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Abstract

Crop breeding programs test large numbers of crop varieties in field trials span-
ning a range of years and locations, with these groups of trials known as multi-
environment trials (MET). In the early stages of crop breeding programs large
numbers of new varieties are grown in a small number of field trials. The best
varieties in each stage are selected to progress to the next stage so that in the final
stages a small number of elite varieties are grown in a large number of field trials
across the country. These trials are conducted to determine which varieties per-
form best in which environments and an appropriate statistical analysis resulting
in accurate predictions of the variety by environment (VxE) effects is integral to
this.

There have been many statistical approaches to the analysis of MET data,
however all methods involve investigating the nature of the VxE effects. The
factor analytic (FA) structure for the VxE effects allows heterogeneity of genetic
variance for environments and heterogeneity of genetic covariance between pairs
of environments, and is currently considered best practice in the analysis of MET
data in Australia. The FA model has been shown to be the superior model for
large numbers of varieties both in terms of goodness-of-fit and the selection of su-
perior varieties. However, this superiority has not been demonstrated for small
numbers of varieties, such as in the late stages of crop breeding programs, despite
being regularly used in such scenarios. Five data sets with different underlying
VxE patterns and numbers of trials, four numbers of varieties, and two levels
of varietal concurrence were used to provide scenarios for a simulation study
to investigate the adequacy of an FA variance structure for VxE effects. How
the accuracy of the FA model changes as the number of crop varieties decrease,
along with the implications the underlying VxE variance structure and level of
varietal concurrence have on the accuracy of the FA model when dealing with
small numbers of varieties were investigated. The comparisons were based on
the mean square error of prediction of the VxE effects.

This study showed that 15 varieties per trial is sufficient in a MET data set to
accurately estimate the VxE effects, and that in some cases MET data sets with
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even as few as 10 varieties could be considered. It was found that the underlying
patterns in the variance of the VxE effects impacted on how the accuracy of
the FA model compared to the accuracy of other models, especially for very
small numbers of varieties. In addition this study demonstrated that the FA
model is affected by changes in concurrence more than the other models that
were considered, however these changes in accuracy have minimal implications.
Finally, this study highlighted the tendency of the log-likelihood ratio test to
select overly complicated models in its test for a significant model improvement.
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Chapter 1

Literature review and introduction

Crop breeding programs conduct large numbers of field trials spanning multiple
years and locations with the aim of breeding, selecting, and subsequently releas-
ing crop varieties which outperform those currently available. These groups of
trials are known as multi-environment trials (MET), where the term environment
refers to year-location combinations. The aim of these trials is to investigate the
performance of crop varieties in many environments in order to determine those
which perform well across a range of environments and those which excel in
specific environments (Smith et al., 2001). These trials form the foundation of
crop breeding programs in Australia and many other countries and are the basis
for which a crop variety may be deemed suitable for commercial release (Smith
et al., 2005; Welham et al., 2010). A variety is of the form below subspecies, having
characteristics distinct from other varieties but able to be freely crossed with them.

Although the structure may differ slightly between countries, crop breeding
programs typically contain multiple stages with the best varieties selected at each
stage, so that the number of varieties tested decrease as the stages progress. The
main focus of these breeding programs tends to be grain yield, although, many
other traits may also be of interest and the concepts that will be discussed can
easily be applied to other normally distributed traits. The early stages of the
program consider early-generation material and large numbers of new breeding
lines (usually greater than 500) are grown in a small number of field trials (usu-
ally less than three), while in the final stages small numbers of elite breeding
lines (usually less than 40) are grown in a large number of field trials spanning
the country and consequently capturing a range of geographical locations and
growing seasons (Smith et al., 2005). Due to the differences in the structure of
the MET data originating from the early or late stages of the breeding programs,
different considerations must be made for the analysis in each case.

