Classic Static 

The classic static method requires two or more receivers, involves a number of observation 

sessions, and is one of the most commonly used techniques for establishing large geodetic 

control networks. In the first session, one base receiver occupies a known control station, 

and the remaining receivers occupy unknown points. During this session, all receivers 

make simultaneous precise code and carrier phase observations (ICSM 2014b) to four or 
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more satellites for an extended period of time, usually dependant on baseline length and 

accuracy requirements.  

At the end of the first session, one receiver becomes the new base station, while the 

remaining receivers can be moved or remain on the same position to form new baselines to 

the base station. This process is repeated until all points have been occupied, and the 

baselines observed form geometrically closed figures. 

2.3.2 Quick Static 

The quick static method often referred to as fast static or rapid static, is similar to the classic 

static method mentioned in section 2.2.1 and is commonly used to measure baselines less 

than 25km (Berber, Ustun & Yetkin 2012). However, the ICSM (2014b), the governing 

authority on survey control standards in Australia and New Zealand, mention in the 

Guideline for Control Surveys by GNSS that for baselines longer than 10km, the classic 

static method should be used. 

Quick static is capable of achieving uncertainties comparable to that of the classic static 

method by using occupation times as short as 5 to 10 minutes. The shorter occupation times 

are a major advantage over the classic static method which requires much longer 

observations, however this means much less data is collected, resulting in fewer baselines 

to form in the network adjustment phase. It is also important to note that due to the shorter 

occupation times, this method does not experience a large change in satellite geometry 

(University of Southern Queensland 2013). 

Ultimately, occupation times should be dependent on the number and geometry of the 

satellites being tracked, and the DOP values (University of Southern Queensland 2013).  

As the purpose of this research is to determine an optimal configuration for long-line 

control network surveys, the classic static method will be employed for this research. The 

longer observation times will result in a greater change in satellite geometry, providing 
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more redundancy in the observations. Furthermore, if more data is observed, more solutions 

can be computed. 

2.4 Post-Processing GNSS Data 

Currently, there are a number of methods available for post-processing GNSS data. These 

methods rely on the user to store raw observations in the receiver or in a data recorder and 

subsequently transfer the observations into a computer. The data can then be processed in 

a number of ways. These include conventional post-processing in a suitable software 

package  these include Trimble Business Center (TBC), Leica Geo Office (LGO) which 

processes the data from two or more receivers to form baselines, Precise Point Positioning 

(PPP) which processes data from a single receiver using orbit and clock correction products 

provide by IGS to produce precise point coordinates, or by using services like AUSPOS, 

that takes data from the user’s single receiver and processes with data from the closest 

available 15 IGS and Asia Pacific Reference Frame (APREF) stations. It is important to 

note at this stage that while PPP and AUSPOS are very similar in that both methods only 

require data from a single receiver, AUSPOS is a differential post-processing service that 

forms baselines to calculate the required position, while PPP produces precise coordinates 

using only orbit and clock correction products (Mireault et al. 2008). 

For conventional post-processing, the data is loaded into a suitable software package and 

is analysed thoroughly to identify any noisy data, multipath and cycle slips. Typically, 

noisy data, dependant baselines and cycle slips are removed to improve the overall quality 

of the data. Although this trend is becoming less commonplace now due to technological 

advances in GNSS surveying equipment and the current amount of satellite constellations 

available today. 

The PPP method simply requires one GNSS receiver to compute an accurate position on 

any reference frame. It uses a point positioning technique using orbit and clock correction 
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information from services such as the International GNSS Service (IGS) to compute the 

position of the receiver (Grinter & Roberts 2011). 

There are also many online post-processing services freely available to the public to use 

(Table 2.4.1). These services employ the use of either the PPP method or differential 

method to post-process data.  

Service Provider GNSS  Processing Method 

AUSPOS Geoscience 

Australia  

GPS Differential 

(Bernese) 

CSRS-PPP Natural Resources 

Canada 

GPS & GLONASS PPP 

GAPS University of New 

Brunswick 

GPS, Galileo & 

BeiDou 

PPP 

APPS California Institute 

of Technology 

GPS PPP 

MagicGNSS GMV GPS & GLONASS 

& Galileo 

PPP 

CenterPoint RTX Trimble Navigation GPS, GLONASS, 

QZSS & BeiDou 

PPP 

OPUS National Oceanic 

and Atmospheric 

Administration 

GPS Differential 

(PAGES) 

SCOUT Scripps Orbit and 

Permanent Array 

Center 

GPS Differential 

(GAMIT) 

Table 2.4.1: Available online GNSS post-processing services. 

AUSPOS is the most commonly used online post-processing service in Australia, it has 

also been proven to provide the closest results to conventional post-processing (El-Mowafy 

2011). 

2.4.1 Differential Post-Processing 

Differential post-processing can be divided into three segments; data analysis and 

validation, baseline processing, and network adjustment. The data analysis and validation 

phase occurs when the data is initially loading into the processing software. It involves 

examining the data and removing any noisy data, cycle slips and dependant baselines to 

better improve the survey.  
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Baseline processing is critical to the post-processing method. Baselines are formed by 

collecting carrier and phase data at two different points simultaneously. By processing the 

baselines before computing a network adjustment, any outliers or bad points in the survey 

can be easily identified and isolated by analysing the statistics that the baseline processor 

produces (University of Southern Queensland 2013). 

In most software packages, baseline processing is carried out in the following steps 

comprehensively outlined by the University of Southern Queensland (2013) and Curran 

(2008) below: 

1. Computes best fit value for point positions from code pseudoranges. 

2. Creates undifferenced phase data from receiver carrier phase readings and 

satellite orbit data. Time tags may also be corrected. 

3. Creates differenced phase data and computes their correlations. 

4. Computes estimates of baseline vectors using triple-differencing processing. 

This method is insensitive to cycle slips and provides least accurate results. 

5. Computes a double-difference solution solving for vector and (real) values of 

phase ambiguities. 

6. Estimates integer values of phase ambiguities computed in step 5, and decides 

whether to continue with fixed ambiguities.  

7. Computes fixed bias solution based upon best ambiguity estimates computed 

in step 6. 

8. Computes several other fixed bias solutions using integer values differing 

slightly (e.g. by 1) from selected values. 

9. Computes ratio of statistical fit between chosen fixed solution and the next best 

solution. This ratio should be at least 1.5 to 3 indicating that the chosen solution 

is at least 1.5 to 3 times better than the next most likely solution. 
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2.4.2 Network Adjustments 

The network adjustment phase is carried out in two steps; firstly, a minimally constrained 

adjustment, secondly, a fully constrained adjustment. The minimally constrained 

adjustment is a quality assurance process, where one station is deemed fixed on known 

coordinates, and the remainder of the survey is processed to suit that fixed station. This 

allows the processing software to generate a report showing the shift in each point to make 

it consistent with the fixed point. This sort of adjustment assists with detection of gross 

errors or blunders in the survey and provides validation of the internal consistency of a 

network (University of Southern Queensland 2013). The fully constrained adjustment 

occurs when all blunders have been corrected or removed from the network and the survey 

can be coordinated to fit existing control networks. 

In the Guideline for the Adjustment and Evaluation of Survey Control – Special Publication 

1, ICSM (2014a) has made available the recommended procedure for the adjustment and 

evaluation of survey control defined below: 

1. All survey control measurements should be corrected for all known calibration 

corrections and systematic error sources, and be accompanied by reliable 

values of uncertainty (or weights). To test the control survey for errors, 

redundant measurements sufficient to identify errors shall be used. The larger 

the degrees of freedom (DoF), the greater the confidence can be gained from 

a survey. 

2. A minimally constrained adjustment should be tested using the local test and 

global test.  

3. If required, estimated Survey Uncertainty (SU) and Relative Uncertainty (RU) 

values (or other reliable statistical methods) should be examined to assess 

whether the survey has achieved any predefined uncertainty or quality 

methods. 
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4. When attempting to propagate datum and uncertainty, a fully constrained and 

appropriately weighted adjustment should be undertaken. 

5. The fully constrained adjustment should be tested using the local test to verify 

that the imposed constraints do not result in measurement failures. 

6. The fully constrained adjustment should be tested using the global test. If this 

adjustment test fails, the quality of survey measurements and constraints needs 

to be examined to identify and rectify the cause of failure. 

7. If required, estimated Positional Uncertainty (PU) and associated RU values 

(or other reliable statistical methods) should be examined to assess whether 

the survey control network has achieved any predefined uncertainty or quality 

thresholds. 

2.4.3 Precise Point Positioning  

The PPP technique utilizes a single GNSS receiver to achieve high accuracy positions using 

orbit and clock correction products provided by the IGS (Ebner & Featherstone 2008; 

Grinter & Roberts 2011). The PPP method of post-processing has many advantages over 

other differential post-processing methods, the most obvious two being, firstly its ability to 

achieve geodetic grade positioning within a global reference frame, anywhere in the world 

with only a single GNSS receiver, and secondly, removing much of the labour, equipment 

and logistical costs to provide this type of positioning. However, past research has found 

that when using online post-processing services, PPP is a less reliable method for deriving 

coordinates and a differential method, therefore this research will not be evaluating the use 

of PPP, rather AUSPOS will be used. 

2.4.4 Online Post-Processing Services 

There are currently a number of government and commercial online post-processing 

services freely available to GNSS users around the world offering both differential post 

processing and PPP (Table 2.4.1). These services require the user to gather raw GNSS data 

in static mode generally an hour or more of data is required for most services. The raw data 
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is then converted to Receiver INdependent EXchange (RINEX) format and can then be 

submitted to the service via upload or File Transfer Protocol (FTP) site. The service post-

processes the GNSS data, and provides results by email to the user in a short turn around 

period (Figure 2.4.4.1). 

   

Figure 2.4.4.1: A basic illustration of most online post-processing services (Ocalan, 

Erdogan & Tunalioglu 2013). 

 Previous research conducted by El-Mowafy (2011) compared static and kinematic data 

captured by a single dual-frequency receiver. The data was post-processed by the AUSPOS 

and CSRS-PPP service. El-Mowafy (2011) also analysed the impact of varying data lengths 

and the effects of shorter and longer observation times and found that the results generally 

improve the longer the observation period.  

Ocalan, Erdogan and Tunalioglu (2013) also conducted a comparison of the online GNSS 

post-processing services shown in Table 2.4.1 with the exception of the Trimble’s 

CenterPoint RTX service. The analysis was split up into two parts comparing the PPP 

services and the differential post-processing services. Overall, the research found that the 

best results from a differential service came from AUSPOS as it used 12 reference stations 

to compute the unknown, in contrast the other services only used three. As for the PPP 

post-processing services, APPS was found to be the most reliable service. Overall, this 

research found that Geoscience Australia’s AUSPOS service produced the closest results 

to those computed using the Bernese software. 
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2.4.5 Geoscience Australia’s AUSPOS 

Geoscience Australia’s (GA) AUSPOS service is a freely available online post-processing 

service for users to upload RINEX data and receive highly accurate positions in generally 

less than 5 minutes (Geoscience Australia 2015). Using the Bernese software, AUSPOS 

employs a differential processing method that computes baselines to the nearest 15 IGS 

and APREF stations using only GPS data at a 30 second sampling rate. The coordinates for 

the 15 stations are fixed with uncertainties of 1mm for horizontal and 2mm for vertical.  

For AUSPOS to be able to process the data the user simply has to ensure that: 

 there is a minimum one hour of data in the RINEX file (preferably two); 

 a dual frequency GPS receiver is used to collect data; and 

 that the correct antenna type and height is recorded. 

2.5 Network Design and Optimisation 

Network optimisation is not a new concept. The main objective of network optimisation is 

to predetermine a mission plan that best suits the project requirements in regards to 

precision, reliability, and cost. This involves determining which observations are not 

required or can be removed from the network without affecting the quality of the network 

resulting in a reduced project cost (Khameneh 2015).  

Baarda (1968) (as cited in Amiri-Simkooei et al. (2012)) first introduced the concept of 

network optimisation and found that the reliability of a geodetic network is divided into 

internal and external reliability. The internal reliability simply refers to the ability to detect 

gross errors made in observations, and the external reliability refers to the effect of 

undetectable errors on the estimated parameters of the network (Amiri-Simkooei et al. 

2012). University of Southern Queensland (2013) mention that the intent of network design 

and optimisation should be the following: 

 to design the location of new points and the observations between them; 
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 to provide error control in the minimum constraint solution, to enable data 

validation and analysis of the accuracy of the survey; 

 to produce connections to integrate the survey into previously established control 

networks; and 

 to design the location of ties to points with existing orthometric heights. 

2.6 Previous Research  

There is a large amount of research available regarding the comparison of GNSS post-

processing methods, and network optimisation. This includes past University of Southern 

Queensland projects from former students in past years. 

