UNIVERSITY OF SOUTHERN QUEENSLAND
FACULTY OF ENGINEERING AND SURVEYING

PERFORMANCE EVALUATION OF
LOW-DENSITY PARITY-CHECK
CODES

A dissertation submitted by

Paul Lauder

in fulfillment of the requirements of
Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Software)



Abstract

LDPC codes were first introduced by Robert Gallaget960. Due to the complexity of
the codes and the limitations of the then rudintgntamputer resources the codes were
neglected as a viable form of FEC. LDPC codes wedéscovered by Tanner in 1981
when he generalized the codes and provided a noéamaphical representation of LDPC
codes. LDPC codes were again neglected until th efoMacKay et al in the mid to late
1990'’s resurrected interest in the codes whenwesg discovered to out perform the then
premium Turbo codes.

This dissertation specifically describes the preagsencoding and decoding LDPC codes
and demonstrates the performance comparison betitheevarious types of decoders in
terms of bit error rate performance factors.
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Chapter 1

Introduction

Chapter 1 Introduction

1.1 Overview

The theories and applications of error correctindes (ECC) originate from the weight
and power limitations imposed on the early spadecles. High power transmitters were
not able to be incorporated into the craft and s ghe transmissions home would be
greatly affected by noise and attenuation. Theeefbomethod had to be devised to allow
the efficient and effective correction of data esrmduced into the signals. To counter this
unwanted situation, error correcting codes incafsat redundancy into the original data
that then enabled the receiver to find and cobyg@rrors occurring in the transmission.

In modern computer communications there has besgniva by both individual users and
especially commercial users to transmit and stwceeased levels of data. To facilitate this
desire new techniques have been employed to irectbasdata density via compression.
Applications such as High Definition television, lbie cellular telephony, satellite
communications and Digital Versatile Disks all ig8l some form of ECC to enable a high
level of data accuracy in order to allow the rettoseof the original data at the receiver.
Iterative decoding is one of the most powerful teghes employed in modern ECC
algorithms (Dechter et al, 2003). Low-density padheck (LDPC) codes and Turbo codes
are two ECCs based on iterative decoding, thisnigae will be detailed in Chapter 2.

LDPC codes have recently been developed that alktea transmission rates close to the
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Shannon Limit (Berou et al, 1993), the theoretiggber limit of the ratio of information to

redundancy required for accurate transmission ay&rticular noisy channel.

1.2 Wireless communications

Wireless communications were born in February 18@ten Guglielmo Marconi
journeyed from lItaly to England in order to demoatst to the British telegraph
authorities what he had developed in the way ofoperationalwireless telegraph
apparatus. The first wireless systems allowed conications at distances of only a mile
or two. The period before the Great War saw snthlhaces in the new technology that
allowed for ever greater distances to be coverddgoughout the next century, great
strides were made in wireless communication teagyol

Table 1: A timeline of significant achievements in
wireless communications.

1896 Marconi develops the first wireless telegrapstem.

1927 First commercial radiotelephone service opédrbetween Britain and the US.

1946 First automotive mobile telephone set up inL8tis using push-to-talk technology.

1948 Shannon publishes his seminal p@pbktathematical Theory of Communicatjon
establishing the foundations for source and chaemebding.

1950 First terrestrial microwave telecommunicatisystem (TD-2) commences.

1962 The first telecommunication satellite, Telskannched into orbit.

1968 Defense Advanced Research Projects Agency (PBRPA) selected BBN to

develop the Advanced Research Projects Agency Nkt@dRPANET), the
foundation of today’s Internet.

1977 Mobile cellular network established by Belbkawith the Advanced Mobile Phone
System (AMPS).

1983 Transmission Control Protocol/Internet ProtdC&€P/IP) designated the official
protocol for ARPANET.

1992 One millionth host connected to the internet.

1998 Bluetooth wireless data communications de&dprough collaboration of major

electronics manufacturers.

(Dubendorf, 2003)

1.3 Objective of the Project

The objective of this project is to determine thptimal LDPC encoder/decoder
combination for any given signal to noise ratio rothee Additive Gaussian White Noise
(AGWN) channel, in terms of Bit Error Rate (BER)aaigorithm efficiency. The project
will also determine the applicability of using LDRGdes in wireless systems.
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1.4 Structure of the Dissertation

This dissertation is structured in the followingywa
Chapter 1 - Introduction. The first chapter introduces the reader to wireless
communications and provides the reasoning behiadligsertation.

Chapter 2 - Error Correcting Coding. A detailed overview of the different methods
employed in the field of error correcting codinggluding block codes, convolutional
codes, concatenated codes and turbo codes.

Chapter 3 — LDPC Codes.A detailed analysis of low-density parity-check eod
encoding and decoding techniques.

Chapter 4 - Performance comparison of LDPC encoderand decoders Explanation
of LDPC simulator software, determination of optireacoder/decoder combination.

Chapter 5 — Conclusion.Concludes the dissertation and provides recomntiemgafor
future work.
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Chapter 2

Fundamentals of Error Correcting Coding

Chapter 2 Fundamentals of Error Correcting Coding

2.1 History

In the late 1940s Claude Shannon, a research maticean at Bell Telephone
Laboratories, invented a mathematical theory of roomcation that gave the first
systematic framework in which to optimally desigtephone systems (Shannon, 1948).
The main questions motivating this were how to gleselephone systems to carry the

maximum amount of information and how to correctdistortions on the lines.

2.2 Shannon Capacity Limit

Shannon’s ground-breaking approach to telecommtioinsa introduced a simple
abstraction of human communication, called the wbBRnShannon's communication
channel consisted of a sender (the source of irdtom), a transmission medium (with
noise and distortion), and a receiver (whose obfcis to reconstruct the original

message).

In order to quantitatively analyse transmissiorotigh the channel he also introduced a

measure of the amount of information in a mess&ge. Shannon a message is very
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informative if the chance of its occurrence is dmil in contrast, a message is very

predictable, then it contains a small amount ajrimiation.

To complete his quantitative analysis of the comication channel, Shannon introduced
the concept of entropy, a quantity that measurssuece's information production rate and
also a measure of the information carrying capacdéied the communication channel

capacity.

He showed that if the entropy rate, the amountfoirmation you wish to transmit, exceeds
the channel capacity, then there were unavoidabl@® @ncorrectable errors in the
transmission. What was truly surprising, howevethat he also showed that if the sender's
entropy rate is below the channel capacity, theretis a way to encode the information so
that it can be received without errors. This i®taven if the channel distorts the message

during transmission.

The channel capacity for the AWGN channel is deiseoh by the famous formula

developed by Shannon:

where:

C is capacity (bits per second)
W is the bandwidth (Hertz)

P is transmitter power (Watts)
N is the noise (Watts)

The channel bandwidth establishes a constraintoof fast symbols can be transmitted
over the channel. The signal to noise ratio (P/étenines how much information each
symbol can represent. The signal and noise powengihs are calculated at the receiver
end of the channel. Thus, the power level is bdiimation of transmitted power and that

of the attenuation of the signal over the transimisshannel.
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2.3 Basic Concepts Of Error Correcting Coding

Error correcting coding (ECC) (also known as ewontrol coding) is a type of digital
signal processing that improves data reliabilityifityoducing a known redundancy into a
data sequence prior to transmission or storages. rfedundancy enables a receiving system
to detect and correct errors caused by corruptioough the communication channel. As
the name implies, this coding technique enablesdé@der to correct errors without

requesting retransmission of the original inforimati

A system employing ECC consists of an informatioarse that produces a digital message
sequencaiwhich is kdigits in length. The message is passed to a chameeder that
adds the redundant bits, converting the originaksage into a codewordof length

ndigits. Figure 2.1 shows a representation of thectire of a codeword.

Redundant part Message part

100111001110110001 100010111100001100

}47 n — k digits =|< k digits 44

Figure 2.1 Systematic format of a codeword.

The codeword is transmitted through the coding rBbhy a modulator. Coding channels
are grouped into two classes being transmissiorestypr storage types. Typical
transmission types include landline telephony, aw@ve links, fibre optic cabling,
satellite communications, high-definition televisigHDTV), mobile cellular telephony,
and so on. Typical storage types include digitasatle discs (DVD), compact discs (CD),
magnetic hard drives, and so on. Every coding aklahas an effect on the transmitted

codeword due to the presence of noise or attemuatithe signal.
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A demodulator converts the received signahto a readable format for the channel
decoder that produces the estimated informationesepl . Ideally G will replicate u if
noise has not been introduced by the coding chafid source decoder utilises the
redundancy added to the original information todpie an estimate of the message
which is sent to the destination. Figure 2.2 shawtock diagram of a typical transmission

system employing ECC.

Information Source u Channel \Y, Modulator
Source »  encoder »  encoder >
O
=
o
s
Noise >
N
O
5
)
B
5
@,
v
Destination Source U Channel r Demodulator
< decoder [« decoder [«

Figure 2.2: Block diagram of a typical data transmission syséamploying ECC.

2.4 Linear Block Codes

Linear block coding (also known as algebraic cogings the only type of forward error-
correction coding in use when Claude Shannon phddidis seminal pap&tathematical
Theory of CommunicatioGhannon, 1949). With this technique, the encadersperses
parity bits into the data sequence using particalgebraic algorithms. On the receiving
end, the decoder applies an inverse of the algebfgorithm to identify and correct any

errors caused by channel corruption.
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In block coding the source information is segmeritéol messages, representedibyhat

havek equal number of information bits. In total ther@l wxist 2 distinct messages, if
the messages are not distinct the code can noafeéy sSmplemented without causing
ambiguity in determining the original message. &heoder transforms the messageto

a n-tuple codewordv, with n>k, by applying certain rules. As there @emessages
there will also be2* distinct codewords having a one-to-one relatignshi order to
reduce the complexity of the encoder having toestolarge data dictionary whénand n

are of a significant length, a special structureraquired to represent the set of all
codewords. The block code is said to be lineandf enly if the resultant modulo-2 sum of
any two codewords exists in the €2of all codewords. An example of a linear block code

is given in Table 1.

