
UNIVERSITY OF SOUTHERN QUEENSLAND

FACULTY OF ENGINEERING AND SURVEYING

PERFORMANCE EVALUATION OF
LOW-DENSITY PARITY-CHECK

CODES

A dissertation submitted by

Paul Lauder

in fulfillment of the requirements of

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Software)

 i

Abstract

LDPC codes were first introduced by Robert Gallager in 1960. Due to the complexity of
the codes and the limitations of the then rudimentary computer resources the codes were
neglected as a viable form of FEC. LDPC codes were rediscovered by Tanner in 1981
when he generalized the codes and provided a means of graphical representation of LDPC
codes. LDPC codes were again neglected until the work of MacKay et al in the mid to late
1990’s resurrected interest in the codes when they were discovered to out perform the then
premium Turbo codes.

This dissertation specifically describes the process of encoding and decoding LDPC codes
and demonstrates the performance comparison between the various types of decoders in
terms of bit error rate performance factors.

 ii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG411 and ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the
Council of the University of Southern Queensland, its Faculty of Engineering and Surveying
or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to
the overall education within the student’s chosen degree program. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the
risk of the user.

Dean
Faculty of Engineering and Surveying

 iii

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set
out in this dissertation are entirely my own effort, except where otherwise indicated and
acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

Paul James Lauder
Student Number: 0050014041

Signature

Date

 iv

Acknowledgements

I would like to thank my supervisor, Dr Wei Xiang from the Faculty of Engineering and

Surveying, for his guidance and support throughout the duration of my project.

I would also like to express a special thank you to my wife Vivienne for her patience and

understanding, especially in the final stages of the project.

Paul Lauder

 v

Table of Contents

Abstract ...i
University of Southern Queensland...ii
Limitations of Use..ii
Certification...iii
Acknowledgements...iv
List of Figures ..vii
List of Tables.. viii
List of Tables.. viii
List of Appendices ..ix
Chapter 1 Introduction ...1

1.1 Overview..1
1.2 Wireless communications..2
1.3 Objective of the Project ...2
1.4 Structure of the Dissertation..3

Chapter 2 Fundamentals of Error Correcting Coding...4
2.1 History..4
2.2 Shannon Capacity Limit ..4
2.3 Basic Concepts Of Error Correcting Coding ..6
2.4 Linear Block Codes ...7
2.5 Convolutional Codes ...10
2.6 Concatenated Codes ..11
2.7 Iterative Decoding For Soft Decision Codes ..11
2.7.1 Turbo Codes..11
2.7.2 LDPC Codes ...12
2.8 Summary..12

Chapter 3 LPDC Codes..13
3.1 Code Description ...13
3.2 Tanner Graphs..14
3.3 Encoding LDPC codes ..15
3.4 Code Construction ...18
3.4.1 Random Generation of Parity Check Matrix18
3.4.2 Geometric Generation ..19
3.4.2.1 Euclidian Geometries ..19
3.4.2.2 Projective Geometries ...22
3.5 LPDC Decoding...24
3.5.1 Bit-flipping Algorithm..24
3.5.2 Weighted Majority Logic Algorithm...25
3.5.3 Sum-Product Algorithm ...26
3.6 Summary..27

Chapter 4 Performance comparison of LDPC encoders and decoders29
4.1 LDPC Encoder Implementation..29
4.2 LDPC Decoder Implementation..32
4.3 Simulation Results ...35
4.4 Summary..36

 vi

Chapter 5 Conclusions ...37
5.1 Concluding Remarks ...37
5.2 Future Work...38

 vii

List of Figures

Figure 2.1 Systematic format of a codeword.. 6
Figure 2.2: Block diagram of a typical data transmission system employing ECC................ 7
Figure 3.1: Regular (20, 3, 4) LDPC code... 14
Figure 3.2: Tanner graph for (20, 3, 4) LDPC code.. 15
Figure 3.3: Type-I EG LDPC matrix and Tanner graph.. 21
Figure 3.4: Type-II EG LDPC matrix and Tanner graph... 22
Figure 4.1 Bit-error probabilities of the type-I 2-D (255; 175) EG-LDPC code and (273;

191) PG-LDPC code based on different decoding algorithms. (Kou et al, 2001). 35

 viii

List of Tables

Table 1: A timeline of significant achievements in wireless communications......................2
Table 2: (7, 4) Linear block code..8

 ix

List of Appendices

Appendix A: Project Specification

Appendix B: List of Codes

Chapter 1 Introduction

1

Chapter 1

Introduction

Chapter 1 Introduction

1.1 Overview

The theories and applications of error correcting codes (ECC) originate from the weight

and power limitations imposed on the early space vehicles. High power transmitters were

not able to be incorporated into the craft and as such the transmissions home would be

greatly affected by noise and attenuation. Therefore a method had to be devised to allow

the efficient and effective correction of data errors induced into the signals. To counter this

unwanted situation, error correcting codes incorporated redundancy into the original data

that then enabled the receiver to find and correct bit errors occurring in the transmission.

In modern computer communications there has been a drive by both individual users and

especially commercial users to transmit and store increased levels of data. To facilitate this

desire new techniques have been employed to increase the data density via compression.

Applications such as High Definition television, mobile cellular telephony, satellite

communications and Digital Versatile Disks all utilize some form of ECC to enable a high

level of data accuracy in order to allow the recreation of the original data at the receiver.

Iterative decoding is one of the most powerful techniques employed in modern ECC

algorithms (Dechter et al, 2003). Low-density parity-check (LDPC) codes and Turbo codes

are two ECCs based on iterative decoding, this technique will be detailed in Chapter 2.

LDPC codes have recently been developed that allow data transmission rates close to the

Chapter 1 Introduction

2

Shannon Limit (Berou et al, 1993), the theoretical upper limit of the ratio of information to

redundancy required for accurate transmission over a particular noisy channel.

1.2 Wireless communications

Wireless communications were born in February 1896 when Guglielmo Marconi
journeyed from Italy to England in order to demonstrate to the British telegraph
authorities what he had developed in the way of an operational wireless telegraph
apparatus. The first wireless systems allowed communications at distances of only a mile
or two. The period before the Great War saw small advances in the new technology that
allowed for ever greater distances to be covered. Throughout the next century, great
strides were made in wireless communication technology.

Table 1: A timeline of significant achievements in
wireless communications.

1896 Marconi develops the first wireless telegraph system.
1927 First commercial radiotelephone service operated between Britain and the US.
1946 First automotive mobile telephone set up in St. Louis using push-to-talk technology.
1948 Shannon publishes his seminal paper A Mathematical Theory of Communication,

establishing the foundations for source and channel encoding.
1950 First terrestrial microwave telecommunications system (TD-2) commences.
1962 The first telecommunication satellite, Telstar, launched into orbit.
1968 Defense Advanced Research Projects Agency – US (DARPA) selected BBN to

develop the Advanced Research Projects Agency Network (ARPANET), the
foundation of today’s Internet.

1977 Mobile cellular network established by Bell Labs with the Advanced Mobile Phone
System (AMPS).

1983 Transmission Control Protocol/Internet Protocol (TCP/IP) designated the official
protocol for ARPANET.

1992 One millionth host connected to the internet.
1998 Bluetooth wireless data communications developed through collaboration of major

electronics manufacturers.

(Dubendorf, 2003)

1.3 Objective of the Project

The objective of this project is to determine the optimal LDPC encoder/decoder
combination for any given signal to noise ratio over the Additive Gaussian White Noise
(AGWN) channel, in terms of Bit Error Rate (BER) and algorithm efficiency. The project
will also determine the applicability of using LDPC codes in wireless systems.

Chapter 1 Introduction

3

1.4 Structure of the Dissertation

This dissertation is structured in the following way:
Chapter 1 - Introduction. The first chapter introduces the reader to wireless
communications and provides the reasoning behind the dissertation.

Chapter 2 - Error Correcting Coding. A detailed overview of the different methods
employed in the field of error correcting coding, including block codes, convolutional
codes, concatenated codes and turbo codes.

Chapter 3 – LDPC Codes. A detailed analysis of low-density parity-check code
encoding and decoding techniques.

Chapter 4 - Performance comparison of LDPC encoders and decoders. Explanation
of LDPC simulator software, determination of optimal encoder/decoder combination.

Chapter 5 – Conclusion. Concludes the dissertation and provides recommendations for
future work.

Chapter 2 Fundamentals of Error Correcting Coding

4

Chapter 2

Fundamentals of Error Correcting Coding

Chapter 2 Fundamentals of Error Correcting Coding

2.1 History

In the late 1940s Claude Shannon, a research mathematician at Bell Telephone

Laboratories, invented a mathematical theory of communication that gave the first

systematic framework in which to optimally design telephone systems (Shannon, 1948).

The main questions motivating this were how to design telephone systems to carry the

maximum amount of information and how to correct for distortions on the lines.

2.2 Shannon Capacity Limit

Shannon’s ground-breaking approach to telecommunications introduced a simple

abstraction of human communication, called the channel. Shannon's communication

channel consisted of a sender (the source of information), a transmission medium (with

noise and distortion), and a receiver (whose objective is to reconstruct the original

message).

In order to quantitatively analyse transmission through the channel he also introduced a

measure of the amount of information in a message. For Shannon a message is very

Chapter 2 Fundamentals of Error Correcting Coding

5

informative if the chance of its occurrence is small. If, in contrast, a message is very

predictable, then it contains a small amount of information.

To complete his quantitative analysis of the communication channel, Shannon introduced

the concept of entropy, a quantity that measures a source's information production rate and

also a measure of the information carrying capacity, called the communication channel

capacity.

He showed that if the entropy rate, the amount of information you wish to transmit, exceeds

the channel capacity, then there were unavoidable and uncorrectable errors in the

transmission. What was truly surprising, however, is that he also showed that if the sender's

entropy rate is below the channel capacity, then there is a way to encode the information so

that it can be received without errors. This is true even if the channel distorts the message

during transmission.

The channel capacity for the AWGN channel is determined by the famous formula

developed by Shannon:

)/1(2log NPWC += (2.1)

where:

C is capacity (bits per second)

W is the bandwidth (Hertz)

P is transmitter power (Watts)

N is the noise (Watts)

The channel bandwidth establishes a constraint of how fast symbols can be transmitted

over the channel. The signal to noise ratio (P/N) determines how much information each

symbol can represent. The signal and noise power strengths are calculated at the receiver

end of the channel. Thus, the power level is both a function of transmitted power and that

of the attenuation of the signal over the transmission channel.

Chapter 2 Fundamentals of Error Correcting Coding

6

2.3 Basic Concepts Of Error Correcting Coding

Error correcting coding (ECC) (also known as error control coding) is a type of digital

signal processing that improves data reliability by introducing a known redundancy into a

data sequence prior to transmission or storage. This redundancy enables a receiving system

to detect and correct errors caused by corruption through the communication channel. As

the name implies, this coding technique enables the decoder to correct errors without

requesting retransmission of the original information.

A system employing ECC consists of an information source that produces a digital message

sequence u which is k digits in length. The message is passed to a channel encoder that

adds the redundant bits, converting the original message into a codeword v of length

ndigits. Figure 2.1 shows a representation of the structure of a codeword.

Figure 2.1 Systematic format of a codeword.

The codeword is transmitted through the coding channel by a modulator. Coding channels

are grouped into two classes being transmission types or storage types. Typical

transmission types include landline telephony, microwave links, fibre optic cabling,

satellite communications, high-definition television (HDTV), mobile cellular telephony,

and so on. Typical storage types include digital versatile discs (DVD), compact discs (CD),

magnetic hard drives, and so on. Every coding channel has an effect on the transmitted

codeword due to the presence of noise or attenuation of the signal.

n – k digits k digits

Redundant part Message part

1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0

Chapter 2 Fundamentals of Error Correcting Coding

7

A demodulator converts the received signal r into a readable format for the channel

decoder that produces the estimated information sequence û . Ideally û will replicate u if

noise has not been introduced by the coding channel. The source decoder utilises the

redundancy added to the original information to produce an estimate of the message u

which is sent to the destination. Figure 2.2 shows a block diagram of a typical transmission

system employing ECC.

Figure 2.2: Block diagram of a typical data transmission system employing ECC.

