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Abstract

Improvements in computer power, data gathering techniques and an in-
creased understanding of atmospheric dynamics has lead to the availability
of extensive sets of rainfall data. With these improvements has come a wide-
spread influx of researchers attempting to adequately model rainfall. This
has proved quite difficult due to the extreme variability and uncertainty of
rainfall. However, as rainfall has a major influence on virtually all human
activity, modelling this seemingly unpredictable variable is extremely impor-
tant. The considerable variation of rainfall is one of the main difficulties
when modelling rainfall. A second difficulty is that rainfall is a continuous
variable with an exact zero. Finally rainfall is a highly skewed variable and
there is a general consensus that it has a non-independent structure. This
dissertation will focus on modelling rainfall processes by using generalized es-
timating equations, when the assumed distribution of the response variable
is from the Tweedie family of distributions. The Tweedie distribution allows
the different components of rainfall to be modelled simultaneously. When
the Tweedie distributions are incorporated into generalized estimating equa-
tion estimation techniques, not only can the non-independent structure of
data be incorporate but also multiple rainfall sites can be modelled concur-
rently. This dissertation will attempt to demonstrate the potential benefits
of using generalized estimating equations for modelling and interpreting his-
torical rainfall records by the examination of of monthly rainfall models at
Emerald, Toowoomba and Gatton. The suitability and predictability of the
models presented in this dissertation will then be discussed to determine
if generalized estimating equations provide a unique method of modelling
rainfall.
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Chapter 1

Introduction

Environmental data is often composed of two separate components: a dis-
crete element at zero and a continuous element recorded on the positive real
line. For example, there may be no recordable level of rainfall or pollutant at
particular points in time which constitutes the discrete element and is often
called the occurrence component. When an amount is record, a continuous
quantity greater than zero is documented and is referred to as the amounts
component. Insurance claims and non-recurrent expenditure also display this
two component characteristic. The two components are generally modelled
separately with observations being incorrectly assumed to be independent.
The family of Tweedie distributions (Section 3.5) has been previously used
to enable a single model for rainfall to be produced, however independence of
observations is still assumed. This dissertation specifically examines rainfall
data with the main focus of modelling rainfall using ‘Generalized Estimat-
ing Equations’. These models enable a single model to be produced that
incorporates the dependent structure of rainfall.

Rainfall strongly influences the design and operation of hydrological sys-
tems, irrigation systems, farm management systems, water resource systems
and urban drainage systems (Dunn [27]; Srikanthan & McMahon [76]; Hughes
et al. [51]). Rainfall models are also extremely useful for agricultural plan-
ning as they provide a better understanding of erosion problems and help
in the development of crop growth models (Srikanthan & McMahon [76];
Hughes et al. [51]). As accurate rainfall data is needed for many different
systems, and is required for important management decisions, an extremely
efficient model is needed that takes into account the extreme variability of
rainfall (Chandler & Wheater [12]).

This dissertation commences in Chapter 2 with the examination of previ-
ous researchers’ attempts at modelling rainfall. The overview of past studies
demonstrates the use of two separate models to represent rainfall: rainfall oc-
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2 CHAPTER 1. INTRODUCTION

currence models which examine the number of ‘wet’ and ‘dry’ rainfall events;
and the modelling of rainfall amounts greater than 0mm. This chapter also
covers the difficulties involved with modelling rainfall and how researchers
have overcome these complexities in the past, as well as possible covariates
to use in a rainfall model.

Chapter 3 introduces generalized linear models and discusses the frame-
work, definitions and parameter estimations of these increasingly popular
models. Diagnostic testing used with generalized linear models are also
briefly addressed in this chapter. Of particular importance is the discussion
on the Tweedie family of distributions and their application with modelling
rainfall data. This forms a fundamental part of this dissertation.

Following on from Chapter 3 is the establishment of generalized estimat-
ing equations, which are an extension of generalized linear models. Specifica-
tions and estimation techniques for these estimating equations are explained
in Chapter 4. This chapter also discusses the possibility of using generalized
estimating equations to model rainfall data and describes the notations and
motivations behind this dissertation. The chapter ends with an explana-
tion of the diagnostics that are available to use with generalized estimating
equations and how to fit a generalized estimating equation to a given data
set.

Three rainfall data sets from Emerald, Toowoomba and Gatton, are ex-
amined in Chapter 5. Preliminary analyses are performed on these data sets
to test their suitability for use in this dissertation and to determine if any un-
usual patterns or rainfall amounts are present in the data. Monthly rainfall
amounts are considered for all three locations. The chapter also examines
some of the possible predictors that may be used to model the rainfall at the
three locations.

Chapter 6 demonstrates how to develop a code to model rainfall, using
a generalized estimating equation, when the response variable (rainfall) is
assumed to have a distribution that comes from the Tweedie family of dis-
tributions.

Chapters 7 and 8 give applications of modelling rainfall using a general-
ized estimating equation. A systematic approach to developing the models is
discussed and a final rainfall model is found. Chapter 7 gives an example of
the application of generalized estimating equations for modelling rainfall by
showing the development of a model at single rainfall site, Emerald. Chap-
ter 7 expands on the ideas presented in Chapter 8 to develop a rainfall model
for multiple locations. Both chapters end with a discussion on diagnostics,
model interpretation and model validation.

Finally, Chapter 9 summarizes the accomplishments of this dissertation
and proposes some improvements which could be made. Recommendation
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for further research into this area are also suggested.
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Chapter 2

Literature Review

2.1 Modelling rainfall

Rainfall can be modelled using various timescales including hourly, daily,
monthly and annual timescales (Dunn [27]). The most commonly studied
timescale is daily because it can discriminate between the number of wet days
and rainfall amounts when it does rain. This provides a more detailed under-
standing of the rainfall process (Chandler & Wheater [12]). Little research
has been completed on annual or monthly rainfall since 1985 (Srikanthan &
McMahon [76]). Annual rainfall models have little direct application, how-
ever they are used in disaggregation schemes to obtain monthly data, which
is used in the estimation of water demand and the simulation of water supply
systems (Srikanthan & McMahon [76]).

Even though modelling daily rainfall has proved to be the most valuable
and have the most potential, this dissertation examines monthly models.
This is because size of daily rainfall data sets is typically very large making
the modelling process very time consuming and more difficult. The applica-
tions involved in this dissertation include the development of a new initiative
to model rainfall and thus monthly rainfall data is used. Monthly models
still have considerable applications and provide an excellent foundation for
developing daily models.

One of the main difficulties researchers encounter when examining the
rainfall variable is its considerable variation from year to year. Two other
difficulties include the fact that rainfall is a somewhat skewed variable, and
that it is continuous with an exact 0. This second difficulty is problematic
because most models cannot cope with modelling a mixture of both discrete
and continuous distributions concurrently. Therefore, to minimize this prob-
lem, rainfall is typically modelled using a two-component model. The first

5



6 CHAPTER 2. LITERATURE REVIEW

component examines the occurrence of rainfall: this is the probability of
a ‘wet’ or ‘dry’ event occurring, and is usually formulated using a Markov
process. The second component focuses on the actual rainfall amount once
a rainfall event has occurred. While several researchers have attempted to
model these two processes together, only Dunn [27] has managed to create a
model that simultaneously models both the occurrence and amount together
using only one distribution.

2.2 Modelling the occurrence of rainfall

Rainfall occurrence can be viewed as a sequence of random variables X(t),
t = t1, t2, . . . , tT , where,

X(t) =

{
1 if rainfall has occurred on a particular day or month,

0 if no rainfall has occurred on a particular day or month

The occurrence of rainfall is a discrete process, therefore Markov Chains
and renewal processes are the most common methods used to model the
probability of a ‘wet’ rainfall event occurring. These two processes have
been studied extensively and are discussed in further detail Sections 2.2.1
and 2.2.2. Generalized linear models (glms) are also becoming increasingly
popular to model rainfall data. Glms are also the backbone of generalized
estimating equations (gee), and gees are the main focus of this dissertation.

2.2.1 Markov Chains

Markov Chains are commonly used to model the proportion of ‘wet’ rainfall
events. This is due to the flexibility and ease at which parameters can be
estimated using Markov Chains, as well as the ability and ease the final fitted
model gives for obtaining results that do not require the use of simulations
(Stern & Coe [77]). Markov Chains are also popular because of their largely
non-parametric nature, ease of interpretability, and the well-developed liter-
ature about their development.

A Markov Chain model for rainfall usually specifies two states for each
day: either ‘wet’ or ‘dry’. They are also used to develop a relationship be-
tween the state of the current rainfall event and the state of any proceeding
rainfall events (Srikanthan & McMahon [76] and Chapman [15]). This is
known as the order of the process, and is the number of proceeding rainfall
events taken into account in the model. For example, a first order Markov
Chain indicates that the probability of rain falling on any rainfall event de-
pends only on the state of the previous rainfall event (Coe & Stern [17]).
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Most Markov Chain models referred to in the literature are of first order,
evident from Gabriel and Newman’s research in 1962 (Coe & Stern [17]) to
Stern and Coe’s research in 1984 (Stern & Coe [77]).

While first order models have been studied extensively, more recent re-
search has also focused on higher orders. Katz [54] studied zero, first and
second orders. Lung and Grantham [59] has fitted up to a 12th order chain to
rainfall data. Another area of research into the order of the Markov Chains
involved a hybrid order, in which wet spells are modelled as a first order
but higher orders are used for dry spells (Gyasi-Agyei & Willgoose [35] and
Gyasi-Agyei [34]). Other studies have also examined specific locations to
test the use of a Markov Chain at different locations. For example, Harrison
and Waylen [40] examined the humid topics of America, and Robertson [70]
used a hidden Markov model to describe rainfall occurrence at ten stations
in northeast Brazil during the wet season.

While many studies have tested the different Markov Chain order models
to discover which order is the most efficient in modelling the occurrence of
rainfall, there is a general consensus among researchers that a first order
Markov Chain is adequate for most locations. This is because it is able to
adequately model the data while keeping the number of parameters at a
minimum. The advantages of the Markov Chain first order model is also
enhanced by the findings that higher order Markov Chain models have a
lack of parsimony. Chin [16] did however, suggest that the order needs to
be seasonally sensitive and this means second or higher orders are needed
at some times during the year. Coe and Stern [17] have adopted this idea,
allowing the Markov Chain to change throughout the year. In their research,
Coe and Stern [17] used a first order Markov chain during the dry season
and a second order Markov Chain during the wet season. Lall et al. [55] also
suggests that seasonally varying transition probabilities may be chosen to
represent the changes in data during different seasons, and uses fourier series
methods to parameterize these seasonal variations.

A further extension of the Markov Chain concept has been investigated
by Srikanthan and McMahon [75] who applied it to a multi-state model in
which rainfall is grouped into up to seven classes. This application allowed
for the dependence between the transition probabilities and rainfall amounts
to be considered, and has therefore proved to be more successful in modelling
seasonal variations than other first or second order Markov Chains.

Although Markov Chains have proved popular and have been studied
extensively, they are limited by their ability to efficiently model the amount
of rainfall. One method that has been used to overcome this limitation is the
division of rainfall amounts into categories: no rain; less than 5mm of rain;
between 5mm and 20mm of rain; and more than 20mm of rain. However,
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this technique provides only limited information and is not efficient enough
when dealing with extremely important management decisions, such as crop
growth. Markov Chains are also limited by the need for special computer
programs to evaluate the models, making this procedure quite complex (Coe
& Stern [17]).

2.2.2 Alternating Renewal Process

Markov Chains are only one approach that can be used to model the oc-
currence of rainfall. Another approach is the alternating renewal process.
This process considers a sequence of alternating wet and dry spells of vary-
ing length, with each spell having an assumed distribution. It is further
assumed that all intervals are independent, and that the distributions may
be different between wet and dry spells (Srikanthan & McMahon [76]). The
type of distributions that have been investigated to model the length of wet
or dry spells using an alternating renewal process include: logarithmic series
(Williams [87]); modified logarithmic series (Green [32]); truncated negative
binomial (Buishand [7]); and the truncated geometric distribution (Srikan-
than & McMahon [76] and Chapman [15]. Of these distribution types, Buis-
hand [7]) found from studies in the Netherlands, that an alternating renewal
process with a truncated negative binomial distribution provided an excellent
fit for rainfall data.

Although the alternating renewal process offers a different method to
model the occurrence of rainfall, it also has its limitations. Similar to the
Markov Chain procedure, rainfall amounts can not be modelled accurately. In
addition, the assumption of independence between dry and wet spell lengths
is difficult to justify at short timescales (Lall et al. [55]). Finally by consider-
ing spells rather than rainfall events there is a reduction in the sample size.
This process also has the added disadvantage that it does not compute sea-
sonality efficiently (Srikanthan & McMahon [76]). This was shown by Roldan
and Woolhiser [71] who, using the Akaike Information Criterion (aic), com-
pared the alternative renewal process and a first order Markov Chain. They
found that the Markov Chain was superior for each of the stations studied
because the alternating renewal process could not deal with seasonality.

2.2.3 Generalized Linear Models

A third type of model used to model the occurrence of rainfall are generalized
linear models (glms). Generalized linear models (Section 3) are becoming a
popular method to compute data that has high levels of variability, such as
rainfall. From their studies into glms Coe and Stern [17] concluded that in
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comparison to the complicated process of analysing non-stationary Markov
Chains, glms were more superior for modelling rainfall data. Chandler and
Wheater [12] [10] extended this idea and modelled the binary series of wet
and dry days using logistic regression, a form of a glm. They used the
logistic regression in response to their criticism that Markov Chains do not
adequately represent temporal dependence. In the logistic regression model,
the probability of rain for the ith case in the data set is denoted as being pi,
and xi represents the predictor vector. The logistic regression model therfore
becomes,

ln (
pi

1− pi

) = x′iβ.

Glms have been found to be particularly useful in modelling rainfall and
have several advantages. They provide a flexible and rigorous framework
that is able to make distinctions between different climate change scenarios,
and are useful for interpreting historical rainfall records. They are also able
to model the rainfall at a daily timescale and are amenable to simulation.
Finally they allow the uncertainty in prediction to be accounted for in the
fact that the predictions are in the form of probabilities rather than point
values.

2.2.4 Additional occurrence models

There have been several other methods developed to model the occurrence
of rainfall. One method uses a mixture of geometric and negative binomial
distributions (Feuerverger [29]). Another method uses a nonparametric tech-
nique by resampling from the historical records (Harold et al. [41]). A third
method, developed recently by Henien [43], focuses on the autoregressive con-
ditional Poisson model which deals with the issues of discreteness, overdis-
persion and correlation within the data. It claims to be more straightforward
in its testing for autocorrelation than other approaches, such as gees, how-
ever it lacks the ability to model rainfall occurrence and intensity together
as one.

A final class of models which have been used to model the occurrence of
rainfall are time series models. These models ensure that temporal depen-
dence is included in the model. A type of time series model is the two-state
discrete autoregressive moving average (darma) model, which was first used
by Buishand [7] and more recently by Chang et al. [13]. When comparing
studies using the darma model with studies using the alternating renewal
process (discussed in Section 2.2.2) it was found that the alternating renewal
process models were more superior than the darma model when using data
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from the Netherlands. However, when tropical and monsoon areas were ex-
amined the darma model proved more promising (Buishand [7]).

2.3 Modelling the amount of rainfall

Numerous different distributions have been used to model the amount of
rainfall that occurs on a wet day. This rainfall amount is sometimes called
”daily intensity” and it is a continuous distribution. This type of data is
usually modelled using a parsimonious member of the exponential family
that best the given data set. Dunn [27] states that as rainfall is highly
skewed to the right, distributions that follow this same pattern and similarly
are skewed to the right, have proven to be the most useful, with the gamma
distribution being the most commonly used. There are also several other
distributions following this pattern that are used by researchers: Srikanthan
and McMahon [76] used the skewed Normal distribution to model rainfall
amounts and Bardossy and Plate [4] examined a truncated power of the
Normal distribution.

2.3.1 Gamma distribution

The gamma distribution is used in meteorology and climatology studies to
represent the variations in rainfall amounts. A gamma distribution has the
following density function, with the parameter, α, governing the shape of the
distribution,

f(x) =

{
kxα−1e−x/β, x > 0,

0, otherwise,

where α > 0 (the shape parameter) and β > 0 (the scale parameter).
When using the gamma distribution to model rainfall amounts, it is com-

mon practice to keep the shape parameter, α constant. However Coe and
Stern [17] state that the parameters of the gamma distribution should change
throughout the year. This means that these distributions take into consid-
eration the variances that occur in rainfall on any particular rainfall event.
This variance is taken into consideration by varying µ, the mean amount of
rain per wet day, as illustrated by Buishand [7] who fitted a Fourier series to
the varying means of the gamma distribution.

Das [20] was one of the first researchers to model rainfall using a truncated
gamma distribution on daily rainfall. This distribution measures rainfall for
all days, not just those days on which rain occurred. Stern and Coe [77] also
examined this idea by using a shifted gamma distribution. This model takes
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into account the fact that some rain amounts under a certain value cannot
be recorded (see Section 2.6.1 on trace values).

To classify different categories of rainfall amounts, Wilks [86] used three
different gamma distributions. The gamma distributions had the common
shape parameters, but used differing scale parameters. It was found that the
mean rainfall generally increased from classes 1 to 3.

Another special form of the gamma distribution is the exponential dis-
tribution. This distribution occurs when µ is equal to 1. Todorovic and
Woolhiser [81] used the exponential distribution to model rainfall amounts
proposing it was easier to handle analytically. Wilks [86] further developed
this model using a mixed exponential distribution, which is a mixture of two
different exponential distributions.

Despite the popularity of the gamma distribution for modelling rainfall
intensity, there are some disadvantages to using this method. One disadvan-
tage is the maximum likelihood of the constant k is biased, and while this bias
can be calculated when µ is constant, it cannot be calculated when µ varies.
This limitation however, can be avoided when the number of observations
are large (Coe & Stern [17]). A second disadvantage is that some gamma
distribution methods rely on defining a threshold (See Section 2.6.1 on trace
values), below which days are classified as dry. However, the question re-
mains as to who defines this threshold and how reliable it is. An alternative
method, the censored gamma distribution, uses the number of rainfall events
which recorded ‘small’ amounts rather than the actual amounts. However
using this model requires a modification to ordinary techniques for estima-
tion parameters (Buishand [7]). Furthermore, another downfall is that fitting
a gamma distribution to rainfall amounts and testing their goodness of fit
usually requires specifically written computer programs which are complex
and specific to each different model. Finally, the methods described in this
section only monitor the amount of rainfall and not the occurrence; a model
that describes both would be a more useful way to model rainfall.

2.3.2 Generalized Linear Models

As stated in Section 2.2.3 glms are useful for modelling rainfall data as they
can model the high levels of variability effectively and can interpret different
climate change situations. Coe and Stern [17] were the first to fit a gamma-
based glms to rainfall data, and found that these types of models are easy to
fit and interpret. They did not, however, incorporate temporal dependence
into the model. Chandler and Wheater [12] [9] also fitted a gamma-based
glm to model rainfall amounts on wet days, however they did try to include
temporal dependence.
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The mean of the gamma distribution, µi is determined by the values of
various predictors, with yi being the distribution of the rainfall amount for
the ith wet day. The structure of the glmwill then take the follwing form
(Chandler and Wheater [9] [12]),

ln µi = ln E(yi) = xiβ, (2.1)

where, xi is a vector of predictors and β is a vector of corresponding unknown
parameters. An advantage of using this method is the relatively simple di-
agnostics that are available to check the adequacy of a fitted model.

Chandler and Wheater [9] further demonstrate that the gamma distribu-
tion is the most appropriate to model rainfall intensity through the analysis of
Anscombe residuals, which show a very satisfactory fit of the gamma model.
They also go on to state that no one has given a rigorous justification for
using the exponential or log-normal distributions and in fact, the exponential
distribution provides an extremely poor fit to the data.

2.3.3 Resampling and non-parametric techniques

There are several resampling methods and non-parametric techniques that
have been used to model the amount of rainfall. Lall et al. [55] used a tech-
nique similar to bootstrapping or sampling with replacement by resampling
daily rainfall to produce a stochastic model. The probability distribution
functions of alternating wet and dry spell lengths and of rainfall amounts were
estimated using nonparametrically kernel density estimators. This method
preserved the characteristics of wet and dry spells. The tests for selecting
parametric distributions, such as the chi-square test, lack the power to dis-
criminate between different candidate distributions, and the assumption of
independence of wet and dry spells is debatable due to the heterogeneous
nature of rainfall data (Lall et al. [55]). Therefore nonparametric techniques
are becoming increasingly popular in stochastic hydrology and allow for no
prior assumptions to be made about the overall functional form of the target
function.

Disadvantages with this method are that larger sample sizes are needed
in comparison to parametric estimation. In addition, spell definitions are
questionable and are best at finer timescales such as daily. This is because
sample sizes drop rapidly when longer time scales, such as monthly, are
considered.

To improve on the kernel-based non-parametric simulation approach de-
veloped by Lall et al. [55], Rajagopalan and Lall [68] uses a multivariate,
nonparametric time series simulation. The method used by Rajagopalan
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and Lall [68] improves on the former approach by using a conditional boot-
strap based on nearest neighbour probability estimation. It allows statistical
properties of historical data to be honoured and again does not rely on prior
assumptions to form the joint probability density function. However, this
method does come with some drawbacks. Since it is a bootstrap, simulations
can not produce values that have not been observed in the historical data,
such as extreme values. Furthermore, the computational power needed is
extremely large and there is a possibility that the bounds on some variables
will be violated during the simulations.

2.3.4 Additional modelling of rainfall amounts

While researchers in the aforementioned studies examined only one type of
distribution in each of their studies, Chapman’s research [15] compared sev-
eral distributions including the exponential, mixed exponential, skewed nor-
mal, gamma and the Kappa distributions. The skewed Normal distribution
was found to be the most consistent, while the gamma and exponential dis-
tributions were the least consistent. It is unlikely that a single distribution
will provide a good fit to rainfall data for all climatic regions (Walden &
Guttorp [84]).

The effect of classifying rainfall amounts into one of three categories de-
pending on the number of wet days recorded has also be investigated (Chap-
man [15]). These categories included: if it was a solitary day of rain; if rain
fell on a day at the beginning or the end of a wet spell; and if the rain fell in
the middle of a wet spell. Different distributions were used for each category
and it was found that the models that take these categories into account
generally perform better than those models that clump the data together
(Chapman [15]). Buishand [7] also employed a similar approach and found
that there was a small but significant correlation between rainfall amounts
on successive wet days.

Another way of modelling the amount of rainfall was proposed using a
class of generalized autoregressive moving average models (garma) to model
non-Normal situations like rainfall (Benjamin et al. [60]). These models ex-
tend the glm method by incorporating time dependence within observations.
However, they can only use a set distribution and a set time dependent frame-
work is needed.
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2.4 Modelling the amount and occurrence of

rainfall

While several researchers have tried to simultaneously model the occurrence
of rainfall and the amount of rainfall, only Dunn [27] has been successful in
producing a model that requires a single distribution. A Tweedie distribution
was used to model both the discrete and continuous components of rainfall
discussed in more detail in Section 3.5.

Several other researchers have attempted to model amounts and occur-
rence together. However they have not been successful in modelling the two
components simultaneously and instead produce methods that use two sepa-
rate models. Rajagopalan and Lall [69] developed a nonhomogeneous Markov
model that used kernel methods to estimate a nonhomogeneous transition-
probability matrix. This matrix models the rainfall occurrence, and esti-
mates a corresponding nonstationary probability density function of daily
rainfall amount. Another model proposed was a mulitstate Markov chain
which treated rainfall as a mixed discrete and continuous variable and the
transition probabilities are used to model the dependence structure (Haan
et al. [36]). Yau et al. [88] used two generalized linear mixed models for
analysing insurance claim data: one for the occurrence; and one for the in-
tensity of claims. Although it does not model rainfall data, it models data
which takes a similar form and uses random effects to model the correlation
between individuals.

2.4.1 Generalized Additive Model

Grunwald and Jones [33] claim to combine the occurrence and intensity rain-
fall models into a single model for amount. They achieve this by using a
first order Markov structure and a mixed transition density, with a discrete
component at 0 and a continuous component for the positive sample space.
Hyndman and Grunwald [48] used the same method, but they combined it
with a generalized additive model (gam) to relax the assumption that each
year follows the same seasonal pattern. One advantage of the gam meth-
ods is that it allows for the modelling of non-seasonal temporal variations,
whereas glm methods do not.

The amounts model takes the following form,

pt(y|Xt−1 = xt−1) = [(1− πt(xt−1))δ0(y) + πt(xt−1)ft(y|xt−1)],

with Yt representing a random variable (rainfall) at time t; Xt−1 is the vec-
tor of covariates; πt(xt−1) is the probability of getting rainfall on a given
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event; and ft(y|Xt−1) is the continuous density. In this example, a gamma
distribution is used as ft and δ0(y) is a Dirac delta function.

Even though a single model is given in these studies, both admit that the
functions and parameters are estimated separately. The occurrence distrib-
ution, πt(xt−1) is estimated first, followed by estimation for the the intensity
distribution ft(y|xt−1). Thus, although these researchers do provide a single
formula for rainfall occurrence and intensity, each component in rainfall still
needs to be estimated separately.

2.4.2 Tweedie distributions

As mentioned in Section 2.4, the Tweedie distribution glm is the only model
that has successfully been developed to require only one distribution. The
Tweedie family of distributions (named after Tweedie [83]) are a class of
distribution that are able to model both discrete and continuous probabilities
together as one model. Tweedie distributions are based upon generalized
linear models and are classified by their variances, which takes the form
var[Y ] = φµp (See Section (3.5) for a discussion on these models). There are
three main properties that makes the Tweedie distributions exceptional for
modelling rainfall (Dunn [27]),

• The Tweedie distributions belong to the exponential family of distrib-
utions (See Section (3.1.1)), and form part of a larger group of models
called the generalized linear model; This is advantageous because fitting
techniques and diagnostics are readily available for generalized linear
models, and thus for Tweedie distribution models;

• The motivation behind the setup of these models is simple and logical:
total rainfall is considered the sum of rainfall on some smaller time
scale;

• The Tweedie distributions provide a mechanism in which finer-scale
structures can be understood through courser-scale data.

Two examples, the Charleville monthly rainfall and the Melbourne daily
rainfall, were used to show how the Tweedie distribution worked for modelling
rainfall (Dunn [27]). It was found using these examples, that the Tweedie
family of distributions was useful in modelling rainfall on both a daily and
monthly scale, and that modelling both the occurrence and amount of rainfall
can be done simultaneously.
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2.5 Modelling rainfall using multiple sites

Rainfall displays the largest variability among the meteorological variables in
time and space, and thus dependence of rainfall at different sites should be
accommodated for in models (Srikanthan [76]). Although this is an important
issue, there has been limited work completed into creating a rainfall model
using multiple locations. This is probably due to the difficulty involved when
trying to simultaneously model more than one location.

Several different methods of modelling rainfall at multiple sites has been
attempted. A family of multivariate models was used to represent the oc-
currence of rainfall at N sites (Zucchini & Guttorp [92]). This was done
by introducing unobservable states to account for the different distributions
of rainfall over the sites. This type of modelling is often referred to as a
‘Hidden Markov Model’. This idea was extended to model the occurrence of
rainfall using a nonhomogeneous hidden Markov model (Hughes et al. [51]).
It was found that this model could provide scientists with a useful tool for
generating realistic simulations of rainfall. Beersma and Buishand [6] used a
nearest-neighbour resampling technique to generate multi-site sequences of
daily rainfall in the Rhine basin. Finally, a Markov Chain for the occur-
rence and a mixed Exponential distribution for the intensity, was used to
simultaneously generated rainfall at multiple locations (Wilks [86]).

2.5.1 Bayesian approach

Several researchers have used the Bayesian approach to model rainfall. An
advantage of this method is its ability to overcome the ignorance of sampling
errors that can lead to underestimating the range of the mean and variances
(Srikanthan [76]). The Bayesian approach also allows for uncertainties in the
parameter estimates to be taken into account and to be expressed through
the posterior distribution. Sansø and Guenni [73] used a truncated and
transformed multivariate normal distribution to model the rainfall at several
different sites and made extensive use of an MCMC method.