Table 2: (7, 4) Linear block code

Message Codeword
0000 0000000
0001 1010001
0010 1110010
0011 0100011
0100 0110100
0101 1100101
0110 1000110
0111 0010111
1000 1101000
1001 0111001
1010 0011010
1011 1001011
1100 1011100
1101 0001101
1110 0101110
1111 1111111

Because anr(,k) linear block codeC is ak-dimensional subspace of the vector space

V, of every binaryn-tuple, it is possible to findlinearly independent codewordg, ,
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0, n , 0., In C such that every codeword is a linear combination of thede

codewords; thus,

V= uogo + ulgl + K + uk—lgk—l

whereu, ={01} for 0<i <k. Theklinearly independent codewords can now be arranged

into akxn matrix in the following form:

o 9oo 901 N Yona
G= 9, _ O0 911 N Oia
M M M M

Ok Ok-10 Jk11 N Gkt

(2.2)

(2.3)

whereg; =(9,,9,,.K ,0,,4) for 0<i<k. If u = (u,,u,;,K ,u,_,) is the message

to be encoded then the resultant codeword cantbaaed by:

v=ulG
%
= (Ug, Uy, K U, ;) gl\l/l
Ok

=UyQ, + U0, *K +U,,0,,

2.4)

The matrixG thereby allows the generation of amgodeword from any given message

from the set of codes @and therefore is called the generator matrixCfor

A linear block code can also be expressed in tefnasparity check matrix where for any

kxn generator matrix withk linearly independent rows, there exists(ar-k)xn matrix

H with (n—k) linearly independent rows such that any vectothe row space o6 is
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orthogonal to the rows dfl , and any vector that is orthogonal to the row epdd is in

the row space o6, this provides the following equation:

VIHT =0 (2.5)

The codeCis said to be the null space Bf. Linear block codes are thereby defined and

described in terms of either a generator matrix parity check matrix.

2.5 Convolutional Codes

The forward error correction technique known asvobutional coding was first introduced
by Elias in his worlCoding for Noisy Channel&lias, 1955). Convolutional codes process
incoming bits in streams rather than in blocks. phaciple feature of such codes is that
the encoding of any bit is strongly influenced b tbits that preceded it (that is, the
memory of past bits). A convolutional decoder takds account such memory when
trying to estimate the most likely sequence of dlaté produced the received sequence of
code bits. Historically, the first type of convoautal decoding, known as sequential
decoding, used a systematic procedure to searcla fgood estimate of the message
sequence; however, such procedures required a desdtof memory, and typically

suffered from buffer overflow and nongraceful deigitzon.

In 1967, Andrew Viterbi developed a decoding tegbgi that has since become the
standard for decoding convolutional codes (Vitet867). At each bit-interval, the Viterbi
decoding algorithm compares the actual receivee dni$ with the code bits that might
have been generated for each possible memorytstagition. It chooses, based on metrics
of similarity, the most likely sequence within aesflic time frame. The Viterbi decoding
algorithm requires less memory than sequential dlegobecause unlikely sequences are
dismissed early, leaving a relatively small numbkecandidate sequences that need to be

stored.
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2.6 Concatenated Codes

In 1966, Forney combined the two previous codimhrieues to form a concatenated code
(Forney, 1966). In this arrangement, the encod&edl together an algebraic code followed
by a convolutional code. The decoder, a mirror ienafjthe encoding operation, consisted
of a convolutional decoder followed by an algebrderoder. Thus, any bursty errors
resulting from the convolutional decoder could Ilffectively corrected by the algebraic
decoder. Performance was further enhanced by wmnmterleaver between the two
encoding stages to mitigate any bursts that mighibb long for the algebraic decoder to
handle. This particular structure demonstrated ifsignt improvement over previous
coding systems and is currently being used in teepC5pace Network (Sniffen, 2004) as

well as numerous other commercial broadcastingce=sy

2.7 lterative Decoding For Soft Decision Codes

Iterative decoding is defined as a technique enipdpg soft-output decoding algorithm
that is iterated several times to improve the ggesformance of a coding scheme, with the
aim of approaching true maximume-likelihood decodifMLD), with less complexity
(Elias, 1954). After designing the underlying ercorrecting code, the error performance
can be improved by simply increasing the numbeteoétions. In terms of the application
of iterative decoding algorithms, ECC schemes cangénerally categorized into two

classes, either Turbo codes or Low Density ParitgdR (LDPC) codes.

2.7.1 Turbo Codes

Turbo codes are a class of error correcting cdaswere first introduced in 1993, by a
group of researchers from France, along with atioedecoding algorithm (Berroet al,
1993). The turbo codes are very important in thaseethat they enable reliable
communications with power efficiencies close to tiineoretical limit predicted by Claude
Shannon. Hence, turbo codes have been used fopdawgr applications such as deep
space and satellite communications, as well agferference limited applications such as

third generation cellular and personal communicesiervices.
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2.7.2 LDPC Codes

LDPC codes are a form of linear block codes thaeviiest introduced in 1960 by Robert
Gallager in his doctoral thesis (Gallager, 196BEsides turbo codes, low-density parity-
check (LDPC) codes form another class of Shanmuoit-#ipproaching codes. Due to the
complexity of the encoding and decoding of LDPCeasothey were not utilised after the
time of their discovery for decades. A great ddalesearch has been conducted recently
into LDPC codes with the design of very fast enogdand decoding algorithms. The
design of the codes is such that the decoding iliges have the ability recover the

original codeword in the presence of large amoahtmise.

The construction, encoding and decoding of LDPGesadlill be presented in detail in the

subsequent chapters.

2.8 Summary

In this chapter, we outlined the basic conceptSrodr Correcting Codes and the Shannon
capacity limit of a communications channel. A basiplanation of different forms of ECC
was presented with emphasis on the block codinignigaes. LDPC codes have many
common concepts of operation as other block cosidlgniques such as Turbo codes. Both
LDPC and Turbo codes utilise iterative soft outpgetoding algorithms and both can

achieve near Shannon limit performance.
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Chapter 3

LPDC codes

Chapter 3 LPDC Codes

3.1 Code Description
Gallager defined an LDPC code as the null spaca eparse parity check matrbt
(Gallager, 1963). A sparse matrix is one that costaery few 1's when compared to the

number of 0’s. The original work by Gallager delsed what is now known as a regular
LDPC code, having a parity check mattikthat has constant row weights, denotedapy
and constant column weights, denotedwy The weighting is determined by the number
of 1's contained in the column or row. The valuésapand w, are to be minor when
compared to the length of the codeword )( and the number of rows ihl (J).

Additionally the number of 1's in common betweery awo columns ofH can not be

greater than 1. Figure 3.1 demonstrates a regi@iexd_code.

If the parity check matri¥d contains inconsistent, or w, values it is said to be an

irregular LDPC code. In recent times irregular LDB@les have been demonstrated to
achieve remarkable results that were within 0.088%f the Shannon limit (Chung et al,
2001).
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11110000000000000000
00001111000000000000
0000000O0O0111100000000
000000000O0OO0O111120000
00000000000000001111
10001000100010000000
01000100010000001000
H=/00100010000001000100
000100000010001000120
00000001000100010001
10000100000100000100
01000010001000010000
0010000100001200000120
00010000100001001000

00001000010000100001

Figure 3.1: Regular (20, 3, 4) LDPC code.

3.2 Tanner Graphs

In 1981 Robert Tanner rediscovered LDPC codessnwlark on the use of recursion to
construct error correcting codes (Tanner, 1981nnéautilised bipartite graphs to describe
the parity check matrix, which are now known as nngraphs, which display the
incidence relationships between the variable codgwds and the corresponding check-

sum tests.

The graphG representing the parity check mattik consists of two sets of verticésand
C. The setV consists ofn vertices that represent timecodeword bits and are called

variable notes, denoted lwy,v;,K ,v,_,. Variable node indexes correspond to the column

number of the parity check matrix. The €&tonsists of] vertices that represent the

J parity check-sums and are called check nodes, eérwntc,,c K ,c, ;. Check node
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indexes correspond to the row number of the pahck matrix. An edge is contained in

the graphG if and only if the variable node, is contained in a parity check sem The

inclusion of a variable node in a check sum is rdateed by the presence of a 1 in the
parity check matrix. The graplG will never have any two variable nodes or any two
check nodes connected by an edge. The Tanner fynafite parity check matrix shown in
Figure 3.1 is shown in Figure 3.2.

Variable Nodes

Check Nodes

Figure 3.2: Tanner graph for (20, 3, 4) LDPC code

Tanner graphs can be used to estimate codewords) dfPDC codeC by iterative
probabilistic decoding algorithms, based on eithard or soft decisions, this will be

examined in section 3.4.3.

3.3 Encoding LDPC codes
There are two methods employed to encode messafgesddewords for LDPC codes,
both methods require the generation of the pahigck matrixH . The algorithms used in

the construction of parity check matrik will be discussed in the following subsections.
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The first encoding method is through the use otmegator matrix, denoted ly. The
matrix G contains the set of constraints that form thetpaheck equations of the LDPC
code. A codewora is formed by multiplying a source messagéy the matrixG . This

is represented by the following equation:

c=uG 3.1)

For a binary code witlkk message bits and lengthcodewordghe generator matri& is a

(kxn) binary matrixhaving the form:

G=[,|AT] 3.2)

where the sub-matriA’ is produced by transformirty into column permuted reduced-

row echelon form using Gauss-Jordan eliminatiomgtmaet al,2004) such that:

H=[Al] (3.3)

where A will be a(n-k)xk binary matrix and_, is an identity matrix. The row space

of G will be orthogonal toH so that:

GH" =0 (3. 4)

The process of converting into the generator matrig has the effect of causing to

lose the sparseness characteristic that was endbadiel . This has the drawback of

driving the encoder complexity towar@Xn*) (Mackay, 2005).

An alternative approach to encoding LDPC codes magposed by Richardson and
Urbanke based on approximate lower triangulati&ish@rdson and Urbanke, 2001). This

method is also a two step process.
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Firstly pre-processing is conducted, using only @wl column permutations, the parity-
check matrix is put intapproximate lower triangulaform:

w=[a 8] 09

such that- ETB + D is non-singular.

The grows of H in sub-matrice€, D, andE is called the gap of the approximate
triangular representation. The sub-matrix is a lower triangular matrix of

size(m—-g)x(m-g). If H, is full rank the sub-matrdB is size(m-g)xg and sub-
matrix A is size(m-g)xk. Keeping the size of the gap low will reduce tmeazling

complexity for the LDPC code.

Once in lower triangular format, Gauss-Jordan elation is utilised to cleaE, which is

the equivalent of multiplyingH, by

{ Im_g_l o}
~ET™ I,

so that
i e OJA BT A B T
|-ET*I,|C DE| |-ET'A+C -ET'B+D 0

Finally, to encode the message ushzighe codeworct = [cl,cz,K ,cn] is divided into three
parts  being c:[u, o pz] , Where u :[ul,uz,K ,uk] is the k -bit message,
pl=[p11,plz,K ,png holds the firstg parity check bits ande:[pzl,pzz,K ,pzm_gj

contains the remaining parity check bits.
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The codewordc must satisfy the syndrome tasl =0 and so

Au+Bp +Tp, =0, (3. 6)
and

Cu+Dp,+0p,=0 3.7)

whereC =-ET*A+C andD =-ET'B+D.

Since E has been cleared, the parity bitsgndepend only on the message bits, and so can

be calculated independently of the parity bitspin If Dis invertible, p, can be found by

-1

p=D Cu.

If Dis not invertible the columns dfl can be permuted until it is. By keepiggas small

as possible the added complexity load of the maimidtiplication to obtain is kept to a

minimum.

