The Effects of Control Point Shape and Distribution in the Creation of

 a Numeric Cadastral Data BaseA dissertation submitted by
David Roberts
in fulfilment of the requirements of
ENG4111 and 4112 Research Project
towards the degree of

Abstract

For centuries information describing a parcel of land has been presented in the form of a hard copy parchment or document. The information displayed on the face of such a document has traditionally shown a direction and a distance along each line of each parcel. Since the advancement of angle and distance reading instruments the accuracy of such plans has improved substantially. In saying this surveyors dealing with older plans must determine, based on a hierarchy of evidence, how to deal with the inconsistences between what is shown on the cadastral survey plan and what is actually marked on the ground.

Recent advancements in processing power and surveying instrument capabilities have led to the creation of what is known as a Numeric Cadastral Data Base (NCDB). Most states in Australia currently utilize what is known as a Digital Cadastral Data Base (DCDB), which has limitations due to the way it was originally created. A NCDB however is created by entering the cadastral/boundary information from the original survey plan into a software package and then adjusting the network in conjunction with the physical survey marks on the ground. The result is a survey accurate data base which has the potential to be used as a means of better defining parcel boundaries.

This dissertation will investigate the processes involved in the creation of a NCDB and the effects of control point selection within the cadastral adjustment. The results will show that the closest representation to the boundaries actual position is achieved from the adjustment by using all of the original survey marks. It was found that as control is added to the adjustment the mean difference between the actual boundary corners and the adjusted corners became less over a test area of 49 parcels consisting of 147 corners. The research is supported by the Northern Territory Department of Lands, Planning and the Environment (DLPE) and will contribute to the developing NCDB of the town of Alice Springs.

University of Southern Queensland Faculty of Health, Engineering and Sciences

ENG4111 \& ENG4112 Research Project
 Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Health, Engineering and Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and any other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

David Roberts

Student Number: 0061011673

Acknowledgements

This research was carried out in conjunction with the Department of Lands Planning and the Environment under the guidance of Licensed Surveyors Roland Maddocks and Paul Montefiore. I extend my sincere appreciation to them both.

Appreciation is also due to Dr Glenn Campbell from the University of Southern Queensland for his guidance and to Dr Mike Elfick from GeoData Australia for his willingness to answer questions throughout the term of the project.

Lastly, many thanks are due to my employer Brian Blakeman for his flexibility throughout the year and to all my family and friends for there on going encouragement and support.

TABLE OF CONTENTS

Contents
ABSTRACT I
Limitations of Use II
Certification III
Acknowledgements IV
LIST OF FIGURES VII
CHAPTER 1 - INTRODUCTION 1
1.1 The Problem 1
1.2 Project Aims, (To investigate the effects of control point shape and distribution in the creation of a NCDB) 2
1.3 Expected Outcomes and Benefits 3
CHAPTER 2 - LITERATURE REVIEW 4
2.1 Gathering of Information 4
2.1.1 The use of a NCDB in defining boundaries 4
2.1.2 Current Projects/Legislation 5
2.1.3 General Characteristics of a NCDB 6
2.1.4 Geodata, GeoCadastre and GeoSurvey 7
2.1.5 The Adjustment Process and Control Points 8
2.1.6 Previous NCDB Test Procedures 9
2.2 Review of Information 9
CHAPTER 3 - METHODOLOGY 11
3.1 Introduction 11
3.2 NCDB Creation 12
3.2.1 Original Survey Plan and Digital Data Acquisition (The Cadastral Fabric) 12
3.2.2 Field Reconnaissance and Field Work Planning 13
3.2.3 Coordinated Reference Mark (CRM) Placement 14
3.2.4 Conventional Field Traverse 15
3.2.5 GNSS Survey 16
3.2.6 NEWGAN Adjustment 16
3.2.7 GeoCadastre Cadastral Adjustment 18
3.3 Preliminary Testing Considerations 23
3.4 Test Cadastral Adjustment Configurations 26
CHAPTER 4 - RESULTS 30
4.1 Introduction 30
4.2 Easting and Northing Boundary Corner Comparison 30
4.3 Distance Comparison 32
4.4 Distance Comparison Histograms and Normal Distribution 34
4.5 Manual Reinstatement vs Cadastral Adjustment Distance Vector Plots 35
4.6 Manual Reinstatement vs Cadastral Adjustment Mean Prediction 40
4.7 Control Density Test 41
CHAPTER 5-DISCUSSION 42
5.1 Introduction 42
5.2 Easting and Northing Boundary Corner Comparison 42
5.3 Distance Comparison 43
5.4 Distance Comparison Histograms and Normal Distribution 45
5.5 Manual Reinstatement vs Cadastral Adjustment Distance Vector Plots 46
5.6 Manual Reinstatement vs Cadastral Adjustment Mean Findings 47
5.7 Summary 48
CHAPTER 6 - IMPLICATIONS AND CONCLUSIONS 49
6.1 Introduction 49
6.2 Implications 49
6.2.1 Points Inside and Outside the Control Configuration 49
6.2.2 Skewed Adjustments 50
6.2.3 Fully Constrained, at What Cost? 50
6.3 Further Research and Recommendations 52
6.4 Conclusions 55
LIST OF REFERENCES 56
APPENDICIES 59
APPENDIX A - Project Specification 60
APPENDIX B - Adjusted NEWGAN Coordinates 61
APPENDIX C - Control Density Test Configurations 62
APPENDIX D - Fully Constrained Point Comparison Report 64
APPENDIX E - 25 ORM Point Comparison Report 66
APPENDIX F - 20 ORM Point Comparison Report 68
APPENDIX G - 15 ORM Point Comparison Report 70
APPENDIX H - 10 ORM Point Comparison Report 72
APPENDIX I - 7 ORM Point Comparison Report 74
APPENDIX J - 5 ORM Point Comparison Report 76

LIST OF FIGURES

Figure 1: Research Area 11
Figure 2 : ACS File provided to the Student by the DLPE 12
Figure 3 : Summary of Survey Marks within the Subject Area 13
Figure 4 : Feno Mark Installation Diagram 15
Figure 5 : NEWGAN Adjustment Summary 17
Figure 6 : Outputted CRMs and ORMs from NEWGAN Adjustment 18
Figure 7 : Parcel Properties 19
Figure 8 : Lines Tab 19
Figure 9 : Original Cadastral Plan Information 20
Figure 10 : Add Control 1 21
Figure 11: Add Control 2 21
Figure 12 : Adjust Job 23
Figure 13 : Manually Reinstated Lots 24
Figure 14 : Convergence Calculated by Surveying Software 25
Figure 15 : Field Survey vs Original Survey 26
Figure 16 : Regular Quadrilateral 1 27
Figure 17 : Regular Quadrilateral 2 27
Figure 18 : Regular Triangle 1 27
Figure 19 : Regular Triangle 2 27
Figure 20 : Skewed East West Triangle 1 28
Figure 21 : Skewed East West Triangle 2 28
Figure 22 : Skewed North South Triangle 1 28
Figure 23 : Skewed North South Triangle 2 28
Figure 24 : Fully Constrained 29
Figure 25 : Regular Quadrilateral 1 Scatter Plot 30
Figure 26 : Regular Triangle 1 Scatter Plot 31
Figure 27 : Skewed East West Triangle 1 Scatter Plot 31
Figure 28 : Skewed North South Triangle 1 Scatter Plot 31
Figure 29 : Fully Constrained Scatter Plot 32
Figure 30 : Regular Quadrilateral 1 Column Graph 32
Figure 31 : Regular Triangle 1 Column Graph 33
Figure 32 : Skewed East West Triangle 1 Column Graph 33
Figure 33 : Fully Constrained Column Graph 33
Figure 34 : Regular Quadrilateral 1 Histogram 34
Figure 35 : Regular Triangle 1 Histogram 34
Figure 36 : Skewed East West Triangle 1 Histogram 35
Figure 37 : Fully Constrained Histogram 35
Figure 38 : Regular Quadrilateral 1 Distance Difference Vector 36
Figure 39 : Regular Quadrilateral 2 Distance Difference Vector 36
Figure 40 : Regular Triangle 1 Distance Difference Vector 37
Figure 41 : Regular Triangle 2 Distance Difference Vector 37
Figure 42 : Skewed East West Triangle 1 Distance Difference Vector 38
Figure 43 : Skewed East West Triangle 2 Distance Difference Vector 38
Figure 44 : Skewed North South Triangle 1 Distance Difference Vector 39
Figure 45 : Skewed North South Triangle 2 Distance Difference Vector 39
Figure 46 : Fully Constrained Distance Difference Vector 40
Figure 47 : Manual Reinstatement vs Cadastral Adjustment Prediction 40
Figure 48 : Control Density Test 41
Figure 49 : Fully Constrained and 10 Point Traverse 52
Figure 50 : Research Area Established CRM Network 53

CHAPTER 1

INTRODUCTION

1.1 The Problem

With the advancement in aerial photography came the potential to measure large areas of the earth's surface to a relatively high degree of accuracy. In conjunction with aerial photography cartographers and surveyors were able to digitize old survey plans into a data base which was later to be known as a Digital Cadastral Data Base (DCDB). The DCDB was however only as accurate as the digitizing software and the base map at the time and could not be used as a sole source of boundary definition. Due to the inaccuracies of the DCDB a new data base is being developed called the Numeric Cadastral Data Base (NCDB). A NCDB is created by inputting the information from the original cadastral plan into a software package and then adjusting the area in conjunction with the original survey marks on the ground, ultimately to find the solution of best fit between the documentary and physical evidence. The user is left with a mathematically consistent data base which shows the individual parcels of an area relative to one another to a survey accurate standard.

Each point within the data base has its own coordinate value and the bearings and distances of each line can also be reviewed. Because this data is already in a digital format to a high degree of accuracy it has the potential to be loaded straight onto a total station or a global navigation satellite system (GNSS) for the purpose of marking a parcel boundary.

Queensland is working on a NCDB through a company called SDX (Spatial Data eXchange) and NSW has over 4 million parcels in a well-managed registry. NCDB's are currently being used
throughout the world in countries such as the USA, South Africa and the Philippines (Elfick, Mclennan \& Somers, unpub).

The Northern Territory is almost at a point where every parcel has been coordinated into a local NCDB. This has mainly been done by the Northern Territory Government, Department of Lands Planning and the Environment (DLPE), in conjunction with surveyors from private companies. Because areas still need to be incorporated into the NCDB the potential for undergraduates to contribute to the work done by the DLPE presents itself. The student has been assigned an urban area in the western suburbs of the town of Alice Springs consisting of 280 parcels for research purposes.

1.2 Project Aims, (To investigate the effects of control point shape and distribution in the creation of a NCDB)

Although NCDB's are currently being developed in most states of Australia considerable research is still required before any legal status can be assigned to such a data base. One area in particular is the effect that control point shape and distribution has within the cadastral adjustment process. This dissertation will investigate this area of research and aim to determine the effect of control point shape and distribution in the creation of a NCDB. In order to investigate the project question the following objectives have been created:

- Gather the required information, relevant survey plans and/or digital data, to form the cadastral fabric to be used within the NCDB.
- Conduct the necessary field work by establishing a network of Coordinated Reference Marks (CRMs) and traverse to original survey marks (ORMs) within the area.
- Reduce all field data within the necessary software packages before making the cadastral adjustment within the adjustment program GeoCadastre.
- Using the cadastral fabric, generated from the original survey plans, combined with the data gathered from field measurements analyse the effects of control point shape and distribution.

The creation of NCDBs vary from state to state and it should be noted that this project will be conducted in accordance with the methods put forward by the Northern Territory Department of Lands, Planning and the Environment. Field work will be conducted in accordance with SP1 standards (Standard for the Australian Survey Control Network Special Publication 1, Version 2.1, October 2014). In particular the Guidelines for Control Surveys by GNSS V2.1, Guidelines for Conventional Traverse Surveys V2.1 and Guidelines for Installation and Documentation of Survey Control Marks V2.1 (Publications: Surveying Standards and Practices (SP1) 2016).

All data entry and field processing will be done under supervision of the Department of Lands, Planning and the Environment to ensure quality as there is potential for this work to contribute to the existing NCDB of Alice Springs. The area consists of 280 parcels and is made up of 33 survey plans ranging from 1970 to 2014.

