

University of Southern Queensland

Faculty of Health, Engineering & Sciences

Wearable Technology and Gesture Recognition for Live

Performance Augmentation

A dissertation submitted by

Sathya Smith

in fulfilment of the requirements of

ENG4111/ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Honours) (Electrical & Electronic)

Submitted: 13 October, 2016

i

Abstract

The use of physical gestures within interactions between humans and computer systems is a

rapidly progressing research field that find itself increasingly present in smartphone and

computer applications. This dissertation intends to outline the various engineering design

processes involved in the creation of a simplistic and novel gesture recognition system geared

towards use in live entertainment performances. The system aims to help in increasing

fluidity of human-machine interaction in the entertainment industry by providing an

alternative input method for controlling other performance related systems such as mixers,

monitors, digital audio workstations and stage lighting.

Electronic methods of wearable body movement tracking, gesture recognition and wireless

interfacing are explored in order to determine a suitable design for the system to achieve a

practical result. The resulting system consists of a wearable hardware group as well as a

terminal hardware group, with associated software for each. The wearable design contains

an MPU6050 motion processing unit, Arduino Uno development board and a HopeRF HM-

TR wireless data link transceiver. The terminal group is responsible for receiving MIDI

commands and consists of an Arduino compatible ‘LeoStick’ board coupled with a second

transceiver. The usage of modern additive manufacturing methods was also investigated for

hardware enclosure creation to allow potential for rapid prototyping.

The GR is able to accurately provide movement data to a processor, which utilises a running

average based gesture recognition algorithm in an attempt to extract movement features

and respond to the presence of a pre-determined gesture by generating a MIDI command

that is then sent to a computer terminal for use with external applications.

Although the system did not fully live up to design objectives, it plays the role of an

important stepping stone in the creation of practical, entertainment-oriented gesture

recognition devices that are more accessible to the general public.

ii

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to

the overall education within the student’s chosen degree program. This document, the

associated hardware, software, drawings, and other material set out in the associated

appendices should not be used for any other purpose: if they are so used, it is entirely at the

risk of the user.

Dean

Faculty of Health, Engineering & Sciences

iii

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set

out in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

SATHYA SMITH

0061033248

DATE

iv

Acknowledgments

The completion of this research project would not have been possible without the support

of many that are close to me. Firstly, I would like to thank my partner, Jorja Wicks, who

has also completed a research project towards her Electrical and Electronic Engineering

degree. Jorja is the most incredible study partner I could have ever wished for and I wouldn’t

want to have anyone else by my side.

I would also like to devote an enormous thank you to my wonderful parents, Katharina and

Graham, for putting so much faith in my abilities to fulfil my goals and passions. Their

kindness and encouragement has been crucial in motivating me to achieve the best result I

possibly can. I cannot thank you enough for all you have done for me throughout my life.

Next I would like to acknowledge my close friends in no particular order – Steve, Joe, Riley,

James, Matthew, Shannon and Daniel. You’re all excellent lads and I might’ve keeled over

somewhere along the way without you helping me kick back and re-focus.

Last, but not least, I would like to thank Dr. Andrew Maxwell for supervising my project

and providing me with guidance along the journey towards the end result of this dissertation.

You have all been a great help to me – thank you!

SATHYA SMITH

v

Contents

Abstract ... i

Certification of Dissertation... iii

Acknowledgments ... iv

List of Figures ... xi

List of Tables .. xii

Nomenclature ... xiii

Chapter 1 - Introduction... 14

1.1. Preamble .. 14

1.2. A Brief Historical Summary .. 16

1.3. Project Aim and Objectives .. 17

1.3.1. Aim ... 17

1.3.2. Objectives .. 17

vi

1.4. Motivation and Problem Statement .. 18

1.5. Dissertation Overview ... 19

Chapter 2 – Literature Review.. 20

2.1. Motion Measurement .. 20

2.1.1. Electric Sensing ... 21

2.1.2. Mechanical Sensing .. 22

2.2. Processing and Control ... 23

2.2.1. Existing Usage ... 23

2.2.2. Arduino ... 24

2.3. Recognition Methods .. 27

2.4. MIDI .. 30

2.5. Data Transmission .. 31

2.6. 3D Printing .. 32

Chapter 3 - Methodology .. 33

3.1. Research Methodologies .. 33

3.1.1. Quantitative Research.. 34

3.1.2. Qualitative Research .. 34

3.2. Project Task Plan ... 35

3.2.1. Background Research and Theory .. 35

3.2.2. Hardware Design ... 37

3.2.3. Software Design ... 38

3.2.4. Build and Prototyping ... 38

vii

3.2.5. Design Evaluation .. 39

3.3. Resource Requirements and Equipment ... 40

3.4. Timeline ... 42

3.5. Consequential Effects .. 43

3.5.1. Safety .. 43

3.5.2. Sustainability... 43

Chapter 4 - Design .. 44

4.1. Design Objectives and Requirements ... 45

4.2. Component Selection .. 46

4.2.1. Inertial Measurement Unit – MPU6050 .. 46

4.2.2. Processing Unit – Arduino Uno R3 ... 48

4.2.3. Data Transmission – HopeRF HM-TR ... 49

4.3. Enclosure Design and Wearability ... 50

4.3.1. Hardware Positioning ... 50

4.3.2. OpenSCAD .. 51

4.3.3. Wrist Brace ... 52

4.3.4. Main System Housing .. 53

4.3.5. Hardware Assembly ... 55

4.4. Software requirements and objectives .. 62

4.4.1. Operation Modes ... 63

4.4.2. Data Acquisition .. 63

4.4.3. Pre-processing .. 64

4.4.4. Feature Extraction ... 64

4.4.5. Gesture Capture .. 64

viii

4.4.6. MIDI Command Transmission ... 65

4.4.7. MIDI Command Reception .. 65

4.5. Arduino Program Creation.. 66

4.5.1. Library Inclusions and Variables .. 66

4.5.2. Initialisation .. 67

4.5.3. Sliding Window Tracking ... 68

4.5.4. Training Mode ... 70

4.5.5. MIDI Transmission and Reception ... 70

Chapter 5 – Results and Testing ... 72

5.1. System Function Demonstration ... 72

5.1.1. Gesture Recognition ... 72

5.1.2. Wireless Link Testing .. 77

5.2. Design Issues and System Feasibility ... 79

5.2.1. Current Design Feasibility ... 79

5.2.2. Design Issue Evaluation ... 79

Chapter 6 – Conclusions and Further Work ... 81

6.1. Conclusions .. 81

6.2. The Learning Experience .. 83

6.3. Future Work and Potential Uses ... 84

References .. 85

Appendix A – Project Specification ... 89

ix

Appendix B – Project Timeline ... 91

Appendix C – Risk Assessment ... 94

Appendix D – Component Datasheets .. 96

D.1. ATMega328 Datasheet (page 1) ... 97

D.2. MPU6050 Pin Descriptions .. 98

D.3. HopeRF HM-TR Datasheet (page 1) .. 99

D.4. Freetronics LeoStick Specifications ... 100

Appendix E – MIDI Instruction Summary Table ... 101

Appendix F – Engineers Australia Code of Ethics (p.1) .. 106

Appendix G – OpenSCAD Program Code and Models .. 108

G.1. Wrist Brace OpenSCAD listing ... 109

G.2. Wrist Brace Modular Views ... 116

G.2.1. MPU-6050 Model ... 116

G.2.2. Wrist Brace Main View.. 116

G.2.3. Wrist Brace Cover View .. 117

G.3. Main System Housing Program Listing .. 118

G.4. Main Housing Model Views.. 127

G.4.1. Transceiver Shape Model ... 127

G.4.2. Arduino Uno Shape Model ... 127

x

G.4.3. Battery Shape Model ... 128

G.4.4. Extra Space Shape Model .. 128

G.4.5. Main Housing Model .. 129

G.4.6. Main Housing Cover View .. 129

Appendix H – Arduino Program Code ... 130

H.1. Main Arduino Program .. 131

H.2. MIDI Command Transmission Code .. 143

H.3. MIDI Command Receiver Code.. 144

xi

List of Figures

Figure 1 - Electrical Diadem (Sourced from Sjuve 2008) .. 16

Figure 2 - 'gest' gesture recognition system concept (Sourced from New Atlas 2016) 19

Figure 3 - Capacitive Touch Screen (Sourced from Electrotest Pty Ltd.) 21

Figure 4 - Piezoelectric Accelerometer (Sourced from industrial-electronics.com) 22

Figure 5 - Arduino IDE... 26

Figure 6 - Breakdown of MIDI message components .. 30

Figure 7 - Six Degrees of Freedom... 46

Figure 8 - DFRobot 6 DOF sensor .. 47

Figure 9 - Arduino Uno R3 ... 48

Figure 10 - GoPro Harness.. 51

Figure 11 - Sensor wrist brace ... 52

Figure 12 – Main Enclosure Top View .. 53

Figure 13 - Main enclosure side view ... 54

Figure 14 – Wrist brace prototype .. 56

Figure 15 - Wearable group wiring diagram (Produced with fritzing)............................. 58

Figure 16 - Completed wearable group assembly ... 59

Figure 17 - Completed terminal group assembly .. 60

Figure 18 - GR system process flow .. 62

Figure 19 - Limited tracking mode initial output ... 73

Figure 20 - Limited tracking mode resting state .. 74

Figure 21 - Limited tracking mode twisting punch data ... 75

Figure 22 - Training mode initial output ... 76

Figure 24 - MIDI command transmission in decimal format ... 78

file:///C:/Users/Sathya/Google%20Drive/Bachelor%20of%20Engineering%20(Honours)/Engineering%20Research%20Project%202016/5%20-%20Dissertation/Document/Final%20Stages/SMITH_S_MAXWELL_SUBMISSION.docx%23_Toc464034658

xii

Figure 25 - MIDI command reception shown through Arduino serial monitor 78

List of Tables

Table 1 - Arduino Comparison Table .. 25

Table 2 - Comparison of various GR techniques (Sourced from LaViola 1999) 28

Table 3 - Key research and background questions .. 36

Table 4 - Research and dissertation resources .. 40

Table 5 - System hardware and facility resources ... 41

Table 6 - Software and staff resources ... 42

Table 7 - Sensor to Arduino Connections ... 55

Table 8 - Project Risk Assessment ... 95

file:///C:/Users/Sathya/Google%20Drive/Bachelor%20of%20Engineering%20(Honours)/Engineering%20Research%20Project%202016/5%20-%20Dissertation/Document/Final%20Stages/SMITH_S_MAXWELL_TUESDAY.docx%23_Toc463950996

xiii

Nomenclature

ADC Analog-to-Digital Converter

CAD Computer Aided Drawing

DM P Digital Motion Processor
TM

DSP Digital Signal Processing

EM G Electromyogram

EOG Electroculogram

FIFO First In First Out

FSK Frequency Shift Keying

GR Gesture Recognition

GRS Gesture Recognition System

HM I Human-machine interaction

IDE Integrated Development Environment

IM U Inertial Measurement Unit

IR Infra-red

M CU Microcontroller Unit

M EM S Micro-electromechanical System

M IDI Musical Instrument Digital Interface

RAL Remote Access Laboratory

RAM Random Access Memory

SPI Serial Peripheral Interface

TTL Transistor-Transistor Logic

TWI Two Wire Interface

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

14

Chapter 1

Introduction

This chapter is intended to make the reader familiar with the general concepts of gestures

and their use in the computing field. The preamble contains information pertaining to the

importance of gestures, as well as some examples of the most commonly experienced forms

of gesture recognition within modern society. Following this, motivations for the completion

of this research project are discusses, prior to the final subsections regarding project aims

and objectives.

1.1. Preamble

Humans have long spent time analysing the ties between their thoughts and physical

movements. Generally speaking, gestures are mostly widely known as physical movements;

often enacted subconsciously and can be used to communicate a wide variety of information.

Research into both humans and animals has shown that movement and gesture may possess

a higher influence on thought than was previously expected. The unique symbolic and

referential nature of human gestures is particularly as gestures such as waving, pointing at

an object, and the ‘OK’ symbol are fast paced, easy to understand methods of communicating

information and emotional state. Modern Human-Machine Interaction (HMI) systems utilise

this advantageous aspect of intelligent communication to further naturalise the experience

of working with computers.

15

HMI allows for the minimization of barriers between the human cognitive model of a gesture

and the computer’s understanding of the task (Kumar 2010). Advancements in computing

have seen a wealth of potential applications for human movement tracking, where the aim

is to use a HMI interface and a control system to allow movement trend analysis by the

user, with constant feedback from the machine (Suhas & Dileep 2015)

From this user interaction arises the concept of a Gesture Recognition System (GRS); an

electrical system designed to bridge the gap between a human user performing a movement,

and a computer system performing a desirable or undesirable action in the response to the

user.

One of the most notable examples of gesture utilisation in modern society lies in

smartphones. Statista Inc. (2016) estimates a record-breaking 2.08 billion smartphone users

worldwide as of 2016, meaning that every day new users are learning to Swipe, flick, pinch,

tilt and shake their smartphones to control various pieces of software. This method of

interaction may be highly desirable to those who find traditional computer input methods

to be tedious or unintuitive. While many industries stand to benefit from advances in the

HMI and GR fields, the theatre and entertainment industries are interesting stakeholders

for consideration and will be the primary focus over the course of this project.

In an attempt to widen the availability and usefulness of work previously completed in the

gesture recognition field, this research project involves the development of a simplistic

wearable GR system for the control of various theatrical technology elements using off-the-

shelf hardware and software components. Such a system aims to acquire the gestural

movement data of a performer in real-time through the use dynamic sensors. If a gestural

movement is detected, a Musical-Instrument-Digital-Interface (MIDI) command can then be

created to act as a controlling mechanism for systems that utilise the MIDI protocol.

Such a system possesses a range of uses in a theatre/stage setting, where the MIDI language

is commonly used. MIDI is most commonly used in digital audio workstations such as

Ableton Live and Reaper for live and/or recorded music production; as well as for control

of DMX lighting using a system such as ‘Lightjams’.

16

1.2. A Brief H istorical Summary

Wearable technology has been an important asset to performers since the 1840s, one of the

first times that arc lamps were used to create special effect lighting for performance

enhancement (Sjuve 2008). These analog systems usually involved the use of incandescent

light bulbs, such as the ‘Electrical Diadem’ (See Figure 1) developed for a dancer who

performed as a part of the opera ballet ‘Farandole’ in 1884. The diadem operated very simply

and consisted of incandescent bulbs, a two part accumulator and a switch to allow the dancer

to control the light (Sjuve 2008).

Figure 1 - Electrical Diadem (Sourced from Sjuve 2008)

Systems such as the electrical diadem required manual control via the performer or a

stagehand, outlining the main difference between older wearable systems and those used in

the field today, which are intended to be more automated and exist as a more fluid method

of control over using, for example buttons or touchpads

Although wearable technology was present such a long time ago, HMI became much more

prominent since the beginning of the digital era. In 1963, Ivan Sutherland demonstrated the

first instance of directly manipulating visible on-screen objects using a light-pen, which

17

included grabbing objects, moving them, changing size, and using constraints (Myers 1998).

Following this, many more instances of HMI research began to emerge as the computational

needs for more demanding purposes were met by new hardware developments. At this point

in time, HMI is an element of everyday life and is under constant development.

1.3. Project Aim and Objectives

1.3.1. Aim

This project aims to investigate the design of a novel GR system using off-the-shelf

components, which would allow performers to control external performance related systems

in a reliable, functional and easily setup manner for a reasonably low cost.

1.3.2. Objectives

The completion of this project requires the definition of the following key objectives:

 Design and develop a suitable data acquisition system.

 Implement a suitable processing algorithm to perform gesture classification and

recognition by extracting data features.

 Determine a viable method for creating a suitable MIDI command in response to the

presence of a gesture.

 Determine a suitable method of wirelessly transmitting the MIDI command to a

personal computer.

 Evaluate the performance of the system with respect to various requirements.

18

1.4. M otivation and Problem Statement

Various motivating factors have formed the foundations of the work completed in this

project, with the intent to solve a particular engineering problem. For a theatre performer,

the search for new and exciting methods of extending creative capability is never-ending.

This curious and explorative nature is key to preventing artistic expression from becoming

stale. The more tools at a performer’s disposal, the greater their potential to express their

creative talents and messages. Lindsay (2013) stated that:

“The audience needs to see, hear and feel a performance as fully as possible so

that it is a rich, emotional, and unforgettable event. Modern technologies have

given us the tools to enrich the whole of this experience.”

