University of Southern Queensland

Faculty of Engineering and Surveying

Design and Implementation of Web-Based Keystroke Analytics for

User Verification

A dissertation submitted by

Mr Ryan Stephenson

In fulfilment of requirements of

Courses ENG4111 and 4112 Research Project

towards a degree of
Bachelor of Engineering Honours (Computer Systems)

Submitted: October 2016

Abstract

Keystroke analytics is the study of the way in which a user types rather than simply what they are
typing. Through the application of statistical or machine learning methods the gathered biometric

data may be used to verify the identity of a user, based on their typing style.

This project aims to explore the field of keystroke analytics to gain an understanding of the methods
involved and as such detail the implementation process for such a system’s design and
implementation in a web-based context. Details regarding the technical design and implementation
are specifically highlighted as current literature often does not describe how the systems shown

were developed by rather the theory and methods used by them.

The use of JavaScript to gather typing characteristic data is explored and the process of extracting
useful features illustrated. Additionally both PHP and MySQL and used to create the backbone
infrastructure to process and store the typing data. A phased development approach has been
employed, with the overall system being separated into a collection of subsystems which are

designed, implemented and tested before combining them to form the overall system.

The supplementary software system requirements are presented, including the process of setting up
a system capable of both being used to perform research on a local system as well as expand to

online users for the data collection process.

Method of testing the performance of a keystroke analytics system are discussed with potential

changes to improve performance and minimise problems encountered outlined.

The project was successful in that a working proof-of-concept web-based keystroke verification
system was designed and implemented which yielded promising results for the data tested (FAR: 0%,
FRR: 3.33%). Although to fully evaluate the system’s performance further testing needs to take place
for a larger sample size of participants. The results obtained show that a keystroke analytics system
may be implemented in a web-based environment, with relatively simple statistical methods, and
provide reasonable performance results with only minor additional interaction required by the end-
user. This has shown that keystroke analytics is a valid and well-performing method of providing

non-intrusive multifactor authentication to traditional login systems.

University of Southern Queensland
Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &
Sciences, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or associated
with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Health, Engineering &
Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to
the overall education within the student’s chosen degree program. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the

risk of the user.

University of Southern Queensland
Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this
dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any
other course or institution, except where specifically stated.

R. STEPHENSON
0061046834

Acknowledgements

| would like to offer my thanks to my supervisor Dr Hong Zhou, who has provided assistance and
guided me through my project work.

Additionally | would like to thank the faculty of USQ who have enabled my learning throughout the
last four years.

Finally 1 would like to thank my friends and family for their continual support throughout this year.
Particularly I would like to thank my friend Brady Albrand for his motivation and support.

Ryan Stephenson

University of Southern Queensland

October 2016

Table of Contents

Contents Page
Y o1 - Tot O OO T SR PR PPRTOTRUI i
(@ o =T o) =T ol B 1 4 o Yo [Tox o o NP PP 13
0 N1 =T g Yo @ oY [Tt f V=TSSR 14
1.2, ProjeCt OULCOMIES ..ciiiiiiiiiiiiiiiiiieteeeeeeeeeee et e ee e eeeeeeeeee e et e eeseeese s et e teeeeeeeeeeeseeeeeeeseseeeeeseeeeeeeeeeeeeaeene 16

(O o oY Tl T ol 4= 01U o T PRSPPI 17
2.1. Need for Biometric Analysis for User Verificationccccvveciieiivciiei i 17
2.2. Basic Principles of Keystroke DYNamICSccccvuueeiiciiieiiiiieeieciieeeeciieeesscieeeessieeeesssnseeesssnseeessnnes 18
2.2.1. Types of Biometric Data Used to Differentiate USers........ccccoceeeeecieeiecciee e, 19

2.3. Methods of Implementing Keystroke DYNamiCS........cccuciieeieciieeeeiieee e ccieee e eciee e e ecieee e e enreee e 21
2.3.1. Typing Data CollECHIONeeiiiiiiee ettt esbee e e e sbae e s e snreeas 24
2.4, System Performance ANAlYSiSttt e st e e st e e s et e e e e enraeeesnes 24
2.5. Storage of Typing Data uSing MYSQLcooiiiiiieiiiiieeiecieee et ee et e e s e e e srae e e s s sree e e s ssnraeeesanes 25
2.5.1. Reasons for USING IMYSQLcoeiiiiiiieiciiee ettt et e e tee e e e evte e e e e bae e e s e beee e e enbaeeeennneeas 25
2.5.2. Interacting with the MySQL Databaseccceiieeiiiiiiciiie e e 25
2.6. Storing Typing CharaCteriStiC ArTaYS . ..ccucuiiieiicieeeiciieeeeeteeeeectre e e e serae e e e sebeeeeessrteeessssteeesssntaeessnes 26
2.7. Transferring Data between Client and SEIVENcuuviiieciiie it 27
2.8. Storing USer PassWOrds SECUIEIYccicuiiieieiiieee et ee e ettt e e et e e e ette e e e eeateeeeeeataeeesentaeessnnsaeaesnnes 28
2.9. Project MEethodOIOZYooii ettt ettt e e et e e e e tte e e e e ate e e e sateeeeenteeeesntaeaesnnes 29
2.9.1. Software DevelopmMENT PrOCESS........ccuccieie e ettt e et e eette e e eette e e estee e e e e beee e esabeeeeeenrenas 29
Chapter 3 The Design and Implementation of User Input Collection Systemc.ccccevveeriieerneeenneen. 31
3.1. Setup Of the TeSTING SYSLEM ...eeiiii e et e e e sra e e e s satbeeesseseeeeas 31
R W Tor: | N B 11V FoY o] o = o Y a3 2y (=T o o WP 31
3.2 1. USINE XAMPP ... 31

3.3, HOSTING OPTIONS wetviiiiiiiiiiiiiiteee ettt e ettt e e s s s sttt e e e s s s sssaabtaaeeeessssssssbesaaeeeessnnssnrenaeeess 33

R Y uu] o T VT o INY <] V=T T U T U U T TP PP 34
3.4.1. Installation and Configuration of APache2ccceeiieiiiiiiiie e 34
3.4.2. Installation and Configuration of MySQL and PHPccoociiiiiiiie et 34
3.4.3. Installation and Configuration of PHPMYAdMIN.........cccoiiiiiiiiii et 35
3.4.4. Website DIr€CtOry SECUNILY ..viiii ettt ere e e e sbre e e e e bae e e e sbae e e eeareeas 36

3.5. File Transfer from WindOWS £0 @ SEIVETccceiiiiiiiiiiiieeie ettt 37
3.6. Characteristic Collection COTe.......cccuiiiiiiiiiieee et s e esnee e 39
3.6.1. Data to De STOrEd ...cueiiieieeeee e s s 39

Vi

3.6.2. The Event-Driven Programming MOdEluuveeiiiiiiiiiiiiiieeee ettt e e e 39

3.6.3. Implementation of Collection Code.........uiiiiiiiiiiiiiice e e 39
3.6.4. Restricting the Keyboard INPULS..........cccieiiiiiii et 42
3.6.5. MiSCeIlan@OUS FUNCLIONSeiiuiiiiiiiiieieeteet ettt et eeees 43
3.6.6. StOring the Key Press Data....ccevcicciiiei ettt eettee st e s s svee e e s sbee e e s s bee e s s sabae e e snareeas 44
3.7. Classification AlZOrithm DESIGN.....ccccuuiiiiiiiiiiicciiie et e e e e e s sbre e e ssareeeeas 48
3.7 L. INEFOAUCTION ettt ettt ettt s e st et b e be e s meesmeeeaneenneen 48
3.7.2. SYSTEM ASSUMIPEIONS eeeeeas 48
3.7.3. Data Set ODSErVAtiONS.ceiuiiiieeiteeteet ettt sttt 48
3.7.4. Data Set Preparation ... ettt e e e e s st r e e e e e e e e ennnee 50
3.8. Statistical Analysis MELhOUScoivciiiiiiee e e st e e s sereee s 55
3.8.1. Relevant Theory: Pythagoras’s Theorem and Euclidean Distance........c.cccccecveveeecvieeeennneen. 55
3.8.2. Application to Keystroke BiOmMEtriCS.....ccciiiiciieie ettt e e e e 57
I I =T g o] Y (=l CT<T Y= = o) o R 58
3.9.1. Calculating Mean, Variance and Weight:........cccooiiiiiiiii e 59
3.9.2. Euclidean Distances CalCulationsc.eeecueiiriieniiiierieeeeeeriee sttt st 59
3.9.3. TEMPIALE STFUCTUIE ..eeieeiiee ettt et e e e e tte e e e e bte e e e e bt e e e eebeee e eenbaeeeennsenas 62
I IR B B L= £ oY o Y =141 VSRR 63
300, SUMMIAIY e e e e e e e e e e e e e s e s e e e e e s e e e e e s e e s e e esesasasssasasssssssasasssasasasesasesnsesasasesesasanennnns 65
(@ o T oY =T e a o] (=Yg Y= o1 =1 o] o SRR 66
I) oo [¥ T T o I TP PPR USSR 66
NV (=Y 0 o W@ Y= T VAT BN 66
4.3. Development and Data VIEWING SYSTEMcoiiiiiiie ettt e e e tre e e erae e e e e 67
4.3.0. SYSTEM OVEIVIEW....uiiiiiiiiiiiiiiiitteeeeeesiiitttteeesssssssbrsaaeeeessassssstseeeeesssssssssssseeeesssssssnsssseeeesssnnns 67
4.4. HTML Timeling PIOt USING CaANVAS ..cccccuuiiiiiiiiieeeiiieeeeiiteeeesiveeeesireeessiteesssnraeessnssaeessnsseesssnnsenas 69
4.5. Output Raw Data in Table FOIrM......oo ittt e e eabee e e et e e e e earaeas 71
4.6. Storage of the Collected Data........coccciiiieeiiiie et e et e e e tae e e e eabee e e e eabeee e eearaeas 72
4.7. Template Generation AlZOrthMc.uiii e 72
4.7.1. Align Input Dataset With TEMPIALEccovuiiii i e 72
4.7.2. Calculate Mean, Variance and Weight........ccccuiiiiiiiiie et 78
4.8. Data ColleCtion SYSLEM ... et e e e e e e e s e e e e e e e e s areaae e e e e e e e sannrenes 80
4.9. DEMO MatChiNg SYStEM ittt e e e e e s e e e e e e e e enare e e e e e e e e esnssareeeeaeeesnnsenes 84
4.10. MATLAB Visualisation SYStEMciiiiiiiiiiiiiiecciiiee ettt esee e esree e e sree e s e bae e e e sabre e e e eabaeeesearenas 89
(0 0T oY =T T I =Ty [T~ PSR 92
5.0 INTFOTUCTION .ttt et ettt s e st s b e s b e s meesmeeemeeenneen 92
D2 SOfEIWAIE TSES. .ttt ettt ettt ettt et b e s ae e et e et e e s be e s bt e s aeesat e st e e be e bt e sbeesaeesaeeeateentean 92

5.2.1. Unit Testing the Data AliIgnment COdecuviiiiiiiiiiccceeeee e e 92

5.2.2. Unit Testing the Data Collection COOecuviiiiiiiiiiiiiee et 94

5.3, Preparing PartiCiPants. ..o 94
5.4. Data CollECtioN PrOCESS.utiitieiieriieeieete ettt sttt ettt ettt sttt e b e b e s reesmeeeaeeeneeen 94
5.5. Comparing the access attemMPLS. ..o saree e 95
5.6. Use of the Typing Data Dataselcccuiiiiiiiiiiiciiie ettt sbre e s nereeeeas 95
5.7. ReSUIS Of the TEST DAta ..cccueesreeriieiieiieeieeeet ettt ettt st sttt esre e s eae e e e s 95
5.7. 1. TESTMETNOM. ...t st st ettt e ee s 95
5.7.2. System Performance for Poorly KNnOWN PRrasescccoeeeeeciieeiiiiiee et 97
5.7.3. System Performance for Well KnoOwn Phrasescccocveviiiiieiiiniiene e 98
5.7.4. Discussion of System PerformManCe.......cuuiiicciiieiiiiiie ettt e e eee e s s earee e 100
5.7.5. Suggestions for increasing system performanceccoeeeeeciveeiccieee e 104
5.7.6. Comparison with Systems in Lit@raturecccceeeeciieeieciiee ettt e e e e 104

R T U001 0 T 1 VTP 105
Chapter 6 Future Work and CONCIUSION.......ciicuiiiiiiiiiie ettt e e st e e e sire e e s sare e e s snaaeeesanes 106
6.1. POtential FULUIE WOTK ...coouiiiiiieeiee ettt ettt et sttt e st sab e st e eneeesabeeesanes 106
6.2. Achievement of Project ObjJECLIVES.......ccccuiii it e e e e e 106
RETEIEINCES: ...ttt b e b e s he e sttt et e e s bt e sh e e s ae e st e e bt e bt e b e e abeeabe e eaeeeaneenrean 108
7AYo o 1=Y o Vo [T o] Y USSR 112
Appendix A: Project SPecificationooiiei i e 112
Appendix B: System Code LiSTiNGccuiiiiiiiii ettt et srae e e e e e 113
Appendix B.1: Typing Data Collection SYSTEMcccuviiiiiiiie e e e 113
Appendix B.2: DeVEIOPMENT SYSTEM....ccci ittt ettt eebte e e e e bee e e e eabae e e e eabeeeeeeasenas 125
Appendix B.3: Data Collection SYStEMuuii i e e e e 127
ApPPeNndixX B.4: DEMO SYSTEMuuiiiii e cciee ettt ettt e stee e e e sbee e e s e bae e e e s baeeeesabaeesssabeeeeenasenns 133
Appendix B.5: Template Generation SYSTEMcocciiiiieiii e 142
Appendix B.6: MATLAB Visualisation and Matching Codecceeovviieiiciiie e 150
ApPendixX B.7: StYIING COUR ..oeiniiiie ittt e et e e e et e e e e e bte e e e eabaeeeeeabeeeeenarenas 154
Appendix B.8: Unit Testing Data AlIgnment CoOdecoiviiiiiiiiieiiiiiee e 162
Appendix B.9: Unit Testing Data Collection Code........ccuviiiiiiiiiiiiiiiee e 164

viii

Table of Figures

Figure 2.1: Keystroke Biometric ANalySis PrOCESS.cccuiiiiiiiiieieiitiee ettt e esieee e esite e e ssraeeessereeessnreeeens 18
Figure 2.2: lllustration of Dwell Time and Flight TIMecccoviiiiiiiiiceeecee e 20
Figure 2.3: Usage of Classification APProachescceeeeeciiieiiiiiiiccciiee ettt e e e saae e 21
Figure 2.4: Data Collection and Storage Process OVEIVIEWcuueieecuieeeriiieeesiireeessieeeessereesssnneeeens 27
Figure 2.5: Phases Development Methodology, Adapted From MclLeod and Everett (2006).............. 29
Figure 3.1: XAMPP CONErOl PANEl....ciieiiieiciieie ettt sttt sttt e s e e st e e snnbaeeessnreeeean 32
Figure 3.2: XAMPP Control Panel with Running Modulesccceviiiiiiiiiiiiiee e 33
FIgure 3.3: WINSCP INTEITACE ..ociieiiee ettt et e et e e et e e e s saat e e e e ataeeesansseeeeaanseeaean 38
Figure 3.4: Assigning Event Handlers to the Password Fieldcoovciieiiiiiiiiciiiec e 40
Figure 3.5: Code to Extract Key Code ValUC.........uuviieeiiiiiecieie ettt ettt e st e st e e e eaae e e 41
Figure 3.6: Event Type Detection COUE......ccuuiiiiiiiiieecciiee et e ettt eectte e e e tee e e esate e e s etae e e sennreeesnanreeaean 41
Figure 3.7: Shift Location Detection COUEciiiiiiiiiiiieiciie ettt e ssare e e e sareeeeas 41
Figure 3.8: Code to Prevent Using Mouse to Move Text INPUL CUISOr.......ccueveeecvveeeeciiieeescireeeeeineeens 42
Figure 3.9: Code to Prevent Moving Input Cursor with Arrow Keys.........ccccueeeriiuiereriiiieeesiineeesneneeeens 42
Figure 3.10: Code to Prevent Repeat Key Press EVENTSc.uuiviiciieiiiciiieeeciiees e e s eesiveee e 43
Figure 3.11: Example Use of Autocomplete Attribute on a FOrmcccceeecieiiiiieiecceee e 43
Figure 3.12: Code to Delay Execution Until The Page Has Loadedcccocuveeeviiieiiniiieec e, 43
Figure 3.13: Code to Track the Total EIapsed TimMeooeeciiieeeiiiiee et 43
Figure 3.14: Example Code for Defining an Object Class in Javascriptccccceeeeveeeiiiieeecccieee e, 44
Figure 3.15: Example Code for Instantiating a New Object in Javascriptcccoeeveveviiieeeiicieee e, 44
Figure 3.16: Example Code for Defining and Calling an Object Methodcccceveeiiiieeicciieecciee, 44
Figure 3.17: Contents Of A Key Element ObJECtcoccuiiiiiiiiieiciiiiec ettt e 45
Figure 3.18: Object Mapping Character Codes to Key Element Objectscccceecuveeevicieeeiiciiieeciiieen, 45
Figure 3.19: Flowchart Showing Logic for Typing Data Collection..........ccccccuveveeiiieieeciieee e 46
Figure 3.20: Flowchart for Data Collection SUBSYStEMc..viiiiiiiiiiiiieeece e 47
Figure 3.21: Visualisation of Observation Datasel.........cccccccuiieeiiiiiie ettt aree e 49
Figure 3.22: lllustration of Multiple Successive Shift Presses........cccceccuueeeeciiiieeeciieee e 51
Figure 3.23: lllustration of Shift Key with No Effect on Following Characterccccoecveevieiiiiieeniennns 52
Figure 3.24: lllustration of Character Being Backspacedcccouueieeiiiiiecciiiee et 52
Figure 3.25: lllustration of Shift Being Held While Backspace Is Pressed........ccccccuveevviveeesiiveeeescnneenn, 53
Figure 3.26: Graphical Depiction of QUArtIlES..........ccccuiiiieciiiiee e et 54
Figure 3.27: lllustration of Pythagoras’ Theorem for 2D SPace........ccccveeeeciiieeeciieee e 55
Figure 3.28: Flight Time Data for Training SEtueiiiiiiie e s 57
Figure 3.29: Data Flow Diagram for Template Generation ProCESSccccccueeeeeiieieeeeciieeeeeeireeeeecareeeen 58
Figure 3.30: Use of Gain on Upper Limit for Matching Systemccccoeveiiiieiiiieeecceee e 60
Figure 4.1: Overview of SYStem SECHIONSiii i e e s e e e saaeee e 67
Figure 4.2: Data View System Graphical INTerface.......c.ueeeeciiieeecieieeeceee ettt e 67
Figure 4.3: Example Timeline Rendering from Data Viewing System.........cccceeevvvieeeiiiieeecicieee e 68
Figure 4.4: Example Raw Data in Table Form from Data Viewing System.........cccceeeeiiereeiiveeeeccnnenenn. 68
Figure 4.5: Code for Checking If Canvas Element Is Supported By BrowSer........cccceeeecuvereeeciveeeeccnneeenn. 69
Figure 4.6: Canvas Positioning System HUstratedcocecivieeiiiiiiiiiiec e 70
Figure 4.7: Code to Change Canvas TeXt StYliNGcceoieicciiiieee e e e e snenes 71
Figure 4.8: Pseudocode for Rendering TImeling PIOtcccuviiiiiiiiii e 71

Figure 4.9: Code to Open a New Window to EXport Data TOccccviiiieiiii et 71
Figure 4.10: Black Box Diagram of Dataset Alignment FUNCLIONccvveiiiiiieeiiiieee e 72
Figure 4.11: lllustration of Use of a Sliding Window for the Data Alignment Functioncccccuvee... 73
Figure 4.12: Code Showing the Use Of Two While Loops In The Data Alignment Code.........cccccuveun.n. 73
Figure 4.13: Code to Get Code and Shift Values REQUIredccueeeeeiieieeiiiieee e 74
Figure 4.14: Code to Handle Multiple Successive Shift Key Presses.......ccccvveveviciveeiriciieeesicveeesncneeeens 74
Figure 4.15: Logical Test for Unnecessary Shift Press EVENT........cceeivciieieeciiie e e 75
Figure 4.16: Code to Reorder Array VAlUESccuueeeeciiieeeiiiie et e et e et e e estre e e s saae e e ssnaae e e ssnreeaenn 75
Figure 4.17: Code to Update POSItiON INAEXcccciiiiiiiiiieiiiiie ettt e e s saae e e s nnree e 76
Figure 4.18: Code to Substitute Values for Data Arrays in Template Generation Process................... 77
Figure 4.19: Code for Calculating Mean, Variance and Weight of Key Press Events..........ccccccevvuvennn. 78
Figure 4.20: Code for Calculating Distances between Template and Training Datacccccceeevvvveennne 79
Figure 4.21: Code to Calculate Q3 and IQR for Distance MEetrics.......ccovvveeiiieeeeiieieee e 79
Figure 4.22: Data Collection Screen, As Seen By the Participant........ccccceveiieiniiiiieiiiieec e 81
Figure 4.23: Thank You Screen for Data ColleCtion PrOCESScvveeeeciieeeeiiieeecciree e 81
Figure 4.24: Example Entry in Template Database Tablecoociiiieciiiie e 82
Figure 4.25: Code to Retrieve Template Phrase from Databasecccccvvcvieiiiiiiiiicciieec e 82
Figure 4.26: Example of Displaying PRrase to USErcocccuiieiiiiieieeiieee et ee ettt e e e e sareee e 82
Figure 4.27: States for Access AttemMPt COUNTENciiiiiiiii e srre e e e sareee s 83
Figure 4.28: Code to Display Access AttempPt COUNTET ...ciivuiiiiiiiiiiieciiee ettt ee e 83
Figure 4.29: Code to Redirect to Thank You Page Once Finished Gathering Dataccccccvvveeinnennn. 84
Figure 4.30: Code for Checking That Inputted Phrase Matches Template Phrase......ccccccecvveeeinneennn. 84
Figure 4.31: Interface for Demo MatChing SYStEMuiiiiiiiie it e e e 85
Figure 4.32: Dropdown Box to Selected User TEMPIate........ueeeeciieieeciieee e 85
Figure 4.33: Input Elements to Store Collected Typing Characteristic Data........cccccevvcvvveeiiciveeeiicnnennnn, 86
Figure 4.34: Example Definition of FOrm EI@MENT.........ooiiiiiiieicieee e e 86
Figure 4.35: Pseudocode for Access and Template Matching Systemccccccevvvvieeiiiiieeiiiieee e, 87
Figure 4.36: Code for Setting the Matching System Parametersccccccevcuveeeeiiveeescieee e esineee s 87
Figure 4.37: Code to Calculate Match Percentage for Flight and Delay Time Metrics........cccccceeuuneen.. 88
Figure 4.38: Code for Determining If an Access Attempt Is Valid.......cccceeveiiieiiiiiieccieee e 88
Figure 4.39: Output Screen of Access Matching SYStEMocociiiiiciiiie e 89
Figure 4.40: Improved Data Alignment Termination Conditions.........c.cceeceveeeeiiiieeeccieee e 89
Figure 4.41: Example Plot Generated By MATLAB COUEcoiviiriiiiiiiieeeiieeeesteee e e ssvve e e esaneee e 90
Figure 4.42: Output of Match Attempts from MATLAB COde.........oeeviiiieiiiiiiee e 90
Figure 4.43: MATLAB Code to Read in Typing Characteristic Data from Spreadsheet Format 91
Figure 5.1: Interface for Modified Version of Demo Testing Systemcccceevviieeeriiieeeeicieee e 95
Figure 5.2: Processing Of Calculating Equal Error Rate.......cc.ueeeeciiiieeciiee et e e e e 97
Figure 5.3: Visualisation of Delay Time for Brian's Learning Datasetccccceeeviveeeiciieeecciiee e, 100
Figure 5.4: Visualisation of Flight Time for Brian's Learning Datasetccccceeecivveeeeciieececciiee e, 101
Figure 5.5: Visualisation of Delay Time for Brian's Well Known Dataset...........cccccceeeeevieeeeccreeeeenneen. 101
Figure 5.6: Visualisation of Flight Time for Brian's Learning Datasetccccceeeviveeeicieeeeccviee e, 102
Figure 5.7: Comparison of Variance for Delay Times in Dataset for Brianccccoceeeeecvieeeeccvieeeeenneen. 103
Figure 5.8: Comparison of Variance for Flight Times in Dataset for Brianccccceevvcieeecccveeeennen. 103

List of Tables

Table 2.1: Distinguishing Ability Of Selected Typing Characteristics (Kellas-Dicks & Stark 2012)........ 21
Table 2.2: Classification Methods Featured In Keystroke Research (Teh et al. 2013)........cccceeeeunnennn. 22
Table 3.1: Variance of Delay Characteristic for Observation Datasetcccccvvvveeeeeiiciciiieeee e 49
Table 3.2: Variance of Flight Characteristics for Observation Dataset........cccccceecvveeeiciieeeeccieee e, 49
Table 3.3: Variances Associated With Flight Time Data.......cccceecveeieiiiee e 57
Table 3.4: Example of Data Loaded From Mysqgl Table.......ccueiieiiieiiiiiiieecciiies e 59
Table 3.5: Example of Column-Wise CalCulatioNns...........eeeeciiiieeciiee et e 59
Table 3.6: Data Necessary to Calculate Euclidean DiStanCes.........cccvvveeeeeeeeiiiiiieeeeee e eccirreeeeeeeeeeinnns 60
Table 3.7: Template Structure for User Typing CharacteristiC.......ccceeeuvieeiiiiieeiiiiiiee e 62
Table 3.8: EXample USer TEMPIALEviiiieieeeceee ettt e e ettt e e s aae e e e ntae e e eeasaeeeeeanaeeeean 63
Table 3.9: AcCeSS AttEMPE Data.....cciiiciiieiiciiie et e e e s e e s e e esabae e e esrreeeesareaeeas 63
Table 5.1: Results of Unit Testing the Data Alignment Module..........ccccooeeiiiiiiiiiic e, 93
Table 5.2: Results of Unit Testing the Data Collection Moduleccueeeeiiiiiieiieee e 94
Table 5.3: Excel Spreadsheet for System Performanceccuueeivciiieieciiieccciiees e 96
Table 5.4: System Performance Results for Poorly Known Phrases..........cccoceveeciieiecciieee s, 98
Table 5.5: Summary of Performance for System for Poorly-Trained Templatecccccceevvvcveeeiicinennnn. 98
Table 5.6: System Performance Results for Poorly KnOwn Phrasesccccccveeevciieeeiiiieeeesciees e 99
Table 5.7: Summary of Performance for System for Well-Trained Templateccccccovveeevcieeeeccnnnennn. 99
Table 5.8: Variance Of Delay Characteristic for Brian’s Learning Dataset.......cccccccceeeveiveeecciieeeenneen. 100
Table 5.9: Variance Of Flight Characteristics for Brian’s Learning Datasetccccceeecveeeeeccvieeeecnneen. 101
Table 5.10: Variance Of Delay Characteristic for Brian’s well known Datasetccccceeeeevveeeennneen. 102
Table 5.11: Variance Of Flight Characteristics for Brian’s Learning Datasetccccceevveveeiiveeeennnen, 102
Table 7.1: Unit Testing Sheet for Data Alignment COEuuviiiiiiieicciiie et e 162
Table 7.2: Unit Testing Sheet for Data Collection Code.......cuuiiiiiiiiiiiiiieiciee e 164

Xi

Glossary of Terms

CSPRNG Cryptographically secure pseudorandom number generator
EER Equal error rate

FAR False acceptance rate

FRR False rejection rate

FTP File transfer protocol

JSON JavaScript object notation

LAMP Linux, Apache, MySQL and PHP software stack

PDO PHP data objects

PHP Hypertext pre-processor

SSH Secure Shell

StudyDesk University of Southern Queensland online learning environment
usQ University of Southern Queensland

VPS Virtual private server

XAMPP Cross-platform, Apache, MySQL, PHP, and Perl. Local web server package

Xii

Chapter 1 Introduction

Multi-factor authentication incorporates multiple security methods simultaneously to control
access to a computer system in a more secure manner, compared to traditional single-factor
systems. Factors may be categorised as being: knowledge, possession or inherence (Multi-factor

authentication 2014). Inherence factors consider attributes of the user, such as biometric data.

Keystroke dynamics is focused on the analysis of gathered user biometric information for user
verification purposes. It is concerned with the way in which users type, rather than what they
are typing. Specifically typing characteristics are used to verify the users are who they are

claiming to be (Teh et al. 2013).

This process consists of five main stages: data acquisition, feature extraction, classification and
matching, decision making and template retraining. Identified user typing features are
compared against a reference template for verification (Douhou & Magnus 2009). To create an
accurate reference template the genuine user must enter the text string multiple times (Teh et
al. 2013). This process is called enrolling and involves the use of the collected data (called a

training set) to generate the template of the user’s typing style.

This project seeks to implement a web-based keystroke analysis system, focusing on user
authentication. As a result of this development process, insight into the implementation
decisions will be explored. The project will allow for other academics to speed up the
development process of a system used for web-based collection and storage of user typing data
for use in authentication systems. Motivation for this project comes from an interest in
investigating alternative non-intrusive ways of securing online systems, without the use of token

based authentication methods.

13

1.1. Aims and Objectives

The project aims to investigate the field of keystroke analytics to design and implement a web-based
proof-of-concept user verification system which utilises typing characteristics; emphasis is placed on
documenting the technical considerations and processes involved. Despite an extensive amount of
theory being available, the field does not currently feature much literature regarding

implementation details for these systems.

The above described outcomes will benefit further research in the area as it presents researchers
with the options available for implementing such a system, as well as describing the design and
implementation process. The main goal is to reduce the time researchers spend implementing a
generic keystroke analysis system, enabling further work into better performing classification
methods. Relatively simple classification techniques will be implemented in the proof-of-concept
system as advanced methods and techniques are outside the scope of the project. This project aims

to achieve the following objectives:

1. Research keystroke analytics/dynamics to gain and understand of the field and methods used by

existing systems/literature.

To be able to implement a system to collect, store and analyse user typing characteristics efficiently
existing techniques and methods must be investigated and well understood. This will both help

inform the development process as well as the selection of technologies to implement the system.

2. Design and implement a basic development environment for keystroke data collection and

viewing.

The purpose of this objective is to ease into the development process by looking into methods of
collecting typing data. Visualising the collected data will help provide insight into the data

characteristics such as flight and dwell times.

3. Investigate classification/matching algorithms for user verification.

Once the system is able to effectively store and collect typing data, methods to use this to
authenticate users need to be investigated. This will involve a variety of different methods, although
the complexity of these techniques will be limited to avoid spending time unnecessarily outside the

scope of the project.

