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Abstract 

 

This dissertation entails the design of a pneumatic clamp for the USQ optical access engine. 

A literature review on Optical engines and the relevant theory was conducted. During the 

design work, consideration of feasibility was critical to ensuring that the operation of the 

clamp would be sound, based on the current engine design by Kevin Dray. The focus of 

the design work involved identification and segregation of the components into different 

areas of analysis. The main components were analysed and the results for these subsections 

have been presented in this dissertation. 

 

3D modelling software was utilized to assist in the design process. Tools on this software 

provided insight into the response of different components when place under certain 

loading and thermal conditions. It was found that the use of a standard 150 psi air 

compressor would indeed be sufficient to supply the pressure required to seal the 

combustion chamber during engine operation. The controlling element for the system was 

a proportional valve. The dynamics of the system based on valve positon have been 

described. The true valve response was neglected in the analysis as they typically 

responding almost instantaneously. 

 

The final results suggested that the stresses involved would be deemed safe. In particular, 

the O-ring appeared to indicate no extrusion and the optical ring, while indicating some 

considerably high stress areas, would still be deemed safe if constructed from a material 

such as Sapphire. Overall, the system proved to be feasible, based on the results obtained. 

Recommendations for further work have been given. 
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1 Introduction 

 

 

Combustion is a phenomenon encountered by many people of varying backgrounds, 

whether that be in the area of research or simply for private use. It has recently generated 

some concern over the issue regarding non-renewable energy resources and the depletion 

of such and has led to a dire situation in which energy alternatives are rigorously being 

considered. With the current increase in transportation demands due to population growth, 

just one of the main factors calling for a need in alternatives, such alternatives will soon be 

essential if regular human activities are to continue. 

 

Analysing combustion processes is key to developing our current knowledge of the 

phenomenon and hopefully the research that is undertaken will advance this knowledge 

into a further phase. 

 

One such method of analysing combustion processes is by using lasers to scan the interior 

of engine cylinders. By applying the principles of refractometry an analyst is able to 

determine how the combustion cycle function within an engine cylinder. This insight then 

produces an image on a computer monitor that takes a transient snap-shot of the entire 

region of the cylinder area. Various images may be taken and compared with other different 

images that depict different parts of the engine stroke cycle. More specifically, Optical 

Access (OA) engines enable the diagnosis of fluid (fuel vapour) flow and combustion 

characteristics. Thus it is critical that an OA engine replicate the operation of a typical 

Internal Combustion (IC) engine as accurately as possible in order to provide proper insight 

to these characteristics.  

 

To illustrate how the designed system works, a simple comparison can be made with the 

air cylinder in figure 1. The designed clamp is mostly analogous in function to that of the 

air cylinder shown, apart from a few minor differences. The clamp for the USQ optical 

engine incorporated seals and bearing rings (guide rings), just like a normal air cylinder, 

however the overall geometry was quite atypical for an air cylinder. Details of the concept 

and design, including illustrations, are provided within the design chapter and appendices. 
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1.1 Purpose of OA Engines 
 

The purpose of an OA engine is to better understand engine performance and emissions. 

Laser diagnostics with optical access enable the use of methods to analyse these aspects of 

the IC engine. Some alterations to the typical operation of an IC engine must be made in 

order to produce good operating conditions. One alteration is to use what is called a skip-

fired mode, where the injector is fired once every 8th cycle. The purpose of this is to reduce 

the required frequency of window cleaning and to reduce the risk of window failure due to 

the high thermal and mechanical stresses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Schematic of typical air cylinder (Dunn) 

 

1.2 Motivation for Project 
 

Optical Access Engines are very useful tools for combustion research. Designing such an 

engine for USQ would provide USQ with a state-of-the-art research apparatus that could 

enable students and academic staff to study the effects of combustion with real-time results. 

This project has also given insight into nonlinear stresses and deformations which is 

commonly encountered in mechanical engineering problems. 
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1.3 Project Specification 

 

The Project Specification, which is attached in Appendix A, will essentially form the 

marking rubric for this dissertation. As mentioned, the primary focus of the project was to 

design a pneumatic head clamp. A question this raised was “Why use pneumatics over 

hydraulics?” One reason for using pneumatics is that pneumatics exhibit faster reactions to 

forces than hydraulic fluids can. This characteristic is desirable when regarding time as a 

performance-influencing factor. Capital costs for pneumatic systems are also generally 

much cheaper than that of hydraulic systems. The degree to which time is minimised may 

be minute however every aspect of time saving is an important consideration. 

 

Project Commissioning 

 

This stage can only be initiated once the design work, budget and material list have been 

finalised. Due to time constraints the cost analysis and material list could not be completed.  

 

Consequential Effects 

 

This project focused on the technical design for a machine. Any commissioning process 

would require a review of the design work for safety reasons. Every effort was made to 

perform the work at the highest standard with consideration of design standards and 

practices. Consequential effects in the ethical, safety and sustainability areas are 

consequently important and so these areas were accounted for during the design phase. 

These aspects are presented in more detail reported in the Feasibility section, Chapter 3. 
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2 Literature Review 

 

2.1 Basics of Internal Combustion (IC) Engines 

 

For the sake of simplifying what is a very complicated system, here is a brief overview of 

what an IC engine is, what it does, what materials it is made from and what research is 

being done to make them cleaner and more efficient. 

 

An IC engine uses the phenomena known as combustion to produce power in order to make 

a machine do work. Work in the scientific realm is defined as the product of Force and 

Displacement. In other words, Work can only be achieved if a particle is moved over any 

distance as a result of a force being applied to it. If either the force being applied or the 

distance covered have a value of zero, then there is no work being done. Subsequently, this 

work or power is then harnessed and directed through a transmission and drivetrain. These 

systems are what deliver the final ‘drive’ to what is most often the case the wheels of the 

vehicle which the engine is powering. 

 

This power is greatly influenced by factors such as those that pertain to combustion 

chamber geometry, the number of valves, ignition timing and fuel type. 

 

Engine heat 

 

Temperature Gradients are a very important consideration in engine design, especially 

when deciding on which materials to select for the engine. In regard to optical components 

for OA engines, there is a substantial impact on heat transfer characteristics, the 

compression ratio and engine loads. This impact is caused by limitations created by the use 

of optical components. In order to simulate real engine operating conditions as closely as 

possible, parameters have to be adjusted including inlet gas temperature, start of injection 

and spark timing (Lund University 2015). To alleviate excessive heating of the engine, 

most typical OA engines will run on a skip-fired mode in which several fired cycles for 

data acquisition are followed by several other motored cycles (Musculus 2015). 
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Engine Loads 

 

A ‘load’ is also known as a force. A force is a minute part of common engineering 

knowledge. Specifically, an engine load is a force created by moving components in an 

engine. It is therefore natural that an engine vibrates due to the movement of components. 

These vibrations can be categorised it internal and external vibrations. Kevin Dray (2014) 

has already performed vibrational analysis on the internal components of the engine which 

is subject here. For the purpose of the pneumatic clamp, it was assumed that vibrations 

would be borne fully by the engine mounts at the base of the engine (outside of the scope 

of this project). However, the combustion pressures (and temperatures) will be considered 

as some of the contributors to the loads considered in this project. 

 

2.2 Research - OA Engines 

 

There are various designs of OA engines that have been built in the past. Some design 

approaches have been more popular and have been implemented into other designs. For 

example, one common approach of gaining optical access to an engine cylinder is by using 

a Bowditch piston. A Bowditch piston consists of a fixed mirror inclined at 45-degrees to 

the horizon, situated underneath the moving piston. The advantage of having this 

arrangement is that a visual inspection of up to about 75% of the combustion chamber can 

be achieved. This method of gaining access superseded that of having an L-shaped engine 

head which had valves positioned in the block instead of the head. 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Basic construction of a Bowditch Piston (Lund University 2015) 
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Figure 3 – Schematic of OA engine cross section with Cummins B-series block 

(Musculus 2015) 

 

Some key features of a typical modern optical access engine are outlined below. 

- Optical access through flush-mounted spacer-ring and spacer-ring curved window. 

Windows usually comprise of fused silica or sapphire. Fused silica offers superior 

UV light transmission while sapphire provides excellent hardness and strength. 

- Lowered piston ring pack to prevent scratching of spacer-ring window. 

- Piston rings made from self-lubricating polymers in order to eliminate or at least 

minimise sooting. 

- An optical piston crown, usually made of quartz or sapphire. 

- A means of rapidly separating engine head from engine block, usually by the use 

of hydraulic or pneumatic cylinders. 

- A mirror inserted inside elongated piston at 45˚ to aid in optical access from bottom 

of cylinder. 

- Elongated cylinder with vertical slot to allow optical access from bottom of 

cylinder and replacement of mirror. 

- Mirrors and windows established in place of valves in engine head to provide extra 

optical access. 
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- A strong, stiff connection of the cylinder head to the crankcase, usually via long 

support posts. Figure 2 illustrates the use of a strong back to which the support 

posts are clamped. 

 

There are also some designs that have variations of the main features described above. One 

variation is a short transparent ring with 360˚ viewing, as opposed to the spacer ring with 

crown windows. The disadvantage with this arrangement is that peak pressure is limited to 

about often to about 50-100 bar. Another different design feature is a full-height transparent 

cylinder liner with piston rings being allowed to slide over the liner. Once again, this 

provides almost complete optical access to the entire cylinder stroke, however, operating 

conditions are consequently highly constrained due to the liner fragility. Other unique 

design variations for the piston include a specially shaped transparent piston crown (rather 

than being flat) for producing a particular combustion characteristic and also pistons with 

no crown window (Musculus 2015). 

 

Other modifications are suggested such as making the bottom of the piston bowl flat rather 

than contoured and situating the compression ring lower to allow for placement of windows 

in the piston bowl-rim. Clearance would need to be given to prevent rubbing of the piston-

crown windows and as a result clearance volume would be increased, thus reducing the 

compression ratio. Intake mixture pressure and temperature may also have to be increased 

to be more indicative of a true IC engine (Jaaskelainen 2010). 

 

Automobile company Lotus have developed their own version of the OA engine. The 

cylinders and pistons are made from glass which enables good laser diagnostics. This 

engine is capable of running up to 5000 rpm. It too utilises a Bowditch Piston arrangement. 

The piston crown window is made from Sapphire while the glass cylinder is made to be 

easily removable. The upper crankcase employs a hydraulically operated platform that 

allows removal of optical components. A quick release liner is included and there are 

primary and secondary balance shafts (LOTUS PLC 2016). 

 

Ricardo is another manufacturer at the forefront of automotive engine research. One of 

their engine models, the Hydra engine, is known to be have a very diverse range of 

differently sized components for different running conditions. These engines can even be 

adapted to fit multi-cylinder heads as shown in figure 4. 
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Figure 4 – Lotus SCORE engine (Morgan 2008) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Ricardo Hydra Engine with multi-cylinder head (Ricardo 2016) 
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Application of OA Engines 

 

OA engines serve as a tool for diagnosing and analysing combustion and fuel and air 

mixture flow patterns. Lasers are critical to optical diagnostics. There a variety of methods 

that are used depending on what the research aims to achieve. The first method is called 

Laser Doppler Anemometry (LDA). Fluid velocities at a point are measured where two 

laser beams intersect. Full flow field velocities can also be attained using this method, 

however, these specific points have to be measured by the laser beams separately. 

 

The next method is Particle Image Velocimetry (PIV). With PIV, two laser sheets are 

project into the combustion chambers at slightly separate times. The flow is ‘seeded’ with 

particles and when the laser is projected onto these particles they are illuminated, at which 

point a camera captures their path. Phase Doppler Anemometry (PDA) is a modified form 

of LDA. As well as determining the velocities of fluids at certain points, like in LDA, the 

size of droplets can also be found with PDA. PDA incorporates a fast camera and flash 

light system to enable the viewer to depict the shape of fuel droplets.  

 

Laser Induced Fluorescence (LIF) is another method employed for analysing fuel that is in 

a vapour state. A laser sheet with an ultra-violet wavelength is projected into the chamber, 

causing the fuel vapour to fluoresce. The camera with a suitable optical lens captures this 

fluorescence, indicating the fuel vapour concentrations in the chamber during ignition 

(Morgan 2008). Similarly, soot concentrations can also be established for a particular 

instance in time, using a method called Laser Induced Incandescence (LII) (LOTUS PLC 

2016).  

 

 

 

 

 

 

 

 

 

Figure 6 – Example of Laser Doppler Anemometry (LDA) with Lotus SCORE (Morgan 2008) 
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Figure 7 – Velocity field obtained from PIV analysis (Wikipedia the free Encylopaedia 2016a) 

 

2.3 Material Review 

 

OA engines comprise of some of the typical materials seen in production IC engines yet 

there are some components of the OA engine that require implementation of unique 

materials. Ordinary IC engines, for a long time, have typically used either an Iron casting 

or Aluminium alloy for the block and head. It should be emphasised that the materials 

addressed here provide a broad overview of materials in IC and OA engines. However their 

combination with each other and other materials was noticed during the design phase. For 

example, when researching bearing supplier’s websites and catalogues for bearing 

materials, combinations of Graphite, Carbon and PTFE were found for one particular 

bearing compound. 

 

The cylinders in the Champion MTO II air compressors are cast iron and hard chrome-

plated. The engine also has PTFE guide rings (Champion). As will be shown in the latter 

sections of this dissertation, the air cylinder is analogous to the design of the pneumatic 

clamp. Following is a brief review of some common materials that can be found in optical 

engines. 

 

Cast Iron 

 

There are four main types of Cast Iron: Gray Iron, Ductile (Nodular) Iron, White Iron and 

Malleable Iron. Cast Iron is a four-element alloy that contains Iron, Carbon (between 2 and 
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4 percent), Silicon and Manganese. Sometimes additional alloying elements are added. The 

physical properties of a cast iron component are largely influenced by the cooling rate 

during solidification (Juvinall & Marshek 2012). 

 

As engines are cyclic, dynamic machines that naturally cause wear on their components, it 

is worth describing some of the characteristics of Cast Iron in terms of its Fatigue Strength. 

Appendix C contains some tabulated data on Cast Irons and their fatigue strengths. 

 

PTFE 

 

Polytetrafluoroethylene (PTFE or Teflon) is a thermoplastic polymer. Specifically, PTFE 

is party of the fluoroplastic family, meaning it contains Fluorine atoms within its molecular 

structure, as shown below. Generally, fluoroplastics have excellent chemical and electrical 

resistance, low friction and stability at high temperatures, with a low moderate tensile 

strength(Juvinall & Marshek 2012). Contrary to cast iron, PTFE is difficult to manufacture 

due to its resistance to easy flowing, even above melting point. PTFE is formed by the 

polymerisation of the colourless, odourless gas, tetrafluoroethylene (C2F4). To obtain this 

gas, hydrogen fluoride (HF) is reacted with Chloroform (CHCl3). This reaction forms into 

Chlorodifluoromethane (CHClF2). Then, by heating CHClF2 to a range of 600-700 ˚C, 

tetrafluoroethylene is obtained in the form of monomers. These C2F4 monomers are 

emulsified in water and are polymerised to form PTFE polymers (Editors of Encyclopaedia 

Britannica 2015). 

 

Polymerisation in simple terms is the formation of chains of molecules or monomers. These 

chains are formed by the sharing of free, unpaired electrons between two monomers. Thus, 

a ‘polymer’ is an arrangement of multiple monomers linked together via a chemical 

reaction. Addition polymerisation and condensation polymerisation are the two types of 

polymerisation that can occur. 

 

 

 

 

Figure 8 – Structure of PTFE molecule (Editors of Encyclopaedia Britannica 2015) 

 

Addition polymerisation can only occur if there is a sufficient level of heat, pressure and 

catalysts available. A monomer, such as Ethylene (C2H4) for example, contains a double 

covalent bond between the two Carbon atoms. The double bond is broken due to the 
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presence of the heat, pressure and catalysts to form a single covalent bond. This results in 

the ends of the monomers becoming free radicals or the Carbon atoms allowing for an 

electron to become unpaired. These ‘open ends’ then join to other identical molecules with 

the same free radicals to form the long polymer chain. 

 

Condensation polymerisation occurs in a similar fashion to addition polymerisation, only 

that a by-product of the reaction is ‘condensed’ out while two newly formed monomers 

combine to create the chain. Many polymers are formed by complex monomers, which are 

often produced through a condensation polymerisation process. Polyimide is an example 

of a complex polymer (Askeland & Phule 2006). 

 

Polyimide 

 

Polyimides can be either thermoplastic or thermosetting. For the thermosetting type 

polyimide, properties attributable include thermal stability, chemical resistance and 

excellent mechanical properties including low creep and high tensile strength. This 

polymer can also be compounded with other materials to further improve certain qualities. 

For example, to improve tribological properties, polyimide may sometimes be combined 

with graphite, PTFE or molybdenum sulphide depending on the design objective 

(Wikipedia the free Encyclopaedia 2016). By compounding PTFE with Polyimide Powder 

(P84) creep values are improved to an even greater degree (HP Polymer Inc.). This material 

has been applied within aerospace and automotive domains. 

 

Aluminium 

 

It is needless to say that Aluminium is used an extremely broad range of applications. Some 

of the most notable areas are aircraft components, kitchen appliances and drink cans. 

Aluminium is the most abundant metal from the Earth’s crust. Aluminium has low density, 

is non-toxic, has a high thermal conductivity, excellent corrosion resistance and can be 

easily machined or cast. Aluminium is non-magnetic (Royal Society of Chemistry 2016). 

As Aluminium and Cast Iron are some of the most commonly used engine materials, a 

comparison of their material properties is provided in Appendix C. 
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Quartz 

 

This is a clear, crystal-structure material that is often used for the optical access points of 

an OA engine. Quartz is piezoelectric, meaning that it is able to create an electrical current 

when pressurised. The negative aspect of Quartz is that it is fairly fragile and breaks in a 

similar manner to glass due to its microstructure(Bates). Quartz can be classified as a type 

of glass but with specifically different properties to the more common kind which is called 

‘crown glass’. Borosilicate glass Schott BK7 is a very common crown glass as used in 

precision lenses. Overall quartz allows for excellent transmission in the ultraviolet 

wavelength and a comparatively low coefficient of thermal expansion. It has also a higher 

melting point than most conventional crown glass types (Precision Cells Inc. 2010). 

 

Fused Silica 

 

Much of the literature reveals that fused silica is also a popular choice of material for optical 

components. Fused Silica is derived from pure SiO2. Fused Silica has a high melting point 

and dimensional changes during heating and cooling are small (Askeland & Phule 2006). 

Probably most notable from the table in Appendix E is the fact that Fused Silica, amongst 

other common optics materials, exhibits a much lower linear expansion coefficient than the 

other materials. This is one very desirable feature for an optical engine (ASM International 

2011). 

 

Graphite 

 

Many companies have produced designs of graphite or graphite-carbon components, 

particularly for applications in engines/compressors. The Metallized Carbon Corporation 

(Metcar) company has a carbon-graphite material for piston rings for high pressure gas 

compressors. These rings are either manufactured to be either solid or segmented (Design 

Products & Applications 2011). For applications to pistons, graphite has several advantages 

over conventional aluminium alloy pistons. The main advantages are: lower density; lower 

coefficient of thermal expansion and higher resistance to heat. On the contrary, there can 

be some unfavourable elements, like lower tensile strength at room temperature. 
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Figure 9 – Mechanical Properties of Aluminium alloy vs Graphite (Heuer) 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Tensile strength of Aluminium alloy and Graphite with respect to temperature 

(Heuer) 

 

Performance improvements can be made on the basis of the advantages of Graphite, such 

as lower weight and less noise. Graphite without fibre reinforcements is also known as 

Carbon(Heuer).  

 

Sapphire 

 

Sapphire has a crystal structure. These crystals can be easily grown, however, the downside 

is that the sophisticated processes used and the length of time to grow them proves to be 

expensive. Crystal orientation is important in determining Young’s Modulus, Modulus of 

Rigidity and Modulus of Rupture. As Sapphire is one of the hardest known materials, it is 

difficult to polish yet has excellent resistance to rubbing. However it is still easy to scratch 
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in practice. Data based on the mechanical properties of Sapphire can be found in Appendix 

G. 

 

The failure mechanism of Sapphire is very similar to that of glass due to its brittle quality. 

Thus the overall strength of a component made from Sapphire is highly dictated by the 

surface finish as well as a number of other factors(Bates).  

 

Solid Film Lubricants 

 

Solid film lubricants are a recent innovation that have evolved the way in which machinery 

components are lubricated. Rather than the typical oil-based lubricants being used, a solid 

film lubricant essentially deletes a liquid lubricant from the bearing component interface, 

removing the possibility of soot forming and/or excessive oil build-up on optical surfaces. 

