
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Synchronization of Multiple DVB-T USB Receivers for use

in Common Radio Astronomy Applications

A dissertation submitted by

Timothy Price

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Electrical & Electronic Engineering

Submitted: October, 2016

Abstract

DVB-T USB receivers are inexpensive devices that allow the user to stream raw in-phase

and quadrature signals to a personal computer through the use of open source software.

These signals can then be accessed to perform a wide range of software defined radio

operations.

The data streams of multiple DVB-T USB receivers were successfully synchronized to

have the correct time/phase relationship. This was done to further extend the possible

applications of the devices. It was found that the timing and delay between both devices

was dependent on the scheduling of the microcomputer being used to process the stream

of data. Through sharing of a single clock source and the design of a hardware switching

arrangement, synchronization was able to be achieved.

As a proof of concept, radio interferometry was to be applied to multiple radio telescopes

in order to produce a greater angular resolution than possible by a single radio telescope.

Two telescopes were constructed and tested and 21cm hydrogen-line emissions from the

Milky Way galaxy were successfully detected. It was found that radio interferometry in

this context was not fully possible as the sampling rate of the receivers was a limiting

factor to the system. Further applications to the synchronized devices were investigated.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Timothy Price

0061025861

Acknowledgments

I would like to express my gratitude to my supervisor for this dissertation, Dr John

Leis, who through dedication to his students and his quality of input, has made a large

contribution to the outcome of this project. I would also like to give thanks to my family

for their support and encouragement during this very busy stage of my engineering degree.

Timothy Price

Contents

Abstract i

Acknowledgments iv

List of Figures x

List of Tables xii

Chapter 1 Introduction 1

1.1 RTL Based Software Defined Radios . 1

1.2 Aims of the Project . 2

1.3 Overview of the Dissertation . 3

Chapter 2 Objectives and Outcomes 4

2.1 Chapter Overview . 4

2.2 Synchronization of Multiple DVB-T USB’s 4

2.3 Application to Multiple Radio Telescopes 5

2.4 Chapter Summary . 6

CONTENTS vii

Chapter 3 Hardware, Software and Signal Sources 7

3.1 Chapter Overview . 7

3.2 Hardware . 7

3.2.1 Analogue to Digital Converter . 7

3.2.2 Radio Frequency Tuner . 8

3.2.3 USB Dongle Selection . 9

3.3 Software . 9

3.4 Signal Sources . 10

3.5 Chapter Summary . 12

Chapter 4 Methods of Synchronization and Radio Astronomy Require-

ments 13

4.1 Chapter Overview . 13

4.2 Connect Single Clock Source to Both Devices 13

4.3 Measuring Delay Between Devices . 14

4.4 Synchronizing with Switching Hardware 16

4.5 Construction of Antenna Systems . 17

4.6 Measurements with Single Antenna and Antenna Array 18

4.6.1 Single Antenna Measurements . 19

4.6.2 Radio Interferometry . 19

4.6.3 Antenna Array Measurements . 21

4.7 Chapter Summary . 23

CONTENTS viii

Chapter 5 Application of Methodology and Testing 24

5.1 Chapter Overview . 24

5.2 Connect single clock source to both devices 24

5.3 Measuring Delay Between Devices . 26

5.4 Test System with Monopole Antennas . 27

5.5 System Software . 30

5.5.1 Parent Thread . 31

5.5.2 Streaming Threads . 31

5.5.3 Correlation Thread . 32

5.5.4 Fast Fourier Transform Threads 32

5.5.5 MATLAB . 33

5.6 Construction of Antennas . 33

5.6.1 Biquad Antennas . 34

5.6.2 Cylindrical Waveguide and Probe 35

5.7 Radio Telescope Measurements . 36

5.7.1 Single Antenna Measurements . 36

5.7.2 Double Antenna Measurements . 37

5.8 Chapter Summary . 39

Chapter 6 Discussion of Results 40

6.1 Chapter Overview . 40

6.2 Synchronization of Multiple DVB-T USB’s 40

CONTENTS ix

6.3 Application to Multiple Radio Telescopes 41

6.3.1 Single Antenna Measurements . 41

6.3.2 Double Antenna Measurements . 42

6.4 Chapter Summary . 43

Chapter 7 Conclusion and Further Work 44

7.1 Conclusion . 44

7.2 Further Work - Application to Over the Horizon Radar 45

References 48

Appendix A Project Specification 51

Appendix B MATLAB and C Script 53

B.1 Test C Script . 54

B.2 MATLAB Script . 56

B.3 Functional C Script . 57

List of Figures

3.1 Location of RF Tuner and Demodulator. 9

4.1 Libraries associated with RTL-SDR USB. 15

4.2 Proposed method of synchronization. 17

4.3 Antenna and Receiving Equipment. 18

4.4 Drift scan of the Milky Way. Image generated using Stellarium (2016). . 19

4.5 Array receiving from two sources. 20

5.1 Connection of crysal oscillator to both devices. 25

5.2 Waveform at each clock input. 25

5.3 Implementation of synchronization system. 28

5.4 Correlation of samples between binary files A and B. 29

5.5 Conceptual diagram of system software. Data flow shown by the green

arrows. 33

5.6 Left: Antenna with aluminium reflecting plate. Right: Antenna with cop-

per reflecting plate. 34

5.7 Cylindrical waveguide with expanded opening. 35

LIST OF FIGURES xi

5.8 From left to right: quarter wavelength probe, low noise amplifier, bandpass

filter. 36

5.9 Signal detected at 1420 MHz. 37

5.10 Setup of all equipment. 38

5.11 FFT results from both radio telescopes. 39

7.1 Conceptual diagram of vertical incidence sounder. 47

List of Tables

3.1 RF tuner frequency ranges (Osmocom 2015). 8

5.1 Delay between RTL-SDR USB’s. 27

Chapter 1

Introduction

1.1 RTL Based Software Defined Radios

In recent years DVB-T (Digital Video Broadcasting Terrestrial) USB receivers have come

on to the market, as low cost devices for receiving digital television and radio signals. A

conference paper from 2012 (Tseng, Change & Hsu 2012) outlines the basic components

and functions of a prototype of one of these USB receivers. The basic components outlined

are simply a tuner that can operate at the required frequencies, an analogue to digital

converter and a USB bridge to connect to a PC. Once the digital information has been

transferred to a PC, software operations can be applied to the data, and the video and

sound can be displayed to screen.

The Realtek RTL2832U is an integrated circuit featured in many of these DVT-B receivers.

The RTL2832U, is able to demodulate the DVB-T COFDM (Code Orthogonal Frequency

Division Multiplexing) signals and pass the information on through a USB 2.0 interface. A

group of researchers in a paper, discussing the possibility of using a receiver containing one

of these ICs, for GNSS (Global Navigation Satellite System) purposes (Fernandez-Prades,

Arribas & Closas 2013), mention that: Normally, those devices (DVB-T receivers) send

partially decoded MPEG transport frames over the USB, but exploiting an undocumented

mode of operation of the demodulator chip, the user is able to obtain raw I&Q samples,

stream them through USB to a personal computer and then apply the GNSS-SDR software

processing.

1.2 Aims of the Project 2

Since it became understood that these in-phase and quadrature signals could be accessed,

a wide variety of software defined radio projects have come into effect, as these DVB-

T USB receivers provide a cheap method of converting analogue radio signals into an

accessible digital form. Examples of these projects range from a distributed network of

spectrum sensing nodes (Gronroos, Nybom, Bjorkqvist, Hallio, Auranen & Ekman 2016),

a system for calculating time of arrival information from DVB-T OFDM signals, for the

purposes of positioning (Chen, Julien, Thevenon, Serant, Pena & Kuusiemi 2015) and

the use of these receivers for directly receiving GNSS information as already mentioned

(Fernandez-Prades et al. 2013).

1.2 Aims of the Project

There are two main outcomes associated with this project. These are to:

1. Synchronize the operation of two or more DVB-T USB’s.

2. Apply this synchronization to radio interferometry with two more antennas as a

proof of concept.

There are many applications that require two or more radio frequency receivers that

are phase synchronized. A good example of this requirement is from the field of radio

astronomy. Radio interferometry is the processes of using two or more separate radio

telescopes in conjunction in order to increase the angular resolution of a system. Normally

the angular resolution is limited by the physical size of the radio telescope. By linking

two more telescopes together that are at some distance apart this angular resolution can

be greatly improved. This is achieved in part by observing the difference in time it takes

for the signal to reach one radio telescope when compared to the other. For this reason

the synchronization of each receiving device is very important.

As can be seen the second outcome of the project is heavily reliant on the success of the

first outcome.

1.3 Overview of the Dissertation 3

1.3 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 describes the problems needed to be solved in order to achieve the desired

outcomes of the project. These problems are related to synchronizing each device

and the obstacles that need to be overcome to perform radio interferometry.

Chapter 3 deals with the hardware, software and type of signal sources that will be

used throughout the project. The most appropriate hardware is selected amongst

available options and different open source software packages are analyzed. A range

of different signal sources are identified and hydrogen-line emissions are chosen as

the most appropriate for the project.

Chapter 4 discusses the methodology of the project. Firstly methods of synchronization

are detailed including details of connecting a single clock source to all device. Details

of construction for the radio telescopes are discussed, followed by the required theory

of radio interferometry.

Chapter 5 presents the testing and results of the work carried out in the project. The

physical construction of each phase of the project is implemented and documented,

starting from the hardware used to synchronize the devices and following with the

construction of the radio telescopes and measurements of hydrogen line emissions.

Chapter 6 analyses the testing and results that were documented in Chapter 5. Most

notably the success of the synchronization is documented and the results from the

attempted radio interferometry are analyzed.

Chapter 7 concludes the project and describes what was achieved in relation to the

intended outcomes of the project. Further work and research is suggested that

may make use of the synchronization that was successfully applied to the DVB-T

receivers.

Chapter 2

Objectives and Outcomes

2.1 Chapter Overview

This chapter details the problems that need to be solved to achieve the aims of the project

as well as the consequential effects of achieving these aims.

The problems discussed are associated with: the synchronization of multiple USB receivers

and the extent of synchronization required, and the application of this synchronization to

multiple radio telescopes using radio interferometry.

The intended outcomes discussed here are: a method of synchronization that further

extends the uses of DVB-T receivers, and a proof of concept of this synchronization by

its application to radio interferometry.

2.2 Synchronization of Multiple DVB-T USB’s

DVB-T USB devices have already been introduced as a cheap means of providing software

defined radio operations. These devices can be purchased for as little as $15 and can

perform a wide range of operations as their operating range can go almost as high as 2

GHz. These devices only recieve one channel at a time which does remove the possibility

of doing some operations such as interferometry.

Digital multichannel phase coherent receivers that can perform these operations are orders

2.3 Application to Multiple Radio Telescopes 5

of magnitude more expensive than the cheap DVB-T USB dongles. For example the USRP

(Universal Software Radio Peripheral) B210 USB (Ettus Research 2016) has multiple RX

channels but has a price tag of just under $2000. The Airspy R2 (Airspy 2016) is another

digital RF receiver that has a single RX channel but the R2 also has built in hardware

and features that enables multiple receivers to work together with phase coherence. The

value for a single R2 is about $200 which is still substantially more expensive than a

cheaper DVB-T USB dongle.

The first problem is that of synchronizing the operation of two or more DVB-T USBs.

More specifically this means that if the exact same signal was recieved at both receivers

it would be revealed that upon investigation of the samples received it could be shown

that both recievers recieved the signal in phase.

It will be shown in section 4 that interferometry relies on the difference in distance traveled

by an EM wave as it reaches different receiving antennas. As will be seen in the following

sections the sample rate of the receivers used will be about 2.4 Mbps. The EM waves

being recieved will be traveling at approximately c which means that at a sample rate

of 2.4 Mbps a synchronization error of just 1 sample will result in a distance error of

approximately 120 meters.

In order to carry out radio interferometry there will have to be no delay between samples

on all USB receivers involved. On top of this all the USB receivers will have to be

operating on the same clock or all the clock signals need to be in phase.

If successful, one of the outcomes of this project will be to provide a cheap phase coherent

multi-channel receiver. It may be possible to extend this to more than two RX channels.

2.3 Application to Multiple Radio Telescopes

Due to the expensive nature of traditional RF receiving and front end equipment, the cost

of radio astronomy has made this endeavour difficult for hobbyists and amateurs. With

the introduction of cheap receivers such as the DVB-T receivers there have been many

examples of individuals carrying out radio astronomy experiments and observations. Very

little appears to have been done regarding arrays of radio telescopes, possibly due to the

expensive nature of multichannel receivers.

2.4 Chapter Summary 6

The second aim of this project is to use construct multiple antennas capable of performing

radio interferometry (if synchronization is successful). This will involve constructing

multiple working antennas and applying the principles of radio interferometry to these

antennas.

The outcome of this part of the project is to provide details of a reasonably inexpensive

antenna array system (compared to the $2000 price tag of the B210 USB) that is capable

of performing radio interferometry.

2.4 Chapter Summary

This chapter detailed the both main problems and outcomes associated with the project.

These are firstly to synchronize the operation of two or more DVB-T receivers, resulting in

further functionality and applications of the receivers. The second is to use this synchro-

nization to construct a radio telescope array as a proof of concept of the synchronization.

Chapter 3

Hardware, Software and Signal

Sources

3.1 Chapter Overview

This chapter details the hardware, software and types of signal sources that can be used to

carry out the aims of the project. 21cm hydrogen line emissions are identified and selected

as an appropriate signal source for use when testing the operation of the equipment.