14

4. Design and implement a conceptual web-based program to illustrate the application of keystroke

analytics to user verification.

As the components required to implement the system have been developed through the previous
objectives, they should now be combined into a software package which provides a fully functioning

proof-of-concept keystroke analytics system.

5. Design and implement an online testing system to collect and store user biometric typing data.

In order to test the system, collected typing data from multiple users is analysed to judge the
system’s effectiveness. A user-friendly system is designed and implemented which allows for the

completion of this collection process.

6. Analyse collected typing data and test the performance of the user verification systems.

Once sufficient typing and authentication data has been collected the effectiveness of the

verification system should be analysed.

Besides the above major objectives, this project aims to:

1. Research variances in typing characteristics based on hardware changes and other factors (E.g.

Tired or distracted users).

It is expected that the user typing characteristics will vary between different keyboards and devices.
Looking into the degree to which this alters the effectiveness of the classification algorithms is
important. It additionally will be beneficial to see if the system may be used to detect if users have

become fatigued or are otherwise impaired.

2. Investigate if a correlation exists between typing characteristics and user traits as well as the

devices they use.

If time permits, it would be beneficial to looking into alternative applications of collecting typing
data other than user authentication. This, for example, may include the ability to distinguish

between the devices users are using based on the way in which they type.

15

1.2. Project Outcomes

This project has made the following contributions and achievements:
1. Anexample software package (Web-based) serving as a proof-of-concept, which implements

the technologies and methods described.

2. Report on the methods in which current web-browsers may be used to collect typing

dynamics information.

3. Outlining of the options available for storing and accessing user typing signatures, in the

context of a web-server.
4. Exploration of the implementation process of a keystroke dynamics system.

5. Comparison of the developed system against performance expectations from available

literature.

16

Chapter 2 Background

In this section background information regarding the field of keystroke analytics is presented. A firm
understanding of these concepts is vital to understanding the following chapters and
implementation of the system. The need for keystroke analytics is discussed to justify the
completion of this project, followed by an outline of relevant concepts. Methods currently used are

outlined along with the metrics by which their performance is judged.

Additional to information regarding keystroke analytic systems, the MySQL database software will
be examined and discussed particularly with respect to storing the data used by the proposed

system.

2.1. Need for Biometric Analysis for User Verification

As internet based authentication systems become commonplace in modern life, the need for more

sophisticated methods of securing confidential data is becoming increasingly vital (Teh et al. 2013).

Data breaches have been, and will remain, a primary concern in regards to authentication systems.
Breaches may occur due to a number of reasons, including:

e Lost or stolen devices which contain sensitive information

e Authentication system databases being hacked

e Social engineering, where organisations provide information to unauthorised users

Authentication system breaches are serious and can result in severe damages and costs to the users
and organisations.
e Inregards to users, such damages and costs include:
o Identity theft, damage to public reputation/relationships and financial losses.
e |nregards to organisations:
o Loss of public confidence, legal liability and damage to reputation (Data breach
notification guide: A guide to handling personal information security breaches

2014).

The current standard for providing relatively inexpensive and accessible authentication relies on the
use of passwords and other knowledge factors. Although, due to the reuse of passwords across
multiple systems and bad usage behaviours the effectiveness of these systems is diminished (Teh et

al. 2013).

17

Password reuse is particularly damaging, due to the fact that if a single system is compromised the

other systems are in most cases also compromised as a result.

Creating more secure passwords decreases the risk of an account being compromised but it can also
affect the user as they are more difficult to remember and enter into systems. Often a user who is
authorised access for a system is denied access due to the inability to correctly remember complex

credentials (Mahnken 2014).

Keyboard biometrics allows for an additional layer of security on top of standard password systems

with minimal inconvenience to the user in terms of usability (Peacock et al. 2004). Analysis of typing
dynamics is transparent to the end user with no additional actions required to complete the process
with the exclusion of the enrolment process (Bartlow & Cukic 2006). It is worth noting however that

the user template may be generated incrementally, for example during the first ten login instances.

2.2. Basic Principles of Keystroke Dynamics

Keystroke analytics is at its core focused on the analysis of gathered user biometric information.
Identified user typing characteristics are compared against a reference template with a set threshold
of variability. Given the typing characteristics match within the set threshold the user is authorised

to access the system (Douhou & Magnus 2009).

Variations may exist between access attempts due to external factors such as drowsiness,
distractions, and changes between input devices. These must be accounted for if the system is to

operate reliably.

A keystroke biometrics system consists of the following processes:

1. Data 2. Feature 3. Classificaton 4. Decision 5. Retraining of

Acquisition Extraction and Matching Making Template

Figure 2.1: Keystroke Biometric Analysis Process

18

1. Data Acquisition: (Also known as Feature Acquisition)
e Raw keystroke data is collected from the user typing in a text field.
2. Feature Extraction:
The data from step one is processed and a reference template (Of the user’s typing
characteristic) is created.

e A feature vector is created which contains the biometric characteristics of the authorisation

attempt (Moskovitch et al. 2009).
3. Classification and Matching:

e Extracted features are categorised and appropriate mathematic principles applied to
prepare the data set for use in the following stages.

e May use either statistical or machine learning methods for the matching algorithm.
Compares the typing characteristics of the current access attempt to a stored reference
template.

4. Decision Making:

e Using the calculations made in the matching algorithm of stage 3, the system determines if

the login attempt is from the genuine user or a potential intruder.
5. Retraining of Template:

e As the typing characteristics may slowly change over time as the user becomes more
accustomed to typing the password, the reference template needs to be updated (Teh et al.
2013).

Keystroke dynamics may be implemented to either verify or identify users based on their typing
characteristics. Verification is where the characteristics are used to prove the user is who they are
claiming to be. Identification is where the system searches a list of known characteristics in an
attempt to determine who the user is (Teh et al. 2013).

The system may be implemented as either static or dynamic, wherein static systems check the
typing characteristics once when the user is authenticated and dynamic systems continually check

the characteristics (Teh et al. 2013).

2.2.1. Types of Biometric Data Used to Differentiate Users
Typically the inputs to a biometric analysis system are either character or numerical inputs. Inputs
may be either long or short texts, in which the distinction is based on the length of the input to the
system.

e Short inputs include those commonly expected to be entered into an authorisation system,

such as usernames and passwords.

19

e Long inputs are concerned with inputs of a hundred or more words, such as paragraphs of
input text (Teh et al. 2013).
The majority of literature available focuses on short input systems, this may be due to the fact that

these systems are easier to gather test data for and have more simplified implementations.

To create an accurate reference template it is required that the genuine user enter the text string

multiple times (Teh et al. 2013).

Collected typing characteristic features may include the:
e Total number of character strokes inputted
e Average, standard deviation, maximum and minimum key hold time
e Average, standard deviation, maximum and minimum of key press delays.
o Number of shift key presses
e Dwell time (Time between pressing a key down and its release) and flight time (time

between two successive key presses)

Key 1 . Key 2
Pressed Released Pressed
Dwell Time Flight Time
(Key 1) (Key 1 to Key 2)

Figure 2.2: lllustration of Dwell Time and Flight Time

Most available literature uses dwell and flight times as a primary source of developing a typing
characteristic. This data is relatively simple to gather from software and has shown to provide

promising performance results, see Table 2.1 (Kellas-Dicks & Stark 2012; Teh et al. 2013).

More advanced typing characteristics include:
e Keystroke speed, the relative speed at which characters are typed
e Overlapping key presses, where another key is pressed before the previous is released

e Typing errors (E.G. Common mistakes and frequency of mistakes) (Moskovitch et al. 2009)

Timing resolutions of between 1 and 100 milliseconds are suitable for comparing typing
characteristics (Teh et al. 2013). Additionally it has been shown that the performance of keystroke
biometric systems increases with string length, with a suggested length of 13 to 15 characters for

short input systems.

20

Extensive research into the distinguishing ability of typing characteristics is presented in a patent

held by Kellas-Dicks and Stark (2012), prominent methods are shown in Table 2.1.

Table 2.1: Distinguishing Ability Of Selected Typing Characteristics (Kellas-Dicks & Stark 2012)

Typing Characteristic Definition Distinguishing Ability
Sum of Dwell Time Sum of dwell times for input 1.2337
Dwell Time (min) Minimum dwell time 0.6882
Dwell Time (max) Maximum dwell time 0.8296
Sum of Flight Time Sum of flight times for input 0.5922
Flight Time (min) Minimum flight Time 0.8529
Flight Time (max) Maximum flight Time 0.6229

2.3. Methods of Implementing Keystroke Dynamics

Classification Methods:

In regards to classification, there are two main categories of methods which are commonly

implemented, statistical analysis and machine learning.

Classifier Popularity By Field

Other
2%

Machine
Learning
37%

Statistical
61%

m Statistical = Machine Learning = Other

Figure 2.3: Usage of Classification Approaches

Statistical classification methods are more popular than machine learning approaches with a

popularity of 61% compared to 37%. Methods other than these are rarely used (Teh et al. 2013).s

Statistical classification methods include:
e Use of mean, median and standard deviation.

e More advanced methods such as cluster analysis, probabilistic modelling and distance

measurements.

Traditional methods, such as absolute, Euclidean and Mahalanobis distance have been shown to

have poor results for the classification process as shown by Bartlow and Cukic (2006).

Contrastingly Teh et al. (2013) show that distance and generic statistical methods are amongst the

top classification methods featured in existing literature from the field, as shown in Table 2.2.

Table 2.2: Classification Methods Featured In Keystroke Research (Teh et al. 2013)

Method Percentage Distribution of Scaled Percentage
classification method (Rounded)

Distance 53 23
Neural Network 36 16
Generic Statistical 35 15
Probability 32 14
Generic Machine Learning 20 9
Clustering 19 8
Decision Tree 13 6
Evolutionary Algorithms 9 4
Fuzzy Logic 8 3
Other 5 2

Commonly used machine learning methods in current literature include neural networks, decision
trees, evolutionary algorithms, fuzzy logic and support vector machines (Teh et al. 2013). Bartlow
and Cukic (2006) have stated that random forests show promising performance results as a

classification method.

Machine learning methods which may be implemented include: OneR, Naive Bayes, Voted

Perceptron, Logit Boost, C5.0 and Random Forests (Bartlow & Cukic 2006).

22

System Implementation

Implementation of the various components of a keystroke dynamics system will vary depending on
the system’s design and requirements. Whether the analysis process is performed entirely client side
(Generally a bad idea for authentication systems with respect to system security), with only the
signatures database handled by a server, or whether a server is responsible for all tasks except for

feature acquisition is a design choice which must be considered (Moskovitch et al. 2009).
Front End

The front end of the system (which the end-users interacts with) may comprise of either a specially

made software program or an existing web browser (Moskovitch et al. 2009).

Gunetti and Picardi (2005) have shown the viability of using a JavaScript based implementation of
keystroke analysis to gather timing information with a system considering free text inputs. Their
research showed performance results of 5% for False Rejection Rate and 0.005% for False
Acceptance Rate. Details regarding the possible formatting of collected data is presented, where the
proposed system includes a combination of the character pressed and the time at which it was

pressed (in milliseconds).
Example:0a120b190c752m910h
Back End

The complexity of the backend system which stores the user biometric signatures varies depending
on the system’s implementation and the classification algorithm implemented. Typically a signature
database is stored on a server which contains the reference templates with which the authorisation

attempt biometric characteristics are compared (Moskovitch et al. 2009).

It is crucial that typing characteristic data is stored securely, as this information may be used to
design a system to allow malicious individuals to pose as the user even on other authentication

systems (Peacock et al. 2004).

Details regarding the implementation of signature databases are not fully presented in any of the
literature read, which may be due to the nature of the signatures changing between implementation

methods.

23

2.3.1. Typing Data Collection
Commonly a data collection system gathers the following information:

Time at which the key is pressed
Unicode value of the key being pressed

Time for which the key is depressed (delay time)

P wnNpoR

Time between releasing the current key and pressing the next key (flight time)

2.4, System Performance Analysis

A keystroke biometric system may exhibit the following response to an authentication attempt:

Authorisation is successful for a legitimate user
Authorisation is unsuccessful for a legitimate user (Error Type 1)

Authorisation attempt by an unauthorised user is prevented

P W bpoR

Authorisation attempt by an unauthorised user is successful (Error Type 2)

A well performing system will ensure that responses 1 and 3 are achieved, whilst minimising the

occurrences of responses 2 and 4 (Chuda & Durfina 2009).
The performance of keystroke dynamic systems is typically measured using error rates.

e False Acceptance Rate (FAR) is the rate in which a biometric system will authorise a user
who should not have access to the system.

e False Rejection Rate (FRR) is the rate in which a biometric system will not authorise a user
who should have access to the system.

e Equal Error Rate (EER) is the threshold values for which the FAR and FFR are equal (Bartlow
& Cukic 2006).

The transparency of the system must also be considered. A well-designed keystroke analysis system
does not significantly decrease the usability of the system into which it is being integrated (Teh et al.

2013).

24

2.5. Storage of Typing Data using MySQL

2.5.1. Reasons for Using MySQL

Multiple software packages are available for storing collected information on a web-server. It is not
necessary that MySQL be used for storing the collected typing information, however for the reasons

listed it has been selected.

MySQL exhibits that following beneficial characteristics:

e Ease of use: Comprehensive knowledge of SQL is not required to interact with the database.
A few statements is sufficient to read from and write to the database.

e Security: Years of development have been put into MySQL. Privileges can be set to control
access and the database is password protected.

e Cost: Available for free, licensed under the GPL (Schwartz 2009)

e Scalability: Capable of handling very large databases.

e Flexibility: Numerous data types can be stored within the database.

e Portability: Capable of running on various operating systems (Benefits of MySQL 2015)

2.5.2. Interacting with the MySQL Database
For interacting with the MySQL database, PHP Data Objects (PDO) have been selected to be used.

PDOQ'’s are a PHP5 extension that define a lightweight and consistent data access abstraction library.

To connect to the system’s database a connection string is used. Connection strings vary in structure
depending on the database system in use. The prefix of the connection string indicates the type of
database system being connected to. The use of connection strings with PDQO’s aids portability

(Popel 2007).
Example: MySQL connection string:

mysql:host=Sservername; dbname = research, Susername, Spassword

Example: PostgreSQL connection string:

pgsql:host=Sservername;dbname=research,user=Susername,password=5Spassword
PDO'’s allow for values or variables to be bound to positional placeholders in prepared statements.

The use of bound values helps to prevent SQL injection attacks with values not needing to be

escaped manually as this is handled by the parameterisation process.

25

Example: INSERT query using PDO’s (PHP: PDO::prepare - Manual 2016):

Ssqgl ="INSERT INTO ‘“typingdata" (userID, username, recordNumber, dataTime, dataDelay, dataFlight,
hash) VALUES (:userlD, :username, :recordNumber, :dataTime, :dataDelay, :dataFlight, :hash)";

For each named parameter a value is then bound to it:

Sstmt = Sconn->prepare(S$sql);
Sstmt->bindValue(":userID', 1, PDO::PARAM_INT);
Sstmt->bindValue(":username', 'Ryan', PDO::PARAM_STR);

After values have been assigned to each named parameter, the query is executed:

Sstmt->execute();

2.6. Storing Typing Characteristic Arrays

As many records are to be stored, with each user having multiple entries recorded it is important
that the data is stored efficiently, and ensured that it will not become corrupt in the process of

storing and retrieving the data.

The PHP serialize functions allows for arrays to be converted into a storable representation in string
format (PHP: serialize - Manual 2016). This allows for the structure of the array to be not lost during
the storage and retrieval process. To return the stored string to the original array structure the

unserialize function may be used (PHP: unserialize - Manual 2016).

PHP also contains functions to allow the encoding of arrays into JSON format and decoding back to

the original array (PHP: json_encode - Manual 2016).

The data to be stored will always have the following characteristics for the system implemented:
e One-dimensional array for each characteristic
e Contain only signed (Both positive and negative) integer values

e |ndividual elements in the data will not need to be modified once stored

As each array is to be stored in one-dimensional, a sophisticated encoding scheme such as the
serialize and unserialize functions is not required. Using delimiter separated values avoids the

overhead associated with serialised arrays and JSON encoding.

To illustrate the size of the overheads for each method consider the following encoded sizes for a
sixteen value array:

e Comma delimited: 64 bytes

e JSON encoded: 66 bytes

e Serialised: 174 bytes

26

Due to the type of data being stored both the comma separated values and JSON encoded values are
similar in value. Although due to the overhead of including an index value for each element in the

serialised encoding it is significantly larger.

Consider for example the following formatting styles:

Comma delimited: 0,37,168,215,275,389,488,578,625,647,734,925,1007,1091,1156,1223
JSON encoded: [0,37,168,215,275,389,488,578,625,647,734,925,1007,1091,1156,1223]
Serialised: a:16:{i:0;i:0;i:1;i:37;i:2;i:168;i:3;i:215;i:4,i:275;i:5,i:389;i:6;i:488;i:7;i:

578;i:8;i:625;i:9;i:647;i:10;i:734,i:11,i:925;i:12;i:1007;i:13;i:1091;i:14,i:1156;i
:15;i:1223;}

It can therefore be seen that for the data collected, it is most suitable to store the values are
delimiter separated values as a string. Under normal operation these values should only contain
integer values and checks should be put into place before storing the data that these conditions are

met.

2.7. Transferring Data between Client and Server

HTML forms are typically used to take inputs from users and process this data. Data may be sent
using either POST or GET methods.

To save the typing characteristics, stored as JavaScript arrays, a form with hidden input elements
which contain the arrays as strings are used. When the user presses submit the form the data is sent
to the processing page where it can be saved into the MySQL database. The processing page is able
to assign the posted data to a variable and use it with the MySQL insertion code outlined previously.

An overview of the collection and storage process is shown in Figure 2.4.

Javascript Array

containing
typing Submit form to
characteristics saving page

Write typing Save typing
characteristics characteristics
to hidden input and hashed

field phrase into
database

Figure 2.4: Data Collection and Storage Process Overview

27

2.8. Storing User Passwords Securely

Although the secure storage of passwords is, in a sense, outside of the scope of this project it is
important it is discussed as it will need to be considered for the implementation of a secure user

authentication system.

For the keystroke analytics system the Unicode values are not stored as it would pose a security risk
by allowing the original password to be reconstructed if the database was accessed by a malicious
user. Checking that the correct password has been entered is performed using a hashed value of the

password.

In this context hashed values are the result of cryptographic hashing algorithms (E.g. SHA256,
SHA512, WHIRLPOOL, MDS5, BCRYPT, etc.) which one-way map strings of various length to a fixed-
length value (Thomsen & Knudsen 2005).

Despite being a one-way function, hashed passwords can be ‘reversed’ through the use of lookup
tables called rainbow tables, which contain a list of messages and corresponding hashes for a given
cryptographic method. Rainbow tables may be counteracted through the use of hash salting. Salting
is a method used to randomise hashes by either pretending or appending another string to the input

message.

The salt value should be randomised and changed for each user when they create an account or
change their password. Additionally the salt should be sufficiently long so that an attacker cannot
create rainbow tables for each salt combination, a general rule is to have the salt as long as the
output hash length. A Cryptographically Secure Pseudo-Random Number Generator (CSPRNG) which
is highly random and unpredictable should be used when generating the salt values (Secure Salted

Password Hashing - How to do it Properly 2016).

PHP offers a packages for one-way string hashing through the password_hash and password_verify
functions (Verifies that a password matches a hash - PHP 2016). It is preferred that the automatic
hash generation feature of password_hash be used, simplifying the implementation process and
ensure that security flaws are not introduced (Creates a password hash - PHP 2016). The
automatically generated salt is read from /dev/urandom. For the current version of PHP (>7), bcrypt
is used as the default key derivation function. Bcrypt is highly recommended due to its ability to

adjust the algorithms cost of hashing (Why You Should use Bcrypt to Hash Stored Password 2016).

Using these provided functions, the password can securely be stored in the database without having

to investigate cryptographic techniques in detail.

28

It should be noted that by storing the press instance information in the database, a malicious may be
able to perform a frequency analysis on the passwords to determine dictionary words. This should
not be a concern for well-constructed passwords, but it may be a potential security flaw for weaker
passwords. Additionally the keystroke information stored allows an attacker to be able to determine
the exact length of the input password, which would significantly decrease the time required to
brute-force the original password. As such it is vital that efforts be made to decrease the change of

the MySQL database being retrieved by malicious users through SQL injection and other exploits.

2.9. Project Methodology

Selection of the project’s implementation methodology or design must take into consideration the

project’s requirements, scheduling and resource availability.

2.9.1. Software Development Process

The system’s development follows a phase development methodology. As such the system is
represented by several smaller subsystem which follow their own development cycles. After the
development cycle for all of the subsystems has been completed they are joined together to create

the final system. This is shown graphically in Figure 2.5 adapted from McLeod and Everett (2006).

| Investigation Stage |

e N
| Analysis | Analysis
Phase 1 < | Design . | Design > Phasen
| Implementation | Implementation
- J

!

| Final Construction |

Figure 2.5: Phases Development Methodology, Adapted From McLeod and Everett (2006)

Separating the program into subsystems aids the testing process by allowing each module to be

thoroughly tested for functionality before the final system is formed. Unit tests are tests which are
conducted on a module of the software package. As such test cases can be constructed to confirm
that the software is functioning as required before proceeding to the final construction stage. This

will be discussed in a later section.

29

The system can naturally be dissected into discrete major components which inform the
development of the successive phases. For example, the manner in which the typing data is

collected will inform the database technology required to store such information.

30

Chapter 3 The Design and Implementation of User Input

Collection System
3.1. Setup of the Testing System

This section covers the process of preparing the system on which the keystroke analytics program is
to be prototyped and tested before it is uploaded to the online testing server. Whilst the local
development system could be implemented on any major operating system, only Windows will be
considered in this chapter. The reason for this decision is that the development software for this

project has been purchased for the Windows operating system.

Additionally covered is the setup of the online testing server. This will assume that the server has
been freshly installed without any relevant software having yet been installed or configuration

changes made.

Finally the process of transferring files between the local development system and the online testing

system are outlined.

3.2. Local Development System

As it is not feasible to expect a constant connection not the internet during the development

process, a local development server is installed and configured.

XAMPP (Cross-platform, Apache, MariaDB, PHP and Perl) is a free open-source software package
released by Apache Friends which allowed for local development of systems which utilise PHP and

MySQL (Dvorski 2007).

3.2.1. Using XAMPP
After downloading and installing the XAMPP software package and new directory will be created

located at C:/xampp/htdocs/ this is where all the local development files will be situated.

Opening the XAMPP Control Panel program will display the screen show in Figure 3.1.

31

[E] xAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] - O x

€3] XAMPP Control Panel v3.2.2

Semice Module PID(S) Portfs) Actions &) Netstat
Apache Start Admin Config Logs Bl Shel
WySaL Start Admin Config Logs Explorer
FileZilla Start Admin Config Logs EY Services
Mercury Start Admin Config Logs @ Help
Tomcat Start Admin Config Logs [l auit

11:15:51 PM [main] Checking for prerequisites -

11:15:52 PM [main] All prerequisites found

11:15:52 PM [main] Initializing Modules

11:15:52 PM [main] The FileZilla module is disabled
11:15:52 PM [main] The Mercury module is disabled
11:15:52 PM [main] The Tomcat module is disabled
11:15:52 PM [main] Starting Check-Timer
11:15:52 PM [main] Control Panel Ready

Figure 3.1: XAMPP Control Panel

To allow for local development the Apache and MySQL modules must be started using the respective
start buttons. Once started, the local system is now ready for development. The development files
may be accessed by navigating the web-browser software to the local host using the term localhost

as the host name.

For example: To access the file index.php in the C:/xampp/htdocs folder the URL would be:

localhost/index.php

Administration of the MySQL databases may be performed by accessing the PHPMyAdmin system by

navigating to localhost/phpmyadmin.

For now, this is all that is required for setting up the local development system to run programs

which use PHP and MySQL.

Take note that once finished using the local development system, the XAMPP modules must be
stopped from the control panel by clicking the stop buttons located next to the PHP and MySQL

modules as shown in Figure 3.2.

32

D XAMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] - O X

=] XAMPP Control Panel v3.2.2 / coni
Modules)
&) Netstat
Service Module PID(s) Port(s) Actions @ Telsa
17 . .
Apache 2394722 80, 443 Admin Config Logs B Shell
MySaL 17764 3306 Stop Admin Config Logs Explorer
FileZila Admin Config Logs ¥ Services
Mercury Admin Config Logs & Help
Tomcat Start Admin Config Logs [l Quit
[1:42:12 PM [Apache] Attempting to stop Apache (PID: 34332) ~

[1:42:12 PV [Apache] Attempting to stop Apache (PID: 10444)
11:42:12 PV [Apache] Status change detected: stopped
114213 PM [mysql] Status change detected: stopped
114213 PV [mysql] Attempting to start MySQL app
114214 PV [mysql] Status change detected: running
[1:42:14 P\ [Apache] Attempting to start Apache app..
[1:42:14 PV [Apache] Status change detected: running

Figure 3.2: XAMPP Control Panel with Running Modules

3.3. Hosting Options

There are multiple options available for hosting the online testing system. One approach would be to
port-forward the local networks router to the machine hosting the program to allow others to access
the local server. This however would require that the development machine be continually online at

any time the online testing system is being used.

Another possible option is to rent a small server from a provider which hosts the system
permanently. A virtual private server (VPS) is suitable for the system requirements. VPS’s are virtual
web servers which operate on top of a physical server. Through virtualization multiple private
servers which are independent of each other may operator on a single machine. As such the
operator of the VPS is given complete control over their server to do as they please. Additionally

many VPS hosts provide a control panel where administrative tasks may be performed.

There are many providers of VPS’s online and it is not important which providers is selected for the
purpose of this project so long as the server is running a Linux based operating system. Selecting a

server is outside of the scope of this project.

33

3.4. Setting up Server

For the purpose of completing the following section it is assumed that the server has been

connected to remotely via secure shell (SSH). To set up the server the LAMP (Linux, Apache, MySQL

and PHP) stack is to be installed and configured. This software bundle is similar to the XAMPP

package installed for the local development system and will allow for the server to host dynamic

web-pages (Sverdlov 2012b). As the server is already running Linux the first of the four components

of the stack has already been set up.

The following installation commands assume that a Debian based operating system is being used.

3.4.1. Installation and Configuration of Apache?2

Assuming that the server has not yet had any software installed and is running a freshly installed
version of Linux, the next task which must be completed is installing Apache 2. Apache 2 is a web
server used with Linux systems. This is the software which handles the PHP scripts and MySQL

databases for the program (HTTPD - Apache2 Web Server n.d.).
The installation process is completed by running the following commands in the terminal window:

sudo apt-get update

sudo apt-get install apache2

This is all that is required to install the software. Once complete by navigating a web-browser

towards the server IP address a confirmation page should appear.

3.4.2. Installation and Configuration of MySQL and PHP
MySQL is an open-source relational database management system (RDBMS). Relational database

systems are controlled by the use of Structured Query Language (SQL) (Converse et al. 2004).

PHP (Hypertext Pre-processor) is a server-side scripting language, which is a module of the Apache

HTTP server and as such cross-platform compatible (Converse et al. 2004). A range of databases are

supported by PHP as well as server operating systems (What can PHP do? 2016).
Before installing software packages, ensure the system’s package list is up to date by running:

sudo apt-get update

34

Installing MySQL (A Quick Guide to Using the MySQL APT Repository 2016):
To install MySQL run the following command:

sudo apt-get install mysql

After completing the installation process, check MySQL is running using:

sudo service mysql status

Installing PHP:

sudo apt-get install php5-common libapache2-mod-php5 php5-cli php5-mysql
After completing the installation process, restart the Apache2 server using:
sudo service apache?2 restart

3.4.3. Installation and Configuration of PHPMyAdmin
PHPMyAdmin is a front-end interface for managing the MySQL system. The system is capable of
managing the MySQL databases and tables as well as other tasks including importing and exporting

data (Bringing MySQL to the web 2016).
Installing PHPMyAdmin (Sverdlov 2012a):

To install PHPMyAdmin run the following:
sudo apt-get install phpmyadmin apache2-utils

After completing the installation process, add the PHPMyAdmin configuration file location to the

Apache2 configuration file by including the following line in /etc/apache2/apache2.conf
Include /etc/phpmyadmin/apache.conf
Then restart the Apache2 server using:

sudo service apache?2 restart

35

3.4.4. Website Directory Security
To prevent unauthorised users from accessing the system a username and password system may be
implemented to restrict access. A simple method of controlling access is to restrict access to

directories on the web-server (How do | do BASICAuth using .htaccess and .htpasswd? 2016).

Rather than having multiple access credentials, for the purposes of restricting access to the system a

single username and password combination is implemented.
To secure a directory, a file named .htaccess containing the following is added to the directory:

Authtype Basic
AuthName “Restrict System Access”
AuthUserFile /var/www/html/.htpasswd

Require valid-user

Note that the directory containing the .htpasswd file does not necessary have to be

Jvar/www/html/.
The htpasswd command is used to create the password file and add the user:
htpasswd —c /var/www/.htpasswd <username>

After running the above command, the console will prompt for a password to be entered. This will
be the password associated with the username to access the directory. Note that the above
command uses the —c option which specifies to create the file. If multiple users are added remove

this option on subsequent executions of the command.

36

3.5. File Transfer from Windows to a Server

There a multiple options for transferring files between the development machine (Assumed to be
Windows) and the Linux webserver. For the purposes of this system the SCP (Secure Copy) protocol

is used.

PSCP (The PuTTY Secure Copy Client) and WinSCP (Windows Secure Copy) are two tools for using the
secure copy protocol. The former is a command-line option whilst the later features a graphic

interface.
Using PSCP: The PSCP tool is similar to the SCP command used in Linux Systems (Tatham 2007).

For copy files to a remote server the following syntax is used:

pscp [options] source [source...] [user@]host:target

Example: Copy the contents of the local Research folder to the web-server:

pscp C:\xampp\htdocs\Research* research@128.199.139.111:/var/www/Research/

To copy files from a remote server the following syntax is used:

pscp [options] [user@]host:source target

Example: Copy a file from the web-server to the local Research folder:

pscp research@128.199.139.111:/var/www/Research/out.txt C:\xampp\htdocs\Research\out.txt

Usage details for PSCP can be viewed by running the pscp without specifying any options or

arguments.

Using WinSCP: The WinSCP tool is an open-source client for the using the SCP protocol, as well as

multiple others (Introducing WinSCP 2014).

Contrastingly to PSCP, the WinSCP tool features a graphical interface shown in Figure 3.3. Through
this interface the system directories may be traversed and files copied between the local

development machine and server in an intuitive manner.

