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Abstract 

LDPC codes were first introduced by Robert Gallager in 1960. Due to the complexity of 
the codes and the limitations of the then rudimentary computer resources the codes were 
neglected as a viable form of FEC. LDPC codes were rediscovered by Tanner in 1981 
when he generalized the codes and provided a means of graphical representation of LDPC 
codes. LDPC codes were again neglected until the work of MacKay et al in the mid to late 
1990’s resurrected interest in the codes when they were discovered to out perform the then 
premium Turbo codes. 
 
This dissertation specifically describes the process of encoding and decoding LDPC codes 
and demonstrates the performance comparison between the various types of decoders in 
terms of bit error rate performance factors.  
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Chapter 1  

Introduction 

 

Chapter 1 Introduction 

1.1 Overview 

The theories and applications of error correcting codes (ECC) originate from the weight 

and power limitations imposed on the early space vehicles. High power transmitters were 

not able to be incorporated into the craft and as such the transmissions home would be 

greatly affected by noise and attenuation. Therefore a method had to be devised to allow 

the efficient and effective correction of data errors induced into the signals. To counter this 

unwanted situation, error correcting codes incorporated redundancy into the original data 

that then enabled the receiver to find and correct bit errors occurring in the transmission. 

In modern computer communications there has been a drive by both individual users and 

especially commercial users to transmit and store increased levels of data. To facilitate this 

desire new techniques have been employed to increase the data density via compression. 

Applications such as High Definition television, mobile cellular telephony, satellite 

communications and Digital Versatile Disks all utilize some form of ECC to enable a high 

level of data accuracy in order to allow the recreation of the original data at the receiver.  

Iterative decoding is one of the most powerful techniques employed in modern ECC 

algorithms (Dechter et al, 2003). Low-density parity-check (LDPC) codes and Turbo codes 

are two ECCs based on iterative decoding, this technique will be detailed in Chapter 2. 

LDPC codes have recently been developed that allow data transmission rates close to the 
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Shannon Limit (Berou et al, 1993), the theoretical upper limit of the ratio of information to 

redundancy required for accurate transmission over a particular noisy channel. 

 

1.2 Wireless communications 

Wireless communications were born in February 1896 when Guglielmo Marconi 
journeyed from Italy to England in order to demonstrate to the British telegraph 
authorities what he had developed in the way of an operational wireless telegraph 
apparatus. The first wireless systems allowed communications at distances of only a mile 
or two. The period before the Great War saw small advances in the new technology that 
allowed for ever greater distances to be covered. Throughout the next century, great 
strides were made in wireless communication technology.  
 

Table 1:  A timeline of significant achievements in 
wireless communications.  

1896 Marconi develops the first wireless telegraph system. 
1927 First commercial radiotelephone service operated between Britain and the US. 
1946 First automotive mobile telephone set up in St. Louis using push-to-talk technology. 
1948 Shannon publishes his seminal paper A Mathematical Theory of Communication, 

establishing the foundations for source and channel encoding. 
1950 First terrestrial microwave telecommunications system (TD-2) commences. 
1962 The first telecommunication satellite, Telstar, launched into orbit. 
1968 Defense Advanced Research Projects Agency – US (DARPA) selected BBN to 

develop the Advanced Research Projects Agency Network (ARPANET), the 
foundation of today’s Internet. 

1977 Mobile cellular network established by Bell Labs with the Advanced Mobile Phone 
System (AMPS). 

1983 Transmission Control Protocol/Internet Protocol (TCP/IP) designated the official 
protocol for ARPANET. 

1992 One millionth host connected to the internet. 
1998 Bluetooth wireless data communications developed through collaboration of major 

electronics manufacturers. 

(Dubendorf, 2003) 
 
 
 

1.3 Objective of the Project 

The objective of this project is to determine the optimal LDPC encoder/decoder 
combination for any given signal to noise ratio over the Additive Gaussian White Noise 
(AGWN) channel, in terms of Bit Error Rate (BER) and algorithm efficiency. The project 
will also determine the applicability of using LDPC codes in wireless systems.  
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1.4 Structure of the Dissertation 

This dissertation is structured in the following way: 
Chapter 1 - Introduction. The first chapter introduces the reader to wireless 
communications and provides the reasoning behind the dissertation. 
 
Chapter 2 - Error Correcting Coding. A detailed overview of the different methods 
employed in the field of error correcting coding, including block codes, convolutional 
codes, concatenated codes and turbo codes. 
 
Chapter 3 – LDPC Codes. A detailed analysis of low-density parity-check code 
encoding and decoding techniques. 
 
Chapter 4 - Performance comparison of LDPC encoders and decoders. Explanation 
of LDPC simulator software, determination of optimal encoder/decoder combination. 
 
Chapter 5 – Conclusion. Concludes the dissertation and provides recommendations for 
future work. 
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Chapter 2 Fundamentals of Error Correcting Coding 

2.1 History 

In the late 1940s Claude Shannon, a research mathematician at Bell Telephone 

Laboratories, invented a mathematical theory of communication that gave the first 

systematic framework in which to optimally design telephone systems (Shannon, 1948). 

The main questions motivating this were how to design telephone systems to carry the 

maximum amount of information and how to correct for distortions on the lines.  

2.2 Shannon Capacity Limit  

Shannon’s ground-breaking approach to telecommunications introduced a simple 

abstraction of human communication, called the channel. Shannon's communication 

channel consisted of a sender (the source of information), a transmission medium (with 

noise and distortion), and a receiver (whose objective is to reconstruct the original 

message). 

In order to quantitatively analyse transmission through the channel he also introduced a 

measure of the amount of information in a message. For Shannon a message is very 
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informative if the chance of its occurrence is small. If, in contrast, a message is very 

predictable, then it contains a small amount of information. 

To complete his quantitative analysis of the communication channel, Shannon introduced 

the concept of entropy, a quantity that measures a source's information production rate and 

also a measure of the information carrying capacity, called the communication channel 

capacity. 

He showed that if the entropy rate, the amount of information you wish to transmit, exceeds 

the channel capacity, then there were unavoidable and uncorrectable errors in the 

transmission. What was truly surprising, however, is that he also showed that if the sender's 

entropy rate is below the channel capacity, then there is a way to encode the information so 

that it can be received without errors. This is true even if the channel distorts the message 

during transmission. 

The channel capacity for the AWGN channel is determined by the famous formula 

developed by Shannon:  

 )/1(2log NPWC +=  (2.1) 

where: 

C  is capacity (bits per second)  

W  is the bandwidth (Hertz)  

P  is transmitter power (Watts)  

N  is the noise (Watts) 

The channel bandwidth establishes a constraint of how fast symbols can be transmitted 

over the channel. The signal to noise ratio (P/N) determines how much information each 

symbol can represent. The signal and noise power strengths are calculated at the receiver 

end of the channel. Thus, the power level is both a function of transmitted power and that 

of the attenuation of the signal over the transmission channel. 
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2.3 Basic Concepts Of Error Correcting Coding 

Error correcting coding (ECC) (also known as error control coding) is a type of digital 

signal processing that improves data reliability by introducing a known redundancy into a 

data sequence prior to transmission or storage. This redundancy enables a receiving system 

to detect and correct errors caused by corruption through the communication channel. As 

the name implies, this coding technique enables the decoder to correct errors without 

requesting retransmission of the original information. 

A system employing ECC consists of an information source that produces a digital message 

sequence u which is k digits in length. The message is passed to a channel encoder that 

adds the redundant bits, converting the original message into a codeword v of length 

ndigits. Figure 2.1 shows a representation of the structure of a codeword. 

 

Figure 2.1 Systematic format of a codeword. 

The codeword is transmitted through the coding channel by a modulator. Coding channels 

are grouped into two classes being transmission types or storage types. Typical 

transmission types include landline telephony, microwave links, fibre optic cabling, 

satellite communications, high-definition television (HDTV), mobile cellular telephony, 

and so on. Typical storage types include digital versatile discs (DVD), compact discs (CD), 

magnetic hard drives, and so on. Every coding channel has an effect on the transmitted 

codeword due to the presence of noise or attenuation of the signal.  

n – k digits k digits 

Redundant part Message part 

1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1  1 0 0 0 1 0  1 1 1 1 0 0 0 0 1 1 0 0 
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A demodulator converts the received signal r into a readable format for the channel 

decoder that produces the estimated information sequence û . Ideally û  will replicate u  if 

noise has not been introduced by the coding channel. The source decoder utilises the 

redundancy added to the original information to produce an estimate of the message u  

which is sent to the destination. Figure 2.2 shows a block diagram of a typical transmission 

system employing ECC. 

 

Figure 2.2: Block diagram of a typical data transmission system employing ECC. 

 

2.4 Linear Block Codes 

Linear block coding (also known as algebraic coding) was the only type of forward error-

correction coding in use when Claude Shannon published his seminal paper Mathematical 

Theory of Communication (Shannon, 1949). With this technique, the encoder intersperses 

parity bits into the data sequence using particular algebraic algorithms. On the receiving 

end, the decoder applies an inverse of the algebraic algorithm to identify and correct any 

errors caused by channel corruption. 
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In block coding the source information is segmented into messages, represented byu , that 

have k  equal number of information bits. In total there will exist k2 distinct messages, if 

the messages are not distinct the code can not be safely implemented without causing 

ambiguity in determining the original message. The encoder transforms the message u  into 

a n -tuple codeword v , with kn > , by applying certain rules. As there are k2  messages 

there will also be k2  distinct codewords having a one-to-one relationship. In order to 

reduce the complexity of the encoder having to store a large data dictionary when k  and n  

are of a significant length, a special structure is required to represent the set of all 

codewords. The block code is said to be linear if and only if the resultant modulo-2 sum of 

any two codewords exists in the set C of all codewords. An example of a linear block code 

is given in Table 1.  

Table 2: (7, 4) Linear block code 

Message Codeword 

0000 0000000 
0001 1010001 
0010 1110010 
0011 0100011 
0100 0110100 
0101 1100101 
0110 1000110 
0111 0010111 
1000 1101000 
1001 0111001 
1010 0011010 
1011 1001011 
1100 1011100 
1101 0001101 
1110 0101110 
1111 1111111 

 

Because an (n ,k ) linear block code C  is a k -dimensional subspace of the vector space 

nV  of every binary n -tuple, it is possible to find k linearly independent codewords, 0g , 
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1g , Κ , 1−kg , in C  such that every codeword v  is a linear combination of these k  

codewords; thus,  

111100 −−+++= kk guguguv Κ  (2.2) 

where { }1,01 =u  for ki <≤0 .  The k linearly independent codewords can now be arranged 

into a nk×  matrix  in the following form: 
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where ),,,( 1,1,0, −= niiii gggg Κ  for ki <≤0 . If ),,,( 110 −= kuuuu Κ  is the message 

to be encoded then the resultant codeword can be determined by: 
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Guv

Κ

Μ
Κ   (2.4) 

The matrix G  thereby allows the generation of any vcodeword from any given messageu  

from the set of codes inC and therefore is called the generator matrix forC .  

A linear block code can also be expressed in terms of a parity check matrix where for any 

nk×  generator matrix with k linearly independent rows, there exists an nkn ×− )(  matrix 

H with )( kn−  linearly independent rows such that any vector in the row space of G  is 
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orthogonal to the rows of H , and any vector that is orthogonal to the row space of H  is in 

the row space of G , this provides the following equation: 

0=⋅ THv  (2.5) 

The code C is said to be the null space of H . Linear block codes are thereby defined and 

described in terms of either a generator matrix or a parity check matrix.  