3.2 Hardware

DVB-T USB devices, in general follow an initial basic form presented at the 2012 Inter-

national Conference on Advanced Technologies for Communications (Tseng et al. 2012).

That is, they consist of a radio frequency tuner, an analogue to digital converter, and a

USB to pass on the information. RTL-SDR devices provide a cheaper alternative to more

expensive tuner/receiver equipment.

3.2.1 Analogue to Digital Converter

All additional operations of software defined radio, involving the DVB-T USB devices,

are centred on the mentioned undocumented mode of operation, resulting in access to

3.2 Hardware 8

in-phase and quadrature signals. These signals are accessed from the Realtek RTL2832U

integrated circuit (Realtek Semiconductor Corporation 2016). This leads to the common

abbreviation of RTL-SDR (RTL2832U Software Defined Radio) when referring to these

devices. This abbreviation will be used henceforth when referring to a DVB-T USB

device, as accessing the demodulated DVB-T data is not the purpose of this project.

As stated from the Realtek RTL2832U website: The RTL2832U is a high-performance

DVBT COFDM demodulator that supports a USB 2.0 interface. When implemented in a

RTL-SDR device, the RTL2832U acts as an ADC that converts a radio frequency signal

received from a radio frequency tuner, converts this to digital and passes the information

on through a USB bridge. As well as the demodulated DVB-T CODFM signals, raw

in-phase and quadrature data is passed through the USB bridge.

3.2.2 Radio Frequency Tuner

The first stage of an RTL-SDR is the radio frequency tuner. Multiple RF tuners are

available on the market, and have been implemented in a wide variety of RTL-SDRs.

The following is a summary of the frequency ranges of available RF tuners, provided by

osmocomSDR (osmocomSDR, 2015):

Table 3.1: RF tuner frequency ranges (Osmocom 2015).

Tuner Frequency Range

Elonics E4000 52 - 2200 MHz (gap from 1100 - 1250 MHz)

Rafael Micro R820T 24 - 1766 MHz

Rafael Micro R828 24 - 1766 MHz

Fitipower FC0013 22 - 1100 MHz

Fitipower FC0012 22 - 948.6 MHz

FCI FC2580 146 - 308 MHz and 438 - 924 MHz

Datasheets were investigated to confirm these reported frequency ranges. The only avail-

able datasheets were for the Elonics E4000 (which is now not in production) and the

Rafael Micro R820T. The E4000 datasheet (Elonics 2010) states an official frequency

range of 64MHz 1700MHz, while the R820T (Rafael Micro 2011) datasheet states an

official frequency range of 42MHz 1002MHz. From this it is apparent that these RF

tuners can be used outside their maximum reported ranges.

3.3 Software 9

Figure 3.1: Location of RF Tuner and Demodulator.

Since the Elonics E4000 is no longer in production, the Rafael Micro R820T is the most

popular tuner for RTL-SDR applications. Recently the R820T2 has become available.

Kalberla (2015) from the Argelander Institute for Astronomy tested the new R820T2

RF tuner over frequencies between 24MHz 1700Mhz found that the RF820T2 was ap-

proximately 2.7dB more sensitive than the R820T, and ran at a 50% reduced system

temperature. The R820T2 appears to be the best choice on the market at this current

time.

3.2.3 USB Dongle Selection

A USB dongle incorporating both the RTL2832U demodulator and the R820T2 tuner

was selected. This dongle can be seen in figure 3.1 containing both components.

3.3 Software

There are numerous software packages available that can process the raw I & Q data

received from the RTL-SDR devices. In particular there are two packages that appear

to be used most frequently. One is GNU Radio, which is designed to run on a Linux

platform. The other is SDR# (pronounced SDR sharp).

As stated on the GNU Radio homepage (GNU Radio 2015): GNU Radio is a free & open-

source software development toolkit that provides signal processing blocks to implement

software radios. Within the GNU development environment, multiple signal processing

blocks are able to be strung together to perform more complex operations. Functions

3.4 Signal Sources 10

performed by these blocks are operations such as (but not limited to): filters, channel

codes, synchronization elements, equalizers, demodulators, vocoders and decoders.

If the required operation isn’t available as a signal processing block, further functionality

can be added through the use of Python script. This results in a very flexible software

package that has the potential to be able to deal with any software defined radio operations

required. GNU Radio can also be run in simulation mode, if no hardware is connected to

the PC. One downside with GNU Radio that has been noted is the difficulty of installing

the software. While GNU Radio supports a wide range of RTL-SDRs, there can be

some initial difficulty getting the software installed correctly and receiving data from the

hardware.

The other popular software package on the market, SDR# by Airspy (AIRSPY 2015),

is a windows based software package. This software package is popular, since it is easy

to install on a windows platform, and easy to interface with an RTL-SDR USB. SDR#

has many basic operations such as spectrum analysis and decoding and playing received

audio, but lacks the specific signal processing blocks that GNU Radio uses. Further

functionality can be added to SDR# through the installation of third party modular

plugins. These plugins can add functionality such a QPSK Demodulator or FFT display.

Stringing together functions from these modules can be quite difficult as again, SDR#

doesnt have the signal processing block development functionality as GNU Radio, and

having modules from different third parties, work together can pose issues.

The software defined radio operations required by this project, will most likely be out of

the scope of SDR#. While it may take more time initially to install GNU Radio, the

additional functionality will most likely be needed.

3.4 Signal Sources

Multiple potential radio frequencies that could be used for the project were investigated in

the literature review. These included phenomena that originated internally and externally

to the Earths atmosphere.

Internal sources included Whistler-mode radio waves (Devendraa Siingh, Patel, Singh,

Singh, Veenadhari & Mukherjee 2008). These are radio waves ranging from the Hz to MHz

3.4 Signal Sources 11

range, and are created by lighting. Radio waves of this type that are within the audible

range (Hz to kHz), and are able to propagate multiple times around the circumference of

the Earth’s atmosphere. These particular waves are called whistlers, and can be detected

by specialized equipment.

Another source created within the Earth’s atmosphere is that of meteors. The ionization

trail (streak of light left by a meteoroid entering the atmosphere), can be detected, as it

reflects frequencies between about 30MHz to 150MHz (Entwistle 2014). This is done by

using a transmitter to transmit the radio waves at the correct frequency, and a receiver

to listen for a reflection.

Sudden Ionospheric Disturbances (SIDs), occur after a solar flare. The radiation from

the solar flare swamps the ionosphere, resulting in a very high ionization density with

the D region (Gupta, Mitra & Sarkar 1973). A SID can be detected by monitoring VLF

transmitting stations. An SID will drastically increase VLF propagation, therefore by

detecting an increase in power from a VLF signal, an SID can be inferred, which in turn

suggests a solar flare occurrence (Howe 2015).

When detecting radio emissions external to the Earth, there is a certain window of fre-

quencies that can be observed. This ranges from 10Mhz at the lower end, due to reflection

by the ionosphere (S.Beasley & M.Miller 2008), while the upper limit is about 1.5 THz

due to absorption by the lowest rotational bands of molecules that lie within the tropo-

sphere (L.Wilson, Rohlfs & Huttemeister 2013). At about 20MHz emissions from Jupiter,

at the correct times, can be detected by a two element phased dipole array of about 7m.

This is being done as part of a NASA project, called Radio Jove (Nasa 2016) that looks

to involve primary, secondary and college students in radio astronomy. Prediction tables

give the best times to view these emissions.

Continuum emissions are extra-terrestrial emissions, that are not intermittent and have

been mapped extensively over the past century (Wielebinski 2003). It is common for

measurements to be taken at the frequency of 408 MHz, and this was done frequently

after about 1970, when data processing technology improved.

Another frequency that is considered a continuum emission, is the frequency generated by

a change in energy state of neutral hydrogen. This is commonly referred to as the 21cm

(wavelength) hydrogen line and can be easily detected because the frequency emitted is a

3.5 Chapter Summary 12

precise 1420.405751 MHz. As quoted, in a survey of galactic neutral hydrogen (Kalberla,

Burton, Hartmann, Arnal, Bajaja, Morras & Poppel 2005): The emissions from hydrogen

are transparent, revealing the whole galaxy better than optical methods. This frequency

band 1400 MHz 1420 MHz has been protected by the International Telecommunication

Union (ITU), to protect observations of the hydrogen line (Robinson 2001).

Because the nature of this project is to test a noise reducing method, using RTL-SDRs,

intermittent phenomenon will not be suitable for testing. This rules out all signals created

from sources such as lightning (whistlers) and the detection of SIDs. The testing needs to

be replicated as much as possible, therefore continuum emissions will be ideal for use. In

particular, the 21cm hydrogen line will be the focus of the project, as it sits at a specific

frequency and is well documented.

3.5 Chapter Summary

This chapter investigated and selected appropriate hardware, software and wavelengths

to be used for the project. The following has been selected:

Hardware A USB dongle incorporating both the RTL2832U demodulator and the R820T2

tuner has been deemed appropriate for the project.

Software GNU Radio appears to be the ideal software package due to it’s flexibility and

ease of writing custom script.

Signal The 21cm hydrogen line is to be used as it is consistent, well documented and

sits within a protected RF band.

Chapter 4

Methods of Synchronization and

Radio Astronomy Requirements

4.1 Chapter Overview

This chapter contains the methodology and expected results for each phase of the project.

The following topics are discussed: The need for connecting a single clock source to both

devices, the measurement of delay between devices, a system for improving the delay

between devices, details specifying the construction process of the radio telescopes and

measurement methods and principles of radio interferometry.

4.2 Connect Single Clock Source to Both Devices

The R820T2 RF tuner operates on an external 28.8 MHz crystal oscillator. The waveform

from the oscillator is passed through a phase locked looped and then mixed with the RF

signal to provide an intermediate frequency. This IF is then filtered and fed through

to the RTL2832U demodulator. The R820T2 also passes the clock waveform through a

buffer and to the external inputs of the RTL2832U. From this it is obvious that both USB

devices need to share the same clock signal in order for the outputs to be synchronized.

The clock inputs on both R820T2 IC’s need to be connected together. This will be

achieved by removing the crystal off one of the devices and connecting the inputs on that

4.3 Measuring Delay Between Devices 14

device to the crystal on the other device with a short length of coaxial cable. In effect this

will mean that both RF receivers will be receiving clock signals from the same crystal.

To ensure the correct operation after both devices have been connected to a single clock

source, the following tests will be carried out:

1. Using an oscilloscope, measure each waveform at the R820T2 and ensure that:

(a) There is no phase difference.

(b) The magnitude of the waveform has not decreased significantly.

2. With both devices connected and powered, test each separately and then together

to ensure correct operation and ensure no damage has occurred.

An issue that is likely to occur is that the single oscillator will not be able to provide

enough power through the coaxial cable to the other device. This will result in the

magnitude of the clock signal on the other device being too low for correct operation. If

this occurs the clock signal will need to be passed through a voltage buffer before being

received at the other device.

4.3 Measuring Delay Between Devices

There is a series of software libraries and programs that allow the I&Q signals to be

accessed from the demodulator. For the project, the operating system used was Ubuntu

16.04 LTS. The control structure for accessing the I&Q signals is shown in Figure 4.1.

The libusb library contains all the necessary functions to communicate directly with a

USB device. The rtl-sdr code base (Osmocom 2015) contains the librtlsdr library that

is able to control the operation of the RTL-SDR USB device using the libusb library.

There are a few programs that are a part of the rtl-sdr codebase. These programs are

able to basic operations with the RTL-SDR USB, although there is are programs that

can perform any signal processing operations.

GNU Radio operates by connecting together ‘blocks’ to perform simple or complex signal

processing operations. These blocks generally fall into the following categories:

4.3 Measuring Delay Between Devices 15

Figure 4.1: Libraries associated with RTL-SDR USB.

Source blocks provide a stream of data to the system. The data stream from the RTL-

SDR USB will be a source.

Sink blocks consume data. These can include graphs and outputs to files.

Functional blocks contain inputs and outputs and are responsible for any signal pro-

cessing.

GNU Radio and each block is coded in C. Each block can be linked together with Python

script. GNU Radio uses SWIG (Simplified Wrapper and Interface Generator) which gives

an interface between GNU Radio and a controlling Python script. The GNU Radio

Companion (GRC) provides a graphical interface to further simplify this process.

Both devices will be connected to a single monopole antenna through the use of an RF

splitter. The following tests will then be carried out:

1. Through the use of GRC, both sources will be started at the same time as data

streams. This data will be placed into binary files. Matlab will be used to compare

the delays between both devices over multiple tests.

2. Using the librtlsdr libraries directly, a C program will be written that starts data

streams from both RTL-SDR USB devices at the same time. Matlab will be used

to compare the delays between both devices over multiple tests.

It is expected that the delays between devices for each tests will vary dramatically de-

pending on the priority the operating system is giving to each individual process running

4.4 Synchronizing with Switching Hardware 16

at the time.

4.4 Synchronizing with Switching Hardware

This section describes the the use of RF switching and splitting equipment to achieve

synchronization between each USB device. In order to carry out radio interferometry the

operation of each USB device needs to be synchronized. If both signals were expected

to be in phase, a simple correlation of waveforms could be carried out to determine the

delay between each device. In the case of radio interferometry it is expected that each

device will not receive the same waveform in phase, but rather there will be a slight phase

difference depending on the distance between receiving antennas.