Once p, is known p, can be found byp, = -T*(Au+ Bp,) . The sparseness &, B and
T can be employed to keep the complexity of thisrapen low and, ad is upper

triangular, p, can be found using back substitution.
3.4 Code Construction

3.4.1 Random Generation of Parity Check Matrix
The construction of the parity check matrix canalshieved in a pseudorandom manner
using computer searches that are constrained tchéracteristics of an LDPC matrix. The

parity check matrixH is constructed through the fitting of columns to an empty matrix,
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where n is the length of the LDPC code. Regular and inaguDPC codes can be

constructed using this method.

To generate the matriid for an LDPC code of lengtih and ratek/n an appropriate

column weighty and row dimensiord must be determined.

3.4.2 Geometric Generation

The generation of LDPC codes can be achieved thraig application of finite
geometries. A finite geometry is a geometry that &dinite number of points. A geometry
G with n points andJ lines which has the following fundamental struatyroperties: 1)

every line consists ofp points; 2) any two points are connected by oneaaty one line;
3) every point lies ory lines and 4) two lines are either parallel or thegrsect at only

one point (Ball & Werner, 2007). The two familiek fmite geometries which have the
above fundamental structural properties are Euatidend Projective geometries over finite
fields. Lin and Costello describe two types of LD&gtle constructions for Euclidean and

Projective geometries (Lin & Costello, 2004).

3.4.2.1 Euclidian Geometries

A geometry in which Euclid's parallel postulatedwols called Euclidean Geometry. The
parallel postulate states that if two lines arewiravhich intersect a third in such a way that
the sum of the inner angles on one side is legs tiva right angles, then the two lines

inevitably must intersect each other on that diggtended far enough.

ConsiderEG(m,ZS) as anm -dimensional Euclidean Geometry over the GaloiddFie
GF(ZS) where s and m are two positive integers. Total number of poimntsthis
geometry is2™with each point representing an -tuple overGF(ZS) . The origin
corresponds to then -tuple that contains all zeroEG(m,ZS)can be seen as am -
dimensional vector space o@F( S). Any two lines in EG(m,ZS) will either intersect at

one and only one point or are disjoint. Therefoli@@ will consist of2° points. The total
number of lines irEG(m,ZS) can be calculated by:

(m-1)s{Hms _
J= P (3. 8)

2°-1
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Every line will have™™* -1 lines parallel to it. For each point IEG(m,ZS) the number
of lines intersecting at this point is:
2™ -1
2°-1

(3.9)

a) Typel Euclidean Geometry (EG) LDPC Codes
A type-l EG code that is based (EG(m,ZS) the parity check matrix £ is formed

where each row is the incidence vectors of all lthes EG(m,ZS) and each column
corresponds to all the points iEG(m,ZS). The number of rows irH® can be

determined using (3.8) and the number of columrishein =2, corresponding to the

number of points in the geometry. Each row weighHit will equate to the number of
points contained in a line irEG(m,ZS) this being2®. The number of lines intersecting a

point, given by (3.9), will determine the columnigt of H .. The densityr of HY, is:

=§= 22 (3. 10)

Whenm=2,s>2 andr <1/4 thenHE will be a low density parity check matrix. The
null space ofH®, provides an LDPC code of length= 2™, denoted byC®(m,0,s),

which is call anm-dimensional type-(O, s) th-order EG-LDPC code. The Tanner graphs

of type-1 EG codes do not contain any 4-cyclesugiothere are many cycles of length 6
(Kou, Lin & Fossorier, 2001).

b) Type |l Euclidean Geometry LDPC Codes
The construction of a type-1l EG LDPC code is adrout by taking the transpose of

HY so that:

HE =[HE (3. 11)
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Then H & has both the values df and n, along with o and y interchanged when

compared toH £ . Then null space oH 2 gives an LDPC code, denoted 82 (m,0,s),

2(m1s(2m —1)s(2° - 1). The minimum distance will be of the order of

having lengthn

2° +1. The Tanner graphs fa&€& (m.,0,s) and C2(m,0,s)are dual, both the codes have

identical cycle distributions. The2(m,0,s) type-Il EG LDPC code is not cyclic, but it

can be put into a quasi cyclic form (Kou, Lin & Boser, 2001).

Figure 3.3 shows a type-I (0,2)th-order EG LDPCecpdrity check matrix with its

associated Tanner graph. Figure 3.4 illustratgpe-tl (0,2)th-order EG LDPC code that

is the transpose of the matrix in Figure 3.3. it ba seen that the Tanner graph of the

type

[l matrix is a mirror image of the Tanner gnagf the type-1 matrix.
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Figure 3.3: Type-l EG LDPC matrix and Tanner graph
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Figure 3.4: Type-ll EG LDPC matrix and Tanner graph

The origin is removed from the geometry when camsiing the type-I and type-ll EG-

LDPC codes.

3.4.2.2 Projective Geometries

A projection is the transformation of points anteB in the one plane onto another plane by

linking corresponding points on the two planes vai#inallel lines. The branch of geometry

dealing with the properties and invariants of gemimdigures under projection is called

projective geometry.

c)Type | Projective Geometry LDPC Codes

Leta to be a primitive element dBF(Z(”‘*l’S), considered to be an extension to the

GF( S) field. An m-dimensional projective geometrRG(m,ZS), overGF( S) is defined

as:

et )la®)k o)

(@

where the number of elements is given by:

2(m+1)s _ 1

-1

n=
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Eacha' element corresponds to the points of EP@(m,ZS) geometry. The quantity of

lines in PG(m,2°) is given by:

22N+ 2™ 1+ 25+ A + 20D
J=
1+2°

where each line consists 8f —1points. Everya' element inPG(m,ZS) is intersected by:

2™ -1
2°-1

y:

lines. The lines irPG(m,ZS) will be either disjoint or intersect at one andyoone point.

The incidence vector of a ling in PG(m,ZS) is ann-tuple such that:
V£ = (VO’Vl’/\ ’Vn—l)
where:

v =1 ff ﬁcontainsthepoint(ai),
' |0 otherwise.

The incidence vector will have a weight 21 +1. The incidence vectors of the lines in

PG(m,ZS) will form the rows of the parity check matri ) with the columns of the
matrix corresponding to the points BG(m,ZS). The matrixH $ will have dimensions

(m-1)s S ms S (m+l)s _
of J= [+ +22Jgi)(12 *A 2 +1) rows andn=223—11 columns. H§ will

the following properties:

(i) arowweightofp=2%+ 1

2™ -1

(i) a column weight ofy = > 1




Chapter 2 Fundamentals of Error Correcting Coding 24

(2°-1(2°+1)

(iii) a density ofr :f ==

(iv) no two rows or columns having more than one 1 mroon, and

(m-1)s

(v) whenm is larger is approximately2™ so the matrix will be very sparse.

(m+D)s _
The null space oH{. provides a cyclic LDPC code of Iengthzzzs—l1 having a

ms

minimum distance of at leagt+1= +1. This LDPC code is denote@®.(m,0,s),

S

being anm-dimensional type-I(0, s) th order Projective Geometry LDPC code.

3.5 LPDC Decoding

As stated previously an LDPC code represents thespace of a sparse parity check
matrix H . When a codeword is received the decoder will conduct a test by wating

the following (" ~K) _tuple:
s=vH'

wheres=(sb,§,K ,sn_k_l) and is said to be the syndromewf The syndromes will be a

zero vector if and only ivis a legitimate codeword. I is not a zero vector then the
received codeword contains one or more errorsLBFPC decoders employ syndrome testing

to detect the presence of errors.

3.5.1 Bit-flipping Algorithm

The bit-flipping algorithm was implemented by Ggia in his original work into LDPC
codes (Gallager, 1963). The bit-flipping algoritisra hard-decision classed message-passing
algorithm. A binary (hard) decision about each nesx bit is made by the detector and this is
passed to the decoder. For the bit-flipping algonitthe messages passed along the Tanner
graph edges are also binary: a bit node sends sagesleclaring if it is a one or a zero, and
each check node sends a message to each connictedd) declaring what value the bit is
based on the information available to the checkendthe check node determines that its
parity-check equation is satisfied if the modulstitn of the incoming bit values is zero. If
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the majority of the messages received by a bit ravdedifferent from its received value the

bit node changes (flips) its current value. Thisgess is repeated until all of the parity-check
equations are satisfied, or until some maximum remalb decoder iterations has passed and
the decoder gives up. The bit-flipping decoder banimmediately terminated whenever a

valid codeword has been found by checking if althef parity-check equations are satisfied.
This is true of all message-passing decoding of C@Bdes and has two important benefits.
Firstly additional iterations are avoided once &tson has been found, and secondly a

failure to converge to a codeword is always detkcte

The bit-flipping algorithm is based on the prindiplzat a codeword bit involved in a large
number of incorrect check equations is likely toileorrect itself. The sparsity of H helps
spread out the bits into checks so that paritykleegiations are unlikely to contain the same

set of codeword bits.

3.5.2 Weighted Majority Logic Algorithm

The bit-flipping algorithm can be improved by theclusion of some form of reliability
information for the codeword received that will pide enhanced decoding decisions (Lin
and Costello, 2004). Decoding is carried out bgualing weighted check sums for each bit

by:

0]

min

(3.12)

E éZ(Zsj(l) _1lyj

Where|yj|:1) e{min{]yi|} :0<i<n-1h, =1}

in

The bit position that has the highdst value is then flipped. The process is carriedumiti

either the syndrome test is passed or the maximaloe\of iterations is reached.
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3.5.3 Sum-Product Algorithm

The sumproduct algorithm is a soft decision message-pgsaigorithm. It is similar to the
bit-flipping algorithm described in the previousgen, but with the messages representing
each decision (check met, or bit value equal tmdy probabilities. Whereas bit-flipping
decoding accepts an initial hard decision on tleeived bits as input, the sum-product
algorithm is a soft decision algorithm which aceetite probability of each received bit as

input.

The input bit probabilities are called thee priori probabilities for the received bits because
they were known in advance before running the LIe€oder. The bit probabilities returned

by the decoder are called thegposterioriprobabilities. In the case of sum-product decoding
these probabilities are expressed as log-likelihabids.

For a binary variablex it is easy to find p(x=1) given p(x=0) , since
p(x=1) =1- p(x=0) and so there is only the need to store one prbtyabalue for x.

Log likelihood ratios are used to represent thericgefor a binary variable by a single value:

_1oq P(X=0)
L(x) = Iog( o(x=1) j

(3. 13)

If p(x=0)>p(x=1) then L(x) will be positive, the greater the difference betwe
p(x=0) and p(x=1), that there is more confidence thpf{x) =0, then the larger the
positive value for L(x) . Conversely, ifp(x=1) > p(x=0) then L(x) will be negative and
the greater the difference between the larger dgative value ofL(x) . Therefore the sign

of the log likelihood ration provides a hard demmsion value ofx and the magnitude the

absolute value of (x) determines the reliability of the decision. Ipisssible to calculate the

probabilities from the log likelihood ratios by:
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o P(X=0)/p(x=1) _ e
—0) = =
P =0 = S x=0)/ px=]) 1=

and
x=1)/p(x=0 et
p(x=1 = P( _) D _) = “L(x)
1+ p(x=1)/p(x=0) 1-e
The benefit of the logarithmic representation ashabilities is that when probabilities need

to be multiplied log-likelihood ratios need only lmdded, reducing implementation

complexity.