These materials may also be added or alloyed into the component during its manufacture. 

The more common types of dry/solid film materials include: Molybdenum Disulfide 

(MoS2 or Moly), Polytetrafluoroethylene (PTFE), Graphite, Boron Nitride, Talc, Calcium 

Fluoride, Cerium Fluoride and Tungsten Disulfide (Noria). 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Microstructure of Molybdenum Disulfide (Noria) 

 

MoS2, within its operating range, has superior qualities to that of Graphite and Tungsten 

Disulfide in regard to load bearing and surface speed performance values. MOS2 has a 

Lamella structure. When load and surface speed are increased, friction is decreased. It is 

also hydroscopic, meaning that it attracts moisture vapour contamination. However it is not 

abrasive (Dynamic Coatings Inc. 2011). As for PTFE bearings, which are considered in a 
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latter section of this dissertation, they are commonly sourced from large seal and bearing 

suppliers, such as Parker Hannifin Corporation. 

 

The disadvantage with using oil-free machines is that heat generated between surfaces 

where friction exists is greater than that of surfaces with liquid lubrication (CarsDirect 

2012). 

 

2.4 Pneumatics vs Hydraulics 

 

Air is under unlimited supply and it can be easily sourced from the environment. Storage 

and transportation of certain types of air/gas (i.e. Nitrogen) is done with minimal difficulty. 

Air is also clean and non-volatile. Construction of pneumatic componentry often brings 

forth relatively simple-shaped parts with simple manufacturing processes so costs is usually 

low with such parts (air pistons/rams). Another major advantage with pneumatic systems 

is that they consist of safety systems. These safety systems may be relief valves. 

 

Contrarily, systems that utilise air as a source of pressure/power may be disadvantaged in 

some areas. One example is the fact that the quality of the working fluid has to be of a high 

standard in order for the mechanisms to operate without premature failure or deterioration. 

The presence of any dirt or moisture in a system that is not properly sealed or has not been 

handled correctly may result in excessive wear, worn seals and/or damaged compressors 

and pumps. Consequently pneumatic systems must have air filtration and air drying 

systems implemented. Another obvious disadvantage with air is that it is compressible – 

this is difficult to track and consequently some mechanisms may not always attain a 

uniform and constant speed while in operation. 

 

Some other disadvantages with pneumatic systems is due to the general properties of air. 

In regard to temperature pneumatic systems are unaffected up to about 120 degrees Celsius. 

Another issue is with the force requirement. Because of its compressibility, the working 

pressure of air is effective only up to about 6-7 bar (600-700 kPa). This typically results in 

a force output between 20 and 30 kN (obviously depending on the surface area under 

pressure). Other minor issues include noise (when exhaust air is released) and cost of 

transmitting air as a power source (University of Southern Queensland 2014). 

 

This section briefly covers what determines air is the better choice of working fluid. 

Realistically either fluid type is appropriate in this application. Both fluids have their 
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positive traits and their limitations. Hydraulic fluid can supply a greater amount of force in 

a system, however, air requires less sophisticated pipework and does not pose a health 

hazard should there be a pipe leak. There are other differences that also set hydraulics and 

pneumatics apart. Yet, for this application, where large load capacities are not necessary 

and simplification of the system is desired, along with a minimal cost to the end user, air 

seems to be a good choice as the power source. 

 

A pneumatic system involves several stages before the actuator is activated by the power 

source. According to Workbook 2 from System Design (University of Southern 

Queensland 2014) here are the main stages of the travel of air: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 – Levels of a pneumatic system (University of Southern Queensland 2014) 

 

One main drawback of air compressors is that the air that supply is not sufficiently 

compressed for direct application to the actuating device at the end of the system. 

Specifically, due to the adiabatic process, compressed air has a high temperature, as well 

as having a certain amount of moisture content. 
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2.4.1 Air compressors 

 

The main categories of air compressors fall into either positive displacement or dynamic. 

Some examples of positive displacement compressors include reciprocating and rotary 

compressors. The above types of air compressors will now be discussed in detail. 

 

A factor that is very important to air compressor selection is the ‘duty-cycle’. Simply 

defined, duty-cycle is the percentage of total running time that the compressor is running 

at full load. Certain compressors need to cool down for a certain amount of time depending 

on their duty-cycle value. Duty-cycle can be defined by the simple formula D=R/T, where 

R is run time before cool-down and T is total running time. Typically compressors have 

their duty-cycles graded according total running times of 10 minutes (TruckSpring Times 

2011). So, for example, where a compressor has a duty-cycle of 30%, D will be 0.3, T is 

always 10, and thus R has to be 3. Alternatively, a compressor with a duty-cycle of 30% 

has to cool down for 3 minutes out of every 10 minutes of use. 

 

2.4.2 Reciprocating Compressors 

 

The main categories for a reciprocating type fall into two main sub-categories – piston and 

diaphragm compressors. Compressors can be either single-acting or double-acting. They 

can also require multiple stages. A single-acting compressor has an inlet and outlet valve 

on one side of the piston/diaphragm (usually on top). In a double-acting compressor, inlet 

and outlet valves will be situated both on top and below the piston. There is no large 

difference between a piston and diaphragm type compressor. What is different with a 

diaphragm compressor is that, as the name suggests, a flexible diaphragm, driven by a 

piston beneath, pumps the fluid in and out of the system, rather than just a piston alone. 

Diaphragm compressors are more commonly implemented as water pumps (University of 

Southern Queensland 2014). 

 

A compressor with multiple stages pumps fluid (air) up to higher pressures between 

differently sized cylinders. These systems usually have intercooling included due to the 

adiabatic effect. 

 

Air compressors can either be splash-lubricated or pressure-lubricated. Pressure-lubricated 

tend to have a higher initial cost but are usually more reliable than splash-lubricated 

systems. The reason for splash-lubricated systems being cheaper is that the manufacturing 
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cost is much less than that of pressure-lubricated compressors. Splash-lubrication is much 

more simple in that a dipper is added to the connecting rod of the piston and, as it rotates, 

splashes oil onto the moving components. Contrarily, pressure-lubricated systems use 

built-in oil pumps to force oil to specific components more efficiently. 

 

2.4.3 Rotary Compressors 

 

These come in the form of rotary vane, rotary screw and Roots blower compressors. Rotary 

vane compressors have some advantages over reciprocating compressors, including low 

noise level, low vibrations, small size and pulsation-free airflow. Their output pressures 

vary slightly compared to reciprocating compressors but the difference is negligible. One 

downside is that oil is injected into the air supply, meaning that the output source of 

pressurised air will contain a considerable amount of oil, especially when compared to 

ordinary reciprocating compressors. 

 

Screw compressors generally have fairly large output pressures as well as large flow 

capacities. They, like rotary vane systems, have low noise and vibration levels. They are 

typically selected for applications at mining sites. Roots Blowers, however, are not ‘true’ 

air compressors as they do not compress air internally. Rather they push trapped air to a 

discharge port at which pressure is created only due to the resistance of flow. Roots blowers 

are useful for enhancing air flow but not so much for compression. 

 

2.4.4 Dynamic (flow) compressors 

 

These compressors are not as practical as their size is relatively large. For this particular 

application the cost of implementing such a compressor would also seem non-feasible. 

 

2.4.5 Air supply system 

 

This is the stage of the pneumatic system process in which air is conditioned to be at the 

appropriate operating state. The elements of an air supply system are briefly described 

below. 
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2.4.6 Coolers 

 

Because of adiabatic heating, air temperature will rise after being transmitted through the 

compressor. Consequently this air must be cooled. If air is not cooled early in the process, 

natural heat transfer will occur within the pipework of the system as the air travels. This 

natural cooling in the pipework will form condensation and this can lead to internal rusting. 

The advantage of the cooler is that it collects this unwanted condensation before the air 

reaches any critical components. A cooler placed immediately downstream of the 

compressor is commonly called an after-cooler. 

 

2.4.7 Dryers 

 

Whilst coolers already serve as aids to removing moisture from the air, dryers may also be 

installed, should extra dry air be required. There are three main forms of dryers: chemical, 

refrigeration and adsorption dryers. 

 

2.4.8 Air Receivers 

 

These must be appropriately sized depending on a number of factors based on the general 

system design. The air receiver is to supply a constant stream of pressure to the final 

elements of the system, such as the actuators. It may also serve as an emergency reserve 

for pressurised air should there be a power failure in an electrically-generated system. 

 

2.4.9 Actuators 

 

These are also referred to as pneumatic cylinders. In regard to safety, a common safety 

measure is to have locks attached to the pneumatic cylinder in the case that pressure is lost 

suddenly or gradually without intention (Wikipedia the free Encylopaedia 2016b). There 

are various kinds of actuators for different applications. A piston actuator arrangement 

usually consists of a single piston with either a single-acting or double-acting motion. 

‘Single-’ or ‘Double-acting’ refers to the direction in which fluid is forced to impart motion 

of an object of which the actuator is attached to. For single-acting cylinders, one side of the 

piston contains the working fluid, while the other side uses a spring to return the piston 

back to its rest position. 
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A double-acting cylinder uses the working fluid to produce a force in either direction, rather 

than requiring a spring to retract the piston to the original position. Much like an IC engine, 

actuators have inlet and outlet ports for allowing compressed to flow in and out of the 

chamber. A single-acting cylinder will only need one inlet and one outlet port, whereas the 

double-acting cylinder will both an inlet and outlet on either end of the cylinder housing. 

The advantage with double-acting cylinders is that not only are they more capable of having 

a longer stroke length but they also have less resistance against the working force than 

single-acting cylinders due to the spring being obsolete. 

 

Other types of actuators include multistage or telescopic cylinders, through-rod or double 

rod, cushion end, rotary, rodless, tandem and impact cylinders. There are several different 

body constructions depending on the application of the actuator.   

 

 

 

 

 

 

 

 

 

Figure 13 – Telescopic cylinder (Parr 2011) 

 

 

 

 

 

 

Figure 14 – Double Rod Cylinder (Parr 2011) 
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Figure 15 – Typical air cylinder construction (Parr 2011) 

 

2.5 Cylinder Head Review 

 

For an engine head design, the key requirement is the placement of the fuel injector and 

spark plug/glow plug directly inside the combustion chamber(Hoag & Dondlinger 2015). 

Other considerations may include coolant passages, ribs/webs and space for placing sensors 

such as pressure transducers and thermometers. 

 

The cylinder head is unique by function in that it influences performance properties of an 

IC engine, such as performance level, torque, exhaust emissions, fuel consumption and 

acoustic properties. For the appropriate exchange of gases, valve timing in an engine is key. 

Typically the initial design phase of an engine head is the layout of basic geometry with 

respect to the mating cylinder block. Computer Aided Drawing (CAD) tools are very useful 

for this stage of design. A good place to begin with the geometric considerations is by 

simply sketching a 2D view of a cross-section of the combustion chamber and head 

together. This aids the designer in optimising the placement of various components (i.e. 

injector(s), spark/glow plug(s) and valves) as well as determining valve angles, cylinder 

head exterior dimensions and the location of gas ports. 

 

Some of the main factors that affect the cylinder head shape are shown in figure 16. Clearly, 

some of these factors, including number of valves, thermodynamics, variable valve 

actuation and ignition process, will affect how the combustion reaction occurs within the 

combustion chamber. 
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Figure 16 – Factors Influencing Cylinder Head Design (Basshuysen 2004) 

 

Clearly, engines undergoing development before production will not totally satisfy the 

design goals, as a lot of the design work involves a fair amount of trial-and-error. It is 

suggested that two-valve cylinder heads are the most economical due to their simplistic 

design over other engine arrangements like those with multivalve cylinders. As shown 

below, the manufacturing process is amongst the main design influences. Thus it is 

important that careful consideration be given to the processes available when designing an 

engine head. It is in this area that parts be made as similar as possible. Parts that are made 

identical result in cost minimisation due to the time saved during the manufacturing stage. 
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3 Methodology 

 

 

This project required a design of the pneumatic engine head clamp for an optical access 

engine. The design work involved completing the design of the upper-cylinder region, 

which was not fully completed in the previous work. Engineering calculations, virtual 3D 

representations and Finite Element Analysis (FEA) were used and produced. The design of 

the pneumatic clamp required extensive research along with an overall methodology which 

is discussed in this chapter. This chapter reveals the elements of the overall methodology 

including: tools and software utilised within all stages of the project; design approach to 

the pneumatic clamp, including the conceptualisation phase and the identification of parts 

and limitations due to general feasibility of the design. 

 

3.1 Background Research 

 

The Literature Review required research of any available literature for scientific principles 

and design ideas for the optical access engine. During this phase was an accumulation of 

knowledge that would enable me to take a more critical approach to my design. Having a 

systematic approach to the Literature Review resulted in an effective synthesis of 

knowledge and organisation of sources. The Literature Review provided a platform from 

which further knowledge could be sought if any gaps were noticed during the design work. 

 

3.2 Concept to Design - Lower cylinder barrel 

modification  

 

This turned out to be a difficult stage of the project. Brainstorming different ways to design 

the system was an opportunity for exploring the scope and finding boundaries to the design. 

Innovative and creative ideas had to fall within the project guidelines as well as lead to a 

well-functioning system. Whilst rough sketches were made during brainstorming, the final 

concept is presented here for simplicity. 

3.2.1 Conceptualisation phase 

 

As the existing engine design by Kevin Dray was the basis for the pneumatic/hydraulic 

clamp design there were two main directions to take with the clamp design. One option 
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would be to adapt a completely separate system to the engine itself. The issue with having 

such a design approach is with the need to lift and lower at least the upper barrel section of 

the engine when the engine is not operating. This could be done in a variety of ways – the 

clamping device could be independent of the engine and only clamp the engine head by 

applying a downward force to the engine head onto the engine cylinder. Another method 

would be to have the engine head in a fixed position and to have the entire engine moved 

up and down on an adjustable platform. Both of these approaches would require no 

modification to the existing design. 

 

The option to modify and redesign some of the existing components of the previous work 

done by Kevin Dray will be selected due to its practicality. One of the biggest benefits of 

this approach, as will be shown in the next chapter, is that whilst modifications will be 

made almost no exterior geometry will be affected, apart from the height of the upper 

cylinder section. This will still allow the functionality of the current engine design to be 

retained. The illustrations in the next section show this. On the other hand, the option to 

simply place the entire engine on an adjustable platform would have a certain degree of 

practicality. However, doing so could pose issues, particularly with the timing belt 

connecting the crankshaft to the camshaft.  

 

The timing belt on an engine is very critical to ensuring smooth engine running and proper 

engine timing. Moving the entire engine up or down to engage or disengage the head, whilst 

keeping the head in a fixed position, would change the tension in the timing belt. Another 

issue to consider is the fact that adjusting the engine height in this manner would require a 

higher power input to the clamping system via the pneumatics/hydraulics, due to the large 

weight from the engine, as well as the potential need to have more floor space for the 

adjustable platform. A very basic illustration of the design ideas mentioned above are 

provided in the next section with the use of AutoDesk AutoCAD.  

 

It was decided that the best option was to modify the current design in such a way that no 

exterior geometry would be changed except the upper barrel height. This would have no 

effect on the current engine designs functionality and would be a very compact and low-

powered means of engaging the engine block to the engine head. It should be emphasised 

that the engine head is a sub-system that lays outside the scope of this project. Therefore, 

any focus on the engine timing aspect will be touched on briefly but not used in the design. 

This includes any sub-systems components such as the camshaft, timing belt, valves or cam 

gear(s)/pulley(s). 
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Figure 17 - 2D Sectional view of lower cylinder barrel version A 

 

3.2.2 Design 

 

The current mechanism to be designed includes the modification of potentially no more 

than two of the components that currently exist. These components would be the upper-

barrel and the lower barrel. The lower barrel in its modified form would be the dynamic 

clamping mechanism. The effect of altering the upper barrel would be a potential change 

in cooling chamber size and thus have an impact on the cooling of the engine.  The effects 

of the cooling will therefore have to be carefully considered in the design. If time permits 

a thermal analysis will be performed on the upper region of the engine cylinder, analysing 

the heating paths throughout the combustion chamber and the surrounding parts. The 

design criteria are safety, robustness and reliability as well as making a system that is ‘user-

friendly’ or ergonomic. 

 

In general, the approach to the design was to design individual components or sub-sections 

separately. Thus Chapter 4, which focuses on the design and the mathematical principles 

in detail, has been categorised into individual sections which look at these separate sections 

of the system. In particular Chapter 4 focuses on the guide rings (bearings), O-ring seals, 

actuator dynamics and other important, influencing factors like the actuator geometry and 

C-ring gaskets. 
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Figure 18 - Clamp in disengaged position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 – Clamp in engaged position 
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Figure 20 – Sectional view of lower cylinder barrel version B 

 

3.2.3 Software packages 

 

Autodesk Inventor 2016 and Autodesk AutoCAD 2016 are the main programs nominated 

for the design work. Inventor was also used by the previous student, Kevin Dray, for his 

design and proved to be an easy-to-use tool. Inventor offers the ability to analyse 

components and/or entire assemblies using Finite Element Analysis (FEA) and also allows 

for 3D modelling and simulations. However Inventor does not have the ability to analyse 

Outer PTFE Guide Rings 

Inner O-ring 

Inner PTFE Guide Rings 

Outer O-ring 
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thermal stresses and temperature gradients in a medium. Other software packages may have 

to be sought as temperature is a primary parameter in the analysis of virtualised engines. 

 

Not only will a physical model be required for analysis but also a virtual manipulation of 

the pneumatic system will be necessary. As the pneumatic engine head clamp is the primary 

focus of this design project, a thorough investigation of the conditions for the air supply 

system will be needed so that parts and materials can be properly specified on the parts list. 

Software already exists for this type of investigation however it is not yet known as to how 

easy it is to source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21 – Overview of clamp system 

 

3.2.4 Hole/Shaft tolerances – System of Fits 

 

The ISO Standards can be found online for shaft and hole clearances. Many combinations 

of shaft grades and hole grades can be used. The ISO standard that applies to clearances 

for hydraulic cylinders is ISO 3320:2013 – Fluid power systems and components – 

Cylinder bores and piston rod diameters and area ratios – Metric series. As well as ISO 

standards, the general system of fits can be found from the Introduction to Engineering 

Drawings textbook (Boundy 2012). 
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3.3 Feasibility 

 

As the concept of this design was quite unique, especially due to the fact that it included a 

pneumatic actuator which was integrated into an engine block, a form of studying the 

feasibility of this system was useful in determining whether the pneumatic head clamp 

would be of any advantage to the already existing engine design.  

 

First of all, there was consideration of the project/design specifications. The specifications 

required that some means of clamping an engine head to an engine block be done in a quick 

manner, without the need to loosen and re-tighten head bolts for cleaning optical 

components. A feasibility study in a typical design process is done prior to design work. 

This is because most engineering companies require extensive resources, money and time 

to continue with a design. Thus, if a company finds in the feasibility study that the 

component or system does not agree with a fundamental scientific law, or that the necessary 

materials are not available, then the design project can be aborted.  

Upon reviewing some of the available literature, it was determined that using some form 

of pressurised fluid to close and seal an optical engine combustion chamber was certainly 

possible. The uniqueness of this design, however, involved complexities such as not 

knowing full details of the engine head. Another complication was the fact that geometry 

from the already designed block could not be modified too greatly, otherwise this would 

impact on the engine’s overall functionality. 

 

The feasibility study for this project was not done at a distinctive stage of the project. 

Rather, as this design involved some trial-and-error and iterative approaches to the 

selection of components, such as the actuator seals, the feasibility study was an ongoing 

process. Many categories, either of technical, economical or practical nature, can be 

attributed to the project’s feasibility. Consequently, a definitive ‘yes’ or ‘no’ answer can 

describe whether the design is feasible or not. An overall judgement on the design’s 

feasibility based on technical, practical and economical perspectives is provided in the 

following section. 

 

3.3.1 Pressure-supply limitations 

 

One aim was to design a pneumatic clamp that would be able to utilise air from a source 

such as a standard air compressor. It was desirable to require a supply of no more than 150 

psi as this is a common pressure output from standard air compressors. If 150 psi of supply 
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pressure could be used to create the necessary compressive force on the metal c-ring, this 

could see a great reduction in set-up costs. This is one of the main advantages of using 

compressed air as opposed to hydraulic equipment – the reduced set-up cost. 

 

3.3.2 Part availability 

 

It has been identified that some of the parts can be sourced directly from part outlets. For 

O-rings, local stores actually stock many O-ring seals from Parker Hannifin. This would 

prove to be a great advantage in regard to time saving and ease of acquiring the necessary 

parts. Parts that are not off-shelf components, like the optical ring, may prove to be more 

difficult to acquire as the optical ring is essentially a custom part. Availability for parts like 

these, therefore, will indeed be lower. 

