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Abstract

Fire during the harvest of crops is an ever present hazard. The combination of hot and dry
conditions with a highly flammable crop material creates perfect conditions for fire to start and
propagate, the result of which can be loss of production, time, equipment and the crop itself.

The aim of this project is to create a system that can actively detect fire activity so that the
harvester operator has a better chance of containing the fire before it spreads out of control. By
using the ability of CCD cameras to detect Near Infrared (NIR) and sophisticated machine vision,
a cheap and effective fire detection system can be created that can alert the operator to any
developing fire before the grows out of control.

An extensive review of available literature regarding combine harvester fires, the use of Near
Infrared (NIR) and visual light cameras in fire detection and the use of machine vision to detect
fire was conducted. An experimental prototype NIR camera system was constructed with off the
shelf components selected on the basis of suitability and cost and a computer program was
developed with the purpose of detecting fire in the video feeds.

Testing was done in two phases. The first phase was to test the hardware of the system to
determine if the cameras was even able to see fire or related phenomena. The second phase of
testing was to determine if the machine vision software was able to quickly and accurately identify
fire under different circumstances, and its ability to filter out other phenomena that may cause
false positives.

The hardware of the system was able to detect fire in most circumstances. Inexpensive cameras
operating in the NIR and Visual spectrums are more than capable of seeing the light, heat and
smoke emissions of the fire under all of the conditions that such a system would likely encounter
during normal operations. The emissions that the camera detects is highly dependent on the
proximity of the camera to the fire, which has significant implications on the software processing
algorithm and its ability to accurately detect a fire.

The software algorithm was able to correctly identify a fire during all the software tests. The NIR
camera was able to correctly identify fire in all of the testing but was subject to false positives
from reflections. The colour program had greater success in bright conditions as the reduced
contrast between the fire and its surroundings enabled the colour of the fire to be more easily
seen.

Detecting fire with machine vision is still a field that is in its infancy, but the results gained from
this project are very promising and with further development could yield a system able to reliably
detect fire in harvest conditions.
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1. Introduction

Fire has always been a major hazard for farming operations and has far reaching consequences.
Fire can often result in the loss of production, time, equipment and the crop itself; it also has the
chance to cause serious injury or death of workers.

Harvest is a particularly hazardous time as it combines hot and dry conditions with a very
flammable crop. The risk of fire is only set to worsen as climate change will create longer periods
of hot and dry conditions, changes in harvester design that create a more efficient, clean and
higher producing machine also create additional fire hazards on the machine.

Currently no new combine harvester has any type of fire detector or fire suppression system.
Only this year has a third-party company started to supply its own fire suppressions system. For
everybody else the only fire detection they have is their own senses and the method of fire
suppression is a handy fire extinguisher.

1.1An Introduction to the combine and harvest

The modern combine harvester is a versatile machine designed to efficiently harvest a variety of
grain crops from the field to deliver clean grains for further processing into food and material for
human beings and livestock. (Miu, 2016)

It combines the following three processes

e Reaping, the cutting and gathering of the crop.

e Threshing, loosening the edible part of the grain from the scaly, inedible chaff that
surrounds it.

e Winnowing, separating the edible part of the grain from the chaff.

Figure 1: A typical modern combine harvester hard at work. (Lawford, 2010)
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Figure 2: A basic cross section of a typical 'walker-type' harvester. Parts numbers 1 through 4 perform the reaping part
of the process. The threshing drum (6) and concave (7), thresh the grain. The straw is carried out by the straw walkers
(8) that also vibrate to shake out any additional grain. Parts 10 through 15 perform the winnowing process. Part 16 is
grain storage, part 18 is the operator cab and part 19 is the engine. (Hans Wasthuber, 2009)

The demands placed on the modern combine harvester many and varied, the machine must be
able to harvester the crop at just the right time when the crop reaches its peak and often only
has a very short window to do this once this window is reached, sometimes less than one week.
It must be able to harvest a variety of different crops and has a modular construction enabling
different parts and sub-assemblies to be meet this demand, and even these parts must have the
ability to be adjusted on fly to compensate for different crop conditions.

The increasing size of the average farm and the demand for more and more product has meant
that the capacity of the machines has grown over time, but since the size of combine harvesters
has reached the limiting width of most roads, cost-effective improvements in capacity must come
from increasing the overall efficiency of the machine. (Miu, 2016)

The modern combine harvester is a very large, complex and highly capable machine that
processes a very large amount of grain in a very short amount of time. Because of this, modern
combine harvesters have increasingly become more and more costly, in the range of hundreds of
thousands of dollars for the average machine and nearing a half a million dollars or even more
for the very largest, highest capacity machines. (Quick, 2010)

In Australia the main winter harvest occurs between the months of September to February with
harvest starting and ending earlier in the more northern states. This coincides with the hotter and
drier weather of the spring and summer months in the grain growing regions. Once harvest has
begun, farmers, workers and contractors will work from sunup to sunset harvesting, moving,
storing and processing crops until the job is completed. 12 hour days are standard and 18 hour
days are not uncommon. This leaves very little time for even essential maintenance to be
completed.

An unfortunate and very much unwanted part of harvest is fire, as explained below

Australian broadacre harvest conditions are arguably the most hazardous in the world for fires.
Each year there are hundreds of harvester fire incidents and approximately a dozen half-million
dollar-plus machines burnt to the ground at harvest. In some instances, there are associated crop
losses as well. (Quick, 2010)
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Figure 3: A harvester that has caught fire during operation. (Law, 2012)

The most effective strategy to combat combine harvester fires is regular clean down and
inspection of the machine, preventing the build-up of flammable materials and preventing the
creation of possible sources of ignition respectively. In South and Western Australia, if the
prevailing environmental conditions become too extreme, as observed by the Grassland Fire
Danger index (GFDI), by law the harvester must stop. (Grains Research and Development
Corperation, 2013)

In a perfect world, there preventative measures would be enough to stop harvester fires from
occurring. Unfortunately, sometimes fire incidents do happen despite the use of best practice.
The aim of this system is to provide an extra level of protection to the harvester under these
extreme conditions.

1.1 Prevalence of combine harvester fires

Information regarding the prevalence of harvester fires is somewhat scarce. In Australia there has
been no major study done on harvester fires, that is available in the public domain. The major
combine harvester manufactures may have done their own independent studies but they have
not released this information. Looking further afield there have been some studies conducted in
the United States but the latest of these studies was finalised in 2002 using information dating
from 1984-1997 (J.M. Shutske, 2002).

The combine harvester prevention and control summit investigated 8307 combine fires between
the years of 1984 and 1995 and the year 1997, unfortunately there was no information for the
year 1996. This information was drawn from the National Fire Incident Reporting System (NFIRS)
across 38 states. In addition, an additional 620 combine fires that occurred between 1998-2000
from the top 5 states of the previous subset were also evaluated. From this information the study
drew the following conclusions:
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Figure 4: Time of the day when the fire occurred. (J.M. Shutske, 2002)

2039

78.2% of combine fires occur between noon and 8:00PM, 48.5% occur between 2:00PM
and 6:00PM.

The majority of fires occur during the week, with the fewest on Sunday. 1984 — 1997
data suggests a higher rate of fires in the middle of the week with 1998 — 2000 data
suggesting a shift to the end of the week.

67.9%, of fires occurred during the fall harvesting period (late September-November)
with a decrease in the frequency of fires during wheat harvest and an increase in fires
during the fall harvest from 1984 to 2000.

639 reported combine fires occur, on the average, each year in those states that report
to the NFIRS.

47.2% of combine fires reported mechanical or electrical failure as the ignition factor
starting the fire.

Source of Ignition

Other factor
4%

Backfire
3%
Cutting/Welding
4%

Operator Error
4%

Electrical
Failure

Combustion
near heat
6%

Lack of
Maintenance
10%

Figure 5: Source of Ignition. (J.M. Shutske, 2002)
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Figure 6: Location of fire origin. (J.M. Shutske, 2002)

76.7% of combine fires originate in the engine area

41.3% of combine fires have organic material as the type of flammable material first
involved in the fire.

From 1984 — 1997, $94,748,050 in estimated losses from combine fires were reported,
averaging $15,182 per fire.

(J.M. Shutske, 2002)

A second older study collected data relating to 4092 combine and tractor fires between 1984-
1988 with the vast majority of these (3655) coming from the NFIRS. The rest came from onsite
investigations conducted by the researchers (265), the Indiana State Fire Marshal’s office (122)
and from surveys (50). From this the researchers came to similar conclusions as the newer paper.

67% of the NFIRS fires occurred between 10:00am and 6:00pm, with the largest number
of fires for all data sets occurring between 2-4:00PM.

This study did not look at what days the fires occurred on nor did it list what months of
the year the fires occurred in.

40% of the fires originated near hot components (24% exhaust and 16% hot engine
surface), 34% originated from engine electrics for the 50 Indiana combine fires.

62.4% of the fires originated in the engine area for the 3655 NFIRS combine and tractor
fires.

40.0% of the Indiana combine fires involved crop residue as the primary flammable
material for the fire.

(J.M. Shutske, 1990)

The only Australian report | was able to find was by Dr Graeme Quick, unfortunately | found the
report to be of limited utility as it lacked definite figures. The report did however agree with the
results found by the two US studies. That around three-quarters of combine harvester fires start
in the engine bay, that a large proportion of these fires are started by crop residue collecting in
and around the engine bay which is then set alight by hot exhaust components.
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The report noted that new model harvesters have larger, more powerful engines and use new
emission control systems that result in an increase amount of heat rejection. Add into this newer
farming practices such as desiccating the crop, that is to spray the crop with herbicide to remove
green crop material and green weeds that may have otherwise damped fire risks and a change in
the type of crops being harvested have probably also contributed to an increase fire risk for
Australian farmers.