The aim of sum-product decoding is to compute tlaimuma posteriori probability for

each codeword bitP = P{cl ::IjN}, which is the probability that thie-th codeword bitis a 1

conditional on the evenfN that all parity-check constraints are satisfieche Textra
information about bii received from the parity-checks is deemed extingiormation for
bit i .

The sum-product algorithm iteratively computes gpraximation of the maximum a
posteriori value for each code bit. However, thpoateriori probabilities returned by the
sum-product decoder are only accurate values ip#ngy check matrix is cycle free, as can
be determined by the Tanner graph. The extringmrnmation obtained from a parity check
constraint in the first iteration is independentioé a priori probability information for that
bit, though it does depend on the a priori prolitdsl of the other codeword bits. The
extrinsic information provided to-th bit in subsequent iterations remains independethe
original a priori probability for bit until the original a priori probability is returdéack to
bit i via a cycle in the Tanner graph. The associatioth® extrinsic information with the
original a priori bit probability is what preventise resulting posteriori probabilities from

being exact.

3.6 Summary

In this chapter, we discussed the general pringipté LDPC codes including code

construction, message encoding and codeword degathiorithms.
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In the early 1960’s when first discovered, the fedi computing resources prevented
Gallager from demonstrating the full capabilitieb rmessage passing LDPC decoders.
Codeword lengths were limited to no longer tharuadb500 bits as the computation required
for encoding and decoding made the codes impradticause. This resulted in his work
being ignored for over 30 years except by all boaadful of researchers. It has only been in
recent times that the re-discovered by researdfasthe emergence of turbo decoding has
shown the true benefits of LDPC codes.
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Chapter 4

Performance comparison of LDPC Codes

Chapter 4 Performance comparison of LDPC encodersmal decoders

4.1 LDPC Encoder Implementation

Generator Matrix Encoding

The simulator function MakeGenerator is used tater@ generator matrix from the supplied
parity check matrix. The function is passed pomtay the parity check matrix and the
allocated space for the generator matrix, alondwlie row and column dimensions. A
working matrix is required to manipulate the paheck matrix data without amending the
original matrix which will be required in the dedog functions. The working matrix is
required to have the same form and data as thgy pdaeck matrix. This is accomplished by
the following code:
temp_matrix = malloc(rows * sizeof(int *));
if(temp_matrix == NULL){

printf("Error: failed to allocate nenory for tenp_matrix matrix\n");

exit(1l);

for(i =0; i <rows; i++){

tenp_matrix[i] = malloc(n * sizeof (int *));

if(temp_matrix[i] == NULL){

printf("Error: failed to allocate nenory for tenp_nmatrix rown");
exit(1);
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}
}
//1nitialise tenp matrix to parity check matrix
for(i =0; i <rows; i++){
for(j =0; j <n; j++){
tenp_matrix[i][j] = pchk_matrix[i][j];
}
}

The first operation is put the parity check matiixnto row-echelon form (i.e. so that in any
two successive rows that do not consist entirelyearos, the leading 1 in the lower row

occurs further to the right than the leading 1hi@ higher row).

The matrix H is put into this form by applying elentary row operations in GF(2), which
are; interchanging two rows or adding one row totlaer modulo 2. From linear algebra it is
known that by using only elementary row operatitmes modified parity-check matrix will

have the same null space and therefore the sanegvood set as the original.

To achieve this process is broken into two stepstly* to make the matrix lower triangular,

which achieved by the following code:

[/ Make temp matrix |ower triangular
for(i =0; i <rows; i++){
//Ensure curent matrix data starts with a 1
if(tenmp_matrix[i][i] == 0){
[/ Find the next rowwith a 1 in the columm and swap
row dx = FindRowdata(tenmp_matrix, 1, i+1, rows, i, 1);
if(rowmdx < 0){
printf("Error: unable to make generator matrix fromparity
check matrix\n");
printf("Reason: no rowto swap to nake H | ower
triangular\n");
return state

el se {
SwapRows(tenmp_matrix, i, row dx, n);
}
/| Ensure each row bel ow current row does not start have a 1 for this
col um
for(j =i+l j < rows; j++){
if(temp_matrix[j][i] == 1){
AddRows(tenp_matrix, i, j, n);
}

}

The next step requires the clearing of the uppandular portion which then makes a

reduced row-echelon form matrix.
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[/ Make tenmp matrix upper triangular

for(i =rows-1; i >=0; i--){
/1l Ensure each row bel ow current row does not start have a 1 for this colum
for(j =i-1; j >=0; j--){
if(temp_matrix[j][i] == 1){
AddRows(tenp_matrix, i, j, n);
}
}
}

The working matrix is now in the correct form to keathe generator matrix. The parity

submatrix is taken from the working matrix, inver&nd copied into the generator.

/] Take Parity submatrix and transpose into generator matrix

for(i =0; i <rows; i++){
for(j =rows; j <n; j+H){
gen_matrix[j-rows][i] = tenp_matrix[i][j];
}
}

The final step to complete the generator matrio igdd an identity matrix.

//Add ldentity matrix to generator matrix
for(i =0; i < k; i++){
gen_natrix[i][i+rows] = 1;
}
The generator matrix is now complete. In orderriooele the message into a codeword the
generator matrix is multiplied by the message wedioe result is the codeword to be

transmitted.

All of this processing can be done off-line andt jtree matrice<G andH' provided to the
encoder and decoder respectively. However, the lthakvof this approach is that, unlike
the matrix G will most likely not be sparse andtke matrix multiplication at the encoder
will have complexity in the order af® operations. A is large for LDPC codes, from
thousands to hundreds of thousands of bits, thedemacan become prohibitively complex.
Later we will see that structured parity-check meals can be used to significantly lower this
implementation complexity, however for arbitraryripacheck matrices a good approach is
to avoid constructings at all and instead to encode using back substituwith H as is

demonstrated in the following approximate lowesnigular form matrix encoding.
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4.2 LDPC Decoder Implementation

Two types of decoders were implemented successtiiy sum-product algorithm based on
belief propagation and the standard bit-flippingoaithm.

The bit-flipping decoder required the number ofefd checksums to be calculated. To
achieve this each bit is checked in turn by deteimgi the variable bits that make up the
checksum from the check nodes. The following cadgrent carries out the check and
compares the received bit to the calculated bithéf comparison is incorrect then a counter

for that bit is incremented.

for(j =0; j < ncols; j++){
/1 Get the current nessage bit
currentBit = decoded[j];
//Find a link to a check node
for(i = 0; i < nrows; i++){
if(matrix[i][j] == 1){
/IFind the links to the variabl e nodes
for(k = 0; k < ncols; k++){
if(k !'=j & matrix[i][Kk] == 1)
/1 Add the nessage bits
sum = sum + decoded[ K] ;

}

/| Conpare sumto original bit

if(currentBit !'= fnod(sum, 2)){
//Sumis incorrect increnent the failure count
check_fails[j]++;

}

sum = O;

The vector check fails is then checked to deterntivgevalue of the greatest number of
checksum failures. Once this is determined it smmaple matter to find which bits of the
received codeword is required to be changed tofposite information bit. The following

code fragment carries out these requirements:

/IFind the bits with [ argest failed checksuns
for(j =0; j < ncols; j++){
if(check _fails[j] > maxFail ed)
maxFai |l ed = check _fails[j];

}

/[IFlip the bits having the largest failure rate
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for(j =0; j < ncols; j++){
if(check _fails[j] == maxFail ed)
decoded[j] = (int)fnod((decoded[j] + 1), 2.0);

The decoded vector is now checked to determinddfdyndrome test is satisfied. If the
syndrome test passes the algorithm terminatesyvaitee the algorithm will continue up to

the maximum iterative count.

The bit-flipping algorithm is a relatively quick deder but is has the drawback of inducing
faults into the codeword. A problem that can odsuhat one or more bits will be caught in a
loop where the bits will be constantly flipped bt codeword is never closer to being
decoded. When this happens the algorithm will negtermination through the maximum

iteration constraint.

The sum product algorithm required the implemeatatf a number of working matrices of
the same dimension as the parity check matrix. Tésslts in the SPA decoder having

greater memory utilization than the BF decoder.

After initializing the memory requirements of thigaithm the Gaussian density probability

is calculated.

/Il Calcul ate the Guassian density probabilities
for(i = 0; i < ncols; i++)
f1[i] = 1 /(1+exp((-2*codeword[i])/pow ch_dev, 2)));
for(i = 0; i < ncols; i++)
foli] =1 - f1[i];
Thea priori probabilities are then calculated.

/*calculate the qlij probabilities*/

for(i = 0; i < nrows; i++){
for(j =0; j < ncols; j++){
ifCalli][j] '=0)
qlfi][i] *=f1[j];
}
}
/lcalculate the qOij probabilities
for(i = 0; i < nrows; i++){

for(j =0; j < ncols; j++){
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if(qo[il[j] !=0)
ofi][j] *= fo[jl;

a -

The algorithm is now ready to start the decodiegations. Upon entering the iteration loop

the soft codeword is hard decoded and then theregmaltest is conducted. If the test passes
the loop is terminated and the codeword has beeodee, else the algorithm continues. The
next step is to calculate the probability differemgjuations.

/lCalculate the probability deltas
for(i = 0; i < nrows; i++){

for(j =0; j < ncols; j++){

(i1l

} deltadfi][j] = qO[i][j] - gi[i][il;
}
for(i = 0; i < nrows; i++){
for(j =0; j < ncols; j++){
if(deltaP[i][j] !'= 0){
for(k = 0; k < ncols; k++){
if(j !'=k & deltaP[i][k] != 0){
deltaP[i][j] *= deltaQi][k];
}
}
}
}
}

The bit probability values are then calculated by:
//Calcul ate p val ues

for(i = 0; i < nrows; i++){
for(j=0; j < ncols; j++){
i f(pO[i][j] = 0){ _
PO[i][j] *= (0.5 * (1 + deltaP[i][j]));
} pi[i][j] *= (0.5 * (1 - deltaP[i][j]));
}
}

From the bit probability the coefficients are thehculated:
//lcalculate the coefficients

for(i = 0; i < ncols; i++){
for(j =0; j < nrows; j++){
if(matrix[j][i] !'= 0){
coeff0 = 1.0;
coeffl = 1.0;
for(k = 0; k < nrows; k++){
if(j '=k & matrix[k][i] !'= 0){
coeffQ *= pO[K][i];
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coeffl *= pl[K][i];
}
}
coeffO *= fO[i];
coeffl *= f1[i];

qao[j1l[i] coeffQ /(coeff0 + coeffl);
aql[j1[i] coeffl /(coeff0 + coeffl);

}

A new soft codeword is generated by scaling theutaled bit values. This new codeword is
now hardcoded and a syndrome test is conducted.