1.3 Expected Outcomes and Benefits

The project will provide the reader with specific information in regards to creating an NCDB and make recommendations on the desired number and configuration of control points to be used during the cadastral adjustment within the software package GeoCadastre.

The expected outcomes of the project include:

- Identification of the process in developing a Numeric Cadastral Data Base using modern surveying instruments and software packages.
- Identify the effects of control point shape and distribution in the cadastral adjustment process by comparing a range of adjustments using different control configurations to a manually reinstated area.
- Determine the expected accuracies of the Numeric Cadastral Data Base relative to the actual position of the boundary corners on the earth's surface at present.

CHAPTER 2

LITERATURE REVIEW

2.1 Gathering of Information

Further literature has been reviewed to develop the ideas towards the research project. The purpose of the review was to gather relevant information in regards to:

- The use of a NCDB in defining boundaries
- Current Projects/Legislation
- General characteristics of a NCDB
- Geodata, GeoCadastre and GeoSurvey
- The Adjustment Process and Control Points
- Previous NCDB Test Procedures

2.1.1 The use of a NCDB in defining boundaries

A NCDB provides a survey accurate coordinate system which can provide a means of transition from the current dimensional cadastral system to one based on fixed coordinates (Elfick, unpub, ACGMS). Modern computer based Geographic Information Systems (GIS) and survey packages such as Computer Aided Drafting (CAD) programs are position or coordinate orientated. Each point has an easting, northing and height, in some cases, as well as different attributes such as description code assigned to each point.

The survey instruments of today also utilise positional data in the form of co-ordinated values and are able to locate a point on the earth's surface to a much higher degree of accuracy then previous methods. Because computer based geographical information systems are position orientated it can be argued that there is a need for the cadastral system to be in a form compatible with all other geographical based data sets (Elfick 1997).

In saying this careful considerations must be made if such a system is to be put in place. The coordinate system currently used throughout Australia is the Geocentric Datum of Australia which is based on the position, or epoch, of Australia in 1994. This forms the datum for grid coordinates Map Grid of Australia 1994 (MGA94). Since this datum was established the continent of Australia has moved under the MGA94 grid in a north easterly direction approximately seven centimetres a year (ICSM 2015). This means that in the near future Australia will most likely adopt a more recent epoch and in doing so will have to consider the effect on cadastral coordinate systems.

2.1.2 Current Projects/Legislation

Torrens Title is the system of land registration currently used in Australia and is historically based on surveying land parcels and recording the ownership titles in the land registry. The Torrens system, introduced in Australia between 1857 and 1875, is a system of title registration where the state guarantees that the person shown on the title register is the registered proprietor (Dalrymple, Williamson \& Wallace, unpub).

This system proved to be much simpler than the previous method of deeds conveyancing which was subject to problems caused by the nature of the chain of title. Under Torrens Title surveys of individual parcel boundaries are carried out in relation to neighbouring parcels to a high mathematical standard with support from the information shown on the original survey plans. This system has been in place for 140 years and has proved to be effective. However, some issues do arise when conducting surveys over large areas where there is poor connectivity between survey plans.

South Australia has started generating an accurate NCDB and Tasmania awarded a tender to generate and integrate a NCDB into their existing system (Sandy \& Harper 2012). Queensland is also working on a NCDB through a company called SDX (Spatial Data eXchange). Rather than waiting for new subdivision data SDX will receive spatial information directly where it will then be managed in a digital environment (Elfick, Mclennan \& Somers, unpub). NSW has over 4 million parcels in a wellmanaged registry and are currently looking at introducing electronic plan examination during the registration process (Elfick, Mclennan \& Somers, unpub).

Under section 46A of the Northern Territory of Australia Licensed Surveyors Act 2013 the Surveyor General may declare an area of land in the Territory to be a coordinated survey area. The act also states that surveys within a coordinated survey area must be done in accordance with an approved methodology to delimit land boundaries by geodetic coordinates. The Northern Territory is almost at a point where every parcel has been coordinated into a local NCDB and in July 2014 three areas were gazetted and became the first declared areas in Australia, (Sandy 2014). These areas are Gunbalanya, Milingimbi and Gapuwiak and are remote communities in the Arnhem Land area east of Darwin.

2.1.3 General Characteristics of a NCDB

A NCDB should ideally be constructed directly from original survey plans by entering the data from the face of the plan into the software package. In general the plans kept within the land titles record system contain all the necessary information for surveyors to build an NCDB. If the data is adequate for surveyors to re-establish boundaries, then it is adequate to build a numerical data set (Elfick 2001). In saying this necessary field verification must be undertaken to ensure a healthy balance between the adoption of dimensions shown on documents and the existing survey marks on the ground.

For practical reasons a group of between 100 to 300 parcels are worked on at a time (Maddocks \& West, unpub). All the data for each area should be entered and adjusted to a local area and a number of survey marks coordinated and used as absolute control. The adjustment is then re-run to compute geodetic coordinates for each parcel corner and then the accuracy of the plan data assessed. Once the
framework has been adequately adjusted the remaining surveys can be added to complete the data base. Any isolated parcels can be measured with Global Positioning Systems (GPS) or gathered from previous survey data and brought straight into the system (Maddocks \& West, unpub). The final NCDB is a combination of a number of survey plans and subdivision data where all necessary information is included in the system.

2.1.4 Geodata, GeoCadastre and GeoSurvey

Geodata Information Systems Pty. Ltd. (Geodata) is a company formed in 2007 to provide specialised skills in survey and GIS cadastral database management. It is responsible for the creation of the adjustment software "GeoCadastre" and the survey software "GeoSurvey" which will be used throughout this project. This software has been developed over the last twenty years by the recognised leaders from Geodata Michael Elfick and Michael Fletcher. The Environmental Systems Research Institute (ESRI) has recently bought the rights to use the GeoCadastre software in its GIS software packages confirming that the Geodata software is one of the most effective models in cadastral parcel management systems (Smith 2012).

GeoCadastre is a Microsoft Windows based program specifically designed to adjust the survey parcel networks by least squares methods. Geodata describes GeoCadastre as a record to fabric program designed to build a parcel network from survey plans and survey data, ultimately the creation of a NCDB. GeoSurvey, described as a Survey Data and Coordinate Geometry Tool by GeoData, utilises the adjusted parcel network from GeoCadastre for practical surveying purposes. It allows the user to view parcel information in geodetic coordinate systems, MGA94, and configure unit settings from grid bearings to true bearings and grid distances to ground distances. GeoSurvey conversions include ACS, Autocad, Trimble and LandXML as well as a range of other file types (Software Solutions: Converting raw data to knowledge 2016).

2.1.5 The Adjustment Process and Control Points

The adjustment process is a weighted least squares adjustment, where weight is allocated depending on the time of survey. This information is allocated to the parcel during the initial data input when the date of the survey is assigned. Parcels with a higher accuracy level from recent plans (higher weight) adjust less than those with a lower accuracy level from older plans (lower weight) (The Least Squares Adjustment Process: About the least squares adjustment 2009). Having said this some cadastral surveyors may argue that those marks closest in time to the original survey have the highest status and weight.

The first step of the adjustment process determines the transformation parameters (rotation, scale and translation) between the original coordinates of the control points and the corresponding coordinates of their underlying parcel points. The control points used in the creation of the NCDB are the Original Reference Marks, (ORMs), related to the original cadastral plan and should be permanent physical features which can be adopted by future surveyors. It should be noted that the control point coordinate values are held fixed in the least-squares adjustment and a minimum of two control points are required to run the least-squares adjustment (The Least Squares Adjustment Process: About the least squares adjustment 2009).

If the transformation residuals are within the specified limits, (based on the relationship between the documentary and physical evidence), the parameters are applied to all the parcel corners to transform them into the coordinates of the control system. The original bearing and distance of each line from the initial survey plan input is compared with the bearings and distances in the transformed coordinate system and any line that exceeds the set bearing and distance tolerance, (set by the user), is reported. Once the coordinates have been transformed into the control system the adjustment engine varies the coordinates and determines a best fit solution for all the points in the network (The Least Squares Adjustment Process: About the least squares adjustment 2009).

2.1.6 Previous NCDB Test Procedures

After the cadastral data has been entered into the software package and the necessary adjustment made, by least squares, a comparison can be conducted between the control co-ordinates and the original cadastral values. An example can be shown within the town of Bachelor NT in a study conducted by Maddocks. 16 cadastral plans were compiled consisting of 190 parcels and 35 coordinated points. Once the parcels had been joined four of the co-ordinated points were used as control and the area adjusted. The remaining points were then used as a check to test the agreement between the adjusted cadastre and the physical marks on the ground.

It was found that four control points with fixed values held the original parcel dimensions well with the standard residuals on the test points being 19 mm and the largest error 38 mm (Maddocks \& West, unpub). It was proven that the quality of the data largely depends on the age of the surveys and for this reason considerations need to be made when comparing plan measurements to the geodetic control. When assessing accuracy, it is also necessary to assess the quality of the instruments used at the time of survey.

- Steel chain and theodolite - by regulation needed to be good to 1:5,000 in country with slopes not exceeding 4 degrees, however it could be as good as 1:10,000.
- Invar Chain and theodolite - The expectation of work done with these instruments was accuracies of better than 1:25,000.
- EDM and theodolite - Expected to yield accuracies better than 1:30,000
(Maddocks \& West, unpub)

2.2 Review of Information

A NCDB should be constructed directly from original survey plans by entering the data from the face of the plan into the appropriate software package. It has been found that if the survey plans are of a
high enough standard to define property boundaries then they are suitable to be used for the creation of a NCDB. Modern surveying software packages are position orientated as are the instruments of today which are capable of defining a point on the earth's surface to a much higher degree of accuracy than ever before.

The control points used in the creation of the NCDB are the Original Survey Marks related to the original cadastral plan and should be permanent physical features which can be adopted by future surveyors. Previous studies have found that if a NCDB is created and adjusted correctly it can produce results of a high degree of accuracy, (Maddocks \& West, unpub). It is important to keep in mind the age of the original survey and the instruments and methods that were used during that period of time.

CHAPTER 3

METHODOLOGY

3.1 Introduction

The aim of this chapter is to precisely describe the method and materials required to create a NCDB.
It will also discuss the procedures used to test the effects of control point shape and distribution within the cadastral adjustment. Firstly the procedures required to gather the necessary data for a NCDB will be investigated and then an overview of the cadastral adjustment program GeoCadastre will be discussed. The area of interest allocated to the student by the DLPE within the Town of Alice Springs is shown in the aerial image outlined in yellow below.

Figure 1: Research Area

3.2 NCDB Creation

3.2.1 Original Survey Plan and Digital Data Acquisition (The Cadastral Fabric)

The subject area consists of 280 parcels and is made up of 33 survey plans ranging from 1970 to 2014. The information shown within these plans, (boundary dimensions and directions/bearings), formed the basis of the cadastral fabric. The cadastral fabric is a continuous surface of connected parcels and represents the original plan information. It is created within GeoCadastre by entering in the bearing and distance for each line of every parcel from the cadastral plan data. This surface is adjusted with the physical survey marks on the ground to form the NCDB. As the subject area was of interest to the DLPE the initial data entry had already been completed.

This file, (the cadastral fabric), was in ACS format, (compatible with GeoCadastre), and represented the original plan information. The file approximately fell on MGA94 Zone 53 as it had been temporarily combined with the surrounding adjusted parcels in the local cadastre. All parcel dimensions and bearings within the cadastral fabric represented original bearings and original ground distances shown on the cadastral survey plans. In total the ACS file consisted of 898 corners 2,119 bearings and 1,941 distances.

Figure 2 : ACS File provided to the Student by the DLPE

3.2.2 Field Reconnaissance and Field Work Planning

By using the ACS file provided by the DLPE the total number of original survey marks within the subject area could be estimated. This was done by looking at each survey plan in chronological order and plotting the ORMs position within the cadastral fabric. As the file was approximately coordinated on MGA94 it could be loaded onto a Global Navigation Satellite System (GNSS) controller, and in conjunction with a GNSS receiver used to search for the ORMs to be used in the creation of the NCDB.