In addition to the importance of augmenting artistic capabilities, the financial expense of

current gesture recognition technology is a limiting factor placed on many who may be able

to utilise the system for profit. Wearable gesture recognition devices are still emerging

technologically, resulting in many prototypical systems and few commercially refined

instances. With regards to this project, the intention is to prove in concept that a novel

gesture recognition system can be created at a low cost using easily obtained hardware and

software elements.

Certain developers are well on their way to developing highly functional gesture recognition

devices, a good example of which being the “Gest” glove, which can be used for generalised

computer control (see Figure 2). Other notable examples include the Myo armband from

Thalmic Labs and the Leap Motion controller. Commercial GRSs such as these are intended

as generalised gesture controllers to be interfaced with smartphones and computers; however,

there exists very little in the way of live entertainment focused systems that have been well

established.

19

Figure 2 - 'gest' gesture recognition system concept (Sourced from New Atlas 2016)

1.5. Dissertation Overview

This subsection outlines the composition of this dissertation:

Chapter 2 presents an analysis of relevant literature and background information.

Chapter 3 explains the chosen methodology for undertaking the research project

Chapter 4 presents the design and build process for the system in regards to data

 acquisition, gestural processing and data conversion and transmission.

Chapter 5 outlines the testing process for the system, and presents and discusses

 the results of system testing.

Chapter 6 concludes the dissertation and includes discussion of outcomes and

 recommendations for potential future work pertaining to the project.

20

Chapter 2

Literature Review

A comprehensive technical project requires extensive consideration of background

information pertaining to all relevant areas in order to ensure adequate knowledge of subject

matter. Publicly available GR and HMI research covers a broad range of specific information

areas, not all of which are relevant to this project; therefore, careful selection of literature

must be carried out.

2.1. M otion M easurement

The creation of a GR system necessitates a method of reading the physical movements of an

individual. In doing this, the sensors used for this purpose are effectively the computer’s

‘eyes and ears’. Searching the literature made it evident that a number of different types of

sensors are useful for this application including electric, optic, magnetic and mechanical.

Berman & Stern (2012) stated that despite the great number of GR system reviews present

in the literature, comprehensive analysis of sensor types for GR systems was lacking. Their

research involved investigation of different types of sensor stimulus, usage context and sensor

platform. The study is useful for this project; however, there is a main focus on optic sensors,

which are not suitable for this project in that the focus for this project is on using wearable

technology to achieve movement tracking.

21

2.1.1. Electric Sensing

Electric sensing is the most commonly used type of sensing throughout modern day to day

life (Berman & Stern, 2012), which accounts for touch screens, keyboards, computer mice

and systems that function based on reading bodily electrical signals such as electromyogram

(EMG) and electroculogram (EOG). Touch screen interfaces such as those found in tablets

and smartphones (See Figure 3), while being extremely responsive, generally do not fit with

the system model desired in this research project. It was evident that for an application such

as live stage performance, the requirement of wearing and constantly touching a display

would become cumbersome and due to the fragility of such displays, vigorous movement or

mechanical shock may render the system useless in the event of fatal damage.

Figure 3 - Capacitive Touch Screen (Sourced from Electrotest Pty Ltd.)

22

2.1.2. Mechanical Sensing

Mechanical sensing appears to be the most commonly utilised approach for movement

detection in a performance environment. The most notable sensors used in this way are

microelectromechanical system (MEMS) based accelerometers and gyros. Berman & Stern

(2012) included a description of their functionality, where single and multiple axis

accelerometers are used to determine acceleration along predetermined axes in space by way

of a tiny shifting mass system. A change in acceleration causes a minute mechanical shift

inside the accelerometer itself, pictured below in Figure 4, which translates to a change in

the output signal of the relevant directional axis, so that varying levels of acceleration in

multiple directions can be tracked.

Figure 4 - Piezoelectric Accelerometer (Sourced from industrial-electronics.com)

Gyros are similar in operation to accelerometers; however, they are used to detect angular

velocity, usually with an output of degrees per second. This functionality makes them very

useful in conjunction with accelerometers for a system that requires reliable motion tracking.

Gyros operate by creating a low-current electrical signal in response to the vibration of a

small mass within the MEMS unit, which is placed under a Coriolis force orthogonal to the

vibrating mass (Wikipedia 2016). These two components have been widely used in previous

research on the topic area and are able to operate to extremely high degrees of accuracy. As

such, these two components seem to be the most suitable for this project.

23

Suhas & Dileep (2015) demonstrated the use of the embedded Digital Motion Processor
TM

(DMP), located within an MPU-6050 unit that has an overall purpose of reading sensor

data, which can be read from registers or buffered in a FIFO. The DMP is extremely useful

for such an application as it eliminates much of the necessity for sensor data pre-processing

by automatically performing those tasks for the developer. The MPU-6050 appeared to be

the most suitable motion tracking unit available for a simple application such as this project.

2.2. Processing and Control

2.2.1. Existing Usage

The second element requiring thorough understanding before selection is that of a hardware

controller for the wearable system. The microcontroller is responsible for acquiring sensor

data, implementing GR algorithms, generating a MIDI command, and finally transmitting

the MIDI command via wireless serial link. This was predicted to require extensive

computations; therefore, a microcontroller capable of performing these tasks efficiently and

accurately was necessary. Predko (1998) detailed the aspects of different types of

microcontrollers, which usually fit into three main areas: Embedded 8-bit microcontrollers,

16-32 bit microcontrollers, and digital signal processors. Further investigation was required

to determine the best route to follow for this decision.

An extremely relevant study performed by Xu et al. (2012) involved the creation of a

portable gesture recognition system consisting of a tri-axial accelerometer, C8051F206

microcontroller and a ZigBee 2.4 GHz Wi-Fi module. Unfortunately, it was not particularly

evident within the study whether feature extraction computations were enacted by the chip

itself, or by the PC once pre-processed gesture data had been received from the ZigBee

module.

24

It was somewhat difficult to find a great deal of previous work pertaining to GR systems

that possess the ability to detect motion and carry out signal processing algorithms on the

wearable module itself. Benbasat & Paradiso (2001) outlined this importance, stating that

‘The authors argue that the most interesting devices are those which incorporate enough

processing power to perform the software functions of the framework (recognition and

matching) on-board’. Throughout their research an Analog Devices ADuC812

microcontroller with a 12-bit ADC and an 8051 microprocessor core was utilised, which

allowed them to successfully implement their atomized GR framework.

2.2.2. Arduino

One of the most appealing control units for development of the system is the Arduino family

of development boards. Arduino is an open-source development platform that contains

hardware and software elements that are specifically tailored towards simplicity of use,

allowing for rapid project prototyping. Arduino boards have great development potential

and a wide range of features for conjunctive use with sensors and data transceivers – the

other components of interest for this project.

Potential choices of Arduino board include the Lilypad, Uno, Pro, Mega and Zero. Each of

these boards differ in number of features, power requirements and processing power. Table

1Table 1 - Arduino Comparison Table on the following page shows the differences between

each of the board models.

25

Table 1 - Arduino Comparison Table

Arduino model Lilypad Uno Pro M ega Zero

M icrocontroller
ATmega

32u4

ATmega32

8P
ATmega328

ATmega256

0

ATSAMD21

G18

Operating Voltage 3.3V 5V 3.3/5V 5V
3.3V

Input Voltage 3.8V-5V 7-12V
3.35-12V or

5-12V
7-12V

7-12V

D igital I/O Pins 9 14 14 54
20

Analog Inputs 4 6 6 16
6

Flash M emory 32 kB 32 kB 32 kB 256 kB
256 kB

SRAM 2.5 kB 2 kB 2 kB 8 kB
32 kB

EEPROM 1 kB 1 kB 1 kB 4 kB
None.

Clock Speed 8 MHz 16 MHz 8 or 16 MHz 16 MHz
48 MHz

Physical

D imensions

50mm

Diameter

68.6mm ×

53.4mm

2.05 in ×

2.1 in

101.52 mm

× 53.3 mm

68 mm × 30

mm

Approximate Cost
$24.95

USD

$24.95

USD
$14.95 USD $45.95 USD

$49.90 USD

26

It is evident from the comparison table that all of the compared boards have similar suitable

specifications, with the main differences being trade-offs between cost, physical size, number

of pins and memory. Arduino has placed emphasis on the LilyPad as being useful for

wearable technology applications, making it an attractive choice. Taking into account the

developmental nature of this project, it was decided that it may be more prudent to use a

board that does not require soldered connections and can easily be connected to a PC via

USB for programming purposes, such as the Uno.

This leads into another advantageous aspect of Arduino boards, which is the Arduino

Integrated Development Environment (IDE) (See Figure 5). This IDE possesses a text

editor, message area, text console, toolbar and menus. In addition it contains a serial monitor

for real or virtual data monitoring, which is highly useful for this project. Arduino programs,

also known as sketches utilise mostly C++ language code, as well as some functions specific

to the Arduino platform. The simplicity of the Arduino development process was deemed to

make it a solid choice for this project and was chosen for further investigation.

Figure 5 - Arduino IDE

27

2.3. Recognition M ethods

Once methods of detecting motion of the body have been achieved, the gesture data must

be manipulated in various ways to eliminate problems and improve data reliability. There

are many different digital signal processing techniques used to optimise sensor data and

extract classified gestures from that data. As such, not all of these techniques are relevant

to this project, as well as some being far too complex to suit the given time frame. Generally

speaking, the computations involved appear to fall into three categories: Pre-processing,

feature extraction or a similar technique, and gesture classification. This algorithm focused

subsection aims to detail the current status of algorithms used in simple GR systems that

operate using inertial measurement units.

A survey conducted by LaViola (1999) provided useful summaries of the various methods

used to recognise and react to a gesture for applications similar to stage performance.

Although the study is over a decade old, technology has progressed relatively slowly in the

GR world as it is not a crucial research and development field, and the majority of the

techniques used during this time are still highly relevant.

The techniques analysed were suitable for the use of both instrumented gloves and vision

based GR systems. The three categories described for GR throughout the study were feature

extraction, learning algorithms, and miscellaneous techniques. A more detailed overview of

GR techniques can be found within Table 2 on the following page, which provides good

insight into the relevance of various methods to this project.

28

Upon perusing the table, it is apparent that template matching is a technique of great

interest due to its compatibility with IMUs, excellent accuracy for complex postures and

simple gestures, minimal training requirements and extensive previous work to look on.

Another option is a feature extraction focused method, which is suited to more complex

gestures and does not require training prior to recognition and classification.

LaViola (1999) stated that: “template matching determines whether a given data record can

be classified as a member of a set of stored data records”. This process involves creating

desired templates (postures or movements), and then comparing the sensor input of the

system to those templates. The system can be configured so that when a match is found, an

arbitrary output is performed. The study further describes limitations and advantages of

using a template matching algorithm in such a system.

Table 2 - Comparison of various GR techniques (Sourced from LaViola 1999)

29

An example of a template matching algorithm was presented by Benbasat & Paradiso (2001),

which included a more refined approach involving ‘atomic’ gestures. The concept of atomised

gestures is that of defining simple and common movements as gestural ‘atoms’, which can

then be combined to form more complex gestures, without having to store that complex

gesture template itself. This means that the comparisons made are between the input and a

set of simple atomised gestures, rather than attempting to compare the input to an extremely

large array of complex gesture patterns, which may even be difficult to reproduce.

Feature extraction is an alternative method to template matching and while being considered

as a more complex route, the potential for advanced GR is greater. Feature extraction and

analysis involves analysis of raw sensor data in order to determine specific information about

the input, which may include properties such as mean signal level, standard deviation,

variance, velocity and acceleration (LaViola 1999). Also mentioned is the computational

burden for such a method.

It is important to note that GR techniques should also be accompanied by DSP techniques

intended for heightening system accuracy and reliability. One approach to this, conducted

by Xu et al. (2012) involved calibration, a moving average filter, a high-pass filter and

normalization. Calibration involves the removal of drift errors and offsets from sensor input

data, while the two filters are used to reduce high frequency noise, as well as the effects of

gravitational acceleration. Finally, normalization involves the division of the signal input

value over the entirety of that sensor’s numerical output range to give a value that can be

compared with other sensors, which may have differing voltage ranges or baselines.

30

2.4. M IDI

Musical Instrument Digital Interface (MIDI) is an important communications language and

is still widely used in live music and theatre. The provision of this standard has allowed for

many different types of musical instruments, home computers and multimedia equipment to

communicate with ease. Background knowledge and literature review of this protocol was

required in order to implement a suitable output for the GR system that can be easily read

and responded to by computer software.

MIDI messages are sent asynchronously in serial format at approximately 31.25 kbps, and

contain ten bits per message – A start bit, eight data bits, and a stop bit (Anderton, 1986).

The protocol involves the transmission and reception of messages, which are composed of a

status byte and one or two data bytes. Figure 6 below depicts a typical midi message

containing a status byte and two data bytes (note and velocity).

Figure 6 - Breakdown of MIDI message components

31

The purpose of the status byte is to identify the message type and/or the purpose of the

data byte/s following the status byte. The status byte is capable of defining incoming

instructions such as note on/off events, velocity, polyphonic key pressure, control/program

changes, system related messages and various other commands. Data bytes contain the value

of the instruction itself as a value from 0-127. The receiver must then interpret these data

values depending on the status byte to perform certain functions. Appendix E contains a

table detailing the conventions for transmitting messages with MIDI.

2.5. Data Transmission

Methods for moving data from the wearable system to a computer application needed to be

explored extensively to ensure that an efficient and reliable method is used. There is a

plethora of different ways to create a communications link in this way including Wi-Fi,

Bluetooth, Radio frequency communication and Ethernet.

For a wearable application, the aim is to eliminate any physical connections between the

wearer and external systems, so wired connections are somewhat impractical, with the

exception of using wired connections for prototyping purposes. Therefore, only wireless links

were to be considered, with this subsection detailing the methods that have been used in

previous research. Note that the most desirable types of data link for this purpose are simple

FIFO serial data.

The first transmission method to be considered is 2.4GHz Wi-Fi, which is commonly used

with smartphones and personal computers. Xu, Zhou & Wen (2012) utilised a 2.4 GHz

ZigBee wireless transceivers for data transfer, which are known for their excellent price point

– e.g. the SparkFun nRF24L01+ Transceiver breakout at only $19.95. This cost can be

reduced by opting for the transceiver chip itself rather than a breakout; however, for the

purposes of the project it is far more viable to use a breakout board for prototyping and

development.

32

The second method to consider is that of other RF modules, which operate within frequency

bands from about 300 MHz to 1 GHz. Benbasat & Paradiso (2001) opted for an RF

Monolithics transmitter module with a maximum transmission rate of 19.2 kbps, and

transmission bands of 315 MHz and 916 MHz. Similar to this transceiver unit is the HopeRF

HM-TR wireless data link. These transceivers were offered to me by my project supervisor

Dr. Maxwell, as using them would mitigate the cost of the project itself. The choice of

wireless link is not crucial to the outcome of the project, but the chosen link does need to

possess reasonably high transmit/receive rate capabilities, as well as high reliability, i.e.

ensure FIFO packet integrity and an extremely low or non-existent potential for transmission

errors.

2.6. 3D Printing

Also known as ‘additive layer manufacturing’ or occasionally ‘rapid prototyping’, 3D printing

is a method of manufacturing physical objects from various materials for many different

purposes. In a world where new gadgets are dismissed in a fraction of the time they took to

develop, the ability to quickly build small objects is convenient and attractive. 3D printing

was considered for this project when determining the best method to produce hardware

enclosures that are specifically tailored to the components at hand. Dr. Maxwell possesses

enthusiasm in the field of 3D printing and suggested that it may be utilised to accompany

the project to deliver a more customised solution for enclosures.

33

Chapter 3

Methodology

The methodology chapter intends to outline the engineering processes undertaken towards

the completion of this project. The sections covered in this chapter are of utmost importance

when completing any major engineering task, as they contain much of the planning,

organisation and consideration of consequential effects necessary to ensure that no issues

will arise during the course, or after the completion of the research project.

3.1. Research M ethodologies

To gain an understanding of how the research goal can be achieved, it is necessary to consider

various suitable research paradigms. A research review conducted by Borrego et al. (2009)

provided a good starting point for determining adequate engineering research techniques.

This review involved analysis of quantitative, qualitative and mixed research methods in

engineering education; however, the knowledge contained within can be applied to

engineering research in a similar manner.

34

3.1.1. Quantitative Research

Quantitative research involves tackling a research problem from an objective point of view.