2.6 Difficulties in rainfall modelling

Researchers face several difficulties when trying to model rainfall. The two
factors that are often most challenging for researchers are the capricious
nature of rainfall and its distributional form (it has a continuous form with
an exact zero). Other factors that also create problems by adding to the
complexity of rainfall modelling include: trace values; temporal and seasonal
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variations; extreme events and; why and how many parameter to include in
the model. The following discussion examines these other difficulties and
how researchers have attempted to overcome them.

2.6.1 Trace values

When a very small amount of rainfall falls, it is extremely difficult to accu-
rately record the exact amount, thus placing a limit on the smallest amount
of rainfall that can be accurately recorded. The rainfall amounts that fall
below this limit, are usually referred to as trace values. They are classified as
any non-zero amount below some threshold, usually set at 0.1mm (Chandler
and Wheater [12]). The problem with these values their classification: if a
trace value is recorded, should the event be classified as wet or dry. Further-
more, once classified, the question arises as to what value should be assigned
to these days: a zero, or a definite value. As trace values account for approx-
imately 11% of wet events, it is quite important that these values are dealt
with appropriately in any model calculating rainfall amounts.

When creating a rainfall model, a trace value may occur in two of the
variables. It may occur in the predictor variable, or it could occur in the
response variable if the predictors involve previous events’ rainfall amounts.
It is fairly straightforward to deal with trace values when they occur in the
predictor variable. This is achieved by defining an extra predictor, which
is 1 if an amount is recorded as a trace, or zero for no recorded amount.
Trace values that occur in both the response and explanatory variables are
not so easy to deal with. It has been suggested that one way to manage
trace values in the response and explanatory variables is to treat the circum-
stance as a ‘censored data’ situation and therefore reformulate the likelihood
function to take into account that some of the observations are not recorded
accurately (Chandler & Wheater [12]). However, if a gamma distribution is
used to model the rainfall amount, then a difficult integral is created than
cannot be solved analytically. A better solution would be to replace each
censored response value with its conditional expectation under the current
model parameterization (Chandler & Wheater [12]). However this method
could be quite costly if large data sets are involved. Another approach to
deal with trace values when modelling rainfall occurrence would be to use a
three-state Markov Chain (Stern & Coe [77]). Using the Markov Chain, the
first two states would be the usual ‘wet’ or ‘dry’ situation. However a third
state could be included to encompass those values classified as trace values.
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2.6.2 Temporal dependence

Temporal dependence refers to the dependence of a variable upon past val-
ues of time, and implies that a variable is correlated. Correlated data occurs
when data is collected on the same unit across successive points in time
(Horton & Lipsitz [46]). Buishand [8] proposes that rainfall is neither in-
dependent nor identically distributed as many researchers assume and is, in
fact, correlated. Therefore, temporal dependence should not be ignored when
modelling rainfall. For rainfall data, temporal dependence implies that each
rainfall amount or occurrence is dependent upon some number of previous
rainfall events’ amounts or occurrences. If temporal dependence is not taken
into account when fitting a model, the standard errors of parameter estimates
will not be valid and any inferences completed will not be replicable (Horton
& Lipsitz [46]).

Chandler [11] suggests that the simplest way to deal with temporal depen-
dence, within a glm framework, is to include functions of previous rainfall
values as extra covariates. Durban and Glasbey [28] use a multivariate la-
tent Gaussian process to model rainfall, and a vector auto-regressive moving
average (varma) to model the temporal dependence between rainfall vari-
ables. Although this model takes the dependence into consideration, it does
not adequately fit the data for extreme values of rainfall. All Markov chain
models incorporate the temporal dependence by choosing an order that takes
into account previous occurrences of rainfall.

This dissertation examines a method developed to specifically deal with
correlated data called Generalized Estimating Equations (gees). Although
gees have been used in many different research areas such as clinical trials,
health trials, and insurance claims, they have never been used to analyse
rainfall data. As gees are specifically designed to deal with dependent data,
such as rainfall, it is logical to use gees in this situation.

2.6.3 Spatial dependence

Spatial dependence is described by Barnsley [5] as a certain variable display-
ing similar (or different) values depending on the spatial location at which it
is measured. For rainfall this is explained as the fact that two closely-spaced
rainfall gauges should display closer recordings than a pair of gauges that
are a greater distance apart, providing all other variables are kept constant.
Spatial dependence is based on the assumption that gauges closer together
receive rainfall from the same cloud, while at more distant locations the
rainfall may vary due to variations in synoptic rainfall patterns.

The most common way to deal with spatial dependence is to use mul-
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tivariate techniques. However Chandler [11] suggests that these techniques
rely on the decomposition of an empirical covariance matrix, and as such, the
implicit assumption that observations are independently and identically dis-
tributed through time. Multivariate techniques are also difficult to interpret
as the results are made purely for mathematical convenience. Section 2.5
describes methods which have been developed to deal with the problem of
multi-site modelling. Chandler [11] also suggests that inter-site dependence
in the response may be able to be addressed using gees, however this is yet
to be tried.

The lack of ordering of the sites in space means that spatial dependence
cannot be dealt with naturally using a factorization technique. Instead, some
researchers have fitted separate models to each site. This method however
means that any systematic relationship between variables is lost. Although
spatial dependence is important when modelling rainfall, little work has been
completed in this area due to the difficulties involved. Most recently Chandler
and Wheater [12] have developed some solutions to spatial dependence using
the generalized linear models framework, however there is still a considerable
amount of work needed in this area before a consistent model is created.

2.6.4 The number of parameters in the model

One of the main aims of modelling is to create a parsimonious model: a
simple model that captures all of the important features of the data. The
difficulty with modelling rainfall is that often a large number of parameters
are needed. Rainfall amounts quite often follow a seasonal pattern, and this
is the occurrence and amount of rainfall that occurs throughout the year
changes every season. In order to take this seasonal effect into account,
many researchers fit parameters that vary throughout the year. This creates
an overall model that has a very large number of parameters and thus can
become quite complex (Chapman [15]). In order to overcome this complexity
and therefore minimise the number of parameters used, some researchers have
fitted the parameter variation to a polynomial (Coe & Stern [17]) or Fourier
Series (Roldan & Woolhiser [71]).

2.7 Covariates that may be used

The extreme variability of rainfall means numerous covariates could be in-
cluded in a rainfall model and the choice of which covariates to consider
is difficult. The distribution of rainfall depends on many different factors
such as topography, elevation, proximity to forest covers and lakes and other
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climatic conditions such as temperature (Sahur & Andres [72]). It is often
difficult to obtain some predictors as they are have not been recorded accu-
rately and thus often the researcher is limited to the choice of predictors that
be can used when modelling rainfall.

Chandler and Wheater [12] suggest using previous rainfall amounts, time
of year (for example month), variables representing topographic effects and
regional differences in rainfall patterns as covariates in a rainfall model. They
also consider the possibility of incorporating long-term climatic variability in
the model by fitting a predictor that varies from year to year.

Through their research, Chandler and Wheater [10] found several pre-
dictors to be important in their final glm for rainfall. These predictors
include: gauge elevation; seasonal patterns in the form of sine and cosine
curves; functions involving rainfall amounts occurring previously; and inter-
actions of previous rainfall amounts. A glm with a gamma distribution and
a logarithm link function were used along with the listed covariates to model
rainfall amounts.

The southern oscillation index (soi) is another variable that is often as-
sociated with rainfall amounts and its association has been widely investi-
gated (Stone & Auliciems [78] and Stone, Hammer & Marcussen [67] and
Troup [82]). Five soi phases relating the soi to rainfall have also been inves-
tigated as possible predictors of rainfall in Eastern Australia (Stone & Auli-
ciems [78]). However, Hyndman [47] shows that the soi does not provide a
strong predictor of rainfall, contrary to current meteorological practice. This
study did not examine rainfall in Eastern Australia where the association
between soi and rainfall is the strongest.

Numerous covariates have been suggested by different researchers as pos-
sibilities in a rainfall model. The covariates that have been selected in this
dissertation are those that are readily available and have been accurately
recorded for the required time frame.



Chapter 3

Generalized Linear Models

For decades, simple linear regression models formed the basis of most analy-
ses of continuous data. These models take the form y = Xβ + e, where
the elements of e are assumed to be independent and identically distributed
with a Normal distribution N(0, σ2). Xβ is a combination of covariates. The
assumption that the error (e) values follow a Normal distribution is often not
correct, making these linear regression models inadequate. Recent advance-
ments in statistical theory and computer software has led to improvements in
these linear models by the creation generalized linear models (glms). Glms
are able to model situations in which the response variables have distribu-
tions other than, and including the Normal distribution, as well as model
situations when the relationship between the response and explanatory vari-
ables is not of simple linear form (Dobson [21]). Glms have been explored
in the literature since 1970s when they were established by Nelder and Wed-
derburn [64].

Glms provide a flexible and rigorous framework that are able to deal with
the high levels of variability such as in rainfall data (Chandler & Wheater [12]).
The glm approach has also proven to be a very powerful tool for interpreting
historical rainfall records. The success of glms is due to the balance between
simplicity and generality, that the design of these models has achieved both
computationally as well as conceptually.

This chapter examines and defines glms, and provides diagnostic checks
to determine the adequacy of a model. As glms form the basis of generalized
estimating equations (gees), this chapter also contains important concepts
needed in the formulation of gee methodology.

21
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3.1 The GLM framework

When modelling a data set using a glm, three decisions need to be made
before the model can be produced,

• What is the distribution of the response variable?

• What function of the mean will be modelled as linear in the predictors?

• What will the predictors be?

Deciding on the answers to these three questions defines the components
needed to create a glm (McCulloch & Searle [63]). The first is the existence
of n× 1 random variables Y1, . . . , YN dependent on r predictors. These ran-
dom variables form the response variables, which are assumed to share the
same distribution and come from a specific family of distributions called the
exponential dispersion model (edm) family. The second component of a glm
is the link function, which relates the parameters of the distribution to vari-
ous predictors. The last component uses a set of p unknown parameters, β,
and a set of n×r known explanatory variables Xn×r = [xT

1 , . . . ,xT
n ]T , formed

together so that Xβ is a linear structure. This linear structure describes how
the location of the response variable changes with the explanatory variables
(Lindsey [57]).

As glms are traditionally formulated within the framework of a set of
distributions which belong to the family of edm, this family of distributions
is described formally in Section 3.1.1 below. A formal definition of a glm,
that incorporates the information above, follows this (Section 3.2).

3.1.1 Exponential Dispersion Models

The theory of glms is based upon the exponential family of distributions.
This formalisation recharacterises familiar functions into a formula that is
theoretically more useful (Gill [31]). Exponential dispersion models are very
versatile as they can be discrete, continuous, or can have a mixed distribution.

Definition

An exponential dispersion model (edm) has a probability density function
or a probability mass function, that can be written in the following form,

p(y; θ, φ) = a(y, φ) exp

{
1

φ
[yθ − κ(θ)]

}
, (3.1)
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where φ > 1 is the dispersion parameter; µ is the position parameter and
µ = κ′(θ); Y is the variable of interest and θ is the canonical parameter. It
is important to note that Y does not depend on the parameters θ and φ,
and the function a(y, φ) cannot always be written in closed form. Also, it is
necessary to ensure that the total summation of Y over the domain is one.

The notation Y ∼ ED(µ, φ) indicates that a random variable Y comes
from the edm family, with location parameter µ and dispersion parameter
φ, as in Equation (3.1).

Distributions of the EDM Family

The Normal, binomial, Poisson, inverse Gaussian, exponential, gamma, and
Tweedie distributions all have distributions that form part of the exponential
dispersion model family. The binomial and Poisson distributions are both
discrete distributions, with the Poisson distribution being used when the data
involves counts. The binomial distribution is used when the data deal with
proportions and the outcome is either a ‘success’ or ‘failure’. The Normal,
inverse Normal, exponential and gamma distributions are all continuous dis-
tributions. The gamma distribution is used when the response variable is
skewed and the variance is not constant. The exponential distribution is a
special case of the gamma distribution used when the shape parameter (α) is
equal to one. Finally, the Tweedie distribution is a mixed distribution, which
means that it can model data with both discrete and continuous components,
such as the Poisson-gamma distribution. The Tweedie distribution is espe-
cially useful in modelling rainfall, as illustrated in Section 3.5. Table 3.1
provides information about several distributions that come from the edm
family, including their variance functions (See Section 3.2.2). These seven
distributions demonstrate that edms can consist of discrete, continuous, or
mixed distributions.

3.2 GLM definition

Formally, generalised linear models are stated to consist of two components
(Dobson [21]; McCullagh & Nelder [62]; Dunn & Lennox [24]),

1. The response variable, yi, follows an edm with mean µ and dispersion
parameter φ, such that,

yi ∼ ED(µi, φ/wi),

where wi are known prior weights (often one); and
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Table 3.1: The characteristics of some of the distributions of the exponential
dispersion model family (McCullagh & Nelder [62]).

Distribution κ(θ) µ = E(Y ) Variance Function
Normal θ2/2 θ 1
Poisson eθ eθ µ
Binomial ln(1+eθ) eθ/(1 + eθ) µ(1− µ)
Gamma − ln(−θ) −1/θ µ2

Inverse Gaussian −(−2θ)
1
2 −2θ µ3

Tweedie θ(1− p)(2−p)/(1−p)/(2− p) κ′(θ) µp for p 6= (0, 1)
for p 6= (1, 2)

2. The expected values of the yi, say µi, are related to the covariates xi

through a monotonic differentiable link function g(·). This link function
is described further in the following section.

3.2.1 Link Function

The link function, g(·), of a glm relates the expected values of the yi, com-
monly written as µi, to the covariates, xi, as follows:

g(µi) = xT
i β.

It is essential that the link function chosen is differentiable, so that β can
be estimated and monotonic, to ensure that each value of xT

i β has only one
corresponding µi value. The major advantage of the link function is that it
can be chosen independently of the distribution.

Often the linear component, xT
i β, is called the linear predictor and is

given the symbol ηi, so that,

g(µi) = ηi = xT
i β. (3.2)

The most common link function to use, is the canonical link function, defined
as η = θ = g(µ). This function however, is not always the best function to
use. One advantage of using the canonical link function for a given distrib-
ution is that all the unknown parameters β of the linear component η have
sufficient statistics for distributions that are edms, which simplifies the fit-
ting algorithm (Section 3.3) for glms. A list of commonly used link functions
for the binomial, Poisson and gamma distributions and their canonical link
functions can be seen in Table 4.1.
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Table 3.2: The link functions commonly used for the binomial, Poisson
and gamma generalized linear models; φ is the Normal cumulative distri-
bution function, and µ and p are the mean value parameters (McCullagh &
Nelder [62]).

Distribution Canonical Link Form Other Links Form
Binomial logit log[p/(1− p)] probit Φ−1(p)

c-log-log log[-log(1− p)]
Poisson log log µ identity µ

square root log (µ)
Gamma inverse 1/µ log log (µ)

identity µ

3.2.2 Additional properties of GLMs

Mean and Variance

Members of the edm, family written in the form of Equation (3.1), have a
mean and variance defined as follows, where κ(θ) and φ are determined from
Equation (3.1) (McCullagh & Nelder [62]),

• Mean of Y :
E[Y ] = µ = κ′(θ). (3.3)

• Variance of Y (var[Y ]):

var[Y ] = φκ′′(θ). (3.4)

The variable θ is related to the mean µ through Equation (3.3). The
relationship between µ and θ is often written as τ(θ) = κ′(θ) = µ and
θ = τ−1(µ). The function τ(θ) is referred to as the mean-value mapping and
gives the functional relationship between µ and θ.

Variance Functions

Although not described in the original setup of a glm, the variance function
is important as it uniquely identifies a distribution within the class of edms.
Equation 3.3 shows that κ′(θ) is a function of the mean and thus κ′′(θ) is
also dependent on the mean. For this reason κ′′(θ) is often replaced by the
variance function V (µ) so that,

V (µ) = κ′′(θ).
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The role of the variance function is to describe the mean-variance relationship
of a distribution when the dispersion parameter is held constant. If Y follows
an edm with mean µ, variance function V (µ), and dispersion parameter φ,
then the variance of Y can be written as,

var(Y ) = φV (µ).

The variance function that uniquely identifies the Normal, binomial, Pois-
son, inverse Gaussian, gamma, and Tweedie distributions is illustrated in
Table 3.1. The Tweedie distributions, described in Section 3.5, are classified
by a special form of the variance function (V(µ) = µp).

Deviance

One method to measure the appropriateness of a fitted model is to examine
the difference between the fitted values µ̂ and the observed values y. In
standard Normal distribution based regression, this measure is equivalent
to the residual sum-of-squares (Hardin & Hilbe [38]). In the framework of
glm, this measure of difference is called the deviance, D(y; µ), and can be
calculated as follows,

D(y; µ) = φD∗(y; µ) = 2φ[`(y; y)− `(µ̂; y)], (3.5)

where D∗ is called the scaled deviance and has only an approximate χ2

distribution, and ` is the log-likelihood function. The deviance can be used
to compare models. For further details on the deviance of glm refer to
Hardin & Hilbe [38] and Nelder & Wedderburn [64].

3.3 Estimation of parameters

To fit a model to a data set, estimates of the parameter values βj are needed.
The maximum likelihood method is used to estimate the parameters for
glms, with the parameters being estimated numerically using a iterative
procedure (Dobson [21]). To obtain the maximum likelihood estimators of
the parameters βj, the likelihood function is also needed. In general, the
likelihood function is defined as,

L(ξ; y) =
n∏

i=1

f(y; ξ),

where n is the sample size of the data set, and ξ is the parameter of interest.
Often, it is easier to work with the log-likelihood function, which is defined
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as,

`(ξ; y) = log L(ξ; y)

= log
n∏

i=1

f(y; ξ)

=
n∑

i=1

log f(y; ξ).

To use this theory for glm methodology, the log-likelihood function needs to
be applied to a edm (Equation (3.1)). The log-likelihood of an edm is,

`(θ, φ; y) =
n∑

i=1

a(φ, y) +
1

φ
[yθ − κ(θ)]. (3.6)

The maximum likelihood estimates for βj can now be found by taking the
derivative of Equation (3.6) with respect to βj. This is found through the
following series of derivatives,

∂`

∂βj

=
∂`

∂θi

× dθi

dµi

× dµi

dηi

× ∂ηi

∂βj

. (3.7)

Each of these four derivatives can be found individually using the following
method,

• The first component ∂`/∂θi is obtained directly by differentiating the
log-likelihood function, seen in Equation (3.6):

∂`

∂θi

=
n∑

i=1

1

φ
[yi − κ′(θi)]

=
n∑

i=1

1

φ
[yi − µi],

since µi = E[Y ] = κ′(θi).

• The second component uses the relationship µi = E[Y ] = κ′(θi) as well:

µi = κ′(θi)

dµi

dθi

=
dκ′(θi)

dθi

= κ′′(θi)

= V (µi).

Inverting this final equation thus gives dθi/dµi = 1/V (µi).
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• The third component differentiates the link function g(µi) = ηi,

ηi = g(µi)

dηi

dµi

=
g(µi)

dµi

= g′(µi).

Inverting this final equation gives dµi/dηi = 1/g′(µi).

• The final expression uses ηi = β0xi0 + β1xi1 + . . . + βjxij + . . . + βpxir,
where r is the rank of β. Thus, the derivative of ηi with respect to βj

is xij.

Combining these four expressions shows that Equation (3.7) can be written
as the ‘score equation’ for glms,

∂`

∂βj

=
1

φ

n∑
i=1

(yi − µi)

V (µi)

xij

g′(µi)
. (3.8)

The maximum likelihood estimator is found by setting Equation (3.8) equal
to 0 and solving for j = 1, 2, . . . , r. When ∂`/∂βj = 0, the value of φ does
not need to be known. This is an important concept of glms because an
estimate of β can be found without knowing φ.

The set of Equations (3.8) can only be solved through numerical tech-
niques involving iteration, such as the Newton-Raphson method or the method
of scoring. See Dobson [21] and Hardin & Hilbe [38] for further details about
these two methods.

3.4 Quasi-Likelihood methods

In many situations, some details of the distribution governing the data is
known, however the distribution may not be able to be specified exactly. In
addition, there are some cases for which the distribution is known, however it
difficult to evaluate, such as the Tweedie distributions. This precludes the use
of maximum likelihood, which requires exact specification of the distribution
in order to construct the likelihood. The idea of quasi-likelihood addresses
this concern (McCulloch & Searle [63]).

Quasi-likelihood methods were first proposed by Wedderburn [85], and
are a methodology for regression that requires few assumptions about the
distribution of the dependent variable. Hence they can be used with a variety
of outcomes (Zeger & Liang [89]). In likelihood analysis, the actual form of



3.5. POWER-VARIANCE (TWEEDIE) DISTRIBUTIONS 29

the distribution must be specified. However, in quasi-likelihood, only the
relationship between the outcome mean and covariates, and the mean and
variance, needs to be specified (Zeger & Liang [89]). The focus of quasi-
likelihood is on methods for inference about β, and hence φ can be treated
as a nuisance parameter.

A quasi-likelihood can be used if the researcher does not know the density
function of the distribution, but knows its mean and variance. It is defined
for one observation, Q, as,

Q(y; µ) =

∫
(y − µ)

V (µ)
dµ. (3.9)

This quasi-likelihood has the same properties as a true log-likelihood with
regards to the derivatives of β, enabling glms and gees to be fitted for any
distribution using a quasi-distribution. To define a quasi-likelihood function,
only the relationship between the mean and variance needs to be specified
through the variance function (Wedderburn [85]).

3.5 Power-variance (Tweedie) distributions

Of special interest within edms is a class of distributions with power mean-
variance relationships V (µ) = µp. Any distribution whose variance function
like this this belongs to the class of distributions known as the Tweedie family
of distributions, named by Jørgensen [53] after Tweedie [83]. This section de-
scribes Tweedie distributions, and demonstrates how the these distributions
can be used to model rainfall.

Most of the important distributions commonly associated with glms are
contained within the Tweedie distribution framework, including the Normal
(p = 0), Poisson (p = 1 and φ = 1), gamma (p = 2), and inverse Gaussian
distributions (p = 3). Tweedie models exist for all values of p outside the
interval (0, 1), however only the four distributions already mentioned have
density functions which have explicit analytic forms (Dunn & Smyth [26]).

Tweedie distributions with p > 1 have strictly positive means, with p > 2
being continuous for positive Y , and a shape similar to the gamma, but more
right skewed. Distributions with p < 0 are continuous on the entire real axis.
Finally,, for 1 < p < 2 the distributions are supported on non-negative real
numbers, and the distributions are mixtures of the Poisson and gamma distri-
butions, with a mass at zero (Dunn & Smyth [26]). These distributions have
been called ‘compound Poisson’, ‘compound gamma’, and ‘Poisson-gamma’
distributions. Due to the characteristic of being able to model both discrete
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and continuous combinations simultaneously, these distributions have a spe-
cial use in being able to model both the occurrence and amount of rainfall.

The mean, µ, and canonical parameter, θ can be found for a Tweedie
distribution by noting that κ′′(θ) = dµ/dθ = µp and the mean is given by
µ = κ′(θ). This allows the density function for a Tweedie distribution to be
specified (See Dunn [?] for more information). Hence,

µp =
∂2κ

∂θ2

=
∂

∂θ

(
∂κ

∂θ

)
=

∂µ

∂θ
.

Taking the reciprocals of both sides and integrating with respect to µ gives,

θ =

{
µ1−p

1−p
p 6= 1,

log µ p = 1.

By setting the arbitrary constant of integration to 0, and noting that µ =
κ′(θ) gives,

κ(θ) =

{
µ2−p

2−p
p 6= 2,

log µ p = 2.

The Tweedie densities can thus be written as,

fp(y; µ, φ) = ap(y, φ)exp

{
1

φ

[
y

µ1−p

1− p
− µ2−p

2− p

]}
for p 6= (1, 2). (3.10)

Tweedie distribution and the Quasi-likelihood

Following Equation (3.9) the Tweedie distribution has the following quasi-
likelihood distribution (when setting the arbitrary constant of integration to
0),

Q(µ; y) =

∫
(y − µ)

V (µ)
dµ

=

∫
(y − µ)

µp
dµ

=

∫
y

µp
− µ1−pdµ

=

∫ (
yµ−p − µ1−p

)
dµ

=
yµ1−p

1− p
− µ2−p

2− p
.
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This equation has the same likelihood function as Equation (3.10), except
now there is no need to estimate a(y, φ). This is extremely helpful as often
the a(y, φ) term can not be written in closed form, or is of a form which is
extremely difficult to calculate.

3.5.1 Software

The program r is used extensively in this dissertation and is the program
that was used to create the rainfall models in generated in Chapters 7 and 8.
To fit a Tweedie generalized linear model the tweedie library is needed in the
r program (Dunn [23]). There are two functions which were of particular use
in this dissertation: the tweedie.profile; and the tweedie family model.
The tweedie.profile function finds the most suitable Tweedie distribution
for the given data set using maximum likelihood methods. This function
only works for p ≥ 1 and gives the maximum likelihood value of p and φ
and a 95% confidence interval for p. The tweedie.profile function uses the
default series expansion as the calculation method, however interpolation and
inversion methods are also available. This dissertation uses the interpolation
method to find the most appropriate Tweedie distribution.

To fit a glm with a Tweedie distribution, the variance power (p found
using tweedie.profile) and link function are needed to be specified. The
default link function is the canonical link function, with the logarithm link
function also available. The following command is used in r to fit a glm,

family=tweedie(var.power=p,link.power=1-var.power).

3.5.2 Tweedie Distributions and Rainfall

To model rainfall using the Tweedie model, one vital assumption needs to
be made: the amount of rainfall that occurs during any rain event follows
a gamma distribution. Research shows that it is very common to use the
gamma distribution to model the amount of rainfall (see Section 2.3.1) and
thus, this assumption is valid. By following this assumption a Tweedie model
can be set up to model rainfall (as completed by Dunn [27]).

Let i be a rainfall event, and Ri be the amount of rainfall that occurs
during this event, it is assumed that each Ri follows a gamma distribution,
with mean −αγ and variance −αγ2 (Gam(−α, γ)). It is also assumed that
the number of rainfall events during the time period (usually month or day),
called N , follows a Poisson distribution with mean λ. Thus when no rainfall
has occurred on that particular event, N = 0. Finally Y represents the
total daily or monthly rainfall, and is represented as the Poisson sum of
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gamma random variables, such that Y = R1 + R2 + . . . + RN , where N was
defined earlier. This same setup can be applied to differing timescales. For
example, if Ri represents the amount of rainfall per day, then Y is the total
monthly rainfall. The resulting distribution of Y is called a Poisson-gamma
distribution (Dunn [27]), and belongs to the class of Tweedie distributions
when 1 < p < 2.

A Poisson-gamma distribution has a complicated probability function,
however Jørgensen [53] shows that it takes the following form,

log fp(y; µ, φ) =

{
−λ, for y = 0
−y/γ − λ− log y + log W (y, φ, p), for y > 0,

where γ = φ(p−1)µp−1, λ = µ2−p/[φ(2−p)], and W is an example of Wright’s
generalized Bessel function. It can be written as,

W (y, φ, p) =
∞∑

j=1

y−jα(p− 1)αj

φj(1−α)(2− p)j!Γ(−jα)
,

where α = (2− p)/(1− p). The mean of the Poisson-gamma distribution is
µ, and its variance, as with all Tweedie distributions, is var[Y ] = φµp. The
probability of obtaining no rainfall on any particular event is given by the
following formula (Dunn [27]),

Pr(Y = 0) = exp(−λ) = exp

[
− µ2−p

φ(2− p)

]
. (3.11)

3.6 Diagnostic Testing

The purpose of creating a model is to adequately summarize the important
characteristics of the data by finding a parsimonious model that explains
what is happening in the data without using meaningless, or too many pa-
rameters. In the creation of a model, often this model may show departures
from the given data and thus not fit the data sufficiently. Diagnostic testing
is used to determine whether the model adequately fits the data. There are
a number of diagnostic tests that are available for glm (some of which will
be described below), and these include: a Q-Q plot; scatterplots of residuals
and covariates; comparison of residual sizes; and residual deviances. These
techniques allow the suitability of the link function and assumed distribution
to be tested, as well as testing of the data for influential values, outliers, or
pattern.

