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Abstract 

The Murray Darling Basin (MDB) is Australia’s largest and most important river system. 

Today, the Murray Darling Basin Authority (MDBA) manages and operates the river 

system through the oversight of key components such as water storage, quality, markets, 

trade, sharing and salinity. In order to provide defensible operational decisions and enable 

effective planning, the MDBA has developed a model of the Lower Murray Darling River 

using the Source Integrated Modelling System (IMS). 

A key functionality of the model is the ability to forecast salinity. The forecasting of salinity 

enables justification of key water sharing and management decisions in relation to their 

effects on future salinity levels. In order to predict salinity, the current method is driven 

by three key inputs being salinity concentration (mg/L), flow (ML) and inflow salt load 

(Tonnes). Currently, salinity and flow are forecast using trend or average functions while 

inflow salt load is forecast using the average of the most recent month extrapolated 

forward.  

This research project worked to determine the current accuracy of salinity predictions 

within a new Source model and investigated methods used to estimate and forecast 

additional salt loads between the reaches. The project worked to improve the model 

prediction through investigating a variety of data smoothing methods in order to 

determine whether monthly averaging is the best representation of including the salt 

inflow loads within the current model. The project then worked to refine the existing 

forecast method using two approaches: one being trend extrapolation, and the second 

being application of an Artificial Neural Network (ANN).  

The results of the data smoothing analysis indicate that monthly averaging is the best 

representation of additional salt inflow used within the model. The results of the forecast 

analysis indicate that rather than using the average of the most recent month for 

forecasting, trend methods may provide a more effective option. Finally, the research 

found that the developed neural network was unable to recognize patterns present in the 

salt inflow data enabling an effective forecast. However, the research highlighted that the 

application of artificial neural networks are well suited to the prediction of water resource 

variables such as salinity and would make an excellent option for future research. 
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CHAPTER 1: INTRODUCTION 

1.0 BACKGROUND 

The Murray Darling Basin (MDB) is Australia’s largest river system which provides water 

to 39% of Australian agricultural farms (Australian Bureau of Statistics, 2008). Modelling 

the MDB represents a highly complex task. Its catchment features five basin states 

resulting in highly varying landscapes, climates and demands. As a result of Australia’s 

heavy reliance on the system, extensive research and policy reform has been undertaken 

in order to ensure that the river system is effectively managed.  

Today, the Murray Darling Basin Authority (MDBA) manages and controls the Murray 

Darling River system through the oversight of key components such as water storage, 

quality, markets, trade, sharing and salinity. The MDBA has recently developed and 

adopted a daily time step model of the River Murray and Lower Darling which will be used 

to analyse and support decision making within the river system. The model has been built 

within the Source Integrated Modelling System (IMS) platform developed by eWater and 

its Cooperative Research Centre (CRC) partners. eWater is an Australian Government 

owned, non for profit organisation that has been developed to facilitate 

the implementation of the National Hydrological Modelling Platform in Australia. 

The Source Model provides a diverse range of features enabling the analysis of flow 

routing, storage, ground water interaction, water management rules, operations, 

demands and supply, whilst also providing constituent generation and transport models. 

The flexible nature of the software ensures that new scientific research may be utilised 

within the system as it becomes available. This aims to ensure that Source remains at the 

forefront of analysis and decision making within the Australian water resources sector.  

  

http://ewater.org.au/products/ewater-source/
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Previously, salinity was modelled by the MDBA using the MSM-Bigmod model, which 

would model water management decisions such as the operation of storages, water 

accounting, resource assessment, irrigation demand and simulate water flow and salinity 

routing computations on a monthly time-step as described by Close et al. (2003). This 

modelling task was increasingly complicated as a result of downstream inputs being 

dependent on upstream outputs and different basin states using different models that 

featured varying time steps and inputs.  

The Water Act 2007 required the MDBA to build an integrated model running on a daily 

timestep which linked existing state models based on different modelling platforms into 

an Integrated River System Modelling Framework as described by Bethune et al. (2015). 

The Murray Darling Basin Plan 2012 Implementation Agreement (MDBA 2012) identified 

Source as the standard for future water resource plan accreditation. A National 

Hydrological Modelling Platform was required in order to ensure optimal management of 

the river system.  

In 2013 the development of Source models by the MDBA began. The current Source 

models developed by the MDBA are now being tested and compared to the existing MDBA 

operational and planning models in order to build confidence in both the Source platform 

and the models themselves. Currently discrepancies exist between the new models and 

previous models and ongoing work is being undertaken in order to understand the 

underlying causes of the differences (Bethune et al. 2015). 

An important functionality of the Source program is the ability to forecast salinity within 

the system. The MDBA is currently developing a six-month salinity forecast plugin in order 

to aid management decisions with particular focus on the scheduling of pumped water 

extraction. Currently, salinity forecast is driven by three variables being; salinity level 

(mg/l), flow (ML) and additional salt inflow (Tonnes). The development of accurate 

forecast methodologies leads to refined and more defendable management decisions 

which will aid in ensuring the effective long term management of salinity within the 

Murray Darling River system.  
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This research project works to examine the current accuracy of salinity modelling within 

the MDBA model of the Lower Murray, and examines the method of salt inflow calculation 

and forecast. The project works to calculate the salt loads for a case study reach and 

examines its effectiveness when compared to having no salt loads. The research then 

compares the calculated salt load to current salt loads being included to investigate 

whether the monthly averaging is the best representation of including the salt loads, or 

whether alternative smoothing methods can improve the predictive capacity of the 

model. In addition, the project worked to examine the best way to forecast additional salt 

inflows in providing useful forecasts.  

The effective modelling of salinity is critical in ensuring optimal economic growth within 

the agricultural sector along with providing an accurate indication of the effects of 

different water usages. Salinity modelling enables defensible predictions, leading to 

enhanced decision making, optimised salt inception processes and enhanced scheduling 

of water extraction. Overall, salinity modelling assists in ensuring that the salinity targets 

for future decades are reached in the most efficient way possible.  

1.1 PROJECT AIMS AND OBJECTIVES 

The primary objective of the project is to investigate the methodology of additional salt 

load calculation and forecast by the MDBA using the Source IMS. This will be completed 

with the aim of improving the existing modelling approach through enhancing the 

predictability of salt inflow loads, which in turn leads to more accurate salinity predictions. 

The specific objectives required to complete the project include: 

1) Obtain and review the exiting model of the Murray and Lower Darling River. 

2) Complete a literature review that examines salinity in the MDB, policy reform 

leading to the adoption of Source, advances in computational modelling and 

advances in forecast approaches.  

3) Analyse the effectiveness of the current modelling approach used in the Source 

Program. 

4) Hindcast the flow and salinity level in the river for a historical period and evaluate 

the accuracy of the existing model.  

5) Calculate the theoretical salt inflow which will form the input for the data 

smoothing and forecast analysis.  
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6) Manipulate the existing method of salt inflow forecast in the aim of developing a 

greater forecast methodology suitable for adoption in the new MDBA salinity 

forecast plugin.  

7) Investigate the feasibility of applying an artificial neural network to recognise 

patterns in salt inflow in order to provide predictions.  

8) Evaluate the accuracy level of the salinity forecast. 

The key aims of this research project were to investigate and refine the existing salinity 

forecast techniques to develop a more accurate predictive salinity model. This was 

completed by investigating the best way to estimate the incoming salt loads and 

determine the most effective way to use this information in order to provide useful 

forecasts.  

1.2 METHODOLOGY OVERVIEW 

In order to complete the project objectives, several steps were required. An initial project 

preparation phase was required in order to develop the necessary knowledge to use the 

Source program and understand the modelling methodologies used by the MDBA. This 

stage of the project involved completing the literature review, gaining access to the 

software and completing a sensitivity analysis in order to understand the Source program 

and associated algorithms.  

A case study was then required for the analysis, which featured a number of key 

requirements. It needed a distance great enough that an unaccounted salinity difference 

could be recorded. In addition, the case study required gauges featuring data of sufficient 

quality to enable analysis. A Hindcast of the model was then completed in order to gain 

an understanding of the accuracy and validity of the models salinity modelling capabilities.  

Salt inflow was then calculated using the methodology previously applied to the Bigmod 

model. This salt inflow was then smoothed using a variety of methods in order to 

determine if monthly averaging was the best technique or if alternative solutions yielded 

a better result.  
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The calculated salt load was then forecast using a variety of trend functions in order to 

determine if trend extrapolation methods could more accurately predict future salt as 

opposed to the monthly average extrapolated forward. Finally, a neural network was 

tested on the additional salt load in order to determine if machine learning and pattern 

recognition could successfully recognise trends that would enable accurate forecasting. 

The results of these tests have then been discussed and recommendations for future 

research have been provided.  

1.3 CONSEQUENCES OF RESEARCH/ ETHICS 

There are a number of possible consequences resulting from the project work:  

1. Through the calculation of the additional salt inflow, the project effectively 

provides a new calibration to the Lower Murray model. If increases in model 

performance are achieved, this may provide guidance to the MDBA and the wider 

research community regarding methodology for model calibration and salt inflow 

calculation.   

2. The investigation of forecast methodologies has the potential to increase in the 

accuracy of additional salt load and thus salinity forecast. If this is achieved, 

positive ramifications of the work include upgrade of the existing methods used 

by the MDBA and in turn, greater confidence in water management decisions as 

a result of more accurate salt load forecasts.  

3. The recommendations for future research provided in the conclusions of this 

report may guide future projects and therefore needs to have adequate 

justification.  

Ethical consideration of the project work includes:  

1. The research will provide an assessment on the current accuracy of the model 

which provides a highly important function in the context of future water 

management decisions. Consequently, there is an ethical responsibility to provide 

accurate and unbiased results and discussions, while also providing justified 

recommendations.  
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1.4 LIMITATIONS OF THE PROJECT 

A number of limitations were present in the project which ultimately shaped the direction 

of the research.  

 As a result of the complex nature of the software and resources required to 

develop models within Source, the project will be limited to the model provided 

by the Murray Darling Basin Authority. 

 As a result of not having access to the MDBA hydro database, the MDBA forecast 

plugins and the use of the MDBA operational models, assessment of the forecast 

functions were not available for the project. As a result, only the additional salt 

inflow was forecast, not the upstream flow and salinity as this required 

application of the MDBA plugins and hydro database. Assessment of forecast 

accuracy was completed via comparison with data provided by the MDBA.  The 

experiments were based on determining the best ways to use historical additional 

salt load in order to improve the performance.  

1.5 EXPECTED OUTCOMES AND PROJECT JUSTIFICATION 

It is expected that this research project will provide multiple benefits for future users and 

the wider research community. Firstly, the project is designed to analyse the Source 

software which will provide valuable peer assessment regarding the validity of the 

constituent modelling method adopted in Source. The project will provide both future 

users of the software and those hoping to conduct further water quality modelling 

research with an up to date summary of research into modern day salinity modelling 

practices.  

The Murray Darling Basin Authority has developed the Basin Salinity Management 2030 

Plan (BSM2030), in which a key focus is stated as:  

“The investment in knowledge to reduce uncertainty and potentially avoid 

the need for future capital investment in new joint works and measures 

regarding salinity measurement” (MDBA, 2015). 
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The project will therefore be providing work that directly fulfils the BSM2030 plan by 

aiming to increase the accuracy of salinity forecasts. The calculation of additional salt 

inflow and comparison with current calculations may provide an enhanced inflow 

timeseries that enables more effective model performance. In addition, it may provide 

peer review and justification of the existing processes. The analysis of additional salt 

inflow prediction methods will provide valuable research regarding the best ways to use 

historical information to provide forecasts into the future. Finally, if a more accurate 

salinity model and forecasting process can be developed, future users will have more 

confidence in salinity forecasts. This will have positive repercussions as more accurate 

results allow for defendable river management decisions.   

1.6 STRUCTURE OF THE THESIS 

The dissertation is comprised of the following sections:  

 

Figure 1.1 Report Structure 

1.0 Introduction

2.0 Literature Review

3.0 Source Modelling 
Concept and Theory

4.0 Methodology

5.0 Model Description

6.0 Forecast Analysis

7.0 Conclusions and 
Recomendations 
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CHAPTER 2: LITERATURE REVIEW 

2.0 CHAPTER OVERVIEW 

Chapter two provides a literature review which examines the current methods used to 

model flow and salinity within the Murray Darling Basin and examines the demand and 

subsequent process that has led to the development of the Source Integrated Modelling 

System. The review then examines the fundamentals of salinity modelling within the 

program and evaluates the outlook for salinity levels and future of modelling techniques 

within the Murray Darling Basin. Finally, the literature review examines the advances in 

forecasting methods, with particular focus of artificial neural networks, and examines the 

potential of alternative methods as future forecasting methods.     

2.1  LITERATURE REVIEW 

2.1.1 SALINITY IN THE MURRAY DARLING BASIN 

Salinity is defined as the concentration of dissolved salt in water and is expressed in the 

form of concentration (mg/L) or electrical conductivity (EC) as described by the Murray 

Darling Basin Authority (2015). The Murray Darling Basin Authority (2015) states that: 

“Salt in large quantities, occurs naturally in the Murray–Darling Basin. In high 

concentrations, salt can affect ecosystem health, impact on drinking water, 

and cause economic loss in irrigated agriculture”. 

Nielsen et al. (2003) states that current research suggests salinity effects ecological health 

once salinity exceeds 1000 mg/l. The New South Wales Office of Environment & Heritage 

(2015) categorises the causes of salinity into four steams being dryland, irrigation, urban 

and industrial salinity. Dryland Salinity is widely regarded as the major cause of salinity in 

the Murray Darling Basin (Peck et al. 2003). Dryland salinity refers to salinity caused due 

to the mobilisation of accumulated salts in the soil surface and groundwater. Dryland 

salinity has been compounded due to Australia’s large agriculture and grazing industries.  
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Traditionally native plants featuring a deep root system would absorb the water before 

saline ground water could rise to the surface (Department of Sustainability, Environment, 

Water, Population and Communities, 2012) (Van Dijk et al. 2007). The literature suggests 

that the spread of dryland salinity in the Murray-Darling Basin has been caused due to the 

clearing of native vegetation for grazing and agricultural land use (Peck et al. 2003). This 

has caused water tables to rise and promote saline ground water to the surface in which 

it can then flow and accumulate in Australia’s inland river systems.  

Irrigation salinity is a result of improper irrigation techniques exacerbated by factors such 

as: inefficient water use, poor drainage and/or irrigating on unsuitable soils. Irrigation 

salinity occurs when the surface strata becomes over saturated resulting in the water 

table shifting towards the surface in a cone shape. This mobilises salt accumulated in the 

underlying soil layers (The New South Wales Office of Environment & Heritage, 2015). The 

effects of irrigation salinity are greatly exacerbated when the water used for irrigation is 

already saline; a factor often associated with heavy bore water irrigation usage.  