The aim of such practice is to attempt to reduce the possible causes of an outcome to a bare

minimum in an attempt to determine a cause-effect relationship between a theory or

hypothesis and the variables that contribute to the outcome. Quantitative methods usually

rely on data collection through surveys or experimentation, followed by statistical analysis

(Borrego et al, 2009). The results of this analysis can then be used to make generalisations

about the topic, which have been supported by research findings. There will be a substantial

amount of quantitative analysis involved within this project due to the quantitative nature

of electrical systems. Most, if not all of the elements of a GR system can be parametrised

and represented as a mathematical model. The presence of movement data from sensors,

algorithmic processing and MIDI representation as numerically based system components

means that mathematical and quantitative methods will need to be utilised.

3.1.2. Qualitative Research

Qualitative research differs from its quantitative counterpart in that it is a more subjective

method of analysing a system or trend. Qualitative analysis is subjective in nature, meaning

that it is often down to the discretion of the researcher as to whether a project element is

described in a certain way. Whether a GRS is considered to be functional or not can be

considered qualitative and arbitrary, as one person may believe that a GRS that is able to

recognise one gesture and perform one output is suitably functional, whereas another may

feel that while the system technically ‘works’, it does not possess the ability to process many

gestures and is of low functionality.

35

3.2. Project Task Plan

In order to successfully complete this research project it was required to establish a solid

project task plan to ensure that each necessary aspect is given an adequate amount of

attention. Planning in this way helps to distribute workload evenly throughout the project

completion period and eases the potential adverse effects of unforeseen circumstances.

3.2.1. Background Research and Theory

The first established task involved in the project was determined to be the performance of

relevant background research and investigation into the mathematical and engineering

concepts involved. Adequate preparation of research material assists in mitigating the

necessity to determine information that is not absolutely relevant to the project itself. The

project in its entirety required the asking of many research questions. Table 3 on the

following page indicates some of the more important research questions that required

investigation.

36

Table 3 - Key research and background questions

Project Section Relevant Key Questions

M otivation and

Problem

Statement

Which engineering problem does the creation of this system solve?

What are the system requirements to achieve this purpose?

How will the project build upon existing technology?

Gestures

What are they?

Which of them are most commonly used?

What role do they play within human communication?

How are they usually incorporated into HMI?

Hardware

How can bodily movement be measured?

Which existing systems may be useful?

Which sensors are commonly used?

Which microcontrollers are commonly used?

What methods of wireless data transmission exist?

What is the most ideal method of ‘wearing’ this system?

Can 3D printing be used to create enclosures?

Gesture

Recognition

M ethods

Which gestures should be added/tested with the system?

How will the system scan data in real-time?

How will the real-time data be analysed for significance?

How will a MIDI command be assigned to a particular gesture?

What will the MIDI command be used to control?

System

Applications

Where can the MIDI protocol be usefully applied?

Can the system be configured for any other purposes?

Who will be the main users of such a system?

Resources and

Equipment

What types of equipment will be required during the project?

Will any facilities be required?

Consequential

Effects

What are the important safety practices involved in electronic

system design?

What are the ethical implications of completing this project? What

about after completion?

Are there any legal issues involved?

37

Following the completion of the research and theoretical background section, the next step

was to use the new information acquired through literature review to begin designing various

aspects of the system. Although the previous section aimed to cover a broader range of

crucial questions, additional questions were required as a part of the design phase in order

to consolidate selection of components and planning for their assembly as a complete system.

Many of the issues in designing a system such as this tend to arise in the design and build

phases themselves and are difficult to pre-emptively cover.

3.2.2. Hardware Design

The hardware design phase involved the selection of necessary components - ensuring their

compatibility with other chosen components, suitability for gesture recognition applications

and reliability in terms of accuracy, precision and efficiency.

Prior to beginning thorough system design, a full risk assessment needed to be completed to

prevent any serious health & safety issues as electrical design projects typically involve

working with amounts of energy that can be extremely detrimental the body, equipment

and facilities.

The tasks to be completed for the hardware section were as follows:

1. Design of a suitable sensing setup using accelerometer/gyroscope combination sensors

for the measurement of rotational velocity and real world acceleration.

2. Select a suitable microcontroller for performing gestural data processing, MIDI

output creation and any other elements of control required.

3. Select a suitable data transmission system for communicating MIDI data between

the microcontroller and a personal computer.

4. Design of suitable enclosures for the sensor/s, microcontroller, transmitter and

battery to produce a reasonably protected and secure system.

38

3.2.3. Software Design

The next step in task planning for this project was to develop an idea of the requirements

of the software element of the system. First and foremost, the method of creating program

code needed to be designated based on the chosen microcontroller and sensor. There exists

a wide variety of potential candidates for programming languages that are capable of

performing GR related computations, but the chosen language is largely dependent on the

requirements of the ideal microcontroller.

The next task was to develop an idea of how gestures look when reading sensor data so that

an apt method of analysis and computation could be implemented. Once this was

determined, the focus was shifted to creating a pre-processing algorithm in an attempt to

make gestural data easier to work with when performing gesture classification and

recognition.

A robust way of classifying gestures, recognising them and then providing the user with an

output is the core of the system and provides its true functionality. The GR program needed

to be designed taking different techniques from literature, as well as knowledge of data

analysis methods from courses completed by the student.

3.2.4. Build and Prototyping

The build and prototyping phase was planned to involve the assembly of the hardware

system in addition to the software program. This process first involved the assembly of the

sensing unit, microcontroller, transmitter and power source as a complete unit, preferably

within 3D printed enclosures and with body attachment capability. The hardware needed

to be assembled as quickly as possible to allow adequate time for software program attention.

Following hardware assembly it was deemed necessary to perform testing to confirm sensor

and microcontroller efficacy.

39

The implementation of the GR algorithm in the form of program code was a crucial element

of the system, which had obviously lengthy time requirements due to likely nuances

occurring. The software program could then be tested using a predetermined set of gestures

to determine the accuracy of the system. Throughout this prototyping process careful notice

needed to be taken of any issues preventing the system from resolving to the desired output.

3.2.5. Design Evaluation

As with any engineering problem, a structured process needs to be used in order to ensure

that the design created is as well planned and produces optimal results. In most engineering

circles it is common to finalise a system design by reflecting and re-evaluating various aspects

of the design. These aspects were determined to include criteria such as functionality, cost,

efficiency, ergonomics and potential for future development. At the methodology

development stage, the system components that may need re-design were not evident and it

was decided that the matter would be better dealt with after completing the prototype.

40

3.3. Resource Requirements and Equipment

This research project was deemed to require quite a few different resources and pieces of

equipment. The tables below indicate the items that were required; however, this list aimed

to be quite broad and specifics regarding approximate system costs were not clear until later

in the project where the design was finalised.

Table 4 - Research and dissertation resources

Initial

Research
Necessity Cost Availability Comment

Literature High
Very

low

High –

internet,

libraries

There is an extensive amount

literature available for no cost,

including articles present

within USQ’s databases.

Personal

computer
High

Very

low
In possession

Both a desktop and laptop

computer are already possessed

and available.

Word

processing

software

High
Very

low
In possession

Microsoft Word 2013 currently

installed on both PCs.

41

Table 5 - System hardware and facility resources

System

Resource
Cost Availability Comment

9V battery None In possession
9V batteries are used for

standalone Arduino operation

IM U

Low –

roughly $10-

20

High – online Accelerometer + Gyroscope

Transceiver
None – Dr.

Maxwell
In possession

Two required, one for

transmission, one for reception

M icro-

controller

None – Dr.

Maxwell
In possession Arduino Uno

W iring

Low –

online,

electronics

shop

High

Adequate wiring for sensor to

Arduino, as well as internal

Arduino wiring.

Enclosures Low Moderate

Access to 3D printers through Dr.

Maxwell, or commercially

produced if required.

M ounting Low High - online
Adequate structures for bodily

mounting of hardware

Soldering

Iron

Low-

moderate
In possession

Soldering iron present in home

working area.

Safety

equipment
Low In possession

Assorted safety equipment such

as safety goggles, fire

extinguishing method and

enclosed shoes.

42

Table 6 - Software and staff resources

System

Resource
Cost Availability Comment

Arduino

IDE
None Free download

Software for Arduino

programming

Analysis

software

(M ATLAB)

Moderate In possession

MATLAB is to be used for

analysing data sets and

performing simulations and

calculations

M IDI

testing

software

(Reaper)

Low –

evaluation

version is

free for 60

days

Downloadable from

developer website

A commonly used DAW, with

which I have prior experience

with music production.

Supervisor

Contact

and

Feedback

N/A
As often as possible,

within reason.

Notional 21 hours of contact +

Dr. Maxwell’s time to use at his

discretion

3.4. Timeline

Creating a timeline is extremely helpful when planning a research project and assists in

effective utilisation of time to achieve goals before the deadline. A simple timeline was

developed as a part of the initial project proposal submitted early in the project period;

however, various factors caused these time constraints to become unrealistic as problems

arose, and so it was advisable to create another Gantt chart to give a better representation

of how the project had progressed and which tasks remained to be completed. The final

version of the Gantt chart can be viewed in Appendix B.

43

3.5. Consequential Effects

The next aspect of this project’s methodology to cover is the assessment of consequential

effects that will arise throughout, or following the completion of the project. As an

engineering student it is important to gain an appreciation of how one’s work in various area

may have a wider effect on society and the environment. Safety, sustainability, legality and

ethics are all contenders for consideration before initiating project work to ensure that the

project falls within various guidelines.

3.5.1. Safety

To ensure the safety of all personnel involved in the development of this research project,

adequate assessment of risks and hazards needs to take place. Engineers Australia (2013)

provide a useful summary of guidelines to follow when planning a research project;

recognising that both professional engineers and students possess a duty of care to all people

in the workplace, wherever that work may be conducted. A formal risk assessment was

prepared (See Appendix C) prior to commencement of practical tasks in an attempt to

minimise risk of injury or equipment damage.

3.5.2. Sustainability

A part of the background research involved in preparing for the project was to take

environmental impacts into account. With the advent of consumer electronics, e-waste has

become a topic of much discussion amongst engineers and researchers. Electronic waste

comes in many forms and can contain highly hazardous materials such as lead, mercury,

arsenic and antimony trioxide (Clean Up Australia 2015). These substances eventually

contaminate local soil and groundwater causing a multitude of problems. In preparation for

the project, methods of mitigating contribution to the e-waste dilemma needed to be

considered. It is important that any electronics used for the purposes of the project are

disposed of carefully, if necessary.

44

Chapter 4

Design

This chapter describes the processes that were undertaken in the development of the GR

system concept. Design objectives, hardware specifications, enclosure design, software

requirements, algorithm design, data transmission and system assembly will be covered, so

that the reader may gain an appreciation of the steps taken in developing an optimal design

for the purposes of this project.

45

4.1. Design Objectives and Requirements

Before the commencement of system design, objectives and requirements needed to be

declared to ensure an end result that is capable of performing the tasks outlined in the

objectives section of Chapter. The following design objectives were developed after

conducting literature review and determining appropriate project methodology.

Reliability The final version of the system should produce consistent results and should

 not be prone to error. In addition, there should be little requirement for

 maintenance.

Accuracy The system should be able to accurately detect when a gesture has been

 enacted, and should provide feedback to the user to indicate that this

 recognition has been successful.

Latency The time delay between a gestural action and the production of an output

 should be sufficiently small that the user feels as though they are controlling

 external systems in (almost) real time.

Ergonomics The wearable section of the system should be comfortable for long periods of

 wear, light-weight and should be adjustable so that a performer of any size

 or shape is able to make good use of it.

Ease of Use Ideally the system should be operable by almost anyone who possesses basic

 computer skills and musical competency. This design requirements takes

 system setup, interaction and troubleshooting into account.

Simplicity Due to time, manufacturing and financial constraints, the aim is to have a

 simple, functional system that is able to recognise between one and a handful

 of gestures accurately and produce a usable MIDI output for each.

Safety At no point during the use of the system should the wearer feel at risk of

 electric shock or physical damage from hardware components.

46

4.2. Component Selection

After examining the various hardware components available during chapter 2, final decisions

needed to be made on the hardware components that would be used to build a prototype

system. The components chosen within this subsection are in no way the ‘perfect’

components for this purpose; however, adequate consideration was taken into account

regarding pricing and functionality to ensure that each of the chosen components is capable

of being combined into a fully functional system. Component optimisation is to be considered

later within this dissertation while performing system evaluation

4.2.1. Inertial M easurement Unit – MPU6050

Detection of movement was deemed to require the tracking of both acceleration and angular

velocity data in three dimensions so that the position and movement of the wearer’s wrist

may be tracked in real time. This is possible using a combination of an accelerometer and a

gyroscopic sensor. Single-axis variants of these sensors are available commercially, but would

not be suitable for tracking linear motion across multiple axes. Tri-axis accelerometers and

gyroscopes are far more suitable for such an application, where acceleration and angular

velocity in three degrees of freedom each can be tracked with ease. A combination of tri-axis

accelerometer and gyroscope provides six degrees of motion detection: X, Y and Z axis

acceleration, as well as yaw, pitch and roll velocity (Figure 7).

Figure 7 - Six Degrees of Freedom

47

The MPU6050 is a combination inertial movement sensor with a key focus on low power

requirements, low cost and high performance. The MPU6050 consists of a 3-axis gyroscope

and a 3-axis gyroscope with an additional digital motion processor (DMP), which acts as a

preliminary signal processor and is capable of processing sensor data using ‘MotionFusion’

algorithms. DFRobot Australia created a breakout board for the MPU6050 sensor,

pictured below in Figure 8.

Figure 8 - DFRobot 6 DOF sensor

This 6 DOF sensor breakout includes a low noise 3.3V regulator for supply to the MPU6050

and pull-up resistors for the I2C bus. The breakout board makes connection to a

microcontroller easy provided that the controller possesses I2C capabilities. I2C is a serial

communication protocol for a two-wire interface (SCL and SDA) developed by Philips and

is used my most major IC manufacturers for interfacing microcontrollers, memory, ADCs,

I/O interfaces and other peripherals (I2C Info 2016).

The desired data format is selected within controller program code and the MPU6050 can

be configured to produce sensor outputs across the two-wire interface in multiple forms

including raw data, quaternion and Euler values.

48

4.2.2. Processing Unit – Arduino Uno R3

Potential options for a processing unit were briefly discussed within the literature. The result

of those deliberations was the selection of the Arduino Uno as a suitable development board

for this project. The Uno pictured in Figure 9 has suitable features and processing capability

for simple on-board gesture recognition. Ease of development was a large contributing factor

in utilising this component, which was supplied by Dr. Maxwell. Much of the technical

specifications are covered within Table 1 - Arduino Comparison Table in chapter 2; however,

some of the more specific features still need to be covered.

The Uno is capable of performing transmission and reception of TTL level serial data using

digital I/O pins 0 (RX) and 1 (TX), which are connected to an ATmega8U2 USB-to-TTL

Serial chip. The board also comes with external interrupt, SPI and Twin Wire Interface

(TWI) capabilities, which will be further detailed later in the chapter. The TWI allows

simple connection of the aforementioned MPU6050 to the Uno board. Note also that the

Arduino Uno can be powered by a 9V battery due to its generous allowable input voltage

range, and in addition, the board is able to supply both 5V and 3.3V output to external

components, meaning that both the transmission unit and the sensor may be connected to

the Uno for power without requiring a separate supply

Figure 9 - Arduino Uno R3

49

4.2.3. Data Transmission – HopeRF HM -TR

This subsection details the selection of the data transmission system that transfers MIDI

commands generated by the development board wirelessly to a PC terminal. The HopeRF

HM-TR wireless data link transceiver supplied by Dr. Maxwell was determined to be the

best immediate choice of transceiver for the application due to its simple operation, ease of

availability and compatibility with the Arduino Uno. The transceivers feature high data rate

and long transmission distance, both of which are advantageous in an entertainment setting.

The HM-TR operates by means of frequency shift keying (FSK) in half duplex mode. FSK

involves the modulation of data onto a carrier waveform by altering the frequency of the

carrier over time, so that the data can be extracted at the receiver end simply by filtering

out the carrier frequency, producing the input data in its original form. The transceiver’s

standard universal asynchronous receiver-transmitter (UART) interface can be used in

combination with the UART on the Uno making communications between transceiver and

controller simple to setup and operate.

One transceiver is connected to the Arduino Uno, which receives a MIDI data stream in the

event of gesture recognition. The transceiver then modulates onto a 915 MHz carrier ready

for transmission. At the receiver, another identical transceiver is operated via a Freetronics

LeoStick, which reads received data and then outputs the data stream to the serial monitor

in the Arduino IDE. The Freetronics LeoStick is an Arduino compatible development board

approximately the size of a standard USB flash drive and has similar specifications to the

Arduino Uno.