The one step majority logic decoder was not coraglet

4.3 Simulation Results

0 - — T T

2ogcs -] — Uncoded BPSK
. :| & EG-LDPC MLG
---------- .....| -5~ EG-LDPC BF
------------------------ &~ EG-LDPC Weighted MLG |-
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Figure 4.1Bit-error probabilities of the type-1 2-D (255; 1)/BG-LDPC code and (273;
191) PG-LDPC code based on different decoding alguos. (Kouet al, 2001)

Figure 4.1 shows the comparison between geometdescutilizing various decoding
techniques. As can be seen the SPA decoder outmerdl other decoding algorithms for

the same error rate by more than 1 dB.
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4.4 Summary

In this chapter, the different techniques for emegdnd decoding LDPC were simulated. It
was shown that the Sum Product algorithm has thet paiential to be able to correct a
codeword that has been subjected to large amotintise. The drawback of the SPA
decoder is the additional complexity required tplement which has a great effect on the
latency of the decoder, this is especially truemtery large code lengths are utilised.

The technique of using the approximate lower triaagmethod of fast encoding LDPC code
was not implemented.
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Chapter 5

Conclusions

Chapter 5 Conclusions

5.1 Concluding Remarks

LDPC codes have been proven to be one of the noestniul ECC codes discovered. Today,
design techniques for LDPC codes exist which endlde construction of codes which
approach within hundredths of a decibel of the 8barlimit of a communications channel.

In addition to the strong theoretical interest IDRC codes, such codes have already been
adopted in satellite-based digital video broadogstind long-haul optical communication
standards, could be adopted in the IEEE wirelesal larea network standard, and are under

consideration for the long term evolution of thgeneration mobile telephony.

This project has outlined various techniques fonstcting LDPC codes, encoding
messages for transmission and the decoding ofvetenessages over an AWGN channel.
The simulation of the various algorithms did nohiage their intent due to my inability to
correctly simulate the channel environment. Analysi the different decoding techniques
therefore relied on work conducted by other redeac
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5.2 Future Work

LDPC codes will be utilised more often in futureaith forms of wireless communications.
During this project | have discovered that the nilsiw of the Bit Flipping algorithm is its

inability to terminate when caught in a loop. Thlgorithm could be further improved to
provide a learning algorithm that would evolve ratgtgy to flip only a dedicated bit rather

than the entire set of bits with the most check§aihares.

An efficient technique for computer simulations thie approximate lower triangular

encoding technique should be investigated.
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/1 LDPC Sinmulator.cpp : Defines the entry point for the console
application.

I

#i ncl ude "stdaf x. h"

#i ncl ude "stdio. h"

#include "stdlib.h"

#i ncl ude "nath. h"

#include "limts.h"

#i nclude "nall oc. h"

#include "tine. h"

#define MAX_| TERATI ON 10

#define FALSE 0O

#define TRUE 1

/1 Si mul ati on channel signal to noise paraneters

#define DB_MAX 2

#define DB_INC 0. 25

#define DB INIT -2

/| Channel nessage bit paraneters

#define HHGH 1 /I BSC = +1 BKSP = +1

#define MD O //BSC = +0.5 BKSP = 0

#define LON-1 /I BSC = +0 BKSP = -1

i nt MakeGenerator(int **pchk_matrix, int **gen_matrix, int rows, int n,
int k);

voi d SwapRows(int **matrix, int rowdxl, int row dx2, int cols);

voi d AddRows(int **matrix, int rowdxl, int rowdx2, int cols);

int FindRowdata(int **matrix, int data, int rowSt, int rows, int colldx,
int dir);

int BitFlipping(int **pchk_matrix, double *codeword, int *decoded, int
nrows, int ncols);

int SumProduct (int **pchk_nmatrix, double *codeword, int *decoded, int
nrows, int ncols, double ch_dev);

int OneStepMajoritylLogic(int **pchk_matrix, double *codeword, int
*decoded, int nrows, int ncols);

void PrintintMatrix(int **matrix, int nrows, int ncols);

void PrintMatrix(double **matrix, int nrows, int ncols);

void FileQutput(FILE *fp, char type, double *codeword, int |ength);
voi d Print Codeword(doubl e *codeword, int ncols);

voi d PrintlntCodeword(int *codeword, int ncols);

voi d FreeMatrix(double **matrix, int nrows);

void FreelntMatrix(int **matrix, int nrows);

double BitErrorRate(int *original, int *current, int |ength);

int SyndroneTest(int **matrix, int *codeword, int nrows, int ncols);
voi d AddWhi t eGaussi anNoi se(i nt *codeword, double *received, int |ength,
doubl e variance, doubl e nmean);

voi d HardDeci sion(int *hardcode, double *softcode, int ncols);

voi d ZeroMatri x(double **matrix, int nrows, int ncols);

voi d ZeroVect or (doubl e *vector, int ncols);

voi d ZerolntVector(int *vector, int ncols);

void ResetMatrix(int **pchk_matrix, double **matrix, int nrows, int

ncol s) ;
voi d BSCt oBKSP(i nt
int XOR(int a, int

*codeword, int

b);

ncol s) ;
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voi d mai n(){

[/vari abl es

di nensi on*/

di nensi on*/

row di

int **gen_matrix = NULL; /[*Pointer to Generator natrix*/

int **pchk_matrix = NULL; /*Pointer to Parity Check matrix*/

int *codeword = NULL; / *Channel codeword vector*/

int *original = NULL; /*Original codeword vector*/

int *decoded = NULL; / *Fi nal decoded vector*/

doubl e *recei ved = NULL; / *Codeword + noi se vector received*/

FILE *fp = NULL; [*Input file pointer*/

int pchk_rows = 0; /*Parity Check matrix row

int pchk _cols = 0; /*Parity Check matrix colum

int n=0; / *Codeword and Gener at or
matrix col um di mensi on */

int k = 0; / *Message and Generator matrix

mensi on*/

doubl e code_rate = 0.0; /*Code rate*/

double bit_error = 0.0; /*Bit Error Rate*/

doubl e variance = 0.0; / *Channel variance*/

doubl e deviation = 0.0; / *Channel standard deviation*/

double dB = 0.0; /*Signal to Noise ratio*/

doubl e nean = 0.0; /*Si gnal mean*/

int i, j; /*Local counter variabl es*/

int roww = 0;

int status = 0; / *Decoder status bit*/

int type_decoder = O; / *Decoder choi ce*/

int type_encoder = O; / *Encoder choi ce*/

char fil enane[200]; /*1 nput filename containing

parity check matrix*/

systen("cls");

/1 Si mul at or Engi ne
pl’intf(" *kkhkkhkhkhkkkkhkkkk* LDPC Sl n—ul ator ***************\nu);

/1 Get encoder options from user
printf("Encoding Options:\n");
printf(" 1. Load Parity Check Matrix fromfile\n");
printf(" 2. CGenerate Parity Check Matrix");
while (type_encoder < 1 && type_encoder > 2){
printf("Enter a nunber between 1-2: ");
scanf ("%", &t ype_encoder);

swi tch(type_encoder){
case 1:
while(fp =

fopen("C.//Project//1dpc//Debug//pchk_matrix 8 12.txt","r");

printf("Enter filenane: ");

/1 Get decoder option from user
printf("Avail abl e Decoders:\n");
printf(" 1. Sum Product Al gorithmn");
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printf(" 2. Bit Flipping Algorithmn");

printf(" 3. Majority Logic Algorithmn");

printf("Enter Decoder nunber: ");

scanf (" %", &t ype_decoder);

while (type_decoder < 1 && type_decoder > 3){
printf("Enter a nunber between 1-3: ");
scanf ("%", &t ype_decoder);

}

/lLoad parity check matrix fromfile
//File contents to be:

[/ nrows ncols

[/ HOO. ...... HOncol s

//HﬁromsO...Hnrbwsncols

[1fp = fopen("C.//Project//Idpc//Debug//pchk_matrix_3 7.txt","r");

[1fp =
fopen("C.//Project//1dpc//Debug//pchk_matrix 6 _12.txt","r");

fp = fopen("C.//Project//|dpc//Debug//pchk_matrix 8 12.txt","r");

[1fp =
fopen("C.//Project//1dpc//Debug//pchk_matrix_816_408.txt","r");

I1fp =
fopen("C.//Project//1dpc//Debug//pchk_matrix_15 15.txt","r");
if (fp == NULL){
printf("Error: Could not open input file ...\n");
exit(0);
}

/1 Get matrix di mensions
fscanf(fp, "% %", &pchk rows, &pchk cols);

/I Cal cul ate code di nensi ons

n = pchk_cols;

k = n - pchk_rows;

code_rate = (double)k / (double)n;

/1 Al'l ocate Parity Check matrix nenory space
pchk_matrix = mall oc(pchk_rows * sizeof (int *));
i f(pchk_matrix == NULL){
printf("Error: failed to allocate nmenory for pchk_matri x

matrix\n");
exit(l);
}
for(i = 0; i < pchk_rows; i++){
pchk_matrix[i] = malloc(n * sizeof(int *));
i f(pchk_matrix[i] == NULL){

printf("Error: failed to allocate nenory for
pchk_matrix rown");
exit(l);

}

/' Popul ate Parity Check matrix data
for(i = 0; i < pchk_rows; i++){
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for(j =0; j <n; j++){
fscanf(fp, "%", &-chk matrix[i][j]);
}
}

/1A'l ocate Parity Check matrix nenory space
gen_matrix = malloc(k * sizeof(int *));
i f(gen_matrix == NULL){
printf("Error: failed to allocate nenory for gen_matrix
matrix\n");

}
for(i =0; i < Kk; i++){
gen_matrix[i] = malloc(n * sizeof(int *));
if(gen_matrix[i] == NULL){
printf("Error: failed to allocate nenory for
gen_matrix rown");
exit(1l);
}

exit(1l);

}

/llnitialise the generator matrix
ZeroMatri x(gen_matrix, k, n);

/1 Al'locate nmenory for codeword vector
codeword = (int *)malloc(sizeof (int) * n);
i f(codeword == NULL){
printf("Error: failed to allocate nenmory for codeword

vector\n");
exit(l);
/1 Al'locate nmenory for codeword vector
original = (int *)malloc(sizeof(int) * k);
i f(original == NULL){
printf("Error: failed to allocate nenory for codeword
vector\n");
exit(1l);
}

/1A'l ocate nmenory for decoded vector
decoded = (int *)mall oc(sizeof(int) * n);
i f(decoded == NULL){
printf("Error: failed to allocate nenory for decoded
vector\n");

}

/1 Al'locate nmenory for received codeword vector
received = (double *)mall oc(sizeof (double) * n);
i f(received == NULL){
printf("Error: failed to allocate nenory for received

exit(l);

vector\n");