Urban salinity occurs, similar to dry land salinity, whereby the ground water table rises 

due to the clearance of traditional deep rooted vegetation for residential and commercial 

development. Urban salinity can often increase salinity in coastal areas when salt is 

transferred through rain and wind to buildings where it dries and is eventually washed 

into soil (The New South Wales Office of Environment & Heritage, 2015). 

Finally, industrial salinity is categorised as salinity resulting from industrial processes that 

increase the salinity effluent output generated from cities. For example, coal fired power 

stations boil water to generate steam leaving concentrated levels of salt in the remaining 

water. This concentrated salinity must then be disposed of resulting in higher levels of 

downstream salinity if not effectively managed. (The New South Wales Office of 

Environment & Heritage, 2015). 

The Murray Darling Basin Authority (2015) states that the only way in which the salinity 

generated inland can be disposed of naturally is through mobilisation to the ocean, this is 

largely dependent on water flow, water use and climatic conditions.  
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2.1.2 SALINITY MANAGEMENT IN THE MURRAY DARLING BASIN 

As Australia’s environment has evolved, thus has the way in which it manages its natural 

resources. In order to ensure that the negative impacts of salinity were minimised, 

significant policy reform has been completed through collaboration with the Australian 

Government and industry bodies over previous decades.  

Lenblanc et al. (2012) states that the first piece of policy developed to manage the river 

system was The River Murray Water Agreement which was implemented between 1915–

1917, and remained in use for over 70 years. As a result of increasing salt loads associated 

with growing population and industry, the 1988 Salinity & Drainage (S&D) Strategy was 

developed as the first interstate salinity management process.  

In 1993 the Murray Darling Basin Act was signed by all catchment states and territories 

which enabled greater transparency and cooperation between States, a factor that had 

long proved problematic. The 1999 Basin Salinity Audit highlighted that saline 

groundwater was being mobilised as a result of rising water tables associated with land 

use changes across the Murray Darling Basin (Murray Darling Basin Authority, 2001). The 

2001-2015 Management Strategy developed by the Murray Darling Basin Commission 

saw enormous gains the management of salinity within the MDB. This strategy was 

developed with the goal of reducing salinity within the Murray Darling Basin through salt 

interception schemes, greater planning of land use and new management processes. A 

key result of this plan saw for the first time, a basin salinity target set at Morgan. The 

target was to maintain the modelled average daily salinity level of less than 800 EC for at 

least 95% of the time. The Basin Salinity Target was met for the first time in 2010.  

The success of this strategy formed the basis for river management within the Murray 

Darling Basin. The current basin strategy exists as The Basin Salinity Management 2030 

(BSM2030) which builds upon the successful salinity management processes produced by 

The Basin Salinity Management Strategy 2001-2015.  
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It has been forecast that under current levels of development and management the Basin 

Salinity Target at Morgan can be met until approximately 2035 (The Murray Darling Basin 

Authority, 2015). However, the 2001-2015 Basin management highlights that due to 

increasing salt mobilisation, continued efforts are required (Murray Darling Basin 

Authority, 2015). (Murray Darling Basin Authority, 2015) has stated that:  

“’Business as usual' would mean that the reduction in lower River Murray 

salinity achieved over the last decade would be cancelled out within 20 to 30 

years, and median salinity levels would exceed the Australian Drinking Water 

Guidelines for good quality water within 50 to 100 years”.  

2.1.3 MODELLING METHODS USED IN THE MURRAY DARLING BASIN 

The Murray Darling Basin itself is fed via the catchments of five State and Territories. 

Lenblanc et al. (2012) states that: 

“Maintaining healthy rivers and wetlands has long been a challenge due to a 

long history of salinisation, intensive water regulation and infrastructure 

(large reservoirs, dams, weirs), increasing demands from irrigation and urban 

areas, and the complexities of sharing water allocations between the five 

States, all governed by different legislation and policies”. 

In order to ensure that the negative consequences associated with salinity are mitigated, 

salinity modelling is required to play a critical role. Salinity modelling, enables set targets 

to be measured based on potential changes in river management. Targets allow policy 

makers to systematically prioritise public spending and facilitate the introduction of 

trading in environmental credits (Peck et al. 2003). Water quality models are used to 

estimate the positive and negative impacts of management actions within the water 

resources sectors as discussed by Littleboy et al. (2015).   

Given the differences in landform, climate and state bodies for which the river system 

passes, a number of models have been used for river modelling in Australia. The major 

method previously used included IQQM, Realm and Bigmod.  
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The Integrated Quantity-Quality Model (IQQM) was initially developed by the New South 

Wales Department of Infrastructure, Planning and Natural Resources. Its aim was to 

produce a fully integrated daily model of the River Murray for use in water resource 

planning as described by Close (2003). IQQM represents the physical world using a series 

of interconnected nodes and links which can be customised to simulate any river system 

as highlighted by Simons (2015). 

The Resource Allocation Model (REALM) was developed by the Victorian Department of 

Environment and Primary Industries. The model, similar to IQQM, uses nodes and links to 

as the primary geographical representation within the model space as highlighted by 

George (2011). The model uses a combination of water balance models with a network 

linear program algorithm (RELAX) to transfer water from sources to demand centres 

(George 2011). 

MSM Bigmod was developed by the Murray Darling Basin Commission (MDBC) in order to 

achieve four primary goals described by Close (1996) including:  

1) To replace the existing salt routing models used in planning studies. 

2) To make short term flow and salinity forecasts. 

3) To analyse historical water quality monitoring data to calculate the solute 

loads entering the river reaches between water quality monitoring stations. 

4) To provide a capability for modelling daily flows. 

In order to complete flow routing the Bigmod model divides the larger river system in 

smaller reaches. The number, length and connection of each reaches are defined by the 

input file (Close, 1996). The equations used in the modelling of MSM Bigmod can be found 

in appendix B and are currently used by the Murray Darling Basin Authority. The diagram 

highlighted in figure 2.1 provided by the Murray Darling Basin Authority (2015) highlights 

the flow routing models used in each section the Murray Darling River system. 



13 

 

 

Figure 2.1 Murray Darling Basin Modelling Methods (MDBA, 2012) 

While significant gains have been achieved in accurately modelling flow and salinity, the 

Murray Darling Basin Authority has identified multiple areas of the river systems 

management that possess capacity for improvement. These are outlined in The Murray 

Darling Basin Authority 2014 and 2015 annual reports as: 
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“The need to invest in new knowledge particularly in relation to reducing the 

uncertainty in the catchment salinity projections”.  

2.1.4 SALINITY OUTLOOK 

As previously discussed, climatic factors and land use changes have a substantial effect on 

salinity levels. In order to ensure that salinity levels stay within the targets set by the 

MDBA continuous adaptation of management, policy, forecasting and modelling 

techniques are required. Smarter and more efficient salinity measurement techniques are 

required in order to mitigate the detrimental effects that salinity has on ecosystem health 

and agricultural yields. 

Vaze et al. (2003) examines the effects of land use climate, topography soils and geology 

on a water and salt balance. The paper then examines the effects of land use change and 

models salinity using CATSALT and FLOWTUBE. Many authors have examined ways to 

quantify the effects associated with climate change and land use and have discussed their 

effects on salinity levels. Connor (2012) estimates the impacts of climate change on supply 

variability and salinity using a mild, moderate, and severe global warming scenario. The 

findings state that challenges arising from climate-induced water scarcity are likely to be 

compounded and these challenges are likely to be under-represented with models that 

do not include the effects of salinity.  

Wei et al. (2011) discusses the findings of (Potter et al. 2010 and Chiew et al. 2008) being 

that based on the median of 15 global climate models, rainfall in 2030 over the Murray 

Darling catchment will decrease by  an estimated 2% in the north of the basin, and by 

approximately 5% in the south.  

Climatic factors are a critical input needed in the assessment of salinity. Rainfall is a 

complex variable due to its ability to initially mobilise salt and eventually flush it out the 

system. Dry conditions cause evaporation which has been found by numerous sources to 

exacerbate the effects of salinity. Quinn (2011) states that: 

 “Land salination and salinity impacts on rivers are exacerbated by drought” 

and “certain salt sensitive agricultural crops experience progressive yield 

declines when the salt concentration of applied irrigation water exceeds a 

certain threshold resulting in economic losses to the agricultural sector”. 

http://www.sciencedirect.com/science/article/pii/S0959378011000641#bib0355
http://www.sciencedirect.com/science/article/pii/S0959378011000641#bib0080
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The effects of climate change and potential increases in salinity will clearly have an impact 

on those who depend on the Murray Darling River. As a result, ongoing salinity 

management is clearly required to face and overcome potential future challenges 

associated with changing climatic conditions.  

2.1.5 SOURCE DEVELOPMENT 

Extensive research driven by a need for effective management of river systems has 

resulted in a vast array of models available to hydrologic modelers to utilise when 

conducting flow and water quality modelling. The Source IMS has been developed due to 

demand from water users for a single piece of software that utilises and expands on 

existing methods.  

The demand for Source has arisen from a need for an integrated modelling system that 

can be used as the basis for the Australian National Hydrological Modelling Platform. In 

addition to this, there has been demand for a contemporary, well documented software 

solution that enables modelling based on a daily timestep as opposed to monthly as 

highlighted by Welsh (2013).  

Previously the MDBA used 24 hydrological models based on a number of different 

software packages in order to model the different reaches of the Murray Darling Basin 

(MDBA, 2012). An example of the different methods used is highlighted in figure 2.1. 

These models were linked together using an Integrated River System Modelling 

Framework (IRSMF) developed by CSIRO (MDBA, 2012). Welsh and Podger (2008) 

highlight the difficulties associated with this process stating that: 

“This process made combining individual models for the whole basin highly 

cumbersome, as downstream models require the outputs of upstream 

models as inputs, and these models are often run at different time steps” 

Bethune et al. (2015) states that the current Source models developed by the MDBA are 

now being tested and compared to the existing MDBA operational and planning models 

in order to build confidence in both the Source platform and the models themselves. In 

addition to this, the MDBA is working with the basin state Government bodies to replace 

their existing models with the Source platform as discussed by Bethune et al. (2015).  
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2.1.6 ADVANCEMENT OF COMPUTATIONAL MODELS 

Over recent decades the management of river systems such as the MDB has become 

increasingly complicated due to rapid socio economic growth as highlighted by Welsh 

(2013). The Australian Government has invested extensively in organisations such as The 

Murray Darling Basin Authority, CSIRO, Department of Infrastructure, Department of 

Natural Resources and Mines, Planning and Natural Resources and Ewater. This research 

investment has led to the development of a number of salinity modelling programs. 

Littleboy et al. (2016) highlights that URS for the National Action Plan for Salinity and 

Water Quality found that there are over 100 models developed or undergoing 

development across Australia that will be used to mode salinity management options.  

Littleboy et al. (2016) further describes these modelling techniques and approaches used 

to model dryland salinity by dividing the models into four primary categories, these 

include:  

1. Salinity Hazard 

2. Trend Model 

3. Scenario 

4. River Basin 

Salinity hazard models are used to indicate sites at risk though analysis of factors that lead 

to a predisposition towards high salinity.  These factors include cropping, irrigation and/or 

pasture. Trend models use statistically derived relationships to extrapolate into the future 

in order to determine future salinity levels. Scenario modelling works to determine the 

impacts of salinity management actions. Finally, river basin modelling describes the 

relationship for which salt moves through a system.   

Major river routing models exist in the form of; IQQM, MSM-Bigmod and REALM 

(Littleboy et al. 2016). Welsh et al. (2013) brings to light commonly used models such as 

Mike SHE, TOPMODEL, HECHMS, WEAP, HSPF, MODSIM, WRAP and describes that while 

useful, they are not sufficient to model complex policies and water sharing rules.  
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Littleboy et al. (2016) categorizes scenario models into a number of groups being 

unsaturated, groundwater, catchment hydrology and salt balance models. Littleboy et al. 

(2016) states that: 

“Unsaturated models use water balances to predicted how variation in 

climate, vegetation, soils and land management influence the water balance 

as part a wider salinity modelling activity, these more complex models have 

more demanding data requirements that often prevent widespread 

application”.  

Examples of unsaturated models include Hydrus as part of Catsalt, PERFECT, APSIM and 

GRASSGRO (Littleboy et al. 2016). Major ground water models exist as Flowtube, Modflow 

and Perfect Wlag (Ewater, 2012) which assess long term trends in ground water levels in 

order to predict when mobilisation of salinity will occur. Catchment models exist in the 

form of BC2C, CATSALT, Catcher and 2CSalt (Stenson et al. 2011) and are used to model 

wider catchment areas.   

Qureshi (2013) describes the use of Positive Mathematical Programming (PMP) combined 

with the BIGMOD model developed by the Murray Darling Basin Authority as a means to 

determine the effects of salinity in terms an economical cost to the agricultural industry. 

Quinn (2011) highlights that this approach provides a common technical basis for 

developing numerical load limits that have application in water trading schemes. The use 

of a salt balance is further echoed by Biggs et al. (2013) as an effective technique to 

monitor salinity levels.  

Biggs et al. (2013) describes the use of a salt balance as an indicator of the stage of 

hydrologic change after changes in land use and salinity development. Yihdego (2012) 

applies a water balance model using a bucket model and the Darcy equation to analyze 

factors such as evaporation and surface inflow/outflow in order to determine the 

variation of salinity during different seasonal trends. 

Quantifying the factors causing salinity has long proved to be the major drawback in 

developing salinity models. Historically, salinity studies have often been confined to only 

utilising few factors or processes in the landscape as inputs into salinity models. Biggs et 

al. (2013) describes the analysis of a wide array of salt inputs as too big of a task to be 

considered feasible.  
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Examples of research into salinity resulting from the physical environment include Doble 

(2004) who uses the factors such as land usage, elevation, and soil type to model ground 

water salinity using MODFLOW 96. The paper provides a case study analysis which models 

the effects of groundwater on salinity levels through land use data whilst also highlighting 

the effects of elevation on groundwater seepage.  These inputs are echoed by 

Amerasinghe et al. (2011) who use similar inputs in their groundwater salinity 

investigation. The paper utilises groundwater conductivity measurements, water table 

height, the analysis of local geology, and finally land use in the development of their 

models.  While much work has been conducted in the analysis of groundwater as a salinity 

input, this will be considered beyond the scope of the project.  

A critical component of any effective model exists in its calibration. Zhang et al. (2016) 

states that when working to calibrate a model featuring both water quality and quantity, 

the calibration of each factor often conflicts. The paper provides a case study of multi-

objective optimisation as a suitable calibration process in order to mitigate the effects 

discussed above, along with the subjectiveness associated with model calibration. 