37

"B Research - root®128.199.139.111 - WinSCP - O X
Local Mark Files Commands Session Options Remote Help
ol % @ Synchronize Bl r;{:; & - & & Queue ~ - Transfer Settings Default © 9‘ ©
& ro0t@128.199.139.111 [New Session
i C: Windows =] 2 e Research - 5 O 2 @ Find Files T €= -
= =
C\xampp\htdocs\Research varfwww/html/Research
Name Size Type Changed v Name Size Changed Rights Owner
. Parent directory 16/08/2016 4:42:04 PM o 31/08/2016 9:53:01 AM TWXT-XT-X root
tmp File folder 15/09/2016 3:43:07 AM 2 indexhtml 1KB 12/07/2016 7:48:54 PM W-r--f-- root
Eingang File folder 26/08/2016 3:46:12 AM
ExportData File folder 16/08/2016 1:16:33 AM
0Bof0Bin0of3 0Bof233Bin0of1
& SCP 0:01:19

Figure 3.3: WinSCP Interface

The system to collect typing characteristic data from the user is now discussed. This includes the
development of the algorithm to collect raw data as well as the interface the user interacts with. In
order to test the functionality of the collection system first a system is created to store and display
information from an attempt. Furthermore MATLAB is used to visualise access attempts, to confirm

the feasibility of using the collected information for user verification.

Before the typing data collection system is discussed, concepts relating to JavaScript must be
examined. Firstly the event-driven programming model is discussed and its application using

JavaScript outlined, which includes the use of event handlers.

38

3.6. Characteristic Collection Code

3.6.1. Data to be Stored
The data to be stored for each login attempt (Additional to identifying information) consists of:
1. Cryptographic hash of password value
Key-down timing information
Length of time the key was depressed in milliseconds (Delay Time)

2

3

4. Length of time between key-up and the following key-down events (Flight time)

5. Instance of key press, which is used to identify keys that are the same Unicode value
6

Special modifiers (Such as whether the shift key was pressed)

From this information other typing characteristics can be determined, such as if keys were held

down or repeatedly pressed.

The full program list of the typing data collection system is provided in Appendix B.1: Typing Data

Collection System.

3.6.2. The Event-Driven Programming Model

In the event-driven programming model code blocks are executed in response to asynchronous user
input, such as key presses or mouse clicks. The web-browser creates events in response to inputs
from the user, which invoke an event handler to execute a defined response. An event handler is

simply a subroutine which is called when the associated event is invoked.

Event handlers can be assigned to an element using the addEventListener() function. This method
allows for more than one handler to be assigned to an element event. Contrastingly the

removeEventListener() function can be used to remove a listener which has been previously assigned
(Mozilla Developer Network 2016h).

3.6.3. Implementation of Collection Code
The keystroke analytics system is concerned with events associated with keyboard input. The

following events are available:

1. onkeydown: when a key is depressed while the element has focus
2. onkeypress: when a key is presses and releases a key while the element has focus

3. onkeyup: when a key is released while the element has focus (Flanagan 2006)

39

For the system being created, the onkeydown and onkeyup event handlers are used. Using these

events the key value, press type, keyboard location and modifier states can be extracted.

Attaching event handlers to the password field:

// Assign identified to password field

var element = document.getElementByld('password');
// Set user focus to password input field
element.focus();

// Attach event handlers to password element

if (element.addEventListener) {
element.addEventListener("keydown", keyHandler, false);
element.addEventListener("keyup", keyHandler, false);

} else if (element.attachEvent){
element.attachEvent("keydown", keyHandler);
element.attachEvent("keyup", keyHandler);

}

Figure 3.4: Assigning Event Handlers to the Password Field

The purpose of this code section is to allocate a function as the event handler for the key up and key
down events of the system’s password field. Two methods are used to attach the handler

addEventlListener and attachEvent.

The member function addEventListener is the standard method used for attaching a handler to an
event for all browsers with the exclusion of Internet Explorer. Rather than using addEventListener,
Internet Explorer uses the attachEvent member function. As such both methods must be provided

for cross-browser compatibility (Flanagan 2006).
Extracting the event key code:

There are significant problems with determining character code values between different browsers.
Many methods are either deprecated or not available to all web-browsers. For future
implementations of a web-based keystroke analytics system alternative methods of extracting the

key code may need to be investigated.

It should be noted that different web-browsers may return different values for the same key event.
Whilst the code values are generally the same for alpha-numeric values, symbol values return
different values. For example the semi-colon symbol returns 59 for Firefox, 186 for Internet Explorer

and 59 for Opera (Wolter 2012).

For a production system it would be important that this be accounted for by either using a more

consistent method of writing code to map these values to a common value. As this project aims to

40

implement a conceptual level solution, a method offering more consistency between browsers will
be considered outside of the project scope. For an already made solution, future developers may be
interested in using a library package such as JQuery which offers a normalised key event solution

(The jQuery Foundation 2016).

For the time being, the which and keyCode methods are used to determine the code associated with
a key event. Using these methods for each key down and key up event a numerical value is returned

indicating the key pressed.

var code = (event.which) ? event.which : event.keyCode;

Figure 3.5: Code to Extract Key Code Value

Detecting key event type:

To reduce the amount of duplicate program code, the same event handler code is used for both the
key down and key up events with code executing depending on the event type. To determine the
event type the type member function is used on the event data element. A simple if statement may

be used to check if the type was keydown or keyup and take appropriate action.

// Detect a keydown event type
if (event.type =="'keydown') { ... }

// Detect a keyup event type
if (event.type =="'keyup'){... }

Figure 3.6: Event Type Detection Code

Detecting key event location:

For the shift key it is important that the system distinguishes between the left shift key and the right
shift key. The location member function can be used to determine this characteristic. To check
whether the left or right shift was pressed, the result can be compared against the constants
DOM_KEY LOCATION_LEFT and DOM_KEY LOCATION_RIGHT respectively. These values simply

enumerate the values 1 and 2, respectively.

For the keystroke system we make the simplification as saying that the code for left shift is 16 and

therefore the right shift key may be represented by -16.

// Set different code for right shift than left shift

if (event.location === KeyboardEvent.DOM_KEY_LOCATION_RIGHT && code == 16){
code =-16;

}

Figure 3.7: Shift Location Detection Code

41

Detecting key shift modifier:

The final event characteristic which must be considered is detecting whether the shift key was
depressed whilst another key is pressed. To achieve this the shiftKkey member function is used. The
member function returns true if the shift key was depressed when the event occurred, otherwise

false is returned (Mozilla Developer Network 2016d).

3.6.4. Restricting the Keyboard Inputs
To simplify the system’s logic some restrictions are applied to the password input field. These are

that the user:

Cannot use the mouse to change the cursor position
Cannot use the keyboard arrow keys to move the cursor position

Cannot hold down keys for repeated input events

P wobp o

Cannot use the autocomplete functions of the web-browser
Preventing moving the text cursor with the mouse:

There is not presently an easily implemented option to disable the mouse from being used to move
the input cursor in a text field. One work around is to update the field value when a click even occurs

which causes the cursor position to reset to the end position.

The following event handers may be used:

element.addEventListener("click", function(){ this.value = this.value; });
element.attachEvent("click", function(){ this.value = this.value; });

Figure 3.8: Code to Prevent Using Mouse to Move Text Input Cursor
Preventing moving the text cursor with the arrow keys:

To restrict the use of the arrow keys to move the text cursor, simply test for the appropriate key

codes and then call the preventDefault member function which inhibits the default action.

// Prevent cursor keys from being used to move the typing cursor left and right
if (code =='37" || code =="'39") {

event.preventDefault();

return;

Figure 3.9: Code to Prevent Moving Input Cursor with Arrow Keys

Prevent holding down a key from registering as multiple presses:
To prevent the user from being able to hold down a key to register multiply key presses, test for the

repeat member function and then prevent the default action if it is true.

42

// Detect and prevent repeat key presses
if (event.repeat) {
event.preventDefault();
event.returnValue = false;
return;

Figure 3.10: Code to Prevent Repeat Key Press Events

Prevent browser autocomplete function from being used:
For a form, the autocomplete function can be disabled by setting the autocomplete attribute to off

(Mozilla Developer Network 2016a).

<form id="typingDataForm" method="post" action="match.php" autocomplete="off">

Figure 3.11: Example Use of Autocomplete Attribute on a Form

3.6.5. Miscellaneous Functions

Detecting when the page has finished loading

The data logging system should not be started until all of the page elements have been loaded. This

can be achieved using the onload member function of the browser window object as follows.

// Call main function when page is loaded
window.onload = function() {
main();

|2

Figure 3.12: Code to Delay Execution Until The Page Has Loaded
Tracking elapsed time:

Rather than using timers to log the total time elapsed since the first key stroke the Date object can
be used. A Date object is created when the user first starts typing and for each key press event, a
new date value is evaluated. By subtracting the two values, the difference in milliseconds is

obtained.

// If start time is not defined, set it
if (GLOBAL_START_TIME == undefined) {
GLOBAL_START TIME = new Date();

}

// Find the time now, and therefore the total elapsed time
var now = new Date();
var time = now - GLOBAL_START_TIME;

Figure 3.13: Code to Track the Total Elapsed Time

43

3.6.6. Storing the Key Press Data
JavaScript is based on prototypal inheritance, where rather than defining class constructors the

programmer defines an object using function like syntax (Mozilla Developer Network 2016b).

For example an object may be defined as:

// Key element object, stores timing information
function keyElement(time,character) {
this.time = [time];
this.character = character;
this.caselist = [];
this.widthlList = [];

}

Figure 3.14: Example Code for Defining an Object Class in Javascript

And an object may be instantiated as:

// Create an entry for the key in the keyElements data structure
keyElements[code] = new keyElement(time, String.fromCharCode(code));

Figure 3.15: Example Code for Instantiating a New Object in Javascript

Object properties are defined through declaring variables within the object function. The this
keyword refers to the object itself. These are public variables and can be accessed using the

following syntax: InstanceName.Property

Private properties can be defined by using the var Property syntax rather than this.Property,

however getter and setter functions must be defined to access them outside of the object.

Methods can be assigned to JavaScript objects using the prototype property. To access as an object’s
method, use the following syntax InstanceName.Method(). It is important that the brackets be
included when calling the method. Additionally methods may have parameters passed to them if

defined.

// Adds key press event for given character
keyElement.prototype.addPress = function(){

}

// Call object method function
keyElements[code].addPress();

Figure 3.16: Example Code for Defining and Calling an Object Method

44

Now that a basic structure for JavaScript objects is known the object to store the key press

information can be designed and implemented.
For each key press event, the following information should be recorded:

Character: The printable character associated with the object.
Delay Array: List of times that the key was pressed down for (Dwell times).

Shift Array: List of values indicating if the shift modified was applied for each press.

P W bpoe

Time Array: List of times at which the key was pressed down.

keyElements[82]

Object { time: Array[1], character: "R", caselist: Array[1], widthList:
Array[1] }

Figure 3.17: Contents Of A Key Element Object

For the purpose of increasing the program’s readability it is advantageous to define methods

associated with the key press object. There include:

1. Add Press Event: Records the dwell time and shift modifier for key event.
2. Add Time Value: Records the time at which the key was pressed.

3. Add Case: Records the shift modifier value for the key event.

To logically structure the key element objects they may be added to another object where the

character code is used to map to the appropriate key element object.

keyElements

object { 13: Object, 16: Object, 48: Object, 49: oObject, 63: Object,
69: Object, 76: Object, 8@: Object, 82: Object, 85: Object }

Figure 3.18: Object Mapping Character Codes to Key Element Objects

45

The collection code is attached to the key down and key up events. The process is as shown:

Yes

START

Yes
Is START_TIME defined?

Set START_TIME as now

Repeat key press?

Prevent default action

Yes

Left or right arrow key?

Set Cursor Position to end of
field

v

Map non-printable codes to
equivalent ASCII values

Is keyboard location right?

Adjust character code to
reflect right shift press

No

Key Press Logic ¢

Figure 3.19: Flowchart Showing Logic for Typing Data Collection

46

To restrict the flowchart size to a single page the main collection logic is shown as a sub-system in

the following flowchart. The following chart represents the Key Press Logic sub-process.

START

Is press type
key up?

Is press type
key down?

Object exists
for character code

Yes Create object for character

Record key press time

!

Record shift modifier value

Record key dwell time

Is enter key press?

No

L

Collect typing data into array

y

Sort array by time data

y

Calculate flight times

v

Group time, code, delay,
flgiht and shift data

1]

Copy grouped data into form
elements

L

Submit form

Figure 3.20: Flowchart for Data Collection Subsystem

From the collected data the flight times may be calculated as follows:

flight, = time,,, —(time, + delay,)

(3.1)

To perform the above calculation the data must first be collected and sorted with respect to time.

The process for this is:

1. Collect all of the key element object data into an array.

2. Sort by the time column using the sort member function.

As described in Section 2.7 the data is now sent to the server for processing through the use of

hidden input fields in a form.

47

3.7. Classification Algorithm Design

3.7.1. Introduction

Statistical classification involves the use of a model to group sets of data into distinct groups, based
on a decision function. Classification in this context is the process of categorising the authentication
attempts as being either genuine or an imposter. Generally a probability model is implemented
which determines the likelihood that a set of data is meant to belong in a certain class (Michie et al.

1994).

The purpose of this chapter is to design and implement an algorithm capable of performing this

classification through the application of statistical theory.

Teh et al. (2013) state that statistical distance methods are the most popular method of
classification. Note however that Bartlow and Cukic (2006) have stated that their initial attempts
using distance based classification algorithms yielded poor performance for absolute, Euclidean and
Mahalanobis methods. Supporting this Ali et al. (2016) suggest that in modern systems machine
learning techniques are preferred. Considering the time constraints of this project, the simpler

approach of Euclidean distance measurement is selected for implementation.

3.7.2. System Assumptions
As stated previously to simplify the design of the classification algorithm some restrictions have been

placed on the system. These are that the user cannot:

1. Move the cursor left and right using the arrow keys
2. Use the mouse to navigate the cursor to a different position

3. Hold a key down to register as multiple key inputs

These restrictions significantly simplify the system’s design. Note that if a system designer wished

these may be accounted for.

3.7.3. Data Set Observations

To design an algorithm to classify the data, first its nature must be understood. For this a dataset of
thirty genuine login attempts are examined. The phrase chosen for the dataset is “Prelude01!” which
is an example of a common password. This password could be cracked using software capable of
dictionary attacks and performing basic transformations such as prepending digits and symbols

(Shaffer 2014).

48

Delay Time Data for Phrase "Prelude01!™

400
m
£ 300
£
= 200
s
= 100
a)
0
Shift p r e u d e 0 1 Shift Enter
Key Press Event
400 Flight Time Data for Phrase "Prelude01!"
m
£ 200
£
s 0
S -200
o
-400
@*‘&Q] N o N & N4 o o \%“&\ %&‘\" \‘{/(\@
Key Press Event
Figure 3.21: Visualisation of Observation Dataset
Table 3.1: Variance of Delay Characteristic for Observation Dataset
Character | Shift p r e u d e 0 1 Shift ! Enter
Delay
187 64 167 38 123 55 394 90 85 123 | 3017 | 187 78
Variance
Table 3.2: Variance of Flight Characteristics for Observation Dataset
Transition | Shift P R E L u D E 0 1 Shift !
> > > > > > > > > > > >
p r e I u d e 0 1 Shift ! Enter
Flight
249 335 88 264 28 483 778 542 869 764 | 1805 | 6128
Variance

Figure 3.21, show the delay times and flight times associated with the access attempts recorded. A

closer grouping of data points represents a more consistent typing style. The data points have been

aligned as described in Section 3.7.4 before plotting. Outliers have not been removed, so the true

value for the variation between the attempts can be appreciated.

From Figure 3.21, Table 3.1 and Table 3.2, the data points are fairly consistent excluding the shift

character and the final press of the enter key. Excluding the characteristics for the ‘Enter’ key press

may improve the system performance as it is not part of the input phrase and some users may

choose to press a button on the page to submit rather than press enter. Otherwise the data-points

49

are fairly consistent and should be able to be used to verify access attempts. The use of variances
will be revisited in later sections for use in setting the importance of each key press in the

verification process.

If desired, outliers may be removed using statistical methods to create a more consistent data set.
Although removing these from the training data may cause an increase in false rejection rates;

where a genuine user is rejected access.

3.7.4. Data Set Preparation
In preparation for the classification algorithm, the dataset must be prepared to allow multiple
attempts to be compared. This involves aligning the data points for each attempt. Additionally

outlier removal/replacement is considered.
Removing unnecessary data points:
Consider the following attempt for the phrase ‘Prelude’:

o) (=) 0 L LD) L] ()

di d2 ds da ds de ds ds
f1 f2 f3 fa fs fs fz

For each key event there are associated delay and flight times. Now consider the following attempt

where the user has made an error and deleted the mistake.

Lo) (o) (1) (o) (] (s J 1) (] () ()

di d ds da ds ds ds ds do d1o
f1 f2 f3 fa fs fs fz fs f9

Notice how this shifts which delay and flight indices are associated with the characters following the
mistake correction. This causes a problem when we compare these metrics to in the classification

algorithm. The solution to this problem is to remove data points which misalign the data set points.

Note that removing the flight data causes the problem that a data point is now not available. For the
above example the flight time between the ‘e’ key and the ‘I’ key is not available. To solve this

problem a randomly selected value from another attempt in the training set may be substituted in.

50

The following cases have been identified as resulting in misalignments:

Repeated successive shift key presses
Shift key pressed but released before it has an effect on the following key

Use of the backspace key

P W N

Shift key followed by the backspace or enter

The logic for each case is:

1. If an event and the event following it are both shift key presses, remove the first press as it

has no effect.

Oms 100ms 200ms 300ms 400ms 500ms

Figure 3.22: Illustration of Multiple Successive Shift Presses
Detection logic: (‘c[l]‘ == 16) AND (‘c [i + 1]‘ == 16)

Action:
e Remove shift press code and delay at i
e Remove flight time j-1

e Substitute flight time i with one randomly selected from the other training data attempts

51

2. If an element contains a shift press event, and the shift modifier for the next element is not

true remove the element as it has no effect.

Oms 100ms 200ms 300ms 400ms

Figure 3.23: lllustration of Shift Key with No Effect on Following Character
Detection Logic: (‘C[l]‘ == 16) OR (S [i+ 1] ==)

Action:

e Remove shift press code and delay at i
e Remove flight time j

e Substitute i-1 with flight time randomly selected from training data

3. If an element contains a backspace press, remove both it and the element preceding it; but

check first if the preceding element exists.

Oms 100ms 200ms 300ms 400ms 500ms 600ms

Figure 3.24: Illustration of Character Being Backspaced

Detection Logic: ¢ [l] -
Action:

1. Remove code and delay data for element and the element preceding it.
2. Remove flight times i
3. Ifiis greater than 2, remove i-1 and substitute i-2

o Elseifiis greater than 1, substitute i-1

52

4. If an element contains a shift press and the successor event is for the backspace key, remove

the data for the shift press as it has no effect.

Oms 100ms 200ms 300ms

Figure 3.25: Illustration of Shift Being Held While Backspace Is Pressed

Detection logic: (|c[i]| ==16) AND (|c[i+1]|==8 OR [c[i +1] =13

Action:
e Remove shift press code and delay at i
e Remove flight time j-1

e Substitute flight time i with flight time randomly selected from other training data

The application of the listed cases will align the data for use with the classification algorithm.
Outlier Detection and Removal

In terms of time values for delay and flight times, the threshold for outlier removal varies widely
between literatures. Teh et al. (2013) state that the range of average keystroke timing values are
between 96 and 825ms. Other sources don’t enforce a lower bound but rather an upper threshold

such as 500ms in the case of (Gaines et al. 1980) and 750ms for (Umphress & Williams 1985)

These are average values however and should not be taken as strict limits. From the collected typing
samples, timing values less than 96ms were common and as such a lower bound will not be set for

the system.

In order to maximise the number of data points available for generating the user template, it is

important that access attempt data, where possible, is retained. The method implemented, outlined
in (Giot et al. 2011), allows for the other data points to be used even if outliers are present in a set of
data. Rather than excluding an entire set of typing data for containing an outlier, the outlier is simply

replaced with a known ‘good’ value from the other access attempts.

53

Detecting an outlier is performed using statistical methods based on the interquartile range and
quartile values. Values deviating by more than 1.5 inter-quartile ranges from the Q1 and Q3 values

are considered as outliers (lllowsky & Dean 2013).

Quartiles are found by sorting the data and separating it into quarters. In terms of equations these

are defined as:

0= (nTHjth term 32)
o[22 e o
0, = (B(HTH)}}I term (3.4)
IOR =0, -0, (3.5)

Graphically this is depicted as:

Q1 Q2 Q3

50% of Data

Minimum Median Maximum
«— Inter-Quartile Range —

Figure 3.26: Graphical Depiction of Quartiles

The interquartile range indicates 50% of the data around the centre (median) value. Values which
are 1.5 times the interquartile range less than Q1 (Lower quartile) or greater than Q3 (Upper

quartile) may be identified as potential outliers (lllowsky & Dean 2013).

Therefore the condition for identifying potential outliers is:

(x<Q1-1.5I0R) OR(x > 03+1.5I0R) (3.6)

Where x is the value being tested.

54

Substituting potential outlier values is relatively straight forward and involves replacing the value

with a randomly select value from a pool of non-outlier values.

3.8. Statistical Analysis Methods

To implement the classification logic for the system a distance based statistical method is used. The

following section examines relevant theory and implementation approach.

3.8.1. Relevant Theory: Pythagoras’s Theorem and Euclidean Distance

Consider the following:

[3,5]

distance = /2 distance = 1

[2/4] R mmmimm i

distance = 1

Figure 3.27: Illlustration of Pythagoras’ Theorem for 2D Space

In Figure 3.27, the distance between two points in a 2D space is illustrated as being the square root

of the summation of the distance in each dimension squared.

This can be generalised for two J-dimensional vectors as:

J
d.,= Z(xj —Jj)2 (3.7)

Jj=1
Where x and y are both arrays of values.
This formula forms the basis of Euclidean distance measurements.

For the classification algorithm, weighted Euclidean distance techniques are used to determine the

similarity between the access attempt and the stored reference template. This variation on the

55

standard Euclidean distance measure accounts for the varying importance of the key presses in the

attempt.

For example, from the training set if it is identified that one of the key press events in the phrase
exhibits a high degree of variability, a larger variation from the stored value in the reference
template is acceptable to a degree. Therefore the weight metric is directly related to the variances in

the training data set.

Variance is determined by taking the squared differences of the data points from the mean of the
sample. For data points which are grouped close together, the variance is low relative to a more

dispersed set of data.

Variance may be calculated for a sample of a population using:

i(xf_f)z

J=1

N-1 (3.8)

Where X , the mean is calculated as:

1=
=

=l
I

N (3.9)

The weighted Euclidean distance equation is:

J] 2 J 2
d.,= Z;—(xj—yj) = Z;wj(xj—yj) (3.10)
j= j=

2
S

Where N is the number of elements in the arrays, x and y are input arrays of values.

56

3.8.2. Application to Keystroke Biometrics

Consider the flight data show in Figure 3.28, and the variances in Table 3.3:

Flight Time Data for Phrase "Prelude™

|

50

Flight Time (ms)
o

-50 :

0 1 2 3 4 5 6 7 8

Key Press Event

Figure 3.28: Flight Time Data for Training Set

Table 3.3: Variances Associated With Flight Time Data

Event 1 2 3 4 5 6 7
Number

Transition | SHIFT-p p-r r-e e-l [-u u-d d-e
Variance | 238.9 158.8 91.0 269.9 49.2 162.9 51.4

From Table 3.3, is can be seen that the spread of the data points from the training data sets varies
significantly. By assigning as weight to each, the characteristics which are more likely to vary can be

accounted for, improving the FRR (False Rejection Rate) metric; although if too much allowance is

given the FAR (False Acceptance Rate) performance metric may deteriorate.

57

3.9. Template Generation

Template generation involves creating a set of data to be used when checking access attempts for

their validity. The template is created using data collected from the user called the training set, from

which the collected delay and flight times are used; along with the shift modifiers for data point

alignment. Ali et al. (2016) suggest that a maximum of ten attempts be recorded to generate the

user template, as more may deter use of the system. As stated previously in a production system

this enrolment process may be performed incrementally across multiple logins.

Training Sets

Flight Values,
Delay Values,

Algorithm 1

Unicode Values,
Shift Modifier Values,
Phrase Hash

Outlier Removal Euclidean Distance
Calculations
Prepared/Alligned Values A

Algorithm 2
Calculate Mean and
Variance

Algorithm 4

Q3 and IQR Values

Mean Values

l\/ariance Values

Algorithm 3
Calculate Weights

Weight Values

Database

» Template

Figure 3.29: Data Flow Diagram for Template Generation Process

Phrase Hash

Algorithm 1 is discussed in Section 3.7.4 and algorithm 2 in Section 3.8.1. The following section will

focus on the theory behind algorithm 3 and 4 as well as the structure of the template stored.

The algorithm sequence for generating the template is:

1. Read in the training data set from the MySQL database table

2. Remove outliers (Optional and may not be necessary depending on system performance)

3. Transpose delay and flight arrays from training sets into column form, as the data has to be

in column-wise form.

4. Determine weighted Euclidean distances between mean and training data for delay and

flight times.

a.

b.

Calculate Q1, Q3 and IQR for each column of data

Substitute outliers with another randomly selected value non-outlier value

Determine mean and variance for each column of data

From variances, calculate weight values

Using the training data sets, determine the Euclidean distances between each and

the mean values.

58

i. Calculate Q1, Q3 and IQR for the distances to create an upper limit for

differences between template and attempt.

3.9.1. Calculating Mean, Variance and Weight:
When retrieved from the MySQL database the delay and flight times are loaded in row format, in
order to calculate the mean, variance and weight the program must first collect the data in column

format. This is achieved by transposing the row data from the database table.

Table 3.4: Example of Data Loaded From Mysql Table

Column 1 2 3 4

Row 1 90 65 99 63

Row 2 157 | 78 95 64

Row 3 94 75 78 47

Once in column format, calculating the means, variances and weights is simply a case of applying the

equations listed in Section 3.8.1. The result will be of the following form:

Table 3.5: Example of Column-Wise Calculations

Column 1 2 3 4
Mean 84 73 91 58
Variance 5882 46 124 91
Weight 0.002 | 0.022 | 0.008 | 0.011

From here the weighted Euclidean distance calculations can be performed for each training data set

row.

3.9.2. Euclidean Distances Calculations
For a decision to be made whether the distance metrics of an attempt are indicative of a genuine
access attempt, first the distance values for actual attempts must be determined and then outlier

detection performed. To achieve this the distances for the training data sets are determined.

59

As with Section 3.7.4, the inter-quartile range and quartile values are used to determine if an
attempt is an outlier, also known as an imposter attempt. Unlike the outlier removal algorithm in

Section 3.7.4, a gain value is associated with the inter-quartile range to tune the acceptance rates.

To allow the outlier detection system to be tuneable a gain value is associated with the upper limit

of the decision code as shown in Figure 3.30. This allows the system to be made stricter or more

lenient.
Q3 gain * (Q3 + 1.5 X IQR)
100% 0%

Figure 3.30: Use of Gain on Upper Limit for Matching System

Mathematically this is expressed as:
Upper Bound = gain x (Q3(dm) +1.5xI0R,,,) (3.11)

This equation and the importance of the gain value will be revisited again in a later section.

To illustrate this process, consider the data from Table 3.4 and Table 3.5:

Table 3.6: Data Necessary to Calculate Euclidean Distances

Symbol Column 1 2 3 4
Row 1 90 | 65 99 | 63
X Row 2 157 | 78 | 95 | o4
Row 3 94 | 75 78 | 47
y Mean 84 73 91 58
i et 0.002 | 0.022 | 0.008 | 0.011

60

Calculate the weighted Euclidean distances for each access attempt (row) using (3.10

J 2
drow(l) = Z;Wj (xj _yj)
J=

= /0.002(90—84)’ +0.022(65—73)" +0.008(99—91)’ +0.011(63-58)’
=1.506
d, ., =3.425

d =1.724

row(2)
row(3)

After the distances for each access attempt in the training set have been determined, the inter-

guartile range and quartile values can be determined.

These values are stored in the user template for use in the classification algorithm. The equations

from Section 3.7.4 are used to determine these values. This process is repeated for both the flight

and delay times.

61

3.9.3. Template Structure

The template structure consists of the following:

Table 3.7: Template Structure for User Typing Characteristic

Element Name

Description

UserID Number uniquely identifying user

Username Username associated with the template

Flight Means Mean values for flight times from training data set
Flight Weights Weight values for flight times from training data set
Delay Means Mean values for delay times from training data set

Delay Weights

Weight values for delay times from training data set

Flight IQR Inter-quartile range of weighted Euclidean distances for flight data from
training data set

Flight Q3 3" Quartile value of weighted Euclidean distances for flight data from training
data set.

Delay IQR Inter-quartile range of weighted Euclidean distances for delay data from
training data set

Delay Q3 3™ Quartile value of weighted Euclidean distances for delay data from
training data set

Hash Hash of password value to compare access attempt with

62

3.9.1. Decision Making

Using the template generated in the previous section, a decision can now be made regarding the

access attempts with respect to their validity.

Consider the following information extracted from a user template:

Table 3.8: Example User Template

Element Name Data

Username Ryan

Flight Means -72.5,67.6,-26.1,20.4,95.3,1.8,118.3,85.7,76.5,83.8,-56.2,12.3

Flight Weights 0.00182, 0.00033, 0.00087, 0.00106, 0.00222, 0.00076, 0.00045, 0.00019,
0.00046, 0.00117, 0.00382, 0.00285

Delay Means 134.7,68.1,98.1,77.1,53.9,74.5,73.4,65.7,68.7,60.1,124.4,61.8,68.9

Delay Weights

0.000628, 0.007221, 0.009119, 0.004045, 0.007149, 0.006407, 0.007637,
0.009781, 0.004424, 0.004440, 0.002337, 0.006989, 0.008326

Flight IQR 1.38699
Flight Q3 4.11022
Delay IQR 0.932524
Delay Q3 4.03685

Also consider the following login attempt:

Table 3.9: Access Attempt Data

Element Name

Data

Delay Times

121,80,80,80,52,72,84,64,48,35,256,60,68

Flight Times

-88,40,-36,-32,92,-52,81,104,112,48,-104,84

63

Assuming that the data points have already been aligned as outlined in Section 3.7.4, the weighted

Euclidean distances is calculated as performed previously using (3.10.

J
dattempt(delay) = \/zl w; (xj —Y;)2 =5.671
j=

J
dattempt(ﬂight) = \/Zl Wj (xj - yj)2 = 7094
J=

Using these a match percentage may be calculated. There are two approaches which may be used
here. A strict cut-off limit, or a graduated percentage based match. For a strict cut-off approach,
simply test if the distance metric calculated is greater than the upper bound. The percentage based

match is designed as follows.