2.4 Linear Block Codes

Linear block coding (also known as algebraic coding) was the only type of forward error-

correction coding in use when Claude Shannon published his seminal paper Mathematical

Theory of Communication (Shannon, 1949). With this technique, the encoder intersperses

parity bits into the data sequence using particular algebraic algorithms. On the receiving

end, the decoder applies an inverse of the algebraic algorithm to identify and correct any

errors caused by channel corruption.

C
o
d
in
g C

h
an
n
el

Information
Source

Source
encoder

Channel
encoder

Modulator

Demodulator Channel
decoder

Source
decoder

Destination

Noise

r û

v u

Chapter 2 Fundamentals of Error Correcting Coding

8

In block coding the source information is segmented into messages, represented byu , that

have k equal number of information bits. In total there will exist k2 distinct messages, if

the messages are not distinct the code can not be safely implemented without causing

ambiguity in determining the original message. The encoder transforms the message u into

a n -tuple codeword v , with kn > , by applying certain rules. As there are k2 messages

there will also be k2 distinct codewords having a one-to-one relationship. In order to

reduce the complexity of the encoder having to store a large data dictionary when k and n

are of a significant length, a special structure is required to represent the set of all

codewords. The block code is said to be linear if and only if the resultant modulo-2 sum of

any two codewords exists in the set C of all codewords. An example of a linear block code

is given in Table 1.

Table 2: (7, 4) Linear block code

Message Codeword

0000 0000000
0001 1010001
0010 1110010
0011 0100011
0100 0110100
0101 1100101
0110 1000110
0111 0010111
1000 1101000
1001 0111001
1010 0011010
1011 1001011
1100 1011100
1101 0001101
1110 0101110
1111 1111111

Because an (n ,k) linear block code C is a k -dimensional subspace of the vector space

nV of every binary n -tuple, it is possible to find k linearly independent codewords, 0g ,

Chapter 2 Fundamentals of Error Correcting Coding

9

1g , Κ , 1−kg , in C such that every codeword v is a linear combination of these k

codewords; thus,

111100 −−+++= kk guguguv Κ (2.2)

where { }1,01 =u for ki <≤0 . The k linearly independent codewords can now be arranged

into a nk× matrix in the following form:



















=



















=

−−−−

−

−

− 1,11,10,1

1,11,10,1

1,01,00,0

1

1

0

nkkk

n

n

k ggg

ggg

ggg

g

g

g

G

Λ
ΜΜΜ

Λ
Λ

Μ
 (2.3)

where),,,(1,1,0, −= niiii gggg Κ for ki <≤0 . If),,,(110 −= kuuuu Κ is the message

to be encoded then the resultant codeword can be determined by:

111100

1

1

0

110),,,(

−−

−

−

+++=
















⋅=

⋅=

kk

k

k

gugugu
g

g
g

uuu

Guv

Κ

Μ
Κ (2.4)

The matrix G thereby allows the generation of any vcodeword from any given messageu

from the set of codes inC and therefore is called the generator matrix forC .

A linear block code can also be expressed in terms of a parity check matrix where for any

nk× generator matrix with k linearly independent rows, there exists an nkn ×−)(matrix

H with)(kn− linearly independent rows such that any vector in the row space of G is

Chapter 2 Fundamentals of Error Correcting Coding

10

orthogonal to the rows of H , and any vector that is orthogonal to the row space of H is in

the row space of G , this provides the following equation:

0=⋅ THv (2.5)

The code C is said to be the null space of H . Linear block codes are thereby defined and

described in terms of either a generator matrix or a parity check matrix.

2.5 Convolutional Codes

The forward error correction technique known as convolutional coding was first introduced

by Elias in his work Coding for Noisy Channels (Elias, 1955). Convolutional codes process

incoming bits in streams rather than in blocks. The principle feature of such codes is that

the encoding of any bit is strongly influenced by the bits that preceded it (that is, the

memory of past bits). A convolutional decoder takes into account such memory when

trying to estimate the most likely sequence of data that produced the received sequence of

code bits. Historically, the first type of convolutional decoding, known as sequential

decoding, used a systematic procedure to search for a good estimate of the message

sequence; however, such procedures required a great deal of memory, and typically

suffered from buffer overflow and nongraceful degradation.

In 1967, Andrew Viterbi developed a decoding technique that has since become the

standard for decoding convolutional codes (Viterbi, 1967). At each bit-interval, the Viterbi

decoding algorithm compares the actual received code bits with the code bits that might

have been generated for each possible memory-state transition. It chooses, based on metrics

of similarity, the most likely sequence within a specific time frame. The Viterbi decoding

algorithm requires less memory than sequential decoding because unlikely sequences are

dismissed early, leaving a relatively small number of candidate sequences that need to be

stored.

Chapter 2 Fundamentals of Error Correcting Coding

11

2.6 Concatenated Codes

In 1966, Forney combined the two previous coding techniques to form a concatenated code

(Forney, 1966). In this arrangement, the encoder linked together an algebraic code followed

by a convolutional code. The decoder, a mirror image of the encoding operation, consisted

of a convolutional decoder followed by an algebraic decoder. Thus, any bursty errors

resulting from the convolutional decoder could be effectively corrected by the algebraic

decoder. Performance was further enhanced by using an interleaver between the two

encoding stages to mitigate any bursts that might be too long for the algebraic decoder to

handle. This particular structure demonstrated significant improvement over previous

coding systems and is currently being used in the Deep Space Network (Sniffen, 2004) as

well as numerous other commercial broadcasting services.

2.7 Iterative Decoding For Soft Decision Codes

Iterative decoding is defined as a technique employing a soft-output decoding algorithm

that is iterated several times to improve the error performance of a coding scheme, with the

aim of approaching true maximum-likelihood decoding (MLD), with less complexity

(Elias, 1954). After designing the underlying error correcting code, the error performance

can be improved by simply increasing the number of iterations. In terms of the application

of iterative decoding algorithms, ECC schemes can be generally categorized into two

classes, either Turbo codes or Low Density Parity Check (LDPC) codes.

2.7.1 Turbo Codes

Turbo codes are a class of error correcting codes that were first introduced in 1993, by a

group of researchers from France, along with a practical decoding algorithm (Berrou et al,

1993). The turbo codes are very important in the sense that they enable reliable

communications with power efficiencies close to the theoretical limit predicted by Claude

Shannon. Hence, turbo codes have been used for low-power applications such as deep

space and satellite communications, as well as for interference limited applications such as

third generation cellular and personal communication services.

Chapter 2 Fundamentals of Error Correcting Coding

12

2.7.2 LDPC Codes

LDPC codes are a form of linear block codes that were first introduced in 1960 by Robert

Gallager in his doctoral thesis (Gallager, 1963). Besides turbo codes, low-density parity-

check (LDPC) codes form another class of Shannon limit-approaching codes. Due to the

complexity of the encoding and decoding of LDPC codes they were not utilised after the

time of their discovery for decades. A great deal of research has been conducted recently

into LDPC codes with the design of very fast encoding and decoding algorithms. The

design of the codes is such that the decoding algorithms have the ability recover the

original codeword in the presence of large amounts of noise.

The construction, encoding and decoding of LDPC codes will be presented in detail in the

subsequent chapters.

2.8 Summary

In this chapter, we outlined the basic concepts of Error Correcting Codes and the Shannon

capacity limit of a communications channel. A basic explanation of different forms of ECC

was presented with emphasis on the block coding techniques. LDPC codes have many

common concepts of operation as other block coding techniques such as Turbo codes. Both

LDPC and Turbo codes utilise iterative soft output decoding algorithms and both can

achieve near Shannon limit performance.

Chapter 3 LDPC codes

13

Chapter 3

LPDC codes

Chapter 3 LPDC Codes

3.1 Code Description

Gallager defined an LDPC code as the null space of a sparse parity check matrix H

(Gallager, 1963). A sparse matrix is one that contains very few 1’s when compared to the

number of 0’s. The original work by Gallager described what is now known as a regular

LDPC code, having a parity check matrix H that has constant row weights, denoted by rw

and constant column weights, denoted by cw . The weighting is determined by the number

of 1’s contained in the column or row. The values of rw and cw are to be minor when

compared to the length of the codeword (n) and the number of rows in H (J).

Additionally the number of 1’s in common between any two columns of H can not be

greater than 1. Figure 3.1 demonstrates a regular LDPC code.

If the parity check matrix H contains inconsistent rw or cw values it is said to be an

irregular LDPC code. In recent times irregular LDPC codes have been demonstrated to

achieve remarkable results that were within 0.0045 dB of the Shannon limit (Chung et al,

2001).

Chapter 2 Fundamentals of Error Correcting Coding

14

Figure 3.1: Regular (20, 3, 4) LDPC code.

3.2 Tanner Graphs

In 1981 Robert Tanner rediscovered LDPC codes in his work on the use of recursion to

construct error correcting codes (Tanner, 1981). Tanner utilised bipartite graphs to describe

the parity check matrix, which are now known as Tanner graphs, which display the

incidence relationships between the variable codeword bits and the corresponding check-

sum tests.

The graph G representing the parity check matrix H consists of two sets of verticesV and

C . The set V consists of n vertices that represent the n codeword bits and are called

variable notes, denoted by 110 ,,, −nvvv Κ . Variable node indexes correspond to the column

number of the parity check matrix. The set C consists of J vertices that represent the

J parity check-sums and are called check nodes, denoted by 110 ,,, −Jccc Κ . Check node























































=

10000100001000010000

00010010000100001000

01000001000010000100

00001000010001000010

00100000100000100001

10001000100010000000

01000100010000001000

00100010000001000100

00010000001000100010

00000001000100010001

11110000000000000000

00001111000000000000

00000000111100000000

00000000000011110000

00000000000000001111

H

Chapter 2 Fundamentals of Error Correcting Coding

15

indexes correspond to the row number of the parity check matrix. An edge is contained in

the graph G if and only if the variable node nv is contained in a parity check sumjc . The

inclusion of a variable node in a check sum is determined by the presence of a 1 in the

parity check matrix. The graph G will never have any two variable nodes or any two

check nodes connected by an edge. The Tanner graph for the parity check matrix shown in

Figure 3.1 is shown in Figure 3.2.

Figure 3.2: Tanner graph for (20, 3, 4) LDPC code

Tanner graphs can be used to estimate codewords of an LPDC code C by iterative

probabilistic decoding algorithms, based on either hard or soft decisions, this will be

examined in section 3.4.3.

3.3 Encoding LDPC codes

There are two methods employed to encode messages into codewords for LDPC codes,

both methods require the generation of the parity check matrix H . The algorithms used in

the construction of parity check matrix H will be discussed in the following subsections.

14131211109876543210 ccccccccccccccc

Check Nodes

Variable Nodes

191817161514131211109876543210 vvvvvvvvvvvvvvvvvvvv

Chapter 2 Fundamentals of Error Correcting Coding

16

The first encoding method is through the use of a generator matrix, denoted by G . The

matrix G contains the set of constraints that form the parity check equations of the LDPC

code. A codeword c is formed by multiplying a source message u by the matrix G . This

is represented by the following equation:

uGc = (3. 1)

For a binary code with k message bits and length n codewords the generator matrix G is a

)(nk × binary matrix having the form:

[]T
k AIG = (3. 2)

where the sub-matrix TA is produced by transformingH into column permuted reduced-

row echelon form using Gauss-Jordan elimination (Larson et al, 2004) such that:

[]knIAH −= (3. 3)

where A will be a kkn ×−)(binary matrix and knI − is an identity matrix. The row space

of G will be orthogonal to H so that:

0=TGH (3. 4)

The process of converting H into the generator matrix G has the effect of causing G to

lose the sparseness characteristic that was embodied in H . This has the drawback of

driving the encoder complexity towards)(2nΟ (Mackay, 2005).

An alternative approach to encoding LDPC codes was proposed by Richardson and

Urbanke based on approximate lower triangulations (Richardson and Urbanke, 2001). This

method is also a two step process.

Chapter 2 Fundamentals of Error Correcting Coding

17

Firstly pre-processing is conducted, using only row and column permutations, the parity-

check matrix is put into approximate lower triangular form:





= EDC

TBAH t (3. 5)

such that DBET +− −1 is non-singular.

The g rows of H in sub-matricesC , D , and E is called the gap of the approximate

triangular representation. The sub-matrix T is a lower triangular matrix of

size)()(gmgm −×− . If tH is full rank the sub-matrix B is size ggm ×−)(and sub-

matrix A is size kgm ×−)(. Keeping the size of the gap low will reduce the encoding

complexity for the LDPC code.