2.1.1 SOURCE SALINITY FORECASTING 

The MDBA has developed a salinity forecast plugin for use within the Source platform in 

order to provide forecasts for up to 6 months into the future. Currently room for 

improvement exists in the models forecast capabilities. For instance, the result of 1-

month salinity forecasts at Morgan resulted in a coefficient of determination of 0.11 

between observed and predicted salinity Bhuiyan (2016). The salinity forecast itself is 

driven by three unknown forecast parameters: inflow (ML), inflow salinity (mg/L) and 

addition salt inflow (Tonnes). In order to forecast these factors, salinity and inflow are 

predicted using trend and average forecasts while additional salt inflow is predicted using 

the average salt load for the previous month extrapolated forward as described by 

Bhuiyan (2016).   

Bhuiyan (2016) states that the additional salt load within a reach is estimated using the 

unaccounted salinity at a downstream reach location. The salt load is then extrapolated 

forward in order to provide the prediction.  
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The report produced by Bhuiyan (2016) highlights that the inflow is determined using 

known flow and an inflow trend forecast which is provided in Source, specifies a target 

flow along with a recession rate. In order to forecast salinity, two different types of 

functions are used being trend and average.  In addition, climate, diversion, salinity and 

salt inception scheme processes are required and utilised within the plugin.  

2.1.2 ADVANCES IN FORECAST APPROACHES 

While trend and average models may provide useful short term forecasts, more complex 

methods exist for forecasting. The application of artificial neural networks (ANN) have 

been used more recently in order to predict water resource variables as highlighted by 

Mairer and Dandy (2000). ANN models are well suited to the forecast of water resource 

variables as the models do not require prior knowledge of the complex physical 

relationships present in the system. The ANN models work by recognizing often 

overlooked patterns within the input data. These patterns are then applied as forward 

feedbacks to new inputs in order to predict appropriate values. Nielsen et al. (2003) 

provides a simplified relationship between salinity and water level in the following figure: 

 

Figure 2.2 Simplified Relationship Water Level Vs Salinity (Nielsen et al. 2003) 

Salinity forecast is well suited to the application of ANN’s due to a large database of 

generally high quality data provided by government organisations such as the Bureau of 

Meteorology. In addition, the data is often correlated and is able to represent the full 

physical system through data such as flow, salinity, evaporation, rainfall and land use.  
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The general representation of an ANN is structured by an initial input layer; this layer then 

moves into what is referred to as a hidden layer where the inputs are multiplied by 

weightings that are determined through a learning/calibration run of the model. These 

altered values are then transformed using a summation function. Finally, these values are 

moved into the next layer for which they are converted into output values through 

application of an activation function. This generalised description can be highlighted in 

the following diagram provided by Palani et al. (2008).  

 

Figure 2.3 Generalized Artificial Neural Network Model (Palani et al. 2008). 

In order to develop an ANN a number of requirements must be met, such as a 

normalization, data pre-processing, data partition, initial weight values, stopping criteria 

and selection of an appropriate activation function. 

A number of studies exist highlighting the application of ANN in the context of forecasting 

water resource variables. Palani et al. (2008) applies an ANN in order to predict the salinity 

in sea water among other variables. The study used the Ward Net model architecture 

associated with Neuroshell software. Chen et al. (2015) utilised the continuity equation 

and fuzzy pattern recognition combined with an ANN in order to forecast discharge in the 

Yellow River, Georgia, USA. Here the NSE and RMSE are used as an evaluation criterion in 

order to determine accuracy of forecast. The ANN accounted for river flow and seasonal 

trends though the input of daily discharge and rainfall. The result of the model was a NSE 

of 0.8789 for training and 0.6329 for testing at a 3-day prediction.  
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A key piece of research that is highly applicable to this project is the work by Bowden et 

al. (2005) which examines the background and methodology for determining neural 

network models in water resource application based on previous work done by co-authors 

Dandy and Maier (2000). This work highlights that neural network learning becomes 

difficult and cumbersome when too many inputs are used. The article then provides a 

methodology for selecting the appropriate number of inputs.  

Mechanisms proposed for selection of inputs include relying on prior knowledge of the 

system being modelled, cross correlation, heuristic approach, sensitivity analysis or a 

combination of the mentioned methods. The report examines the use of a partial mutual 

information algorithm and a genetic algorithm general regression neural network to 

assess model inputs for which both were recommended in the papers conclusion. The 

findings are then applied to a case study for forecasting salinity within the Murray Darling 

River.  

The case study used a feed forward model, trained using the back propagation algorithm. 

This model type and training methodology is a consistent theme used in developed ANN 

forecast models particularly within water resource related applications. The ANN was 

developed and trained using a commercially available software; NeuralWorks 

Professional II/Plus. Data was divided based on the GA data division method in order to 

ensure that training, validation and testing were statistically representative of the sample. 

Ratios of data division were 80% for training and 20% for testing. Linear and hyperbolic 

functions were used as the transfer and activation functions. The number of nodes and 

layer architecture were determined by using a trial and error approach. In order to 

determine a starting point, the following formula was used:  

𝑁𝐻 ≤
𝑁𝑇𝑅

𝑁𝐼 + 1
 

Where:  

𝑁𝐻 = Number of hidden nodes 

𝑁𝑇𝑅 = Number of training samples 

𝑁𝐼 = Number of inputs 
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The partial mutual information algorithm (method 1) and genetic algorithm general 

regression neural network (method 2) were used to assess model inputs and determine 

the lag between variables such as flow and salinity. The results of the case study ranged 

from a RMSE using EC units between the values of 29.3 and 46.2.  

Maier et al. (2000) examines the effectiveness of neural network models highlighting a 

number of ways in which they can be enhanced. Having analysed 43 papers that use 

neural networks to forecast water resource variables, all but two of the papers used feed 

forward networks while the majority use a back propagation algorithm. Maier et al. (2000) 

highlights the issues effecting successful neural network application in predicting water 

resource variables as:  

1. Effective data pre-processing 

2. Data division 

3. Stopping criteria 

4. Optimized network geometry 

5. Internal network parameters 

Maier et al. (2000) highlights that an important component of building an artificial neural 

network is in selecting an appropriate performance criterion. The paper states that the 

criteria choice will have a significant impact on the model architecture and optimal weight 

optimisation algorithm.  

Banerjee et al. (2011) highlights that the optimal number of hidden nodes and layers are 

dependent on the complexity of the modelling problem and the goals of the modeler. In 

addition, a relationship is described for which more hidden neurons and layers are 

associated with a more complex model.   

In addition to ANN models, a variety of alternative methods existed that may assist in 

improving the Source model and salinity forecast. Tratar et al. (2016) states that 

exponential smoothing methods provide powerful tools for de-noising time series and 

predicting future demands. Exponential smoothing itself is based on the assumption that 

time series are built on components such as level, trend and seasonal effects. 
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Another widely used approach is the application of regression analysis in order to 

determine linear, polynomial, exponential and power relationships. Adamowski (2008) 

compares wavelet forecasting method (WT) to multiple linear regression analysis (MLR), 

autoregressive integrated moving average analysis (ARIMA), and artificial neural network 

analysis (ANN) for forecasting daily stream flows at 1, 3 and 6-day lead times. In order to 

develop the linear and nonlinear relationships regression models were developed using 

Microsoft Excel. The results found that Wavelet transformations combined with ANN 

yielded the best forecasting followed by ANN, nonlinear regression, linear regression and 

auto regression integrated moving average (ARIMA) respectively.  

In addition, Adamowski et al. (2012) compares the same variables for water demand in 

summer and winter in order to determine seasonal trends. The report found that while 

over the short term of 2 days the wavelet transformation was better at forecasting when 

compared to the above methods, ANN was superior in 6-day forecasting.   

Autoregressive integrated moving average models (ARIMA) provide a means for 

forecasting. Kim et al. (2016) describes that ARIMA models place more importance on 

newer values as opposed to older values in generating forecasts. This occurs as the 

forecast constantly updates as new values are predicted.  

Using the information learnt in the literature review, this project will work enhance 

forecasting approaches using a nonlinear auto regression neural network. This will work 

to utilise the pattern recognition capabilities of neural networks in order to provide 

salinity predictions. In addition to this, linear and nonlinear regression will be tested in 

order to investigate the effects of using long term trends as opposed to the use of the 

single monthly average in forecasting additional salt inflow.  
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2.2 SUMMARY 

As Australia continues to develop and grow its economy, the role of the water quality 

modeler will be ever more important. The combination of reduced rainfall and a change 

of climate resulting in less consistent rainfall, increased agricultural use and deforestation 

all combine to place stress on the Murray Darling System. In order to manage these 

changes, forecasts and predictions will be critical in providing justification and defence of 

key policy and water management reform.  It is only through the continued refinement 

and expansion of this software and scientific methods that will ensure that Australia 

features a safe and sustainable water supply for generations to come. 

Over previous decades the MDB as seen considerable reform from a policy standpoint 

while also having been forced to adapt in an environment filled with considerable options 

for water quality and quality modelling. In order to model the system in the most efficient 

way possible, the MDB has selected the Source integrated modelling system. This highly 

adaptable, robust piece of software will enable the MDBA to successfully model the 

arising challenges of the system for the immediate future. Over recent decades’ significant 

research has been completed regarding forecasting techniques in a wide range of sectors. 

Today, the application of ANN’s appears well documented as an effective avenue for 

prediction of water resource variables.  

  



25 

 

CHAPTER 3: SOURCE MODELLING CONCEPT AND THEORY 

3.0 CHAPTER OVERVIEW 

This chapter provides an overview of the modelling concepts and theory which form the 

foundation of the Source software, as relevant to the research project. The objective of 

this chapter is to provide the necessary knowledge and understanding of the 

mathematical and scientific principals being utilised to model salinity within the Source 

program. Additionally, this chapter aims to provide a description of the hydrologic flow 

method adopted which will form the basis of the analysis.   

3.1 SOURCE OVERVIEW 

The Source software features a standard Microsoft user interface featuring a range of tabs 

and toolbars that enable model development, manipulation and display. Scenarios or 

operations can be viewed and edited using a number of methods. These include: 

 A geographic editor which provides a geographic representation of the model.  

 A schematic display which highlights the models components such as nodes and 

links.  

 A tabular editor can be used in operational scenarios to display data.  

In order to represent the physical environment within the model space, nodes and links 

are used as the primary interface. Ewater (2013) states that: 

 “Nodes represent places where actions or measurements occur in a river 

system, where water can be added, extracted, stored, recorded, or change 

ownership in a model”  

And describes links as:  

“Connections between the nodes in which they link, store and route water 

passing between nodes”.  
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A schematic diagram highlighting this process can be seen in figure 3.1 which is was 

provided by Welsh et al. (2013).  

 

 

Figure 3.1 Node and Link Representation (Welsh et al. 2013) 

In figure 3.1 it can be seen that an upstream node is present for which the boundary 

condition of the model can be defined. This is generally present in the form of either 

catchment runoff or as the upstream boundary of a river system. A storage routing link is 

then used to rout the water downstream. This link is used to model the various 

interactions the water may have with the physical environment such as ground water 

interaction, rainfall, evaporation, losses and gains along with changes in ordering and 

allocation as a result of different demands and water management rules. This highly 

flexible interface, along with a large suite of settings and available options, ensures that 

any physical environment can be effectively modelled within the system.  

  



27 

 

The source software works to encompass the three major modelling methods used in 

Australia being IQQM, Bigmod and Realm whilst also incorporating new scientific research 

(Welsh et al. 2013). Source enables users to select from six conceptual daily rainfall runoff 

models being: AWBM, IHACRES, Sacramento, SIMHYD, SMARG and GR4J (Welsh et al. 

2013 and eWater 2012). The Source program itself can be used in either operational or 

planning applications. This involves use of either the river operations or river 

management scenario modes. 

3.2 HYDROLOGIC FLOW SIMULATION 

In order to model the Murray Darling River system, the schematic editor was used in order 

to model the river flow and salinity interactions. This model utilises nodes and links to 

represent physical factors and to provide the necessary input into the model space. The 

nodes and links used can be seen in figure 5.3 which highlights the schematic model of 

the Lower Murray which was used in the project work. The following section discusses the 

purpose and characteristics of the nodes and links featured in this case study site used for 

the analysis. In addition, this section provides an overview of some of the key 

functionalities of the Source program that are relevant to the project work.  

3.2.1 NODES 

Nodes have been used throughout the model in order to provide a mechanism for data 

input and output interactions within the model. Source features a large array of node 

types which feature different settings and input functions which are configured in such a 

way that is representative of the real world. The nodes used within the model can be 

summarized as:  

CONFLUENCE NODE 

The Confluence node is used to represent the section of the river in which two reaches 

converge and become one. The characteristics of the confluence node are largely 

dependent on whether the upstream branches are regulated or unregulated.  
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CONTROLLED SPLITTER NODE 

The Controlled Splitter node is used to represent the process in which a single stream flow 

divides into two. Ewater (2012) states that the controlled splitter has one inflow which is 

the upstream channel, and two outflows; the main channel and the effluent. Ewater 

(2012) describes the controlled splitter node as having three distinctive functionalities:  

 

The Controlled Splitter: The controlled splitter is characterized by the presence of some 

form of structure on the effluent that can be adjusted in response to the flows coming 

from upstream. 

 

The Uncontrolled Splitter: The uncontrolled splitter has no structure on its effluent and as 

a result the flows leaving the splitter downstream are a fixed function of the upstream 

flow rate. 

 

The Loss: If the effluent branch is not connected to anything, the water flowing out the 

effluent branch will leave the model and appear to be a flow rate related loss. Ewater, 

(2012) highlights that the controlled splitter node utilises the same scientific theory 

applied in IQQM, REALM and MSM-BigMod. 

GAUGE 

The gauge node is used to represent a point within the river system that enables the 

measurement of flow or constituents with observed data or as a location that requires 

modelled outputs to be recorded for comparison. The gauge point is a location that 

enables time series data to be loaded and rating curves can be applied to determine water 

height in meters.  

 

The gauge node can be converted to an unaccounted differences node by enabling the 

set flow check box. This overrides the modelled flow and sets it as observed flow for the 

gauge; a technique often used to increase the accuracy of the model or define new 

boundary conditions.  
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INFLOW 

The inflow node is used as a point within the system to allow for additional flow input 

through catchments or headwaters. The inflow can be loaded in four ways: 

1) Through a file as a time series data set 

2) Imported from a scenario 

3) Mathematical Expression 

4) Forecasted (Note: This is highlighted in section 3.3) 

STORAGE 

The storage node represents a point within the river system that holds water for long 

periods of time. The storages operate through maintaining a water mass balance. In order 

for the storage node to function it must feature dimensions, inflows, outflows and losses 

within the node feature editor.   

SUPPLY POINT 

The supply point node represents a point in which water may be extracted in order to 

meet demands.  

WATER USER 

The water user node represents a node that is used to model water demand. The node 

features three components being demand, distribution and storage. The demand 

accounts for losses in the system as a result of urban, industrial or environmental usages. 