1.1 Early methods for the analysis of MET data

The statistical analysis of MET data has been approached in many ways over
the years. All of the methods involve investigating the nature of the variety
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by environment (VxE) effects, which describe the yield performance of different
varieties across multiple environments. The aim is to determine whether the ob-
served differences in yield are due to variety (genetic) differences, environment
differences, or the interaction between variety and environment. Typically a two-
stage method of analysis has been used which involves estimating the mean yield
for each variety at individual trials and then combining the means from each trial
to form the data for the second stage of the analysis (Smith et al., 2005). The second
stage has been subject to a large range of statistical methods, with statisticians
constantly attempting to better investigate the VxE interaction. Kempton (1984)
discusses the classical analysis of variance (ANOVA) approach which fitted vari-
ety and environment main effects along with a VxE interaction effect, partitioning
the sum of squares into components accounting for varieties, environments, and
the VxE interaction to gain insight into the variation in varietal response across
different environments. However, this traditional approach fails to provide sub-
stantial insight into the VxE interaction and in addition is difficult to interpret
when there are large numbers of varieties and/or environments. Kempton (1984)
mentions a number of methods that build on the traditional approach (ANOVA)
with the aim of simplifying interpretation and deepening insight into the nature
of the response of varieties across environments. These methods include further
partitioning of the sum of squares through the classification of groups; regression
analysis; principal components analysis; and the biplot technique.

Finlay & Wilkinson (1963) were some of the first authors to argue that the
traditional ANOVA methods failed to adequately describe the VxE pattern and
consequently proposed a linear regression method to compare the performance
of varieties grown across a range of environments. The mean yield for each trial
was used as an environmental index providing an evaluation of the environment.
A linear regression was performed for each variety of individual yields on these
environmental indices for each trial and the resulting regression coefficients used
to categorise the sensitivity of a variety to environmental change. The regression
coefficient along with the mean yield of a variety across environments provided
an indication of a variety’s phenotypic stability and adaptability; for example a
variety with a small regression coefficient and high mean yield should yield con-
sistently well in all environments, meaning that it is phenotypically stable and
well adapted to all environments. This method has been shown to be informative
and is useful for summarising the VxE effects when the VxE effects have a strong
linear association with the environmental index, however, this linear relationship
may not always hold (Byth et al., 1976).
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To address what they saw as the inadequacies of the regression method pro-
posed by Finlay & Wilkinson (1963), Byth et al. (1976) proposed a two-way pattern
analysis using numerical classification as an alternative option for investigating
the VxE interaction. Pattern analysis had the advantage of not being dependent
on the strength of the linear association between the VxE effects and an environ-
mental index. Environments and varieties were each separately classified into 10
groups based on similarities in yield performance using the methods described
by Mungomery et al. (1974). This resulted in reducing the size of the data matrix
by 97 per cent but resulted in a loss of only 18 per cent of the total variation
available in the full data set. Although this method summarised the data and
meaning could be conveyed onto the groups in the example used by Byth et al.
(1976), generally these groups are arbitrary and difficult to interpret biologically,
conveying little information regarding the VxE pattern (Kempton, 1984).

Principal components analysis (PCA) has also been used to summarise the
VxE effects. PCA is a popular multivariate technique producing linear com-
binations (components) of the variables which describe variation in the data.
The components are uncorrelated and are ordered such that the first component
explains the largest proportion of variance in the original data, the second com-
ponent explains the second largest proportion of variance and so on. Ideally the
majority of the variation in the data could be described using only a small number
of components, increasing the ease of interpretation. Gabriel (1971) proposed the
biplot technique which provides a method to represent graphically the response
of a variety across different environments. The biplot has the advantage that the
expected response of a variety in a particular environment can be determined
through visual inspection of the biplot. However, this method is most useful
when a high proportion of the variation in the VxE effects can be explained by
only one or two components, allowing the majority of the variation to be de-
scribed in two dimensions, or a single biplot, as opposed to needing to interpret
multiple biplots.

Additive main effects and multiplicative interaction (AMMI) models combine
the two earlier methods of ANOVA and PCA, using ANOVA to calculate additive
main effects for varieties and environments and PCA to model the VxE interaction
(Gauch, 1992). While there was some use of these models following their proposal
in 1952 (Williams, 1952; Pike & Silverberg, 1952), Kempton (1984) provided the
first sustained application of AMMI models to yield data (Gauch, 1992). Although
these models provide insight into the VxE interaction, their use is restricted
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by the requirement of balanced data in which every variety is grown at every
environment, something that is frequently not the case within breeding programs.