Once in lower triangular format, Gauss-Jordan elimination is utilised to clear E , which is

the equivalent of multiplying tH by

 








− −
−

g

gm

IET

I
1

0

so that













+−+−
=

















−
= −−−

−

0

0
111

~

DBETCAET

TBA
EDC
TBA

IET

I
H

g

gm

Finally, to encode the message using
~

H the codeword []ncccc ,,, 21 Κ= is divided into three

parts being []21,, ppuc = , where []kuuuu ,,, 21 Κ= is the k -bit message,

[]
g

pppp 1111 ,,,
21

Κ= holds the first g parity check bits and []
gm

pppp
−

= 2222 ,,,
21

Κ

contains the remaining parity check bits.

Chapter 2 Fundamentals of Error Correcting Coding

18

The codeword c must satisfy the syndrome test 0
~

=Hc and so

021 =++ TpBpAu , (3. 6)

and

00 21

~~

=++ ppDuC (3. 7)

where CAETC +−= −1
~

 and DBETD +−= −1
~

.

Since E has been cleared, the parity bits in 1p depend only on the message bits, and so can

be calculated independently of the parity bits in 2p . If
~

D is invertible, 1p can be found by

uCDp
~1~

1

−

= .

If
~

D is not invertible the columns of
~

H can be permuted until it is. By keeping g as small

as possible the added complexity load of the matrix multiplication to obtain is kept to a

minimum.

Once 1p is known 2p can be found by)(1
1

2 BpAuTp +−= − . The sparseness of A , B and

T can be employed to keep the complexity of this operation low and, as T is upper

triangular, 2p can be found using back substitution.

3.4 Code Construction

3.4.1 Random Generation of Parity Check Matrix

The construction of the parity check matrix can be achieved in a pseudorandom manner

using computer searches that are constrained to the characteristics of an LDPC matrix. The

parity check matrix H is constructed through the fitting of n columns to an empty matrix,

Chapter 2 Fundamentals of Error Correcting Coding

19

where n is the length of the LDPC code. Regular and irregular LDPC codes can be

constructed using this method.

To generate the matrix H for an LDPC code of length n and rate nk / an appropriate

column weight γ and row dimension J must be determined.

3.4.2 Geometric Generation

The generation of LDPC codes can be achieved through the application of finite

geometries. A finite geometry is a geometry that has a finite number of points. A geometry

G with n points and J lines which has the following fundamental structural properties: 1)

every line consists of ρ points; 2) any two points are connected by one and only one line;

3) every point lies on γ lines and 4) two lines are either parallel or they intersect at only

one point (Ball & Werner, 2007). The two families of finite geometries which have the

above fundamental structural properties are Euclidean and Projective geometries over finite

fields. Lin and Costello describe two types of LDPC code constructions for Euclidean and

Projective geometries (Lin & Costello, 2004).

3.4.2.1 Euclidian Geometries

A geometry in which Euclid's parallel postulate holds is called Euclidean Geometry. The

parallel postulate states that if two lines are drawn which intersect a third in such a way that

the sum of the inner angles on one side is less than two right angles, then the two lines

inevitably must intersect each other on that side if extended far enough.

Consider ()smEG 2, as an m -dimensional Euclidean Geometry over the Galois Field

()sGF 2 where s and m are two positive integers. Total number of points in this

geometry is ms2 with each point representing an m -tuple over ()sGF 2 . The origin

corresponds to the m -tuple that contains all zeros. ()smEG 2, can be seen as an m -

dimensional vector space over ()sGF 2 . Any two lines in ()smEG 2, will either intersect at

one and only one point or are disjoint. Therefore a line will consist of s2 points. The total
number of lines in ()smEG 2, can be calculated by:

()
12

122)1(

−
−=

−

s

mssm

J (3. 8)

Chapter 2 Fundamentals of Error Correcting Coding

20

Every line will have 12)1(−− sm lines parallel to it. For each point in ()smEG 2, the number
of lines intersecting at this point is:

12
12

−
−

s

ms

 (3. 9)

a) Type I Euclidean Geometry (EG) LDPC Codes
A type-I EG code that is based on ()SmEG 2, the parity check matrix)1(

EGH is formed

where each row is the incidence vectors of all the lines ()SmEG 2, and each column

corresponds to all the points in ()SmEG 2, . The number of rows in)1(
EGH can be

determined using (3.8) and the number of columns will be msn 2= , corresponding to the

number of points in the geometry. Each row weight in)1(
EGH will equate to the number of

points contained in a line in ()SmEG 2, this being s2 . The number of lines intersecting a

point, given by (3.9), will determine the column weight of)1(
EGH . The density r of)1(

EGH is:

ms

s

n
r

2

2== ρ
 (3. 10)

When 2,2 ≥≥ sm and 4/1≤r then)1(
EGH will be a low density parity check matrix. The

null space of)1(
EGH provides an LDPC code of length msn 2= , denoted by ()smCEG ,0,)1(,

which is call an m-dimensional type-I ()s,0 th-order EG-LDPC code. The Tanner graphs

of type-I EG codes do not contain any 4-cycles, though there are many cycles of length 6

(Kou, Lin & Fossorier, 2001).

b) Type II Euclidean Geometry LDPC Codes
The construction of a type-II EG LDPC code is carried out by taking the transpose of

)1(
EGH so that:

[]TEGEG HH)1()2(= (3. 11)

Chapter 2 Fundamentals of Error Correcting Coding

21

Then)2(
EGH has both the values of J and n , along with ρ and γ interchanged when

compared to)1(
EGH . Then null space of)2(

EGH gives an LDPC code, denoted by ()smCEG ,0,)2(,

having length () () ()12/122 1 −−= − smssmn . The minimum distance will be of the order of

12 +s . The Tanner graphs for ()smCEG ,0,)1(and ()smCEG ,0,)2(are dual, both the codes have

identical cycle distributions. The ()smCEG ,0,)2(type-II EG LDPC code is not cyclic, but it

can be put into a quasi cyclic form (Kou, Lin & Fossorier, 2001).

Figure 3.3 shows a type-I (0,2)th-order EG LDPC code parity check matrix with its

associated Tanner graph. Figure 3.4 illustrates a type-II (0,2)th-order EG LDPC code that

is the transpose of the matrix in Figure 3.3. It can be seen that the Tanner graph of the

type-II matrix is a mirror image of the Tanner graph of the type-I matrix.





































=

010001011000000
001000101100000
000100010110000
000010001011000
000001000101100
000000100010110
000000010001011
100000001000101
110000000100010
011000000010001
101100000001000
010110000000100
001011000000010
000101100000001
100010110000000

)1(
EGH

Figure 3.3: Type-I EG LDPC matrix and Tanner graph

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Check Nodes

Variable Nodes
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chapter 2 Fundamentals of Error Correcting Coding

22





































=

000000011010001
100000001101000
010000000110100
001000000011010
000100000001101
100010000000110
010001000000011
101000100000001
110100010000000
011010001000000
001101000100000
000110100010000
000011010001000
000001101000100
000000110100010

)2(
EGH

Figure 3.4: Type-II EG LDPC matrix and Tanner graph

The origin is removed from the geometry when constructing the type-I and type-II EG-

LDPC codes.

3.4.2.2 Projective Geometries

A projection is the transformation of points and lines in the one plane onto another plane by

linking corresponding points on the two planes with parallel lines. The branch of geometry

dealing with the properties and invariants of geometric figures under projection is called

projective geometry.

c)Type I Projective Geometry LDPC Codes
Letα to be a primitive element of ()smGF)1(2 + , considered to be an extension to the

()sGF 2 field. An m-dimensional projective geometry, ()SmPG 2, , over ()sGF 2 is defined

as:

() () () ()1210 ,,,, −nαααα Κ

where the number of elements is given by:

12

12
2

)1(

−
−=

+ sm

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Check Nodes

Variable Nodes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chapter 2 Fundamentals of Error Correcting Coding

23

Each iα element corresponds to the points of the ()SmPG 2, geometry. The quantity of

lines in ()SmPG 2, is given by:

()()
s

smsmss

J
21

221221)1(

+
++++++=

−ΛΛ

where each line consists of 122 − points. Every iα element in ()SmPG 2, is intersected by:

12

12

−
−=

s

ms

γ

lines. The lines in ()SmPG 2, will be either disjoint or intersect at one and only one point.

The incidence vector of a line L in ()SmPG 2, is an n -tuple such that:

()110 ,,, −= nvvvv Λ
L

where:

()


=

 otherwise. 0
,point thecontains if1 i

i
αv L

The incidence vector will have a weight of 12 +S . The incidence vectors of the lines in

()SmPG 2, will form the rows of the parity check matrix)1(
PGH with the columns of the

matrix corresponding to the points of ()SmPG 2, . The matrix)1(
PGH will have dimensions

of
()()

12
122122)1(

+
++++++=

−

s

smsssm

J
ΛΛ

 rows and
12

12)1(

−
−=

+

s

sm

n columns.)1(
PGH will

the following properties:

(i) a row weight of 12 += Sρ ,

(ii) a column weight of
12

12

−
−=

s

ms

γ ,

Chapter 2 Fundamentals of Error Correcting Coding

24

(iii) a density of
12

)12)(12(
)1(−

+−== + sm

ss

n
r

ρ
,

(iv) no two rows or columns having more than one 1 in common, and

(v) when m is large r is approximately sm)1(2 −− so the matrix will be very sparse.

The null space of)1(
PGH provides a cyclic LDPC code of length

12
12)1(

−
−=

+

s

sm

n having a

minimum distance of at least 1
12

12
1 +

−
−=+

s

ms

γ . This LDPC code is denoted ()smCPG ,0,)1(,

being an m-dimensional type-I),0(s th order Projective Geometry LDPC code.

3.5 LPDC Decoding

As stated previously an LDPC code represents the null space of a sparse parity check
matrix H . When a codeword v is received the decoder will conduct a test by computing

the following)(kn − -tuple:

THvs .=

where ()110 ,,, −−= knssss Κ and is said to be the syndrome of v . The syndrome swill be a

zero vector if and only if v is a legitimate codeword. If s is not a zero vector then the

received codeword contains one or more errors. All LDPC decoders employ syndrome testing

to detect the presence of errors.

3.5.1 Bit-flipping Algorithm

The bit-flipping algorithm was implemented by Gallager in his original work into LDPC

codes (Gallager, 1963). The bit-flipping algorithm is a hard-decision classed message-passing

algorithm. A binary (hard) decision about each received bit is made by the detector and this is

passed to the decoder. For the bit-flipping algorithm the messages passed along the Tanner

graph edges are also binary: a bit node sends a message declaring if it is a one or a zero, and

each check node sends a message to each connected bit node, declaring what value the bit is

based on the information available to the check node. The check node determines that its

parity-check equation is satisfied if the modulo-2 sum of the incoming bit values is zero. If

Chapter 2 Fundamentals of Error Correcting Coding

25

the majority of the messages received by a bit node are different from its received value the

bit node changes (flips) its current value. This process is repeated until all of the parity-check

equations are satisfied, or until some maximum number of decoder iterations has passed and

the decoder gives up. The bit-flipping decoder can be immediately terminated whenever a

valid codeword has been found by checking if all of the parity-check equations are satisfied.

This is true of all message-passing decoding of LDPC codes and has two important benefits.

Firstly additional iterations are avoided once a solution has been found, and secondly a

failure to converge to a codeword is always detected.

The bit-flipping algorithm is based on the principal that a codeword bit involved in a large

number of incorrect check equations is likely to be incorrect itself. The sparsity of H helps

spread out the bits into checks so that parity-check equations are unlikely to contain the same

set of codeword bits.

3.5.2 Weighted Majority Logic Algorithm

The bit-flipping algorithm can be improved by the inclusion of some form of reliability

information for the codeword received that will provide enhanced decoding decisions (Lin

and Costello, 2004). Decoding is carried out by calculating weighted check sums for each bit

by:

()∑ −=
∆)(

min

)(12
l

j
l

jl ysE (3. 12)

where { }{ }1,10:min ,

)(

min
=−≤≤=

∆

iji

l

j hniyy

The bit position that has the highest lE value is then flipped. The process is carried out until

either the syndrome test is passed or the maximum value of iterations is reached.