 

3.3.3 Machining 

 

Part of the product design evaluation/design feasibility was to look at the ‘machinability’ 

of the components. Machinability is defined by the rating assigned to a material for how 

easily it can be machined to a required tolerance with the appropriate tooling. There are 

several criteria for machinability which are (1) tool life; (2) forces and power of machining 

tools; (3) surface finish and (4) ease of chip disposal. Tabulated are the typical 

machinability ratings for common materials exposed to machining processes. 

 

As it can be seen, Aluminium seems to hold very high machinability ratings relative to 

most other materials. One of the main reasons for this sis that Aluminium is in general a 

very soft material. Aluminium is also readily available which makes it good value. The 

machinability rating for hard Aluminium alloys is indicated as a much lower value. 

However it can be seen that a general regard for Aluminium places it highly amongst other 

materials for material selection. As it was mentioned surface finish is one of the main 

criteria for measuring the machinability of a material. Surface finish is strongly dependent 

on the machining process used. 

 

For creating grooves, a process known as turning can be used. With turning, a surface 

roughness of as low as 0.8 μm can be achieved. For diameters large than 50 mm, a tolerance 

commonly adhered to is 0.075 mm (Groover). 
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A decision matrix is a graphic tool that lays out all possible solutions (or any items for 

selection) in a matrix, with corresponding qualities or characteristics of each solution used 

as the selection criteria. Each criterion for each solution is given a simple numerical rank. 

Once all ranks are given, the results can be added to indicate which solution proves the 

most feasible. This method is obviously a simplistic and logical way of determining a 

solution to a problem, hence the need for engineering judgement to be integrated into the 

decision process. However, as the criteria for material selection specifically will consist of 

mechanical properties and physical attributes, the decision matrix proves to be a plausible 

technique. 

 

3.3.4 Sustainability 

 

Sustainability is perhaps the most significant effect to consider for this project. As most of 

the project will comprise the design of components that are in essence ‘brand new’, care 

will be taken in determining the types of materials used, power sources required to run the 

machine and any other implications of the design such as recyclability. Recyclability is a 

major issue in contemporary engineering design. With implementation of advanced 

materials in more modern-day applications, products now must be made to be more 

modular and are made from materials that are environmentally friendly. Steel and 

Aluminium are some materials commonly seen in modern vehicles. The modular 

construction of these vehicles is also a testament to the contemporary approach of ‘design 

life’ manufacturing. 

 

3.3.5 Ethics 

 

As of yet no such implications have been determined for the design itself. The operation of 

the machine itself might have implications and the root extraction of materials from natural 

resources for producing the components may possibly have an effect on cultural ethics. A 

general code of ethics offered by Engineers Australia indicates the main elements of ethics 

in an engineering environment. This code of ethics discusses the importance of 

communication, integrity, engineering competence and sustainability, all of which are 

perhaps of most notable value for this particular project. 
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3.3.6 Safety 

 

Computer simulations of pneumatic systems can be used for investigating various pressure 

points within a system and for a general understanding of how a designed system may 

operate under certain real-life conditions. One software package is called Automation 

Studio by Famic Technology. This package enables the designer to set-up an entire virtual 

pneumatic/hydraulic system on a computer and also allows for the allocation of customized 

cylinders and actuators. 

 

Preventive maintenance, as with most machines, is something that is sometimes overlooked 

for its benefits. Not only does preventive maintenance include checks on proper operation 

of equipment and/or faults but it also trains the service technician in the general layout and 

operation of the mechanism under inspection/service. Typically a good servicing schedule 

will incorporate a thorough maintenance schedule (whether time-based or running cycle-

based). A computer software package will be a great advantage in this area. 

 

Fault-finding generally consists of a number of steps which are shown in Figure 22. There 

are three main maintenance levels. The first (first-line) maintenance level is concerned with 

getting a faulty plant running again. Once the fault is found a decision has to be made as to 

whether to repair or completely change the faulty unit. Second-line maintenance is the 

repair of units previously changed by first-line maintenance staff. Third-level maintenance 

is the return of equipment for repair by the manufacturer. This level may be effected 

depending on the complexity of equipment, ability of staff, cost and the turn-around time 

for the repair(s).  

 

It is also extremely important that, with fault-finding, faults and the results after repairs are 

made (i.e. pressure readings) are recorded. This may assist in narrowing-down of potential 

faults should a problem arise or recur. If the problem is recurring after maintenance work 

then it may be likely that recent maintenance work could be the cause. It also good practice 

to simply scan the system for any visual or audible signs of unusual activity (Parr 2011). 

 

These aspects of safety represent the different means of reducing risk as much as possible 

regardless of the possibility or significance of the risk at hand. If these methods or 

approaches are followed carefully then any issues can be considered to be purely the fault 

of either the design or simply due to the nature in which the machine operates. A risk 

assessment of any issues pertaining to the design or running of the machine in subject is 

shown in the following sub-section. 
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Figure 22 – Fault-finding process  

 

Whilst it is intended to include a safety system for the pneumatic network itself a back-up, 

fail-safe system will also be desired. It should be emphasised that safety is one of the most 

important aspects to this design. This engine would operate at high speeds and, by nature 

of its structure and functionality, it includes heavy masses and high pressures. Thus it is 

extremely critical to proceed with the design with a complete awareness of the risks 

involved, particularly risks imposed on people using the machine. 

 

Subsequently, a mechanical safety system will be integrated into the design to mitigate 

and/or minimise the risks as much as possible. These risks will be identified and discussed 

in a later section. The details of the mechanical safety system will be discussed in the next 

section. However, trying to visualise a simplistic version of the safety system, incorporated 

into the pneumatic/hydraulic actuator, will be important for one simple reason. The reason 

for this is that the choice of seals for the head clamping mechanism depends on whether 

any part of the safety system will intrude the space in which the running surfaces of the 

actuator are moving. 

 

3.3.7 Resources 

 

Some sources for material and componentry needs have been identified. As it is an early 

stage of the project, however, there may be a need to find more reliable sources over the 

course of the project. 
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The attainment of second-hand items would be quite desirable especially for engine heads 

as these may prove to be a considerably expensive part of the machine. It would also be an 

advantage if combustion analysis could be performed on various engine head types and 

sizes due to investigate the effects of the different head design characteristics.  

 

Some suppliers that were discovered are Edmund Optics and Thorlabs. Both of these 

companies are not based in Australia so collection of materials or any other resources from 

these suppliers may cause slight delays. Regarding seals, there is a supplier based in the 

Toowoomba region called Hydraulic Sales, where a large stock of O-ring seals are readily 

available should the O-rings need to be sourced. 

Fortunately, should these suppliers fail to supply the components needed, other companies 

that design and manufacture components to a customer’s specific requirement do exist 

around the world. Many of these companies can be found by simply searching for online 

websites. 

 

3.3.8 Budget 

 

It is intended that as much of the budget as possible for this project be covered by the 

University of Southern Queensland. Whilst the project is presently undergoing the early 

phases an overall budget has therefore not been determined. In order to minimise the 

budget, however, every opportunity will be taken with reusing second-hand components 

and utilising the University laboratory equipment. 

 

3.3.9 Risk Assessment 

 

With any project there can be a reasonable number of risks involved. This project especially 

has risks affiliated with the use of the machine should it pass the commissioning phase. 

The advantage of having the ability to use virtualisation software is that ‘prototyping’ can 

be done without the need to produce real-life components or models of the design in order 

to test certain parameters. The design phase in itself does not exhibit any significant risks 

whatsoever. That being said there will be risks considered during the design phase in 

relation to the machine components. 

 

One method that conforms with this risk analysis approach is called Failure modes and 

Effects Analysis (FMEA). The level of risk involved with componentry failure can be 
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approximated using formulae pertaining to failure analysis and thus a possibility and 

significance rating of the risks can be established. This method is commonly used in the 

automotive industry. 

 

Even personal judgement can be all that is required if the risks involved are fairly ‘black 

and white’. For these scenarios a generic risk matrix can be used and these are commonly 

used for many problems that incorporate varying levels of risk. These matrices are a useful 

graphic of how severe certain outcomes of risks can be. 
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4  Design – Components and Mathematical 

Principles 
 
 

The design for this project will require analysis of two different areas of the optical access 

engine assembly. The first area is the upper-cylinder region of the block, specifically, the 

optical ring. The optical ring was already produced as a virtual model but with no technical 

analysis performed on it. The optical bore is an integral part of the upper-cylinder and so 

any significant changes to the design could influence adjoining components. Thus, during 

the design phase, it was important to consider this and make as little changes to parts as 

possible. As this project was a continuation of work previously done by another student 

and involved the modification of some parts, care was taken to not alter the existing design 

significantly so as to affect internal engine components. 

 

4.1 Components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 – Exploded View of pneumatic clamp 
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The construction of a pneumatic cylinder or actuator is fairly simple. The basic components 

of a cylinder are the cylinder structure, seals, the piston, the rod connected to the piston, 

base cap and bearing cap. It should be noted that this construction refers to double-acting 

cylinders. 

 

4.1.1 Actuator Base 

 

This component contains the ‘air chamber’, which changes volume as the piston moves up 

or down. It primarily consists of a bore which houses the bearings and seals as well as the 

base of the piston. The physical details have been illustrated. For actual measurements of 

the diameters based on these tolerances, refer to the dimension tables from section 4.1.3 on 

Guide Rings as well as the technical drawings in Appendix N. General tolerances have also 

been applied from O-ring standard tolerances from the Parker Hannifin handbook.  

 

In general, a bore surface, which interchanges definition based on whether it is for a rod 

gland or piston gland, has a tolerance of H9. Bore surface is always based on the actuator 

base side. Machining tolerances have been applied to the guide ring groove seats. For the 

piston surface the tolerance grade is f7. Tolerance grade for the O-ring groove seat is h8. 

 

4.1.2 Actuator piston 

 

This is the moving component which ultimately transfers load to the C-ring, forming the 

combustion chamber seal. The area of the base dictated the pressure and therefore the load 

transmitted through to the metal C-ring. This was analysed based on the basic principles of 

pressure and its dependence on area. The motion and dynamics of the piston were analysed 

using MATLAB codes which computed the pressure derivative. 

 

4.1.3 Guide Rings 

 

While seals are required to keep the system pressurised and prevent air leakage, guide rings 

are also sometimes used to provide lateral support for pistons in cylinders, as well as offer 

piston alignment. SKF offers WAT, RGR AND PGR guide rings. WAT rings are made 

from glass fibre reinforced polyamide (P-2551). PGR rings are made of phenolic resin with 

cotton fabric laminate (PF) as standard. At above 120˚C the range of guide strip materials 

is very limited. 
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The next stage was to determine force distributions on the guide strip. 

 

Bertetto, Mazza and Orrú (2015) mention in their article about guide bearings that the main 

operating parameters for pneumatic cylinders and actuators are working pressure, actuation 

velocity, external load and lubrication conditions. When reviewing the literature, a paper 

was found (Gamez-Montero et al., 2009) that provides an analytical approach for 

determining load capacity of a cylinder based on misalignment effects. It was decided that 

this approach could very well be applied to the actuator design. Before the analytical 

method was applied, however, data on available guide ring sizes had to be considered first. 

 

The ‘Fluid Power Seal Design Guide’ was consulted (Parker Hannifin 2014) to see what 

guide ring types and sizes were available. Two different guide ring types were identified 

for pneumatic applications. Either a PDT profile or PDW profile could be selected. The 

PDW profile offers the end user a precision machined bearing at any size that can be easily 

installed. The PDT profile has a rectangular cross-section, whilst the PDW profile has a 

trapezoidal section, with the two internal corners of the bearing being chamfered slightly. 

The PDW profile is the bearing profile of choice for this design.  

 

Standard material options for this bearing are a 40% Bronze-filled PTFE and a 23% 

Carbon-, 2% Graphite-filled PTFE material. The Bronze-filled PTFE bearing provides 

better mechanical properties compared to the Carbon- and Graphite-filled bearing. Initially, 

this was thought to be a good choice of material due to its superiority compared to the 

Graphite-Carbon filled material. However, when reviewing the literature, it was realised 

that this material should not be used in applications where the bearing is exposed to 

oxidising agents (Quadrant Engineering Plastic Products, 2014). Air is considered to be an 

oxidising agent due to the fact that it comprises significantly of Oxygen. This can lead to 

tarnishing of the Bronze-filled PTFE bearing. Thus a new decision was made to instead 

choose the Parker 23% Carbon-, 2% Graphite-filled PTFE material, which still exhibits 

very desirable mechanical properties such as good yield strength. 

 

Standard thicknesses for this bearing are 0.062”, 0.093” and 0.125” thicknesses. The 0.093” 

thickness will be selected for the analysis. 0.093” converts to approximately 2.3622 mm. 

According to Parker, the radial tolerance for the bearing manufacture has the range 

+0.000”/-0.004” inches (+0.000 mm/-0.1016 mm), which is a clearance fit. Attention was 

then drawn to the bearing gland dimensions. Parker also offers tables of standard tolerances 

and overall dimensions for the glands of all standard bearing sizes. The following equations 



   
 

40 
 

are for calculating custom, rod wear ring groove dimensions, from Appendix C of Parker 

Catalogue 5370 (Parker Hannifin 2014). This profile has the style ‘E’ (0.093” thickness). 

 

𝑀𝑖𝑛. 𝐺𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐵1

= [(
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑜𝑑 
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐴1

) + .001"] + 2 × (𝑀𝑎𝑥. 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 

 

(𝑀𝑎𝑥. 𝑔𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) = 𝐵1 + (𝑀𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠) 

 

𝑀𝑖𝑛. 𝑡ℎ𝑟𝑜𝑎𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐶1 = (
𝑀𝑎𝑥 𝑔𝑟𝑜𝑜𝑣𝑒 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
) − 2 × (

𝑀𝑖𝑛. 𝑐𝑟𝑜𝑠𝑠
𝑠𝑒𝑐𝑡𝑖𝑜𝑛

) 

+2 × (𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑖𝑛. 𝑟𝑎𝑑𝑖𝑎𝑙 𝑚𝑒𝑡𝑎𝑙 − 𝑡𝑜 − 𝑚𝑒𝑡𝑎𝑙 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒) 

 

𝐷 = (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑤𝑖𝑑𝑡ℎ,𝑊) + (.010") 

 

 

 

 

 

 

 

Figure 24 – Rod gland (Parker Hannifin) 

 

The above values are in imperial units. These were converted to metric units for 

calculations. The nominal measurement for bore diameter was based on O-ring selection. 

As this measurement did not match exactly to any of the standard wear ring gland 

dimensions, a custom gland design, as detailed above, was chosen. A machining tolerance 

of ±0.075 mm was assumed for the wear ring groove. This is a typical tolerance achievable 

by turning for diameters greater than 50 mm (Groover). The nominal inner bore diameter 

is 108 mm, meaning that the above values were worked out as follows. 

 

Rod/inner glands: 

 

𝐵1 = [107.964 + 0.001 × 25.4] + 2 × (. 093 × 25.4) ≈ 112.7138 𝑚𝑚 

(𝑀𝑎𝑥. 𝑔𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) = 112.7138 + (0.075) = 112.7888 𝑚𝑚 
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𝑀𝑖𝑛. 𝑡ℎ𝑟𝑜𝑎𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐶1

= (112.7888) − 2 × (2.2606) + 2 × (0.005 × 25.4)                      

= 108.5216 

  

𝐷 = (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑤𝑖𝑑𝑡ℎ,𝑊) + (.010") 

 

To find nominal width: 

𝑊 =
5𝐹

∅𝐷 × 𝑞
× 𝐹𝑆 

FS=3 

𝑊 =
5 × 16 𝑁

0.108 𝑚 × 24.821 × 106𝑃𝑎
× 3 ≈ .00009 𝑚 

 

This is equal to about .09 mm. Practically this would be too small to handle by hand. So a 

width of 2.5 mm was chosen, which would provide the necessary compressive capacity and 

be easier to handle by hand. Therefore D was determined based on the above equations. 

 

𝐷 = (2.5) + (. 010 × 25.4) = 2.754 𝑚𝑚 

 

For piston glands: 

 

 

 

 

 

Figure 25 – piston gland (Parker Hannifin) 

 

𝑀𝑎𝑥. 𝐺𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐵

= [(
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑜𝑟𝑒 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝐴
) − .001"] − 2 × (𝑀𝑎𝑥. 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

= [142 − 0.001 × 25.4] − 2 × (.093 × 25.4) = 137.2502 𝑚𝑚 

 

(𝑀𝑖𝑛. 𝑔𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) = 𝐵 − (𝑀𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑠)

= 137.2502 − (0.075) = 137.1752 𝑚𝑚 
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𝑀𝑎𝑥. 𝑝𝑖𝑠𝑡𝑜𝑛 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐶

= (
𝑀𝑖𝑛 𝑔𝑟𝑜𝑜𝑣𝑒 
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

) + 2 × (
𝑀𝑖𝑛. 𝑐𝑟𝑜𝑠𝑠
𝑠𝑒𝑐𝑡𝑖𝑜𝑛

) − 2

× (𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑖𝑛. 𝑟𝑎𝑑𝑖𝑎𝑙 𝑚𝑒𝑡𝑎𝑙 − 𝑡𝑜 − 𝑚𝑒𝑡𝑎𝑙 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒)

= (137.1752) + 2 × (2.2606) − 2 × (. 005 × 25.4)

= 141.4424 𝑚𝑚 

 

Min piston diameter (f7) = 141.4424 mm - 0.083 mm = 141.3594 mm 

 

𝐷 = (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑤𝑖𝑑𝑡ℎ,𝑊) + (.010") = (2.5) + 0.01 × 25.4 = 2.754 𝑚𝑚 

 

Consider the case where clearance is as large as possible. This will lead to the largest 

possible misalignment of the plunger-piston inside the cylinder. Contrarily, the clearance 

gap is smallest when components are machined as close as possible relative to each other. 

To give an overview of the largest and smallest clearances for both inner and outer guide 

rings, the following tables have been produced. 

 

Table 1 – Largest possible clearance between outer bearing and bore 

 Measurements (mm) 

Smallest groove diameter 137.1752 

Smallest bearing cross-

section 

2.2606 

Largest bore diameter (H8) 142.063 

Clearance between bearing 

and bore 

142.063/2-

(2.2606+137.1752/2)=0.1833 

 

Now for the inner bearing and bore: 

 

 Table 2 – Largest possible clearance between inner bearing and bore 

 Measurements (mm) 

Largest groove diameter 112.7888 

Smallest bearing cross-

section 

2.2606 

Smallest bore diameter (f7) 107.929 

Clearance between bearing 

and bore 

112.7888/2-(2.2606)-

107.929/2=0.1693 
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Now for the smallest possible clearance between the outer bearing and bore: 

 

Table 3 – Smallest possible clearance between outer bearing and bore 

 Measurements (mm) 

Largest groove diameter 137.2502 

Largest bearing cross-

section 

2.3622 

Smallest bore diameter (H8) 142.0 

Clearance between bearing 

and bore 

142/2-

(2.3622+137.2502/2)=0.0127 

 

Table 4 – Smallest possible clearance between inner bearing and bore 

 Measurements (mm) 

smallest groove diameter 112.7138 

largest bearing cross-section 2.3622 

largest bore diameter (f7) 107.964 

Clearance between bearing 

and bore 

112.7138/2-(2.3622)-

107.964/2=0.0127 

 

4.1.3.1 Geometric Analysis 

 

Using the iProperties Tools in Inventor Professional 2016, the centre of Gravity could be 

located in a fast and simple manner. Individual masses of the assembled components were 

also found using the iProperties Tools. The overall mass of the upper cylinder assembly is 

reported here. 