2.5 Convolutional Codes 

The forward error correction technique known as convolutional coding was first introduced 

by Elias in his work Coding for Noisy Channels (Elias, 1955). Convolutional codes process 

incoming bits in streams rather than in blocks. The principle feature of such codes is that 

the encoding of any bit is strongly influenced by the bits that preceded it (that is, the 

memory of past bits). A convolutional decoder takes into account such memory when 

trying to estimate the most likely sequence of data that produced the received sequence of 

code bits. Historically, the first type of convolutional decoding, known as sequential 

decoding, used a systematic procedure to search for a good estimate of the message 

sequence; however, such procedures required a great deal of memory, and typically 

suffered from buffer overflow and nongraceful degradation.  

In 1967, Andrew Viterbi developed a decoding technique that has since become the 

standard for decoding convolutional codes (Viterbi, 1967). At each bit-interval, the Viterbi 

decoding algorithm compares the actual received code bits with the code bits that might 

have been generated for each possible memory-state transition. It chooses, based on metrics 

of similarity, the most likely sequence within a specific time frame. The Viterbi decoding 

algorithm requires less memory than sequential decoding because unlikely sequences are 

dismissed early, leaving a relatively small number of candidate sequences that need to be 

stored. 
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2.6 Concatenated Codes 

In 1966, Forney combined the two previous coding techniques to form a concatenated code 

(Forney, 1966). In this arrangement, the encoder linked together an algebraic code followed 

by a convolutional code. The decoder, a mirror image of the encoding operation, consisted 

of a convolutional decoder followed by an algebraic decoder. Thus, any bursty errors 

resulting from the convolutional decoder could be effectively corrected by the algebraic 

decoder. Performance was further enhanced by using an interleaver between the two 

encoding stages to mitigate any bursts that might be too long for the algebraic decoder to 

handle. This particular structure demonstrated significant improvement over previous 

coding systems and is currently being used in the Deep Space Network (Sniffen, 2004) as 

well as numerous other commercial broadcasting services.  

2.7 Iterative Decoding For Soft Decision Codes 

Iterative decoding is defined as a technique employing a soft-output decoding algorithm 

that is iterated several times to improve the error performance of a coding scheme, with the 

aim of approaching true maximum-likelihood decoding (MLD), with less complexity 

(Elias, 1954). After designing the underlying error correcting code, the error performance 

can be improved by simply increasing the number of iterations. In terms of the application 

of iterative decoding algorithms, ECC schemes can be generally categorized into two 

classes, either Turbo codes or Low Density Parity Check (LDPC) codes.  

2.7.1 Turbo Codes 

Turbo codes are a class of error correcting codes that were first introduced in 1993, by a 

group of researchers from France, along with a practical decoding algorithm (Berrou et al, 

1993). The turbo codes are very important in the sense that they enable reliable 

communications with power efficiencies close to the theoretical limit predicted by Claude 

Shannon. Hence, turbo codes have been used for low-power applications such as deep 

space and satellite communications, as well as for interference limited applications such as 

third generation cellular and personal communication services.  
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2.7.2 LDPC Codes 

LDPC codes are a form of linear block codes that were first introduced in 1960 by Robert 

Gallager in his doctoral thesis (Gallager, 1963).  Besides turbo codes, low-density parity-

check (LDPC) codes form another class of Shannon limit-approaching codes. Due to the 

complexity of the encoding and decoding of LDPC codes they were not utilised after the 

time of their discovery for decades. A great deal of research has been conducted recently 

into LDPC codes with the design of very fast encoding and decoding algorithms. The 

design of the codes is such that the decoding algorithms have the ability recover the 

original codeword in the presence of large amounts of noise.  

The construction, encoding and decoding of LDPC codes will be presented in detail in the 

subsequent chapters.  

2.8 Summary 

In this chapter, we outlined the basic concepts of Error Correcting Codes and the Shannon 

capacity limit of a communications channel. A basic explanation of different forms of ECC 

was presented with emphasis on the block coding techniques. LDPC codes have many 

common concepts of operation as other block coding techniques such as Turbo codes. Both 

LDPC and Turbo codes utilise iterative soft output decoding algorithms and both can 

achieve near Shannon limit performance. 
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Chapter 3 LPDC Codes 
 

3.1 Code Description 

Gallager defined an LDPC code as the null space of a sparse parity check matrix H  

(Gallager, 1963). A sparse matrix is one that contains very few 1’s when compared to the 

number of 0’s. The original work by Gallager described what is now known as a regular 

LDPC code, having a parity check matrix H that has constant row weights, denoted by rw  

and constant column weights, denoted by cw . The weighting is determined by the number 

of 1’s contained in the column or row. The values of rw and cw  are to be minor when 

compared to the length of the codeword (n ) and the number of rows in H ( J ). 

Additionally the number of 1’s in common between any two columns of H  can not be 

greater than 1. Figure 3.1 demonstrates a regular LDPC code.   

If the parity check matrix H  contains inconsistent rw or cw  values it is said to be an 

irregular LDPC code. In recent times irregular LDPC codes have been demonstrated to 

achieve remarkable results that were within 0.0045 dB of the Shannon limit (Chung et al, 

2001). 
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Figure 3.1: Regular (20, 3, 4) LDPC code. 

 
3.2 Tanner Graphs 

In 1981 Robert Tanner rediscovered LDPC codes in his work on the use of recursion to 

construct error correcting codes (Tanner, 1981). Tanner utilised bipartite graphs to describe 

the parity check matrix, which are now known as Tanner graphs, which display the 

incidence relationships between the variable codeword bits and the corresponding check-

sum tests.  
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indexes correspond to the row number of the parity check matrix. An edge is contained in 

the graph G  if and only if the variable node nv  is contained in a parity check sumjc . The 

inclusion of a variable node in a check sum is determined by the presence of a 1 in the 

parity check matrix. The graph  G  will never have any two variable nodes or any two 

check nodes connected by an edge. The Tanner graph for the parity check matrix shown in 

Figure 3.1 is shown in Figure 3.2. 

 

Figure 3.2: Tanner graph for (20, 3, 4) LDPC code 

Tanner graphs can be used to estimate codewords of an LPDC code C  by iterative 

probabilistic decoding algorithms, based on either hard or soft decisions, this will be 

examined in section 3.4.3. 

  
3.3 Encoding LDPC codes 

There are two methods employed to encode messages into codewords for LDPC codes, 

both methods require the generation of the parity check matrix H . The algorithms used in 

the construction of parity check matrix H  will be discussed in the following subsections. 
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The first encoding method is through the use of a generator matrix, denoted by G . The 

matrix G  contains the set of constraints that form the parity check equations of the LDPC 

code. A codeword c  is formed by multiplying a source message u  by the matrix G . This 

is represented by the following equation: 

uGc =  (3. 1) 

For a binary code with k  message bits and length n  codewords the generator matrix G  is a 

)( nk ×  binary matrix having the form: 

[ ]T
k AIG =  (3. 2) 

where the sub-matrix TA  is produced by transformingH  into column permuted reduced-

row echelon form using Gauss-Jordan elimination (Larson et al, 2004) such that: 

[ ]knIAH −=   (3. 3) 

where A  will be a kkn ×− )(  binary matrix and knI −  is an identity matrix. The row space 

of G  will be orthogonal to H  so that: 

0=TGH   (3. 4) 

The process of converting H  into the generator matrix G  has the effect of causing  G  to 

lose the sparseness characteristic that was embodied in H . This has the drawback of 

driving the encoder complexity towards )( 2nΟ  (Mackay, 2005). 

An alternative approach to encoding LDPC codes was proposed by Richardson and 

Urbanke based on approximate lower triangulations (Richardson and Urbanke, 2001). This 

method is also a two step process.  



Chapter 2 Fundamentals of Error Correcting Coding 
 

 

17 

Firstly pre-processing is conducted, using only row and column permutations, the parity-

check matrix is put into approximate lower triangular form: 





= EDC

TBAH t   (3. 5) 

such that DBET +− −1  is non-singular. 

The g rows of H  in sub-matricesC , D , and E  is called the gap of the approximate 

triangular representation. The sub-matrix T  is a lower triangular matrix of 

size )()( gmgm −×− . If tH  is full rank the sub-matrix B  is size ggm ×− )(  and sub-

matrix A  is size kgm ×− )( . Keeping the size of the gap low will reduce the encoding 

complexity for the LDPC code.  

Once in lower triangular format, Gauss-Jordan elimination is utilised to clear E , which is 

the equivalent of multiplying tH by 

 








− −
−

g

gm

IET

I
1

0
 

so that 

 












+−+−
=

















−
= −−−

−

0

0
111

~

DBETCAET

TBA
EDC
TBA

IET

I
H

g

gm  

Finally, to encode the message using 
~

H the codeword [ ]ncccc ,,, 21 Κ=  is divided into three 

parts being [ ]21,, ppuc = , where [ ]kuuuu ,,, 21 Κ=  is the k -bit message, 

[ ]
g

pppp 1111 ,,,
21

Κ=  holds the first g  parity check bits and [ ]
gm

pppp
−

= 2222 ,,,
21

Κ  

contains the remaining parity check bits. 
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The codeword c  must satisfy the syndrome test 0
~

=Hc  and so 

021 =++ TpBpAu , (3. 6) 

and 

00 21

~~

=++ ppDuC   (3. 7) 

where CAETC +−= −1
~

 and DBETD +−= −1
~

. 

Since E  has been cleared, the parity bits in 1p  depend only on the message bits, and so can 

be calculated independently of the parity bits in 2p . If 
~

D is invertible, 1p  can be found by 

uCDp
~1~

1

−

= . 

If 
~

D is not invertible the columns of 
~

H can be permuted until it is. By keeping g  as small 

as possible the added complexity load of the matrix multiplication to obtain is kept to a 

minimum. 

Once 1p  is known 2p  can be found by )( 1
1

2 BpAuTp +−= − . The sparseness of A , B  and 

T  can be employed to keep the complexity of this operation low and, as T  is upper 

triangular, 2p  can be found using back substitution. 

3.4 Code Construction 

 
3.4.1 Random Generation of Parity Check Matrix 

The construction of the parity check matrix can be achieved in a pseudorandom manner 

using computer searches that are constrained to the characteristics of an LDPC matrix. The 

parity check matrix H is constructed through the fitting of n  columns to an empty matrix, 
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where n  is the length of the LDPC code. Regular and irregular LDPC codes can be 

constructed using this method. 

To generate the matrix H for an LDPC code of length n  and rate nk /  an appropriate 

column weight γ and row dimension J  must be determined.   

3.4.2 Geometric Generation 

The generation of LDPC codes can be achieved through the application of finite 

geometries. A finite geometry is a geometry that has a finite number of points. A geometry 

G  with n  points and J  lines which has the following fundamental structural properties: 1) 

every line consists of  ρ points; 2) any two points are connected by one and only one line; 

3) every point lies on γ  lines and 4) two lines are either parallel or they intersect at only 

one point (Ball & Werner, 2007). The two families of finite geometries which have the 

above fundamental structural properties are Euclidean and Projective geometries over finite 

fields. Lin and Costello describe two types of LDPC code constructions for Euclidean and 

Projective geometries (Lin & Costello, 2004). 

3.4.2.1 Euclidian Geometries 

A geometry in which Euclid's parallel postulate holds is called Euclidean Geometry. The 

parallel postulate states that if two lines are drawn which intersect a third in such a way that 

the sum of the inner angles on one side is less than two right angles, then the two lines 

inevitably must intersect each other on that side if extended far enough. 