Distribution enables the modeler to specify how water is supplied to the end user. Storage 

enables the management of water storages.   

UNACCOUNTED DIFFERENCES 

The unaccounted difference node calculates the difference between modelled flow and 

observed flow in order to ensure that a mass balance is present within the system.  

MINIMUM FLOW REQUIREMENTS 

The minimum flow requirement represents the minimum flow required for particular 

activities. This includes factors such as irrigation, dilution of waste waters, water for 

environmental flows and urban water supply eWater (2012). In order to enable this 

function, minimum daily flow requirements are required as an input data set, expression 

or rule curve.  
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3.2.2 LINKS 

In order to enable the movement of water between nodes, Source utilises three types of 

links as highlighted by eWater, these include:  

1. Straight Through links 

2. Lagged Flow links 

3. Storage Routing links 

Straight through links do not feature many of the available configurations of alternate link 

options as they simply enable the user to transfer reach inflow to outflow in a single time 

step. This enables modelers to transfer flow when no reach modelling is needed. Lagged 

Flow routing enables the modeler to transfer flow with a delay in time steps which 

represents water delay as it moves downstream.  

Storage routing links enable the modeler to rout the movement of water through the use 

of a range of hydraulic routing methods. It enables configuration of a range of factors such 

as reach shape and size, ground water interaction, evaporation and surface water input.  

In order to rout the water through the storage links Source utilises the Muskingum 

method which is based on mass conservation (eWater, 2013) for which the storage in a 

link can be described by:  

𝐹𝑙𝑜𝑤 𝑖𝑛 − 𝐹𝑙𝑜𝑤 𝑜𝑢𝑡 =  
𝑑𝑠

𝑑𝑡
 

Where:  

𝑠 = 𝑅𝑒𝑎𝑐ℎ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑚3 

𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 (𝑠) 
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The Muskingum storage function used in Source is represented by:  

𝑆 = 𝐾 ∙ (𝑥 ∙ 𝐼 + (1 − 𝑥) ∙ 𝑂) 

Where: 

𝑆 = 𝑅𝑒𝑎𝑐ℎ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (𝑚3) 

𝐼 = 𝐼𝑛𝑓𝑙𝑜𝑤 (𝑚3/𝑠) 

𝑂 = 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 (𝑚3/𝑠) 

𝐾 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑠) 

𝑥 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑙𝑜𝑤 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 

As source utilises average flow, this formula can be written as:  

�̅� = 𝑥 ∙ 𝐼 + (1 − 𝑥) ∙ 𝑂 

�̅� = 𝐼𝑛𝑑𝑒𝑥 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

𝐼 = 𝐼𝑛𝑓𝑙𝑜𝑤 (𝑚3/𝑠) 

𝑂 = 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 (𝑚3/𝑠) 

𝑥 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑙𝑜𝑤 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 

Source enables the use of variable parameter Muskingum routing for which the x is 

constant but the k is able to vary with flow. The model used in this research project utilises 

a lookup table in the form of a piecewise linear editor. The Piecewise linear function 

describes the relationship between index flow and travel time though enabling the user 

to manipulate the K variable.  

In order to track the constituent particles as they move through the system, the model 

marker routing or particle tracking as opposed to lumped (fully mixed) routing. Maker 

routing has been incorporated into Source in order to meet the legislative requirements 

that exist in The MDBA’s Basin Salinity Management Strategy (BSMS).  
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3.3 FORECASTING 

Forecasting describes the process by which water demands, stream flow losses and gains 

and constituents can be predicted for future periods. Forecasting is a critical component 

of the Source functionality as it enables users to assess the consequences of unique water 

use, land management and climatic scenarios. Source evaluates functions for each 

timestep and returns a single value. Forecasting occurs in two phases, the first occurs 

through a warm-up phase which involves historical data being loaded into the model. This 

must be completed before the forecasting phase can be completed. A range of forecasting 

methods exist within the Source program and are highlighted by eWater (2012) as:  

Table 3.1 Forecast Methods (eWater, 2012) 

Average Average over the last specified time-steps 

Function User defined arithmetic expressions/functions 

Monthly 

Average 

Daily average for the month in megalitres per day. 

Time Series Supports the inclusion of forecast data using data sources. 

Trend A single target value (either positive or negative) plus a recession 

rate. 

 

Currently the trend and average functions are used to predict flow (ML) and salinity (mg/l) 

while the average of the most previous month is used to forecast additional salt load 

(Tonnes) within the developed salinity plugin by the MDBA.   
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3.4 SALINITY SIMULATION 

3.4.1 CONSTITUENT TRANSPORT 

Constituents are described by eWater, (2012) as: 

 “Materials that are generated, transported and transformed within a 

catchment and affect water quality.”  

These constituents commonly include sediments, nutrients, contaminants (e.g. 

pesticides, heavy metals), pathogens and other water quality properties (Ewater 2012). In 

order to rout the water constituents, a number of approaches can be used within the 

Source system. When attempting to rout constituents through a reach, two methods are 

currently available these include Lumped (fully mixed) and Marker Routing (Particle 

Tracking). Ewater (2012) highlights that the Lumped (fully mixed) approach is more 

effective when the user wants to measure monthly or annual loads, while the Marker 

Routing (particle tracking) technique is more accurate and is suitable in measuring 

concentrations at smaller scales. In order to model the changes that may occur to salinity 

levels when routing through a reach two models can be used, these include the decay and 

flux models. 

These nutrients and sediments can be modelled in source using three different processes, 

these include: constituent generation, routing and filtering models. Constituent 

generation models work to describe how constituents are generated and delivered to the 

nodes. Constituent routing models describe the movement of constituents along links. 

Finally, constituent filtering models represent any transformations that may occur 

between generation and link at an upstream node.  

Current constituent models used within Source include: Nil Constituent, Event Mean 

Concentration (EMC)/ Dry Weather Condition (DWC), Export Rate Model and Power 

Function.  
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Nil Constituent 

eWater (2012) states that:  

“The Nil Constituent model is used as a substitute constituent generation 

model where no constituent load needs to be modelled for a given 

constituent from a given functional unit (FU).” 

Event Mean Concentration (EMC)/ Dry Weather Condition (DWC)  

The Event Mean Concentration (EMC)/ Dry Weather Condition (DWC) is expressed 

through: 

𝐶𝐿𝑜𝑎𝑑 = (𝑆𝐹 × 𝐷𝑊𝐶) + (𝑄𝐹 × 𝐸𝑀𝐶) 

Where:  

𝐶𝐿𝑜𝑎𝑑 = Constituent load. 

𝑆𝐹 = Slow flow. 

𝑄𝐹 = Quick flow. 

𝐷𝑊𝐶 = Constituent concentration measured during dry weather. 

𝐸𝑀𝐶 = The flow-weighted average constituent concentration over a storm event. 

Export Rate Model 

The export rate model is expressed as:  

𝐶𝐿𝑜𝑎𝑑 = 𝐸𝑥𝑝𝑜𝑟𝑡 𝑅𝑎𝑡𝑒 × 𝑎𝑟𝑒𝑎 𝐹𝑈 

Where:  

𝐸𝑥𝑝𝑜𝑟𝑡 𝑅𝑎𝑡𝑒 = Area based scaling factor used to represent the physical amount of 

constituent exported per unit area per year. 

𝑎𝑟𝑒𝑎 𝐹𝑈 = Area of the ‘functional unit’ taken from the model.  
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Power Function 

The power function is expressed as:  

𝐶𝑜𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐴 × (𝑓𝑙𝑜𝑤)𝐵 + 𝐶 

Where: 

𝐴 = The coefficient, represents the slope of the curve if plotted on semi-log axes; 

𝐵 = Represents the “curvature” of the curve; B less than 1 means the curve is convex 

upwards; and B greater than 1 means the curve is concave upwards. 

𝐶 = Y Intercept. 

3.5 SOURCE SUMMARY 

The Source IMS features a highly flexible interface that has been developed based on well-

reviewed scientific research and existing modelling methods such as IQQM, REALM, MSM-

Bigmod. The model used in the case study makes use of nodes and links in order to 

represent the real world. While Source enables a vast array of rain fall runoff and 

constituent generation methods, these components have been defined by the upstream 

boundary of the river system. The model utilises the physical interactions that occur 

within the system primarily in the form of evaporation, groundwater, rainfall, and users 

demands in order to rout the flow downstream. It is the accuracy of this downstream 

salinity forecast that will be tested and analysed in the project.  
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CHAPTER 4: METHODOLOGY 

4.0 CHAPTER OVERVIEW 

Chapter four details the methodology used to investigate the salinity modelling within the 

current MDBA Source model, along with forecast approaches. The chapter begins with an 

overview of the project which summarizes the project tasks. The methods and procedures 

required in each stage of analysis are then discussed.   

4.1 PROJECT OVERVIEW 

Figure 4.1 highlights the key steps required to complete the research project:  

 

Figure 4.1 Project Methodology Overview 
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4.2 PROJECT PREPARATION 

Stage one of the project began with obtaining and reviewing the existing model of the 

River Murray and Lower Darling. After receiving the schematic model provided by the 

MDBA, a process of familiarization was then completed. Initially, research was conducted 

in order to establish the necessary knowledge to use the software effectively. This 

research involved study of the Source user guide and scientific reference guide. A 

sensitivity analysis was then completed in order to achieve two goals:  

1. Understand the importance of different model components and algorithms.  

2. Understand the user interface and key functionalities of the Source program.  

The sensitivity analysis was completed by adjusting key variables within river reaches such 

as evaporation, flow volume, reach length and additional salt inflow in order to examine 

the effect on downstream salinity. The primary objective of the initial preparation phase 

of the project was to build the necessary foundation of knowledge required to complete 

the research objectives.  

4.3 MODEL SETUP AND CALIBRATION 

The model was developed by the MDBA, for which the case study site of Lock 5 to Morgan 

was selected for analysis due to the following factors:  

1. Availability of stream gauge flow and salinity data. 

2. Length of reach. 

3. Simple reach configuration.  

4. Importance of reach in monitoring salinity.  

In order to increase the accuracy of model predictions, calibrations are completed in 

which key variables and settings are altered in order to minimize the difference between 

predicted and observed values. In order to determine whether the current model 

required further calibration, a hindcast was completed as highlighted in section 5.1.3. 

Hindcasting was completed at the case study site in order to determine the baseline 

accuracy of the model in predicting salinity. If a Nash Sutcliffe Model Efficiency Coefficient 

(NSE) of 0.9 or greater was achieved, no further calibration would be deemed required. 
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The hindcast was completed through simulating flow and salinity in the river for historical 

periods based on data availability. The observed and predicted salinity (mg/L) and flow 

(ML) was then compared with observed values through the application of a statistical 

analysis. As a result of the highly accurate performance of the model being a NSE=0.959 

for salinity and a NSE=0.964 for flow, it was deemed that no further calibration was 

required.  

4.4 TESTING METHODOLOGY OVERVIEW 

The testing phase of the project was divided into four sections, which together work to 

investigate the optimal ways to utilise the historical salt load data in providing salinity 

predictions. The testing sections include:  

a) Calculation of the additional salt load (Tonnes/day) within the case study.   

b) Analysis of the effects of different data smoothing techniques on model 

performance.  

c) Forecast of additional salt inflow using trend extrapolation.  

d) Forecast of additional salt inflow using an ANN. 

The theory behind the testing methodology emerged due to a number of factors that 

were found upon project initiation. Calculation of the additional salt load was initially 

required as the salt load provided by the MDBA was already smoothed on a monthly time 

step, this would not enable proper investigation of the smoothing techniques or forecasts.  

The analysis of smoothing techniques was an initial research goal of the project found 

through consultation with the MDBA. The MDBA was interested in research which would 

determine if the calculated additional salt inflow used within the model was most 

effective when smoothed on a monthly time step or if another method resulted in more 

accurate model performance.  

The analysis of the additional salt inflow forecast was a key objective of the project due 

the identification of the possibility to expand on, and improve, the existing method of salt 

inflow forecast.  The use of trend extrapolation was proposed as an option and would be 

tested and compared to the existing monthly average method.  
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Finally, the potential for using an artificial neural network to forecast additional salt inflow 

within the Source model was tested. This was found to be an interesting concept 

developed during the literature review, as a number of authors had suggested that neural 

networks demonstrated the ability to forecast water resource variables. A neural network 

model was then investigated in regards to predicting salt loads and the results were 

discussed and recommendations for future avenues of this research were made.  

4.4.1 SALT WITHIN A REACH CALCULATION  

Before the future research phases of the project could be completed, the salt inflow 

needed to be calculated. The first step of the calculation would require summating the 

total length of the reach which can be summarized in the table below:  

Table 4.1 Length of Reaches 

Reach Length (m) 

R112 36100 

R162 9800 

R117 84800 

R118 20400 

R163 28000 

R164 20900 

R119 47100 

Total 247100 

 

The lengths of each reach were provided in the model schematic from the storage routing 

links which represented the river sections. The procedure outlined in appendix B and C 

was then followed for completing a salt balance and determining the required salt inflow 

in order to minimize the difference between observed and predicted salinity. This process 

required a number of changes to be made to the model these included:  

1. Forcing upstream flow and salinity to equal the recorded flow and salinity.  

a. The Lock 5 salinity was set to the gauged salinity effectively converting 

the gauge node to an unaccounted differences node.  

b. The flow at Lock 5 was found to be of insufficient quality and thus, flow 

was set to -9999 at Lock 5, effectively using the SA recorded flow.  
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2. Set additional salt inflow within the reach zero.  

a. This was completed by setting the salt inflow at all storage routing links 

to zero. 

Through following the above steps, the difference between observed and predicted 

salinity at the downstream Morgan gauge when no additional salt flow is present could 

be determined. The next phase involved adding an additional salt load of 1 Tonne/km in 

order to determine the effect of a unit value additional salt inflow. 1 Tonne of salt was 

then added for each Km of reach length. The output at the downstream Morgan gauge 

for predicted salinity could then be recorded.  

The following formula was then applied in order to determine the additional salt load per 

km of reach:  

𝑆𝑎𝑙𝑡 𝑙𝑜𝑎𝑑 (𝑇𝑜𝑛𝑛𝑒𝑠) =  
𝐶 − 𝐴

𝐵 − 𝐴
 

Where: 

A = Salinity at Morgan assuming no salt. 

B = Salinity at Morgan assuming the addition of 1 Tonne per km. 

C = Gauged salinity at Morgan.  

This resulted in a time series that could be multiplied by the reach length in order to 

calculate the additional salt inflow in Tonnes per day for the entire reach from Lock 5 to 

Morgan.  