 

Overall upper cylinder assembly mass: 10.6546 kg 

 

Centre of Gravity (COG) position relative to bottom of assembly: 225.337 mm (y-

direction) 
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Figure 26 – Inner bearing geometry and nomenclature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 – Outer bearing geometry and nomenclature 
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𝑍 = √𝐻2 + 𝑊2 

cos∅1 =
𝑊

𝑍
  

cos∅2 =
𝑊+2×𝐶

𝑍
 (outer bearings) 

cos∅2 =
𝑊−2×𝐶

𝑍
 (inner bearings) 

 

Outer bearings, smallest gap: 

Largest groove diameter = 137.2502 mm 

Largest bearing C.S. = 2.3622 mm 

 

𝑊 = 137.2502 + 2.3622 × 2 = 141.9746 𝑚𝑚 

H = 14.508 mm 

C = 0.0127 mm 

𝑍 = √14.5082 + 141.97462 ≈ 142.7139 𝑚𝑚 

𝑊 + 2𝐶 = 141.9746 + 2 × 0.0127 = 142 𝑚𝑚 

∅1 = cos−1 (
141.9746

142.7139
) ≈ 5.83448∘ 

∅2 = cos−1 (
142

142.7139
) ≈ 5.7333∘ 

𝜃 = ∅1 − ∅2 = 5.8345 − 5.7333 = 0.1012° 

 

Inner bearings, smallest gap: 

smallest groove diameter = 112.7498 mm 

largest bearing C.S. = 2.3622 mm 

𝑊 = 112.7498 − 2.3622 × 2 = 108.0254 𝑚𝑚 

H = 14.508 mm 

C = 0.0127 mm 

𝑍 = √14.5082 + 108.02542 ≈ 108.9953 𝑚𝑚 

𝑊 − 2𝐶 = 108.0254 − 2 × 0.0127 = 108 𝑚𝑚 

∅1 = cos−1 (
108.0254

108.9953
) ≈ 7.64927∘ 

∅2 = cos−1 (
108

108.9953
) ≈ 7.7489∘ 

𝜃 = ∅2 − ∅1 = 0.0986° 

 

Outer bearings, largest gap: 

smallest groove diameter = 137.1752 mm 
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smallest bearing C.S. = 2.2606 mm 

𝑊 = 137.1752 + 2.2606 × 2 = 141.6964 𝑚𝑚 

H = 14.508 mm 

C = 0.1833 mm 

𝑍 = √14.5082 + 141.69642 ≈ 142.43719 𝑚𝑚 

𝑊 + 2𝐶 = 141.6964 + 2 × 0.1833 = 142.063 𝑚𝑚 

∅1 = cos−1 (
141.6964

142.43719
) ≈ 5.846∘ 

∅2 = cos−1 (
142.063

142.43719
) ≈ 4.15401∘ 

𝜃 = ∅1 − ∅2 = 5.846 − 4.15401 = 1.692° 

 

Inner bearings, largest gap: 

Largest groove diameter = 112.7888 mm 

smallest bearing C.S. = 2.2606 mm 

𝑊 = 112.7888 − 2.2606 × 2 = 108.2676 𝑚𝑚 

H = 14.508 mm 

C = 0.1693 mm 

𝑍 = √14.5082 + 108.26762 ≈ 109.2353 𝑚𝑚 

𝑊 − 2𝐶 = 108.2676 − 2 × 0.1693 = 107.929 𝑚𝑚 

∅1 = cos−1 (
108.2676

109.2353
) ≈ 7.63216∘ 

∅2 = cos−1 (
107.929

109.2353
) ≈ 8.8697∘ 

𝜃 = ∅2 − ∅1 = 1.2375° 

 

4.1.3.2 Stress Analysis 

 

Analytical solutions to the resultant pressures, forces and stiffness coefficients have been 

presented by Baragetti and Villa (2015). An actuator rod, under rotation due to 

misalignment, was modelled with the supporting wear rings considered as spring elements. 

The pressure distribution on wear rings is assumed to have a triangular shape. Hence the 

resultant force due to the pressure is applied at one-third of the wear ring width (1/3t). Refer 

to the figure above for a visual representation. A simple calculation for acceleration due to 

actuator misalignment was performed, yielding a result of approximately 0.49105 Nm. 
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Ren and Muschta (2010) provided a model for edge loading of polymer bearings. The 

model requires a guessed deflection of the bearing at the loaded edge, followed by an 

iterative process. Below is the nomenclature that describes the equations to follow. 

 

Fcapacity = 𝐾𝜇 ∙ 𝐾𝜂
𝐸𝑐𝐷𝛿𝑚

2

𝑊𝑆
 supporting force of bearing (N) 

𝐾𝜇 = (1 − 𝜇)/(1 + 𝜇)(1 − 2𝜇)  

 

The above value is a factor based on the assumption that two strains other than loading 

direction are zero. This assumption could lead to a stiffer bearing and higher estimated edge 

load than the actual one (Ren and Muschta, 2010). The factor below was obtained by 

integrating bearing pressure over the actual contact area and is valid only if the length of 

the contact area is smaller than the bearing length (Ren and Muschta, 2010). 

Kη = 0.0959η3 – 0.086η2 + 0.327η – 0.0017 

μ = Poisson ratio 

Ec = Compressive E-modulus of bearing material 

 

Unfortunately no data could be found that specifically gave the strain for 23% Carbon-, 2% 

Graphite-filled PTFE under compression. Thus data was taken from experimentation done 

on the compression of standard PTFE. For a temperature of 26˚C, the measured strain for 

the PTFE with a true stress of 25 MPa was approximately 0.25. The Parker tables for this 

material do indicate the compressive strength (in psi). Therefore this compressive strength, 

combined with the approximate strain of standard PTFE, would give a rough estimate of 

the compressive modulus of 23% Carbon-, 2% Graphite-filled PTFE. The estimated value 

for Ec is reported below. 

 

Ec = 24.8211/0.025 MPa ≈ 992.844 MPa 

D = Shaft diameter (mm) 

W = Wall thickness of bearing (mm) 

S = shaft slope at bearing 

δm = max. deflection of bearing surface at edge of bearing end (mm) 

 

𝜂 = sin (
𝛷𝑚

2
) = √1 −

[
 
 
 (1 + Ψ)2 + (

2𝛿𝑚
𝐷 + Ψ)

2

− 1

2(1 + Ψ) (
2𝛿𝑚
𝐷 + Ψ)

]
 
 
 
2

  

 

Фm = contact angle between shaft and bearing at edge 
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𝛿𝑚 = √
𝑊 ∙ 𝑆 ∙ 𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐸𝑐 ∙ 𝐷 ∙ 𝐾𝜇 ∙ 𝐾𝜂
 

 

It can be seen here that an iterative process is required, as δm and η are interdependent. 

Hence an initial guess for δm was made (0.1 mm) and was used as an input for the equation 

for η. The result obtained for η was then put into the equation for Kη. This result was then 

inputted to the equation for δm. The above calculations were then iterated if δm deviated 

significantly from the initial guess. Once the iterative process reaches a steady solution, the 

following equation for peak pressure is applied. 

 

𝑝𝑚 = 𝐾𝜇 ∙
𝐸𝑐

𝑊
∙ 𝛿𝑚 

 

This peak stress can then be compared to the bearing material’s strength characteristics. 

The peak stress must not exceed the yield strength of the bearing material. Otherwise, the 

bearing will fail. MATLAB was the software used to estimate the deflection of the edge-

loaded bearing scenario. For a detailed view of how the calculations were performed for 

the bearings, refer to Appendix K. The final results for all four load cases are tabulated in 

the Results and Discussions chapter. 

 

 

 

 

 

 

 

Figure 28 – Illustration of shaft and bearing under edge-loading (Ren & Muschta 2010) 

 

4.1.4 O-Ring seals 

 

The SKF website provides a thorough guide for choosing the proper seal types and sizes 

for a vast range of applications. On the website a list of important parameters and 

information is given for choosing seals. 
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- Range of operating fluid system pressure, including severity and peaks of pressure. 

- Speed of piston rod stroke. 

- Temperature range of fluid and cylinder assembly, both at rest and during 

operation. 

- Fluid media type and viscosity. 

- Dimensions: rod and bore diameter; seal groove gaps and dimensions (if already 

specified); cylinder overall length and stroke length and surface finish 

specifications (if already specified). 

- Application of cylinder: how it will operate; installation; duty cycles and 

environmental factors (external temperature, contaminants).  (SKF) 

 

4.1.4.1 O-ring squeeze 

 

The Apple Rubber website was found to contain formulae used for calculating O-ring 

stretch and squeeze. Squeeze is defined as the percentage of the radius of the O-ring that is 

compressed upon groove installation. This squeeze percentage determines whether there is 

sufficient sealibility from the O-ring. To calculate the maximum O-ring cross-section, two 

types of squeeze need to be defined. There can be either radial squeeze or axial squeeze. In 

axial squeeze, the O-ring is being compressed on the top side and bottom side. In radial 

squeeze, it is compressed on both the inside and outside contact areas, relative to the 

diametrical centre. The following formula, once again provided as a guide by Apple 

Rubber, finds the maximum cross-section of the O-ring as a result of ‘squeeze’. 

 

Maximum O-ring cross-section: 

 

min𝑔𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟−max𝑔𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2

1−
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 % 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

100

 – O-ring CS tolerance 

 

Minimum O-ring cross-section: 

 

max𝑏𝑜𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟−min𝑔𝑟𝑜𝑜𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2

1−
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 % 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

100

+ O-ring CS tolerance 

 

Briefly mentioned in the Apple Rubber O-ring seal design guide is that highly polished 

finishes are undesirable on surfaces as they will not hold lubricant effectively. The 

roughness value range suggested is 10-20 micro-inches. 
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When an I.D. and a gland depth is known then the cross section of the O-ring can be found. 

Gland depth is the machined groove depth plus the clearance. That approach is useful for 

replacing O-rings but not for the design of a new component. The approach taken for this 

design was slightly different in that the I.D. was not set to any particular value and the 

gland depth was not known. Once the general dimensions of the piston and base were 

determined, catalogues of off-the-shelf O-rings were searched to identify O-ring that 

matched as close as possible to these dimensions. The Parker Hannifin catalogues were 

particularly useful for searching O-ring sizes. The Dynamic Seal section of the Parker 

Handbook ORD 5705 contains the available seals for dynamic pistons and rods (Parker 

ORD 5705). 

 

 

 

 

 

 

 

Figure 29 – Recommended inside diameter (d1) range for various cross-section (d2) sizes (Parker) 

 

4.1.4.2 O-ring sizes and grooves 

 

When designing the O-ring grooves for the actuator piston, there was a need to ensure that 

stress concentrations in the grooves would not cause the stress within the structure of the 

piston to exceed the critical stress. The critical stress takes account of the stress 

concentration factor as well as the design safety factor. A general safety factor of 3 was 

applied to all components, based on a conservative design approach where well known 

materials were being applied to newly designed objects. 

 

 

 

 

  

Figure 30 – O-ring dimensions (Parker Hannifin) 
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Figure 31 – Rod seal dimensions (Parker Hannifin) 

 

 

 

 

 

 

Figure 32 – Floating O-ring dimensions (Parker Hannifin) 

 

 

 

 

 

 

 

Figure 33 – Table for detailed gland dimensions (Parker Hannifin) 

 

Table 5 – Outer floating O-ring and gland dimensions 

Parker 

no. 

d1 d2 b 

+0.2 

0 

b3 

+0.2 

0 

d3 

 

h8 

d4 

 

H8 

d9 

 

f7 

2-253 136.12 3.53 4.8 4 134.4 142 141.4424 
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Table 6 – Inner O-ring and gland dimensions 

Parker 

no. 

d1 d2 b 

+0.2 

0 

b3 

+0.2 

0 

d5 

 

f7 

d6 

 

H9 

d10 

 

H8 

2-244 107.54 3.53 4.8 4 108 113.9 108.5576 

 

The 3D O-ring models were drawn based on the above dimensions and are presented in the 

3D assembly drawing from Appendix P. 

 

It was also important to consider the cross-section sizes available from Parker. It was 

intended to vary the size of the actuator parts as little as possible. The outer diameter of the 

actuator (top piece) was initially around 130 mm with a thickness of 10 mm and inner 

diameter of 110 mm. The smallest O-ring cross-section for the internal diameter of 110 mm 

was 3.53 mm. A problem was then faced with fitting the grooves within the 10mm 

thickness. When placing the grooves for a 3.53 CS O-ring on opposite sides of the 10mm 

wall a great stress concentration factor was encountered. 

 

A revision was then made to the actuator top-piece. When referring to figure 34 below it 

can be seen that the ratio a/d (groove width/distance between grooves) for charts and b, 

respectively, are 0.25 and 1. This means that if a/d was different for the design, linear 

interpolation would be required to find the intermediate a/d ratio and, subsequently, the 

intermediate concentration factor. For this design including the groove depth of 2.95, 

according to Parker Handbook page 36 for 2-252, the groove dimensions are as follows: 

 

a/d ≈ 0.4936 r/d ≈ 0.0617 H/d ≈ 1.61 

 

As both charts (a) and (b) are for different a/d ratios, linear interpolation will now be used 

to find the intermediate concentration factor, Ktn. 

 

0.4936 − 0.25

1 − 0.25
(2.8 − 2.6) + 2.6 ≈ 2.66 

 

With this value in-hand the next stage was to consider the required pressure from the fluid 

and to work out whether this pressure would inflict excessive stress around the groove 

region.  
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Figure 34 – Stress concentration factors Ktn for opposite flat-bottom grooves on finite-width flat 

plate in tension (Pilkey 1997) 

4.1.4.3 O-ring Installation 

 

To ensure that O-rings are not damaged during installation, all sharp edges of the parts are 

to be chamfered to the recommended angle (15-20°) from the Parker handbook (Parker 

Hannifin). For the inner O-ring, a squeeze-type seal, installation involves the following 

simple steps: 

 

1 – Carefully deform O-ring by hand or with specialised installation tool without creating 

sharp bends. 

2 – Insert deformed O-ring into gland. 

3 – Use cone-shaped tool to reshape O-ring back to its round form if necessary. 

 

  

 

 

 

 



   
 

54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 35-41 – Seal installation methods (SKF) 

 

The above sequence of pictures were provided with courtesy from the SKF website (SKF). 

For installing the outer O-ring, sufficient lubrication must be used. Also, as other grooves 

will be encountered when installing the outer O-ring, the grooves must be covered to ensure 

that the O-ring is not cut or sliced on sharp edges. 
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4.1.4.4 Nonlinear Analysis 

 

Some materials, like elastomeric O-rings, will deform in a nonlinear fashion. Nonlinear 

materials can either be compressible or incompressible. Nonlinear analysis considers 

temperature and time effects, hysteresis and can potentially lead to solution instability if 

the algorithm does not account for extra-large stress. 

 

4.1.5 Optical ring 

 

The base of the actuator piston has an area: 

 

𝐴 = 𝜋(0.07)2 − 𝜋 (
0.1091

2
)
2

≈  0.00605 𝑚2 

 

Based on Kevin Dray’s (2014) combustion pressure calculations, the estimated combustion 

pressure is to have a maximum of 10.511 MPa. This value was very important to consider 

especially for finding the stresses involved with the optical ring. For simplification, this 

pressure was rounded up to 10.6 MPa. 

 

Axial contact area of optical ring (Fused Quartz): 

Thickness = 9.5 mm 

𝐴 = 𝜋(0.1/2)2 − 𝜋(0.081/2)2 ≈ 0.002701 m2 

 

4.1.5.1 Mechanical Stress 

 

A basic stress analysis was performed on the optical ring. Here, the mathematical formulae 

pertaining to this analysis have been established. 

 

𝜎𝑐 = [
𝑝𝑖𝑟𝑖

2− 𝑝𝑜𝑟𝑜
2

𝑟𝑜
2− 𝑟𝑖

2 ] − [
𝑟𝑖

2𝑟𝑜
2(𝑝𝑜− 𝑝𝑖)

𝑟2(𝑟𝑜
2− 𝑟𝑖

2)
] 4.8 

 

𝜎𝑟 = [
𝑝𝑖𝑟𝑖

2− 𝑝𝑜𝑟𝑜
2

𝑟𝑜
2− 𝑟𝑖

2 ] + [
𝑟𝑖

2𝑟𝑜
2(𝑝𝑜− 𝑝𝑖)

𝑟2(𝑟𝑜
2− 𝑟𝑖

2)
] 4.9 

 

pi = 10.6 x106 Pa (internal (gauge) pressure) 

ri = 0.0405 m (internal radius) 

po = 0 Pa, gauge (external (ambient) pressure) 
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ro = 0.05 m (outer radius of optical ring) 

r = intermediate radius between ri and ro 

 

Equation 4.8 is the circumferential stress within a thick-walled cylinder. Equation 4.9 is 

the radial stress for a thick-walled cylinder. The maximum circumferential and radial 

stresses exists when r = ri. Whilst the optical ring could be classified as a thin-walled vessel, 

quite a significant difference would be noticed with the results between thin-walled and 

thick-walled conditions. The thick-wall condition equations provide a more accurate 

estimate of stress throughout the structure. 

 

4.1.5.2 Thermal stress 

 

Engineers at Michigan State University (MSU) discovered that placing a steel ring around 

an optical cylinder liner reduced thermal stresses(MSU Research 2012).  

 

The optical ring will also be subjected to thermal stresses due to the temperature gradients 

within the optical ring. As was mentioned in the Mechanical Stress section, the optical ring 

has been considered as a thick-walled vessel.  

 

Equations based on thermal stress have been applied on the conditions that the cylinder is 

thick-walled and is restrained across a portion of its axial length (from radial expansion) 

and at its ends (elongation). The restrained radial expansion is due to the optical collar 

holding it in place while the axial restraint is due to the fact that it is held in place firmly 

between the head and block. FEA analysis has been performed using FEA software and the 

results are presented and discussed in the next chapter.  

 

Another assumption is that both the optical ring and optical collar are machined to a perfect 

fit (zero tolerance between them) so that any minute expansion of the optical ring is 

immediately restrained without any clearance. Also, for simplification, the optical collar is 

assumed to be unaffected by the heat and thus does not expand due to heat. The hand 

calculations for the analysis are shown in Chapter 5. The properties found for Fused Quartz 

are in agreement amongst various sources like AZO Materials and Technical Glass 

Products (2010). 

 

Some formulae established by Kandil et al. (1994), which could be applied for an even 

more accurate representation of temperature, have been presented below. These equations 

are for the transient thermal stress analysis of thick-walled cylinders, with the condition 
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that axial ends are free to elongate, the walls are fixed in the radial direction and the 

operating temperature of the cylinder is oscillating (like an IC engine cylinder liner). 

 

𝑇(𝑟𝑖,𝑡) = 𝑇𝑊 + 𝑇𝑎 sin(2𝜋𝑓𝑡)  𝑓𝑜𝑟  𝑡 ≥ 𝑡ℎ 

t = time th = heating time ri = internal radius of tube  

f = temperature frequency (s-1) Tw = operating temperature  

Ta = temperature amplitude 

 

The conditions for the engine head actuator are different to those used by Kandil et al. The 

temperature distribution equations shown above are applicable, however, when evaluating 

stress Kandil’s assumed conditions cannot be used for this design. Therefore other 

equations that deal with stress due to thermal expansion and the same operating conditions 

had to be researched. Equations by Rensselaer Hartford (Thermoelasticity paper) were 

identified and are shown below. These stress equations assume plane strain conditions for 

a tall hollow cylinder with its ends restrained but free to expand in the radial direction. It 

was assumed that this assumption is reasonable for the optical ring considered here. 

 

𝑢 =  
𝛼

𝑟

1 + 𝑣

1 − 𝑣
 [∫ 𝑇𝑟𝑑𝑟 + 

(1 − 2𝑣)𝑟2 + 𝑎2

𝑏2 − 𝑎2
  ∫ 𝑇𝑟𝑑𝑟

𝑏

𝑎

𝑟

𝑎

] 

 

u = radial displacement 

α = linear expansion coefficient 

v = Poisson’s ratio 

r = radial position between a and b 

a = internal radius 

b = external radius 

T = internal temperature 

 

𝜎𝑟 = 
𝛼𝐸

𝑟2  
1

1−𝑣
[−∫ 𝑇𝑟𝑑𝑟 + 

𝑟2−𝑎2

𝑏2−𝑎2  ∫ 𝑇𝑟𝑑𝑟
𝑏

𝑎

𝑟

𝑎
]  

𝜎∅ = 
𝛼𝐸

𝑟2  
1

1−𝑣
 [−𝑇𝑟2 + ∫ 𝑇𝑟𝑑𝑟 + 

𝑟

𝑎

𝑟2+𝑎2

𝑏2−𝑎2  ∫ 𝑇𝑟𝑑𝑟
𝑏

𝑎
 ]  

𝜎𝑧 =  𝛼𝐸 
1

1 − 𝑣
 [−𝑇 + 

2𝑣

𝑏2 − 𝑎2
 ∫ 𝑇𝑟𝑑𝑟

𝑏

𝑎

 ] 

𝜎𝑟 = radial stress  

𝜎∅ = azimuthal (circumferential) stress 

𝜎𝑧 = longitudinal stress 
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It is reasonable to assume that the cylinder is free to expand radially when considering that 

a tolerance gap will exist between the optical ring and collar.  

 

To estimate surface temperature of the inner surface, a formula based on Thermodynamic 

principles was identified and applied. This formula is dependent on an estimate of the 

average combustion gas temperature as well as the average convection heat transfer 

coefficient. The formula was taken from ‘Internal Combustion Engines: Applied 

Thermosciences’(Ferguson & Kirkpatrick 2015) and is shown below. 