(Quick, 2010)

During the course of gathering information | contacted the Queensland Fire and Rescue Service
(QFRS), the Country Fire Authority (CFA) in Victoria and the Country Fire Service (CFS) requesting
any information regarding combine harvester fires. Of these only the QFRS responded. The QFRS
provided statistics regarding fires that were attended by the QFRS where ‘agricultural equipment’
was identified as the source of ignition. Unfortunately, the QFRS only began using a separate
‘agricultural equipment’ ignition code in their record keeping in July of 2015, limiting the amount
of useful information to be gained. In addition, there was no information regarding what the type
of agricultural equipment was nor was there information regarding the outcome of the fire.
However, the statistics provided tell us that between July 2015 and March 2016

e There was a total of 45 fires where agricultural equipment was identified as the ignition
source in Queensland.

e QOctober 2015 was the peak month for fires with 11 incidents, this concedes with the start
of the winter harvest in Queensland. August 2015 had the second most incidents with 8
total. September 2015, January and February 2016 were equal third with 5 incidents per
month.

e The most common type of fire was identified as ‘Mobile Property fire” with 18 incidents
overall. The second most common type of fire was identified as ‘Scrub/bush/grass fire’
with 17 incidents.

(Queensland Fire and Rescue Service, 2016)

Fires attended by QFES where ignition source
was identified as agricultural equipment.

N WA~ U1 O
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Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16

® Mobile Property Fire m Structure Fire Stock Fodder Fire

Crop fire H Grass/Bush Fire

Figure 7: Fires attended by QFRS where the ignition source was identified as agricultural equipment. (Queensland
Fire and Rescue Service, 2016)

The data from these studies show that the majority of combine harvester fires start in the engine
bay and this is where the primary focus of the fire detection system should lie. The two major
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fuels for these fires are crop residue and hydrocarbon fuels and the detector systems should be
tuned as such to look for specific markers from these types of fires.

1.1 Detecting and extinguishing the fire

Early detection is the critical factor in containing combine harvester fires. Often if the response is
not immediate the fire will quickly become too big for one persons to control and even if the fire
is controlled, the combination of hot fuel vapours and hot metal surfaces will often cause the fire
to reignite.

Table 1: Elapsed time- fire ignition to Table 2:Reported effectiveness of extinguishers. (J.M. Shutske,
extinguisher use. (J.M. Shutske, 1994) 1994)
Time Percent Rating Percent
0-1 Minutes 18.8% Very effective 15%
1-2 Minutes 25.0% Extinguished fire after delay 15%
, Knock fi idn’ 79
7.3 Minutes 16.9% nc_>c eq down fire, but didn’t 67%
, . extinguish.
> 3 Minutes 9.4 % No effect 3%

These two tables show the relationship between detection time and the ability of the combine
harvester operator to extinguish a fire by themselves. We can see that in most cases by the time
the harvester operator was able to respond to the fire they had significant trouble extinguishing
the fire. However, the data from this study is somewhat biased as the responders were initially
identified by fire department reports. In most cases if the fire was successfully extinguished the
operator may see no need to contact the fire department.

Of the 50 respondents, 72% had a fire extinguisher available to them and the overwhelming
majority of these were dry chemical type extinguishers. One major issue with these extinguishers
was capacity, in some cases the extinguisher was retarding the fire until it ran out of chemical
upon which the fire reignited. The study recommended that every harvester should be fitted with
at minimum one 4.55 kg (10lb) ABC dry chemical fire extinguisher and suggested that had second
extinguisher should also be carried on board. (J.M. Shutske, 1994)

While a fully automated system detection and extinguishing system may appear to be the
ultimate solution to the problem of combine fires, if only from a loss reduction perspective. But
such a system is subject to certain limitations.

The system must include an automatic engine shut-off, testing by J.M Shutske indicates that
extinguishing a fire may be very difficult while the engine is still running. The same study notes
that a fully-automatic system would be a complex and expensive addition to the harvester,
needing detectors, wiring, controllers and plumbing, storage tanks and pumps for the dispersal
of the fire retardant. It states that a detector only system combined with the use of hand-held
fire extinguishers would be just as effective while costing less than one quarter of the amount for
the fully automated system. (J.M. Shutske, 1994)

A fully automated system enables the operator to be removed from the fire area, allowing them
to extinguish the fire from the safety of the operator cab. A hand held fire extinguisher requires
the operator to place themselves in close proximity to the fire, risking injury.
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1.2 Project Aim

The broad aim of this project is to attempt to develop a system that will detect fire on a combine
harvester and will alert the operator so that they may take appropriate action to contain and
extinguish the fire before it becomes too out of control for the operator to contain by themselves.

1.3 Specific objectives

These objectives are ranked at two levels of importance. Objectives that use the phrase ‘The
system must...” are critically important to the success of the overall system. If these objectives are
not met, then the ability of the system to meet the project aim is in doubt. Objectives that use
the phrase ‘The system should..” are performance parameters that would optimise the
performance or usability of the system but would result in critical failure of the system if they are
not met.

e The system must be able to perform its primary goal of identifying fire and the beginnings
of fire in the engine compartment of the harvester. This includes abnormal hotspots,
smoke and flame from the fire.

e The system must be able to differentiate between hotspots that occur during normal
engine operation e.g. (A hot exhaust system) and hotspots that occur from fire so that
the operator is not overwhelmed and distracted by false positives that may cause the
operator to ignore future warnings.

e The system should be able to provide the operator with feedback regarding the type of
fire situation that is developing in the engine compartment. This may let the operator
determine what type of fire is developing, e.g. bearing failure, chaff fire diesel fire etc.
and allow them to respond more appropriately to the situation.

e The system must be able to perform its primary goal under the harsh operating
conditions that the harvester operates in during harvest. These conditions include high
environmental background temperature, minimal visibility due to dust and particulate,
high sunlight load and high air flow; all of these are environmental factors that occur
under harvest conditions.

e The system must be able to alert the operator of the developing fire in time for said
operator to have a ‘reasonable chance’ of effectively combating the fire. In this case the
response time should be less than 30 seconds for an open flame and less than a minute
for an abnormal hotspot. Any longer than this may well result in the fire developing
beyond being controllable with what fire extinguishing equipment the operator has on
hand.

e The system should require no operator input (No calibration or monitoring required) and
must be able to operate with minimal operator input (Occasional calibration and/or
monitoring). If the system requires too much attention it will distract the operator from
driving the harvester, which may result in poorer harvest performance and at worst may
cause an accident.

e The system should be able to be easily retrofitted to both new and old harvesters and
should require a minimum of modification to the harvester during fitment.

e The system should be able to operate with minimal maintenance during the harvest
period.

e The system must be able to operate for extremely long continuous periods. In an extreme
case this could be up to 30+ hours.
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2.Literature Review
2.1 Current Standards

There are currently no Australian Standards regarding fire safety and combine harvesters apart
from the mounting of a fire extinguisher on the vehicle (AS/NZS 2153.7/1997) (Australian/New
Zealand Standards, 1997), there is a small section regarding the safety of the machine operator
and hot parts in the general standard regarding tractors(AS/NZS 2153.1/1997) (Australian/New
Zealand Standards, 1997) but there is nothing regarding the prevention of hot parts contacting
flammable materials.

There is a standard regarding automated fire protection systems for mobile and transportable
equipment (AS 5062-2016) (Australian Standard, 2016). The standard specifics the requirements
for the design, installation, commissioning and maintenance of fire protection systems for mobile
and transportable equipment and it will be used as a guide for the development of any fire
detection system produced by this project. Sections of note include

Section 2 and 3 of the standard deal with fire risk management and fire risk reduction
respectively. Section 5 of the standard defines fire protection systems into four basic types. A fire
alarm only type system that is capable of rapidly detecting and warning of an outbreak of fire but
lacks the capacity to take any action to combat the fire. A manually operated fire suppression
system, able to combat the fire but has no fire detection ability. It must also first be activated by
the operator. A fire alarm system combined with a manual fire suppression, able to detect and
combat an outbreak of fire but still requiring the operator to initiate the discharge of a fire
suppression agent. Finally, a fully automated system that is able to combat any outbreak of fire
without any human input. (Australian Standard, 2016)

The project will focus on creating a fire alarm only system that will rely on the harvester operator
to take action to prevent any fires. The basic requirements for a fire alarm only system are:

a) Rapidly detect the outbreak of fire.
b) Initiate an alarm signal to allow manual safety functions.

(Australian Standard, 2016)

The rest of the standard deals with the implementation of a fire suppression system and is
mostly not applicable to a fire alarm only type system.

2.2 Fire detection methods
Whatever type of fire detection sensor used it will have to contend with a difficult environment.

Engine compartments of heavy duty vehicles are, in general, spaces where detecting
fires with inexpensive and simple detection systems is arduous. High air flows and
large amounts of suspended pollutants in the compartment, together with the
complicated geometry and the wide range of surface temperatures typically
occurring during the normal operation of the vehicle, complicate the operation of all
types of detectors. The deposition of pollutants on the components of optical
detectors can impair their operation as well as obstruct the channels of aspirating
systems, thus hindering their operation or shortening their service interval. In
addition, thermal point detectors can have an extremely limited effectiveness under
high air flow conditions unless these are located in the vicinity of an eventual fire
where these can be effectively heated by the ensuing smoke and fire plumes. (Brandt
J., 2013)
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The conditions for any system operating on a combine harvester will be working under even more
difficult conditions than this. In addition to the challenges already mentioned there will large
amounts of dust and crop residue swirling in and around the engine bay.