2.6.1 Ebner & Featherstone 2008 

Ebner and Featherstone (2008) explored the use of the CSRS-PPP online post-processing 

service for establishing geodetic survey control networks. The research produced 

coordinates processed by the CSRS-PPP service for a moderate sized network of 46 stations 

covering an area of approximately 242,000 km2. These coordinates were compared with 

coordinates derived from the Bernese Scientific Software which uses a differential 

approach to compute the solution. 

The results produced by CSRS-PPP were rather similar to those derived by the Bernese 

software, however it is important to note, that observation periods of 48 and 144 hours were 

used to compute all solutions. The research found that a PPP approach can be used to 

establish geodetic survey control networks, however at a slightly lower quality and where 

observation periods of greater than two days are used. 

2.6.2 Koschel 2009 

Koschel (2009) investigated the reliability of AUSPOS results with a specific focus on the 

height component. This was tested by occupying a number of permanent marks with known 

Geocentric Datum of Australia (GDA94) coordinates for a period of 12 hours and 

comparing the results. The data was manipulated into 1, 2, 4, 6, 8, 10, and 12 hour periods 
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and the results were compared with the known coordinates for each mark with respect to 

the time period observed. 

Despite specifically evaluating the vertical component of AUSPOS, Koschel (2009) also 

briefly analysed the horizontal component of AUSPOS. The research found that the longer 

the observation period, a greater accuracy can be expected, generally six hours of data 

would provide results within +/-50mm of coordinates derived from a geodetic network 

survey.  

The research being carried out in this dissertation is analysing only horizontal data. While 

the results will produce vertical data, they will be completely disregarded. Therefore, the 

evaluation of the vertical component of this research was of little importance to this 

research. 

2.6.3 Cleaver 2013 

In his project titled Evaluation of the Performance of Web-Based GNSS Post-Processing 

Systems, Cleaver (2013) assessed a number of online PPP and differential post-processing 

services. The services that were evaluated include AUSPOS, SCOUT, CSRS-PPP, Auto-

GIPSY. These services were compared by occupying five stations with known GDA 94 

coordinates for a 24-hour period. The data from these stations was then reduced to RINEX 

format and amended into 1, 2, 4, 6, 8, and 12 hour observations and uploaded to each of 

the online systems. 

Cleaver (2013) found that with observation times longer than four hours, the results were 

negligible when compared to the residual difference of the published GDA94 coordinates 

of the stations selected when using the AUSPOS, CSRS-PPP, and SCOUT services. 

Cleaver (2013) also found that the differential post-processing services provided 

marginally better results to the services using a PPP approach, as the PPP approach is 

independent of site location and therefore bias of baselines cannot have an impact on the 

solution.  
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2.6.4 O’Sullivan 2014 

O'Sullivan (2014) reported similarly to Cleaver (2013). Titled Evaluation of Precise Point 

Positioning Services O'Sullivan (2014) evaluated the performance of AUSPOS (which 

should be noted is a differential post-processing service as opposed to PPP), OPUS (also a 

differential service), CSRS-PPP and Magic PPP using a 6 hour and 24 hour observation.  

The findings of this report were very similar to Cleaver (2013). O'Sullivan (2014) found 

that each service evaluated produced better results with longer observation times. 

Moreover, the author also found that the services that use a differential processing approach 

provide slightly better results than the PPP approach, agreeing with previous research. Of 

all online processing services tested, AUSPOS produced the best quality results. 
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3.0 Method 

3.1 Introduction 

The intention of this chapter is to establish a suitable method for carrying out the testing 

component of this project. In the literature reviewed in the previous chapter, a number of 

key research factors were established. These included employing the use of the classic static 

method for data collection, the use of AUSPOS as opposed to any other online differential 

or PPP post-process service, and following the guidelines laid out in SP1 for the calculation 

of SU and PU. 

The aim of this chapter is to achieve the following outcomes: 

 to determine a field scenario that can be used for the purpose of this project that 

will allow enough data to be collected to post-process in a number of different 

configurations; 

 to determine a series of different post-processing scenarios, including network 

configurations, the combined use of conventional baseline processing integrated 

with online post-processing services; and 

 to determine a way to analyse the different testing scenarios on a time/cost analysis 

to provide a guideline on the best practice for these kinds of surveys.  

This chapter will address the method in which the research for this dissertation was carried 

out. This will be done by selecting a suitable study area to carry out a long line survey, 

compiling the required resources to complete the study, determining a suitable method to 

ensure enough data is collected to process in a number of different scenarios, and also an 

explanation of the post-processing scenarios that will be used. 
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3.2 Study Area 

This research will investigate different methods of performing a long line survey control 

network. Examples of a long line network include service easements and corridors, road 

and infrastructure projects, or any other form of linear project that may require a control 

network established by GNSS. The study area where the survey was performed for this 

project is situated in South East Queensland running alongside a railway corridor, from 

Acacia Ridge, south to Kagaru, approximately 35 kilometres in length (Figure 3.2.1).  

 

Figure 3.2.1: Study area with rail corridor highlighted in red (Google Earth 2016). 
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Survey stations were placed approximately every 1.5km along the rail corridor as the 

network was used for another purpose independent of this project. Stations were typically 

placed off the side of the rail corridor, or in adjoining road reserve for safety concerns. The 

type of stations placed included iron pins, and screws in concrete as these kind of marks 

were suitable for the purpose of a research project. Additionally, the survey also connected 

to nearby available and accessible “datum” PSM’s.  

The term “datum” refers to the Geocentric Datum of Australia 1994 (GDA94) which is a 

three dimensional, static coordinate datum based on the International Terrestrial Reference 

Frame 1992 (ITRF92) (ICSM 2014a). A static datum refers to the fact that the ITRF92 is a 

dynamic system, meaning that it is constantly moving. The Australian tectonic plate is 

moving roughly 7cm per year in a North-Easterly direction and to combat this, GDA was 

held fixed at 1 January 1994 (Geoscience Australia 2016a). 

The idea of making connections to local datum PSM’s was to provide some form of check 

against the published coordinates for each PSM. During the post-processing phase, this 

would ensure that no gross errors had been made during the field survey, and also that the 

survey was being processed on the correct datum and coordinate system. 

3.3 Resources for Field Survey 

To successfully carry out the field survey, the following resources were utilised. 

 4x Trimble R7 GNSS receivers (firmware version 4.19) 

 1x Trimble R8 Model 3 GNSS receiver 

 1x Trimble R10 GNSS receiver 

 4x Trimble Zephyr GNSS antennas 

 2x Trimble TSC3 data recorders with Trimble Access Software (version 2016.03) 

 5x Tripods 

 5x Recently adjusted tribrachs 

 2x Vehicles 
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 2x Mobile Phones 

 Ancillary surveying equipment 

 Batteries to power equipment 

3.4 Field Method 

After reviewing the literature in Chapter 2, a number of factors have been identified that 

will influence the results of this research. These include occupation time, and the GNSS 

survey method to be used.  

To post-process with AUSPOS, a minimum of one hour of observation data is required, 

therefore, at least a minimum of a one-hour occupation of every station was required for 

this project. However, as the data was also being post-processed in TBC (Trimble 

Navigation 2016c), simultaneous data logging between stations also needed to occur. To 

ensure enough data was logged simultaneously between stations, a minimum requirement 

of two-hour occupation times was necessary. This condition would allow for at least one 

hour of observation for each baseline measured in the network surveys. 

Despite the field survey being made up of a combination of smaller (≥1km) and longer 

baselines, the fast static method is arguably the more suitable method. However, as it is a 

requirement of a minimum of one hour of observation data to post-process with AUSPSOS, 

the static method was employed. The selection of the classic static method also would 

provide more reliable data, as the longer observation times take advantage of the change in 

satellite geometry.  

Following consultation of the SP1 published by ICSM (2014a), the CSR v7.1 published by 

the DNRM (2015), and the above factors determined by reviewing the appropriate 

literature, it was identified that the classic static survey method was the most suitable 

method for this research. 
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3.4.1 Survey Style 

The survey style is used to define the parameters within the data recorder for configuring 

and communicating with instruments. It enables the user to specify the type of survey they 

wish to conduct, and apply the relevant settings to that survey and store it as a template for 

future use (Trimble Navigation 2016a).  

A survey style relevant to this survey has been created and distributed to the two data 

recorders being used for the data collection process. The settings for a static survey outlined 

below have been applied to the survey style following consultation with SP1: 

 measure a static point; 

 use of a 15 second observation sampling rate; 

 tracking only the GPS satellite constellation (as AUSPOS only processes GPS 

data); and 

  a 0-degree elevation mask;  

 a minimum of 1 – 6 hours of occupation time. 

3.4.2 Field Procedure 

The initial field procedure set out to survey a typical network that would comprise of no 

dependant baselines, good network geometry, and sufficient ties to existing local GDA94 

control in the area. The network would eventually require two weeks to log all of the data 

in 19 sessions. Figure 3.4.2.1 illustrates a typical GNSS network similar to that surveyed 

in this project. It uses four GNSS receivers, the same amount that was used for a majority 

of this project, and measures three baselines per session which are represented by the 

different colours. In total, the network requires four sessions to have all figures closed and 

occupied more than twice. 



27 

 

 

Figure 3.4.2.1: A typical GNSS network with closed figures and no dependant baselines. 

To begin with, the survey was carried out unaccompanied. This was originally thought to 

be the “cheaper” method. The field procedure was to do the following: 

1. Pre-plan sessions for the day. 

2. Drive to and install or locate control mark, and set up GNSS receiver over control 

mark on tripod. 

3. Record all relevant information onto a standard booking sheet (Appendix C). 

4. Enter information into Trimble TSC3 data recorder, start logging. 

5. Move to next station, repeat steps 1 – 4 until all receivers are set up and logging. 

6. Record at least two hours of data, end logging sessions in the order that they were 

started. 
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7. Move onto next session, and repeat steps 1 – 6 until all stations have been occupied, 

all figures have been closed, and there are sufficient braces in the network. 

The field survey began on Monday, 9th of May 2016. For the first three days, the survey 

was carried out the survey unaccompanied. This made the field survey much slower than it 

necessary, resulting in increased downtime where baselines weren’t being measured while 

all other receivers were being set up. By the time four stations were visited, set up, logging, 

and had been packed up, six hours of the day had been consumed, resulting in one session 

per day. A colleague was brought in to assist with the survey allowing for multiple receivers 

to be set up at once, reducing downtime, therefore allowing two sessions to be surveyed in 

one day.  

As this was the case, a revised field procedure was implemented, and followed as detailed 

below: 

1. Pre-plan sessions for the day. 

2. Drive to and install or locate control mark, and set up GNSS receiver over control 

mark on tripod. 

3. Record all relevant information onto a standard booking sheet (Appendix C). 

4. Enter information into Trimble TSC3 data recorder, call up other surveyor on UHF 

radio when ready, and start survey. 

5. Record at least two hours of data, then end session. 

6. Move to next control station.  

7. Repeat process until all stations have been occupied, all figures have been closed, 

and there are sufficient braces in the network. 

3.4.3 Post Survey Procedures 

Following each survey undertaken daily, the raw data is downloaded, and backed up to a 

second location to ensure that there was a minimal chance of data loss. The raw data is also 

converted to RINEX format for post-processing in the future. Furthermore, the logging 
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sheets used to record the set up information is scanned into the computer so a digital copy 

of the field records is available in the future (Appendix C). 

3.5 Additional Data Required for Post-Processing 

3.5.1 Ephemeris Products 

To successfully post-process a GNSS survey, ephemeris products needs to be used. The 

broadcast ephemerides can be obtained directly from the GNSS receiver and used for post-

processing, or ultra-rapid, rapid, of final/precise ephemerides can be obtained from IGS.  

Ephemeris data provides information about the location, timing, and condition of the 

tracked satellites. This information is used to estimate the position of the GNSS receiver 

relative to the location of the tracked satellites, and therefore the position on the earth 

(Western Washington University 2016). 

In a technical sense, ephemeris data is used in GNSS post-processing to access a desired 

reference frame such as the ITRF92, on which GDA94 is based (Geoscience Australia 

2016b; ICSM 2014b). 

Users can post-process data relative to the broadcast ephemerides of the GNSS receiver 

being used, or post-process relative to the appropriate IGS precise ephemerides. 

Differences in these two products can be expected however, as the broadcast ephemerides 

are provided by the GNSS at the epoch of the survey, whereas the precise ephemerides are 

based on the most current realisation of the ITRF. 

While there would not have been much difference in the results of the survey based on the 

ephemeris product used for post-processing, all processing was carried out using the precise 

GPS ephemeris provided by IGS during the time of the survey. GLONASS ephemerides 

are also available, however as this survey was only processed using GPS, the GLONASS 

ephemerides were not required. 
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3.5.2 Data Provided from a Regulation 13 CORS Service 

A Regulation 13 certificate is a legal document that provides station coordinates and the 

uncertainty of the coordinates provided. A regulation 13 certified Continuously Operation 

Reference Station (CORS) is often used by surveyors and GNSS users as a means to 

connect confidently to datum, in the case of Australia, GDA94 (Geoscience Australia 

2016c).  