 

𝑇𝑔 =
1

4𝜋ℎ𝑔

∫ ℎ𝑔𝑇𝑔𝑑𝜃
4𝜋

0

 

 

4.1.6 Head Gasket 

 

The online guidebook by James Walker (Gasket Technology - understanding gaskets & 

dimensional guidebook) provides an expansive overview of gasket behaviour in certain 

loading situations as well as design calculations for ensuring proper sealability. Four 

aspects of gasket behaviour were mentioned in the guide. These are gasket stress relaxation, 

tensile strength, effect of flange surface finish and load-sealability.  

 

An overview of different gasket material types is also given. The main categories are non-

metallic, semi-metallic and metallic. Non-metallic gaskets do not offer the same level of 

strength and thermal properties as that of semi-metallic and metallic gaskets. However, 

their chemical resistance is extremely high. Semi-metallic gaskets are more of a middle-

ground gasket type. They can withstand higher temperatures and pressures than non-

metallic gaskets but are still attributed by good chemical resistance. Metallic gaskets are 

good when very high temperatures and pressures are expected.  

 

One of the most important factors for this design is the need to have a gasket that has good 

recovery. Recovery is the definition of a gaskets ability to spring-back when pressures 

cause the compressed displacement between joints to increase (Metal Tech Industries, 

2015). This increase in displacement must remain sealed if the gasket is to perform 

properly. The guidebook mentions several calculation methods that have been formed into 

design codes for gasket design. There’s the ASME VIII method, DIN 2505 method, PVRC 

method and CEN method. The ASME VIII method was selected for calculation of gasket 

stress. 
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Shandong Minye Refractory (2015) produces Ceramic paper gaskets that can be used for 

high temperature environments. However the gasket used in this design has to also be 

capable of withstanding high pressures with good rebound capabilities. 

There are several manufacturers that were found which produce ceramic gaskets for 

combustion chambers. According to the literature, customised ceramic paper gaskets are 

commonly used for sealing combustion chambers in optical engines. Bates (A Transparent 

Engine for Flow and Combustion Visualization Studies) selected a ceramic paper gasket 

for sealing the combustion chamber in an optical access engine. One manufacturer, Canada 

Rubber Group Inc. (2015), produces ceramic paper gaskets. According to Canada Rubber 

Group these gaskets are applicable to fire protection applications and combustion 

chambers. It is stated that these gaskets can withstand temperatures up to 1260˚ C. Flexible 

graphite foil can also be added to the ceramic paper for resistance to sticking between the 

gasket and metal surfaces. 

 

The force required to keep the combustion chamber sealed must take into account the fact 

that some form of gasket will be required to seal combustion gases from the external 

environment. There are two factors known as the maintenance factor m and the yield factor 

y. Yield factor is considered when finding the initial compressive force needed to ‘squash’ 

the gasket by the required degree to form an effective seal. The maintenance factor m is 

used to find the amount of compressive force necessary to maintain the seal when internal 

pressure in a vessel is applied. 

 

ASME standards provide calculations for determining both the gasket pre-load stress and 

operating stress required to maintain a good seal. The James Walker guidebook summarises 

these equations.  

 

𝑊𝑚1 = 𝜋𝑏𝐺𝑦 

𝑊𝑚2 =
𝜋𝐴2𝑃

4
+ 2𝑏𝜋𝐺𝑚𝑃 

 

G = 0.088 - effective diameter (m) 

b = 0.0025 - effective gasket width (m) 

y = 9.65266e+6 - initial seating stress/yield factor (Pa) 

A = 3.7165e-3 - effective area over which internal pressure acts (m2) 

P = 10.6e+6 - Internal working pressure (Pa) 

m = 2.8 - gasket factor 
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When substituting the above values into the two equations, results were given as the 

following: 

 

Wm1 ≈ 6671.4397 N 

Wm2 ≈ 41141.6778 N 

 

After obtaining the results the largest of the two was selected as the required force to be 

applied to the gasket. A simple static load balance of this force reacting with the applied 

actuator force was made. After conducting the load-balance, it was determined that the 

pressure demand within the actuator chamber was too high, well beyond 1 MPa. This 

indicated that a typical ring gasket had to be substituted with a different kind of gasket. 

 

4.1.6.1 Metal C-rings 

 

Due to pressure limitations of air-powered systems, most common gaskets required a 

seating stress that exceeded the pressure capacity of the actuator. Whilst it would indeed 

be possible to achieve these high stresses with the actuator, the pressure requirement would 

be much higher than that of a typical air compressor output, in order to achieve the 

necessary gasket seating stress. Thus further research was made on seals that can produce 

a sufficient seal in combustion chambers with a much lower seating load. Note that the 

seating load is considered as the actual load applied by the actuator on the seal component 

to form the seal. The seating stress is a result of the seating load and not only depends on 

the load but also on many gasket properties such as gasket width and material. 

 

The simple analysis of the gasket is important for this design as it directly effects how much 

pressure is required by the actuator. It was very desirable to have an actuator that had no 

more than 1 MPa of pressure acting on the fluid-side. Following is the details of the c-ring 

seal which was selected as the choice seal for the gap between the engine head and the 

optical ring. 

 

Parker is a supplier of many types of seals and gaskets. Of focus in this section is the seals 

used for very high pressures and temperatures. The c-rings available from Parker are 

capable of withstanding extremely high pressure in the vicinity of several hundred MPa. 

The c-rings selected for this application are the simple and robust type known as internal 

pressure face seals. These seals are affordable and are capable of very high pressure and 
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temperature. They are also self-energising in that the pressure they sustain acts as a 

hydrostatic force that increases the sealing effect of the c-ring even further. Details of C-

ring data are given in Appendix J.  

 

One of the main requirements for the C-ring was that it provide a sufficient seal with a 

small seating stress. This was desirable due to pressure demand limitations from the air 

supply. An estimation of the pressure capacity of the actuator was made and the working 

of this solution is provided in the Chapter 3. The estimated load capacity was approximated 

as 2.557 KN. When referring to Appendix J, data on the available C-ring sizes are given. 

Particular reference was given to the required seating stresses corresponding to each C-ring 

size. 

 

With metal C-rings, the compromise with using a smaller cross-section and subsequently 

having a reduced seating stress, is that smaller cross-section C-rings have lower working 

pressures. Despite this, the smallest working pressure of all metal C-rings offered by Parker 

Hannifin is 76,000 psi or approximately 524 MPa, for a 1/32-inch cross-section. It was 

found that the seating load needed was too high. A 1/16-inch C-ring with a 0.006-inch 

thickness was evaluated for seating load and was found to be under 1 MPa, which was 

considered a reasonable pressure considering the air supply limitations. 

 

4.2 Design Factors 

 

Vibration/reciprocating forces; wear rate; temperature; distortion of clearance gap; seal 

distortion; hardness of opposing surface and seal; friction; radial force; pressure; material 

modulus; lip geometry and whether seal is a lip or squeeze type (all seal types). 

 

Opposing surface of O-ring must be hard and wear-resistant. Must be smooth but also able 

to hold lubricant. 

 

O-rings, whilst they are often seen in reciprocating motion applications, do have their 

limitations. Parker recommends that if piston speeds are less than 1 foot/min then O-rings 

in reciprocating motion should not be used. In the Parker Dynamic O-ring Sealing 

handbook, one of the main factors for spiral failure is piston speed. Spiral failure is often 

found in reciprocating O-rings. The outer surface of the O-ring will tend to get hung-up on 

the mating surface, resulting in a combined sliding and rolling effect that leads to deep 45˚ 
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cuts within the seal. Therefore extremely careful design of the O-rings must be carried out 

to ensure no such failures will occur during the seal’s life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 – Limits for Extrusion (Parker Hannifin) 

 

Important aspects that affect reciprocating O-rings include extrusion, breathing (distortion 

of cylinder assembly), surface finish of metal and seal hardness. Materials moving over O-

rings in this application which give the longest seal life are cast iron or steel for bores, 

hardened steel for rods or hard chrome-plated surfaces. Parker also recommends that the 

piston surface should always be lower than the cylinder bore surface to avoid any possible 

damage to the bore which may in turn damage the sliding seal. Babbitt is one excellent 

material for guide bearings. Nylon is also good but should be split to account for its high 

coefficient of thermal expansion. 

 

4.2.1 Friction 

 

For now, Coulomb friction at a constant value will be assumed the only force acting against 

the actuator motion. 
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Factors affecting coefficient of friction: seal material, dynamic surface roughness, 

temperature and lubrication. Friction is a very important factor as seals can only operate 

under certain operating temperatures. Excessive friction will generate unwanted heat. To 

reduce friction: reduce lip cross-section, decrease lip size (all seals), change seal material, 

evaluate hardware’s surface finish, reduce system pressure and improve lubrication. 

Breakaway friction – this increases with time the seal is kept stationary. The calculations 

for friction are found in the Stress Concentrations document. 

 

The next stage will be to develop a mathematical model in MATLAB of the actuator based 

on friction forces. 

 

For this seal a Hardness 80˚ Shore A grade was selected. Consulting the figure from the 

Parker O-ring handbook, it is found that the friction force per unit length (Lbf/in) is about 

2.5. This equates to approximately 437.8175 N/m.  

 

Parker O-ring Handbook also provides a guide for selecting O-rings and calculating 

parameters such as friction force. These calculations are performed and depicted in the O-

ring section of Chapter 5. 

 

4.2.2 Wear 

 

Piston rings are critical to an IC engines performance. Wear of the guide rings can be 

considered to have a similar behaviour, although piston rings are typically under more 

severe operating conditions (Rahnejat 2010). 

 

Seal wear causes: Ultra smooth surface, rough surface, high pressure, high temperature, 

poor fluid lubricity, tensile strength of seal compound, fluid incompatibility, coefficient of 

friction (COF) of seal compound, abrasive fluid or contamination, hard sealing surface. 

 

O-rings can lead to spiral failure in reciprocating applications. This is caused by the 

tendency of the seal to roll and twist inside the groove. Most stable shapes tend to be 

rectangular seals. 

 

The reason O-rings were selected was that other seal types didn’t seem to be available in 

reasonable sizes. If an outer dimeter was appropriate, the groove depths and/or widths 

would be too large to fit the actuator. The stress concentrations caused by these groove 
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sizes would also have much larger stress concentration factors than the O-rings due to the 

need for larger grooves with the same outer diameter. 

 

Juvinall and Marshek (2012) define the wear rate with the following expressions. 

 

𝑊𝑒𝑎𝑟 𝑅𝑎𝑡𝑒 =  
𝛿

𝑡
= (

𝐾

𝐻
)𝑝𝑣 

 

δ = wear depth, mm 

t = time, s 

K = wear coefficient (dimensionless) 

H = surface hardness, MPa 

p = surface interface pressure, MPa 

v = sliding velocity, mm/s 

 

Another form of the wear equation:   𝑊 =
𝐾

𝐻
𝐹𝑆 

 

W = volume of worn material, mm3 

F = compressive force between surfaces, N 

S = total rubbing distance, mm 

 

4.2.3 Fatigue 

 

Assuming the engine clamp actuator is raised and lowered once a day for 5 days/week, for 

about 20 years, the estimated life cycle of the engine is as follows: 

 

1 cycle x 5 x 52 = 260 cycles/year 

For 20 years → 20x260 = 5200 cycles 

 

One phenomenon that is sometimes seen with IC engines is ‘head lift’. Head lift ours when 

insufficient clamping pressure exists between the cylinder head and cylinder block, causing 

the head to literally lift itself from the block due to combustion pressure and potentially 

cause a loss of compression and fluids. To overcome head lift, the clamping ratio must be 

carefully determined. 

 



   
 

65 
 

An analogy for a pneumatic cylinder facing vibration is for the pneumatic fluid to be 

depicted as a series of an infinite amount of springs in series. The vibrations encountered 

are dampened by the springs (fluid) and therefore pneumatic fluid characteristics with 

vibration can be analysed with this analogy. 

 

Inevitably, as the engine runs, there will be vibrations/fluctuating loads imposed on the 

pneumatic actuator. These could be experienced from distortion of the strongback, causing 

the head-actuator interface to experience an angle of rotation, ultimately leading to 

fluctuating side-loads on the guide rings. In the case of maximum possible clearance 

between actuator walls due to machining tolerances, the loading scenario will be one of 

edge-loading on the guide bearings, as shown in Chapter 3 section ‘Guide Rings’. In the 

case of the minimal clearance possible (zero gap), the guide bearing will bear the full-load 

across its entire surface. 

 

These forces not only apply to the wear guide ring but also to the elongated section of the 

actuator top piece. The elongated section can be considered to be a cantilevered, circular 

tube with its axis in a vertical direction. The following theory, presented by Juvinall & 

Marshek (2012), is useful for estimating fatigue life of both of these components when 

subject to randomly fluctuating loads. 

 

3.1 
𝑛1

𝑁1
+

𝑛2

𝑁2
+ ⋯+

𝑛𝑘

𝑁𝑘
= 1  𝑜𝑟  ∑

𝑛𝑗

𝑁𝑗
= 1

𝑗=𝑘
𝑗=1  

 

The above equation is known as the Palmgren and Miner rule or linear cumulative-damage 

rule. n1, n2 and nk represent the number of cycles for specific overstress levels, indicated by 

peaks on a cumulative graph, and the N values express the life (in cycles) of the component 

at the corresponding stress levels. 

 

4.3 Actuator dynamics 

 

Rahmat et al. (2011) state that the main causes for nonlinearities in pneumatic actuators are 

from friction and compressibility of air. Therefore it is important that these two major 

factors be analysed and represented carefully by the model of the optical engines actuator. 

According to Rahmat et al. (2011) there are three main considerations for modelling 

pneumatic actuator. These are: (i) dynamic of the load; (ii) pressure, volume and 
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temperature of air that powers the actuator and (iii) mass flow rate through the valve to the 

actuator body. 

 

The valve in pneumatic systems is considered to be the ‘command element’. It has to 

provide fast and precisely controlled air flow (Rahmat et al. 2011). A mathematical model 

for a proportional spool valve dynamic was presented by Rahmat et al. in the same paper. 

However it will be assumed for this design that the response of the valve is instantaneous. 

As the focus of this project is on the pneumatic actuator itself, this assumption is 

reasonable. Spool valves respond within a matter of milliseconds so any time factor for the 

actuator design will be very small and can therefore be neglected.  

 

However, while the spool valve dynamics are negligible due to fast response, the flow rate 

through the valve is still needed for consideration as flow rate and therefore the actuator 

response is strongly dependent on the cross-sectional area of the valve’s orifice. For 

simplicity, a classical friction model could be implemented into the model. This model 

covers three main kinds of friction such as static, kinetic and viscous friction. It includes a 

discontinuity at zero-velocity (Leonard & Krishnaprasad).  

 

Before describing the formulae for the actuator and air dynamics, some fundamental 

concepts had to be understood and applied in the right manner to gain an understanding of 

the system. This system, a single-acting actuator utilising pressurised air to do work, can 

be considered to be an unsteady-, uniform-flow process with moving boundaries. It has a 

compressible medium (air) within the control volume with only inlet/outlet port. This 

means that with each process (charging and discharging) there is only one cross-section 

where air mass flow occurs across the system boundaries. 

 

Unlike stead-flow processes, which continue for an infinite time without a change in system 

mass, unsteady-flow processes start and end within a finite period of time. The mass within 

an unsteady-flow system does not remain constant during the process and so it is important 

to keep track of the energy and mass contents of the system as well as the energy 

interactions across the boundary (Cengel and Boles 2011). The general equation for mass 

balance of the system is expressed as: 

 

𝑚𝑖 − 𝑚𝑒 = (𝑚2 − 𝑚1)𝐶𝑉 
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i = inlet; e = exit; 1 = initial state and 2 = final state of the control volume. In the case of 

this actuator, 𝑚𝑒 is zero for charging of the chamber and 𝑚𝑖 is zero for discharge. The 

energy balance can be expressed by the following equation: 

 

𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 = ∆𝐸𝑠𝑦𝑠𝑡𝑒𝑚 

 

It was mentioned that the processes involved with this system can be assumed to involve 

uniform flow. This refers to the cross-sectional properties of air flow across the boundary. 

If it were assumed that flow across the boundary was not uniform, for example, the velocity 

profile of air flow, then an average value would be taken and used for the analysis (Cengel 

and Boles 2011).  

 

An article by Richer and Hurmuzlu (2001) provides the equations that describe the system 

dynamics of a pneumatic actuator. These equations can also be applied to the design of the 

pneumatic engine head clamp. The design objectives were to design a system that could 

engage or disengage the head form the block within a matter of seconds and to enable easy 

removal of optical components after disengagement. Initially an estimation of the actuator 

dynamics including velocity an acceleration was made with the use of MATLAB software. 

A simple code was written that predicted the total time for the clamp to go from a known 

initial position to a final position. While it is hypothesised that the time for actuation will 

be very short due to the short travelling distance, having such a model enables the end user 

to understand how the actuator will behave. 

 

The first equation presented by Ricer and Hurmuzlu (2001) was for the piston-load 

dynamics. This equation identifies essentially all of the parts and their impact on the 

system. As the model describes a double-acting cylinder and the design is only a single-

acting device, this equation has been modified slightly and is presented below. 

 

(𝑀𝐿 + 𝑀𝑝)�̈� + 𝛽�̇� + 𝐹𝑓 + 𝐹𝐿 = 𝑃1𝐴1 − 𝑃2𝐴2 − 𝑃𝑎𝐴𝑟 

 

ML is the external load mass, Ma is the actuator assembly mass, x is the actuator position, 

β is the viscous friction coefficient, Ff is Coulomb friction, FL is the externally applied 

force, P1 is the applied pressure and A1 is the effective area on which pressure is applied. 

To accurately control the actuator force output (P1A1), pressures within the chambers have 

to be controlled. It is at this point that the next equations by Richer and Hurmuzlu (2001) 

be presented for the cylinder chambers model. The model for the cylinder chamber was 
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based on three fundamental laws: ideal gas law, conservation of mass and the energy 

equation. 

 

Several assumptions were made, including that the gas is perfect, pressures and 

temperatures within the chamber are uniform and homogeneous and kinetic and potential 

energy terms are negligible. If a control volume is V, with density ρ, mass m, pressure P 

and temperature T, the ideal gas law can be written as: 

 

𝑃 = 𝜌𝑅𝑇 

 

Where R is the gas constant for air. The mass flow rate dictates the rate of pressure change 

equation, which is shown at the end of this section. The mass flow rate can be expressed in 

either of the following ways. 

 

�̇� =
𝑑

𝑑𝑡
(𝜌𝑉) 

�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 = �̇�𝑉 + 𝜌�̇� 

 

A fairly extensive derivation of equations was required to obtain the final dynamics 

equation describing the change in pressure of the chamber. For clarity this derivation will 

be omitted from this report and the final equation will be given and its parameters briefly 

explained. It should be noted that the arrival at this solution was due to the assumptions 

that the chamber is adiabatic (i.e. no heat transferred from or to the outside of the system) 

and that the process of the pressure change in the chamber is isothermal (T is constant). 

Again the equation presented below is slightly different to that presented by Richer and 

Hurmuzlu as it is tailored to represent a single-acting actuator rather than a double-acting 

one. 

 

𝑃�̇� =
𝑅𝑇

𝑉0𝑖 + 𝐴𝑖 (
1
2 𝐿 ± 𝑥)

(𝛼𝑖𝑛�̇�𝑖𝑛 − 𝛼𝑜𝑢𝑡�̇�𝑜𝑢𝑡) − 𝛼
𝑃𝐴𝑖

𝑉0𝑖 + 𝐴𝑖(
1
2 𝐿 ± 𝑥)

�̇� 

 

This equation implies that with a change in working chamber volume, assuming constant 

temperature (isothermal process), there will be a corresponding change in pressure. From 

visual inspection of the equation above, heat transfer properties of air are accounted for by 

α coefficients. Volume of the working chamber, including the constant ‘dead volume’ at 

the end of the chamber, is given by the denominator in each term. As this actuator is a 

single-acting device, mass flow rate of air will be inward to the chamber, not outward. 
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Therefore the term involving �̇�𝑜𝑢𝑡 can be omitted. The resulting equation then looks like 

the equation below. 

 

𝑃�̇� =
𝑅𝑇

𝑉0𝑖 + 𝐴𝑖 (
1
2

𝐿 ± 𝑥)
(𝛼𝑖𝑛�̇�𝑖𝑛) − 𝛼

𝑃𝐴𝑖

𝑉0𝑖 + 𝐴𝑖(
1
2

𝐿 ± 𝑥)
�̇� 

 

For chamber discharge, however, mass flow is reversed in direction. This means that �̇�𝑖𝑛 

is replaced with �̇�𝑜𝑢𝑡. When referring to Tressler et al.’s formulae (2002), the ‘supply’ of 

air is referenced as the air in the chamber, rather than the air delivered by the air 

compressor. Therefore, Po is also replaced with Pp and To becomes temperature within the 

chamber. For now this temperature has been regarded as being constant at 300 K. 