50

4.3. Enclosure Design and W earability

After selection of components, the next step was to decide on a suitable method of attaching

them to the wearer, as well as shielding said components from external damage. This

subsection provides details on positioning of hardware on the body in addition to the cases

that will be used to store the system hardware.

4.3.1. Hardware Positioning

The use of this system within a live entertainment setting means that many of those who

are likely to use it will be in motion frequently. This motion may be vigorous, therefore the

fastening mechanisms need to provide adequate adhesion to prevent wiring and enclosures

from detaching from their default positions and causing damage to enclosures or wearer. The

necessity for restrictive adhesion can be minimised by reducing enclosure weight; however,

based on the components selected it was unlikely that the wearable components of the system

would be bulky or of any significant weight.

Firstly, the sensing component of the system needed to be positioned on the wrist of the

wearer for recognition of simple arm gestures such as lateral and rotating arm movements.

As such, the wrist was deemed a likely position for the sensor, preferably on the upper side

to simulate the feeling of wearing a wristwatch. Wireless communication was considered for

use between the sensor and development board, but was not pursued as the requirement for

a separate power supply and transmitter for the sensor was not attractive. Instead, a simple

ribbon cable would be used for the pin connections between the sensor and the Uno (Vin,

GND, SCL, SDA and INT).

Following the positioning of the sensing component, an ideal method of attaching the

development board, transceiver and power supply to the wearer needed to be determined. It

was assumed that each of these components would be combined into a singular enclosure,

which was to be positioned on the back of the wearer as this is the least likely place for

bodily movement to influence positioning during a performance.

51

This central enclosure could then be mounted onto an elastic harness such as the GoPro

harness depicted in Figure 10, which is easily adjustable and would allow most body types

to easily wear the system.

Figure 10 - GoPro Harness

4.3.2. OpenSCAD

OpenSCAD is an open-source computer aided drawing (CAD) program oriented towards

those who are proficient in the writing of software syntax. The primary selling point of the

software is that it focuses on creating accurate computerised 3D drawings rather than

attractive graphical representations (Kintel 2016). This aspect of the software makes it useful

for the design of machine parts, or in the case of this project, models for 3D printed hardware

enclosures.

The program acts as a 3D compiler rather than an interactive modeller, allowing the user

to create complicated 3D models by forming union, differences, translations and/or rotations

between basic prism shapes such as rectangular boxes and cylinders. The simplicity of the

program means that models can be developed rapidly with knowledge of only a few

commands, thus the program was selected for use in the development of enclosures for the

sensing unit and the main system circuit.

52

4.3.3. Wrist Brace

The wrist brace for the sensing unit needed to be designed ergonomically so that the wearer’s

wrist movements are not impeded by the enclosure. For the fastening mechanism, a simple

Velcro strap allows usage by a range of wrist diameters while still being strong enough to

hold the enclosure against the limb. For the main section of the wrist brace, a 3D CAD

model needed to be created, which may then be utilised with a 3D printer to create a physical

model of the enclosure. An overall enclosure size of approximately 40mm x 30mm was

deemed appropriate for most wrist sizes while keeping the design compact.

A 3D OpenSCAD model was developed for the wrist brace with the following features:

 Rounded wrist contact surface for shape tapering.

 Two 2.5mm slots with rounded corners for strap insertion.

 A 10mm x 2mm slot for the ribbon cable.

 An open upper side for sensor access with a cover for when the system is in use.

 Pillar structures to fit into the mounting holes of the sensor board.

OpenSCAD program code for the wrist brace can be viewed in Appendix G

Figure 11 - Sensor wrist brace

53

4.3.4. Main System Housing

The next enclosure design task was to design a housing for the main section of hardware,

which includes the development board, transmitter and power supply as well as any wiring

and routing using Vero board if necessary. The power supply used to power the entire main

section is a 9V battery, chosen for simplicity’s sake; however, a rechargeable battery system

is something to consider for further system refinement in the future. Firstly, each of the

aforementioned needed to be accurately measured, which was done using Vernier callipers.

A simple arrangement of the components situated side by side was applied and a mock-up

of a simple housing was created in OpenSCAD, visible within Figure 12 and Figure 13.

Figure 12 – Main Enclosure Top View

54

Figure 13 - Main enclosure side view

Unfortunately time was short when designing this enclosure and although it is suitable for

this research project, more optimal approaches would exist. Regardless of this fact, special

care was taken in the design of the enclosure with the intention of fabrication later in the

project period once prototyping had been completed. Special care was taken to ensure that

each component had a reasonable amount of space by concatenating an extra few millimetres

onto size measurements for each of the components. Mounting pylons were also added to

the design for securing the components that have mounting holes, which was foreseen to

negate the requirement for other adhesion methods and allow easy removal of components.

The design has final length, width and height parameters of 116mm, 104mm and 35mm

respectively, making it a reasonably sized enclosure for a performance application. Potential

suggestions for further optimisation of the enclosure include removal of the

compartmentalisation walls to allow further compaction of components, a general shape that

is better tapered to the components being used and the possibility of a soft enclosure that

would completely minimise the volumetric requirements of the chosen hardware. This

concludes the design of enclosures, which ideally were to be prototyped through additive

manufacturing.

55

4.3.5. Hardware Assembly

To ensure correct operation of hardware, planning was undertaken in order to understand

the physical connections that are necessary between each of the components. These

components can be divided into two subgroups – those that are connected to the Arduino

Uno development board, and those that are connected to the PC. From this point onwards,

these groups will be referred to as the wearable group and the terminal group. The wearable

group consists of the sensor, Arduino, RF transmitter and battery; while the terminal group

consists of the LeoStick and the RF receiver.

The first group to be assembled was the wearable group. The connection of the 6 DOF sensor

to the Arduino required a 5-wire ribbon cable so that it would be ready for wear once

enclosures had been produced. Correct wiring connections were determined by inspecting

the MPU6050 datasheet supplied online by InvenSense. These connections are shown in

Table 7 below. The MPU6050 Vin pin requires an input voltage between 2.375 V and 3.46

V, hence it was connected to the 3.3 V output of the Arduino Uno, which is produced by an

on-board voltage regulator. As for the SDA and SCL lines that form the I2C/TWI interface,

connections were made between these pins and analog pins A4 and A5 on the Arduino,

which correspond to the Arduino’s own I2C lines. Note that third party library functions

are required when programming the Arduino in order to utilise this communications

protocol.

Table 7 - Sensor to Arduino connections

6 DOF Sensor Pin Arduino Uno Pin

Vin Regulated 3.3V supply

GND GND

SDA Analog pin A4

SCL Analog pin A5

INT Digital pin 2

56

A sensor without a suitable enclosure for performing arm movements was an unattractive

prospect and so a prototype of the wrist brace was fabricated by Dr. Maxwell using his

personal 3D printer, which although imperfect, would provide a suitable mounting medium

to provide true sensor positioning before the enclosure designs had be further refined. This

enclosure is depicted in Figure 14 and is of a prototypical nature with no lid, created purely

for testing purposes.

Figure 14 – Wrist brace prototype

With the required sensor connections to the Arduino finalised, the next step was to determine

connections for the transceiver. The HM-TR wireless data link only required connection of

four pins to the development board: Vcc, GND, DTX, and DRX. The transceiver requires a

Vcc supply of approximately 5 V and an electrical grounding connection, both of which were

easily connected to the relevant pins on the Arduino board. DRX and DTX are the pins

responsible for UART based serial communications and were subsequently connected to the

Arduino hardware UART on digital pins 0 and 1. The transparent nature of the transceiver

57

allows for easy communications setup as the chip performs its own self-controlled protocol

translation, allowing for communication with the transceiver using Arduino serial functions.

As has been previously mentioned, the Arduino Uno is able to supply 3.3 V to the sensor

and 5 V to the transceiver without the requirement of an external voltage regulator. A 9 V

battery can be connected to the Arduino; however, this was not the most ideal choice of

power supply for the system. For testing purposes the 9 V battery sufficed, but a replacement

power supply for future project work is discussed in the next chapter. A battery case with a

2.1 mm jack was chosen to allow easy connection and disconnection of the battery during

prototyping.

It was predicted that once the main housing had been created, this battery case would be

eliminated and connections would be made directly to the Vin and GND along with a switch

to allow disconnection of the battery power without having to remove the battery itself.

This concluded the necessary planning for assembling the wearable group and a simple wiring

diagram was created to aid in physical assembly, which lies on the following page (See Figure

15). ‘Fritzing’ software was utilised to create the diagram as it contains 2D models of the

Arduino Uno in addition to various other components commonly used with such

development boards. Note that the sensor and transceiver components used within the

diagram are not the correct models, but still possess the same pins as the components used,

hence they were still adequate for visualisation purposes.

58

Figure 15 - Wearable group wiring diagram (Produced with fritzing)

59

Following the completion of the wiring diagram, physical assembly of the components as

discussed was carried out. The ribbon cable used for the sensor required the addition of

small screw-clamp headers to the Arduino pin headers to create a solid connection. Solderless

breadboard wires were used to connect the transceiver to the Arduino as much of the Uno

programming would not require the transceiver to be connected. At this point all of the

components had been physically interfaced and were ready for software development. The

physical assembly of the wearable group electronics is presented below in Figure 16 .

Figure 16 - Completed wearable group assembly

60

Following the completion of the wearable group assembly, development of the terminal group

commenced. This was a simple process and only required another transceiver be connected

to the Freetronics LeoStick. In this case the transceiver was connected to the LeoStick in

much the same way as was the case in the wearable group, however this time a small

breadboard was used to mount both components and attach the four necessary breadboard

wires (See Figure 17). Creation of an enclosure for the terminal group was considered, but

was avoided due to time constraints and was considered to be unnecessary as there would

be little threat of physical damage when plugged into a laptop USB port.

Figure 17 - Completed terminal group assembly

61

An important design consideration to mention is the fact that the LeoStick only possesses

one hardware UART, meaning that serial communications between the board and the

transceiver would not be possible at the same time as communications between the board

and the computer USB port. This problem could have been solved by either scheduling

UART usage so that the transceiver and the USB port share usage of the hardware UART

or by utilising SoftwareSerial. SoftwareSerial is an Arduino library that contains functions

allowing the use of digital pins (other than pins 0 and 1) as a virtual UART, meaning that

the hardware UART would be fully devoted to presenting received data to the PC. Further

details on the usage of SoftwareSerial for this purpose are detailed later in this chapter.

The hardware assembly section was concluded resulting both the wearable group and the

terminal group having been assembled and in a suitably ready state for application of a GR

program and to cover transmission of generated MIDI commands over the transceiver link.

62

4.4. Software requirements and objectives

Prior to carrying out any writing of program code, software design objectives and

requirements needed to be developed to ensure system functionality corresponding with the

project objectives mentioned in Chapter 1. The software objectives and requirements were

needed to divide the intended program into sections so that a function or program element

could be devoted to each major aspect of the overall system process. The flow chart presented

below shows the significant steps involved in transforming the input, an arm movement,

into a MIDI output that is ready to be utilised by external hardware or software.

Figure 18 - GR system process flow

63

4.4.1. Operation Modes

For the GR system to be capable of remembering a gesture and recognising that gesture

when it is enacted, a minimum of two operation modes are required. A training mode, where

the user may choose a gesture to be recognised, which is then saved in system memory and

a running mode that carries out comparison of current movement data with the trained

gesture template/s and produces an output. In order to implement an algorithm based on

template matching, the training mode must be capable of storing an accurate rendition of a

desired gesture, which has a low probability of unintentional recognition and a high rate of

intentional recognition. Therefore, the training process should involve a reasonable number

of repetitions of the gesture to be trained so that a precise template can be constructed.

4.4.2. Data Acquisition

The MPU6050 provides highly useful positional data in three dimensional space, which can

be sampled at a high rate through its FIFO buffer using the Arduino Uno (Up to about 400

Hz). Sampling rate is an important aspect of data acquisition as sample rates that are too

low tend to produce unsavoury results. This sampling rate must be high enough that

reasonably fast arm movements are tracked in their entirety.

In addition, the acquired data must be in a suitable format for mathematical manipulation,

as any computations that are performed on error-ridden data only exaggerate the issue. The

trade-off that needed to be made here was between accuracy of time based movement data

and the amount of data that can be stored for computation. The compact nature of the

Arduino Uno means that there is a very limited amount of memory with which to store

movement data that requires further computation. With only 2 kB of SRAM for variable

storage, completely filling the available memory is no difficult task when using data forms

that take up many bytes per variable. Ideally 8 bit integers are used over longer data formats

such as 16 bit integers or 32 bit long integers whenever possible.

64

4.4.3. Pre-processing

Fortunately the use of the MPU6050 as the sensor for this project negates much of the need

for pre-processing of data. Pre-processing acquired data would usually involve the use of

techniques such as low pass filtering, normalization and drift correction; however,

implementation of these techniques in code was not required as the MPU6050 performs much

of this processing before the acquired data is read by the Arduino. Hence, it was decided

that rather than performing such pre-processing, this section would only consist of forming

a sliding window of data to allow real time movement tracking, which will be discussed

further later.

4.4.4. Feature Extraction

Feature extraction aims to perform various statistical computations on incoming data in an

attempt to isolate data elements that can be used to distinguish different types of movements

from positional data. In order to carry out this process, a running average filter needed to

be applied to the data (further details within the ‘Arduino Program Creation’ section) as a

simple method of differentiating the data produced by different movements, which is in turn

used in the creation of a gesture template. The feature extraction aspect of the program

needed to be comprehensive enough to be able to recognise similar movements with a high

degree of accuracy, while using minimal amounts of processing power and memory.

4.4.5. Gesture Capture

The gesture capture section is responsible for comparing incoming movement data with a

stored template and determining whether a match exists between the two. The comparison

process needed to be performed at a high speed to ensure low latency between wearer

movements and their observation of the output. The most suitable method of comparison

for the system was deemed to be a simple threshold comparison of running average trends,

which involves comparing the current running average to a trend template by determining

65

whether the current position is within a certain distance of the trend template. This method

would require a comparison for each positional and rotational vector, and if the comparison

is returned as true for most or all of the vectors, a gesture is present and would warrant the

transmission of a MIDI command.

4.4.6. MIDI Command Transmission

It was predicted that the creation of GR program code would take an extensive period of

time, and so the requirements of the system to produce a MIDI response to a gesture needed

to be kept relatively basic. Once a gesture had been captured and confirmed, the system

would then need to determine which MIDI command to send to the PC. Ideally many

commands would be possible, with a range of different movements triggering the output of

each; however, for conceptual proofing purposes, all that would be required of this software

section is the definition of an arbitrary command, followed by its transmission to the PC.

Additional considerations included the frequency of transmission.

Based on the assumption that the vast majority of arm gestures are not usually performed

in less than one second, the Arduino would not be required to send more frequently than at

this speed. To ensure low latency between system input and output, the Arduino would need

to check more frequently than once per second to determine whether a gesture has been

recognised, and if so, send the MIDI data to the PC.

4.4.7. MIDI Command Reception

The location of the terminal group at the PC means that the receiver simply needs to check

for transceiver data repeatedly at a rate that is fast enough to keep system latency low. The

receiver then needed to be able to setup and perform serial communications compliant with

the MIDI protocol to allow the data to be utilised by external applications.

66

4.5. Arduino Program Creation

Once the software objectives and requirements had been defined, work could be commenced

on writing Arduino software that carries out each of the necessary functions. Arduino

software was separated into three program listings – The main GR program to be uploaded

to the Arduino Uno, the MIDI transmission program to be appended to the main program

once complete, and finally the MIDI reception program to be uploaded to the LeoStick.

This section covers the software functions used to achieve the design requirements. The

‘skeleton’ of the program stems from a piece of Arduino code developed by Jeff Rowberg

that demonstrates the use of I2C with the MPU6050 sensor. This code example,

‘MPU6050_DMP6.ino’, was freely accessible to the public at the time of 11 October 2016

and is likely still available at the following address:

< https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050 >

The full main program listing can be found in Appendix H.

4.5.1. Library Inclusions and Variables

The main program required the inclusion of a number of software libraries to provide

additional functionality on top of what the Arduino was already capable of achieving.

Further details on the functions contained within libraries will be described when detailing

program functions of the GR system. A list of utilised libraries is provided on the following

page.

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

67

Table 8 - Applicable Arduino libraries

Arduino Library Description

I2Cdev.h
I2C communications library. Used to create interfacing between

the Arduino and the MPU6050 sensor.

MPU6050_6Axis

_MotionApps20.h

MPU6050 library. Used to setup the sensor for movement

tracking and to read positional data from FIFO buffer

Wire.h
TWI library. Only required in the event that the I2Cdev.h

library needs definitions from this header file.

elapsedMillis.h
Timing library. Useful for tracking the amount of time a section

of program takes to execute.