Using RINEX data from Regulation 13 CORS sites provides GNSS users with legal 

traceability of their observations under the National Measurement Act 1960 (Geoscience 

Australia 2016c). Legal traceability is a particularly important factor to consider when 

undertaking cadastral surveys such as a long line easement survey. 

For the purpose of this dissertation, the Regulation 13 CORS sites at Woolloongabba and 

Beaudesert will be used. Regulation 13 Certificates for these sites are attached in Appendix 

B. 

3.6 Post-Processing Testing Scenarios 

Some of the various testing methodologies used in this project are often not regarded as 

“best practice” by industry standards. However, this research intends to test the alternative 

methodologies to determine what qualities can be expected if they were to be adopted, and 

how much time and money can be saved by adopting these methods.  

3.6.1 Scenario One – Conventional Network Fixed to Local Control 

The first method tested in this project was a conventional GNSS network that utilised 

multiple sessions to achieve two, three or in some cases four occupations and closed figures 

without the use of dependant baselines. The network was constrained to local GDA94 

“datum” permanent marks and weighted accordingly. 

Surveying a network of this kind is time consuming. It requires multiple sessions, resulting 

in multiple occupations of each station, often some hours or days apart depending on the 

size of the network. Figure 3.6.1.1 illustrates the sessions required to establish a typical 
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static closed figure GNSS network. Each colour represents an individual session with four 

receivers, therefore each session can only produce three baselines, and four sessions would 

be required to complete the network. 

 

Figure 3.6.1.1: A typical GNSS network comprising of four sessions using four receivers 

fixed to local control. 

3.6.2 Scenario Two – Conventional Network Fixed to Regulation 13 CORS 

Method two was constructed around the ideology used in method one. However, rather 

than constraining the network to local control, the network was constrained to Regulation 

13 CORS sites at each end of the survey. In this case, those sites are located at Beaudesert 

and Woolloongabba.  
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The surveyed part of the network uses the same baselines and occupations as those in 

method one, meaning that the field work will amount to be the same as method one, but 

constrains the network to Regulation 13 CORS sites, by computing a baseline from the 

CORS site to one or more stations at the end of the network (figure 3.6.2.1).  

 

Figure 3.6.2.1: A GNSS network constrained to two CORS sites at each end of the 

network. 

3.6.3 Scenario Three – Positioning using only Regulation 13 CORS 

Computing precise coordinates using only one GNSS receiver logging static data can be 

done a number of ways, the easiest of which would be to post-process in an online service 

such as AUSPOS.  
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However, the method used in this scenario is based around a point positioning ideology 

and only requires one receiver to occupy one station at a time, until all stations in the 

network have been occupied. RINEX data for surrounding CORS sites for each day of 

survey should then be obtained to also use for the post-processing component. 

Baselines are then computed between each station to surrounding CORS sites to compute 

precise coordinates for the occupied stations (figure 3.6.3.1). In this method, no baselines 

are computed between the occupied stations.  

 

Figure 3.6.3.1: A GNSS network constrained to two CORS sites at each end of the 

network. Note the is no baselines between actual occupied stations. 

3.6.4 Scenario Four – Single Baseline Traverse 

The fourth method tested in this project is comparable to a conventional total station 

traverse that connects to two known points at each end of the traverse. However, carrying 
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out this traverse by conventional terrestrial methods would be difficult due to issues with 

line of sight and the length of the observed lines.  

This method would require two receivers to complete, computing a single baseline between 

two stations at a time. Initially, the two receivers would be set up simultaneously over two 

stations, and data would be logged for one session. In the next session, one receiver would 

be reset over the same mark that it was on, and the other would be move to a new mark in 

a leap-frog manner to compute another baseline, and so on until all stations had been 

occupied (Figure 3.6.4.1). This method would result in no closed figures, and therefore no 

redundancies and minimal degrees of freedom, making it in reality, an unreliable network. 

 

Figure 3.6.4.1: A single baseline GNSS network. 

3.6.5 Scenario Five – Constrained to AUSPOS Solution 

This method surveys a network in the same way as 3.4.6. However, the network is not 

constrained to any local control or CORS sites, but instead, AUSPOS computed 
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coordinates using GNSS data from the survey that is being processed (figure 3.4.5.1). It is 

also possible to weight these coordinates accordingly as GA’s AUSPOS service provides 

positional uncertainty at the 95% confidence interval with the report. 

For the purpose of this network, stations at the northern and southern most ends of the 

network were post-processed by AUSPOS and used as the constraints for the network. 

 

Figure 3.6.5.1: A GNSS network comprising of four sessions, constrained to two 

AUSPOS solutions. 

3.6.6 Scenario Six – Conventional Network Including Baselines to CORS  

This network utilises CORS data for the entire time span of the survey. A network is 

surveyed the same as 3.6.1 Scenario One – Conventional Network Fixed to Local Control, 
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then data from the Woolloongabba and Beaudesert CORS stations were added into the 

project for every day of the survey. In terms of field survey, this method takes no longer to 

complete than Scenario One – Conventional Network Constrained to Local Control, 

however additional processing time can be expected as there is more data to process. 

Traditionally, a session using four GNSS receivers would compute three independent 

baselines between the stations occupied. However, by adding CORS data into the project, 

an extra baseline can be computed between the base station and the CORS site (figure 

3.6.6.1). This was done for each session in the network, without computing any dependent 

baselines. The CORS site used for each session was dependant on the distance between the 

base station, and the two CORS sites used. For example, if WOOL was closer to the station 

being occupied than BDST, than WOOL would be used in that session. 

 

Figure 3.6.6.1: A GNSS network comprising of four sessions with additional baselines 

computed to the closest CORS site. 
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3.7 Post-Processing with AUSPOS 

It is widely acknowledged that the PPP method is inherently less accurate that conventional 

network post-processed GNSS surveys (Ebner & Featherstone 2008).  

However, post-processing with AUSPOS, which is not the same as PPP (see section 2.4), 

has been proven to provide reliable coordinates, in a short amount of time (El-Mowafy 

2011; Ocalan, Erdogan & Tunalioglu 2013).  

The AUSPOS post-processing process is rather simple and easy to use. It requires the user 

to convert their raw GNSS observation data to RINEX format for submission and submit 

to the online form for post-processing. 

The user should conduct some simple checks to ensure that the RINEX data that is 

submitted will provide a true result. Geoscience Australia (2016d) list all the items that the 

user needs to check before file submission to make sure that the result that they receive will 

be reliable. These are outlined below: 

 The GPS RINEX file/s contains more than one hour (preferably two) of GPS data. 

 The GPS RINEX file/s do not contain any data from the current UT day. 

 The GPS RINEX file/s do not contain more than seven days of data. 

 The GPS RINEX file/s names do not contain spaces. 

 When submitting multiple files, ensure the first four characters/numbers of the file 

names are not the same. 

 The selected antenna uses the IGS naming convention for the antenna type. 

The only input the user is required to provide is an antenna height to the Antenna Reference 

Point (ARP) which is a location generally at the base of the antenna at a known offset from 

the antenna phase centre (APC), where all GNSS measurements are made to. The antenna 

type, using the IGS antenna naming convention, and the users email address for a computed 

result. Figures 3.7.1, 3.7.2, and 3.7.3 illustrate the ARP location on each antenna that was 
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used as a part of this research. This is represented as the reference surface for National 

Geodetic Survey (NGS) offset measurements. 

 

Figure 3.7.1: Antenna reference surface diagram for Trimble Zephyr and Zephyr model 2 

antenna (National Geodetic Survey 2016). 

 

Figure 3.7.2 Antenna reference surface diagram for Trimble R8 GNSS receiver (National 

Geodetic Survey 2016). 
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Figure 3.7.3: Antenna reference surface diagram for Trimble R10 GNSS receiver 

(National Geodetic Survey 2016). 

Once the raw GNSS file containing the observation data was converted to RINEX format 

using Trimble’s Convert to RINEX utility (Trimble Navigation 2016b), it was uploaded to 

the online AUSPOS service (Figure 3.7.4). The results for each file were then received by 

email and tabulated in Microsoft Excel. It is important to note that AUSPOS only looks at 

the antenna type and height to the ARP that the user provides on the interface shown in 

Figure 3.7.4. The antenna type and height in the RINEX file is ignored by AUSPOS. 

 

Figure 3.7.4: AUSPOS RINEX data submission for post-processing web page 

(Geoscience Australia 2016e). 
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3.8 Post-Processing 

Upon completion of the field survey, and the download and conversion (if necessary) of all 

the required data to post-process the six networks, the following steps could be carried out 

to compute the networks; session editing, baseline processing, the minimally constrained 

network adjustment, and the fully constrained network adjustment. 

The data was then imported into a suitable program that is capable of processing GNSS 

data. For this project the program selected was Trimble Business Centre (Trimble 

Navigation 2016c), as it is capable of baseline processing, and performing a least squares 

network adjustment.  

After the data was imported into TBC (Trimble Navigation 2016c), the dependent baselines 

were removed, the baselines were processed, the logging sessions were analysed and 

cleaned, and the network was adjusted. The network adjustment process was carried out in 

two steps. Firstly, a zero constrained adjustment for each method was performed to a 

reference factor of approximately one. This was carried out to test the networks internal 

reliability, and to calculate the SU of each station. Following the zero constrained 

adjustment, a fully constrained adjustment was carried out. This was done to fit the network 

into an existing set of parameters, for example, a local control network or CORS network, 

and to also compute a PU for each station. This network adjustment was also carried out to 

a reference factor of approximately one. 

3.8.1 Session Editing 

The data was imported into a separate TBC project for each testing method and also one 

master project that contained all the raw data, that had not been manipulated. 

Once the data was imported into the relevant TBC project and all the dependant baselines 

had been removed, the baselines were processed, and a baseline processing report was 

produced. From this report, baselines containing noisy data and cycle slips could be 

identified, and this data could be then removed.  
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An example of poor GNSS data is illustrated in the graph shown in Figure 3.8.1.1. This 

graph shows the data from GPS SV16 used to form baseline 155 from a session used in 

Method Four – Single Baseline Traverse. This sort of data is typically assessed and often 

removed from the baseline. If there is not enough good data to form the baseline, the data 

should be removed entirely and the baseline should be remeasured and reprocessed. Figure 

3.8.1.2 is an example of good GNSS data from GPS SV16 used to form baseline 25 in 

method five.  

 

Figure 3.8.1.1: An example of poor data from GPS SV16 used in method four.

 

Figure 3.8.1.2: An example of good data from GPS SV29 used in method five. 
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3.8.2 Minimally Constrained Adjustments 

The minimally constrained adjustment is carried out to determine the overall reliability of 

the network. It is a useful method for detecting gross errors or blunders such as incorrect 

antenna heights. It is also useful in computing a scalar to scale the baselines to get a more 

realistic error estimate, which is then used to calculate SU and RU (University of Southern 

Queensland 2013). 

The minimally constrained adjustments were run for each method that was tested. Each 

method, except method four, initially failed the minimally constrained adjustment. The data 

was checked to confirm that no gross errors had been made, and subsquently a scalar was 

applied to the network and a new adjustment was performed. This resulted in a new network 

reference factor of approximately one which provided more realistic error ellipses for each 

of the stations. Using the resultant standard error ellipses, the SU for each station could 

then be calculated. 

3.8.3 Fully Constrained Adjustments 

A fully constrained adjustment should be performed to fit the survey into an existing set of 

parameters. Following the minimally constrained adjustment, a fully constrained 

adjustment was performed on each method. Methods one and four were constrained to 

existing local control networks in the form of GDA94 “datum” PSM’s. Methods two, three 

and six were constrained to Regulation 13 CORS sites that form part of a larger CORS 

network, and method five was constrained to an AUSPOS solution at each end of the 

survey. 

Each method passed the first fully constrained adjustment as the scalar from the minimally 

constrained adjustment was applied to the baselines. The standard error ellipses were then 

used to calculate the PU for each station in each network. 
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3.9 Summary 

The aim of this chapter was to determine a suitable location and method for conducting the 

field survey component of this dissertation so that enough data was collected to post-

process in a series of different configurations. The field survey would inevitably employ 

the classic static method for data collection, and adhere to SP1 standards for a classic static 

survey. 

The main objective of the chapter was to determine a series of post-processing 

configurations that would use conventional baseline post-processing techniques as well as 

integrating these techniques with online post-processing services. 