 

It was realised, after searching the literature for an understanding of the ‘alpha’ term, that 

‘alpha’ is a representation of the polytropic index/exponent. This index is applied to 

processes in which an expansion or compression is somewhere in between an isothermal 

(constant temperature) process and an isentropic/adiabatic (no flow of heat energy into/out 

of the system) process (Engineering Toolbox). This index is often expressed a ‘n’. The 

polytropic exponent can be anywhere between 1 and k (k=1.400 at 300 K). The value of k 

is known as the specific heat ratio and was found from Cengel and Boles’ ‘Thermodynamics 

– an engineering approach’ (2011). 

 

It is suggested by Richer and Hurmuzlu (2001) that, for chamber charging, a value of close 

to k=1.400 be used and that for discharge a value close to 1 be used as the polytropic index. 

It was also mentioned in their paper that a value of 1.2 be assigned to α for the piston 

dynamics in the second term of the equation. For this scenario a value of 1.39 will be used 

for charging and a value of 1.01 will be used for discharging. This means that when the 

actuator is being charged with air 𝛼𝑖𝑛 is 1.39 and for discharge this value is changed to 

1.01. 

 

𝑃�̇� =
287𝑇

𝐴𝑖 (
1
2 𝐿 ± 𝑥)

(1.39�̇�𝑖𝑛) − 1.2
𝑃𝐴𝑖

𝐴𝑖(
1
2 𝐿 ± 𝑥)

�̇� 

 

When considering the dead volume of the chamber, the volume of the port hole is estimated 

using Inventor measuring tools. With two ports, the volume is doubled. The length of a 

single port is 33.71779 mm while the port hole diameter is 5 mm. The volume is worked 

out as follows. 
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𝑉 = 2 ∗ 𝜋(0.0025)2 ∗ 0.0337178 ≈ 1.32409 ∙ 10−6𝑚3 

 

Tressler at al. (2002) also presented these equations, but in a different form. One difference 

between Tressler et al. and Richer and Hurmuzlu is that Richer and Hurmuzlu (2001) 

included a discharge coefficient in their mass flow rate equation. The formulae from 

Tressler et. al (2002) are shown below. 

 

Parameters:  

PP Cylinder pressure 

P0, T0 Supply Pressure and Temperature (from reservoir) 

AP Piston Area 

TP = cylinder pressure 

At Servovalve opening 

XP Piston position 

Patm Atmospheric Pressure 

CP = specific heat at constant pressure 

CV = specific heat at constant volume 

k = CP/CV 

�̇� = 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

R = Gas constant 

γ = constant 

 

 

 

 

 

 

 

 

 

 

Figure 43 – Single chamber pneumatic actuation system (Tressler et. al , 2002) 

Gas going into cylinder:  𝑃�̇�𝑋𝑃 + 𝑘𝑃𝑃𝑋�̇� = �̇�
𝑘𝑅

𝐴𝑃
𝑇0 

�̇� = 𝛾 ∙ √
𝑘

𝑅𝑇0
∙ 𝑃0 ∙ 𝐴𝑡  



   
 

71 
 

If PP > 0.53P0 (under-choked) then → 𝛾 = √
2

𝑘−1
∙ (

𝑃𝑃

𝑃0
)

𝑘+1

2𝑘 ∙ ((
𝑃𝑃

𝑃0
)

1−𝑘

𝑘
− 1)

1

2  

If PP ≤ 0.53P0 (choked) then → 𝛾 = 0.58 

 

Gas leaving the cylinder:  𝑃�̇�𝑋𝑃 + 𝑘𝑃𝑃𝑋�̇� = �̇�
𝑘𝑅

𝐴𝑃
𝑇𝑃 

�̇� = 𝛾 ∙ √
𝑘

𝑅𝑇𝑃
∙ 𝑃𝑃 ∙ 𝐴𝑡  

If Patm > 0.53PP (under-choked) then → 𝛾 = √
2

𝑘−1
∙ (

𝑃𝑎𝑡𝑚

𝑃𝑃
)

𝑘+1

2𝑘
∙ ((

𝑃𝑎𝑡𝑚

𝑃𝑃
)

1−𝑘

𝑘
−

1)

1

2

 

If Patm ≤ 0.53PP (choked) then  → γ = 0.58 

 

Newton’s Law: 𝐽𝑋�̈� = 𝐴𝑃(𝑃𝑃 − 𝑃𝑎𝑡𝑚) 

J = load mass 
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5 Results and Discussion 
 

 

5.1 Actuator dynamics results 

 

 

 

 

 

 

 

 

 

 

Figure 44 – MATLAB subplot of actuator dynamics (upward stroke) 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 – MATLAB seal compression results 
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Figure 46 – MATLAB subplot for actuator descent 

 

 

 

 

 

 

 

 

 

 

 

Figure 47 – Pressure vs time for discharge 
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Figure 48 – Flow rate vs time for discharge 

 

 

 

 

 

 

 

 

 

 

Figure 49 – Velocity vs time for discharge 

 

The time taken for the actuator to complete its downward stroke was approximately 0.27 

seconds. The time was achieved with a valve opening set to 5.5x10-5 m2. The delayed 

response by the actuator in the downward stroke is due to the resistance due to friction in 

the O-rings. 
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The total time taken for the actuator to reach this position, as obtained from the MATLAB 

code shown in Appendix I, was 0.056 seconds. This means that plenty of tuning of the 

current code could see an even smoother actuator motion and still not consume a significant 

amount of time. 

 

The discontinuity seen in the graph for mass flow rate is due to the valve moving to a 

partially-open position. Moving the valve to this position was deliberate. The reason for 

doing this was so that the mass flow rate of air into the chamber of the actuator could be 

reduced without the actuator ramming into the engine head uncontrollably. What this code 

exhibits, then, is a simulation of a pneumatic valve acting as the ‘command element’. A 

pneumatic valve is usually given this name as it is the primary section of a pneumatic 

system that controls the actuator response. The time at which this valve position change 

occurs corresponds to the spike in the acceleration and pressure graphs. 

 

Perhaps what isn’t as visible is the acceleration curve falling within the negative region. 

What this indicates is that the inertia from the actuator device (friction and weight) has 

overcome the reduced pressure in the actuator chamber, causing it to slow down. 

Obviously, the point at which this deceleration occurs can also be noticed with the peak of 

the velocity curve. The graph of lambda is essentially redundant. However it may be used 

to monitor if lambda is being calculated properly within the code or not. When referring to 

Tressler at al.’s equation for Lambda with under-choked flow, it can be seen that the 

relationship between chamber pressure and lambda is an inverse relationship, where P lies 

within the limits set by the choked-flow conditions of air flowing through a nozzle. 

Therefore, the plot obtained, with pressure being an inverted curve of the lambda curve, 

was expected. 

 

These results only display the trajectory of the actuator during the rising motion before 

engaging the C-ring gasket with the head. A code describing the pressurisation of the gasket 

against the head and then the release and downward stroke will follow this section. 

 

The estimated chamber pressure for compression of the C-ring seal is approximately 0.72 

MPa. In the next section for O-ring analysis, this pressure was used to determine whether 

or not extrusion of either of the O-rings were to occur. For this section of the report, this 

pressure is assumed to be applied in a linear fashion from the initial pressure. The initial 

pressure in this case is the pressure reached in the chamber after the actuator has risen as 

described by stage 1. To analyse the pressure derivative accurately, an account for the seal 

compression must be taken. 
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Based on the C-ring data provided by Parker Hannifin, the total deflection of the C-ring 

(from relaxed height to working height) is: 

 

0.062 inches − 0.052 inches = .01 inches or 0.254 mm 

 

Working height has a range of 0.05-0.054 inches for this particular C-ring. The middle of 

the range was selected for estimation of the seal deflection. In the MATLAB code for seal 

compression, it was assumed that the resistive force exerted by the seal on the top of the 

optical ring will increase linearly. Also, as recommended by Parker, a minimum velocity 

was assumed to take place – at least 0.00508 m/s was to be attained to avoid O-ring seal 

stiction. This value was determined below. 

 

Minimum actuator velocity to avoid stiction (1 ft/min):  

1 ft/s = 0.3048 m/s 

1 ft/min = 1/60*0.3048 m/s = 0.00508 m/s 

 

For this case, a velocity of 0.01 m/s was desired. 

 

Due to excessively long calculation time by the MATLAB program, separate plots were 

produced for the actuator dynamics individually. 

 

5.2 O-ring Results 

 

The following calculations show the estimations of squeeze. Several iterations were 

performed as this was a trial-and-error approach to finding the right O-ring squeeze. A final 

O-ring size was found for both inner and outer areas after a couple of iterations. For the 

outer O-ring, a floating-type O-ring was selected instead, as the squeeze generated for a 

squeeze-type O-ring for this large diameter did not fall within the recommended squeeze 

range of 9-16%. 

 

The first set of calculations is for estimating squeeze on a squeeze-type O-ring for the outer 

gland. After this the estimation of squeeze for the inner O-ring is presented. 
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5.2.1 O-ring Squeeze 

 

Outer O-ring: 

1st iteration - Parker 2-252: 

d4 (H8) = 140 mm → d4: 140 – 140.063 mm 

d3 (h9) = 134.4 mm → d3: 134.3 – 134.4 mm 

Max. squeeze:  
140

2
 - 

134.4

2
  ≈ 2.8 mm 

1 - 
2.8

3.53
  ≈   𝟐𝟎. 𝟕% 

Min. squeeze:  
140.063

2
 - 

134.3

2
  =  2.8815 mm 

1 - 
2.8815

3.53
  ≈   18.4% 

 

As the max. squeeze for this size tolerance is 20.7%, a smaller ID O-ring was desired 

(recommended 9-16%). Part is a 2-249 Parker O-ring: 

2nd iteration: 

d4 (H8) = 130 mm → d4: 130 – 130.063 mm 

d3 (h9) = 124.1 mm → d3: 124.0 – 124.1 mm 

Max. squeeze:  
130

2
−

124.1

2
≈ 2.95𝑚𝑚 

1 −
2.95

3.53
≈ 𝟏𝟔. 𝟒𝟑% 

 

3rd iteration - d4 size of 128 mm: 

d4: 128 – 128.063 mm 

d3:  122.0 – 122.1 mm 

Max. squeeze:  
128

2
−

122.1

2
≈ 2.95𝑚𝑚 

This will lead to the same max. squeeze (𝟏𝟔. 𝟒𝟑%). 

 

This squeeze value just exceeds the recommended range of 9-16%. Referring to Figure 50, 

the corresponding friction force value per unit length was found (for a durometer hardness 

of 70). This value is approximately 1.1 Lbs/inch of rubbing contact length. Converting to 

N/m gives approximately 192.6397 N/m. Now considering the outermost diameter for the 

O-ring based on maximum squeeze (diameter of 130 mm), the total calculated friction force 

is 78.675 N. 

 

Next the inner O-ring was analysed. This O-ring gland can be described as a rod gland. 

This is the opposite arrangement to the outer O-ring gland. The inner surface diameter is 
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designated with the tolerance grade f7 while the groove diameter is designated as a H9 

grade. With the f7 diameter being 105 mm and the O-ring cross-section being 3.53 mm, 

the H9 diameter is found to be 111.1 mm (part number 2-243). Note that these dimensions 

were found based on a rod seal, not a piston seal. 

For f7:  range is 104.929 - 104.964 mm 

For H9: range is 111.1 – 111.187 mm 

So maximum squeeze for this O-ring in this gland size would be: 

 

111.1

2
−

104.964

2
≈ 3.068𝑚𝑚 

1 −
3.068

3.53
≈ 13.09% 

 

5.2.2 O-ring Friction 

 

F = FC + FH FC = fc x hp FH = fh x Ap  

Ap = projected seal area for piston groove analysis 

F = total seal friction 

FC = total friction from seal compression 

FH = total friction force from hydraulic pressure on seal 

fc = friction due to compression 

fh = friction due to pressure 

Lp = length of seal rubbing surface 

Fc = 𝜋 x 0.14006 x 437.8175  ≈  192.6447 N 

From Figure 51 (3000 psi): 72 Lbf/in2  ≈  496422.7 Pa 

Ap = π x 
1

2
 (0.14 + 0.1344) (1 – 0.207) x 0.00353  ≈  0.00121 m2 

FH = 0.00121 x 496422.7  ≈  600.671 N 

F = 600.671 + 192.6447 N  ≈  793.3 N 

F is the total running friction force created by the seal. 

 

The outermost diameter in O-ring contact is the minimum gland diameter (111.1 mm). 

This, referring to Figure 50 again, corresponds to a frictional force per unit length of about 

(again, 70 Shore hardness) 0.8 Lbs/inch or 140.102 N/m. The resulting friction force is 

approximately 48.900 N (circumference in contact is pi*0.1111 m). Adding this force and 

the force for the outer O-ring together we get a total frictional force of about 127.575 N. 

This is above the desired limit of 110 N so a different O-ring set-up must be considered. A 
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limit of 110 N is required so that the actuator may slide down due to gravity alone without 

the need for return springs or any other components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50 – Friction due to compression (Parker Hannifin) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51 – friction due to pressure (Parker Hannifin) 

 

O-rings with a Shore hardness value between 70 and 80 are recommended by Parker for 

pneumatic, dynamic applications. The new O-ring arrangement considered for the outer 

gland is known as a ‘floating seal’. Floating seals are assumed to have no friction as a result 

of having no squeeze upon installation. A floating O-ring does not touch the seat of the 

groove (inner gland surface for pistons). This means that the resultant frictional force is 

from the inner O-ring only. This is a total frictional force of 48.9 N. 
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A floating seal will only be used on the outer sealing region only. Floating seals cannot be 

used as rod seals because without seating on the inner gland surface, no seal will be created 

and therefore leaks will occur. Therefore a compressed O-ring will be used for the inner 

piston gland. The size of the bore for the floating seal is 140 mm. An O-ring cross-section 

of 3.53 mm will be used. The closest matching floating seal size for this diameter, from the 

Parker catalogue, was found to be O-ring no. 2-252. This O-ring has a bore diameter of 139 

mm (H8-grade) and a groove diameter of 131.4 mm (h8). ID for this O-ring is 132.94 mm. 

Complete details on the dimensions are provided in the O-ring section of Chapter 4. This 

corresponds to a relaxed O-ring outer diameter of 140 mm. 

 

5.2.3 O-ring FEA 

 

The software used for the FEA analysis on the O-ring was Autodesk Simulation 

Mechanical version 2016. This software provides an extensive range of analysis 

capabilities, including the analysis of nonlinear deformations. The first result illustrated 

below indicates the deformation of the inner O-rings with 800 KPa pressure applied to the 

lower surface. In order to apply pressure to the bottom half surface, the 2D CAD drawing 

of the O-ring and gland required that the O-ring cross-section be split horizontally about 

the middle.  

 

 

 

 

 

 

 

 

 

Figure 52 – Inner O-ring analysis 

 

A Mechanical Event Simulation (MES) analysis was chosen as the desired analysis method 

for this model. MES analyses allow the user to observe stresses and deformations of a 

model change over time depending on the loads applied. The different colours indicate Von 

Mises stresses. The focus of this analysis is on the stresses and deformations of the O-ring. 

In particular, this analysis was performed to ensure that, with the maximum pressure 
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applied to the air chamber, extrusion of the O-ring would not occur. The second figure 

shows the result for the outer ‘floating’ O-ring. 

 

5.3 Guide Ring Results 

 

Table 7 – Results from MATLAB for stresses and deflections of different edge-load scenarios 

Different edge-load 

scenarios 

Deflection (mm) Peak stress (MPa) 

Inner bearing with smallest 

clearance possible 

0.0011 2.078 

Inner; largest clearance 0.0047 9.583 

Outer; smallest clearance 0.00097 1.878 

Outer; largest clearance 0.0049 9.896 

 

5.4 Optical Ring Results 

 

In regard to the restraints on the optical ring, several assumptions were made. These 

assumptions may be evident as slight discrepancies between the hand calculations and FEA 

results. Some reasons for any discrepancies can be explained by these assumptions. One 

assumption made for the hand calculations and FEA analysis was that the optical ring was 

considered to be a thick-walled cylinder that was axially and radially constrained. In a real-

life situation, some radial expansion could occur as a part of the optical ring wall is not 

enclosed by the optical collar. Also, elongation due to thermal expansion could occur as 

the axially-resistive component to the optical ring is a metal C-ring seal. These seals are 

not entirely rigid. Therefore some elongation of the optical ring due to temperature 

gradients is possible. 

 

The next step after obtaining the temperature gradient of the optical ring was to input the 

temperature data into a static stress analysis which included the internal pressure due to 

combustion. The combined mechanical and thermal stresses indicated the overall stress 

acting on the optical ring at various points within it’s cross-section. 
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Figure 53 – Temperature gradient across optical ring wall 

 

Assume Ti = 800˚C  Ta = 23˚C E = 72 GPa α = 0.55 x10-6 

𝜎 =  
𝑃

𝐴
 =  −𝐸𝛼 (∆𝑇)  

𝜎 = -72 x109 x 0.55 x10-6 (800 - 23) ≈  30.7692 MPa 

 

This result represents a very considerable amount of stress that should be considered in the 

detailed analysis. Another condition which is assumed to exist with this calculation is that 

the temperature gradient within the optical ring walls (radial direction) is linear. 

 

The initial analysis was done on a simple, cylindrical model of the optical ring without any 

chamfers or counter-bore grooves. 

 

 

 

 

 

 

 

 

 

 

 

Figure 54 – Y-Y Stress Tensor distribution indicating hoop stress (maximum) – pressure 

only 
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Figure 55 - Y-Y Stress Tensor distribution indicating hoop stress (minimum) – pressure 

only 

 

 

 

 

 

 

 

 

 

 

 

Figure 56 – Minimum Y-Y stress tensor value (hoop stress) – temperature only 
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Figure 57 – Maximum Y-Y stress tensor value (hoop stress) – temperature only 

 

To obtain a true result of hoop stress, the thermal and mechanical stress analysis results had 

to be combined. This is based on the assumption that both maximum temperature and 

maximum pressure occur within the combustion chamber at the same moment of the 

combustion cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58 – Maximum hoop stress with combined thermal and mechanical stress 
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Figure 59 – Minimum hoop stress for combined loads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60 – Final stress state on optical ring 

 

For a conservative approach to the calculations, the maximum stress cases for both 

equations were considered. The computed results are shown below. 

 

𝜎𝑐 ≈   51.0458 𝑀𝑃𝑎  

𝜎𝑟 = −10.6 𝑀𝑃𝑎 
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The value for 𝜎𝑐 is effectively a tensile stress acting within the optical ring. Based on the 

mechanical properties of Fused Quartz, which indicate that the ultimate tensile strength of 

Fused Quartz is about 41 MPa, this stress value is not deemed to be safe. In fact, when 

applying a considerably small safety factor of 2, this puts the nominal stress at nearly twice 

the ultimate strength which is the critical stress level. 

 

Interestingly the tensile (hoop) stress on the inner surface of the optical ring was reduced 

when thermal stress were combined with the applied internal pressure. When subtracting 

the minimum hoop stress for the thermal load case from the hoop stress in the pressurised 

case (inner surface), the result equated to the minimum value of approximately 26.4 MPa 

as in the figure above. This is a tensile stress as the value has a positive sign. Again, this 

simulation was for a simplified model of the optical ring in that no radial constraints were 

applied. 

 

The maximum and minimum pressure points are identified in the image. Whilst these 

stresses may be negligible due to the insignificant areas they occupy, it is still important to 

take caution with this analysis as a virtual model may deviate from the real component. 

The maximum stress is found to exist at one of the chamfered edges as shown. One way to 

alleviate some of this stress would be to change the chamfer size or even have the edge 

rounded instead of chamfered. 

 

Initially fused quartz or fused silica was assumed to be a good material due to its excellent 

transmissive properties. However this maximum stress exceeds the typical tensile strength 

of Fused Quartz. Consequently, another material had to be selected. The second choice of 

material was Sapphire. Sapphire has superior strength relative to Fused Quartz, with a 

tensile strength range of 275-414 MPa. Applying a factor of safety of 3 to this optical ring 

and assuming the strength to be the minimum value from this range (275 MPa), this part is 

deemed to be safe under this pressure. 