1.2 Linear Mixed Models

In the approaches that have been discussed variety and environment main effects
and VxE interaction effects were all treated as fixed effects. When there is only
interest in the treatments considered in the experiment, the effects are called fixed
effects, however, when a factor in an experiment is considered to be a random
sample from a population and the specific levels of the factor are of no interest,
such as the effects of individual mice in an experiment, the effects are called ran-
dom effects (Searle, 1997). A model that contains only fixed effects, aside from
the error term which is always random, is known as a linear model, or fixed
effects model. Similarly when all the effects in a model are random effects, the
model is known as a random effects model and models which contain both fixed
and random effects are known as mixed models. Random effects are assumed to
follow a Gaussian distribution with mean zero and constant variance. The linear
mixed model (LMM) is an extension of the linear model, allowing for correlated
error terms and additional random components. The three advantages of the
LMM compared with linear models identified by Smith et al. (2005) for MET
data are the ease with which unbalanced data is handled; the potential to model
within-experiment error variation more realistically; and the ability to assume
some effects to be random rather than fixed. These advantages make these mod-
els very flexible and underline why they have been embraced in the analysis of
MET data.

In LMMs fixed effects are estimated using best linear unbiased estimation
(BLUE) and random effects are estimated using best linear unbiased prediction
(BLUP). There is a convention of “estimating” fixed effects and “predicting” ran-
dom effects; however, Robinson (1991) states that “BLUP is a predictor only in the
same way as most estimates are predictors”. In general the variance parameters
necessary for the estimation of the fixed and random effects are unknown and are
estimated through restricted maximum likelihood (REML, Patterson & Thomp-
son 1971). Consequently the fixed and random effects are estimated as empirical
BLUEs (E-BLUEs) and empirical BLUPs (E-BLUPs) respectively, as they are based
on estimated, rather than known, variance parameters.

The estimation method of REML consists of maximising the likelihood of a set
of selected error contrasts, which is achieved using a system of score equations
that are solved iteratively. Patterson & Thompson (1971) utilised a Fisher scoring

4



algorithm, however, less computer intensive methods have been derived, such
as first and second order derivative free methods which employ sparse matrix
methods. The average information (AI) algorithm is a second order scheme pro-
posed by Gilmour et al. (1995), who showed it to be computationally convenient
and efficient in the estimation of variance components when using REML. The
AI algorithm is a modified Fisher scoring algorithm which uses an approximate
average of the observed and expected information matrices rather than the ex-
pected information matrix. It is especially powerful for large data sets with
complex variance models (Smith et al., 2001).

Like early approaches to the analysis of MET data, early LMM applications
tended to use a two-stage approach in which variety means were obtained from
individual trial analyses in the first stage and then combined in an overall anal-
ysis in the second stage, which can be either weighted or unweighted. However,
LMMs are not restricted to a two-stage approach, and allow individual plot data
from multiple trials to be analysed in a single analysis, known as a one-stage
analysis. Within this one-stage analysis, a LMM approach also allows for fitting
separate covariance structures for the residual effects at each trial, where residual
effects refer to all effects peripheral to the VxE effects (Smith et al., 2001). Exam-
ples of these include experimental design terms or terms to model field trend
within a trial (see for example Gilmour et al. (1997)).

Methods for modelling the residual effects fall into the broad categories of
randomisation or model based approaches (Smith et al., 2005). In the randomi-
sation approach the model for these effects is determined by the experimental
design, while the model based approach aims to offer the best fit to the data and
focuses on accounting for spatial variation throughout the field. Variety trials
tend to be arranged in a rectangular array with a number of rows and columns
and this structure is utilised when modelling spatial variation. Gilmour et al.
(1997), building on the approach of Cullis & Gleeson (1991), partitioned spatial
variation into smooth trend, resulting from changes in response due to fertility
and moisture status, both on a global and local scale, and extraneous variation,
resulting from experimental procedures such as serpentine harvesting of rows.
Gilmour et al. (1997) accommodate smooth global variation and extraneous vari-
ation through the inclusion of fixed and random effects where appropriate and
model local stationary trend through the use of a correlation structure on plot
residuals. A separable first order autoregressive model was found to generally
be a robust option.
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There is some criticism of spatial models in that the estimated treatment
effects rely solely on the chosen model. The advantages of spatial models are
thought to outweigh the disadvantages; however, an approach that merges the
randomisation and model based approaches is considered to be more robust
(Smith et al., 2005). Using this merged approach the randomisation model is used
as the base model and spatial models are used to explain remaining variation.
When these hybrid models are applied to the analysis of MET data, they offer
superior fits to the data compared to simple randomised complete block models
which assume common block variance and plot variance for all trials and have
rarely been found to provide good fits to Australian data (Smith et al., 2005).