Finally, a way of analysing the different testing scenarios was proposed. This will be carried 

out in the following chapter and will include an independent analysis of each network, 

addressing network reliability and redundancy, then assessing the networks together, on a 

time/cost and uncertainty basis to give some indication of what network configuration will 

provide the best uncertainty for the least amount of time. The results and analysis of each 

testing scenario are discussed in Chapter Four – Results and Analysis.  
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4.0 Results and Analysis 

4.1 Introduction 

The testing scenarios and procedures were outlined in Chapter 3. This chapter analyses the 

data and results that have been produced as an outcome of using testing the scnarios. This 

chapter will summarise the results produced by TBC (Trimble Navigation 2016c) and 

AUSPOS for each of the testing methodologies discussed in the previous chapter. 

The results in this chapter will then be used in the following chapter which will analyse the 

results in comparison to time/cost and network reliability and uncertainty and present them 

in a way that advises surveyors on what accuracies can be expected based on the style of 

survey being conducted. 

4.2 Independent Analysis 

This section will provide an insight into the results of each scenario tested individually. 

This will include an assessment of the network adjustment reports (Appendix E), the 

computed SU and PU for each station, the number of independent occupations for each 

station, and the overall reliability of the network. 

4.2.1 Post-processing with AUSPOS 

During the field survey of this project, each station was occupied a number of times for 2-

hours or more at a time. Each RINEX file for each station was submitted to AUSPOS for 

post-processing. The results for each occupation were provided in GDA94 format on 

ITRF92 in a pdf file and were received by email a short time after submission.  

Realistically, only one RINEX file is required to obtain a position, however, all of the 

additional files were submitted as it required minimal extra effort to do so. Doing this also 

provides a gross check on the original positions computed and will detect if any blunders 

had been made during the field survey. This can be determined as the additional positions 

are computed using data from a different occupation of the same station, taking advantage 
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of the change in satellite geometry and also different antenna heights and observation 

lengths. 

In total, 68 files were submitted to AUSPOS, and 60 provided reliable results. The eight 

outliers provided poor PU at the 95% confidence level and were excluded from the rest of 

this project. According to the AUSPOS results, this is often the result of poor ambiguity 

resolution in the baselines used to calculate the position of the occupied station. 

After all the AUSPOS reports had been received, the results were tabulated in a 

spreadsheet, and where multiple results had been received for one station, all results were 

averaged to obtain a single coordinate for the station (Table 4.2.1.1). 

AUSPOS Results 

Pt Id Easting Northing  Height (AHD) PU h 

8000 502423.614 6945838.203 11.840 0.012 

8001 501308.666 6942562.865 28.096 0.012 

8002 501571.881 6941988.929 37.577 0.018 

8003 501907.484 6940745.689 59.911 0.012 

8004 501861.021 6939961.345 61.991 0.018 

8005 501804.654 6938616.214 64.986 0.011 

8006 500762.571 6936689.199 65.630 0.011 

8007 499839.110 6935557.948 52.954 0.022 

8008 498807.056 6933940.087 71.123 0.021 

8009 498376.237 6933017.087 69.765 0.013 

8010 497877.115 6931994.929 70.249 0.011 

8011 497216.887 6931644.585 54.184 0.013 

8012 496661.134 6929507.605 56.507 0.013 

8013 497045.763 6928821.406 58.114 0.019 

8014 495976.151 6926491.858 47.869 0.019 

8015 494336.488 6922279.538 60.145 0.013 

PM 58886 496932.704 6931847.773 76.078 0.014 

PM 59279 502887.372 6946191.534 17.995 0.018 

PM 61261 492475.275 6917933.873 52.991 0.014 

PM 90501 499169.749 6933677.843 57.041 0.016 

PM 101732 502055.227 6940700.739 59.933 0.012 

PM 107142 495042.702 6924708.251 39.092 0.045 

PM 121890 502287.574 6944569.174 34.432 0.012 

PM 171104 492752.696 6920798.309 41.653 0.016 
 

Table 4.2.1.1: AUSPOS computed MGA94 coordinates, AHD71 heights, and the 

respective computed horizontal PU for each station. 
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The AUSPOS post-processing method provided good quality results for a majority of the 

data, with the exception of eight poor results mentioned earlier. The average computed PU 

was 0.016m where the best PU was 0.011m at stations 8005, 8006 and 8010. The worst 

computed PU was 0.045m, this was observed at PM 107142. This station returned only one 

result that was not flagged as affected by poor ambiguity resolution. The result for PM 

107142 has the highest PU of the AUSPOS dataset. The next highest computed PU is 

0.022m at station 8007, almost half of the computed PU for PM 107142. A second 

independent occupation would be required to recompute a position that provides an 

acceptable uncertainty, and a third independent occupation would confirm the result of the 

second occupation. 

In the AUSPOS dataset, only three of the 22 stations submitted produce a computed PU of 

0.020m or more (as detailed in Figure 4.2.1.1). This dataset provides a good indication of 

the PU that can be expected from submitting two to three hours of GPS data to AUSPOS 

for post-processing. 

 

Figure 4.2.1.1: PU uncertainty as computed by the AUSPOS post-processing service. 

4.2.2 Scenario One - Conventional Network Fixed to Local Control 

The first method that was tested was the conventional network that was constrained to the 

local available control. As this method followed a relatively well researched approach to 
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surveying a GNSS network using independent baselines and occupations, it was expected 

that it would provide reliable results that would produce uncertainties similar to the control 

that the network was constrained to.  

The network consists of 24 stations, spanning approximately 35 km in length, and is 

constrained to two datum PSM’s at each end of the network (Figure 4.2.2.2). The two 

staitons used to constrain the network were PSM 59279, and PSM 61261, which have 

horizontal PU’s of 0.013m and 0.009m respectively (Queensland Government 2016). 

Results from this network adjustment indicated that there was a correlation between the 

number of independent occupations made at a station and the SU for that station. It is 

evident that the more independent occupations made at a station, the high the SU will be 

for that station. This can likely be explained by the different antenna heights, small centring 

errors, and different satellite geometry at the time of each independent occupation. 

 The effect of the amount of independent occupations can be clearly seen at stations 90501, 

101732, 107142, 121890, and 171104 in Figure 4.2.2.1, where the more independent 

occupations made at a station, the higher the SU. 

 

 Figure 4.2.2.1: The computed horizontal SU and PU for each station surveyed in 

the network, and the number of independent occupations per station. 
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Figure 4.2.2.2: The network that was surveyed using Scenario One – Conventional 

Network Fixed to Local Control. 
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4.2.3 Scenario Two - Conventional Network Fixed to Regulation 13 CORS 

In Scenario Two, an identical network to Scenario One – Conventional Network Fixed to 

Local Control was surveyed. However, this network included the use of Regulation 13 

CORS data to provide a more reliable constraint (Figure 4.2.3.2). 

This network was constrained to CORS stations at Beaudesert and Woolloongabba using 

the coordinates and uncertainties published on the Regulation 13 certificates (Appendix B) 

for each station.  

Similar to the previous network, this network produced reliable coordinates. This is a result 

of the amount of independent occupations at each station, and the high number of 

redundancies and degrees of freedom in the network (Figure 4.2.3.1). 

 

Figure 4.2.3.1: The computed horizontal SU and PU for each station surveyed in the 

network, and the number of independent occupations per station. 
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Figure 4.2.3.2: The network that was surveyed using Scenario Two – Conventional 

Network Fixed to Regulation 13 CORS. 
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4.2.4 Scenario Three - Positioning Using Only Regulation 13 CORS 

In scenario three, a point positioning approach was adopted, whereby baselines were only 

computed between CORS stations and the occupied stations. No baselines were actually 

computed between occupied stations (Figure 4.2.4.2). The idea of this was to reduce the 

field observation time required to survey the network. This network would only also require 

one receiver to complete. 

Despite the high number of redundancies and degrees of freedom in the network 

adjustment, this approach to long line network surveying produced a low and unrealistic 

SU (as seen in Figure 4.2.4.1). This is a result of only a single independent occupation at 

each station, so there is no real certainty in the observation itself. If a second or third 

independent occupation was observed, any blunders would be detected and a much higher, 

and more realistic SU and PU would be calculated.  

To combat the unreliable result, at least a second independent occupation should be 

observed. This method of measuring a network for long line control purposes would then 

come into line with SP1 specifications (ICSM 2014b). 

 

Figure 4.2.4.1: The computed horizontal SU and PU for each station surveyed in the 

network. 
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Figure 4.2.4.2: The network that was surveyed using Scenario Three – Positioning Using 

Only Regulation 13 CORS. 
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4.2.5 Scenario Four - Single Baseline Traverse 

The fourth scenario tested computed a single baseline between each station, surveying the 

network in a leapfrog fashion with only two receivers.  

Initially, a minimally constrained adjustment was attempted in order to calculate the 

corresponding SU’s for each station, however, as there were no redundant observations or 

closed figures in the network, the minimally constrained adjustment failed to compute a 

solution. A fully constrained adjustment was the only adjustment that would compute a 

usable solution. 

Originally, this network was to be constrained to the Beaudesert and Woolloongabba 

CORS sites used in Scenario Two and Three. However, when attempting to run the network 

adjustment for this scenario constrained to those CORS sites, the adjustment passed with a 

completely unrealistic network reference factor of 0.21.  

The network reference factor is defined by The University of Southern Queensland (2013) 

as a comparison of observational residuals against the pre-adjustment expected 

observational residuals in a network adjustment. If the observational errors have been 

accurately estimated when the baselines are processed, it is expected that the residuals are 

approximately the same as the estimated errors. When this occurs, a network reference 

factor of one is achieved. 

In this case, the network adjustment residuals had been grossly over estimated. The network 

was computing far better than anticipated resulting in unrealistically small error ellipses. 

To analyse why this was occurring, the CORS data was removed from the project and the 

network was then constrained to local datum control at each end of the network, PM 59279 

and PM 61261. When readjusted, the network returned a reference factor of 1.08, a more 

likely result for the type of survey performed.  

The network in this scenario is a poor one. It is made up of no redundant observations, poor 

network geometry, and no degrees of freedom. Furthermore, the resulting PU of each 
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station is on average, greater than 0.020m (Figure 4.2.5.1). The final adjusted network is 

illustrated in Figure 4.2.5.2. 

 

Figure 4.2.5.1: The computed horizontal SU and PU for each station surveyed in the 

network, and the number of independent occupations per station. 
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Figure 4.2.5.1: The network that was surveyed using Scenario Four – Single Baseline 

Traverse 
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4.2.6 Scenario Five - Constrained to AUSPOS Solution 

The fourth scenario tested was an identical network as Scenario One – Constrained to Local 

Control. However, this network, instead of being constrained to local PSM’s, GNSS 

observation data for the occupations at the fixed stations was post-processed with AUSPOS 

and the network was then fixed to the coordinates provided by AUSPOS and weighted 

accordingly. Figure 4.2.6.2 illustrates that the network geometry has not changed between 

this scenario, and scenario one. 

This method produced reliable results, with slightly higher PU’s than scenarios one and 

two, this is an effect created by the result of the PU for the constrained stations computed 

by AUSPOS, which were 0.018m for PM 59279, and 0.014m for PM 61261. 

There was also a noticeable trend with the amount of independent occupations made at a 

station, and that stations resulting SU. This is a normal effect and is in-line with the trends 

found for scenarios one and two (Figure 4.2.6.1) 

 

Figure 4.2.6.1: The computed horizontal SU and PU for each station surveyed in the 

network, and the number of independent occupations per station. 
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Figure 4.2.6.2: The network that was surveyed using method five. 
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4.2.7 Scenario Six - Conventional Network Including Baselines to CORS 

This final testing scenario initially started as an identical network to Scenario Two – 

Conventional Network Fixed to Regulation 13 CORS. However, for every session surveyed 

in the network, an additional baseline from the base station to the closest CORS site was 

added to the session (Figure 4.2.7.2). 

This added no extra field work, and only required the download of the CORS RINEX data 

for the time period that the survey was carried out, which was available from the other post-

processing scenarios. 

By adding the extra baseline to the CORS sites, the uncertainties calculated for the network 

were a few millimeters lower than Scenarios One and Two. This is a result of the extra 

observation to the fixed station of a high order, subsequently resulting in a more reliable 

and robust network (Figure 4.2.7.1). 

 

Figure 4.2.7.1: The computed horizontal SU and PU for each station surveyed in the 

network, and the number of independent occupations per station. 
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Figure 4.2.7.2: The network that was surveyed using method six. 
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4.3 Comparisons 

Following the discussion of the independent results of each post-processing scenario, this 

section will analyse the results from each scenario against each other. This will provide 

some idea of what method is going to provide the best results based on reliability, 

uncertainty, and time and cost. 

4.3.1 Uncertainty vs Time and Cost 

To get some idea of the cost of establishing a long line network using one of these scenarios, 

the time and number of sessions required to survey each network must be addressed. Figure 

4.3.1.1 illustrates the number of sessions required to survey each network, and also the time 

required to survey each network in hours. 