Consider ( )smEG 2,  as an m -dimensional Euclidean Geometry over the Galois Field  

( )sGF 2  where s  and m  are two positive integers. Total number of points in this 

geometry is ms2 with each point representing an m -tuple over ( )sGF 2  . The origin 

corresponds to the m -tuple that contains all zeros. ( )smEG 2, can be seen as an m -

dimensional vector space over ( )sGF 2 . Any two lines in ( )smEG 2,  will either intersect at 

one and only one point or are disjoint. Therefore a line will consist of s2  points. The total 
number of lines in ( )smEG 2,  can be calculated by: 

( )
12

122 )1(

−
−=

−

s

mssm

J  (3. 8) 
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Every line will have 12 )1( −− sm  lines parallel to it. For each point in ( )smEG 2,  the number 
of lines intersecting at this point is: 

12
12

−
−

s

ms

 (3. 9) 

a) Type I Euclidean Geometry (EG) LDPC Codes 
A type-I EG code that is based on ( )SmEG 2,  the parity check matrix )1(

EGH  is formed 

where each row is the incidence vectors of all the lines ( )SmEG 2,  and each column 

corresponds to all the points in ( )SmEG 2, . The number of rows in )1(
EGH  can be 

determined using (3.8) and the number of columns will be msn 2= , corresponding to the 

number of points in the geometry. Each row weight in )1(
EGH  will equate to the number of 

points contained in a line in  ( )SmEG 2,  this being s2 . The number of lines intersecting a 

point, given by (3.9), will determine the column weight of )1(
EGH . The density r of )1(

EGH  is: 

ms

s

n
r

2

2== ρ
  (3. 10) 

When 2,2 ≥≥ sm  and 4/1≤r  then )1(
EGH  will be a low density parity check matrix. The 

null space of )1(
EGH  provides an LDPC code of length msn 2= , denoted by ( )smCEG ,0,)1( , 

which is call an m-dimensional type-I ( )s,0 th-order EG-LDPC code. The Tanner graphs 

of type-I EG codes do not contain any 4-cycles, though there are many cycles of length 6 

(Kou, Lin & Fossorier, 2001).  

 

b) Type II Euclidean Geometry LDPC Codes 
The construction of a type-II EG LDPC code is carried out by taking the transpose of 

)1(
EGH  so that: 

[ ]TEGEG HH )1()2( =   (3. 11) 
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Then )2(
EGH has both the values of J  and n , along with ρ  and γ  interchanged when 

compared to )1(
EGH . Then null space of )2(

EGH  gives an LDPC code, denoted by ( )smCEG ,0,)2( , 

having length ( ) ( ) ( )12/122 1 −−= − smssmn . The minimum distance will be of the order of 

12 +s . The Tanner graphs for ( )smCEG ,0,)1(  and ( )smCEG ,0,)2( are dual, both the codes have 

identical cycle distributions. The ( )smCEG ,0,)2(  type-II EG LDPC code is not cyclic, but it 

can be put into a quasi cyclic form (Kou, Lin & Fossorier, 2001). 

Figure 3.3 shows a type-I (0,2)th-order EG LDPC code parity check matrix with its 

associated Tanner graph. Figure 3.4 illustrates a type-II (0,2)th-order EG LDPC code that 

is the transpose of the matrix in Figure 3.3. It can be seen that the Tanner graph of the 

type-II matrix is a mirror image of the Tanner graph of the type-I matrix. 
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Figure 3.3: Type-I EG LDPC matrix and Tanner graph 
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Figure 3.4: Type-II EG LDPC matrix and Tanner graph 

The origin is removed from the geometry when constructing the type-I and type-II EG-

LDPC codes. 

3.4.2.2 Projective Geometries 

A projection is the transformation of points and lines in the one plane onto another plane by 

linking corresponding points on the two planes with parallel lines. The branch of geometry 

dealing with the properties and invariants of geometric figures under projection is called 

projective geometry.  

c)Type I Projective Geometry LDPC Codes 
Letα  to be a primitive element of ( )smGF )1(2 + , considered to be an extension to the 

( )sGF 2  field. An m-dimensional projective geometry, ( )SmPG 2, , over ( )sGF 2  is defined 

as: 

( ) ( ) ( ) ( )1210 ,,,, −nαααα Κ   

where the number of elements is given by: 

12

12
2

)1(

−
−=

+ sm

n   
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Each iα  element corresponds to the points of the ( )SmPG 2,  geometry. The quantity of 

lines in ( )SmPG 2,  is given by: 

( )( )
s

smsmss

J
21

221221 )1(

+
++++++=

−ΛΛ
 

where each line consists of 122 − points. Every iα  element in ( )SmPG 2,  is intersected by: 

12

12

−
−=

s

ms

γ   

lines. The lines in ( )SmPG 2,  will be either disjoint or intersect at one and only one point. 

The incidence vector of a line L  in ( )SmPG 2,  is an n -tuple such that: 

( )110 ,,, −= nvvvv Λ
L

 

where: 

( )


=

                           otherwise. 0
,point   thecontains  if1 i

i
αv L

 

The incidence vector will have a weight of 12 +S . The incidence vectors of the lines in  

( )SmPG 2,  will form the rows of the parity check matrix )1(
PGH  with the columns of the 

matrix corresponding to the points of ( )SmPG 2, . The matrix )1(
PGH  will have dimensions 

of 
( )( )

12
122122 )1(

+
++++++=

−

s

smsssm

J
ΛΛ

 rows and 
12

12 )1(

−
−=

+

s

sm

n  columns. )1(
PGH  will 

the following properties: 

(i) a row weight of 12 += Sρ , 

(ii)  a column weight of 
12

12

−
−=

s

ms

γ , 
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(iii)  a density of 
12

)12)(12(
)1( −

+−== + sm

ss

n
r

ρ
, 

(iv) no two rows or columns having more than one 1 in common, and 

(v) when m  is large r  is approximately sm )1(2 −−  so the matrix will be very sparse. 

The null space of )1(
PGH  provides a cyclic LDPC code of length 

12
12 )1(

−
−=

+

s

sm

n  having a 

minimum distance of at least 1
12

12
1 +

−
−=+

s

ms

γ . This LDPC code is denoted ( )smCPG ,0,)1( , 

being an m-dimensional type-I ),0( s th order Projective Geometry LDPC code. 

3.5 LPDC Decoding 

As stated previously an LDPC code represents the null space of a sparse parity check 
matrix H . When a codeword v  is received the decoder will conduct a test by computing 

the following )( kn − -tuple: 

 
THvs .=  

 
where ( )110 ,,, −−= knssss Κ  and is said to be the syndrome of v . The syndrome swill be a 

zero vector if and only if v is a legitimate codeword. If s is not a zero vector then the 

received codeword contains one or more errors. All LDPC decoders employ syndrome testing 

to detect the presence of errors.  

3.5.1 Bit-flipping Algorithm  

The bit-flipping algorithm was implemented by Gallager in his original work into LDPC 

codes (Gallager, 1963). The bit-flipping algorithm is a hard-decision classed message-passing 

algorithm. A binary (hard) decision about each received bit is made by the detector and this is 

passed to the decoder. For the bit-flipping algorithm the messages passed along the Tanner 

graph edges are also binary: a bit node sends a message declaring if it is a one or a zero, and 

each check node sends a message to each connected bit node, declaring what value the bit is 

based on the information available to the check node. The check node determines that its 

parity-check equation is satisfied if the modulo-2 sum of the incoming bit values is zero. If 
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the majority of the messages received by a bit node are different from its received value the 

bit node changes (flips) its current value. This process is repeated until all of the parity-check 

equations are satisfied, or until some maximum number of decoder iterations has passed and 

the decoder gives up. The bit-flipping decoder can be immediately terminated whenever a 

valid codeword has been found by checking if all of the parity-check equations are satisfied. 

This is true of all message-passing decoding of LDPC codes and has two important benefits. 

Firstly additional iterations are avoided once a solution has been found, and secondly a 

failure to converge to a codeword is always detected. 

 
The bit-flipping algorithm is based on the principal that a codeword bit involved in a large 

number of incorrect check equations is likely to be incorrect itself. The sparsity of H helps 

spread out the bits into checks so that parity-check equations are unlikely to contain the same 

set of codeword bits. 

 

3.5.2 Weighted Majority Logic Algorithm 

The bit-flipping algorithm can be improved by the inclusion of some form of reliability 

information for the codeword received that will provide enhanced decoding decisions (Lin 

and Costello, 2004). Decoding is carried out by calculating weighted check sums for each bit 

by: 

( )∑ −=
∆ )(

min

)( 12
l

j
l

jl ysE   (3. 12) 

where { }{ }1,10:min ,

)(

min
=−≤≤=

∆

iji

l

j hniyy  

The bit position that has the highest lE  value is then flipped. The process is carried out until 

either the syndrome test is passed or the maximum value of iterations is reached. 
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3.5.3 Sum-Product Algorithm 

The sum-product algorithm is a soft decision message-passing algorithm. It is similar to the 

bit-flipping algorithm described in the previous section, but with the messages representing 

each decision (check met, or bit value equal to 1) now probabilities. Whereas bit-flipping 

decoding accepts an initial hard decision on the received bits as input, the sum-product 

algorithm is a soft decision algorithm which accepts the probability of each received bit as 

input. 

 
The input bit probabilities are called the a priori probabilities for the received bits because 

they were known in advance before running the LDPC decoder. The bit probabilities returned 

by the decoder are called the a posteriori probabilities. In the case of sum-product decoding 

these probabilities are expressed as log-likelihood ratios. 

 
For a binary variable x  it is easy to find )1( =xp  given )0( =xp , since 

)0(1)1( =−== xpxp  and so there is only the need to store one probability value for x . 

Log likelihood ratios are used to represent the metrics for a binary variable by a single value: 

 










=
==

)1(
)0(

log)(
xp

xp
xL

 (3. 13)  

 
If )1()0( =>= xpxp  then )(xL  will be positive, the greater the difference between 

)0( =xp  and )1( =xp , that there is more confidence that 0)( =xp , then the larger the 

positive value for )(xL . Conversely, if )0()1( =>= xpxp  then )(xL  will be negative and 

the greater the difference between the larger the negative value of )(xL . Therefore the sign 

of the log likelihood ration provides a hard decision on value of x  and the magnitude the 

absolute value of )(xL  determines the reliability of the decision. It is possible to calculate the 

probabilities from the log likelihood ratios by: 
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The benefit of the logarithmic representation of probabilities is that when probabilities need 

to be multiplied log-likelihood ratios need only be added, reducing implementation 

complexity. 

 
The aim of sum-product decoding is to compute the maximum a posteriori probability for 

each codeword bit, { }NcPPi 11 == , which is the probability that the i -th codeword bit is a 1 

conditional on the event N  that all parity-check constraints are satisfied. The extra 

information about bit i  received from the parity-checks is deemed extrinsic information for 

bit i . 

The sum-product algorithm iteratively computes an approximation of the maximum a 

posteriori value for each code bit. However, the a posteriori probabilities returned by the 

sum-product decoder are only accurate values if the parity check matrix is cycle free, as can 

be determined by the Tanner graph. The extrinsic information obtained from a parity check 

constraint in the first iteration is independent of the a priori probability information for that 

bit, though it does depend on the a priori probabilities of the other codeword bits. The 

extrinsic information provided to i -th bit in subsequent iterations remains independent of the 

original a priori probability for bit i  until the original a priori probability is returned back to 

bit i  via a cycle in the Tanner graph. The association of the extrinsic information with the 

original a priori bit probability is what prevents the resulting posteriori probabilities from 

being exact. 