When a fire starts, regardless of the situation, it is characterized by several distinct physical and
chemical manifestations. Theses phenomena include the flames, its size, colour, its movement,
the smoke particles and the gases created during combustion. Finally, the fire creates a wide
range of electro-magnetic radiation including visual light, infrared which manifests itself as the
heat we feel on our skin and even more exotic types such as ultra-violet. (Brogue, 2013)

We can use all of these phenomena as mediums for detecting fire, however no method by itself
can detect a fire with complete and dependable certainty. Because of this, most fire detection
system use a combination of different sensors in order to increase the accuracy and reliability of
the system. (Brogue, 2013)

The main types of sensors are particulate (smoke), light, heat and combustion gas detectors.
Particulate detectors use the particulate matter, the smoke and associated products as a medium
for detecting a fire. One of the cheapest and easiest methods uses a light source and a
photodetector, when the particulate matter in the air reaches a point of saturation where the
light can no longer be seen by the photodetector the alarm is tripped. An alternative method uses
a very small amount of a radioisotope to emit alpha particle radiation into air flowing into the
detector, ionizing the air and allowing a small current to flow through it. The presence of smoke
in the air cause a disruption of this ionizing process causes the current flow to reduce, tripping
the alarm. Both of these methods are commonly used in household fire detectors. (Brogue, 2013)

A light based system can not only just be used to detect the flame from an established fire but
can also be used to detect the smoke in the air and the heat created depending on the exact
configuration of the sensor. This type of sensor can recognize a flame by its colour and its
movement using pattern recognition techniques. It can also look for smoke moving through the
air and even the infrared (IR) and occasionally ultra-violet (UV) radiation produced. However,
these systems are considerably more complex and sophisticated than other types and require a
direct field of vision of the fire. (Brogue, 2013)

Heat type detectors can be broadly places into two different categories, point sensors and linear
or distributed sensors. Point sensors use thermistors, as the temperature increases or decreases
the resistance of the thermistor changes proportionally. They are very inexpensive but are quite
inaccurate. Linear systems use a length of sensing cable to detect changes in temperature along
its length using several different operating principles. Finally, gas detectors detect the gases from
combustion, specifically the carbon monoxide created, as it is considered to be the only reliable
gaseous indicator. (Brogue, 2013)

As previously described the engine bay of any heavy vehicle and particularly the engine bay of a
combine harvester is an extremely difficult environment to detect fire in. The dust and particulate
matter in the air will dramatically reduce the effectiveness of the smoke detection based systems
as nearly all these systems detect fire based on how much particulate is in the air sample, it is not
able to distinguish if the particulate is from a fire or if it from another source.

A visually based system will also have its effectiveness reduced but not to the extent that a
particulate system. Systems that visually based can also utilise other methods of detection like IR
or UV light that have the ability to ‘see’ through the dust where a visual light system would fail.
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Figure 8: A CASE combine harvester harvesting lentils. Notice the extreme amount of dust created during the harvesting
process. The object behind the harvester is a chaff cart and almost completely obscured by dust. (Quick, 2010)

Further complicating the particulate problem is the large air flow involved. Modern high
performance diesel engine need large heavy duty cooling systems to operate optimally, inside
the harvester itself there are large blowers used to lift lighter chaff and dust away from the
heavier seeds. The complicated geometry inside the harvester makes it difficult to predict the
airflow patterns and place the sensors in an optimal position for detection. Gas detectors are
similarly handicap by the particulate and high air flows.

These two systems types, even if the smoke or gasses do make their way into the detectors will
still have a significant delay as the smoke will need to build to a level sufficient to trip the alarm.
As previously mention the time between detection and extinguishment is the critical factor in
preventing the fire from becoming uncontrollable, even a delay of 30 seconds could be the
different between the fire being a minor incident and the loss of the harvester.

A heat based sensor is unaffected by these environmental factors but still has its own issues that
make detection of a fire unreliable in this situation. An engine bay is a hot place, the engine itself
has an operating temperature of 100°C but that is quite cool when compared to the exhaust and
especially the turbocharger, which can reach temperatures of 500°C or more. These parts present
the most obvious fire risk but could confuse a simple heat sensor as it has no way of knowing if
the heat is from a fire or just from a hot component. We could move the sensors away from these
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hot components but this would increase the delay in detection as the fire would have to move
from its starting point towards the sensor in order to be detected.

Until recently, a system based on visual detection of fire using computer vision and video cameras
was pure fantasy, the cameras were too fragile and expensive and the computational
requirements were impractical for an embedded system. However, such a system would have
numerous benefits and advantages over other types of systems. A camera is a volume type
sensor, it is able to monitor a large area and it is able to identify exactly where a fire is occurring
within its field of view as opposed to the other types of sensors which must wait until the smoke
or heat diffuses enough to reach the sensor. (Byoung Chul Ko, 2010) Since the processing and
detection occurs away from the camera, a single video feed can be analysed by numerous
different methods, increasing the speed and accuracy of detection.

This system type has a much faster detection speed than both smoke and thermal based systems.
A typical thermal sensor can have a response time of 20-80 seconds while a Near Infrared(NIR)
optical sensor can have response times as short as 350ms. (Y. Le Maoult, 2007)

Finally, in the event of an alarm, the operator can simply look at the video feed and rapidly
determine if the alarm is genuine rather than having to investigate the area in person.

2.3 Camera based detectors

For a fire detection system using digital video as the means of detection, there are two different
types of camera sensor to choose from. The Charged Couple Device (CCD) or Complementary
Metal Oxide Semiconductor (CMOS). CCD sensors were considered to be the superior type of
digital camera sensor for many years, but CMOS sensors are now reaching a level of development
and sophistication where they can no longer be relegated to second place.

A CCD camera sensor consists of closely spaced electrodes that are separated by a thin oxide layer
from a semi-conductive substrate. When a voltage is applied to the electrode, a depleted region
is formed beneath it in the semiconductor layer; this region is often described as a ‘well’ or
‘bucket” and corresponds to one pixel in the processed image. When the CCD sensor is exposed
to electro-magnetic radiation, say normal visual light, the ‘well’ fills up with the light photons
impacting it. These ‘wells’ can then be emptied by pulsing the voltage through the electrode.
(Waltham, 2013)

In a CMOS sensor each pixel has its own photodiode and readout transistor along with ancillary
electronics that address, array and buffer the analogue video signal. In most cases the processing
of the signal from analogue to digital is done on the pixel as well. (Waltham, 2013)

The fundamental different between the two types is that a CCD sensor physically captures the
light photons and processing into an electrical signal, a CMOS sensor simply reads the light falling
upon the photo diode sensor and creates its own signal. So which one to use? CCD is the older,
more mature technology but CMOS is able to exploit the same advancements in silicon chip
technology as other integrated circuits, it’s use in mobile phones and digital cameras has meant
that CMOS sensors have undergone much more R&D in the past decade that CCD sensors have.
Now we have a situation where CMOS sensors are now equalling and even surpassing CCD
sensors in metrics where the CCD was considered superior.

The very latest CMOS sensors are able to outperform similar CCD sensors, on almost all fronts.
The image quality is better, its sensitivity is comparable, a CMOS sensor is lower voltage, cheaper
and less bulky; they are also not subject to blooming, where bright lights cause oversaturation of
pixels, in the same way CCD sensors are. (Dempster, 2014)
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When we are talking about the sensitivity of a camera there are two important parameters to
understand, Quantum Efficiency (QE) and Read Noise (RE). Quantum efficiency is the measure of
how efficiently the sensor converts the light photons into charge electrons. The higher the output
level of the sensor, the more sensitive the sensor is to that particular wavelength of light. A QE of
1 indicates that every light photon generates one electron. (Adimec, 2015)

Read noise is the equivalent noise level (in electron RMS) at the output of the sensor in the dark.
The lower the noise level, the lower the minimum number of signal electrons that can be
detected. Combining these two gives the overall sensitivity of the sensor as QE/RN or the
minimum amount of light that can been seen by the camera. (Adimec, 2015)

For the purposes of this project, one of the more important factors is sensitivity to spectral bands
other than visible light, namely infrared and ultra-violet. CCD cameras can be used to detect
different spectral bands: UV (0.25-0.39um), visible light (0.39-0.75um) and Near Infrared (NIR)
(0.75-1.1um). (Y. Le Maoult, 2007) CMOS sensors can also be used to detect these bands.

The latest industrial CMOS sensors are able to dramatically outperform industrial CCD in visible
light sensitivity. But when we are looking at the NIR spectral band the gap starts to close. (Adimec,
2015)

But the latest and greatest has a large price tag attached and the potential for the sensors to get
damaged or destroyed cannot be ignored. To get a more realistic picture of how cheaper, more
easily available and more disposable sensors might perform it is worth while looking at how the
older generation of CMOS and CCD sensor compare to each other.
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Figure 9: CDD vs CMOS in 2011. (Adimec, 2015)
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Figure 10: Various CCD and CMOS sensors compared in 2011. The CMOS1-b sensor has been specially made to be more
sensitive in the NIR band. (Adimec, 2011)

In cheaper equipment we can expect to see a CCD sensor outperforming a CMOS sensor most of
the time. But we can also expect this to change within the next few years.