The time for each network shown in Figure 4.3.1.1 is an approximation based on the field 

survey carried out that collect all the data. This takes into account the following: 

 The amount of sessions in the network; 

 the logging time which was a minimum two-hour occupation time (also inclusive 

of set up and pack up time, and also travel between stations, rounded to 

approximately three-hours); 

 number of receivers required to survey the network; 

 number of field staff; 

 daily download and file conversion time; 

 data import into TBC; 

 data cleaning (noisy data, cycle slips, removal of dependant baselines); 

 baseline processing; and 

 network adjustment and analysis. 

There is an obvious association between the number of sessions required to survey the 

network and the time required to survey the network, as one of these factors increases, so 
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does the other. This result was expected and is not surprising. As more field work is 

completed, the amount of time will also rise. 

 

Figure 4.3.1.1: Number of sessions and receivers required to complete each method. 

To look into what effect more time and observation sessions has on the results of a network, 

the resulting uncertainties and cost were analysed. There was a distinct correlation when 

comparing the cost of establishing a particular network to the uncertainty that the network 

may achieve. However, the outcome of this comparison was not what was originally 

expected. 

It was initially expected that the greater quality of network (lesser uncertainty, higher 

redundancy) the more the network would cost. However, the opposite outcome was 

realised. Networks with more observations, and higher redundancy factors resulted in better 

SU and PU values and a lesser cost. Typically, these networks adopted a conventional style 

of GNSS network surveying where dependent baselines were disregarded, and the network 

was made up of multiple sessions and independent occupations. 

Figure 4.3.1.2 demonstrates the fact that the testing scenarios that adopted conventional 

styles of GNSS network surveying proved to be more cost effective, and more reliable. 
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Figure 4.3.1.2: Scatterplot illustrating the average SU and PU against the cost required to 

complete the network based on an hourly rate of $150 per hour. 

Testing Scenario Three – Positioning Using Only Regulation 13 CORS resulted in a false 

positive and should be disregarded as a reliable way to survey a long line network. The 

network is made up of a series of single occupations on each station, meaning that there is 

only one observation to form a coordinate for the station. A high degrees of freedom for 

the network is a result of two baselines from each station to two Regulation 13 CORS sites. 

Despite the high degrees of freedom in this network, there is no means of blunder detection 

due to the single occupations, and consequently this survey may contain a number of gross 

errors that are undetectable. Furthermore, this network is not a cost effective solution to 

GNSS long line network surveying. 

Scenario Four – Single Baseline Traverse should also be disregarded due to its high cost 
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4.4 Coordinate Comparisons 

To confirm that each network was computing coordinates similar to the last, a coordinate 

comparison was conducted. This comparison tabulated the final coordinates into a 

spreadsheet and conducted an analysis based on the deviation from the computed mean 

coordinate from the station. If there was a large deviation from the computed mean 

coordinate, further analysis would be conducted to identify the cause of the deviation. 

Figure 4.4.1 demonstrates that there was no significant deviation from the mean to further 

analyse. This also validates the reliability of the coordinates calculated for each of the 

testing scenarios for each station. 

 

Figure 4.4.1: Maximum deviation from the computed mean coordinate for each station. 
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4.5 Summary 

This chapter has analysed the results of post-processing a GNSS network in the 

configurations mentioned in Chapter 3 – Method. This has been carried out by analysing 

the networks independently of each other, in assessing network reliability and uncertainty, 

and also assessing the networks by assessing other factors, such as time/cost, final 

coordinate spread. 

Networks one, two, five, and six were found to be the most reliable configurations as they 

provided good quality results in terms of redundancy and uncertainty. These configurations 

adopted a conventional style of GNSS network surveying where the network is made up of 

a number of sessions and independent occupations resulting in no dependent baselines. 

Networks three and four adopted unconventional styles of GNSS network surveying and 

consequently produced poor quality results. These networks had minimal redundant 

observations and limited independent occupations, making blunder detection difficult and 

as a result it was hard to have any confidence in these networks.  

The following chapter will address the effect that making independent occupations has on 

the reliability of a network, and how networks three and four would have improved if some 

form of redundant observation was made. In addition, the outcomes of each network and 

recommendations based on these results will be identified and explored. 
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5.0 Discussion 

5.1 Introduction 

After reviewing the relevant literature, and testing the developed scenarios established from 

the literature, some interesting results were produced. 

This chapter explores the effect of these results in a broader sense than just narrowing the 

discussion to the relevant to the network that was tested. This chapter will analyse the 

graphs and results produced in chapter four, and discuss the benefits and shortfalls of each 

scenario tested in chapter three. 

This will include looking at the suitability of the testing scenarios relevant to a series of 

applications, and how the testing scenarios can be can be improved. Furthermore, this 

chapter will also discuss some alternative scenarios that have not been addressed during 

the course of this research, but may provide a better result, than any network included in 

this dissertation. 

5.2 Researched Scenarios 

5.2.1 Positive Outcomes 

For the purpose of this dissertation, a positive outcome is defined as an outcome that 

provides a quality result. This may be in terms of network reliability, uncertainty, time or 

cost. 

A number of the scenarios tested in this dissertation produced some positive outcomes. 

Scenarios one, two, five and six all returned high quality networks, with low survey and 

positional uncertainties. These results are due to a number of common factors that are 

evident in each of the above mentioned scenarios. 

The most important of these factors is the high amount of redundant observations in each 

network, this can be seen in the network adjustment reports for each network in the amount 

of degrees of freedom each network has in Figure 5.2.1.1 (Appendix E). 
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Testing 

Scenario 
Scenario One Scenario Two Scenario Five Scenario Six 

Degrees of 

Freedom 
66 67 66 118 

Figure 5.2.1.1: The degrees of freedom in each network following the fully constrained 

least squares network adjustment. 

The quality of each of these networks is put down to two key factors that are common 

among the four networks. Firstly, each of these networks is made up of closed figures with 

multiple baselines to each station. Secondly, each of these networks is 95% made up of two 

or more independent occupations and 55% of three or more independent occupations as 

seen in Figure 5.2.1.2. As a result of the larger number of independent occupations, more 

confidence can be held in the resultant coordinates of each station. By having multiple 

independent occupations, any blunders that may have occurred during the field survey such 

as antenna height or centring errors can be easily detected. 

  
Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Average SU 0.005 0.006 0.003 - 0.005 0.005 

Average PU 0.011 0.010 0.006 0.027 0.014 0.008 

% of 2 or 

more 

Independent 

Occupations 

95% 95% 0% 92% 95% 95% 

% of 3 or 

more 

Independent 

Occupations 

55% 55% 0% 0% 55% 55% 

 

Table 5.2.1.2: Percentage of independent occupations used in each method and computed 

average SU and PU. 

It is also important to note that Scenario Three – Positioning Using Only Regulation 13 

CORS also returned a degrees of freedom of 70 following the fully constrained network 

adjustment. However, this value has been disregarded due to the lack of independent 

occupations in the network (Figure 5.2.1.2). This will be further discussed in section 5.2.2 

Negative Outcomes. 
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5.2.2 Negative Outcomes 

The remaining two testing scenarios, Scenario Three – Positioning Using Only Regulation 

13 CORS and Scenario Four – Single Baseline Traverse produced results that are unreliable 

and also far costlier than some of the networks that produced quality results.  

Scenario Three which used single occupations on each station to coordinate the station 

initially produced some good results. At a glance, it looks as if this network produces the 

best outcome of all the tested scenarios. This is a result of the uncertainties calculated for 

the network as well as the degrees of freedom in the network. However, this result is a false 

positive, as each station is made up of only one occupation. Having only one occupation 

on each station means that there is no way of detecting blunders in the occupation that may 

have been made during the field survey such as centring errors or antenna height errors. As 

a result, these errors would not show up in the least squares network adjustment, and less 

confidence is held in the coordinates computed for each station.  

The final testing scenario, Scenario Four – Single Baseline Traverse is the opposite to 

Scenario Three in that each station except PM 61261 and PM 59279 has a second 

independent occupation, meaning there is more confidence held in this network. However, 

this network is made up of really poor network geometry. There are no closed figures in 

the network and no redundant observations, resulting in a degrees of freedom value of one. 

This method also has larger error ellipses than any other network tested in this dissertation, 

and consequently, the largest positional uncertainty. 

Furthermore, these two networks are among the most expensive networks to establish 

(Figure 4.3.1.2). It is important to note however, that the cost calculated for Figure 4.3.1.2 

is based on the use of one GNSS receiver to compute the network for scenario three, and 

the cost for scenario four is based on the use of two GNSS receivers, whereas the cost for 

scenarios one, two, five, and six are based on the use of four receivers. 
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5.3 Recommendations 

Following the testing of scenarios mentioned in chapter three of this dissertation, some 

recommendations can be made in regards to how to carry out long line GNSS surveys for 

control network purposes based on the results.  

Scenarios one, two, and five all produced good quality networks, in terms of both network 

adjustment quality and the calculated uncertainties. Scenario One – Conventional Network 

Fixed to Local Control, is a good method of establishing a long line control network if the 

network is to fit into an existing control network or set of parameters. It is a lower cost 

method that will provide results that can be confidently used for the purpose required. 

The second testing scenario, a Conventional Network Fixed to Regulation 13 CORS sites 

will produce good results in both in terms of network adjustment and also uncertainty. It is 

a good method of achieving datum coordinates, with legally traceable observations, which 

is important when undertaking any sort of cadastral survey. Therefore, this method of 

establishing GNSS control would be well suited to the purpose of a long line easement 

survey where legal traceability is an important factor to consider. Furthermore, adding the 

extra baselines to the Regulation 13 CORS sites does not require much time or effort 

therefore making it not much more expensive than scenario one. 

Scenario Five – Constrained to AUSPOS Solution is another method of surveying a long 

line network that is cost efficient and reliable. By post-processing an independent 

occupation with AUSPOS and constraining the network to the AUSPOS result, any 

movement or disturbance that may have occurred in the ground surrounding the survey 

mark will be accounted for.  

The final tested scenario that is recommended based on the outcomes of this dissertation is 

Scenario Six – Conventional Network Including Baselines to CORS. This testing scenario 

produced the best results of all of the networks tested. However, this result comes at an 

additional cost due to the additional post-processing that is required from the added data 

http://scholar.google.com.au/scholar?q=CSR+legal+traceability&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjF7IT9qqrPAhXFGJQKHbhQDhsQgQMIGTAA
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from the CORS sites. As a result of the additional post-processing, it is expected that the 

network quality will be superior to that of scenarios one, two or five. This is influenced by 

the number of additional baselines to the CORS sites that the network is constrained to. 

The remaining two testing scenarios, Scenario Three – Positioning Using Only Regulation 

13 CORS and Scenario Four – Single Baseline traverse are not recommended for use for 

any purpose. This is due to a number of factors. 

Scenario Three – Positioning Using Only Regulation 13 CORS initially produced good 

results. The network adjustment contained 70 degrees of freedom, and computed small 

error ellipses, so it seemed as if the results made up a reliable network. However, this is 

result was a false positive as the network is made up of single occupations of each station. 

Surveying a GNSS network following this method provides no means of blunder detection, 

so it is very difficult to have any sort of confidence in the observations. If a second 

independent occupation was made to each station it is expected that the error ellipses would 

become larger, but not by a significant amount, however this would provide network that 

the survey could have more confidence in. 

Scenario Four – Single Baseline Traverse produces the worst result of all the networks 

surveyed. This finding is based on a combination of factors that are evident throughout the 

other testing scenarios. The geometry used in this network is the biggest contributing factor 

to the poor result achieved by this testing scenario. The network is made up of single 

baselines, and double occupations, however, there are no redundant observations in the 

network making it very difficult to confirm the reliability of the network and the position 

of each station, hence the large PU values calculated for each station. Furthermore, both 

Scenarios Three and Four are far more expensive methods of establishing a GNSS control 

network due to the amount of receivers required to survey the network, and also the 

increased logistical requirements that are a result of the lesser amount of receivers. 
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The final method of establishing a long line control network via GNSS that was tested was 

post-processing minimum two-hour occupations with AUSPOS. This method is cost 

efficient, and becomes more efficient depending on the amount of receivers that are utilised 

in the survey. However, this method of establishing a control network has its downfalls. 

When post-processing with AUSPOS, there is always the chance that the GNSS data may 

not produce an acceptable solution. This may be the result of short occupation times, poor 

ambiguity resolution, or simply multipath. Despite the 3.5-hour occupation time, a station 

observed as part of this dissertation still returned a poor result from AUSPOS. The only 

way to confirm this result, is to make a second, longer independent occupation and re-

process with AUSPOS. As this is the case, AUSPOS is not recommended for establishing 

long line GNSS control networks. 