 

4.4.2 DATA SMOOTHING 

The goal of the data smoothing analysis was to determine whether monthly smoothing is 

the best representation of including additional salt loads within the model. The research 

aimed to determine whether alternative methods exist for smoothing the calculated daily 

salt loads in order to improve the predictive capacity of the model. A number salt loads 

were compared in the analysis, these include: no salt, original, daily, monthly, weekly, 

seasonal, exponential, weekly moving, monthly moving and weighted moving average 

which are further discussed in table 4.2 below.  
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Table 4.2 Data Smoothing Methods 

Data Smoothing Method Description of Method 

No Salt The no salt test represents the scenario for which no salt 

has been added within the reach, this will essentially set 

a baseline performance of the model. 

Original Salt Load The original salt load represents the calibrated original 

salt inflow time series provided by the MDBA. 

Daily Salt Load The daily time series represents that calculated daily salt 

inflow determined in section 4.4.1. 

Monthly Average The monthly average represents the calculated daily salt 

inflow smoothed on a monthly average based on a 

sample width of 30 days. 

Weekly Average The weekly average represents the data smoothed 

based on weekly average using a sample width of 7 

days. 

Seasonal Average The weekly average represents the data smoothed 

based on the basis of its season. This used a sample 

width of 3 months.  

Exponential Smoothing The exponential smoothing technique is an example of a 

moving average method, which smooths the data based 

on the equation: 

𝑠𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑠𝑡−1, 𝑡 > 0 

Where: 

𝛼 = 
2

𝑤𝑖𝑑𝑡ℎ + 1
 

𝑠𝑡 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 at 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡 

𝑥𝑡 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

For the analysis a value of 𝛼 = 0.333 resulting from a 

width size of 5. 

 

 



42 

 

 

 

In order to process the data and perform the smoothing, a combination of Microsoft Excel 

and Matlab were used. The smoothed time series when then divided based on reach 

length and applied as additional salt inflow to each storage routing link. The model was 

then run within Source which resulted in a corresponding predicted salinity time series 

for each data smoothing method. This predicted salinity value could then be compared 

with the observed salinity. The NSE value was used as the performance criteria in order 

to determine the effectiveness of each smoothing method.   

  

Weekly Moving Average The weekly smoothing works by taking the average of 7 

samples, the next value in the sample is then generated 

by dropping the last sample number and including the 

sample piece for the current day. This process is 

repeated throughout the data in order to smooth it. 

Monthly Moving Average This same method is applied to the monthly smoothing 

but rather a sample size of 30 is used. The longer width 

moving averages, account for a lag within the data and 

it’s therefore slow to change. For example, the seven 

day moving average has the capacity to change far 

quicker than the monthly moving average. 

Weighted Moving 

Average 

The final smoothing method to be tested is the 

weighted moving average which uses the same method 

applied to the weekly moving average but places more 

value on newer samples as opposed to older samples. 

The weighting basis used for the weighted moving 

average can be highlighted by the following: 

𝑥7  = 0.01 𝑥6 = 0.02 𝑥5 = 0.04 𝑥4 = 0.06 𝑥3 = 0.9 

𝑥2 = 0.12 𝑥1 = 0.16 
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4.4.3 TREND FORECAST 

Currently, when the MDBA forecasts future salt loads the salt load calculation determined 

in section 4.4.1 is averaged for the previously month (Note: The current month cannot be 

averaged as a full month of data is not available).  The salt load for the previous month is 

then extrapolated forward in order to complete salinity predictions.  

This is a very basic method and does not consider long term trends or patterns that may 

result in more accurate forecasts. This project works to examine the effectiveness of using 

trend equations to extrapolate forward in order to predict future additional salt loads. 

This method is not a current feature in Source and ultimately provides a new approach to 

forecasting salt inflows. The method assumes that long term trends will provide better 

salt load forecasts as opposed to only using the last month. In order to determine whether 

the monthly average is the most effective means of extrapolating future salt inflow, a 

series of experiments were conducted. 

To complete this analysis, the calculated additional salt inflow data will be loaded within 

Matlab in order to develop the trend equations and to perform the forward extrapolation. 

The new methods of data extrapolation will include linear, exponential, power and 

polynomial trend equations. The data will be extrapolated for each day up to a 6-month 

lead time from three arbitrary dates. These periods will be compared with the calculated 

additional salt load time series in order to determine the accuracy effectiveness of 

forecast methods when compared to that of the monthly average. 
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The current method used to forecast additional salt inflow is through the use of the 

average of the most recent month carried forward. This will be used as the baseline of 

analysis and is calculated using:  

Monthly average =  
∑𝑥

𝑁
 

Where: 

𝑥 =  𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑣𝑎𝑙𝑢𝑒𝑠  

𝑁 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 

In order to complete a polynomial regression of the historical salt inflow data the polyfit 

code within Matlab was used. The algorithm is presented by the following:  

𝑦 =  𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1+ . . +𝑝𝑛𝑥 + 𝑝𝑛+1  

Where: 

𝑝 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙; 

𝑥 = 𝑞𝑢𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠; 

𝑦 = 𝑓𝑖𝑡𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠; 

𝑛 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑖𝑜𝑚𝑖𝑐𝑎𝑙 𝑓𝑖𝑡. 

The Matlab input is completed through the use of:  

𝑝 =  𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝑥, 𝑦, 𝑛) 

And; 

 

𝑦 =  𝑝𝑜𝑙𝑦𝑣𝑎𝑙(𝑝, 𝑥) 

The polyfit equation fits the data generating coefficients which could be utilised as in 

equations to extrapolate the timeseries forward. The polyfit equation is based on the least 

squares method in order to fit the data while polyval evaluates the polynomial at all x 

values. In order to complete the linear regression, the polyfit ‘n’ was set to 1. In order to 

evaluate for 2nd 3rd and 4th order polynomials the polyfit ‘n’ was set to 2, 3 and 4 

respectively.   
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In order to calculate the power function, the polyfit ‘n’ was set to 1 however the ‘x’ and 

‘y’ variables were converted to log values. For the exponential polyfit, the polyfit ‘n’ was 

set to 1 while the y values were transferred to log values.  

The resulting values generated from the polyfit function could then act as variables in the 

following equations in order to be extrapolated for the forward lead times:  

Linear:  

𝑦 = 𝑝(1)𝑥 + 𝑝(2) 

Polynomial 2: 

𝑦 = 𝑝(1)𝑥2 + 𝑝(2)𝑥 + 𝑝(3) 

Polynomial 3: 

𝑦 = 𝑝(1)𝑥3 + 𝑝(2)𝑥2 + 𝑝(3) 

Polynomial 4:  

𝑦 = 𝑝(1)𝑥4 + 𝑝(2)𝑥3 + 𝑝(3)𝑥2 + 𝑝(4) 

Power function:  

𝑦(𝑥) = 𝑝(1) × 𝑥𝑝(2) 

Exponential function:  

𝑦(𝑥) = 𝑝(1) × 10𝑝(2)𝑥 

It should be noted that moving average methods were not applied to the forecast analysis 

as they were found to quickly convene to a value that was very similar to the original 

monthly average used.  

The forecast methods will be compared using the NSE as the primary performance 

criteria. Analysis of the dates will be completed at lead times of 3-days, 1-week, 1-month, 

3-months and 6-months in order to determine the effectiveness of each method at 

different stages of forecast. The dates used to extrapolate from have been chosen to 

represent three scenarios being when the additional salt load appears to be declining, flat 

and ascending being the 1/1/1993, 1/1/2008 and 1/1/2012 respectively.  
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The results of the forecast salt inflow were then run though Source in order to examine 

their effects on salinity performance. By assuming that flow and salinity is known, the 

experiments will work to examine the effectiveness of using trend methods as opposed 

to monthly average data. Upon completion of the analysis the results will be discussed 

regarding their relevance for incorporation and into the current MDBA forecast plugin. In 

addition to this, recommendations for future research will be discussed. 

4.4.4 ARTIFICIAL NEURAL NETWORK FORECAST 

The aim of the ANN forecast analysis was to gain an understanding of the ways in which 

the historical salt load provided within the Source MDBA model, could be used as an input 

for a neural network as a potential method for enhanced forecasting. As a result of time 

constraints, a working model was not achievable, however the research was aimed at 

gaining refined idea of how an ANN can be developed and to provide recommendations 

for future research.  

As highlighted in the literature review, neural networks provide an effective means of 

modelling water resource variables as a result of the ability to recognize patterns and 

relationships between variables based on machine learning. The general neural network 

design process was followed in the use of the model; the process was provided by Beale 

et al. (2016) as:  

1. Collect Data 

2. Create the network 

3. Configure the network 

4. Initialize the weights and biases 

5. Train the network 

6. Validate the network (Post training analysis) 

7. Use the network 
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In order to develop the Neural Network, the above process was utilised. Initially, an 

appropriate software solution needed to be selected. The literature review highlighted 

the use of commercial software platforms such as Neuroware and Neuroshell to develop 

the network architecture and train the networks. A desktop study of available options, 

highlighted Matlab as an effective means for neural network development and 

application. The Matlab Neural Network Toolbox enables the user to solve a number of 

forecast problems such as nonlinear autoregressive problems with or without external 

inputs.  

For the project, a nonlinear auto regressive network (NARN) was selected as a mechanism 

to predict salt inflow. The NARN uses a single input, in this case additional salt load, and 

applies weights based on the timestep and target data in the attempt to recognize 

patterns in the data.  The selection of a NARN model an attempt to use the patterns within 

the historical salt inflow fluctuations to generate usable forecasts that would be superior 

than that of the monthly average.  

The neural network was configured using the methods highlighted in the literature 

review. This included use of a feed-forward back propagation network and use the mean 

square error as the performance criteria. The tutorial provided by Heath (2015) was used 

to form the basis of the neural network. All other variables were set to Matlab default 

settings. A trial and error approach was used to determine an appropriate feedback delay 

and hidden neuron configuration.  

The neural network used to forecast the parameters used in the experiment was based 

upon a two-layer architecture which is highlighted in figure 4.2. The transfer function used 

in the neural network was sigmoid function while a linear function was used as the 

activation function. The sigmoid function is used to normalize the data and present it as 

a value within 0 and 1. The linear function is used in the final output layer of the neural 

network in order to approximate the data and convert it back to a usable value. The 

Matlab script used to initiate the Neural Network is provided in appendix G.   
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Figure 4.2 ANN Model (Open loop) 

 

Figure 4.3 ANN Model (Closed Loop) 

 
The methodology for performing the predictions works by first training the neural 

network based on an open loop. A closed loop is then created which enables multistep 

prediction to occur. The closed loop makes predictions by continuing to predict based on 

the timeseries value but without any external feedback, the feedback used in the closed 

loop is internal feedback which is gained during the open loop training. In order to monitor 

the performance, the root mean square error was used in both the open and closed loops. 

In order to reduce the noise of the data, smoothing was utilised through a monthly moving 

average process. This was completed in order to smooth the data to reduce the risk of 

over prediction while still allowing for the important patterns to be recognized. A range 

of different delay and hidden neuron configurations would be tested in order to 

determine whether a NARN was feasible as a potential forecasting option.  
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4.5 STATISTICAL ANALYSIS 

A number of statistical methods will be required throughout the project in order to 

analyse the correlation between observed and predicted data, and to justify the 

conclusions drawn. In order to compare the observed values with the predicted values a 

number of statistical methods will be used these include: 

1) The Nash Sutcliff Model Efficiency Coefficient (NSE).  

2) Root mean square error (RMSE) 

3) Coefficient of Determination (R2).  

4) Probability of Exceedance.  

5) Percentage Bias 

4.5.1 NASH SUTCLIFFE MODEL EFFICIENCY COEFFICIENT 

The Nash-Sutcliffe Model Efficiency Coefficient (NSE) can be highlighted by the following 

formula:  

𝐸 =  
∑(𝑥𝑖−�̅�)

2−∑(𝑦𝑖−𝑥𝑖)
2

∑(𝑥𝑖−�̅�)
2   

Where: 

𝑥𝑖 = Observed data values [mg/l]; 

𝑦𝑖  = Predicted data values [mg/l]; 

�̅�= Mean of observed data values [mg/l]. 

The NSE value measures of the scatter around a 1:1 line of the observed data vs predicted 

data in which a value of 1 represents a perfect result. This method is commonly used to 

determine the predictive power of hydrological models as described by Nash et al. (1970). 
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4.5.2 ROOT MEAN SQUARE ERROR 

The RMSE is used to provide an indication of the error between two sets of data, for which 

a value of zero represents a perfect result. The root mean square error is calculated by:  

𝑅𝑆𝑀𝐸 = 
√∑(𝑦𝑖 − 𝑥𝑖)

2

𝑛
 

𝑥𝑖 = Observed data values [mg/l]; 

𝑦𝑖  = Predicted data values [mg/l]; 

𝑛= Number of values.  

 

4.5.3 COEFFICIENT OF DETERMINATION 

The coefficient of determination can be calculated by:  

𝑅2 =

(

 
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√𝛴(𝑥𝑖 − �̅�)
2√𝛴(𝑦𝑖 − �̅�)

2
)

 

2

 

Where: 

𝑥𝑖 = Observed data values [mg/l]; 

𝑦𝑖  = Predicted data values [mg/l]; 

�̅�= Mean of observed data values [mg/l]; 

�̅�= Mean of predicted data values [mg/l]. 
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4.5.4 PROBABILITY OF EXCEEDANCE 

The percentage bias can be calculated using the following equation:  

𝑃 = 100 × (
𝑚

𝑛 + 1
)
2

 

Where: 

𝑃 = Probability of exceedance; 

𝑚 = Rank from highest to lowest of all daily mean flows; 

𝑛 = Total number of daily mean flows. 

4.5.5 PERCENTAGE BIAS 

The percentage bias was calculated using the formula: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐵𝑖𝑎𝑠 = 100 × (
∑(𝑚𝑜𝑑 − 𝑜𝑏𝑠)

∑𝑜𝑏𝑠
) 

Where: 

𝑚𝑜𝑑 = modelled values. 

𝑜𝑏𝑠 = observed values. 
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CHAPTER 5: MODEL DESCRIPTION 

5.0 CHAPTER OVERVIEW 

This chapter examines the case study model selected for the analysis. The chapter 

discusses the rationale for the selection of the case study site as the focus of the 

dissertation. It also provides a summary of the model’s performance in terms of its 

predicative accuracy while also describing the how the model provides a representation 

of the physical world. 

5.1 CASE STUDY – LOCK 5 TO MORGAN 

5.1.1 Case Study Overview 

The Morgan stream gauge is the site of The Murray Darling Basin Authorities key salinity 

target: to achieve less than 800EC for at least 95% of the time. This gauge therefore 

represents a critical monitoring site for the river system. As Morgan is positioned as one 

of the lowest gauge sites, it features the accumulation of a larger portion of salt that has 

been mobilised from upstream reaches.  

The model itself forms part of the Lower Murray Catchment which is highlighted in figure 

5.1 below. The model begins at Lock 9 in NSW and ends at the Southern Ocean outlet.  

 

Figure 5.1 MDB Catchments (MDBA, 2016) 
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A map representing the physical location of key model sites is located in figure 5.2 below. 