Cameras that can detect the entire IR spectrum are known as wideband sensors, but these
sensors are expensive, fragile and often require external cooling. Any system based on these
sensors would need to be well protected increasing weight and cost further. (Y. Le Maoult, 2007).
In this case that extra range is probably not necessary.

The detection of hotspots for all three bands is based upon the emission of blackbody radiation
from the object in question. Of the three bands, NIR offers the most potential but both UV and
visible light based systems could be able to detect hotspots under the right conditions. The
minimum temperature that can be detected using this type of system around 350 degrees Celsius
(Drysdale.D, 1996). While this means that the system should for the most part be insensitive to
normal temperature changes even during an Australian summer but could produce false positives
when viewing the hot exhaust and engine.

In the UV, visible and infrared spectrum, fires show distinct and well known set of emission bands.
These bands are the primary method that is used by detectors to sense the fire. A non-exhaustive
list of the detection criteria could include

e Energy threshold on a single spectral band or on several ones;

e Ratio of energy for two different spectral bands: the typical infrared signatures of a fire.
As fire is also a dynamic phenomenon, a temporal criterion can be added:

e The flickering analysis of energy in a spectral band due to the ‘puffing’ frequency of the
fire
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A combination of these criteria could be used to avoid false positives, increase the accuracy and
speed of detection. (Y. Le Maoult, 2007)

In the UV spectral band, a CCD camera is capable of detecting hotspots above 350 degrees’
Celsius blackbody temperature but this requires a much larger number of photons (1.65 x10710)
to hit the detector and has a correspondingly longer detection time because of this. Depending
on the type of fire it can be able to detect flame but it is insensitive to smoke. There is also the
distinct possibility of interference from solar radiation and manmade sources. (Y. Le Maoult,
2007)

In the visible spectral band, a CCD sensor cannot detect hotspots until they reach a much higher
temperature of 500 degrees’ Celsius blackbody temperature. But unlike both UV and NIR it can
detect this with a minute emission (24 photons). Flame Detection is based on the flickering of the
flame and emissions in the CH Bands. It can also detect smoke by opacity measurement with a
reflecting target and visible light source. However, the ability of a visual light sensor to see is
severely restricted by dusts and particulate matter in the air. (Y. Le Maoult, 2007)

The NIR band (0.75-1.1um) allowed the detection of hotspots down to 350 degrees’ Celsius
blackbody temperature but required around half the emission required by UV (1.813 x 1075
photons). When a NIR filter of 950nm +100nm was used the detection temperature went up to
410 degrees’ Celsius blackbody temperature for the same level of emission. (Placeholderl)

Flame detection is based on the same principles as those used for UV and visible light, looking for
the distinct emission bands and flickering mode of the flame. Using a 950nm filter produces a
weaker signal.

Smoke detection works similarly to the method used for visible light except the light source is
replaced by one emitting in the NIR spectrum. (Y. Le Maoult, 2007)

For optimal performance from a system using this type of sensor, it will most likely need to used
multiple methods of detection, probably flame and hotspot detection as smoke detection may
be extremely difficult to implement considering the amount of dust and particulate matter
already in the air during normal operation. The system will also need to use different spectral
bands, in this case NIR and visible light. UV light has limited usefulness considering the amount of
interference that solar radiation and other sources will cause.

2.4 Signal Processing

In order for a fire detection system to be considered a true ‘set and forget’ type system, it needs
to have the ability to identify a fire within its sensor range. With a system that is based on optical
video, we need to use machine vision technology that is able to recognize the flame based one
or more different indicators. This system needs to work with a minimum of delay in order to raise
the alarm as soon as possible.

The hardware package must minimal in size, rugged enough to withstand the conditions it will be
placed in and must still have enough processing power to run the signal processing software.
More sophisticated systems use special purpose systems with integrated digital signal processors,
video encoders/decoders and communication modules (Xuejun Chen, 2015)

In a study done by (B. Ugur Toreyina, 2006), the process used a video-based fire detection
algorithm looking for motion and colour cues, flame and fire flicker, quasi-periodic behaviour in
the flame boundaries and irregularity of the boundary of the fire region. Their system used four
basic steps to determine if any of these conditions had been met.
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First the algorithm looked for moving pixels or regions in the current video frame, this was done
using a simple hybrid background estimation method that compared the intensity of the current
pixel to that of a background model that was taken on the first frame. If the intensity was more
than a threshold value it is considered to be in the foreground and to be moving. They chose this
method because of its computational efficiently. (B. Ugur Toreyina, 2006)

Next the colours of the moving pixels are checked to see if the match pre-determined fire-colours.
These colours were first determined using a mixture of Gaussian distribution models made from
sample images containing fires. If the pixel being processed lies within the standard deviation of
the model, it is considered to be fire coloured and marked as so. (B. Ugur Téreyina, 2006)

Finally, the algorithm does a wavelet analysis of the moving regions in temporal and spatial
domains. The temporal wavelet analysis is looking for the repeated flicker or oscillation of the
pixels as the flame moves around in the video frame while the spatial wavelet analysis is searching
for the repeated oscillation in the colour of flame. The idea behind these two steps is to attempt
to filter out objects that are fire coloured and moving. For example, a person wearing a red
coloured shirt that walked past a fire detection system that only looked for movement and colour
would case a false alarm. That person’s movement is much more consistent than the flame and
the coloured shirt has a much more consistent red colour than a flame would have. By using the
two filtering steps it is possible to prevent such a false alarm from occurring. (Y. Le Maoult, 2007)

This team was using video in normal visible light wavelengths to detect the flame. Since the
process relies on determining the colour of the moving region before moving onto wavelet
analysis, its usefulness in the NIR region may be limited. In addition, they used many heuristic
thresholds making them impractical in real-life applications as the results will vary depending on
the input, as noted in two studies by Byoung Chul Ko, Kwang-Ho Cheong and Jae-Yeal Nam.
(Byoung Chul Ko, 2009) (Byoung Chul Ko, 2010)

This team has proposed two methods of signal processing for fire detection. In the first study the
team used a process of detecting the fire by first looking for pixels that were fire coloured, they
noted that what is considered to be ‘fire coloured’ changes depending on the environment and
the fire fuel. So instead they generated a RGB probability model using a unimodal Gaussian from
sample pictures which was then used to detect fire pixels. After the pixels are determined to be
candidate fire pixels, the system removed non-fire pixels by comparing and analysing the
difference between two consecutive frames. If the pixel didn’t move enough between frames it
was classified as a non-fire pixel and combined with the background, otherwise it was declared
to be a fire pixel. (Byoung Chul Ko, 2009)

Using just these two steps makes it difficult for the system to distinguish between what is an
actual fire and a moving object with a fire colour. In this study they used temporal luminance
variation as the third step to remove additional non-fire pixels, the idea being that a fire region
will have higher luminance contrast over several frames than a non-fire region. Finally, the system
used a support vector machine (SVM) to classify which regions were fire or non-fire within the
picture frame. (Byoung Chul Ko, 2009)

When this program was tested on various test videos containing fires and other moving regions
the overall detection rate was 86.5% with it being a true positive 86.1% of the time overall. In
comparison the Toreyina method had an overall detection rate of 71.3% with it being a true
positive only 66.4% of the time. (Byoung Chul Ko, 2009) (B. Ugur Téreyina, 2006)

A second study was conducted in 2010. The process for this program inverted the first two steps,
the movement in the video feed was detected first and then it was determined if the pixel was
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fire coloured or not. The movement detection used a very simple adaptive background
subtraction model to separate the foreground from the background in the frame by comparing
the intensity value of each pixel with a background model created on the first frame of the video,
if it is above an adaptive threshold value it is considered to be the moving foreground. The same
RGB probability model was used in this program to determine if the pixel was fire coloured or
not. (Byoung Chul Ko, 2010)

The last step of this model used a completely different process, the third step and final step used
a hierarchical Bayesian network to verify if a pixel was in fact a real fire pixel. While somewhat
more complicated than the previous methods it shows more promise as a real world model. In
this study the overall detection rate was 95.7% with the overall true detection rate being 95.3%.
(Byoung Chul Ko, 2010). It should be noted that for the Téreyina method and both of the Byoung
Chul Ko methods the same footage was used in testing.

A different approach was taken by Turgay Celik and his team in 2009. Their proposal was to use
YCbCr colour space instead of a RGB colour space. By doing this it allowed them to separate the
luminance of the image from the chrominance more effectively.

Figure 11: The original RGB image in a) and it's Y,Cb and Cr channels in b),c) and d) respectively. (Turgay Celik, 2009)

In the RGB colour space, the intensity of the pixel cannot be separated from the chrominance of
the pixel, the chrominance being used to model the colour of the pixel, by changing the image
into an YCbCr colour space, the image can be more easily analysed. The study claimed to have a
detection rate of 99% and false alarm rate of 31.5%. Unfortunately, they used different studies
and footage to test and compare results. (Turgay Celik, 2009)
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In a similar vein (Y. Le Maoult, 2007) used the variation of the height of the flame, the movement
of the gravity centre of the flame and the mean NIR energy on the surface of the flame. The use
of a NIR camera meant that the object had to be emitting large amounts of thermal radiation to
be seen, reducing the detection of false positives. Since the study had information regarding the
accuracy of the system it is impossible to say how effective a NIR only system is.