 

Table 8 – Design tensile strength vs Sapphire tensile strength 

Design strength with FS=3 (MPa) Tensile strength of sapphire (MPa) 

85.4*3 = 256.2 275 
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6 Conclusion 

 

 

The design proved to be a feasible design. Considerations of any possible consequential 

effects were made during the design as safety was a significantly important factor. This 

safety has been reflected in the results obtained for the various analyses performed on the 

system. By using a conservative design approach a robust system could be created. Due to 

the fact that the focus was primarily on the system itself, it should follow that the selection 

of the external components to the system, such as the valve and laser equipment, be done 

with care. Other aspects to the engine design which were not covered in this dissertation 

are summarised here. 

 

6.1 Recommendations for future work 

 

One feature which was omitted from the design work was the engine head strongback. As 

this feature would have required extensive analysis on the structural load effects due to 

external engine vibrations and static loads, this area of the design was not completed, 

particularly due to time constraints. It is recommended that the design of a strongback 

structure be conducted, which can be integrated to fit around the engine structure and to 

adjoin to the engine head in such a way that the engine heads original bolts can be used to 

secure it. 

 

Other areas of work which could not be covered due to time constraints were the cost 

analysis and material list development. The motivation for completing these stages would 

be to see the design then proceed to the stage where it could be reviewed and hopefully 

commissioned for operation at USQ. Whilst some parts like the valve and engine head were 

identified, the actual costs for these parts were not established. However, care was taken to 

choose parts that would have a high level of availability. Taking such care was critical to 

producing a design that was feasible. 

 

Additional work which would potentially be a fairly elaborate analysis is a 

vibrational/modal analysis on the structure as a whole – engine, engine head and strongback 

combined. Due to time constraints, a detailed vibrational analysis could not be performed. 
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Whilst Kevin Dray (2014) performed an internal vibrational analysis, there would also be 

room for the analysis of external vibrations on the structure of the engine, which would 

indeed have a degree of impact on the overall structure. Also, engine heads also have their 

own internal vibrations and so a study on the internal vibrations of the Mitsubishi 4G93 

head would be a potential area of work. All such recommendations may be aspects for a 

future project should any students so desire. 
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Appendices 

Appendix A – Project Specification 
 

ENG4111/4112 Research Project 

Project Specification 

 

For:   Gabriel Martin 

Title:   Design of Pneumatic Clamping Head for an Optical Access Engine 

Major:   Mechanical Engineering 

Supervisor:  David Buttsworth 

Enrolment:  ENG4111 – ONC S1, 2016 

   ENG4112 – ONC S2, 2016 

 

Project Aim: To design a pneumatic clamping system for an optical access engine that allows for 

adaptability to a variety of engine head types. 

 

Programme:  Issue B, 5th April 2016 

 

1 – Perform background research to gain a thorough understanding of the function and purpose of 

optical access engines as well as that of pneumatic systems. 

2 – Review literature available on pneumatic systems, including materials used and the 

applications of such systems. 

3 – Review various engine head types and their effects on internal combustion. 

4 – Design a pneumatic system that can be integrated into the already-designed optical access 

engine block. 

5 - Perform a feasibility study on the effectiveness of the design over other recognised designs. 

6 - Create a virtual 3D model that illustrates the operation of the engine and its pneumatic system. 

 

 If time and resources permit: 

7 – Develop a materials list for all required materials/parts to construct the engine, including the 

specification of any manufacturing processes involved. 

8 - Seek permission for the commissioning and construction of an optical access engine at USQ 

Toowoomba Campus. 
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Appendix B - Work Place Health and Safety Act 2011 – pp. 22-28 
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Appendix C – Properties of Cast Iron 
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Appendix D – Table of mechanical properties of selected ceramics 

and glasses 

 

Material  

Tensile 

strength  
Modulus of 

elasticity  
Modulus of 

rupture  
Fracture toughness 

(KIc)  

MPa  ksi  GPa  106 psi  MPa  ksi  

MPa

  

ksi

  

Alumina (Al2O3)  200-310  30-45  380  55  350-580  50-80  2.7-4.2  2.5-3.8  

Alumina porcelain (90-95% 

Al2O3)  

170-240  25-35  . . .  . . .  275-350  40-50  . . .  . . .  

Aluminosilicate glass  . . .  . . .  75  10.8  . . .  . . .  0.91  0.83  

Beryllia (BeO)  90-135  13-20  311  45  175-275  25-40  . . .  . . .  

Boron carbide (B4C)  155  22  290-445  42-65  310-350  45-50  . . .  . . .  

Boron nitride (BN)  . . .  . . .  34-76  5-11  50-100  7-15  . . .  . . .  

Borosilicate glass (Pyrex)  . . .  . . .  60-70  9-10  60-70  9-10  0.76  0.69  

Carbon graphite (C)  12  2  7  1  28  4  . . .  . . .  

Glass-ceramic  . . .  . . .  83-138  12-20  70-245  10-245  2.4  2.2  

Magnesia (MgO)  . . .  . . .  83-205  12-30  100  15  . . .  . . .  

Mullite (3Al2O3·2SiO2)  100  15  145  21  175  25  2.6  2.4  

Silica (SiO2), fused  69  10  69-73  10-10.6  110  16  0.79  0.72  

Silica, 96% SiO2 (Vycor glass)  . . .  . . .  66  9.6  70  10  . . .  . . .  

Silicon carbide (SiC)                          

Bonded SiC  21  3  117  17  14  2  . . .  . . .  

Hot-pressed SiC  . . .  . . .  207-483  30-70  620-825  90-120  . . .  . . .  

Reaction-sintered SiC  . . .  . . .  332  48  240-450  35-65  . . .  . . .  

Sintered SiC  . . .  . . .  207-483  30-70  450-520  65-75  4.8  4.4  

Silicon nitride (Si3N4)                          

Hot-pressed Si3N4  350-580  50-80  304  44  620-965  90-140  4.1-6.0  3.7-5.5  

Reaction-bonded Si3N4  100-200  15-30  165  24  200-350  30-50  3.6  3.3  

Sintered Si3N4  . . .  . . .  304  44  415-580  60-80  5.3  4.8  

Soda-lime-silica glass  . . .  . . .  66  9.6  . . .  . . .  0.75  0.68  

Spinel (MgO·Al2O3)  130  19  240-260  35-38  85-220  12-32  . . .  . . .  

Titanium carbide (TiC)  240-275  35-40  290-462  42-67  275-450  40-65  . . .  . . .  

Tungsten carbide (WC)  895  130  427-703  62-102  790-825  115-120  . . .  . . .  

Zirconia (ZrO2)                          

Fully stabilized ZrO2  . . .  . . .  97-205  14-30  140-240  20-35  2-8  1.8-7.3  

Partially stabilized ZrO2 

(PSZ)  

. . .  . . .  205  30  600-700  87-102  8-9  7.3-8.2  

 

 

 

 

 

 

 

 



   
 

103 
 

Appendix E – Properties of transmissive optics materials 

 

 

Properties BK7 
Fused 

silica 

MS 

ZnS 
ZnSe 

Mechanical 

Density, g/cm3  2.51 2.203 4.09 5.27 

Poisson's ratio 0.208 0.17 0.27 0.28 

Hardness, Knoop 610 500 150–165 105–120 

Rupture modulus, dyne/cm2  
1.65 × 

108  
5.00 × 109  

6.90 × 

108  

5.50 × 

108  

Young's modulus, dyne/cm2  
8.20 × 

1011  

7.30 × 

1011  

7.45 × 

1011  

6.72 × 

1011  

Thermal 

Linear expansion coefficient, 

×10-6/°C 
7.1 0.55 6.5 7.57 

Specific heat, J/g/°C 0.858 0.703 0.527 0.356 

Thermal conductivity, W/cm/°C 0.0111 0.0138 0.272 0.18 

Optical 

Scatter coefficient at 1.06 μm, 

/cm 
ND ND <3% <0.5% 

Scatter coefficient at 0.6328 μm, 

/cm 
ND ND <10% <3% 

Index of refraction at 1.06 μm 1.5066 1.4496 2.287 2.483 

Temperature change of refractive 

index at 1.06 μm, ×10-6/°C 
1.2 11 42 70 

Bulk absorption at 1.07 μm, /cm ~0.001 ~0.0001 <0.0005 <0.001 

K-values for lenses 

  Plano/convex lens 0.07112 0.08994 0.02888 0.02849 

  Positive meniscus lens 0.06573 0.07792 0.02051 0.01758 

  Equiconvex lens 0.1029 0.11542 0.05494 0.05164 
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Appendix F – Tables of glass fibre properties 

 

Compositions of commercial glass fibres 

Fiber 

Re

f 

Composition, wt% 

SiO2  
B2

O3  

Al2

O3  

Ca

O 

Mg

O 

Zn

O 

Ti

O2  

Zr2

O3  

Na2

O 

K2

O 

Li2

O 

Fe2

O3  
F2  

General-purpose fibers  

Boron-

containin

g E-glass 

1, 

2 
52–56 4–6 

12–

15 

21–

23 

0.4–

4 
… 

0.2

–

0.5 

… 0–1 
Trac

e 
… 

0.2–

0.4 

0.2–

0.7 

Boron-

free E-

glass 

7 59.0 … 12.1 
22.

6 
3.4 … 1.5 … 0.9 … … 0.2 … 

8 60.1 … 13.2 
22.

1 
3.1 … 0.5 … 0.6 0.2 … 0.2 0.1 

Special-purpose fibers  

ECR-

glass 

1, 

2 
58.2 … 11.6 

21.

7 
2.0 2.9 2.5 … 1.0 0.2 … 0.1 

Trac

e 

D-glass 

1, 

2 
74.5 

22.

0 
0.3 0.5 … … … … 1.0 <1.3 … … … 

2 55.7 
26.

5 
13.7 2.8 1.0 … … … 0.1 0.1 0.1 … … 

S-, R-, 

and Te-

glass 

1, 

2 

60–

65.5 
… 

23–

25 
0–9 

6–

11 
… … 0–1 

0–

0.1 
… … 

0–

0.1 
… 

Silica/qua

rtz 

1, 

2 

99.99

99 
… … … … … … … … … … … … 

Physical and mechanical properties of commercial glass fibres 

Fiber 

Log 3 

forming 

temperature
(a)  

Liquidus 

temperatur

e 

Softening 

temperatu

re 

Annealing 

temperatu

re 

Straining 

temperatu

re 

Bulk 

density, 

anneale

d glass, 

g/cm3  ºC ºF ºC ºF ºC ºF ºC ºF ºC ºF 

General-purpose fibers  

Boron-

containing 

E-glass 

1160–

1196 

2120

–

2185 

1065

–

1077 

1950

–

1970 

830–

860 

1525

–

1580 

657 1215 616 1140 
2.54–

2.55 

Boron-free 

E-glass 
1260 2300 1200 2190 916 1680 736 1355 691 1275 2.62 

Special-purpose fibers  

ECR-glass 1213 2215 1159 2120 880 1615 728 1342 691 1275 
2.66–

2.68 

D-glass … … … … 770 1420 … … 475 885 2.16 

http://products.asminternational.org.ezproxy.usq.edu.au/hbk/do/highlight/content/V21/D02/A03/s0086585.htm#n0016202
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Fiber 

Log 3 

forming 

temperature
(a)  

Liquidus 

temperatur

e 

Softening 

temperatu

re 

Annealing 

temperatu

re 

Straining 

temperatu

re 

Bulk 

density, 

anneale

d glass, 

g/cm3  ºC ºF ºC ºF ºC ºF ºC ºF ºC ºF 

S-glass 1565 2850 1500 2730 1056 1935 … … 760 1400 
2.48–

2.49 

Silica/quar

tz 
>2300 

>417

0 
1670 3038 … … … … … … 2.15 

Fiber 

Coeffi

cient 

of 

linear 

expan

sion, 

Spec

ific 

heat, 

Dielect

ric 

constan

t at 

room 

temper

ature 

Diele

ctric 

stren

gth, 

Volume 

resistivi

ty at 

room 

temper

ature 

Refra

ctive 

index 

Wei

ght 

loss 

in 

24 h 

in 

10

% 

Tensile 

strengt

h at 23 

ºC (73 

ºF) 

Young

's 

modul

us 

Filam

ent 

elonga

tion at 

break, 

% 

10–

6/ºC 

cal/g

/ºC 

and 1 

MHz 

kV/c

m 

log10 (Ω 

cm) 
(bulk) 

H2S

O4, 

% 

MP

a 
ksi 

G

Pa 

106 

psi 

General-purpose fibers  

Boron-

contain

ing E-

glass 

4.9–

6.0 

0.19

2 

5.86–

6.6 
103 

22.7–

28.6 
1.547 ~41 

310

0–

380

0 

45

0–

55

1 

76

–

78 

11.

0–

11.

3 

4.5–

4.9 

Boron-

free E-

glass 

6.0 … 7.0 102 28.1 1.560 ~6 

310

0–

380

0 

45

0–

55

1 

80

–

81 

11.

6–

11.

7 

4.6 

Special-purpose fibers  

ECR-

glass 
5.9 … … … … 1.576 5 

310

0–

380

0 

45

0–

55

1 

80

–

81 

11.

6–

11.

7 

4.5–

4.9 

D-glass 3.1 
0.17

5 

3.56–

3.62 
… … 1.47 … 

241

0 

34

9 
… … … 

S-glass 2.9 
0.17

6 

4.53–

4.6 
130 … 1.523 … 

438

0–

459

0 

63

5–

66

6 

88

–

91 

12.

8–

13.

2 

5.4–

5.8 

Silica/q

uartz 
0.54 … 3.78 … … 1.4585 … 

340

0 

49

3 
69 

10.

0 
5 

 

Young’s Modulus = 72 GPa or 4.9642272e14 psi 

Design tensile strength = 48 MPa or 3.3094848e11 psi 

Poisson’s Ratio = 0.17 (Technical Glass Products) 

http://products.asminternational.org.ezproxy.usq.edu.au/hbk/do/highlight/content/V21/D02/A03/s0086585.htm#n0016202


   
 

106 
 

Density = 2.2e3 kg/m^3 

Coefficient of thermal expansion = 5.5e-7 cm/cm degreeC 

Thermal conductivity = 1.4 W/m degreeC 

Specific heat = 670 J/kg degreeC 

Shear/Rigidity modulus = 3.1e10 Pa 
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Appendix H – Properties of thermoplastics 

 

Table 1 Properties of thermoplastics 

Room-temperature data for unreinforced, general-purpose grades 

Material  

Specific 

gravity  

Tensile 

strength  

Elongation, 

%  

Modulus of 

elasticity  

Izod impact 

strength 

(notched)  

MPa  ksi  MPa  ksi  J/cm  

ft · 

lbf/in.  

Acetal copolymer  1.41  61  8.8  40-75  2830  410  0.64-

0.85  

1.2-1.6  

Acetal homopolymer  1.42  69  10  25-50  3585  520  0.75  1.4  

Acrylonitrile-butadiene-

styrene (ABS)  

1.05-1.07  41  5.9  90-135  2135-

2400  

310-

350  

3.2  6  

ABS-polycarbonate 

(ABS-PC)  

1.14  57  8.2  15-40  2415-

2690  

350-

390  

5.3  10  

Cellulose acetate  1.23-1.34  21-

55  

3-8  . . .  725-

1760  

105-

255  

0.59-

3.6  

1.1-6.8  

Cellulose acetate butyrate  1.15-1.22  21-

48  

3-7  . . .  485-

1240  

70-

180  

1.6-

5.3  

3.0-

10.0  

Cellulose nitrate  1.35-1.40  48-

55  

7-8  . . .  1310-

1515  

190-

220  

2.7-

3.7  

5-7  

Cellulose propionate  1.19-1.22  28-

48  

4-7  . . .  760-

1240  

110-

180  

0.90-

5.0  

1.7-9.4  

Ethyl cellulose  1.10-1.17  21-

55  

3-8  . . .  345-

2415  

50-

350  

0.90-

3.7  

1.7-7.0  

Nylon 6  1.14  86  12.5  5-50  1380-

3445  

200-

500  

0.64  1.2  

Nylon 6/6  1.13-1.15  62-

83  

9-12  60  2655-

3275  

385-

475  

1.1  2.0  

Nylon 12  1.01  45-

59  

6.5-

8.5  

120-350  1170-

1450  

170-

210  

0.90-

1.1  

1.7-2.1  

Polyamide-imide (PAI)  1.40  185  26.9  12-18  5170  750  1.3  2.5  

Polyarylate (PAR)  1.2  66  9.5  25-50  1965-

2000  

285-

290  

2.2  4.2  

Polyaryl sulfone (PAS)  1.36  90  13  40  2655  385  1.1  2  

Polybutylene 

terephthalate (PBT)  

1.31  55-

57  

8.0-

8.2  

5-300  2480  360  0.64-

0.69  

1.2-1.3  

Polycarbonate (PC)  1.20  62  9  90-135  2240-

2345  

325-

340  

6.4-

8.5  

12-16  

PC-PBT  1.21-1.25  45-

55  

6.5-

8.0  

120-175  2200  320  7.1-

8.5  

13.3-16  

Polyetheretherketone 

(PEEK)  

1.3  90  13  30-150  1105  160  0.85  1.6  

Polyether-imide (PEI)  1.27  103  15  8-60  3310  480  0.59  1.1  

Polyether sulfone (PESV)  1.37  83  12  . . .  2440  354  0.75-

1.2  

1.4-2.2  
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Polyethylene, high-

density (HDPE)  

0.95-0.96  20-

30  

2.9-

4.4  

. . .  1100  160  0.21-

7.5  

0.4-14  

Polyethylene, low-density 

(LDPE)  

0.91-0.93  6-17  0.9-

2.5  

. . .  140-

185  

20-

27  

No break  

Polyethylene 

terephthalate (PET)  

1.37  72  10.4  . . .  8960  1300  0.43  0.8  

Polyimide (PI)  1.43  35-

52  

5-

7.5  

1-8  3240-

5170  

470-

750  

0.27-

0.53  

0.5-1.0  

Polyphenylene oxide 

(PPO)  

1.06-1.18  54-

66  

7.8-

9.6  

50-60  2450-

2620  

355-

380  

2.7  5.0  

Polyphenylene sulfide 

(PPS)  

1.34  69  10  1.6  3310  480  0.16  0.3  

Polypropylene (PP)  0.9  31-

41  

4.5-

6.0  

30-200+  1105-

1515  

160-

220  

0.21-

0.69  

0.4-1.2  

Polystyrene (PS)  1.04-1.07  41-

50  

6.0-

7.3  

1.0-2.3  3170-

3445  

460-

500  

0.16  0.3  

Polystyrene, high-impact 

(HIPS)  

1.05  19-

32  

2.8-

4.6  

30-50  1035-

2620  

150-

380  

0.37-

0.53  

0.7-1.0  

Polysulfone (PSU)  1.24  70  10.2  50-100  2480  360  0.69  1.2  

Polytetrafluoroethylene 

(PTFE)  

2.1-2.3  7-28  1-4  250-350  260-

470  

38-

68  

1.3-

2.1  

2.5-4.0  

Polyurethane (PUR)  1.11-1.25  31-

58  

4.5-

8.4  

450-660  70-

2415  

10-

350  

No break  

Polyvinyl chloride 

(PVC), rigid  

1.3-1.5  35-

55  

5-8  1-10  2415-

2760  

350-

400  

0.27-

10.7  

0.5-20  

PVC, flexible  1.2-1.7  10  1.4  200-450  . . .  . . .  0.27-

10.7  

0.5-20  

Styrene-acrylonitrile 

(SAN)  

1.08  69-

83  

10-

12  

0.5-3.7  2760-

3445  

400-

500  

0.21-

0.27  

0.4-0.5  

Styrene-maleic anhydride 

(S/MA)  

1.05-1.15  35-

62  

5-9  1.8-30  2275-

3380  

330-

490  

0.27-

6.4  

0.5-12  

Material  

Hardness, 

Rockwell  

Deflection temperature 

under load (DTUL)  
Maximum 

service 

temperature 

(no load)  

Water 

absorption 

(ASTM D 

570), 

% 

0.5 MPa 

(66 psi)  

1.8 MPa 

(264 psi)  

°C  °F  °C  °F  °C  °F  

Acetal copolymer  M80  158  316  110  230  100  212  0.22  

Acetal homopolymer  R120  170  338  124  255  91  195  0.25  

Acrylonitrile-butadiene-

styrene (ABS)  

R75-115  99-

107  

210-

225  

88-

97  

190-

206  

71-93  160-

200  

0.2-0.45  

ABS-polycarbonate 

(ABS-PC)  