Additionally, the schematic model used for the case study is present in figure 5.3. The case 

study begins at Lock 5 which is located at Renmark and is represented by an unaccounted 

differences node, this enables salinity to be set to gauged salinity. The water is then 

routed into the Berri Gauge, Lock 4, Lock 3, Woolpunda, Waikaerie, Lock 2 and finally 

Morgan, all of which are represented by gauge nodes. The routing is completed through 

the use of both straight through routing and storage routing links. 

The storage routing links feature climatic data in the form of rainfall and evaporation. In 

addition to this the storage routing links feature initial conditions and physical 

descriptions such as reach length, initial flow, and additional salt inflow. A piecewise 

lookup table is also featured in order to describe the relationship between travel time and 

flow. Water demands have been presented throughout the model to represent extraction 

from the system. The final Morgan gauge node provides the end point for the Morgan 

case study section. This node represents a key stream gauge for which a range of water 

quality and flow conditions are monitored. This is the point for which all model outputs 

will be collected and compared with observed data.  

5.1.1 DATA PREPARATION 

In order to generate the model, a substantial amount of input data was required in the 

model. This input data is highly critical in enabling the effective development and 

calibration of the model, fortunately data this was provided by the MDBA.   

The climate data features a time series data sets featuring daily rainfall and evaporation 

(mm) for a range of sites. The flow data present is presented in the form of ML/day. The 

salinity data contains salinity readings for the gauge points in the form of mg/L, and also 

provides additional salt inflow data in the form of Tonnes/day.  
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Figure 5.2 Lock 5 to Morgan Map (Geoscience Australia, 2016) 
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Figure 5.3 Morgan Case Study Schematic Diagram  
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5.1.1 BOUNDARY CONDITIONS  

As the case study section is a portion of the larger Murray Darling Model, the upstream 

input is governed by the output of the upstream model. An unaccounted difference node 

at Lock 5 defines the boundary condition of the model. Here salinity is set to the gauged 

salinity. This represents the values measured at the Lock 5 stream gauge. As a result of 

missing data, the flow was set to the recorded flow at node SA flow rather than Lock 5. 

Flow at Lock 5 was set to -9999 indicating missing data. This was required as a result of 

poor model performance when Lock 5 flow was used as indicated in figure 5.3 and 5.4 

below:  

 

Figure 5.4 Predicted flow featuring Lock 5 data.  

 

Figure 5.5 Predicted flow featuring SA flow.  

Figure 5.4 highlights that as a result poor quality data featured at Lock 5 for flow, 

significant periods of zero flow can be seen. This is not representative of the real world 

conditions but rather has occurred as a result of insufficient data quality. Therefore, 

another method of defining the upstream flow was required.  
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This was completed by selecting the flow from the SA flow node. A comparison of the 

input flow timeseries can be seen in figures 5.6 and 5.7 below:  

 

Figure 5.6 SA flow. 

 

Figure 5.7 Lock 5.  

It should be noted that although the SA flow is represented further upstream, when it is 

routed downstream, the losses and gains in the system for the historical periods have 

been accounted for through calibration. Therefore, this has not impacted on model 

performance as highlighted in section 5.1.3.  

5.1.2 SIMULATION METHODOLOGY 

In order to evaluate the models performance a hindcast was conducted to assess the 

baseline accuracy of the case study section. This involved running the model as a single 

analysis over the time period from 1/7/1983 to 30/6/2012. The salinity output generated 

though running the model was compared to the observed salinity at the Morgan gauge 

using mg/l. In addition to this, the predicted flow was compared with modelled flow in 

ML.  
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5.1.3 MODEL PERFORMANCE 

The results of the hindcast are represented in figure 5.8, 5.9, 5.10, 5.11 which highlights 

the comparison of the datasets.  

 

Figure 5.8 Observed Salinity Vs Predicted Salinity - Morgan 

 

Figure 5.9 Exceedance Probability - Salinity - Morgan 
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Table 5.1 Statistical Analysis – Salinity - Morgan 

Observed Salinity Vs Predicted Salinity - Morgan 

NSE 0.956913 

R^2 0.958738 

RSME 23.05288 

 
Flow data was not present within the Source model. Consequently, data was acquired 

from the Murray Darling Basin Authority for the Morgan Gauge. The historical data 

featured a small time series of available data, hence only a small portion of the modelled 

downstream flow could be compared.  

 

Figure 5.10 Observed Salinity Vs Predicted Salinity - Morgan 
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Figure 5.11 Exceedance Probability - Flow - Morgan 

The available observed Morgan flow data featured a total of 133 missing data points. As 

a result, these values were omitted from the statistical analysis. The result of the statistical 

analysis for flow can be highlighted in table 5.2.  

Table 5.2 Statistical Analysis - Flow - Morgan 

Observed Salinity Vs Predicted Salinity - Morgan 

NSE 0.964177 

R^2 0.993197 

RSME 3816.89 

 

The results of the two analysis examples provide a number of insights into the 

performance of the current model in its calibrated condition. Firstly, the salinity prediction 

is excellent with consistent correlation between observed and predicted salinity 

throughout, along with a NSE value of 0.957. This indicates that that a highly effective 

calibration of the model has been completed.   
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The flow analysis highlighted excellent performance in low flow conditions. However, 

during large flood events, the model appeared to over predict flow. Although this over 

prediction occurred, the majority of the output is extremely accurate and has resulted in 

a NSE of 0.964.  

Although the salinity graphs appear to demonstrate a much closer correlation between 

observed and predicted flow, the calculated statistical values did not follow the trend. 

This has occurred as a result of a much larger range of data available for salinity analysis 

and the over and under predictions are proportionally are larger than that of the flow 

predictions. In addition, the flow prediction was almost perfect except for the instances 

in which major flow occurred. Together the NSE values of 0.957 for salinity and 0.964 for 

flow represent highly accurate model performance.   
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CHAPTER 6: FORECAST ANALYSIS 

6.0 CHAPTER OVERVIEW 

Chapter six highlights the results of the four testing components of the project. The 

chapter begins with the results of applying the additional salt calculation methodology to 

determine an estimated salt inflow within the river system. The results of the data 

smoothing analysis are then provided for which the optimal methods are analysed.  The 

results from the trend forecast and artificial neural network are then examined in terms 

of their potential as future forecasting techniques.  

6.1 SALT INFLOW CALCULATION 

The initial salt inflow time series can be highlighted in figure 6.1 (Note: this is a summation 

of the inflow for every storage routing link): 

 

Figure 6.1 Initial Salt Inflow Timeseries 
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In order to calculate the salt inflow on a daily timestep, the methodology for salt inflow 

was applied. This resulted in the following time series for the entire reach Lock 5 to 

Morgan, where the yellow time series represents the daily unsmoothed additional salt 

inflow in Tonnes/day:  

 

Figure 6.2 Calculated Salt Inflow 

The results feature a similar pattern to that of the initial time series provided by the MDBA 

for salt inflow (Tonnes). Correlation can be seen for major peaks in salt inflow such as the 

2012 peak event. It should be noted that much larger fluctuations in the salt load are 

present in the yellow timeseries present in figure 6.2 compared to the blue time series in 

figure 6.1. This has occurred largely as a result of the data being present without any 

smoothing being applied. For instance, the yellow timeseries uses a daily timestep while 

the blue timeseries features a monthly average smoothed timeseries, meaning that no 

data smoothing has occurred.  
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Figure 6.3 highlights a snapshot of the salt inflow timeseries for the 2012 salt inflow spike. 

This figure provides a comparison between three different timeseries being: 

1. Calculated salt load inflow (daily timestep) 

2. Calculated salt load inflow (monthly timestep) 

3. Original salt load inflow (monthly timestep) 

 

Figure 6.3 Calculated Salt Inflow – 2012 Spike 

Figure 6.3 also highlights that the calculated salt load generally predicted higher salt loads 

than the original timeseries. This may be due to a number of factors including: 

1) Different model configurations present when the salt balance was completed. 

2) Further calibration methods which reduced the amount of salt inflow.  

It needs to be noted that the original salt inflow timeseries featured a complex additional 

calibration which has likely reduced the salt inflow compared to that for which was 

calculated in the project. The analysis of this additional calibration methodology was 

considered beyond the scope of the project work.  
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6.2 DATA SMOOTHING  

In order to test the effects of different data smoothing techniques on the overall model 

performance, a number of experiments were completed. The results of which are 

highlighted in table 6.1:  

Table 6.1 Data Smoothing Results 

 Original Daily 
No 
Salt Monthly Weekly Seasonal Exponential 

Weekly 
Moving 

Monthly 
Moving Weighted 

R𝟐 0.959 0.945 0.795 0.952 0.950 0.937 0.930 0.924 0.904 0.929 

NSE 0.956 0.943 0.060 0.951 0.940 0.933 0.926 0.920 0.895 0.926 

 

Table 6.1 highlights in the top row, the data smoothing technique which was applied to 

the additional salt inflow data. The smoothed salt load for each method was then applied 

as additional salt inflow to the storage routing links present in the Lock 5 to Morgan case 

study in order to determine a salinity level. The column on the left indicates the statistical 

measure used for the analysis. The values present in the table represent the statistical 

measurement between predicted and observed salinity based on the entire run of data 

from 1/07/1983 – 30/6/2012.  

The results of the data smoothing analysis can be summarized in order of their 

effectiveness via the following list: (Note: The NSE value was used as the primary means 

of evaluating performance) 

1) Original  

2) Monthly  

3) Daily 

4) Weekly 

5) Seasonal 

6) Exponential 

7) Weighted Moving 

8) Weekly Moving 

9) Monthly Moving 

10) No Salt 
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A number of conclusions can be drawn from the results highlighted in the above table and 

list. Firstly, the additional salt load within the reaches clearly has an impact on the model 

performance. This can be indicated by the no salt performance of E=0.06 representing the 

worst performance of the model. All model outputs which featured a salt inflow 

significantly outperformed the no salt inflow results. This indicates that substantial salt in 

entering the system between Lock 5 and Morgan via methods such as groundwater or 

surface inflow which is consistent with expectations as highlighted in the literature 

review.  

No smoothing techniques were able to increase the performance resulting from the use 

of the original salt inflow timeseries provided by the MDBA which registered a NSE=0.956. 

The performance of the model could however be increased from the initial salt inflow 

calculation through the use of data smoothing techniques. The monthly smoothed data 

featured the highest performance with an NSE=0.951 which is greater than the daily salt 

inflow value which resulted in E=0.943. This indicates that smoothing does in fact have a 

positive effect on model performance.  

The monthly smoothing has likely to have increased the performance of the daily data by 

reducing the peaks in the timeseries, while also accounting for the travel time of the salt 

inflow. Interestingly, the remainder of the smoothing methods did not have a positive 

effect on model performance as the weekly and seasonal smoothing effects worsened the 

performance of the model when compared to the daily salt inflow. The results in table 6.1 

highlighted that the moving averages had a negative effect on model performance.  All 

smoothing techniques based on moving average methods resulted in reduced correlation 

between observed and predicted salinity.  

It can be noted that the initial large spike in the salt inflow calculation is likely the result 

of a model warmup. Here the marker tracking system which assigns an age to the particles 

at the upstream node and another at the downstream node has the same initial age at 

both locations being 0.5. As a result of this, the travel time from upstream to downstream 

in considered 0 or extremely small for the first 7 days, this results in large quantities of 

salt being required in the system to account for the high flow rates which are associated 

with the low travel time. The data is however, quickly normalized and after approximately 

2 weeks the estimation was considered reasonable.  
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6.3 TREND FORECAST 

In order to complete the trend forecast analysis the methodology discussed in chapter 4 

was utilised. Table 6.2 highlights the forecasting results along with the trend extrapolation 

that featured the best performance based on the NSE as the primary performance criteria. 

The top row indicates the lead time of the forecast being 3-days, 7-days, 1-month, 3-

months and 6-months. The columns on the left hand side indicate the amount of data 

provided for data fitting as 1, 3 or 9 years. The second column indicates the dates which 

was used as the point of extrapolation.   

Table 6.2 Trend Results of Best Forecast Methods 

 

Figure 6.4 provides an example of an extract from table 6.2. This figure represents the 

trend analysis which was completed using 1 year of data to fit the trend equation. For this 

example, the forecast was completed using 1/1/2008 as the point of extrapolation. It can 

be seen that the monthly average over estimates the salt load by using such a small 

sample to extrapolate from, while the use of 1-year trend data extrapolated forward using 

exponential, power and linear methods are much more effective as they are more 

effective in recognizing the long term data trends as opposed to being susceptible to over 

or under estimating based on short term spikes.  

 

Optimal Forecast Method Analysis 

  3 Day 7 Day 1 Month 3 Months 6 Months 

1 Year 
 
 

1/01/2008 Linear Linear Linear Linear Power 

1/01/2012 Exponential Exponential Exponential Exponential poly 2 

1/03/1993 Exponential Exponential Exponential Exponential Exponential 

3 Years 
 
 

1/01/2008 Monthly Monthly Monthly Monthly Poly 2 

1/01/2012 Monthly Monthly Monthly Monthly Exponential 

1/03/1993 poly 3 poly 2 Power Linear Exponential 

9 Years 
 
 

1/01/2008 Exponential Exponential Exponential Linear Poly 2 

1/01/2012 Power Power Power Power Linear 

1/03/1993 Poly 2 Linear Poly 3 Poly 2 Poly 3 
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Figure 6.4 Trend Example 

Figure 6.4 provides an example of what was found throughout the majority of the forecast 

analysis; being that the monthly average was likely to grossly under or overestimate the 

salt load within the reach while the trends of linear, exponential and power were much 

more effective in accurately predicating the future salt load over the longer term period 

of six months. 

Table 6.3 summarizes the results for the best forecasting method in representing future 

salt inflow. The table highlights that the exponential method is the most effective method 

of forecast. The linear and monthly method also proved to be effective both representing 

the best method 8 times.  

Table 6.3 Trend Summary Results 

Monthly Exponential Linear Poly 2 Poly 3 Poly 4 Power 

8 14 8 6 3 0 6 

 

In order to verify that the method was effective in increasing the salinity performance an 

exponential case was run back though Source as an additional salt inflow. Figures 6.5, 6.6 

and 6.7 highlight the exponential timeseries extrapolated from 1/1/2012 using 1 year, 3 

years and 9 years to develop the trend, representing 3 different scenarios.  

These figures highlight the timeseries data that was used to fit the data, along with the 

exponential extrapolation which is extrapolated from the 1/1/2012. 
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Figure 6.5 Exponential Salinity Forecast - 1 year - 1.1.12 

 

Figure 6.6 Exponential Salinity Forecast - 3 year - 1.1.12 

 

Figure 6.7 Exponential Salinity Forecast - 9 year - 1.1.12 
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These timeseries were then divided proportionally as salt inflow based on the length of 

each reach. This was applied as additional salt inflow to the storage routing links present 

in Source. After running the models, 3 outputs were generated and are highlighted in 

figure 6.8. 