For the data in Table 3.8, the upper bounds can be calculated as:

Upper Bound ., = Oy sy + (K g X TOR 1,) = 4.11022+1.38699K

Slight

Upper Bound,,;,, = Oy delay) T (K detay X TOR de,ay) =4.03685+0.932524K ;..
Values for the gain constants may be determined experimentally from a collection of training sets
and login attempts. This will be examined in a later section when evaluating the systems
performance.

A distance metric which is equal to or greater than these bounds is considered a non-match (0%).

Distance values less than or equal to the third-quartile are considered complete matches (100%).
The values in-between and uniformly distributed to form the range 1% to 99%.

ain x(Q3—1.5xIQR) [—distance
Match% = [g (Q Q)] x100 (3.12)
gainx(Q3—-1.5xIQR)
This may be simplified to:
Match% = 41— —_distance x100 (3.13)
gainx(Q3-1.5xIQR)

The result of these equations will be a percentage between 0% and 100% that indicates how closely

the attempt matches the stored template.

64

3.10. Summary

From the above, an algorithm for determining the degree to which an access attempt matches the
stored training set has been designed. From a collection of ten training attempts a reference
template can be generated which is used to determine the validity of an access attempt.

In order to complete the design of the system a gain value to set the distance limits must be
determined. This task will be completed in a later section when the performance of the system is

evaluated. Depending on the type of system implemented the designer may wish to make this value
stricter or allow for a greater amount of variance in access attempts.

65

Chapter 4 Implementation
4.1. Introduction

Using the information from the previous chapter, several systems may now be implemented to form

the keystroke analytics system.

First the development system is implemented to ensure that the typing data collection system is
working correctly. Then the collected typing data is visualised in MATLAB to confirm it is relatively
consistent. Then the template generation system is created to create authentication templates from
locally gathered data. Next the typing data collection code is transferred over into an online system
to collect data from users remotely. Finally the demo system which forms the concept keystroke

biometrics system is implemented.

4.2. System Overview
The system implementation is separated into five sections as shown in Figure 4.1:

1. The development system: A local system used to test the development of the data
collection system and data visualisation.

2. The template generation system: Used to convert collected training data into an
authentication template.

3. The data collection system: An online system used to collect data from other users in order
to test the systems performance.

4. The demo system: An online system allowing users to login into an account and view their
match percentages.

5. The MATLAB system: A local system used to generate plots from collected typing data.

These system are all linked by a common MySQL database which stores the collected typing data

and authentication templates.

Te lat .
Development emp a. - Data Collection Demo System MATLAB
System Generation

66

Figure 4.1: Overview of System Sections

4.3. Development and Data Viewing System

The first program implemented was the development and data viewing system which allowed for
the data collection code to be tested and for the storage of this information for later use.
Additionally the system is capable of rendering timeline graphs of the typing events so that access
attempts can be visually compared. The full program code listing for this system is given in Appendix

B.2: Development System.

4.3.1. System Overview
The graphical interface for the system is shown in Figure 4.2. The user interacts with the system by

typing a phrase into the input field at the top of the page. Upon pressing a key the respective key is
highlighted on the on-screen keyboard. By clicking on an on-screen key the events recorded for that
character are displayed at the bottom of the page. After inputting a phrase, pressing the “Render
Timeline” button causes a timeline plot to be rendered and displayed to the user, as shown in Figure
4.3. Finally the raw typing data collected can be viewed in tabular form, as in Figure 4.4 by pressing

the “View Raw Data” button.
Test Phrase

Render Timeline View Raw Data Send Data

1 2 3 4 5 6 7 8 9 0 - =

z X C \ B N M , . /

Left Shift Right Shift Caps Lock Backspace

Info for: E, identifier: 69
Press 0: Time: 185ms, Length: 40ms
Press 1: Time: 1270ms, Length: 60ms

—
—

Figure 4.2: Data View System Graphical Interface

67

The timeline plot consists of three levels, one for character presses, one for space presses and one

for shift modifiers. If a shift modifier has been applied to a key the symbol is coloured red, otherwise

the symbol is yellow. The left-hand-side of the event rectangle is the start time of the press and the

width is the time that the key was pressed for (dwell time).

Oms 100ms 200ms 300ms 400ms 500ms 600ms 700ms 800ms

Figure 4.3: Example Timeline Rendering from Data Viewing System

The data output page is simply a table, consisting of column headers with the respect data points
listed under each header. The table is opened in a new window.

Phrase: Test Phrase

Time (ms) Unicode Instance Delay (ms) Flight (ms)
Shift (ms)

0 16 0 116 =24
92 84 0 85 8
185 69 0 40 68
293 83 0 72 -8
357 84 1 80 -12
425 32 0 60 4
489 16 1 136 -52
573 80 0 64 124
761 72 0 92 28
881 82 0 57 32
970 65 0 92 -60
1002 83 1 96 172
1270 69 1 60 undefined

Figure 4.4: Example Raw Data in Table Form from Data Viewing System

The implementation of the keystroke data collection system has been previously described in

Section 3.6, and therefore will not be repeated here.

68

4.4. HTML Timeline Plot using Canvas

The timeline plot showing the key press events is created using the HTML5 canvas element along

with JavaScript to draw the output.

The canvas element is used to create graphics dynamically using JavaScript. The first step to using
the canvas is to define the rendering context. This context may be 2-dimensional or 3-dimensional. It
is important that the script check that the canvas element is supported before attempting to utilise
it. This may be performed by testing if the getContext function is accessible (Mozilla Developer

Network 2016e).

// Wait until all of the window elements have loaded
window.onload = function() {
// Get the canvas element
var canvas = document.getElementByld(‘timeline’);
var context;
// Check that canvas is supported by browser
if (context = canvas.getContext(2d’) {
// Browser is support
}else {
// Browser is unsupported
}
Iy

Figure 4.5: Code for Checking If Canvas Element Is Supported By Browser
To use the canvas it is important to understand how objects are positioned within it. The origin is set
as the top-left corner labelled (0,0). Positions are indicated as a tuple value consisting on a horizontal
offset (x) and vertical offset (y) (Mozilla Developer Network 2016c). The horizontal value increases to

the right and the vertical value increases downwards, this is shown in Figure 4.6.

69

(0,0) Increasingvalue —
’ -
> Y-axis

Canvas Element Canvas Height

<— |ncreasing value

Canvas Width

¥

X-axis

Figure 4.6: Canvas Positioning System Illustrated

Now the canvas positioning system is understood, rectangles representing the press eventsmay be
drawn using the fillRect command. The fillRect command is used to draw a rectangle of the canvas
provide a position, width and height. Contrastingly the clearRect command is used to clear an area

of the canvas, provided the same parameters. The syntax for these commands are:

fillRect(x, y, width, height);
clearRect(x, y, width, height);

The colour of the rectangles being drawn can be controlled using the fillStyle parameter and setting

it to the desired colour (Mozilla Developer Network 2016f).

Text may be placed on the canvas using the fillText command (Mozilla Developer Network 2016g)

which uses the following syntax:

fillText(text, x, vy);

Two parameters which should be considered are the font, textAlign and textBaseline modifiers.

These can be used to control the style and positioning of the text. For example the following may be

used to set the text style and positioning:

70

// Define text style
context.textBaseline = "middle";
context.textAlign="center";
context.font = "14px Sans-Serif";

Figure 4.7: Code to Change Canvas Text Styling

The previously described functions are all that are required to create the timeline plot shown
previously.

The pseudocode for the canvas generation code is:

algorithm render_canvas is
Get canvas element by ID
Get canvas 2D context
Clear canvas and set background as white
for O to canvas length, increment by 100px do
Draw vertical line at position and label marker with position
end
for each key element in element list do
for each key instance in key element do
Set key type based on character code
Get text value to output based on character code
Set text position to centre of rectangle based on time
Set offset based on event type (Character, space, shift)
Draw rectangle and write text inside rectangle
end
end
Convert canvas to PNG image
Output image to webpage
return

Figure 4.8: Pseudocode for Rendering Timeline Plot

4.5. Output Raw Data in Table Form
To output the typing data in table form, a new window is opened and the data is written to it. To
achieve this a new window is created using the window.open command and then the document is

accessed as by the document member function of the new window.

// Open new window to output data to
var exportWindow = window.open("","Data Output Window","status=no");
var exportTo = exportWindow.document;

Figure 4.9: Code to Open a New Window to Export Data To
The window can now be output to using the writeln member function of the new document. The

data can now be displayed by looping through the grouped data generated in through the process

shown in Figure 3.20.

4.6. Storage of the Collected Data
Sending the data to the MySQL database is achieved by copying the grouped data into the hidden
HTML form elements, as described in Section 2.7, which is submitted to another output page. In the

output page, the data is inserted into the database as described in Section 2.5.2.

4.7. Template Generation Algorithm
The logic of the template generation algorithm has been thoroughly covered in Section 3.9. As such

this section will only briefly discuss the details regarding the implementation of the system.

The template generation code is implemented in PHP and the program is to operate on the server-
side of the system. The full program cost listing for this system is provided in Appendix B.5: Template

Generation System.

4.7.1. Align Input Dataset with Template
Firstly the dataset alignment code will be discussed. The logic for this section is introduced in Section

3.7.4 To implement the dataset alighment code a function is created which allows for the original

data to be passed in and the alligned data arrays are returned.

Character Code Shift Modifier Delay Time Flight Time
Array Array Array Array

| |
!

Dataset Allignment
Function

v v v

Alligned Code Alligned Delay Times Alligned Flight Times
Array Array Array

Figure 4.10: Black Box Diagram of Dataset Alignment Function

Please note that the efficiency of this function could be improved and this should be investigated
before implementing the functionality in a production system. For now the code outlined provides

on overview on how the system may be implemented.

72

The alignment process operates using a sliding window and multiple passes of the dataset. At each
step the values at the current index position and its successor are processed. At the final step the

second position cannot be processed as it does not exist.

A single pass of the typing data set

Shift Shift Shift Shift Shift Shift Shift Shift Shift
Code Code | | Code Code ||| Code | | Code Code | | Code Code
Step 1 Step 2 Step 3

Figure 4.11: Illustration of Use of a Sliding Window for the Data Alignment Function

This is achieved through the use of two nested while loops. The top-level loop handles the number
of passes to complete, while the inside loop processes each key event in turn. The code is looped
through for the same number of times as there are elements in the input array. An implementation

of this is shown in Figure 4.12.

Siterations = 0;
// Loop until array is sufficiently aligned or loop exceeds iteration limit
Smaxlterations = sizeof(ScodeValues);
// Loop until loop exceeds iteration limit
while (Siterations < sizeof(SmaxIterations)) {
Sk=0;
// Loop through all event data points
while (Sk < sizeof(ScodeValues)) {

Figure 4.12: Code Showing the Use Of Two While Loops In The Data Alignment Code

Before proceeding an important aspect should be mentioned regarding the index position variable
Sk. When a data point is removed, the position variable must be moved backwards to accommodate
this change. In the implementation presented a variable named ShasChanged is used to show the

number of positions that the position index should be moved backwards.

As shown in Figure 4.13, the next part of the code is to retrieve the values for processing. It is
important that a check be made before trying to access the successor values as to avoid index out-

of-range errors.

73

// Get code value at position k
ScharCodeN = ScodeValues[Sk];

// If it exists get code value at position k + 1
if (Sk < sizeof(ScodeValues)-1) {
ScharCodeNp1 = ScodeValues[Sk+1];
}else {
ScharCodeNp1 = null;
}

/7 If it exists get the next shift modifier value
if (Sk < sizeof(SshiftValues)-1) {
SshiftModNp1 = SshiftValues[Sk+1];
}else {
SshiftModNp1 = null;
}

Figure 4.13: Code to Get Code and Shift Values Required
Now that the values for processing have been retrieved, checks may be made for cases which result
in data misalignment, outlined in Section 3.7.4.

First the code to handle multiple successive shift key presses is considered.

// If both positions k and k+1 are for shift press events
if (abs(ScharCodeN) == 16 && abs(ScharCodeNpl) == 16) {
// Remove elements for character code, delay time and shift modifier at k
unset(ScodeValues[Sk]);
unset(SdelayValues[Sk]);
unset(SshiftValues[Sk]);
// Indicate that the array lengths have been altered by 1 position
ShasChanged = 1;
// If the character being processes is not the first element
if (Sk>0){
// Remove the previous flight time
unset(SflightValues[Sk-1]);
// Mark current flight time for substitution
SflightValues[Sk] = NAN;
}else {
// Remove the flight time at the current position
unset(SflightValues[Sk]);
1
}

Figure 4.14: Code to Handle Multiple Successive Shift Key Presses

The PHP unset function (The PHP Group 2016a) can be used to remove an element from an array by
providing both the array and the key for the element to be removed. Note that the array is not
reordered when the element is removed so after each loop iteration the arrays ordering must be
corrected before proceeding. This reordering process is performed using the array_values()

command (The PHP Group 2016b). The array_values() function simply returns the values of an array

74

and by setting this as the value of another array, the elements are correctly ordered. To indicate that
an element needs to have its value substituted it is assigned a value of NaN, this is selected

arbitrarily with the condition that it is a value that will not occur normally in the dataset.

The next logical test considers shift key presses which have no effect on the output phrase, as shown
in Figure 4.15. In order to keep this document concise the full code will not be listed here. Rather

simply the test conditions will be presented.

// If position k is a shift press event and any of the following conditions are also met
// 1. The next position does not have a shift modifier applied

// 2. Position k is the last key press event

// 3. The next key event is a backspace press

// 4. The next key event is an enter press

if (abs(ScharCodeN) == 16 && (SshiftModNpl == 0 | | Sk == sizeof(ScodeValues) - 1
|| ScharCodeNpl == 8 && ScharCodeNpl == 13)) {

Figure 4.15: Logical Test for Unnecessary Shift Press Event

The code to handle the backspace character as well as invalid characters (alt, control, tab) will not be
presented here. The method for testing the character code values and manipulating the value arrays
has been presented in the previous examples.

At mentioned above at the end of each internal loop, the arrays should be updated to correct the
array key ordering, as shown in Figure 4.16.

ScodeValues =array_values(ScodeValues);
SdelayValues = array_values(SdelayValues);
SflightValues = array_values(SflightValues);
SshiftValues = array_values(SshiftValues);

Figure 4.16: Code to Reorder Array Values

75

This process is best explained with an example, consider the following array where an unnecessary

shift press has been made.
After an unnecessary shift press has been removed from the array it may contain values as such:

Array ([0] => 16 [1] => 80 [2] => 82 [3] => 69 [4] => 76 [6] => 85 [7] => 68 [8] => 69 [9] => 48 [10] =>
49 [11] => 16 [12] => 49 [13] => 13)

Notice That The Array Keys Are No Longer In Order, With The Element Relating To Key Five Being

Deleted. After Calling Function Array_Values() The Following Is Obtained.

Array ([0] =>16 [1] => 80 [2] => 82 [3] => 69 [4] => 76 [5] => 85 [6] => 68 [7] => 69 [8] => 48 [9] => 49

[10] => 16 [11] =>49 [12] => 13)

All Of The Elements After The Gap Are Moved One Space Backwards And Processing May Now

Continue.

Consider The Code To Update The Variable Pointing To The Character Position To Be Processed.

// Move position index
Sk +=1 - ShasChanged;

Figure 4.17: Code to Update Position Index

Not accounting for the hasChanged variable and simply incrementing the position index value will
mean that some values may not be processed as a result of the arrays reordering. Considering the
above arrays, after the array is reordered if the position index is incremented from five to six, the

value containing 85 will not be processed.

The final stage of the data alignment code is to insert values into the elements which have been
marked as requiring substitution (A NaN value). There are two variations used for substituting the
data values depending on which part of the system is using the data alignment code. For the
template generation code a ‘good value’ may be selected from another access attempt in the
training data set. For a single access attempt, such as in the matching system, the mean of the flight
times is used. It is preferable that an actual value be substituted in such as with the template

generation system’s code but this is simply not possible with the matching code.

76

// Transform input array from row-wise format to column-wise format
SarrayCols = transposeData(Sarrayln);

// Loop through each column of data

foreach (SarrayCols as Scollndex => Scol) {
// Array to store values which are not considered
// as being potential outliers
SgoodValues = array();
// Stores list of indexes containing potential outliers
Sbadindex = array();

// Determine a list of good values and list of
// indexes for outliers
foreach(Scol as Sindex => Selem) {
// Compare value against bounding limits
if (Selem < SupperLim && Selem > SlowerLim) {
array_push(SgoodValues, Selem);
}else {
array_push(Sbadindex, Sindex);
}
}

// Replace outliers with a randomly selected 'good' value
if (count(Sbadindex) > 0) {
foreach(Sbhadindex as Sidx) {
// Randomly select a 'good' value from set
Srandldx = rand(0, count(SgoodValues) - 1);
// Substitute potential outliers
Sarray[Scollndex][Sidx] = SgoodValues[Srandldx];
}
1
}

Figure 4.18: Code to Substitute Values for Data Arrays in Template Generation Process

Consider the program code shown in Figure 4.18, the process for substituting values with others
from the training data is presented. The first step is to transform the array from row-wise to column-
wise. This simplifies the task of processing the data for each key event and is achieved by
transposing the 2-dimensional array.

After the input array has been transformed, the values are looped through and indexes identified as
potential outliers (including those previously set to NaN) marked as requiring substitution. At the
same time values which are not potential outliers are inserted into a list of ‘good values’ which form

a pool of values to select from when substituting the outlier values.

The final step of the substitution process is to loop through the array once more and replace values

marked as potential outliers with a randomly selected value from the pool of ‘good values’'.

77

The delay and flight time datasets are now ready for use with the rest of the template generation

process.

4.7.2. Calculate Mean, Variance and Weight
The theory for the calculation of the key press event mean, variance and weight is discussed in both

Section 3.8.1 and Section 3.9.1. With the data already being transformed into a column-wise fashion,
this may be easily calculated. The code to calculate these values for each key press event is shown in

Figure 4.19.

// Calculate mean for column
ScolMean = array_sum(Scol)/count(Scol);

// Calculate variance for column

ScolVariance = 0;

foreach (Scol as Sindex => Selem) {
ScolVariance += pow((Selem - ScolMean) ,2);

}

ScolVariance = ScolVariance / (count(Scol) -1);

// Calculate weight as inverse of variance for column
ScolWeight = 1 / ScolVariance;

// Calculate mean for column
ScolMean = array_sum(Scol)/count(Scol);

// Calculate variance for column

ScolVariance = 0;

foreach (Scol as Sindex => Selem) {
ScolVariance += pow((Selem - ScolMean) ,2);

}

ScolVariance = ScolVariance / (count(Scol) -1);

// Calculate weight as inverse of variance for column
ScolWeight = 1 / ScolVariance;

Figure 4.19: Code for Calculating Mean, Variance and Weight of Key Press Events

Calculating the mean is performed by dividing the sum of the data column divided by the number of
elements. To determine the variance apply Equation 7.7 to the array using the previously calculated

mean value. Finally the column weight is taken as the inverse of the column variance.

78

The final task to be completed by the template generation code is to calculate the weighted
Euclidean distance between the calculated template and the access attempts in the training data
set. This allows for the level of variability to be set for the template for use in the matching

algorithm.

// Array to store calculated distance values
SarrayDistances = array();

// Loop through each access attempt and calculate
// weighted Euclidean distance between the attempt
// and the template values calculated
foreach (Sarrayln as SrowIndex => Srow)
{
SweightedAttempt = 0;
foreach (Srow as Sindex => Selem)
{
SweightedAttempt += SarrayWeights[Sindex] * pow((Selem - SarrayMeans[Sindex]),2);
}

Sdistance = sgrt(SweightedAttempt);

array_push(SarrayDistances, Sdistance);

Figure 4.20: Code for Calculating Distances between Template and Training Data

The code in Figure 4.20 is relatively simple, the access attempts in the training data set are looped
through and the weighted Euclidean distance calculated for each. Once the distance for an access
attempt has been determined it is stored in the array arrayDistances. The result is a collection of

distance metrics.

From this collection of distances the values for Q3 and the inter-quartile range are determined, as

outlined in Section 3.7.4.

// Sorts list of Euclidean distances
sort(SarrayDistances);

// Calculate Q1 and Q3 values for distance values
SidxQ3 = round((3*(count(SarrayDistances) + 1))/4);
$Q3 = SarrayDistances[SidxQ3];

SidxQ1 = round((count(SarrayDistances) + 1)/4);
$Q1 = SarrayDistances[$idxQ1];

// Calculate inter-quartile range for distance values
Sigr = $Q3 - 5Q1;

Figure 4.21: Code to Calculate Q3 and IQR for Distance Metrics

79

This Process Has Been Explained Previously And Will Not Be Repeated Here. All Of The Necessary
Values For The User Template Have Now Been Calculated And May Be Inserted Into MySQL

Database As Outlined In Section 2.5.2.

The template generation process should be periodically repeated to ensure that the stored template
reflects the typing style of the user as it changes over time.

4.8. Data Collection System

The user input collection system supplies users with a phrase which they enter for a set number of
times in order to collect typing characteristic information. This system would not form part of a
keystroke analytics system, but rather is used for research purposes to test the system’s
performance. The full program code listing for this system is provide in Appendix B.3: Data Collection

System.
The system consists of three main components:

1. Front-end interface for user input
2. Processing page for handling storing of data

3. MySQL database to store collected data

For the data collection system, users a provided a unique URL which identifies them. For example for

the online collection system a user may be provided with the following link:

http://128.199.139.111/Collection/Input.php?username=Brian&count=0&template=Dominic

The anatomy of the URL get parameters is as follows:
e Username is the unique identifier of the person providing the access attempt data
e Count is the access attempt number, used to keep track of how many attempts have been

recorded

e Template is the name of the account the user is attempt to access, this will determine the

phrase provided.

80

http://128.199.139.111/Collection/Input.php?username=Brian&count=0&template=Dominic

Supplied Credential Data Collection

Please enter the provided password phrase and then press enter,
repeat this until the counter is full.

Prelude01!

]
oa

Figure 4.22: Data Collection Screen, As Seen By the Participant

Once the user has provided their ten access attempts, using the interface shown in Figure 4.22, a

thank you screen is displayed to signal that the collection process is complete (Figure 4.23).

Supplied Credential Data Collection

Thank you for your input.

Figure 4.23: Thank You Screen for Data Collection Process

The data collection system uses the same code as the other systems to collect the user typing
characteristics data, outlined in Section 3.6. In fact the system is almost identical in many ways to
the development systems with the on-screen keyboard and data viewing capabilities removed.
Additionally the data collection system has the ability to recall a phrase from the database and

display it to the user.

The system features ability to recall a phrase from the database and a counter to keep track of the

number of times the user has provided data.

81

Displaying the plain-text template phrase:

The purpose of the templates table is to store the plain-text phrase to display to the user. An

example entry in the template table is shown below.

userlD username hash rawPhrase
0 Ryan $2y$108KIV4EBouvIJONO4hEGARVOc3XcH/b03KO5IXxhI4ZGW... Prelude01!

Figure 4.24: Example Entry in Template Database Table

The values may be retrieved from the database using the code shown in Figure 4.25.

// Read template phrase from database for given username

Sstatement = Sconn->prepare("select * from templates where username = :username");
// Executes the SQL Query

Sstatement->execute(array(:username' => Stemplate));

// Fetches the first row

Srow = Sstatement->fetch();

// Receives and structures data from database
SrawPhrase = Srow['rawPhrase'];

Shash = Srow['hash'];

SuserlD = Srow['userID'];

// Close the connection
Sconn = null;

Figure 4.25: Code to Retrieve Template Phrase from Database

Through embedding a PHP echo command into the page HTML, the phrase may be displayed to the

Prelude01!

Figure 4.26: Example of Displaying Phrase to User

user as shown.

Access attempt counter:

The access attempt counter comprises of ten empty squares at the bottom of the collection page
along with a message displaying the number of login attempts remaining. The counter squares may

take three states:

1. Anempty blue square indicating an attempt has not been made

2. An empty red square indicating that during the last access attempt an incorrect phrase was
entered.

3. Asolid blue square indicating that the last access attempt was successful and data was

recorded.

82

__________ 10 logins remaining

__________ 10 logins remaining

BOOO0000Oce 9 logins remaining

Figure 4.27: States for Access Attempt Counter

The code to display the counter panel is given as:

<div class="countWrapper">
<?php
// Display attempt counter using coloured squares
for (Si=0; Si < 10; Si++) {
if (Si < Scount) {
echo "<div class="countSquare countBlue'></div>\n";
// Display red square to indicate bad attempt
lelseif (SbadAttempt && Si == Scount) {
echo "<div class="countSquare countRed'></div>\n";
lelse {
echo "<div class="countSquare countEmpty'></div>\n";
}
}
echo "<div class='countText'>" . (10-Scount) . " logins remaining</div>";
>
</div>

Figure 4.28: Code to Display Access Attempt Counter

Two PHP get variables are used to control the output of the counter (the count and error

parameters). The count parameters takes a value between 0 and 10 inclusive to indicate the number

of successful attempts. If the error parameter is set to 1, the last access attempt is indicated as

unsuccessful and an empty red square will be displayed.

The values provided for the GET parameter are set in the data saving page depending on the validity

of the data provided.

A check is included on the data saving page to redirect to a thank you page once the counter reaches

ten, indicated that the user has finished providing access attempts.

83

// Check if all require attempts have been made

if (Scount >=10)

{
// Redirect to thank you page
Slocation = "Location: thankYou.php";
// Redirection to defined location
header(Slocation);

}

Figure 4.29: Code to Redirect to Thank You Page Once Finished Gathering Data

In Terms Of Storing The Access Attempt Data, The Process Used Is The Same As That Described In

The Previous Sections And It Stored In The Typingdata Table.

An Access Attempt Is Deemed Either Valid Or Not By Comparing The Hash Value With The Access
Attempt With The Hash Stored In The Template Table. The Password _Hash And Password_Verify

Functions Have Been Mentioned In Section 2.8, And Their Use Is Given In Figure 4.30.

// Hash the phrase supplied by the user on the input page
ShashedPassword = password_hash(Spassword,PASSWORD _DEFAULT);
// Verify the phrase supplied matches the stored template phrase
ScorrectPhrase = password_verify(Spassword,Sphrase);

// If the phrase is incorrect, decrement count (retry attempt)
// and indicate that an error has occured
if (IScorrectPhrase) {

Scount -= 1;
Serror = true;
}else {

}

Figure 4.30: Code for Checking That Inputted Phrase Matches Template Phrase

4.9. Demo Matching System

The demo matching system allows for a user to select another user’s access template an attempt to
login to the system. The interface for the system is shown in Figure 4.31. The purpose of this system
is to illustrate the ability of the system to distinguish between genuine and imposter login attempts.

The full program code listing of this system has been provided in Appendix B.4: Demo System.

The system features two fields that the user may interface with. A drop-down box where the name
of the account they are trying to access is selected and an input field for entering the provided

password.

84

The phrase displayed is not unique to each account for the system shown. Displaying different
phrases for each template may be implemented by gathering the phrases for all of the users then
switching the value using JavaScript. Alternatively the system may redirect the page when a value is

selected and passing a parameter to select the user template to retrieve.

Demo Login Page

Used to get match metrics for stored access attempts against a selected
template.

Ryan v
Prelude01!

Figure 4.31: Interface for Demo Matching System

By selected a different username in the dropdown box, the template the access attempt is
compared against is changed. This could be dynamically loaded in from the template database to

have the system update the list automatically as new users are registered into the system.

Ryan v

Brian
Dominic Prelude01!
Jesse

Figure 4.32: Dropdown Box to Selected User Template

85

Implementing the system into a standard login form requires multiple hidden input fields be added to

the form element to send the collected data as described in Section 2.7.

<input type="hidden" name="username" value="<?php echo Susername; ?>">

<input type="type" style="display:none;" name="timeData" id="timeData">

<input type="type" style="display:none;" name="codeData" id="codeData">

<input type="type" style="display:none;" name="instanceData" id="instanceData">

<input type="type" style="display:none;" name="delayData" id="delayData">

<input type="type" style="display:none;" name="flightData" id="flightData">

<input type="type" style="display:none;" name="shiftData" id="shiftData">

<input type="type" style="display:none;" name="phrase" id="phrase" value="<?php echo Shash; ?>">
<input type="type" style="display:none;" name="userID" id="userID" value="<?php echo Suser|D;
">

Figure 4.33: Input Elements to Store Collected Typing Characteristic Data

In a production version of the system, these elements may be dynamically inserted by the JavaScript

code to simplify the implementation process.

The only other requirements to implement the system are to ensure the form enclosing the login
fields is set to post the data to the correct page (match.php) and that its name matches the one

defined in the collection code (typingDataForm).

<form id="typingDataForm" method="post" action="match.php" autocomplete="off">

</form>

Figure 4.34: Example Definition of Form Element

The data collection process is handled by the JavaScript functions described previously and the

typing characteristic data is sent to the processing pages when the enter key is pressed.

Note that a modified version of this system was used for generating the data used to evaluate the
system performance. Rather than recording the typing characteristic of the user, data is directly

loaded in from the database table into the hidden form elements.

86

The matching page is much more complex than the input page. Only a high level overview of the

matching system is presented, as the individual modules have all be covered previously.

The pseudocode for the matching algorithm is:

algorithm match_attemptis
Connect to MySQL database
Retrieve typing characters from GET parameters sent by input page
Separate retrieved strings into array form
Verify password against stored has value
if password hashes match then
Redirect to input page
end
Get template values from authenticationTemplate table
Align retrieved typing characteristics arrays
if arrays cannot be aligned then
Display error message
end
Substitute mean flight time value in place of outlier flight times
Set the parameters for the matching system
Calculate distance metric for flight and delay time
Calculate match percentages for flight and delay distances
if flight match > threshold AND delay match > threshold then
Display successful login message
otherwise
Display failed login message
end
return

Figure 4.35: Pseudocode for Access and Template Matching System

The majority of the processes in the above pseudocode have already been discussed and their
implementation shown. It is although important to consider the matching system parameters which
may be set by the system designer. For the data analysed the following parameters were seen to

perform well.

// Set parameters for matching code

// These can be used to set how strict/lenient the system is
Sgain = 20;

Sthreshold = 75;

Figure 4.36: Code for Setting the Matching System Parameters

The gain value is used to increase the variability allowed between the distance metrics for the flight
and delay times. This should ideally be set so that genuine access attempts are near the distance
value of the template or less than it. The second parameters sets the limit for match percentage is
considered a genuine access attempt.

87

Consider now the match percentage calculations:

// Determine match percentages for delay and flight metrics
SdelayMatch =100 - ((SattemptDelayDistance - Srow['delayQ3']) / (Sgain * Srow['delaylQR'])) * 100;
SflightMatch = 100 - ((SattemptFlightDistance - Srow['flightQ3']) / (Sgain * Srow(['flightIQR'])) * 100;

// Limit match percentage to range of 0% to 100%
if (SflightMatch < 0)
SflightMatch = 0;
if (SdelayMatch < 0)
SdelayMatch = 0;
if (SflightMatch > 100)
SflightMatch = 100;
if (SdelayMatch > 100)
SdelayMatch = 100;

Figure 4.37: Code to Calculate Match Percentage for Flight and Delay Time Metrics

The equation implemented is discussed in Section 3.9.1 and returns a value between 0 and 100. If

desired the limit bounds may be removed to allow for a greater range of values.