An initial idea included the use of an additional antenna for synchronization purposes.

Multiple USB devices would all receive the same signal from a single antenna (tuned to

a strong signal such as a commercial FM station), the delay between each device would

be calculated with correlation and the devices would then be switched back to individual

antennas and retuned for the 21cm H-Line. The problem with this method is that every

time each device is tuned to a different frequency the delay between each device changes

dramatically.

A possible solution to this problem is to use one of the 21cm H-Line antennas as the single

antenna to find the delay for both devices. Both devices can receive the signal from the

one antenna and after the correlation and delays have been calculated the 2nd, 3rd, 4th...

receivers can switch back to their own antennas. This could occur in real time while the

each device is running without having to re-tune a device. Figure 4.2 further clarifies the

proposed solution:

With reference to Figure 4.2 the following procedure would take place:

1. RF switch is in position 1 and both USB’s are connected to antenna 1

2. Each USB is tuned to 1420.4 MHz and both start streaming data into separate

binary files

3. After a short period of time (say 1 second; to be optimized after testing) the RF

switch will switch into position 2 which results in each USB recieving from an

4.5 Construction of Antenna Systems 17

Figure 4.2: Proposed method of synchronization.

individual antenna. Note that neither USB will be switched off or re-tuned at this

point, so the data stream will be continuous.

4. Both devices will continue running for as long as necessary.

5. This will result in only 1 binary file per device. The 1st second of samples (1st

period) from each device will represent the period when the RF switch was in

position 1 and the remainder (period 2) will be from when the RF switch was in

position 2. The samples from period 1 will be correlated and a delay found. This

delay can then be applied to the samples from period 2.

It should be possible to carry out step 5 in real time or during post processing. This

proposed solution bypasses the problem of the delay changing every time the devices are

retuned.

4.5 Construction of Antenna Systems

Each antenna system needs to be constructed before any interferometry testing can be

carried out. The components for each system will be as shown in figure 4.3. All con-

4.6 Measurements with Single Antenna and Antenna Array 18

nections will be made with SMA (SubMiniature Version A, 50 Ω) connectors and coaxial

cable.

An 80cm dish antenna with a cylindrical waveguide and dipole feed will be used to pick up

the required signals. Dish antennas are cheap and widely available for purchase but the

waveguide and dipole feed will be manually constructed to save on costs. After the dipole

feed, the signal is to be passed through a 1420 MHz bandpass filter and then amplified

by two line amplifiers.

Before the second antenna system is constructed the first is to be tested. The methodology

of this test is detailed in the next section. The second antenna system will be constructed

in the same manner as the first. Once both antenna systems have been constructed and

their operation verified they will be integrated together. Instead of connecting directly to

a USB receiver, the antenna systems will be connected to the RF switching system shown

in figure 4.2.

Figure 4.3: Antenna and Receiving Equipment.

4.6 Measurements with Single Antenna and Antenna Array

Before an array of antennas can be attempted, a single antenna system needs to be

constructed and tested. After the operation of a single antenna has been proven the array

of antennas can be constructed and radio interferometry principles can be applied.

4.6 Measurements with Single Antenna and Antenna Array 19

4.6.1 Single Antenna Measurements

To test the operation of a single antenna the galactic plane of the Milky Way is to be

used. Orientating the direction of the antenna to azimuth (90◦), a drift scan is to be

carried out that will pass the direction of the antennas over the centre of the Milky Way.

To carry out a drift scan, the antenna needs to be simply orientated in one direction and

the rotation of the Earth will pass the antenna over a range of locations.

Figure 4.4: Drift scan of the Milky Way. Image generated using Stellarium (2016).

Figure 4.4 shows an example of one of these scans. The time of year is towards the end

of May and the time of the scan ranges from 11:30PM to 02:30AM. The scan starts at

the edge of the constellation Lupus, passes through Scorpius and the center of the Milky

Way and finishes approximately in Sagittarius.

The expected results from a scan such as figure 4.4 is of a signal that drastically increases

then decreases in strength as the path of the antenna passes over the center of the Milky

Way.

4.6.2 Radio Interferometry

With reference to figure 4.5, the principles of radio interferometry that will be applied to

this project are as follows.

4.6 Measurements with Single Antenna and Antenna Array 20

Figure 4.5: Array receiving from two sources.

Vector ~B is the separation between antenna 1 (a) and antenna 2 (b). The unit vector

ŝ1 is normal to source 1 (S1). T1 is the additional time the signal from S1 takes before

reaching antenna b after it has already been received by antenna a.

Each antenna will receive the combined voltage from both signals S1 and S2.

The voltage received from both antennas will be:

Ea(t) = e1(t) + e2(t) (4.1)

Eb(t) = e1(t− T1) + e2(t− T2) (4.2)

Ea(t) is labelled as f and Eb(t) is labeled as g. These two signals are then cross correlated.

4.6 Measurements with Single Antenna and Antenna Array 21

f ? g =

∫
f(t)g(t− T) dt (4.3)

=

∫
[e1(t) + e2(t)][e1(t− T1 − T) + e2(t− T2 − T)] dt (4.4)

=

∫
e1(t)e1(t− T1 − T) + e1(t)e2(t− T2 − T) ...

...+ e2(t)e1(t− T1 − T) + e2(t)e2(t− T2 − T) dt (4.5)

The terms containing both e1(t) and e2(t) can be removed as the the combination of these

unrelated signals will be noise. This results in:

f ? g =

∫
e1(t)e1(t− T1 − T) + e2(t)e2(t− T2 − T) dt (4.6)

From this equation it can be seen that high cross correlation results will only occur when:

T = −T1 or T = −T2. In these situations the strength of each signal can be found because

the resulting simplified correlation:
∫
e21(t)dt or

∫
e22(t)dt will only contain terms from a

single source.

There also may be other sources present which means that there can be strong correlation

results for many values of T .

4.6.3 Antenna Array Measurements

The theory from the previous section can now be applied to the system designed in

this project. Each antenna is to be placed apart and the separation between antennas

measured. After each antenna has been positioned to point to the same location, the

following procedure will occur:

1. Synchronize and start both antennas

2. Cross correlate data from both antennas over entire range of samples. Strong cross

correlation results at different values of delay will indicate one or more sources.

3. Using the sampling rate of the receiver, calculate the time value of the delay (in

seconds).

4.6 Measurements with Single Antenna and Antenna Array 22

4. Referring to 4.5, the values for c, ~B and each T are now known. From this informa-

tion it is possible to calculate the unit vector ŝ related to each source.

5. The cross-correlation result for each source will be
∫
e2(t)dt, allowing the signal

strength of each source to be known.

Note that with step four, the precise coordinates of each source will not be able to be

determined with only two antennas. Referring to 4.5, the unit vector will only reveal the

orientation of the source relative to a two point Cartesian coordinate system (x,y). The

plane of this (x,y) system will share points located at each antenna location (a and b)

and any point that lie along the direction (altitude) that both antennas are orientated

towards. To obtain a three point unit vector, an array of at least three antennas needs to

be used so that the exact position of the source can be triangulated.

The angular resolution of a single antenna is:

R =
λ

D

where D is the diameter of the antenna dish and R is the angular resolution. In the case

of an antenna array the resolution is:

R =
λ

B

where B is the separation between antennas. To test the operation of the array of an-

tennas, sources will need to be found that are too close to be individually detected by

the single antenna and not too far apart so that the array of antennas can’t detect them.

This will depend on the separation between antennas. Issues concerned with the success

of synchronization may appear at this stage. If both devices are not correctly synchro-

nized, multiple sources will still be detected although the unit vector determining their

location will be incorrect.

4.7 Chapter Summary 23

4.7 Chapter Summary

In this chapter the methodology for carrying out the project was discussed. Firstly

methods and ideas for synchronizing each USB receiver were detailed. The hardware

for constructing each antenna was then detailed and finally procedures for carrying out

measurements and applying interferometry were examined.

Chapter 5

Application of Methodology and

Testing

5.1 Chapter Overview

This chapter contains the testing and results for each phase of the project. The follow-

ing concepts are implemented are discussed: The connection of a single clock source to

both devices, the measurement of delay between devices, the construction of a system to

test for synchronization, the construction and testing of two radio telescopes and finally

measurements using the array of two radio telescopes.

5.2 Connect single clock source to both devices

The 28.8 MHz crystal oscillator was removed from one of the RTL-SDR USBs. A short

length of coaxial cable was used to connect to connect this device to the crystal oscillator

of the other RTL-SDR. The result can be seen in figure 5.1.

A possible issue with this type of connection is that the oscillator circuit may not be able

to provide enough power to operate two seperate devices. To test this an oscillator was

used at the clock input terminals of each device. the results are shown in figure 5.2. As

can be seen there is no noticeable change to the magnitude of the clock waveform between

either device.

5.2 Connect single clock source to both devices 25

Figure 5.1: Connection of crysal oscillator to both devices.

Figure 5.2: Waveform at each clock input.

5.3 Measuring Delay Between Devices 26

Further tests were carried out to ensure the correct operation of each USB device. Both

devices were connected to a single monopole antenna through the use of a RF power split-

ter. Each device was then simultaneously operated for 5 seconds at a sample rate of 2.4

Mbit/s and the samples stored in separate binary files. Using MATLAB, cross correlation

was carried out between sections of samples from each binary file. The samples cross cor-

related between each binary file were samples 50e3:150e3, 3050e3:3150e3, 6050e3:6150e3

and 9050e3:9150e3. Using the maximum value of cross correlation the delay was found for

each section of samples. In every case this delay was 49572 samples. This demonstrates

that the same waveform had been received by each receiver (with a delay) and in turn

proves the correct operation of both receivers sharing a single clock source.

5.3 Measuring Delay Between Devices

As per the methodology, two methods were used to used to measure the delay between

devices when both have been started simultaneously by software alone.

The rtl-sdr software library contains a program that will tune and start a RTL-SDR device

and stream the output I&Q data into a binary file. A C program was written to start this

program as a seperate processes for each RTL-SDR device. Memory sharing was used to

communicate between the parent and child processes. This script for this program can

be found in appendix B section B.1. A dozen seperate tests were carried out, resulting in

24 individual binary files containing the data.

The second method used the GNU Radio environment to perform the same operation. A

short python script was created within the GNU Radio Companion environment to run

each device for 5 seconds and stream the data into individual binary files, resulting in a

total of 24 binary files.

MATLAB was again used to perform cross correlation between samples and find the value

of the delay between each device. The results tabulated in table 5.1. The delays present

when using GNU Radio range between -340 to 336 samples which is much less than the

range of the delays obtained with the C script which range between -46448 to 21356

samples.

This test also reveals that every time one of the RTL-SDR devices are re-tuned and

5.4 Test System with Monopole Antennas 27

Table 5.1: Delay between RTL-SDR USB’s.

Test Using C Script Using GNU Radio

1 -38474 336

2 9738 -32

3 -44096 4

4 -33912 -84

5 -30822 -168

6 12014 242

7 14044 28

8 -9842 -340

9 -27796 -220

10 6548 96

11 -46448 164

12 21346 8

restarted the delay varies by a large magnitude. A single value for a delay cannot be

found and applied to any further signals.

The poor performance of the C program is due to the fact that it starts multiple copies of

a single executive in separate processes. All the overhead of starting individual executives

is introduced before data can be extracted from the buffers of each USB device.

5.4 Test System with Monopole Antennas

The system of using a RF switch and power splitter was implemented as described in

chapter 4 and figure 4.2. The components for this system can be seen in figure 5.3

and monopole antennas were used for test purposes. The arduino board is being used

to control the switching of the RF switch through the relay. A 12 VDC power supply

supplies power for both the switch and the relay coil.

The manufacturer of the monopole antennas detailed the most effective range of operation

between 820 MHz to 960 MHz. Using a single monopole antenna attached to one of

the DVB-T USBs a simple GNU Radio script was implemented that scanned the signal

strength between the frequencies of 820 MHz to 960 MHz. It was found that a definitive

5.4 Test System with Monopole Antennas 28

Figure 5.3: Implementation of synchronization system.

signal was located at 953 MHz. During testing of the RF switching system both DVB-T

USBs were tuned to that 953 MHz.

The C script already mentioned was modified to control the operation of all the compo-

nents for test purposes. Again this script can be found in appendix B section B.1. The

script starts both DVB-T USBs and streams the output into separate binary files. Each

device is started and controlled by its own process and shared memory controls the timing

of each process. Immediately after starting the devices a signal is sent to the arduino that

in turn closes the normally open switch on the RF switch for a period of one second. As

described in Chapter 4 when this switch is closed both DVB-T USBs are receiving the

same signal from a single antenna. After the switch reverts back to its initial position

(where each USB device receives a signal from different antennas) the streaming processes

continue to run for another 4 seconds.

The binary files created from this processes contain the raw I&Q samples. A MATLAB

script is then used to deinterleave this data and correlate the samples at different portions

of binary files to test whether the switching system was successful or not. This MATLAB

script can be found in appendix B section B.2. The MATLAB script carries out the

following operations:

1. Imports each binary file into MATLAB and deinterleave the data from each file.

We will call these files A and B.

5.4 Test System with Monopole Antennas 29

2. Converts the deinterleaved I&Q samples into magnitude and phase information. In

both A and B samples between approximately sample 1 to sample 2.4e6 correspond

to the time when both antennas are receiving from a single antenna. Samples from

2.4e6 to 12e6 correspond to its own antenna.