The system must have the ability to distinguish between normally hot objects e.g. A hot exhaust
muffler or the sun. Since these objects stay very static in comparison to a fire then software will
need to be ‘tuned’ to look for rapidly changing dynamic ques. | believe by using multiple cameras
that can detect both visible light and NIR the system can cross reference and compare both
sources of information, drastically increasing the accuracy of detection.

2.5 Conclusion
Surmising what has been discussed during the literature review

e Thereis an applicable standard for automated fire systems (AS5062-2016)

e The engine compartment of a combine harvester is an extremely difficult environment
to reliably detect fire in.

e When a fire starts it is characterized by several distinct phenomena including light, heat,
flame, smoke and combustion gases. These can all be used as mediums for fire detection.

e Most fire detectors require a build-up of smoke or gases in order to trip the alarm.
Camera based detectors require a line of sight to the fire.

e Camera based alarm systems can use either CCD or CMOS digital camera sensors, CCD
sensors are quickly being outpaced by CMOS sensors.

e Both CCD and CMOS sensors can detect UV, visual and NIR light with varying sensitivity.

e Machine vision programs can detect fire with some success.

e Machine vision looks for colour and movement ques to detect fire.

e The accuracy of detection is increase by using more sophisticated filtering techniques.

e Regardless of how sophisticated the system is, a human operator is still needed to
confirm if a fire has been detected.

Based on this | believe that it is quite possible to detect fire in the engine bay of the harvester,
this system does not need to be overly expensive or complex. By combining a camera or cameras
with the ability to see both NIR and visual light, and a machine vision process to automatically
distinguish fire or the precursors to a fire, a harvester fire might be detected much more quickly
that it is currently.

By giving the operator of the machine early warning they stand a much better chance of being
able to put out the fire before it becomes uncontrollable by a single person armed with a fire
extinguisher.
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3.Project Methodology

3.1 Fire System Design

3.1.1 A hypothetical retrofit

A farmer has recently purchased a second hand harvester and wishes to retrofit a fire protection
system to safeguard his investment. The harvester is a 2012 model with 3500 engine hours and
has cost the farmer $250,000 AUD. Under the farmer’s current farm insurance, he is able to claim
up $10,000 of fire prevention and extinguishment. He is willing to use his harvester as a testbed
for our fire prevention system under certain conditions.

e There are no major permanent modifications to the harvester.
e The system does not interrupt the normal running of the harvester.

Figure 12: The farmer’s new harvester

3.1.2 The system
The fire protection system will use the following components.

e Multiple cameras placed around the harvester.

e Acentral signal processing unit.

e Auserinterface

e Associated wiring, mounting brackets and other miscellaneous components.

3.1.3 Cameras

The cameras will be used to sense two different types of light, normal visual light and NIR. A third
type of light, UV, could also be used to detect fire but could have interference from normal
sunlight.

The primary constraints of the cameras are size, image quality and cost. The cameras need to be
small enough so that they can be fitted into tight spaces in and around the harvester for optimal
coverage of fire starting trouble spots. These cameras need to have good enough image quality
that the fire detection algorithm or indeed a person can make out a fire. Finally, since the system
will need multiple cameras, the cost of each individual unit should be as low as practically
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possible. Indeed, there is a large possibility that the cameras will be destroyed or damaged in the
event of a fire.

As discussed in the literature review CMOS sensor cameras have caught up to the image quality
of CCD sensors and in the near future it is probably that they will surpass them. But for now it
tough choice to pick between the two. Both types have slight advantages over one another but
there is no clear-cut winner. The low cost CCD cameras seem to have an increased sensitivity to
NIR, hence their use in low-cost night vision system that use NIR floodlights and an unshielded
sensor. So for now they will be used in the NIR part of the system.

As for the colour cameras in the system a cheap CCD provides better colour information than a
cheap CMOS camera but it is arguable that this extra colour information would be useful. A
system that used colour cues to detect fire may have better accuracy with better colour
sensitivity, it’s hard to know without testing.

Figure 13: The type of CCD camera that will be used for this fire detection system. The camera is roughly the same size
as a 50 cent coin.

Based on this the system will use CCD sensor cameras for both the NIR and colour cameras. The
cost difference is negligible, there are numerous cameras of both types on the market. Cameras
with SD TV quality range in price from 20 to 100 USD and should be perfectly adequate for this
purpose. The reason for not using a higher resolution camera is due to the increase in processing
power needed.

Increasing the resolution of the cameras results in an exponential increase in the amount of data
that must be processed by the fire detection algorithm. In a PAL standard system, the horizontal
resolution is 720 pixels and the vertical resolution is 576 pixels. Each frame therefore has 414,720
pixels. If the system has 24-bit colour (the system is able to recognise and reproduce
approximately 16 million different shades) then the data per frame is 9,953,280 bits. For live video
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at 25 frames per second the final bit rate is 289.56 megabits per second (Mb/s). This data rate
would fill a DVD (4.7GB) in 127 seconds.

If the system was to use High Definition video the frame size is increased to 1920 horizontal pixels
and 1080 vertical pixels. The resultant frame has a total of 2,073,600 pixels and with the same
colour depth and frame rate as before the resultant video has a bit rate of 1493.03 Mb/s. Using
our same DVD this time it would be filled with data in 25 seconds.

There is no real need for this increase in bandwidth as the sensitivity of the camera to light is a
much more important factor in detecting the fire. All the extra resolution does is increase the
processing requirements placed on the algorithm and the overall cost of the system.

The cameras will be mounted inside a rugged housing designed to protect the camera sensor
from the elements. The housing should meet IP67 standard, meaning that the housing should be
dust proof and able to be immersed in water up to one meter. Each camera will require a 12v
electrical connection, readily available from the harvester’s electrical system and a wired RCA for
video output to the processor unit. Wireless transmission of the video is a possibility but the
position of the cameras inside a complex metal structure may well make transmission difficult.

3.1.4 Processor and user feedback.

The central signal processing unit is the core piece of the fire detection system. It runs the
algorithms that will detect a potential fire in the video feed. There are two ways that the
processor can be constructed either as device similar to a normal personal computer or as a
specialised embedded Digital Signal Processor (DSP).

The difficulty in using a DSP comes into the initial development of the code for running on the
embedded system. Personal computers tend to be complex instruction set computing (CISC)
where a single instruction can execute several low level operations (loading and storing from
memory for example). DSPs and other embedded chips use reduced instruction set computing
(RISC), each instruction only performs one action. This simplified instruction set is designed to
result in an increase in performance for a properly written program. But a program written for a
CISC platform may not run at all on a RISC based platform, let alone run optimally.

While it is perfectly acceptable to use a normal pc for the initial construction and testing of the
fire detection algorithm, for the completed product a DSP provides significant advantages in cost,
power usage and size. Depending on how well the algorithm is optimised it may well also be much
faster than a PC based solution.

Several DSPs running in parallel could be integrated into a signal unit with another processor
controlling the overall system, giving a DSP with a potential fire detection priority over the rest of
the units. It processor should be mounted in the cabin, protected from the elements.

Once the signal is processed there needs to be some way of alerting the operator to a fire or even
to just provide information from the system. Some new harvesters come fitted with cameras in
the grain tank, rear panel and unloading auger and utilise a video screen inside the cab to display
the footage from the cameras to the operator. (Deere & Company, 2016)

This screen would provide an ideal way to display video feed from the fire system to the operator.
In the event of a fire the system could override the existing video feed and automatically switch
to the cameras that had detected a potential fire. The system would also incorporate some sort
of audio warning such as a buzzer to attract the attention of the operator. He could immediately
determine if the fire alert was genuine and take steps to contain it.
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Figure 14: An observation screen inside the cab of a harvester. This screen would be an idea way of providing visual
feeds from the cameras and warning alarms. (Deere & Company, 2016)

3.1.5 System sensor mounting
In order for the system to be effective, the sensors need to be mounted in positions where they
can view fire trouble spots. The most important area to have complete coverage is the engine
bay. To provide this complete coverage the engine bay would require multiple sensors. These
sensors could be mounted in the engine bay, on an overlooking the engine bay or even on an
Unmanned Aerial Vehicle (UAV).

Sensors mounted in the engine bay would be able to directly observe common sources of ignition,
such as the turbocharger or exhaust system, and would be able to immediately identify any
potential fire. Any sensor in this position would need to be designed to deal with heat, oil, dust
and crop matter that collects in the engine bay during operation. The ability of the sensor to
detect fire may well be reduced or even nullified if these environmental factors are allowed to
build to a critical level. (Brandt J., 2013) Additional sensors mounted in other areas would also
have to contend with these environmental factors, but not the same extent.

As such these cameras may need an addition system to keep the sensor clear of debris, one
example would be a compressed air nozzle that produced a blast of air periodically to clear the
build-up of chaff or dust on the sensor. The system could also incorporate a degreasing fluid to
remove oil as well. Of course any such cleaning system would add additional complexity and cost
to the fire detection system.

Mounting the camera in a position overlooking the engine bay moves the camera away from the
worst of the environmental factors, it also allows one set of cameras to see the engine bay.