As the majority of ORMs within the area were drill holes located in the kerb of the road they were easily identified and when located painted with a white circle to aid in future recovery. A note was also made if the ORM was located, disturbed or gone. During this process a proposed position to place the Coordinated Reference Marks (CRMs) was measured. These marks would later be used as traverse stations to accurately measure the ORMs and will be discussed in more detail in the following section.

Within the subject area 28 Brass Plugs were located, 10 nails, 76 drill holes and 9 spikes. 31 ORMs were gone as they had been lost in driveways, footpaths or pram ramps and 89 ORMs were not located as the back of the parcels were inaccessible and beyond the extent of the research project. This would not affect the future analysis on the control selection as the area later selected for testing was fully encompassed by ORMs. It was estimated that 45 CRMs would be required to traverse the ORMs due to the irregular street network and undulating terrain of the subject area.

Figure 3 : Summary of Survey Marks within the Subject Area

3.2.3 Coordinated Reference Mark (CRM) Placement

In order to gather the required data for the creation of the NCDB a network of CRMs needed to be established from which the ORMs could be measured. The placement of the CRMs throughout the subject area was done in accordance with the ICSM Guideline for the Installation and Documentation of survey Control Marks Special Publication 1 Version 2.1 and the Northern Territory of Australia Survey Practice Directions - Surveys within Coordinated Survey Areas 2003 (NT). The ICSM Guidelines state the survey control mark should be made of good quality, durable, corrosion resistant materials and be placed where it is least likely to be disturbed, damaged or removed.

Under the Northern Territory Practice Directions the surveyor must ensure that the CRM is constructed of a material that will resist destruction by fire, decay and termites. The CRM itself should be permanently marked with a unique station identifier to ensure unambiguous identification and a station identifier associated with the survey mark. The mark should be located in a position that maximises the use of different measurement techniques and connection to future marks. This was necessary to ensure that the CRMs could be measured directly using conventional traversing methods as well as GNSS techniques.

In total 46 new CRMs were placed, 31 by the student and 15 by the DLPE. The majority of the marks were placed roughly 0.3 m from the back of the road kerb at street intersections and at the end of cul-de-sac's. These marks, Polyroc FENO Mark, were placed at intervisible locations from which the ORMs could be measured. The FENO mark, developed in the 1970's by the French company Faynot consists of three components; a 610mm anchor or spike, a polyroc head and an aluminium insert.

The FENO mark is placed by first driving the anchor into the ground with the Polyroc Head between the natural surface and the lip of the anchor. A driving tool is then placed in the anchor tube and driven down to cause the extension of the three prongs which firmly lock the mark to the ground. The aluminium insert which has the CRM number and centering hole punch is then inserted into the anchor, (MAPC 2009).

Figure 4 : Feno Mark Installation Diagram

The aluminium insert was stamped with the unique CRM identifier which consisted of the survey plan number S16064, allocated by the Surveyor General, followed by the point number, e.g. S16064002. Part 5 of the Northern Territory of Australia Survey Practice Directions states that the surveyor must ensure that the CRM is accompanied with a warning tag affixed to a witness mark or other substantial structure. In the case of the research area a witness plate with recovery information, (magnetic bearing and distance from the plate to the CRM), and CRM number was placed adjacent to the CRM in the kerb of the road or footpath.

3.2.4 Conventional Field Traverse

The field traverse was conducted in accordance with the Guideline for Conventional Traverse Surveys Special Publication 1. The student traversed CRMs 1-31 and the DLPE traversed the remaining 3246. A Leica TCR1105 Total Station, (5 second angle measuring accuracy), was used to conduct the field traverse to accurately measure the position of the ORMs in relation to the CRMs. Before the commencement of field work the instrument was calibrated at the Morrie Hocking Baseline, Alice Springs.

Tribrach's with Optical Plummet and precision carriers, (GDF322 Tribrach with Optical Plummet and Leica GZR3 Precision Carrier), and Leica GPR1 Circular Prism's were used with Wooden Tripods, (Leica GST20 Wooden Tripod), when measuring between traverse stations. Observations to ORMs less then 30 m away were taken using a low set Leica mini prism positioned low on the pole to ensure verticality. If the ORM was further then 30 m away from the CRM it would be measured to using a
tripod. This helped eliminate incorrect angle reading errors which are exaggerated as distance increases, (20 seconds of arc is the equivalent to 10 mm over 100 m). This equipment satisfied a Survey Uncertainty, SU, and Relative Uncertainty, RU, of less than 10mm (ICSM 2014).

The field traverse consisted of measuring face left and face right horizontal angles, vertical angles, horizontal distances and slope distances between traverse stations (CRMs) and radiations to ORMs. Naming of ORMs were with sequential alpha suffixes clockwise from north, e.g. S16064023A, S16064023B, S16064023C etc for all marks radiated from CRM S16064023. The mean of any angle did not exceed 10 " over an observation greater than 50 m . Instrument and target heights were measured and temperature and pressure readings taken on a regular basis, or at pronounced changes in conditions.

These readings were input into the atmospheric corrections within the Total Station in the field. This was done to ensure that the correct ppm (parts per million) correction was applied to the measured distances. This compensates for errors in the Electric Distance Measurement (EDM) due to fluctuations in the speed of light caused by temperature and pressure through which light passes through (Professional Surveyor Magazine 2004). These procedures satisfied a SU and RU of less than 10mm (ICSM 2014).

3.2.5 GNSS Survey

In conjunction with the conventional field traverse CRMs 1-46 were measured by the DLPE using Static GNSS techniques. Four dual frequency geodetic receivers were used in each session and three Continually Operating Reference Stations (CORS) were used to resolve the ambiguities. Further redundancy was achieved by occupying the CRMs twice.

3.2.6 NEWGAN Adjustment

The three dimensional least squares adjustment program NEWGAN was used by the DLPE to determine the final coordinates of the CRMs and ORMs within the subject area. Only CRMs 1-31
were input into the adjustment program as the required terrestrial information was not available for CRMs 32-46.

In total 115 stations were input into NEWGAN, (3 CORS Stations, 31 CRMs and 81 ORMs). One CORS station was assigned as constrained. Latitude, Longitude and Elevation gathered from the GNSS survey were input for the CRMs and for the ORMs an approximate co-ordinate which was extracted from the cadastral fabric.

The terrestrial directions and distances, (slope), were also input into the program. AHD elevations were obtained for the CRMs by conventional levelling techniques from neighbouring bench marks within the area by the DLPE. The following information extracted from the NEWGAN report further summarises the variables of the adjustment.

```
    | THREE DIMENSIONALADJUSTMENT PROGRAM NEWGAN |
    DATE OF COMPUTATION 20-Jun-16
    S2016/064 TOM ROBERTS PROJECT GRS80
    THE ESTIMATE OF THE VARIANCE FACTOR AFTER ADJUSTMENT IS 1.199
    THEA PRIORIVARIANCEFACTOR WAS 1.000
    THIS GIVES A VARIANCE RATIO OF 1.199
    489 DEGREES OFFREEDOM
    1 CONSTRAINT STATIONS
    388 TERRESTRIAL OBSERVATIONS
    -3 POSITIONEQUATIONS
    O POINT POSITIONS
    O MULTI-STATION FIGURES
    167 MULTI-BASELINE FIGURES
    0 bASELINES
    55.2 PER CENT REDUNDANCY
    115 FREESTATIONS
    4.25 DEGREES OF FREEDOM PER FREE STATION
    0.97 RATIO OF REDUNDANCIES/PARAMETERS
    3 ITERATIONS REQUIRED FOR CONVERGENCE
    THE VALUE OFTHE MINIMUM IS 586.2
THE VARIANCE RATIO TEST IS SATISFIED AT THE 99% CONFIDENCE LEVEL
AND HENCE RESULTS ARE CONSISTENT WITH THE MATHEMATICAL MODEL
F TEST FACTOR = 0.9591
```

Figure 5 : NEWGAN Adjustment Summary

The results file from the NEWGAN adjustment produced MGA94 Zone 53 coordinates and AHD levels for CRMs 1-31, (shown as squares), and 81 ORMs, (shown as crosses). These coordinates would later be used when testing the cadastral adjustment within GeoCadastre, (see appendix B).

Figure 6 : Outputted CRMs and ORMs from NEWGAN Adjustment

3.2.7 GeoCadastre Cadastral Adjustment

Ten adjustments were made in GeoCadastre using different control shapes resembling similar configurations commonly used by Surveyors. The first step within the adjustment is selecting points within the cadastral fabric of GeoCadastre and assigning them as 'control'. This is done by first adding the ORM to the cadastral fabric. To add points to the cadastral fabric the properties of the parcel are selected by right clicking on the parcel and then selecting 'Properties'.

Figure 7 : Parcel Properties

Once the parcel properties has been selected the ORM can be added by entering the bearing and distance from the selected parcel corner using the radiation information from the original survey plan. This is done in the Lines Tab.

Figure 8 : Lines Tab

Figure 9 : Original Cadastral Plan Information

The 'From' point can be selected from the existing points within the file, however the 'Bearing' and 'Distance' must be manually entered. The 'To' column is the point number given to the new point, if an existing number is input a new number will automatically be assigned. The 'Type' is set to 995 for a control point; this will hold the connection from the ORM to the boundary corner fixed in the adjustment and will be represented by a red dashed line.

Once the ORM has been input into to the cadastral fabric it can then be added to the control list to be used in the least squares adjustment. This is done by selecting the 'Adjust' tab and then 'Control'. In the Control function 'Add' is then selected and the ORM highlighted using the cursor or the point number manually keyed in.

Figure 10 : Add Control 1

The coordinates of the control point displayed at this stage are the unadjusted coordinates from the cadastral fabric, approximately MGA94 Zone 53 as previously discussed in 3.2.1. It is here that the measured coordinates and height from the NEWGAN adjustment are input. The correct Name for the control point should also be entered.

Figure 11 : Add Control 2

When manually adding control points the association between the fabric point and the control point can be immediately established, ($\mathrm{E} \Delta 0.011 \mathrm{~m}$ and $\mathrm{N} \Delta .015 \mathrm{~m}$). Having the control point active will assign the point as active once the ok box is selected. Active control points are used in the least squares adjustment, inactive control points are excluded from the adjustment. This procedure is repeated for each ORM until the desired number of control points has been reached. Within the 'Control' function 'Adjustment' is then selected which will open the 'Adjust Job' function. Within the 'Adjust Job' the adjustment tolerances can be set which will report on the bearings, distances, line points and close points which exceed the set tolerances between the difference of the adjusted line and the original recorded line.

The adjustment settings can also be configured to force line points or straight lines. These options were not selected for the testing of the adjustment. Parcels can be isolated and adjusted individually by selecting the 'Adjust Selected' box and easements also included in the adjustment by selecting 'Include Easements'. These two settings were also unselected during the testing of different control configurations. The 'Include Historical' box was selected during the testing phase. As mentioned in 2.1.5 weight is allocated depending on the date of survey which is assigned to each parcel during the creation of the cadastral fabric.

The 'Listing Type' can be configured to produce a more detailed report of the adjustment however as the adjusted coordinates of the boundary corners were all that was required for future testing, the standard setting was used. 'Hold Boundary Fixed' was not selected as the purpose of the adjustment was to generate adjusted boundary corners from different ORM configurations. Once all settings have been configured the adjustment is initiated by selecting proceed.

Figure 12 : Adjust Job

The Adjustment will then run and if successful generate an adjustment summary. The report gives a statistical summary on the number of points and lines in the adjustment and alerts if any tolerances were exceeded. The maximum and average shift is reported between the original cadastral fabric and the adjusted parcel corners. A results file is also produced which gives a summary of the effect of the adjustment on each parcel and every line within the fabric.

A complete list of the final boundary coordinates is given in the results file. These were in the form of MGA94 Zone 53 coordinates and were extracted from the results file after each adjustment was run. These coordinates would be used for comparison and future testing of control configuration.

3.3 Preliminary Testing Considerations

From the adjusted NEWGAN coordinates 15 CRMs were selected which encompassed an area consisting of 48 parcels, 147 corners and 32 ORMs. The area was reinstated manually which formed a base file to be used as a comparison against results obtained from GeoCadastre adjustments. As the

NEWGAN coordinates were MGA94 the area was reinstated in a Universal Transverse Mercator Projection, (UTM), Map Grid Australia 94 Zone 53. Reinstating the boundaries in MGA94 was necessary as the adjusted boundaries from GeoCadastre would also be in the form of grid coordinates.