3.6 Summary  

In this chapter, we discussed the general principles of LDPC codes including code 

construction, message encoding and codeword decoding algorithms. 
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In the early 1960’s when first discovered, the limited computing resources prevented 

Gallager from demonstrating the full capabilities of message passing LDPC decoders. 

Codeword lengths were limited to no longer than around 500 bits as the computation required 

for encoding and decoding made the codes impractical for use. This resulted in his work 

being ignored for over 30 years except by all but a handful of researchers. It has only been in 

recent times that the re-discovered by researchers after the emergence of turbo decoding has 

shown the true benefits of LDPC codes. 
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Chapter 4  

Performance comparison of LDPC Codes 

 

Chapter 4 Performance comparison of LDPC encoders and decoders 

 

4.1 LDPC Encoder Implementation 

Generator Matrix Encoding 

The simulator function MakeGenerator is used to create a generator matrix from the supplied 

parity check matrix. The function is passed pointers to the parity check matrix and the 

allocated space for the generator matrix, along with the row and column dimensions. A 

working matrix is required to manipulate the parity check matrix data without amending the 

original matrix which will be required in the decoding functions. The working matrix is 

required to have the same form and data as the parity check matrix. This is accomplished by 

the following code: 

temp_matrix = malloc(rows * sizeof(int *)); 
if(temp_matrix == NULL){ 
 printf("Error: failed to allocate memory for temp_matrix matrix\n"); 
  exit(1); 
} 
for(i = 0; i < rows; i++){ 
 temp_matrix[i] = malloc(n * sizeof(int *)); 
 if(temp_matrix[i] == NULL){ 
  printf("Error: failed to allocate memory for temp_matrix row\n"); 
  exit(1); 
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 } 
} 
//Initialise temp matrix to parity check matrix 
for(i = 0; i < rows; i++){ 
 for(j = 0; j < n; j++){ 
  temp_matrix[i][j] = pchk_matrix[i][j]; 
 } 
} 

 
The first operation is put the parity check matrix H into row-echelon form (i.e. so that in any 

two successive rows that do not consist entirely of zeros, the leading 1 in the lower row 

occurs further to the right than the leading 1 in the higher row). 

The matrix H is put into this form by applying elementary row operations in GF(2), which 

are; interchanging two rows or adding one row to another modulo 2. From linear algebra it is 

known that by using only elementary row operations the modified parity-check matrix will 

have the same null space and therefore the same codeword set as the original. 

To achieve this process is broken into two steps. Firstly to make the matrix lower triangular, 

which achieved by the following code: 

//Make temp matrix lower triangular 
for(i = 0; i < rows; i++){ 
 //Ensure curent matrix data starts with a 1 
 if(temp_matrix[i][i] == 0){ 
  //Find the next row with a 1 in the column and swap 
  rowIdx = FindRowdata(temp_matrix, 1, i+1, rows, i, 1);  
  if(rowIdx < 0){ 

printf("Error: unable to make generator matrix from parity 
check matrix\n"); 
printf("Reason: no row to swap to make H lower 
triangular\n"); 

   return state ; 
  } 
  else {     
   SwapRows(temp_matrix, i, rowIdx, n); 
  } 

} 
//Ensure each row below current row does not start have a 1 for this 
column 
for(j = i+1; j < rows; j++){ 

if(temp_matrix[j][i] == 1){ 
AddRows(temp_matrix, i, j, n); 

} 
} 

} 
 

The next step requires the clearing of the upper triangular portion which then makes a 

reduced row-echelon form matrix.  
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//Make temp matrix upper triangular 
for(i = rows-1; i >= 0; i--){ 
//Ensure each row below current row does not start have a 1 for this column 
 for(j = i-1; j >= 0; j--){ 
  if(temp_matrix[j][i] == 1){ 
   AddRows(temp_matrix, i, j, n); 
  } 
 } 
} 
 

The working matrix is now in the correct form to make the generator matrix. The parity 

submatrix is taken from the working matrix, inverted and copied into the generator. 

//Take Parity submatrix and transpose into generator matrix 
for(i = 0; i < rows; i++){ 
 for(j = rows; j < n; j++){ 
  gen_matrix[j-rows][i] = temp_matrix[i][j]; 
 } 
} 

The final step to complete the generator matrix is to add an identity matrix. 

//Add Identity matrix to generator matrix 
for(i = 0; i < k; i++){ 
 gen_matrix[i][i+rows] = 1; 
} 
 

The generator matrix is now complete. In order to encode the message into a codeword the 

generator matrix is multiplied by the message vector, the result is the codeword to be 

transmitted. 

All of this processing can be done off-line and just the matrices G and H′ provided to the 

encoder and decoder respectively. However, the drawback of this approach is that, unlike H, 

the matrix G will most likely not be sparse and so the matrix multiplication at the encoder 

will have complexity in the order of n2 operations. As n is large for LDPC codes, from 

thousands to hundreds of thousands of bits, the encoder can become prohibitively complex. 

Later we will see that structured parity-check matrices can be used to significantly lower this 

implementation complexity, however for arbitrary parity-check matrices a good approach is 

to avoid constructing G at all and instead to encode using back substitution with H as is 

demonstrated in the following approximate lower triangular form matrix encoding. 
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4.2 LDPC Decoder Implementation 

Two types of decoders were implemented successfully, the sum-product algorithm based on 

belief propagation and the standard bit-flipping algorithm. 

 The bit-flipping decoder required the number of failed checksums to be calculated. To 

achieve this each bit is checked in turn by determining the variable bits that make up the 

checksum from the check nodes. The following code fragment carries out the check and 

compares the received bit to the calculated bit. If the comparison is incorrect then a counter 

for that bit is incremented. 

for(j = 0; j < ncols; j++){ 
 //Get the current message bit 
 currentBit = decoded[j]; 
 //Find a link to a check node 
 for(i = 0; i < nrows; i++){ 
  if(matrix[i][j] == 1){ 
   //Find the links to the variable nodes 
   for(k = 0; k < ncols; k++){ 
    if(k != j && matrix[i][k] == 1) 
     //Add the message bits 
     sum = sum + decoded[k]; 
   } 
   //Compare sum to original bit 
   if(currentBit != fmod(sum , 2)){ 
    //Sum is incorrect increment the failure count 
    check_fails[j]++; 
   } 
   sum = 0; 
  } 
 } 
} 

The vector check_fails is then checked to determine the value of the greatest number of 

checksum failures. Once this is determined it is a simple matter to find which bits of the 

received codeword is required to be changed to the opposite information bit. The following 

code fragment carries out these requirements: 

//Find the bits with largest failed checksums 
for(j = 0; j < ncols; j++){ 
 if(check_fails[j] > maxFailed) 
  maxFailed = check_fails[j]; 
} 
 
//Flip the bits having the largest failure rate 
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for(j = 0; j < ncols; j++){ 
 if(check_fails[j] == maxFailed) 
  decoded[j] = (int)fmod((decoded[j] + 1), 2.0); 
} 

The decoded vector is now checked to determine if the syndrome test is satisfied. If the 

syndrome test passes the algorithm terminates, otherwise the algorithm will continue up to 

the maximum iterative count. 

The bit-flipping algorithm is a relatively quick decoder but is has the drawback of inducing 

faults into the codeword. A problem that can occur is that one or more bits will be caught in a 

loop where the bits will be constantly flipped but the codeword is never closer to being 

decoded. When this happens the algorithm will require termination through the maximum 

iteration constraint. 

The sum product algorithm required the implementation of a number of working matrices of 

the same dimension as the parity check matrix. This results in the SPA decoder having 

greater memory utilization than the BF decoder.  

After initializing the memory requirements of the algorithm the Gaussian density probability 

is calculated.  

//Calculate the Guassian density probabilities 
for(i = 0; i < ncols; i++) 
 f1[i] = 1 /(1+exp((-2*codeword[i])/pow(ch_dev,2))); 
 
for(i = 0; i < ncols; i++) 
      f0[i] = 1 - f1[i]; 

The a priori probabilities are then calculated. 

/*calculate the q1ij probabilities*/ 
for(i = 0; i < nrows; i++){ 
 for(j = 0; j < ncols; j++){ 
  if(q1[i][j] != 0) 
   q1[i][j] *= f1[j]; 
 } 
} 
 
//calculate the q0ij probabilities 
for(i = 0; i < nrows; i++){ 
 for(j = 0; j < ncols; j++){ 
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  if(q0[i][j] != 0) 
   q0[i][j] *= f0[j];   
 } 
}  

The algorithm is now ready to start the decoding iterations. Upon entering the iteration loop 

the soft codeword is hard decoded and then the syndrome test is conducted. If the test passes 

the loop is terminated and the codeword has been decoded, else the algorithm continues. The 

next step is to calculate the probability difference equations. 

//Calculate the probability deltas 
for(i = 0; i < nrows; i++){ 
 for(j = 0; j < ncols; j++){ 
  deltaQ[i][j] = q0[i][j] - q1[i][j]; 
 } 
} 
   
for(i = 0; i < nrows; i++){ 
 for(j = 0; j < ncols; j++){ 
  if(deltaP[i][j] != 0){ 
   for(k = 0; k < ncols; k++){ 
    if(j != k && deltaP[i][k] != 0){ 
     deltaP[i][j] *= deltaQ[i][k]; 
    } 
   } 
  } 
 } 
} 

The bit probability values are then calculated by: 
//Calculate p values 
for(i = 0; i < nrows; i++){ 
 for(j= 0; j < ncols; j++){ 
  if(p0[i][j] != 0){ 
   p0[i][j] *= (0.5 * (1 + deltaP[i][j])); 
   p1[i][j] *= (0.5 * (1 - deltaP[i][j])); 
  } 
 } 
} 
 

From the bit probability the coefficients are then calculated: 
//calculate the coefficients 
for(i = 0; i < ncols; i++){ 
 for(j = 0; j < nrows; j++){ 
  if(matrix[j][i] != 0){ 
   coeff0 = 1.0; 
   coeff1 = 1.0; 
   for(k = 0; k < nrows; k++){ 
    if(j != k && matrix[k][i] != 0){ 
     coeff0 *= p0[k][i]; 
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     coeff1 *= p1[k][i]; 
    } 
   } 
   coeff0 *= f0[i]; 
   coeff1 *= f1[i]; 
   q0[j][i] = coeff0 /(coeff0 + coeff1); 
   q1[j][i] = coeff1 /(coeff0 + coeff1); 
  } 
 }  
} 
 
A new soft codeword is generated by scaling the calculated bit values. This new codeword is 
now hardcoded and a syndrome test is conducted.  
 
The one step majority logic decoder was not completed. 
 
4.3 Simulation Results 

 

Figure 4.1 Bit-error probabilities of the type-I 2-D (255; 175) EG-LDPC code and (273; 
191) PG-LDPC code based on different decoding algorithms. (Kou et al, 2001) 

Figure 4.1 shows the comparison between geometric codes utilizing various decoding 
techniques. As can be seen the SPA decoder outperforms all other decoding algorithms for 
the same error rate by more than 1 dB.  
 



Chapter 2 Fundamentals of Error Correcting Coding 
 

 

36 

4.4 Summary  

In this chapter, the different techniques for encoding and decoding LDPC were simulated. It 
was shown that the Sum Product algorithm has the most potential to be able to correct a 
codeword that has been subjected to large amounts of noise. The drawback of the SPA 
decoder is the additional complexity required to implement which has a great effect on the 
latency of the decoder, this is especially true when very large code lengths are utilised. 
 
 
The technique of using the approximate lower triangular method of fast encoding LDPC code 
was not implemented.
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Chapter 5  

Conclusions 

 

Chapter 5 Conclusions 

 

5.1 Concluding Remarks  

LDPC codes have been proven to be one of the most powerful ECC codes discovered. Today, 

design techniques for LDPC codes exist which enable the construction of codes which 

approach within hundredths of a decibel of the Shannon limit of a communications channel.  