This type of mounting would also reduce the field of view of the cameras. Because they cameras
would not be in close proximity to potential sources of ignition it may take longer for the fire to

23| Page



be detected. This type of mounting is also highly dependent on the configuration of the harvester.
In some cases, the cameras could be mounted on the grain tank making this type of mounting
very easy and convenient. But in most cases this would not provide a sufficient view of the engine
bay, making the use of a mast necessary. It also introduces the risk of electrocution as the mast
may hit overhead powerlines. (Worksafe Queensland, 2015)

3.1.6 Unmanned Aerial Vehicles

Using a UAV moves the sensor package out of the dust and away from the machine completely
enabling independent operation in a much cleaner environment. The UAV can move
independently of the harvester allowing the sensor package to get a better view of the engine
bay. In the event of a sensor failure it provides redundancy, being able to cover the area of
multiple sensors. The wide field of view would also allow the sensor package to detect fires that
start outside of the engine bay or fires that have been started in the paddock behind the
harvester.

Of course using a UAV introduces a number of challenges including, keeping the UAV aloft long
enough for the sensor package to be able to monitor the harvester, avoiding obstacles and legal
issues relating to flying UAVs.

In this arena the main constraints are payload and endurance. For the platform to be useful it
must be able to mount one or more cameras on a stabilised gimbal mount with the ability to
transmit live video back to the system processor. It must also have the endurance to be able to
fly for long periods without recharging or refuelling, so that it can provide uninterrupted coverage
of the harvester. The UAV platform must be able to meet these to requirements regardless of the
prevailing weather conditions.

As an aerial vehicle it comes under the regulatory authority of the Civil Aviation Safety Authority
(CASA) and their requirements for compliance will greatly depend on how the system will
eventually operate. Unless the harvester driver wishes to undertake a remotely piloted aircraft
operator's certificate (ReOC) or a remote pilot licence (RePL), the completed drone must weigh
less than 2 kg. The standard operation of the drone must also

e Be conducted within a visual line of sight.

e Must be kept at least 30 meters away from people.

e Not flown any higher that 120 meters AGL

e Not flown within 5.5km of controlled airspace.

e Not flown in a manner that creates a hazard to people, property or other aircraft. (Civil
Aviation Safety Authority, 2016)

UAV Platform types
There are three different types of UAV that could potentially be used for this application

e Fixed wing airplane
e Single rotor helicopter
e  Multi-rotor helicopter (Quadcopter/Octocopter)

The airplane type uses has one or more fixed aerofoils to provide lift and an engine or engines to
provide forward thrust. Of all the different types of UAV platforms it is the one with the best
potential for endurance, range and payload. However, it comes with several disadvantages
including needing space and possibly assistance for take-off and landing as the wing has a
minimum speed before it starts to generate lift. The UAV has to either get to speed on the ground
using a runway or has to be thrown by the human operator. Related to this is the minimum speed
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that the UAV can fly at. Harvester operation is done at a slow ground speed and the UAV would
need to match this speed to provide constant surveillance.

This could be achieved by using a long ‘sail-plane’ type wing designed to provide lots of lift at
these slow speeds but they are easily damaged and more subject to wind. A small cross-wind
could easily blow the UAV off course away from the harvester.

Figure 15: A large airplane type drone used in surveying. (Joe, 2010)

A single rotor helicopter solves some of these issues, it can take off and land vertically but the
large single rotor is still subject to the wind. It also has reduced range, endurance and payload in
comparison to a similar capacity airplane type.

Figure 16: A Yamaha R-max. A helicopter type UAV used in agricultural applications. (Gtuav, 2014)

This leaves the multi-rotor helicopter. Instead of using one large rotor, these use multiple rotors,
commonly four or eight mounted at the extremes of the frame. By using multiple small blades, a
multicomputer is able to fly in windy conditions that would carry the other two types away. It is
also able to take off and land vertically like a helicopter. But this comes with a severe penalty in
payload and endurance.
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Figure 17: A typical multi-rotor UAV. This UAV is carrying a gimbal mounted camera for aerial photography. (Glinz,
2013)

Despite these disadvantages, if a UAV was to be used with this system it would be of a multi-rotor
type as the need for vertical take-off and landing, and the need for flying in windy conditions
means that fixed wing or single rotor type would be rendered useless despite their endurance
and payload advantages.

Payload

Based on our previous design, the sensor package that would be carried by the UAV would consist
of the two cameras, one visual and one NIR. While the cameras are not in themselves heavy, the
camera body needed to protect them will add some weight. For these cameras to be any use they
will need to be mounted on a stabilised gimbal mount, so that the harvester can be seen by the
cameras regardless of how the UAV is manoeuvring.

The gimbal mount is also one of the heaviest if not the heaviest part of the payload. It has multiple
parts and motors that add to the complexity and weight of the overall UAV design. The video from
these cameras will also need to be transmitted back to the signal processing unit in the harvester.

One of the primary uses of commercial UAVs to date has been aerial photography. Much of the
equipment that is used can be quite ready adapted for our purposes. One particular area of
interest is First Person View (FPV) racing. Using small but very high powered quadcopter drones,
they are raced against the clock and each other through various courses. A small camera mounted
on the front of the drone transmits live video back to the operator who uses video googles to
provide a literal first person view.

While we certainly have no need for a first person view of the fire, the live video transmission
equipment could easily be adapted for our much more mundane use. The most important factor
for payload is weight, any weight saving that can be made will allow an increase in endurance as
this saved weight can be dedicated to extra battery capacity.

A rough weight budget could be
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Cameras: 15g for CCD of TV quality
300g + for HD quality
X2 plus a NIR filter for one of the cameras.
Gimbal: 25g for basic pan and scan mount
120g for 3 axes stabilised gimbal with motors and controller.
Video transmission: 16g for 2.4ghz 16 channel video/audio TX
Total Payload: 56 to 436 grams

There is quite a variance in weight depending the quality and steadiness of the image that is
desired.

Endurance

When we start to look at the endurance of the drone is where problems start to emerge. The vast
majority of drones use electrical motors and lithium-ion batteries. Li-ion batteries are a marked
improvement over older types of rechargeable batteries such as NiCad or NiMh, they have
greater power density, low self-discharge and don’t develop a memory. But there is still one
glaring issue.

Recharge time.

Charge Vicell :::J:::fafii:lrt::;e Charge time Cap::::t;:i:: ful
3.80 60% 120 min ~G5%
3.90 70% 135 min ~T5%
4.00 T5% 150 min ~B0%
4.10 80% 165 min ~00%
4.20 B5% 180 min 100%

Figure 18: Charge characteristics of typical lithium-ion cells. (Buchmann, 2016)

A typical lithium-ion battery requires around 180 minutes to be fully recharged from a depleted
state. In order to prolong the battery life, it is usually only charge to 85% of its maximum capacity.
But note that the charge is not linear, the battery needs two hours to reach 60% of its capacity,
but to get an extra 25% requires another hour. The trick will be finding the optimal balance
between recharge time and charge capacity.

Most quadcopter UAVs have a flight time of 10 to 30 minutes at most. A UAV that spends the
majority of its existence recharging instead of monitoring for fire not much use to us. Fully
charging (beyond the typical 85%) the batteries all of the time will also reduce the lifespan of the
batteries.

So why not charge the battery faster? All batteries have what is known as a C-rate which governs
how fast a battery can charge and discharge is stored energy. For a battery rated at 1C, the fully
charged battery rated at 1Ah could provide 1A for one hour. If we charge at rate above the
batteries rated C-rate, then the lifespan of the battery will be reduced. If we charge the battery
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at a rate far beyond its specifications the battery may well be damaged or destroyed during
recharging. In practice the c-rate for the charge and discharge of the battery differ with peak
discharge rates of the battery being much higher than charge rates.

700 1C Charge, 1C Dischargg}

500 : {2C Charge, 2C Discharge!

\
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|

Discharge capacity (mAh)
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100 |- Temperature: 23°C
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Figure 19: The effect of fast charging and discharging on a lithium-ion battery. (Buchmann, 2016)

Say the system was operational on a harvester and the system had two UAVs to keep complete
coverage of the harvester. Each UAV has a 10Ah battery rated at 1C charge and discharge and
has an optimistic flight time of 45 minutes. If our charger was 90% efficient the charge time on
the battery would be 66 minutes at 1C, 36 minutes at 2C and 22.002 minutes at 3C.

If the work day of the harvester is around 12hours there will be 16 charge/discharge cycles during
the day for each UAV. By 300 cycles or roughly two and a half weeks of continuous work the
battery charged at 3C has lost over half of its discharge capacity and the 2C battery has lost a
third. For this scenario this means that our battery is now down to 5Ah or 6.6Ah respectively.

The loss of capacity will impact the flight time of the drones meaning that the battery would have
to be charged even faster before it could be properly replaced.

So what alternatives are out there to using lithium-ion batteries? Unfortunately, other types of
rechargeable batteries are even worse off than li-ion. It might be possible to use primary (Non-
rechargeable) batteries, but this creates a problem of supply and waste. In our modern
sustainable world, it is unlikely that a system that could use over 122 disposable cells per week
would be accepted by the consumer, never mind the cost of such cells.

Thinking further out of the box we could change to a petrol-electric system. A small petrol motor,
similar to those used on model airplanes could be connected to a generator to supply power to
the UAV.

One such proposal would give a flight time of around 60 minutes with a payload of 3kg. (airstier
UG & Co.KG, 2016) Since our payload would only be around 1/6% of that we could use the rest of
the payload for additional fuel. At this stage this design is still in the prototype stage. It is unlikely
though that such a drone could be scaled down to a 2kg weight limit while still beating a lithium-
ion system in range and capacity.
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Since the purpose of the drone is to monitor the harvester during operation we could use the
large electrical system on the harvester to our advantage. By tethering the UAV to the harvester
using an umbilical cable to transmit power to the drone we can discarded any fuel system entirely.