Figure 13 - Manually Reinstated Lots

Liscad SEE, Surveying and Engineering Environment Version 12.0, was used to conduct the manual reinstatement. Unit configurations were set to ground distances and bearings set to Azimuth/True Bearings. The difference between MGA94 Grid Bearings and True Bearings, (Grid Convergence), in the subject area was between - $27^{\prime} 40^{\prime \prime}$ and $-27^{\prime} 45^{\prime \prime}$. For example at CRM S16064020A (Lat -23 42^{\prime} 5.86", Long $133^{\circ} 51^{\prime} 4.49^{\prime \prime}$):

Tan Grid Convergence $=\quad$-Sin Lat point. Tan (Long point - Long CM)
Where CM is the Central Meridian (135° for zone 53)
Lat Point is the latitude of the point of interest
Long Point is the Longitude of the point of interest
(Department of Sustainability and Environment)

```
Tan Grid Convergence = - -Sin -23.7016277778. Tan(133.851247222-135)
    = 0.401973790543.-0.0200522052226
```

```
= -0.00806046094181
    = Arc Tan (-0.0080604694181)
    = -0.461820391419 (Decimal Degree's)
    = - 27'43"
```

The same convergence is achieved when analysing the point within Liscad as seen in the figure below.

Figure 14 : Convergence Calculated by Surveying Software

Cadastral survey plans within Alice Springs use grid bearings which are based on a local grid of the town. The local grid was determined by measuring an azimuth from the centre of the town, at ANZAC Fundamental to Mt. Everard, which became the datum of the grid. At this line the observation was a true bearing however as surveys were taken further from the datum line the bearings no longer resembled a true bearing. The subject area was roughly 3.2 km west from the initial point of the local grid. When comparisons made between the field data, with units configured to true bearings, and the original survey plan data the convergence between the local grid and true bearings was negligible. Some comparisons between the manual reinstatement and the original survey plan can be seen below.

Plan $1-2=$	$27^{\circ} 28^{\prime}$	118.765 m	Plan $1-2=$	$209^{\circ} 39^{\prime} 30^{\prime \prime}$	163.035 m
Field $1-2=$	$27^{\circ} 27^{\prime} 50^{\prime \prime}$	118.730 m	Field $1-2=$	$209^{\circ} 39^{\prime} 39^{\prime \prime}$	163.045 m
Plan $8-9=$	$27^{\circ} 28^{\prime}$	142.610 m	Plan $10-11=$	$126^{\circ} 50^{\prime} 30^{\prime \prime}$	107.710 m
Field $8-9=$	$27^{\circ} 27^{\prime} 57^{\prime \prime}$	142.580 m	Field $10-11=$	$126^{\circ} 50^{\prime} 27^{\prime \prime}$	107.710 m
Plan $8-7=$	$19^{\circ} 31^{\prime} 10^{\prime \prime}$	83.995 m	Plan $12-13=$	$126^{\circ} 50^{\prime} 30^{\prime \prime}$	134.655 m
Field $8-7=$	$19^{\circ} 31^{\prime} 13^{\prime \prime}$	83.998 m	Field $12-13=$	$126^{\circ} 50^{\prime} 35^{\prime \prime}$	134.636 m

Figure 15 - Field Survey vs Original Survey

From the NEWGAN coordinates, with units configured to ground distances and the azimuth to true bearings, the subject area was reinstated from the ORM's using the local cadastral grid bearings and distances from the original survey plans. Excess and shortage was distributed evenly throughout the area so that no lot was favoured over another. No major disagreement was found between the original survey plans and the measured field data. This became the base file which would be used to compare the position of the boundary corners created after each adjustment within GeoCadastre.

3.4 Test Cadastral Adjustment Configurations

Initially 9 cadastral adjustments were conducted in GeoCadastre using configurations commonly used in surveying practices. The resulting 147 boundary corners from each adjustment would then be compared to the corners from the manual reinstatement in 9 separate comparison files. The different configurations included two Regular Quadrilateral, two Regular Triangle, two Skewed East West, two Skewed North South and one Fully Constrained adjustment. It should be noted that the skewed adjustments were included to deliberately resemble a poor adjustment and would not be normally used as a configuration. The configurations can be seen on the following pages.

Figure 16 : Regular Quadrilateral 1

Figure 18 : Regular Triangle 1

Figure 17 : Regular Quadrilateral 2

Figure 19 : Regular Triangle 2

Figure 20 : Skewed East West Triangle 1

Figure 21 : Skewed East West Triangle 2

Figure 22 : Skewed North South Triangle 1

Figure 23 : Skewed North South Triangle 2

Figure 24 : Fully Constrained

CHAPTER 4

RESULTS

4.1 Introduction

If we compare the coordinates of the 147 corners generated from each adjustment to the manual reinstatement the results can be expressed in a number of different ways. This chapter displays the findings of the test adjustments through a series of graphs and visual plots. A detailed discussion of the findings will be presented in Chapter 5. Four different graphical representations of the findings have been included in this chapter to aid the reader in understanding the relationship between the manual reinstatement and the GeoCadastre/Cadastral adjustment's.

4.2 Easting and Northing Boundary Corner Comparison

These graphs compare the difference in easting and northing between the manual reinstatement and the cadastral adjustment. The horizontal axis represents the boundary corner and the vertical axis represents the difference in easting and northing between the two points.

Figure 25 : Regular Quadrilateral 1 Scatter Plot

Figure 26 : Regular Triangle 1 Scatter Plot

Figure 27 : Skewed East West Triangle 1 Scatter Plot

Figure 28 : Skewed North South Triangle 1 Scatter Plot

Figure 29 : Fully Constrained Scatter Plot

4.3 Distance Comparison

If the distances between the cadastral adjustment corner and the manual reinstatement corner are compared the results can be expressed by a column graph. The horizontal axis represents the boundary corner and the vertical axis the difference between the position of the GeoCadastre boundary corner and the manually reinstated corner.

Figure 30 : Regular Quadrilateral 1 Column Graph

Figure 31 : Regular Triangle 1 Column Graph

Figure 32 : Skewed East West Triangle 1 Column Graph

Figure 33 : Fully Constrained Column Graph

4.4 Distance Comparison Histograms and Normal Distribution

These histograms represent the number of times a boundary corner generated from the cadastral adjustment fell within a specified difference to the manual reinstatement. Using the distance comparison means and standard deviations we can also create a normal distribution curve to analyse the spread of the data and the probability of arriving at a value.

Figure 34 : Regular Quadrilateral 1 Histogram

Figure 35 : Regular Triangle 1 Histogram

Figure 36 : Skewed East West Triangle 1 Histogram

Figure 37 : Fully Constrained Histogram

4.5 Manual Reinstatement vs Cadastral Adjustment Distance Vector Plots

The following vector plots have been generated to examine the direction and magnitude of the difference between the manual reinstatement and the cadastral adjustment. The direction of the arrow is from the manually reinstated corner to the outputted corner from the GeoCadastre adjustment. The length of the line displays the difference in metres between the two points in conjunction with the scale bar. The blue triangles represent the position of the control points used in the adjustment.

Figure 38 : Regular Quadrilateral 1 Distance Difference Vector

Figure 39 : Regular Quadrilateral 2 Distance Difference Vector

Figure 40 : Regular Triangle 1 Distance Difference Vector

Figure 41 : Regular Triangle 2 Distance Difference Vector

Figure 42 : Skewed East West Triangle 1 Distance Difference Vector

Figure 43 : Skewed East West Triangle 2 Distance Difference Vector

Figure 44 : Skewed North South Triangle 1 Distance Difference Vector

Figure 45 : Skewed North South Triangle 2 Distance Difference Vector

Figure 46 : Fully Constrained Distance Difference Vector

4.6 Manual Reinstatement vs Cadastral Adjustment Mean Prediction

In order to analyse the effects of control point density, 6 additional adjustments were run removing points from the fully constrained configuration by five at a time. It was predicted that as more points are removed, the mean difference between the manual reinstatement and the cadastral adjustment would become greater.

Figure 47 : Manual Reinstatement vs Cadastral Adjustment Prediction

4.7 Control Density Test

This graph presents the findings after having run the adjustments mentioned in 4.6 and shows us that as control is extracted from the adjustment the mean difference between the manual reinstatement and the cadastral adjustment becomes greater.

Figure 48 : Control Density Test

CHAPTER 5

DISCUSSION

5.1 Introduction

The results obtained in Chapter 4 revealed that the configuration and density of control within the cadastral adjustment has a direct effect on the final position of the boundary corner. This chapter will discuss in detail the results obtained in Chapter 4 and will then lead into a deliberation on the implications of the results in the following chapter.

5.2 Easting and Northing Boundary Corner Comparison

When comparing the coordinates of the manual reinstatement to the cadastral adjustment a scatter plot can be generated to analyse the relationship between the two data sets. If the difference between the manual reinstatement and the cadastral adjustment is significant then we would expect the scatter plot to vary from the middle of the graph at the zero difference line. If the two data sets resemble similar coordinates over the 147 corners then we would expect that the scatter plot be clustered around the centre of the graph.

When analysing the regular quadrilateral configuration we can see that the easting of the corners generated from the cadastral adjustment resembled the easting of the manual reinstatement slightly better than that of the northing. We can also see from the graph that the largest difference in the easting was 38 mm and the largest difference in the northing 53 mm . The standard deviation between the regular quadrilateral and the manual reinstatement was 11 mm in the easting and 26 mm in the northing when using this configuration.

If we look at the regular triangle configuration it can be seen that both the difference in easting and northing fluctuate around the centre of the graph. Using this configuration gave a largest difference in easting of 71 mm and a largest difference in northing of 48 mm . The standard deviation of the data set was 21 mm in the easting and 18 mm in the northing.

Interesting observations can be made when analysing the skewed east west triangle and skewed north south triangle scatter plot. It can be seen that if the control is skewed in an east west running line then the effect on the northing will be greater than the effect on the easting. The same can be said when the control is running in a north south direction. If the control is skewed in a north south running line then the effect of the easting will be greater than that of the northing. This is supported by the high and low differences between the data sets.

With the skewed east west configuration the largest difference in the easting was 32 mm and the largest difference in the northing was 77 mm . With the skewed north south triangle the largest difference in easting was 84 mm and the largest difference in the northing was 57 mm . It was found that the standard deviation between the manual reinstatement and the skewed east west triangle was 13 mm in the easting and slightly more in the northing with 31 mm . The skewed north south triangle had a standard deviation of 29 mm in the easting and slightly less in the northing of 19 mm .

When analysing the fully constrained scatter plot it can be seen that the data is much more clustered around the centre of the graph giving a better representation of the manual reinstatement. The largest difference in easting was 15 mm and the largest difference in northing was 34 mm . The standard deviation in the easting and northing was therefore much lower than all other configurations with a 5 mm standard deviation in easting and 8 mm standard deviation in northing.

5.3 Distance Comparison

If the distances between the cadastral adjustment corner and the manual reinstatement corner are compared the results can be expressed by a simple column graph. By comparing the distance vector
between the two data sets a mean difference can be calculated as all distances are positive. This could not be done when analysing the difference in easting and northing as values can be negative when comparing coordinates. If the data is represented by differences close to zero then the adjustment has closely resembled the manual reinstatement.

The regular quadrilateral column graph shows us that the difference between the two data sets fluctuated over the 147 corners. At points around corners 21, 61, 81 and 121 the difference between the cadastral adjustment and the manual reinstatement was within 10 mm however the difference often reached 50 mm over the rest of the graph. The mean difference generated from the regular quadrilateral was 25 mm with a standard deviation of 15 mm when comparing the distance vector. The regular triangle generated similar results when comparing the difference in distance between the two data sets over the 147 corners. Again at points around corners 21, 61, 81,100 and 141 the difference between the cadastral adjustment and the manual reinstatement was relatively low however over the rest of the area the difference exceeded 20 mm with one corner differing by 71 mm . The mean difference generated from the regular triangle was 23 mm with a standard deviation of 16 mm .