EEPROM.h

Electronically erasable programmable read only memory library.

Used to allow more permanent storage of variables, which will

not be lost after system shutdown.

4.5.2. Initialisation

The first initialisation step of the main program is the definition of test integers

ArrayIndex, ArrayIndexDelay and TrainingCount, as well as modal definitions used

for testing – TestMode, DispMode and WindowArraySize. WindowArraySize defines

the size of the sliding window of data to be analysed by the recognition algorithm and was

selected to be 30 samples.

General variable definition follows, which defines necessary variables and containers for use

with the I2C and MPU6050 libraries. These include the Boolean variable dmpReady,

integers for I2C communications such as mpuIntStatus, devStatus, packetSize and

fifoCount as well as orientation and motion variables for use the with DMP including a

quaternion container, vector integers for acceleration values and floating point numbers for

euler angles and yaw/pitch/roll values.

68

4.5.3. Sliding W indow Tracking

Sliding window implementation necessitated the definition of many variables specific to the

sliding window. Window arrays containing 30 indices needed to be created for yaw, pitch

and roll as well as x, y and z axis accelerations. With the use of a running average in mind

for later in the program, 32 bit integers needed to be created to hold the sums of window

values for each of the degrees of freedom. 32 bits were required as each of the numbers can

potentially be in the thousands in decimal format, so a large binary representation was

necessary. Following this, 16 bit integer running average variables were created to hold

calculate averages for the window; and finally 16 bit integer arrays needed to be defined for

the storage of multiple window averages during training mode for later comparison by

recognition code.

The setup procedure for the program loop involved utilisation of I2C and MPU6050 library

functions to initialise and ready the MPU6050 for data acquisition. This was achieved using

MPU6050 example code, which begins serial communications at a baud rate of 38400 bps

and initialises the MPU with mpu.initialise() and mpu.testConnection(). The

DMP is then loaded and configured using mpu.dmpInitialise(), and finally offsets for

each of the gyro axes and the z axis accelerometer are set. Default values for offsets were

used, which are provided within the MPU6050 datasheet. Provided there are no issues

initialising the MPU, the DMP is enabled and flagged as such, followed by determination of

expected incoming data packet size using mpu.dmpGetFIFOPacketSize(). Window

arrays are then initialised so that all 30 values of each array are equal to zero, concluding

the setup process.

The main program loop, loop() as well as the aforementioned setup procedure include a

number of prompts that are sent along the serial connection to the PC when connected using

a USB cable. These prompts are viewed using the built-in serial monitor in the Arduino

IDE. At the beginning of the main program loop, elapsedMillis is called to begin a

millisecond timer that is used to track the time taken for the program to iterate through a

single window of data, i.e. 30 samples. I2C library functions are called to check interrupt

status, and to read the FIFO buffer from the MPU in order to retrieve positional data.

69

Once FIFO data is retrieved, each of the six positional vector values are extracted and stored

into window arrays. The following code section carries out this process, in addition to

calculating the current running average of data.

// Populate yaw, pitch and roll window arrays

 Window_Yaw[ArrayIndex] = ypr[0] * 180/M_PI;

 Window_Pitch[ArrayIndex] = ypr[1] * 180/M_PI;

 Window_Roll[ArrayIndex] = ypr[2] * 180/M_PI;

// Populate window array with current accel vals

 Window_Accel_X[ArrayIndex] = aaReal.x;

 Window_Accel_Y[ArrayIndex] = aaReal.y;

 Window_Accel_Z[ArrayIndex] = aaReal.z;

 // Add fetched positional values to respective sum

 Sum_Yaw = Sum_Yaw + Window_Yaw[ArrayIndex];

 Sum_Pitch = Sum_Pitch + Window_Pitch[ArrayIndex];

 Sum_Roll = Sum_Roll + Window_Roll[ArrayIndex];

 Sum_Accel_X = Sum_Accel_X + Window_Accel_X[ArrayIndex];

 Sum_Accel_Y = Sum_Accel_Y + Window_Accel_Y[ArrayIndex];

 Sum_Accel_Z = Sum_Accel_Z + Window_Accel_Z[ArrayIndex];

// Calculation of averages

 Window_Average_Yaw = Sum_Yaw/WindowArraySize;

 Window_Average_Pitch = Sum_Pitch/WindowArraySize;

 Window_Average_Roll = Sum_Roll/WindowArraySize;

 Window_Average_X = Sum_Accel_X/WindowArraySize;

 Window_Average_Y = Sum_Accel_Y/WindowArraySize;

 Window_Average_Z = Sum_Accel_Z/WindowArraySize;

Once the running average has been calculated, each of the values are displayed depending

on the chosen display mode (DispMode), which can be set low for direct yaw, pitch, roll

and x, y and z acceleration values, or high for running averages of each. The loop iteration

is then concluded and will either stop the program, displaying elapsed run time, or will

continue to run depending on the chosen TestMode value at the beginning of the program.

70

4.5.4. Training Mode

There are three possible running modes that can be used with the program by altering the

definition of TestMode in the test variables section of program code. TestMode 0 acts as

a limited running mode, which will read positional values until the window array has been

filled and will then halt, waiting for user input to begin this process again. This mode was

useful in determining ideal window size and elapsed time for filling the window array.

TestMode 1 is a full running mode, where running averages are calculated continuously

and are compared to a saved gesture template stored in EEPROM. The final mode,

TestMode 2 engages training mode, where the user is able to store a desired gesture by

enacting it five times before a template is generated based on the five movements.

4.5.5. MIDI Transmission and Reception

Two programs were developed for dealing with the MIDI output required of the system, one

for transmission and one for reception. The goals for the design of the transmission program

were to select a typical MIDI command and send it across the wireless link so that it could

be accurately reproduced at the receiving end. No library functions were required for the

HM-TR transceiver due to its own data conversion and modulation capabilities. The

transmission code begins by opening serial connections at a baud rate of 9600 bits per second:

void setup()

{

 Serial.begin(9600); // Monitoring via USB

}

The continuous loop for the transmitter program involve a simple process of tracking elapsed

time so that the MIDI command as well as a new line are sent every second using

Serial.print(). The MIDI command to be sent was a standard ‘Note On’ command of

decimal value 144, or binary value 10010000. The full program listing for command

transmission can be viewed in Appendix H.

71

An accompanying receiver program was also created to receive the incoming command. The

LeoStick required the use of the SoftwareSerial.h library, which allowed the creation

of a virtual UART on digital pins 10 and 11 for Rx and Tx respectively. The program begins

in a similar way to the transmission program firstly by opening serial connections between

the computer USB port and the LeoStick using Serial.begin(9600), setting the data

rate to 9600 bits per second. The controller then waits for the serial connection, followed by

opening virtual serial communications with the transceiver using:

 mySerial.begin(9600).

The process of data retrieval involves a looped process that first checks for serial data

availability, and if available, reads the mySerial data into an integer. A check is then

performed to determine whether the retrieved data is a digit with isDigit and if so,

appends the digit onto an output string. The output string is presented over the serial

monitor once a new line is detected, thereby showing the binary form of the MIDI command

using the following function:

Serial.println(inputstring.toInt(), BIN);

Each of the aspects of the developed Arduino code have now been covered, with further

discussion of functionality in the results and testing chapter. Unfortunately, due to the

nebulous nature of the project earlier in the research period, the functionality of the software

section is somewhat lacking, which will also be discussed in the next chapter.

72

Chapter 5

Testing and Results

This chapters aims to summarise the end-game functionality of the system design outlined

in the previous chapter. Following this, implementation issues will be detailed and analysis

of the system’s fulfilment of the project objectives will be presented. Much of this section

involves qualitative analysis of the system, with the aim being to determine the current

stage of development including the aspects that still require implementation and the

feasibility of the system as a whole.

5.1. System Function Demonstration

To gain an appreciation of the system development progress thus far, the resulting system

interface and output data is presented in the following subsections.

5.1.1. Gesture Recognition

The first system output to be demonstrated was the use of the limited tracking mode

(TestMode 0) along with the running average display mode. Software functionality still

needed to be added to allow the switching of modes ‘on the fly’, which would not only require

addition of a mode switching method in software, but also a method of interfacing with the

73

GR system without personal computer access. In its current state, the software only allows

the selection of one mode at any one time, with a requirement for program re-upload if the

user wishes to change modes. The limited tracking mode that is set to display running

average data required 51% of the 32 kB program storage space and utilised 64% of dynamic

memory for global variables, leaving the rest for use with local variables. The initial output

when opening the serial monitor is shown in below.

Figure 19 - Limited tracking mode initial output

The output aims to provide a reasonable serial user interface, primarily for development

purposes; however, anything much more extensive would require the use of other software

such as ‘Processing’.

74

The serial monitor window below shows a typical running average output sequence in limited

tracking mode while the sensor is at rest. The limited tracking output of 30 samples takes

approximately 1.5 seconds each time to complete tracking and it is worth noting that the

data is seemingly fairly consistent over the window period. When conducting testing with

the system in full tracking mode; however, the presence of significant yaw drift was evident

and occurred at a rate of approximately one degree per second. This drift could be remedied

either by manually decreasing the yaw value by one degree each second, however, this

method would not be as reliable as determining the root of the issue.

Figure 20 - Limited tracking mode resting state

75

Issues are introduced when attempting to track a movement using the running average filter.

The monitor output in Figure 21 shows an output data stream for a twisting punch

movement, with the wrist placed against the hip palm side up and then extended to a

forward punch position by rotating the fist. The issue found here was that the running

average data took far too long to change significantly, and so the latency between performing

the gesture and seeing the resultant change in output was very high.

Figure 21 - Limited tracking mode twisting punch data

76

As for the training mode, the interface is much the same; however, rather than simply

prompting the user to begin movement tracking, an explanation of the training procedure is

provided with a prompt to begin the countdown before performing the gesture. The

countdown counts down from 3, taking four seconds to reach ‘Go!’, which triggers movement

tracking for one window period (approximately 1.5 s) and then saves the resultant trend.

Another prompt is then provided, followed by a countdown for the next practice run.

Figure 22 - Training mode initial output

The intention was then to use these window trends to produce a final gesture trend, which

could then be used for real time matching using correlation. Time constraints did not allow

for this implementation, and as such, no actual gesture recognition is able to take place

within the system; however, implementation of these features would not require a significant

amount of time on top of the program code that had already been produced to complete this

dissertation.

77

A major issue with the training mode program is the lack of memory present for extensive

computations. Upon compilation of the training mode it was evident that the storage

memory requirements for all of the necessary variables was becoming an issue. The compiler

noted that 75% of dynamic needed to be allocated for global variables, leaving only a small

amount to local variables. This huge amount of global variable allocation suggests that

SRAM usage could have been substantially reduced if more care was taken in defining

variables locally rather than globally, so that largely unused variables are replaced when

necessary.

Another cause of this memory issue was the fact that string printed on the serial data line

are stored in SRAM, unless specified otherwise by enclosing the quoted string within

brackets and placing a leading ‘F’. This function causes the string to be stored within flash

memory rather than SRAM and helped to reduce the amount of SRAM wastage. SRAM

expansion is possible using various SRAM chips such as the 23K256, which can interface

with the Arduino via Serial Peripheral Interface (SPI) protocol.

5.1.2. Wireless Link Testing

Testing of the wireless data link was a simple process and worked as intended. The

transmission and reception programs needed to be uploaded to the Arduino Uno and the

Freetronics LeoStick respectively. The LeoStick would then remain connected to the PC and

the Uno would be disconnected and attached to the 9 V battery. Transmission began

automatically after the Arduino’s bootloader sequence and was confirmed by a periodic red

LED flash on the transmitter every second. The receiver flashed green at the same rate

showing that a connection had been made and that data would be visible on the IDE serial

monitor.

The correct transmission value of 144 was confirmed by observing the serial monitor while

the Arduino was connected to the PC. Serial data was sent at a baud rate of 9600 bits per

second, with the correct output appearing in the monitor each second (Figure 23). Reception

was also observed to be correct, with the monitor displaying a binary value of 10010000

each second (Figure 24).

78

Figure 23 - MIDI command transmission in decimal format

Figure 24 - MIDI command reception shown through Arduino serial monitor

79

5.2. Design Issues and System Feasibility

The last stage of the results and testing phase of the project was to assess the current state

of the conceived design in relation to project and design objectives and to determine the

issues that impeded project efficacy.

5.2.1. Current Design Feasibility

In its current state, the system is somewhat lacking due to various design issues. The

intended use of the GR system within a performance environment would require would

require alterations to the structure of the system to improve its capability of real time

external system control. The system design is able to acquire suitable movement data such

that there were no issues regarding the sensing system, which has potential that exceeds the

abilities of the associated software created in the research project.

The system’s ability to process movement data and extract mathematical meaning from that

data is minimal when compared to GR systems that utilise much more powerful recognition

algorithms and hardware, and could be improved significantly by applying additional

computations to determine movement vectors and correlation for vector matching. In

addition, reconsideration of the development board used for the project would allow an

increase in system complexity.

5.2.2. Design Issue Evaluation

The GR system’s abilities are impeded by design issues that were not evident until design

had already taken place, and thus it is necessary to detail those issues so that they may be

taken into account when conducting future work on the system.

The first issue to mention is that of the battery used to supply power to the wearable system.

Notably power drain was observed late in the project when diagnosing a malfunctioning

80

transceiver that was attached to the Arduino Uno. Monitoring of the battery voltage during

system operation made it apparent that the wearable system was draining the battery at a

rate of approximately 0.01 V every few seconds. Problems were observed with functionality

once the battery voltage level dropped to roughly 6.5 V. Hence, a 9 V battery connected to

the Arduino would not hold a usable voltage for long enough to endure the duration of a

performance that lasts more than a few minutes. While being convenient for use with the

Arduino board utilised for this project due to their fast drain were definitely a mitigating

factor in the usability of the system.

According to Cybergibbons (2013), the suitability of a 9 V for powering Arduino boards is

a common misconception and they are often not recommended. The main reason for this

being the inefficiency of the on-board linear voltage regulator, which has a reputation for

high power consumption. The use of an external switch-mode voltage regulator circuit to

supply the necessary 5 V operating voltage of the Arduino may have allowed extended

battery life. The other obvious choice for improving battery life is to opt for a higher capacity

battery.

Another issue affecting the ability of the system to fulfil design requirements is that of its

minimal algorithmic complexity. Analysis of running average trends was theoretically

feasible for simple feature extraction during the design process; however, modern commercial

gesture recognition systems such as those investigated within the literature review chapter

have multiple significant layers of mathematical complexity, using probability based

methods such as hidden markov models for gesture prediction, data correlation for

comparison of movement data as well as peak detection, calculation of standard deviation

and gestural velocity to further parametrise the movements.

81

Chapter 6

Conclusions and Further Work

6.1. Conclusions

The aim of this research project was to investigate the design of a novel GR system using

off-the-shelf components, which would create a medium for the augmentation of

entertainment oriented performances such as live music shows and theatre productions with

an emphasis placed on system reliability, functionality and easy setup for a low price point.

The project work involved resulted in the creation of a highly functional hardware system

with accompanying enclosure designs and simple gesture recognition software.

Early stages of the project involved research into the current industry state of gesture

recognition in terms of both hardware and software elements. Methods of bodily movement

tracking, gesture recognition algorithms, MIDI interfacing, data transmission and additive

manufacturing were investigated in depth to gain an appreciation of typical system elements.

Review of commercial gesture recognition systems, as well as those in research and

development was conducted to assist in defining the scope of the project and to develop

realistic project goals.

82

Research methodology was developed for the project was developed by considering

qualitative and quantitative research techniques and a project task plan was developed to

ensure that all important aspects of engineering design were covered. A timeline was then

created to assist in the time keeping aspects of the project and to provide guidelines for the

importance of each project section. Assessment of consequential effects involved taking

potential safety, ethics and sustainability issues into account to minimise any adverse

circumstances that may have arisen over the course of the project, or following its

completion.

System design involved selection of appropriate hardware components, design of hardware

enclosures and wearable mounting gear, and finally the development of suitable software for

performing gesture recognition and creating a wirelessly transmittable instruction based on

the MIDI protocol. The resulting hardware system consisted of an acceleration and rotational

velocity sensor, Arduino compatible development boards and radio frequency transceivers

that complied with hardware requirements.

Enclosure design involved using OpenSCAD software to design enclosures tailored to the

chosen hardware. A prototype of the sensor wrist brace was created for development;

however, the main enclosure design remained simply that due to time constraints and

nuances involved in the 3D printing process.