The drone would need to have more sophisticated object avoidance in this setup as the umbilical
tether could easily be tangled up in trees, power lines or machinery. The limiting factor is the
weight of the cable; heavier cable would allow more current transmission enabling the use of
more powerful motors which now have to lift a heavier cable. If CASA also decided that the
umbilical cable was to be included in the overall weight of the UAV, it would almost certainly
exceed the 2kg weight limit.

Proposals for drones using hydrogen fuel cells could have flight times in excess of 4 hours but at
the time of writing these are all still in experimental stages of development.

Key Points

e The drone cannot have a weight of more than 2kg.

e The payload of the drone varies drastically with the quality of the video transmission.

e A petrol-electric or umbilical powered UAV is unlikely to meet the weight limit.

e To provide uninterrupted coverage multiple drones will be needed.

e Lithium-ion batteries degrade quickly when they are fast charged.

e A balance between charge time and charge capacity needs to be found in order to
optimise the flight/recharge cycle.

3.1.7 UAV Flight Software

Apart from the software algorithm being used to detect the fire. The UAV itself will need
sophisticated software to meet its performance objects. The UAV will need to be able to perform
an automatic take-off and landing including a return to base function when the battery cells are
nearing depletion. The drone will also need to have collision avoidance software to prevent
crashes into paddock obstacles such as trees, powerlines and alike. Most critically it needs to be
able to follow the harvester around the paddock and hold a position relative to the moving
harvester.

This last task is known as a “follow me mode’ and is starting to become common on drones
designed for the adventure market. These drones use an electronic device, most commonly a
smart phone to provide a trackable moving point that the UAV can orientate itself around. This
software solution could easily be transferred to tracking the harvester as it moved around the
paddock.

While many off the shelf solutions exist for the problems described. Not too many have all the
abilities needed wrapped into one package, those that do are proprietary solutions.
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3.2 Project Software

3.2.1 Goals

The software is the vital component of the system. Without it, it is no different to any other video
camera system. Based on the literature review, this project will be using cameras able to see both
the visual and the NIR band. The software program will be tailored to detect fire based on the
video information from these spectrums.

The program will need to reach a balance between processing speed and accuracy. The program
must be speedy enough to process a live video stream. Preferably this processing should be done
on every frame of the video output, giving an overall framerate of 24-30fps depending on the
video camera used. As a compromise if the program is unable to process every frame, it could be
possible to process every second frame (12-15fps). This would put the system in line with most
CCTV systems.

Having said that, the majority of the testing will be done in a post processing fashion. By using
post-processing, it allows testing of the hardware side of the system to be carried our
independently of the software system. By recording the testing, we can test the fire detection
program as it is developed and make changes on the fly rather than being forced to work sub
optimal programing. It also keeps a record of testing that can be referred to later.

For the system to be considered reasonably successful in detecting fire, it should have an accuracy
comparable to other types of fire detection systems. For example, the two types of commonly
used household detectors, ionization and photo-electric have an accuracy of 45% and 96%
respectively. Taking into account the much more difficult environment, | believe that an accuracy
of 50% or better is a reasonable and achievable goal for the system.

3.2.2 Raw Video Feeds

The raw video supplied from the cameras is in an analogue format, before any algorithm
processing can take place, the signal must first be converted into a digital format. This analogue
to digital signal conversion takes place on the video-capture device before it reaches the
processor proper. When the video feed reaches the processor it has a resolution of 720x576
pixels, the same as the Phase Alternating Line (PAL) TV format.

The colour format is somewhat more confusing as changes as the signal works its way from the
camera to the video-capture device and finally into the processing software. The cameras record
colour as a gamma corrected red, green and blue values (R” G’ B’). These values are then used to
calculate the intensity value Y’:

Y '=0.299R'+0.586G '+0.144B" (1)

The R’, G’, B’, Y’ signals are then used to create the colour-difference signals (B-Y) and (R-Y) known
as U and V respectively.

U=B-Y'=-0.299R'-0.587G '+ 0.899B"
V =R'-Y'=0.701R'-0.587/G'-0.144B"

For the PAL output signal, the U and V signals are combined into a single Chroma signal (C) for
transmission.

C=Usinat+V cos at (3)
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Where @ =27 f_ and f_ is the frequency of the colour subcarrier, for the PAL format this is
4.43MHz. (Margques, 2011)

Once this signal reaches the video capture device it is converted into either a UYVY or YUY2 colour
space. Both of these are 16-bit colour spaces with 8 bits for black and white and 8 bits for the
colour signal. In the processing software they are both treated as YUV video data. In this colour
space the Y’ signal is the luminance component, U and V are the Chroma colour difference signals
as previously described. The difference is that now these video feeds are digital rather than
analogue signals. Finally, the processing software will convert these values back into the RGB
colour scheme that we started with. The convoluted method of handling colour in the video signal
is due to the use of many different off the shelf parts.

The matter is made even more confusing by the NIR camera. The raw video feed appears to be a
greyscale image indicating that only the luminance signal is being transmitted. But this is in fact
not the case at all. The camera has had NIR pass filter added to the camera assembly, the
particular wavelengths that the filter allows through appears to be a greyscale image. But the
cameras sensor itself has not been modified and still supplies colour information.

3.2.3 Method of detections
To detect the fire, the algorithm will use three criteria to identify a fire in the video feeds. These
are:

e The colour of the flame, defined as the Colour method of detection. This method will only
be used on the visual light camera.

e The thermal emissions of the fire, defined as the NIR emissions method of detection. This
method will only be used on the Near Infrared Camera.

e The motion of the flame as the reaction takes place, defined as the Movement method
of detection. This method of detection will be used on both cameras.

The algorithm will run each of these methods of detection independently. Since the movement
method of detection will be taking place on both video feeds, the program will be duplicated
twice within the algorithm.
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3.2.4 Colour fire detection
For the Colour fire detection program, | am using the theory from Fire detection in video
sequences using a generic colour model by Turgay Celik and Hansan Demirel. This article was
mention in the literature review and | believe that this method will be one of most effective ways
of detecting fire in the colour video feed. | am interested to see how this theory can be applied
to this problem with success.

Figure 20: A still image that will be used to explain the colour processing methodology. This image was chosen due to
the large amounts of colour contrast between the red of the fire, the green and yellow of the harvester and the blue of
the sky. The picture contents are also relevant for obvious reasons. (Strangefarmer.com, 2016)

Colour modelling in digital systems.

To understand how we can detect fire using colour information, first an understanding of how
colour is handled by our processor and software algorithm is needed. Once we have the signal
from the video cameras in our algorithm the colour region can be interpreted in a number of
different ways. These ways are known as colour spaces (also called colour models or colour
systems) are a specification of a co-ordinate system and within a subspace where each colour is
represented by a single point. (Marques, 2011)

For our purposes there are two types of colour spaces that are of interest to us. These are
The RGB colour Space
The YCbCr colour space

The Red Green Blue (RGB) colour space is the default method in which our processing software
handles the colour information of the video feed. The RGB colour model is a Cartesian co-ordinate
system where each of the three primary axis (x,y,z) correspond to the three primary colours of
light Red=x, Green=y and Blue=z. These values normalised to the range [0,1]. The resulting cube’s
eight vertices correspond to the three primary colours (RGB), the three secondary colours
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(Magenta, Cyan and Yellow), pure white (When (x,y,z)=(1,1,1)) and pure black (When (x,y,z)
=(0,0,0)). (Marques, 2011)
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Figure 21: The RGB Colour Model (Marques, 2011)

The ability of the RGB colour space to display colour is dependent of the number of bits used to
represent each pixel. The more bits used for each pixel the more colour combination that can be
produced by the model. For 24 bit colour each pixel has a size or bit depth of 8 bits. This allows
the reproduction of 16 million colours (Marques, 2011).

The processing software represents an RGB image as a 3D array of dimensions H x W x 3, where
H and W are the image frames height and width respectively in pixels. The last dimension, 3,
represents the three different colour planes or channels. Each channel contains the Red, Green
or Blue colour information, each colour pixel is a triple containing the information of the three
colour channels. For 24 bit colour each pixel has a range of [0,255].
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Qriginal Image Red Channel

Green Channel Red Channel

Figure 22: The RGB Colour space. Notice how the greyscale images change through the different colour channels. In the
red channel we can see the fire much more easily than in the Green and Blue Channel. We can see the same effect for
the tractor and the sky in the Green and Blue channels respectively.

We can see from the above set of images that for region containing the fire, the red channel is
greater than the green channel and the green channel is greater than the blue channel. From this
we can start to develop a rudimentary rule set for the fire detection algorithm

For Fr(xly,t)

R >G >B (4)

(x,y,1) (x,y,1) (x,y,1)

Where Fr is the Fire Region and R,G,B are the Red, Green and Blue Channels respectively. x,y
represent the pixels location within the image frame and t is the frame number.
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Original Image Red Channel

Green Channel Red Channel
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Figure 23: Notice the difference in intensity across the three colour channels.

To get a better idea if this rule is correct | segmented out the fire region of the picture and
calculated the mean values for the Red, Green and Blue Channel.