As expected when using the skewed configurations the difference between the two data sets became greater. When using these configurations very few corners fell within a difference of 10 mm and a number of points exceeded a difference greater than 50 mm . Both configurations generated similar mean and standard deviations. The skewed east west configuration had a mean difference of 29 mm and a standard deviation of 17 mm while the skewed north south triangle had a mean of 30 mm and a standard deviation of 18 mm .

If we look at the fully constrained column graph we can see that the values of the point differences are much smaller meaning that the configuration closely resembled the manual reinstatement. We can see that only one point exceeded a difference of 30 mm and the majority of points only differed by 10 mm or less. Using all of the control in the adjustment generated a mean difference of 7 mm and a standard deviation of 6 mm .

5.4 Distance Comparison Histograms and Normal Distribution

The histograms presented in chapter four represent the number of times a boundary corner generated from the cadastral adjustment fell within a specified difference to the manual reinstatement. For example if we look at the regular quadrilateral we can see the difference between the two data sets was relatively evenly distributed from 11 corners differing by 0 to 5 mm through to 15 corners differing by 41 to 45 mm . Similar observations can be made with the regular triangle with the 21 to 25 mm bin making up 26 corners and 27 corners differing by 26 to 30 mm in the skewed east west triangle. The fully constrained histogram shows us that 77 out of the 147 boundary corners varied by 0 to 5 mm between the cadastral adjustment and the manual reinstatement.

When the distance comparison mean and standard deviations are represented by a normal distribution curve the spread of the data and the probability of arriving at a value can be determined. From what we know about the normal distribution curve one standard deviation below the mean and one standard deviation above the mean represents approximately 68% of the area within the curve. In the case of the Regular Quadrilateral 68% of the area falls within 9 and 40 mm . This means that with the mean and standard deviation generated from the regular quadrilateral there is a 68% probability that the difference between the manual reinstatement and the cadastral adjustment will be between 9 and 40 mm .

Similar results can be seen with the regular triangle and skewed east west adjustment. At one standard deviation 68% of the area falls between a difference of 7 and 39 mm using the regular triangle and 12 and 46 mm when using the skewed east west configuration. If we look at the fully constrained adjustment which is represented by a more clustered curve one standard deviation below the mean is the equal to 1 mm and one standard deviation above the mean is equal to 14 mm . This means that when using all the control within the adjustment there is a 68% probability that the difference between a manually reinstated corner and a corner generated from the cadastral adjustment will be between 1 and 14 mm .

5.5 Manual Reinstatement vs Cadastral Adjustment Distance Vector Plots

The distance difference vector plots can be used to examine the direction and magnitude of the difference between the manual reinstatement and the cadastral adjustment. The direction of the arrow is from the manually reinstated corner to the outputted corner from the GeoCadastre adjustment. The length of the line displays the difference in metres between the two points in conjunction with the scale bar.

The regular quadrilateral vectors show us that the corners within the control configuration tend to converge towards the centre of the rectangle. In the case of the regular quadrilateral 1 configuration the converging point is slightly to the south of the centre while the regular quadrilateral 2 configuration is converging more towards the centre. It can be seen that at the converging point the length of the vector is smaller than the length of the vector around and outside the perimeter of the quadrilateral. This means that when using this configuration, lots closer to the centre of the quadrilateral will be better represented by their actual boundary position then lots away from the centre of the control configuration.

When analysing the regular triangle configurations similar observations can be made. Points outside the configuration tend to be forced towards the triangle resulting in larger difference vectors at these corners. We can see that the regular triangle 1 configuration has a converging point slightly to the north of the centre of the triangle. At this point the distance vector is at its smallest and the majority of the points are again converging towards this point. Lots to the east of the triangle that are outside of the control network are being heavily distorted. Similar observations can be made when analysing the regular triangle 2 configuration. The converging point is slightly to the east of the centre of the triangle and the data set is again being pushed towards this position. Lots to the west of the triangle, outside the network, are being affected the most with the majority of arrows being within the lot meaning that these parcels are becoming smaller.

The skewed east west and skewed north south distance vectors support the findings from 5.2. That is, if the control is skewed in an east west direction than the effect on the boundary corners will be
greater in a north south direction. The same can be said when the control is running in a north south direction. If the control is skewed in a north south running line than the effect of the boundary corners will be in an east west direction. If we look at the skewed east west triangle vectors we can see that the corners to the north of the control are being pulled down towards the configuration and points to the south are being forced to the north. This is making the dimensions of the lots less than their actual sizes. Similar observations can be made when analysing the skewed north south configurations. We can see that the corners along the control line closely resemble their actual position however points outside the line are being pulled towards the control. Points to the west of the line are being pulled to the east and points to the east are being pulled to the west.

When analysing the fully constrained distance vector it can be seen that the adjustment closely resembles the manual reinstatement. At the corners where a control point is present the boundary corner is in good agreement with the manual reinstatement. If a corner or a line is not constrained by a control point then the error vector becomes greater. This can be seen on the most southern line within the distance vector plot which is not accompanied by any control. Because the line is not constrained it is being forced towards the other control points in order to maintain the deed measurements within the cadastral fabric.

5.6 Manual Reinstatement vs Cadastral Adjustment Mean Findings

A hypothesis was made that as more control is added to the adjustment the closer the adjustment would resemble the manual reinstatement and the true position of the boundary corners. In order to test this six additional adjustments where run, (known as the control density test), by removing points from the fully constrained configuration and then calculating the mean difference between the adjustment and the manual reinstatement. The first adjustment removed three points from the control list and generated a mean difference of 7 mm .20 and 15 points generated a mean difference between the two data sets of 8 mm and when 10 points were used the mean became 9 mm . When only five points were used in the adjustment a mean of 22 mm was generated.

To better understand where the change in grade was between the 10 and 5 point adjustment another configuration was run using 7 points. The mean difference between the cadastral adjustment and the manual reinstatement when using 7 points was 13 mm . This testing supported the hypothesis that as more control is added to the adjustment the closer the boundary corners would resemble their true positions. Keeping this in mind, based on the results, it can be seen that there is a point of diminishing returns. It would appear that this was at the ten point mark where adding more control would have minimal effects on the accuracy of the adjustment.

5.7 Summary

The fully constrained scatter plot and column graph found that the fully constrained adjustment resembled the manual reinstatement the best. The fully constrained histogram revealed that 77 out of the 147 boundary corners varied by 0 to 5 mm between the cadastral adjustment and the manual reinstatement. The distance difference vector plots supported these discoveries.

In summary three key findings have been made which will be further discussed in Chapter 6:

1. The regular quadrilateral distance vectors revealed that the boundary corners tended to converge towards a point within the rectangle, slightly off centre, with the effects increasing further from this point. Similar results can be seen with the regular triangle.
2. The skewed east west and skewed north south distance vectors support the findings in 5.2. That is, if the control is skewed in an east west direction than the effect on the boundary corners will be greater in a north south direction and vice versa with a north south running control line.
3. The control density test found, that as ORMs were extracted from the adjustment the greater the difference between the cadastral adjustment and the manual reinstatement became.

CHAPTER 6

IMPLICATIONS AND CONCLUSIONS

6.1 Introduction

This chapter will discuss the implications of the three key findings outlined in 5.7. It will discuss the effect on parcels that are adjusted inside and outside of the control configuration and then look at the ramifications of running a skewed adjustment. The feasibility and benefits of using all of the control in the adjustment will also be discussed. Recommendations and further research suggestions will then be made followed by the dissertation's conclusions.

6.2 Implications

6.2.1 Points Inside and Outside the Control Configuration

It was found in 5.5 that within the regular quadrilateral and regular triangle adjustments that there tended to be a converging point to which the majority of corners were forced towards. This point tended to be within the control configuration, slightly off centre. It was also found at this converging point the length of the distance vector was less than the length of the vector around and outside the perimeter of the configurations.

This means that lots closer to the centre of the configurations were better represented by their actual boundary positions then lots away from the converging point within the configuration. It can be seen from the distance vectors that the corners that fell completely outside of the configurations were distorted the most. This ultimately means that if an adjustment is run with corners outside of the
control configuration the lots attached to these corners are less likely to resemble the true position of the actual boundary. For this reason it could be said that boundary corners should not be included in the adjustment if they fall outside of the control configuration.

6.2.2 Skewed Adjustments

By analysing the scatter plots from 4.2 and the distance difference vector plots in 4.5 , it was found that corners along the skewed control line closely resembled their actual position however points outside the line did not. In the north south configuration points to the west of the line were being pulled to the east, and points to the east were being pulled to the west towards the control line. The skewed east west triangle revealed that the corners to the north of the control were pulled south towards the configuration and points to the south were being forced north.

Based on the findings if a skewed east west line is used in an adjustment the corners of the subject parcels will most likely be affected in a north south direction and if a skewed north south line is used then the corners of the parcels will be affected in an east west direction. Any lots with corners found along the control line will most likely be affected the least with the distortion becoming greater further from this point. As previously mentioned in 3.4 the skewed adjustments have been included in this investigation for research purposes only and would not normally be used as a control configuration.

6.2.3 Fully Constrained, at What Cost?

Based on the findings within Chapter 4 it was found the adjustment that resembled the manual reinstatement the closest was the fully constrained adjustment. This adjustment used all 27 ORMs within the test area and produced a mean difference between the manual reinstatement and the cadastral adjustment of 7 mm over the 147 corners. The corners affected most within this adjustment were those along the most southern line of the test area that were not connected to ORMs.

It was evident throughout all distance vector plots that corners held fixed by a connection to an ORM resembled their true position and as corners became further from these connections they began to
deviate from the manual reinstatement. Based on these findings it can be said that if corners are not constrained to their actual positions by a connection to an ORM then there is nothing stopping the adjustment from calculating a solution of best fit which may not resemble the true position of the boundary corner. This is because when a control point is added to the adjustment the connection from the ORM to the boundary corner is held fixed. For example if the connection from the ORM to the boundary corner is 1 m then that 1 m connection will be held throughout the adjustment. This means that a corner connected to the ORM within the adjustment will always resemble the true position of the boundary corner and the neighbouring corners will then be adjusted between the next connection to an ORM

It was found when removing control that as ORMs were extracted from the adjustment the greater the difference between the cadastral adjustment and the manual reinstatement became. Keeping this in mind it would appear, based on the results, that there was a point of diminishing returns around the 10 control point mark. Similar results were achieved when using all 27 ORMs to the results gained from using less than half of the total number of marks in the area. When 7 ORMs were used the mean difference became slightly larger and larger again when only 5 ORMs were used. This potentially means that 10 ORMs could have been measured in the field rather than 27 and similar results would have been achieved to those from using all of the ORMs. The same could possibly be said over larger sites. Is it really necessary to measure all of the ORMs in the area? Could time and money be saved while still arriving at the true position of the boundary corners?

In the case of the test area of 48 parcels it can be seen that the survey required to measure 27 ORMs would also be required to measure 10 ORMs. The 10 ORM survey would still require the same number of traverse stations and if the surveyor was in a position where an ORM could be measured it would be unwise not to do so knowing that the best results are achieved from using more control in the adjustment. Based on the adjustments conducted in the test area no cost benefits would be gained from measuring 10 ORMs rather than all 27 ORMs.

Figure 49 : Fully Constrained and 10 Point Traverse

The same could be said for a larger site. Given the nature of the placement of ORMs which are normally grouped in pairs, on either side of a road, very little time would be saved in measuring one ORM instead of two. The test area showed that accurate results can be achieved using a mini prism on a low set pole for measuring the ORMs. If this technique is used setup time is further reduced and the time to measure a set of marks compared to just one would be negligible.

Based on these findings the results would suggest that when conducting a cadastral adjustment of similar size, and potentially larger areas, the best representation of the actual boundary corners would be achieved using all the available ORMs within the adjustment area. It could also be said that there is no supportable argument to suggest there is any real cost benefit in measuring a reduced number of ORMs. There is however, based on the results, a point of diminishing returns.

6.3 Further Research and Recommendations

Time could potentially be saved in traversing the ORMs directly rather than establishing a network of new coordinated marks. In the case of the initial research area of 280 parcels 45 Coordinated Reference Marks were installed despite 123 ORMs having been located which could have potentially been used as traverse stations. This equates to one FENO mark for every six lots. The ORMs within
the area satisfied the requirements outlined in the Northern Territory Practice Directions; that the CRM must be constructed of a material that will resist destruction by fire, decay and termites.