5.4 Alternative Methods 

This dissertation has surveyed and analysed the results of seven different testing scenarios 

including post-processing with AUSPOS. However, there are still a number of scenarios 

that could produce better results than the ones tested in this dissertation. These may be a 

combination of the tested scenarios in this dissertation, or entirely new dissertations. They 

may also look at using a different GNSS observation method such as fast static or 

combining the classic static and fast static method together. 

An example of an alternative method is the combination of Scenario Three – Positioning 

Using Only Regulation 13 CORS and also Scenario Four – Single Baseline Traverse. This 

method would also use quick static method in addition to the classic static method used 

throughout the course of this dissertation. The classic static baselines would make up the 

Positioning Using Only Regulation 13 CORS component of the survey while the quick 

static baselines would make up the Single Baseline Traverse Component of the survey. 

This is illustrated in Figure 5.4.1 where the magenta baselines from the CORS sites 
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represent the static baselines, and the blue baselines between the internal stations represent 

the quick static baselines.  

 

Figure 5.4.1: An example alternative testing scenario, where the magenta lines represent 

static baselines to CORS sites and the blue lines represent quick static baselines between 

the occupations. 

The survey scenario would use two GNSS receivers to compute static baselines from the 

CORS sites to two of the stations that are occupied by the receivers. Once these static 

observations have been completed, an independent occupation is made at each station, and 

a 15 – 20-minute quick static baseline is then surveyed between the two stations. Following 

the quick static observation, one receiver is moved to the next station, while the other 

receiver is reset over the mark to make a third independent occupation on the station, and 
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new static baselines are surveyed from the CORS sites to the two occupied stations. This 

process is repeated until all stations have been occupied, static baselines have been 

surveyed between each station and the chosen CORS sites, and quick static baselines have 

been surveyed between the stations, forming a single baseline traverse style quick static 

network. 

5.5 Summary 

The aim of this chapter was to analyse the effect of the results laid out in Chapter Four 

obtained from post-processing the surveyed network in a series of configurations 

determined in Chapter Three.  

Some positive outcomes were realised from a series of the testing scenarios tested within 

this dissertation. They were deemed positive in terms of network reliability, redundancy, 

uncertainty, and time/cost to survey the network and have the ability to provide the end 

product. These outcomes prove that there is an optimal solution to establishing long line 

GNSS networks dependent on the application. However, some of the other testing scenarios 

proved to provide a negative outcome based on the same factors. This was often a result of 

a high degree of uncertainty or cost, or a low degree of redundancy or quality in the 

network. 

Further to the outcomes of the tested scenarios in this dissertation, an example of an 

alternate testing method was provided. It is predicted that this scenario will provide a high 

quality network at a low cost due to the amount of redundancy in the network and the small 

amount of occupations required to actually survey the network. This alternate method and 

some further work and a review of this dissertation will be discussed in the following 

chapter. 
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6.0 Conclusion 

6.1 Introduction 

The analysis of the results in Chapter Four and the discussion of the impacts and 

implications of these results in chapter five, has proven that some testing scenarios produce 

better results in terms of network quality and cost than others. 

This chapter will briefly review the findings of this research and asses how it addressed the 

aim presented in the initial chapter of this dissertation. Furthermore, this chapter will 

present some recommendations on how to carry out long line GNSS control surveys and 

also identify some further research that can be completed in this area to further fill the gaps 

in the literature. 

6.2 Review 

The initial aim of this research was to determine an optimal configuration of a control 

network for a long line survey. This survey was to be established by GNSS methods, and 

then post-processed using different testing configurations. The surveys would then be 

analysed in terms of network quality, addressing the redundancies in the network, the 

uncertainties of the stations that make up the network, and on a time and cost basis. 

This research found that there was a series of scenarios that would provide results that were 

acceptable in terms of network quality and also cost. Furthermore, it was also identified 

that GNSS control networks could achieve better network quality for an additional cost by 

introducing data to the network from a series of CORS stations. This additional cost was 

not the result extra field work, but rather more post-processing from the extra baselines 

introduced into the network. 

While there were a number of scenarios that were identified as acceptable for a number of 

applications, there were also some scenarios that failed to be deemed acceptable for use in 

most circumstances. These networks were comprised of poor field and observation 
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techniques, and often lacked redundant observations, leaving the surveyor to question the 

reliability of the network regardless of the result of the baseline processing and network 

adjustment. It was proven that despite the result on the network adjustment report, a second 

or third independent occupation is required when undertaking a GNSS control survey to 

have any form of confidence in the coordinates of the station.  

Overall, this dissertation addressed the aim by carrying out a long line GNSS control survey 

using a method that collected enough data to post-process in a series of different 

configurations. This allowed for the different scenarios to be assessed in terms of network 

reliability and also time/cost to survey the control network. It was then possible to identify 

the scenarios that would be more cost effective than others, and recommend those scenarios 

for use in a number of real world applications. 

6.3 Further Research 

This dissertation is not exhaustive in regards to the methods that were tested. There is a 

large amount of further work that can done by continuing this research. This may include 

testing a number of alternative scenarios, similar to the methods mentioned in section 5.4 

of this dissertation or even the method in Figure 5.4.1, or also looking at the effect different 

observation methods have on the uncertainty. Furthermore, some of the scenarios 

mentioned in this dissertation can be combined to make alternative testing scenarios, and 

these may result in a better network than any one tested as a part of this dissertation. 
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Appendix A – Project Specification 

ENG4111/4112 Research Project 

Project Specification 

For:  Nicholas Lund 

Title:  Optimization of GNSS Control Networks in Long Line Surveys 

using Precise Point Positioning (PPP) and Static Baselines 

Major: Spatial Science (Honours) 

Supervisors: Associate Professor Peter Gibbings 

Enrolment: ENG4111 – EXT S1, 2016 

ENG4112 – EXT S1, 2016 

Project Aim: To determine the optimal configuration of a control network for a 

long line surveys established by the combination of Precise Point 

Positioning and static baselines. 

Programme: Issue B, 4th April 2016 

1. Research GNSS data post-processing methods, including PPP, and 

conventional post-processing in a least squares package, standards for 

GNSS control networks in Queensland. 

2. Conduct a static GNSS survey in accordance with the Department of 

Natural Resources and Mines (DNRM), and Intergovernmental 

Committee on Surveying and Mapping (ICSM) standards for GNSS 

control surveys and post-process in a suitable least squares package. 

3. Post-process the GNSS data using an online PPP service. 

4. Analyse the data; calculate individual positional uncertainties of each 

control station for each survey method, also, calculate survey 

uncertainty for each survey. Conduct a comparison of all the data and 

tabulate the results. 

5. Analyse results on a time/cost basis and prepare guidelines for 

practicing surveyors and consultants to conduct these surveys in a 

more time and cost efficient way. 

6. Prepare and submit dissertation. 
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Appendix B – Regulation 13 Certificates 

BDST - Beaudesert CORS 
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WOOL - Woolloongabba CORS 
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Appendix C – Example Booking Sheet 
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Appendix D – Baseline Processing Reports 

Scenario One – Conventional Network Fixed to Local Control 
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Scenario Two – Conventional Network Fixed to Regulation 13 CORS 
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Scenario Three – Positioning Using Only Regulation 13 CORS 
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Scenario Four – Single Baseline Traverse 

 



91 

 

 



92 

 

Scenario Five – Constrained to AUSPOS Solution  
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Scenario Six – Conventional Network Including Baselines to CORS 
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Project File Data

Name: F:\PROJECT\TBC PROJECTS\1-

Normal.vce

Size: 2 MB

Modified: 17/09/2016 9:10:11 AM (UTC:10)

Time zone: E. Australia Standard Time

Reference

number:

Description:

Coordinate System

Name: Map Grid of Australia (GDA)

Datum: ITRF

Zone: Zone 56

Geoid: AUSGeoid09 (Australia)

Vertical datum:

Network Adjustment Report

Adjustment Settings

Set-Up Errors

GNSS

Error in Height of Antenna: 0.000 m

Centering Error: 0.000 m

Covariance Display

Horizontal:

Propagated Linear Error [E]: U.S.

Constant Term [C]: 0.000 m

Scale on Linear Error [S]: 1.960

Three-Dimensional

Propagated Linear Error [E]: U.S.

Constant Term [C]: 0.000 m

Scale on Linear Error [S]: 1.960

Adjustment Statistics

Number of Iterations for Successful Adjustment: 3

Network Reference Factor: 1.00

Chi Square Test (95%): Passed

Precision Confidence Level: 95%

Degrees of Freedom: 66

Post Processed Vector Statistics

Network Adjustment Report file:///C:/Users/nlund/AppData/Local/Temp/TBCTemporal/kqeahimx....

1 of 14 17/09/2016 9:11 AM

Nick
Typewritten Text
Appendix E - Scenario One



Reference Factor: 1.00

Redundancy Number: 66.00

A Priori Scalar: 1.78

Control Coordinate Comparisons

Values shown are control coordinates minus adjusted coordinates.

Point ID
∆Easting

(Meter)

∆Northing

(Meter)

∆Elevation

(Meter)

∆Height

(Meter)

101732 -0.005 -0.004 ? ?

107142 -0.017 0.005 -0.028 ?

121890 -0.005 0.003 0.019 ?

58886 -0.012 0.002 -0.043 ?

59279 0.000 0.000 0.067 ?

61261 0.000 0.000 -0.047 ?

90501 0.002 0.024 -0.051 ?

Control Point Constraints

Point ID Type
East σ

(Meter)

North σ

(Meter)

Height σ

(Meter)

Elevation σ

(Meter)

101732 Grid Fixed  

59279 Grid 0.005  0.005  

61261 Grid 0.004  0.004  

Fixed =  0.000001(Meter)

Adjusted Grid Coordinates

Point

ID

Easting

(Meter)

Easting Error

(Meter)

Northing

(Meter)

Northing Error

(Meter)

Elevation

(Meter)

Elevation Error

(Meter)
Constraint

101732
502055.222

0.009  
6940700.734

0.009  59.891  ?  e  

107142
495042.678

0.010  
6924708.248

0.009  39.106  0.050  

Network Adjustment Report file:///C:/Users/nlund/AppData/Local/Temp/TBCTemporal/kqeahimx....

2 of 14 17/09/2016 9:11 AM



121890
502287.556

0.010  
6944569.163

0.010  34.355  0.017  

171104
492752.690

0.008  
6920798.309

0.008  41.650  0.061  

58886
496932.708

0.009  
6931847.770

0.009  76.064  0.025  

59279
502887.364

?  
6946191.529

?  17.939  0.018  EN  

61261
492475.284

?  
6917933.883

?  52.968  0.064  EN  

8000
502423.603

0.010  
6945838.207

0.010  11.861  0.018  

8001
501308.667

0.009  
6942562.863

0.009  28.069  0.007  

8002
501571.879

0.009  
6941988.929

0.009  37.540  0.006  

8003
501907.489

0.009  
6940745.689

0.009  59.938  0.003  

8004
501861.002

0.009  
6939961.335

0.009  61.993  0.004  

8006
500762.566

0.009  
6936689.192

0.009  65.601  0.023  

8007
499839.104

0.009  
6935557.952

0.009  52.954  0.024  

8008
498807.073

0.009  
6933940.074

0.009  71.110  0.025  

8009
498376.238

0.009  
6933017.081

0.008  69.785  0.025  

8010
497877.114

0.009  
6931994.923

0.008  70.230  0.025  

8011
497216.890

0.009  
6931644.579

0.009  54.168  0.026  

8012
496661.141

0.009  
6929507.596

0.009  56.510  0.028  

8013
497045.768

0.009  
6928821.409

0.009  58.104  0.028  

8015
494336.489

0.008  
6922279.534

0.008  60.131  0.059  

90501
499169.736

0.009  
6933677.842

0.009  57.044  0.025  

Adjusted Geodetic Coordinates
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Point ID Latitude Longitude
Height

(Meter)

Height Error

(Meter)
Constraint

101732 S27°39'28.17839"  E153°01'15.01466"  101.273  ?  e  

107142 S27°48'07.89954"  E152°56'58.82143"  80.019  0.050  

121890 S27°37'22.45325"  E153°01'23.46826"  75.819  0.017  

171104 S27°50'14.93147"  E152°55'35.04206"  82.437  0.061  

58886 S27°44'15.89008"  E152°58'07.96363"  117.196  0.025  

59279 S27°36'29.72210"  E153°01'45.34001"  59.433  0.018  EN  

61261 S27°51'48.01681"  E152°55'24.83500"  93.660  0.064  EN  

8000 S27°36'41.20840"  E153°01'28.42314"  53.349  0.018  

8001 S27°38'27.66271"  E153°00'47.75847"  69.494  0.007  

8002 S27°38'46.31454"  E153°00'57.36679"  78.953  0.006  

8003 S27°39'26.71814"  E153°01'09.62223"  101.321  0.003  

8004 S27°39'52.20980"  E153°01'07.92985"  103.358  0.004  

8006 S27°41'38.55758"  E153°00'27.84248"  106.869  0.023  

8007 S27°42'15.32327"  E152°59'54.12489"  94.188  0.024  

8008 S27°43'07.90182"  E152°59'16.43450"  112.295  0.025  

8009 S27°43'37.89709"  E152°59'00.69593"  110.943  0.025  

8010 S27°44'11.11425"  E152°58'42.46009"  111.360  0.025  

8011 S27°44'22.49590"  E152°58'18.34201"  95.292  0.026  

8012 S27°45'31.94210"  E152°57'58.02082"  97.573  0.028  

8013 S27°45'54.24602"  E152°58'12.06635"  99.143  0.028  

8015 S27°49'26.82058"  E152°56'32.97029"  100.966  0.059  

90501 S27°43'16.42525"  E152°59'29.67822"  98.219  0.025  

Adjusted ECEF Coordinates

Point ID
X

(Meter)