The final process to perform is to check the match percentages against the defined threshold to

determine if the access attempt is genuine.

// Output message to user indicating whether the access attempt was successful
echo '<div style="font-size: 40px; text-align: center; color:rgb(43,150,255); font-family: Sans-Serif;">';
if (SflightMatch > Sthreshold && SdelayMatch > Sthreshold) {
echo "Access granted";
}else {
echo "Access denied";

}

Figure 4.38: Code for Determining If an Access Attempt Is Valid

For the system implemented the end result is to simply output a message where the access attempt
was valid. In a production system a non-genuine attempt may be used to trigger a warning within
the system in a strict implementation or restrict access to privileged information (E.g. stored credit

card information) in a more lenient system.

88

After the system has processed the access attempt the user is display a screen similar to Figure 4.39.

Access denied

Flight Match: 80.55%

Delay Match 74.76%

Try again

Figure 4.39: Output Screen of Access Matching System

Regarding performance it may be noted that the data alignment system’s efficiency may be
improved as a condition can be set to end the process once the length of the access attempt arrays

matches those of the stored template.

// Loop until array is sufficiently aligned or loop exceeds iteration limit
while (sizeof(ScodeValues) I= sizeof(SdelayMeans) && Siterations < sizeof(SdelayMeans)) {

Figure 4.40: Improved Data Alignment Termination Conditions

4.10. MATLAB Visualisation System

As this system is not important to the implementation of the keystroke analytics still it will be
mentioned only briefly. The code associated with this section is given in Appendix B.6: MATLAB
Visualisation and Matching Code. The primary purpose of this system is to read in an Open
Document Spreadsheet which has been exported from the MySQL database and use this data to

generate a plot (as shown in Figure 4.41) for both the flight and delay times.

Additionally a version of the data alignment and access matching systems have been implemented
to see how closely the training data sets match the generated template for the user. For example of
the system’s output see Figure 4.42. The full program code listing for this system has been provided

in Appendix B.6: MATLAB Visualisation and Matching Code.

89

Delay Time Data for Phrase ".tiesRoan1"

300

250

200

=

150

Delay Time (ms)

famslio]

T
—
=

fom e e e TR i
HHEE—

100

fazl
tH

faml\im) in vl
THHT
o o
R
oo oo
R
(R i
=
i

ol e
==

50

t i e 5 shift-R o a n 1 Enter . t
Key Press Event

Figure 4.41: Example Plot Generated By MATLAB Code

Matches Percentages for Attempt:
99.66 99.08 9B8.55 100.00 98.76 96.85 97.88 99.65 97.27 93.43
99.49 97.28 99.57 99.46 95.17 97.80 98.61 97.17 94.69 87.63
Number of Successful Logins: 10

Delay Metric (%):
Flight Metric (%):

Percentage of Successful Logins: 100.00%

Figure 4.42: Output of Match Attempts from MATLAB Code

90

The algorithms implemented (Such as data alighment and matching) are nearly identical to those
used in the previously described system, except in MATLAB code rather than JavaScript and PHP. As

such they will not be presented and discussed again here.

As given in Figure 4.43, the x/sread function is used to read in the typing characteristic data which
has been stored in spreadsheet format. Then the individual items are extracted from the data table

by filtering the appropriate columns of data.

% Read data file 'characteristics.xIsx'
[~,~,data] = xlsread('Ryan.xlsx');
fprintf('Data file has been read successfully.\n\n');

% Store data in appropriate variables
names = data(:,2);

timeData = data(:,5);

codeData = data(:,6);
delayData = data(:,7
flightData = data(:,8
shiftData = data(:,9);

);
).

’

% Done using imported data, so clear it
clear data;

Figure 4.43: MATLAB Code to Read in Typing Characteristic Data from Spreadsheet Format

91

Chapter 5 Testing
5.1. Introduction

Ensuring that the software operates as expected requires testing to be performed. Unit testing for

the software modules is presented in this section.

To investigate the performance of the classification algorithm, it is required that the typing
characteristics of multiple users be collected and examined. This data is collected using the system

described in Section 4.8.

As ethical clearance was not obtained from the Human Research Ethics Committee of USQ for this
research project, human participants could not be recruited to test the system. Publically available
data sets have been adapted to simulate input from other users. As the typing data collected is
identical to that provided in the data set the system’s classification system may be tested as if actual
users were used. The dataset used has been obtained from Kevin Killourhy (2009) and adapted into

the format described previously.

It should be noted that in the dataset used the delay and flight times associated with a shift press
event and the successive key are considered as one event. This will slightly effect the performance of

the system, but will still provide an approximation of the system’s performance.

The process of collecting data from actual users will however be described as it may be beneficial to

others wishing to design a keystroke analytics system or perform further research.

5.2. Software Tests
Unit testing is the process of examining the performance of a software module against test cases

(McLeod & Everett 2006).

5.2.1. Unit Testing the Data Alignment Code
As correct operation of the data alignment code is crucial to the operation of the classification and

therefore the matching algorithm unit testing has been performed to validate its functionality.
The full testing sheet and results are provided in Appendix B.8: Unit Testing Data Alignment Code

The following conditions to test the module performance for have been identified:

92

Table 5.1: Results of Unit Testing the Data Alignment Module

Test Number | Test Title Result
1 Use of backspace key once PASS
2 Use of backspace key multiple times, non-consecutively FAIL
3 Use of backspace key multiple times, consecutively FAIL
4 Use of backspace key multiple times, non-consecutively PASS
5 Use of backspace key multiple times, consecutively PASS
6 Unnecessary shift press at start of input PASS
7 Unnecessary shift press throughout input PASS
8 Unnecessary shift press at end of input PASS
9 Multiple unnecessary shift presses through input, non-consecutively PASS
10 Multiple unnecessary shift presses through input, consecutively PASS
11 Use of the escape key PASS
12 Use of the tab key PASS
13 Use of the control key PASS
14 Use of the alt key PASS
15 Use of the arrow keys FAIL
16 Use of the Windows key PASS

Test Number 2: Use of backspace key multiple times, non-consecutively

Problem: Data points are being removed incorrectly

Cause: Missing line of code to unset the shift modified value associated with an event. As a result the

shift modifiers were miss aligned for the next loop of the modules operation and the values were

not removed correctly. Solution is to include code to unset the shift key modifier along with the code

value.

Test Number 3: Use of backspace key multiple times, consecutively

Problem: Data points are being removed incorrectly

Cause: Same as Test Case 2.

Test Number 15: Use of the arrow keys

Problem: Use of up and down arrow keys causes the data to become misaligned.

Cause: Conditionally checking for the up and down arrow keys was not included along with the left

and right arrow key checks. Solution is to add two checks for the codes associated with the up and

down arrow keys, and prevent them from being recorded.

After applying the lists corrections the system has been deemed as operating correctly.

93

5.2.2. Unit Testing the Data Collection Code
To test the performance of the data collection system the following cases have been identified and

tested to examine functionality.
The full testing sheet and results are provided in Appendix B.9: Unit Testing Data Collection Code.

The following conditions to test the module performance for have been identified:

Table 5.2: Results of Unit Testing the Data Collection Module

Test Number | Test Title Result
1 Short Input (3 characters) PASS
2 Long Input (38 characters) PASS
3 Use of numbers in phrase PASS
4 Use of symbols in phrase PASS
5 Use of left shift key PASS
6 Use of right shift key PASS
7 Use of caps lock key PASS
8 Use of space key PASS
9 Use of backspace key PASS
10 Holding key down for extended period of time (Prevent from registering | PASS

as multiple key events)

From the test results shown in Table 5.1, the data collection system is functioning as expected.
5.3. Preparing Participants

It is recommended that multiple collection session be performed to allow users to learn the phrase

and become more uniform in their access attempts. As the user becomes more familiar with the

phrase the system’s performance increases, this is shown when the performance of the system with

the typing dataset is analysed in Section 5.7.

5.4. Data Collection Process

The system used for collecting the user data has been presented in Section 4.8. Each participant is
provided with a unique identifier and URL, to ensure that the data recorded is distinguishable

between users.

94

5.5. Comparing the access attempts
Using the modified version of the demo matching system access attempts can be recalled from the
MySQL database to be compared against a selected template. The system’s interface is shown in

Figure 5.1.

Data Testing System

Used to get match metrics for stored access attempts against a selected
template.

Reading data for user Jesse, attempt number 3.

Figure 5.1: Interface for Modlified Version of Demo Testing System

As each access attempt is manually recalled and the results recorded with the current system the
sample size for testing purposes was restricted to three participants from the typing data dataset.
The system returns both the match percentage for the flight time metric as well as the delay time

metric.

5.6. Use of the Typing Data Dataset

Using the downloaded data set provided by Kevin Killourhy (2009) the data is copied into an
OpenDocument Spreadsheet and formatted to match the MySQL database structure. The data is
then loaded in the database using the “Import” function of PHPMyAdmin. The dataset provides four

hundred access attempts per user.

To test the system a subset of this data is used, the first ten access attempts and the final ten
attempts. These have been selected as they represent when the user is first learning a phrase versus

when the user has entered it many times and should in theory be quite uniform in their typing style.

5.7. Results of the Test Data

5.7.1. Test Method
The flight and delay match metrics have been collected in an Excel spreadsheet, as shown in Table

5.3, so that further analysis may be performed. For the spreadsheet the threshold for a success

attempt may be set and the False Rejection Rate (FRR) and False Acceptance Rate (FAR) displayed.

95

The first column represents the template being used, or simply put the owner of the account trying

to be accessed. The pairs of columns labelled “Flight Match” and “Delay Match” represent the access

attempt metrics for that users access attempt.

For the dataset the phrase “.tie5Roanl” was used, this is considered a complex password as it is not

a simple dictionary word and number combination such as “Prelude01” or “Password1”.

Table 5.3: Excel Spreadsheet for System Performance

Accessed By

Brian

Dominic

Threshold

FRR (%]

FAR (%]

75|

5|

Jesse

Template Used Access Mumber Flight Match Delay Match Flight Match Delay Match Flight Match Delay Match

Brian

Dominic

Jezze

1

L= = N T s R S 2 B e e < o B - S B S P R X T I = < R - S B R U X

—y
=

50.05
54.4
87.25
g3.38
98.96
3218
an
83.96
30.8
88.89
4163
45.74
5194
43.07
4715
2115
a7
5354
87.25
54.59
72.85
7262
74.28
76.26
75,34
76.02
a7
75.23
76.04
75.69

75.58
87.23
13
87.29
B6.01
84.35
87.9
8372
86.5
86.23
7763
72.26
75.95
73.04
E2.75
711
20.91
70.09
73.64
7h.83
53.03
56.77
46.95
£3.85
43.49
54.44
6123
E4.77
E0.75
56.37

82.78
73.86
55.14
]

24.54
78.25
£5.97
75.34
34.75
£8.53
80.86
54.15
9147
7ia7
B4.63
33.55
8417
866

3346
B4.77
78.85
3.9
7E.75
65.27
7464
74.47
75.25
72595
738

75,13

2.2
7162
6431
7EE
7723
741
75.93
75.96
715
70.058
86.93
90.02
82,36
57.49
98.34
83,38
85.4
83.05
85.03
83.01
56.33
E2.97
43719
54.82
EE.71
E2.57
60.91
EBE.8
6391
47.92

0
058
0
0
29.63
0
.22
3758
5142
48.74
0
19.93
388
B
54.89
29.29
40.33
2469
58.55
£4.29
75.54
85.99
8328
85.29
88.58
a0.28
85.31
B2.E5
3867
B7.75

5542
£3.22
£2.56
BE.47
8126
£3.57
7188
70.29
618
73.02
£5.04
£5.22
E153
75.69
7h.78
£6.33
74.84
76.85
.48
70.45
7.4
78.45
9176
78.32
a7
7742
7743
82.52
79.03
87.56

Note that the subjects in the dataset are identified only through the use of numbers, for the purpose

of easing discussion they have been assigned pseudonyms here.

Cells which have been shaded green are above the match threshold and are therefore considered

successful. If both the flight and delay match values are above the threshold that access attempt is

considered successful.

96

The values for the False Rejection Rate (FRR) and False Acceptance Rate (FAR) are calculated as

follows:
successful,
FARY% = —x100 o
Countimposters
failed enuine
FRR % = —=2 %100 o
count

genuine

By varying the threshold value the Equal Error Rate (ERR) may be calculated as the point where the

false acceptance rate is equal to the false rejection rate. This process is illustrated in Figure 5.2.

(START)

\
Change threshold value

y
Calculate FAR and FRR

Is FAR equal
to FRR?

Record EER

END

Figure 5.2: Processing Of Calculating Equal Error Rate

Note that there may not be a threshold value where the FAR is exactly equal to the FRR and as such

interpolation may have to be used to calculate the EER value.

5.7.2. System Performance for Poorly Known Phrases
First the system’s performance will be analysed for access attempts where the users have not

previously typed the phrase. It is therefore expected that the system will not perform overly well as

the users will not have fully developed their unique style yet for that phrase.

97

A sample size of three users was evaluated with each consisting of ten access attempts

data subset may be described as:

e 10 genuine attempts per template

e 20 imposter attempts per template

e 3templates, 1 per user

The following results were obtained:

Table 5.4: System Performance Results for Poorly Known Phrases

. As such the

Access Attempt By
Template Brian Dominic Jesse
Brian FRR: 0% FAR: 10% FAR: 0%
Dominic FAR: 20% FRR: 0% FAR: 0%
Jesse FAR: 0% FAR: 0% FRR: 0%

The false acceptance rate and false rejection rate may then be calculated as being: 5% and 0%

percent respectively. By varying the threshold value and interpolating the values the equal error rate

(ERR) may be found to be 3.76%. Note that these values are for a rather small sample set and

therefore should only be interpreted as an approximation of the system’s performance.

Table 5.5: Summary of Performance for System for Poorly-Trained Template

Metric Value
False Acceptance Rate (FAR) 5%
False Rejection Rate (FRR) 0%
Equal Error Rate (ERR) 3.76%

Literature suggests that equal error rates of less than 5% indicate reasonable performance (Teh et al.

2013).

5.7.3. System Performance for Well Known Phrases
For the following evaluation the template used was generated after the user has typed the phrase

four hundred times across eight logging sessions, whilst the other access attempts were the first ten

times that the user has entered the phrase.

98

A sample size of three users was evaluated with each consisting of ten access attempts

data subset may be described as:

e 10 genuine attempts per template

e 20 imposter attempts per template

e 3templates, 1 per user

The following results were obtained:

Table 5.6: System Performance Results for Poorly Known Phrases

. As such the

Access Attempt By

Template Brian Dominic Jesse
Brian FRR: 0% FAR: 0% FAR: 0%

Dominic FAR: 0% FRR: 10% FAR: 0%
Jesse FAR: 0% FAR: 0% FRR: 0%

The false acceptance rate and false rejection rate may then be calculated as being: 0% and 3.33%

percent respectively. By varying the threshold value and interpolating the values the equal error rate

(ERR) may be found to be 0%. Note that these values are for a rather small sample set and therefore

should only be interpreted as an approximation of the system’s performance.

Table 5.7: Summary of Performance for System for Well-Trained Template

Metric Value
False Acceptance Rate (FAR) 0%
False Rejection Rate (FRR) 3.33%
Equal Error Rate (ERR) 0%

99

5.7.4. Discussion of System Performance
Considering the following visualisations of the typing data characteristics for the test participant

labelled ‘Brian’. The purpose of this section is show how the grouping of the data points changes

over time.

The points plotted have had potential outliers removed, as would occur within the system before

processing.

300

Delay Time Data for Phrase ".tiesRoan1"

250

)

N
o
o

150

Delay Time (ms

= =)

=i

50

Table 5.8: Variance Of Delay Characteristic for Brian’s Learning Dataset

5 shift-R
Key Press Event

[o]

Enter

Figure 5.3: Visualisation of Delay Time for Brian's Learning Dataset

Shirt
Character Period t i e 5 o a n 1 Enter
R
Delay Variance 350 172 190 379 411 654 630 123 272 321 132

100

Flight Time Data for Phrase ".tie5Roan1"

1600
m

1400

1200

=
o=t
555

-
o
o
o

-

800 il

600 & i

Flight Time (ms)

400

200 i h P %

s
HEHE
Po=)
-5
HE
==
S5
==
A

-200
8 o, 3 A z
K ” 7

[oN
KA o

Key Press Event

Figure 5.4: Visualisation of Flight Time for Brian's Learning Dataset

Table 5.9: Variance Of Flight Characteristics for Brian’s Learning Dataset

t i e 5 Shiftr o a n 1
Transition > > -> > - > - - > ->
t i e 5 Shiftr o) a n 1 Enter
Flight
4171 800 386 33392 | 76140 | 52945 3084 1948 1701 526
Variance
300 Delay Time Data for Phrase ".tiesRoan1"
250
1]
»n 200 i
£
(] m H] o
E 150 g - E i i P i
— i i o i it} B i sl
> i E; i @ H @
= & E% m m m
2 100 . | y e
e] i E
i
50
0
t i e 5 shift-R [¢) a n 1 Enter

Key Press Event

Figure 5.5: Visualisation of Delay Time for Brian's Well Known Dataset

101

Table 5.10: Variance Of Delay Characteristic for Brian’s well known Dataset

Character Period t i e 5 Shirt o a n 1 Enter
R
Delay Variance | 797 464 | 296 | 525 | 441 | 1474 | 99 296 | 662 | 340 | 1174
1600 Flight Time Data for Phrase ".tie5Roan1"
1400
1200
g 1000
(0]
£ 800
= 600
ey
2 400 :
L i m
20 i i I B g
o —8 & 8)
-200
e & N s o:& &4/ % 3, 2, K&
N %,
Key Press Event
Figure 5.6: Visualisation of Flight Time for Brian's Learning Dataset
Table 5.11: Variance Of Flight Characteristics for Brian’s Learning Dataset
t i e 5 Shiftr o a n 1
Transition > > - > -> > -> -> > ->
t i e 5 Shiftr o a n 1 Enter
Flight
643 4984 598 14605 | 4508 | 18642 197 1288 6862 4636
Variance

Consider now the variance changes between the learning dataset and the well-known dataset.

102

Delay Time Variances

1600
1400
1200
1000
800
600
400

ol | ||II ki
A B B
i+ 2 3 4 5 66 7 8 9 10 1

B Learning Dataset Well Known Dataset

o

Figure 5.7: Comparison of Variance for Delay Times in Dataset for Brian

As shown in Figure 5.7, the variance increases between the learning dataset and the well-known
dataset for most key events. The increase at event six may be attributed to it being linked to the
shift press event, which is fairly inconsistent between input attempts as illustrated in Section 3.7.3.
Additionally the spike at event 11 (Enter press) can be accounted for by considering that users may

dwell on the final key press which submits the data.

80000
70000
60000
50000
40000
30000
20000
10000
o N — | — —
1 2 3 4 5 6 7 8 9 10

B Learning Dataset Well Known Dataset

Figure 5.8: Comparison of Variance for Flight Times in Dataset for Brian

It can be seen in Figure 5.8, that the flight time variances significantly decreased between the
learning and well-known datasets. This can be expected as the user is not searching for the next

character to be entered.

103

Note that as a sample size of only ten access attempts are being evaluated these value changes
should not be taken as strict ratios. Rather it should only be observed that the variance between

attempts reduces as the user learns the phrase.

Referring back to Table 5.5 and Table 5.7, the above discussion of variation explains why the false
acceptance rate decreases, whilst false rejection rate increases. This is due to the classification

model becoming stricter as the data used for generating the template varies less.

5.7.5. Suggestions for increasing system performance
In terms of the data set used to evaluate the system the following suggestions could be

implemented to increase the classification performance. Separate the shift key press event from its
successor. As shown the shift press event exhibits a high variance meaning is weighting in the
classification algorithm is relatively low. This means that even if the successor point had a low

variance and therefore a good distinguishing ability its value is lost by grouping the two events.

Note also that the use of weighted Euclidean distance rather than standard Euclidean distance
reduces the effect of the highly variable shift delay times and enter key press flights on the matching

metric.

As stated by Teh et al. (2013) the system performance may be increased by allowing the users to

select their own phrase that they are comfortable with and therefore be made consistent.

5.7.6. Comparison with Systems in Literature
It is difficult to directly compare systems as the input lengths used across studies varies greatly, with

inputs ranging from short phrases consisting of a couple characters to long free text inputs of many
hundred. It is therefore difficult to find studies which match the exact conditions of those examined,

being short inputs considering both delay and flight times using weighted Euclidean distance.

As such other studies will be used to gain an appreciation for what FAR, FRR and EER values are
obtained by similar methods. As stated previously generally equal error rates of less than 5%

indicate reasonable performance (Teh et al. 2013).

For a short input system, Giot et al. (2009) achieved an EER of 4.28% for 5 input repetitions in the
enrolment process. The system used both delay and flight time metrics with Bayesian and Euclidean

methods. Sixteen participants were involved in the study.

Although not using distance based classification methods it is interesting to consider the work of Yu
and Cho (2003), who used an input repetition of 150-400. They were able to achieve an FAR of 0%
and FRR of 0.814%, showing the relationship between the number of access attempts utilised and

system performance.

104

5.8. Summary

The system implemented exhibits promising results with performance metrics comparable to
systems detailed in current literature. In order to gather more actual performance measurements a
larger sample size must yet be considered. As expected the performance of the system improved
when the references template is generated by a user who is highly familiar with typing the phrase

and has developed a consistent typing pattern.

105

Chapter 6 Future Work and Conclusion

6.1. Potential Future Work

While the completion of this project has outlined the process of implementing a proof-of-concept
keystroke analytics verification system there are many improvements which would be required to be
made before implementing it within a production system. For example the system may be

reprogrammed to create a generalised package which may more easily be implemented.

A full analyse of the system’s performance could be undertaken, by automating the process of
loading in the typing characteristic data and recording the flight and delay match percentages
obtained for many templates. This will enable better insight into the classification and matching

system parameter tuning to achieve improved system performance.

A thorough security review of the systems and methods described should be undertaken in ensure

that the verification system is not vulnerable to exploitation by malicious users.

This project may be expanded to include an alarm system and accompanying interface where the
system’s administrator may monitor suspicious activity, such as an account being associated with

multiple invalid access attempts.

An interesting concept encountered while researching similar systems was the use of continually
evolving templates that adapt with the user as they login to the system over time. This avoids the
need to perform training dataset collections periodically, ensuring the system is even more

transparent to the end-user.

Additionally the application of keystroke analytics may be explained into the workplace to test for
worker fatigue. For example a user may be asked to periodically input a phrase to a system and if a

significantly slowing in typing style is recorded, this may indicate a fatigued or distracted worker.

6.2. Achievement of Project Objectives

The aim of this project is to investigate the field of keystroke analytics to design and implement a
proof-of-concept web-based user verification system. The keystroke analytics field has been
thoroughly researched and the options available and methods commonly used presented. This
information guided the system design process for both the collection and storage of typing

characteristic data as well as the classification and matching systems.

106

A statistical based approach was implemented due to decreased complexity as well as such methods
being commonly used currently in the field. A distance based approach was taken which yield

promising performance results.

The data alignment process is seldom discussed in literature and as such care has been taken to
explore this process in detail. Whilst there are still improvements which could be made, the system
provides an improved user experience as it allows them to make mistakes when they are entering

data (such as having to backspace).

Both the development/data viewing system and MATLAB have been used to discuss the variability of
typing data across multiple access attempts to gain an appreciation for the amount of variation
between accesses even for a single user. Methods to account for this variation have been presented,

with the implementation of weighted Euclidean distance.

As shown in Section 5.7 testing the system showed respectable performance metrics of 0% for FAR
and 3.33% FRR with an EER of 0% have been achieved (When comparing a small sample size of
people). These values are well within what is considered a well performing system by literature as

discussed.

Whilst the main objectives for the project were completed, due to time constraints the secondary
objectives were not. These may be undertaken by other researchers performing future work. Using
the methods described in this project numerous applications of keystroke analytics may be explored

without having to first research methods of collecting and storing the associated data.

107

References:

Ali, ML, Monaco, JV, Tappert, CC & Qiu, M 2016, 'Keystroke Biometric Systems for User
Authentication', Journal of Signal Processing Systems, pp. 1-16.

Bartlow, N & Cukic, B 2006, 'Evaluating the reliability of credential hardening through keystroke
dynamics', in Proceedings - International Symposium on Software Reliability Engineering, ISSRE, pp.
117-26, http://www.scopus.com/inward/record.url?eid=2-s2.0-
34547659355&partnerID=40&md5=6dbdae32c687ead4c7c0ceb6dde7d0c50>.

Benefits of MySQL, 2015, Novell, viewed 19 May,
<http://www.novell.com/documentation/nw65/web mysgl nw/data/aj5bj52.html>.

Bringing MySQL to the web, 2016, viewed 15 September, <https://www.phpmyadmin.net/>.

Chud4, D & Durfina, M 2009, 'Multifactor authentication based on keystroke dynamics', in ACM
International Conference Proceeding Series, pp. 21-6,
http://www.scopus.com/inward/record.url?eid=2-s2.0-

77951457507 &partnerlD=40&md5=78347a3a8cbh0300a94e5a49a3¢c4839108>.

Converse, T, Park, J & Morgan, C 2004, PHP5 and MySQL bible, vol. 147, John Wiley & Sons.

Creates a password hash - PHP, 2016, The PHP Group, viewed 11 May,
<https://secure.php.net/manual/en/function.password-hash.php >.

Data breach notification guide: A guide to handling personal information security breaches, 2014,
Australian Government, viewed 20 October 2015, <http://www.oaic.gov.au/resources/agencies-
and-organisations/guides/data-breach-notification-guide-august-2014.pdf>.

Douhou, S & Magnus, JR 2009, 'The reliability of user authentication through keystroke dynamics',
Statistica Neerlandica, vol. 63, no. 4, pp. 432-49, http://www.scopus.com/inward/record.url?eid=2-
s2.0-70450278678&partnerID=40&md5=a03a7a7234f86acd3c73e140b2b0980f>.

Dvorski, DD 2007, 'Installing, configuring, and developing with Xampp', Skills Canada.
Flanagan, D 2006, JavaScript: the definitive guide, " O'Reilly Media, Inc.".

Gaines, RS, Lisowski, W, Press, SJ & Shapiro, N 1980, Authentication by keystroke timing: Some
preliminary results, DTIC Document.

Giot, R, EI-Abed, M & Rosenberger, C 2009, 'Keystroke dynamics authentication for collaborative
systems', in Collaborative Technologies and Systems, 2009. CTS'09. International Symposium on,
IEEE, pp. 172-9.

Giot, R, EI-Abed, M & Rosenberger, C 2011, 'Keystroke dynamics authentication', Biometrics, p.
chapitre 8.

Gunetti, D & Picardi, C 2005, 'Keystroke analysis of free text', ACM Transactions on Information and
System Security, vol. 8, no. 3, pp. 312-47, http://www.scopus.com/inward/record.url?eid=2-s2.0-
33745215614&partnerID=40&md5=369553da759acc5e20d609319edc3c90>.

How do | do BASICAuth using .htaccess and .htpasswd?, 2016, Georgia Tech Office of Information
Technology, viewed 15 September, <https://faq.oit.gatech.edu/content/how-do-i-do-basicauth-
using-htaccess-and-htpasswd>.

108

http://www.scopus.com/inward/record.url?eid=2-s2.0-34547659355&partnerID=40&md5=6dbdae32c687ea4c7c0ceb6dde7d0c50
http://www.scopus.com/inward/record.url?eid=2-s2.0-34547659355&partnerID=40&md5=6dbdae32c687ea4c7c0ceb6dde7d0c50
http://www.novell.com/documentation/nw65/web_mysql_nw/data/aj5bj52.html
https://www.phpmyadmin.net/
http://www.scopus.com/inward/record.url?eid=2-s2.0-77951457507&partnerID=40&md5=78347aa8cb0300a94e5a49a3c4839108
http://www.scopus.com/inward/record.url?eid=2-s2.0-77951457507&partnerID=40&md5=78347aa8cb0300a94e5a49a3c4839108
https://secure.php.net/manual/en/function.password-hash.php
http://www.oaic.gov.au/resources/agencies-and-organisations/guides/data-breach-notification-guide-august-2014.pdf
http://www.oaic.gov.au/resources/agencies-and-organisations/guides/data-breach-notification-guide-august-2014.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-70450278678&partnerID=40&md5=a03a7a7234f86acd3c73e140b2b0980f
http://www.scopus.com/inward/record.url?eid=2-s2.0-70450278678&partnerID=40&md5=a03a7a7234f86acd3c73e140b2b0980f
http://www.scopus.com/inward/record.url?eid=2-s2.0-33745215614&partnerID=40&md5=369553da759acc5e20d609319edc3c90
http://www.scopus.com/inward/record.url?eid=2-s2.0-33745215614&partnerID=40&md5=369553da759acc5e20d609319edc3c90
https://faq.oit.gatech.edu/content/how-do-i-do-basicauth-using-htaccess-and-htpasswd
https://faq.oit.gatech.edu/content/how-do-i-do-basicauth-using-htaccess-and-htpasswd

HTTPD - Apache2 Web Server, n.d., Canonical Ltd., viewed 1 September,
<https://help.ubuntu.com/Its/serverguide/httpd.html>.

Illowsky, B & Dean, S 2013, 'Introductory statistics', OpenStax College, Rice University, Houston,
Texas.

Introducing WinSCP, 2014, viewed 15 September, <https://winscp.net/eng/docs/introduction>.

Kellas-Dicks, MR & Stark, YJ 2012, Keystroke dynamics authentication techniques, Google Patents,
<http://www.google.com/patents/US8332932>.

Kevin Killourhy, RM 2009, Keystroke Dynamics - Benchmark Data Set, Carnegie Mellon University,
viewed 5 October, <https://www.cs.cmu.edu/~keystroke/>.

Mahnken, S 2014, 'Today's authentication options: The need for adaptive multifactor
authentication', Biometric Technology Today, vol. 2014, no. 7, pp. 8-10,
http://www.scopus.com/inward/record.url?eid=2-s2.0-

84905574864 &partnerID=40&md5=c2e420878eb6ecce8cad77708fff64f8a>.