There are four main reasons why a fitted glm may not adequately rep-
resent the data and these include,
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• The model fits well for most observations, however a few isolated cases
do not. These isolated cases are called outliers;

• The link function is incorrectly specified;

• The response variable, Y is incorrectly specified; and/or

• The linear predictor (η) may not be correctly specified, or is missing
some terms.

Using a glm to model rainfall data is not the main intention of this
dissertation and thus the diagnostic testing available for these types of model
will only be briefly discussed. The diagnostic testing that is available for gee
models differs from the testing available for glms and therefore for further
discussions on diagnostic testing for glms see McCullagh & Nelder [62] and
Dobson [21].

3.6.1 Residuals

A general tool used in diagnostic analysis is residuals. Residuals are a mea-
sure of how different expected values of the responses emerge from the ob-
served responses. In simple regression models, the raw residuals (y − ŷ) are
used, however these are generally inadequate when using a generalized linear
model. The two most common residuals to use for glms are the Pearson
residuals and deviance residuals. The Pearson residuals, which are also used
in gee models, have an approximate Normal distribution N(0, φ). Deviance
residuals are related to the concepts of deviance D(y; µ), and also have an
approximate Normal distribution. Quantile residuals have also been recently
proposed by Dunn & Smyth [25] to be used with glms, and have an exact
Normal distribution when µ and φ are known exactly.

Definition of Quantile Residuals

In continuous responses, the quantile residual is defined as,

rQ,i = Φ−1F (yi; µi, φ),

where F (yi; µi, φ) is continuous and is the distribution function of a random
variable Y , and Φ(·) is the cumulative distribution function of the standard
Normal distribution.

In the discrete case, if ai =limy↑yi
F (yi; µi, φ) and bi = F (yi; µi, φ), then

the quantile residuals are defined as,

rQ,i = Φ−1(µi),

where µi is a uniform random variable on the interval (ai, bi].
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3.6.2 Residual Plots

Any of the residuals discussed in section 3.6.1 can be plotted against a variety
of statistics and other indices. Each provide different information about
departures from the fitted model. Since residuals should ideally be random,
any pattern observed in the plots indicate problems with the fitted model.
These residual plots can therefore help the researcher determine if there are
any isolated departures. Furthermore, by plotting the residuals against the
fitted values, as well as against the covariates, systematic departures can also
be determined (Chandler [11]).

Correct Distribution

One of the most important components of a glm is that the correct distribu-
tion is chosen for the response variable. To check that the chosen distribution
is adequate for the data, a normal probability or Q-Q (quantile) plot can be
produced. If the model fits well, this plot should yield a straight line at
45 degrees. While quantile residuals are the ideal choice for glms, other
residuals can be used.



Chapter 4

Generalized Estimating
Equations

The class of generalized linear models (glms) introduced in Section 3.2 play
a central role in regression problems which have discrete or continuous re-
sponse variables. However they are based on the classical assumption that
observations within a data set are independent. glms were extended by
Liang and Zeger [56] so that longitudinal or correlated data (Section 4.1.1)
could be analysed, and this approach is known as the Generalized Estimat-
ing Equation (gee) method. This method has received wide use in medical
and biological applications such as epidemiology, gerontology, and biology
(Ballinger [3]), and is becoming increasingly popular in other disciplines such
as organisational and psychological research. Much of the appeal of gees is
due to their broad capabilities, including: modelling correlated responses;
allowing for time-varying covariates; and facilitating regression analysis on
dependent variables that are not normally distributed (Ballinger [3]).

4.1 Introduction

Gees were introduced as a method of estimating the regression model para-
meters when the response variable is dependent. The gee approach differs
in a fundamental conceptual way from the techniques included under the
rubric of ‘random-effects’, ‘multilevel’, and ‘hierarchical’ models which have
previously been used to model correlated data. The techniques used in these
models explicitly model and estimate the variations seen between observa-
tions, and incorporate these estimates and the residual variance into standard
errors. The gee method does not explicitly model the variation. Instead it
focuses on, and estimates its counterpart: the similarity of the observations

35
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(Hanley et al. [50]).
Gees develop a population average or marginal model. In marginal mod-

els, the primary interest of the analysis is to model the marginal expectation
of the response variable given the covariates. In other words, for every one-
unit increase in a covariate across the population, the gee tells the user
how much the average response would change (Zorn [91]). The correlation,
or more generally, the association between the response variables is mod-
elled separately and is regarded as a nuisance parameter (Ziegler et, al. [2]).
Thus, a basic premise of the gee approach is that the researcher is primar-
ily interested in the regression parameters β and is not interested in the
variance-covariance matrix. Gees are not meant to be used in situations in
which scientific interest centres around the variance parameters.

This chapter focuses on the class of gee models originally developed by
Liang and Zeger [56]. This gee approach is now commonly referred to as
the gee1 approach. Further developments are currently being made into
different types of gees. While the focus of the chapter is on gee1 models,
the other types of gees are discussed briefly.

4.1.1 Longitudinal and correlated studies

Gees are traditionally used to model correlated data from longitudinal or
repeated measures units, as well as from clustered or multilevel studies. Lon-
gitudinal studies are defined by the characteristic that subjects are measured
repeatedly throughout time. These studies require special statistical methods
because the set of observations taken on one unit are usually intercorrelated
(Diggle, Liang & Zeger [65]).

The issue of accounting for correlation also arises when analysing a single
time series of measurements, such as rainfall. Although similar techniques
can be applied to this type of data, inferences are usually less robust. The
correlation must therefore be taken into account in order for valid scientific
inferences to be made (Diggle, Liang & Zeger [65]).

The data examined in this dissertation is a single time series measure-
ment, rainfall, which is measured over time. The site of the rainfall is consid-
ered as one unit, and the rainfall measured at each site would be the repeated
measures over time. The prime advantage of studying rainfall in this manner
is that multiple sites can be examined simultaneously and it is an effective
way to study change. However, if more than one site is examined simulta-
neously in one model, it can be thought of as an example of a longitudinal
study.

Correlated data has been examined through a variety of different ap-
proaches. The statistical methods for modelling longitudinal data are well
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developed when the response variable is approximately Normal (Liang &
Zeger [56]). Statistical models for non-Normal outcomes however, are not
as developed. Where analysing longitudinal data there are two classical ap-
proaches which have been used in the past: the first is univariate mixed-
model, split-plot, or repeated measures anova; and the second is based on
a multivariate anova called manova. Two other extensions to the classical
approaches for modelling correlated data include multivariate modelling and
mixed models. The former treats all measurements on the same unit as de-
pendent variables, and models these simultaneously. The latter focuses on
fixed and random effects within the model, with the correlation between the
observations being a consequence of random effects (Dunlop [22]).

4.1.2 Notation

The following notation is used for the remainder of this dissertation: let yit

be a vector of responses with a set of corresponding r covariates or factors,
Xit, where i indexes the K units of analysis i = 1, 2, . . . , K; and t indexes
the time points t = 1, 2, . . . , ni for each unit. Thus the number of clusters
observed is K. Also, N =

∑
ni, and is the total number of observations

across all units. The first element of xit is set to 1 to allow the inclusion of
an intercept.

Furthermore, let yi = [yi1, yi2, . . . , yini
] denote the corresponding col-

umn vector of observations on the response variable for unit i, and Xi =
[Xi1, Xi2, . . . , Xini

] indicate the ni × r matrix of covariates for unit i.

In the case of rainfall data, to correspond with the notation described
above, the following notation is applied:

• Each site forms one unit or cluster. Therefore if only one site is exam-
ined, K = 1. If two sites are examined, then K = 2. Thus, i = 1 for
one site and i = 1, 2 for two sites.

• The response variable, yit, is the amount of rainfall recorded. Thus, if
one site is examined, the response variable becomes y1t. If two sites
are examined, there are two response vectors of y1t and y2t.

• The observed time, t, corresponds with the time values at which the
rainfall is measured. For example t = 1, 2, 3 would correspond with
measurements taken at time point 1, time point 2, and time point 3.

• The number of time points is n1 for site one and n2 for site two.
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4.1.3 Additional representations of GEEs

Gees were originally defined by estimating the correlation parameters within
the gee using the method of moments (Sutradhar [79]). This means that
only first order moments, that is, the mean structure, is estimated consis-
tently. This approach, sometimes termed the gee1 approach, allows the
separation between the estimating equation for the regression parameters
and the association parameters. Separating these parameters means that
each are estimated individually. The gee1 approach are the class of models
that is most commonly found in statistical software implementation. Fur-
ther work into gees has resulted in the development of the geej1 and geej2

approaches, which use similar principles as the gee1 approach. Further-
more, another class of estimating equations, the gee2 approach, has been
developed. This approach however, does not separate the regression and
association parameters (Hedeker [42]).

In the geej1 approach, as in the gee1 approach, the regression para-
meters are estimated, but the ‘working’ correlation parameter α (See Sec-
tion 4.3.1) is estimated by using a second set of estimating equations. The
geej1 also requires formulas for the fourth-order moments, which are un-
known and thus calculations can become quite complicated (Sutradhar [79]).
Hall & Severini [37] avoided this problem, and estimated the ‘working’ cor-
relation parameter, by using second-order moments only. This approach is
called the geej2. From an efficiency point of view, the geej1 and the geej2

approached do not appear to produce better models than the gee1 approach,
and both are much more complicated than the gee1 method (Sutradhar [79]).

Another form of the gee is called the gee2 approach. This uses a set of
equations that allow the estimation of the first and second moments jointly
and consistently, meaning that both the parameter and correlation estimates
have to be approximated using a joint estimating equation approach (Ziegler
et al. [2]). Another difference with this approach is that it constructs a true
correlation structure and not a ‘working’ structure as the gee1 approach
does. However, it is extremely difficult, and as it has many convergence
problems in the estimation of regression parameters the estimating equations
become useless in the longitudinal setup (Sutradhar [79]). Extensions of
the gee2 include the gegee approach, the ggee2 approach and the egee
approach, all of which use similar principles to the gee2 and have similar
pitfalls.

Although other methods of estimation have been investigated, due to their
difficulties and limited advancements, it has been decided that the simpler
gee1 method of estimation should be used for this dissertation. For the
remainder of this dissertation, the gee1 approach is simply referred to as
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‘gee’.

4.1.4 Assumptions

Before explaining the concept of gees, there are four assumptions about the
use of gees to model correlated data that need to be articulated. The most
crucial assumption is that the following conditional expectation needs to be
specified correctly,

µit = E[yit|xit] = E[yit|Xi]. (4.1)

Equation (4.1) implies the conditional mean µit of yit, given the explanatory
variable Xi, measured at all possible time points ni, is equal to a set of the
same point specific explanatory variables xit (Dahmen & Ziegler [19]).

The second assumption is that the response variable yit should have a
mean and variance which are characterised by a glm (Equation (4.2), Sec-
tion 4.4). It is further assumed that a true conditional ni × ni covariance
matrix exists (Dahmen & Ziegler [19]). Finally, it is imperative that any
missing data is missing completely at random (mcar), otherwise results be-
come inconsistent (Dobson et al. [1]).

4.2 GEEs and rainfall

There is a general consensus that rainfall is correlated. For monthly rainfall
this means that the rainfall observed during any particular month, depends
on a number of previous months’ conditions. Numerous studies have shown
that this is the case, and thus the correlated structure of rainfall data should
not be ignored when creating a model (Chandler & Wheater [10]; Beersma [6];
Buishand [7]).

Even though researchers have realised that rainfall data is correlated,
introducing these dependencies into a model leads to difficulties. For exam-
ple, parameter identification becomes difficult and models have an increased
number of parameters. Thus, researchers typically assume that rainfall is
independent. However, Lall et al. [55] state that if this independent as-
sumption is violated, then the precision of any results obtained are over or
underestimated and this leads to incorrect conclusions about the significance
of parameters (Dahmen & Ziegler [19])

Past research thus shows that it is important to take the correlated struc-
ture of rainfall into account when creating a rainfall model. Generalized
estimating equations are especially designed to handle correlated data and
past reviews indicate that utilising this powerful estimating technique may
be beneficial to rainfall modelling.
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4.2.1 GEEs and the power-variance (Tweedie) GLM

Although several approaches have been used to model non-Normal continuous
or discrete correlated data, no research has been completed on simultaneously
modelling non-Normal data with continuous and discrete components. That
is, gee models have not been researched for the power-variance (Tweedie)
glm and thus this dissertation demonstrates an initiative approach to gees
and rainfall modelling.

4.2.2 Multiple sites

Comparing rainfall across regions is traditionally computed using a direct
standardisation approach that adjusts for confounding discrete factors (such
as the soi phase and month). Alternatively, The gee approach can adjust
for continuous, as well as discrete factors, and parameter estimation is more
efficient when dealing with correlated longitudinal data (Ballinger [3]).

As stated earlier, limited research has been conducted into modelling
rainfall generated from multiple sites, although the literature does state that
multi-site modelling is important (Srikanthan & McMahon [76]). The tech-
niques involved in modelling multiple sites has proved very difficult and te-
dious. It is a possibility that using gees to model rainfall may lead to new
research into multi-site modelling. If each site is treated as a different cluster,
then the gee approach is viable.

4.3 Specification of GEEs

A basic feature of gee models is that the joint distribution of a unit’s re-
sponse vector yi does not need to be specified. Instead, only the marginal
distribution of yit at each time point needs specification. To clarify, assume
there are two time points and the outcome variable is approximately Nor-
mal. Gees only assume that the distribution of yi1 and yi2 are two univariate
Normal distributions, rather than assuming that yi1 and yi2 form a (joint)
bivariate Gaussian distribution. Thus, gees avoid the need for multivariate
distributions by only assuming a functional form for the marginal distribution
at each time point (Hedeker [42]).

Since the gee model can be thought of as an extension of glms for cor-
related data, the gee specifications involve those of glm, with one addition.
Thus, gee models require the user to specify the following,

• The linear predictor,
ηit = x′itβ,
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where xit is the covariate vector for unit i at time t.

• The link function, used to relate the response variable to the linear
combination of the covariates,

g(µit) = ηit.

• The variance as a function of the mean, and consequently the distrib-
ution of the response variable,

Var[Yit] = φV (µit).

• The correlation structure of the response variable.

The fourth condition is what differentiates a gee model from a glm.
Liang and Zeger [56] introduced a ‘working’ correlation structure to obtain
consistent and efficient estimators for regression parameters when observa-
tions were correlated.

4.3.1 Working correlation matrix

It is assumed a true correlation between units exists, however it is very
rare that this true correlation is actually known. Thus, a working corre-
lation matrix, R, is produced to obtain an estimate of the covariance matrix
(Zorn [91]). This working correlation is of size t × t because one assumes
that there are a fixed number of time points t at which units are measured.
A given unit does not have to be measured at all t time points; each individ-
ual’s correlation matrix Ri is of size ni × ni, with the appropriate rows and
columns removed if ni < t.

It is further assumed that the correlation matrix R, and thus Ri, depend
on a vector of association parameters, denoted by α. That is, the working
correlation matrix, now fully defined as Ri(α), is completely specified by
the vector of unknown parameters, α. This unknown vector of parameters
has a structure which is determined by the investigator and is assumed to
be the same for all units. It represents the average dependence among the
observations.

Although Ri(α) is chosen at the researchers’ own discretion, it is best
to try to choose Ri(α) to be consistent with empirical correlations and on
the basis of theoretical considerations (Dobson et al. [1]). This is because
accurately representing the correlation matrix improves the efficiency of the
gee estimates. Despite this, there is little information available about how
to choose the best correlation structure (Dahmen & Ziegler [19]), and often it
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is difficult to determine. As long as µi is correctly specified however, and the
covariance matrix converges to some fixed matrix, then consistent results can
still be obtained, even if the incorrect Ri(α) structure is identified, (Dahmen
& Ziegler [19]). Finally, any loss of efficiency is reduced as the number of
units increases (Dobson et al. [1]).

The most common structures used to model the working correlation ma-
trix are the independent, exchangeable, autoregressive, stationary, nonsta-
tionary, unstructured, and fixed correlation structures. The broad range of
options available for specifying the correlation structure is another advantage
for using the gee approach. Some of these structures are examined in more
detail below.

Independent Structure

The independent structure is the simplest form that the working correlation
matrix can take, as it assumes that no correlation actually exists and ob-
servations within the series are independent. Because users assume that the
responses within each unit are independent of each other, this approach sacri-
fices one of the benefits of gee in that it does not account for within-subject
correlation (Ballinger [3]). In general, this structure does not make logi-
cal sense for longitudinal data, since such data is usually highly correlated.
Fitzmaurice [30] shows that using an independent structure for correlated
data can lead to large efficiency loss of time-varying covariates. Thus, this
structure would not be recommended for variables such as rainfall.

With this structure, the working correlation matrix becomes the identity
matrix, Ri(α) = I, and the resulting gee is then called the Independent Es-
timating Equation (Dahmen & Ziegler [19]). No estimation of α is required,
since no correlation is assumed to exist. This structure does not simply
produce the algorithm used for a glm, as it still involves the ‘working’ corre-
lation matrix, which a glm does not. For the independent structure, Ri(α)
is defined as,

Ru,v =

{
1 u = v,

0 otherwise.

In matrix notation this becomes,

Ri =


1 0 . . . 0
0 1 0
...

. . .
...

0 0 . . . 1

 .
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Exchangeable Structure

The exchangeable structure assumes that there is a common correlation
within observations. Thus, all of the correlations in Ri(α) are equal (Hedeker [42]).
An exchangeable correlation may be used when each pair of observations
within a time frame has approximately the same correlation. For the ex-
changeable structure, Ri(α) is defined as,

Ru,v =

{
1 u = v,

α otherwise.

In matrix notation this becomes,

Ri =


1 α . . . α
α 1 α
...

. . .
...

α α . . . 1

 .

Autoregressive Structure

For data that are correlated within cluster over time, an autoregressive cor-
relation structure is specified to set the within-subject correlations as an
exponential function of this lag period, which is determined by the user
(Ballinger [3]). The autoregressive structure assumes time dependence for
the association between observations and considers each time series to be
an AR(m) process. The most difficult task for this structure is determining
the correct order of the autoregressive process (Hardin & Hilbe [39]). It is
common to choose an AR(1) structure, which is defined as,

Ru,v =

{
1 u = v,

α|u−v| otherwise.

In matrix notation this becomes,

Ri =


1 α α2 . . . αn−1

α 1 α αn−2

α2 α 1
...

...
. . .

...
αn−1 . . . α 1

 .
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Unstructured structure

The unstructured form of the working correlation matrix is the most general
of all of the correlations discussed in this dissertation as no structure is
imposed on the correlation matrix. This form requires all ni(ni − 1)/K
correlations of Ri(α) to be estimated, and thus when there are many time
points this structure becomes very computationally burdensome.

An unstructured correlation matrix is used when there is no logical or-
dering for the observations in the cluster, and is recommended if the number
of observations is small in a balanced and complete design (Horton & Lip-
sitz [45]). This correlation matrix is the most efficient structure, but is only
useful when there are relatively few observations as its estimate is not guar-
anteed to be a positive number and there is often a problem with inverting
Ri(α) (Hedeker [42]). For the unstructured structure, Ri(α) is defined as,

Ru,v =

{
1 u = v,

αuv otherwise.

In matrix notation this becomes,

Ri =


1 α12 . . . α1ni

α21 1 . . . α2ni

...
. . .

...
αni1 αni2 . . . 1

 .

Fixed Correlation

A fixed correlation structure is fixed at some user-defined value and can be
imposed if there is some knowledge of the structure of the correlation matrix
from another source (Hardin & Hilbe [39]). With this structure, the working
correlation is not estimated at each step, but instead takes the correlation as
fixed throughout the entire process.

4.4 GEE Estimation

As gees can be thought of as a moderation in the glm to incorporate corre-
lated data, it makes sense that they involve a moderation to the estimating
or score equation, Uj, used in glms (Section 3.3, Equation (3.8)). Gees are
modified by using the ‘working’ correlation matrix in the score equations to
account for the correlations in the data (Hardin & Hilbe [39]).

To begin, the following terms need to be defined in order to setup the
score equations for gee models:
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• The working correlation matrix, R(α) was already defined in section
4.3.1, with α fully characterising R(α). Note that Ri(α) is a ni × ni

working correlation matrix for the i unit.

• Ai is defined as a t × t diagonal matrix, with the variance function
V (µit), as the tth diagonal element.

• Finally, a working variance-covariance matrix for yi, which incorporates
the ‘working’ correlation matrix and thus the correlations of the data
is defined as,

Vi(α) = φA
1/2
i Ri(α)A

1/2
i . (4.2)

This ‘working’ covariance matrix will be equal to cov(Yi) if Ri(α) is
indeed the true correlation matrix for the response variable. It is a
transformation of the variance V (µi) term into a matrix form to ac-
count for the correlation between observations.

Generalized Estimating Equations Estimator

The generalized estimating equation estimator can now be defined as:

Uk(β) =
K∑

i=1

DT
i [Vi]

−1(yi − µi) = 0, (4.3)

where Di is a matrix of partial derivatives of µi and βi (where Dit =
∂µi/∂βt), and Vi is the working variance-covariance matrix of yi (Equa-
tion (4.2)). This score equation for estimating β is the solution to a set
of k ‘quasi-score’ differential equations (Zorn [91]), as Equation (4.3) only
depends on the mean and variance of yi.

4.4.1 Estimation of β

The ultimate aim of a gee is to find the most adequate model to represent a
given data set by finding values for the unknown β parameters. To estimate
β, the gee estimator (Equation (4.3)) is rearranged to obtain the following
(for the derivation of this formula see Appendix A.1),

β̂ =
K∑

i=1

(DT
i V̂i

−1
DT

i )−1

K∑
i=1

(DT
i V̂i

−1
yi). (4.4)

As gees are not a likelihood-based method of estimation, computations
based on likelihoods are not possible. Thus, in order to find a solution
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for Equation (4.4), estimation may be accomplished either via generalized
weighted least-squares, or through an iterative process (Zorn [91]). Essen-
tially, solving the gee involves the following steps:

1. Specifying,

• the model parameters of interest and in particular the variable
that indicates that the data is correlated;

• the link function which will ‘linearize’ the regression equation;

• the distribution of the dependent variable;

• the structure of the ‘working’ correlation .

2. Computing an initial estimate of β using glm methodology; thus as-
suming that observations are independent, with no correlation existing.
This is done using glm estimation techniques (Section (3.3)).

3. Given the initial estimates of β, computing the Pearson’s residuals,

eit =
yit − µit√

V (µit)
. (4.5)

4. An estimation of α, to be used in the working correlation matrix, is
then computed using the Pearson’s residuals and the assumed structure
of Ri specified in step 2 (See Section ?? for the calculation of α for
different structures). It should be noted that the number of nuisance
parameters and the estimator of α vary depending on the correlation
structure chosen. Liang and Zeger [56] introduced several formulas to
calculated α. In addition, even though φ appears in all of the following
formulas for α, it is not needed to obtain a consistent estimate of β.
Different texts use differing methods of calculating α, although most
produce very similar values.

5. The working correlation matrix, Ri can now be specified using the α
value calculated in step 4 and the assumed structure of Ri.

6. Using Ai, defined in Section 4.4 and Ri(α), defined in step 5, compute
an estimate of the covariance Vi for the K units examined,

Vi = A
1
2
i R̂i(α)A

1
2
i .
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7. Finally, update β̂ using the following iteratively formula,

βr+1 = βr +

{
n∑

i=1

∂µi

∂β

′
V −1

i

∂µi

∂β

}−1 {
n∑

i=1

∂µi

∂β

′
V −1

i (yi − µi)

}
. (4.6)

8. Complete steps 3 to 6 until convergence.

4.4.2 Calculation of α

Independent Structure

When no correlation is assumed to exist, and an independence structure
R(α) = I is chosen, α = 1. Thus no calculation of α is required.

Autocorrelation Structure

If an autocorrelation structure is chosen as the appropriate ‘working’ corre-
lation matrix, then α = (α1, ..., αni−1). An estimator of αt can then be given
as,

α̂t = φ
K∑

i=1

êitêi,t+1/(N − r). (4.7)

If the structure is specified specifically as an AR(1), then a common α is
estimated as,

α̂ =

ni−1∑
t=1

α̂t/(ni − 1). (4.8)

For the AR(1) structure, all Ri will be identical as this is equivalent to a
one-dependent model. Other m-dependent structures can be specified; see
Hardin & Hilbe [39] for further examples.

Exchangeable

When an exchangeable correlation structure is chosen for R(α), then α can
be estimated as,

α̂ = φ

K∑
i=1

∑
t>t′

êitêit′/

{
K∑

i=1

1

2
ni(ni − 1)− r

}
.
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4.4.3 Properties of GEEs

Dispersion Parameter, φ

The dispersion parameter for a gee can be estimated by,

φ̂ =
1

N − r

K∑
i=1

ni∑
t=1

e2
it, (4.9)

where N =
∑

ni and is the total number of observations across all units, r
is equal to the number of regression parameters, and eit are the estimated
Pearson’s residuals (Hardin & Hilbe [39]). Although most software packages
use Equation (4.9), some use,

φ̂ =
1

N

K∑
t=1

ni∑
t=1

e2
it. (4.10)

The advantage of Equation (4.9) over Equation (4.10) is model results
for independent correlation exactly match glm results. Liang & Zeger [56]
state that any consistent estimate of φ is admissible.

Variance of β

In order to perform hypothesis tests and construct confidence intervals, it is
of interest to obtain standard errors associated with the estimated regression
coefficients, β. These standard errors are obtained as the square root of
the diagonal elements of the matrix V (β̂). There are two different ways to
calculate the variance of β̂ within gee methodology.

The first way is the naive or ‘model-based’ approach. This approach often
underestimates the standard error of β̂; however it is simple to calculate
(Dobson et al. [1]). The second approach is called the robust or ‘empirical’
estimate, and yields more consistent results even when,

• V (Yij) is not equal to φV (µij); and

• Ri(α) is misspecified.

The naive approach gives the variance of β̂ as,

Var(β̂) = σ̂2

[
K∑

i=1

DT
i V̂ −1

i Di

]−1

.

The empirical or robust approach gives the variance of β̂ as,

Var(β̂) = M−1
0 M1M

−1
0 , where
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• M0 =
∑K

i=1 DT
i V̂ −1

i Di, and

• M1 =
∑K

i=1 DT
i (yi − µ̂i)(yi − µ̂i)

T V̂ −1
i Di.

It should be noted that if σ̂2V̂i = (yi − µ̂i)(yi − µ̂i)
T , then the naive and

empirical approaches are identical. This second estimator is often called the
‘sandwich’ estimator.

The consistency of the variance estimate of β̂ depends on proper speci-
fication of the working correlation structure, unlike the actual estimates of
β̂ which do not. Misspecification of the working correlation structure yields
estimates of Var(β̂) which do not agree with the naive approach. Thus in
practice, the robust estimator is nearly always used, since specification of
the correct correlation matrix is difficult to achieve (Zorn [91]). However, if
there are less than 20 units or clusters, the naive approach should be used
as it gives better estimates for the variance of β (Horton & Lipsitz [45]).

4.5 Diagnostics

The main concern of researchers is finding a model that adequately describes
the data as simply as possible. However, with gees the process of selecting
model terms and the appropriate correlation structure is complicated by the
correlation within observations. As observations are not independent of each
other, the residuals are not independent either, and common likelihood-based
methods of model fitting either cannot be used or need to be adjusted.

Although gees are increasing in popularity and improved research has
refined the estimation of these equations, model selection techniques and
diagnostics for gees has lagged (Ballinger [3]). There is still no universally
accepted test for goodness of fit for gee models. None of the diagnostic
techniques discussed in the next section are available in any of the major
statistical packages, meaning that checking the adequacy of a model is quite
difficult.