In addition to the strong theoretical interest in LDPC codes, such codes have already been 

adopted in satellite-based digital video broadcasting and long-haul optical communication 

standards, could be adopted in the IEEE wireless local area network standard, and are under 

consideration for the long term evolution of third-generation mobile telephony. 

This project has outlined various techniques for constructing LDPC codes, encoding 

messages for transmission and the decoding of received messages over an AWGN channel. 

The simulation of the various algorithms did not achieve their intent due to my inability to 

correctly simulate the channel environment. Analysis of the different decoding techniques 

therefore relied on work conducted by other researchers. 
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5.2 Future Work  

LDPC codes will be utilised more often in future in all forms of wireless communications. 

During this project I have discovered that the main flaw of the Bit Flipping algorithm is its 

inability to terminate when caught in a loop. This algorithm could be further improved to 

provide a learning algorithm that would evolve a strategy to flip only a dedicated bit rather 

than the entire set of bits with the most checksum failures.  

An efficient technique for computer simulations of the approximate lower triangular 

encoding technique should be investigated.  
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// LDPC_Simulator.cpp : Defines the entry point for the console 
application. 
// 
#include "stdafx.h" 
#include "stdio.h" 
#include "stdlib.h" 
#include "math.h" 
#include "limits.h" 
#include "malloc.h" 
#include "time.h" 
 
#define MAX_ITERATION 10 
#define FALSE 0 
#define TRUE 1 
//Simulation channel signal to noise parameters 
#define DB_MAX 2 
#define DB_INC 0.25 
#define DB_INIT -2 
//Channel message bit parameters 
#define HIGH 1  //BSC = +1  BKSP = +1 
#define MID 0  //BSC = +0.5 BKSP = 0 
#define LOW -1  //BSC = +0  BKSP = -1 
 
int MakeGenerator(int **pchk_matrix, int **gen_matrix, int rows, int n, 
int k); 
void SwapRows(int **matrix, int rowIdx1, int rowIdx2, int cols); 
void AddRows(int **matrix, int rowIdx1, int rowIdx2, int cols); 
int FindRowdata(int **matrix, int data, int rowSt, int rows, int colIdx, 
int dir); 
int BitFlipping(int **pchk_matrix, double *codeword, int *decoded, int 
nrows, int ncols); 
int SumProduct(int **pchk_matrix, double *codeword, int *decoded, int 
nrows, int ncols, double ch_dev); 
int OneStepMajorityLogic(int **pchk_matrix, double *codeword, int 
*decoded, int nrows, int ncols); 
void PrintIntMatrix(int **matrix, int nrows, int ncols); 
void PrintMatrix(double **matrix, int nrows, int ncols); 
void FileOutput(FILE *fp, char type, double *codeword, int length); 
void PrintCodeword(double *codeword, int ncols); 
void PrintIntCodeword(int *codeword, int ncols); 
void FreeMatrix(double **matrix, int nrows); 
void FreeIntMatrix(int **matrix, int nrows); 
double BitErrorRate(int *original, int *current, int length); 
int SyndromeTest(int **matrix, int *codeword, int nrows, int ncols); 
void AddWhiteGaussianNoise(int *codeword, double *received, int length, 
double variance, double mean); 
void HardDecision(int *hardcode, double *softcode, int ncols); 
void ZeroMatrix(double **matrix, int nrows, int ncols); 
void ZeroVector(double *vector, int ncols); 
void ZeroIntVector(int *vector, int ncols); 
void ResetMatrix(int **pchk_matrix, double **matrix, int nrows, int 
ncols); 
void BSCtoBKSP(int *codeword, int ncols); 
int XOR(int a, int b); 
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void main(){ 
 //variables 
 int **gen_matrix = NULL; /*Pointer to Generator matrix*/ 
 int **pchk_matrix = NULL; /*Pointer to Parity Check matrix*/ 
 int *codeword = NULL;  /*Channel codeword vector*/ 
 int *original = NULL;  /*Original codeword vector*/ 
 int *decoded = NULL;  /*Final decoded vector*/ 
 double *received = NULL; /*Codeword + noise vector received*/ 
 FILE *fp = NULL;   /*Input file pointer*/ 
 int pchk_rows = 0;   /*Parity Check matrix row 
dimension*/ 
 int pchk_cols = 0;   /*Parity Check matrix column 
dimension*/ 
 int n = 0;     /*Codeword and Generator 
matrix column dimension */ 
 int k = 0;     /*Message and Generator matrix 
row dimension*/ 
 double code_rate = 0.0;  /*Code rate*/ 
 double bit_error = 0.0;  /*Bit Error Rate*/ 
 double variance = 0.0;  /*Channel variance*/ 
 double deviation = 0.0;  /*Channel standard deviation*/ 
 double dB = 0.0;   /*Signal to Noise ratio*/ 
 double mean = 0.0;   /*Signal mean*/ 
 int i, j;     /*Local counter variables*/ 
 int row_wt = 0; 
 int status = 0;    /*Decoder status bit*/ 
 int type_decoder = 0;  /*Decoder choice*/ 
 int type_encoder = 0;  /*Encoder choice*/ 
 char filename[200];   /*Input filename containing 
parity check matrix*/ 
 
 system("cls"); 
 
 //Simulator Engine 
 printf(" ************* LDPC Simulator ***************\n"); 
 
 //Get encoder options from user 
 printf("Encoding Options:\n"); 
 printf("  1. Load Parity Check Matrix from file\n"); 
 printf("  2. Generate Parity Check Matrix"); 
 while (type_encoder < 1 && type_encoder > 2){ 
  printf("Enter a number between 1-2: "); 
  scanf("%d", &type_encoder); 
 } 
 switch(type_encoder){ 
  case 1: 
   while(fp = 
fopen("C://Project//ldpc//Debug//pchk_matrix_8_12.txt","r"); 
   printf("Enter filename: "); 
    
 
  
 //Get decoder option from user 
 printf("Available Decoders:\n"); 
 printf("  1. Sum Product Algorithm\n"); 
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 printf("  2. Bit Flipping Algorithm\n"); 
 printf("  3. Majority Logic Algorithm\n"); 
 printf("Enter Decoder number: "); 
 scanf("%d", &type_decoder); 
 while (type_decoder < 1 && type_decoder > 3){ 
  printf("Enter a number between 1-3: "); 
  scanf("%d", &type_decoder); 
 } 
 
 //Load parity check matrix from file 
 //File contents to be: 
 //nrows ncols 
 //H00.......H0ncols 
 // .           . 
 //Hnrows0...Hnrowsncols 
 //fp = fopen("C://Project//ldpc//Debug//pchk_matrix_3_7.txt","r"); 
 //fp = 
fopen("C://Project//ldpc//Debug//pchk_matrix_6_12.txt","r"); 
 fp = fopen("C://Project//ldpc//Debug//pchk_matrix_8_12.txt","r"); 
 //fp = 
fopen("C://Project//ldpc//Debug//pchk_matrix_816_408.txt","r"); 
  
 //fp = 
fopen("C://Project//ldpc//Debug//pchk_matrix_15_15.txt","r"); 
 if (fp == NULL){ 
  printf("Error: Could not open input file ...\n"); 
  exit(0); 
 } 
 
 //Get matrix dimensions 
 fscanf(fp, "%d %d", &pchk_rows, &pchk_cols); 
 
 //Calculate code dimensions 
 n = pchk_cols; 
 k = n - pchk_rows; 
 code_rate = (double)k / (double)n; 
 
 //Allocate Parity Check matrix memory space 
 pchk_matrix = malloc(pchk_rows * sizeof(int *)); 
 if(pchk_matrix == NULL){ 
  printf("Error: failed to allocate memory for pchk_matrix 
matrix\n"); 
  exit(1); 
 } 
 for(i = 0; i < pchk_rows; i++){ 
  pchk_matrix[i] = malloc(n * sizeof(int *)); 
  if(pchk_matrix[i] == NULL){ 
   printf("Error: failed to allocate memory for 
pchk_matrix row\n"); 
   exit(1); 
  } 
 } 
 
 //Populate Parity Check matrix data 
 for(i = 0; i < pchk_rows; i++){ 
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  for(j = 0; j < n; j++){ 
   fscanf(fp, "%d", &pchk_matrix[i][j]); 
  } 
 } 
 //Allocate Parity Check matrix memory space 
 gen_matrix = malloc(k * sizeof(int *)); 
 if(gen_matrix == NULL){ 
  printf("Error: failed to allocate memory for gen_matrix 
matrix\n"); 
  exit(1); 
 } 
 for(i = 0; i < k; i++){ 
  gen_matrix[i] = malloc(n * sizeof(int *)); 
  if(gen_matrix[i] == NULL){ 
   printf("Error: failed to allocate memory for 
gen_matrix row\n"); 
   exit(1); 
  } 
 } 
 
 //Initialise the generator matrix 
 ZeroMatrix(gen_matrix, k, n); 
 
 
  
 //Allocate memory for codeword vector 
 codeword = (int *)malloc(sizeof(int) * n); 
 if(codeword == NULL){ 
  printf("Error: failed to allocate memory for codeword 
vector\n"); 
  exit(1); 
 } 
  //Allocate memory for codeword vector 
 original = (int *)malloc(sizeof(int) * k); 
 if(original == NULL){ 
  printf("Error: failed to allocate memory for codeword 
vector\n"); 
  exit(1); 
 } 
 //Allocate memory for decoded vector 
 decoded = (int *)malloc(sizeof(int) * n); 
 if(decoded == NULL){ 
  printf("Error: failed to allocate memory for decoded 
vector\n"); 
  exit(1); 
 } 
 
 //Allocate memory for received codeword vector 
 received = (double *)malloc(sizeof(double) * n); 
 if(received == NULL){ 
  printf("Error: failed to allocate memory for received 
vector\n"); 
  exit(1); 
 } 
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 //For testing set codeword to zero vector 
 ZeroIntVector(codeword, n); 
 ZeroIntVector(original, k); 
 PrintIntCodeword(codeword, n); 
 
 //Convert the codeword to bpsk 
 BSCtoBKSP(codeword, n); 
 
 PrintIntCodeword(codeword, n); 
 PrintIntMatrix(pchk_matrix, pchk_rows, n); /*DELETE AFTER 
TESTING*/ 
  
 for(dB  = DB_INIT; dB < DB_MAX; dB += DB_INC){ 
  printf("db: %lf\n", dB); 
  //Initialise received vector 
  ZeroVector(received, n); 
 
  //Calculate variance for current SNR 
  variance = 1.0/(2.0*code_rate*pow(10.0,dB/10.0)); 
 
  //Calculate standrad deviation 
  deviation = sqrt(variance); 
 
  //Add White Guassian Noise 
  AddWhiteGaussianNoise(codeword, received, n, variance, 
mean); 
  printf("Sent:     "); 
  PrintIntCodeword(codeword, n); 
  //printf("Received: "); 
  //PrintCodeword(received, n); 
   
  //Run Decoders 
  switch(type_decoder){ 
   case 1: status = SumProduct(pchk_matrix, received, 
decoded, pchk_rows, n, deviation); 
    break; 
   case 2: status = BitFlipping(pchk_matrix, received, 
decoded, pchk_rows, n); 
    break; 
   case 3: status = OneStepMajorityLogic(pchk_matrix, 
received, decoded, pchk_rows, n); 
    break; 
   default: 
    printf("Error: Unable to resolve decoder 
type.\n"); 
  } 
 
 
  printf("Last:     "); 
  PrintIntCodeword(decoded, n); 
  if(status == 1) 
   printf("Decoded\n"); 
  else 
   printf("Unresolved\n"); 
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  bit_error = BitErrorRate(original, decoded, n); 
 
  printf("BER: %lf\n", bit_error); 
 } 
  
 //Close open file pointers 
 fclose(fp); 
 