Chapter 2 Fundamentals of Error Correcting Coding

26

3.5.3 Sum-Product Algorithm

The sum-product algorithm is a soft decision message-passing algorithm. It is similar to the

bit-flipping algorithm described in the previous section, but with the messages representing

each decision (check met, or bit value equal to 1) now probabilities. Whereas bit-flipping

decoding accepts an initial hard decision on the received bits as input, the sum-product

algorithm is a soft decision algorithm which accepts the probability of each received bit as

input.

The input bit probabilities are called the a priori probabilities for the received bits because

they were known in advance before running the LDPC decoder. The bit probabilities returned

by the decoder are called the a posteriori probabilities. In the case of sum-product decoding

these probabilities are expressed as log-likelihood ratios.

For a binary variable x it is easy to find)1(=xp given)0(=xp , since

)0(1)1(=−== xpxp and so there is only the need to store one probability value for x .

Log likelihood ratios are used to represent the metrics for a binary variable by a single value:










=
==

)1(
)0(

log)(
xp

xp
xL

 (3. 13)

If)1()0(=>= xpxp then)(xL will be positive, the greater the difference between

)0(=xp and)1(=xp , that there is more confidence that 0)(=xp , then the larger the

positive value for)(xL . Conversely, if)0()1(=>= xpxp then)(xL will be negative and

the greater the difference between the larger the negative value of)(xL . Therefore the sign

of the log likelihood ration provides a hard decision on value of x and the magnitude the

absolute value of)(xL determines the reliability of the decision. It is possible to calculate the

probabilities from the log likelihood ratios by:

Chapter 2 Fundamentals of Error Correcting Coding

27

)(

)(

1)1(/)0(1
)1(/)0(

)0(
xL

xL

e

e

xpxp

xpxp
xp

−
=

==+
====

and

)(

)(

1)0(/)1(1
)0(/)1(

)1(
xL

xL

e

e

xpxp

xpxp
xp −

−

−
=

==+
====

The benefit of the logarithmic representation of probabilities is that when probabilities need

to be multiplied log-likelihood ratios need only be added, reducing implementation

complexity.

The aim of sum-product decoding is to compute the maximum a posteriori probability for

each codeword bit, { }NcPPi 11 == , which is the probability that the i -th codeword bit is a 1

conditional on the event N that all parity-check constraints are satisfied. The extra

information about bit i received from the parity-checks is deemed extrinsic information for

bit i .

The sum-product algorithm iteratively computes an approximation of the maximum a

posteriori value for each code bit. However, the a posteriori probabilities returned by the

sum-product decoder are only accurate values if the parity check matrix is cycle free, as can

be determined by the Tanner graph. The extrinsic information obtained from a parity check

constraint in the first iteration is independent of the a priori probability information for that

bit, though it does depend on the a priori probabilities of the other codeword bits. The

extrinsic information provided to i -th bit in subsequent iterations remains independent of the

original a priori probability for bit i until the original a priori probability is returned back to

bit i via a cycle in the Tanner graph. The association of the extrinsic information with the

original a priori bit probability is what prevents the resulting posteriori probabilities from

being exact.

3.6 Summary

In this chapter, we discussed the general principles of LDPC codes including code

construction, message encoding and codeword decoding algorithms.

Chapter 2 Fundamentals of Error Correcting Coding

28

In the early 1960’s when first discovered, the limited computing resources prevented

Gallager from demonstrating the full capabilities of message passing LDPC decoders.

Codeword lengths were limited to no longer than around 500 bits as the computation required

for encoding and decoding made the codes impractical for use. This resulted in his work

being ignored for over 30 years except by all but a handful of researchers. It has only been in

recent times that the re-discovered by researchers after the emergence of turbo decoding has

shown the true benefits of LDPC codes.

Chapter 4 Performance comparison of LDPC encoders and decoders

29

Chapter 4

Performance comparison of LDPC Codes

Chapter 4 Performance comparison of LDPC encoders and decoders

4.1 LDPC Encoder Implementation

Generator Matrix Encoding

The simulator function MakeGenerator is used to create a generator matrix from the supplied

parity check matrix. The function is passed pointers to the parity check matrix and the

allocated space for the generator matrix, along with the row and column dimensions. A

working matrix is required to manipulate the parity check matrix data without amending the

original matrix which will be required in the decoding functions. The working matrix is

required to have the same form and data as the parity check matrix. This is accomplished by

the following code:

temp_matrix = malloc(rows * sizeof(int *));
if(temp_matrix == NULL){
 printf("Error: failed to allocate memory for temp_matrix matrix\n");
 exit(1);
}
for(i = 0; i < rows; i++){
 temp_matrix[i] = malloc(n * sizeof(int *));
 if(temp_matrix[i] == NULL){
 printf("Error: failed to allocate memory for temp_matrix row\n");
 exit(1);

Chapter 2 Fundamentals of Error Correcting Coding

30

 }
}
//Initialise temp matrix to parity check matrix
for(i = 0; i < rows; i++){
 for(j = 0; j < n; j++){
 temp_matrix[i][j] = pchk_matrix[i][j];
 }
}

The first operation is put the parity check matrix H into row-echelon form (i.e. so that in any

two successive rows that do not consist entirely of zeros, the leading 1 in the lower row

occurs further to the right than the leading 1 in the higher row).

The matrix H is put into this form by applying elementary row operations in GF(2), which

are; interchanging two rows or adding one row to another modulo 2. From linear algebra it is

known that by using only elementary row operations the modified parity-check matrix will

have the same null space and therefore the same codeword set as the original.

To achieve this process is broken into two steps. Firstly to make the matrix lower triangular,

which achieved by the following code:

//Make temp matrix lower triangular
for(i = 0; i < rows; i++){
 //Ensure curent matrix data starts with a 1
 if(temp_matrix[i][i] == 0){
 //Find the next row with a 1 in the column and swap
 rowIdx = FindRowdata(temp_matrix, 1, i+1, rows, i, 1);
 if(rowIdx < 0){

printf("Error: unable to make generator matrix from parity
check matrix\n");
printf("Reason: no row to swap to make H lower
triangular\n");

 return state ;
 }
 else {
 SwapRows(temp_matrix, i, rowIdx, n);
 }

}
//Ensure each row below current row does not start have a 1 for this
column
for(j = i+1; j < rows; j++){

if(temp_matrix[j][i] == 1){
AddRows(temp_matrix, i, j, n);

}
}

}

The next step requires the clearing of the upper triangular portion which then makes a

reduced row-echelon form matrix.

Chapter 2 Fundamentals of Error Correcting Coding

31

//Make temp matrix upper triangular
for(i = rows-1; i >= 0; i--){
//Ensure each row below current row does not start have a 1 for this column
 for(j = i-1; j >= 0; j--){
 if(temp_matrix[j][i] == 1){
 AddRows(temp_matrix, i, j, n);
 }
 }
}

The working matrix is now in the correct form to make the generator matrix. The parity

submatrix is taken from the working matrix, inverted and copied into the generator.

//Take Parity submatrix and transpose into generator matrix
for(i = 0; i < rows; i++){
 for(j = rows; j < n; j++){
 gen_matrix[j-rows][i] = temp_matrix[i][j];
 }
}

The final step to complete the generator matrix is to add an identity matrix.

//Add Identity matrix to generator matrix
for(i = 0; i < k; i++){
 gen_matrix[i][i+rows] = 1;
}

The generator matrix is now complete. In order to encode the message into a codeword the

generator matrix is multiplied by the message vector, the result is the codeword to be

transmitted.

All of this processing can be done off-line and just the matrices G and H′ provided to the

encoder and decoder respectively. However, the drawback of this approach is that, unlike H,

the matrix G will most likely not be sparse and so the matrix multiplication at the encoder

will have complexity in the order of n2 operations. As n is large for LDPC codes, from

thousands to hundreds of thousands of bits, the encoder can become prohibitively complex.

Later we will see that structured parity-check matrices can be used to significantly lower this

implementation complexity, however for arbitrary parity-check matrices a good approach is

to avoid constructing G at all and instead to encode using back substitution with H as is

demonstrated in the following approximate lower triangular form matrix encoding.

Chapter 2 Fundamentals of Error Correcting Coding

32

4.2 LDPC Decoder Implementation

Two types of decoders were implemented successfully, the sum-product algorithm based on

belief propagation and the standard bit-flipping algorithm.

 The bit-flipping decoder required the number of failed checksums to be calculated. To

achieve this each bit is checked in turn by determining the variable bits that make up the

checksum from the check nodes. The following code fragment carries out the check and

compares the received bit to the calculated bit. If the comparison is incorrect then a counter

for that bit is incremented.

for(j = 0; j < ncols; j++){
 //Get the current message bit
 currentBit = decoded[j];
 //Find a link to a check node
 for(i = 0; i < nrows; i++){
 if(matrix[i][j] == 1){
 //Find the links to the variable nodes
 for(k = 0; k < ncols; k++){
 if(k != j && matrix[i][k] == 1)
 //Add the message bits
 sum = sum + decoded[k];
 }
 //Compare sum to original bit
 if(currentBit != fmod(sum , 2)){
 //Sum is incorrect increment the failure count
 check_fails[j]++;
 }
 sum = 0;
 }
 }
}

The vector check_fails is then checked to determine the value of the greatest number of

checksum failures. Once this is determined it is a simple matter to find which bits of the

received codeword is required to be changed to the opposite information bit. The following

code fragment carries out these requirements:

//Find the bits with largest failed checksums
for(j = 0; j < ncols; j++){
 if(check_fails[j] > maxFailed)
 maxFailed = check_fails[j];
}

//Flip the bits having the largest failure rate

Chapter 2 Fundamentals of Error Correcting Coding

33

for(j = 0; j < ncols; j++){
 if(check_fails[j] == maxFailed)
 decoded[j] = (int)fmod((decoded[j] + 1), 2.0);
}

The decoded vector is now checked to determine if the syndrome test is satisfied. If the

syndrome test passes the algorithm terminates, otherwise the algorithm will continue up to

the maximum iterative count.

The bit-flipping algorithm is a relatively quick decoder but is has the drawback of inducing

faults into the codeword. A problem that can occur is that one or more bits will be caught in a

loop where the bits will be constantly flipped but the codeword is never closer to being

decoded. When this happens the algorithm will require termination through the maximum

iteration constraint.

The sum product algorithm required the implementation of a number of working matrices of

the same dimension as the parity check matrix. This results in the SPA decoder having

greater memory utilization than the BF decoder.

After initializing the memory requirements of the algorithm the Gaussian density probability

is calculated.

//Calculate the Guassian density probabilities
for(i = 0; i < ncols; i++)
 f1[i] = 1 /(1+exp((-2*codeword[i])/pow(ch_dev,2)));

for(i = 0; i < ncols; i++)
 f0[i] = 1 - f1[i];

The a priori probabilities are then calculated.

/*calculate the q1ij probabilities*/
for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 if(q1[i][j] != 0)
 q1[i][j] *= f1[j];
 }
}

//calculate the q0ij probabilities
for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){

Chapter 2 Fundamentals of Error Correcting Coding

34

 if(q0[i][j] != 0)
 q0[i][j] *= f0[j];
 }
}

The algorithm is now ready to start the decoding iterations. Upon entering the iteration loop

the soft codeword is hard decoded and then the syndrome test is conducted. If the test passes

the loop is terminated and the codeword has been decoded, else the algorithm continues. The

next step is to calculate the probability difference equations.

//Calculate the probability deltas
for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 deltaQ[i][j] = q0[i][j] - q1[i][j];
 }
}

for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 if(deltaP[i][j] != 0){
 for(k = 0; k < ncols; k++){
 if(j != k && deltaP[i][k] != 0){
 deltaP[i][j] *= deltaQ[i][k];
 }
 }
 }
 }
}

The bit probability values are then calculated by:
//Calculate p values
for(i = 0; i < nrows; i++){
 for(j= 0; j < ncols; j++){
 if(p0[i][j] != 0){
 p0[i][j] *= (0.5 * (1 + deltaP[i][j]));
 p1[i][j] *= (0.5 * (1 - deltaP[i][j]));
 }
 }
}

From the bit probability the coefficients are then calculated:
//calculate the coefficients
for(i = 0; i < ncols; i++){
 for(j = 0; j < nrows; j++){
 if(matrix[j][i] != 0){
 coeff0 = 1.0;
 coeff1 = 1.0;
 for(k = 0; k < nrows; k++){
 if(j != k && matrix[k][i] != 0){
 coeff0 *= p0[k][i];

Chapter 2 Fundamentals of Error Correcting Coding

35

 coeff1 *= p1[k][i];
 }
 }
 coeff0 *= f0[i];
 coeff1 *= f1[i];
 q0[j][i] = coeff0 /(coeff0 + coeff1);
 q1[j][i] = coeff1 /(coeff0 + coeff1);
 }
 }
}

A new soft codeword is generated by scaling the calculated bit values. This new codeword is
now hardcoded and a syndrome test is conducted.