3. Cross correlates samples between A and B that lie between sample 1 and sample

2.4e6. Using this information the script finds the delay between samples.

4. Carries out the same cross correlation between A and B on samples that lie between

2.4e6 to 12e6. Again the scipt finds the delay between samples.

Each monopole antenna was placed no more than 5cm apart. It was expected that the

delay from both portions of the samples would be the same and this was confirmed

by testing. In over 90% of the tests the delays were 0. In the remaining tests this

delay was between 2 and 6 samples. When switching the RF switch, interference can be

heard through the computer speakers. This interference may be caused by poor electrical

isolation between the relay coil of the RF switch and the contacts of the switch itself. It

may be responsible for the 10% of test cases that did not share delays.

Figure 5.4: Correlation of samples between binary files A and B.

The cross correlation between A and B for samples in the first and second portions of the

binary files can be seen in figure 5.4. It is apparent in figure 5.4 that multiple continuous

5.5 System Software 30

frequency components are present in each signal.

As noted, the C script is much slower in operation when compared to using GNU Radio.

Another consequence of this method is that it becomes very difficult to precisely control

the flow of data from each device as each individual process needs to be accessed and

controlled by the parent process with shared memory and pipes. This makes it very

difficult to processes the data in real time while data is still being streamed from each

device.

Using GNU Radio also proved to be problematic. While it was fairly simple to start and

stream data from both devices at the same time, it was difficult to control and manage

the timing of the RF switch with the timing of the data streams. Controlling individual

data buffers also proved difficult. GNU Radio routines are written in C and then accessed

through Python with an interface wrapper. While there are almost certainly solutions

to control the data and switching with GNU Radio libraries, doing so adds a layer of

complexity that is not required with this project.

The solution in the end was to modify the already available RTL-SDR programs. Instead

of starting instances of these executables in separate processes, they were modified so only

one standalone executable needed to be started that controlled all aspects of switching

and data flow. Multiple threads are used within the single executable to manage multiple

devices and files. Data flow and control is much simpler with this method as control is

much easier accomplished within the same parent process. An explanation of the program

is contained in the next section.

5.5 System Software

The program consists of multiple concurrent threads performing a range of operations

including data streaming, correlation and fast Fourier transforms. A conceptual schematic

of these threads and the data flow is shown in figure 5.5. A copy of the script for the

program can be found in appendix B section B.3. While the majority of the program has

been rewritten, minor elements still exist that were written by the author of the open

source RTL-SDR software (Markgraf 2012).

5.5 System Software 31

5.5.1 Parent Thread

The parent starts both USB receivers and determines all the settings such as frequency and

sample rate. After starting each device the delay between devices needs to be calculated

before any results can be interpreted. The parent thread will start two instances of

a data streaming function in individual threads. These streaming functions will each

output a block of data from each device after the devices have been allowed to settle

for a few seconds. The parent thread will perform a sliding window correlation between

both sets of data and from the results it will calculate the delay present between each

device. While this is being calculated, the streaming functions will continue to stream

data uninterrupted. After the delay is calculated the parent thread will then start the

correlation function in it’s own thread and will then start two instances of the Fast

Fourier Transform function in separate threads. The calculated delay is passed into the

correlation function as an argument. The parent thread will allow all child threads to run

continuously until the user cancels the operation.

5.5.2 Streaming Threads

Two instances of the streaming function are started by the parent thread; one for each

device. The streaming function uses a synchronous mode of transfer to transfer data from

each device to a data buffer. Each time the synchronous transfer function is called, a block

of data of predetermined size will stream from the device to the data buffer. Using this

synchronous mode of transfer makes it easier to control exactly how many bytes of data

have been transfered so that both streams of data can be maintained in a synchronized

manner after the delay has been corrected.

Initially each streaming function will output data to a temporary setup buffer. The

function will loop a certain number of times so that the devices run for approximately 5

seconds. The data in the temporary buffer is continuously replaced and discarded. This

allows both devices to settle before the data is to be used. After settling the data from the

temporary setup buffers is transfered into another buffer that will be used for calculating

delay. The target of the output of each device is changed to another smaller buffer that

will be used for the remainder of the program operation. The streaming function will

continue to stream using this new functional buffer while the delay is calculated in the

5.5 System Software 32

parent thread. If the stream were to stop or be restarted, the value of delay would be

useless as the timing of each device would have changed altogether.

After switching to the functional buffer both streaming threads will continue to run until

the user cancels the operation of the entire program. The data in this functional buffer

is constantly replaced and discarded as the data is continuously streamed. The function

contains a statement that will accept a condition from the correlation thread. When

requested each streaming thread will store the contents of the functional buffer in a

separate array that will be used by the correlation thread. Notification will sent back to

the correlation thread when this transfer of data is complete. This occurs approximately

every 250 ms.

Initial versions of the program had the streaming functions continuously sending every

byte of data to the FFT and correlation threads for processing. Through testing it

was found that the system was only able to perform these calculations approximately

60% of the time before new data was streamed in to each device, resulting in a loss

of synchronization and the program crashing. For this reason the FFT and correlation

functions will take these small chunks of data only every 250 ms to allow ample time for

processing.

5.5.3 Correlation Thread

The function running in this thread accepts the value of delay between devices as an

argument. Every 250 ms a notification will be sent to each streaming thread. After the

streaming threads have filled a separate array with data, notification will be sent back

to the correlation thread. At this point a notification is sent to each FFT thread that

data is available for processing. A cross correlation is then performed between both sets

of data and the result is displayed on screen.

5.5.4 Fast Fourier Transform Threads

Two instances of the FFT function is started in individual threads. These threads will

await confirmation from the correlation thread that data is available for processing. Once

this confirmation is received, the threads will take the first 1024 samples and each perform

5.6 Construction of Antennas 33

a FFT. The result is then written to a file that is available to MATLAB for processing. A

control file is also written to which signals to the MATLAB script that data is available

for processing.

5.5.5 MATLAB

The MATLAB script continuously checks the control file for confirmation that new data

is available for processing. Once data is available MATLAB will write this data into its

own arrays and display the results of each FFT in real time on two different plots. The

plot is updated every 250 ms as new data is received from the system program.

Figure 5.5: Conceptual diagram of system software. Data flow shown by the green arrows.

5.6 Construction of Antennas

The type of reflecting dish used for the antenna system is an 80cm offset satellite dish.

Three different feed antennas were constructed and tested. The first two were biquad an-

5.6 Construction of Antennas 34

tennas constructed using different materials and the last and most successful feed antenna

was a cylindrical waveguide with a quarter wavelength probe.

5.6.1 Biquad Antennas

Both biquad antennas were constructed using the same dimensions. These antennas can

be seen in figure 5.6 and the dimensions are as follows:

Reflecting plate: Sides of length λ

Length of bowtie: 2λ .

Spacing between reflector and bowtie: λ
8

A signal at 1420.4 MHz was momentarily identified with the aluminium biquad antenna

but it not able to be found again and recorded. A poor connection between the reflecting

plate and shield of the coaxial cable may be the cause of the poor performance. No signal

whatsoever could be identified with the copper biquad antenna. Again it is most likely to

be a poor connection between the reflecting plate and the shield of the coaxial cable. A

length of half inch copper pipe was used to space the bow-tie element from the reflecting

plate. It was very difficult to connect these two components as the the copper pipe is

much thicker than the layer of copper on the blank PCB used as a reflecting plate.

Figure 5.6: Left: Antenna with aluminium reflecting plate. Right: Antenna with copper

reflecting plate.

5.6 Construction of Antennas 35

5.6.2 Cylindrical Waveguide and Probe

As already mentioned, a cylindrical waveguide with a quarter wavelength probe was the

most successful feed for detecting 21cm hydrogen line emissions. The waveguide can be

seen in Figure 5.7. A coffee can that is five inches in diameter was used as the body of

the waveguide. The funnel expands the opening from five inches to eight inches and was

constructed out of aluminium foil, post card and wire. The penetration for the probe was

drilled at an eighth of a wavelength from the back surface of the waveguide. The satellite

dish that was purchased came with a mounting arm to locate a LNB (low noise block)

down-converter. The mounting arm was cut so the center of the throat of the cylindrical

waveguide (at the 5 inch opening) could be positioned in the exact same orientation as

the LNB would have been positioned.

Figure 5.7: Cylindrical waveguide with expanded opening.

A N-type to SMA connector was used to mount the probe to the casing of the waveguide.

A length of wire cut to a quarter wavelength fitted tightly into the center conductor of

the N-type connector giving giving good electrical contact. Before the signal is fed into

the receiving hardware it is enhanced by a couple of components. The first is a low noise

amplifier with approximately 30dB of gain and 2dB of introduced noise and the second

is a bandpass filter designed specifically for the 21cm hydrogen line and centered on 1420

MHz. The probe, low noise amplifier and bandpass filter can be seen separate from the

waveguide in Figure 5.8.

5.7 Radio Telescope Measurements 36

Figure 5.8: From left to right: quarter wavelength probe, low noise amplifier, bandpass filter.

5.7 Radio Telescope Measurements

Before constructing the second antenna system and attempting measurements with both

antennas, a single antenna was built and tested.

5.7.1 Single Antenna Measurements

Initially the tests were attempted using GNU Radio on a Linux distribution but there

was an issue found when viewing the FFT plot of the received signal. Regardless of the

frequency the receiver was tuned to there would be a non-existent signal present on the

plot at about -60 dB signal strength. This issue made it very difficult to detect signals

under -60 dB as they would not register on the FFT plot. The signal received from

the cylindrical waveguide was at approximately -20 dB so it would not have caused any

problems in that instance, but when testing the biquad antennas it made it very difficult

to know whether they were detecting any signals at all. For this reason SDR Sharp was

chosen to perform these initial tests. SDR Sharp gave a simple to use interface that was

easy to set up and provided no issues during testing.

To confirm the operation of the first antenna system, the antenna dish was directed at

constellations such as Scorpius and Sagittarius which lie close to the center of our galaxy.

Multiple signals at 1420.4 MHz were detected and one of these is shown in Figure 5.9.

As can be seen the signal is quite strong as has a peak of about -23 dB which can most

likely be attributed to the performance of the low noise amplifier and bandpass filter.

5.7 Radio Telescope Measurements 37

The 21cm hydrogen line sits at a very precise 1420.405751... MHz, but an interesting

phenomenon was observed while detecting these signals. Depending on the positioning

of the antenna, the frequency could be seen to drift up and down between about 1420.2

MHz and 1420.7 MHz. This may be caused by the Doppler effect and will be investigated

further in the following chapter.

Figure 5.9: Signal detected at 1420 MHz.

5.7.2 Double Antenna Measurements

The entire system was set up to be used with the constructed radio telescopes. As a recap

the different components used starting from the receiving elements are:

1. Parabolic reflecting dishes

2. Cylindrical Waveguides

3. Quarter wave dipoles

4. Low noise amplifiers

5. Bandpass filters

6. Synchronization switching hardware

7. DVB-T USB Receivers

8. Laptop and software

5.7 Radio Telescope Measurements 38

This setup of equipment can be seen in Figure 5.10. A bubble level is mounted into the

top of the vertical shaft of each mounting tripod. Using this level as well as the markings

for elevation on the tripod (from 45 to 90 degrees), both dishes were orientated to point

in the same direction at a location close to the center of the Milky Way galaxy. The tests

performed and discussed here were taken between the times of 20:30 and 22:30 on the

1st of October 2016 in Londonderry, NSW. Both radio telescopes were orientated to an

azimuth of 270 degrees and an altitude of 55 degrees which is an area roughly between

the constellations of Sagittarius and Scorpius.

Figure 5.10: Setup of all equipment.

A snapshot of the results are shown in Figure 5.11. As time progressed it was clear that

the antennas were not perfectly aligned to the same location. The derivative of the signal

strength received by the second radio telescope appeared to lag that of the signal received

by the first telescope. The shifts caused by the Doppler effect were very similar on each

telescope but it’s still believed they were not perfectly aligned.

The controlling software performs and displays the correlation between signals as required

to perform radio interferometry. It appeared that the result of the correlation was directly

proportional to the signal strength received by both antennas. The intention behind the

correlation was to improve angular resolution meaning that if successful it would have

been expected that the correlation result would have risen and fallen more frequently

than the raw signal strength to indicate more details in the observed structures. These

results will be further discussed in later sections.

5.8 Chapter Summary 39

Figure 5.11: FFT results from both radio telescopes.

5.8 Chapter Summary

This chapter detailed the testing and implementation of the methodology. Firstly the

DVB-T receivers were successfully synchronized. Two radio telescopes were then con-

structed and tested. Finally radio interferometry was attempted using both radio tele-

scopes.

Chapter 6

Discussion of Results

6.1 Chapter Overview

This chapter contains discussions of the results of the testing relevant to the main out-

comes of the project. Discussed here are: results from the synchronization of both DVB-T

USB receivers and the results from the application of this synchronization to radio inter-

ferometry.

6.2 Synchronization of Multiple DVB-T USB’s

It was found during testing that the synchronization hardware and software combination

was successful in just over 90% of tests. These tests were done by correlating data from

sets of around 400 000 samples. No reduction in success rate was obvious until the sample

sizes reduced to about 35 000 samples with the success rate at just below 80% for 20 000

sample sizes.