An attempt was made at creating running average based gesture recognition software that

could be self-contained within the Arduino Uno board, but proved to require further

complexity to be able to perform the functions that were outlined in the software

requirements. The last design step involved producing software that would allow

transmission of a MIDI instruction from the wearable system to the PC situated receiver.

The functionality of the system was reviewed after testing and suggestions were made

regarding remedies to design issues that arose late in the piece. The current state of the

design was also evaluated. In summary, a simple system was created that met, or at least

partially met each of the project objectives outlined at the beginning of the project.

83

6.2. The Learning Experience

The most important end result of this project’s completion has been a vast attainment of

knowledge that, for the most part, had not been presented within courses completed as part

of the Bachelor of Engineering program. This knowledge gained throughout the project

included, but was not limited to:

 Arduino based hardware and software development.

 Inertial measurement based data acquisition systems.

 Practical usage of radio frequency communications hardware.

 3D CAD design for parts produced through additive manufacturing.

 Gesture recognition techniques and algorithms

In choosing to carry out my own research project I brought it upon myself to create a

challenge in the sense of learning to work with multiple types of technology that I had not

previously worked with in the slightest. In doing so, I have gained extremely advantageous

knowledge of the aforementioned subject areas, which are of great interest to me and are

becoming increasingly relevant.

The vast majority of projects offered by the faculty did not feel suitable for my interests as

I wished to incorporate research interests that I am particularly passionate about into my

project work, such as the use of electronics to increase the fluidity of human-machine

interaction, in addition to incorporating my hobby-based interest in music production.

This project has been an interesting journey and although much work was put into creating

the GR system, the outcome is lacklustre to some extent. Due to this fact, I will endeavour

to continue my development of the GR system following the completion of the research

project, so that I may eventually produce a system capable of adding personalisation and an

interesting new medium with which to express my musical interests.

84

6.3. Future Work and Potential Uses

The completion of this research project has revealed that further design of new system

elements and re-design of certain existing elements would be fruitful in attaining an end

product that has expansive practical uses.

Future work on this current system would include:

 Re-structuring of program code to improve the system’s overall efficiency and to

create a more modular approach to the problem.

 The creation of computer software that would allow easy interfacing

 Consideration of a controller that is more capable in relation to processing power

and available memory without increasing physical footprint and without sacrificing

the low cost nature of the system.

 Selection of a more adequate power supply for the wearable system with a higher

capacity and stable voltage and current levels.

 Consideration of alternate recognition algorithms to provide a user with more options

for applications.

Potential uses for the system in a more refined state and potentially with other

modifications include:

 Applying the system to a performance as a GR based MIDI controller with various

movements triggering virtual instrument samples at various velocities, or even the

selection and control of audio filters.

 Using the system to control DMX stage lighting through performer movements,

reducing the need for manual lighting control.

 Using the system to control other technical aspects of a performance such as mixer

channel gain, in-ear monitor volume and/or instrument volume.

85

References

Anderton, C 1986, MIDI for Musicians, Amsco Publications, New York.

Azad, R, Azad, B, Khalifa, NB & Jamali, S 2014, 'Real-time Human-computer Interaction

Based on Face and Hand Gesture Recognition', International Journal in Foundations of

Computer Science & Technology (IJFCST), vol 4, no. 4, pp. 37-48.

Benbasat, A & Paradiso, J 2001, 'An Inertial Measurement Framework for Gesture

Recognition and Applications', Gesture and Sign Language in Human-machine Interaction,

pp. 9-20.

Benbasat, A & Paradiso, J 2001, 'Compact, Configurable Inertial Gesture Recognition',

Extended Abstracts on Human Factors in Computing Systems, pp. 183-184.

Berman, S & Stern, H 2012, 'Sensors for Gesture Recognition Systems', IEEE Transactions

on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol 42, no. 3, pp.

277-290.

Borrego, M, Douglas, E & Amelink, C 2009, 'Quantitative, Qualitative, and Mixed Research

Methods in Engineering Education', Journal of Engineering Education, vol 98, no. 1, pp. 53-

66.

Camurri, A, Mazzarino, B, Ricchetti, M, Timmers, R & Volpe, G 2003, 'Multimodal Analysis

of Expressive Gesture in Music and Dance Performances', International Gesture Workshop,

Springer Publishing.

86

Chinmaya, KT, Amal, S, Aswath, S & Ganesha, U 2014, 'Human Gesture Recognition for

Real-Time Control of Humanoid Robot', International Journal of Advances in Mechanical

& Automobile Engineering (IJAMAE), vol 1, no. 1, pp. 96-100.

Clay, A, Couture, N, Nigay, L, De La Riviere, J-B, Martin, J-C, Courgeon, M, Desainte-

Catherine, M, Orvain, E, Girondel, V & Domenger, G 2012, 'Interactions and Systems for

Augmenting a Live Dance Performance', International Symposium on Mixed and Augmented

Reality (ISMAR-AMH), pp. 29-38.

CyberGibbons 2013, Arduino misconceptions 6: a 9V battery is a good power source, viewed

October 2016, <cybergibbons.com/uncategorized/arduino-misconceptions-6-a-9v-battery-is-

a-good-power-source/>.

Fang, Y, Wang, K, Cheng, J & Lu, H 2007, 'A Real-Time Hand Gesture Recognition

Method', 2007 IEEE International Conference on Multimedia and Expo, pp. 995-998.

Gupta, N, Singh, R & Bhatia, S 2014, 'Hand Gesture Recognition using Ultrasonic Sensor

and ATmega128 Microcontroller', International Journal of Research in Engineering and

Technology (IJRET), vol 3, no. 6.

I2C Info 2016, I2C Info - I2C Bus, Interface and Protocol, viewed Sep 2016,

<http://i2c.info>.

Jessop, EN 2010, 'A Gestural Media Framework: Tools for Expressive Gesture Recognition

Method', Massachusetts Institute of Technology.

Kintel, M 2016, About OpenSCAD, viewed Sep 2016,

<http://www.openscad.org/about.html>.

Kumar, AEA 2010, 'Human Computer Interface Using EMG Signals: Hand Gesture Based

Manipulator Control', Amrita School of Engineering, Coimbatore.

cybergibbons.com/uncategorized/arduino-misconceptions-6-a-9v-battery-is-a-good-power-source/
cybergibbons.com/uncategorized/arduino-misconceptions-6-a-9v-battery-is-a-good-power-source/
http://i2c.info/
http://www.openscad.org/about.html

87

LaViola, J 1999, 'A Survey of Hand Posture and Gesture Recognition Techniques and

Technology', Department of Computer Science, Brown University, Rhode Island.

Leroi-Gourhan, A 1993, Gesture and Speech, MIT Press.

Liu, J, Pan, Z & Li, X 2010, 'An Accelerometer-based Gesture Recognition Algorithm and

its Application for 3D Interaction', Comput. Sci. Inf. Syst., vol 7, no. 1, pp. 177-188.

Lyons, KEA 2007, 'GART: The Gesture and Activity Recognition Toolkit', Springer

Publishing, USA.

Market Reserach Man, LLC. 2015, Quantitative vs. Qualitative Research: What's the

Difference?, viewed July 2016, <http://www.mymarketresearchmethods.com/quantitative-

vs-qualitative-research-whats-the-difference/>.

Myers, BA 1998, 'A Brief History of Human-machine Interaction Technology', Interactions,

vol 5, no. 2, pp. 44-54.

Nallaperumal, K 2013, Engineering Research Methodology A Computer Science and

Engineering and Information and Communication Technologies Perspective.

Parab, PEA 2014, 'Hand Gesture Recognition Using Microcontroller & Flex Sensor',

International Journal of Scientific Research and Education, vol 2, no. 3, pp. 518-522.

Patel, B, Shah, V & Kshirsagar, R 2011, 'Microcontroller Based Gesture Recognition System

for the Handicap People', Proceedings of Journal of Engineering Research and Studies,

Surat, India, 2011.

Predko, M 1998, Handbook of Microcontrollers, McGraw-Hill, New York, USA.

Simmonds, A 1997, Data Communications and Transmission Principles, MacMillan Press

Ltd, Great Britain.

http://www.mymarketresearchmethods.com/quantitative-vs-qualitative-research-whats-the-difference/
http://www.mymarketresearchmethods.com/quantitative-vs-qualitative-research-whats-the-difference/

88

Sjuve, E 2008, 'Gestures, Interfaces and Other Secrets of the Stage', in Transdisciplinary

Digital Art. Sound, Vision and the New Screen, Springer Publishing, USA.

Starner, T, Weaver, J & Pentland, A 1998, 'Real-time American Sign Language Recognition

Using Desk and Wearable Computer Based Video', IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol 20, no. 12, pp. 1371-1375.

Statista Inc. 2016, Number of smartphone users worldwide from 2014 to 2019 (in millions),

viewed 15 June 2016, <http://www.statista.com/statistics/330695/number-of-smartphone-

users-worldwide/>.

Suhas, S & Dileep, MK 2015, 'Gesture Controlled User Interface Using Inertial Measurement

Unit', International Journal of Engineering Research and Technology, vol 4, no. 5.

Wheeler, KR, Chang, MH & Knuth, KH 2006, 'Gesture-based Control and EMG

Decomposition', IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol 36, no. 4, pp. 503-514.

Wikipedia, TFE 2016, Coriolis force, viewed July 2016,

<https://en.wikipedia.org/wiki/Coriolis_force>.

Xu, R, Zhou, S & Wen, L 2012, 'MEMS Accelerometer Based Nonspecific-user Hand Gesture

Recognition', IEEE Sensors Journal, vol 12, no. 5, pp. 1166-1173.

http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://en.wikipedia.org/wiki/Coriolis_force

89

Appendix A

Project Specification

90

91

Appendix B

Project Timeline

92

93

94

Appendix C

Risk Assessment

95

Table 9 - Project Risk Assessment

Identified

Hazard
Significance of risk Likelihood of exposure Consequences Control measures

Risk of

electric shock

from power

supplies

High – 240V AC

mains electrocution

can cause extensive

bodily damage and

can be potentially

fatal.

Very low - the only power

supplies to be used was a

9V battery and a laptop

charger.

Potential for severe

bodily damage in the

event of shock from

mains supply.

Ensure caution is taken when

connecting the laptop charger

to 240V mains supply.

Risk of

damage to

electronic

equipment

Moderate – damage

to project equipment

would extend time

required for

completion

Moderate – A great deal

of handling of equipment

is required throughout the

project

Damage to equipment

required for project

completion, which would

need replacing.

Double check when

connecting power to a piece

of equipment and make sure

all instructions for use are

followed.

Risk of eye

strain

Moderate – Much of

the project requires

significant computer

usage

High – Looking at

computer screens for

extended periods of time

while word processing etc.

Eye fatigue or soreness

as well as the possibility

of headaches or blurred

vision

Take regular breaks when

working with screens to allow

eyes to readjust

96

Appendix D

Component Datasheets

97

D.1. ATM ega328 Datasheet (page 1)

98

D.2. M PU6050 Pin Descriptions

99

D.3. HopeRF HM -TR Datasheet (page 1)

100

D.4. Freetronics LeoStick Specifications

101

Appendix E

MIDI Summary Table

102

MIDI 1.0 Specification Message Summary (Sourced from The MIDI Association)

Status

D7----D0

Data Byte(s)

D7----D0

Description

Channel Voice Messages [nnnn = 0-15 (MIDI Channel Number 1-16)]

1000nnnn 0kkkkkkk

0vvvvvvv

Note Off event. This message is sent when a note is released (ended). (kkkkkkk)

is the key (note) number. (vvvvvvv) is the velocity.

1001nnnn 0kkkkkkk

0vvvvvvv

Note On event. This message is sent when a note is depressed (start). (kkkkkkk)

is the key (note) number. (vvvvvvv) is the velocity.

1010nnnn 0kkkkkkk

0vvvvvvv

Polyphonic Key Pressure (Aftertouch). This message is most often sent by

pressing down on the key after it "bottoms out". (kkkkkkk) is the key (note)

number. (vvvvvvv) is the pressure value.

1011nnnn 0ccccccc

0vvvvvvv

Control Change. This message is sent when a controller value changes.

Controllers include devices such as pedals and levers. Controller numbers 120-

127 are reserved as "Channel Mode Messages" (below). (ccccccc) is the

controller number (0-119). (vvvvvvv) is the controller value (0-127).

1100nnnn 0ppppppp Program Change. This message sent when the patch number changes. (ppppppp)

is the new program number.

1101nnnn 0vvvvvvv Channel Pressure (After-touch). This message is most often sent by pressing

down on the key after it "bottoms out". This message is different from polyphonic

after-touch. Use this message to send the single greatest pressure value (of all the

current depressed keys). (vvvvvvv) is the pressure value.

1110nnnn 0lllllll

0mmmmmmm

Pitch Bend Change. 0mmmmmmm This message is sent to indicate a change in

the pitch bender (wheel or lever, typically). The pitch bender is measured by a

fourteen bit value. Center (no pitch change) is 2000H. Sensitivity is a function of

the transmitter. (llllll) are the least significant 7 bits. (mmmmmm) are the most

significant 7 bits.

Channel Mode Messages (See also Control Change, above)

103

1011nnnn 0ccccccc

0vvvvvvv

Channel Mode Messages. This the same code as the Control Change (above), but

implements Mode control and special message by using reserved controller

numbers 120-127. The commands are:

 All Sound Off. When All Sound Off is received all oscillators will turn off, and

their volume envelopes are set to zero as soon as possible. c = 120, v = 0: All

Sound Off

Reset All Controllers. When Reset All Controllers is received, all controller

values are reset to their default values. (See specific Recommended Practices for

defaults).

c = 121, v = x: Value must only be zero unless otherwise allowed in a specific

Recommended Practice.

Local Control. When Local Control is Off, all devices on a given channel will

respond only to data received over MIDI. Played data, etc. will be ignored. Local

Control On restores the functions of the normal controllers.

c = 122, v = 0: Local Control Off

c = 122, v = 127: Local Control On

All Notes Off. When an All Notes Off is received, all oscillators will turn off. c

= 123, v = 0: All Notes Off (See text for description of actual mode commands.)

c = 124, v = 0: Omni Mode Off

c = 125, v = 0: Omni Mode On

c = 126, v = M: Mono Mode On (Poly Off) where M is the number of channels

(Omni Off) or 0 (Omni On)

c = 127, v = 0: Poly Mode On (Mono Off) (Note: These four messages also cause

All Notes Off)

System Common Messages

11110000 0iiiiiii

[0iiiiiii

0iiiiiii]

System Exclusive. This message type allows manufacturers to create their own

messages (such as bulk dumps, patch parameters, and other non-spec data) and

provides a mechanism for creating additional MIDI Specification messages. The

104

0ddddddd

0ddddddd

11110111

Manufacturer's ID code (assigned by MMA or AMEI) is either 1 byte (0iiiiiii) or

3 bytes (0iiiiiii 0iiiiiii 0iiiiiii). Two of the 1 Byte IDs are reserved for extensions

called Universal Exclusive Messages, which are not manufacturer-specific. If a

device recognises the ID code as its own (or as a supported Universal message)

it will listen to the rest of the message (0ddddddd). Otherwise, the message will

be ignored. (Note: Only Real-Time messages may be interleaved with a System

Exclusive.)

11110001 0nnndddd MIDI Time Code Quarter Frame. nnn = Message Type

dddd = Values

11110010 0lllllll

0mmmmmmm

Song Position Pointer. This is an internal 14 bit register that holds the number of

MIDI beats (1 beat= six MIDI clocks) since the start of the song. l is the LSB, m

the MSB.

11110011 0sssssss Song Select. The Song Select specifies which sequence or song is to be played.

11110100 Undefined. (Reserved)

11110101 Undefined. (Reserved)

11110110 Tune Request. Upon receiving a Tune Request, all analog synthesizers should

tune their oscillators.

11110111 End of Exclusive. Used to terminate a System Exclusive dump (see above).

System Real-Time Messages

11111000 Timing Clock. Sent 24 times per quarter note when synchronization is required

(see text).

11111001 Undefined. (Reserved)

11111010 Start. Start the current sequence playing. (This message will be followed with

Timing Clocks).

11111011 Continue. Continue at the point the sequence was Stopped.

105

11111100 Stop. Stop the current sequence.

11111101 Undefined. (Reserved)

11111110 Active Sensing. This message is intended to be sent repeatedly to tell the receiver

that a connection is alive. Use of this message is optional. When initially

received, the receiver will expect to receive another Active Sensing message each

300ms (max), and if it does not then it will assume that the connection has been

terminated. At termination, the receiver will turn off all voices and return to

normal (non- active sensing) operation.