X Error

(Meter)

Y

(Meter)

Y Error

(Meter)

Z

(Meter)

Z Error

(Meter)

3D Error

(Meter)
Constraint

101732 -5038248.431  ?  2564808.208  ?  -2943019.330  ?  ?  e  

107142 -5028412.387  0.040  2567670.109  0.023  -2957170.308  0.025  0.052  

121890 -5039933.495  0.015  2565405.937  0.011  -2939579.114  0.012  0.022  

171104 -5025745.977  0.049  2568882.681  0.026  -2960629.865  0.030  0.063  

58886 -5032266.171  0.021  2567511.626  0.013  -2950868.330  0.014  0.028  

59279 -5040863.118  ?  2565206.155  ?  -2938133.273  ?  ?  EN  

61261 -5024435.766  ?  2568526.578  ?  -2963168.645  ?  ?  EN  

8000 -5040501.878  0.015  2565542.800  0.012  -2938443.759  0.012  0.023  

8001 -5038654.705  0.008  2565853.448  0.009  -2941354.512  0.009  0.015  
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8002 -5038544.307  0.007  2565501.664  0.009  -2941867.502  0.008  0.014  

8003 -5038200.009  0.006  2564949.409  0.008  -2942979.539  0.008  0.013  

8004 -5037855.939  0.007  2564826.291  0.009  -2943675.491  0.008  0.014  

8006 -5036005.122  0.019  2565116.569  0.012  -2946576.119  0.013  0.026  

8007 -5035107.020  0.020  2565695.820  0.013  -2947572.262  0.013  0.027  

8008 -5033981.864  0.020  2566281.284  0.013  -2949013.534  0.014  0.028  

8009 -5033402.310  0.021  2566469.727  0.013  -2949830.242  0.014  0.028  

8010 -5032751.852  0.021  2566698.715  0.013  -2950735.494  0.014  0.028  

8011 -5032293.774  0.021  2567206.601  0.013  -2951038.110  0.014  0.028  

8012 -5031156.047  0.023  2567250.892  0.014  -2952931.050  0.015  0.031  

8013 -5031047.217  0.023  2566763.585  0.014  -2953539.323  0.015  0.031  

8015 -5027097.569  0.047  2567793.098  0.025  -2959328.830  0.028  0.060  

90501 -5034026.793  0.021  2565896.979  0.013  -2949239.246  0.014  0.028  

Error Ellipse Components

Point ID
Semi-major axis

(Meter)

Semi-minor axis

(Meter)
Azimuth

101732 0.011 0.011 54°

107142 0.013 0.011 84°

121890 0.012 0.012 66°

171104 0.011 0.010 62°

58886 0.011 0.011 82°

8000 0.012 0.012 77°

8001 0.012 0.011 48°

8002 0.012 0.011 54°

8003 0.011 0.011 54°

8004 0.011 0.011 53°

8006 0.011 0.011 44°

8007 0.011 0.011 47°

8008 0.011 0.011 62°

8009 0.011 0.011 70°

8010 0.011 0.011 75°

8011 0.011 0.011 80°

8012 0.011 0.011 86°

8013 0.011 0.011 85°

8015 0.010 0.010 22°

90501 0.011 0.011 65°
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Adjusted GNSS Observations

Transformation Parameters

Azimuth Rotation: 0.011 sec (95%) 0.118 sec

Scale Factor: 1.00000066 (95%) 0.00000056

Observation ID Observation A-posteriori Error Residual
Standardized

Residual

8002 --> 8003 (PV20) Az. 164°53'09" 0.356 sec -0.027 sec -0.125

∆Ht. 22.368 m 0.005 m 0.002 m 0.636

Ellip Dist. 1288.256 m 0.002 m 0.004 m 3.383

121890 --> 8001 (PV12) Az. 205°59'50" 0.217 sec 0.149 sec 1.716

∆Ht. -6.324 m 0.016 m 0.014 m 2.158

Ellip Dist. 2233.259 m 0.003 m -0.004 m -3.249

8001 --> 8000 (PV10) Az. 18°47'33" 0.161 sec -0.097 sec -0.912

∆Ht. -16.145 m 0.017 m 0.006 m 0.410

Ellip Dist. 3461.289 m 0.003 m 0.007 m 2.561

8000 --> 121890 (PV6) Az. 186°06'27" 0.339 sec -0.125 sec -0.985

∆Ht. 22.469 m 0.006 m 0.002 m 0.691

Ellip Dist. 1276.825 m 0.002 m -0.002 m -2.423

8003 --> 8001 (PV24) Az. 341°45'08" 0.279 sec 0.055 sec 0.275

∆Ht. -31.827 m 0.006 m 0.004 m 1.058

Ellip Dist. 1914.062 m 0.002 m -0.004 m -2.129

107142 --> 171104 (PV107) Az. 210°22'49" 0.372 sec -0.116 sec -0.449

∆Ht. 2.419 m 0.045 m -0.008 m -0.276

Ellip Dist. 4532.996 m 0.007 m -0.009 m -1.957

90501 --> 8006 (PV63) Az. 27°52'49" 0.194 sec -0.200 sec -1.730

∆Ht. 8.649 m 0.010 m -0.020 m -1.443

Ellip Dist. 3408.021 m 0.004 m -0.001 m -0.504

8002 --> 101732 (PV17) Az. 159°25'34" 0.347 sec -0.106 sec -0.566

∆Ht. 22.320 m 0.006 m 0.001 m 0.337

Ellip Dist. 1376.437 m 0.002 m -0.002 m -1.712

8015 --> 171104 (PV110) Az. 226°56'37" 0.376 sec 0.013 sec 0.097

∆Ht. -18.528 m 0.025 m 0.008 m 0.978
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Ellip Dist. 2169.377 m 0.004 m 0.002 m 1.697

121890 --> 8002 (PV15) Az. 195°29'30" 0.211 sec -0.330 sec -1.663

∆Ht. 3.134 m 0.017 m 0.004 m 0.162

Ellip Dist. 2678.719 m 0.003 m 0.001 m 0.453

8015 --> 107142 (PV106) Az. 16°14'22" 0.685 sec 0.345 sec 0.750

∆Ht. -20.947 m 0.043 m -0.010 m -0.437

Ellip Dist. 2530.309 m 0.006 m 0.005 m 1.641

101732 --> 8004 (PV48) Az. 194°42'28" 0.492 sec 0.373 sec 1.628

∆Ht. 2.085 m 0.004 m 0.000 m -0.152

Ellip Dist. 764.788 m 0.002 m 0.000 m 0.316

8008 --> 8009 (PV55) Az. 205°01'40" 0.306 sec 0.153 sec 1.593

∆Ht. -1.352 m 0.004 m 0.000 m 0.002

Ellip Dist. 1019.002 m 0.002 m 0.000 m 0.564

8010 --> 8011 (PV71) Az. 242°03'28" 0.398 sec -0.245 sec -1.454

∆Ht. -16.068 m 0.004 m 0.001 m 0.403

Ellip Dist. 747.718 m 0.002 m 0.000 m 0.441

8003 --> 8006 (PV33) Az. 195°45'09" 0.150 sec 0.017 sec 0.281

∆Ht. 5.548 m 0.023 m -0.018 m -1.427

Ellip Dist. 4216.660 m 0.004 m 0.000 m -0.047

8006 --> 8008 (PV45) Az. 215°25'17" 0.191 sec 0.235 sec 1.334

∆Ht. 5.426 m 0.009 m -0.004 m -0.648

Ellip Dist. 3375.010 m 0.004 m 0.000 m 0.107

90501 --> 8009 (PV64) Az. 230°13'09" 0.335 sec -0.194 sec -1.110

∆Ht. 12.724 m 0.004 m 0.000 m 0.126

Ellip Dist. 1033.004 m 0.002 m -0.001 m -1.329

8004 --> 8003 (PV38) Az. 3°22'59" 0.487 sec -0.423 sec -1.049

∆Ht. -2.037 m 0.005 m -0.006 m -1.316

Ellip Dist. 786.045 m 0.002 m -0.002 m -0.723

8003 --> 8007 (PV25) Az. 201°43'43" 0.144 sec -0.148 sec -1.297

∆Ht. -7.133 m 0.024 m 0.013 m 0.525

Ellip Dist. 5587.107 m 0.005 m -0.001 m -0.410

8003 --> 101732 (PV23) Az. 106°54'58" 1.898 sec 0.723 sec 1.249

∆Ht. -0.048 m 0.003 m 0.000 m -0.237

Ellip Dist. 154.483 m 0.001 m 0.000 m -1.024

8010 --> 58886 (PV74) Az. 261°09'13" 0.322 sec 0.219 sec 1.205
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∆Ht. 5.837 m 0.004 m 0.000 m 0.182

Ellip Dist. 956.184 m 0.002 m 0.000 m -0.577

58886 --> 8012 (PV83) Az. 186°38'02" 0.201 sec 0.109 sec 0.801

∆Ht. -19.623 m 0.012 m 0.010 m 1.160

Ellip Dist. 2356.818 m 0.002 m 0.000 m 0.307

58886 --> 8011 (PV82) Az. 125°34'45" 0.805 sec -0.299 sec -1.109

∆Ht. -21.904 m 0.003 m 0.000 m -0.555

Ellip Dist. 349.490 m 0.001 m 0.000 m -0.371

8010 --> 8009 (PV69) Az. 26°02'11" 0.323 sec -0.089 sec -0.580

∆Ht. -0.416 m 0.005 m -0.002 m -1.062

Ellip Dist. 1137.966 m 0.002 m 0.000 m -0.119

90501 --> 8010 (PV67) Az. 217°31'52" 0.210 sec -0.050 sec -0.334

∆Ht. 13.140 m 0.006 m -0.011 m -1.033

Ellip Dist. 2122.896 m 0.002 m 0.000 m -0.090

8004 --> 8006 (PV39) Az. 198°32'52" 0.198 sec 0.156 sec 1.011

∆Ht. 3.510 m 0.023 m 0.015 m 0.928

Ellip Dist. 3452.970 m 0.004 m 0.002 m 0.665

8015 --> 61261 (PV111) Az. 203°12'43" 0.182 sec -0.046 sec -0.760

∆Ht. -7.306 m 0.026 m -0.007 m -0.973

Ellip Dist. 4729.334 m 0.005 m 0.000 m -0.237

8006 --> 8007 (PV41) Az. 219°13'20" 0.427 sec 0.199 sec 0.966

∆Ht. -12.680 m 0.007 m 0.001 m 0.305

Ellip Dist. 1460.886 m 0.003 m 0.002 m 0.937

171104 --> 61261 (PV113) Az. 185°33'57" 0.329 sec 0.132 sec 0.865

∆Ht. 11.223 m 0.030 m 0.016 m 0.962

Ellip Dist. 2878.975 m 0.005 m 0.000 m -0.038

8002 --> 8001 (PV16) Az. 335°21'22" 0.605 sec 0.045 sec 0.286

∆Ht. -9.459 m 0.005 m -0.001 m -0.755

Ellip Dist. 631.664 m 0.002 m 0.000 m 0.669

8012 --> 8011 (PV90) Az. 14°35'36" 0.205 sec -0.067 sec -0.695

∆Ht. -2.282 m 0.012 m 0.005 m 0.719

Ellip Dist. 2208.947 m 0.002 m 0.000 m -0.208

58886 --> 8009 (PV81) Az. 51°00'21" 0.215 sec 0.081 sec 0.658

∆Ht. -6.253 m 0.005 m 0.001 m 0.504

Ellip Dist. 1858.447 m 0.002 m 0.001 m 0.463
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8003 --> 8004 (PV28) Az. 183°22'58" 0.487 sec -0.110 sec -0.256