Testing done on the performance of the RTL2838U in other projects (Kalberla 2015) found

that in some cases allowing the device to be switched off for a few seconds before being

restarted helped improve stability and performance. It was also noted in documentation

from the for the RTL software development team (Osmocom 2015) that allowing the

device to settle for a short period of time after starting also allows the device to further

stabilize. For these reasons two additional steps were incorporated into the testing of

6.3 Application to Multiple Radio Telescopes 41

synchronization and the final controlling program for the entire system. The first step

was ensure that the device is allowed to remain off for a few seconds between operation

periods of about 60 seconds, and secondly the devices are allowed to run and stream data

for a few seconds before synchronization is attempted.

After implementing these changes the success rate improved to 95% over 20 separate tests

with the failure only being out of synchronization by 2 samples. The time required to

synchronize both devices is not critical when applied to the radio telescope array. Time

can also be taken every 60 seconds to reset and resynchronize the devices because the

signals being received do not contain modulated data that needs to be interpreted. The

synchronization processes takes close to 6 seconds to reset the devices, allow the devices

to settle, and correlate the data.

6.3 Application to Multiple Radio Telescopes

6.3.1 Single Antenna Measurements

While observing the Milky Way with the single radio telescope it was observed that the

hydrogen line frequencies varied between approximately 1420.2 MHz and 1420.7 MHz.

After investigation it was found that this is almost certainly the result of the Doppler

effect. The Milky Way galaxy is in constant motion resulting in the vast majority of

objects moving away from the Earth or towards the Earth, resulting in a red shift or blue

shift of the received hydrogen line frequencies.

The Dutch Professor Dr. H. van de Hulst (who at the time was an undergraduate student)

was the first to make the prediction that neutral hydrogen atoms in the universe would

emit emissions corresponding to a wavelength of 21.2 cm (van Loon & Hin 2004). Dr.

H. van del Hulst also asserted that because the frequencies were emitted at a known

frequency, the Doppler effect could be employed to investigate the velocities inherent in

the structure of our galaxy.

The initial assumption made in this project that the frequency would always sit at the

precise frequency of 1420.405 751 786 MHz is not correct. That frequency will only appear

when observing objects or structures that only have components of transversal velocity

and are not moving towards or away relative to the Earth.

6.3 Application to Multiple Radio Telescopes 42

The maximum deviation observed was a red shift of approximately 500 kHz. Using the

Doppler effect equation of:

v

c
=
λshift − λrest

λrest

This equates to objects moving towards the Earth at a maximum of approximately 100

km/s. It also needs to be noted that the Earth itself is not stationary. The Earth rotates

the Sun at an angular velocity of 29.8 km/s which will change the value of red shift or

blue shift observed depending on the time of the year.

Expected observed hydrogen line frequencies for the Milky Way Galaxy fall between

1420.0 MHz and 1421.0 MHz (Wilkinson & Kennewell 1994). The frequencies observed

fall well within these limits. This is further evidence that the hydrogen line is in fact

being observed by the constructed radio telescopes and it is not another signal that may

be man made in origins.

6.3.2 Double Antenna Measurements

A major issue related to the sample rate was discovered while investigating methods of

radio interferometry. Figure 4.5 gave a basic conceptual diagram of radio interferometry.

The geometric delay is the additional distance a signal needs to travel to reach one antenna

when compared to the other. After performing a sliding window cross-correlation of the

signals received from both antennas, the result is that the peak values of cross-correlation

occur at values of delay that correspond in time to the time it takes the signal to transverse

the geometric delay. For example if a nanosecond passes between samples and there is

a peak cross-correlation results at a delay of two samples, the distance the signal would

travel in that time would be:

Geometric Delay = 3× 108 × 2× 10−9 = 0.6m

The problem encountered when using the DVB-T receivers is that the sample rate has

a maximum of around 2.8 MSPS. This equates to approximately 360 nanoseconds be-

tween samples. At this sample rate and with a delay of one sample the geometric delay

6.4 Chapter Summary 43

calculates to be 108 meters. The radio telescopes in this project are separated by no

more than 5 meters meaning that the strongest correlation results will always appear

at a cross-correlation delay of zero samples. For these reasons it became apparent that

radio interferometry was not a suitable application for the DVB-T USB receivers even

after they have been synchronized. In the next chapter another use for the synchronized

devices is investigated where the sample rate may not be an issue.

6.4 Chapter Summary

This chapter discussed the testing results relevant to the outcomes and objectives of the

project. Most noticeably was that the synchronization of both DVB-T receivers was

achieved while the accuracy of the performed radio interferometry was limited by the

sample rate of both devices.

Chapter 7

Conclusion and Further Work

7.1 Conclusion

There were two main objectives associated with this project. The first was to extend the

usability of DVB-T USB receivers by providing a method of synchronizing the received

signals or producing enough information to correct the delay between devices. The second

was to apply these synchronized devices to radio astronomy applications as a proof of

concept.

The first objective was successful as both devices were able to be synchronized sample

for sample. Connecting both devices to the same clock source ensured that both devices

functioned with the same timing. The issue that needed to be overcome was the scheduling

of the computer reading the data streams from both USB’s. Each time the receivers

were started the delay between the devices would change depending on the scheduling

and workload of the computer. This problem was overcome by implementing a hardware

switching arrangement that can be used on any system regardless of the operating system.

The intended outcome of the first objective was to provide a much wider range of uses

for the DVB-T devices. This was to be proved by using the synchronized devices to

perform radio interferometry using two radio telescopes which, if done correctly, would

improve the angular resolution of the radio telescopes. The individual radio telescopes

were constructed and successfully tested. One interesting phenomenon that appeared was

that of the Doppler effect seen on the incoming hydrogen-line signals. There were varying

7.2 Further Work - Application to Over the Horizon Radar 45

amounts of red-shift and blue-shift depending on the location that was being observed.

The level of frequency variation seen within the Milky Way galaxy fit within expected

results, which further supported the hypothesis that the signal being observed was indeed

the 21cm hydrogen line.

It was identified while attempting to carry out radio interferometry that the sample rate

of the receiving devices was a limiting factor to the accuracy of an interferometer in this

context. The additional distance a signal will travel between samples is an important

factor in determining the accuracy of an array of radio telescopes performing radio in-

terferometry. The method designed in this project to synchronize multiple receivers is

not dependent on the brand or type of receiver used. As long as received signal can be

interpreted in digital form then correlation can be performed in conjunction with the

hardware switching arrangement and the devices can be synchronized. If other types of

receivers are used with a higher sample rate the accuracy of the system can be improved.

What became obvious throughout the project is the extent of work that can be carried

out using cheap and readily available electronics. Software defined radio brings forth a

whole field of projects and applications that were once very expensive to accomplish and

well outside the range of students, amateurs and hobbyists.

7.2 Further Work - Application to Over the Horizon Radar

The Austrlain Jindalee Over the Horizon Radar Network (JORN) is comprised of three

different systems that observe a wide region over Australia’s Northern approaches. These

systems are located in Laverton, Alice Springs and Longreach, and have an approximate

radar range of 1000-3000km encompassing large sections of Indonesia and Papau New

Guinea (RAAF 2015).

Over the horizon radar is capable of ranges that extend beyond the visible horizon. This is

achieved by reflecting short wave (3-30 MHz) signals off the bottom edge of the ionosphere

to locations at great distance away. If there are observable objects in the path of the signal,

the signal will be reflected back a similar path by again reflecting off the ionosphere and

arriving eventually at a receiver.

The reflected signal will almost always not just contain reflected components from an

7.2 Further Work - Application to Over the Horizon Radar 46

object of interest but will also comprise components resulting from reflections from the

surrounding terrain features such as waves, hills, trees etc... This makes identifiying the

reflections of interest amongst all the noise a difficult process. One common method of

differentiating these signals is through the use of the Doppler Effect. If an object such as

patrol boat is travelling towards the location of the receiver/transmitter equipment the

returned signal will have red shifted components that will identify the signal out amongst

all the other reflections (Ioana, Amin, Zhang & Ahmad 2010).

For these reasons it is vitally important that the conditions of the ionosphere are known

and monitored when operating these radar systems as the ionoshpere is constantly chang-

ing with the most noticable differences between day and night. The conditions of the

ionosphere are observed through Vertical Incidence Soundings (Ionograms) which involve

measuring signals that have been reflected off the ionosphere. Parameters such as height,

group delay and electron density can be calculated which allow the precise interpretation

of signals received by over the horizon radar systems.

The Australian JORN system utilizes a system of 13 vertical incidence sounders (com-

prising of Lowell Digisonde Portable Sounders) in order to produce an updated picture

of ionospheric conditions (Harris, Quinn & Pederick 2016). These sounders are set to be

replaced in the near future and a few alternatives are currently being tested.

It may be possible that the DVB-T USB receivers investigated in this project can be

used in vertical incidence sounding for use with over the horizon radar networks. One of

the issues discovered during the project was that the sample rate was a limiting factor

when attempting to apply radio interferometry. At a maximum sample rate of about 2.8

MSPS the signal would travel just under 110 metres between samples. When the spacing

between radio telescopes is less than 10 metres, the 110 metre geometric delay removes

the possibility of accurately calculating position. The Digisonde sounders give a height

profile of the ionosphere in increments of 5km (Reinisch 1995). In this case the travel

time of 110 metres in between samples may not cause any issues.

Figure 7.1 gives an example of how the DVB-T receivers may be utilised in a vertical inci-

dence sounding system. The receivers are synchronized using the same system as already

proven in this project except the signal used for comparing the delay between devices is

not an external source but rather the generated narroband signal used to reflect off of the

ionosphere. Once the delay has been corrected and the system is operational the receiver

7.2 Further Work - Application to Over the Horizon Radar 47

Figure 7.1: Conceptual diagram of vertical incidence sounder.

closest to the transmitting antenna will receive a clear picture of the transmitted signal

while the receiver near the receiving antenna will receive the reflected signal. Since both

of these transmitted and received signals will be received with a correct time relationship

the time of arrival information will be able to be deduced through correlation.

Many other factors would have to be investigated; mainly the feasability of using the

low 8-bit resolution of the DVB-T receivers for ionograms. If proven to be successful

the receivers could provide the possibility of a low cost mobile alternative for the current

systems.

References

ACT Government (2014), ‘Do a risk assessment’, http://www.worksafe.act.gov.au/

page/view/1039.

AIRSPY (2015), ‘Core tools’, http://airspy.com/download/.

Airspy (2016), ‘R2’, http://airspy.com/airspy-r2/.

Chen, L., Julien, O., Thevenon, P., Serant, D., Pena, A. G. & Kuusiemi, H. (2015),

‘Toa estimation for positioning with dvb-t signals in outdoor static tests’, IEEE

Transactions on Broadcasting 61(4), 625–638.

Devendraa Siingh, A. S., Patel, R., Singh, R., Singh, R., Veenadhari, B. & Mukherjee, M.

(2008), ‘Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio

waves’, Surveys in Geophysics 29(6), 499–551.

Elonics (2010), ‘Multi-standard cmos terrestrial rf tuner’. Pinetown, South Africa.

Entwistle, D. (2014), ‘Radio meteor observing’, http://www.popastro.com/meteor/

observingmeteors/index.php.

Ettus Research (2016), ‘Usrp b210’, https://www.ettus.com/product/details/

UB210-KIT.

Fernandez-Prades, C., Arribas, J. & Closas, P. (2013), Turning a television into a gnss

receiver, in ‘Proceedings of ION GNSS+, Tennessee’, CTTC.

GNU Radio (2015), ‘Welcome to gnu radio!’, http://gnuradio.org/redmine/projects/

gnuradio/wiki.

Gronroos, S., Nybom, K., Bjorkqvist, J., Hallio, J., Auranen, J. & Ekman, R. (2016),

‘Distriubted spectrum sensing using low cost hardware’, Volume 83(Issue 1), pp

5–17.

http://www.worksafe.act.gov.au/page/view/1039
http://www.worksafe.act.gov.au/page/view/1039
http://airspy.com/airspy-r2/
http://www.popastro.com/meteor/observingmeteors/index.php
http://www.popastro.com/meteor/observingmeteors/index.php
https://www.ettus.com/product/details/UB210-KIT
https://www.ettus.com/product/details/UB210-KIT
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://gnuradio.org/redmine/projects/gnuradio/wiki

REFERENCES 49

Gupta, M., Mitra, R. & Sarkar, S. (1973), ‘Some studies on the association of solar

optical flares and microwave bursts with sudden ionospheric disturbances’, Journal

of Atmospheric and Terrestrial Physics 35(4), 805–813.

Harris, T. J., Quinn, A. D. & Pederick, L. H. (2016), ‘The dst group ionospheric sounder

replacement for jorn’, AGU Publications - Radio Science .

Howe, R. (2015), ‘Sudden ionispheric disturbances’, https://www.aavso.org/

solar-sids.

Ioana, C., Amin, M. G., Zhang, Y. D. & Ahmad, F. (2010), ‘Characterization of doppler

effects in the context of over-the-horizon-radar’, Radar Conference, IEEE .

Kalberla, Burton, Hartmann, Arnal, Bajaja, Morras & Poppel (2005), ‘The leiden/ar-

gentine/bonn (lab) survey of galactic hi. final data release of the combined lds and

iar surveys with improved stray-radiation corrections’, Astronomy and Astrophysics

440(2), 775–782.

Kalberla, P. M. (2015), Basic rtl-sdr tests, stability of a new rtl2838u/r820t2 dongle.

Argelander-Institut fur Astronomie, Bonn.

L.Wilson, T., Rohlfs, K. & Huttemeister, S. (2013), Tools of Radio Astronomy, sixth

edition edn, Springer.