MclLeod, R & Everett, GD 2006, Software Testing: Testing Across the Entire Software Development
Life Cycle, Wiley-IEEE Press,
<http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSWMxEB7aeveNFYWcvLXuJm
myFUSOtBTcw1p70FPJpIMRYWtrF HfO8k-glLeNkwI2TCZV2a-ARC8G3R-

yQQIIV1YjFljSRoGgo R3AiUobapillXKYgf1PRIxXdy3IAqd7hK5sg VtuFMT AEskrXbok4uKZ05VGeAE w
UlnXCaT-GaYJMa-
0QWNI7bCopU6UFOphOzxriDO5bp3ge82)5vLvZXMr3PvSjahGQUOIP85qu2sUEjl2o0bXwRwHDBZg7Sve
tYNjoQnFwPG Dmuon5Ko63FB177jyGpls432YAdducM-NDA7gN2gyQMr7 wh3D-
SoP40a2RTB8iRvVxVH-

ZWg1hGJiQbZhs6B1bP3cpFYvHrAtngi jzCNhoOB2MO7SLWRk4mhWVfyHnvmviMbSyZYYnwNK-6-
onQpQp aclETc98v)QczMnCbJoQ vPZU7 0Z1Ba7PO8dyfxTcNIKWZ>.

Michie, D, Spiegelhalter, DJ & Taylor, CC 1994, 'Machine learning, neural and statistical
classification'.

Moskovitch, R, Feher, C, Messerman, A, Kirschnick, N, Mustafi¢, T, Camtepe, A, Lohlein, B, Heister, U,
Moller, S, Rokach, L & Elovici, Y 2009, 'ldentity theft, computers and behavioral biometrics', in 2009
IEEE International Conference on Intelligence and Security Informatics, 1S/ 2009, pp. 155-60,
http://www.scopus.com/inward/record.url?eid=2-s2.0-
70350051000&partneriD=40&md5=caae8e9851fd6c1c8556d5cebd869c64>.

Mozilla Developer Network 2016a, How to Turn Off Form Autocompletion, viewed 5 October,
<https://developer.mozilla.org/en-
US/docs/Web/Security/Securing your site/Turning off form autocompletion>.

Mozilla Developer Network 2016b, Introduction to Object-Oriented JavaScript, viewed 6 October,
<https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction to Object-
Oriented JavaScript>.

Mozilla Developer Network 2016c, Drawing shapes with canvas, viewed 9 October,
<https://developer.mozilla.org/en-US/docs/Web/APl/Canvas API/Tutorial/Drawing shapes>.

Mozilla Developer Network 2016d, KeyboardEvent.shiftKey, viewed 5 October,
<https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/shiftKey>.

Mozilla Developer Network 2016e, Basic usage of canvas, viewed 9 October,
<https://developer.mozilla.org/en-US/docs/Web/API/Canvas APl/Tutorial/Basic usage>.

109

https://help.ubuntu.com/lts/serverguide/httpd.html
https://winscp.net/eng/docs/introduction
http://www.google.com/patents/US8332932
https://www.cs.cmu.edu/~keystroke/
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905574864&partnerID=40&md5=c2e420878e6ecce8ca477708fff64f8a
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905574864&partnerID=40&md5=c2e420878e6ecce8ca477708fff64f8a
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://usq.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aeveNFYWcvLXuJmmyFUS0tBTcw1p70FPJplMRYWtrF_HfO8k-qILeNkwI2TCZV2a-ARC8G3R-yQQllV1YjFIjSRoGqo_R3AiUobapilIXKYgf1PRJxXdy3IAqd7hK5sg_VtuFMT_AEskrXbok4uKZ05VGeAE_wUInXCaT-GaYJMa-0QWNl7bCopU6UF0phOzxriDO5bp3ge82J5vLvZXMr3PvSjahGQUOlP85qu2sUEjl2obXwRwHDBZq7SvetYNjoQnFwPG_Dmuon5Ko63FB177jyGpLs432YAdducM-NDA7gN2qyQMr7_wh3D-SoP40a2RTB8iRvVxVH-zWq1hGJiQbZhs6B1bP3cpFYvHrAtngi_jzCNhoOB2MO7SLWRk4mhWVfyHnvmvfMbSyZYYnwNK-6-onQpQp_ac1ETc98vJQczMnCbJoQ_vPZU7_oZ1Ba7PO8dyfxTcNlKWZ
http://www.scopus.com/inward/record.url?eid=2-s2.0-70350051000&partnerID=40&md5=caae8e9851fd6c1c8556d5cebd869c64
http://www.scopus.com/inward/record.url?eid=2-s2.0-70350051000&partnerID=40&md5=caae8e9851fd6c1c8556d5cebd869c64
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/shiftKey
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Basic_usage

Mozilla Developer Network 2016f, Applying styles and colors, viewed 9 October,
<https://developer.mozilla.org/en-
US/docs/Web/APl/Canvas API/Tutorial/Applying styles and colors>.

Mozilla Developer Network 2016g, Drawing Text, viewed 9 October,
<https://developer.mozilla.org/en-US/docs/Web/APl/Canvas API/Tutorial/Drawing text>.

Mozilla Developer Network 2016h, EventTarget.addEventListener, viewed 29 September 2016,
<https://developer.mozilla.org/en-US/docs/Web/AP|/EventTarget/addEventListener>.

Peacock, A, Ke, X & Wilkerson, M 2004, 'Typing patterns: A key to user identification', IEEE Security
and Privacy, vol. 2, no. 5, pp. 40-7, http://www.scopus.com/inward/record.url?eid=2-s2.0-
12844274372&partnerlD=40&md5=f18ff379a50d7e663bf37a04f17bfc18>.

PHP: json_encode - Manual, 2016, The PHP Group, viewed 10 May,
<https://secure.php.net/manual/en/function.json-encode.php>.

PHP: PDO::prepare - Manual, 2016, The PHP group, viewed 19 May,
<https://secure.php.net/manual/en/pdo.prepare.php>.

PHP: serialize - Manual, 2016, The PHP Group, viewed 10 May,
<https://secure.php.net/manual/en/function.serialize.php>.

PHP: unserialize - Manual, 2016, The PHP Group, viewed 10 May,
<https://secure.php.net/manual/en/function.unserialize.php>.

Popel, D 2007, Learning PHP Data Objects, Packt Publishing Ltd.

A Quick Guide to Using the MySQL APT Repository, 2016, Oracle, viewed 15 September,
<https://dev.mysgl.com/doc/mysql-apt-repo-quick-guide/en/>.

Schwartz, B 2009, When are you required to have a commerical MySQL license, viewed 2016,
<http://www.xaprb.com/blog/2009/02/17/when-are-you-required-to-have-a-commercial-mysql-

license/>.

Secure Salted Password Hashing - How to do it Properly, 2016, CrackStation, viewed 10 May,
<https://www.google.com.au/?gfe rd=cr&ei=Q9xFV9 oBcHN8gfWwYWQDQ#q=https:%2F%2Fcrack
station.net%2Fhashing-security.htm>.

Shaffer, G 2014, Good and Bad Passwords How-To, viewed 28 August,
<http://geodsoft.com/howto/password/common.htm>.

Sverdlov, E 2012a, How To Install and Secure phpMyAdmin on Ubuntu 12.04, Digital Ocean, viewed
15 September, <https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-
phpmyadmin-on-ubuntu-12-04>.

Sverdlov, E 2012b, How To Install Linux, Apache, MySQL, PHP (LAMP) stack on Ubuntu, Digital Ocean,
viewed 1 September, <https://www.digitalocean.com/community/tutorials/how-to-install-linux-
apache-mysql-php-lamp-stack-on-ubuntu>.

Tatham, S 2007, 'PuTTY User Manual', in
https://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter5.html>.

Teh, PS, Teoh, ABJ & Yue, S 2013, 'A survey of keystroke dynamics biometrics', The Scientific World
Journal, vol. 2013, http://www.scopus.com/inward/record.url?eid=2-s2.0-
84888875360&partnerlD=40&md5=52478592a0b88e0421b7ed758e88de95>.

110

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_text
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
http://www.scopus.com/inward/record.url?eid=2-s2.0-12844274372&partnerID=40&md5=f18ff379a50d7e663bf37a04f17bfc18
http://www.scopus.com/inward/record.url?eid=2-s2.0-12844274372&partnerID=40&md5=f18ff379a50d7e663bf37a04f17bfc18
https://secure.php.net/manual/en/function.json-encode.php
https://secure.php.net/manual/en/pdo.prepare.php
https://secure.php.net/manual/en/function.serialize.php
https://secure.php.net/manual/en/function.unserialize.php
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
http://www.xaprb.com/blog/2009/02/17/when-are-you-required-to-have-a-commercial-mysql-license/
http://www.xaprb.com/blog/2009/02/17/when-are-you-required-to-have-a-commercial-mysql-license/
https://www.google.com.au/?gfe_rd=cr&ei=Q9xFV9_oBcHN8gfWwYWQDQ#q=https:%2F%2Fcrackstation.net%2Fhashing-security.htm
https://www.google.com.au/?gfe_rd=cr&ei=Q9xFV9_oBcHN8gfWwYWQDQ#q=https:%2F%2Fcrackstation.net%2Fhashing-security.htm
http://geodsoft.com/howto/password/common.htm
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-12-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-12-04
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-ubuntu
https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-php-lamp-stack-on-ubuntu
https://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter5.html
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888875360&partnerID=40&md5=52478592a0b88e0421b7ed758e88de95
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888875360&partnerID=40&md5=52478592a0b88e0421b7ed758e88de95

The jQuery Foundation 2016, Event Object, The jQuery Foundation viewed 3 October,
<http://api.jguery.com/category/events/event-object/>.

The PHP Group 20164, unset, The PHP Group, viewed 10 October,
<http://php.net/manual/en/function.unset.php>.

The PHP Group 2016b, array_values, The PHP Group, viewed 10 October,
<http://php.net/manual/en/function.array-values.php>.

Thomsen, SS & Knudsen, LR 2005, 'Cryptographic hash functions', Technical University of
DenmarkDanmarks Tekniske Universitet, Department of Applied Mathematics and Computer
Sciencelnstitut for Matematik og Computer Science.

Umphress, D & Williams, G 1985, 'ldentity verification through keyboard characteristics',
International journal of man-machine studies, vol. 23, no. 3, pp. 263-73.

Verifies that a password matches a hash - PHP, 2016, The PHP Group, viewed 10 May,
<https://php.net/manual/en/function.password-verify.php >.

What can PHP do?, 2016, The PHP Group, viewed 15 September,
<https://secure.php.net/manual/en/intro-whatcando.php>.

Why You Should use Bcrypt to Hash Stored Password, 2016, SitePoint, viewed 10 May,
<http://www.sitepoint.com/why-you-should-use-bcrypt-to-hash-stored-passwords/ >.

Wolter, J 2012, JavaScript Madness: Keyboard Events, viewed 1 October
<http://unixpapa.com/js/key.html>.

Yu, E & Cho, S 2003, 'Novelty detection approach for keystroke dynamics identity verification', i
International Conference on Intelligent Data Engineering and Automated Learning, Springer, pp.

1016-23.

111

http://api.jquery.com/category/events/event-object/
http://php.net/manual/en/function.unset.php
http://php.net/manual/en/function.array-values.php
https://php.net/manual/en/function.password-verify.php
https://secure.php.net/manual/en/intro-whatcando.php
http://www.sitepoint.com/why-you-should-use-bcrypt-to-hash-stored-passwords/
http://unixpapa.com/js/key.html

Appendices

Appendix A: Project Specification

ENG4111/4112 Research Project

Project Specification

For: Ryan Stephenson
Title: Implementation of Web-Based Keystroke Analytics for User Verification
Major: Bachelor of Engineering Honours (Computer Systems)
Supervisors: Dr Hong Zhou
Enrolment: ENG4111 - EXT S1, 2016
ENG4112 - EXT S2, 2016
Project Aim: Investigate the field of keystroke analytics to design and implement a web-
based user verification system which utilises user typing characteristics;
emphasis is placed on documenting the technical considerations and
processes involved in the implementation process.
Programme: Issue A, 16™" March 2016
1. Research keystroke analytics/dynamics to gain an understanding of the field and methods
used by existing systems.
2. Design and implement a basic development environment for keystroke data collection and
viewing.
3. Investigate classification/matching algorithms for user verification.
4. Design and implement a conceptual web-based program to illustrate the application of
keystroke analytics to user verification.
5. Design and implement an online testing system to collect and store user biometric typing
data.
6. Analyse collected typing data and test the performance of the user verification system.

If time and resources permit:

7.

Research variances in typing characteristics based on hardware changes and other factors
(E.g. Tired or distracted users)

Investigate if a correlation exists between typing characteristics and user traits as well the
devices they use.

112

Appendix B: System Code Listing

Appendix B.1: Typing Data Collection System

JavaScript for Data Collection and Other Functionality: typingData.js

// Gloabl definitions

var GLOBAL_START TIME;
var latch = [];

var keyElements = {};

var shiftMods = [];

// Key element object, stores timing information
function keyElement(time, character) {
this.time = [time];
this.character = character;
this.caselist = [];
this.widthList = [];
}

// Adds key press event for given character
// Occurs at the key up event
keyElement.prototype.addPress = function() {
var now = new Date(); // Get time now
var width;

// Save key press delay time
width = now - this.time[this.time.length - 1] - GLOBAL_START_TIME;
this.widthList.push(width);

}

// Records time at which the key was depressed

// Occurs at the key down event

keyElement.prototype.addTime = function(time) {
this.time.push(time);

}

// Records case for keypress

// Occurs at the key down event

keyElement.prototype.addCase = function(keyCase) {
this.caselist.push(keyCase);

// Store value as 1 or O rather than true
// or false
shiftMods.push(keyCase ? 1 : 0);

}

// Call main function when page is loaded
window.onload = function() {
main();

|3

113

function main() {
// Assign identified to password field
var element = document.getElementByld('password’);
// Set user focus to password input field
element.focus();
// Clear password input field

n,

element.value ="";

// Only used for the Development system

if (document.getElementsByClassName('keyboard').length 1= 0) {
// Prepare the canvas for use
initaliseCanvas();

// Generate the on-screen keyboard display
generateKeyBoard();

1

// Attach event handlers to password elements

if (element.addEventListener) {
element.addEventListener("keydown", keyHandler, false);
element.addEventListener("keyup", keyHandler, false);
element.addEventListener("click", function() {

this.value = this.value;
1;

} else if (element.attachEvent) {
element.attachEvent("keydown", keyHandler);
element.attachEvent("keyup", keyHandler);
element.attachEvent("click", function() {

this.value = this.value;
1,
}
}

// Main section which handles logging of key press data
function keyHandler(event) {

// If start time is not defined, set it

if (GLOBAL_START_TIME === undefined) {
GLOBAL_START_TIME = new Date();

}

// Detect and prevent repeat key presses
if (event.repeat) {
event.preventDefault();
event.returnValue = false;
return;

}

// Prevent user from highlighting text and overwritting it

document.getElementByld('password').value = document.getElementByld(
'password').value;

document.getElementByld('password').selectionStart = document.getElementByld(

114

'password').selectionEnd = document.getElementByld('password').value.length;

// Find the time now, and therefore the total elapsed time
var now = new Date();

var time = now - GLOBAL _START_TIME;

var code = (event.which) ? event.which : event.keyCode;

// Prevent cursor keys from being used to move the typing cursor left
// and right, additionaly don't record values for up and down arrows
if (code =="37" || code =='39' | | code =="'38' || code =="40") {
event.preventDefault();
return;

}

// lgnore tab, escape and Windows keys

if (code=="9" || code =='27" || code =='91") {
event.preventDefault();
return;

}

code = mapCode(code);

// Set different code for right shift than left shift

if (event.location === KeyboardEvent.DOM_KEY_ LOCATION_RIGHT && code == 16) {
code =-16;

}

// If the key has been pressed

if (latch[code] I=1 && event.type == 'keydown') {
// Ensure program waits until key is released before logging another press
latch[code] = 1;

// If the key has not been pressed before
if (keyElements[code] === undefined) {
// Create an entry for the key in the keyElements data structure
keyElements[code] = new keyElement(time, String.fromCharCode(code));
}else {
// Record time when key is depressed
keyElements[code].addTime(time);
}
// Record shift modifier for key
keyElements[code].addCase(event.shiftKey)
}else if (latch[code] == 1 && event.type == keyup') { // When the key press is released
// Add information for key press
keyElements[code].addPress();
// Set key as released
latch[code] = 0;

// If user presses enter key, submit the input form
if (code ==13) {

115

prepareOutput(true);
var formElem = document.getElementByld("typingDataForm");
formElem.submit();
return;
}
}

// Used only for the development system
if (document.getElementsByClassName('keyboard').length 1= 0) {
// Prevents error message when keys not shown in on-screen keyboard are pressed
if (document.getElementByld("key " + code) === null) {
return O;
}
// Special case for 'wide' keys
if (code ==8 || code ==32 || code==20 || code==13 || code ==16 ||
code ==-16) {
switch (code) {
// Left shift
case 16:
document.getElementByld("key " + code).className =
"key keyWide key-color-1";
break;
// Right shift
case -16:
document.getElementByld("key " + code).className =
"key keyWide key-color-1";
break;
// Space bar
case 32:
document.getElementByld("key " + code).className =
"key keyWide key-color-3";
break;
// Other wide keys
default:
document.getElementByld("key " + code).className =
"key keyWide key-color-3";
}
}else {
// Acts as a heat map, with the keys becoming progressing dark with each press
if (keyElements[code] !== undefined) {
switch (keyElements[code].time.length) {
case 1:
document.getElementByld("key_ " + code).className = "key key-press-2";
break;
case 2:
document.getElementByld("key_" + code).className = "key key-press-3";
break;
default:
document.getElementByld("key_" + code).className = "key keyPressed";

}

telse{

116

document.getElementByld("key " + code).className = "key key-press-1";
}
}
}
}

// Prepares the data arrays for output
function prepareOutput(hideOutput) {
var collected = [];
var flightTimes = [];

// Collect data and sort it by key press number
// Loop through all character code values
for (var key in keyElements) {
// If a character code has data stored for it
if (keyElements[key] !== undefined) {
// Loop through all events for that character code
for (var j =0; j < keyElements[key].time.length; j++) {
// Create string for exporting for each key press
var tmp = [keyElements[key].time[j], key, j, keyElements[key].widthList[j]];
collected.push(tmp);
// Sorts numerically by the first column of data, ascending
collected.sort(function(a, b) {
return a[0] - b[0]
N;
}
}
}

// Calculate flight times for access attempt
for (vari=0; i< collected.length - 1; i++) {
var np1Time = parselnt(collected|i + 1][0]);
var nTime = parselnt(collected[i][0]);
var nDelay = parselnt(collected[i][3]);
flightTimes.push(np1Time - (nTime + nDelay));
}

var preparedTime = [];

var preparedCode = [];

var preparedinstance = [];

var preparedDelay = [J;

var preparedFlight = flightTimes;
var preparedShift = [];

// Move data from collected 2D array into individual arrays
for (vari=0; i< collected.length; i++) {
preparedTime.push(collected[i][0]);
preparedCode.push(collected]i][1]);
preparedinstance.push(collected[i][2]);
preparedDelay.push(collected[i][3]);
preparedShift = shiftMods;

117

}

// Output data to form fields for sending to output page
document.getElementByld('timeData').value = preparedTime;
document.getElementByld('codeData').value = preparedCode;
document.getElementByld('instanceData').value = preparedinstance;
document.getElementByld('delayData').value = preparedDelay;
(
(

document.getElementByld('flightData').value = preparedFlight;
document.getElementByld('shiftData').value = preparedShift;

// Used to distinguish between the "View Data" button and an
// normal access attempt being prepared
if (hideOutput !==true) {

// Open new window to output data to

var exportWindow = window.open("", "Data Output Window", "status=no");

var exportTo = exportWindow.document;

// Export data to new window
// Write header to output window

exportTo.writeln("<h2>Phrase: " + document.getElementByld('password').value +

"</h2>");
exportTo.writeln(
exportTo.writeln("<td style='width: 75px'>Time (ms)</td>");
exportTo.writeln("<td style='width: 75px'>Unicode</td>");
exportTo.writeln("<td style='width: 75px'>Instance</td>");

(
(
(

'<html><table style='display:all'><tr>");

exportTo.writeln("<td style='width: 75px'>Delay (ms)</td>");
exportTo.writeln("<td style='width: 75px'>Flight (ms)</td></tr>");
exportTo.writeln("<td style='width: 75px'>Shift (ms)</td></tr>");

// Write data to table format

for (vari=0; i< collected.length; i++) {
exportTo.writeln("<tr>");
for (var j = 0; j < collected[i].length; j++) {

exportTo.writeln("<td style='width: 75px;'>" + collected[i][j] + "</td>");

}

exportTo.writeln("<td style='width: 75px;'>" + flightTimes([i] + "</td>");

exportTo.writeln("</tr>");
}
exportTo.writeln("</table></html>");
}
}

// Map charcodes to ASCII codes so they can be graphed correctly
function mapCode(code) {
switch (code) {
case 96:
code =192;
break;
case 186:
code =59;
break;

118

case 187:
code =61;
break;

case 188:
code = 44;
break;

case 189:
code =45;
break;

case 190:
code = 46;
break;

case 191:
code =47;
break;

case 192:
code = 96;
break;

case 219:
code =91;
break;

case 220:
code =92;
break;

case 221:
code =93;
break;

case 222:
code = 39;
break;

}

return code;

}

// Display the on-screen keyboard for the development system
function generateKeyBoard() {
var keyboard = document.getElementByld("keyboard");

// Pattern used to generate keyboard
var keyboardString = ""1234567890-=QWERTYUIOP[]\\ASDFGHJKL;'ZXCVBNM,./";
Var neWLineAt = [H:ll’ Il\\HI |||||’ ||/||];

// Write keys from keyboard string to document
for (vari=0; i < keyboardString.length; i++) {
var code = keyboardString[i].charCodeAt(0);

// Write key to document

keyboard.innerHTML += "<div class='key' id="key " + code +
""onmousedown='showInfo(" + code + ")'>" + String.fromCharCode(code) +
"</diV>”;

119

// If key represents the end of a keyboard line insert a break
if (newLineAt.indexOf(keyboardStringli]) I=-1) {
keyboard.innerHTML += "</br>";
}
}

// Writes special keys to document
var codelist = ["16", "-16", "20", "8", "32"];
var namelist = ["Left Shift", "Right Shift", "Caps Lock", "Backspace",
"Space"
l;
for (vari=0; i < codelist.length; i++) {
keyboard.innerHTML += "<div class='key keyWide' id="'key " + codelList[i] +
" onmousedown='showInfo(" + codelList[i] + ")'>" + namelList[i] + "</div>";
1
}

// Render the canvas showing the visualisation of the collected typing data
function drawCanvas() {

var canvas = document.getElementByld("timeline");

var context = canvas.getContext("2d");

// Clear the canvas with a white background
context.clearRect(0, 0, 16250, 600);
context.fillStyle = "rgh(255,255,255)";
context.fillRect(0, 0, 16250, 600);

// Draw time ticks along the timeline

for (vari=0;i<6500;i=i+100) {
drawTick(i);

}

// Draw keys to the canvas timeline
for (variin keyElements) {

// Loop through data for all key press instances

for (var j = keyElements[i].time.length; j >= 0; j--) {
var character;
// Defines where vertically on the timeline it is output as well as color
var type = 0;

// For special characters, each phrase must be individually defined
// Type associated with special characters is set also
switch (parselnt(i)) {
// Space bar
case 32:
type=1;
character = "Space";
break;

120

// Left Shift
case 16:
type = 2;
character = "Left Shift";
break;
// Right Shift
case -16:
type =2;
character = "Right Shift";
break;
// Backspace
case 8:
character = "Backspace";
break;
// Enter
case 13:
character = "Enter";
break;
// Others
default:
type = 0;
character = keyElements[i].character;

}

// Draw key to timeline
drawKey(keyElements[i].timelj], type, character, keyElements[i].widthList[j],
keyElements][i].caseList[j]);
}
}

// Generate PNG image from canvas and output it to the document
var dataURL = canvas.toDataURL("image/png");

var output = document.getElementByld("output");

var submit = document.getElementByld("submit");

var input = document.getElementByld("password");

// Hide submit button and disable it
submit.style.display = "none";
input.disabled = true;

// Hide input area
input.style.display = "none";

// Change output style display to block
output.style.display = "block";

// Output image to document
output.innerHTML = " Input Phrase: <i>" + input.value +
</i>";
output.innerHTML += ("<img src="" + dataURL +
" class="timelinelmage' alt='from canvas'/ width='3600px" height="150px" style='border: 1px solid
rgb(240,240,240);">"

121

);
}

// Draw vertically lines evenly spaced along the bottom
// of the changes to indicate time
function drawTick(time) {
var canvas = document.getElementByld("timeline");
var context = canvas.getContext("2d");
// Set the line to be dashed
context.setLineDash([5, 4]);
// Define the line path
context.beginPath();
context.moveTo(time, 150);
context.lineTo(time, 0);
// Set the line colour to light grey
context.strokeStyle = "rgb(220,220,220)";
// Draw the line
context.stroke();
// Reset stroke style
context.setLineDash([1, 0]);
// Output text stating the time at which the tick is placed
context.textBaseline = "middle";
context.textAlign = "center";
context.font = "10px";
context.fillStyle = "rgh(100,100,100)";
context.fillText(time + "ms", time + 10, 115);

}

// Draws the individual keys on the output canvas
function drawKey(time, type, character, width, upperCase) {
// Get context for canvas
var canvas = document.getElementByld("timeline");
var context = canvas.getContext("2d");
var typeOffset;
// Define rectangle dimensions and text location
var height = 20;
var fontSize = 12;
var textX = time + (width / 2);

// Define context style
context.textBaseline = "middle";
context.textAlign = "center";
context.font = "14px Sans-Serif";

// Sets vertical offset for different character types
switch (type) {
case 0:
typeOffset = 5;
break;
case 1:
typeOffset = height + 15;

122

break;

case 2:
typeOffset = 2 * height + 25;
break;

}

// List of background and border colours for each key press type
var bgColors = new Array("rgba(255,165,0,0.5)", "rgha(0,190,255,0.8)",

"rgba(255,130,130,0.8)");

var borderColors = new Array("rgba(89,225,183,0.8)", "rgba(99,204,254,0.8)",

"rgba(255,100,100,0.8)");

// If the shift key was also pressed
if (upperCase) {
type =2;

// Convert number to equivalent symbol for that key

switch (parselnt(character)) {

case 1:
character ="1";
break;

case 2:
character="@";
break;

case 3:
character ="#";
break;

case 4:
character ="S";
break;

case 5:
character ="%";
break;

case 6:
character ="A";
break;

case 7:
character ="&";
break;

case 8:
character ="*";
break;

case 9:
character ="(";
break;

case O:
character =")";
break;

}

}else {

character = character.toLowerCase();

}

123

// Set styling and draw key onto canvas

context.fillStyle = bgColors[type];

context.fillRect(time, typeOffset, width, height);

context.fillStyle = "rgh(255,255,255)";

context.fillText(character, textX, typeOffset + (height + 0.5) / 2);
}

// Display recorded information associated with each key
// when its associated symbol is pressed on the on-screen keyboard
function showlInfo(code) {

// Get ASCII character value from character code
var character = String.fromCharCode(code);

// Map special code values to their names

Var COdeLISt - [Il16|l’ l|_16ll’ l|13l|’ l|20l|’ l|8|l’ ll46ll’ ll32l|];

var namelist = ["Left Shift", "Right Shift", "Enter", "Caps Lock",
"Backspace", "Delete", "Space"

I;

// Check if character requires use of the above map
if (codelList.indexOf(code.toString()) !=-1) {
character = namelist[codelList.indexOf(code.toString())];

}

// If the key has data recorded for it
if (keyElements[code]) {
// Output information to the screen
info.innertHTML ="";
info.innerHTML +="Info for: " + character + ", identifier: " + code +
"</br>";
for (var j = 0; j < keyElements[code].time.length; j++) {
info.innerHTML +="Press " + j + ": Time: " + keyElements[code].time[j] +
"ms, Length: " + keyElements[code].widthList[j] + "ms </br>";
}
}else {
// Otherwise display message saying that no information has been recorded for that key
info.innerHTML ="";
info.innerHTML +="Info for: " + character + ", identifier: " + code +
"</br>";
info.innerHTML +="No information to show</br>";
}
}

// Prepare the canvas for rendering
function initaliseCanvas() {
// Allows higher resolution canvas display
var scalingFactorX = 2.5;
var scalingFactorY = 4;

124

// Gets canvas context
var canvas = document.getElementByld("timeline");
var context = canvas.getContext("2d");

// Scale the canvas to allow for a higher resolution
context.scale(scalingFactorX, scalingFactorY);

}
Appendix B.2: Development System

HTML for Interface: index.html

<html>
<head>
<title>Developer's Window</title>
<link rel="stylesheet" href="style.css" type="text/css">
<script src="typingData.js" type="text/javascript"></script>
</head>
<body>
<canvas class="timeline" id="timeline" width="16250px" height="600px">
</canvas>
<div class="center">
<input type="text" id="password" class="typinglnput"></br></br>
<input type="button" id="submit" class="btn btn_input" value="Render Timeline"
onmousedown="drawCanvas();">
<input type="button" id="export" class="btn btn_input" value="View Raw Data"
onmousedown="prepareOQutput();">

<form method="post" action="outputPage.php" style="display:inline" id="typingDataForm">
<input type="hidden" name="timeData" id="timeData">
<input type="hidden" name="codeData" id="codeData">
<input type="hidden" name="instanceData" id="instanceData">
<input type="hidden" name="delayData" id="delayData">
<input type="hidden" name="flightData" id="flightData">
<input type="hidden" name="shiftData" id="shiftData">
<input type="hidden" name="phrase" id="phrase">
<input type="submit" id="sendData" class="btn btn_input" value="Send Data">
</form>

</div>

</br></br>

<div class="output" id="output">

</div>

<center>

<div class="error"></div>

<div class="keyboard" id="keyboard"></div>

<div class="info" id="info">

</div>

</center>

</body>
</html>

125

PHP Data Processing Page: outputPage.php

<?php

// Login credentials for MySQL database
Sservername = "localhost";

Susername = "user";

Spassword = "UserPenguin01";

// Attept to connect to MySQL database

try {
Sconn = new PDO("mysql:host=Sservername;dbname=research", Susername, Spassword);
// set the PDO error mode to exception
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
// echo "Connected successfully </br>";

}

catch(PDOException Se) {
echo "Connection failed: " . Se->getMessage();
exit();

}

// Get transmitted data values from form of sender page
StimeData = htmlspecialchars(S_POST["timeData"]);
ScodeData = htmlspecialchars(S_POST["codeData"]);
SdelayData = htmlspecialchars(S_POST["delayData"]);
SflightData = htmlspecialchars(S_POST["flightData"]);
SshiftData = htmlspecialchars(S_POST["shiftData"]);
Sphrase = htmlspecialchars(S_POST["phrase"]);

// Name to use when saving data into database
SsaveAs = "Ryan";

// Hash password using in-built function
ShashedPassword = password_hash(Sphrase,PASSWORD_DEFAULT);

// SQL statement to insert retrieved values into database

Ssql = "INSERT INTO ‘typingdata’ (userlD, username, recordNumber, dataTime, dataCode, dataDelay,
dataFlight, dataShift, hash) VALUES (:userlD, :username, :recordNumber, :dataTime, :dataCode,
:dataDelay, :dataFlight, :dataShift, :hash)";

// Bind values to PDO

Sstmt = Sconn->prepare(Ssql);

Sstmt->bindValue(":userlD', 1, PDO::PARAM_INT);
Sstmt->bindValue(":username', SsaveAs, PDO::PARAM_STR);
Sstmt->bindValue(":recordNumber', 0, PDO::PARAM_INT);
Sstmt->bindValue(":dataTime', StimeData, PDO::PARAM_STR);
Sstmt->bindValue(":dataCode', ScodeData, PDO::PARAM_STR);
Sstmt->bindValue(":dataDelay', SdelayData, PDO::PARAM_STR);
Sstmt->bindValue(":dataFlight', SflightData, PDO::PARAM_STR);
Sstmt->bindValue(':dataShift', SshiftData, PDO::PARAM_STR);
Sstmt->bindValue(":hash', ShashedPassword, PDO::PARAM_STR);

// Insert data into database

126

Sstmt->execute();

// Close the connection
Sconn = null;

// Redirect back to input page for development system
header("Location: index.html");
>

Appendix B.3: Data Collection System
HTML and PHP for Collection Interface: input.php

<?php

// Configuration information
Sservername = "localhost";
SSQLusername = "user";
SSQlpassword = "UserPenguin01";

// Attempt to connect to the MySQL database
try {
// Connect to database
Sconn = new PDO("mysql:host=Sservername;dbname=research", $SQLusername, $SQLpassword);
// set the PDO error mode to exception
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
}
// If an error is thrown
catch(PDOException Se) {
echo "Connection failed: " . Se->getMessage();

}

// Perform error checking of S_GET parameters
Serror = false;
try {
// Check if username parameter is provided
if (lisset(S_GET['username'])) {
throw new Exception("No username Parameter");
telse {
Susername =S_GET['username'];

}

// Check if count parameter is provided
if (lisset(S_GET['count'])) {
throw new Exception("No count Parameter");
telse {
Scount =S _GET['count'];
1

// Check if template parameter is provided
if (lisset(S_GET['template'])) {

throw new Exception("No template Parameter");
lelse {

Stemplate =S_GET['template'];

127

}
}
catch(Exception Se){
// Display error message and exit program execution
echo "Error: ", Se->getMessage(); "\n";
exit();

}

// Check if last attempt resulted in an error

if (isset(S_GET['error']) && S_GET['error'] == true) {
SbadAttempt =S_GET['error'];

lelse {
SbadAttempt = false;

}

// Read template phrase from database for given username
Sstatement = Sconn->prepare("select * from templates where username = :username");

// Executes the SQL Query
Sstatement->execute(array(':username' => Stemplate));

// Fetches the first row
Srow = Sstatement->fetch();

// Receives and structures data from database
SrawPhrase = Srow['rawPhrase'];

Shash = Srow['hash'];

SuserlID = Srow(['userID'];

// Close the connection
Sconn = null;

>
<IDOCTYPE html>
<html>
<head>
<title>Input Window</title>

<link href="style.css" rel="stylesheet" type="text/css">

<script src="TypingData.js" type="text/javascript">
</script>
</head>
<body style="background-color:rgh(250,250,250);">
<div class="loginHeader">
Supplied Credential Login
</div>
<hr class="spacer">
<div class="idWrapper">
<?php
if (Scount >=10) {

echo "<div class='idMessage' style="text-align:center;'>Thank you for your

input.</div></div>";

128

exit;

}

?>

<div class="idMessage">
Please enter the provided password phrase and then press enter, repeat this
until the counter is full.