 //Free used memory 
 FreeIntMatrix(pchk_matrix, pchk_rows);  
 free(codeword); 
 free(decoded); 
 free(received); 
} 
 
/* ************* Generator Matrix Production Methods ************/ 
int MakeGenerator(int **pchk_matrix, int **gen_matrix, int rows, int n, 
int k){ 
 int **temp_matrix = NULL; //working matrix 
 int state = 0;    //Function state variable fail 
= 0 success = 1 
 int rowIdx = 0;    //Row index of a matrix 
 int i, j;     //Local counter variables 
 
 temp_matrix = malloc(rows * sizeof(int *)); 
 if(temp_matrix == NULL){ 
  printf("Error: failed to allocate memory for temp_matrix 
matrix\n"); 
  exit(1); 
 } 
 for(i = 0; i < rows; i++){ 
  temp_matrix[i] = malloc(n * sizeof(int *)); 
  if(temp_matrix[i] == NULL){ 
   printf("Error: failed to allocate memory for 
temp_matrix row\n"); 
   exit(1); 
  } 
 } 
 //Initialise temp matrix to parity check matrix 
 for(i = 0; i < rows; i++){ 
  for(j = 0; j < n; j++){ 
   temp_matrix[i][j] = pchk_matrix[i][j]; 
  } 
 } 
 
 //Make temp matrix lower triangular 
 for(i = 0; i < rows; i++){ 
  //Ensure curent matrix data starts with a 1 
  if(temp_matrix[i][i] == 0){ 
   //Find the next row with a 1 in the column and swap 
   rowIdx = FindRowdata(temp_matrix, 1, i+1, rows, i, 1);
    
   if(rowIdx < 0){ 
    printf("Error: unable to make generator matrix 
from parity check matrix\n"); 
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    printf("Reason: no row to swap to make H lower 
triangular\n"); 
    return state ; 
   } 
   else {     
    SwapRows(temp_matrix, i, rowIdx, n); 
   } 
  } 
  //Ensure each row below current row does not start have a 1 
for this column 
  for(j = i+1; j < rows; j++){ 
   if(temp_matrix[j][i] == 1){ 
    AddRows(temp_matrix, i, j, n); 
   } 
  } 
 } 
 
 //Make temp matrix upper triangular 
 for(i = rows-1; i >= 0; i--){ 
  //Ensure each row below current row does not start have a 1 
for this column 
  for(j = i-1; j >= 0; j--){ 
   if(temp_matrix[j][i] == 1){ 
    AddRows(temp_matrix, i, j, n); 
   } 
  } 
 } 
 
 //Take Parity submatrix and transpose into generator matrix 
 for(i = 0; i < rows; i++){ 
  for(j = rows; j < n; j++){ 
   gen_matrix[j-rows][i] = temp_matrix[i][j]; 
  } 
 } 
 
 //Add Identity matrix to generator matrix 
 for(i = 0; i < k; i++){ 
  gen_matrix[i][i+rows] = 1; 
 } 
 state = 1; 
 
 return state; 
} 
 
void SwapRows(int **matrix, int rowIdx1, int rowIdx2, int cols){ 
 int temp; 
 int i; 
 
 for(i = 0; i < cols; i++){ 
  temp = matrix[rowIdx1][i]; 
  matrix[rowIdx1][i] = matrix[rowIdx2][i]; 
  matrix[rowIdx2][i] = temp; 
 } 
} 
 



Chapter 2 Fundamentals of Error Correcting Coding 
 

 

52 

 
//Add content of row1 and row2 and put result into row2 
void AddRows(int **matrix, int rowIdx1, int rowIdx2, int cols){ 
 int i; 
 //Only 2 canges to make 1+1->0 & 1+0->1 
 //no changes for 0+0->0 & 0+1->1 
 for(i = 0; i < cols; i++){ 
  if(matrix[rowIdx1][i] == 1 && matrix[rowIdx2][i] == 1){ 
   matrix[rowIdx2][i] = 0; 
  } else if(matrix[rowIdx1][i] == 1 && matrix[rowIdx2][i] == 
0){ 
   matrix[rowIdx2][i] = 1; 
  } 
 } 
} 
 
//Find data in a matrix given a starting position 
int FindRowdata(int **matrix, int data, int rowSt, int rows, int colIdx, 
int dir){ 
 int i; 
 int rowIdx = -1; 
  
 if(dir > 0){ 
  for(i = rowSt; i < rows; i++){ 
   if(matrix[i][colIdx] == data){ 
    rowIdx = i; 
    break; 
   } 
  } 
 } else { 
  for(i = rowSt; i >= 0; i--){ 
   if(matrix[i][colIdx] == data){ 
    rowIdx = i; 
    break; 
   } 
  } 
 } 
 
 return rowIdx; 
} 
 
 
 
/* ***************** Decoding Methods ************************* */      
int BitFlipping(int **matrix, double *codeword, int *decoded, int nrows, 
int ncols){ 
 int *check_fails = NULL; 
 double currentBit = 0.0; 
 double sum = 0.0; 
 int syndrome = 0; 
 int iteration = 1; 
 int maxFailed = 0; 
 int i, j, k; 
 
 //Create Check Failure vector 
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 for(i = 0; i < ncols; i++) 
  check_fails = (int *)malloc(sizeof(int) * ncols); 
 if(check_fails == NULL){ 
  printf("Error: failed to allocate memory for 
check_fails\n"); 
  exit(1); 
 } 
 
 //Convert to hard decision quantized form  
 HardDecision(decoded, codeword, ncols); 
   
 /*Commence decoding iterations*/ 
 do{ 
  //Check if codeword passes syndrome test 
  syndrome = SyndromeTest(matrix, decoded, nrows, ncols); 
   
  //If sydrome test failed - find and replace incorrect 
message bits 
  //For each message bit 
  for(j = 0; j < ncols; j++){ 
     //Get the current message bit 
     currentBit = decoded[j]; 
     //Find a link to a check node 
     for(i = 0; i < nrows; i++){ 
      if(matrix[i][j] == 1){ 
       //Find the links to the variable nodes 
       for(k = 0; k < ncols; k++){ 
        if(k != j && matrix[i][k] == 1) 
         //Add the message bits 
         sum = sum + decoded[k]; 
       } 
       //Compare sum to original bit 
       if(currentBit != fmod(sum , 2)){ 
        //Sum is incorrect increment the 
failure count 
        check_fails[j]++; 
       } 
       sum = 0; 
      } 
     } 
  } 
  
  //Find the bits with largest failed checksums 
  for(j = 0; j < ncols; j++){ 
     if(check_fails[j] > maxFailed) 
      maxFailed = check_fails[j]; 
  } 
 
  //Flip the bits having the largest failure rate 
  for(j = 0; j < ncols; j++){ 
     if(check_fails[j] == maxFailed) 
      decoded[j] = (int)fmod((decoded[j] + 1), 2.0); 
  } 
  maxFailed = 0; 
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  iteration++; 
     //Reset failure counter 
     for(i = 0; i < ncols; i++){ 
     check_fails[i] = 0; 
     } 
     //Reset maximum failure counter 
     maxFailed = 0; 
   }while (iteration < MAX_ITERATION && syndrome != 1); 
 
   //Free allocated memory 
   free(check_fails); 
 
   return syndrome; 
} 
 
int SumProduct(int **matrix, double *codeword, int *decoded, int nrows, 
int ncols, double ch_dev){ 
 //Variables 
 double **p0 = NULL;  /*Pointer to P0ij probabilities*/ 
 double **p1 = NULL;  /*Pointer to P1ij probabilities*/ 
 double **deltaP = NULL; /*Pointer to P deltas*/ 
 double **deltaQ = NULL; /*Pointer to Q deltas*/ 
 double **q0 = NULL;  /*Pointer to Q0ij probabilities*/ 
 double **q1 = NULL;  /*Pointer to Q1ij probabilities*/ 
 double *f0 = NULL;  /*Gaussian probability function for 
0 bit*/ 
 double *f1 = NULL;  /*Gaussian probability function for 
1 bit*/ 
 double *soft0 = NULL; /*soft codeword probability for bit 0*/ 
 double *soft1 = NULL; /*soft codeword probability for bit 1*/ 
 int i, j, k;   /*local variables*/ 
 int syndrome = 0;  /*syndrome test flag*/ 
 int iteration = 1;  /*number of iterations*/ 
 int num_data = 0;  /*number of data bits*/ 
 double coeff0 = 0.0; /*scaling coefficient for bit 0*/ 
 double coeff1 = 0.0; /*scaling coefficient for bit 1*/ 
 double column_sum = 0.0;/*matrix column data sum*/ 
  
 /*Create message bit vectors */ 
 soft0 = (double *)malloc(sizeof(double) * ncols); 
 if(soft0 == NULL){ 
  printf("Error: failed to allocate memory for softc\n"); 
  exit(1); 
 } 
 soft1 = (double *)malloc(sizeof(double) * ncols); 
 if(soft1 == NULL){ 
  printf("Error: failed to allocate memory for softc\n"); 
  exit(1); 
 } 
 
 /*Create Gaussian probability density function vectors*/ 
 f0 = (double *)malloc(sizeof(double) * ncols); 
 if(f0 == NULL){ 
  printf("Error: failed to allocate memory for f0\n"); 
  exit(1); 
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 } 
 f1 = (double *)malloc(sizeof(double) * ncols); 
 if(f1 == NULL){ 
  printf("Error: failed to allocate memory for f1\n"); 
  exit(1); 
 } 
 
 /*Allocate space for algorithm variables*/ 
 /*prior probabilities*/ 
 p0 = (double **)malloc(sizeof(double *) * nrows); 
 if(p0 == NULL){ 
  printf("Error: failed to allocate memory for p0\n"); 
  exit(1); 
 } 
    for(i = 0; i < nrows; i++){ 
  p0[i] = (double *)malloc(sizeof(double) * ncols); 
     if(p0[i] == NULL){ 
     printf("Error: failed to allocate memory for p0\n"); 
     exit(1);} 
 } 
  
 p1 = (double **)malloc(sizeof(double *) * nrows); 
 if(p1 == NULL){ 
  printf("Error: failed to allocate memory for p1\n"); 
  exit(1); 
 } 
    for(i = 0; i < nrows; i++){ 
  p1[i] = (double *)malloc(sizeof(double) * ncols); 
  if(p1[i] == NULL){ 
   printf("Error: failed to allocate memory for p1\n"); 
   exit(1); 
  } 
 } 
 
 /*difference equations*/ 
 deltaP = (double **)malloc(sizeof(double *) * nrows); 
 if(deltaP == NULL){ 
  printf("Error: failed to allocate memory for deltaP\n"); 
  exit(1); 
 } 
    for(i = 0; i < nrows; i++){ 
  deltaP[i] = (double *)malloc(sizeof(double) * ncols); 
  if(deltaP[i] == NULL){ 
   printf("Error: failed to allocate memory for 
deltaP\n"); 
   exit(1); 
  } 
 } 
  
 deltaQ = (double **)malloc(sizeof(double *) * nrows); 
 if(deltaQ == NULL){ 
  printf("Error: failed to allocate memory for deltaQ\n"); 
  exit(1); 
 } 
    for(i = 0; i < nrows; i++){ 
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  deltaQ[i] = (double *)malloc(sizeof(double) * ncols); 
  if(deltaQ[i] == NULL){ 
   printf("Error: failed to allocate memory for 
deltaQ\n"); 
   exit(1); 
  } 
 } 
  