Markgraf, S. (2012), ‘rtl-sdr turns your realtek rtl2832 based dvb dongle into a sdr re-

ceiver’.

Nasa (2016), ‘Radio jove’, http://radiojove.gsfc.nasa.gov/.

Osmocom (2015), ‘osmocomsdr’, http://sdr.osmocom.org.

RAAF (2015), ‘Fact sheet - jindalee operational radar network’.

Rafael Micro (2011), ‘R820t high performance low power advanced digital tv silicon tuner

datasheet’. Hsinchu County Zhudong, China.

Realtek Semiconductor Corporation (2016), ‘Rtl2832u dvb-t cofdm demodulator + usb

2.0’. http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=35&Level=4&Conn=3&ProdID=257.

Reinisch, B. W. (1995), ‘The digisonde network and databasing’, World Data Center A

for Solar-Terrestrial Physics pp. 8–15.

https://www.aavso.org/solar-sids
https://www.aavso.org/solar-sids
http://radiojove.gsfc.nasa.gov/
http://sdr.osmocom.org

REFERENCES 50

Robinson, B. (2001), Preserving the astronomical sky, in ‘Radio Astronomy and the

International Telecommunications Regulations’, Vienna IAU Symposium, pp. 209–

219.

S.Beasley, J. & M.Miller, G. (2008), Modern Electronic Communication, Pearson, Prentice

Hall.

Stellarium (2016), http://www.stellarium.org/. Version 0.14.3.

Tseng, S.-M., Change, T.-K. & Hsu, Y.-T. (2012), A/d usb dongle implementation for

nb/pc-based software radio dvb-t receiver, in ‘The 2012 International Conference on

Advanced Technologies for Communications, Hanoi’, IEEE Communications Society,

pp. 289–293.

van Loon, B. & Hin, A. (2004), ‘Scanning our past from the netherlands: early galactic

radio astronomy at kootwijk and some consequential developments’, Proceedings of

the IEEE 92(6), 1004–1006.

Wielebinski, R. (2003), The history of radio continuum surveys, in ‘The Magnetized

Interstellar Medium’, Max-Planck-Institut fur Radioastronomie, Bonn, Germany.

Wilkinson, M. & Kennewell, J. (1994), ‘Hydrogen-line observations of the galaxy and the

magellanic clouds’, Australian Journal of Astronomy vol 5(issue 4), 121–133.

http://www.stellarium.org/

Appendix A

Project Specification

52

For: Timothy Price

Title:

Synchronization

of Multiple DVB-T USB Receivers for use in Radio Astronomy

Applications

Supervisor: Associate Professor John Leis

Enrolment
ENG4111 - EXT S1, 2016

ENG4112 - EXT S2, 2016

Project Aim:

To synchronize the operation of two or more DVB-T USB (software

defined radio) receivers and to demonstrate this synchronization

through the application of radio interferometry, using two or more

parabolic antennas.

Programme: Issue A, 16th March 2016

1. Research background information related to the use of DVB-T USB receivers and

if any current methods of synchronization are in use.

2. Investigate available DVB-T USB hardware and software and evaluate what hard-

ware and software is most appropriate for the project.

3. Investigate methods of synchronization through available software.

4. If it is found software alone is not enough for synchronization, investigate other

methods of synchronizing each DVB-T device.

5. Test chosen method of synchronization on commonly available signals (such as FM

Radio). Analyse the results and determine if each phase is close enough for radio

interferometry purposes.

If synchronization successful:

6. Construct single parabolic antenna and prove operation by receiving common radio

astronomy signals.

7. Construct second parabolic antenna and prove operation. Extend synchronization

method to both parabolic antennas and apply radio interferometry.

If synchronization not successful:

8. Fully investigate and report on why chosen method of synchronization was unsuc-

cessful in current application.

Appendix B

MATLAB and C Script

B.1 Test C Script 54

B.1 Test C Script

The following is the C script used to test the software delay between devices

Listing B.1: Code for initial calculation of delay.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <uni s td . h>
#include <sys / types . h>
#include <sys / wait . h>
#include <time . h>

#include <sys / types . h>
#include <sys / ipc . h>
#include <sys /shm . h>

#define SHMSZ 4
#define RUN RTL 0
#define STOP RTL 1

// Segmentation error occurs when t r y i n g to run the program
// wi thout the Arduino connected

int main ()
{

//Values f o r Arduino code
int pos2 = 1 ;
int i = 0 ;

// opening Arduino f i l e
FILE ∗ f i l e ;
f i l e = fopen (”/dev/ttyACM0” , ”w”) ;

i f (f i l e >0){
p r i n t f (” arduino f i l e opened \n”) ;
}

f p r i n t f (f i l e , ”%d” , pos2) ;
p r i n t f (” i n i t i a l i s i n g arduino \n”) ;

// shared mem data f o r s topp ing r t l
int shmid ;
key t key ;
int ∗ d o e x i t ;
key = 3252 ;

// c r ea t i n g shared memory segment
i f ((shmid = shmget (key , SHMSZ, IPC CREAT | 0666)) < 0) {

per ro r (”shmget”) ;

B.1 Test C Script 55

e x i t (1) ;
}

// a t t a ch in g shared memory segment to data space
// d o e x i t i s the c o n t r o l l i n g shared memory va lue t ha t s t op s
// the opera t ion o f the r t l−sdr
i f ((d o e x i t = shmat (shmid , NULL, 0)) == (char ∗) −1){

per ro r (”shmget”) ;
e x i t (1) ;
}

∗ d o e x i t = RUN RTL;
p r i n t f (”RTLs s e t to RUN\n”) ;

p i d t pid dev0 = fo rk () ;
p i d t pid dev1 = fo rk () ;

i f (p id dev0 == 0) {
stat ic char ∗argv [] = {” r t l s d r ” , ”/home/tim/Desktop/ Ctesta2 .

bin ” , ”−d” , ”0” , ”−f ” , ”953 e6” , NULL} ;
execv (”/home/tim/ s r c / r t l−sdr / s r c / r t l s d r ” , argv) ;
e x i t (127) ;
}
else i f (p id dev1 == 0) {
stat ic char ∗argv [] = {” r t l s d r ” , ”/home/tim/Desktop/ Ctestb2 .

bin ” , ”−d” , ”1” , ”−f ” , ”953 e6” , NULL} ;
execv (”/home/tim/ s r c / r t l−sdr / s r c / r t l s d r ” , argv) ;
e x i t (127) ;
}

p r i n t f (”RUNNING\n”) ;

wr i t e (f i l e , ”%d” , pos2) ;
f f l u s h (f i l e) ;
p r i n t f (” arduino sw i tch ing \n”) ;
s l e e p (5) ;

∗ d o e x i t = STOP RTL;
p r i n t f (”RTLs s e t to STOP\n”) ;

p r i n t f (” c l o s i n g f i l e \n”) ;
f c l o s e (f i l e) ;

return 0 ;
}

B.2 MATLAB Script 56

B.2 MATLAB Script

The following is the MATLAB script used to analyze the resuls of the RF switching

system tests:

Listing B.2: MATLAB code for RF switching analysis.

%Using MATLAB R2013a

clear a l l
close a l l
c lc

% both . b in f i l e s e x a c t l y 17 ,825 ,792 by t e s
f i l e I D 0 = fopen (’ /home/tim/Desktop/GRCtestA1 ’) ;
s1 = fread (f i l e I D 0) ;

f i l e I D 1 = fopen (’ /home/tim/Desktop/GRCtestB1 ’) ;
s2 = fread (f i l e I D 1) ;

i Index = 1 ;
qIndex = 1 ;

%% Dein t e r l e a v ing
for i = 1 : +2: length (s1−1)

i 1 (i Index) = s1 (i) ;
i 2 (i Index) = s2 (i) ;
i Index = i Index + 1 ;

end

for q = 2 : +2: length (s1)
q1 (qIndex) = s1 (q) ;
q2 (qIndex) = s2 (q) ;

qIndex = qIndex + 1 ;
end

%% Convert ing IQ to ampl i tude and phase

for i = 1 : length (i 1)

amp1(i) = sqrt (i 1 (i) ˆ2 + q1 (i) ˆ2) ;
ph1 (i) = atan (q1 (i) / i 1 (i)) ;
% I f s ta tement to ensure no NaN r e s u l t s from phase ca l c
i f (q1 (i) == 0) && (i 1 (i) == 0)

ph1 (i) = 0 ;
end

% I f s ta tement to ensure no NaN r e s u l t s from phase ca l c
amp2(i) = sqrt (i 2 (i) ˆ2 + q2 (i) ˆ2) ;

B.3 Functional C Script 57

ph2 (i) = atan (q2 (i) / i 2 (i)) ;
i f (q2 (i) == 0) && (i 2 (i) == 0)

ph2 (i) = 0 ;
end

end

phMean1 = mean(ph1) ;
phMean2 = mean(ph2) ;

ph1 = ph1 − phMean1 ;
ph2 = ph2 − phMean2 ;

%% Cross c o r r e l a t i n g f i r s t and second por t i on s o f phase ang l e s

% us ing 1000 sample po r t i on s f o r t h i s t e s t
c1 = ph1 (20 e6 : 2 0 . 1 e6) ;
c2 = ph2 (20 e6 : 2 0 . 1 e6) ;

c3 = ph1 (80 e6 : 8 0 . 1 e6) ;
c4 = ph2 (80 e6 : 8 0 . 1 e6) ;

[acor0 , l ag0] = xcorr (c2 , c1) ;
[˜ , I0] = max(abs (acor0)) ;
l a g D i f f 1 = lag0 (I0)

[acor1 , l ag1] = xcorr (c4 , c3) ;
[˜ , I1] = max(abs (acor1)) ;
l a g D i f f 2 = lag1 (I1)

l a g D i f f 1 − l a g D i f f 2

B.3 Functional C Script

The following script controls the entire operation of the system

Listing B.3: Code for control of entire system.

/∗
∗ Program to : −stream data from 2 r t l−sdr r e c e i v e r
∗ −co r r e c t de lay between dev i c e s
∗ −perform co r r e l a t i o n o f data streams
∗ −peform r ea l time FFT of data streams
∗
∗ While the va s t major i ty o f code has been rewr i t t en , some
∗ c r e d i t i s due towards the author o f the o r i g i n a l program
∗ t h a t has been adapted . Some v a r a i b l e names and the s i g n a l
∗ hand l ing f unc t i on s and opera t i ons were wr i t t en by the

B.3 Functional C Script 58

∗ author and the o r i g i n a l program was t i t l e d :

∗ r t l−sdr , turns your Rea l t ek RTL2832 based DVB dong le in t o
∗ a SDR re c e i v e r
∗ Copyright (C) 2012 by Steve Markgraf <s teve@steve−m. de>
∗/

#include <errno . h>
#include <s i g n a l . h>
#include <s t r i n g . h>
#include <s t d i o . h>
#include <s t d l i b . h>
#include <pthread . h>
#include <sys / time . h>
#include <math . h>

#include <complex . h>
#include <f f tw3 . h> // FFT l i b r a r y

#ifndef WIN32
#include <uni s td . h>
#else
#include <windows . h>
#include <i o . h>
#include < f c n t l . h>
#include ” getopt / getopt . h”
#endif

#include ” r t l−sdr . h”
#include ” convenience / convenience . h”

#define DEFAULT SAMPLE RATE 2048000
#define DEFAULT BUF LENGTH (16 ∗ 16384)
#define MINIMAL BUF LENGTH 512
#define MAXIMAL BUF LENGTH (256 ∗ 16384)

#define WAIT 0
#define REQUEST 1
#define FULL 2
#define START 3

stat ic int d o e x i t = 0 ;
stat ic r t l s d r d e v t ∗dev0 = NULL;
stat ic r t l s d r d e v t ∗dev1 = NULL;

stat ic u i n t 3 2 t o u t b l o c k s i z e = 1024∗64;
stat ic u i n t 3 2 t s e t u p o u t b l o c k s i z e = 1024∗128;
stat ic u i n t 3 2 t f f t s i z e = 1024 ;

// Locks f o r c o n t r o l l i n g opera t ion and data between threads
pthread mutex t dev0 lock ;
pthread mutex t dev1 lock ;

B.3 Functional C Script 59

pthread mutex t i n 0 l o c k ;
pthread mutex t i n 1 l o c k ;

// Var iab l e s f o r s t a t u s check ing o f th reads
int dev0 s ta tus = WAIT;
int dev1 s ta tus = WAIT;
int s e t u p 0 s t a t u s = 0 ;
int s e t u p 1 s t a t u s = 0 ;

// Bu f f e r s to ho ld complex data streams
f f tw complex ∗ i n f f t 0 , ∗ i n f f t 1 , ∗ o u t f f t 0 , ∗ o u t f f t 1 ;
f f tw complex ∗ in0 , ∗ in1 ;
f f t w p l a n p0 , p1 ;
complex ∗ setup0 , ∗ setup1 ;

// S t ruc tu re to pass arguments in t o threads
struct sync a rg s {
int devnum ;
FILE ∗ f i l e ;
char ∗ f i l ename ;
} ;

// S i gna l hand ler wr i t t en by o r i g i n a l author o f so f tware
stat ic void s i g h a n d l e r (int signum)
{

f p r i n t f (s tde r r , ” S i gna l caught , e x i t i n g !\n”) ;
d o e x i t = 1 ;
r t l s d r c a n c e l a s y n c (dev0) ;
r t l s d r c a n c e l a s y n c (dev1) ;
}