}

exit(1l);
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/'l For testing set codeword to zero vector
Zer ol nt Vect or (codeword, n);

Zerol nt Vector (original, k);

Pri nt | nt Codewor d(codeword, n);

/'l Convert the codeword to bpsk
BSCt oBKSP(codeword, n);

Print| nt Codewor d( codeword, n);
PrintlntMatrix(pchk_matrix, pchk_rows, n); / *DELETE AFTER
TESTI NG/

for(dB = DB_INT, dB < DB_MAX; dB += DB_I NO){
printf("db: %f\n", dB);
/llnitialise received vector
Zer oVector (recei ved, n);

[/ Cal cul ate variance for current SNR
variance = 1.0/ (2. 0*code_rate*pow 10. 0, dB/ 10.0));

/] Cal cul ate standrad devi ati on
deviation = sqrt(vari ance);

/1 Add Wi te Guassian Noi se

AddWhi t eGaussi anNoi se(codeword, received, n, variance,
nmean) ;

printf("Sent: ")

Print| nt Codewor d( codeword, n);

[lprintf("Received: ");

/1 PrintCodeword(received, n);

/1 Run Decoders
swi tch(type_decoder){
case 1. status = SunProduct(pchk_matrix, received,
decoded, pchk_rows, n, deviation);
br eak;
case 2: status = BitFlipping(pchk_matrix, received,
decoded, pchk_rows, n);
br eak;
case 3: status
recei ved, decoded, pchk_rows, n);

OneSt epMpj ori tyLogi c(pchk_matri x,

br eak;
defaul t:
printf("Error: Unable to resol ve decoder
type.\n");
}
printf("Last: ");

Print| nt Codewor d(decoded, n);
if(status == 1)
printf("Decoded\n");
el se
printf("Unresol ved\n");
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bit _error = BitErrorRate(original, decoded, n);

printf("BER %f\n", bit_error);
}

/1 Close open file pointers
fclose(fp);

/I Free used nenory
Freelnt Matri x(pchk_matri x, pchk_rows);
free(codeword);

free(decoded);

free(received);

}

[* xEExEkxkkxAkRX Cenerator Matrix Production Methods **x**x*kx*kx/
int MakeGenerator(int **pchk _matrix, int **gen_matrix, int rows, int n,
int k){

int **tenp_matrix = NULL; /Iworking matrix

int state = 0; [/ Function state vari abl e fai
= 0 success =1

int romdx = 0; // Row i ndex of a matrix

int i, j; [l Local counter variables

tenp_matrix = malloc(rows * sizeof (int *));
if(tenp_matrix == NULL){
printf("Error: failed to allocate nmenory for tenp_matrix

matrix\n");
exit(l);
}
for(i = 0; i < rows; i++){
tenp_matrix[i] = malloc(n * sizeof(int *));
if(tenp_matrix[i] == NULL){

printf("Error: failed to allocate nenory for
tenmp_matrix romn");

exit(1l);
}
}
/llnitialise tenp matrix to parity check matrix
for(i =0; i <rows; i++){
for(j =0; j <n; j++){
temp_matrix[i][j] = pchk_matrix[i][j];
}
}
/1 Make tenp matrix |ower triangul ar
for(i = 0; i <rows; i++){

/lEnsure curent matrix data starts with a 1
if(temp_matrix[i][i] == 0){
/I1Find the next rowwith a 1 in the colum and swap
rowm dx = FindRowdata(tenp_matrix, 1, i+1, rows, i, 1);

if(row dx < 0){
printf("Error: unable to nmake generator matrix
fromparity check matrix\n");
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printf("Reason: no rowto swap to nake H | ower
triangular\n");

return state ;

}

el se {
SwapRows(tenp_matrix, i, rowdx, n);

}

}

/1 Ensure each row bel ow current row does not start have a 1
for this colum

for(j =i+1; j < rows; j++){
if(temp_matrix[j][i] == 1){
AddRows(temp_matrix, i, j, n);
}
}
}
/1 Make tenp matri x upper triangul ar
for(i =rows-1; i >=0; i--){

[/ Ensure each row bel ow current row does not start have a 1
for this colum

for(j =i-1; j >=0; j--){
if(temp_matrix[j][i] == 1){
AddRows(temp_matrix, i, j, n);
}
}
}
/] Take Parity submatrix and transpose into generator natrix
for(i =0; i <rows; i++){
for(j =rows; j <n; j++){
gen_matrix[j-rows][i] = temp_matrix[i][j];
}
}

/1 Add Identity matrix to generator matrix

for(i =0; i < Kk; i++){
gen_matrix[i][i+rows] = 1;

}

state = 1;

return state;

}

voi d SwapRows(int **matrix, int rowdxl, int row dx2, int cols){
int tenp;
int i;
for(i = 0; i <cols; i++){

temp = matrix[rowdx1][i];
matri x[ rowl dx1][i] matri x[rowl dx2][i];
matri x[ rowl dx2][i] t enp;
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/1 Add content of rowl and row2 and put result into row2

voi d AddRows(int **matrix, int row dxl, int rowdx2, int cols){
int i;
//Only 2 canges to nmake 1+1->0 & 1+0->1
/I no changes for 0+0->0 & 0+1->1

for(i =0; i < cols; i++){
if(matrix[romdx1l][i] == 1 && matrix[rowm dx2][i] == 1){
matri x[row dx2][i] = O;
} else if(matrix[rowdx1l][i] == 1 & matrix[row dx2][i] ==
0){
matri x[row dx2][i] = 1;
}
}
}

/IFind data in a matrix given a starting position
int FindRowdata(int **matrix, int data, int rowSt, int rows, int colldx,
int dir){

int i;

int romdx = -1;

if(dir > 0){
for(i = rowst; i < rows; i++){
if(matrix[i][colldx] == data)({
rowdx = i;
br eak;
}
}
} else {
for(i =rowst; i >=0; i--){
if(matrix[i][colldx] == data)({
rowdx = i;
br eak;
}
}
}

return row dx;

/* kkkkkhkkkhkkkhkhkkhkxhkkx [bcodl ng thhods LR S R I I I S I S O */

int BitFlipping(int **matri x, double *codeword, int *decoded, int nrows,
i nt ncol s){
int *check fails = NULL;
doubl e currentBit = 0.0;
doubl e sum = 0. 0;
int syndrone = 0
int iteration
i nt maxFail ed
int i, j, k;

= 1;
= 0

[/ Create Check Failure vector
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for(i = 0; i < ncols; i++)
check fails = (int *)malloc(sizeof (int) * ncols);
i f(check _fails == NULL){
printf("Error: failed to allocate nenory for
check_fails\n");
exit(1l);

/1 Convert to hard decision quantized form
Har dDeci si on(decoded, codeword, ncols);

/ *Comrence decoding iterations*/
do{
/I Check if codeword passes syndrone test
syndrome = SyndroneTest (matri x, decoded, nrows, ncols);

[1lf sydrone test failed - find and repl ace i ncorrect
message bits
/| For each nessage bit
for(j =0; j < ncols; j++){
/1 Get the current nmessage bit
currentBit = decoded[j];
//Find a link to a check node
for(i = 0; i < nrows; i++){
if(matrix[i][j] == 1){
//Find the links to the variable nodes
for(k = 0; k < ncols; k++){
if(k !'=j & matrix[i][Kk] == 1)
/1 Add the nmessage bits
sum = sum + decoded[ K] ;

/| Conpare sumto original bit
if(currentBit !'= frnod(sum, 2)){
/1'Sumis incorrect increnment the
failure count
check_fails[j]++;

}
sum = O;
}
}
}
/[IFind the bits with largest failed checksuns
for(j =0; j < ncols; j++){
i f(check_fails[j] > maxFail ed)
maxFai |l ed = check _fails[j];
}
[IFlip the bits having the largest failure rate
for(j =0; j < ncols; j++){
if(check _fails[j] == maxFail ed)
decoded[j] = (int)fnod((decoded[j] + 1), 2.0);
}

maxFai |l ed = O;
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iteration++;

// Reset failure counter
for(i = 0; i < ncols; i++){

check _fails[i]

}

= 0;

// Reset maxi mum failure counter

maxFai | ed = O;

}while (iteration < MAX | TERATI ON && syndrone != 1);

/I Free all ocated nenory
free(check _fails);

return syndroneg;

}

int SunmProduct(int **matrix,

int ncols, double ch_dev){
/] Vari abl es
doubl e **p0 = NULL;
doubl e **p1l NULL;
doubl e **del taP = NULL;
doubl e **deltaQ = NULL;
doubl e **q0 = NULL;
doubl e **ql = NULL;
doubl e *f0 = NULL;

0 bit*/
doubl e *f1 = NULL;

1 bit*/

doubl e *soft0 = NULL;
doubl e *soft1l = NULL;
int i, j, k;

int syndrone = O;

int iteration = 1;

int numdata = O;
doubl e coeff0 = 0.0;
doubl e coeffl = 0.0;

doubl e *codeword, int *decoded, int nrows,

/*Pointer to POij probabilities*/
/*Pointer to Plij probabilities*/
/*Pointer to P deltas*/
/*Pointer to Q deltas*/
/*Pointer to QUij probabilities*/
/*Pointer to Qlij probabilities*/
/*Gaussi an probability function for

/*Gaussi an probability function for

/*soft codeword probability for bit 0*/
/*soft codeword probability for bit 1*/
/*l ocal variabl es*/
/*syndrone test flag*/
/*nunber of iterations*/
[ *nunber of data bits*/
/*scaling coefficient for bit 0*/
/*scaling coefficient for bit 1*/

doubl e colum_sum = 0.0;/*matri x colum data sunt/

/*Create nmessage bit vectors */
soft0 = (double *)mal |l oc(sizeof (double) * ncols);

if(soft0 == NULL){

printf("Error: failed to allocate nmenory for softc\n");

exit(l);

softl = (double *)mall oc(sizeof (double) * ncols);

if(softl == NULL){

printf("Error: failed to allocate nenory for softc\n");

exit(l);
}

/*Create Gaussian probability density function vectors*/
fO = (double *)mall oc(sizeof (double) * ncols);

i f(f0 == NULL){

printf("Error: failed to allocate nenory for fO\n");

exit(1l);
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f1 = (double *)mall oc(sizeof (double) * ncols);

if(fl == NULL){
printf("Error: failed to allocate nenory for f1\n");
exit(1l);

}

/*Al'l ocate space for algorithmvariabl es*/
[*prior probabilities*/
pO = (double **)mal |l oc(si zeof (double *) * nrows);
i f(p0 == NULL){
printf("Error: failed to allocate nenory for pO\n");

exit(1);
}
for(i = 0; i < nrows; i++){
pO[i] = (double *)mall oc(sizeof (double) * ncols);
i f(pO[i] == NULL){
printf("Error: failed to allocate nenory for pO\n");
exit(1l);}
}

pl = (double **)nall oc(sizeof (double *) * nrows);
i f(pl == NULL){
printf("Error: failed to allocate nenmory for pl\n");

exit(1l);
for(i = 0; i < nrows; i++){
pl[i] = (double *)nmall oc(sizeof (double) * ncols);
i f(pl[i] == NULL){
printf("Error: failed to allocate nenmory for pl\n");
exit(l);
}