 /*conditional probabilities*/ 
 q0 = (double **)malloc(sizeof(double *) * nrows); 
 if(q0 == NULL){ 
  printf("Error: failed to allocate memory for q0\n"); 
  exit(1); 
 } 
    for(i = 0; i < nrows; i++){ 
  q0[i] = (double *)malloc(sizeof(double) * ncols); 
  if(q0[i] == NULL){ 
   printf("Error: failed to allocate memory for q0\n"); 
   exit(1); 
  } 
 } 
  
 q1 = (double **)malloc(sizeof(double *) * nrows); 
 if(q1 == NULL){ 
  printf("Error: failed to allocate memory for q1\n"); 
  exit(1); 
 } 
    for(i = 0; i < nrows; i++){ 
  q1[i] = (double *)malloc(sizeof(double) * ncols); 
  if(q1[i] == NULL){ 
   printf("Error: failed to allocate memory for q1\n"); 
   exit(1); 
  } 
 } 
 
 /* Initialise all algorithm matrices to parity check matrix */ 
 ResetMatrix(matrix, p0, nrows, ncols); 
 ResetMatrix(matrix, p1, nrows, ncols); 
 ResetMatrix(matrix, q0, nrows, ncols); 
 ResetMatrix(matrix, q1, nrows, ncols); 
 ResetMatrix(matrix, deltaP, nrows, ncols); 
 ResetMatrix(matrix, deltaQ, nrows, ncols); 
 
 
 //Calculate the Guassian density probabilities 
 for(i = 0; i < ncols; i++) 
  f1[i] = 1 /(1+exp((-2*codeword[i])/pow(ch_dev,2))); 
 
 for(i = 0; i < ncols; i++) 
  f0[i] = 1 - f1[i]; 
 
  /*calculate the q1ij probabilities*/ 
 for(i = 0; i < nrows; i++){ 
  for(j = 0; j < ncols; j++){ 
   if(q1[i][j] != 0) 
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    q1[i][j] *= f1[j]; 
  } 
 } 
 
 //calculate the q0ij probabilities 
 for(i = 0; i < nrows; i++){ 
  for(j = 0; j < ncols; j++){ 
   if(q0[i][j] != 0) 
    q0[i][j] *= f0[j];   
  } 
 } 
 
 /*Commence decoding iterations*/ 
 do{ 
   
  //Convert to hard decision quantized form  
  HardDecision(decoded, codeword, ncols); 
 
  //Check if codeword passes syndrome test 
  syndrome = SyndromeTest(matrix, decoded, nrows, ncols); 
 
  //Calculate the probability deltas 
  for(i = 0; i < nrows; i++){ 
   for(j = 0; j < ncols; j++){ 
    deltaQ[i][j] = q0[i][j] - q1[i][j]; 
   } 
  } 
   
  for(i = 0; i < nrows; i++){ 
   for(j = 0; j < ncols; j++){ 
    if(deltaP[i][j] != 0){ 
     for(k = 0; k < ncols; k++){ 
      if(j != k && deltaP[i][k] != 0){ 
       deltaP[i][j] *= deltaQ[i][k]; 
      } 
     } 
    } 
   } 
  } 
 
  //Calculate p values 
  for(i = 0; i < nrows; i++){ 
   for(j= 0; j < ncols; j++){ 
    if(p0[i][j] != 0){ 
     p0[i][j] *= (0.5 * (1 + deltaP[i][j])); 
     p1[i][j] *= (0.5 * (1 - deltaP[i][j])); 
    } 
   } 
  } 
   
  //calculate the coefficients 
  for(i = 0; i < ncols; i++){ 
   for(j = 0; j < nrows; j++){ 
    if(matrix[j][i] != 0){ 
     coeff0 = 1.0; 
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     coeff1 = 1.0; 
     for(k = 0; k < nrows; k++){ 
      if(j != k && matrix[k][i] != 0){ 
       coeff0 *= p0[k][i]; 
       coeff1 *= p1[k][i]; 
      } 
     } 
     coeff0 *= f0[i]; 
     coeff1 *= f1[i]; 
     q0[j][i] = coeff0 /(coeff0 + coeff1); 
     q1[j][i] = coeff1 /(coeff0 + coeff1); 
    } 
   }  
  } 
 
  //Generate new soft codewords for each bit 
  for(i = 0; i < ncols; i++){ 
   soft0[i] = 1; 
   soft1[i] = 1; 
   for(j = 0; j < nrows; j++){ 
    if(p0[j][i] != 0){ 
     soft0[i] *= p0[j][i]; 
     soft1[i] *= p1[j][i]; 
    } 
   } 
   soft0[i] *= f0[i]; 
   soft1[i] *= f1[i]; 
   //Hard code the new codeword 
   if(soft1[i] > soft0[i]) 
    decoded[i] = 1; 
   else 
    decoded[i] = 0; 
  } 
   
  //Reset matrices 
  ResetMatrix(matrix, deltaP, nrows, ncols); 
  ResetMatrix(matrix, deltaQ, nrows, ncols); 
  ResetMatrix(matrix, p0, nrows, ncols); 
  ResetMatrix(matrix, p1, nrows, ncols); 
 
  iteration++; 
 } while( iteration <= MAX_ITERATION && syndrome != 1); 
 
 
 //Free allocated memory 
 FreeMatrix(p0, nrows); 
 FreeMatrix(p1, nrows); 
 FreeMatrix(deltaP, nrows); 
 FreeMatrix(deltaQ, nrows); 
 FreeMatrix(q0, nrows); 
 FreeMatrix(q1, nrows); 
 free(soft0); 
 free(soft1); 
  
 return syndrome; 
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} 
 
int OneStepMajorityLogic(int **matrix, double *codeword, int *decoded, 
int nrows, int ncols){ 
 //   int iteration = 1;  /*Iteration counter*/ 
 //int syndrome = 0;  /*Syndrome test status flag*/ 
 //int col_wt = 0;   /*Parity check matrix column 
weight*/ 
 //int err_wt = 0;   /*Error column weight*/ 
 //int pass = 0;   /*Orthogonal pass flag*/ 
 //int ***Errors = NULL; /*3d Error matrix*/ 
 //int **Used = NULL;  /*Tracking matrix*/ 
 //int *Erows = NULL;  /*Number of rows in each Error 
matrix*/ 
 //int i, j, k, l, m, n; /*Local counter variables*/ 
 
 //printf("**********Entering One Step Majority Logic 
Decoder***********\n");  /*DELETE AFTER TESTING*/ 
 
 ////Create Error matrix 
 //Errors = (int ***)malloc(sizeof(int **) * ncols); 
 //if(Errors == NULL){ 
 // printf("Error: failed to allocate memory for Error 
matrix\n"); 
 // exit(1); 
 //} 
 //for(i = 0; i < ncols; i++){ 
 // Errors[i] = (int **)malloc(sizeof(int *) * nrows); 
 // if(Errors[i] == NULL){ 
 //  printf("Error: failed to allocate memory for Error 
Matrix row\n"); 
 //  exit(1); 
 // } 
 // for(j = 0; j < nrows; j++){ 
 //  Errors[i][j] = (int *)malloc(sizeof(int) * ncols); 
 //  if(Errors[i][j] == NULL){ 
 //   printf("Error: failed to allocate memory for 
Error Matrix column\n"); 
 //   exit(1); 
 //  } 
 // } 
 //} 
 
 ////Create tracking matrix 
 //Used = (int **)malloc(sizeof(int *) * nrows); 
 //if(Used == NULL){ 
 // printf("Error: failed to allocate memory for Used 
matrix\n"); 
 // exit(1); 
 //} 
 //   for(i = 0; i < nrows; i++){ 
 // Used[i] = (int *)malloc(sizeof(int) * ncols); 
 //    if(Used[i] == NULL){ 
 //    printf("Error: failed to allocate memory for Used matrix 
row\n"); 
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 //    exit(1);} 
 //} 
 
 ////Initialise tracking matrix to the parity check matrix 
 //for(i = 0; i < nrows; i++){ 
 // for(j = 0; j < ncols; j++) 
 //  Used[i][j] = matrix[i][j]; 
 //} 
 
 ////Create Error rows vector 
 //Erows = (int *)malloc(sizeof(int) * ncols); 
 //if(Erows == NULL){ 
 // printf("Error: failed to allocate memory for Error rows 
vector\n"); 
 // exit(1); 
 //} 
 
 ////Transfer Parity check matrix base vectors to Error matrix 
 //for(i = 0; i < ncols; i++){ 
 // col_wt = 0; 
 // for(j = 0; j < nrows; j++){ 
 //  if(matrix[j][i] == 1){ 
 //   col_wt++; 
 //   for(k = 0; k < ncols; k++){ 
 //    Errors[i][col_wt-1][k] = matrix[j][k]; 
 //   } 
 //  }    
 // } 
 // Erows[i] = col_wt; 
 //} 
 
 ////Make Error vectors orthogonal 
 //for(i = 0; i < ncols; i++){  //for each bit in the codeword 
 // do{ 
 //  for(j = 0; j < Erows[i]; j++){   
 //for each row in the error matrix 
 //   for(k = 0; k < ncols; k++){   
 //for each bit in the Error matrix row 
 //    if( k != i){     
 //do not check the same as the current codeword bit 
 //     if(Errors[i][j][k] == 1){ 
 //check if the bit is a 1 
 //      err_wt++;    
 //keep the total of ones in this Error matrix column 
 //     } 
 //     if(err_wt > 1){    
 //if more than one 1        
 //      for(l = 0; l < nrows; l++){
 //Find a row in the Used matrix where 
 //       if(Used[l][i] == 0 && 
Used[l][k] == 1){ //the row has not been used and has a 1 in the current 
column 
 //        //Add the Used row 
to the Error row using binary addition 
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 //        for(m = 0; m < 
ncol; m++){ 
 //        
 Errors[i][j][m] = XOR(Errors[i][j][m],Used[l][m]); 
 //        } 
 //        //Set the Used 
matrix current codeword bit to a 1 to indicate the row has been used 
 //        Used[l][i] = 1; 
 //       } 
 //      } 
 //     } 
 
 //    } 
 //   } 
 //   err_wt = 0; 
 //  } 
 // }while(pass != 1); 
 //} 
 
 ////Display Error Matrix DELETE AFTER TEST 
 //for(i = 0; i < ncols; i++){ 
 // printf("\n\n%d:\n", i+1);  
 // for(j = 0; j < Erows[i]; j++){ 
 //  for(k = 0; k < ncols; k ++){ 
 //   printf("%d ", Errors[i][j][k]); 
 //  } 
 //  printf("\n"); 
 // } 
 //} 
 // 
 
 
 //do{ 
 // 
 //iteration++;  
 //}while( iteration <= MAX_ITERATION && syndrome != 1); 
 