The ORMs which were mainly drill holes in the road kerb could have been adopted and a witness plate accompanied with the mark to aid in future recovery and identification. This would have eliminated the need of acquiring and installing the FENO mark which is a physical and sometimes tedious procedure depending on soil type. Why does the Northern Territory Government insist on placing additional survey marks?

Figure 50 : Research Area Established CRM Network

Given that the research area was irregular in shape to accommodate for the undulating terrain it could be said that a more than normal amount of CRMs was required to traverse the area. An interesting comparison could be made against an area with lots in traditional grid arrangement. How many CRMs would be required for an area consisting of 280 parcels in a normal street configuration? Should there be a standard based on the number of lots or nature of the terrain and street layout?

To change to a coordinate based cadastre will be at least as significant as the change to Torrens Title in the 1860's (Maddocks \& West, unpub). A study based around the transition process to a coordinated survey area in urban areas could investigate this statement. As mentioned in 2.1.2 the Northern Territory already has legislated coordinated cadastre areas. These areas are remote communities and have been specially selected.

In most of these areas the fencing was located as an indicator of the boundary and therefore the fencepost can represent the coordinate. The partitions, (not subdivision), are like greenfield subdivisions, there is limited or no existing survey data. In urban areas there are many surveys and so the process of determining the coordinates for the corners is more complex. Handling the coordinates on lodged surveys also becomes an issue as they will change over time. Hence the coordinates do not appear on the survey plan, they will reside in the acs file (Sandy, C 2016, pers. comm., 14 September).

This study has shown that adjusting a small area of 48 parcels can produce accurate coordinates for the boundary corners. Further research could investigate the effects of adjusting larger networks within the town of Alice Springs. Hunter Water in NSW run some very large adjustments, up to about 4000 parcels, approximately half the size of Alice Springs (Elfick, M 2015, pers. comm., 3 November). Is this a good idea?

6.4 Conclusions

This dissertation has provided the reader with specific information in regards to creating a NCDB. It has made recommendations on the optimal number and configuration of control points to be used during the cadastral adjustment within the software package GeoCadastre. These recommendations are based on the findings from conducting adjustments in a test area consisting of 48 parcels with ORMs in good agreement with the original cadastral plan data.

The study has revealed that when using a control configuration such as a quadrilateral or a triangle that lots closer to the centre of the configurations are better represented by their actual boundary corners. It was found that the corners that fell completely outside of the configurations were distorted the most and for this reason it could be said that boundary corners should not be included in the adjustment if they are outside of the control configuration. It was also found that if a skewed east west line is used in an adjustment the corners of the subject parcels will most likely be affected in a north south direction and if a skewed north south line is used then the corners of the parcels will be affected in an east west direction.

The results revealed that the adjustment that resembled the manual reinstatement the closest was achieved when using the fully constrained configuration. This adjustment used all 27 ORMs within the test area and produced a mean difference between the manual reinstatement and the cadastral adjustment of 7 mm over 147 corners. It was found when removing control, that as ORMs were extracted from the adjustment the greater the difference between the cadastral adjustment and the true boundary's became. It was also found, based on the results, that there is a point of diminishing returns at which adding more control has minimal impact on improving the accuracy of the adjustment. However as field costs are virtually unaffected by measuring additional marks, there is no supportable argument to suggest any real cost benefit in measuring a reduced number of ORMs.

LIST OF REFERENCES

Control Points in a fabric job: About Control Points 2009, Release 9.3, Arc GIS Desktop 9.3 Help, Environmental Systems Research Institute Inc., viewed 23 May 2016, http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Control_points_in_a_fabric_job

Dalrymple, K, Williamson, I \& Wallace J unpub, Cadastral Systems within Australia, Department of Geomatics The University of Melbourne Victoria, Australia

Department of Sustainability and Environment, ‘The Map Grid of Australia 1994 - A simplified Computational Manual', viewed 2 August 2016, <http://webcache.googleusercontent.com/search?q=cache:Mn4BtjvOg7sJ:www.dtpli.vic.gov.au/_ _data/assets/word_doc/0006/218085/The_Map_Grid_of_Australia_1994_Computational_Manual $. d o c+\& c d=1 \& h l=e n \& c t=c \ln k \& g l=a u>$

Elfick, M unpub, A Cadastral Geometry Management System, Dept. Civil Engineering and Surveying University of Newcastle, Australia

Elfick, M 1997, Coordinating a Metes and Bounds Cadastral System, Dept. Civil Engineering and Surveying University of Newcastle, Australia

Elfick, MH, McLennan, B \& Somers MJ unpub, Managing the Transition from a Metes and Bounds Land Tenure System to a Coordinate Based Cadastre

Elfick, M unpub, Managing the Records which underpin the Land Tenure System, International Symposium on Spatial Data Infrastructure (SDI) 19-20 November 2001, University of Melbourne, Australia

Intergovernmental Committee on Surveying and Mapping (ICSM) 2008, Australia and New Zealand Cadastral Systems Questions and Answers, Version 1, viewed 1 February 2016, < http://www.icsm.gov.au/cadastral/Aust_and_NZ_Cadastral_System-QandA-May2011.pdf> Intergovernmental Committee on Surveying and Mapping (ICSM) 2015, Datums 2: Datums Explained in More Detail, viewed 9 September 2015, http://www.icsm.gov.au/mapping/datums2.html

Intergovernmental Committee on Surveying and Mapping (ICSM) 2014, Guideline for Conventional Traverse Surveys (SP1), Version 2.1, Permanent Committee on Geodesy (PCG)

Intergovernmental Committee on Surveying and Mapping (ICSM) 2016, Publications: Surveying Standards and Practices (SP1), viewed 10 May 2016, [http://www.icsm.gov.au/publications/index.html\#surveying_sp1](http://www.icsm.gov.au/publications/index.html%5C#surveying_sp1)

Maddocks, R \& West, R unpub, Coordination of the Northern Territory Cadastre, First TransTasman Surveyors Conference 1997

National Vocational Education and Training Content NVETC 2014, Introduction to hazards and risks, viewed 20 June 2014, https://nationalvetcontent.edu.au

Northern Territory of Australia Licensed Surveyors Act 2013 (NT)

Professional Surveyor Magazine 2004, 'How thing Work: Parts Per Million (PPM)', vol. 24, issue. 2, viewed 6 April 2016, < http://archives.profsurv.com/magazine/article.aspx?i=1196>

Sandy, C \& Harper, I 2012, A New Paradigm for Surveying, The Queensland Surveying and Spatial Science Conference 2012

Sandy, C 2014, Shaping the Cadastral Infrastructure for a Digital Future, Webinar, viewed 20 June 2016, < http://www.sssi.org.au/Events/Shaping-the-Cadastral-Infrastructure-for-a-Digital-FutureWebinar/eid/1326.html>

Smith, P 2012, Cadastral Coordinates: A Case Study, UNSW School of Surveying and Geospatial Engineering, viewed 20 May 2016,
http://www.sage.unsw.edu.au/currentstudents/ug/projects/SmithPat/geocadastre.html

Software Solutions: Converting raw data to knowledge 2016, GeoCadastre and GeoSurvey Software Features, Geodata Australia Pty. Ltd, viewed 17 May 2016, [http://www.geodata.com.au/\#!cadastral-software-solutions/pamtf](http://www.geodata.com.au/%5C#!cadastral-software-solutions/pamtf)

Sturay Pty Ltd 2006-2009, FENO by Faynot (France), MAPC The Measurement and Position Company, Newcastle, NSW, viewed 14 June 2016, http://www.mapc.com.au/feno_marks_72.html Survey Practice Directions - Surveys within Coordinated Survey Areas 2003 (NT)

The Least Squares Adjustment Process: About the least squares adjustment 2009, Arc GIS Desktop 9.3 Help, Environmental Systems Research Institute Inc., viewed 23 May 2016, <http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=The_least_squares_adjustment_pr ocess>

APPENDICIES

APPENDIX A

ENG4111/4112 Research Project

Project Specification

For: David Roberts

Title: \quad The effects of control point shape and distribution in the creation of a Numeric Cadastral Data Base, NCDB, in an urban area of Alice Springs NT

Major: Surveying
Supervisors: Glenn Campbell
Sponsorship: Department of Lands Planning and Environment NT

Brian Blakeman Surveys
Enrolment: ENG4111 - EXT S1, 2016 ENG4112 - EXT S2, 2016
Project Aim: To investigate the creation of a Numeric Cadastral Data Base in an urban area of Alice Springs NT and the effects of control point shape and distribution in the adjustment process on the final position of parcel corners

Programme: Issue B, $6^{\text {th }}$ April 2016

1. Search for existing research in regards to Numeric Cadastral Data Bases and effects of control point geometry
2. Collect necessary documentation, survey plans, to be used throughout the course of the research project
3. Enter original survey data from compiled plans into software package to be used for future adjustments and original reference mark reconnaissance
4. Establish Coordinated Reference Marks, CRM's, and traverse to original survey marks on street frontages and back of parcels
5. Reduce and plot traverse data using appropriate survey software packages
6. Run least squares adjustment of traverse and original data using conventional methods currently used by the Department of Lands Planning and Environment NT to create the NCDB
7. Analyse the effects of running the least squares adjustment using different nominated points as control by comparing the position of the adjusted parcel corners with that of the original parcel corner position
8. Determine the effect of control point shape and distribution when creating a NCDB