The next section will outline some of the techniques that can be applied
to evaluate gee models. It should be noted that all of the criteria described
below are meant only as a guide for when there is no scientific knowledge
presented to the researcher. The main techniques discussed are the measures
for evaluating the goodness of fit of the model, choosing the best correlation
structure, and choosing the best subset of covariates for a given correlation
structure. Section 3.6 should be read in conjunction with this Section 4.5 as it
gives diagnostics for analysing a glm model. Although diagnostics for glms
should not be used with gee models, they are the best approach available
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for testing the link function and appropriateness of the assumed response
variable’s distribution.

4.5.1 The best correlation structure

In general, decisions about which correlation structure to use should be
guided intially by theory. Despite this, choosing R(α) on the basis of theo-
retical considerations is sometimes quite difficult to do (Hardin & Hilbe [39]).
There is also very little information available about how to chose the best
correlation structure. Hardin and Hilbe [39] suggest choosing a correlation
structure by initially viewing the following guidelines:

• If the number of observations is small, and the design is balanced and
complete, use an unstructured correlation structure.

• If the observations in a cluster are collected over time thereby mak-
ing the clustered data longitudinal data, then the structure should be
chosen to be time-dependent, that is, an autoregressive structure.

• If the observations are simply clustered and not collected over time,
then an exchangeable structure is advisable.

• If the number of clusters is small, then the independent model may be
the best to use.

• If one or more of the above points applies, then use the ‘quasilike-
lihood under the independence model information criterion’ (qic) to
determine the best structure. The qic is explained below.

The QIC

Pan [66] recommends using a qic to select the best correlation matrix for
cases in which users may be undecided between two structures. The qic is
an extension of Akaike’s information criterion (aic) which uses the quasi-
likelihood of a model rather than the log-likelihood. The qic is called the
‘quasi-likelihood under the independence model information criterion’, and
as its name infers, no matter what Ri is chosen, this criterion assumes inde-
pendence: that is, R = I. It works by comparing the variance and magnitude
of the squared deviances for an independence model to models that assume
different sorts of correlation (for example, exchangeable, unstructured and
autoregressive). It uses the model coefficient estimates and the correlation
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in trying to calculate the most appropriate correlation structure. The qic is
defined as,

qic = −2Q(y; g−1(xβR)) + 2trace(A−1
I V ),

where:

• Q(y; g−1(xβR)) is the value of the quasi-likelihood, computed using the
coefficients from the model with the assumed correlation structure R.

• Ai is the variance matrix of the independence model.

• Vi is the sandwich estimate of the variance using the assumed correla-
tion matrix, R(α).

The qic can then be used to choose between several correlation structures,
with the best structure being the one which has the lowest qic value.

4.5.2 The best set of covariates to use

There are two methods sometimes employed to find the best subset of co-
variates to use in a model: the qicu, and the marginal R-squared.

The QICu

A similar technique to the qic can be used to determine the best covariates
to use in a given model. The new measure, called the qicu, is defined as:

qicu = −2Q(y; g−1(xβR)) + 2r,

where Q(y; g−1(xβR)) is the value of the quasi-likelihood, computed in similar
fashion to the qic and r is the number of coefficients in the model. The best
subset of covariates is then the model that has the lowest qicu value.

Marginal R-squared

Another technique that can be used to determine which subset of covariates
is appropriate is an extension of the R2 statistic, referred to as ‘marginal
R-square’ (R2

m)(Ballinger [3]). Zheng [90] introduced this statistic to be
used with gee models that have continuous, binary and counted responses.
The test measures improvement in fit between the estimated model and the
intercept-only model. It does this by comparing two different quantities.
Firstly it compares the predicted values produced from the model with the
observed values, and secondly, it compares the squared deviations of the
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observations from the mean values for the response variable. Marginal R-
square is defined as follows,

R2
m = 1−

∑ni

t=1

∑K
i=1(yit − ŷit)

2∑ni

t=1

∑K
i=1(yit − ȳit)2

,

where, ȳ = 1
Kni

∑ni

t=1

∑K
i=1 yit is the marginal mean across all time periods.

The marginal R2 is interpreted as the amount of variance in the response
variable explained by the fitted model (Hardin & Hilbe [39]). It has similar
properties as the statistic R2, with the exception that it can take a negative
value when the model gives a less accurate prediction than the intercept-only
model (Ballinger [3]).

4.5.3 Analysis of residuals

Residuals are extremely important as a final check to see if the selected model
adequately fits the data. However, there are limited techniques available to
use with gees for checking the adequacy of a model using residuals. The raw
residuals and Pearsons residuals are the only residuals that have currently
been used to uncover any significant departures in the data. The raw resid-
uals (rr) can be found via the simple formula of the observed values minus
the predicted values,

rrit = yit − ŷit.

Visual inspection of the residuals, and a nonparametric test of the ran-
domness of residuals are the two main methods of determining if the model
produced adequately represents the given data. Model assessment is pre-
dominantly based on graphical visualisations for gee models.

Raw Residuals

One method of checking the adequacy of the model is to use the raw residuals
and a nonparametric test to check the randomness of residuals. Chang [14]
suggests using the Wald-Wolfowitz run test to attempt to uncover possible
patterns of nonrandomness within the raw residuals. The test begins by
coding the raw residuals as ‘1’ if the residual is positive, and a ‘-1’ if the
residual is negative. This test then assumes a null hypothesis that the signs
of the residuals are distributed in a random sequence. It works by examining
the sequence of codes produced and the count of the total number of runs of
the two codes.

If np is the total number of positive residuals, nn is the total number
of negative residuals, and T indicates the number of observed runs in the
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sequence, then the expected value and variance of T are,

E(T ) =
2npnn

np + nm

+ 1

V (T ) =
2npnn(2npnn − npnn)

(np + nn)2(np + nn − 1)
.

The test statistic for the hypothesis that the signs of the residuals are ran-
domly distributed is,

WZ =
T − E(T )√

V (T )
, (4.11)

which has an approximately standard normal distribution, and thus the cor-
responding p-value can be determined using z-tables. Extreme values of WZ

indicate that the model does not adequately reflect the underlying structure
of the data and may indicate one of many situations, such as,

• the underlying correlation structure has been misspecified;

• the covariates do not adequately represent the data;

• the incorrect distribution has been chosen to represent the response
variable.

Graphical assessment

The first step in the graphical assessment of residuals is to include a graph of
the raw residuals and then check for the presence of outlier values that may
seriously affect the results (Diggle, Liang & Zeger [65]). The model can also
be checked to ensure that the raw residuals follow a random pattern and do
not form clusters around certain values; this can be further verified by using
the Wald-Wolfowitz test described in S ection 4.5.3 (Hardin & Hilbe [39]).
The Pearson residuals can be plotted against the linear predictor and the
logarithm of the variance function to further assess model adequacy (Hardin
& Hilbe [39]). Finally it should be ensured that the raw residuals do not
show changes in patterns across the time periods as this could indicate that
a different correlation structure is needed.

4.5.4 Summary of diagnostics

Overall there are limited diagnostics available to test the adequacy of gee
models. Most tests that can be performed have to be programmed by the
analyst as most standard software do not perform the diagnostic tests de-
scribed in this section. Also, no methods to assess whether the distribution
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chosen to describe the response variable is adequate or which link function
is appropriate, have been described in the literature.

The literature only provides a few model criterion measures to assess
overall model goodness of fit. The qic however, is particularly useful for
choosing the best correlation structure for a gee model. Similarly, the qicu

measure is used for model selection. Standard model criterion measures, such
as R2, are available for gee models, however it can be difficult to interpret
for nonlinear models and experience may be the only method of correctly
interpreting the magnitude of R2 in particular situations. Finally, plots of
the raw residuals and Pearson’s residuals verse the fitted values, the linear
predictor of the variance, can be used to assess a given models adequacy.

4.6 Fitting a GEE to a data set

When fitting a gee model, a user should specify the requirements specified
in Section (4.4.1). Details on how to make decisions required to accurately
specify these conditions are discussed in turn below. Note that the first two
steps are the same as for glm; see Section (3.2) for further details.

Step 1 & 2 : Linear predictor and best link function

To model the expected value of the marginal response for the population
µi = E(yi) to a linear combination of the covariates, the user must specify
a link transformation function that will allow the response variable to be
expressed as a vector of parameter estimates (β) in the form of an additive
model (McCullagh & Nelder [62]). The choices available for the link function
depend primarily on the distribution specified, and a list of these available
with gee models can be seen in Table (4.1). This table gives the distributions
and corresponding link functions currently available with gee models in most
statistical packages. Note that the Tweedie distribution does not appear here;
it is not yet available with gees in any statistical packages.

Step 3 : Distribution of the response variable

The next step involves specifying the distribution of the outcome variable
so that the variance might be calculated as a function of the mean response
calculated in step 1 and 2 (Hardin & Hilbe [39]). Gees, like glms, permit
the specification of distributions from the exponential family of distributions
(Section 3.1.1), including the Normal, inverse Normal, binomial, Poisson,
negative binomial, and gamma distributions. This dissertation demonstrates
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Table 4.1: The choice of link function will depend on the distribution of
the underlying response variable. This table gives some brief directions on
the different link functions currently available with gee models currently
available in most software packages (Ballinger [3]).

Distribution Link Functions Brief Description
Normal Identity Link This fits the same model as the glm

Power Link Any power transformation
Reciprocal Link Links using reciprocal of response variable

Binomial Logit Link Fits logistic regression models
Probit Link Fits cumulative probability functions
Power Link Any power transformation
Reciprocal Link Links using reciprocal of response variable

Poisson Log Link
Power Link Any power transformation
Reciprocal Link Links using reciprocal of response variable

Negative
Binomial Power Link Any power transformation

Gamma Power Link Any power transformation
Reciprocal Link Links using reciprocal of response

Multinomial Cumulative Logit Link

the use of the Tweedie distribution with gees. Misspecifications of the vari-
ance function, and thus the response distribution, can have important con-
sequences and lead to incorrect statistical conclusions (Ballinger [3]).

In fitting a gee (or any glm), the user should make every reasonable
effort to correctly specify the distribution of the response variable so that
the variance can be efficiently calculated as a function of the mean and the
regression coefficients can be properly interpreted (Ballinger [3]). It is usual
for the user to have some prior knowledge of the distribution of the response
variable.
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Step 4 : Form of the correlation within the response variable

The final step involves the specification of the form of the correlation of re-
sponses within units or nested within a group in the sample. Even though
gee models are generally robust to misspecification of the correlation struc-
ture, it is still important that the user takes precautions in specifying this
structure. This is because a structure that does not incorporate all of the
information on the correlation of measurements within the cluster may result
in inefficient estimators (Ballinger [3]).

The form of the correlation structure should be chosen from one of the
structures described in Section 4.3.1.

Step 5 : Fitting the model and diagnostics

A gee model can now be fitted to the data, however this usually takes
considerable time and effort. Finally, and often most importantly, the model
should be checked to see if it is adequate and justifiable using numerous
diagnostic techniques (see Section 4.5).

4.6.1 Cautions regarding GEE

There are a few cautions that users should be aware of when fitting a gee
model. Firstly, users should be cautioned that using the robust approach to
estimate the variance of β could be highly biased when the number of units
or clusters examined is small. Horton and Lipsitz [45] suggest that the gee
robust variance estimate should only be used when there are more than 20
units or clusters, that is, K should be greater than 20. If a data set contains
fewer than 20 units, the naive approach to estimating the variance should be
used, as it gives better estimates for the variance of β.

Secondly, although some researchers use the Wald chi-square statistic for
model comparisons (Hedeker [42]) and many current statistical packages pro-
duce a deviance or chi-square statistic for a gee model using this technique,
such a statistic is only interpretable under certain unrealistic conditions.
Thus, it is not recommended for use to test whether all of the variables in the
estimate are different from one another and different from zero (Ballinger [3]).
It is not interpretable when a user wants to model correlations using the au-
toregression correlation structure. Furthermore, this statistic is sensitive to
large differences in the scale of different independent variables (Ballinger [3]).
Thus this type of statistic is not suitable for this dissertation.
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4.6.2 Advantages

The major, and most obvious advantage of gees is they can be used to model
non-Normal, correlated longitudinal data. This makes gees an invaluable
tool when analysing data that was previously modelled using uncorrelated
models. This advantage is further strengthened by the broad range of options
available that help specify the correlation between observations through the
working correlation matrix. The incorporation of explicit knowledge about
within-unit interdependence makes gees even more attractive (Zorn [91]). As
well as the production of more efficient estimates of regression parameters
due to the inclusion of the correlation, gees also produce reasonably accurate
standard errors and hence, reasonably accurate confidence intervals with the
correct coverage rates (Hanley et al. [50]).

Another advantage is that even if an incorrect working correlation matrix
is specified, it is still possible to obtain consistent parameter estimates for
β̂ that are asymptotically Normally distributed, provided the mean µi has
been correctly specified as a function of all possible explanatory variables xi

(Dahmen & Ziegler [19]). This is a clear advantage, as understanding the
relationship of the correlation is often quite difficult (Zorn [91]). Also the
gee approach has some built-in robustness as it requires no specification of
the full likelihood of the response variable’s distribution.

As gees are an extension of glms, they allow the outcome variable to
taken on numerous different forms, such as continuous, dichotomous, poly-
chotomous, ordinal, or even count data. This makes their practicality even
greater (Zorn [91]). Finally, as gees are becoming increasingly popular,
more readily available packages have incorporated gees into their programs
making the computations much easier.

4.6.3 Limitations

Gees are gaining popularity, however there is some evidence that the use
of an incorrect dependence structure within the gee approach can produce
worse results than if using an independent structure to model correlated data
(Sutradhar & Das [80]; Crowder [18]). It has been further commented that
solutions for α̂ may not exist for various reasons, leading to the complete
breakdown of the estimation of the regression parameters.

Cologne et, al. [52] also found that when the true correlation structure
was quite simple (for example exchangeable), then gees were quite efficient.
However, when the structure is more difficult, the efficient results are often
not obtained if the correlation structure is misspecified. In the case when
the correlation structure is complicated, then every effort should be made to
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approximate the true correlation structure correctly, as consistent results are
not obtained when the correlation structure is misspecified.

Missing Data

One limitation with using gees to estimate parameters is that incomplete
data sets can complicate the analysis. Often data sets have missing data,
such as when rainfall is not recorded on a particular day. If data is missing
completely at random (mcar), consistent results can still be obtained; how-
ever the notation and calculations used become more complicated (Horton &
Lipsitz [45]). In particular, the estimation of the working correlation matrix
becomes quite tedious.

A series of approaches, when data is missing in the dependent variable,
has been proposed recently. However, these methods are rarely used as they
are extremely difficult and they are not available in accessible form with
standard software (Dahmen & Ziegler [19]). Also, the analysis of a data set
that contains missing observations produce differing results between differing
packages (Horton & Lipsitz [45]). For a complete explanation on how to
overcome missing data see Carlin et al. [49]. The three data sets that will be
used in this dissertation do not have any missing data and thus this limitation
is avoided.

4.6.4 GEE and software

The gee algorithm has been incorporated into many major statistical soft-
ware packages, including sas, stata, hlm, limdep, gauss, sudann, r, and
S-Plus. However most of the packages are restricted to only modelling a
limited number of response outcome distributions (See Table (4.1 for a list
of these distributions). Further advancements in the area of gee software
is continuously occurring, and existing software is being constantly revised
and updated to include new research. For an overview of software packages
offering gee methodology see Zorn [91] and Horton and Lipstiz [45].

4.6.5 Summary

This section has described the gee approach for modelling longitudinal and
correlated data. This approach has several features which makes it particu-
larly useful and popular. Because it is a generalisation of glm, many types
of dependent variables can be accommodated within the gee family of mod-
els. Also, the selection of the variance-covariance matrix is not as critical
as with other models because gees provide standard errors that are robust
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to misspecification of the variance-covariance matrix. This is an attractive
feature, especially for situations where the scientific interest is in estimation
and inference of the regression parameters and not of the variance-covariance
structure. The converse of this is that if there is scientific interest in the
variance-covariance structure of the longitudinal data; then gees are not
appropriate (at least in its gee1 implementation).

Liang & Zeger [56] applied the name ‘geet́o emphasise the nature of the
generalisation of the original estimating equation due to the focus on the
marginal distribution. These models do not start with a probability-based
model, nor a likelihood. There is an implied quasilikelihood form to the gee
model which may or may not coincide to a probability-based model.

The gee model was extended assuming a correlation structure that was
estimated by combining information across panels. The ancillary parameter
(α) was estimated to get a working correlation matrix. By applying the
correlation matrix to each unit, the β regression coefficients can be estimated.
Thus, the focus is on the marginal distribution, where the units are summed
together after taking into account the correlation.

The remainder of this dissertation will focus on creating a program in
r that will model data which has an assumed Tweedie distribution, using a
gee approach. This is a new approach to modelling data using a gee model,
and the results obtained will be of practical use in the future.
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Chapter 5

Data and Preliminaries

To demonstrate the practicality of using gees with the Tweedie distribution,
three Australian rainfall data sets are investigated. A rainfall data set from
Emerald is used to develop appropriate codes for constructing a gee model
for rainfall. This code is further developed to allow the simultaneous mod-
elling of more than one rainfall location, and Toowoomba and Gatton rainfall
data sets are used to demonstrate this. Due to the complexity of some of
the techniques involved in gee models, only monthly rainfall is examined in
all three data sets. While modelling daily data offers clear benefits, such as
being able to analyse the number of wet days in the month and the rainfall
amounts when wet, as well as the provision of a more detailed understanding
of many different aspects of rainfall processes, only monthly data is used.
This is due to the high level of noise present in daily data and the size of
the data set when such data is used. Working with the monthly timescale
therefore filters out some of the noise and allows for smaller data sets to be
used. Although using daily data presents several advantages, interesting out-
comes and different properties of rainfall can still be examined when monthly
data is used. Future research can build on this study of monthly data by
examining daily data.

This chapter examines the three nominated rainfall data sets, and a pre-
liminary analysis is conducted to highlight any problems that may be faced
when creating a rainfall model. Relevant covariates which may be used to
adequately represent the variability of rainfall are also discussed.

5.1 Covariates and Factors

Various climatic and time covariates were considered when modelling the
rainfall data, and these covered numerous different sources of the variability

61
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of rainfall. The variables that were collected and used to model monthly
rainfall for both the single and multiple site models included: month; year;
monthly southern oscillation index; monthly southern oscillation index phases;
sine and cosine terms; and location predictors.

5.1.1 Southern Oscillation Index

The Southern Oscillation Index (soi) is the computed standardized differ-
ence between Darwin (Australia) and Tahiti’s air pressure, multiplied by a
factor of 10 (Troup [82]). Records of the monthly average soi have been
collected since January 1879, with any missing values being computed by
interpolation. Relationships between the soi and rainfall have been exten-
sively explored since the early century and numerous authors have shown
its relationship to Australian rainfall (Stone, Hammer & Marcussen [67]).
Despite the depth of research in this relationship, other authors claim that
the soi does not provide a strong predictor of precipitation occurrence (Hyn-
dman [47]). Furthermore it is proposed that the soi values prior to 1935
should be used with caution, as there are questions regarding the consis-
tency and quality of the Tahiti pressure values prior to this year. However,
as the soi is used as a predictor of rainfall in current meteorological prac-
tices, it is considered as a covariate in this dissertation. Its use, though, is
approached with caution.

Further research into the soi has also found that an index which classifies
seasons into 5 phases depending on the value and rate of change in the soi
would be useful when modelling rainfall. Stone and Auliciems [78] used a
principal components analysis and cluster analysis to group all sequential
two-month pairs of the soi into five groups called the soi phases. The soi
phases are recorded monthly, indicating which phase each month appears to
be in. Generally, the use of soi phases to calculate future seasonal rainfall
probabilities gives a more accurate result than using soi averages. The five
phases can be stated generally in the following terms (Dunn & Lennox [24]),

• Phase 1 - termed ‘consistently negative’, indicates that the soi values
for the two previous months are both negative;

• Phase 2 - termed ‘consistently positive’, indicates that the soi values
for the two previous months are both positive;

• Phase 3 - termed ‘rapidly falling’, indicates a marked decrease in the
soi from the previous month to the current month;

• Phase 4 - termed ‘rapidly rising’, indicates a marked increase in the
soi from the previous month to the current month;
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• Phase 5 - termed ‘consistently near zero’, indicates that both the soi
values for the previous two months are close to zero.

5.1.2 Time and seasonal predictors

For each data set examined in this dissertation, two time predictors were
given: year and month. The year predictor ranges from 1889 until 2001 for
the Emerald data set and from 1980 until 2001 for both Toowooomba and
Gatton. The month predictor has 12 factors: one for each month. Two
further time predictors were also created to use in the modelling process:
season; and a ‘wet-season’ factor.

The four seasons (Summer, Autumn, Winter and Spring), together with
the 12 months, can be used to take into account the seasonal variation of
rainfall. The four seasons used in this dissertation are the Southern hemi-
sphere seasons. Although the variable ‘season’ seems to have a relationship
with the amount of rainfall per month, when examining the monthly rainfall
amounts for Emerald, it was noticed that some months had similar rain-
fall distributions and these were not confined to the four seasons. Dunn &
Lennox [24] suggest the fitting of a seasonality term that represents the three
distinct rainfall periods: a ‘Dry’ period for the months April to September;
a ‘Wet’ period for the months December and January; and a ‘Transitional’
period for February, March, October and November. These three distinct
rainfall periods are called the ‘wet-season’ factor. Figure 5.4 presents a vi-
sual explanation of this factor for Emerald.

Toowoomba and Gatton did not have such a distinct classification of this
‘wet-season’ factor, with the four seasons giving a better representation of
the seasonal variation of rainfall for these locations. Thus the ‘wet-season’
factor is not used as a covariate for Toowoomba and Gatton.

Sine and Cosine Terms

Chandler and Wheater [12] found that both a sine and cosine wave could
be included as possible covariates to represent season variation of rainfall.
Various forms of these waves were introduced in this dissertation to cover
a variety of possible cyclical patterns of various lengths in the model, and
attempt to include information about the cyclical nature of rainfall from one
period to another.

The sine and cosine waves used by Chandler and Wheater [12] to represent
the season variation of rainfall are as follows (these are known as annual
frequency sine and cosine terms (Dunn & Lennox [24]),

• Sine term: sin (2π
12
× month);
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• Cosine term: cos (2π
12
× month).

Dunn & Lennox [24] also successfully used the following alterations to the
sine and cosine terms to model the seasonal variation of rainfall (these are
known as six-monthly frequency sine and cosine terms),

• Sine term: sin (4π
12
× month);

• Cosine term: cos (4π
12
× month).

The use of either representation of the sine and cosine terms was a possi-
bility for this dissertation, and both were employed. Other slight variations
may also prove to be worthwhile in future research.

5.1.3 Temporal dependence

It has been suggested that several previous month’s rainfall amounts should
be included in a model for rainfall to account for any temporal dependencies
that may occur from one month to another (Dunn & Lennox [24]). How-
ever this was unnecessary in this dissertation as one of the main purposes
of gee models is to account for this correlation without using extra co-
variates. Although despite this, based on recommendations by Chandler and
Wheater [12], indicators for the previous 12 months and persistent indicators
for the previous two or three months are examined. An ‘indicator’ specifies
that any recorded rainfall is coded as one, and no rainfall is coded as zero for
a given period. A ‘persistent indicator’ is one which specifies that rain has
occurred on both of the last two, or all of the last three months respectively.

5.1.4 Location covariates

Three location parameters: longitude, latitude, and altitude, are all exam-
ined when implementing the multiple site model for Toowoomba and Gatton.
Table 5.1 gives the values of these three variables for the two different loca-
tions.

5.1.5 Interactions

It is common for climatic variables to interact with one another, meaning that
the effect of one predictor may depend on the values of others (Chandler
& Wheater [12]). For example, the effect of the soi on rainfall may be
of a differing intensity in different seasons or months. Interaction terms
incorporate these relationships into a model by adding an extra predictor to
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Table 5.1: The latitude, longitude and altitude of Toowoomba and Gatton.
All values are in decimal form and the altitude measurements were taken
from the Queensland Department of Primary Industries Research Station.

Location Latitude Longitude Altitude
(Degrees) (Degrees) (Metres)

Toowoomba −27.55 151.95 674.9
Gatton −27.58 152.28 93

the model. The value of this extra predictor is the product of the interacting
predictors. Only those terms that have practical significance and are of
second-order (meaning that only two predictors are used in the interaction)
are examined in this dissertation.

5.2 Emerald Rainfall Data

The first data set that is used to determine a possible rainfall model for Emer-
ald was collected at the Emerald Post Office. Figure 5.1 shows the location
of Emerald within Australia. This data was obtained by the Queensland
Department of Primary Industries. At the time of analysis, data that was
available was from January 1889 to December 2001.

5.2.1 Model validation

Model validation is important in the model building process and is defined as
the confirmation that a given model acquires a satisfactory level of accuracy,
consistent with the intended application of the model (Hicks & Earl [44]).
There are various validation techniques and tests used in model validation.
Diagnostic testing is included as a validation technique and numerous tests
will be performed in this dissertation. Another validation technique is histor-
ical data validation: when historical data exists, part of the data is used to
build the model and the remaining data is kept to test the produced model
(Sargent [74]). Diagnostic testing and historical model validation are used in
this dissertation.

To enable model validation for the Emerald rainfall data, a portion of
the data is used to estimate the rainfall model for Emerald and the rest of
the data is kept for validation of the final model. Data from January 1889
to December 1992 was used for model estimation, which constitutes 91% of
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●Toowoomba

●Emerald

●

Gatton

Figure 5.1: The location of Emerald, Toowoomba and Gatton in Queensland
(Australia).
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the data, the remainder was kept for validation purposes. The proportion
of data kept for validation purposes is debatable (Dunn & Lennox [24]) and
as the principal intention of the model validation in this dissertation is to
demonstrate understanding, the proportions used for model estimation and
for model validation is incidental. The remainder of this section examines the
entire Emerald rainfall data from 1889 to 2001, to determine the suitability
of using this data set for the development of a gee model.

5.2.2 Emerald data

The Emerald data consists of 1356 monthly recordings in which 102 (7.5%)
months were recorded as ‘dry’ (no rainfall recorded in that month). As there
were some months where the rainfall was recorded as zero, a model that
combines the monthly rainfall occurrence and rainfall amounts is necessary.
A histogram of Emerald monthly rainfall amounts (Figure 5.2) shows that the
rainfall amounts are right skewed, with the majority of months experiencing
less than 100mm of rain. No obvious outliers can be seen. The mean amount
of rain recorded in a month was 53.18mm, whereas the median amount was
33.7mm, which supports the idea that the Emerald rainfall data is skewed.
The rainfall amounts are quite spread out, ranging from 0mm of rainfall to
556.3mm of rainfall in a month. A summary of the Emerald rainfall data
can be seen in Table 5.2.

A plot of the individual rainfall amounts for each month from 1889 to 2001
can be seen in Figure 5.3. This graph shows that three months recorded a
high rainfall amount: January 1918; February 1954; and January 1974. With
the removal of these high values, the mean and standard deviation do not
change significantly. Thus, these three months were not excluded from the
analysis. No trace values were recorded for the Emerald rainfall data.

Figure 5.4 and Table 5.3 provide a statistical summary of the rainfall
amounts for each month. From these illustrations it can be seen that January
is the wettest month, recording an average of 105.24mm of rainfall, and
August is the driest month, recording an average of 21.59mm. Figure 5.5
shows the rainfall amounts per season, with the Summer months recording
the highest average rainfall of 96.81mm per month and the Winter months
recording the lowest average of 27.19mm per month.

There were 1254 months (92.5%) which can be classified as ‘wet’, which
means that these months experienced a rainfall amount of greater than 0mm.
The distribution of these ‘wet’ months is also right skewed (Figure 5.6), with a
mean of 57.51mm recorded per month and a median of 38.15mm. No outliers
are evident. Table 5.3 summarizes the statistics for the ‘wet’ months.