 // 
 //return syndrome; 
return 0; 
} 
 
/**************** Common Methods ***********************/ 
//Display the matrix 
void PrintIntMatrix(int **matrix, int nrows, int ncols){ 
   int i, j; 
 
   for(i = 0; i < nrows; i++){ 
      for(j = 0; j < ncols; j++){ 
         printf("%d ", matrix[i][j]); 
      } 
      printf("\n"); 
   } 
} 
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//Display a matrix 
void PrintMatrix(double **matrix, int nrows, int ncols){ 
   int i, j; 
 
   for(i = 0; i < nrows; i++){ 
      for(j = 0; j < ncols; j++){ 
         printf("%2.4f ", matrix[i][j]); 
      } 
      printf("\n"); 
   } 
   printf("\n\n"); 
} 
//Output code to file 
void FileOutput(FILE *fp, char type, double *codeword, int ncols){ 
   int i; 
   fprintf(fp, " %c: ", type); 
   for(i = 0; i < ncols; i++){ 
      fprintf(fp, "%d", (int)codeword[i]); 
   } 
} 
//Display the message 
void PrintCodeword(double *codeword, int length){ 
   int i; 
 
   for(i = 0; i < length; i++){ 
      printf("%2.4lf ", codeword[i]); 
   } 
   printf("\n"); 
} 
 
void PrintIntCodeword(int *codeword, int length){ 
   int i; 
 
   for(i = 0; i < length; i++){ 
      printf("%d      ", codeword[i]); 
   } 
   printf("\n"); 
} 
 
//Free matrix memory 
void FreeMatrix(double **matrix, int nrows){ 
   int i; 
    
   for(i = 0; i < nrows; i++) 
      free(matrix[i]); 
 
   free(matrix); 
} 
 
void FreeIntMatrix(int **matrix, int nrows){ 
   int i; 
    
   for(i = 0; i < nrows; i++) 
      free(matrix[i]); 
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   free(matrix); 
} 
 
//Calculate the BER for the signal 
double BitErrorRate(int *original, int *current, int length){ 
   int errors = 0; 
   int i; 
 
   for(i = 0; i < length; i++){ 
    if(current[i] != original[i]) 
   errors++; 
   } 
 
   return((double)errors / (double)length); 
} 
 
//Conduct syndrome test for cH = 0 
int SyndromeTest(int **matrix, int *codeword, int nrows, int ncols){ 
 int pass = -1; 
 int rowsum = 0; 
 int multi = 0; 
 int i, j; 
  
   for(i = 0; i < nrows; i++){ 
      for(j = 0; j < ncols; j++){ 
    multi += (codeword[j] * matrix[i][j]); 
   } 
   rowsum = (multi % 2); 
    
   if(rowsum > 0) 
    pass = 1; 
   } 
 return pass; 
} 
 
 
//Add AWGN noise using Box-Muller method to codeword 
void AddWhiteGaussianNoise(int *codeword, double *received, int length, 
double variance, double mean){ 
     double s1, s2, rand_n, r, noise; 
     int i; 
          
  srand((int) time(NULL)); 
 
     for(i = 0; i < length; i++){    
   do { 
    rand_n = (rand() / (double)RAND_MAX); 
    s1 = rand_n * 2.0 - 1.0; 
    rand_n = (rand() / (double)RAND_MAX); 
    s2 = rand_n * 2.0 - 1.0; 
 
    r = s1 * s1 + s2 * s2; 
     
   } while( r >= 1.0 || r == 0.0); 
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   noise = mean + sqrt(variance) *( s1 * sqrt((-2.0 * log(r)) 
/ r)); 
    
   received[i] = codeword[i] + noise; 
  }  
} 
 
//Convert message bits to either 0 or 1 
void HardDecision(int *hardcode, double *softcode, int length){ 
   int i; 
 
   for(i = 0; i < length; i++){ 
    if (softcode[i] <= MID) 
     hardcode[i] = LOW; 
    else 
     hardcode[i] = HIGH; 
   } 
} 
 
//Zeroise matrix data 
void ZeroMatrix(double **matrix, int nrows, int ncols){ 
 
 int i, j; 
 
 for(i = 0; i < nrows; i++){ 
  for(j = 0; j < ncols; j++) 
   matrix[i][j] = 0; 
 } 
} 
//Zero a double type vector 
void ZeroVector( double *vector, int ncols){ 
 int i; 
 
 for(i = 0; i < ncols; i++) 
  vector[i] = 0.0; 
} 
//Zero an int vector 
void ZeroIntVector( int *vector, int ncols){ 
 int i; 
 
 for(i = 0; i < ncols; i++) 
  vector[i] = 0; 
} 
 
void ResetMatrix(int **pchk_matrix, double **matrix, int nrows, int 
ncols){ 
 int i, j; 
 
 for(i = 0; i < nrows; i++){ 
  for(j = 0; j < ncols; j++) 
   matrix[i][j] = (double)pchk_matrix[i][j]; 
 } 
} 
 
void BSCtoBKSP(int *codeword, int ncols){ 
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 int i; 
 
 for(i = 0; i < ncols; i++){ 
  if(codeword[i] < 0.5) 
   codeword[i] = -1; 
  else 
   codeword[i] = 1; 
 } 
} 
 
void BKSPtoBSC(int *codeword, int ncols){ 
 int i; 
 
 for(i = 0; i < ncols; i++){ 
  if(codeword[i] < 0) 
   codeword[i] = 0; 
  else 
   codeword[i] = 1; 
 } 
} 
 
int XOR(int a, int b){ 
 return (a == b) ? 0 : 1; 
} 
 

 
 
 
// stdafx.h : include file for standard system include files, 
// or project specific include files that are used frequently, but 
// are changed infrequently 
// 
 
#pragma once 
 
#include "targetver.h" 
 
#include <stdio.h> 
#include <tchar.h> 
 
 
 
// TODO: reference additional headers your program requires here 

//random.c: Initial code to generate random LDPC codes 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
#define MAX_CYCLE 100 
 
void printMatrix(int **matrix, int rows, int cols); 
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void zeroMatrix(int **matrix, int rows, int cols); 
 
int main(void){ 
   int i, j; 
   int a, b, c; 
   int n, k; 
   int code_len = 0; 
   int message_len = 0; 
   int col = 0; 
   int row = 0; 
   int col_weight = 0; 
   int row_weight = 0; 
   int rows = 0; 
   float rate = 0.0; 
   int numcodes = 1; 
   int remainder = 0; 
   int result = 0; 
   int cur_colweight = 0; 
   int cur_rowweight = 0; 
   int commonbit = 0; 
   int index = 0; 
   int random_idx = 0; 
   int type = 0;  //0 = regular 1 = irregular 
   int addcol = 0; 
   int cycle = 0; 
   int chkcol = 0; 
   int chkrow = 0; 
 
   printf("Enter code length:"); 
   scanf("%d", &code_len); 
 
   printf("Enter message length:"); 
   scanf("%d", &message_len); 
 
   //calculate rate 
   rate = message_len / code_len; 
 
   printf("Enter column weight:"); 
   scanf("%d", &col_weight); 
 
   //Calculate the number of rows required 
   rows = code_len - message_len; 
    
   //Ensure column weight is less than message length 
   if(col_weight > rows){ 
      printf("Error: colweight can not be larger than message length"); 
      exit(0); 
   } 
 
   //Determine if H will be regular or irregular 
   if((code_len % rows) == 0) 
      type = 0;  
   else  
      type = 1; 
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   // Calculate row_weight 
   //If regular  all rows = row_weight else 
   // Top half of H = row_weight + 1 
   // Bottom half of H = row_weight 
   row_weight = (int)(col_weight * code_len)/rows; 
   printf("Calc row weight = %d\n", row_weight); 
   //Allocate memory space for parity check matrix 
   int **pchk_matrix = malloc(rows * sizeof(int *)); 
   for(i = 0; i < rows; i++){ 
      pchk_matrix[i] = malloc(code_len * sizeof(int *)); 
   } 
 
   //Determine candidate submatrices of H 
   //Create an array for the candidate binary tuple    
   float *candidate = malloc(rows * sizeof(float)); 
    
   //Determine the total number of possible codewords 
   numcodes = pow(2,rows); 
    
   //Create a matrix of candidate tuples 
   float **candidate_matrix = malloc(numcodes * sizeof(float *)); 
   //Check each n tuple as a candidate 
   for(i = 0; i < numcodes; i++){ 
      result = i; 
      //Convert int to binary array 
      for(j = rows - 1; j >= 0; j--){ 
         remainder = result % 2; 
  result = result / 2; 
  //Load candidate array with binary representation 
  candidate[j] = remainder; 
  //Count the number of information bits 
  if(remainder == 1){ 
     cur_colweight++;      
  } 
      } 
      //Reset remainder 
      remainder = 0; 
      //If the number of info bit = column weight n tuple is a candidate 
      if(cur_colweight == col_weight){ 
         //Add candidate tuple to the candidate matrix       
         candidate_matrix[index] = malloc(rows * sizeof(float *)); 
  for(j = 0; j < rows; j++){ 
     candidate_matrix[index][j] = candidate[j]; 
  } 
  index++; 
      } 
      //Reset column weight counter  
      cur_colweight = 0; 
   } 
   printf("There are %d rows\n", rows); 
   //Ensure all nodes are zero      
   zeroMatrix(pchk_matrix, rows, code_len); 
    
   //Seed random number 
   srand(time(NULL)); 
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   //random code construction 
   for(i = 1; i <= code_len; i++){ 
      //First column all zeros 
      //For each column choose a number that has a binary representation 
equal to colweight as a candidate 
      do{ 
 
         random_idx = rand() % index; 
  chkcol = 1; 
  chkrow = 0; 
  addcol = 0; 
   
  //Check that the candidate has only one 1 in common with any 
other column 
  for(a = 0; a < i; a++){ 
     commonbit = 0; 
     for(b = 0; b < rows; b++){ 
        if(pchk_matrix[b][a] != 0 && 
candidate_matrix[random_idx][a] != 0) 
           commonbit++;      
     } 
     if(commonbit > 1){ 
        chkcol = 0; 
        break; 
     }else{ 
        chkcol = 1; 
     } 
  } 
   
  //Check matrix row weight does not exceed required row weight  
  for(b = 0; b < rows; b++){ 
     cur_rowweight = 0; 
     //printf("Row: %d ", b); 
     for(a = 0; a < i; a++){ 
      
        cur_rowweight +=(int)pchk_matrix[b][a]; 
       // printf("%d ", (int)pchk_matrix[b][a]); 
        
     } 
     cur_rowweight += (int)candidate_matrix[random_idx][a]; 
     //printf(" mrw = %d ", cur_rowweight); 
      
    // printf(" cm %d ", (int)candidate_matrix[random_idx][a]); 
     //printf(" crw = %d ", cur_rowweight); 
     if(cur_rowweight > row_weight){ 
       // printf("no\n"); 
        chkrow = 0; 
        break; 
     } else { 
       //printf("ok\n");chkcol != 1 &&  
        chkrow = 1; 
     } 
  } 
  if (chkrow == 1) 
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     addcol = 1;  
   
      } while (addcol == 0); 
       
      for(j = 0; j < rows; j++){ 
         pchk_matrix[j][i-1] = candidate_matrix[random_idx][j]; 
      } 
      printf("add col: %i\n", i); 
      printMatrix(pchk_matrix, rows, code_len); 
         
   } 
 
   for(i = 0; i < rows; i++){ 
      free(pchk_matrix[i]); 
   } 
   for(i = 0; i < index; i++){ 
      free(candidate_matrix[i]); 
   }    
   free(candidate); 
   exit(0); 
} 
 
   void zeroMatrix(int **matrix, int rows, int cols){ 
      int i, j; 
    
      for(i = 0; i < rows; i++){ 
         for(j = 0; j < cols; j++){ 
            matrix[i][j] = 0; 
         } 
      } 
   } 
 
 
void printMatrix(int **matrix, int rows, int cols){ 
   int i, j; 
 
   for(i = 0; i < rows; i++){ 
      for(j = 0; j < cols; j++){ 
         printf("%d ", matrix[i][j]); 
      } 
      printf("\n"); 
   } 
 
} 

 

 