∆Ht. 2.037 m 0.005 m -0.001 m -0.318

Ellip Dist. 786.045 m 0.002 m 0.001 m 0.628

8013 --> 107142 (PV95) Az. 205°58'47" 0.363 sec -0.166 sec -0.609

∆Ht. -19.125 m 0.042 m 0.019 m 0.499

Ellip Dist. 4576.809 m 0.007 m 0.001 m 0.235

8008 --> 90501 (PV60) Az. 125°52'32" 0.833 sec -0.213 sec -0.574

∆Ht. -14.076 m 0.005 m -0.001 m -0.429

Ellip Dist. 447.716 m 0.002 m 0.000 m 0.520

59279 --> 121890 (PV2) Az. 200°16'35" 0.310 sec -0.003 sec -0.013

∆Ht. 16.386 m 0.007 m 0.002 m 0.566

Ellip Dist. 1730.385 m 0.003 m 0.000 m -0.067

59279 --> 8000 (PV1) Az. 232°41'02" 0.643 sec 0.012 sec 0.078

∆Ht. -6.083 m 0.005 m -0.001 m -0.550

Ellip Dist. 583.251 m 0.002 m 0.000 m 0.051

8012 --> 8013 (PV91) Az. 150°44'38" 0.717 sec 0.026 sec 0.109

∆Ht. 1.570 m 0.007 m 0.001 m 0.532

Ellip Dist. 786.947 m 0.002 m 0.000 m 0.406

58886 --> 8013 (PV84) Az. 177°52'30" 0.206 sec 0.011 sec 0.057

∆Ht. -18.053 m 0.013 m -0.004 m -0.281

Ellip Dist. 3029.681 m 0.003 m -0.002 m -0.504

8012 --> 107142 (PV92) Az. 198°39'04" 0.333 sec 0.030 sec 0.157

∆Ht. -17.555 m 0.042 m -0.009 m -0.457

Ellip Dist. 5066.918 m 0.007 m -0.001 m -0.243

8013 --> 8015 (PV103) Az. 202°30'38" 0.265 sec 0.057 sec 0.397

∆Ht. 1.823 m 0.052 m -0.004 m -0.124

Ellip Dist. 7083.528 m 0.008 m 0.000 m -0.001

8008 --> 8007 (PV51) Az. 32°32'21" 0.311 sec 0.031 sec 0.302

∆Ht. -18.107 m 0.009 m -0.001 m -0.395

Ellip Dist. 1919.781 m 0.003 m 0.000 m 0.390

8013 --> 8011 (PV94) Az. 3°28'57" 0.216 sec -0.028 sec -0.139

∆Ht. -3.852 m 0.013 m 0.004 m 0.254

Ellip Dist. 2829.481 m 0.003 m 0.000 m 0.107
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Covariance Terms

From Point To Point Components A-posteriori Error
Horiz. Precision

(Ratio)

3D Precision

(Ratio)

101732 8003 Az. 286°54'55" 1.908 sec 1 : 119236 1 : 119226

∆Ht. 0.048 m 0.003 m

∆Elev. 0.047 m 0.003 m

Ellip Dist. 154.483 m 0.001 m

101732 8004 Az. 194°42'28" 0.502 sec 1 : 387639 1 : 387804

∆Ht. 2.085 m 0.004 m

∆Elev. 2.102 m 0.004 m

Ellip Dist. 764.788 m 0.002 m

107142 171104 Az. 210°22'49" 0.355 sec 1 : 647513 1 : 647287

∆Ht. 2.419 m 0.045 m

∆Elev. 2.544 m 0.045 m

Ellip Dist. 4532.999 m 0.007 m

107142 8015 Az. 196°14'10" 0.659 sec 1 : 437829 1 : 435914

∆Ht. 20.947 m 0.043 m

∆Elev. 21.024 m 0.043 m

Ellip Dist. 2530.311 m 0.006 m

121890 8001 Az. 205°59'50" 0.236 sec 1 : 800306 1 : 800974

∆Ht. -6.324 m 0.016 m

∆Elev. -6.286 m 0.016 m

Ellip Dist. 2233.261 m 0.003 m

121890 8002 Az. 195°29'30" 0.228 sec 1 : 849879 1 : 849806

∆Ht. 3.134 m 0.017 m

∆Elev. 3.186 m 0.017 m

Ellip Dist. 2678.721 m 0.003 m

171104 61261 Az. 185°33'57" 0.331 sec 1 : 635051 1 : 637316

∆Ht. 11.223 m 0.030 m

∆Elev. 11.318 m 0.030 m

Ellip Dist. 2878.977 m 0.005 m

58886 8012 Az. 186°38'02" 0.224 sec 1 : 913742 1 : 911231

∆Ht. -19.623 m 0.012 m

∆Elev. -19.554 m 0.012 m

Ellip Dist. 2356.820 m 0.003 m

58886 8013 Az. 177°52'30" 0.224 sec 1 : 924924 1 : 923613

∆Ht. -18.053 m 0.013 m
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∆Elev. -17.960 m 0.013 m

Ellip Dist. 3029.683 m 0.003 m

59279 121890 Az. 200°16'35" 0.316 sec 1 : 655338 1 : 656279

∆Ht. 16.386 m 0.007 m

∆Elev. 16.416 m 0.007 m

Ellip Dist. 1730.386 m 0.003 m

8000 121890 Az. 186°06'27" 0.352 sec 1 : 561507 1 : 562895

∆Ht. 22.469 m 0.006 m

∆Elev. 22.493 m 0.006 m

Ellip Dist. 1276.826 m 0.002 m

8000 59279 Az. 52°41'10" 0.645 sec 1 : 273533 1 : 272890

∆Ht. 6.083 m 0.005 m

∆Elev. 6.078 m 0.005 m

Ellip Dist. 583.252 m 0.002 m

8000 8001 Az. 198°47'14" 0.186 sec 1 : 1024912 1 : 1022056

∆Ht. 16.145 m 0.017 m

∆Elev. 16.208 m 0.017 m

Ellip Dist. 3461.292 m 0.003 m

8001 8002 Az. 155°21'26" 0.611 sec 1 : 375964 1 : 377308

∆Ht. 9.459 m 0.005 m

∆Elev. 9.471 m 0.005 m

Ellip Dist. 631.664 m 0.002 m

8001 8003 Az. 161°45'18" 0.291 sec 1 : 761141 1 : 762783

∆Ht. 31.827 m 0.006 m

∆Elev. 31.869 m 0.006 m

Ellip Dist. 1914.063 m 0.003 m

8002 101732 Az. 159°25'34" 0.359 sec 1 : 632207 1 : 634464

∆Ht. 22.320 m 0.006 m

∆Elev. 22.351 m 0.006 m

Ellip Dist. 1376.437 m 0.002 m

8002 8003 Az. 164°53'09" 0.366 sec 1 : 603630 1 : 605927

∆Ht. 22.368 m 0.005 m

∆Elev. 22.397 m 0.005 m

Ellip Dist. 1288.257 m 0.002 m

8003 8004 Az. 183°22'58" 0.499 sec 1 : 387430 1 : 387602

∆Ht. 2.037 m 0.005 m

∆Elev. 2.055 m 0.005 m

Ellip Dist. 786.045 m 0.002 m
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8003 8006 Az. 195°45'09" 0.176 sec 1 : 1004283 1 : 1004610

∆Ht. 5.548 m 0.023 m

∆Elev. 5.663 m 0.023 m

Ellip Dist. 4216.663 m 0.004 m

8003 8007 Az. 201°43'43" 0.169 sec 1 : 1107164 1 : 1106785

∆Ht. -7.133 m 0.024 m

∆Elev. -6.984 m 0.024 m

Ellip Dist. 5587.111 m 0.005 m

8004 8006 Az. 198°32'52" 0.216 sec 1 : 805637 1 : 805835

∆Ht. 3.510 m 0.023 m

∆Elev. 3.608 m 0.023 m

Ellip Dist. 3452.972 m 0.004 m

8006 8008 Az. 215°25'17" 0.209 sec 1 : 907181 1 : 907734

∆Ht. 5.426 m 0.009 m

∆Elev. 5.510 m 0.009 m

Ellip Dist. 3375.012 m 0.004 m

8006 90501 Az. 207°52'22" 0.211 sec 1 : 910666 1 : 909740

∆Ht. -8.649 m 0.010 m

∆Elev. -8.556 m 0.010 m

Ellip Dist. 3408.024 m 0.004 m

8007 8006 Az. 39°13'35" 0.437 sec 1 : 417375 1 : 415762

∆Ht. 12.680 m 0.007 m

∆Elev. 12.647 m 0.007 m

Ellip Dist. 1460.887 m 0.004 m

8007 8008 Az. 212°32'03" 0.323 sec 1 : 575239 1 : 577872

∆Ht. 18.107 m 0.009 m

∆Elev. 18.157 m 0.009 m

Ellip Dist. 1919.782 m 0.003 m

8008 8009 Az. 205°01'40" 0.321 sec 1 : 552242 1 : 552002

∆Ht. -1.352 m 0.004 m

∆Elev. -1.325 m 0.004 m

Ellip Dist. 1019.003 m 0.002 m

8008 90501 Az. 125°52'32" 0.844 sec 1 : 269564 1 : 264235

∆Ht. -14.076 m 0.005 m

∆Elev. -14.066 m 0.005 m

Ellip Dist. 447.717 m 0.002 m

8009 58886 Az. 230°59'56" 0.237 sec 1 : 792183 1 : 792377

∆Ht. 6.253 m 0.005 m
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∆Elev. 6.279 m 0.005 m

Ellip Dist. 1858.448 m 0.002 m

8009 8010 Az. 206°02'03" 0.336 sec 1 : 557846 1 : 557881

∆Ht. 0.416 m 0.005 m

∆Elev. 0.445 m 0.005 m

Ellip Dist. 1137.966 m 0.002 m

8009 90501 Az. 50°13'22" 0.351 sec 1 : 566578 1 : 567101

∆Ht. -12.724 m 0.004 m

∆Elev. -12.741 m 0.004 m

Ellip Dist. 1033.004 m 0.002 m

8010 58886 Az. 261°09'13" 0.343 sec 1 : 584612 1 : 585147

∆Ht. 5.837 m 0.004 m

∆Elev. 5.834 m 0.004 m

Ellip Dist. 956.184 m 0.002 m

8010 8011 Az. 242°03'28" 0.412 sec 1 : 448284 1 : 445757

∆Ht. -16.068 m 0.004 m

∆Elev. -16.062 m 0.004 m

Ellip Dist. 747.719 m 0.002 m

8011 58886 Az. 305°34'41" 0.815 sec 1 : 291056 1 : 282959

∆Ht. 21.904 m 0.003 m

∆Elev. 21.896 m 0.003 m

Ellip Dist. 349.490 m 0.001 m

8011 8012 Az. 194°35'27" 0.228 sec 1 : 873819 1 : 873981

∆Ht. 2.282 m 0.012 m

∆Elev. 2.341 m 0.012 m

Ellip Dist. 2208.949 m 0.003 m

8011 8013 Az. 183°28'54" 0.232 sec 1 : 877577 1 : 877763

∆Ht. 3.852 m 0.013 m

∆Elev. 3.936 m 0.013 m

Ellip Dist. 2829.483 m 0.003 m

8012 107142 Az. 198°39'04" 0.318 sec 1 : 757608 1 : 756696

∆Ht. -17.555 m 0.042 m

∆Elev. -17.403 m 0.042 m

Ellip Dist. 5066.921 m 0.007 m

8013 107142 Az. 205°58'47" 0.349 sec 1 : 669192 1 : 668496

∆Ht. -19.125 m 0.042 m

∆Elev. -18.998 m 0.042 m

Ellip Dist. 4576.812 m 0.007 m
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8013 8012 Az. 330°44'32" 0.720 sec 1 : 317511 1 : 317522

∆Ht. -1.570 m 0.007 m

∆Elev. -1.594 m 0.007 m

Ellip Dist. 786.947 m 0.002 m

8013 8015 Az. 202°30'38" 0.228 sec 1 : 984682 1 : 984808

∆Ht. 1.823 m 0.052 m

∆Elev. 2.027 m 0.052 m

Ellip Dist. 7083.533 m 0.007 m

8015 171104 Az. 226°56'37" 0.389 sec 1 : 523202 1 : 523324

∆Ht. -18.528 m 0.025 m

∆Elev. -18.481 m 0.025 m

Ellip Dist. 2169.379 m 0.004 m

8015 61261 Az. 203°12'43" 0.193 sec 1 : 1014966 1 : 1014176

∆Ht. -7.306 m 0.026 m

∆Elev. -7.163 m 0.026 m

Ellip Dist. 4729.337 m 0.005 m

90501 8010 Az. 217°31'52" 0.232 sec 1 : 829408 1 : 830183

∆Ht. 13.140 m 0.006 m

∆Elev. 13.186 m 0.006 m

Ellip Dist. 2122.897 m 0.003 m

Date: 17/09/2016 9:11:44 AM
Project: F:\PROJECT\TBC

PROJECTS\1-Normal.vce
Trimble Business Center
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