1.3 Models for the VxE effects in a LMM

Patterson et al. (1977) were among the first to analyse MET data using a LMM,
with such models becoming increasingly popular in the last three decades. Most
early models included the VxE interaction effect as a random effect, and each of
the variety and environment main effects as either fixed or random effects (Smith
et al., 2005). Each of these random effects were assumed to follow a Gaussian
distribution with mean zero and constant variance. These assumptions were
somewhat limiting, assuming that environments had constant genetic variance,
pairs of environments had constant genetic covariance, and environments had
constant error variance. These assumptions have been acknowledged as ques-
tionable by a number of authors (including Patterson & Silvey 1980; Patterson
& Nabugoomu 1992; Cullis et al. 1998) and consequently more complex models
were proposed. However, with this added complexity comes added difficulty in
fitting such models as more parameters must be estimated.

More complex mixed models made allowances for some heterogeneity of ge-
netic variance between environments. Gogel et al. (1995) and Nabugoomu et al.
(1999) proposed a regression approach similar to the method popularised by
Finlay & Wilkinson (1963), but in a mixed model setting. In these models envi-
ronment means provide a quantitative grading of the environment and can be
used as a surrogate for potentially complex environmental variables. However,
it is important to note that environment means must be estimated from the data
and are consequently subject to error.

Piepho et al. (1998) proposed an alternate regression based approach to explore
the VxE interactions. This method modelled variety performance using covariate
information on environments, such as average rainfall and soil type, rather than
environment means. Piepho et al. (1998) utilised a separable variance matrix for
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the VxE interaction effects which allowed for correlations between varieties. The
advantage of this method over the regression method which uses environment
means is that for suitable covariates (eg. rainfall or soil type), predictions of
varietal performance to special environmental conditions can be generated when
information on the response of a variety to environmental conditions is available.

The regression approaches proposed by Gogel et al. (1995), Nabugoomu et al.
(1999), and Piepho et al. (1998) have the advantage over the method popularised
by Finlay & Wilkinson (1963) of being utilised in a mixed model setting. This al-
lows unbalanced data to be analysed and complex covariance models to be used.
However, like the Finlay & Wilkinson (1963) approach, these regression methods
have the significant disadvantage of often explaining only a small proportion of
the VxE interaction (Smith et al., 2005).

The multiplicative models proposed by Piepho (1997) and Smith et al. (2001)
can be regarded as a random effects analogue of AMMI. The multiplicative model
applied to the VxE interaction effects was that associated with the multivariate
technique of factor analysis. The variance structure for the VxE effects is known
as the factor analytic (FA) structure of order k. When the FA model is applied to
the variety effects in each environment, as in the case of Smith et al. (2001), they
are decomposed into a regression of k hypothetical factors on variety scores along
with a lack of fit term for the model. The FA model for the VxE effects differs
from traditional random regression problems in that both the coefficients and
covariates must be estimated from the data, where the covariates are known as
variety scores and the coefficients as environmental loadings. This FA model re-
sults in heterogeneity of variety variance and covariance between environments,
rather than constraining variance and covariance parameters to be equal as in
earlier models. Consequently this model allows more realistic modelling of the
VxE effects. Piepho (1997) proposed a similar model, however, with random
environment effects rather than random variety effects, resulting in heterogene-
ity of VxE variance and covariance between varieties. The model proposed by
Smith et al. (2001) also differed from that proposed by Piepho (1997) in that they
allowed a separate variance to be estimated for each environment in the lack of
fit component of the FA model, known as specific variances.

There are different trains of thought as to which of the environment and variety
main effects, and VxE interaction term should be treated as random effects. Smith
et al. (2005) hold that this choice should be dependent on the aim of the analysis
given the properties of the estimation procedures used in either case. BLUPs best
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predict the true variety effects and assuming that the estimates of the variance
parameters are sufficiently precise, this also holds true for E-BLUPs. If the aim
of the analysis is selection of the best varieties, E-BLUPs are most appropriate
and varieties should be treated as random because the rankings of the estimated
variety effects need to be as precise as possible with regard to the rankings of
the true variety effects (Smith et al., 2005). However, if the aim is to estimate the
differences between specific variety effects as precisely as possible variety effects
should be treated as fixed because the use of E-BLUPs are inappropriate given that
the BLUP of a specific difference is biased. The aim of breeding trials is to select
superior varieties and as a result the use of random variety effects is appropriate.
Smith et al. (2005) highlight that with balanced data and orthogonal analyses,
models with fixed or random variety effects would result in identical rankings
of these effects; however, these authors prefer the use of random variety effects
due to their advantage of more realistic estimates of genetic gain, as such esti-
mates tend to be overly optimistic due to selection bias (Patterson & Silvey, 1980).