 

Figure 6.8 Exponential Effect on Salinity Forecast 

Figure 6.8 highlights salinity output generated from Source using four different inputs. 

The graph provides the output for the forecast period which is from the 1/1/2012 – 

30/6/2012 which represents a 6-month period.  

A number of conclusions can be drawn from the results seen in figure 6.8. Firstly, the NSE 

value which represented the correlation between forecasted additional salt inflow and 

calculated additional salt inflow in table 6.2 was reflected in the accuracy of salinity 

predictions. Tables 6.4 and 6.5 highlight the correlation between salt load forecast and 

salinity prediction:  

Table 6.4 Salt Inflow Performance 

Salt Inflow Performance 

Statistical Measure 3-day 7-day 1-month 3-month 6-month 

Monthly 1 year (NSE) -0.0005 -0.0078 -0.1408 -0.0635 -0.6345 

Monthly 1 year (Percentage Bias) -3.4829 10.6672 32.2654 26.3489 -65.3004 

Exponential 1 year (NSE) 0.0016 0.0058 0.0235 -0.0364 -1.0737 

Exponential 1 year (Percentage Bias) -9.8874 2.0827 13.5898 -8.5436 -80.2149 

Exponential 3 year (NSE) -2.2455 -5.6672 -19.1032 -13.3659 -0.0766 

Exponential 3 year (Percentage Bias) 237.2188 288.1792 375.0542 381.8667 45.2633 

Exponential 9 year (NSE) -0.0065 -0.0582 -0.4062 -0.2346 -0.5103 

Exponential 9 year (Percentage Bias) 487.1042 102.0021 76.7593 50.5888 -58.8847 
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Table 6.5 Salinity Output Performance 

Salinity Output Performance 

Statistical Measure 3-day 7-day 1-month 3-month 6-month 

Monthly 1 year (NSE) -5.7896 -0.8248 0.6627 0.6125 -0.0335 

Monthly 1 year (Percentage Bias) 6.4517 12.9472 4.2825 2.6813 -9.0004 

Exponential 1 year (NSE) -5.7320 -0.7885 0.7097 0.6308 -0.3251 

Exponential 1 year (Percentage Bias) 6.3510 12.5707 3.0052 0.0244 -11.9914 

Exponential 3 year (NSE) -8.3673 -3.3207 -3.2805 -4.0495 -1.2309 

Exponential 3 year (Percentage Bias) 10.3890 26.1891 28.9194 31.7101 15.8922 

Exponential 9 year (NSE) -5.9449 -0.9220 0.5883 0.5298 0.0724 

Exponential 9 year (Percentage Bias) 6.7071 13.8285 5.8963 4.6936 -7.1761 

 
For example, in Table 6.4 a poor correlation between forecast salt load and real salt load 

is present using a 1-month lead time for the 3-year exponential data fit, being a NSE value 

of -19.1. Using this forecast salt load data as the additional salt inflow in the reach, a poor 

correlation between predicted and observed salinity is present indicated by a NSE value 

of -3.28. This relationship is present through all data points run back through Source 

highlighting that ineffective salt load forecast results in a correlated ineffective salinity 

forecast.  

This graph and associated statistical tables highlight that the forecasted additional salt 

load within a reach directly impacts the performance salinity predictions. Consequently, 

a conclusion can be drawn in that whatever results in the most accurate estimation of 

true salt load extrapolated forward, will result in the most accurate salinity prediction. 

This is a result of the salt inflow value being a value that works to minimize the difference 

between measured and observed salinity. The more accurate this prediction is, the more 

accurate the overall salinity prediction will be. 
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6.4 ARTIFICIAL NEURAL NETWORK FORECAST 

The purpose of the Neural Network analysis was to assess the potential for an ANN to 

perform forecasts of additional salt inflow based on historical data. In addition, the 

analysis was competed in order to gain an enhanced understanding of the ways in which 

a neural network could be utilised in future research.   

The neural network developed used only the historical salt inflow as input. This method 

was found to rely extensively on pattern recognition in order to generate useful forecasts. 

The literature review highlighted that neural networks could be effectively used to 

forecast variables when a range of external inputs where utilised. These however required 

known forward estimates of additional variables, in order to predict the target variable.   

Given that the research highlighted scope for improvement of the salt inflow forecast, the 

aim of the neural network forecast was to examine whether salt inflow could be forecast 

without external input. This method would rely on seasonal patterns or trends in the salt 

inflow in order to produce forecast effectively using the weights developed in the open 

loop scenario.  

Using the methodology highlighted in section 4.4.4 a neural network was develop using 

both the Matlab Neural Network Toolbox and the tutorial provided by Heath (2014). Each 

network was run and trained based on an open network architecture until the 

performance criteria being the mean square error, the Matlab default, was met. The loop 

for each case study was then closed and an extended timeseries of 6-months was used. 

The network would use the weights generated in the open loop to provide feedback for 

the predictions.  

The results of this analysis are provided in appendix H which highlights the range of 

network architectures that were selected in attempt to successfully train a network that 

was able to recognize patterns in the historical salt inflow.  

The results indicated an inability for the nonlinear autoregressive network (NARN) to 

recognize patterns. In all cases the open loop performance was excellent, featuring 

relatively low RMSE values. However, when the loop was closed the model was unable to 

replicate the open loop performance.  

 



73 

 

The models appeared to be able to follow the targets for a short period; this could be 

increased through increasing the amount of feedback delays in the network architecture. 

The ratio between feedback delays and hidden neurons was however, something that 

proved to be highly temperamental in the development of the models. Too few hidden 

neurons would not allow for a sufficiently complex architecture to be developed in order 

for the weightings to represent the relationships. Too many hidden neurons caused 

confusion and over-fitting of the data. This over-fitting and confusion of the model can be 

highlighted in figure 6.9 which provides an example of the attempted fit in the close loop 

scenario based on 24 feedback delays and 10 hidden neurons:  

 
 

Figure 6.9 ANN Example – Overfitting 

 
The network is able to match the target for the first rise however once irregular patterns 

begin to occur, the network becomes confused. Once targets are no longer present, being 

the salt load provided for training, the model is unable to determine suitable forecasts as 

indicated by the random fluctuations of the red prediction line.  

During the trials of different network architectures, a much better result was developed 

using a configuration of 30 feedback delays and 10 hidden neurons as highlighted in figure 

6.10 below:  
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Figure 6.10 ANN Example – Best Result 

It can be seen that the output when a target is present is very accurate up until timestep 

200. The forecast period in red is able to somewhat predict the calculated additional salt 

load in magenta highlighted by an initial rise, followed by a decline. While promising, 

reaching this configuration was highly cumbersome given the trial and error 

configurations that were required.  

Future research needs to be undertaken in this respect in order to further understand an 

effective means for determining the network architecture. The trial and error process is 

not feasible as given different training samples, different network architectures will be 

required. 

The one year forecast period appeared to be the most promising in terms of generating 

correlated forecasts as opposed to the 3 and 9 year training periods. It appeared that as 

a result of the large quantity of values present in the 3 and 9 year training periods, the 

network featured far too many data points for the network to be able to recognize 

patterns effectively.  

Without external inputs it appears as though the neural network using only historical salt 

load does not provide a feasible avenue for future research based on the highly irregular 

data series. Future research should therefore be aimed in two primary directions, being 

network architecture selection for NARN models and the use of a NARN to predict salinity 

using external inputs of flow (ML), salinity (mg/L) and additional salt load (Tonnes).  
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.0  CHAPTER OVERVIEW 

This chapter concludes the discussion and analysis present in the project work before 

recommending future avenues of research that can expand on the project’s findings.  

7.1 CONCLUSIONS 

This research project has provided an investigation of the predictive accuracy of salinity 

forecasting using the Source integrated modelling system for a case study of the Murray 

Darling Basin. The project worked to initially determine the current performance of the 

newly developed Source model and then worked to examine the ways in which the 

additional salt loads could be more effectively utilised. This was completed through four 

stages of analysis including:  

1. Calculation of the additional salt inflow present within the case study. 

2. Investigation of the effects of different data smoothing techniques on model 

performance.  

3. Trend forecast analysis. 

4. Neural network forecast analysis.  

The research found that the current Source model of the Lower Murray, developed by the 

MDBA, performs effectively in its current calibrated state. This was indicated by a 

predicted salinity vs observed salinity NSE value of 0.956.  

In order to begin the testing analysis, the additional salt inflow was required for a case 

study area. This was calculated as per the method previously applied in Bigmod. The effect 

of different data smoothing techniques were examined to determine how each method 

effected the models ability predict salinity. This process found that the monthly average 

smoothing was the most effective. Additionally, it was found that moving average 

techniques decreased the models performance when compared to the unsmoothed 

output. The results also highlighted that significant salt inflow does occur within the reach 

and that accounting for this has a significantly positive effect on the model’s salinity 

performance.   
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The trend forecast analysis highlighted that more effective methods exist in forecasting 

salt inflow as opposed to simply using the monthly average of the most recent month 

prior to forecast. The results highlighted that exponential extrapolation appeared to more 

accurately predict the future salt load as opposed to the monthly value. This was indicated 

by the exponential extrapolation resulting in the highest correlation in 14 of the cases as 

opposed to 8 for the monthly average. Although this was promising, more case studies 

would be needed in order to verify the results. Polynomial extrapolation yielded a poor 

correlation between predicted and estimated additional salt load while linear and power 

extrapolation resulted in strong results scoring the highest correlation 8 and 6 times 

respectively.  

The forecasted salt inflow timeseries were then applied in Source as salt inflow within 

each reach.  It was found that the timeseries that had a close correlation with forecasted 

additional salt inflow and calculated salt inflow provided superior salinity predictions as 

opposed to the forecasts that featured poor correlation between forecasted and 

calculated additional salt inflow.  

The application of the Artificial Neural Network proved to be highly problematic in terms 

of selecting an effective network architecture. It appeared that the lack of patterns 

present within the salt inflow timeseries meant that the neural network was unable to 

provide adequate forecasts based on the NARN model.  
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7.2  RECOMMENDATIONS 

This research project examined a wide array of components that play a critical role in 

salinity modelling and forecasting. As a result of this, a variety of recommendations have 

been made regarding avenues for future research.  

Firstly, research into the effects of different seasonal trends which effect river salinity 

would be of value. When forecasting, a methodology that defines an appropriate salinity 

value or range for a particular date may provide a valuable option for research. This type 

of pattern recognition and use of historical data is essentially a simplified version of an 

artificial neural network that utilises information gained from calendar dates and flow 

conditions to determine the likely future salinity value or range.   

The research of salt inflow based on the types of cropping, land use and macro 

environmental conditions present would also be of high value. A key assumption that was 

overlooked in the trend forecasting was whether or not different storages were being 

released as this would have a significant effect on future salinity levels. If the effects of 

the flows and demands associated with land use and storage operation types could be 

accounted for accurately in the future, then the salinity prediction may be enhanced.  

The analysis of using Neural Networks for forecasting salinity appears to be a form of 

forecasting that features high potential. As computing power continues to increase and 

more research and development is invested into artificial intelligence and machine 

learning, the feasibility of using pattern recognition and machine learning techniques will 

only grow. Neural Networks are clearly suited to using multiple inputs for training and 

forecast and this should therefore be the focus of future research in this area.  

Finally, a key finding that has resulted from this research is that the NARN Matlab model 

is unlikely to be able to predict salt inflow based on a single timeseries alone. A research 

path that would more likely increase the overall salinity prediction would be through the 

use of a NARNX model as opposed to a NARN model. The NARX uses additional external 

inputs in order to assist in model training and prediction. Three key inputs being flow (ML), 

salinity (mg/L) and salt load (Tonnes) could potentially be utilised in order effectively to 

forecast salinity.  
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APPENDIX A - PROJECT SPECIFICATIONS 

University of Southern Queensland 
Faculty of Health, Engineering and Sciences 

FOR:  HARRY MCCULLAGH. 

TOPIC:  AN INVESTIGATION OF THE PREDICTIVE ACCURACY OF SALINITY 
FORECAST USING THE SOURCE PROGRAM FOR THE MURRAY-
DARLING RIVER 

SUPERVISORS:  MD JAHANGIR ALAM.  
  
EXTERNAL:  DR MATHEW BETHUNE and Mr. ALISTAIR KORN. 
 
ENROLMENT: ENG4111/ENG4112 
 
PROJECT AIM:  THE PRIMARY AIM OF THE PROJECT IS TO DEVELOP AN EHANCED 

PREDICTIVE SALINITY MODEL OF THE RIVER MURRAY AND LOWER 
DARLING SYSTEM. 

SPONSOR: MURRAY DARLING BASIN AUTHORITY (MDBA), CANBERRA 

Program:  ISSUE A, 8/02/2016 

1) Literature review of the salinity issues, management and modelling practice in 

relation to salinity forecast. 

2) Obtain and review the exiting model of the River Murray and Lower Darling River. 

3) Analyse the effectiveness of the current modelling approach used in the Source 

Program. 

4) Model set up for a case study section of the Murray - Darling River.  

5) Hindcast the flow and salinity level in the river for a historical period and evaluate 

the accuracy of the existing model.  

6) Manipulate the existing method in the ambition of developing an enhanced 

predictive salinity model. 

 

As Time Permits 

1) Examine the relationship between different land use management practice and 

salinity exports. 

2) Examine the use of artificial neural network method in improving the salinity 

forecast. 

3) Provide confidence level in salinity forecast. 
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APPENDIX B - RISK ASSESSMENT  

In order to conduct a risk assessment for the project the following risk matrix provided 

by Safe Work South Australia (2015) has been used.  

 

Figure 1 - Risk Matrix - Safework South Australia, 2015. 

As no experimentation is required in the process, the entire project can be completed 

using a desktop computer. This task is deemed as a very low risk task. The major safety 

hazards can be summarized by that of a conventional office environment, that of which 

are highlighted online by WorkSafe Victoria (2015) as:  

 physical (e.g. tripping or slipping hazards, glare or reflections from computer 
screens, hot components of photocopiers, poorly designed chairs that do not 
provide adequate back support, and tasks that demand prolonged work in a fixed 
posture) 

 psychological (e.g. the need to complete excessive workloads under 
pressure, stress, inadequate recognition for work performed, lack of job 
satisfaction, or repetitive work) 

 mechanical (e.g. getting 'caught' by equipment and filing cabinets that tend to tip 
when heavily laden top drawers are open) 

 chemical (e.g. vapors or fumes from paint, solvents and photocopier toner) 

 electrical (e.g. damaged electrical cords or overloaded power points that may 
cause electric shock) 

 
 
 

http://www.worksafe.vic.gov.au/safety-and-prevention/health-and-safety-topics/stress
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In order to counteract these risks, the following steps will be carried out: 

 Take regular breaks at 1 hour intervals.  