Table 3: The mean pixel values of the fire region

Mean Red Mean Green Mean Blue
215.3274 153.6781 80.7202

This supports the idea that in the fire regions the Red intensity is greater than the Green intensity
and Green intensity is greater than Blue. Using the RGB colour space has significant
disadvantages, namely how this colour space handles changes in illumination. If the illumination
of the frame changes then the value of the pixel in each colour channel changes as well. This
means that a potential fire detection program will be affected by changes in illumination, it may
work better in shadow than in direct sunlight for example.

Additionally, it is not possible to separate the intensity of the pixel from chrominance in an RGB
colour model. To understand these two values, think of an object under intense lighting and then
the same object under a dark lighting. The object has not changed colour but the colour has
appeared to become less intense or darker. The intensity is the change in lighting while the
chrominance is the colour.

If we have the chrominance information of each pixel available separately to the intensity of each
pixel, we can create a more robust fire detection algorithm. To do this we need to use a different
colour space.
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YCbCr Colour Space

The YCbCr colour space also uses three channels to store the colour information of the image
frame. Unlike the RGB colour space, one of these is entirely dedicated to storing the intensity part
of the image, this is known as the Y Channel. The other two channels contain the colour
information, or chrominance. In this case the information stored is actually the colour difference.
The Chrominance Blue(Cb) Channel contains the difference between the Blue Channel and a
reference value and the Chrominance Red (Cr), the difference between the red channel and a
reference value. (Marques, 2011)

Original Image Y Channel

Chb Channel Cr Channel

Figure 24: The same image as above, this time in the YCbCr colour space.

We can easily convert our RGB image into the YCbCr colour space using a linear conversion

Y 0.2568 0.5041 0.0979 || R 16
Cb|=|-0.1482 -0.2910 0.4392 || G |+|128
Cr 04392 -0.3678 -0.0714( B | |128

(5)

Where Y,Cb and Cr are the intensity, Chrominance blue and Chrominance red respectively.
(Turgay Celik, 2009)

Once again we can see that the fire has distinct characteristics in the different colour channels.
We can see in the that the fire is defined by a dark area in the Cb Channel and light area in the Cr
Channel. To see if the RGB rule can be translated into the YCbCr channel, once again we will take
the mean values of the colour area.
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Original Image Y Channel

Chb Channel Cr Channel

Figure 25: Again we can see distinct differences between the colour channels in fire region of the picture.

Table 4: The mean pixel values for the fire region.

Y Mean Cb Mean Cr mean
154.7863 87.6760 157.1554

We can see a rudimentary set of rules emerge, our Y channel mean is larger than the Cb channel
mean and the Cr channel mean is also larger than the Cb Channel mean.

Yoo ZC0uy o

(x,y,t
(6)

X, V.t

To perform a rudimentary fire detection, the image is converted into a logical (1 or 0) array based
on the two above equations, giving us two individual arrays. The program can then combine the
two arrays into one to give a final result where the fire can be identified easily by its area. We can
describe this operation as

[ Y 2Oy Oy 2Ch
Xy, otherwise )
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Original Image Y=Ch

Cr=Ch Combined Result

Figure 26: Even with only this rudimentary rule set, we can already identify and isolate the fire area.

Figure 27: The result of Equation 1.7, while the fire region is identified, so are other unwanted regions such as the wheels
and the vehicle branding.
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This method is surprisingly effective for such a rudimentary equation but it still has quite a large
amount of unwanted noise in the image, the wheels and the vehicle branding are both yellow in
colour in the original image, being similar in colour to the fire, they are also picked up by the fire
processing algorithm. Looking back at the original set of YCbCr images, the fire region is one of
the brightest parts of the image in the Y and Cr channels. In a sharp contrast the fire region is one
of the darkest regions in the Cb channel. The equation to describe this behaviour is

Y >Y

(x,y,t) mean

Cb(x,y,t) < Cbmean
Cr

> Cr

(x,y,t) mean

(8)

To see if this idea has merit, we can compare the previously obtained mean values of the fire
region with the mean values of the overall picture.

Table 5: The mean values of the fire region and the overall picture.

Y mean Cb Mean Cr Mean
Fire Region 154.7863 87.6760 157.1554
Overall picture 122.6689 134.6142 121.7645

We can defiantly see that there is a significant difference between the fire region and the rest of
the picture. Apply this set of equations onto our picture yields:

Original Image Y=Y mean

Cb<Cb mean Cr=Cr mean

Figure 28: The parts of the image that have above or below average values.
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Combine the three equations of 1.8 results in this rule

1 ifyY >Y Ch <Ch__ Cr

— (x,y,t) (x,y,t) mean ! (x,y,1) >
(¥t 1, otherwise

Cr

Mean ! mean

(9)

First Method (Equation 7)

second Method (Equation 9)

Figure 29: The first and second methods of fire identification.
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In many ways, the second method is worse at identifying the fire region. The end result has much
more noise, in particular parts of the sky are much more prominent than in the first method. We
can still use this second method as an additional filter for our first method. Doing so gives the
following result.

Methods Combined

NI IEERE,

Figure 30: Methods one and two combined into one image.

Comparing this result to the result of method one, the wheels of the harvester are now much less
prominent than they first were. There has also been a general reduction in the overall noise of
the picture, albite only slightly. Clearly we need to improve the process before we can detect the
fire with robust accuracy.

If we study the Cb and Cr channels of the image, we can see in the fire region that there is a
significant difference between the two. The former is mostly dark or ‘black’ in colour while the
latter is mostly light or ‘white” in colour. Comparing the means of these two channels in the fire
region there is a difference of approximately 70 between the two. For the overall picture this
difference is reduced down to only 13. The rule that can be derived from this is

[ G, OB, BT
(v, otherwise (10)

Where Tcis a threshold value used to filter out pixels that have an insufficient difference between
the Crand Cb Channels. It should fairly obvious that the result of this equation is highly dependent
on this threshold value.
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t=60 t=80

Figure 31: The effect of the threshold value t on equation 10.

The optimal value of t is one that does not miss any fires or true detections while not having any
false alarms. It is not realistic to expect the system to be completely accurate in both parameters,
so instead the optimal value of t is one that maximises the true detections while minimising the
false positive detections. This t threshold is based on the Receiver Operating Characteristics
(ROC). These characteristics can be shown as a x-y plot with the false positive rate on the x-axis
and the true positive rate on the y-axis.
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Figure 32:The ROC curve used to determine the threshold value t. (Turgay Celik, 2009)
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Determining the ROC curve is a very involved process that would be highly dependent on the
cameras used. To save time the ROC curve from Fire detection in video sequences using a generic
colour model was used as the basis for selecting the t value as well as some basic experimentation

with various images.

Combining the result of Equation 10 with that of equation 7 and 9 allows additional noise to be
filtered out of the image. These set of equations will make up the basis of colour fire detection
algorithm.

Combined result of Equations 7 9 and 10

Combined result with additional filtering

o

Figure 33: The top picture shows the result of all three equations on the image. The bottom image has had additional
filtering to remove small objects.
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Tagged Fire Regions

Figure 34: The bottom image of figure 34 superimposed over the original image. We can see that the algorithm has
identified the fire area with reasonable accuracy.

The end result still has a small amount of noise in the image frame. Since these regions are much
smaller than the fire region we can remove them on the basis of area. If the region does not meet
the overall area requirement (In this case it was 800 pixels) it is removed from the frame. The
resulting image only has the fire region left. This resulting shape can be used to calculate the size
of the fire and its centroid. Both of these criteria will be used later on in the program to diagnose
the overall size and severity of the fire.

3.2.5 Near Infrared fire detection

The NIR detection method is different from the colour detection method in that a large part of
the processing takes place on the camera, and that this processing is done by the hardware rather
than the software. When the thermal radiation from the fire reaches the camera it is composed
of both visual and infrared light. The camera filter removes the visual light and only allows the
infrared component to reach the camera sensor.

The thermal radiation that is emitted from the object is governed by Wien’s displacement law
and the Stefan-Boltzmann law.

b
ﬁ’max = ? (11)

Where Amax is the peak wavelength, T is the absolute temperature in Kelvin and b is Wein’s
displacement constant, equal to 2.898x10%(-3) m.K
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E: T4
A

(12)

Where P is the total power emitted in watts, A is the of the emitting surface in m*2, T is the
absolute temperature in Kelvin and o is the Stefan-Boltzmann constant which is equal to
5.6703x107(-8) watt/m”2.K 4

Wien’s displacement law tells us that the wavelength of the infrared light from thermal radiation
is dependent on the temperature of the object emitting it. As the temperature of the object
increases the peak wavelength decreases. Stefan-Boltzmann law tells us that as the temperature
of the object increase the amount of thermal radiation emitted also increases.
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Figure 35: The relationship between wave length and energy density for different temperatures.

These to equations provide the basis for the rule set governing the ability of the NIR to detect fire
and hot objects in general. The NIR part of the Infrared spectrum has the shortest wavelength of
all IR radiation, therefore it can be understood that thermal radiation located in the NIR band will
only be emitted from very hot objects. For the 950nm + 100nm filter that is used, the minimum
detection temperature is approximately 400 °C. (Y. Le Maoult, 2007)

The second part of this rule set is that hot object will be emitting thermal radiation at a rate well
in excess of cooler objects in the same frame. This makes it very easy to filter out objects that are
not of interest as a fire will almost always be the hottest and most luminescent object in the
frame.
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Figure 36: The image from the NIR camera before any software processing takes place.

The image in figure 37 shows a cigarette lighter being lit under NIR light. The lighter fluid was
empty, the flash in the above image is purely the result of the flint-wheel ignition system. This
bright white area is ty