The flexibility of the FA model means that for large data sets a substantial
number of variance parameters must be estimated. Despite its power, the AI
algorithm falls short for FA models when one or more of the estimates of specific
variances tend towards zero, resulting in the variance matrix for VxE effects being
of less than full rank (termed reduced rank). As such a modified version of the
AI algorithm was necessary. Thompson et al. (2003) presented a sparse imple-
mentation of the AI algorithm for REML estimation of FA variance parameters
for the reduced rank case. In addition to allowing for the fitting of reduced rank
variance models, this implementation also has the advantage of faster conver-
gence compared to the algorithm proposed by Smith et al. (2001) when fitting FA
models due to the use of sparse matrices in the estimation process.

Although a one-stage analysis is typically used in Australia for the analysis
of early-generation MET analyses and short-term MET analyses, an approximate
two-stage approach is used when analysing long-term METs in Australia, along
with replicated late-stage MET data in the UK (Welham et al., 2010). Welham et al.
(2010) suggest that this is due to individual plot data traditionally being difficult
to find due to it not being stored electronically, along with the computational dif-
ficulties involved with a single-stage analysis when complex variance models are
used. Although the more efficient one-stage approach has been recommended
(Smith et al., 2005), Welham et al. (2010) formally evaluated the one- and two-stage
(both weighted and unweighted) approaches using a simulation study. The study
considered six statistical models and three different analysis methods, with the
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three analysis methods consisting of a single-stage analysis, a weighted two-stage
analysis, and an unweighted two-stage analysis. The MET data sets used in the
study were simulated from the characteristics and estimated parameters from an
Australian wheat breeding program and a set of UK recommended list wheat
trials in order to be representative of actual data. The mean square error of pre-
diction and relative genetic gain were used to assess the accuracy of the variety
predictions in each environment compared to the effects used to simulate the data.

Welham et al. (2010) found that a one-stage approach resulted in the most
accurate prediction of variety performance for a range of models. They also
found that the unweighted two-stage analysis resulted in a loss of important
information regarding estimates of variety performance, however, the weighted
two-stage analysis provided an adequate approximation to the single-stage anal-
ysis, and may be used for large data sets when the one-stage analysis becomes
computationally impractical (Welham et al., 2010). The range of models used to
analyse MET data are summarised in Figure 1.1, with distinctions for one- and
two-stage analyses. This figure demonstrates how the models evolved and how
they relate to each.

1.4 Extensions to the model for VxE effects

The FA model proposed by Smith et al. (2001) has been embraced in Australia
due to its ability to effectively model the nature of the VxE interaction while
also allowing for separate spatial covariance structures for each trial. This model
has been applied to a wide range of applications and has been extended to al-
low for further complexity. The model proposed by Smith et al. (2001) made
the assumption that varieties were independent, however, more recent work has
allowed for the modelling of covariance between varieties. Oakey et al. (2006)
partitioned the genetic effect of a variety into additive and non-additive effects
using pedigree based relationships between varieties in the form of the additive
relationship matrix. The additive effects, or breeding values, provide an indica-
tion of the potential of a variety as a parent. This analysis consequently allows
the selection of varieties as potential parents through the use of additive effects,
but also the selection of superior varieties through the combination of additive
and non-additive effects (Oakey et al., 2006). This method was considered in
both a single trial scenario (Oakey et al., 2006) and MET scenario (Oakey et al.,
2007). Oakey et al. (2006, 2007) further partitioned the non-additive effects into
dominance and residual non-additive effects. However, when the majority of the
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Figure 1.1: Flowchart showing the evolution of models used to analyse multi-environment trial data and how they relate to each other.



varieties are highly inbred, non-additive effects will reflect epistatic effects (in-
teractions between genes within an individual) because inbreeding will largely
eliminate dominance.

Although the inclusion of pedigree information has been shown to result in
superior model fit (Oakey et al., 2007; Beeck et al., 2010), the elements of the
relationship matrix are approximate to true relatedness based on an average
proportion of genes in common, and in reality can be quite different to what is
expected (Borgognone et al., 2016). The benefits of including pedigree information
in the analysis are seen to outweigh the limitations resulting from the approx-
imations necessary in forming this matrix, however, an alternative relationship
matrix can be derived from the molecular marker information. Borgognone et al.
(2016) proposed using an FA model for the analysis of MET data with the ge-
nomic relationship matrix rather than the additive relationship matrix to model
the relationship between varieties. The form of the genomic relationship matrix
still allowed for the partitioning of genetic effects into additive genetic effects
and non-additive genetic effects and resulted in lower average prediction error
variance of genetic effects (Borgognone et al., 2016).