 Ensure that good posture is maintained.  

 Tripping hazards are removed. 

 Electrical cables are safe. 

 The room is well ventilated.  
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APPENDIX C - SALINITY CALCULATION WITHIN A REACH 

The current method used by The Murray Darling Basin Authority to calculate salt within a 

reach is completed through:  

1) Calculate daily salt load 

2) Smooth the daily salt load 

Calculation of daily salt load 

 

1) Force upstream flow and salinity to equal recorded salinity 

2) Set salt inflow in reach to equal zero 

3) Run Model 

4) Output per day of run 

a. = difference mean observed (ECObs) and modelled salinity (ECmod) at 

downstream gauge  

b. TTdaily Average daily marker travel time for reach  

5) Run the model assuming 1Tonne/km of salt inflow into reach 

6) Output per day of model run 

a. Difference between mean and observed salinity at downstream gauge  

7) Calculate the daily salt load required to minimize the difference between 

observed and modelled salinity  

Where:  

∆𝐸𝐶𝑁𝑜 𝑆𝑎𝑙𝑡 = 𝐸𝐶𝑜𝑏𝑠 − 𝐸𝐶𝑚𝑜𝑑  

𝑇𝑇𝐷𝑎𝑖𝑙𝑦 = 𝐴𝑔𝑒𝐷𝑆 − 𝐴𝑔𝑒𝑈𝑆  

 

∆𝐸𝐶1𝑡 = 𝐸𝐶𝑜𝑏𝑠 − 𝐸𝐶𝑚𝑜𝑑  

𝑆𝐿𝐷𝑎𝑖𝑙𝑦 = 
𝐸𝐶𝑁𝑜 𝑆𝑎𝑙𝑡

∆𝐸𝐶1𝑡
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Where:  

∆𝐸𝐶𝑁𝑜 𝑆𝑎𝑙𝑡 = the daily difference between modelled and observed salinity at 

downstream gauge in a reach. 

𝐸𝐶𝑜𝑏𝑠 = Daily observed salinity at downstream gauge. 

𝐸𝐶𝑚𝑜𝑑 = Daily modelled salinity at downstream gauge. 

𝐴𝑔𝑒𝐷𝑆 = Average daily age of markers at downstream gauge. 

𝐴𝑔𝑒𝑈𝑆 = Average daily marker age at upstream gauge. 

𝑇𝑇𝐷𝑎𝑖𝑙𝑦 = Daily average time taken for a marker to travel through a reach. 

∆𝐸𝐶1𝑡 = The daily difference between modelled and observed salinity at downstream 

gauge in a reach when 1 Tonne of salt is added per km of reach. 

𝑆𝐿𝐷𝑎𝑖𝑙𝑦 = daily amount of salt added per km to minimize difference between observed 

and modelled salinity. 

Smoothing of daily salt load 

The approach in BIGMOD involves averaging the daily salt load to a monthly timestep for 

the amount of time it takes for salt to move through a reach in a month.  

For each daily salt load:  

1) Determine date when salt load was added to reach 

a) DateSaltload = Current date - 𝑇𝑇𝐷𝑎𝑖𝑙𝑦 

2) Calculate average salt load for month. This is the average of all daily salt loads added 

to the reach that contribute to salt leaving the reach in the current month.  

a) If DateSaltload < 0 – then this daily salt load is contributing to salt leaving in the 

current month 

b) If DateSaltload > 0 – this daily salt load contributes to salt leaving in the previous 

month. It is possible that salt added may take several months to move through a 

reach.  

c) 𝑆𝐿𝐷𝑎𝑖𝑙𝑦 = Average (𝑆𝐿𝐷𝑎𝑖𝑙𝑦 where month = month(DateSaltload)) 
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APPENDIX D - BIGMOD 

In order to rout the flow of the water the model utilises the following expression stated 

by Close, 1996:  

𝑞𝑜𝑢𝑡 = 𝑞𝑖𝑛 + 𝑆0 − 𝑆1 − 𝑑 − 𝐸 ×
𝐴

100
− 𝐿ℎ𝑓 − 𝐿𝑒𝑚 

𝑞𝑜𝑢𝑡 = 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ (𝑀𝐿/𝐷𝑎𝑦) 

𝑞𝑖𝑛 = 𝑓𝑙𝑜𝑤 𝑖𝑛𝑡𝑜 𝑟𝑒𝑎𝑐ℎ (𝑀𝐿/𝐷𝑎𝑦) 

𝑆0 = 𝑟𝑒𝑎𝑐ℎ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑑𝑎𝑦 (𝑀𝐿) 

𝑆1 = 𝑟𝑒𝑎𝑐ℎ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑑𝑎𝑦 (𝑀𝐿) 

𝑑 = 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (𝑀𝐿) 

𝐸 = 𝑛𝑒𝑡 𝑒𝑣𝑎𝑝𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑚𝑚/𝐷𝑎𝑦) 

𝐴 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ (ℎ𝑎) 

𝐿ℎ𝑓 = ℎ𝑖𝑔ℎ 𝑓𝑙𝑜𝑤 𝑙𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ (𝑀𝐿/𝐷𝑎𝑦) 

𝐿𝑒𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑙𝑜𝑠𝑠𝑒𝑠 (𝑀𝐿/𝐷𝑎𝑦) 

In order to model salinity within the system the model using the following equation to 

determine the solute inflow between water monitoring sites Close, 1996:  

𝑆𝑜𝑙 = (𝐶𝑑𝑠 − 𝐶𝑛𝑖) ×
𝐾𝑢𝑠
𝐶𝑙𝑢

 

𝑆𝑜𝑙 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑒 𝑖𝑛𝑓𝑙𝑜𝑤 (𝑢𝑛𝑖𝑡𝑠/𝑑𝑎𝑦) 

𝐶𝑑𝑠 = 𝑐𝑜𝑛𝑐𝑒𝑟𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑖𝑡𝑒 

𝐶𝑛𝑖 = 𝑐𝑜𝑛𝑐𝑒𝑟𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑖𝑡𝑒 𝑟𝑜𝑢𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚  

𝑎𝑠𝑠𝑢𝑚𝑖𝑜𝑛𝑔 𝑛𝑜 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑒 𝑖𝑛𝑓𝑙𝑜𝑤𝑠 

𝐾𝑢𝑠 = 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑖𝑡𝑒 

𝐶𝑙𝑢 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑟𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑤𝑜𝑢𝑙𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑎 𝑖𝑛𝑓𝑙𝑜𝑤  

𝑜𝑓 1 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟 𝑑𝑎𝑦 𝑝𝑒𝑟 𝑘𝑚 
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This equation is used to model salinity and nutrient trends for the River Murray, provides 

data on the dynamics of between groundwater and the river and the interaction between 

nutrient content and sediments.  
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APPENDIX E - MATLAB TREND EXTRAPOLATION 

%% Clearing Old Data 
clc 
clear all 
 

%% Loading Data 
fileid = fopen('9year_forecast1.1.12_csv.csv'); 
if fileid>0 
data = textscan(fileid,'%s %f %s 

%f','Delimiter',',','HeaderLines',1); 
fclose(fileid); 
end 

 
%% Loading Predicted Salt Inflow 
date =[datenum(data{1},'dd/mm/yyyy')]; 
saltload =data{1,2}'; 
datevalue = 1:length(date); 
tp = 1:length(date)+183; 

  
% power fit 
power_1=polyfit(log10(datevalue),log10(saltload),1); 
m_power_1=power_1(1); 
b_power_1=10^power_1(2); 
fx_power_1=b_power_1.*datevalue.^m_power_1; 
fx_power_1_g=b_power_1.*tp.^m_power_1; 

  
% Exponential fit 
exponetial_1=polyfit(datevalue,log10(saltload),1); 
m_exponetial_1=exponetial_1(1); 
b_exponetial_1=10^exponetial_1(2); 
fx_exponential_1=b_exponetial_1*10.^(m_exponetial_1*tp); 
fx_exponential_1_g=b_exponetial_1*10.^(m_exponetial_1*tp); 

  
% Linear fits  
coeff1 = polyfit(datevalue,saltload,1); 
fx_linear_1 = polyval(coeff1,datevalue); 
fx_linear_1_g = polyval(coeff1,tp); 

  
% Polynomials 2,3,4 fits 
coeff2 = polyfit(datevalue,saltload,2); 
coeff3 = polyfit(datevalue,saltload,3); 
coeff4 = polyfit(datevalue,saltload,4); 

  

  
% Evaluate polynomials 
poly2_day1_g = polyval(coeff2,tp); 
poly3_day1_g = polyval(coeff3,tp); 
poly4_day1_g = polyval(coeff4,tp); 
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%% Excel output 
% exponential 
zexpoutput = abs(fx_exponential_1_g'); 
% power 
zpoweroutput=abs(fx_power_1_g'); 
% linear 
zlinearoutput = fx_linear_1_g'; 
% poly 2 
zpoly2output = poly2_day1_g'; 
% poly 3 
zpoly3output = poly3_day1_g'; 
% poly 4 
zpoly4output = poly4_day1_g'; 

  
%% End script 
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APPENDIX F - MATLAB DATA SMOOTHING 

%% Clearing old data 
clear all 
close all 
clc 

  
fileid = fopen('calcualtedsaltload_csv.csv'); 
if fileid>0 
data = textscan(fileid,'%s %f','Delimiter',',','HeaderLines',1); 
fclose(fileid); 
end 
 

tsobj = fints(datenum(data{1},'dd/mm/yyyy'), data{1,2}); 
salt = fts2mat(tsobj.series1); 

  
%% Exponential Data Smoothing 
salt_ecp_smooth = tsmovavg(salt,'e',30,1); 

  
%% Weekly Rolling Average 
salt_simplerollingLag_7days = tsmovavg(salt,'s',30,1); 

  
%% Monthly Rolling Average 
salt_simplerollingLag_30days = tsmovavg(salt,'s',30,1); 

  
%% Weighted Moving Average 
weights = [0.01 0.02 0.04 0.06 0.9 0.12 0.16]; 
salt_weightedmovingavg = tsmovavg(salt,'w',weights,1); 

 
%% End script 
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APPENDIX G - MATLAB ANN 

%% Script initially generated by Neural Time Series app 
% Reference needs to be given to the members of the Matlab 

Newsgroup 
% in particular Heath (2014) who has provided a vast range of 

resources 
% and whose tutorial formed the basis of the network architecture.  

 
%% Clearing old data 
close all 
clear all 
clc 

  
%% Loading Data  
fileid = fopen('1year_forecast1.1.08_csv.csv'); 
if fileid>0 
data = textscan(fileid,'%s %f %s 

%f','Delimiter',',','HeaderLines',1); 
fclose(fileid); 
end 

  
FDvalue = data{1,2}; 
t = FDvalue'; 

  
fileid = fopen('1.1.08_onwards_csv.csv'); 
if fileid>0 
data = textscan(fileid,'%s %f %s 

%f','Delimiter',',','HeaderLines',1); 
fclose(fileid); 
end 

  
d2 = data{1,2}; 
saltonwards2 = d2'; 

  
t=smoothts(t,'b',30); 

  
T=con2seq(t); 
%% Network configuration  

  
[I,N]=size(T)  
FDvalue=30 
FeedbackDelays=1:FDvalue; 
HiddenNeurons=10; 

  
neto=narnet(FeedbackDelays,HiddenNeurons); 

  
%% Network settings 
neto.divideFcn='divideblock'; 
net.divideMode = 'time'; 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.performFcn = 'mse';  % Mean Squared Error 
rng('default') 
%% Prepare for training 
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[x,xi,ai,To]=preparets(neto,{},{},T); 
 

%% Training open network  
[neto,tro,Yo,Eo,Aof,Xof]=train(neto,x,To,xi,ai); 
[Yo,Xof,Aof]=neto(x,xi,ai); 

  
Eo = gsubtract(To,Yo); 
RMSEo=sqrt(mse(Eo)) 
 

%% Closing loop and training network  
[netc,Xci,Aci]=closeloop(neto,xi,ai); 
[Xc,Xci,Aci,Tsc]=preparets(netc,{},{},T); 
[Yc,Xcf,Acf]=netc(Xc,Xci,Aci); 
[netc,trainingrec] = train(netc,Xc,Tsc,Xci,Aci); 

  
tsc = cell2mat(Tsc); 
yc = cell2mat(Yc); 
Ec = gsubtract(tsc,Yc); 
RMSEc = sqrt(mse(Ec)) 

  
M=181; 
 

%% Performing multistep prediction  

[Yc,Xcf,Acf] = netc(Xc,Xci,Aci); 
Xc2 = cell(1,M); 
[Yc2,Xcf2,Acf2] = netc(Xc2,Xcf,Acf);  
yc2 = cell2mat(Yc2); 
yc2L=yc2'; 
 

%% plotting results  

figure(1)  
hold on  
plot(FDvalue+1:N,tsc,'LineWidth',0.2 ) 
plot(FDvalue+1:N,yc,'g','LineWidth',0.5 ) 
plot(N+1:N+M, yc2,'r','LineWidth',0.5 ) 
plot(N+1:N+M,yc2,'r','LineWidth',0.5 ) 
plot(N+1:N+M,saltonwards2,'m','LineWidth',0.5 ) 
legend('Target','Output','Targetless Prediction','Calculated Salt 

Load') 
title('NARNET Pediction,1 year,1/01/08') 
xlabel('Timestep') 
ylabel('Salt Load (Tonnes)') 

 

%% End script 
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APPENDIX H - ANN OUTPUT NARNET 

 

Narnet Predictions, 1 year, 1/1/08  

Delay, 

Neurons 

Graph RMSE 

2,10 

 

Open = 1.15 

Closed = 56.6 

2,20 

 

Open = 1.76 

Closed = 74.15 

22,4 

 

Open = 0.66 

Closed = 75.3 
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24,10 

 

Open = 1.51 

Closed = 74.8 

35,5 

 

Open = 0.592 

Closed = 

144.53 

30,10 

 

Open = 1.88 

Closed = 67.51 
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Narnet Predictions, 3 year, 1/1/08  

Delay, 

Neurons 

Graph RMSE 

2,10 

 

Open = 

3.91 

Closed 

= 132.5 

30,3 

 

Open = 

1.24 

Closed 

= 98.89 

2,15 

  

Open = 

3.76 

Closed 

= 

101.81 



100 

 

70,5 

  

Open = 

1.34 

Closed 

= 

198.12 

10,20 

 

Open = 

2.19 

Closed 

= 

122.78 
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Narnet Predictions, 9 year, 1/1/08  

Delay, 

Neurons 

Graph RMSE 

2,10 

 

Open = 3.04 

Closed = 

306.33 

30,5 

 

Open = 2.87 

Closed = 

1916.6 

5,30 

 

Open = 2.3 

Closed = 298.2 