Analysis of the Emerald data indicates that the use of the Tweedie dis-
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Distribution of Monthly Emerald Rainfall Amounts
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Figure 5.2: Emerald’s monthly rainfall amounts for all months.
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Figure 5.3: Each individual month’s rainfall amounts for Emerald.
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Figure 5.4: Rainfall amount per month for Emerald. The plot also shows the
months included in each of the ‘wet-season’ factors.
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Figure 5.5: Rainfall amount per season for Emerald.
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Table 5.2: A statistical summary of the monthly rainfall data for Emer-
ald from 1889 to 2001. Statistics have been recorded for monthly rainfall
amounts ≥ 0mm (all months) and monthly rainfall amounts > 0mm (rain
only months). All measurements are recorded in millimeters.

Statistic All Months Rain months only

Minimum 0 0.2
Maximum 556.3 556.3
Mean 53.18 57.51
Median 33.7 38.15
Standard Deviation 61.42 61.89
IQR 68.33 67.10
Shape Right skewed right skewed

tribution to model rainfall is reasonable. This can be concluded because the
data has a discrete component when rain is 0mm for a month, and a con-
tinuous component when the rainfall amount recorded is greater than 0mm.
This preliminary analysis has also highlighted that some values may affect
the modelling fitting process, and also outlines some of the patterns occurring
with this data set.

5.2.3 Comparison of validation and estimation sets

As mentioned in Section 5.2.1, the Emerald data set was divided into two
different sections: a validation set, comprising of 9% of the data; and a es-
timation set, comprising of 91% of the data. This section briefly examines
the two sets to determine their suitability for use in model validation. The
validation set (n = 108) has a slightly lower mean monthly rainfall amount
than the estimation set (n = 1236): 43.43mm compared with 53.79mm. The
percentage of months that do not experience any rainfall is similar for both
the validation and estimation data sets: the validation set has 6 observations
which were recorded as ‘dry’ (5.6%); and the estimation set has 96 observa-
tions (7.8%). Properties of the two sets of data can be seen in Table 5.4.



5.3. MULTIPLE SITE DATA 71

Table 5.3: A statistical summary of the monthly rainfall data for Emerald
for each month. Statistics have been recorded for monthly rainfall amounts
≥ 0mm. All measurements are recorded in millimeters.

Month Mean Median Standard IQR
Deviation

January 105.24 94.0 85.43 79.8
February 96.30 71.0 84.75 108.3
March 68.60 51.3 69.12 74.7
April 36.50 20.6 40.84 54.3
May 34.81 24.2 42.84 43.4
June 32.23 18.2 41.66 43.1
July 27.75 14.5 35.74 34.7
August 21.59 11.2 27.50 28.20
September 24.46 11.1 31.70 30.3
October 41.36 31.4 39.19 47.4
November 60.34 49.7 45.91 53.1
December 88.90 78.7 67.67 80.7

5.3 Multiple Site Data

To demonstrate the functionality of gee models and show that they can
not only simultaneously model rainfall occurrence and rainfall amount, but
can also simultaneously model more than one rainfall data set, two sites are
modelled together: Toowoomba; and Gatton. These two sites are located
close together (See Figure 5.1) and thus simultaneous modelling of these two
sites is practical and efficient. Due to the complexity and time constraints
involved when creating a multiple site model, data is only be examined from
January 1980 to December 2001 for both Toowoomba and Gatton. Also for
the same reasons the data is not portioned into two set for estimation and
validation. Thus the only validation that is done on the multi-site models is
diagnostic tests. Validation on the multiple site model is important and the
development of this technique is a possibility for future research.

5.3.1 Toowoomba Rainfall Data

The first data set that is analysed in the multiple site model of rainfall is
Toowooomba. The location of this site in Queensland, Australia can be seen
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Distribution of Monthly Emerald Rainfall Amounts (>0mm)

Rainfall Amounts Greater Than 0 per Month (mm)
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Figure 5.6: Emerald’s monthly rainfall amounts for the months which
recorded a rainfall amount greater than 0mm.

in Figure 5.1. This data was obtained from the Queensland Department of
Primary Industries.

The Toowoomba data consists of 264 monthly recordings in which 1
(0.38%) month was recorded as ‘dry’ (no rainfall recorded in that month).
As there was a month where the rainfall was recorded as zero, a model that
combines the monthly rainfall occurrence and rainfall amounts is necessary.
A histogram of Toowoomba’s monthly rainfall amounts (Figure 5.7) indicates
that the distribution of rainfall is right skewed, with the majority of months
experiencing less than 100mm of rain. It could be argued that there appears
to be three outliers, as seen in Figure 5.7. However, it could also be counter-
argued that these values are a continuation of the tail of the distribution
of rainfall, and therefore contribute to the overall characteristics of rainfall.
The outliers, highlighted in Table 5.5 were examined carefully to investigate
their contribution and effect on the overall model produced.

The mean amount of rain recorded in Toowoomba was 76.62mm per
month, whereas the median amount was 55mm. These results support the
idea that the Toowoomba rainfall data is skewed. The rainfall amounts range
from 0mm to 519.6mm of rain in a month. A summary of the Toowoomba
rainfall data is produced in Table 5.6.

Figure 5.8 is a plot of the individual rainfall amounts for each month from
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Table 5.4: Summary statistics of monthly rainfall data for the estimation
and validation data sets. Statistics have been recorded for monthly rainfall
amounts ≥ 0mm (all months) and monthly rainfall amounts > 0mm (rain
only months). All measurements are recorded in millimeters.

All data Estimation Validation

All Rain All Rain All Rain
Statistic months months months months months months

Minimum 0 0.2 0 0.2 0 0.2
Maximum 556.3 556.3 556.3 556.3 324.0 324.0
Mean 53.18 57.51 53.79 58.31 43.32 47.99
Median 33.70 38.15 34.50 38.85 26.40 30.45
Standard Deviation 61.42 61.89 62.11 62.60 53.03 53.38
IQR 68.33 67.10 69.40 67.63 56.98 58.70
n 1356 1254 1236 1140 108 102

Table 5.5: The three most extreme rainfall amount values in the Toowoomba
rainfall data, together with their corresponding dates.

Month Year Rainfall Amount (mm)

February 1981 421.4
April 1988 421.2
May 1996 519.6

1980 to 2001. This graph also highlights the three months which recorded a
high rainfall amount: February 1981; April 1988; and May 1996. With the
removal of these high values the mean and standard deviation do not change
significantly. No trace values were recorded for the Toowoomba rainfall data.

A statistical summary of the rainfall amounts for each month is produced
in Figure 5.9 and Table 5.7. These illustrations show that December is the
wettest month, recording an average of 130.22mm of rainfall, and August
is the driest month, recording an average of 30.49mm. Figure 5.10 shows
the rainfall amounts per season. It shows that the Summer months recorded
the highest average rainfall of 120.25mm per month and the Winter months
recorded the lowest average of 41.10mm per month.

Analysis of the Toowoomba data indicates that the use of the Tweedie
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Distribution of Monthly Toowoomba Rainfall Amounts

Rainfall Amounts per Month (mm)
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Figure 5.7: Toowoomba’s monthly rainfall amounts for all months.
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Figure 5.8: Each individual month’s rainfall amount for Toowoomba.
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Figure 5.9: Rainfall amounts per month for Toowoomba.
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Figure 5.10: Rainfall amounts per season for Toowoomba.
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Table 5.6: A statistical summary of the monthly rainfall data for Toowoomba
from 1980 to 2001. Statistics have been recorded for monthly rainfall amounts
≥ 0mm (all months) and monthly rainfall amounts > 0mm (rain only
months). All measurements are recorded in millimeters.

Statistic All Months Rain months only

Minimum 0 0
Maximum 519.6 519.6
Mean 76.62 76.914
Median 55 55
Standard Deviation 71.83 71.81
IQR 79.03 79.15
Shape Right skewed right skewed

distribution to model rainfall is reasonable. This can be concluded because
the data has a discrete component when rain is 0mm for a month, and a
continuous component when the rainfall amount recorded is greater than
0mm. This preliminary analysis has also highlighted that some values may
affect the modelling fitting process, and also outlines some of the patterns
occurring with this data set.

5.3.2 Gatton Rainfall Data

The second data set in the multiple site model of rainfall is from Gatton. The
location of this site in Queensland, Australia can be seen in Figure 5.1. This
data was obtained from the Queensland Department of Primary Industries.
As stated earlier, the data from Gatton is only examined from January 1980
to December 2001.

The Gatton data consists of 264 monthly recordings in which 9 months
(3.51%) were recorded as ‘dry’ (no rainfall recorded in that month). As
there were months where the rainfall was recorded as zero, a model that
combines the monthly rainfall occurrence and rainfall amounts is necessary.
A histogram of Gatton’s monthly rainfall amounts (Figure 5.11) indicates
that the distribution of rainfall is right skewed, with the majority of months
experiencing less than 100mm of rain. It could be argued that there appears
to be two outliers, as seen on Figure 5.11). However it could also be counter-
argued that these values are a continuation of the tail of the distribution of
rainfall, and therefore contribute to the overall characteristics of rainfall. The
outliers, highlighted in Table 5.8, correspond with two of the three outliers
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Table 5.7: A statistical summary of the monthly rainfall data for Toowoomba
for each month. Statistics have been recorded for monthly rainfall amounts
≥ 0mm. All measurements are recorded in millimeters.

Month Mean Median Standard IQR
Deviation

January 104.13 95.70 47.37 76.53
February 126.39 116.45 99.74 112.35
March 59.60 51.50 40.78 45.80
April 74.79 40.00 97.83 95.70
May 90.48 60.50 113.10 42.05
June 39.67 28.30 46.13 34.20
July 53.13 41.30 37.36 34.48
August 30.49 27.60 21.89 32.95
September 38.80 43.20 28.78 37.58
October 74.74 64.50 44.78 80.40
November 97.04 82.80 68.16 69.40
December 130.22 137.95 61.97 78.23

observed in the Toowoomba data. These values are examined carefully to
investigate their contribution and effect on the overall model produced.

The mean amount of rain recorded in Gatton was 62.42mm per month,
whereas the median amount was 43.6mm. These results support the idea
that the Gatton rainfall data is skewed. These results are also slightly lower
than the averages recorded in Toowoomba, with the rainfall amounts ranging
from 0mm to 449.3mm of rain in a month. A summary of the Gatton rainfall
data is provided in Table 5.9.

Table 5.8: The two most extreme rainfall amount values in the Gatton rainfall
data, together with their corresponding dates.

Month Year Rainfall (mm)

April 1988 393.4
May 1996 449.3

Figure 5.12 is a plot of the individual rainfall amounts for each month
from 1980 to 2001. This graph also highlights the two months which recorded
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a high rainfall amount: April 1988; and May 1996. With the removal of these
high values, the mean and standard deviation do not change significantly. No
trace values were recorded for the Gatton rainfall data.

Table 5.9: A summary of the monthly rainfall data for Gatton from 1980
to 2001. Statistics have been recorded for monthly rainfall amounts ≥ 0mm
(all months) and monthly rainfall amounts > 0mm (rain only months). All
measurements are recorded in millimeters.

Statistic All Months Rain months only

Minimum 0 0
Maximum 449.3 449.3
Mean 62.42 64.62
Median 43.6 47.0
Standard Deviation 61.56 61.49
IQR 67.95 65.30
Shape Right skewed right skewed

A statistical summary of the rainfall amounts for each month is provided
in Figure 5.13 and Table 5.10. These illustrations show that December is the
wettest month, recording an average of 106.24mm of rainfall, and August
is the driest month, recording an average of 22.59mm. Figure 5.14 shows
the rainfall amounts per season. It shows that the Summer months recorded
the highest average rainfall of 99.06mm per month and the Winter months
recorded the lowest average of 30.50mm per month.

Analysis of the Gatton data indicates that the use of the Tweedie distrib-
ution to model rainfall is reasonable. This can be concluded because the data
has a discrete component when rain is 0mm for a month, and a continuous
component when the rainfall amount recorded is greater than 0mm. This
preliminary analysis has also highlighted that some values may affect the
modelling fitting process, and also outlines some of the patterns occurring
with this data set.
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Distribution of Monthly Gatton Rainfall Amounts

Rainfall Amounts per Month (mm)
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Figure 5.11: Gatton’s monthly rainfall amounts for all months.
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Figure 5.12: Each individual month’s rainfall amount for Gatton.
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Figure 5.13: Rainfall amount per month for Gatton.
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Figure 5.14: Rainfall amount per season for Gatton.
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Table 5.10: A statistical summary of the monthly rainfall data for Gatton
for each month. Statistics have been recorded for monthly rainfall amounts
≥ 0mm. All measurements are recorded in millimeters.

Month Mean Median Standard IQR
Deviation

January 94.29 88.50 44.53 64.70
February 96.65 77.50 69.33 95.23
March 58.65 56.30 49.30 75.05
April 65.52 28.70 90.34 70.80
May 77.43 44.00 97.53 59.03
June 30.59 16.60 41.68 20.43
July 38.32 34.20 30.66 24.05
August 22.59 16.50 18.81 28.03
September 25.18 23.85 22.68 28.70
October 56.06 53.40 36.14 60.03
November 77.56 73.40 56.52 78.85
December 106.24 87.40 53.82 82.83
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Chapter 6

GEEs and the Tweedie
distribution

As demonstrated in Chapter 5, monthly rainfall at Emerald, Toowoomba and
Gatton display both discrete and continuous amounts of rainfall in any given
month. Thus, a rainfall model that not only simultaneously models rainfall
occurrence and rainfall amount, but also takes into account the dependency
of rainfall and is able to model several sites concurrently, will be useful,
practical and completely novel. Using gees to create a model when the
response variable is from the power-variance (Tweedie) family of distributions
will be an innovative approach to modelling rainfall. The difficulty in using
gees in this situation is that there is no software available to compute the
appropriate parameters in the model.

6.1 The Tweedie distribution, GEEs and rain-

fall

It has already been shown by Dunn and Lennox [24] that using Tweedie
generalized linear models to model rainfall is an appropriate and practical
technique for this type of data. However, by expanding the work completed
by Dunn and Lennox [24] to incorporate the important fact that rainfall data
is dependent, other difficulties in modelling rainfall can be addressed.

The other difficulties in modelling rainfall, as discussed in Chapter 2, are
trace values, temporal dependence, and spatial dependence. No trace values
were recorded for the three rainfall sites analysed in this dissertation, and
gees allow the other two difficulties to be dealt with as they are specifically
designed to model correlated data and to allow for more than one unit to be
examined simultaneously.

83
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Due to the difficulties that can be resolved by using gees to model rainfall,
gees are not only an innovative way to model rainfall, but are also a practical
and useful approach which may have an important use in the future of rainfall
modelling.

6.2 Implementing GEEs and rainfall

Many different software packages are available to model a given data set
using gees (see Section 4.6.4), however no packages have yet been produced
that use gees for a Tweedie distribution. In order to create a model for
rainfall data, using gees with a Tweedie distribution, the program r has
been used to find an estimation of the β values. This software package,
unlike other packages, enables the fitting of glms using the Tweedie family of
distributions and this is needed to fit a gee with a Tweedie distribution. The
following section outlines the steps involved in creating such a program. In
order to create this program, the steps used to fit a gee to data (Section 4.6)
are used.

Step 1 : Specification of parameters

Before a model can be created, several parameters need to be specified.
Firstly, the variable that is correlated needs to be identified and the other
variables of interest need to be specified. Rainfall data has been docu-
mented as dependent (Chandler & Wheater [12]; Buishand [8]; Horton &
Lipsitz [46]), and thus this variable will be the response variable. The list
of possible covariates are examined in Chapter 5. Secondly, the link func-
tion that will ‘linearise’ the regression equation needs to be specified. When
using a Tweedie distribution, the most common link function to use is the
log link function, and this is what is used in this dissertation. Thirdly, the
distribution of the dependent variable needs to be ascertained. Previous
investigations (Dunn [27] and Dunn & Lennox [24]) shows that a Tweedie
family of distributions is a novel way of modelling rainfall data. As demon-
strated in Section 3.5, the class of Tweedie distributions when 1 < p < 2, is
called a Poisson-gamma distributions. This Poisson-gamma distribution can
be used to model rainfall (Section 3.5.2). Finally, an initial structure of the
‘working’ correlation matrix needs to be decided. For data that are corre-
lated over time, an autoregressive correlation structure can be specified. Due
to the dependent nature of rainfall over time, this type of structure seems
appropriate. It is most common to chose an AR(1) structure and thus, this
structure will be used as the initial ‘working’ correlation matrix. Dunn and
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Lennox [24] showed that an AR(1) appears to be an appropriate choice to
model rainfall.

Within a class of glms for correlated data, the initial choice of the vari-
ance function is driven by the range and nature of the response variable.
Thus, a Tweedie distribution which can accommodate data with both dis-
crete and continuous components is an obvious choice for modelling rainfall.
Likewise, the initial choice of the link function for a particular model is usu-
ally chosen based upon the range of the response variable. In most cases
the canonical link is used. The choice of the link function does not affect
the outcome of the analysis in gee models, but can affect the calculation
of the sandwich estimate of variance. A logarithm link function is the most
sensible choice to use when modelling rainfall. It is the most common to use
with the Tweedie distribution and maps −∞ < η < ∞ to µ > 0, which is
sensible for modelling rainfall data. Although other choices of link function
are available and may be appropriate, the logarithm link function is used in
the following applications due to its feature of mapping into a non-negative
continuous outcome.

Step 2 : Fitting a GLM to the data

After the parameters have been specified, initial estimates of β are to be
estimated using glm methodology. In order to do this, a usually-robust
iterative procedure called iteratively reweighted least-squares (McCullagh &
Nelder [62]) is used. To specify the Tweedie distribution, the mean (µ),
dispersion parameter (φ), and the variance power (p) are needed. Standard
algorithms are used to estimate µ, and maximum likelihood estimation is
used to find φ. Finally, to estimate p, maximum likelihood estimation is used
by employing a profile log-likelihood plot. Although this is computationally
difficult, the r package has a function to compute p relatively easily using the
tweedie packages: tweedie.profile. For an explanation of this function, see
Section 3.5.1.

Step 3 : Compute Pearson’s residuals

The Pearson’s residuals are computed using Equation 4.5. Some of the terms
in this equation can be simplified as the distribution and the variance function
are known. The following is known:

• yit represents the vector of responses (Section 4.1.2), which in the case
of rainfall, is the rainfall amounts observed every month. This will not
change as the algorithm to fit β is implemented.
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• µit is the mean of responses and is the ‘predicted values’. Predicted or
fitted values are those which have been predicted by the model created
using the predictors set by the researcher.

• V (µit) represents the variance function, and in the case of a Tweedie
family this is simply µp, where p will be a value between 1 and 2.

Step 4 : Calculating α

As stated in step 1, the working correlation structure that is used is the
AR(1) structure, and thus the calculation of common α can be calculated as
per Equation (4.7) and Equation (4.8) using the Pearson’s residuals found in
step 3.

It is generally advisable to choose a working correlation structure that is
similar to the structure of observed correlations. This is because, although
the gee is robust to misspecification of the correlation structure, efficiency is
increased to the extent that the specified structure is correct (Hedeker [42]).

Step 5 : Calculating R(α)

The working correlation matrix R(α) is specified using the common α found
in step 4. As the working correlation matrix is specified as a AR(1) structure,
it will have the following form,

Ri =


1 α α2 . . . αn−1

α 1 α αn−2

α2 α 1
...

...
. . .

...
αn−1 . . . α 1

 .

Step 6 : Estimate the covariance, Vi

Ai is a t× t diagonal matrix with the variance function as the tth diagonal.
Thus, the diagonal values are µp, as this is the variance function of the
Tweedie family distribution. The covariance is then found using Equation
(4.2).

Step 7 : Find an updated value of β̂

Using Equation (4.6), an updated value of β̂ can be found. The following
points show the simplification of some of the values used this formula when
a Tweedie distribution is used as the distribution of the response variable,
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• Di =
∂µi

∂β
is equal to Xi × µ;

• Use the Vi that was calculated in step 6;

• yi is the value of the original response variable values (rainfall amounts
per month);

• µi is the value of the fitted rainfall amounts.

To find the final β values, iterations of steps 3 to 7 continue until a prede-
termined criterion of convergence is reached. The convergence criteria that
was used in this dissertation was,

abs(dev - devold)/(0.1 + abs(dev)) > epsilon.

6.3 Choosing the correct number of parame-

ters

In order to find the most suitable, adequate, and parsimonious model that
represents the data satisfactorily, it is necessary to run the program numer-
ous times with a variety of covariates, factors, and interaction terms. Two
diagostic approaches, the qicu and R2 are used to determine the most ap-
propriate set of covariates. As it is impractical to fit all possible models
due the length of the running time of the program, it is necessary to use a
systematic approach to find the most appropriate model. Firstly, predictors
suspected to be more likely to contribute to the rainfall variability are fitted
first. Those with the lowest qicu were considered to represent the data more
accurately. When a final model was found, each predictor was systemically
removed to determine if they were necessary.
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Chapter 7

Application of single site
modelling

The next two chapters provide an illustration of the ideas presented in pre-
vious chapters concerning gee models, using an application in rainfall mod-
elling. The data consists of monthly rainfall amounts measured in millime-
ters, as described in Chapter 5. This chapter develops the program needed
to produce a gee model with a Tweedie distribution using a single location,
Emerald.

7.1 Fitting procedures

A good model-building strategy is essential when dealing with large and com-
plex data sets, such as the rainfall data sets which are generally quite large.
When dealing with such complex data sets it is possible that more than one
model may represent the given data adequately (Dunn & Lennox [24]). There
is thus a high possibility that more than one rainfall model will be found to
be appropriate for this data and thus several models may be examined in
this dissertation. The final model specified in this dissertation may be just
one of many possibilities, but it will be one of the most appropriate of the
models produced.

There is no software available that fits a gee with a Tweedie distribution
therefore it was necessary to write a code so this type of modelling could
be implemented (See Appendix B.1 for the described code). The program r
was used to demonstrate the application of modelling rainfall using gees as
this program had the necessary requirement of being able to produce a glm
with a Tweedie distribution.

In order to develop the required code necessary to implement a gee with
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a Tweedie distribution, a single site (and thus a single unit, K = 1) was used
to check the running and performance of the program. Emerald (located
in Queensland, Australia) was chosen to show the application of the gee
program developed. As previously noted, the model is fitted to the data from
1889 to 1992, the remainder is kept for validation purposes (Section 5.2.1).
Once the program was checked using the single site, further developments
were made to incorporate multi-sites into the modelling process.

The Emerald data set is very large, with rainfall data being recorded from
January 1889 to December 2001 and thus it would be very time consuming to
examine all possible rainfall models. Therefore a systematic approach had to
be developed in order to find the most suitable model for rainfall and below
gives an outline of this approach:

1. Produce a basic rainfall model which contains only a single covariate.
A model with each proposed single predictor will be developed and the
corresponding qicu will be examined for each model. The models with
the lowest qicu will be used and examined in further detail.

2. Further predictors will be added to the model, in a systematic approach:
blocks of covariates will be added successively with predictors being
added in perceived order of importance.

3. Once an approach model has been formed with single covariates only,
each covariate will be systematically excluded from the model, to de-
termine if an improvement in the model can be made. These deletions
ensure that the overall size of the model remains manageable through-
out.

4. Interaction terms will be added to the model to determine if any of
there terms are relevant in a rainfall model. Only those terms which
have a practical significance or meaning will be included in the rainfall
model.

5. Once an adequate model has been determined, the covariates will be
removed one by one to see if any improvements in the rainfall model
can be made.

6. Diagnostic checks will be completed on the final models to determine
if they adequately model the data given.

To fit a Tweedie glm to the rainfall data (the initial requirement of
finding a gee model), an appropriate value of the variance power, p needs to
be found. This is determined by using the profile log-likelihood function, with
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the maximum likelihood value from this function corresponding to the most
appropriate value for p. The choice of p determines the which member of
the Tweedie family of distributions will be used in the analysis. Confidence
intervals for p are also produced (95%) and any p value within the 95%
confidence interval produce very similar estimates, models and residuals plots
(Dunn & Lennox [24]).

The procedure qicu will be used as a preliminary diagnostic tool to de-
termine the best set of covariates to use. The best subset of covariates is
then the model that has the lowest qicu value. This diagnostic technique
does not determine the most appropriate and most parsimonious model, but
rather the set of covariates that most efficiently represents the given data set.
For example, adding a certain predictor may lower the qicu but only slightly
and thus it could be argued that this predictor may not be necessary in the
overall rainfall model. Therefore careful examination and further diagnostics
of the overall model produced is needed before any model interpretations can
be made.

The order in which the predictors are fitted is important in any testing of
the predictors for a glm, however for a gee model, the order does not matter.
Despite this, it is still important that the predictors are systematically fitted
in order of suspected importance, as the fitting procedure is quite tedious for
a gee model created for this dissertation.

7.2 Preliminary modelling of rainfall

The starting point for developing a rainfall model using a gee was to produce
several simple models incorporating only one predictor. These simple mod-
els served as a base against which to judge more complex representations.
So that any rainfall model produced could be easily written, each predic-
tor was represented by the following definitions (see Table 7.1 for further
clarification),

• Month (M), where 1 = January, 2 = February, 3 = March, etc.;

• Wet-season factor (WS), a seasonality term representing three distinct
rainfall periods;

• Season (S), where 1 = Summer, 2 = Autumn, 3 = Winter, 4 = Spring;

• An annual frequency sine (SIN) and cosine term (COS): sin (2π×
Month)/12) and cos (2π× Month)/12);
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• A six-monthly frequency sine (S1)and cosine term (C1); sin (4π×Month)/12)
and cos (4π× Month)/12);

• Southern Oscillation Index (SOI);

• Southern Oscillation Index Phases (P);

• Indicators for the previous 12 months are represented as IND1 for an
indicator for the previous month, IND2 for an indicator of rainfall two
months ago, up to IND12 for an indicator of rainfall 12 months ago;

• A persistent indicator for the previous two months will be represented
by IND1.2 and a persistent indicator for the previous three months will
be represented by IND1.2.3;

• Year (Y).

Table 7.1 gives a summary of the qicu and R2 value for each of the
predictors when they are used as a single predictor in the model for rainfall
at Emerald. Only the first three indicators and a persistent indicator were
included in Table 7.1. All of the other indicators produced similar results to
the indicators included in the table.

Table 7.1: A summary of the qicu when each of the covariates was used
singularly in the model for rainfall at Emerald. The lower the qicu and
higher the R2 value, the better the covariate is at representing the data.

Predictor Definition QICu R2

Month M 51876 0.219
Season S 48250 0.193
Wet-season WS 47176 0.179
Cosine & Sine COS & SIN 49092 0.022
Cosine(1) & Sine(1) C1 & S1 42638 0.029
SOI SOI 43620 0.036
SOI phases P 43682 0.024
Year Y 43021 0.00002
Indicator 1 IND1 43662 0.019
Indicator 2 IND2 43798 0.005
Indicator 3 IND3 43635 0.024
Indicator 1.2 IND1.2 43012 0.001
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An example of one of the models produced for Table 7.1 would be if season
was used as the single predictor for rainfall at Emerald. The model would
be of the following form,

log µ = 1 + S,

where µ is the expected rainfall amount per month, S is the factor season,
the assumed distribution is the Tweedie distribution and the link function
used is the logarithm link function. Note that if the predictor ‘cosine’ is used,
then the corresponding ‘sine’ predictor must also appear in the model and
visa versa (Dunn & Lennox [24]). This is because both the sine and cosine
waves represent a variety of possible cyclical patterns of various lengths when
appearing in a model together.

Table 7.1 shows that the predictors season, month and the wet-season
factor have the highest R2 values. These values when used as a single pre-
dictor for rainfall explain between approximately 18% to 22% of the variance
seen in rainfall. Thus it was initially decided that these three predictors
would provide the starting point for the modelling fitting process. Many of
the other predictors have quite low qicu values, however their corresponding
R2 value is also very low. Therefore the following covariates were further
developed: month; season; and the wet-season factor.