</div>

</div>

<div class="loginWrapper">
<div class="center" style="width: 400px">
<form action="savePage.php" autocomplete="off" id="typingDataForm" method=
"post" name="typingDataForm">
<input class="credInput" disabled="true" placeholder=
"<?php echo Susername ?>" type="text">

<input class="credInput" id="password" name="password" placeholder=
"Password" type="text"> <?php
echo "<input type='hidden' name='count' value="". (Scount+1) . "'>";
echo "<input type='hidden' name="username' value="". Susername . "'>";
echo "<input type='hidden' name="template' value="". Stemplate . "'>";
>
<input id="timeData" name="timeData" type="hidden">
<input id="codeData" name="codeData" type="hidden">
<input id="instanceData" name="instanceData" type="hidden">
<input id="delayData" name="delayData" type="hidden">
<input id="flightData" name="flightData" type="hidden">
<input id="shiftData" name="shiftData" type="hidden">
<input id="phrase" name="phrase" type="hidden" value=
"<?php echo Shash; ?>"> <input id="userID" name="userID" type="hidden"
value="<?php echo SuserlD; ?>">

<?php echo SrawPhrase; ?>

</form>
</div>
<div class="countWrapper">
<?php
// Display attempt counter using coloured squares
for (Si=0; Si < 10; Si++) {
if (Si < Scount) {
echo "<div class="countSquare countBlue'></div>\n";
// Display red square to indicate bad attempt
lelseif (SbadAttempt && Si == Scount) {
echo "<div class='countSquare countRed'></div>\n";

telse {
echo "<div class="countSquare countEmpty'></div>\n";
}
}
echo "<div class='countText'>" . (10-Scount) . " logins remaining</div>";
>
</div>

129

</div>
</body>
</html>

PHP Data Processing Page: savePage.php

<?php

Sservername = "localhost";
SSQLusername = "user";
SSQlpassword = "UserPenguin01";
Serror = false;

// Attept to connect to MySQL database

try {
Sconn = new PDO("mysql:host=Sservername;dbname=research", Susername, Spassword);
// set the PDO error mode to exception
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
// echo "Connected successfully </br>";

}

catch(PDOException Se) {
echo "Connection failed: " . Se->getMessage();
exit();

}

try {
// Check if code data parameter is provided
if (lisset(S_POST['codeData'])) {
throw new Exception("No Code Data Parameter");
telse {
ScodeData =S _POST['codeData'l;
}

// Check if count parameter is provided
if (lisset(S_POST['count'])) {
throw new Exception("No count Parameter");
telse {
Scount =S _POST['count'];
1

// Check if delay data parameter is provided
if (lisset(S_POST['delayData'])) {
throw new Exception("No Delay Data Parameter");
lelse {
SdelayData=S_POST['delayData'];
echo SdelayData;
}

// Check if flight data parameter is provided
if (lisset(S_POST['flightData'])) {

throw new Exception("No Flight Data Parameter");
lelse {

SflightData = S_POST['flightData'];

130

}

// Check if password parameter is provided
if (lisset(S_POST['password'])) {

throw new Exception("No Password Parameter");
telse {

Spassword =S$_POST['password'];

}

// Check if phrase parameter is provided
if (lisset(S_POST['phrase'])) {
throw new Exception("No Phrase Parameter");
telse {
Sphrase =$_POST['phrase'];
}

// Check if shift data parameter is provided
if (lisset(S_POST['shiftData'])) {
throw new Exception("No Shift Data Parameter");
lelse {
SshiftData =S_POST['shiftData'];
}

// Check if template data parameter is provided
if (lisset(S_POST['template'])) {
throw new Exception("No Template Data Parameter");
telse {
Stemplate =S_POST['template'];
}

// Check if time data parameter is provided
if (lisset(S_POST['timeData'])) {
throw new Exception("No Time Data Parameter");
telse {
StimeData =S_POST['timeData'];
}

// Check if time data parameter is provided
if (lisset(S_POST['userID'])) {

throw new Exception("No User ID Parameter");
telse {

SuserlD =S _POST['userID'];

}

// Check if username parameter is provided
if (lisset(S_POST['username'])) {
throw new Exception("No Username Parameter");
telse {
Susername =S _POST['username'];
}
}

131

catch(Exception Se){
// Display error message and exit program execution
echo "Error: ", Se->getMessage(); "\n";
exit();

}

// Hash the phrase supplied by the user on the input page
ShashedPassword = password_hash(Spassword,PASSWORD_DEFAULT);

// Verify the phrase supplied matches the stored template phrase
ScorrectPhrase = password_verify(Spassword,Sphrase);

// If the phrase is incorrect, decrement count (retry attempt)
// and indicate that an error has occured
if (IScorrectPhrase) {

Scount -= 1;
Serror = true;
lelse

{
// If the provided phrase matched the stored template phrase

// Insert attempt into the ‘typingdata’ table with the values supplied

Ssal = "INSERT INTO “typingdata” (userlD, username, recordNumber, dataTime, dataCode,
dataDelay, dataFlight, dataShift, hash) VALUES (:userID, :username, :recordNumber, :dataTime,
:dataCode, :dataDelay, :dataFlight, :dataShift, :hash)";

// Prepare the SQL statement
Sstmt = Sconn->prepare(Ssql);

// Bind variable values to the above PDO query
Sstmt->bindValue(":userID', Suser|D, PDO::PARAM_INT);
Sstmt->bindValue(':username', Susername, PDO::PARAM_STR);
Sstmt->bindValue(":recordNumber', Scount, PDO::PARAM_INT);
Sstmt->bindValue(":dataTime', StimeData, PDO::PARAM_STR);
Sstmt->bindValue(":dataCode', ScodeData, PDO::PARAM_STR);
Sstmt->bindValue(':dataDelay', SdelayData, PDO::PARAM_STR);
Sstmt->bindValue(":dataFlight', SflightData, PDO::PARAM_STR);
Sstmt->bindValue(":dataShift', SshiftData, PDO::PARAM_STR);
Sstmt->bindValue(':hash', ShashedPassword, PDO::PARAM_STR);
Sstmt->execute();

}

// Close the connection
Sconn = null;

// Check if all require attempts have been made
if (Scount >=10)
{
// Redirect to thank you page
Slocation = "Location: thankYou.php";
lelse

132

{
// Location of input page
Slocation = "Location: input.php?count="". Scount ."&username="". Susername . "&template="".
Stemplate . "&error=". Serror;
}
// Redirection to defined location
header(Slocation);
>

Appendix B.4: Demo System
HTML and PHP for Interface: demo.php

<?php

// Configuration information
Sservername = "localhost";
SSQLusername = "user";
SSQlpassword = "UserPenguin01";

// Attempt to connect to the MySQL database
try {
// Connect to database
Sconn = new PDO("mysql:host=Sservername;dbname=research", $SQLusername, $SQLpassword);
// set the PDO error mode to exception
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
}
// If an error is thrown
catch(PDOException Se) {
echo "Connection failed: " . Se->getMessage();

}

// Perform error checking of S_GET parameters

Serror = false;

try {
// Check if username parameter is provided
Susername = "Ryan";
Stemplate = "Ryan";

}

catch(Exception Se){
// Display error message and exit program execution
echo "Error: ", Se->getMessage(); "\n";
exit();

}

// Check if last attempt resulted in an error

if (isset(S_GET['error']) && S_GET['error'] == true) {
SbadAttempt =$_GET['error'];

Jelse {
SbadAttempt = false;

}

// Read template phrase from database for given username
Sstatement = Sconn->prepare("select * from templates where username = :username");

133

// Executes the SQL Query
Sstatement->execute(array(':username' => Stemplate));

// Fetches the first row
Srow = Sstatement->fetch();

// Receives and structures data from database
SrawPhrase = Srow['rawPhrase'];

Shash = Srow['hash'];

SuserlD = Srow['userID'];

// Close the connection
Sconn = null;

>
<html>
<head>
<title>Input Window</title>
<link rel="stylesheet" href="style.css" type="text/css">
<script src="typingData.js" type="text/javascript"></script>
</head>
<body style="background-color:rgh(250,250,250);">
<div class="loginHeader">
Demo Login Page
</div>
<hr class="spacer">
<div class="idWrapper">
<div class="idMessage" style="text-align:center">
Used to get match metrics for stored access attempts against a selected
template.
</div>
</div>

<div class="loginWrapper">
<l-- <div class="symbol">🔒,</div> -->
<div class="center" style="width: 400px">
<form id="typingDataForm" method="post" action="match.php" onsubmit="block(event);"
autocomplete="off">
<select class="selectUsername" name="template">
<option value="Ryan">Ryan</option>
<option value="Brian">Brian</option>
<option value="Dominic">Dominic</option>
<option value="Jesse">Jesse</option>
</select>
<input type="text" name="password" id="password" class="credInput"
placeholder="Password">
<input type="hidden" name="username" value="<?php echo Susername; ?>">
<input type="type" style="display:none;" name="timeData" id="timeData">
<input type="type" style="display:none;" name="codeData" id="codeData">
<input type="type" style="display:none;" name="instanceData" id="instanceData">

134

<input type="type" style="display:none;" name="delayData" id="delayData">
<input type="type" style="display:none;" name="flightData" id="flightData">
<input type="type" style="display:none;" name="shiftData" id="shiftData">
<input type="type" style="display:none;" name="phrase" id="phrase" value="<?php echo
Shash; ?>">
<input type="type" style="display:none;" name="userID" id="userID" value="<?php echo
SuserlD; ?>">

<?php
echo SrawPhrase;
>

</br>
</form>
</div>
</div>
</body>
</html>

HTML and PHP Data Processing Page: match.php

<?php

Sservername = "localhost";
SSQLusername = "user";
SSQlpassword = "UserPenguin01";
Serror = false;

// Establish a connection with the MySQL database
try {
Sconn = new PDO("mysql:host=Sservername;dbname=research", SSQLusername, $SQlLpassword);
// set the PDO error mode to exception
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
}
catch (PDOException Se) {
// If a connection connect be established, display an error message
echo "Connection failed: " . Se->getMessage();

}

// Determine weight Euclidean distance provided an input array,
// and array of weights, and an array for comparison.
function calcDistance(Sarrayln, SarrayWeights, SarrayMeans)
{
SweightedAttempt = 0;
// Loop through arrays and perform weighted distance calculation
foreach (Sarrayln as Sindex => Selem) {
SweightedAttempt += SarrayWeights[Sindex] * pow((Selem - SarrayMeans[Sindex]), 2);
}
Sdistance = sqrt(SweightedAttempt);
return Sdistance;

135

}

try {
// Check if code data parameter is provided
if (lisset(S_POST['codeData'])) {
throw new Exception("No Code Data Parameter");
}else{
ScodeData = $_POST['codeData'];

}

// Check if delay data parameter is provided
if (lisset(S_POST['delayData'])) {
throw new Exception("No Delay Data Parameter");
}else{
SdelayData =$_POST['delayData'];
}

// Check if flight data parameter is provided
if (lisset(S_POST['flightData'])) {
throw new Exception("No Flight Data Parameter");
}else {
SflightData = S_POST['flightData'];
}

// Check if password parameter is provided
if (lisset(S_POST['password'])) {

throw new Exception("No Password Parameter");
telse{

Spassword = $_POST['password'];

}

// Check if phrase parameter is provided
if (lisset(S_POST['phrase'])) {
throw new Exception("No Phrase Parameter");
telse{
Sphrase =S _POST['phrase'];
}

// Check if shift data parameter is provided
if (lisset(S_POST['shiftData'])) {

throw new Exception("No Shift Data Parameter");
}else{

SshiftData = S_POST['shiftData'];

}

// Check if template data parameter is provided
if (lisset(S_POST['template'])) {
throw new Exception("No Template Data Parameter");
}else {
Stemplate =S _POST['template'];
}

136

// Check if time data parameter is provided
if (lisset(S_POST['timeData'])) {
throw new Exception("No Time Data Parameter");
}else {
StimeData =$_POST['timeData'];
}

// Check if time data parameter is provided
if (lisset(S_POST['userID'])) {
throw new Exception("No User ID Parameter");
}else{
SuserlD =S _POST['userID'];
1

// Check if username parameter is provided
if (lisset(S_POST['username'])) {
throw new Exception("No Username Parameter");
}else{
Susername =S_POST['username'];
}
}
catch (Exception Se) {
// Display error message and exit program execution
echo "Error: ", Se->getMessage();
\n';
exit();
}

// Arrays to store access attempt values in
ScodeValues = array();

SdelayValues = array();

SflightValues = array();

// Separate received string into an array of values
ScodeValues =explode(",", ScodeData);
SdelayValues = explode(",", SdelayData);
SflightValues = explode(",", SflightData);

SshiftValues = explode(",", SshiftData);
ScorrectPhrase = password_verify(Spassword, Sphrase);

// If the phrase does not match the template phrase
// redirect to the input page
if (IScorrectPhrase) {

header("Location: demo.php");

exit;

}

// SQL Query to get user training data

137

Sstatement = Sconn->prepare("select * from authenticationtemplates where username =
:username");
Susername =S$_POST['template'];
// Executes the SQL Query
Sstatement->execute(array(
":username' => Susername

));

// Fetch authentication template for user
Srow = Sstatement->fetch();

// Separate received string into arrays of values
SflightWeights = explode(",", Srow['flightWeights']);
SflightMeans = explode(",", Srow['flightMeans']);
SdelayWeights = explode(",", Srow['delayWeights']);

SdelayMeans = explode(",", Srow['delayMeans']);

// Close MySQL statement
Sstatement = null;

Siterations = 0;
// Loop until array is sufficiently aligned or loop exceeds iteration limit
while (sizeof(ScodeValues) I= sizeof(SdelayMeans) && Siterations < sizeof(SdelayMeans)) {
Sk=0;
// Loop through all event data points
while (Sk < sizeof(ScodeValues)) {
ShasChanged = 0;

// Get code value at position k
ScharCodeN = ScodeValues[Sk];

// If it exists get code value at position k + 1
if (Sk < sizeof(ScodeValues) - 1) {
ScharCodeNp1 = ScodeValues[Sk + 1];
}else {
SshiftModNp1 = null;
}

// If it exists get the next shift modifier value
if (Sk < sizeof(SshiftValues) - 1) {
SshiftModNp1 = SshiftValues[Sk + 1];
}else {
SshiftModNp1 = null;
}

// If both positions k and k + 1 are for shift press events
if (abs(ScharCodeN) == 16 && abs(ScharCodeNp1) == 16) {
// Remove elements for character code, delay time and shift modifier at k
unset(ScodeValues[Sk]);
unset(SdelayValues[Sk]);
unset(SshiftValues[Sk]);

138

// Indicate that the array lengths have been alterated by 1 position
ShasChanged = 1;
// If the character being processed is not the first element
if (Sk>0) {
// Remove the previous flight time
unset(SflightValues[Sk - 1]);
// Mark the current flight time for substitution
SflightValues[Sk] = NAN;
}else{
// Remove the flight time at the current position
unset(SflightValues[$Sk]);
}
// If position k is a shift press event and any of the following conditions are also met
// 1. The next position does not have a shift modifier applied
// 2. Position k is the last key press event
// 3. The next key event is a backspace press
// 4. The next key event is an enter press
} elseif (abs(ScharCodeN) == 16 && (SshiftModNpl == 0 || Sk == sizeof(ScodeValues) - 1 | |
ScharCodeNpl == 8 && ScharCodeNp1 == 13)) {
// Remove elements for character code, delay time and shift modifier at k
unset(ScodeValues[Sk]);
unset(SdelayValues[$k]);
unset(SshiftValues[Sk]);
// Indicate that the array lengths have been altered by 1 position
ShasChanged = 1;
// If the character being processed is not the first element
if (Sk>0){
// Remove the previous flight time
unset(SflightValues[Sk - 1]);
// Mark the current flight time for substitution
SflightValues[Sk] = NAN;
}else{
// Mark the current flight time for substitution
SflightValues[Sk] = NAN;
}
// If position k is a backspace press event
} elseif (ScharCodeN == 8) {
// Remove elements for character code, delay time and shift modifier at k and k-1
unset(ScodeValues[Sk]);
unset(SdelayValues[$k]);
unset(SshiftValues[Sk]);
unset(ScodeValues[Sk - 1]);
unset(SdelayValues[Sk - 1]);
unset(SshiftValues[Sk - 1]);
// Indicate that the array lengths have been altered by 2 positions
ShasChanged = 2;
// If the character being processed is not the first element
if (Sk>1){
// Remove the current and previous flight times
unset(SflightValues[SK]);
unset(SflightValues[Sk - 1]);

139

// Mark flight time two positions back for substitution
SflightValues[Sk - 2] = NAN;
} elseif (Sk > 0) {
// Remove current flight time
unset(SflightValues[SK]);
// Mark previous flight time for substitution
SflightValues[Sk - 1] = NAN;
} elseif (Sk == 0) {
// Remove current flight time
unset(SflightValues[$Sk]);
1
// Remove key events for Alt, Control and Tab characters
} elseif (ScharCodeN == 18 || ScharCodeN == 17 || ScharCodeN == 9) {
// Remove Alt, Ctrl, Tab
// Block these in the recording process
unset(ScodeValues[Sk]);
unset(SdelayValues[$k]);
unset(SshiftValues[Sk]);
ShasChanged = 1;
if (Sk>0) {
unset(SflightValues[Sk - 1]);
SflightValues[Sk] = NAN;
1
}

// Reorder arrays to remove missing indexes
ScodeValues = array_values(ScodeValues);
SdelayValues =array_values(SdelayValues);
SflightValues = array_values(SflightValues);
SshiftValues = array_values(SshiftValues);

// Move position index
Sk +=1 - ShasChanged;
}
Siterations += 1;

}

// If the datasets are not aligned to the template
// even after calling the 'remove’ function
// consider the input invalid
if (sizeof(ScodeValues) != sizeof(SdelayMeans)) {
echo "Incorrect pattern”;
exit;

}

// Calculate mean value of the flight array
// Used as substitution value

Ssum = 0;

Scount = 0;

// Loop through all flight time values

for (Si = 0; Si < sizeof(SflightValues); Si++) {

140

// Don't process elements which contain NaN
// Will cause the result to always be NaN if included
if (lis_nan(SflightValues[Si])) {
// Calculating running sum of values
Ssum += SflightValues[Si];
// Increment counter for number of elements processed
Scount++;

}
}

// Calculate average value
SflightMean = Ssum / Scount;

// Substitute elements containing NaN with mean value
for (Si = 0; Si < sizeof(SflightValues); Si++) {
if (is_nan(SflightValues[Si])) {
SflightValues[Si] = SflightMean;
}
}

// Set parameters for matching code

// These can be used to set how strict/lenient the system is
Sgain = 20;

Sthreshold = 75;

// Perform distance calculations for delay and flight times
SattemptDelayDistance = calcDistance(SdelayValues, SdelayWeights, SdelayMeans);
SattemptFlightDistance = calcDistance(SflightValues, SflightWeights, SflightMeans);

// Determine match percentages for delay and flight metrics
SdelayMatch =100 - ((SattemptDelayDistance - Srow['delayQ3']) / (Sgain * Srow['delaylQR'])) * 100;
SflightMatch = 100 - ((SattemptFlightDistance - Srow['flightQ3']) / (Sgain * Srow['flightIQR'])) * 100;

// Limit match percentage to range of 0% to 100%
if (SflightMatch < 0)
SflightMatch = 0;
if (SdelayMatch < 0)
SdelayMatch = 0;
if (SflightMatch > 100)
SflightMatch = 100;
if (SdelayMatch > 100)
SdelayMatch = 100;

// Output message to user indicating whether the access attempt was successful
echo '<div style="font-size: 40px; text-align: center; color:rgh(43,150,255); font-family: Sans-Serif;">';
if (SflightMatch > Sthreshold && SdelayMatch > Sthreshold) {
echo "Access granted";
}else {
echo "Access denied";
}
echo '</div>";
7>

141

<style>

.meter {
height: 20px;
position: relative;
background: #EEE;
width: 200px;
left:50%;
margin-left:-100px;

}

.meter > div {

display: block;

height: 100%;

background-color: rgh(43,150,255);
position: relative;

overflow: hidden;

}
.wrapper {
text-align:center; color:#000; font-family: Sans-Serif;
}
</style>
<body>
<center>

<div class="wrapper">
Flight Match: <?php echo number_format(SflightMatch,2) . "%"; ?>
<div class="meter">
<div style='width: <?php echo SflightMatch . "%";?>;'>
</div>
</div>

Delay Match <?php echo number_format(SdelayMatch,2) . "%"; ?>
<div class="meter">
<div style='width: <?php echo SdelayMatch . "%";?>;'>
</div>
</div>
</div>

Try again
</center>
</body>

Appendix B.5: Template Generation System
PHP Code for Template Generation System: templateGen.php

<?php

// Login credentials for MySQL database
Sservername = "localhost";

Susername = "user";

142

Spassword = "UserPenguin01";

// Attempt to connect to database
try {

Sconn = new PDO("mysql:host=Sservername;dbname=research", Susername, Spassword);

// set the PDO error mode to exception
Sconn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

}
catch(PDOException Se) {

echo "Connection failed: " . Se->getMessage();

}

if (lisset(S_GET['username'])){
echo "Username parameter not provided. </br>";
exit();

}

// Data alignment function

// Removes unnecessary key events from an input data set to match provided template
function remove(&ScodeValues, &SshiftValues, &SdelayValues, &SflightValues) {

Siterations = 0;
Smaxlterations = sizeof(ScodeValues);

// Loop until loop exceeds iteration limit
while (Siterations < sizeof(Smaxlterations)) {
Sk=0;
// Loop through all event data points
while (Sk < sizeof(ScodeValues)) {
ShasChanged = 0;

// Get code value at position k
ScharCodeN = ScodeValues[Sk];

// If it exists get code value at position k + 1
if (Sk < sizeof(ScodeValues) - 1) {
ScharCodeNp1 = ScodeValues[Sk + 1];
}else {
SshiftModNp1 = null;
}

// If it exists get the next shift modifier value
if (Sk < sizeof(SshiftValues) - 1) {
SshiftModNp1 = SshiftValues[Sk + 1];
}else{
SshiftModNp1 = null;
}

// If both positions k and k + 1 are for shift press events
if (abs(ScharCodeN) == 16 && abs(ScharCodeNp1) == 16) {

// Remove elements for character code, delay time and shift modifier at k

unset(ScodeValues[Sk]);

143

unset(SdelayValues[Sk]);
unset(SshiftValues[Sk]);
// Indicate that the array lengths have been alterated by 1 position
ShasChanged = 1;
// If the character being processed is not the first element
if (Sk>0){
// Remove the previous flight time
unset(SflightValues[Sk - 1]);
// Mark the current flight time for substitution
SflightValues[Sk] = NAN;
}else {
// Remove the flight time at the current position
unset(SflightValues[Sk]);
}
// If position k is a shift press event and any of the following conditions are also met
// 1. The next position does not have a shift modifier applied
// 2. Position k is the last key press event
// 3. The next key event is a backspace press
// 4. The next key event is an enter press
} elseif (abs(ScharCodeN) == 16 && (SshiftModNpl == 0 || Sk == sizeof(ScodeValues) - 1 | |
ScharCodeNpl == 8 && ScharCodeNp1 == 13)) {
// Remove elements for character code, delay time and shift modifier at k
unset(ScodeValues[Sk]);
unset(SdelayValues[Sk]);
unset(SshiftValues[Sk]);
// Indicate that the array lengths have been altered by 1 position
ShasChanged = 1;
// If the character being processed is not the first element
if (Sk>0){
// Remove the previous flight time
unset(SflightValues[Sk - 1]);
// Mark the current flight time for substitution
SflightValues[Sk] = NAN;
}else {
// Mark the current flight time for substitution
SflightValues[Sk] = NAN;
}
// If position k is a backspace press event
} elseif (ScharCodeN == 8) {
// Remove elements for character code, delay time and shift modifier at k and k-1
unset(ScodeValues[Sk]);
unset(SdelayValues[Sk]);
unset(SshiftValues[Sk]);
unset(ScodeValues[Sk - 1]);
unset(SdelayValues[Sk - 1]);
unset(SshiftValues[Sk - 1]);
// Indicate that the array lengths have been altered by 2 positions
ShasChanged = 2;
// If the character being processed is not the first element
if (Sk>1){
// Remove the current and previous flight times

144

unset(SflightValues[Sk]);
unset(SflightValues[Sk - 1]);
// Mark flight time two positions back for substitution
SflightValues[Sk - 2] = NAN;
} elseif (Sk > 0) {
// Remove current flight time
unset(SflightValues[Sk]);
// Mark previous flight time for substitution
SflightValues[Sk - 1] = NAN;
} elseif (Sk == 0) {
// Remove current flight time
unset(SflightValues[Sk]);
}
// Remove key events for Alt, Control and Tab characters
} elseif (ScharCodeN == 18 | | ScharCodeN == 17 || ScharCodeN == 9) {
// Remove Alt, Ctrl, Tab
// Block these in the recording process
unset(ScodeValues[Sk]);
unset(SdelayValues[Sk]);
unset(SshiftValues[Sk]);
ShasChanged = 1;
if (Sk>0){
unset(SflightValues[Sk - 1]);
SflightValues[Sk] = NAN;
}
1

// Reorder arrays to remove missing indexes
ScodeValues = array_values(ScodeValues);
SdelayValues = array_values(SdelayValues);
SflightValues = array_values(SflightValues);
SshiftValues = array_values(SshiftValues);

// Move position index
Sk +=1 - ShasChanged;
}
Siterations +=1;
1
}

// Transpose 2D matrix and return result
function transposeData(Sdata)
{
SretData = array();
foreach (Sdata as Srow => Scolumns) {
foreach (Scolumns as Srow2 => Scolumn2) {
SretData[Srow2][Srow] = Scolumn2;
}
}

return SretData;

}

145

function distanceMetrics(&Sarrayln,&SmeansOut,&SweightsOut,&SigrOout,&SQ30ut) {
// Transform input array from row-wise format to column-wise format
SarrayCols = transposeData(Sarrayln);

// Array to stores calculated means, variances and weights
SarrayMeans = array();

SarrayVars = array();

SarrayWeights = array();

// Loop through each column of data

foreach (SarrayCols as Scollndex => Scol)

{
// Array to store values which are not considered
// as being potential outliers
SgoodValues = array();
// Stores list of indexes containing potential outliers
Sbadindex = array();

// Calculate Q1 and Q3 values

sort(Scol);

SidxQ1 = round((count(Scol) + 1)/4);
SidxQ3 = round((3*(count(Scol) + 1))/4);
$Q1 = Scol[SidxQ1];

$Q3 = Scol[SidxQ3];

// Calculate inter-quartile range
Sigr=5$Q3 - 5Q1;

// Calculate upper and lower bounds for what is
// considered to be valid values

SupperLim = SQ3 + (1.5*Siqr);

SlowerLim =SQ1 - (1.5*Siqr);

// Determine a list of good values and list of
// indexes for outliers
foreach (Scol as Sindex => Selem)
{
// Compare value against bounding limits
if (Selem < SupperLim && Selem > SlowerLim)
{
array_push(SgoodValues, Selem);
lelse
{
array_push(Sbadindex, Sindex);
}
}