// Function to perform s t a t u s check ing o f c on t r o l v a r i a b l e s wi th
mutex l o c k i n g

int checkStatus (pthread mutex t ∗ lock , int devnum) {
int s t a t u s ;

i f (devnum == 0) {
pthread mutex lock (l ock) ;
s t a t u s = dev0 s ta tus ;
pthread mutex unlock (l ock) ;
}
else i f (devnum == 1) {

pthread mutex lock (l ock) ;
s t a t u s = dev1 s ta tus ;
pthread mutex unlock (l ock) ;
}

return s t a t u s ;
}

// Function to increment the s t a t u s o f c on t r o l v a r i a b l e s wi th
mutex l o c k i n g

B.3 Functional C Script 60

void s t a t u s I n c r (pthread mutex t ∗ lock , int devnum) {
i f (devnum == 0) {
pthread mutex lock (l ock) ;
dev0 s ta tus += 1 ;
pthread mutex unlock (l ock) ;
}
else i f (devnum == 1) {

pthread mutex lock (l ock) ;
dev1 s ta tus += 1 ;
pthread mutex unlock (l ock) ;
}
}

// Function to r e s e t s t a t u s o f c on t r o l v a r i a b l e s wi th mutex
l o c k i n g

void s ta tusRese t (pthread mutex t ∗ lock , int devnum) {
i f (devnum == 0) {
pthread mutex lock (l ock) ;
dev0 s ta tus = WAIT;
pthread mutex unlock (l ock) ;
}
else i f (devnum == 1) {

pthread mutex lock (l ock) ;
dev1 s ta tus = WAIT;
pthread mutex unlock (l ock) ;

}
}

// Function to check s t a t u s o f i n i t i a l se tup con t r o l v a r i a b l e s
wi th mutex l o c k i n g

int checkSetup (pthread mutex t ∗ lock , int devnum) {
int s t a t u s ;

i f (devnum == 0) {
pthread mutex lock (l ock) ;
s t a t u s = s e t u p 0 s t a t u s ;
pthread mutex unlock (l ock) ;

}
else i f (devnum == 1) {

pthread mutex lock (l ock) ;
s t a t u s = s e t u p 1 s t a t u s ;
pthread mutex unlock (l ock) ;

}

return s t a t u s ;
}

// Function to perform co r r e l a t i o n o f data . Accepts c a l c u l a t e d
de lay as argument

void co r r (int delay) {

while (! d o e x i t) {

B.3 Functional C Script 61

double complex r e s u l t = 0 ;
double absResult = 0 . 0 ;
int wait count = 0 ;
FILE ∗ cor rContro l ; // F i l e s f o r Matlab
FILE ∗ co r r ;

u s l e ep (250 e3) ; // 250ms between c o r r e l a t i o n s

// Requests data from data streaming threads
s t a t u s I n c r (&dev0 lock , 0) ;
s t a t u s I n c r (&dev1 lock , 1) ;

// Waits f o r s i g n a l from streaming thread to i n d i c a t e t ha t the
data b u f f e r s are ready

while (((checkStatus (&dev0 lock , 0) != FULL) | | (checkStatus (&
dev1 lock , 1) != FULL))) {

wait count += 1 ;
i f (d o e x i t == 1)break ;
}

// Opening c o r r e l a t i o n con t r o l f i l e
cor rContro l = fopen (” corrCont . txt ” , ”w”) ;
i f (! co r rContro l) {

f p r i n t f (s tde r r , ” Fa i l ed to open corrCont ”) ;
}

// Opening c o r r e l a t i o n data f i l e
co r r = fopen (” co r r . txt ” , ”w”) ;

i f (! c o r r) {
f p r i n t f (s tde r r , ” Fa i l ed to open f f t1Cont ”) ;
}

// No t i f i e s FFT threads t ha t data i s a v a i l a b l e f o r p roce s s ing
s t a t u s I n c r (&dev0 lock , 0) ;
s t a t u s I n c r (&dev1 lock , 1) ;

// Performs c o r r e l a t a t i o n o f data wi th de lay on f i r s t d ev i c e
i f (de lay < 0) {
for (int k = 0 ; k < o u t b l o c k s i z e /2 − abs (de lay) ; k++){

pthread mutex lock(& i n 0 l o c k) ;
pthread mutex lock(& i n 1 l o c k) ;

r e s u l t += conj (in0 [k]) ∗ in1 [k+abs (de lay)] ;

pthread mutex unlock(& i n 0 l o c k) ;
pthread mutex unlock(& i n 1 l o c k) ;
}

}

// Performs c o r r e l a t i o n o f data wi th de lay on second dev i c e
i f (de lay > 0) {

B.3 Functional C Script 62

for (int k = delay ; k < o u t b l o c k s i z e /2−delay ; k++){
pthread mutex lock(& i n 0 l o c k) ;
pthread mutex lock(& i n 1 l o c k) ;

r e s u l t += conj (in0 [k+delay]) ∗ in1 [k] ;

pthread mutex unlock(& i n 0 l o c k) ;
pthread mutex unlock(& i n 1 l o c k) ;
}
}
r e s u l t = r e s u l t / ((o u t b l o c k s i z e−delay) ∗ 2) ;
absResult = (double) s q r t (c r e a l (r e s u l t) ∗ c r e a l (r e s u l t) + cimag (

r e s u l t) ∗cimag (r e s u l t)) ;

p r i n t f (”THE CORRELATION RESULT IS : %f \n\n” , absResult) ;

f p r i n t f (corr , ”%f \n” , absResult) ;
f p r i n t f (corrContro l , ”1”) ;
f c l o s e (cor rContro l) ;
f c l o s e (co r r) ;
}
} // End c o r r e l a t i o n func t i on

// Function to perform FFT on data
void f f t (void ∗arguments) {

// S t ruc tu re to accep t mu l t i p l e arguments when thread i s c a l l e d
struct sync a rg s ∗ args = (struct sync a rg s ∗) arguments ;

int wait count = 0 ;
pthread mutex t ∗ lock , ∗ i n l o c k ;
f f tw complex ∗ in , ∗out ;
f f tw complex ∗ i n f f t , ∗ o u t f f t ;
f f t w p l a n p ;
FILE ∗ f f t C o n t r o l ;
FILE ∗ f f t ;

while (! d o e x i t) {

// Here the i n d i v i d u a l t h reads are as s i gned data b u f f e r s
// Data b u f f e r 0
i f (args −> devnum == 0) {
l o ck = &dev0 lock ;
i n l o c k = &i n 0 l o c k ;
in = in0 ;
i n f f t = i n f f t 0 ;
o u t f f t = o u t f f t 0 ;
p = p0 ;

// Function w i l l wai t f o r s i g n a l from co r r e l a t i o n func t i on
be f o r e s t a r t i n g

while (checkStatus (lock , args −> devnum) != START) {

B.3 Functional C Script 63

wait count += 1 ;
i f (d o e x i t == 1)break ;
}

// Contro l and data f i l e s f o r Matlab
f f t C o n t r o l = fopen (” f f t0Cont ” , ”w”) ;
i f (! f f t C o n t r o l) {

f p r i n t f (s tde r r , ” Fa i l ed to open f f t0Cont ”) ;
}

f f t = fopen (” f f t 0 ” , ”w”) ;
i f (! f f t) {

f p r i n t f (s tde r r , ” Fa i l ed to open f f t0Cont ”) ;
}
}

// Data b u f f e r 1
i f (args −> devnum == 1) {
l o ck = &dev1 lock ;
i n l o c k = &i n 1 l o c k ;
in = in1 ;
i n f f t = i n f f t 1 ;
o u t f f t = o u t f f t 1 ;
p = p1 ;

// Function w i l l wai t f o r s i g n a l from co r r e l a t i o n func t i on
be f o r e s t a r t i n g

while (checkStatus (lock , args −> devnum) != START) {
wait count += 1 ;
i f (d o e x i t == 1)break ;
}

// Contro l and data f i l e s f o r Matlab
f f t C o n t r o l = fopen (” f f t1Cont ” , ”w”) ;
i f (! f f t C o n t r o l) {
f p r i n t f (s tde r r , ” Fa i l ed to open f f t1Cont ”) ;
}

f f t = fopen (” f f t 1 ” , ”w”) ;
i f (! f f t) {

f p r i n t f (s tde r r , ” Fa i l ed to open f f t0Cont ”) ;
}
}

// Creat ing new array o f sma l l e r s i z e from data f o r FFT
for (int i = 0 ; i < f f t s i z e ; i++){

pthread mutex lock (i n l o c k) ;
i n f f t [i] = in [i] ;
pthread mutex unlock (i n l o c k) ;
}

B.3 Functional C Script 64

// FFTW func t i on executed to perform FFT on data
pthread mutex lock (i n l o c k) ;
f f t w e x e c u t e (p) ; //Executes FFT and outpu t s to ’ out ’ array
pthread mutex unlock (i n l o c k) ;
p r i n t f (”DEVNUM FFT %d completed\n” , args −> devnum) ;

// Output t ing f f t r e s u l t to f i l e f o r Matlab to proces s
for (int k = 0 ; k < f f t s i z e ; k++){

f p r i n t f (f f t , ”%f %f \n ” , c r e a l (o u t f f t [k]) , cimag (o u t f f t [k])) ;
}

f p r i n t f (f f t Co nt r o l , ”1”) ;

// Resets the con t r o l s t a t u s . The c o r r e l a t i o n thread w i l l s t a r t
the proces s again

// a f t e r the 500ms timer has exp i r ed .
s ta tusRese t (lock , args −> devnum) ;
f c l o s e (f f t C o n t r o l) ;
f c l o s e (f f t) ;

}
} // End FFT func t i on

// Function to stream data from USB r e c e i v e r s
void ∗ syncRead (void ∗arguments)
{

struct sync a rg s ∗ args = (struct sync a rg s ∗) arguments ;

int n read ;
int check ;
int t e s t i t e r a t e = 0 ;
u i n t 8 t ∗ b u f f e r ;
u i n t 8 t ∗ s e t u p b u f f e r ;
int one s econd loops ;
r t l s d r d e v t ∗dev ;
pthread mutex t ∗ lock , ∗ i n l o c k ;
f f tw complex ∗ in ;
f f tw complex ∗ setup ;
int wai t s ec = 1 ;

struct t imeva l tv ;
long int d i f f = 0 ;

// Ind i v i d u a l thread i s as s i gned a dev i c e
i f (args −> devnum == 0) {
dev = dev0 ;
l o ck = &dev0 lock ;
i n l o c k = &i n 0 l o c k ;
in = in0 ;
setup = setup0 ;

B.3 Functional C Script 65

}

// Ind i v i d u a l thead i s as s i gned a dev i c e
i f (args −> devnum == 1) {
dev = dev1 ;
l o ck = &dev1 lock ;
i n l o c k = &i n 1 l o c k ;
in = in1 ;
setup = setup1 ;
}

i f (pthread mutex in i t (lock , NULL) != 0) {
p r i n t f (”\n mutex f a i l e d to i n i t i a l i z e \n”) ;
return 1 ;
}

// b u f f e r i s an array o f s i z e u i n t 8 t
b u f f e r = mal loc (o u t b l o c k s i z e ∗ s izeof (u i n t 8 t)) ;
s e t u p b u f f e r = mal loc (s e t u p o u t b l o c k s i z e ∗ s izeof (u i n t 8 t)) ;

f p r i n t f (s tde r r , ”Reading samples in sync mode . . . \ n”) ;
while (! d o e x i t) {

one s econd loops = (int) round (1 / ((f loat) s e t u p o u t b l o c k s i z e /
((f loat)DEFAULT SAMPLE RATE∗2))) ;

// Here the data i s streamed to a temporary b u f f e r f o r 5
seconds wh i l e d e v i c e s s t a b i l i s e

i f (wa i t s ec) {
for (int s = 0 ; s < one s econd loops ∗5 ; s++){

check = r t l s d r r e a d s y n c (dev , s e t u p b u f f e r ,
s e t u p o u t b l o c k s i z e , &n read) ;

i f (check < 0) {
f p r i n t f (s tde r r , ”WARNING: sync read f a i l e d .\n”) ;
break ;
}

// Setup array f o r c a l c u l a t i n g de lay between dev i c e s
for (int j = 0 ; j < s e t u p o u t b l o c k s i z e ; j += 2) {
pthread mutex lock (i n l o c k) ;
setup [j /2] = (double) (s e t u p b u f f e r [j]−127.5) + (double) (

s e t u p b u f f e r [j +1]−127.5)∗ I ;
pthread mutex unlock (i n l o c k) ;
}
}
// Temporary b l o c k o f data i s streamed one more time to ensure

b u f f e r s have caught up
check = r t l s d r r e a d s y n c (dev , s e t u p b u f f e r ,

s e t u p o u t b l o c k s i z e , &n read) ;

B.3 Functional C Script 66

i f (check < 0) {
f p r i n t f (s tde r r , ”WARNING: sync read f a i l e d .\n”) ;
break ;
}
wai t s ec = 0 ;

}

// Af ter the d e v i c e s have s t a b i l i s e d the output b u f f e r l o c a t i o n
i s changed to the f un c t i o na l b u f f e r