7.3 Further model developing

In order to build upon the models described in Section 7.2 to see if any
improvements could be made, covariates were added one at a time to the
predictors month, season, and the wet-season factor. Covariates were added
in a logical order depending on their expected contribution to the variability
of rainfall.

It was expected that seasonal factors would be the main contributors
to the amount of rainfall that falls during the year, as rainfall is very much
dependent on season variations. Preliminary analyses of the data for Emerald
confirmed this as the three seasonal factors (wet-season factor, month and
season) contributed the most to the variability of rainfall (Section 7.2). These
three seasonal predictors produced the highest R2 value when a rainfall model
was developed with only one covariate. It should be noted that the wet-season
factor and the predictors season, sine and cosine all involve the predictor
month in their calculations and thus month can not be combined with any
of these covariates.

Chandler & Wheater [12] suggested incorporating the seasonal variation
into a rainfall model in the form of an annual frequency sine and cosine
term (SIN and COS). The inclusion of the sine and cosine term attempts to
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incorporate the cyclical nature of rainfall from one season to another. This
term was the next predictor added to the rainfall model. Dunn & Lennox
suggested a variation to the sine and cosine term suggested by Chandler &
Wheater [12] called a six-monthly frequency sine and cosine term (S1 and
C1).

The southern oscillation index (soi) as well as the soi phases (Stone &
Auliciems [78]) were the next predictors included into the rainfall model.
Stone & Auliciems [78], McBride & Nicholls [61] and Lough [58] state that
the these predictors have an important influence in the modelling of rainfall,
especially within the Queensland and northern New South Wales region.

Indicators for previous month’s rainfall amounts and two persistent indi-
cators were first described by Chandler & Wheater [12] and more recently
used by Dunn & Lennox [24] as predictors for rainfall. The indicator vari-
ables were also added in a systematic way to the rainfall model so that all
indicators could be investigated: an indicator for the previous month was
added first; then an indicator for two months ago; and so on. The persis-
tent indicators were incorporated into the rainfall model, after the indicator
predictors had been determined.

The predictor, Year, was the last covariate to be added into the rain-
fall model. Chandler & Wheater [12] stated that this predictors could be
used to incorporate long-term climatic variability or linear trend in a rainfall
model. Finally, the interaction terms which have a practical or meaningful
interpretation were investigated.

7.3.1 Model with no interactions

After examining Table 7.1 and conducting preliminary analyses on the data,
it was decided that three different models would be developed: One involve-
ing the predictor month; another the wet-season factor; and the last would
involve the season predictor. These three predictors are all seasonal predic-
tors and consequently, as expected, seasonal predictors are the fundamental
contributes to rainfall.

Each of the three models were developed by systematically adding predic-
tors in the perceived order of importance, until an adequate model was found.
In the preliminary stages, an adequate model was determined as one which
produces a low qicu value and a corresponding high R2 value. This can be
difficult as often the addition of a predictor will produce a slight increase in
the qicu value but a large increase in the R2 value with. In this case, the
predictor would be included in the rainfall model as a significant predictor.
Therefore careful judgement is needed with the inclusion of predictors and
finding the final model is a very time consuming and complex procedure. No
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interaction terms were included at this stage of the model formulation.

7.3.2 Month factor

Each covariate listed in Section 7.2 were combined with the month factor and
cautiously included into the rainfall model, to determine if any improvement
could be make. It was found that adding the soi phase predictor and one of
the persistent indicators (IND1.2), reduced the qicu to 49777 and increased
the R2 value to 25.49%. This was a significant improvement on the ‘month
only’ model and thus soi phases and IND1.2 appear to enhance the rainfall
model. This new model can be written as,

log (µ) = 1 + M + P + IND1.2. (7.1)

A variance power (p) value of 1.59 was produced when using the log-
likelihood profile function with predictors month, soi phase, and a persistent
indicator. One difficultly with using month as the seasonal predictor is for
each month, an extra coefficient or β value is needed. For example, Equation
(7.1) would be written as the following when the corresponding β values are
added to the model,

log (µ) = β0 + β1M2 + β2M3 + β3M4 + β4M5 + β5M6 (7.2)

+ β6M7 + β7M8 + β8M9 + β9M10 + β10M11 + β11M12

+ β12P2 + β13P3 + β14P4 + β15P15 + β16IND1.2,

where M2 to M12 represent the months February to December (January is
used as the reference month) and take on a value of ‘1’ when the month
examined needs representation and ‘0’ otherwise. Furthermore S2 to S5 rep-
resent phases 2 to 5 of the soi phases (taking on a ‘1’ or ‘0’ in similar fashion
to the month factor). Equation (7.2) shows that 17 separate terms need to
be included in the rainfall model when month is the seasonal predictor. The
use of season or the wet-season factor will help to reduce the large number
of coefficients required when using month combined with the soi phases and
yet maintain a degree of accuracy.

7.3.3 Wet-Season factor

Systematically fitting each predictor listed in Section 7.2 to the rainfall model
with wet-season factor already fitted as a predictor, indicated that adding
more predictors did not lower the qicu value. However a significant improve-
ment was seen in the R2 value (with a corresponding slight increase in the
qicu value) with the inclusion of the following terms,
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• Six-monthly frequency sine and cosine term (SIN1 and COS1);

• Persistent indicator - An indicator for the previous three months rainfall
(IND1.2.3).

This combination of predictors produced a qicu value of 48056 and a R2

value of 20.50%. Due to the uncertainty as to which model ‘best’ describes
the variability of rainfall when the wet-season factor is used as the seasonal
predictor, two models were further examined. The first, involving only the
wet-season factor, can be written as,

log (µ) = 1 + WS. (7.3)

The second, involves the wet-season factor, a six-monthly frequency sine and
cosine term and a persistent indicator,

log (µ) = 1 + WS + SIN1 + COS1 + IND1.2.3. (7.4)

7.3.4 Season factor

After exploring different models using season as the leading predictor, it was
found that adding a six-monthly frequency sine and cosine term and two
persistent indicators (IND1.2 and IND1.2.3) produced a rainfall model with
a lower qicu and a higher R2 value than a model using season as the only
predictor. The wet-season factor was also tried as a predictor, however it did
not make any improvement to the model. This new model, written as

log (µ) = 1 + S + SIN1 + COS1 + IND1.2 + IND1.2.3, (7.5)

produced a qicu value of 48056 and a R2 value of 20.50%.

7.3.5 Other leading factors

When examining Table 7.1 it was noticed that the combination of the six-
monthly sine and cosine term produced the lowest qicu value of all of the
predictors. As this term is also a seasonal predictor, it was further investi-
gated. However, using the sine and cosine term was inappropriate without
the inclusion of the season or wet-season factor.

To complete the investigation of rainfall models, other combinations of
factors were examined which did not involve month, the wet-season factor
or season. No other models, however, proved to provide a better fit for the
rainfall data at Emerald. Consequently, four separate models (Model (7.1),
Model (7.3), Model (7.4) and Model (7.5)) were analysed further.
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Interactions

The inclusion of interaction terms did not improve any of the four models
identified as potential adequate models for rainfall at Emerald. Thus it
was concluded that each model would only involve single predictors and no
interaction terms.

7.3.6 Fitted model

The final four models, (Model (7.1), Model (7.3), Model (7.4) and Model
(7.5)) found after initial investigations to model the rainfall at Emerald using
a gee model and a Tweedie distribution were examined in more detail, to
determine if any of these models were adequate and are able to be used to
represent the rainfall at Emerald. The information for these four models can
be seen in Table 7.2.

Table 7.2: A summary of the four models that were found to be representative
of the rainfall data at Emerald after initial diagnostics only. Displayed is
each model with their corresponding qicu, R2 and variance power (p) values.
The lower the qicu and the higher the R2 value, the better the model is at
representing the rainfall data.

Model Model No. p QICu R2(%)
1+M+P+IND1.2 7.1 1.59 49777 25.5
1+WS 7.3 1.61 47176 17.9
1+WS+COS1+SIN1+IND1.2.3 7.4 1.61 48056 20.5
1+S+COS1+SIN1+IND1.2+IND1.2.3 7.5 1.61 48156 20.1

Table 7.2 shows that Model (7.3) has the lowest qicu value and Model
(7.1) has the highest R2 value. Therefore, after preliminary diagnostics and
analyses, none of the four models stand out as being better than the others.
Further diagnostic testing and examination of the four models was needed
to determine if any are adequate for modelling the rainfall at Emerald. The
next section determines the suitability of the models listed in Table 8.2.

7.4 Diagnostics

Before attempting to interpret any of the results obtained, it is necessary to
carry out thorough checks. For a statistical model, such checks fall broadly
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into three categories: assessment of predictive ability; checks on probability
structure; and checks for systematic structure. To assess the probability
structure, testing the corresponding glm is the best method of determining
the appropriateness of the assumed distribution of the response variable and
the chosen link function. Although this is not suggested in literature, no other
methods of testing have been recommended. Checks for systematic structure
were performed via the qicu, R2 (which have already been performed) and
the examination of residuals. Lastly assessment of the predictive ability of
the final model/s are completed in Section 7.6.

7.4.1 Residuals

Initially the Wald-Wolfowitz randomness test (Section 4.5.3) was performed
on each model listed in Table 8.2 to test that the raw residuals are distributed
in a random sequence. This test produces a WZ value, which is similar to
a z-score, and a corresponding p-value. An extreme value of WZ indicates
that the model does not adequately reflect the underlying structure of the
data and the residuals are not randomly distributed. Table 7.3 indicates that
Models (7.4) and (7.5) have p-values below 5% and thus at the 5% significance
level, there is enough evidence state that the residuals are non-randomly
distributed, and thus these models should not be used as rainfall models.
At the 10% level of significance Model (7.3) also has non-random residuals.
Model (7.3) has a p-value between 5 and 10% and is not the borderline of
having non-random or random residuals. It was therefore decided that Model
(7.3) and Model (7.1) should be analysed further.

Table 7.3: The final models with their WZ value from the Wald-Wolfowitz
randomness test and the corresponding p-value. This tests the null hypothesis
that the signs of the raw residuals are distributed in a random sequence.

Model Model No. WZ p-value
1+M+P+IND1.2 (7.1) −1.110 0.1335
1+WS (7.3) −1.608 0.0537
1+WS+COS1+SIN1+IND1.2.3 (7.4) −1.742 0.0409
1+S+SIN1+COS1+IND1.2+IND1.2.3 (7.5) −2.588 0.0048
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Residual Plots

There are three different residuals plots that are appropriate to use with gee
models,

• Pearson residuals versus predicted values;

• Raw residuals versus observation number;

• Pearson residuals versus linear predictor.

The Pearson residuals versus predicted values plot is used if there is any
indication that the residuals depend on the unit identifier. As there is only
one unit in this application (K = 1), this plot is not relevant. Therefore only
the last two plots in the above list were produced for Model (7.1) and Model
(7.3) to determine the adequacy of the models.

Model (7.3) was examined first to determine if the residuals plots indi-
cate any inadequacies in the model. Figure 7.1 shows two separate problems.
Firstly, the magnitude of the positive residuals is much larger than the mag-
nitude of the negative residuals. This is not a major concern as there are
reasons for why this could occur. It indicates that this model for rainfall
does not predict extreme rainfall values very accurately. Also rainfall has
lower bound at 0mm of rain, meaning a negative rainfall amount is impos-
sible and thus it is expected that the negative residuals will have a lower
magnitude. The second problem with Figure 7.1 is concerning. There is a
reasonable congregation of points when the raw residual is equal to approxi-
mately −20. This indicates that the points may not be randomly distributed.
The Wald-Wolfowitz test indicated the residuals were non-random at a 6%
level of significant (p-value = 5.37%). It seems likely that this model has
violated the randomness of residuals requirement and should not be used to
model rainfall. However, further testing was performed to clarify this.

Figure 7.2 represents a plot of the Pearson residuals versus the linear
predictor (η = log(µ)). If Model (7.3) accurately represents the rainfall data,
Figure 7.2 should have a uniform spread of point. As the plot does not show
uniformity, Model (7.3) provides a poor fit for the rainfall data at Emerald.
As Model (7.3) has shown more than one violation, and has shown to provide
a poor fit to the Emerald rainfall data, it is not considered an adequate model.

The residual plots for Model (7.1) produced better results than those
for Model (7.3). Figure 7.3 demonstrates a plot of the raw residuals. This
figure shows also that the magnitude of the positive residuals is much larger
than the magnitude of the negative residuals. However, similar to Model
(7.3), this could be due to the model not predicting the extreme values very
accurately or because rainfall has a lower bound at 0mm meaning residuals
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Figure 7.1: A plot of the raw residuals using the wet-season factor as the
only predictor for rainfall at Emerald. The plot shows that the magnitude
of the positive residuals is larger than that of the negative residuals.
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Figure 7.2: The Pearson residuals plotted against the linear predictor (η =
log(µ)) using the wet-season factor as the only predictor.
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Figure 7.3: A plot of the raw residuals using month, soi phases and a persis-
tent indicator as the predictors for rainfall at Emerald. The plot shows that
the magnitude of the positive residuals is larger than that of the negative
residuals.

have a limit of how low they can be. Figure 7.4 gives an indication that the
model is appropriate as the points on the plot of the linear predictor versus
the Pearson residuals are uniformly spread.

The examination of the qicu, R2, the Wald-Wolfowitz randomness test
and several plots of the residuals indicates that Model (7.1) is the most ap-
propriate of those models examined for the Emerald rainfall data. Note that
not all combination of models were examined, as this would be an extremely
time consuming and difficult task. This is why a systematic approach was
developed. The final diagnostic test involved checking the suitability of the
Tweedie distribution and the logarithm link function.

Checking the properties of the GLM

It is important to do a diagnostic check to determine if the underlying as-
sumed response variable’s distribution is correct and if the correct link func-
tion has been chosen to represent the data. However there is no literature
stating how to do this for a gee model and thus this section will verify
that the associated glm has a suitable link function and distribution, using
techniques described in Section 3.6.

A Normal probability plot of the quantile residuals is an efficient method
of determining if the distribution chosen to represent the data is appropriate
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Figure 7.4: A plot of the Pearson residuals plotted against the linear predic-
tor (η = log(µ)) using month, soi phases and a persistent indicator as the
predictors.

for the fitted model (Model (7.1)). Figure 7.5 shows the Normal probability
plot of the quantile residuals for Model (7.1) using a glm. It suggests that
the model is appropriate for the given data as nearly all of the residuals lie
close to the line indicating Normality. Some of the larger values do deviate
from the Normality line, however these points only represent 0.7% of the
data and with such a large data set (n = 1236) it is expected that there will
be some minor deviations. Thus a Tweedie distribution, with a power index
parameter of p̂ = 1.59 and φ̂ = 4.38, suitability fits the monthly rainfall data
at Emerald.

To verify the suitability of a link function the residual deviance can be
calculated for numerous link functions. The link function with the lowest
associated residual deviance is the most suitable to use. In r there are only
two link function that are available to use with the Tweedie distribution: the
logarithm and canonical link functions. Table 7.4 gives the residual deviances
and residual degrees of freedom for a Tweedie glm using first a logarithm and
then a canonical link function for Model (7.1). The logarithm link function
produces the lowest residual deviance indicating that it was the most suitable
link function to use when modelling the rainfall at Emerald.
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Figure 7.5: A Normal probability plot of the quantile residuals for the glm
of Model (7.1), suggests that the model is appropriate
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Table 7.4: The residual deviances with the residual degrees of freedom for a
Tweedie glm with differing link functions for Model (7.1), which has month,
soi phases and a persistent indicator as covariates.

Link Function Residual Deviance Residual df

Logarithm 6754.85 1219
Canonical 6828.20 1219

Final model

After conducting numerous modelling fitting techniques and diagnostic test-
ing, it was found that one model was superior to all others investigated for
this dissertation when modelling the rainfall at Emerald using a gee model.
This model identified the following covariates as being significant for mod-
elling the rainfall at Emerald,

• Month (M);

• soi phases (P);

• A persistent indicator variable for the previous two months rainfall
(IND1.2).

To fit this model to the Emerald rainfall data, an appropriate estimate for the
variance power p was found using the profile log-likelihood plot. Figure 7.6
shows the profile log-likelihood plot suggesting a maximum likelihood esti-
mate of p̂ = 1.59 with a 95% confidence interval of between 1.56 and 1.62.

After running the code in Appendix B.1, the coefficients and covariates
of Model (7.1) are,

log(µ) = 4.206− 0.062M2 − 0.453M3 − 1.088M4 − 1.126M5

−1.105M6 − 1.350M7 − 1.626M8 − 1.493M9 − 0.971M10

−0.542M11 − 0.173M12 + 0.491S2 − 0.015S3 + 0.472S4

+0.214S5 + 0.197IND1.2,

where,

• µ is the expected monthly rainfall amount at Emerald;
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Figure 7.6: The profile log-likelihood plot for the monthly model at Emerald
using month, soi phase and a persistent indicator as covariates. This plot was
used to estimate the maximum likelihood value of p. The points represent
the computed likelihood values for differing p estimates, the solid line is a
cubic-spline smooth interpolation through these points and the dotted line
represents a 95% confidence interval for p. The estimate for p from this graph
is p̂ = 1.59.
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• Each month (M2 = February, M3 = March, up to M12 = December)
takes on a value of 1 or 0 depending on which month is being repre-
sented. The first month (M1 = January) is the reference month and
thus does not appear in the equation. This is an application of the use
of treatment contrasts;

• Each soi phase (S2 is the soi phase 2 up to S5 which is the soi phase
5) are represented in the same way as the months, taking on a value of
1 or 0 and the first soi phase (S1) being the reference phase;

• The persistent indicator variable for the previous two months rainfall;
written IND1.2, where IND1.2 = 1 when rainfall was received during
the two previous months, and is zero otherwise.

This model has a qicu value of 49777 and a R2 value of 25.5%. Fig-
ure 7.7 shows the predicted rainfall values from Model (7.1) together with
the observed rainfall values. Extreme values have not been modelled with
much accuracy (the residuals plots have the same indication). Overall how-
ever, according to the diagnostics checks performed, Model (7.1) provides
a good representation of the structure in the data, and the distributional
assumptions are satisfied.

7.5 Model interpretation

It is not surprising that the month factor was found to be a significant pre-
dictor of rainfall at Emerald as Figure 5.4 indicates that there is a variation
between the rainfall amounts for different months of the year. Figure 7.8
confirms the inclusion of the soi phases in the final rainfall model, as the
boxplot shows increased rainfall amounts during phase 2 and phase 4.

R2 indicates how well the model does at predicting the variability of
rainfall and initially it may seem that with an R2 of only 25.5% Model (7.1)
is not efficient at explaining the variance. However rainfall is extremely hard
to predict thus a R2 value of 25.5% is reasonable. The difficulty in predicting
extreme rainfall events and the limited number of covariates examined, may
be two of the many reasons why the percentage is low.

To interpret the coefficients of the final fitted model, recall that the model
is written in terms of logarithms (that is log(µ)) and thus the coefficients
imply a multiplicative factor in the model. To understand this effect, consider
the equation log(µ) = 4.206 − 0.062M2 − 0.453M3 (which is the first three
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Figure 7.7: Time series plot of the observed (blue) and predicted (red)
monthly rainfall amounts (≥ 0mm) for Emerald, obtained through the use
of a Tweedie gee (p = 1.59) with a logarithm link function. The fitted
covariates include month, soi phase and a persistent indicator.
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Figure 7.8: The amount of rainfall per soi phase for Emerald.
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months of the final equation) which can be written as,

µ = exp(4.206− 0.062M2 − 0.453M3)

= exp(4.206)× exp(−0.062M2)× exp(−0.453M3)

= 67.09× 0.94M2 × 0.64M3 .

Thus for the month March (that is M3 = 1) a coefficient of −0.453 implies
an average decrease in the rainfall (when compared with January (M1 = 1)
by a factor of 0.64. All predictors involved in the final equation are indicator
variables meaning they can only take on a value of 0 or 1. Therefore, the
predictors’ coefficients in the final model effect the overall predicted rainfall
by a multiplicative factor only when the predictor takes on a value of 1.

Information about rainfall events

Another functional characteristic of the Tweedie distribution when used to
model rainfall is that it can provide some useful information about differ-
ent rainfall events. When 1 < p < 2 the Tweedie parameters (µ, p, φ) can
be reparameterized to the Poisson and gamma parameters (λ, γ, α) which
can be used to provide different information about rainfall events. These
transformations are,

• λ = µ2−p/(φ(2− p));

• γ = φ(p− 1)µp−1;

• α = (p− 2)/(1− p),

where λ is the mean number of rainfall events per month, γ is the shape of
the rainfall distribution when rain occurs during the month and αγ is the
amount of rain per rainfall event (Dunn [27]).

To best understand these transformations, an example is given. Consider
the last observation in the estimation data set (December 1992) where p̂ =
1.59, φ̂ = 5.00 and µ = 68.77. Reparameterizing to Poison and gamma
parameters gives: the predicted mean number of rainfall events for this month
as λ = 2.76; the shape of the rainfall gamma distribution as γ = 35.80; and
the mean amount of rain for December 1992 as αγ = 24.88.

The probability of obtaining no precipitation on any particular month
can also be calculated (Dunn [27]),

Pr(Y = 0) = exp(−λ) = exp

[
− µ2−p

φ(2− p)

]
.

For the example just given (December 1992), where λ = 2.76, the probability
of obtaining no rain in that month is 6.3%.
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7.6 Model validation

Model validation is an important in the model building process as can be
used to determine how accurately a model is at predicting data (historical
data validation). In the previous section it was demonstrated that Model
(7.1) performed satisfactorily and accurately fitted the estimation data set
well. This section demonstrates that the rainfall data simulated from the
final model (Model (7.1)) has similar properties to the actual rainfall data.
Data from January 1993 to December 2001 was kept for validation purposes.

Model (7.1) was used estimate the mean of the rainfall distribution for
each month using a series of one-step ahead forecasts. A random number
was then drawn from corresponding Tweedie distribution based on the the
forecasted µ, the previously fitted value of p = 1.59 and the previously found
φ = 5.0. This allows a predicted rainfall value to be calculated that occurs
with a Tweedie distribution of mean value µ. The random number function
used in r to find the predicted value is,

round(rtweedie(mu=fits,phi=phi,p=p,length(rain))).

The predicted values were then compared with the actual data in the vali-
dation set.

The results were examined for a variety of random number seeds that
the results presented in this section are an actual representation of all of the
results obtained.

The distribution of each month of rainfall was examined for the actual
and validated data. Figure 7.9 shows the rainfall distribution for March and
Figure 7.10 shows the rainfall distribution for December. From these two
months it can been seen that the comparisons are quite good. The distribu-
tions for March are extremely similar and indicate that Model (7.1) provides
an excellent prediction for this month. December does not provide such an
exact fit as March does, however Model (7.1) still provides a reasonable pre-
diction for this month. The monthly model performs well for most months,
however for March and October it does not provide a good prediction of
rainfall. This may have been improved if more data points were kept for the
validation set.

When looking at the overall statistics of both the actual data from Jan-
uary 1993 to December 2001, and the validation set for this period, it can
be seen that the validation set is satisfactory of predicting the overall mean
and median of rainfall at Emerald (Table 7.5). The validation set displays a
greater variance than the actual data. The validation set had 17 months of
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Figure 7.9: The distribution of the actual monthly rainfall (green) and the
simulated data using the validation data set (blue) for March. The horizontal
line in each box indicates the median of the distribution.
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Figure 7.10: The distribution of the actual monthly rainfall (green) and the
simulated data using the validation data set (blue) for December.
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no rain whereas the actual data set had only 6 months: the monthly model
often over-estimated the number of dry months.

Table 7.5: Summary statistics of monthly rainfall data for the actual and
validation data sets from January 1993 to December 2001 . All measurements
are recorded in millimeters.

Statistics Actual data Validation data

Mean 45.32 43.39
Median 26.40 21.50
Standard Deviation 53.03 61.85
IQR 56.98 45.00
n 108 108
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Chapter 8

Application of multi-site
modelling

Literature cites (Srikanthan [76]; Chandler & Wheater [12]); Chandler [11])
that modelling the spatial dependence of rainfall at different sites should
be accommodated in rainfall models (Chapter 2, Section 2.5), however due
to the cumbersome nature of this type of modelling, very few researchers
have attempted to do so. Researchers that have used multiple sites, have
done so only for either rainfall occurrence or rainfall amounts, and have not
combined these categories. This section demonstrates that gees can be used
to model rainfall at multiple sites, with an application demonstrating the
simultaneous modelling of rainfall at two differing locations, Toowoomba and
Gatton. Toowoomba and Gatton were chosen to demonstrate the usefulness
of gees due the proximity of their locations.

8.1 Fitting procedures

The same systematic approach was used to find an adequate multi-site model
for rainfall as for the single site rainfall model (Chapter 7). There was only
two differences. The first was that three extra covariates were also examined:
latitude; longitude; and altitude. These predictors were incorporated last in
the modelling process, after the predictor ‘year’ has been investigated, and
were assigned the following variable names,

• Longitude = ‘LONG’;

• Latitude = ‘LAT’;

• Altitude = ‘ALT’.

113
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The second difference was the wet-season factor was no longer considered
as a predictor of rainfall. Toowoomba and Gatton do not display the same
characteristics as Emerald for this factor and the classification of the wet-
season factor is therefore irrelevant.

Again no software is available that fits models using a gee with a Tweedie
distribution, and thus an extension to the code formulated for the single site
rainfall model has to be written so this multi-site model can be implemented.
The code written is similar to the single site code, with a few minor adjust-
ments having to be made. The final code for the multi-site gee rainfall model
can be seen in Appendix B.2.

The profile log-likelihood plot has to be computed for each model inves-
tigated to find the maximum likelihood estimate for the index parameter p.
As the qicu depends upon the chosen p̂ value, it is important that the correct
p value is chosen.

8.1.1 Single terms

To find the most appropriate model for rainfall when multiple sites are exam-
ined, each covariate was added separately to the model to determine which
predictors contribute the most information to the overall variability of rain-
fall. To re-clarify, each predictor is classified by the following notation (writ-
ten in expected importance to the variability of rainfall),

• Month (M), where 1 = January, 2 = February, 3 = March, etc.;

• Season (S), where 1 = Summer, 2 = Autumn, 3 = Winter, 4 = Spring;

• An annual frequency sine (SIN) and cosine term (COS): sin (2π×
Month)/12) and cos (2π× Month)/12);

• A six-monthly frequency sine (S1)and cosine term (C1); sin (4π×Month)/12)
and cos (4π× Month)/12);

• Southern Oscillation Index (SOI);

• Southern Oscillation Index Phases (P);

• Indicators for the previous 12 months are represented as IND1 for an
indicator for the previous month, IND2 for an indicator of rainfall two
months ago, up to IND12 for an indicator of rainfall 12 months ago;

• A persistent indicator for the previous two months are represented by
IND1.2 and a persistent indicator for the previous three months aree
represented by IND1.2.3;
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• Year (Y);

• Longitude (LONG);

• Latitude (LAT);

• Altitude (ALT).

As for a single site, this section was developed by starting with a simple
single predictor model. All predictors were examined to determine which
seem to be important in explaining the variance of rainfall. Two diagnostic
techniques were initially applied to each model, the qicu and R2. Those
models with both a lower qicu and a higher R2 will be considered to be the
most adequate models at this stage.

Table 8.1 gives a summary of the qicu and R2 values for each of the
covariates when they are used as a single predictor for rainfall. Only the
indicators that performed the ‘best’ with the qicu and R2 were included in
the table. If the Southern Oscillation Index is used as the single predictor
of rainfall then the Tweedie generalized estimating equation model can be
written as,

log µ = 1 + SOI,

where µ is the expected amount of rainfall each month and the link function
used is a logarithm link function. Note that if the ‘cosine’ predictor is used,
it must appear with the corresponding ‘sine’ predictor (Dunn & Lennox [24])
and visa versa.