}

/*di fference equations*/
deltaP = (double **)mal |l oc(sizeof (double *) * nrows);
if(deltaP == NULL){

printf("Error: failed to allocate nenory for deltaP\n");

exit(1l);
for(i = 0; i < nrows; i++){
deltaP[i] = (double *)mall oc(sizeof(double) * ncols);
if(deltaP[i] == NULL){
printf("Error: failed to allocate nenory for
deltaP\n");
exit(l);
}
}

deltaQ = (doubl e **)mal | oc(si zeof (double *) * nrows);

i f(deltaQ == NULL){
printf("Error: failed to allocate nenory for deltaQn");
exit(1l);

}

for(i = 0; i < nrows; i++){
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deltadi] = (double *)nmalloc(sizeof(double) * ncols);
if(deltaQi] == NULL){
printf("Error: failed to allocate nenory for
deltaQn");
exit(1l);

}

/*conditional probabilities*/
g0 = (double **)mal | oc(si zeof (double *) * nrows);
i f(q0 == NULL){
printf("Error: failed to allocate nenory for gqO\n");

exit(1);
}
for(i = 0; i < nrows; i++){
qO[i] = (double *)mall oc(sizeof (double) * ncols);
if(qO[i] == NULL){
printf("Error: failed to allocate nenory for gqO\n");
exit(1l);
}
}

gl = (double **)mal | oc(sizeof (double *) * nrows);
i f(ql == NULL){
printf("Error: failed to allocate nenory for ql\n");

exit(l);
for(i = 0; i < nrows; i++){
gl[i] = (double *)mall oc(sizeof (double) * ncols);
if(ql[i] == NULL){
printf("Error: failed to allocate nenmory for ql\n");
exit(1l);
}

}

/* Initialise all algorithmmmatrices to parity check matrix */
Reset Matri x(matrix, p0, nrows, ncols);

Reset Matri x(matrix, pl, nrows, ncols);

Reset Matri x(matrix, g0, nrows, ncols);

Reset Matri x(matrix, ql, nrows, ncols);

Reset Matrix(matrix, deltaP, nrows, ncols);

Reset Matrix(matrix, deltaQ nrows, ncols)

/Il Calcul ate the Guassian density probabilities
for(i = 0; i < ncols; i++)
f1[i] = 1 /(1+exp((-2*codeword[i])/pow ch_dev, 2)));

for(i = 0; i < ncols; i++)
foli] =1 - f1[i];

/*calculate the qlij probabilities*/

0; i < nrows; i++){

for(j =0; j < ncols; j++){
if(alfi][j] t=0)

for(i
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ifillj] *=f1[j];

}
}
/lcalculate the qOij probabilities
for(i = 0; i < nrows; i++){
for(j =0; j < ncols; j++){
if(qo[i][j] '= 0)
aqo[i][j] *=fO[j];
}
}
/ *Commence decoding iterations*/
do{

/' Convert to hard decision quantized form
Har dDeci si on(decoded, codeword, ncols);

/I Check if codeword passes syndrone test
syndrome = SyndroneTest (matrix, decoded, nrows, ncols);

/lCalculate the probability deltas
for(i = 0; i < nrows; i++){

for(j =0; j < ncols; j++){

(i1l

} deltaQi]J[j] = q0 i1 - allillil;
}
for(i =0; i < nrows; i++){
for(j =0; j < ncols; j++){
if(deltaP[i][j] !'= 0){
for(k = 0; k < ncols; k++){
if(j '=k & deltaP[i][Kk] != 0){
deltaP[i][]j] *= deltaQi][K];
}
}
}
}
}
/Il Calcul ate p val ues
for(i = 0; i < nrows; i++){
for(j=0; j < ncols; j++){
if(pOLi][j] = 0) o
pPO[i][j] *= (0.5 * (1 + deltaP[i][j]));
} pPI[i][j] *= (0.5 * (1 - deltaP[i][j]));
}
}
/lcalculate the coefficients
for(i = 0; i < ncols; i++){
for(j =0; j < nrows; j++){
if(matrix[j][i] '= 0){
coeff0 = 1.0;
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coeffl
for(k

i f

}

1.

0;
(]

0;

k < nrows; k++
= k &% matrix
coeff0Q *= pO[
coeffl *= pl]

}

coeffQ *= fO[i];
coeffl *= f1[i];
coeffQ /(coeff0 + coeffl);
coeffl /(coeff0 + coeffl);

aofj][i] =
ai[jI[i] =
}
}
}
/| Generate new soft codewords for each bit
for(i = 0; i < ncols; i++){
softO[i] = 1;
softl[i] = 1;
for(j =0; j < nrows; j++){
if(pO[j]1[i] '= 0){
softO[i] *=pO[j][i];
soft1[i] *= pl[j][i];
}
}
softO[i] *= fO[i];
soft1[i] *= f1[i];
//Hard code the new codeword
if(softl[i] > softO[i])
decoded[i] = 1;
el se
decoded[i] = O;
}
// Reset matrices
Reset Matri x(matrix, deltaP, nrows, ncols);
Reset Matri x(matrix, deltaQ nrows, ncols);
Reset Matri x(matrix, p0, nrows, ncols);
Reset Matri x(matrix, pl, nrows, ncols);

iteration++;

)
[
k
k

{
k
]
]

]
[
[

.[
[
[

i
]
]

} while( iteration <= MAX | TERATI ON && syndronme != 1);

/I Free allocated nenory
FreeMat ri x(p0, nrows);
FreeMatri x(pl, nrows);
FreeMatri x(deltaP, nrows);
FreeMatri x(deltaQ nrows);
FreeMat ri x(q0, nrows);
FreeMatri x(qgql, nrows);
free(soft0);

free(softl);

return syndrone;

] 1= 0){



Chapter 2 Fundamentals of Error Correcting Coding 59
}
int OneStepMajoritylLogic(int **matri x, double *codeword, int *decoded,
int nrows, int ncols){
/1 int iteration = 1; /*lteration counter*/

/lint syndrome = O; /*Syndrone test status flag*/

/[lint col_w = O; /[*Parity check matrix colum
wei ght */

[lint err_w = 0; [*Error colum wei ght*/

/lint pass = 0; /*Orthogonal pass flag*/

/[lint ***Errors = NULL; /*3d Error matrix*/

/[lint **Used = NULL; [*Tracking matrix*/

/lint *Erows = NULL; / *Nunber of rows in each Error
matri x*/

[lint i, j, k, I, m n; /*Local counter variabl es*/

[lprintf("***x**x**x*x**Fntering One Step Majority Logic
Decoder ***x***xx %%\ n") . / *DELETE AFTER TESTI NG*/

[1l/Create Error matrix

[lErrors = (int ***)mal | oc(sizeof (int **) * ncol s);

[1if(Errors == NULL){

/1 printf("Error: failed to allocate nenory for Error
matrix\n");

/1 exit(1l);

11}

[l1for(i = 0; i < ncols; i++){

/1 Errors[i] = (int **)mall oc(sizeof (int *) * nrows);

/1 if(Errors[i] == NULL){

/1 printf("Error: failed to allocate nmenory for Error
Matrix rown");

/1 exit(1l);

11 }

/1 for(j =0; j < nrows; j++){

/1 Errors[i][j] = (int *)malloc(sizeof (int) * ncols);

I if(Errors[i][j] == NULL){

/1 printf("Error: failed to allocate nenory for
Error Matrix colum\n");

/1 exit(1l);

I }

11 }

11}

[11/Create tracking matrix

[1Used = (int **)malloc(sizeof (int *) * nrows);

/1if(Used == NULL){

/1 printf("Error: failed to allocate nenory for Used
matrix\n");

/1 exit(1l);

11}
/1 for(i = 0; i < nrows; i++){

/1 Used[i] = (int *)malloc(sizeof(int) * ncols);

I i f(Used[i] == NULL){

/1 printf("Error: failed to allocate nenory for Used matrix

romn");
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I exit(1);}

11}

[l1lllInitialise tracking matrix to the parity check matrix
[l1for(i = 0; i < nrows; i++){

/1 for(j = 0; j < ncols; j++)

/1 Used[i][j] = matrix[i][j];

11}

[1//Create Error rows vector

[1Erows = (int *)malloc(sizeof (int) * ncols);

[1if(Erows == NULL){

/1 printf("Error: failed to allocate nenmory for Error rows
vector\n");

/1 exit(l);

11}

1/l Transfer Parity check matrix base vectors to Error matrix
[Ifor(i = 0; i < ncols; i++){

/1 col_w = 0;

/1 for(j =0; j < nrows; j++){

11 if(matrix[j][i] == 1){

/1 col _wt ++;

/1 for(k = 0; k < ncols; k++){

/1 Errors[i][col _wt-1][Kk] = matrix[j][K];
11 }

11 }

11

/1 Erows[i] = col _wt;

11}

/1// Make Error vectors orthogonal

[Ifor(i =0; i <ncols; i++){ [//for each bit in the codeword

I do{

/1 for(j =0; j < Erows[i]; j++){

//for each rowin the error matrix

/1 for(k = 0; k < ncols; k++){

/lfor each bit in the Error matrix row

I if( k!=1i){

/1 do not check the sane as the current codeword bit

11 if(Errors[i][j]l[k] == 1){

/lcheck if the bit is al

/1 err_wt ++;

/lkeep the total of ones in this Error matrix col umm

11 }

/1 if(err_ w > 1){

/1if nmore than one 1

/1 for(l =0; | < nrows; |++){

/IFind a rowin the Used nmatrix where

11 if(Used[I][i] == 0 &&
Used[I][k] == 1){ //the row has not been used and has a 1 in the current
col um

/1 /1 Add the Used row
to the Error row using binary addition
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ncol ;

/1 for(m=0; m«<
m++) {

/1

Errors[i][j][m = XOR(Errors[i][j][m,6 Used[I][n]);

Il }

[/ //Set the Used

matri x current codeword bit to a 1 to indicate the row has been used

/1 Used[1][i] = 1;
/1 }

/1 }

/1 }

11 }

I }

/1 err w = 0;
I }

/1 }while(pass !'= 1);

11}

[11/1Display Error Matrix DELETE AFTER TEST
[lfor(i = 0; i < ncols; i++){

/1 printf("\n\n%:\n", i+1);

/1 for(j =0; j < Erows[i]; j+¥){

/1 for(k = 0; k < ncols; k ++){

/1 printf("%l ", Errors[i][j]l[k]);
11

/1 printf("\n");

11

11}

11

/1 do{

I

[literation++;

[1}while( iteration <= MAX | TERATION && syndrome != 1);