// Replace outliers with a randomly selected 'good' value
if (count(Sbadindex) > 0)

{

146

}

foreach (Sbadindex as Sidx)

{
// Randomly select a 'good' value from set
Srandldx = rand(0,count(SgoodValues)-1);
// Substitute potential outliers
Sarray[Scollndex][Sidx] = SgoodValues[Srandldx];

1

}

// Calculate mean for column
ScolMean = array_sum(Scol)/count(Scol);

// Calculate variance for column
ScolVariance = 0;
foreach (Scol as Sindex => Selem)
{
ScolVariance += pow((Selem - ScolMean) ,2);

}

ScolVariance = ScolVariance / (count(Scol) - 1);

// Calculate weight as inverse of variance for column
ScolWeight = 1 / ScolVariance;

// Store calculated values
array_push(SarrayMeans, ScolMean);
array_push(SarrayVars, ScolVariance);
array_push(SarrayWeights, ScolWeight);

// Array to store calculated distance values
SarrayDistances = array();

// Loop through each access attempt and calculate
// weighted Euclidean distance between the attempt
// and the template values calculated

foreach (Sarrayln as SrowIndex => Srow)

{

}

SweightedAttempt = 0;
foreach (Srow as Sindex => Selem)

{

SweightedAttempt += SarrayWeights[Sindex] * pow((Selem - SarrayMeans[Sindex]),2);

}
Sdistance = sqrt(SweightedAttempt);

array_push(SarrayDistances, Sdistance);

// Sorts list of Euclidean distances
sort(SarrayDistances);

147

// Calculate Q1 and Q3 values for distance values
SidxQ3 = round((3*(count(SarrayDistances) + 1))/4);
SQ3 = SarrayDistances[SidxQ3];

SidxQ1 = round((count(SarrayDistances) + 1)/4);
SQ1 = SarrayDistances[SidxQ1];

// Calculate inter-quartile range for distance values
Sigr =5Q3 - $Q1;

// Return weights, means as well as IQR and Q3 values
// for distance metrics
SweightsOut = SarrayWeights;
SmeansOut = SarrayMeans;
SigrOut = Siqr;
$Q30ut = $Q3;
}

// SQL Query to get user training data
Sstatement = Sconn->prepare("select * from typingData where username = :username");

Susername = S_GET['username'];
// Executes the SQL Query
Sstatement->execute(array(':username' => Susername));

// Counter to identify an access attempt
Sinc =0;

// Arrays to store 2D collection of delay and flight times
Sdelays = [J;
Sflights = [];

// Fetch the first row of data.
Srow = Sstatement->fetch();

// Loop through all access attempts retrieved

do {
// Receives and structures data from database
// Separate received strings into arrays of values
SdataFlight = explode(",",Srow['dataFlight']);
SdataDelay = explode(",",Srow['dataDelay']);
SdataCode = explode(",",Srow['dataCode']);
SdataShift = explode(",",Srow['dataShift']);
Shash = Srow['hash'];

// Align dataset to match retrieved template
remove(SdataCode, SdataShift, SdataDelay, SdataFlight);

// Add delay and flight values to 2D collection

Sflights[Sinc] = SdataFlight;
Sdelays[Sinc] = SdataDelay;

148

// Move to next access attempt position
Sinc++;

// Get next row of typing data from database
} while (Srow = Sstatement->fetch());

// Close MySQL connection
Sstatement = null;

// Declare arrays and variables to store flight means

// and weights for use with Euclidean distance calculation
// as well as storage of IQR and Q3 values

SflightMeans = [J;

SflightWeights = [];

SflightIQR = null;

SflightQ3 = null;

// Perform Euclidean distance calculation for flight metric
distanceMetrics(Sflights,SflightMeans, SflightWeights, SflightIQR, SflightQ3);

// Declare arrays and variables to store delay means

// and weights for use with Euclidean distance calculation
// as well as storage of IQR and Q3 values

SdelayMeans = [];

SdelayWeights = [];

SdelaylQR = null;

SdelayQ3 = null;

// Perform Euclidean distance calculation for delay metric
distanceMetrics(Sdelays,SdelayMeans,SdelayWeights,SdelaylQR,SdelayQ3);

// SQL statement to store calculated template into database

Ssql = "INSERT INTO ‘authenticationtemplates® (userID, username, flightMeans, flightWeights,
delayMeans, delayWeights, flightlQR, flightQ3, delaylQR, delayQ3, hash) VALUES (:userID, :username,
flightMeans, :flightWeights, :delayMeans, :delayWeights, :flightIQR, :flightQ3, :delaylQR, :delayQ3,
:hash)";

// Bind values to PDO

Sstmt = Sconn->prepare($sql);

$stmt->bindValue(:userlD', 1, PDO::PARAM_INT);
Sstmt->bindValue(':username', Susername, PDO::PARAM_STR);
Sstmt->bindValue(":flightMeans', implode(",", SflightMeans));
Sstmt->bindValue(':flightWeights', implode(",", SflightWeights));
Sstmt->bindValue(':delayMeans', implode(",", SdelayMeans));
Sstmt->bindValue(':delayWeights', implode(",", SdelayWeights));
Sstmt->bindValue(":flightIQR', SflightIQR);
Sstmt->bindValue(":flightQ3', SflightQ3);
Sstmt->bindValue(":delaylQR', SdelaylQR);
Sstmt->bindValue(':delayQ3', SdelayQ3);
Sstmt->bindValue(':hash', Shash, PDO::PARAM_STR);

149

// Execute query to insert data into database
Sstmt->execute();
echo "Template written to database.";

// Close MySQL connection
Sconn = null;
>

Appendix B.6: MATLAB Visualisation and Matching Code

MATLAB code for visualising delay and flight time: metrics.m

clear
close all

%% Read data file and separate data into appropriate variables

% Read data file 'characteristics.xlsx'
[~,~,data] = xIsread('Ryan.xlsx');
fprintf('Data file has been read successfully.\n\n');

% Store data in appropriate variables

names = data(:,2);

timeData = data(:,5);

codeData = data(:,6);

delayData = data(:,7
)

);
).

flightData = data(:,8
shiftData = data(:,

’

’

% Done using imported data, so clear it
clear data;

%% Align datasets

cleanedCodeCell = {};
cleanedDelayCell = {};
cleanedFlightCell = {};

% Loop through training data
fori=1:length(names)
codeDataVals = strsplit(codeData{i},’,');
delayDataVals = strsplit(delayData{i},’,");
flightDataVals = strsplit(flightData{i},',');
shiftDataVals = strsplit(shiftData{i},',');
mask = ones(1,length(codeDataVals));
runOnce =1;
% Loop through characteristics for row data
while (runOnce | | any(ismember(codeDataVals,'8')))
runOnce = 0;
mask = ones(1,length(codeDataVals));

k=1;
while (k < length(codeDataVals))

150

flightmask = ones(1,length(flightDataVals));

% Get value of character code at position k
charCodeN = abs(str2double(codeDataVals{k}));

% Get value of character code at position k+1
if (k < length(codeDataVals))

charCodeNp1 = abs(str2double(codeDataVals{k+1}));

end

% Get value of shift modifier at position k+1
if (k < length(shiftDataVals))

shiftDataNp1 = str2double(shiftDataVals{k+1});

end

% Check for two consecutive shift presses
if (charCodeN == 16 && charCodeNp1l == 16)
% Remove code and delay data for k
mask(k) = 0;
% If not first position
if(k>1)
% Mark flight time k-1 for substitution
flightDataVals{k-1} = Inf;
end
% Shift flight time back one position
flightDataVals{k} = flightDataVals{k+1};
% Remove flight time for position k + 1
flightmask(k+1) = O;
% Check for shift press which has no effect

elseif (charCodeN == 16 && shiftDataNpl1 == 0)

% Remove code and delay data for k
mask(k) = O;
% Mark flight time k-1 for substitution
if(k>1)
flightDataVals{k-1} = Inf;
end
% Remove flight time for position k
flightmask(k) = 0;
% Check for backspace press
elseif (charCodeN == 8)

% Remove code, delay and flight data for position k

mask(k) = 0;
flightmask(k) = 0;

% If not first position, remove predecessor code and delay data

if(k>1)
flightmask(k-1) = 0;
mask(k-1) = 0;
end
% Remove two predecessor flight times
if(k>2)
flightDataVals{k-2} = Inf;
% Remove predecessor flight time

151

elseif (k>1)
flightDataVals{k-1} = Inf;

end
end
codeDataVals = codeDataVals(logical(mask));
shiftDataVals = shiftDataVals(logical(mask(1:length(mask)-1)));
flightDataVals = flightDataVals(logical(flightmask));
mask = mask(logical(mask));
k=k+1;

end
end

% Store aligned data

cleanedCodeCell{i} = str2double(codeDataVals(logical(mask)));

cleanedDelayCell{i} = str2double(delayDataVals(logical(mask)));

cleanedFlightCell{i} = str2double(flightDataVals(logical(flightmask)));
end

%% Substitute flight times
lowLim =1;
uplLim = 10;

subset = cleanedFlightCell(lowLim:upLim);

% Substitute values using mean flight time
fori=1:length(subset)
forj=1:length(subset{i})
tmp = subset{i};
if (isnan(tmp(j)))
idxi =i+ lowLim - 1;
cleanedFlightCell{idxi}(j) = mean(cleanedFlightCell{i}(~isnan(cleanedFlightCell{i})));
end
end
end

%% Authentication template data

% Jackson's authentication template

realDelay = [305,81,125.9,109.3,177.3,141,130.4,109,122.4,96.1,184.5,143.1,84.2];

realFlight = [-42.1,42.6,-45.9,28.1,-68.5,-29.9,-46,102,5.8,44.5,-181.3,233.1];

flightWeights =
[0.0016746284968887,0.00055828494863778,0.01165787213155,0.00021394035342946,0.0005497
526113249,0.00037661199846184,0.0077741407528642,1.8485007685872E-
5,0.001767902337353,0.0010007900974454,0.00077829937490271,3.2194124470618E-5];
delayWeights = [1.8799521898475E-
5,0.00073780677228953,0.0017694499804429,0.0096928884807673,0.00051423344032998,0.0006
0348113327404,0.0017552287340182,0.00096623270951993,0.00050643978164449,0.0015953248
585199,0.00012797629070825,0.00023026451332989,0.0035854468599034];

flightlQR = 2.42886;

flightQ3 = 4.76455;

delaylQR = 2.68022;

delayQ3 =5.10226;

152

% Calculate distances for access attempts
errFlight = [];

errDelay = [];

lowLim=1;

uplLim = 10;

subsetFlight = cleanedFlightCell(lowLim:upLim);
subsetDelay = cleanedDelayCell(lowLim:upLim);

fori=1:10
j=lowlim+i-1;
errFlight(j) = sqrt(sum(flightWeights.*(subsetFlight{i}-realFlight).*2));
errDelay(j) = sgrt(sum(delayWeights.*(subsetDelay{i}-realDelay).*2));
end

avgFlight = mean(errFlight(1));
avgDelay = mean(errDelay(1));

%% Plot data points for flight and times
% Plot data points for flight times
figure(1);
hold on;
fori=1:10
plot(cleanedFlightCell{i},'s");
xlim([0 length(cleanedFlightCell{i}) + 1]);
end
hold off;
title('Flight Time Data for Phrase ".tie5SRoan1"')
xlabel('Key Press Event')
ylabel('Flight Time (ms)');
ylim([-200 1600]);
grid on;
set(gca, 'xtick', 1 : length(cleanedFlightCell{1}));
set(gca, 'xticklabel', [{'.-t'}; {'t-i'}; {!i-e'}; {'e-5'}; {'5-Shiftr'} ; {'Shiftr-0'} ; {'o-a'}; {'a-n'}; {'n-1'}; {'1-
Enter'};]);
set(gca, 'xticklabelrotation', -45);

% Plot data points for delay times
figure(2);
hold on;
fori=1:10
plot(cleanedDelayCell{i},'s");
end
xlim([O length(cleanedDelayCell{1}) + 1]);
ylim([0 300]);
hold off;
title('Delay Time Data for Phrase ".tiesRoan1"')
xlabel('Key Press Event')
ylabel('Delay Time (ms)');
grid on;

153

set(gca, 'xtick', 1 : length(cleanedDelayCell{1}));

set(gea, 'xticklabel', [{1'}; {'}; {1}; (€'}; {5'}; {shift-R'}; {0'); {a}; (n'}; {1 ; (Enter} ;));

%% Match percentage calculations

% Gains associated with match distances
gainDelay = 20;

gainFlight = 20;

% Upper bound for distnaces
upperBoundFlight = flightQ3 + (gainFlight * flightIQR);
upperBoundDelay = delayQ3 + (gainDelay * delaylQR);

% Caclulate match metrics
matchDelay = 100-((errDelay(lowLim:upLim) - delayQ3)/(gainDelay*delaylQR) * 100);
matchFlight = 100-((errFlight(lowLim:upLim) - flightQ3)/(gainFlight*flightIQR) * 100);

% Bound match percentages to between 0% and 100%
matchFlight(matchFlight < 0) = 0;
matchDelay(matchDelay < 0) = 0;

matchFlight(matchFlight > 100) = 100;
matchDelay(matchDelay > 100) = 100;

% Output match percentages to the console
fprintf('Matches Percentages for Attempt:\n');
fprintf('Delay Metric (%%): '),

fprintf('%2.2f ', matchDelay);

fprintf("\n');

fprintf('Flight Metric (%%): '),

fprintf('%2.2f ', matchFlight);

fprintf("\n');

% Set successful login threshold at 75%
threshold = 75;

numSuccessful = sum(matchDelay > threshold & matchFlight > threshold);

fprintf('Number of Successful Logins: %d \n', numSuccessful);

fprintf('Percentage of Successful Logins: %2.2f%% \n', numSuccessful/length(matchDelay)*100);

Appendix B.7: Styling Code
Style sheet used for system: style.css

@font-face {
font-family: 'OpenSansLight’;
src: url('Fonts/OpenSans-Light.ttf');
font-weight: lighter;
}
@font-face {
font-family: 'OpenSans';
src: url('Fonts/OpenSans-Regular.ttf');

154

}

font-weight: normal;

.center {

}

left: 50%;

transform: translateX(-50%);
position: relative;

display: inline-block;

div.graph {

}

background-color: rgh(254, 254, 254);
border: 1px solid rgh(220, 220, 220);
display: inline-block;

height: 80px;

width: 600px;

overflow: auto;

div.graph-back {

}

position: absolute;

width: 24.4%;

height: 100%;

border-right: 1px solid rgh(220, 220, 220);
left: Opx;

top: Opx;

canvas.timeline {

}

background-color: rgh(240, 240, 240);
display: inline-block;

left: 50%;

position: relative;

transform: translateX(-50%);

width: 6500px;

height: 150px;

display: none;

input[type=text] {

}

font-family: 'Open Sans', sans-serif;
font-size: 20px;

width: 400px;

border: 1px solid rgh(220, 220, 220);
border-radius: 10px;

padding-left: 10px;

padding-right: 10px;

padding-top: 5px;

padding-bottom: 5px;

color: rgh(70, 70, 70);

outline: none;

div.keyboard {

height: 350px;
width: 100%;
display: block;

155

}
div.key {
background-color: rgh(240, 240, 240);
border-radius: 10px;
border-bottom: 3px solid rgh(230, 230, 230);
color: rgh(20, 20, 20);
display: inline-block;
font-family: sans-serif;
font-size: 14px;
margin: 3px;
text-align: center;
padding-top: 20px;
padding-left: 5px;
padding-right: 5px;
min-width: 50px;
min-height: 35px;
}
div.keyPressed {
background-color: rgh(0, 190, 255);
border-bottom: 2px solid rgh(0, 160, 225);
color: rgh(255, 255, 255);
}
div.keyWide {
min-width: 90px;
}
div.error {
font-family: 'Open Sans', sans-serif;
font-size: 10pt;
color: rgh(255, 100, 100);
margin-bottom: 10px;
}
div.info {
display: block;
width: 100%;
font-family: 'Open Sans', sans-serif;
font-size: 10pt;
}
div.output {
overflow: auto;
overflow-y: hidden;
display: none;
height: 200px;
margin-left: 100px;
margin-right: 100px;
}
div.key-color-1 {
background-color: rgh(255, 130, 130);
border-bottom: 2px solid rgh(255, 100, 100);
color: rgh(255, 255, 255);
}
div.key-color-2 {

156

background-color: rgh(159, 223, 253);
border-bottom: 2px solid rgh(99, 204, 254);
color: rgb(255, 255, 255);

}

div.key-color-3 {
background-color: rgh(109, 245, 203);

border-bottom: 2px solid rgh(129, 225, 203);

color: rgh(255, 255, 255);

}

div.key-press-3 {
background-color: rgh(0, 190, 255);
border-bottom: 2px solid rgh(99, 204, 254),
color: rgh(255, 255, 255);

}

div.key-press-2 {
background-color: rgh(0, 210, 255);
border-bottom: 2px solid rgh(99, 204, 254);
color: rgh(255, 255, 255);

}

div.key-press-1 {
background-color: rgh(0, 230, 255);
border-bottom: 2px solid rgh(99, 204, 254);
color: rgh(255, 255, 255);

}

.btn {
cursor: pointer;
border: none;
outline: none;
-webkit-border-radius: 4px;
-moz-border-radius: 4px;
border-radius: 4px;
font-size: 14px;
font-family: sans-serif;
padding: 8px 15px 8px 10px;
text-decoration: none;
min-width: 150px;
position: relative;

}

.btn_input {
-webkit-box-shadow: Opx 3px Opx #387da3;
-moz-box-shadow: Opx 3px Opx #387da3;
box-shadow: Opx 3px Opx #387da3;
color: #ffffff;
background: #3498db;

}

.btn_input:hover {
border: none;
outline: none;
background: #17a6ff;
text-decoration: none;

}

157

.btn_input:active {

}

border: none;

outline: none;

text-decoration: none;
-webkit-box-shadow: Opx 2px Opx #387da3;
-moz-box-shadow: Opx 2px Opx #387da3;
box-shadow: Opx 2px Opx #387da3;
-webkit-transform: translateY(3px);
transform: translateY(3px);
-webkit-animation: none;

animation: none;

h2 {

}

font-size: 20px;
font-family: sans-serif;

span.phrase {

}

font-family: sans-serif;
font-size: 16px;

img.timelinelmage {

}

margin: 10px;

div.phrase {

}

display: inline-block;
position: relative;
transform: translateX(-50%);
width: 600px;

left: 50%;

text-align: center;

font-size: 24pt;

font-family: sans-serif;
margin: 10px;

input.credinput {

}

margin: 10px;

height: 50px;

width: 200px;

font-size: 10pt;
font-family: 'OpenSans’;
border-radius: 2px;

input.credinput:focus {

}

border: 1px solid rgh(0, 140, 250);

input.saveAttempt {

background-color: rgh(0, 140, 250);
border-radius: Opx;

border: 1px solid rgh(0, 140, 250);
color: rgh(240, 240, 240);

font-size: 10pt;

158

font-weight: lighter;
font-family: 'OpenSansLight', Helvetica, sans-serif;
left: 250px;
margin: 10px;
position: relative;
}
input.saveAttempt:hover {
background-color: rgh(255, 255, 255);
color: rgb(0, 140, 250);
}
div.loginWrapper {
background-color: rgh(255, 255, 255);
border-radius: 2px;
border: 1px solid rgh(230, 230, 230);
left: 50%;
margin-top: 10px;
padding: 10px;
padding-top: 30px;
position: relative;
transform: translate(-50%);
width: 450px;
}
span.supplied {
font-family: 'OpenSansLight’, sans-serif;
color: rgh(255, 255, 255);
font-size: 10pt;
font-weight: lighter;
text-align: left;
padding: 10px;
background-color: rgh(0, 140, 250);
position: relative;
height: 50px;
}
span.supplied:after {
content: "":
position: absolute;
width: 0;
height: O;
border-width: 10px;
border-style: solid;
border-color: transparent rgb(0, 140, 250) transparent transparent;
top: 10px;
left: -20px;
}
div.suppliedHeader {
font-family: 'OpenSans', sans-serif;
color: rgb(0, 0, 0);
font-size: 14pt;
width: 100%;
text-align: left;
padding-left: 30px;

159

font-weight: normal;
margin-bottom: 5px;
}
div.loginHeader {
font-family: 'OpenSansLight', Helvetica, sans-serif;
color: rgh(50, 50, 50);
font-size: 16pt;
width: 100%;
text-align: center;
ol font-weight: lighter;
margin-bottom: 10px;
}
div.symbol {
text-align: center;
font-size: 20pt;
color: rgh(0, 140, 250);
}
div.countWrapper {
background-color: rgh(255, 255, 255);
width: 430px;
border-radius: 2px;
border: 1px solid rgh(230, 230, 230);
padding: 10px;
margin-top: 5px;
}
div.countSquare {
display: inline-block;
width: 10px;
height: 10px;
color: rgh(255, 255, 255);
}
div.countGreen {
background-color: rgh(179, 238, 58);
border: 1px solid rgh(179, 238, 58);
}
div.countEmpty {
border: 1px solid rgh(0, 140, 250);
}
div.countBlue {
background-color: rgh(0, 140, 250);
border: 1px solid rgh(0, 140, 250);
}
div.countRed {
background-color: rgh(255, 255, 255);
border: 1px solid rgh(238, 0, 58);
}
div.countText {
display: inline-block;
float: right;
font-family: 'OpenSans’;
font-size: 8pt;

160

padding-top: 2px;

color: rgh(120, 120, 120);
}
hr.spacer {

clear: both;

color: red;

background-color: rgh(240, 240, 240);

height: 1px;
border-width: O;
margin-top: 10px;
margin-bottom: 10px;
}
div.idWrapper {

background-color: rgh(255, 255, 255);

width: 450px;
border-radius: 2px;

border: 1px solid rgh(230, 230, 230);

padding: 10px;
margin-top: 5px;
position: relative;
left: 50%;
transform: translateX(-50%);
color: rgh(20, 20, 20);

}

div.idMessage {
font-family: 'OpenSans';
font-weight: normal;
font-size: 10pt;

}

input.typinglnput {
position: relative;
left: 30px;

}

select.selectUsername {
width: 200px;
height: 50px;
border-radius: 2px;
margin-left: 10px;

border: 1px solid rgh(220, 220, 220);

161

Appendix B.8: Unit Testing Data Alignment Code

Table 7.1: Unit Testing Sheet for Data Alignment Code

Case Result | Before After Comment
16,80,82,69,76,85 ,68 ,69 ,8 ,69 ,48 ,49 | 16,80,82 ,69,76,85,68 ,69
Use of backspace key once PASS ,16,49,13 ,48 ,49 ,16 ,49 ,13
Use of backspace key multiple times, 16,80,82,69,76,85,8,85,68,69 ,8 ,49 16,80,82,69,76,85,68 ,69
non-consecutively FAIL ,8,69,48 ,49,16 ,49 ,13, ,48 ,49 ,49,13
Use of backspace key multiple times, 16,80,82,69,76,85,68 ,69,8,8,68,69 16,80,82,69,76,85,68 ,69
consecutively FAIL ,48 ,49 ,16 ,49 ,13 ,48 ,49 ,49 ,13
Missing: unset(SshiftDataVals[Sk-1]); which cause the shift modifiers to not
ACTION | allign properly
Use of backspace key multiple times, 16,16 ,80,82,69,8,69,76,85,68 ,69,8 16,80,82,69,76,85,68 ,69
non-consecutively PASS ,69,48 ,49,16,49,13 ,48 ,49 ,16 ,49,13
Use of backspace key multiple times, 16,80,82,69,8,8,82,69,76,85,68,69 16,80,82,69,76,85,68 ,69
consecutively PASS ,48 ,8 ,8 ,8,68 ,69 ,48 ,49,16,49,13 ,48 ,49 ,16,49,13
16,16,80,82,69,76,85 ,68 ,69 ,48 ,49 16,80,82,69,76,85,68 ,69
Unnecessary shift press at start of input | PASS , 16,49 ,13 ,48 ,49 ,16 ,49,13
Unnecessary shift press throughout 16,80,82,69,76,16,85 ,68 ,69 ,48 ,49 16,80,82,69,76,85,68 ,69
input PASS ,16,49,13 ,48 ,49 ,16 ,49,13
16,80,82,69,76,85,68 ,69 ,48 ,49,16 16,80,82,69,76,85,68 ,69
Unnecessary shift press at end of input PASS ,49,16,16,16,16,16,13 ,48 ,49 ,16 ,49,13
Multiple unnecessary shift presses 16,80,16,82,69,76,85,16 ,68 ,69 ,48 16,80,82 ,69,76,85,68 ,69
through input, non-consecutively PASS ,49,16 ,49,13 ,48 ,49 ,16 ,49,13
Multilple unnecessary shift presses 16,80,82,69,76,16,16,85,68 ,69,16 16,80,82,69,76,85,68 ,69
through input, consecutively PASS ,16 ,48 ,49 ,16 ,49 ,13 ,48 ,49 ,16 ,49 ,13

162

16,80,82,69,76,85 ,68 ,69 ,48 ,49,16 16,80,82,69,76,85 ,68 ,69 Value was not
Use of the escape key PASS ,49 ,13 ,48,49 ,16 ,49,13 recorded
16,80,82,69,76,85 ,68 ,69 ,48 ,49,16 17,80,82,69,76,85 ,68 ,69 Value was not
Use of the tab key PASS ,49 ,13 ,48 ,49,16 ,49 ,13 recorded
16,80,82,69,76 ,85,68 ,69,17 ,48 ,49 18,80,82,69,76,85 ,68 ,69
Use of the control key PASS ,16,49,13 ,48,49 ,16 ,49,13
16,80,82,69,76 ,85,68 ,69,18 ,48 ,49 16,80,82,69,76,85 ,68 ,69
Use of the alt key PASS ,16,49,13 ,48,49 ,16 ,49,13
16,80,82,69,76,85 ,68 ,69 ,48 ,49,16 16,80,82,69,76,85 ,68 ,69 Code for up and down
Use of the arrow keys FAIL ,49 ,38 ,40,13 ,48,49 ,16 ,49,38,40,13 arrows recorded
if(code =="'37" || code =='39' | | code =="'38' | | code =="40"){ Prevent data from being recorded for
ACTION | up and down arrow keys
16,80,82,69,76,85 ,68 ,69 ,48 ,49,16 16,80,82,69,76,85 ,68 ,69
Use of the Windows key PASS ,49 ,13 ,48,49 ,16 ,49,13

163

Appendix B.9: Unit Testing Data Collection Code

Table 7.2: Unit Testing Sheet for Data Collection Code

Case Result Input Phrase Time Array Code Array Delay Array Flight Array Shift Modifiers
Short Input PASS cat 0,105,158 67,65,84 47,75,78 58,-22 0,0,0
0,81,208,409,49
9,691,806,991,1
094,1174,1311,
1501,1589,1783
,1915,1929,213 24,44,133,12,12
1,2210,2391,25 | 87,72,89,68,79, 57,83,68,78,72, 0,31,127,23,26,
12,2649,2795,2 | 83,79,77,65,78, 84,58,80,54,75, 62,127,7,124,68
868,2971,3134, | 89,83,85,80,69, | 63,81,70,64,47, | ,-
3247,3374,3450 | 82,86,73,76,76, | 75,76,67,57,57, | 33,127,3,114,64 | 0,0,0,0,0,0,0,0,0,
,3637,3756,387 | 73,65,78,83,72, | 48,57,73,68,76, | ,80,98,16,30,95, | 0,0,0,0,0,0,0,0,0,
whydosomanysup | 7,5130,6031,62 | 65,86,69,68,79, | 42,61,53,73,75, | 37,85,15,134,46 | 0,0,0,0,0,0,0,0,0,
ervillianshavedoct | 41,6418,6520,6 | 67,84,79,82,65, | 59,73,60,71,55, | ,46,1194,828,15 | 0,0,0,0,0,0,0,0,0,
Long Input PASS orates 623,6764 84,69,83 79,61,51 0,106,47,24,80 0,0
Use of left shift 1,247,529,742,7 -135,203,171,-
key PASS Test 97 16,84,69,83,84 381,79,42,74,53 | 19 1,1,0,0,0
Use of right 0,102,348,501,5
shift key PASS Test 56 -16,84,69,83,84 | 124,99,59,34,62 | -22,147,94,21 1,1,0,0,0
Use of caps lock 0,186,323,512,6 | 20,84,20,69,83, | 59,44,63,71,73, | 127,93,126,79,-
key PASS Test 62,717 84 57 18 0,0,0,0,0,0
0,120,208,313,5 | 70,65,84,32,67, | 68,68,53,32,69, | 52,20,52,208,16 | 0,0,0,0,0,0,0,0,0,
53,638,732,800, | 65,84,32,83,65, | 83,61,53,61,84, |,11,7,136,- 0,0,0
Use of space 989,1034,1134, | 84,13 67,445 16,16,129
key PASS fat cat sat 1330

164

1,155,296,455,6

124,49,48,39,37

Use of numbers 06,838,1043,12 | 49,50,51,52,53, ,39,40,45,50,51 9,7,4,7,7,6,11,7, | 0,0,0,0,0,0,0,0,0,

in phrase PASS 1234567890 14,1412,1597 54,55,56,57,48 8 0
0,495,716,920,1 5348,77,69,71,6 | - 1,1,1,1,1,1,1,1,1,
113,1335,1546, 6,75,76,69,77,7 | 4741,92,122,26 | 1,1,1,1,1,1,1,1,1,
1781,1991,2217 5,69,72,73,66,7 2,159,149,127,1 | 1,1,1,1,0,0,0,0,0,
,2436,2665,290 1,64,60,59,57,6 | 49,142,150,143, | 0,0,0,0,0
8,3105,3342,35 | 16,96,49,50,51, | 5,61,54,58,49,5 | 146,139,220,12
40,3728,4105,4 | 52,53,54,55,56, | 4,62,57,65,69,6 | 9,111,207,97,31
355,4658,4896, | 57,48,45,61,91, | 2,58,35 9,128,117,825,1
5133,5689,5934 | 93,92,59,39,44, 00,120,132,101,
,6162,6377,656 | 46,47,45,61,91, 212,94,218,102,

Use of symbols ~l@#S% &*() +{} | 1,6842,7014,73 | 93,92,59,39,44, 102

in phrase PASS M<>?-=[1\L./ 18,7502,7724 46,47

Use of 0,52,206,372,62 | 84,69,83,82,8,8 | 61,83,72,68,45, 0,0,0,0,0,0

backspace key PASS tesr<backspace>t | 5,763 4 68 -9,71,94,185,93

Holding key 16,84,69,83,84 1336,1147,57,6 | -1137,180,87,42

down for Test <where T is 1,78

extended period held down for a 1,200,152,716,7

of time PASS long time> 11,770 1,1,0,0,0

165