The one step majority logic decoder was not completed.

4.3 Simulation Results

Figure 4.1 Bit-error probabilities of the type-I 2-D (255; 175) EG-LDPC code and (273;
191) PG-LDPC code based on different decoding algorithms. (Kou et al, 2001)

Figure 4.1 shows the comparison between geometric codes utilizing various decoding
techniques. As can be seen the SPA decoder outperforms all other decoding algorithms for
the same error rate by more than 1 dB.

Chapter 2 Fundamentals of Error Correcting Coding

36

4.4 Summary

In this chapter, the different techniques for encoding and decoding LDPC were simulated. It
was shown that the Sum Product algorithm has the most potential to be able to correct a
codeword that has been subjected to large amounts of noise. The drawback of the SPA
decoder is the additional complexity required to implement which has a great effect on the
latency of the decoder, this is especially true when very large code lengths are utilised.

The technique of using the approximate lower triangular method of fast encoding LDPC code
was not implemented.

Chapter 6 Conclusion

37

Chapter 5

Conclusions

Chapter 5 Conclusions

5.1 Concluding Remarks

LDPC codes have been proven to be one of the most powerful ECC codes discovered. Today,

design techniques for LDPC codes exist which enable the construction of codes which

approach within hundredths of a decibel of the Shannon limit of a communications channel.

In addition to the strong theoretical interest in LDPC codes, such codes have already been

adopted in satellite-based digital video broadcasting and long-haul optical communication

standards, could be adopted in the IEEE wireless local area network standard, and are under

consideration for the long term evolution of third-generation mobile telephony.

This project has outlined various techniques for constructing LDPC codes, encoding

messages for transmission and the decoding of received messages over an AWGN channel.

The simulation of the various algorithms did not achieve their intent due to my inability to

correctly simulate the channel environment. Analysis of the different decoding techniques

therefore relied on work conducted by other researchers.

Chapter 2 Fundamentals of Error Correcting Coding

38

5.2 Future Work

LDPC codes will be utilised more often in future in all forms of wireless communications.

During this project I have discovered that the main flaw of the Bit Flipping algorithm is its

inability to terminate when caught in a loop. This algorithm could be further improved to

provide a learning algorithm that would evolve a strategy to flip only a dedicated bit rather

than the entire set of bits with the most checksum failures.

An efficient technique for computer simulations of the approximate lower triangular

encoding technique should be investigated.

 39

References

Ball, S & Weiner, Z 2007, ‘An Introduction to Finite Geometry’, Department of Applied

Mathematics IV, Technical University of Catalonia.

Berrou, C, Glavieux, A & Thitimajshima, P 1993, ‘Near Shannon limit Error-Correcting

Coding and Decoding: Turbo-Codes’, Proc.1993 IEEE Int. Conf. Comm.(ICC’93),

Geneva, Switzerland, May, Vol 2, pp. 1064-1070.

Chung, S, Forney, DG, Richardson, TJ & Urbanke, R (2001), ‘On the Design of Low-

Density Parity Check Codes within 0.0045dB of the Shannon Limit’, IEEE

Communications Letters, Vol. 5, No. 2, pp. 58-60.

Dechter, R & Mateescu, R (2003), ‘A Simple Insight Into Properties of Iterative Belief

Propagation’, In proceedings of Uncertainty in Artificial Intelligence.

Dubendorf, VA (2003), ‘A History of Wireless Technologies’, Wireless Data Technologies,

John Wiley & Sons.

Elias, P 1954, ‘Error-free Coding’, IRE Trans. Information Theory, Vol. 4, No. 4, pp. 29-

37.

Elias, P 1955, ‘Coding for Noisy Channels’, IRE Convention Record pt 4, pp. 37-46.

Forney, GD 1966, ‘Concatenated Codes’, MIT Press, Cambridge.

Gallager, RG 1963, ‘Low-Density Parity-Check Codes’, No. 21 in MIT Research

monograph series, MIT Press, Cambridge, MA.

Larson, R, Edwards, BH & Falvo, DC 2004, Elementary Linear Algebra, 5th edn,

Houghton Mifflin Company, New York.

Lentmaier, M , Truhachev, DV, Zigangirov, KS & Costello, DJ 2005, ‘An Analysis of the

Block Error Probability Performance of Iterative Decoding’, IEEE Transactions on

Information Theory, Vol. 51, No. 11, pp. 3834-3855.

Chapter 2 Fundamentals of Error Correcting Coding

40

Lin, S & Costello, DJ 2004, Error Control Coding, 2nd edn, Person Prentice Hall, New

Jersey.

Kou, Y, Lin, S & Fossorier, M 2001, ‘Low Density Parity Check Codes Based on Finite

Geometries: A Rediscovery and New Results’, IEEE Transactions on Information Theory,

Vol 47, No. 7, pp. 2711-2736.

MacKay, DJC 1999, ‘Good Error-Correcting Codes Based on Very Sparse Matrices’,

IEEE Transactions on Information Theory, Vol. 45, No. 2, pp. 399-431.

MacKay, DJC 2005, ‘Information Theory, Inference, and Learning Algorithms’, Ver. 7.2,

Cambridge University Press.

Min-Ho, S, Joon-Sung, K & Hong-Yeop S 2005, ‘Generalization of Tanner’s Minimum

Distance Bounds for LDPC Codes’, IEEE Transactions on Information Theory, Vol. 9, No.

3, pp. 240-242.

Pishro-Nik, H & Fekri, F 2004, ‘Decoding LDPC codes Over the Binary Erasure

Channel’, IEEE Transactions on Information Theory, Vol. 50, No. 3, pp. 439-454.

Richardson, TJ & Shokrollahi, MA 2001, ‘Design of Capacity-Approaching Irregular

Low-Density Parity-Check Codes’, IEEE Transactions on Information Theory, Vol. 47, No.

2, pp. 619-637.

Richardson, TJ & Urbanke RL 2001, ‘Efficient Encoding of Low-Density Parity-Check

Codes’, IEEE Transactions on Information Theory, Vol. 47, No. 2, pp. 638-656.

Shannon, CE 1948, ‘A Mathematical Theory of Communication’, The Bell System

Technical Journal, Vol. 27, pp. 379–423, 623–656.

Sniffen, RW 2004, ‘DSN Telecommunications Link Design Handbook’, Jet Propulsion

Laboratory, California Institute of Technology, 810-005, Rev. E Change 1.

Chapter 2 Fundamentals of Error Correcting Coding

41

Tanner, RM 1981, ‘A Recursive Approach to Low Complexity Codes’, IEEE Transactions

on Information Theory, Vol. 27, No. 5, pp. 533-547.

Viterbi, AJ 1967, ‘Error Bounds for Convolutional Codes and an Asymptotically Optimal

Decoding Algorithm’, IEEE Transactions on Information Theory, Vol. 13, No. 2, pp. 260-

269.

 42

Appendix A

Project specification

Chapter 2 Fundamentals of Error Correcting Coding

43

ENG 4111/4112 Research Project
PROJECT SPECIFICATION

FOR: Paul James Lauder

TOPIC: Performance evaluation of Low Density Parity Check (LPDC)

codes.

SUPERVISOR: Dr. Wei Xiang

SPONSORSHIP: University of Southern Queensland

PROJECT AIM: This project aims to evaluate the performance of LDPC codes. The

scope of the project involves building a computer experimental
platform for code performance evaluation, plotting bit error rate
(BER) curves for the codes, and discussing the encoding and
decoding complexity of LDPC codes.

PROGRAMME: Issue A, 20th March 2007

1. Study the background of Error Control Coding.

2. Implement and analyse LPDC encoding algorithms.

3. Implement and analyse LPDC decoding algorithms.

4. Ascertain the advantages and disadvantages of regular and irregular LPDC codes,

in terms of error resilient performance, latency and computational resources.

5. Determine the practicality of utilising LPDC codes in modern wireless networks.

As time permits:

6. Compare LPDC coding to turbo coding.

 AGREED: __________________(Student) ___________________ (Supervisor)

 Date: / / 2007 Date: / / 2007

Co-examiner: ______________________

 44

Appendix B

List of codes

Chapter 2 Fundamentals of Error Correcting Coding

45

// LDPC_Simulator.cpp : Defines the entry point for the console
application.
//
#include "stdafx.h"
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "limits.h"
#include "malloc.h"
#include "time.h"

#define MAX_ITERATION 10
#define FALSE 0
#define TRUE 1
//Simulation channel signal to noise parameters
#define DB_MAX 2
#define DB_INC 0.25
#define DB_INIT -2
//Channel message bit parameters
#define HIGH 1 //BSC = +1 BKSP = +1
#define MID 0 //BSC = +0.5 BKSP = 0
#define LOW -1 //BSC = +0 BKSP = -1

int MakeGenerator(int **pchk_matrix, int **gen_matrix, int rows, int n,
int k);
void SwapRows(int **matrix, int rowIdx1, int rowIdx2, int cols);
void AddRows(int **matrix, int rowIdx1, int rowIdx2, int cols);
int FindRowdata(int **matrix, int data, int rowSt, int rows, int colIdx,
int dir);
int BitFlipping(int **pchk_matrix, double *codeword, int *decoded, int
nrows, int ncols);
int SumProduct(int **pchk_matrix, double *codeword, int *decoded, int
nrows, int ncols, double ch_dev);
int OneStepMajorityLogic(int **pchk_matrix, double *codeword, int
*decoded, int nrows, int ncols);
void PrintIntMatrix(int **matrix, int nrows, int ncols);
void PrintMatrix(double **matrix, int nrows, int ncols);
void FileOutput(FILE *fp, char type, double *codeword, int length);
void PrintCodeword(double *codeword, int ncols);
void PrintIntCodeword(int *codeword, int ncols);
void FreeMatrix(double **matrix, int nrows);
void FreeIntMatrix(int **matrix, int nrows);
double BitErrorRate(int *original, int *current, int length);
int SyndromeTest(int **matrix, int *codeword, int nrows, int ncols);
void AddWhiteGaussianNoise(int *codeword, double *received, int length,
double variance, double mean);
void HardDecision(int *hardcode, double *softcode, int ncols);
void ZeroMatrix(double **matrix, int nrows, int ncols);
void ZeroVector(double *vector, int ncols);
void ZeroIntVector(int *vector, int ncols);
void ResetMatrix(int **pchk_matrix, double **matrix, int nrows, int
ncols);
void BSCtoBKSP(int *codeword, int ncols);
int XOR(int a, int b);

Chapter 2 Fundamentals of Error Correcting Coding

46

void main(){
 //variables
 int **gen_matrix = NULL; /*Pointer to Generator matrix*/
 int **pchk_matrix = NULL; /*Pointer to Parity Check matrix*/
 int *codeword = NULL; /*Channel codeword vector*/
 int *original = NULL; /*Original codeword vector*/
 int *decoded = NULL; /*Final decoded vector*/
 double *received = NULL; /*Codeword + noise vector received*/
 FILE *fp = NULL; /*Input file pointer*/
 int pchk_rows = 0; /*Parity Check matrix row
dimension*/
 int pchk_cols = 0; /*Parity Check matrix column
dimension*/
 int n = 0; /*Codeword and Generator
matrix column dimension */
 int k = 0; /*Message and Generator matrix
row dimension*/
 double code_rate = 0.0; /*Code rate*/
 double bit_error = 0.0; /*Bit Error Rate*/
 double variance = 0.0; /*Channel variance*/
 double deviation = 0.0; /*Channel standard deviation*/
 double dB = 0.0; /*Signal to Noise ratio*/
 double mean = 0.0; /*Signal mean*/
 int i, j; /*Local counter variables*/
 int row_wt = 0;
 int status = 0; /*Decoder status bit*/
 int type_decoder = 0; /*Decoder choice*/
 int type_encoder = 0; /*Encoder choice*/
 char filename[200]; /*Input filename containing
parity check matrix*/

 system("cls");