?C \quad U53 $\quad 386094.5367378739 .552591 .808 ? 0.0000 .000250 .40 .00$ C U53 386352.392 7381850.786 587.623? 0.001 0.001 23.00.005 ?C \quad U53 $\quad 385794.113$ 7371119.133 559.920? $0.0010 .001 \quad 23.10 .005$ $\begin{array}{lllll}C & \text { U53 } & 383146.314 & 7378204.219 & 581.183 ? 0.002 \\ 0 & 0.001 & 93.0 & 0.009\end{array}$ ${ }^{\text {C C C }}$ C U53 $\quad 383146.3147378204 .219581 .183 ? 0.0020 .00193 .00 .009$ $\begin{array}{lllll}\text { TC } & \text { U53 } & 383150.577 & 7378202.788 & 581.023 ? \\ 0.003 & 0.002 & 19.70 .032\end{array}$?C U53 $\quad 383154.5597378188 .529$ 581.023? $0.0060 .002 \quad 62.80 .032$? C $\begin{array}{llllll}C & \text { C } & 383140.220 & 7378200.178 & 581.023 ? & 0.004 \\ \mathrm{C} & \text { U53.002 } & 383137.927 & 7378149.494 & 580.193 ? & 0.001 \\ 0.001 & 78.9 & 0.007\end{array}$ $\begin{array}{lllll}\text { ?C } & \text { U53 } & 383140.867 & 7378145.823 & 580.027 ? \\ ? & 0.003 & 0.002 & 51.8 & 0.032\end{array}$? ? \quad U53 $\quad 383138.5527378139 .973$ 580.027? 0.0040 .00286 .40 .032 ?C \quad U53 $\quad 383101.8087378101 .143580 .419 ? 0.0020 .001119 .20 .010$ ${ }^{\text {? C }}$ C \quad U53 $383112.0917378121 .029580 .257 ? 0.0070 .002$ 117.7 $\quad 3032$?C \quad U53 $\quad 383117.6267378117 .632580 .257 ? 0.0070 .002134 .20 .032$?C U53 $\quad 383099.9957378103 .763580 .257 ? 0.0030 .002 \quad 58.20 .032$ l \quad C U53 $\quad 383217.5827378108 .204$ 579.865? 0.0010 .00118 .60 .007 ?C \quad U53 $\quad 383218.6437378122 .524$ 579.693? 0.005 0.002 94.40 .032 ?C \quad U53 383224.9727378120 .300 579.693? 0.0050 .002122 .20 .032 ?C \quad U53 $\quad 383176.3127378125 .141579 .693 ? 0.0110 .002 \quad 22.70 .032$?C \quad U53 $\quad 383181.5497378129 .624579 .693 ? 0.0100 .002 \quad 31.00 .032$ $\begin{array}{llllll}\text { ?C } & \text { U53 } & 383235.429 & 7378178.875 & 581.949 ? 0.001 & 0.001 \\ 15.2 & 0.007\end{array}$?C \quad U53 $\quad 383232.0427378157 .589$ 581.787? 0.0070 .00299 .40 .032 ?C \quad U53 $\quad 383225.6177378158 .418$ 581.787? 0.0070 .002116 .20 .032 $\begin{array}{lllllllll}\text { ?C } & \text { U53 } & 383257.396 & 7378095.485 & 579.616 ? 0.001 & 0.001 & 13.8 & 0.008\end{array}$?C \quad U53 383277.0217378115 .890 579.457? 0.0080 .002135 .00 .032 ?C U53 $\quad 383248.9277378093 .724$ 579.457? 0.0040 .002170 .10 .032 ?C \quad U53 383251.7577378100 .802 579.457? 0.0040 .00242 .50 .032 ?C U53 $\quad 383255.7097378106 .637$ 579.457? 0.0040 .00281 .60 .032 aC \quad U53 $\quad 383241.4347377991 .926578 .422 ? 0.0010 .001 \quad 15.10 .009$ ${ }^{\text {? }} \mathrm{C} \quad$ U53 $\quad 383244.5337378001 .459$ 578.256? 0.0040 .002108 .60 .032 ?C \quad U53 $\quad 383245.7427378002 .530578 .256 ? 0.0040 .002112 .80 .032$?C \quad U53 $\quad 383237.1347377990 .490$ 578.256? 0.003 0.002 161.90 .032 $\begin{array}{lllllllllllll}\text { ?C } & \text { U53 } & 383188.978 & 7377996.665 & 578.256\end{array} 0.0150 .002 \quad 5.40 .032$?C \quad U53 $\quad 383210.6027377997 .926$ 578.256? 0.00900 .00211 .10 .032 ?C \quad U53 $\quad 383211.9717377998 .717$ 578.256? 0.0090 .00213 .10 .032 TC U53 $\quad 383211.367$ 7377999.784 578.256? 0.0090 .00214 .80 .032 ?C U53 383191.285 7378016.291 578.256? 0.0160.002 26.20 .032 ?C U53 $\quad 383114.3037378004 .996579 .177 ? 0.0010 .00133 .90 .006$?C U53 383107.059 7377990.101 579.015? 0.005 0.002 116.50 .032 ?C U53 383110.2237378011 .149 579.015? 0.004 0.002 56.40 .032 $\begin{array}{llllll}? \text { C } & \text { U53 } & 383000.833 & 7378030.031 & 580.407 ? & 0.003 \\ 0 & 0.001 & 28.6 & 0.012\end{array}$ $\begin{array}{llllllllllllllll}\text { ?C } & \text { U53 } & 383002.022 & 7378031.777 & 580.288 ? & 0.003 & 0.003 & 0.3 & 0.032\end{array}$?C U53 383043.9857378043 .768 580.288? 0.0130 .003163 .20 .032 C U53 $\quad 382951.8427378107 .465$ 581.529? 0.001 0.001 19.60 .009 ?C \quad U53 $\quad 382974.741 \quad 7378143.542$ 581.370? 0.0120 .002122 .90 .032 ?C U53 $\quad 382964.7017378098 .206$ 581.370? $0.0050 .002 \quad 36.40 .032$ ${ }_{2} \mathrm{C} \quad$ U53 $\quad 383011.0317378220 .099 \quad 582.930 ? 0.0010 .001114 .70 .006$ ${ }^{?}$ C \quad U53 $\quad 383022.734$ 7378237.594 582.770? 0.0060 .002124 .20 .032 ?C U53 $\quad 383029.1207378234 .344582 .770 ? 0.0060 .002142 .10 .032$ ${ }^{\text {C }}$ C U53 $\quad 383083.8027378286 .062$ 585.568? 0.0010 .00167 .50 .006 ?C \quad U53 $\quad 383060.4047378254 .514$ 585.406? 0.0110 .002126 .90 .032 ${ }^{\circ} \mathrm{C} \quad$ U53 $383058.3667378261 .510585 .406 ? 0.0100 .002136 .30 .032$?C \quad U53 $\quad 383068.3317378304 .205$ 585.406? 0.007 0.002 50.00 .032 ?C \quad U53 $\quad 383073.5427378309 .083585 .406 ? 0.0080 .00266 .40 .032$ $\begin{array}{lllll}C & U 53 & 383029.128 & 7378361.998 & 588.361 ? \\ 0.002 & 0.001 & 42.40 .010\end{array}$ ${ }_{l}^{C} \quad U 53 \quad 382956.5457378416 .400591 .801 ? 0.0020 .00132 .90 .011$?C U53 \quad 382983.014 7378402.203 591.643? 0.0080 .00228 .80 .032 (C \quad U53 $\quad 382979.0237378396 .251591 .643 ? 0.0080 .00242 .00 .032$?C \quad U53 $\quad 382916.7297378423 .641591 .643 ? 0.0100 .002 \quad 11.20 .032$ $\begin{array}{lllllll}{ }^{C} \text { C } & \text { U53 } & 382854.797 & 7378460.951 & 587.259 ? & 0.002 & 0.001 \\ & 3.9 & 0.012\end{array}$
 $\begin{array}{llllll}\text { C C } & \text { U53 } & 382815.649 & 7378431.826 & 586.539 ? & 0.001 \\ 0.001 & 21.9 & 0.008\end{array}$ C U53 382751.6097378492 .557588 .900 ? $0.0020 .001 \quad 19.50 .008$?C \quad U53 $\quad 382759.2687378513 .542$ 588.735? 0.0060 .002110 .10 .032 ${ }^{\circ} \mathrm{C} \quad$ U53 $382763.7597378508 .996588 .735 ? 0.0060 .002127 .20 .032$ TC U53 $\quad 382753.1787378487 .219$ 588.735? 0.003 0.002 70.1 0.032 ?C U53 $\quad 382745.0927378485 .046$ 588.735? 0.0040 .002134 .00 .032 $\begin{array}{lllllll}\text { ?C } & \text { U53 } & 382711.883 & 7378497.975 & 588.735 ? & 0.010 & 0.002 \\ 8.3 & 0.032\end{array}$ $\begin{array}{lllllllllll}\text { ?C } & \text { U53 } & 382731.549 & 7378498.372 & 588.735 ? & 0.006 & 0.002 & 16.60 .032\end{array}$ ${ }_{n}$ C \quad U53 $382791.6747378557 .060 \quad 592.624 ? 0.0020 .002179 .80 .008$
 ?C U53 $382780.6937378536 .081592 .457 ? 0.0070 .003118 .50 .032$?C U53 382773.6557378538 .603 592.457? 0.0080 .002135 .30 .032 ${ }^{9} \mathrm{C} \quad$ U53 $\quad 382813.863$ 7378377.864 585.774? $0.0010 .001 \quad 20.20 .008$ ${ }^{\text {? C C }}$?C U53 $\quad 382811.2117378378 .833585 .607 ? 0.0030 .002 \quad 20.50 .032$?C U53 $\quad 382798.8207378388 .623 \quad 585.607 ? 0.0060 .002 \quad 35.70 .032$ ${ }^{\circ} \mathrm{C} \quad$ U53 $\quad 382880.9577378340 .716$ 586.070? 0.002 0.001 43.80 .012 ${ }^{2} \mathrm{C} \quad \mathrm{U} 3 \quad 382886.056$ 7378334.854 585.897? 0.0040 .00248 .40 .032 ?C U53 $\quad 382882.6267378324 .931585 .897 ? 0.0050 .00282 .10 .032$?C U53 $\quad 382869.7687378330 .647585 .897 ? ~ 0.0050 .003138 .80 .032$ ${ }^{2} \mathrm{C} \quad$ U53 $\quad 382957.1907378284 .767$ 584.275? 0.002 0.002 46.90 .012 ${ }^{\text {? C }}$ C \quad U53 $\quad 382936.6247378298 .127$ 584.112? $0.0080 .002 \quad 33.80 .032$?C U53 $\quad 382940.3127378304 .734$ 584.112? $0.0080 .002 \quad 50.30 .032$ ${ }^{\circ} \mathrm{C} \quad$ U53 $\quad 382844.8197378243 .129$ 583.805? 0.002 0.001 88.8 0.009 $\begin{array}{llllll}\text { ?C } & \text { U53 } & 382844.819 & 7378243.129 & 583.805 ? & 0.002 \\ \text { ?C } & \text { U53 } & 382856.317 & 7378248.740 & 583.8 & 58.009 \\ ? C & & 38253 & 0.004 & 0.002 & 153.60 .03\end{array}$
 ${ }^{\text {? }}$ C $C \quad$ U53 $\quad 382843.279$ 7378263.088 583.645 ? 0.0060 .00285 .70 .03

${ }^{7} \mathrm{C} \quad$ U53 $\quad 382854.4777378254 .836583 .645 ? 0.0050 .002128 .90 .032$ ${ }^{?} \mathrm{C} \quad$ U $\begin{array}{llll}U 53 & 382918.245 & 7378199.378 & 583.244 ? \\ 0.002 & 0.002 & 66.0 & 0.009\end{array}$?C \quad U53 $\quad 382894.553 \quad 7378210.613$ 583.082? $0.0080 .002 \quad 25.90 .032$ $\begin{array}{llllll}\text { ?C } & \text { U53 } & 382899.081 & 7378216.758 & 583.082 ? & 0.008 \\ 0 & 0.002 & 42.90 .032\end{array}$ $\begin{array}{lllll}C & U 53 & 382756.408 & 7378327.382 & 584.410 ? \\ 0.002 & 0.001 & 143.000 .009\end{array}$ $\begin{array}{lccccc}{ }^{2} \mathrm{C} & \text { U53 } & 382756.408 & \text { 7378327..382 } & 584.410 ? ~ 0.002 & 0.001143 .00 .009 \\ { }^{\mathrm{C}} & \text { U53 } & 382764.377 & 7378336.015 & 584.247 ? & 0.005 \\ 0.002 & 134.1 & 0.03\end{array}$ $\begin{array}{llllllll}\text { ?C } & \text { U53 } & 382764.377 & 7378336.015 & 584.247 ? & 0.005 & 0.002 & 134.1 \\ \text { ?C } & \text { U53 } & 382758.687 & 7378325.826 & 584.247 ? & 0.003 & 0.002 & 32.90 .032\end{array}$ | CC | U53 | 382758.687 | 7378325.826 | $584.247 ?$ | 0.003 | 0.002 | 32.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TC | U53 | 382758.427 | 7378294.754 | $584.247 ?$ | 0.010 | 0.002 | 87.0 | $\begin{array}{lllll}? \mathrm{C} & \mathrm{C} & 382258.41 & \text { In } & 38294.754 \\ \text { ? } & \text { U53 } & 382749.110 & 7378300.753 & 584.247 ?\end{array}$ ${ }_{l}^{C} \quad$ U53 $\quad 382739.5237378254 .218$ 583.620? $0.0020 .002 \quad 24.50 .009$ ${ }^{2} \mathrm{C} \quad$ U53 $\quad 382742.235$ 7378271.983 583.456? $\quad 0.0060 .00298 .90 .032$ $\begin{array}{lllllllll}\text { ?C } & \text { U53 } & 382742.235 & 7378271.983 & 583.456 ? & 0.006 & 0.002 & 98.9 & 0.032 \\ \text { ?C } & \text { U53 } & 382733.373 & 7378278.513 & 583.456 ? & 0.008 & 0.002 & 75.8 & 0.032\end{array}$ $\begin{array}{llllllllll}\text { l } & \text { U53 } & 382733.373 & 7378278.513 & 583.456 ? & 0.008 & 0.002 & 75.8 & 0.032 \\ \text { C } & \text { U53 } & 382811.579 & 7378136.450 & 582.540 ? & 0.002 & 0.001 & 25.60 .010\end{array}$ $\begin{array}{lllllllllllll}\text { C } & \text { U53 } & 382660.910 & 7378411.114 & 586.080 ? & 0.003 & 0.001 & 33.3 & 0.010\end{array}$ ${ }^{2} \mathrm{C} \quad$ U53 $\quad 382664.151$ 7378406.919 585.915? 0.004 0.002 43.90 .032 ${ }^{2} \mathrm{C} \quad$ U53 $\quad 382661.6607378398 .560$ 585.915? 0.0050.003 75.50 .032 ${ }^{T} \mathrm{C} \quad$ U53 $\quad 382559.1367378472 .828 \quad 589.358 ? 0.0020 .001 \quad 34.90 .010$ $\begin{array}{lllllllllllllllllllll}\text { ?C } & \text { U53 } & 382549.440 & 7378480.088 & 589.199 ? & 0.005 & 0.002 & 37.0 & 0.03\end{array}$ $\begin{array}{llllllllll}\text { ?C } & \text { U53 } & 382549.440 & 7378480.088 & 589.199 ? & 0.005 & 0.002 & 37.0 & 0.032 \\ \text { ?C } & \text { U53 } & 382553.680 & 7378487.175 & 589.199 ? & 0.005 & 0.002 & 67.3 & 0.032\end{array}$ $\begin{array}{cccccc}\text { ?C } & \text { U53 } & 382553.680 & 7378487.175 & 589.199 ? & 0.005 \\ \text { ? } & 0.002 & 67.3 & 0.032 \\ & \text { U53 } & 382426.746 & 7378549.295 & 590.834 ? & 0.0020 .001 \\ 29.60 .010\end{array}$