/1

/lreturn syndrone;
return O;
}

kkhkkhkkhkkhhkkhkkhhkkhkkhhkkhkkk khkkhkkhhkkhkkhhkkhkkhhkkhkkhhkkhkkhkhkkhkkhkhkkhkkh*k
/ Conmmon Met hods /

/1 Display the matrix
void PrintlIntMatrix(int **matrix, int nrows, int ncols){

i nt

i, g

for(i = 0; i < nrows; i++){

for(j =0; j < ncols; j++){
printf("od ", matrix[i][j]);

}
printf("\n");
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//Display a matri x

void PrintMatrix(double **matrix, int nrows, int ncols){

int i, j:

for(i = 0; i < nrows; i++){
for(j =0; j < ncols; j++){
printf( "o 4f ", matrix[i][j]);

}
printf("\n");

}
printf("\n\n");
}
//Qutput code to file
void FileQutput(FILE *fp, char type, double *codeword,

int i;
fprintf(fp, " %: ", type);
for(i = 0; i < ncols; i++){

fprintf(fp, "%l", (int)codeword[i]);
}
}
/1 Di splay the nessage

voi d Print Codeword(doubl e *codeword, int |ength){
int i;

for(i =0; i < length; i++){
printf("9%.41f ", codeword[i]);

}
printf("\n");

voi d PrintlntCodeword(int *codeword, int |ength){
int i;

for(i =0; i < length; i++){
printf ("% ", codeword[i]);

}
printf("\n");

}

/[l Free matrix nmenory

voi d FreeMatrix(double **matrix, int nrows){
int i;

for(i = 0; i < nrows; i++)
free(matrix[i]);

free(matrix);

}

void FreelntMatrix(int **matrix, int nrows){
int i;
for(i = 0; i < nrows; i++)

free(matrix[i]);

i nt

ncol s) {
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free(matrix);

}
/Il Cal culate the BER for the signal
double BitErrorRate(int *original, int *current, int |ength){
int errors = 0;
int i;
for(i =0; i < length; i++){
if(current[i] !'=original[i])
errors++;
}
return((double)errors / (double)length);
}

/I Conduct syndrone test for cH=0
int SyndromeTest(int **matrix, int *codeword, int nrows, int ncols){

int pass = -1;
int rowsum = O;
int multi = 0;
int i, j;
for(i = 0; i < nrows; i++){
for(j =0; j < ncols; j++){

multi += (codeword[j] * matrix[i][j]);
}

rowsum= (multi % 2);

i f(rowsum > 0)
pass = 1,

return pass;

/1 Add AWGN noi se using Box-Miller method to codeword

voi d Addwhi t eGaussi anNoi se(int *codeword, double *received, int |ength,

doubl e variance, doubl e mean){
doubl e s1, s2, rand_n, r, noi se;
int i;
srand((int) time(NULL));
for(i = 0; i < length; i++){
do {
rand_n = (rand() / (doubl e) RAND MAX) ;
sl =rand_n * 2.0 - 1.0;

rand_n = (rand() / (doubl e) RAND MAX) ;
s2 =rand_n * 2.0 - 1.0;

r = sl * sl + s2 * s2;

} while( r >= 1.0 || r == 0.0);
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noi se = nean + sqrt(variance) *( sl1 * sqgrt((-2.0 * log(r))
I r));
received[i] = codeword[i] + noi se;
}
}
/I Convert nessage bits to either 0 or 1
voi d HardDeci sion(int *hardcode, double *softcode, int |ength){
int i;
for(i =0; i < length; i++){
if (softcode[i] <= MD)
hardcode[i] = LOW
el se
hardcode[i] = HH&H
}
}
/] Zeroi se matri x data
voi d ZeroMatri x(double **matrix, int nrows, int ncols){
int i, j;
for(i = 0; i < nrows; i++){
for(j = 0; j < ncols; j++)
matrix[i][j] = O;
}
}
/1 Zero a doubl e type vector
voi d ZeroVector( double *vector, int ncols){
int i;
for(i = 0; i < ncols; i++)
vector[i] = 0.0;
}
/] Zero an int vector
voi d ZerolntVector( int *vector, int ncols){
int i;
for(i = 0; i < ncols; i++)
vector[i] = O;
}
voi d ResetMatrix(int **pchk_matrix, double **matrix, int nrows, int
ncol s) {
int i, j;
for(i = 0; i < nrows; i++){
for(j = 0; j < ncols; j++)
matrix[i][j] = (double)pchk_matrix[i][j];
}
}

voi d BSCt oBKSP(i nt *codeword, int ncols){
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int i;
for(i = 0; i < ncols; i++){
i f(codeword[i] < 0.5)
codeword[i] = -1;
el se
codeword[i] = 1;
}
}
voi d BKSPt oBSC(i nt *codeword, int ncols){
int i;
for(i = 0; i < ncols; i++){
i f(codeword[i] < 0)
codeword[i] = O;
el se
codeword[i] = 1;
}
}

int XOR(int a, int b){
return (a==0Db) ?2 0 : 1,
}

/1 stdafx.h : include file for standard systeminclude files,

/1 or project specific include files that are used frequently, but
/1 are changed infrequently

I

#pragma once

#i ncl ude "targetver.h"

#i ncl ude <stdi o. h>
#i ncl ude <tchar. h>

/1 TODO reference additional headers your programrequires here
//randomc: Initial code to generate random LDPC codes

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#i ncl ude <mat h. h>
#def i ne MAX_CYCLE 100

void printMatrix(int **matrix, int rows, int cols);
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voi

i nt

d zeroMatrix(int **matrix, int

nai n(vpi d){

nt i, j;
nt a, b, c;
nt n, k;

nt code_|en = O;

nt nessage_len = 0;
nt col = O;
nt row = O;
nt col _wei ght
nt row_wei ght
nt rows = 0;
float rate = 0.0;
i nt nuncodes = 1

I ;
int remai nder = 0;
int result = 0O;

i nt cur_col wei ght
int cur_rownei ght
int coomonbit = 0;
int index = 0;
i
i
i
i
i
i

nt random.idx = 0;

nt type = 0; //0 =regular 1
nt addcol = O;

nt cycle = 0;
nt chkcol
nt chkrow

eer

printf("Enter code length:");
scanf (" %", &code_len);

I oOws,

int cols);

= irregular

printf("Enter nessage |ength:");

scanf ("%d", &mressage | en);

/lcalculate rate
rate = nessage_len / code_|l en;

printf("Enter columm weight:");
scanf (" %", &col weight);

/1 Cal cul ate the nunber of rows required

rows = code_len - nessage_| en;

/1 Ensure colum weight is |ess than nessage | ength

i f(col _weight > rows){

printf("Error: colweight can not be |arger than nessage |ength");

exit(0);
}
[/ Determine if Hwill be regular or irregular
if((code_len %rows) == 0)
type = 0;
el se

type = 1;
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/1l Cal cul ate row wei ght
[1lf regular all rows = row weight else
/1l Top half of H=rowwight + 1
/1l Bottom half of H = row_wei ght
row wei ght = (int)(col_weight * code_len)/rows;
printf("Calc row weight = %\n", row weight);
/1 Al'locate nmenory space for parity check matrix
int **pchk_matrix = malloc(rows * sizeof(int *));
for(i =0; i <rows; i++){

pchk_matrix[i] = malloc(code_len * sizeof(int *));
}

/ I Determ ne candi date subnatrices of H
/'l Create an array for the candidate binary tuple
float *candidate = nmalloc(rows * sizeof (float));

/I Determ ne the total nunber of possible codewords
nuncodes = pow 2, rows);

//Create a matri x of candi date tuples
float **candidate_matrix = malloc(nuncodes * sizeof(float *));
/I Check each n tuple as a candidate
for(i = 0; i < nuntodes; i++){
result =1i;
/'l Convert int to binary array
for(j =rows - 1; j >=0; j--){
remai nder = result % 2;
result = result / 2
//Load candidate array with binary representation
candi date[j] = remainder;
/1 Count the number of information bits
i f(remai nder == 1){
cur _col wei ght ++;
}

}

/ / Reset renmai nder
remai nder = O;

[11f the nunbér of info bit = colum weight n tuple is a candi date

i f(cur_col weight == col _wei ght){
/1 Add candidate tuple to the candi date nmatrix
candidate_nmatri x[i ndex] = malloc(rows * sizeof(float *));
for(j =0; jJ <rows; j++){
candi date_matri x[index][j] = candidate[j];
}

i ndex++;
}
/I Reset col um wei ght counter
cur _col wei ght = 0;

printf("There are % rows\n", rows);
/1 Ensure all nodes are zero
zeroMatri x(pchk_matri x, rows, code_len);

[/ Seed random nunber
srand(ti me(NULL));
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/I random code construction
for(i =1; i <= code_len; i++){
/I First colum all zeros
/I For each colum choose a nunber that has a binary representation
equal to col weight as a candi date

do{
randomidx = rand() % i ndex;
chkcol = 1;
chkrow = 0;
addcol = 0;

/| Check that the candidate has only one 1 in comon with any
ot her col um

for(a =0; a<i; at+){
conmonbit = 0;
for(b = 0; b < rows; b++){
i f(pchk_matrix[b][a] !'= 0 &&
candidate_matri x[random.idx][a] !'= 0)

commonbi t ++;

i f(comonbit > 1){

chkcol = 0;
br eak;

}el sef
chkcol = 1;

}
}

/1 Check matrix row wei ght does not exceed required row wei ght
for(b = 0; b < rows; b++){

cur_rownei ght = 0;

[lprintf("Row. % ", b);

for(a =0; a <i; at+){

cur _rowwnei ght +=(int)pchk_matrix[b][a];
[l printf("%l ", (int)pchk _matrix[b][a]);

}

cur_rownei ght += (int)candidate_natrix[random.i dx][a];
[lprintf(" mw =9 ", cur_rowaeight);

[l printf(" cm% ", (int)candidate_matrix[random.idx][a]);
[lprintf(" crw= 9 ", cur_roweight);

i f(cur_rowneight > row weight){
[l printf("no\n");

chkrow = 0;
br eak;
} else {
[lprintf("ok\n");chkcol =1 &&
chkrow = 1;

}
}
if (chkrow == 1)
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addcol = 1;
} while (addcol == 0);
for(j =0; j <rows; j++){

pchk_matrix[j][i-1] = candidate_matrix[random.idx][j];

}
printf("add col: %\n", i);
printMatrix(pchk_matrix, rows, code_len);

}

for(i =0; i <rows; i++){
free(pchk_matrix[i]);
}

for(i = 0; i < index; i++){
free(candidate_matrix[i]);
}

free(candi date);
exit(0);

void zeroMatrix(int **matrix, int rows, int cols){
int i, j;

for(i =0; i < rows; i++){
for(j =0; j <cols; j++){
matrix[i][j] = O;

}
}
void printMatrix(int **matrix, int rows, int cols){
int i, j;
for(i =0; i <rows; i++){
for(j =0; j <cols; j++){

printf("od ", matrix[i][j]);

}
printf("\n");