 //Simulator Engine
 printf(" ************* LDPC Simulator ***************\n");

 //Get encoder options from user
 printf("Encoding Options:\n");
 printf(" 1. Load Parity Check Matrix from file\n");
 printf(" 2. Generate Parity Check Matrix");
 while (type_encoder < 1 && type_encoder > 2){
 printf("Enter a number between 1-2: ");
 scanf("%d", &type_encoder);
 }
 switch(type_encoder){
 case 1:
 while(fp =
fopen("C://Project//ldpc//Debug//pchk_matrix_8_12.txt","r");
 printf("Enter filename: ");

 //Get decoder option from user
 printf("Available Decoders:\n");
 printf(" 1. Sum Product Algorithm\n");

Chapter 2 Fundamentals of Error Correcting Coding

47

 printf(" 2. Bit Flipping Algorithm\n");
 printf(" 3. Majority Logic Algorithm\n");
 printf("Enter Decoder number: ");
 scanf("%d", &type_decoder);
 while (type_decoder < 1 && type_decoder > 3){
 printf("Enter a number between 1-3: ");
 scanf("%d", &type_decoder);
 }

 //Load parity check matrix from file
 //File contents to be:
 //nrows ncols
 //H00.......H0ncols
 // . .
 //Hnrows0...Hnrowsncols
 //fp = fopen("C://Project//ldpc//Debug//pchk_matrix_3_7.txt","r");
 //fp =
fopen("C://Project//ldpc//Debug//pchk_matrix_6_12.txt","r");
 fp = fopen("C://Project//ldpc//Debug//pchk_matrix_8_12.txt","r");
 //fp =
fopen("C://Project//ldpc//Debug//pchk_matrix_816_408.txt","r");

 //fp =
fopen("C://Project//ldpc//Debug//pchk_matrix_15_15.txt","r");
 if (fp == NULL){
 printf("Error: Could not open input file ...\n");
 exit(0);
 }

 //Get matrix dimensions
 fscanf(fp, "%d %d", &pchk_rows, &pchk_cols);

 //Calculate code dimensions
 n = pchk_cols;
 k = n - pchk_rows;
 code_rate = (double)k / (double)n;

 //Allocate Parity Check matrix memory space
 pchk_matrix = malloc(pchk_rows * sizeof(int *));
 if(pchk_matrix == NULL){
 printf("Error: failed to allocate memory for pchk_matrix
matrix\n");
 exit(1);
 }
 for(i = 0; i < pchk_rows; i++){
 pchk_matrix[i] = malloc(n * sizeof(int *));
 if(pchk_matrix[i] == NULL){
 printf("Error: failed to allocate memory for
pchk_matrix row\n");
 exit(1);
 }
 }

 //Populate Parity Check matrix data
 for(i = 0; i < pchk_rows; i++){

Chapter 2 Fundamentals of Error Correcting Coding

48

 for(j = 0; j < n; j++){
 fscanf(fp, "%d", &pchk_matrix[i][j]);
 }
 }
 //Allocate Parity Check matrix memory space
 gen_matrix = malloc(k * sizeof(int *));
 if(gen_matrix == NULL){
 printf("Error: failed to allocate memory for gen_matrix
matrix\n");
 exit(1);
 }
 for(i = 0; i < k; i++){
 gen_matrix[i] = malloc(n * sizeof(int *));
 if(gen_matrix[i] == NULL){
 printf("Error: failed to allocate memory for
gen_matrix row\n");
 exit(1);
 }
 }

 //Initialise the generator matrix
 ZeroMatrix(gen_matrix, k, n);

 //Allocate memory for codeword vector
 codeword = (int *)malloc(sizeof(int) * n);
 if(codeword == NULL){
 printf("Error: failed to allocate memory for codeword
vector\n");
 exit(1);
 }
 //Allocate memory for codeword vector
 original = (int *)malloc(sizeof(int) * k);
 if(original == NULL){
 printf("Error: failed to allocate memory for codeword
vector\n");
 exit(1);
 }
 //Allocate memory for decoded vector
 decoded = (int *)malloc(sizeof(int) * n);
 if(decoded == NULL){
 printf("Error: failed to allocate memory for decoded
vector\n");
 exit(1);
 }

 //Allocate memory for received codeword vector
 received = (double *)malloc(sizeof(double) * n);
 if(received == NULL){
 printf("Error: failed to allocate memory for received
vector\n");
 exit(1);
 }

Chapter 2 Fundamentals of Error Correcting Coding

49

 //For testing set codeword to zero vector
 ZeroIntVector(codeword, n);
 ZeroIntVector(original, k);
 PrintIntCodeword(codeword, n);

 //Convert the codeword to bpsk
 BSCtoBKSP(codeword, n);

 PrintIntCodeword(codeword, n);
 PrintIntMatrix(pchk_matrix, pchk_rows, n); /*DELETE AFTER
TESTING*/

 for(dB = DB_INIT; dB < DB_MAX; dB += DB_INC){
 printf("db: %lf\n", dB);
 //Initialise received vector
 ZeroVector(received, n);

 //Calculate variance for current SNR
 variance = 1.0/(2.0*code_rate*pow(10.0,dB/10.0));

 //Calculate standrad deviation
 deviation = sqrt(variance);

 //Add White Guassian Noise
 AddWhiteGaussianNoise(codeword, received, n, variance,
mean);
 printf("Sent: ");
 PrintIntCodeword(codeword, n);
 //printf("Received: ");
 //PrintCodeword(received, n);

 //Run Decoders
 switch(type_decoder){
 case 1: status = SumProduct(pchk_matrix, received,
decoded, pchk_rows, n, deviation);
 break;
 case 2: status = BitFlipping(pchk_matrix, received,
decoded, pchk_rows, n);
 break;
 case 3: status = OneStepMajorityLogic(pchk_matrix,
received, decoded, pchk_rows, n);
 break;
 default:
 printf("Error: Unable to resolve decoder
type.\n");
 }

 printf("Last: ");
 PrintIntCodeword(decoded, n);
 if(status == 1)
 printf("Decoded\n");
 else
 printf("Unresolved\n");

Chapter 2 Fundamentals of Error Correcting Coding

50

 bit_error = BitErrorRate(original, decoded, n);

 printf("BER: %lf\n", bit_error);
 }

 //Close open file pointers
 fclose(fp);

 //Free used memory
 FreeIntMatrix(pchk_matrix, pchk_rows);
 free(codeword);
 free(decoded);
 free(received);
}

/* ************* Generator Matrix Production Methods ************/
int MakeGenerator(int **pchk_matrix, int **gen_matrix, int rows, int n,
int k){
 int **temp_matrix = NULL; //working matrix
 int state = 0; //Function state variable fail
= 0 success = 1
 int rowIdx = 0; //Row index of a matrix
 int i, j; //Local counter variables

 temp_matrix = malloc(rows * sizeof(int *));
 if(temp_matrix == NULL){
 printf("Error: failed to allocate memory for temp_matrix
matrix\n");
 exit(1);
 }
 for(i = 0; i < rows; i++){
 temp_matrix[i] = malloc(n * sizeof(int *));
 if(temp_matrix[i] == NULL){
 printf("Error: failed to allocate memory for
temp_matrix row\n");
 exit(1);
 }
 }
 //Initialise temp matrix to parity check matrix
 for(i = 0; i < rows; i++){
 for(j = 0; j < n; j++){
 temp_matrix[i][j] = pchk_matrix[i][j];
 }
 }

 //Make temp matrix lower triangular
 for(i = 0; i < rows; i++){
 //Ensure curent matrix data starts with a 1
 if(temp_matrix[i][i] == 0){
 //Find the next row with a 1 in the column and swap
 rowIdx = FindRowdata(temp_matrix, 1, i+1, rows, i, 1);

 if(rowIdx < 0){
 printf("Error: unable to make generator matrix
from parity check matrix\n");

Chapter 2 Fundamentals of Error Correcting Coding

51

 printf("Reason: no row to swap to make H lower
triangular\n");
 return state ;
 }
 else {
 SwapRows(temp_matrix, i, rowIdx, n);
 }
 }
 //Ensure each row below current row does not start have a 1
for this column
 for(j = i+1; j < rows; j++){
 if(temp_matrix[j][i] == 1){
 AddRows(temp_matrix, i, j, n);
 }
 }
 }

 //Make temp matrix upper triangular
 for(i = rows-1; i >= 0; i--){
 //Ensure each row below current row does not start have a 1
for this column
 for(j = i-1; j >= 0; j--){
 if(temp_matrix[j][i] == 1){
 AddRows(temp_matrix, i, j, n);
 }
 }
 }

 //Take Parity submatrix and transpose into generator matrix
 for(i = 0; i < rows; i++){
 for(j = rows; j < n; j++){
 gen_matrix[j-rows][i] = temp_matrix[i][j];
 }
 }

 //Add Identity matrix to generator matrix
 for(i = 0; i < k; i++){
 gen_matrix[i][i+rows] = 1;
 }
 state = 1;

 return state;
}

void SwapRows(int **matrix, int rowIdx1, int rowIdx2, int cols){
 int temp;
 int i;

 for(i = 0; i < cols; i++){
 temp = matrix[rowIdx1][i];
 matrix[rowIdx1][i] = matrix[rowIdx2][i];
 matrix[rowIdx2][i] = temp;
 }
}

Chapter 2 Fundamentals of Error Correcting Coding

52

//Add content of row1 and row2 and put result into row2
void AddRows(int **matrix, int rowIdx1, int rowIdx2, int cols){
 int i;
 //Only 2 canges to make 1+1->0 & 1+0->1
 //no changes for 0+0->0 & 0+1->1
 for(i = 0; i < cols; i++){
 if(matrix[rowIdx1][i] == 1 && matrix[rowIdx2][i] == 1){
 matrix[rowIdx2][i] = 0;
 } else if(matrix[rowIdx1][i] == 1 && matrix[rowIdx2][i] ==
0){
 matrix[rowIdx2][i] = 1;
 }
 }
}

//Find data in a matrix given a starting position
int FindRowdata(int **matrix, int data, int rowSt, int rows, int colIdx,
int dir){
 int i;
 int rowIdx = -1;

 if(dir > 0){
 for(i = rowSt; i < rows; i++){
 if(matrix[i][colIdx] == data){
 rowIdx = i;
 break;
 }
 }
 } else {
 for(i = rowSt; i >= 0; i--){
 if(matrix[i][colIdx] == data){
 rowIdx = i;
 break;
 }
 }
 }

 return rowIdx;
}

/* ***************** Decoding Methods ************************* */
int BitFlipping(int **matrix, double *codeword, int *decoded, int nrows,
int ncols){
 int *check_fails = NULL;
 double currentBit = 0.0;
 double sum = 0.0;
 int syndrome = 0;
 int iteration = 1;
 int maxFailed = 0;
 int i, j, k;

 //Create Check Failure vector

Chapter 2 Fundamentals of Error Correcting Coding

53

 for(i = 0; i < ncols; i++)
 check_fails = (int *)malloc(sizeof(int) * ncols);
 if(check_fails == NULL){
 printf("Error: failed to allocate memory for
check_fails\n");
 exit(1);
 }

 //Convert to hard decision quantized form
 HardDecision(decoded, codeword, ncols);

 /*Commence decoding iterations*/
 do{
 //Check if codeword passes syndrome test
 syndrome = SyndromeTest(matrix, decoded, nrows, ncols);

 //If sydrome test failed - find and replace incorrect
message bits
 //For each message bit
 for(j = 0; j < ncols; j++){
 //Get the current message bit
 currentBit = decoded[j];
 //Find a link to a check node
 for(i = 0; i < nrows; i++){
 if(matrix[i][j] == 1){
 //Find the links to the variable nodes
 for(k = 0; k < ncols; k++){
 if(k != j && matrix[i][k] == 1)
 //Add the message bits
 sum = sum + decoded[k];
 }
 //Compare sum to original bit
 if(currentBit != fmod(sum , 2)){
 //Sum is incorrect increment the
failure count
 check_fails[j]++;
 }
 sum = 0;
 }
 }
 }

 //Find the bits with largest failed checksums
 for(j = 0; j < ncols; j++){
 if(check_fails[j] > maxFailed)
 maxFailed = check_fails[j];
 }

 //Flip the bits having the largest failure rate
 for(j = 0; j < ncols; j++){
 if(check_fails[j] == maxFailed)
 decoded[j] = (int)fmod((decoded[j] + 1), 2.0);
 }
 maxFailed = 0;