// This i s where data w i l l be streamed to f o r the remainder o f
program opera t ion

check = r t l s d r r e a d s y n c (dev , bu f f e r , o u t b l o c k s i z e , &n read) ;

i f (check < 0) {
f p r i n t f (s tde r r , ”WARNING: sync read f a i l e d .\n”) ;
break ;
}

i f ((u i n t 3 2 t) n read < o u t b l o c k s i z e) {
f p r i n t f (s tde r r , ” Short read , samples l o s t , e x i t i n g !\n”) ;
break ;
}

// When data i s r e que s t ed from the c o r r e l a t i o n thread i t w i l l
be p laced in to array f o r p roce s s ing

i f (checkStatus (lock , args −> devnum) == REQUEST) {

for (int i = 0 ; i < o u t b l o c k s i z e ; i += 2) {
pthread mutex lock (i n l o c k) ;
in [i /2] = (double) (b u f f e r [i]−127.5) + (double) (b u f f e r [i

+1]−127.5)∗ I ;
pthread mutex unlock (i n l o c k) ;
}

// No t i f i e s c o r e l l a t i o n thread t ha t data i s ready f o r
p roce s s ing

s t a t u s I n c r (lock , args −> devnum) ;
}
}

i f (d o e x i t)
f p r i n t f (s tde r r , ”\nUser cance l , e x i t i n g . . . \ n”) ;
else {

f p r i n t f (s tde r r , ”\n %d , e x i t i n g . . . \ n” , check) ;
d o e x i t = 1 ;
}
pthread mutex destroy (l ock) ;
f c l o s e (args −> f i l e) ;
r t l s d r c l o s e (dev) ;

B.3 Functional C Script 67

f r e e (b u f f e r) ;
} // End data s treamings func t i on

int main (int argc , char ∗∗ argv)
{
#ifndef WIN32

struct s i g a c t i o n s i g a c t ;
#endif

FILE ∗ a rdF i l e ; // arduino f i l e
char ∗ f i l ename0 = NULL;
char ∗ f i l ename1 = NULL;
int r , g , opt ;
int gain = 0 ;
int ppm error = 0 ;
int sync mode = 1 ;
int dev0 index = 0 ;
int dev1 index = 1 ;
int dev g iven = 1 ;
u i n t 3 2 t f requency = 104.900000 e6 ;
u i n t 3 2 t samp rate = DEFAULT SAMPLE RATE;
int s e tup wa i t = 0 ;

struct sync a rg s dev0args ;
struct sync a rg s dev1args ;

dev0args . devnum = 0 ;
dev1args . devnum = 1 ;

dev0args . f i l ename = ”rtlOUT0 . txt ” ;
dev1args . f i l ename = ”rtlOUT1 . txt ” ;

//Arrays f o r c o r r e l a t i o n data
in0 = (f f tw complex ∗) f f t w m a l l o c (s izeof (f f tw complex) ∗

o u t b l o c k s i z e /2) ;
in1 = (f f tw complex ∗) f f t w m a l l o c (s izeof (f f tw complex) ∗

o u t b l o c k s i z e /2) ;

// Input and output arrays f o r FFT
i n f f t 0 = (f f tw complex ∗) f f t w m a l l o c (s izeof (f f tw complex) ∗

f f t s i z e) ;
o u t f f t 0 = (f f tw complex ∗) f f t w m a l l o c (s izeof (f f tw complex) ∗

f f t s i z e) ;
i n f f t 1 = (f f tw complex ∗) f f t w m a l l o c (s izeof (f f tw complex) ∗

f f t s i z e) ;
o u t f f t 1 = (f f tw complex ∗) f f t w m a l l o c (s izeof (f f tw complex) ∗

f f t s i z e) ;
p0 = f f t w p l a n d f t 1 d (f f t s i z e , i n f f t 0 , o u t f f t 0 , FFTWFORWARD,

FFTW ESTIMATE) ;
p1 = f f t w p l a n d f t 1 d (f f t s i z e , i n f f t 1 , o u t f f t 1 , FFTWFORWARD,

FFTW ESTIMATE) ;

B.3 Functional C Script 68

setup0 = (complex ∗) f f t w m a l l o c (s izeof (complex) ∗
s e t u p o u t b l o c k s i z e) ;

setup1 = (complex ∗) f f t w m a l l o c (s izeof (complex) ∗
s e t u p o u t b l o c k s i z e) ;

// Devices accessed
r = r t l s d r o p e n (&dev0 , (u i n t 3 2 t) dev0 index) ;
g = r t l s d r o p e n (&dev1 , (u i n t 3 2 t) dev1 index) ;
i f (r < 0) {

f p r i n t f (s tde r r , ” Fa i l ed to open r t l s d r dev i c e #%d .\n” ,
dev0 index) ;

e x i t (1) ;
}
i f (r < 0) {

f p r i n t f (s tde r r , ” Fa i l ed to open r t l s d r dev i c e #%d .\n” ,
dev1 index) ;

e x i t (1) ;
}

// S i gna l hand l ing wr i t t en by o r i g i n a l author
// Using l i nu x system
#i f n d e f WIN32

s i g a c t . s a hand l e r = s i g h a n d l e r ;
s igemptyset (& s i g a c t . sa mask) ;
s i g a c t . s a f l a g s = 0 ;
s i g a c t i o n (SIGINT , &s i gac t , NULL) ;
s i g a c t i o n (SIGTERM, &s i gac t , NULL) ;
s i g a c t i o n (SIGQUIT, &s i gac t , NULL) ;
s i g a c t i o n (SIGPIPE , &s i gac t , NULL) ;

#else
SetConso leCtr lHandler ((PHANDLER ROUTINE) s ighand l e r , TRUE) ;

#e n d i f

// Se t t i n g the sample ra t e o f the d e v i c e s
v e r b o s e s e t s a m p l e r a t e (dev0 , samp rate) ;
v e r b o s e s e t s a m p l e r a t e (dev1 , samp rate) ;

// Se t t i n g the f requency o f the de v i c e s
v e r b o s e s e t f r e q u e n c y (dev0 , f requency) ;
v e r b o s e s e t f r e q u e n c y (dev1 , f requency) ;

// Automatic gain
ve rbo s e au to ga in (dev0) ;
v e rbo s e au to ga in (dev1) ;

verbose ppm set (dev0 , ppm error) ;
verbose ppm set (dev1 , ppm error) ;

B.3 Functional C Script 69

// Opening arduino
a rdF i l e = fopen (”/dev/ttyACM0” , ”w”) ;
i f (! a rdF i l e) {

f p r i n t f (s tde r r , ” Fa i l ed to open arduino ”) ;
goto out ;
}

// Rese t t ing endpoint o f dev i c e b u f f e r s
v e r b o s e r e s e t b u f f e r (dev0) ;
v e r b o s e r e s e t b u f f e r (dev1) ;

// Def in ing func t i on f o r c o r r e l a t i o n
pthread t corrFunc ;

// Def in ing f unc t i on s f o r data streaming
pthread t f i r s t D e v ;
pthread t secondDev ;

// Def in ing f unc t i on s f o r FFTs
pthread t firstDevFFT ;
pthread t secondDevFFT ;

// Swi tch ing RF swi t ch so t ha t both d e v i c e s share an antenna
p r i n t f (” Switching on RF switch \n”) ;
f p r i n t f (ardFi l e , ”%d” , 2) ;
f f l u s h (a rdF i l e) ;

// S t a r t i n g threads to stream data
pth r ead c r ea t e (& f i r s tDev , NULL, syncRead , (void ∗)&dev0args) ;
p th r ead c r ea t e (&secondDev , NULL, syncRead , (void ∗)&dev1args) ;

// Waiting f o r d e v i c e s to f i n i s h s t a b i l s i n g
p r i n t f (”Waiting to a l low RTL−SDR d e v i c e s to s t a b i l i s e \n”) ;
while ((checkSetup(&dev0 lock , 0) && checkSetup(&dev1 lock , 1)

) != 1) se tup wa i t += 1 ;

s l e e p (1) ;

// Setup data f o r c o r r e l a t i o n has now been s t o r ed
// Swi tch ing RF swi t ch so t ha t each dev i c e has an i n d i v i d u a l

antenna
p r i n t f (” Switching o f f RF switch \n”) ;
f p r i n t f (ardFi l e , ”%d” , 1) ;
f f l u s h (a rdF i l e) ;

p r i n t f (” Ca l cu l a t ing de lay between d e v i c e s \n”) ;

// S l i d i n g window co r r e l a t i o n o f data i s now performed to f i nd
the de lay between dev i c e s

stat ic int corrLength = 20000;

B.3 Functional C Script 70

complex ∗ c o r r e l = mal loc (corrLength ∗ s izeof (complex)) ;

for (int i = 0 ; i < corrLength ; i++){
c o r r e l [i] = 0 + 0∗ I ;
for (int k = 0 ; k < s e t u p o u t b l o c k s i z e−corrLength ; k++){

c o r r e l [i] += conj (setup0 [i+k]) ∗ setup1 [corrLength/2−1+k] ;
}
c o r r e l [i] = c o r r e l [i] / corrLength ;
}

// The maximum va lue o f de lay and i t s index i s now found
double max = 0 ;
double magnitude = 0 ;
int delayIndex ;
int delayVal ;

for (int j = 0 ; j < corrLength ; j++){
magnitude = (double) s q r t (c r e a l (c o r r e l [j]) ∗ c r e a l (c o r r e l [j]) +

cimag (c o r r e l [j]) ∗cimag (c o r r e l [j])) ;
i f (magnitude > max) {
max = magnitude ;
de layIndex = j ;
}
}

delayVal = corrLength /2 − 1 − delayIndex ;

p r i n t f (”\nThe value o f max c o r r e l a t i o n i s %f at index %d\n” ,
magnitude , de layIndex) ;

p r i n t f (”The de lay o f the second dev i c e i s : %d samples \n” ,
delayVal) ;

// Corre l a t i on thread i s now s t a r t e d wi th the c a l c u l a t e d de lay
as an argument

pth r ead c r ea t e (&corrFunc , NULL, corr , delayVal) ;

// FFT threads s t a r t e d
pth r ead c r ea t e (&firstDevFFT , NULL, f f t , (void ∗)&dev0args) ;
p th r ead c r ea t e (&secondDevFFT , NULL, f f t , (void ∗)&dev1args) ;

p t h r e a d j o i n (f i r s tDev , NULL) ;
p t h r e a d j o i n (secondDev , NULL) ;
p t h r e a d j o i n (firstDevFFT , NULL) ;
p t h r e a d j o i n (secondDevFFT , NULL) ;
p t h r e a d j o i n (corrFunc , delayVal) ;

//Freeing memory used f o r FFT
f f t w d e s t r o y p l a n (p0) ;
f f t w d e s t r o y p l a n (p1) ;
f f t w f r e e (i n f f t 0) ; f f t w f r e e (o u t f f t 0) ;
f f t w f r e e (i n f f t 1) ; f f t w f r e e (o u t f f t 1) ;
f f t w f r e e (in0) ; f f t w f r e e (in1) ;

B.3 Functional C Script 71

f c l o s e (a rdF i l e) ;

out :
return r >= 0 ? r : −r ;

}

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 RTL Based Software Defined Radios
	1.2 Aims of the Project
	1.3 Overview of the Dissertation

	Chapter 2 Objectives and Outcomes
	2.1 Chapter Overview
	2.2 Synchronization of Multiple DVB-T USB's
	2.3 Application to Multiple Radio Telescopes
	2.4 Chapter Summary

	Chapter 3 Hardware, Software and Signal Sources
	3.1 Chapter Overview
	3.2 Hardware
	3.2.1 Analogue to Digital Converter
	3.2.2 Radio Frequency Tuner
	3.2.3 USB Dongle Selection

	3.3 Software
	3.4 Signal Sources
	3.5 Chapter Summary

	Chapter 4 Methods of Synchronization and Radio Astronomy Requirements
	4.1 Chapter Overview
	4.2 Connect Single Clock Source to Both Devices
	4.3 Measuring Delay Between Devices
	4.4 Synchronizing with Switching Hardware
	4.5 Construction of Antenna Systems
	4.6 Measurements with Single Antenna and Antenna Array
	4.6.1 Single Antenna Measurements
	4.6.2 Radio Interferometry
	4.6.3 Antenna Array Measurements

	4.7 Chapter Summary

	Chapter 5 Application of Methodology and Testing
	5.1 Chapter Overview
	5.2 Connect single clock source to both devices
	5.3 Measuring Delay Between Devices
	5.4 Test System with Monopole Antennas
	5.5 System Software
	5.5.1 Parent Thread
	5.5.2 Streaming Threads
	5.5.3 Correlation Thread
	5.5.4 Fast Fourier Transform Threads
	5.5.5 MATLAB

	5.6 Construction of Antennas
	5.6.1 Biquad Antennas
	5.6.2 Cylindrical Waveguide and Probe

	5.7 Radio Telescope Measurements
	5.7.1 Single Antenna Measurements
	5.7.2 Double Antenna Measurements

	5.8 Chapter Summary

	Chapter 6 Discussion of Results
	6.1 Chapter Overview
	6.2 Synchronization of Multiple DVB-T USB's
	6.3 Application to Multiple Radio Telescopes
	6.3.1 Single Antenna Measurements
	6.3.2 Double Antenna Measurements

	6.4 Chapter Summary

	Chapter 7 Conclusion and Further Work
	7.1 Conclusion
	7.2 Further Work - Application to Over the Horizon Radar

	References
	Appendix A Project Specification
	Appendix B MATLAB and C Script
	B.1 Test C Script
	B.2 MATLAB Script
	B.3 Functional C Script