From Table 8.1 it can be seen that the seasonal predictors, month and
season, and the combination of the sine and cosine terms explain approx-
imately 15% of the variance seen in rainfall when each is used as a single
predictor of rainfall. It was thus initially decided that these three predictors
would provide the starting point for the modelling fitting process.

8.1.2 Model with no interactions

Due to preliminary analyses and previous information regarding rainfall data,
it was decided that two different models would be developed: one to involve
the predictor month; and the other to involve season. These two models were
developed with predictors being added successively in perceived order of im-
portance (Section 8.1.1), until an adequate model was found. No interaction
terms were included at this stage of the model formulation.



116 CHAPTER 8. APPLICATION OF MULTI-SITE MODELLING

Table 8.1: A summary of each of the covariates with their corresponding
qicu value and R2 value when each is used singularly in a model for rainfall.
The lower the qicu and the higher the R2 value, the better the predictor is at
representing the rainfall data. Only those indicators which had the highest
R2 value were included in this table.

Predictor Definition Variance power (p) qicu R2

Month M 1.61 21950 0.198
Season S 1.63 21985 0.157
Cosine & Sine COS & SIN 1.64 19774 0.142
Cosine(1) & Sine(1) C1 & S1 1.67 20054 0.021
SOI SOI 1.67 18876 0.022
SOI phases P 1.67 18883 0.024
Year Y 1.68 18900 0.0134
Altitude ALT 1.68 18551 0.00032
Longitude LONG 1.68 18551 0.00092
Latitude LAT 1.68 18551 0.00092
Indicator 2 IND2 1.68 18560 0.0031
Indicator 4 IND4 1.68 18561 0.0043
Indicator 12 IND12 1.68 18538 0.0097
Indicator 1.2 IND1.2 1.68 18558 0.00451

Month

To find if any other predictors improve the rainfall model, each predictor
listed in Section 8.1.1 was systematically added to the model. As with the
single site model, season and the two sine and cosine terms all involve the
predictor month in their calculations and thus month can not be combined
with any of these covariates. It was found that adding the predictors year and
one of the persistent indicators appeared to improve the rainfall model by
not only lowering the qicu value but also increasing the R2 value. Although
the R2 value increased for many of the models fitted, the qicu value did
not improve for any other model. A combination of an increase in the R2

value and a decrease in the qicu value is needed for the model to be more
appropriate. Thus the most adequate rainfall model when using month as
the seasonal indicator, can be written as,

log µ = 1 + M + Y + IND1.2. (8.1)

A Tweedie log-likelihood profile with month, year and a persistent indi-
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cator as predictors was used to estimate the maximum likelihood value of
p. The resulting maximum likelihood value from this graph for the variance
power p is 1.61. This model had a qicu value of 21905.76 and a R2 value of
20.7%.

The shortfall of this model is that for each month, an extra coefficient
or β value is needed. Thus the predictor month has eleven corresponding
coefficients, one for each month minus one which is used as the reference
month. The use of the season factor might help reduce the reasonably large
number of coefficients required when using month as a predictor and yet keep
a certain amount of accuracy.

Season

Systematically fitting each predictor listed in Section 8.1.1 to the rainfall
model with season already fitted as a predictor, found that the following
terms were significant predictors contributing to the modelling of rainfall,

• An annual frequency sine and cosine term (SIN and COS);

• Indicator 1 : An indicator for rainfall one month ago (IND1);

• Indicator 2 : An indicator for rainfall two months ago (IND2);

• Indicator 12 : An indicator for rainfall twelve months (or one year) ago
(IND12).

This combination of predictors produced not only the lowest qicu value
but also produced the highest R2 value (out of the models fitted with season
already included in the model). Adding the extra five covariates lowered the
qicu to 21066 and increased the R2 value to 18.4%. The best estimate of the
variance power, using the log-likelihood profile, is now estimated to be 1.63
with a 95% confidence interval ranging from 1.56 to 1.69. The rainfall model
can now be written as,

log µ = 1 + S + SIN + COS + IND1 + IND2 + IND12. (8.2)

Sine and Cosine terms (Annual frequency)

After further exploration into different models it was found that when the
sine and cosine terms were combined with other predictors (except month
and season), this combination of predictors made substantial improvements
to the rainfall model. The combination of the sine and cosine terms, together
with the soi and an indicator term, produced a qicu value of 21025.38 which
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is less than Model (8.1) and Model (8.2), however the R2 value of 16.10%
is also lower. The following model, which has a variance power value of
p = 1.6286[1.56, 1.69], will also be investigated more thoroughly in the next
sections:

log µ = 1 + SIN + COS + SOI + IND2. (8.3)

Thus there are now three models that need further analysis.

8.1.3 Interaction terms

Model (8.1), Model (8.2) and Model (8.3) were further examined to see if the
inclusion of any interaction term would make an improvement in the overall
rainfall model. As there are many different interaction terms available, only
those interaction terms which have practical significance and are of second-
order only, were examined in this dissertation. Again the variance power has
to be estimated for each fitted model.

Month

No improvements could be made to Model (8.1) with the inclusion of inter-
action terms.

Season

An interaction between season and the soi has a valid practical significance
to rainfall. It may be the case that the effect of the soi on rainfall may be
different in different seasons, and when this term (S:SOI) was added into
model 8.2 it slightly improved the rainfall model. The qicu remained very
similar to the model without the interaction term added, however the R2 was
improved to 18.4%.

However, as stated in Section 7.1, a systematic approach is needed in
order to find the most suitable model for rainfall and step 5 states that ‘once
an adequate model has been determined, the covariates will be removed one
by one to see if any improvements in the rainfall model can be made’. Thus
each of the covariates were removed to determine if any improvements could
be made. It was found that the indicator terms (IND1, IND2 and IND12)
were not needed, as a model with season, sine and cosine terms and the
interaction term of season and soi, produced a slightly improved qicu and
R2 values of 21063 and 18.5% respectively.

The best estimate of the variance power, using the log-likelihood profile,
is now estimated to be 1.62 with a 95% confidence interval ranging from 1.55
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to 1.69. The rainfall model can now be written as,

log µ = 1 + S + SIN + COS + S : SOI. (8.4)

Sine and Cosine Terms (Annual frequency)

An improvement to the sine and cosine model 8.3 could be made with the
inclusion of an interaction term between soi and sine (SOI:SIN). It could
be argued that this interaction term is not needed as only a very slight
improvement was made with its inclusion; the qicu became 21023.7 and the
R2 was 16.12%. The best estimate of the variance power is estimated to be
1.63 with a 95% confidence interval ranging from 1.56 to 1.70. The sine and
cosine rainfall model can now be written as,

log µ = 1 + SIN + COS + SOI + IND2 + SOI : SIN. (8.5)

It was decided that the sine and cosine model with (Model (8.3)) and
without (Model (8.5)) the interaction term would be examined in further
detail to determine if either of these models were an adequate rainfall model
for Toowoomba and Gatton. This is because the qicu and R2 values were
very similar.

8.1.4 Fitted model

Four final models were fitted to the rainfall data at Toowoomba and Gatton
and the information pertaining to these models can be seen in Table 8.2. All
four will be examined in further detail, to determine if any of the models are
adequate and can be used to represent the rainfall at these two locations.

From the preliminary analysis and diagnostic tests, Model (8.5) has the
lowest qicu value and Model (8.1) has the highest R2 value, however none
of the models stand out as being better than the others at this stage. Fur-
ther diagnostic testing was required to determine if any of the models given
in Table 8.2 were an adequate rainfall model. It is interesting to note that
‘indicator 2’ (an indicator for rainfall two months ago) appears in two of the
four models. It is uncertain why this indicator and not an indicator for rain-
fall one month ago, improved the rainfall model. The next section performs
further diagnostics on the final four models to determine their suitability for
modelling rainfall.



120 CHAPTER 8. APPLICATION OF MULTI-SITE MODELLING

Table 8.2: A summary of each of the four models that were found to be
representative of the rainfall data at Toowoomba and Gatton after initial
diagnostics only. The table displays the four models, with their corresponding
qicu, R2 and variance power (p) values. The lower the qicu and the higher
the R2 value, the better the model is at representing the rainfall data.

Model Model No. p qicu R2(%)

1+M+Y+IND1.2 8.1 1.61 21906 20.5
1+S+SIN+COS+S:SOI 8.4 1.62 21063 18.5
1+SIN+COS+SOI+IND2 8.3 1.63 21025 16.10
1+SIN+COS+SOI+IND2+SOI:SIN 8.5 1.63 21024 16.12

8.2 Diagnostics

The three main diagnostics available in gee models are the qicu and R2

(which have both been tested throughout the modelling building process)
and the examination of the residuals, including the Wald-Wolfowitz random-
ness test. Each of the four models described in Section 8.1.4 were thoroughly
checked using each of these diagnostic techniques. Furthermore although lit-
erature does not suggest any methods of checking the assumed distribution
of the response variable and the appropriate link function, tests were per-
formed on the corresponding glm, produced in the initial stages of the gee
methodology. Although this is not suggested anywhere in literature, it will
hopefully show that the Tweedie distribution and the logarithm link function
are appropriate to use.

8.2.1 Residuals

The Wald-Wolfowitz randomness test (Section 4.5.3) was performed on each
of the models to test that the signs of the raw residuals were distributed in a
random sequence. If the residuals are not distributed in a random sequence,
an extreme WZ value and corresponding lower p-value is found. Extreme
values of WZ (and thus a low p-value) indicate that the model does not
adequately reflect the underlying structure of the data. Table 8.3 shows that
Models (8.1), (8.3) and (8.5) all have p-values below 5% and thus at the 5%
level there is enough evidence to reject the null hypothesis that the residuals
are random. This could be due to numerous reasons and indicates that these
three models should not be used as rainfall models, as the residuals are not
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distributed randomly. Only Model (8.4) indicates that the residuals from
the model are randomly distributed. As models (8.1), (8.3) and (8.5) have
all violated one of the requirements of a gee model, Model (8.4) will be the
only model to be examined further.

Table 8.3: Each of the four final models are shown with the WZ value cal-
culated from the Wald-Wolfowitz randomness test and the corresponding
p-value. This randomness investigation tests the null hypothesis that the
signs of the raw residuals are distributed in a random sequence.

Model Model No. WZ p-value

1+M+Y+IND1.2 8.1 −3.355 0.0004
1+S+SIN+COS+S:SOI 8.4 −0.964 0.1675
1+SIN+COS+SOI+IND2 8.3 −2.000 0.0228
1+SIN+COS+SOI+IND2+SOI:SIN 8.5 −2.403 0.0081

Numerous residual plots can now be drawn to check the adequacy of
Model (8.4). Firstly Figure 8.1 gives no indication that the residuals de-
pend on either the unit identifier (K, which determines which site is being
modelled) or on the repeated measures identifier (t, the time points for the
data). The two plots in Figure 8.1 show that all the plots are similar and
thus Model (8.4) seems adequate. Secondly a plot of the observation number
versus the raw residuals can be plotted (Figure 8.2). This figure shows that
the magnitude of the positive residuals is much larger than the magnitude of
the negative residuals. However this is caused by the fact that a model for
rainfall does not predict extreme rainfall values very accurately, thus causing
large positive residuals for these extreme values. Although a plot of this form
does indicate a misspecification of indeterminate nature, it is not a cause for
concern and does not indicate that the model is inadequate, just that it does
not model extreme values very accurately. It can also be explained (as stated
in Chapter 7) by the fact that rainfall has a lower bound at 0mm (meaning
you can not attain a rainfall value less than 0mm) and therefore the magni-
tude of the negative residuals is also bounded. Finally a plot of the Pearson
residuals versus the linear predictor (η = log(µ)) (Figure 8.3) shows that
the the points are fairly uniformly spread out, indicating that the model is
adequate for the data.

Checking the qicu value, R2 value and several plots of the residuals in-
dicates that Model (8.4) seems to be an adequate model for rainfall. The
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final diagnostic testing involves checking that the Tweedie distribution is
appropriate and the logarithm link function is adequate.

8.2.2 Checking the properties of the GLM

As there is no literature stating what procedures are available to check the
suitability of the chosen distribution of the response variable and to check
that the link function chosen is adequate for a gee model. Therefore this
section checks that the associated glm has a suitable link function and dis-
tribution.

A Normal probability plot of the quantile residuals is used to check that
the distribution chosen to represent the response variable is appropriate for
the fitted model. Figure 8.4 shows the Normal probability plot of the quantile
residuals for the Model (8.4) using a glm. This plot shows that nearly all
the residuals lie close to the line indicating Normality. There are some larger
values which do deviate from the Normality line and this is an indication
that the model does not fit extreme values very well. However for a large
data set, it is expected that there will be some minor deviations from the
Normal line and these points only represent 2% of the data. Thus a Tweedie
distribution with a power index parameter of p̂ = 1.62 and φ̂ = 3.83 fits the
monthly rainfall data appropriately when using a glm to model the data.

The logarithm link function can be checked to determine if it is the most
suitable link function to use. This is done by refitting the glm with the
most suitable covariates (Model (8.4)) using the canonical link function and
calculating the residual deviances for both link functions. The link function
with the lowest associated residual deviance is the most suitable link function
to use. Table 8.4 shows the residual deviances and residual degrees of freedom
for a Tweedie glm with either a logarithm or canonical link function and with
the predictors season, cosine and sine terms and an interaction term between
season and soi. As can be seen in this table the logarithm link function has
the lowest residual deviance indicating that it was appropriate to use it as
the link function in the modelling of the rainfall data.

8.2.3 Final model

Systematic testing of covariates, using the qicu and R2, was performed to
determine the best set of predictors to use for a multi-site model for rain-
fall, using a gee model. This produced four different models for rainfall.
After performing numerous diagnostic testing it was found that one model
was superior to the others when modelling the rainfall at Toowoomba and
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Figure 8.1: Plots of the predicted values for Gatton (top plot) and
Toowoomba (bottom plot) versus the corresponding Pearson residuals. As
both plots are similar there is no indication that the residuals depend on the
location or on the time points.
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Figure 8.2: A plot of the raw residuals. The plot shows that the magnitude
of the positive residuals is larger than that of the negative residuals.
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Figure 8.3: A plot of the Pearson residuals plotted against the linear predictor
(η = log(µ)). The plot shows that Model (8.4) is appropriate as the points
are uniformly spread.
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Figure 8.4: This Normal probability plot of the quantile residuals for the glm
of Model (8.4), suggesting that the model is appropriate as the residuals lie
close to the Normality line.
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Table 8.4: The residual deviances with the residual degrees of freedom for a
Tweedie glm with differing link functions for Model (8.4), which had season,
cosine and sine terms (annual) and an interaction term between season and
soi as covariates.

Link Function Residual Deviance Residual df

Logarithm 1771.88 506
Canonical 1787.33 506

Gatton using a gee model. The following variables were identified as being
significant for modelling rainfall at Toowoomba and Gatton,

• Season (S);

• An annual frequency sine (SIN) and cosine term (COS): sin (2π×
Month)/12) and cos (2π× Month)/12);

• An interaction term between season and the soi (S:SOI).

To fit this model to the monthly rainfall data, first the appropriate estimate
for the variance power p was found using the profile log-likelihood plot. This
plot (Figure 8.5) suggests using a maximum likelihood estimate of p̂ = 1.62
with a 95% confidence interval of [1.55, 1.69].

After running the code in Appendix B.2, the coefficients and covariates
of this model can be written as:

log(µ) = 4.493− 0.210S2 − 0.627S3 − 0.310S4

+ 0.197SIN + 0.193COS + 0.009S1 : SOI + 0.025S2 : SOI

+ 0.029S3 : SOI + 0.010S4 : SOI,

however as SIN = sin(2π× month / 12) and COS = cos(2π× month / 12),
this can be written as,

log (µ) = 4.493−0.210S2−0.627S3−0.310S4+0.197×sin(2π×M/12) (8.6)

+ 0.193× cos(2π ×M/12) + 0.009S1 : SOI

+ 0.025S2 : SOI + 0.029S3 : SOI + 0.010S4 : SOI,

where µ is the expected monthly rainfall amount and M takes on a value of 1
for January, 2 for February, 3 for March , up to 12 for December. Each season
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Figure 8.5: The profile log-likelihood plot for the monthly model using season,
sine and cosine terms, and an interaction term between season and soi, as
covariates, which was used to estimate the maximum likelihood value of p. In
this Figure, the points represent the computed likelihood values for differing p
estimates, the solid line is a cubic-spline smooth interpolation through these
points and the dotted line represents a 95% confidence interval for p. The
estimate for p from this graph is p̂ = 1.62.
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Gatton Monthly Rainfall
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Figure 8.6: Time series plot of the observed and predicted monthly rain-
fall amounts (≥ 0) for Gatton, obtained through the use of a Tweedie gee
(p=1.62) with a logarithm link function. The fitted covariates include a sea-
son factor, an annual sine and cosine term and an interaction term between
season and soi.

(S2 = Autumn, S3 = Winter, S4 = Spring) takes on a value of either 1 or 0
depending on which season is being represented, that is treatment contrasts
are being used. The first season, Summer (S1) is the reference season and
thus it does not appear in the Equation (8.6).

This model has a qicu value of 21062.5 and a R2 value of 18.7%. The plot
of the predicted rainfall values from this model can be seen in Figures 8.6
and 8.7, in which the observed rainfall values have also been plotted. Fig-
ure 8.6 shows the predicted and observed values for Gatton and Figure 8.7
shows the values for Toowoomba. As can be seen in these plots, extreme rain-
fall values have not been modelled very accurately, with the residual plots
and Normal probability plot confirming this notion earlier. Extreme rainfall
events are extremely difficult to model and thus this shortfall is expected.
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Toowoomba Monthly Rainfall
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Figure 8.7: Time series plot of the observed and predicted monthly rainfall
amounts (≥ 0) for Toowoomba, obtained through the use of a Tweedie gee
(p=1.62) with a logarithm link function. The fitted covariates include a
season factor, an annual frequency sine and cosine term and an interaction
term between season and soi.
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8.3 Model interpretation

From the fitted model (Model 8.6) the inclusion of the season factor in the
final model indicates there is a variation in rainfall amounts for the different
seasons. However it is surprising that both the soi and soi phases were not
required in the final model for rainfall.

The model confirms the belief that the Summer months are the wettest
months. From Model (8.6) it can be seen that all seasons (except Summer
which is the reference month) have a negative coefficient indicating that
rainfall is lower in Autumn, Spring and Winter than in Summer.

R2 is an indicator of how well a model does at predicting the variability
of rainfall. At first glance, with an R2 of only 18.5%, it would appear that
this model does not do a very good job of explaining the variability of rain-
fall. However even though the R2 value indicates a variance explanation of
approximately 20%, Hardin and Hilbe [39] suggest that interpretation is dif-
ficult and is not a true indication of the adequacy of the model. Sometimes
only the researcher knows the full interpretation of this value. Rainfall is
an extremely fluctuating occurrence and is very difficult to predict. Thus, a
percentage this low is expected. Finally, it has been shown that the extreme
values of rainfall are hard to model and predict and this would cause the
percentage to be lowered.

Dunn and Lennox [24] suggest that the power-variance parameters (µ, p, φ)
can be reparameterized to the Poisson and Gamma parameters (λ, γ, α)
which aids in providing information about certain rainfall events. The trans-
formation when 1 < p < 2,

• λ = µ2−p/(φ(2− p));

• γ = φ(p− 1)µp−1;

• α = (p− 2)/(1− p),

where λ is the mean number of rainfall events per month, γ is the shape of
the rainfall distribution when rain occurs during the month and αγ is the
amount of rain per rainfall event (as stated in Chapter 7, Section 7.5).

For the multiple site application consider the observation from January
2000, where p̂ = 1.62, φ̂ = 3.83, and the prediction is µ = 119.79 for Gatton
and µ = 41.63 for Toowoomba. Reparameterizing to Poison and Gamma
parameters gives the mean number of rainfall events for this month predicted
to be λ = 4.22 for Gatton and λ = 2.83 for Toowooomba; the shape of
the rainfall gamma distribution is γ = 46.62 for Gatton and γ = 24.17 for
Toowoomba; and the mean amount of rain per this month is αγ = 28.40 for
Gatton and αγ = 14.73 for Toowoomba.
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The probability of obtaining no precipitation on any particular month is
given by (Dunn [27]),

Pr(Y = 0) = exp(−λ).

For the example just given from January 2000, where λ = 4.22 for Gatton
and λ = 2.83 for Toowooomba, the probability of obtaining no rain in that
month was 1.47% for Gatton and 5.9% for Toowoomba.

This section developed a model for monthly rainfall data for multiple
sites at Toowoomba and Gatton using gee and the Tweedie distribution.
The use of the gee model with the Tweedie distribution allows not only the
simultaneous modelling of both the occurrence and amount of rainfall per
month, but also allows for multi-site modelling of rainfall, whilst taking into
account the dependent nature of rainfall data.

8.4 Model validation

Even though model validation is important when creating a model, to test
the predictability of the model, due to time constraints this was not done
for the multi-site model. It was demonstrated that Model (8.4) performed
satisfactorily in all diagnostic tests and accurately fitted the data set well.
However, validation should be completed and this is a possibility for future
research.
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Chapter 9

Conclusion

This dissertation has attempted to demonstrate the potential benefits of us-
ing gees for modelling and interpreting historical rainfall records. Gees are
especially designed to handle data that is dependent and as there is a gen-
eral consensus that rainfall is correlated, gees offer a clear advantage for
modelling rainfall. Past reviews have indicated that utilising gees to model
rainfall may be beneficial to rainfall (Chandler & Wheater [10]; Beersma [6];
Buishand [7]). Chandler [11] also suggested previously that inter-site depen-
dence within rainfall may be able to be tackled using gees and limited work
has been completed in this area (Srikanthan & McMahon [76]). Thus the
motivation and applicability for the development of gees to model rainfall,
as developed in this dissertation, is apparent.

Simultaneously modelling the occurrence and amount of rainfall, com-
bined with incorporating the correlated structure of rainfall and being able
to model multi-sites concurrently has not previously be done. Thus this dis-
sertation is not only applicable but is an initiative approach to modelling
rainfall.

A model for monthly rainfall for Emerald, Toowoomba and Gatton using
gees and Tweedie distributions was developed in this dissertation. The use of
the gees to model rainfall, combined with the use of a Tweedie distribution,
simplifies rainfall modelling by using only one model for the occurrence and
amount of rainfall and provides an extension and advancement in modelling
rainfall. Tweedie distributions to model rainfall has proven to be a very
suitable and practical alternative to existing models and thus this distribution
combined with a gee model to incorporate correlation, is an extremely useful
and powerful research.

A gee model was developed at a single site, Emerald, to show the poten-
tial of using this technique for modelling rainfall. An extension of the single
site model that incorporates multiple sites at Toowoomba and Gatton, is an
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exciting development in rainfall modelling. It was found that the both model
performed satisfactorily, however they were unable to model extreme events
accurately. However, Hardin and Hilbe [39] stated that there is usually only a
small relative gain in using a gee model over the independence model (which
assumes that no correlation exists) is relatively small if the number of units
in the dataset is small. It is recommend that the independence model be
used when there are less than 30 units in a data set. The models produced
for this dissertation only had one unit for the single site model and two units
for the multi-site model. Thus, it is expected that the models may not be
as accurate as possible. The main purpose of this dissertation however, was
to demonstrate an understanding and develop an initial baseline for further
advancements and thus the gee and not the independence model, was used.
Simultaneously modelling rainfall at more sites is a definite possibility for
further research and will hopefully prove that the gee method for modelling
rainfall is most appropriate.

It was found that for the single site model the significant covariates were
month, soi phase and a persistent indicator. For the multi-site model the
most appropriate predictors were found to be season, an annual frequency
sin and cosine term and an interaction term between season and soi. The
single site was validated using historical model validation and it was found
that the final model produced replicated the actual data well. The shortfall
with both models was the difficulty in modelling extreme rainfall events and
the time it takes to run each model. Due to the matrices involved in the
gees the running time for each model, when there were a large number of
time points (as in the Emerald data set), is quite large and thus producing
the final fitted model is very time consuming.

The Tweedie distribution used with gees to model rainfall appears to be
a suitable alternative to modelling rainfall amounts and further research into
this area of modelling may be very viable. Possibilities for further research
include,

• Examining different timescales, for example daily. The Tweedie family
of distributions is not only applicable to the monthly timescale but
can just as easily be applied to yearly or daily timescales (Dunn &
Lennox [24]);

• Examining other correlation structures and comparing them with the
AR(1) structure used in this dissertation;

• Looking at including more than two sites in the rainfall model;

• Modelling other locations (world-wide);
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• Investigating the possibility of using alternative covariates;

• Producing further model validation techniques and validating the multi-
site model;

• Fitting more than one model for each month, season or other periods
of time to incorporate the extreme variability of rainfall.
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Appendix A

Appendix

A.1 Deriving a formula for β

To find an estimate for β in the GEE case, the GEE estimator equation used
is:

N∑
i=1

DT
i V −1

i (yi − µi) = 0

with

• Vi = A
1
2
i ×Ri(α)× A

1
2
i

• Di = matrix of partial derivatives of µ and β

It is known that DT
i = ∂µi

∂βj
and thus it can be said that µi = DT

i β after

performing integration and setting the integration constant to 0. Therefore
the GEE estimator equation now becomes,

N∑
i=1

DT
i V −1

i (yi −DT
i β̂) = 0

An estimate for β can now be found,

N∑
i=1

DT
i V −1

i yi =
N∑

i=1

DT
i V −1

i DT
i β

Finally,

β̂ =
N∑

i=1

(DT
i V −1

i DT
i )

−1
N∑

i=1

(DT
i V −1

i yi)
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Appendix B

Code for producing a GEE

B.1 Single-site code

The following code was written to produce a gee in which the response
variable’s distribution was a Tweedie distribution. The initial set up of the
data is seen first (data from Emerald), followed by the implementation of the
gee and finally a series of tests for gees can be seen last.