Chapter 2 Fundamentals of Error Correcting Coding

54

 iteration++;
 //Reset failure counter
 for(i = 0; i < ncols; i++){
 check_fails[i] = 0;
 }
 //Reset maximum failure counter
 maxFailed = 0;
 }while (iteration < MAX_ITERATION && syndrome != 1);

 //Free allocated memory
 free(check_fails);

 return syndrome;
}

int SumProduct(int **matrix, double *codeword, int *decoded, int nrows,
int ncols, double ch_dev){
 //Variables
 double **p0 = NULL; /*Pointer to P0ij probabilities*/
 double **p1 = NULL; /*Pointer to P1ij probabilities*/
 double **deltaP = NULL; /*Pointer to P deltas*/
 double **deltaQ = NULL; /*Pointer to Q deltas*/
 double **q0 = NULL; /*Pointer to Q0ij probabilities*/
 double **q1 = NULL; /*Pointer to Q1ij probabilities*/
 double *f0 = NULL; /*Gaussian probability function for
0 bit*/
 double *f1 = NULL; /*Gaussian probability function for
1 bit*/
 double *soft0 = NULL; /*soft codeword probability for bit 0*/
 double *soft1 = NULL; /*soft codeword probability for bit 1*/
 int i, j, k; /*local variables*/
 int syndrome = 0; /*syndrome test flag*/
 int iteration = 1; /*number of iterations*/
 int num_data = 0; /*number of data bits*/
 double coeff0 = 0.0; /*scaling coefficient for bit 0*/
 double coeff1 = 0.0; /*scaling coefficient for bit 1*/
 double column_sum = 0.0;/*matrix column data sum*/

 /*Create message bit vectors */
 soft0 = (double *)malloc(sizeof(double) * ncols);
 if(soft0 == NULL){
 printf("Error: failed to allocate memory for softc\n");
 exit(1);
 }
 soft1 = (double *)malloc(sizeof(double) * ncols);
 if(soft1 == NULL){
 printf("Error: failed to allocate memory for softc\n");
 exit(1);
 }

 /*Create Gaussian probability density function vectors*/
 f0 = (double *)malloc(sizeof(double) * ncols);
 if(f0 == NULL){
 printf("Error: failed to allocate memory for f0\n");
 exit(1);

Chapter 2 Fundamentals of Error Correcting Coding

55

 }
 f1 = (double *)malloc(sizeof(double) * ncols);
 if(f1 == NULL){
 printf("Error: failed to allocate memory for f1\n");
 exit(1);
 }

 /*Allocate space for algorithm variables*/
 /*prior probabilities*/
 p0 = (double **)malloc(sizeof(double *) * nrows);
 if(p0 == NULL){
 printf("Error: failed to allocate memory for p0\n");
 exit(1);
 }
 for(i = 0; i < nrows; i++){
 p0[i] = (double *)malloc(sizeof(double) * ncols);
 if(p0[i] == NULL){
 printf("Error: failed to allocate memory for p0\n");
 exit(1);}
 }

 p1 = (double **)malloc(sizeof(double *) * nrows);
 if(p1 == NULL){
 printf("Error: failed to allocate memory for p1\n");
 exit(1);
 }
 for(i = 0; i < nrows; i++){
 p1[i] = (double *)malloc(sizeof(double) * ncols);
 if(p1[i] == NULL){
 printf("Error: failed to allocate memory for p1\n");
 exit(1);
 }
 }

 /*difference equations*/
 deltaP = (double **)malloc(sizeof(double *) * nrows);
 if(deltaP == NULL){
 printf("Error: failed to allocate memory for deltaP\n");
 exit(1);
 }
 for(i = 0; i < nrows; i++){
 deltaP[i] = (double *)malloc(sizeof(double) * ncols);
 if(deltaP[i] == NULL){
 printf("Error: failed to allocate memory for
deltaP\n");
 exit(1);
 }
 }

 deltaQ = (double **)malloc(sizeof(double *) * nrows);
 if(deltaQ == NULL){
 printf("Error: failed to allocate memory for deltaQ\n");
 exit(1);
 }
 for(i = 0; i < nrows; i++){

Chapter 2 Fundamentals of Error Correcting Coding

56

 deltaQ[i] = (double *)malloc(sizeof(double) * ncols);
 if(deltaQ[i] == NULL){
 printf("Error: failed to allocate memory for
deltaQ\n");
 exit(1);
 }
 }

 /*conditional probabilities*/
 q0 = (double **)malloc(sizeof(double *) * nrows);
 if(q0 == NULL){
 printf("Error: failed to allocate memory for q0\n");
 exit(1);
 }
 for(i = 0; i < nrows; i++){
 q0[i] = (double *)malloc(sizeof(double) * ncols);
 if(q0[i] == NULL){
 printf("Error: failed to allocate memory for q0\n");
 exit(1);
 }
 }

 q1 = (double **)malloc(sizeof(double *) * nrows);
 if(q1 == NULL){
 printf("Error: failed to allocate memory for q1\n");
 exit(1);
 }
 for(i = 0; i < nrows; i++){
 q1[i] = (double *)malloc(sizeof(double) * ncols);
 if(q1[i] == NULL){
 printf("Error: failed to allocate memory for q1\n");
 exit(1);
 }
 }

 /* Initialise all algorithm matrices to parity check matrix */
 ResetMatrix(matrix, p0, nrows, ncols);
 ResetMatrix(matrix, p1, nrows, ncols);
 ResetMatrix(matrix, q0, nrows, ncols);
 ResetMatrix(matrix, q1, nrows, ncols);
 ResetMatrix(matrix, deltaP, nrows, ncols);
 ResetMatrix(matrix, deltaQ, nrows, ncols);

 //Calculate the Guassian density probabilities
 for(i = 0; i < ncols; i++)
 f1[i] = 1 /(1+exp((-2*codeword[i])/pow(ch_dev,2)));

 for(i = 0; i < ncols; i++)
 f0[i] = 1 - f1[i];

 /*calculate the q1ij probabilities*/
 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 if(q1[i][j] != 0)

Chapter 2 Fundamentals of Error Correcting Coding

57

 q1[i][j] *= f1[j];
 }
 }

 //calculate the q0ij probabilities
 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 if(q0[i][j] != 0)
 q0[i][j] *= f0[j];
 }
 }

 /*Commence decoding iterations*/
 do{

 //Convert to hard decision quantized form
 HardDecision(decoded, codeword, ncols);

 //Check if codeword passes syndrome test
 syndrome = SyndromeTest(matrix, decoded, nrows, ncols);

 //Calculate the probability deltas
 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 deltaQ[i][j] = q0[i][j] - q1[i][j];
 }
 }

 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 if(deltaP[i][j] != 0){
 for(k = 0; k < ncols; k++){
 if(j != k && deltaP[i][k] != 0){
 deltaP[i][j] *= deltaQ[i][k];
 }
 }
 }
 }
 }

 //Calculate p values
 for(i = 0; i < nrows; i++){
 for(j= 0; j < ncols; j++){
 if(p0[i][j] != 0){
 p0[i][j] *= (0.5 * (1 + deltaP[i][j]));
 p1[i][j] *= (0.5 * (1 - deltaP[i][j]));
 }
 }
 }

 //calculate the coefficients
 for(i = 0; i < ncols; i++){
 for(j = 0; j < nrows; j++){
 if(matrix[j][i] != 0){
 coeff0 = 1.0;

Chapter 2 Fundamentals of Error Correcting Coding

58

 coeff1 = 1.0;
 for(k = 0; k < nrows; k++){
 if(j != k && matrix[k][i] != 0){
 coeff0 *= p0[k][i];
 coeff1 *= p1[k][i];
 }
 }
 coeff0 *= f0[i];
 coeff1 *= f1[i];
 q0[j][i] = coeff0 /(coeff0 + coeff1);
 q1[j][i] = coeff1 /(coeff0 + coeff1);
 }
 }
 }

 //Generate new soft codewords for each bit
 for(i = 0; i < ncols; i++){
 soft0[i] = 1;
 soft1[i] = 1;
 for(j = 0; j < nrows; j++){
 if(p0[j][i] != 0){
 soft0[i] *= p0[j][i];
 soft1[i] *= p1[j][i];
 }
 }
 soft0[i] *= f0[i];
 soft1[i] *= f1[i];
 //Hard code the new codeword
 if(soft1[i] > soft0[i])
 decoded[i] = 1;
 else
 decoded[i] = 0;
 }

 //Reset matrices
 ResetMatrix(matrix, deltaP, nrows, ncols);
 ResetMatrix(matrix, deltaQ, nrows, ncols);
 ResetMatrix(matrix, p0, nrows, ncols);
 ResetMatrix(matrix, p1, nrows, ncols);

 iteration++;
 } while(iteration <= MAX_ITERATION && syndrome != 1);

 //Free allocated memory
 FreeMatrix(p0, nrows);
 FreeMatrix(p1, nrows);
 FreeMatrix(deltaP, nrows);
 FreeMatrix(deltaQ, nrows);
 FreeMatrix(q0, nrows);
 FreeMatrix(q1, nrows);
 free(soft0);
 free(soft1);

 return syndrome;

Chapter 2 Fundamentals of Error Correcting Coding

59

}

int OneStepMajorityLogic(int **matrix, double *codeword, int *decoded,
int nrows, int ncols){
 // int iteration = 1; /*Iteration counter*/
 //int syndrome = 0; /*Syndrome test status flag*/
 //int col_wt = 0; /*Parity check matrix column
weight*/
 //int err_wt = 0; /*Error column weight*/
 //int pass = 0; /*Orthogonal pass flag*/
 //int ***Errors = NULL; /*3d Error matrix*/
 //int **Used = NULL; /*Tracking matrix*/
 //int *Erows = NULL; /*Number of rows in each Error
matrix*/
 //int i, j, k, l, m, n; /*Local counter variables*/

 //printf("**********Entering One Step Majority Logic
Decoder***********\n"); /*DELETE AFTER TESTING*/

 ////Create Error matrix
 //Errors = (int ***)malloc(sizeof(int **) * ncols);
 //if(Errors == NULL){
 // printf("Error: failed to allocate memory for Error
matrix\n");
 // exit(1);
 //}
 //for(i = 0; i < ncols; i++){
 // Errors[i] = (int **)malloc(sizeof(int *) * nrows);
 // if(Errors[i] == NULL){
 // printf("Error: failed to allocate memory for Error
Matrix row\n");
 // exit(1);
 // }
 // for(j = 0; j < nrows; j++){
 // Errors[i][j] = (int *)malloc(sizeof(int) * ncols);
 // if(Errors[i][j] == NULL){
 // printf("Error: failed to allocate memory for
Error Matrix column\n");
 // exit(1);
 // }
 // }
 //}

 ////Create tracking matrix
 //Used = (int **)malloc(sizeof(int *) * nrows);
 //if(Used == NULL){
 // printf("Error: failed to allocate memory for Used
matrix\n");
 // exit(1);
 //}
 // for(i = 0; i < nrows; i++){
 // Used[i] = (int *)malloc(sizeof(int) * ncols);
 // if(Used[i] == NULL){
 // printf("Error: failed to allocate memory for Used matrix
row\n");

Chapter 2 Fundamentals of Error Correcting Coding

60

 // exit(1);}
 //}

 ////Initialise tracking matrix to the parity check matrix
 //for(i = 0; i < nrows; i++){
 // for(j = 0; j < ncols; j++)
 // Used[i][j] = matrix[i][j];
 //}

 ////Create Error rows vector
 //Erows = (int *)malloc(sizeof(int) * ncols);
 //if(Erows == NULL){
 // printf("Error: failed to allocate memory for Error rows
vector\n");
 // exit(1);
 //}

 ////Transfer Parity check matrix base vectors to Error matrix
 //for(i = 0; i < ncols; i++){
 // col_wt = 0;
 // for(j = 0; j < nrows; j++){
 // if(matrix[j][i] == 1){
 // col_wt++;
 // for(k = 0; k < ncols; k++){
 // Errors[i][col_wt-1][k] = matrix[j][k];
 // }
 // }
 // }
 // Erows[i] = col_wt;
 //}