11111111 Reset. Reset all receivers in the system to power-up status. This should be used

sparingly, preferably under manual control. In particular, it should not be sent on

power-up.

106

Appendix F

Engineers Australia

Code of Ethics – p. 1

107

108

Appendix G

OpenSCAD Program Code and

Models

109

G.1. Wrist Brace OpenSCAD listing

//--

// ~ Student Details ~

//

// Sathya Smith - Engineering Research Project 2016

// Supervisor: Dr. Andrew Maxwell

// Smith_armbraceV2.scad

//

//--

// ~ Description ~

//

// This CAD file contains the intended 3D design for

// the inertial measurement unit housing. The device

// to be housed is the MPU6050 6 DOF IMU.

//

//--

// ~ Specifications~

// Device length - 21mm

// Device width - 14mm

// Desired housing length - 40mm

// Desired housing width - 30mm

//--

// ~ Variables ~

MPUlength = 21.5; // Added 0.5mm to ensure fit

MPUwidth = 14.5; // Added 0.5mm to ensure fit

MPUheight = 5;

//--

110

//--

// ~ Specify desired module ~

//MPU650_Blank();

bracket();

cover();

//--

//--

// The Cover module creates a lid for the wristbound sensor

housing.

module cover(){

 union(){

 translate([0,5,9.25]) rotate([0,0,90])

cube([MPUwidth+5,MPUlength,1]);

 difference(){

 rotate([-90,0,0]) translate([-10.75,-10,10.75+4.25])

roundCornersCube(31,1,30,2);

 translate([-30,-0.5,8.5]) cube([40,31,1.5]);

 }

}

}

//--

111

module bracket(){

 difference(){

 translate([-MPUlength/2,15,2.5]) rotate([90,0,0])

roundCornersCube(40,5,30,2);

 translate([0,5,1]) MPU650_Blank();

 rotate([90,0,180]) translate([MPUlength/2,-49,-1])

cylinder(r = 100/2, h=60,$fn=100);

 rotate([90,0,180]) translate([MPUlength/2+3,-49,-1])

cylinder(r = 100/2, h=60,$fn=100);

 rotate([90,0,180]) translate([MPUlength/2+5,-49,-1])

cylinder(r = 100/2, h=60,$fn=100);

 rotate([90,0,180]) translate([MPUlength/2-3,-49,-1])

cylinder(r = 100/2, h=60,$fn=100);

 rotate([90,0,180]) translate([MPUlength/2-5,-49,-1])

cylinder(r = 100/2, h=60,$fn=100);

 rotate([90,0,180]) translate([-6.75,-5,1.5])

cube([2.5,11,27]);

 rotate([90,0,180]) translate([25.75,-5,1.5])

cube([2.5,11,27]);

 }

 // Draw cylinders for strap hole smoothing

 rotate([90,0,180]) translate([-7.75,4.2,1.5]) cylinder(r =

1.3, h=27,$fn=100);

 rotate([90,0,180]) translate([-7.75,0.8,1.5]) cylinder(r =

1.3, h=27,$fn=100);

 rotate([90,0,180]) translate([29.25,4.2,1.5]) cylinder(r =

1.3, h=27,$fn=100);

 rotate([90,0,180]) translate([29.25,0.8,1.5]) cylinder(r =

1.3, h=27,$fn=100);

}

//--

112

module MPU650_Blank(){

 difference(){

 union(){

 rotate([0,0,90]) cube([MPUwidth,MPUlength,5]);

 rotate([0,0,90]) translate([MPUwidth,0,0])

cube([5,MPUlength,5]);

 rotate([0,0,90]) translate([0,(MPUlength/2)-5,1])

cube([50,10,2]);

 }

 union(){

 rotate([0,0,90]) translate([1.5+0.8, 1.5+1.3, 0])

cylinder(r = 3/2, h = 3, $fn=30);

 rotate([0,0,90]) translate([1.5+0.8, MPUlength-

1.5-1.3,0]) cylinder(r = 3/2, h = 3, $fn=30);

 }

 }

}

//--

// DESIGN CODE CREATED BY SATHYA SMITH CONCLUDES HERE

// The function that follows was used to generate rounded

// corners.

//--

113

// The following section includes modules for the creation of a

cube with rounded corners, Copyright is held by Sergio Vilches

2011

/*

http://codeviewer.org/view/code:1b36

Copyright (C) 2011 Sergio Vilches

This program is free software: you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details. You should have received

a copy of the GNU General Public License along with this program.

If not, see <http://www.gnu.org/licenses/>.

Contact: s.vilches.e@gmail.com

 Round Corners Cube (Extruded)

 roundCornersCube(x,y,z,r) Where:

 - x = Xdir width

 - y = Ydir width

 - z = Height of the cube

 - r = Rounding radious

 Example: roundCornerCube(10,10,2,1);

 *Some times it's needed to use F6 to see good results!

 --

-

*/

// Test it!

// roundCornersCube(10,5,2,1);

mailto:s.vilches.e@gmail.com

114

module createMeniscus(h,radius)

// This module creates the shape that needs to be substracted from

a cube to make its corners rounded.

difference(){

//This shape is basically the difference between a quarter of

cylinder and a cube

 translate([radius/2+0.1,radius/2+0.1,0]){

 cube([radius+0.2,radius+0.1,h+0.2],center=true);

 // All that 0.x numbers are to avoid "ghost boundaries" when

substracting

 }

 cylinder(h=h+0.2,r=radius,$fn = 25,center=true);

}

module roundCornersCube(x,y,z,r)

// Now we just substract the shape we have created in the four

corners

difference(){

 cube([x,y,z], center=true);

translate([x/2-r,y/2-r]){ // We move to the first corner (x,y)

 rotate(0){

 createMeniscus(z,r); // And substract the meniscus

 }

 }

translate([-x/2+r,y/2-r]){

// To the second corner (-x,y)

 rotate(90){

 createMeniscus(z,r);

// But this time we have to rotate the meniscus 90 deg

 }

}

115

translate([-x/2+r,-y/2+r]){ // ...

 rotate(180){

 createMeniscus(z,r);

 }

 }

 translate([x/2-r,-y/2+r]){

 rotate(270){

 createMeniscus(z,r);

 }

 }

}

116

G.2. Wrist Brace M odular Views

G.2.1. MPU-6050 Model

G.2.2. Wrist Brace Main View

117

G.2.3. Wrist Brace Cover View

118

G.3. M ain System Housing Program Listing

//--

// ~ Student Details ~

//

// Sathya Smith - Engineering Research Project 2016

// Supervisor: Dr. Andrew Maxwell

// Smith_armbraceV2.scad

//--

// ~ Description ~

//

// This OpenSCAD file contains the intended 3D design for the

main hardware housing adhered to the back of the wearer with an

elastic harness

//

//--

// ~ Specifications ~

//

// Arduino:

 ArdLen = 72; // Actual length = 69, 3.2mm extra

 ArdWid = 60; // Actual width = 54, 6mm extra

 Ardhole = 1.5; // Arduino mounting hole radius

//

// Battery:

 BatLen = 55; // Actual length = 52.2, 2.8mm extra

 BatLenEx = 2.8;

 BatWid = 29; // Actual width = 25.9, 3.1mm extra

 BatWidEx = 3.1;

//

// Transceiver:

 TranLen = 46; // Actual length = 43.6, 2.4mm

119

extra

 TranLenEx = 2.4;

 TranWid = 29; // Actual width = 23.7, 5.3mm extra

 TranWidEx = 5.3;

 TranHole = 1.7/2;

 AntHole = 12;

 TranBoardThick = 3.3;

//

// Ports/holes:

 USBLen = 12; // Actual length = 11.8mm

 USBWid = 10.8; // Actual width = 10.6mm

 USBDep = 6.3;

 PowerLen = 9; // Actual len = 8.6mm

 PowerWid = 11; //Actual wid = 10.7mm

// Housing:

 HouseLen = 116;

 HouseWid = 104;

 HouseBaseThick = 5;

// Misc.:

 WallThick = 5; // Wall/divider thickness

 BoardThick = 4; // Approximate board thickness, taking

solder joints into account

 CompHeight = 31;

 HouseHeight = 35;

 PillarHeight = CompHeight/4;

//

120

// ~ Module Selection ~

//Transceiver();

//Arduino();

//Battery();

//ExtraSpace();

Housing();

Lid();

module Arduino(){

 // This module creates an appropriate model of the space that

will be taken up within the housing by the Arduino Uno board. This

is achieved by forming an appropriately sized rectangular block

and subtracting cylinders for mounting posts, as well as creating

a union between the main block and others in order to create port

holes in the housing.

 difference(){

 union(){

 // Main Arduino block

 cube([ArdWid,ArdLen,CompHeight]);

 // USB port block

 translate([3.17+31.6-3.2,ArdLen-1,BoardThick])

cube([15,CompHeight,15]);

 // 2.1mm power port block

 translate([3.17+3.6,ArdLen-1,BoardThick])

cube([11,CompHeight,13]);

 }

121

// Cylinders to create mounting pillars in housing

 translate([10.47+0.05,0.9+1.5+Ardhole,0]) cylinder(h =

PillarHeight, r = Ardhole, $fn = 50);

 translate([10.47+0.05+24.8+3,0.9+1.5+Ardhole,0])

cylinder(h = PillarHeight, r = Ardhole, $fn = 50);

 translate([3.97+1.5,ArdLen-15.3,0]) cylinder(h =

PillarHeight, r = Ardhole, $fn = 50);

 translate([ArdWid-(0.9+3.17+1.5),ArdLen-16.8,0])

cylinder(h = PillarHeight, r = Ardhole, $fn = 50);

 }

module Battery(){

 // The battery module creates a simple cube to represent the

appropriately measured size of the 9V battery.

 cube([BatWid,BatLen,CompHeight]);

}

module Transceiver(){

 // The Transceiver module creates a suitable model for the HM-

TR transceiver that is to be used to transmit serial data

wirelessly. Careful notice is taken of the size of the antenna

hole as it will need to be tightened following insertion of the

transceiver board.

 difference(){

union(){

 // Main transceiver block

 cube([TranLen,TranWid,CompHeight]);

122

// 915MHz antenna hole

 rotate([0,-90,0])

translate([TranBoardThick+6.7,TranWidEx/2+5.3,-1]) cylinder(h =

PillarHeight,r = AntHole/2, $fn = 50);

 }

// Transceiver mounting post cylinders

translate([11.3+TranHole+TranLenEx/2,TranWidEx/2+1.7+TranHole,0]

) cylinder(h = PillarHeight, r = TranHole, $fn = 50);

 translate([TranLen-TranLenEx/2-1.6-TranHole,TranWid-

TranWidEx/2-3.7-TranHole,0]) cylinder(h = PillarHeight, r =

TranHole, $fn = 50);

 }

}

module ExtraSpace(){

 // The ExtraSpace module forms a cavity in the south-eastern

section of the housing, which is to be used for wire routing

purposes.

 union(){

 translate([WallThick,0,0]) cube([HouseWid-3*WallThick-

TranLen,TranWid,CompHeight]);

 translate([ArdWid-TranLen+WallThick,HouseLen-

2*WallThick-ArdLen-WallThick-1,0]) cube([HouseWid-3*WallThick-

ArdWid,HouseLen-TranWid-3*WallThick-BatLen+1,CompHeight]);

 }

}

123

module Housing(){

 // The Housing module builds the housing by forming a main

block with x,y,z elements of HouseWid, HouseLen and HouseHeight,

followed by the subtraction of each of the Arduino, Transceiver,

Battery and ExtraSpace modules, forming suitable spaces for each

to sit within the housing. In addition, wall sections have been

removed for wiring access purposes.

difference(){

 // Main housing block

 cube([HouseWid,HouseLen,HouseHeight]);

 // Subtraction of Arduino

translate([WallThick,2*WallThick+TranWid,HouseBaseThick])

Arduino();

 // Subtraction of Transceiver

 translate([WallThick,WallThick,HouseBaseThick])

Transceiver();

 // Subtraction of Battery

translate([2*WallThick+ArdWid,2*WallThick+TranWid+(HouseLen-

3*WallThick-BatLen-TranWid),HouseBaseThick]) Battery();

 // Subtraction of ExtraSpace

translate([1*WallThick+TranLen,WallThick,HouseBaseThick])

ExtraSpace();

124

// Wiring space allowance

 translate([WallThick+ArdWid-1,HouseLen-2*WallThick-

2,HouseBaseThick]) cube([WallThick+2,WallThick+2,CompHeight]);

 translate([WallThick+ArdWid-1,HouseLen-4*WallThick-2-

BatLen,HouseBaseThick])

cube([WallThick+2,2*WallThick+2,CompHeight]);

 translate([TranLen-2*WallThick,WallThick+TranWid-

1,HouseBaseThick]) cube([3*WallThick,WallThick+2,CompHeight]);

 }

}

module Lid(){

 // The Lid module is the final module created for the hardware

housing and creates a smooth fitted lid by subtracting the top of

the housing from a cube with rounded ends.

 difference(){

 rotate([-90,0,0]) translate([HouseWid/2,-

100,HouseLen/2]) roundCornersCube(HouseWid-1,WallThick,HouseLen-

1,WallThick);

 translate([0,0,65]) Housing();

 }

}

//--

125

// The following section includes modules for the creation of a

cube with rounded corners, Copyright is held by Sergio Vilches

2011

/*

http://codeviewer.org/view/code:1b36

Copyright (C) 2011 Sergio Vilches

This program is free software: you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details. You should have received

a copy of the GNU General Public License along with this program.

If not, see <http://www.gnu.org/licenses/>.

Contact: s.vilches.e@gmail.com

 Round Corners Cube (Extruded)

 roundCornersCube(x,y,z,r) Where:

 - x = Xdir width

 - y = Ydir width

 - z = Height of the cube

 - r = Rounding radious

 Example: roundCornerCube(10,10,2,1);

 *Some times it's needed to use F6 to see good results!

 --

-

*/

// Test it!

// roundCornersCube(10,5,2,1);

mailto:s.vilches.e@gmail.com

126

module createMeniscus(h,radius) // This module creates the shape

that needs to be substracted from a cube to make its corners

rounded.

difference(){

 translate([radius/2+0.1,radius/2+0.1,0]){

 cube([radius+0.2,radius+0.1,h+0.2],center=true); //

All that 0.x numbers are to avoid "ghost boundaries" when

substracting

 }

 cylinder(h=h+0.2,r=radius,$fn = 25,center=true);

}

module roundCornersCube(x,y,z,r) // Now we just substract the

shape we have created in the four corners

difference(){

 cube([x,y,z], center=true);

translate([x/2-r,y/2-r]){ // We move to the first corner (x,y)

 rotate(0){

 createMeniscus(z,r); // And substract the meniscus

 }

 }

 translate([-x/2+r,y/2-r]){ // To the second corner (-x,y)

 rotate(90){

 createMeniscus(z,r); // But this time we have to rotate

the meniscus 90 deg

 }

 }

 translate([-x/2+r,-y/2+r]){ // ...

 rotate(180){

 createMeniscus(z,r);

 }

 }

 translate([x/2-r,-y/2+r]){

 rotate(270){

 createMeniscus(z,r);

}}}

127

G.4. M ain Housing M odel Views

G.4.1. Transceiver Shape Model

G.4.2. Arduino Uno Shape Model

128

G.4.3. Battery Shape Model

G.4.4. Extra Space Shape Model

129

G.4.5. Main Housing Model

G.4.6. Main Housing Cover View

130

Appendix H

Arduino Program Code

131

H.1. M ain Arduino Program

//--//

// Engineering Research Project 2016

// Student: Sathya Smith

// Supervisor: Andrew Maxwell

// University of Southern Queensland - Faculty of Health, Engineering and

Sciences

// Program code for Arduino based gesture recognition system.

//--//

//

// *** Disclaimer ***

//

// This program contains sections of code utilised with permission from the

// creators, with licensing information presented within the program. The

creator

// of this software program does not take credit for the development

// of various libraries and pieces of example code, as they are simply

// basic building blocks used to quicken the process of system development

// for this engineering research project.