################################################################

# Initial setting of data

# Load libraries that are needed to perform calculations

library(stats)

library(statmod)

library(tweedie)

# Set the directory

setwd("//usq/sciences/home/swan/My Documents/Thesis/data")

rm(list=ls()) # remove any previous lists

# Load the data

emerald<-read.table("emeraldall.txt", header=TRUE)

# Define the cos and sin terms - annual terms

emerald$cos=NULL

emerald$cos=cos(2*pi*emerald$month/12)

emerald$sin=NULL

emerald$sin=sin(2*pi*emerald$month/12)
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# Define the cos1 and sin1 terms - 6 monthly terms

emerald$cos1=NULL

emerald$cos1=cos(4*pi*emerald$month/12)

emerald$sin1=NULL

emerald$sin1=sin(4*pi*emerald$month/12)

# Define the factors soiphase and month

emerald$soiphase=factor(emerald$soiphase)

emerald$month=factor(emerald$month)

# Define seasons (Summer = 1, Autumn = 2, Winter = 3,

# Spring = 4)

emerald$season=NULL

emerald$season[emerald$month==1|emerald$month==2|emerald$month==12]=1

emerald$season[emerald$month==3|emerald$month==4|emerald$month==5]=2

emerald$season[emerald$month==6|emerald$month==7|emerald$month==8]=3

emerald$season[emerald$month==9|emerald$month==10|emerald$month==11]=4

emerald$season=factor(emerald$season)

# Define oddseasons

emerald$oddseasons <- array( dim=length(emerald$season))

emerald$oddseasons[emerald$month %in% (4:9)] <- "Dry"

emerald$oddseasons[emerald$month %in% c(1,12)] <- "Wet"

emerald$oddseasons[emerald$month %in% c(2,3,10,11)] <-"Transition"

emerald$oddseasons=factor(emerald$oddseasons)

# Define Indicators as to where or not rain occurred in

# previous months

emerald1 <- emerald[13:length(emerald$rain),]

emerald1$rain1 <- emerald$rain[12: (length(emerald$rain)-1)]

emerald1$rain2 <- emerald$rain[11: (length(emerald$rain)-2)]

emerald1$rain3 <- emerald$rain[10: (length(emerald$rain)-3)]

emerald1$rain4 <- emerald$rain[9: (length(emerald$rain)-4)]

emerald1$rain5 <- emerald$rain[8: (length(emerald$rain)-5)]

emerald1$rain6 <- emerald$rain[7: (length(emerald$rain)-6)]

emerald1$rain7 <- emerald$rain[6: (length(emerald$rain)-7)]

emerald1$rain8 <- emerald$rain[5: (length(emerald$rain)-8)]

emerald1$rain9 <- emerald$rain[4: (length(emerald$rain)-9)]

emerald1$rain10 <- emerald$rain[3: (length(emerald$rain)-10)]

emerald1$rain11 <- emerald$rain[2: (length(emerald$rain)-11)]
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emerald1$rain12 <- emerald$rain[1: (length(emerald$rain)-12)]

# Now indicators only

emerald1$ind1 <- emerald1$rain1>0

emerald1$ind2 <- emerald1$rain2>0

emerald1$ind3 <- emerald1$rain3>0

emerald1$ind4 <- emerald1$rain4>0

emerald1$ind5 <- emerald1$rain5>0

emerald1$ind6 <- emerald1$rain6>0

emerald1$ind7 <- emerald1$rain7>0

emerald1$ind8 <- emerald1$rain8>0

emerald1$ind9 <- emerald1$rain9>0

emerald1$ind10 <- emerald1$rain10>0

emerald1$ind11 <- emerald1$rain11>0

emerald1$ind12<- emerald1$rain12>0

emerald1$ind1.2 <- emerald1$ind1 & emerald1$ind2

emerald1$ind1.2.3 <- emerald1$ind1 & emerald1$ind2 & emerald1$ind3

# Set the up to 1992 as the estimation data and 1993 onwards as the

# validation set

estimation<-emerald1[emerald1$year<1993,]

validation<-emerald1[emerald1$year>=1993,]

#Attach all the data and perform calculations on the estimation set

attach(estimation)

################################################################

#FITTING THE GENERALISED ESTIMATING EQUATION

# STEP 1 - Compute an inital estimate of beta using glm

# metholodogy. Calculate "p", to be used in the variance function

# of the Tweedie distribution using profile likelihood function.

power=tweedie.profile(rain~month+soiphase+ind1.2,

p.vec=seq(1.5,1.85,length=10),

do.plot=TRUE, smooth=TRUE,do.ci=TRUE, method="interpolation")

p=power$p.max

# Fitting a Tweedie model to this data, with "p" value found

# using the profile likelihood function and a log link function

glmmodel<-glm(rain~month+soiphase+ind1.2,
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family=tweedie(var.power=p, link.power=0),x=TRUE)

# Initialize values - variables used in the first repetition

fits<-glmmodel$fitted.values

beta=glmmodel$coefficients

phi = power$phi.max

n=length(rain)

# Let "r" be the number of beta values (number of covariates +1)

r=glmmodel$rank

# Set the variables to be used in the convergence criteria

dev=sum(tweedie.dev(rain,fits,p))

devold=100*dev

epsilon = 1e-8

################################################################

# Create the recusive (repeating steps 2 to 5), using a

# convergence criteria.

# Create a new set of fitted values for the new beta values found

# Convergence criteria

while (abs(dev - devold)/(0.1 + abs(dev)) > epsilon) {

#_______________________________________________________________

# Step 2 - Compute the Pearson’s residuals for the model

p.residuals=(rain-fits)/sqrt(fits^p)

#_______________________________________________________________

# Step 3a - Calculate alpha

# Calculate the new phi value and alpha

phi<-sum(p.residuals^2)/(n-r)

# Initialize alpha

alpha=NULL

# Obtain alpha value

alpha=sum(p.residuals[1:(n-1)]*p.residuals[2:n])
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alpha=((phi)*alpha)/(n*(n-r))

# Step 3b - Calculate R using the alpha values found in

# step 3a (using AR(1))

index<-seq(0,n-1,by=1)

longindex<-c(seq(n-1,1,by=-1),index)

# Calculate R

i=0

R=matrix(nrow=n,ncol=n)

while(i<n){

R[i+1,]=alpha^longindex[(n-i):(2*n-i-1)]

i=i+1

}

#_______________________________________________________________

# Step 4 - Calculate an estimate of the covariance matrix V

# using R found in step 3b.

# Calculate A:

A=diag(fits)^(p/2)

# Calculate V:

V = (A %*% R %*% A)

#_______________________________________________________________

# Step 5 - Find an updated version of beta

# Firstly find (partial mu / partial beta), let

# (partial mu/partial beta) be matrix "D"

xmat=glmmodel$x

D = matrix(nrow=n,ncol=r)

#Add the values to matrix "D"

for(i in (1:r)){

D[,i]=fits*xmat[,i]

}

# To find matrix beta(r+1) use the following notations

# beta=beta+inverse(C)*B,
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# where C = transpose(D)*inverse(V)*D and

# B = transponse(D)*inverse(V)*(actual-fitted)

# Firstly find C

C=t(D) %*% solve(V) %*% D

# Find B

B=t(D) %*% solve(V) %*% (rain-fits)

beta=beta + (solve(C) %*% B)

# Fit the new values of dev, devold and fits for use in the

# covergence criteria

fits<-exp(t(beta) %*% t(xmat))

fits<-as.vector(fits)

devold<-dev

dev<-sum(tweedie.dev(rain,fits,p))

}

################################################################

# DIAGNOSTICS

# Calculate QICu

# Calculate the quasi-likelihood first

quasi<-sum((rain*fits^(1-p)/(1-p))-((fits^(2-p))/(2-p)))

# Next calculate the QICu which is to find the best covariates to use

qicu<-(-2*quasi)+(2*r)

#_______________________________________________________________

# Calculate the Marginal R squared

marginal=(1/n)*sum(rain) # marginal component of R^2

top=sum((rain-fits)^2) # numerator of R^2

bottom=sum((rain-marginal)^2) # denominator of R^2

R2 = 1 - (top / bottom)

#_______________________________________________________________

# Calculate the Wald-Wolfowitz run test to detect if the model

# is adequate and residuals are random.
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# Calculate the raw residuals

residuals=rain-fits

# Initialise the values to use

run=NULL

nn=0

np=0

j=1

# Start the test

while(j<=n){

if(residuals[j]<=0){

run[j]=-1

nn=nn+1}

if(residuals[j]>0){

run[j]=1

np=np+1}

j=j+1

}

# Find the components E(T) and V(T) needed in the randomness test

ET=(2*np*nn)/(np+nn)+1

VT=(2*np*nn*(2*np*nn-np-nn))/((np+nn)^2*(np+nn-1))

# Find the total number of observed runs in the sequence

T=0

j=1

while(j<=(n-1)){

if(run[j]!=run[j+1]){

T=T+1}

j=j+1

}

T=T+1

# Find the test statistic W

W=(T-ET)/sqrt(VT)
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#Print out all the relevant information

output1<-data.frame(Diagnostic=c("alpha","QICu","R2","W"),

Data=c(alpha,qicu,R2,W))

output2<-data.frame(BetaValues=c(beta),

Names=c(names(glmmodel$coefficient)))

print(output1)

print(output2)

################################################################

# RESIDUALS PLOT FOR MODEL (1 + WS)

# Plot of the Raw residuals

win.graph(width=11,height=7) # graphic size

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the raw residuals using the wet-season factor")

abline(0,0) # add a horizontal line at 0

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/rawresidualsone.pdf")

# Plot of Pearson Residuals versus linear predictor (eta=log(mu))

win.graph(width=11,height=7)

plot(log(fits),p.residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of pearson residuals versus linear predictor

(wet-season)")

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/linearresidualsone.pdf")

################################################################

# RESIDUALS PLOT FOR MODEL (1 + M + P + IND1.2)

# Plot of the Raw residuals

win.graph(width=11,height=7) # graphic size

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the raw residuals using the month factor")

abline(0,0) # add a horizontal line at 0

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/rawresidualsmonth.pdf")
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# Plot of Pearson Residuals versus linear predictor (eta=log(mu))

win.graph(width=11,height=7)

plot(log(fits),p.residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of pearson residuals versus linear predictor

(month)")

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/linearresidualsmonth.pdf")

################################################################

# PREDICTED VALUES for (1 + M + P + IND1.2)

# Plot of predicted values for Emerald

win.graph(width=12,height=6) # graphic size

# A time series plot of the amount of rain recorded during each

# dry and wet month and a plot of the predicted values for the

# amount of rain per month

# Observed rainfall:

plot(ts(rain,start=c(1889,1),frequency=12),

plot.type="single",col="blue", xlab="Year",ylab="Amount of rain (mm)",

main="Emerald Monthly Rainfall")

abline(h=c(0,100,200,300,400,500),v=c(1900,1920,1940,1960,1980,2000),

lty=2,lwd=.1,col="gray",las=2)

#Predicted Rainfall:

emerald.fitted<-ts(fits,start=c(1889,1),frequency=12)

points(emerald.fitted,type="l",col="red") #Add to the plot

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/emeraldobsandpredict.pdf")

################################################################

# Finding a suitable link function

glmmodel<-glm(rain~month+soiphase+ind1.2,

family=tweedie(var.power=p, link.power=0),x=TRUE) # Logarithm

glmmodel.other<-glm(rain~month+soiphase+ind1.2,

family=tweedie(var.power=p),x=TRUE) # Canonical
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#Deviances

glmmodel$deviance

glmmodel.other$deviance

#Df Residuals

glmmodel$df.residual

glmmodel.other$df.residual

################################################################

# Normal probability plot for the model (1 + M + P + IND1.2)

# First print the profile log-likelihood plot

win.graph(width=6,height=6)

power=tweedie.profile(rain~month+soiphase+ind1.2,

p.vec=seq(1.5,1.85,length=20),

do.plot=TRUE, smooth=TRUE,do.ci=TRUE, method="interpolation")

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/logplotone.pdf")

p=power$p.max

glmmodel<-glm(rain~month+soiphase+ind1.2,family=tweedie(var.power=p,

link.power=0),x=TRUE)

win.graph(width=6,height=6) # graphic size

quantile=qres.tweedie(glmmodel) # Quantile residuals

qqnorm(quantile, main = "Normal probability plot \n for one site model",

xlab="Standard Normal Quantiles", ylab="Quantile Residuals")

qqline(quantile) # Normality line

dev.print(pdf,"C:/Documents and Settings/owner/My Documents/Taryn

= uni/Thesis/22 June 06/Pictures/quantileonemonth.pdf")

B.2 Multi-site code

The following code was written to produce a gee in which the response vari-
able’s distribution was a Tweedie distribution and multiple sites are mod-
elled concurrently. The initial set up of the data is seen first (data from
Toowoomba and Gatton), followed by the implementation of the gee and
finally a series of tests for gees can be seen last.

################################################################
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# Initial setting of data for Toowoomba and Gatton

#Load libraries that are needed to perform calculations

library(stats)

library(statmod)

library(tweedie)

# Remove all previous data

rm(list=ls(all=TRUE))

# Read in the data, Jan 1980 until Dec 2001, totalling 22 years.

gatton<-read.table("gatton.dat", header=TRUE)

toow<-read.table("toowoomba.dat",header=TRUE)

double<-read.table("double.txt",header=TRUE)

# Assume a ’1’ to Gatton data and ’2’ to Toowoomba data

gatton$id<-seq(1,1,264)

toow$id<-seq(2,2,264)

double$id[1:264]<-gatton$id

double$id[265:528]<-toow$id

# Convert the Daily Rainfall amounts to Monthly Rainfall amounts

# GATTON

double$rain=NULL

count=1

i=1980

while(i<=2001){

double$rain[count]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Jan"])

double$rain[count+1]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Feb"])

double$rain[count+2]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Mar"])

double$rain[count+3]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Apr"])

double$rain[count+4]=sum(gatton$rain[gatton$Year==i&gatton$Month=="May"])

double$rain[count+5]=sum(gatton$rain[gatton$Year==i&gatton$Month=="June"])

double$rain[count+6]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Jul"])

double$rain[count+7]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Aug"])

double$rain[count+8]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Sep"])

double$rain[count+9]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Oct"])

double$rain[count+10]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Nov"])

double$rain[count+11]=sum(gatton$rain[gatton$Year==i&gatton$Month=="Dec"])

i=i+1

count=count+12

}
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# TOOWOOMBA

count=265

i=1980

while(i<=2001){

double$rain[count]=sum(toow$rain[toow$Year==i&toow$Month=="Jan"])

double$rain[count+1]=sum(toow$rain[toow$Year==i&toow$Month=="Feb"])

double$rain[count+2]=sum(toow$rain[toow$Year==i&toow$Month=="Mar"])

double$rain[count+3]=sum(toow$rain[toow$Year==i&toow$Month=="Apr"])

double$rain[count+4]=sum(toow$rain[toow$Year==i&toow$Month=="May"])

double$rain[count+5]=sum(toow$rain[toow$Year==i&toow$Month=="June"])

double$rain[count+6]=sum(toow$rain[toow$Year==i&toow$Month=="Jul"])

double$rain[count+7]=sum(toow$rain[toow$Year==i&toow$Month=="Aug"])

double$rain[count+8]=sum(toow$rain[toow$Year==i&toow$Month=="Sep"])

double$rain[count+9]=sum(toow$rain[toow$Year==i&toow$Month=="Oct"])

double$rain[count+10]=sum(toow$rain[toow$Year==i&toow$Month=="Nov"])

double$rain[count+11]=sum(toow$rain[toow$Year==i&toow$Month=="Dec"])

i=i+1

count=count+12

}

#Define location predictors - longitude, latitude and altitude

#LONGITUDE

long1<-seq(152.28,152.28,length=264) #Gatton

long2<-seq(151.95,151.95,length=264) #Toowoomba

double$long[1:264]<-long1

double$long[265:528]<-long2

#LATITUDE

lat1<-seq(-27.58,-27.58,length=264) #Gatton

lat2<-seq(-27.55,-27.55,length=264) #Toowoomba

double$lat[1:264]<-lat1

double$lat[265:528]<-lat2

#ALTITUDE

alt1<-seq(674.9,674.9,length=264) #Gatton

alt2<-seq(93,93,length=264) #Toowoomba

double$alt[1:264]<-alt1

double$alt[265:528]<-alt2
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#Define the cos and sin terms to be used to model rainfall

double$cos=NULL

double$cos=cos(2*pi*double$month/12)

double$sin=NULL

double$sin=sin(2*pi*double$month/12)

# Define the second lot of sin and cos terms defined by Dunn

# and Lennox

double$cos1=NULL

double$cos1=cos(4*pi*double$month/12)

double$sin1=NULL

double$sin1=sin(4*pi*double$month/12)

#Define the factors - soiphase and month to be used for

#modelling rainfall

double$soiphase=factor(double$soiphase)

double$month=factor(double$month)

#Define seasons where:

#Summer = 1,

#Autumn = 2,

#Winter = 3 and

#Spring = 4

double$season=NULL

double$season[double$month==1|double$month==2|double$month==12]=1

double$season[double$month==3|double$month==4|double$month==5]=2

double$season[double$month==6|double$month==7|double$month==8]=3

double$season[double$month==9|double$month==10|double$month==11]=4

double$season=factor(double$season)

#Define oddseasons, defined as:

#Jan and Dec - ’Wet’

#Feb, March, Oct and Nov - ’Transition’

#April to Sept - ’Dry’

double$oddseasons <- array( dim=length(double$season) )

double$oddseasons[ double$month %in% (4:9) ] <- "Dry"
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double$oddseasons[ double$month %in% c(1,12) ] <- "Wet"

double$oddseasons[ double$month %in% c(2,3,10,11) ] <- "Transition"

double$oddseasons=factor(double$oddseasons)

#Define Indicators as to where or not rain occurred in previous months

double1 <- double[13:length(double$rain),]

double1$rain1 <- double$rain[12: (length(double$rain)-1)]

double1$rain2 <- double$rain[11: (length(double$rain)-2)]

double1$rain3 <- double$rain[10: (length(double$rain)-3)]

double1$rain4 <- double$rain[9: (length(double$rain)-4)]

double1$rain5 <- double$rain[8: (length(double$rain)-5)]

double1$rain6 <- double$rain[7: (length(double$rain)-6)]

double1$rain7 <- double$rain[6: (length(double$rain)-7)]

double1$rain8 <- double$rain[5: (length(double$rain)-8)]

double1$rain9 <- double$rain[4: (length(double$rain)-9)]

double1$rain10 <- double$rain[3: (length(double$rain)-10)]

double1$rain11 <- double$rain[2: (length(double$rain)-11)]

double1$rain12 <- double$rain[1: (length(double$rain)-12)]

# Now indicators only

double1$ind1 <- double1$rain1>0

double1$ind2 <- double1$rain2>0

double1$ind3 <- double1$rain3>0

double1$ind4 <- double1$rain4>0

double1$ind5 <- double1$rain5>0

double1$ind6 <- double1$rain6>0

double1$ind7 <- double1$rain7>0

double1$ind8 <- double1$rain8>0

double1$ind9 <- double1$rain9>0

double1$ind10 <- double1$rain10>0

double1$ind11 <- double1$rain11>0

double1$ind12<- double1$rain12>0

double1$ind1.2 <- double1$ind1 & double1$ind2

double1$ind1.2.3 <- double1$ind1 & double1$ind2 & double1$ind3

double<-double1

# Attach all of the variables to the name "double" so that calculations

# can be performed

attach(double)
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################################################################

# FITTING THE GENERALISED ESTIMATING EQUATION FOR BOTH GATTON

# AND TOOWOOMBA. Set the initial variables of K (K is 2 as there

# are two places and n_i (write as n rather than n_i where it is

#the number of time points per place

K = 2

n = length(double$rain)/K

N = K*n

# STEP 1 - Compute an inital estimate of beta using glm

# metholodogy. Calculate "p", to be used in the variance function

# of the Tweedie distribution using profile likelihood function.

power=tweedie.profile(rain~month+soiphase+ind1.2,

p.vec=seq(1.5,1.85,length=10),

do.plot=TRUE, smooth=TRUE,do.ci=TRUE, method="interpolation")

p=power$p.max

# Fitting a Tweedie model to this data, with "p" value found

# using the profile likelihood function and a log link function

glmmodel<-glm(rain~month+soiphase+ind1.2,

family=tweedie(var.power=p, link.power=0),x=TRUE)

# Initialize values - variables used in the first repetition,

# where fits is the fitted values obtained by running the glm.

# The variable beta contains the values of the regression parameters

#obtained by running the glm on the data.

fits=matrix(nrow=K,ncol=n)

fits[1,]<-glmmodel$fitted.values[1:n]

fits[2,]<-glmmodel$fitted.values[(n+1):N]

beta=glmmodel$coefficients

# Convert the "rain1" values into a matrix form to indicate that

# the values are from different locations

rain1<-matrix(nrow=K,ncol=n)

rain1[1,]<-rain[1:n]

rain1[2,]<-rain[(n+1):N]

# Use an initial estimate of phi by using the phi obtained when fitting

# the glm model and the profile likelihood function
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phi = power$phi.max

#Let "r" be the number of beta values (number of covariates +1)

r = glmmodel$rank

# Find the deviance

dev = sum(tweedie.dev(rain1,fits,p))

devold = 100*dev

epsilon = 1e-8

################################################################

# Create the recusive (repeating steps 2 to 5), using a

# convergence criteria

# Create a new set of fitted values for the new beta values found

while (abs(dev - devold)/(0.1 + abs(dev)) > epsilon) {

#_______________________________________________________________

# Step 2 - Compute the Pearson’s residuals for the model

p.residuals=(rain1-fits)/sqrt(fits^p)

#_______________________________________________________________

# Step 3a - Calculate alpha

# Calculate the new phi value and alpha by firstly finding the new

# phi value

phi<-sum(p.residuals^2)/(N-r)

# Obtain alpha value

alpha=NULL

k=1

while(k<n){

alpha[k]=p.residuals[1,k]*p.residuals[1,k+1]+

p.residuals[2,k]*p.residuals[2,k+1]

k=k+1

}

alpha=sum(alpha)

alpha=(phi*alpha)/(n*(N-r))
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# Step 3b - Calculate R using the alpha values found in step 3a

# using an AR(1)

index<-seq(0,n-1,by=1)

longindex<-c(seq(n-1,1,by=-1),index)

i=0

R=matrix(nrow=n,ncol=n)

while(i<n){

R[i+1,]=alpha^longindex[(n-i):(2*n-i-1)]

i=i+1

}

#_______________________________________________________________

# Step 4 - Calculate an estimate of the covariance matrix V using

# R found in step 3b.

#Calculate A:

A1=diag(fits[1,])^(p/2)

A2=diag(fits[2,])^(p/2)

#Calculate V:

V1 = (A1 %*% R %*% A1)

V2 = (A2 %*% R %*% A2)

#_______________________________________________________________

# Step 5 - Find an updated version of beta

# Firstly find (partial mu / partial beta), let

# (partial mu/partial beta) be matrix "D"

xmat=glmmodel$x

D1 = matrix(nrow=n,ncol=r)

D2 = matrix(nrow=n,ncol=r)

#Add the values to matrix "D"

for(i in (1:r)){

D1[,i]=t(fits[1,])*xmat[,i][1:n]

}

for(i in (1:r)){

D2[,i]=t(fits[2,])*xmat[,i][(n+1):N]
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}

# To find matrix beta(r+1) use the following notations

# beta=beta+inverse(C)*B, where C = transpose(D)*inverse(V)*D and

# B = transponse(D)*inverse(V)*(actual-fitted)

# Firstly find C

C1=t(D1) %*% solve(V1) %*% D1

C2=t(D2) %*% solve(V2) %*% D2

# Find B

B1=t(D1) %*% solve(V1) %*% (rain[1:n]-fits[1,])

B2=t(D2) %*% solve(V2) %*% (rain[(n+1):N]-fits[2,])

# As per the formula, add together B1 and B2 and C1

# and C2 to get a final answer for beta

C=C1+C2

B=B1+B2

beta=beta + (solve(C) %*% B)

#Fit the new values of dev, devold and fits

newfits<-exp(xmat %*% beta)

fits[1,]<-newfits[1:n]

fits[2,]<-newfits[(n+1):N]

devold<-dev

dev<-sum(tweedie.dev(rain1,fits,p))

j=j+1

}

################################################################

# DIAGNOSTICS

# Calculate QICu to find the best set of covariates to use.

# Firstly calculate the quasi-likelihood

quasi<-sum((rain1*fits^(1-p)/(1-p))-((fits^(2-p))/(2-p)))

#Next calculate the QICu

qicu<-(-2*quasi)+(2*r)



B.2. MULTI-SITE CODE 157

################################################################

# Calculate the Marginal R squared

fits1=rain

fits1[1:n]=fits[1,]

fits1[(n+1):N]=fits[2,]

marginal=(1/N)*sum(rain)

top=sum((rain-fits1)^2) # numerator

bottom=sum((rain-marginal)^2) # denominator

R2 = 1 - (top / bottom)

################################################################

# Calculate the Wald-Wolfowitz run test to detect if the model

# is adequate and residuals are random.

residuals=rain-fits1

run=NULL

nn=0

np=0

j=1

while(j<=N){

if(residuals[j]<=0){

run[j]=-1

nn=nn+1}

if(residuals[j]>0){

run[j]=1

np=np+1}

j=j+1

}

ET=(2*np*nn)/(np+nn)+1

VT=(2*np*nn*(2*np*nn-np-nn))/((np+nn)^2*(np+nn-1))

#Find the total number of observed runs in the sequence

T=0

j=1
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while(j<=(N-1)){

if(run[j]!=run[j+1]){

T=T+1}

j=j+1

}

T=T+1

# Find the test statistic W

W=(T-ET)/sqrt(VT)

################################################################

# Print out all the relevant information

output1<-data.frame(Diagnostic=c("alpha","QICu","R2","p","CI.l",

"CI.u"),Data=c(alpha,qicu,R2,p,power$ci[1],power$ci[2]))

output2<-data.frame(BetaValues=c(beta),

Names=c(names(glmmodel$coefficient)))

print(output1)

print(output2)

################################################################

# RESIDUALS PLOT FOR MODEL (1 + S + SIN + COS + S:SOI)

# Predicted Values Versus Raw residuals

win.graph(width=11,height=10) # graphic size

par(mfrow=c(2,1)) # plots 2 graphs in 1 frame

plot(fits[1,],p.residuals[1,],xlab="Predicted Values for Gatton

[K=1]", ylab="Pearson Residuals", main="Residuals versus

Predicted Values")

# residuals from Gatton

plot(fits[2,],p.residuals[2,],xlab="Predicted Values for Toowoomba

[K=2]",ylab="Pearson Residuals") # residuals from Toowoomba

dev.print(pdf,"H:/My Documents/Thesis/data/Pictures/fittedversusresiduals.pdf")

# Plot of the Raw residuals

win.graph(width=11,height=7) # graphic size

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the Raw Residuals")
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abline(0,0) # add a horizontal line at 0

dev.print(pdf,"H:/My Documents/Thesis/data/Pictures/rawresiduals.pdf")

# Plot of Pearson Residuals versus linear predictor (eta=log(mu))

win.graph(width=11,height=7)

plot(log(fits1),p.residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of Pearson Residuals versus Linear Predictor")

dev.print(pdf,"H:/My Documents/Thesis/data/Pictures/linearresiduals.pdf")

################################################################

# PREDICTED VALUES for (1 + S + SIN + COS + S:SOI)

# Plot of predicted values for Toowooomba and Gatton

win.graph(width=6,height=6) # graphic size

# GATTON

# A time series plot of the amount of rain recorded during each dry

# and wet month and a plot of the predicted values for the amount

# of rain per month

# Observed rainfall:

plot(ts(double$rain[id==1],start=c(1980,1),frequency=12),

plot.type="single",col="blue", xlab="Year",ylab="Amount of rain (mm)",

main="Gatton Monthly Rainfall")

abline(h=c(0,100,200,300,400,500),v=c(1980,1985,1990,1995,2000),

lty=2,lwd=.1,col="gray",las=2)

#Predicted Rainfall:

gatton.fitted<-ts(fits[1,],start=c(1980,1),frequency=12)

points(gatton.fitted,type="l",col="red") #Add to the plot

dev.print(pdf,"H:/My Documents/Thesis/data/Pictures/gattonobsandpredict.pdf")

# TOOWOOMBA

# A time series plot of the amount of rain recorded during each

# dry and wet month and a plot of the predicted values for the amount

# of rain per month

#Observed Rainfall:

plot(ts(double$rain[id==2],start=c(1980,1),frequency=12),

plot.type="single",col="blue",xlab="Year",ylab="Amount of rain (mm)",
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main="Toowoomba Monthly Rainfall")

abline(h=c(0,100,200,300,400,500),v=c(1980,1985,1990,1995,2000),

lty=2,lwd=.1,col="gray",las=2)

#Predicted Rainfall:

toow.fitted<-ts(fits[2,],start=c(1980,1),frequency=12)

points(toow.fitted,type="l",col="red") # Add to the plot

dev.print(pdf,"H:/My Documents/Thesis/data/Pictures/toowobsandpredict.pdf")

#################################################################

# Finding a suitable link function

glmmodel<-glm(double$rain~season+sin+cos+season:soi,

family=tweedie(var.power=p, link.power=0),x=TRUE) # Logarithm

glmmodel.other<-glm(double$rain~season+sin+cos+season:soi,

family=tweedie(var.power=p),x=TRUE) # Canonical

#Deviances

glmmodel$deviance

glmmodel.other$deviance

#Df Residuals

glmmodel$df.residual

glmmodel.other$df.residual

################################################################

# Normal probability plot for the model (1 + S + SIN + COS + S:SOI)

win.graph(width=6,height=6) # graphic size

quantile=qres.tweedie(glmmodel) # Quantile residuals

qqnorm(quantile, main = "Normal Probability Plot \n for Two Site Model",

xlab="Standard Normal Quantiles", ylab="Quantile Residuals")

qqline(quantile) # Normality line

dev.print(pdf,"H:/My Documents/Thesis/data/Pictures/quantiletwo.pdf")
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