 ////Make Error vectors orthogonal
 //for(i = 0; i < ncols; i++){ //for each bit in the codeword
 // do{
 // for(j = 0; j < Erows[i]; j++){
 //for each row in the error matrix
 // for(k = 0; k < ncols; k++){
 //for each bit in the Error matrix row
 // if(k != i){
 //do not check the same as the current codeword bit
 // if(Errors[i][j][k] == 1){
 //check if the bit is a 1
 // err_wt++;
 //keep the total of ones in this Error matrix column
 // }
 // if(err_wt > 1){
 //if more than one 1
 // for(l = 0; l < nrows; l++){
 //Find a row in the Used matrix where
 // if(Used[l][i] == 0 &&
Used[l][k] == 1){ //the row has not been used and has a 1 in the current
column
 // //Add the Used row
to the Error row using binary addition

Chapter 2 Fundamentals of Error Correcting Coding

61

 // for(m = 0; m <
ncol; m++){
 //
 Errors[i][j][m] = XOR(Errors[i][j][m],Used[l][m]);
 // }
 // //Set the Used
matrix current codeword bit to a 1 to indicate the row has been used
 // Used[l][i] = 1;
 // }
 // }
 // }

 // }
 // }
 // err_wt = 0;
 // }
 // }while(pass != 1);
 //}

 ////Display Error Matrix DELETE AFTER TEST
 //for(i = 0; i < ncols; i++){
 // printf("\n\n%d:\n", i+1);
 // for(j = 0; j < Erows[i]; j++){
 // for(k = 0; k < ncols; k ++){
 // printf("%d ", Errors[i][j][k]);
 // }
 // printf("\n");
 // }
 //}
 //

 //do{
 //
 //iteration++;
 //}while(iteration <= MAX_ITERATION && syndrome != 1);

 //
 //return syndrome;
return 0;
}

/**************** Common Methods ***********************/
//Display the matrix
void PrintIntMatrix(int **matrix, int nrows, int ncols){
 int i, j;

 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 printf("%d ", matrix[i][j]);
 }
 printf("\n");
 }
}

Chapter 2 Fundamentals of Error Correcting Coding

62

//Display a matrix
void PrintMatrix(double **matrix, int nrows, int ncols){
 int i, j;

 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 printf("%2.4f ", matrix[i][j]);
 }
 printf("\n");
 }
 printf("\n\n");
}
//Output code to file
void FileOutput(FILE *fp, char type, double *codeword, int ncols){
 int i;
 fprintf(fp, " %c: ", type);
 for(i = 0; i < ncols; i++){
 fprintf(fp, "%d", (int)codeword[i]);
 }
}
//Display the message
void PrintCodeword(double *codeword, int length){
 int i;

 for(i = 0; i < length; i++){
 printf("%2.4lf ", codeword[i]);
 }
 printf("\n");
}

void PrintIntCodeword(int *codeword, int length){
 int i;

 for(i = 0; i < length; i++){
 printf("%d ", codeword[i]);
 }
 printf("\n");
}

//Free matrix memory
void FreeMatrix(double **matrix, int nrows){
 int i;

 for(i = 0; i < nrows; i++)
 free(matrix[i]);

 free(matrix);
}

void FreeIntMatrix(int **matrix, int nrows){
 int i;

 for(i = 0; i < nrows; i++)
 free(matrix[i]);

Chapter 2 Fundamentals of Error Correcting Coding

63

 free(matrix);
}

//Calculate the BER for the signal
double BitErrorRate(int *original, int *current, int length){
 int errors = 0;
 int i;

 for(i = 0; i < length; i++){
 if(current[i] != original[i])
 errors++;
 }

 return((double)errors / (double)length);
}

//Conduct syndrome test for cH = 0
int SyndromeTest(int **matrix, int *codeword, int nrows, int ncols){
 int pass = -1;
 int rowsum = 0;
 int multi = 0;
 int i, j;

 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++){
 multi += (codeword[j] * matrix[i][j]);
 }
 rowsum = (multi % 2);

 if(rowsum > 0)
 pass = 1;
 }
 return pass;
}

//Add AWGN noise using Box-Muller method to codeword
void AddWhiteGaussianNoise(int *codeword, double *received, int length,
double variance, double mean){
 double s1, s2, rand_n, r, noise;
 int i;

 srand((int) time(NULL));

 for(i = 0; i < length; i++){
 do {
 rand_n = (rand() / (double)RAND_MAX);
 s1 = rand_n * 2.0 - 1.0;
 rand_n = (rand() / (double)RAND_MAX);
 s2 = rand_n * 2.0 - 1.0;

 r = s1 * s1 + s2 * s2;

 } while(r >= 1.0 || r == 0.0);

Chapter 2 Fundamentals of Error Correcting Coding

64

 noise = mean + sqrt(variance) *(s1 * sqrt((-2.0 * log(r))
/ r));

 received[i] = codeword[i] + noise;
 }
}

//Convert message bits to either 0 or 1
void HardDecision(int *hardcode, double *softcode, int length){
 int i;

 for(i = 0; i < length; i++){
 if (softcode[i] <= MID)
 hardcode[i] = LOW;
 else
 hardcode[i] = HIGH;
 }
}

//Zeroise matrix data
void ZeroMatrix(double **matrix, int nrows, int ncols){

 int i, j;

 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++)
 matrix[i][j] = 0;
 }
}
//Zero a double type vector
void ZeroVector(double *vector, int ncols){
 int i;

 for(i = 0; i < ncols; i++)
 vector[i] = 0.0;
}
//Zero an int vector
void ZeroIntVector(int *vector, int ncols){
 int i;

 for(i = 0; i < ncols; i++)
 vector[i] = 0;
}

void ResetMatrix(int **pchk_matrix, double **matrix, int nrows, int
ncols){
 int i, j;

 for(i = 0; i < nrows; i++){
 for(j = 0; j < ncols; j++)
 matrix[i][j] = (double)pchk_matrix[i][j];
 }
}

void BSCtoBKSP(int *codeword, int ncols){

Chapter 2 Fundamentals of Error Correcting Coding

65

 int i;

 for(i = 0; i < ncols; i++){
 if(codeword[i] < 0.5)
 codeword[i] = -1;
 else
 codeword[i] = 1;
 }
}

void BKSPtoBSC(int *codeword, int ncols){
 int i;

 for(i = 0; i < ncols; i++){
 if(codeword[i] < 0)
 codeword[i] = 0;
 else
 codeword[i] = 1;
 }
}

int XOR(int a, int b){
 return (a == b) ? 0 : 1;
}

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#pragma once

#include "targetver.h"

#include <stdio.h>
#include <tchar.h>

// TODO: reference additional headers your program requires here

//random.c: Initial code to generate random LDPC codes

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAX_CYCLE 100

void printMatrix(int **matrix, int rows, int cols);

Chapter 2 Fundamentals of Error Correcting Coding

66

void zeroMatrix(int **matrix, int rows, int cols);

int main(void){
 int i, j;
 int a, b, c;
 int n, k;
 int code_len = 0;
 int message_len = 0;
 int col = 0;
 int row = 0;
 int col_weight = 0;
 int row_weight = 0;
 int rows = 0;
 float rate = 0.0;
 int numcodes = 1;
 int remainder = 0;
 int result = 0;
 int cur_colweight = 0;
 int cur_rowweight = 0;
 int commonbit = 0;
 int index = 0;
 int random_idx = 0;
 int type = 0; //0 = regular 1 = irregular
 int addcol = 0;
 int cycle = 0;
 int chkcol = 0;
 int chkrow = 0;

 printf("Enter code length:");
 scanf("%d", &code_len);

 printf("Enter message length:");
 scanf("%d", &message_len);

 //calculate rate
 rate = message_len / code_len;

 printf("Enter column weight:");
 scanf("%d", &col_weight);

 //Calculate the number of rows required
 rows = code_len - message_len;

 //Ensure column weight is less than message length
 if(col_weight > rows){
 printf("Error: colweight can not be larger than message length");
 exit(0);
 }

 //Determine if H will be regular or irregular
 if((code_len % rows) == 0)
 type = 0;
 else
 type = 1;

Chapter 2 Fundamentals of Error Correcting Coding

67

 // Calculate row_weight
 //If regular all rows = row_weight else
 // Top half of H = row_weight + 1
 // Bottom half of H = row_weight
 row_weight = (int)(col_weight * code_len)/rows;
 printf("Calc row weight = %d\n", row_weight);
 //Allocate memory space for parity check matrix
 int **pchk_matrix = malloc(rows * sizeof(int *));
 for(i = 0; i < rows; i++){
 pchk_matrix[i] = malloc(code_len * sizeof(int *));
 }

 //Determine candidate submatrices of H
 //Create an array for the candidate binary tuple
 float *candidate = malloc(rows * sizeof(float));

 //Determine the total number of possible codewords
 numcodes = pow(2,rows);

 //Create a matrix of candidate tuples
 float **candidate_matrix = malloc(numcodes * sizeof(float *));
 //Check each n tuple as a candidate
 for(i = 0; i < numcodes; i++){
 result = i;
 //Convert int to binary array
 for(j = rows - 1; j >= 0; j--){
 remainder = result % 2;
 result = result / 2;
 //Load candidate array with binary representation
 candidate[j] = remainder;
 //Count the number of information bits
 if(remainder == 1){
 cur_colweight++;
 }
 }
 //Reset remainder
 remainder = 0;
 //If the number of info bit = column weight n tuple is a candidate
 if(cur_colweight == col_weight){
 //Add candidate tuple to the candidate matrix
 candidate_matrix[index] = malloc(rows * sizeof(float *));
 for(j = 0; j < rows; j++){
 candidate_matrix[index][j] = candidate[j];
 }
 index++;
 }
 //Reset column weight counter
 cur_colweight = 0;
 }
 printf("There are %d rows\n", rows);
 //Ensure all nodes are zero
 zeroMatrix(pchk_matrix, rows, code_len);

 //Seed random number
 srand(time(NULL));

Chapter 2 Fundamentals of Error Correcting Coding

68

 //random code construction
 for(i = 1; i <= code_len; i++){
 //First column all zeros
 //For each column choose a number that has a binary representation
equal to colweight as a candidate
 do{

 random_idx = rand() % index;
 chkcol = 1;
 chkrow = 0;
 addcol = 0;

 //Check that the candidate has only one 1 in common with any
other column
 for(a = 0; a < i; a++){
 commonbit = 0;
 for(b = 0; b < rows; b++){
 if(pchk_matrix[b][a] != 0 &&
candidate_matrix[random_idx][a] != 0)
 commonbit++;
 }
 if(commonbit > 1){
 chkcol = 0;
 break;
 }else{
 chkcol = 1;
 }
 }

 //Check matrix row weight does not exceed required row weight
 for(b = 0; b < rows; b++){
 cur_rowweight = 0;
 //printf("Row: %d ", b);
 for(a = 0; a < i; a++){

 cur_rowweight +=(int)pchk_matrix[b][a];
 // printf("%d ", (int)pchk_matrix[b][a]);

 }
 cur_rowweight += (int)candidate_matrix[random_idx][a];
 //printf(" mrw = %d ", cur_rowweight);

 // printf(" cm %d ", (int)candidate_matrix[random_idx][a]);
 //printf(" crw = %d ", cur_rowweight);
 if(cur_rowweight > row_weight){
 // printf("no\n");
 chkrow = 0;
 break;
 } else {
 //printf("ok\n");chkcol != 1 &&
 chkrow = 1;
 }
 }
 if (chkrow == 1)

Chapter 2 Fundamentals of Error Correcting Coding

69

 addcol = 1;

 } while (addcol == 0);

 for(j = 0; j < rows; j++){
 pchk_matrix[j][i-1] = candidate_matrix[random_idx][j];
 }
 printf("add col: %i\n", i);
 printMatrix(pchk_matrix, rows, code_len);

 }

 for(i = 0; i < rows; i++){
 free(pchk_matrix[i]);
 }
 for(i = 0; i < index; i++){
 free(candidate_matrix[i]);
 }
 free(candidate);
 exit(0);
}

 void zeroMatrix(int **matrix, int rows, int cols){
 int i, j;

 for(i = 0; i < rows; i++){
 for(j = 0; j < cols; j++){
 matrix[i][j] = 0;
 }
 }
 }

void printMatrix(int **matrix, int rows, int cols){
 int i, j;

 for(i = 0; i < rows; i++){
 for(j = 0; j < cols; j++){
 printf("%d ", matrix[i][j]);
 }
 printf("\n");
 }

}