//

//--//

// ==

// === INCLUDE LIBRARIES ===

// ==

// Include header file of I2C communications

 #include "I2Cdev.h"

// Include header file for MPU6050 6-axis DMP

 #include "MPU6050_6Axis_MotionApps20.h"

// Include header file Wire.h if I2Cdev.h utilises Arduino Wire

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 #include "Wire.h"

 #endif

// Include elapsedMillis header file for tracking program output rate

 #include "elapsedMillis.h"

132

// Include EEPROM capabilities

 #include "EEPROM.h"

// MPU6050 address - 0x68

 MPU6050 mpu;

// ==

// === TEST VARIABLES ===

// ==

// Setup Test integers for development

 int ArrayIndex = 0; // Counter for test purposes

 int ArrayIndexDelay = 0; // Delay counter for skipping readings

 int TrainingCount = 0; // Training mode counter for adding values

to arrays

// Mode definition

 #define TestMode 2 // 0 - limited tracking, 1 - full tracking,

2 - training

 #define DispMode 1 // Set low for YPR and XYZ data, set high

for running averages

 #define WindowArraySize 30 // Sliding window size

// ==

// === GENERAL VARIABLES ===

// ==

 #define LED_PIN 13 // Definition of LED_PIN for simplicity

 bool blinkState = true; // Set true to allow Arduino LED blinking

(indicative of activity)

// MPU control/status vars

 bool dmpReady = false; // set true if DMP init was successful

 uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU

 uint8_t devStatus; // return status after each device operation

(0 = success, !0 = error)

 uint16_t packetSize; // expected DMP packet size (default is 42

bytes)

 uint16_t fifoCount; // count of all bytes currently in FIFO

 uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

133

 Quaternion q; // [w, x, y, z] quaternion container

 VectorInt16 aa; // [x, y, z] accel sensor measurements

 VectorInt16 aaReal; // [x, y, z] gravity-free accel

sensor measurements

 VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor

measurements

 VectorFloat gravity; // [x, y, z] gravity vector

 float euler[3]; // [psi, theta, phi] Euler angle container

 float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container

and gravity vector

// ==

// === SLIDING WINDOW VAR CREATION ===

// ==

/* Yaw, Pitch and Roll arrays */

 int Window_Yaw[WindowArraySize]; // Yaw value array - rotation

about z-axis

 int Window_Pitch[WindowArraySize]; // Pitch value array - rotation

about y-axis

 int Window_Roll[WindowArraySize]; // Roll value array - rotation

about x-axis

/* X, Y and Z accelerometer arrays */

 int Window_Accel_X[WindowArraySize]; // x-axis acceleration array

 int Window_Accel_Y[WindowArraySize]; // y-axis acceleration array

 int Window_Accel_Z[WindowArraySize]; // z-axis acceleration array

/* Sum arrays - 4 bytes per sum */

 long Sum_Yaw = 0;

 long Sum_Pitch = 0;

 long Sum_Roll = 0;

 long Sum_Accel_X = 0;

 long Sum_Accel_Y = 0;

 long Sum_Accel_Z = 0;

/* Running Average array */

 int Window_Average_Yaw = 0;

 int Window_Average_Pitch = 0;

 int Window_Average_Roll = 0;

 int Window_Average_X = 0;

 int Window_Average_Y = 0;

 int Window_Average_Z = 0;

134

/* Template average array - length = 5 for five gesture movement average

*/

 int Gesture_Average_Yaw[4];

 int Gesture_Average_Pitch[4];

 int Gesture_Average_Roll[4];

 int Gesture_Average_X[4];

 int Gesture_Average_Y[4];

 int Gesture_Average_Z[4];

/* Gesture template array */

 int GestureTemplate[5]; // 6 value array containing mean values for

each degree of freedom for a gesture

// ==

// === INTERRUPT DETECTION ===

// ==

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt

pin has gone high

void dmpDataReady() {

 mpuInterrupt = true;

}

// ==

// === INITIAL SETUP ===

// ==

void setup() {

 // join I2C bus (I2Cdev library doesn't do this automatically)

 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

 Wire.begin();

 TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)

 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

 Fastwire::setup(400, true);

 #endif

 // initialize serial communication

 Serial.begin(38400);

 while(!Serial); // wait for Leonardo enumeration, others continue

immediately

135

 // initialize device

 Serial.println("#--

--#");

 Serial.println(" ");

 Serial.print(F("Initializing I2C devices..."));

 mpu.initialize();

 // verify connection

 Serial.print(F("Testing sensor connections..."));

 Serial.println(mpu.testConnection() ? F("MPU6050 connection

successful") : F("MPU6050 connection failed"));

 Serial.println(" ");

 // Choose display mode

 if(DispMode == 0){

 Serial.println("Display mode\t 0 - YPR and RealAccel data");

 }

 else if(DispMode == 1){

 Serial.println("Display mode\t 1 - Moving average data");

 }

 // Choose test mode

 if(TestMode == 0){

 Serial.println("Test mode\t 0 - Limited tracking: Number of values

to be read is equal to window size.\n This mode is used for determining

elapsed times for various data set sizes.");

 }

 else if(TestMode == 1){

 Serial.println("Test mode\t 1 - Tracking: Running averages are

displayed as they are calculated\n\t\t\t\tand are compared to gesture data

in memory.");

 }

 else if(TestMode == 2){

 Serial.println("Test mode\t 2 - Training: Addition of a new

gesture");

 }

 Serial.println(" ");

 Serial.println("#--

--#");

136

 // wait for ready

 if(TestMode != 2){

 Serial.println("\nSend any character to begin motion tracking: ");

 while (Serial.available() && Serial.read()); // empty buffer

 while (!Serial.available()); // wait for data

 while (Serial.available() && Serial.read()); // empty buffer again

 }

 // load and configure the DMP

 devStatus = mpu.dmpInitialize();

 // Gyro and Accel offsets

 mpu.setXGyroOffset(220);

 mpu.setYGyroOffset(76);

 mpu.setZGyroOffset(-85);

 mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

 // make sure it worked (returns 0 if so)

 if (devStatus == 0)

 {

 // turn on the DMP, now that it's ready

 mpu.setDMPEnabled(true);

 // enable Arduino interrupt detection

 attachInterrupt(0, dmpDataReady, RISING);

 mpuIntStatus = mpu.getIntStatus();

 // set our DMP Ready flag so the main loop() function knows it's

okay to use it

 dmpReady = true;

 // get expected DMP packet size for later comparison

 packetSize = mpu.dmpGetFIFOPacketSize();

 } else {

 // ERROR!

 // 1 = initial memory load failed

 // 2 = DMP configuration updates failed

 // (if it's going to break, usually the code will be 1)

 Serial.print(F("DMP Initialization failed (code "));

 Serial.print(devStatus);

 Serial.println(F(")"));

137

 }

 // configure LED for output

 pinMode(LED_PIN, OUTPUT);

 // Initialise Window arrays at 0

 for (int i = 0; i < WindowArraySize; i++){

 Window_Yaw[i] = 0;

 Window_Pitch[i] = 0;

 Window_Roll[i] = 0;

 Window_Accel_X[i] = 0;

 Window_Accel_Y[i] = 0;

 Window_Accel_Z[i] = 0;

 }

}

// ==

// === MAIN PROGRAM LOOP ===

// ==

void loop() {

 // If TestMode was set to 2 at the beginning of the program display

training mode information

 // Only display this information on the first training run

 if(TestMode == 2 && TrainingCount == 0){

 Serial.print("Gesture training mode has been initiated - please note

that only one gesture may be recorded\nat this time. ");

 Serial.print("Perform the desired movement immediately after the

countdown.\nThis process will occur five times, then the gesture model will

be calculated and recorded.\n");

 Serial.println("\nSend any character to begin gesture training! ");

 while (Serial.available() && Serial.read()); // empty buffer

 while (!Serial.available()); // wait for data

 while (Serial.available() && Serial.read()); // empty buffer again

 Serial.print("3...");

 delay(1000);

 Serial.print("2...");

 delay(1000);

 Serial.print("1...");

 delay(1000);

 Serial.print("Go!");

138

 delay(1000);

 }

 // For consecutive training runs - prompt to send another character for

next run

 else if(TestMode == 2 && TrainingCount != 0)

 {

 Serial.print("Training run ");

 Serial.print(TrainingCount+1);

 Serial.print(F(" completed, send any character to begin the next

countdown."));

 }

 elapsedMillis ElapsedTime; // Begin timer to track practice run period

 // while loop will iterate infinitely in full tracking mode, but

 // only for WindowArraySize no. of values for limited tracking mode

 // as well as training mode

 while(ArrayIndex < WindowArraySize) {

 // if dmp programming failed, don't try to do anything

 if (!dmpReady) return;

 // wait for MPU interrupt or extra packet(s) available

 while (!mpuInterrupt && fifoCount < packetSize) {

 }

 // reset interrupt flag and get INT_STATUS byte

 mpuInterrupt = false;

 mpuIntStatus = mpu.getIntStatus();

 // get current FIFO count

 fifoCount = mpu.getFIFOCount();

 // check for overflow (this should never happen unless our code is too

inefficient)

 if ((mpuIntStatus & 0x10) || fifoCount == 1024) {

 // reset so we can continue cleanly

 mpu.resetFIFO();

 Serial.println(F("FIFO overflow!"));

139

 // otherwise, check for DMP data ready interrupt (this should happen

frequently)

 } else if (mpuIntStatus & 0x02) {

 // wait for correct available data length, should be a VERY short

wait

 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

 // read a packet from FIFO

 mpu.getFIFOBytes(fifoBuffer, packetSize);

 // track FIFO count here in case there is > 1 packet available

 // (this lets us immediately read more without waiting for an interrupt)

 fifoCount -= packetSize;

 // Subtract old values from sum

 Sum_Yaw = Sum_Yaw - Window_Yaw[ArrayIndex];

 Sum_Pitch = Sum_Pitch - Window_Pitch[ArrayIndex];

 Sum_Roll = Sum_Roll - Window_Roll[ArrayIndex];

 Sum_Accel_X = Sum_Accel_X - Window_Accel_X[ArrayIndex];

 Sum_Accel_Y = Sum_Accel_Y - Window_Accel_Y[ArrayIndex];

 Sum_Accel_Z = Sum_Accel_Z - Window_Accel_Z[ArrayIndex];

 // Get positional angle in degrees

 mpu.dmpGetQuaternion(&q, fifoBuffer);

 mpu.dmpGetGravity(&gravity, &q);

 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

 // Populate yaw, pitch and roll window arrays

 Window_Yaw[ArrayIndex] = ypr[0] * 180/M_PI;

 Window_Pitch[ArrayIndex] = ypr[1] * 180/M_PI;

 Window_Roll[ArrayIndex] = ypr[2] * 180/M_PI;

 // Get adjusted real acceleration

 mpu.dmpGetQuaternion(&q, fifoBuffer);

 mpu.dmpGetAccel(&aa, fifoBuffer);

 mpu.dmpGetGravity(&gravity, &q);

 mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);

 // Populate window array with current accel vals

 Window_Accel_X[ArrayIndex] = aaReal.x;

 Window_Accel_Y[ArrayIndex] = aaReal.y;

 Window_Accel_Z[ArrayIndex] = aaReal.z;

140

 // Add fetched positional values to respective sum

 Sum_Yaw = Sum_Yaw + Window_Yaw[ArrayIndex];

 Sum_Pitch = Sum_Pitch + Window_Pitch[ArrayIndex];

 Sum_Roll = Sum_Roll + Window_Roll[ArrayIndex];

 Sum_Accel_X = Sum_Accel_X + Window_Accel_X[ArrayIndex];

 Sum_Accel_Y = Sum_Accel_Y + Window_Accel_Y[ArrayIndex];

 Sum_Accel_Z = Sum_Accel_Z + Window_Accel_Z[ArrayIndex];

 // Increment to next index for next positional readings

 ArrayIndex = ArrayIndex + 1;

 // Circular array population - index returns to 0 after final value

 if(ArrayIndex >= WindowArraySize && TestMode == 1){

 ArrayIndex = 0;

 }

 // Calculation of averages

 Window_Average_Yaw = Sum_Yaw/WindowArraySize;

 Window_Average_Pitch = Sum_Pitch/WindowArraySize;

 Window_Average_Roll = Sum_Roll/WindowArraySize;

 Window_Average_X = Sum_Accel_X/WindowArraySize;

 Window_Average_Y = Sum_Accel_Y/WindowArraySize;

 Window_Average_Z = Sum_Accel_Z/WindowArraySize;

 // If in training mode and not the last practice run, add window average

to gesture array

 if (TestMode == 2 && TrainingCount <= 4)

 {

 // Populate average positional values for trained gesture

 Gesture_Average_Yaw[TrainingCount] = Window_Average_Yaw;

 Gesture_Average_Pitch[TrainingCount] = Window_Average_Pitch;

 Gesture_Average_Roll[TrainingCount] = Window_Average_Roll;

 Gesture_Average_X[TrainingCount] = Window_Average_X;

 Gesture_Average_Y[TrainingCount] = Window_Average_Y;

 Gesture_Average_Z[TrainingCount] = Window_Average_Z;

 // Incrememnt training counter until gesture has been repeated 5

times

 TrainingCount++;

 }

 // Display real time positional values if DispMode is set low

 if (DispMode == 0)

 {

141

 Serial.print("YPR\t");

 Serial.print(Window_Yaw[ArrayIndex]);

 Serial.print("\t");

 Serial.print(Window_Pitch[ArrayIndex]);

 Serial.print("\t");

 Serial.print(Window_Roll[ArrayIndex]);

 Serial.print("\t");

 Serial.print("XYZ\t");

 Serial.print(aaReal.x);

 Serial.print("\t");

 Serial.print(aaReal.y);

 Serial.print("\t");

 Serial.println(aaReal.z);

 }

 // Display running average positional values if DispMode is set

high

 if (DispMode == 1)

 {

 Serial.print("Av. YPR\t");

 Serial.print(Window_Average_Yaw);

 Serial.print("\t");

 Serial.print(Window_Average_Pitch);

 Serial.print("\t");

 Serial.print(Window_Average_Roll);

 Serial.print("\t");

 Serial.print("Av. XYZ\t");

 Serial.print(Window_Average_X);

 Serial.print("\t");

 Serial.print(Window_Average_Y);

 Serial.print("\t");

 Serial.println(Window_Average_Z);

 }

 }

 }

 // Display elapsed running time

 Serial.print(F("Elapsed time for "));

 Serial.print(WindowArraySize);

 Serial.print(F(" elements was "));

 Serial.print(ElapsedTime);

 Serial.print(F(" milliseconds"));

142

 // Reset elapsed time

 ElapsedTime = 0;

 if(TestMode == 0){

 // Begin next motion tracking loop

 Serial.println(F("\nSend any character to begin motion tracking: "));

 while (Serial.available() && Serial.read()); // empty buffer

 while (!Serial.available()); // wait for data

 while (Serial.available() && Serial.read()); // empty buffer again

 ArrayIndex = 0;

 }

}

//--//

// LICENSING INFORMATION //

//--//

/* ==

I2Cdev device library code is placed under the MIT license

Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a

copy

of this software and associated documentation files (the "Software"), to

deal

in the Software without restriction, including without limitation the

rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

===*/

143

H.2. M IDI Command Transmission Code

//--

----//

// Engineering Research Project 2016

// Student: Sathya Smith

// Supervisor: Andrew Maxwell

// University of Southern Queensland - Faculty of Health, Engineering

and Sciences

// Program code for Arduino based gesture recognition system.

//--

----//

long lastSendTime = 0; // Initialise sending period counter

int NoteOn = 144; // Decimal MIDI command 'Note On' - 10010000

void setup()

{

 Serial.begin(9600); // Monitoring via USB

}

void loop()

{

 // Track elapsed program run time

 long thisTime = millis();

 // If one second elapsed - send

 if (thisTime > lastSendTime + 1000)

 {

 Serial.print(NoteOn); // Send MIDI command

 Serial.print("\n"); // Send new line

 lastSendTime = thisTime; // Reset sending period counter

 }

}

144

H.3. M IDI Command Receiver Code

//--

----//

// Engineering Research Project 2016

// Student: Sathya Smith

// Supervisor: Andrew Maxwell

// University of Southern Queensland - Faculty of Health, Engineering

and Sciences

// Program code for Arduino based gesture recognition system.

//--

----//

#include <SoftwareSerial.h>

SoftwareSerial mySerial(10, 11); // Create software serial port with

RX - 10, TX - 11

String inputstring = "";

void setup() {

 // Open serial communications

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect.

 }

 Serial.println("Initialising MIDI command receiver system!");

 // set the data rate for the SoftwareSerial port

 mySerial.begin(9600);

 mySerial.println("Data incoming...");

}

void loop() {

145

 // Read receiver data and present in binary format

 while (mySerial.available() > 0) {

 //Serial.print("\nReceived MIDI command: ");

 int inputchar = mySerial.read();

 if (isDigit(inputchar)) {

 inputstring += (char)inputchar;

 }

 if (inputchar == '\n') {

 Serial.print("Received MIDI Command: ");

 Serial.println(inputstring.toInt(), BIN);

 inputstring = "";

 }

 }

}