 $\begin{array}{llllll}\text { C } & \text { US3 } & 382420.12 & 7378542.520 & 590.664 ? & 0.004 \\ \text { ?C } & \text { U53 } & 382422.766 & 7378550.289 & 590.664 ? & 0.003 \\ 0.002 & 17.1 & 1 & 0.032\end{array}$ $\begin{array}{llllll}? \mathrm{C} & \text { U53 } & 382422.166 & 7378550.289 & 590.664 ? & 0.003 \\ { }^{\mathrm{C}} & \text { U53.002 } & 382375.597 & 7378525.813 & 590.331 ? & 0.0020 .002 \\ 26.1 & 0.013\end{array}$
 $\begin{array}{llllllllll}\text { ?C } & \text { U53 } & 382393.112 & 7378542.884 & 590.174 ? & 0.007 & 0.003 & 136.3 & 0.032 \\ \text { ?C } & \text { U53 } & 382386.559 & 7378534.078 & 590.174 ? & 0.005 & 0.002 & 144.30 .032\end{array}$ $\begin{array}{llllllllll}\text { ?C } & \text { U53 } & 382386.559 & 7378534.078 & 590.174 ? & 0.005 & 0.002 & 144.3 & 0.032 \\ \text { ?C } & \text { U53 } & 382399.143 & 7378537.271 & 590.174 ? & 0.008 & 0.002 & 154.8 & 0.032\end{array}$ $\begin{array}{llllllll}\text { ?C } & \text { U53 } & 382399.143 & 7378537.271 & 590.174 ? & 0.008 & 0.002 & 154.8 \\ 0.032 \\ \text { ?C } & \text { U53 } & 382393.210 & 7378529.178 & 590.174 ? & 0.0060002170 .30032\end{array}$ ${ }^{\circ} \mathrm{C} \quad$ U53 $\quad 382535.6827378341 .865$ 586.290? 0.002 $0.001 \quad 33.000 .011$

APPENDIX C

27 Points (Fully Constrained)

25 Points

20 Points

15 Points

10 Points

7 Points

5 Points

APPENDIX D

LISCAD Report: Point Comparison

File: 20 . Fully Constrained
Projection: Map Grid Australia 94 Zone 53
File Date: Thursday, July 14, 2016
Method: Location (Radius $=0.100 \mathrm{~m}$.)

R - Resolved point

$\underset{\mid \text { Point ID \| }}{\text { \| }}$	$\begin{gathered} \\ \text { East } \end{gathered} \begin{gathered} \text { Co-or } \\ \text { No } \end{gathered}$	-rdinates North Elevation \mid	Bearing	Distance \|	
$4 \mid \mathrm{M\mid}$	382964.346	7378417.030			
307\|M		+0.001	+0.000	88037'25" ${ }^{\prime \prime}$	0.001 \|
11					
6\|M		382977.856	7378394.512		
$13\|\mathrm{M}\|$	+0.000	-0.000	$143^{\circ} 22^{\prime} 18^{\prime \prime} \mid$	0.000 \|	
11					
8\|M		383003.818	7378390.177		
$301\|\mathrm{M}\|$	-0.004	-0.002	246050'21"	0.004 \|	
$\begin{gathered} 1 \mid \\ 10\|\mathrm{M}\| \end{gathered}$	383021.386	7378371.397			
302 \| M		-0.004	-0.001	$261^{\circ} 50^{\prime \prime} 16^{\prime \prime} \mid$	0.004 \|
11					
11 \| M		383038.954	7378352.618		
$303\|\mathrm{M}\|$	-0.005	-0.001	$262^{\circ} 45^{\prime 3} 3{ }^{\prime \prime} \mid$	0.005 \|	
11					
$12\|\mathrm{M}\|$	383065.133	7378301.213			
$209\|\mathrm{M}\|$	-0.001	-0.000	256 ${ }^{\circ} 12^{\prime 2} 6^{\prime \prime} \mid$	0.002 \|	
\| \|					
$14\|\mathrm{M}\|$	382984.687	7378387.211			
$26 \mid \mathrm{M}$ \|	+0.000	-0.002	$174^{\circ} 28^{\prime \prime} 13^{\prime \prime} \mid$	0.002 \|	
11					
16\|M		383051.244	7378339.479		
$304\|\mathrm{M}\|$	-0.004	-0.001	$260^{\circ} 40^{\prime 36}{ }^{\prime \prime} \mid$	0.004 \|	
$\begin{gathered} 1 \mathrm{l} \\ 18 \mathrm{M} \end{gathered}$	383088.111	7378283.675			
$274 \mid \mathrm{M\mid}$	${ }^{-0.006}$	+0.011	32905'33"	0.012 \|	
$1 \mid$					
19\|M		382987.001	7378408.148		
191\|M		+0.002	+0.001	47³1'28" ${ }^{\text {\| }}$	0.002 \|
11					
20\|M		382994.477	7378156.633		
$\begin{gathered} 216\|\mathrm{M}\| \\ 11 \end{gathered}$	-0.001	-0.002	\mid	0.002 \|	
$22\|\mathrm{M}\|$	383021.276	7378244.455			
$102\|\mathrm{M}\|$	-0.003	-0.007	202008 $26{ }^{\prime \prime}$ \|	0.007 \|	
\|					
$23\|\mathrm{M}\|$	383076.813	7378312.143			
208\|M		+0.001	+0.000	$85^{\circ} 42^{\prime 2} 7^{\prime \prime} \mid$	0.001 \|
1					
$24\|\mathrm{M}\|$	383017.566	7378352.074			
${ }^{291\|M\|}$	+0.000	-0.011		0.011 \|	
$25\|\mathrm{M}\|$	382988.132	7378322.523			
447 \| M		+0.007	-0.006	$129^{\circ} 24^{\prime 2} 6^{\prime \prime} \mid$	0.010 \|
27\|M		382914.927	7378418.425		
411\| M		-0.001	-0.001	228958'02"\|	0.001 \|
11					
$28\|\mathrm{M}\|$	382965.982	7378346.198			
$422\|\mathrm{M}\|$	+0.007	-0.006	131 ${ }^{\circ} 34^{\prime 2} 4^{\prime \prime}$	0.009 \|	
11					
29\|M		382968.508	7378398.064		
$32\|\mathrm{M}\|$	+0.002	-0.002	$136^{\circ} 00^{\prime} 14^{\prime \prime} \mid$	0.003 \|	
11					
$30\|\mathrm{M}\|$	382946.601	7378357.030			
$423\|\mathrm{M}\|$	+0.003	-0.004	$141^{\circ} 47^{\prime \prime} 12^{\prime \prime} \mid$	0.005 \|	
\| \|					
$31\|\mathrm{M}\|$	382928.769	7378366.996			
424\|M		-0.001	-0.002	19946'13"\|	0.002 \|
1 I					
$33\|\mathrm{M}\|$	382922.986	7378207.293			
189 \| M		+0.004	+0.000	\| 85 ${ }^{\circ} 30^{\prime \prime} 10^{\prime \prime} \mid$	0.004 \|
$\begin{aligned} & 1 \mid \\ & 34 \mid \mathrm{M} \end{aligned}$	382964.628	7378219.054			
456\|M		-0.007	+0.002	287²0'49"	0.008 \|
11			1 \|		
35\|M		382915.057	7378216.194		
186\|M		+0.001	+0.001	6344'13" \mid	0.002 \|
\|	${ }^{\text {\| }}$				
$36\|\mathrm{M}\|$	382915.970	7378257.379			
$462\|\mathrm{M}\|$	-0.004	+0.003	30658'37" ${ }^{\text {\| }}$	0.005 \|	
11					
$37\|\mathrm{M}\|$	382893.120	7378226.366			
${ }_{\text {l }}^{419\|\mathrm{M}\|}$	-0.002	+0.001		0.003 \|	
$39\|\mathrm{M}\|$	382887.025	7378275.936			
$460\|\mathrm{M}\|$	-0.006	+0.006	\| 319950'04"	0.009 \|	
$\|1\|$ $40\|\mathrm{M}\|$	382942.361	$\begin{gathered} \text { l } \\ 7378308.400 \end{gathered}$			
145 \| M		-0.001	-0.001	\| $230^{\circ} 15^{\prime} 46^{\prime \prime} \mid$	0.001 \|
11					
$42\|\mathrm{M}\|$	382920.398	7378434.262			
$58\|\mathrm{M}\|$	+0.002	-0.002	$139^{\circ} 05^{\prime} 13^{\prime \prime} \mid$	0.003 \|	
11			1 \|		
$43\|\mathrm{M}\|$	382947.603	7378279.298			
158 \|M		+0.008	-0.008	\| 135 ${ }^{\circ} 11^{\prime} 23^{\prime \prime}$ \|	0.011 \|
$\|\|\mid$ $44\|\mathrm{M}\|$	382887.505	7378339.049			
$372\|\mathrm{M}\|$	+0.001	7378339.049 +0.002	\| 23 ${ }^{\circ} 36^{\prime} 07^{\prime \prime} \mid$	0.002 \|	
11					
$45\|\mathrm{M}\|$	382967.031	7378294.307			
$155\|\mathrm{M}\|$	+0.008	-0.010	14203933 ${ }^{\prime \prime}$ \|	0.013 \|	
	382962.099	$\begin{gathered} \text { I } \\ 7378305.233 \end{gathered}$	\|		
154 \| M		+0.004	-0.002	$112^{\circ} 53^{\prime} 00^{\prime \prime}$ \|	0.004

Analysis of Differences

APPENDIX E
LISCAD Report: Point Comparison
Monday, September 26, 2016 18:58

	File: 21.25 Points
	Projection: Map Grid Australia 94 Zone 53 File Date: Thursday, July 14, 2016
Units $====$ Distance: Metres Method: Location (Radius $=0.150 \mathrm{~m})$.	

R - Resolved point
R - Resolved pot
M - Main point

APPENDIX F
LISCAD Report: Point Comparison
Monday, September 26, $2016 \quad 18: 59$

$$
\text { File: } 22.20 \text { Points }
$$

Projection: Map Grid Australia 94 Zone 53

Units
Distance: Metre
Method: Location (Radius $=0.150 \mathrm{~m}$.)
R - Resolved point
M - Main point

Monday, September 26, 2016 19:00

$$
\text { Projection: Map Grid Australia } 94 \text { Zone }
$$

Distance: Metres
Method: Location (Radius $=0.150 \mathrm{~m}$.)
R-Resolved point

LISCAD Report: Point Comparison
Monday, September 26, 2016 19:0

$$
\text { Projection: Map Grid Australia } 94 \text { Zone }
$$

Distance: Metres
Method: Location (Radius $=0.150 \mathrm{~m}$.)
R - Resolved point
M - Main point

Monday, September 26, 2016 19:0

```
Projection: Map Grid Australia 94 Zone
```

Units
istance: Metre
Method: Location (Radius $=0.150 \mathrm{~m}$.)
R - Resolved point
M - Main point