R117  113  235  104  220  104  220  0.20-0.35  

Cellulose acetate  R49-120  49-

98  

120-

209  

44-

91  

111-

195  

60-104  140-

220  

1.7-4.0  

Cellulose acetate butyrate  R23-114  54-

108  

130-

227  

45-

94  

113-

202  

60-104  140-

220  

0.9-2.0  

Cellulose nitrate  . . .  . . .  . . .  60-

71  

140-

160  

60  140  1.0-2.0  
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Cellulose propionate  R57-109  64-

121  

147-

250  

44-

109  

111-

228  

68-104  155-

220  

1.3-2.0  

Ethyl cellulose  . . .  . . .  . . .  46-

88  

115-

190  

46-85  115-

185  

0.8-1.8  

Nylon 6  R119  149-

185  

300-

365  

60-

68  

140-

155  

82-121  180-

250  

1.3-1.9  

Nylon 6/6  R121  182-

243  

360-

470  

66-

104  

150-

220  

82-149  180-

300  

1.5  

Nylon 12  R122  . . .  . . .  49-

54  

120-

130  

79-127  175-

260  

0.25  

Polyamide-imide (PAI)  E78  . . .  . . .  274  525  260  500  0.28  

Polyarylate (PAR)  R122  171-

174  

340-

345  

155-

160  

311-

320  

129  265  0.09-0.2  

Polyaryl sulfone (PAS)  M85  . . .  . . .  274  525  260  500  0.10  

Polybutylene 

terephthalate (PBT)  

R117-120  154  310  54  130  138  280  0.08-0.09  

Polycarbonate (PC)  R118  132-

143  

270-

290  

129-

141  

265-

285  

121  250  0.15-0.18  

PC-PBT  R115  106-

129  

223-

265  

99-

121  

210-

250  

. . .  . . .  0.08-0.14  

Polyetheretherketone 

(PEEK)  

. . .  . . .  . . .  160  320  249  480  0.1-0.15  

Polyether-imide (PEI)  M109  207  405  199  390  170  338  0.25-0.28  

Polyether sulfone (PESV)  M88  . . .  . . .  203  397  180  356  0.43  

Polyethylene, high-

density (HDPE)  

R40  60-

88  

140-

190  

43-

54  

110-

130  

79-121  175-

250  

<0.01  

Polyethylene, low-density 

(LDPE)  

R10  38-

49  

100-

120  

32-

41  

90-

105  

82-100  180-

212  

<0.01  

Polyethylene 

terephthalate (PET)  

R120  116  240  85  185  79  175  0.05-0.06  

Polyimide (PI)  M97-122  . . .  . . .  288-

360  

550-

680  

260  500  0.32  

Polyphenylene oxide 

(PPO)  

R115-119  110-

138  

230-

280  

100-

129  

212-

265  

79-104  175-

220  

0.06  

Polyphenylene sulfide 

(PPS)  

R124  . . .  . . .  137  278  260  500  0.02-0.05  

Polypropylene (PP)  R80-100  93-

110  

200-

230  

52-

60  

125-

140  

107-

149  

225-

300  

<0.01-0.03  

Polystyrene (PS)  R75  . . .  . . .  82-

104  

180-

220  

66-77  150-

170  

0.03-0.2  

Polystyrene, high-impact 

(HIPS)  

M12-45  . . .  . . .  79-

99  

175-

210  

60-79  140-

175  

0.05-0.22  

Polysulfone (PSU)  R120  182  360  174  345  149  300  0.22  

Polytetrafluoroethylene 

(PTFE)  

R35-70  121  250  . . .  . . .  288  550  0.01  

Polyurethane (PUR)  . . .  . . .  . . .  . . .  . . .  88  190  . . .  

Polyvinyl chloride (PVC), 

rigid  

R110-120  57-

82  

135-

180  

54-

79  

130-

175  

66-79  150-

175  

0.03-0.40  
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PVC, flexible  . . .  . . .  . . .  . . .  . . .  60-79  140-

175  

0.2-1.0  

Styrene-acrylonitrile 

(SAN)  

M80  . . .  . . .  88-

104  

190-

220  

60-93  140-

200  

0.20-0.35  

Styrene-maleic anhydride 

(S/MA)  

R95  . . .  . . .  96-

127  

205-

260  

93  200  0.5  
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Appendix I – MATLAB dynamics code for actuator 
 

% GABRIEL A MARTIN - SCRIPT FOR ITERATIVE PROCESS TO FIND PRESSURE 

CHANGE  

% WITH RESPECT TO ACTUATOR POSITION, VELOCITY AND ACCELERATION - 

2/8/2016 

% STAGE 1 - DEFINE KNOWN PARAMETERS 

clear all 

clc 

P = 0;             % ACTUATOR PRESSURE IN PA 

Xp = 0;            % ACTUATOR POSITION RELATIVE TO ORIGIN (m) 

Xpdot = 0;         % ACTUATOR VELOCITY (m/s) 

k = 1.4;           % CONSTANT 

Po = 1e+6;         % SUPPLY PRESSURE IN PA 

R = 287;           % GAS CONSTANT 

To = 300;          % AMBIENT/SUPPLY TEMPERATURE IN KELVIN 

Av = 1.9635e-5;    % EFFECTIVE CROSS-SECTIONAL AREA OF VALVE INLET 

(m^2) - 

                   % at the moment this area will be assumed to be 

fixed 

                   % i.e. either fully open or closed (5mm 

diameter) 

Ap = 0.00503;      % AREA OF PRESSURE-SIDE OF ACTUATOR (m^2) 

DT = 0.0001;       % Time step (seconds) 

t1=0;              % Initial iteration 

M=11;              % mass of actuator in kg 

a=1.2;             % Both a and ain are constants describing heat 

transfer  

ain=1.39;          % characteristics 

Vd = 1.32409e-6 + 0.0025*Ap;          % dead chamber volume in m^3 

F=14;              % Dynamic Friction force from O-rings (N) 

Mg=9.81*M;         % actuator weight 

  

% STAGE 2 - DEFINE FORMULAE FOR ACCELERATING FROM STAND-STILL. 

This starts  

% the iterative loop: 

  

while Xp<=0.040   % condition restricting actuator to travel 

stroke length 

  

if Xpdot<0.5 

% NEWTON'S LAW: 

Xpdotdot = ((Ap.*P)-F-Mg)./M; % ACCELERATION OF ACTUATOR FOR A        

SPECIFIC TIME-STEP (m/s^2) 

    if Xpdotdot<=0 

       Xpdotdot=0; 

        elseif Xpdotdot>0 

        Xpdotdot = ((Ap.*P)-F-Mg)./M; 

    end 

    Xpdot = Xpdot + Xpdotdot.*DT; 

    Xp = Xp +((Xpdot.*DT)./2); 

  

% Changing volume with respect to displacement: 

V = Ap.*Xp; 

  

% Stage 3 - define formulae for pressure derivative (depends on 

mfr). 

% Includes conditional loop which changes lambda value if pressure 

ratio 

% exceeds 0.53. 
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    if P<=0.53*Po;  % choked flow 

    lambda=0.58;    % Lambda value for critical flow limit 

        elseif P>0.53*Po;   % under-choked 

        lambda=sqrt(2./(k-

1)).*(P./Po).^((k+1)./(2*k)).*sqrt(((P./Po).^... 

        ((1-k)./k))-1); 

    end 

mfr=lambda.*sqrt(k./(R.*To)).*Po.*Av; % mass flow rate of air 

(kg/s) 

  

% Pressure derivative (pressure change with respect to time -  

% Pascals/second). 

Pdot = (ain.*mfr.*((R.*To)./(Vd+V)))-

(a.*Xpdot.*((Ap.*P)./(Vd+V))); 

  

% Define new pressure in chamber based on pressure rate: 

P = Pdot.*DT+P; 

  

% This nested loop calculates the variables with time when 

velocity is  

% constant at 0.5 m/s. 

elseif Xpdot>=0.5 

    Xpdotdot = ((Ap.*P)-F-Mg)./M; 

    Xpdot = Xpdot + Xpdotdot.*DT;     

    Xp = Xp +((Xpdot.*DT)./2); 

     

    V = Ap.*Xp; 

    if P<=0.53*Po;  % choked flow 

    lambda=0.58;    % Lambda value for critical flow limit 

        elseif P>0.53*Po;   % under-choked 

        lambda=sqrt(2./(k-

1)).*(P./Po).^((k+1)./(2*k)).*sqrt(((P./Po).^... 

        ((1-k)./k))-1); 

    end 

    Av=6.8027e-8; 

    mfr=lambda.*sqrt(k./(R.*To)).*Po.*Av; % mass flow rate of air 

(kg/s) 

    Pdot = (ain.*mfr.*((R.*To)./(Vd+V)))-

(a.*Xpdot.*((Ap.*P)./(Vd+V))); 

    P = Pdot.*DT+P; 

end 

  

% total time taken:  

t1=t1+1; 

T1=t1.*DT; 

  

% stage 4 - plot graphs 

subplot(2,3,1) 

plot(t1,P,'b+') 

hold on 

title('Pressure vs time') 

xlabel('x10^-4 sec') 

ylabel('Pa') 

  

subplot(2,3,2) 

plot(t1,mfr,'g+') 

hold on 

title('Flow rate vs time') 

xlabel('x10^-4 sec') 

ylabel('kg/s') 

  

subplot(2,3,3) 
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plot(t1,Xp,'ro') 

hold on 

title('Position vs time') 

xlabel('x10^-4 sec') 

ylabel('m') 

  

subplot(2,3,4) 

plot(t1,Xpdot,'go') 

hold on 

title('Velocity vs time') 

xlabel('x10^-4 sec') 

ylabel('m/s') 

  

subplot(2,3,5) 

plot(t1,Xpdotdot,'yo') 

hold on 

title('Acceleration vs time') 

xlabel('x10^-4 sec') 

ylabel('m/s^2') 

  

subplot(2,3,6) 

plot(t1,lambda,'ko') 

hold on 

title('lambda vs time') 

xlabel('x10^-4 sec') 

ylabel('lambda') 

  

end 

  

% Display overall time for actuation in seconds in command window: 

disp('total time taken (seconds):'); 

disp(T1); 
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Appendix J – Parker ECI Metal C-ring Internal Pressure Face Seal 

data 
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Appendix K – MATLAB code for bearing deflection in edge-loaded 

case 
 

% GABRIEL A MARTIN - SCRIPT FOR ITERATIVE CALULATION OF 

BEARING DEFLECTION 

% AND BEARING CONSTANT 'MU' - 16/8/2016 

clc 

clear all 

% The first stage is to guess a deflection value dm (mm) for 

the edge of  

% the bearing. Next the guessed value is substituted into 

the equation  

% for 'eta'. When eta is calculated, it is substituted into 

constant Keta. 

% Keta is put into equation for dm. dm is recalculated. If 

dm turns out 

% to be different to the initial guess for dm by a certain 

tolerance, the 

% above steps are reiterated. Reiteration occurs until both 

values for dm  

% diverge to be within the set tolerance. 

  

% PARAMETERS: 

dm=0.1;          % initial guess for bearing deflection at 

edge in mm 

D=142.063;       % bore diameter in mm 

psi=2.58055e-3;  % ratio of bearing running clearance mm to 

shaft diameter  

                 % (mm) 

Ec=992.844;      % compressive modulus of bearing material 

in MPa 

W=2.2606;        % bearing wall thickness mm 

S=tand(1.692);   % slope of shaft relative to bearing 

Fc=16.368;       % Applied side load on bearing (N) 

mu=0.46;                       % Poisson Ratio 

Kmu=(1-mu)/((1+mu)*(1-2*mu));  % constant based on Poisson's 

ratio 

  

% Tolerance: 

Delta=1e-10; 

  

% Definition of equation for 'eta': 

numerator=((1+psi)^2)+(((2*dm)/(D+psi))^2)-1; 

denominator=2*(1+psi)*(((2*dm)/D)+psi); 

eta=sqrt(1-(numerator/denominator)^2); 

  

% Define constant into which eta will be substituted: 

Keta=0.0959*(eta^3)-0.086*(eta^2)+(0.327*eta)-0.0017; 

  

% Recalculate dm. If different to initial guess, reiterate. 

dmnew=sqrt((W*S*Fc)/(Ec*D*Kmu*Keta)); 

  

i=1; % iteration number 
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% Below is the reiterative loop. Loop repeats until 

difference between dm  

% and dmnew becomes less than the tolerance.                                

  

while abs(dmnew-dm)>Delta        

i=i+1; 

  

dm=dmnew; 

numerator=((1+psi)^2)+(((2*dm)/(D+psi))^2)-1; 

denominator=2*(1+psi)*(((2*dm)/D)+psi); 

eta=sqrt(1-(numerator/denominator)^2); 

Keta=0.0959*(eta^3)-0.086*(eta^2)+(0.327*eta)-0.0017;   

  

dmnew = sqrt((W*S*Fc)/(Ec*D*Kmu*Keta)); 

end 

  

disp('Number of iterations performed were:') 

disp(i) 

disp('Final deflection at edge in mm is:') 

disp(dmnew) 

  

% Now that the solution to dm after several iterations has 

been given, the  

% solution to peak pressure acting on the bearing can now be 

calculated. 

pm=Kmu*(Ec/W)*dmnew; 

disp('peak pressure (MPa) due to maximum deflection:') 

disp(pm) 
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Appendix L – MATLAB code for seal compression 
 

% Gabriel A Martin - Final Year project scriptcode2 - 9/9/2016 
% This code simulates the compression of the C-ring gasket after 

the 
% actuator has risen to position. 
clear all 
clc 

  
% Define parameters. 
k = 1.4;           % CONSTANT 
Po = 1e+6;         % SUPPLY PRESSURE IN PA 
R = 287;           % GAS CONSTANT 
To = 300;          % AMBIENT/SUPPLY TEMPERATURE IN KELVIN 
Ap = 0.00503;      % AREA OF PRESSURE-SIDE OF ACTUATOR (m^2) 
DT = 0.0001;       % Time step (seconds) 
t1=0;              % Initial iteration 
M=11;              % mass of actuator in kg 
a=1.2;             % Both a and ain are constants describing heat 

transfer 
ain=1.39;          % characteristics 
Vd = 1.32409e-6 + 0.0025*Ap;          % dead chamber volume in m^3 
F=40;              % Dynamic Friction force from O-rings - static 

(N) 
Mg=9.81*M;         % actuator weight 
P=3488.8;          % Initial chamber pressure (Pa) 
Xptotal=0.000254;  % Total displacement for actuator to travel (m) 
Xpold=0.041;          % Initial displacement (m) 
Xpdot=0; 
Xp=Xpold; 

  
% A while loop is constructed for pressurisation of chamber. The 

resultant  
% pressure must provide the necessary stress on C-ring gasket for 

proper  
% sealing. Final pressure is estimated to be 0.72 MPa (from 3488.8 

Pa). 
while 0.041<=Xp && Xp<0.041254 

     
% This section calculates variables with flow rate held constant. 
    V = Ap.*Xp; 
    if P<=0.53*Po;  % choked flow 
    lambda=0.58;    % Lambda value for critical flow limit 
        elseif P>0.53*Po;   % under-choked 
        lambda=sqrt(2./(k-

1)).*(P./Po).^((k+1)./(2*k)).*sqrt(((P./Po).^... 
        ((1-k)./k))-1); 
    end 

     
    Av=1e-5; 
    mfr=lambda.*sqrt(k./(R.*To)).*Po.*Av; % mass flow rate of air 

(kg/s) 
    Pdot = (ain.*mfr.*((R.*To)./(Vd+V)))-

(a.*Xpdot.*((Ap.*P)./(Vd+V))); 
    P = Pdot.*DT+P; 

     
    Xpstrain=(Xp-Xpold)./Xptotal; % strain/percentage of total 

displacement 
    FR=3622*Xpstrain;  % Resistive force from C-ring based on 

strain (N) 
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    Xpdotdot = ((Ap.*P)-F-Mg-FR)./M; 
    if Xpdotdot<0 
    Xpdotdot=0; 
        elseif Xpdotdot>=0 
        Xpdotdot = ((Ap.*P)-F-Mg-FR)./M; 
    end 
    Xpdot = Xpdot + Xpdotdot.*DT; 
    Xp = Xp +((Xpdot.*DT)./2); 

  
    % total time taken:  
    t1=t1+1; 
    T1=t1.*DT; 

     
    % stage 4 - plot graphs 
    subplot(2,2,1) 
    plot(t1,P,'b+') 
    hold on 
    title('Pressure vs time') 
    xlabel('x10^-4 sec') 
    ylabel('Pa') 

  
    subplot(2,2,2) 
    plot(t1,mfr,'g+') 
    hold on 
    title('Flow rate vs time') 
    xlabel('x10^-4 sec') 
    ylabel('kg/s') 

  
    subplot(2,2,3) 
    plot(t1,Xp,'ro') 
    hold on 
    title('Position vs time') 
    xlabel('x10^-4 sec') 
    ylabel('m') 

  
    subplot(2,2,4) 
    plot(t1,Xpdot,'go') 
    hold on 
    title('Velocity vs time') 
    xlabel('x10^-4 sec') 
    ylabel('m/s') 

     
end 

  
% Display overall time for actuation in seconds in command window: 
disp('total time taken (seconds):'); 
disp(T1); 
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Appendix M – MATLAB code for discharge 
 

% Gabriel A Martin - Final Year project scriptcode3 - 18/9/2016 
% Code for chamber pressure discharge. Actuator descends due to 

gravity. 
clear all 
clc 

  
% Define parameters. 
k = 1.4;           % CONSTANT 
R = 287;           % GAS CONSTANT 
T = 300;           % CHAMBER TEMPERATURE IN KELVIN 
Ap = 0.00503;      % AREA OF PRESSURE-SIDE OF ACTUATOR (m^2) 
DT = 0.0001;       % Time step (seconds) 
t1=0;              % Initial iteration 
M=11;              % mass of actuator in kg 
a=1.2;             % Both a and ain are constants describing heat 

transfer 
aout=1.01;         % characteristics 
Vd = 1.32409e-6 + 0.0025*Ap;          % dead chamber volume in m^3 
F=40;              % Dynamic Friction force from O-rings - static 

(N) 
Mg=9.81*M;         % actuator weight 
P=7.2e+5;         % Initial chamber pressure (Pa) - GAUGE 
Patm=0;       % ATMOSPHERIC PRESSURE (Pa) - GAUGE 
Xp=0.041254;       % Initial displacement (m) 
Xpdot=0;           % Initial velocity m/s 

  
% While loop iteratively calculates dynamics of actuator during  
% depressurisation. 
while Xp<=0.041254 && Xp>0 

     
% This section calculates variables with flow rate held constant. 
    Xpdotdot = ((Ap.*P)+F-Mg)./M; 
    if Xpdotdot>=0 
    Xpdotdot=0; 
        elseif Xpdotdot<0 
        Xpdotdot = ((Ap.*P)+F-Mg)./M; 
        % NOTE that F term is positive instead of negative, as 

friction  
        % force is always opposite to direction of travel 
    end 
    Xpdot = Xpdot + Xpdotdot.*DT; 
    Xp = Xp +((Xpdot.*DT)./2); 

  
    V = Ap.*Xp; 
    if Patm<=0.53*P;  % choked flow 
    lambda=0.58;      % Lambda value for critical flow limit 
        elseif Patm>0.53*P;   % under-choked 
        lambda=sqrt(2./(k-1)).*(Patm./P).^((k+1)./(2*k)).*sqrt... 
        (((Patm./P).^((1-k)./k))-1); 
    end 

     
    Av=5e-5; % This valve area is for the exhaust path 
    mfr=lambda.*sqrt(k./(R.*T)).*P.*Av; % mass flow rate of air 

exiting  
                                        % chamber (kg/s) 

     
    Pdot = (a.*Xpdot.*((Ap.*P)./(Vd+V)))-

(aout.*mfr.*((R.*T)./(Vd+V))); 
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    % Pdot terms above have their senses reversed due to discharge 

scenario 
    P = Pdot.*DT+P; 

  
    % total time taken:  
    t1=t1+1; 
    T1=t1.*DT; 

     
    % stage 4 - plot graph for velocity over time 
    plot(t1,Xpdot,'g+') 
    hold on 
    title('Velocity vs time') 
    xlabel('x10^-4 sec') 
    ylabel('m/s') 

  
end 

  
% Display overall time for actuation in seconds in command window: 
disp('total time taken (seconds):'); 
disp(T1); 

 

 

NOTE: The above code only plots velocity vs time graph. ‘Stage 4’ of this code was 

modified to plot each variable individually. 
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Appendix N – Engineering Drawings 

 

The following drawings have been produced for the purpose of illustrating the 

modifications to the original components drawn by Kevin Dray (2014) as well as additional 

components necessary for the assembly of the pneumatic clamp. Therefore, any other parts 

for the engine which have not been modified, have not been included here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