The use of FA models in the analysis of MET data also allows for investigation
into the varied nature of the VxE effects, exploring patterns and irregularities in
the data, along with simplifying the results and interpretation. Cullis et al. (2010)
proposed a number of statistical tools to explore the VxE interactions, including
heatmaps which display visually the genetic correlations between environments
and clustering methods which group environments in which varieties perform
similarly in terms of rank position. These tools can simplify and aid in the inter-
pretation of what can be large numbers of VxE effects. The use of an FA model
allows for investigation into a variety’s environmental stability for the environ-
ments considered in the data, through the regression form of the VxE effects.
However, this regression is inherent within the FA model; no post-processing is
necessary (Smith et al., 2015).

While the FA model was developed in the context of analysing MET data
originating from crop breeding programs, the application of the FA model has
been wide and varied. Fox et al. (2006) fitted an FA model to plot data assessing
grain size from Stage 3 barley trials grown at 25 sites over four years. Utilising
these models allowed the authors to gain an improved understanding of VxE
effects on expression of grain size, resulting in greater confidence in the selection
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of barley varieties which maintain large, stable grain size across a range of envi-
ronments. In a different approach, Christopher et al. (2014) used an FA structure
to model variety effects for different traits, estimating the genetic correlations
between yield, stay-green traits and normalised difference vegetative index mea-
surements, where these traits were used as environments.

Stefanova & Buirchell (2010) analysed 39 trials of 25 historical lupin varieties
using an FA model for the VxE effects. They found that the variety scores for
the first two factors of the regression structure of the FA model were representa-
tive of genetic gain and stability of varieties. This analysis allowed the authors
to identify the varieties which were adapted to low, medium and high rainfall
zones and to assess genetic gain over a 31 year period.

Thompson et al. (2011) used an FA model to analyse MET data sets measur-
ing the densities of root-lesion nematodes Pratylenchus thornei and Pratylenchus
neglectus in chickpea. The aim of this experiment was to investigate the sus-
ceptibility of Australian and international chickpea varieties to these nematodes,
allowing for more informed decisions in planning rotations in fields infested with
either P. thornei or P. neglectus. Rodda et al. (2016) also modelled P. thornei density
in chickpeas across a number of trials undertaken in the glasshouse and the field
using an FA model. These models enabled the authors to determine that the
relative differences in resistance to P. thornei identified were highly heritable and
also that the genetic correlation between trials in the glasshouse and field were
high, meaning that resistance to P. thornei in chickpea can be effectively selected
in a limited set of environments, saving in labour and resources.

Kelly et al. (2007) investigated the accuracy of FA models for trials with large
numbers of varieties. FA models were compared with LMMs fitting three models
for the VxE effects. These models were a diagonal model, in which the genetic
covariance between all pairs of environments is zero, a uniform model, which
assumes constant genetic variance and constant genetic covariance across envi-
ronments, and an unstructured model, which allows a large degree of flexibility
in the genetic variance and covariance parameters across environments. The FA
models were shown to generally be the model of best fit for a range of data sets
taken from early-generation trials in a breeding program. Additionally the su-
periority of FA models in selection of varieties was shown through a simulation
study. The number of varieties considered in this study were 500, 200, and 80,
which are representative of the number of varieties per trial included in the early
stages of a breeding program.
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1.5 Research aims

The number of varieties per trial considered in the late stages of a breeding
program are substantially smaller than in the earlier stages and the accuracy of
FA models for small numbers of varieties in each trial has not been properly
investigated. This prompts the question, does an FA model provide the best
estimate of the VxE interaction effects for METs with smaller numbers of varieties?
The aims of this project are

1. to determine whether the adequacy of an FA variance structure changes as
the number of crop varieties within a trial decreases;

2. to investigate the implications the underlying VxE variance structure has
on the accuracy of the FA model; and

3. to investigate the impact the level of varietal concurrence between environ-
ments has on the accuracy of the FA model.
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Chapter 2

Methods

In the first section of this chapter, Section 2.1, the statistical theory behind linear
mixed models will be discussed. This includes the derivation of the residual
likelihood and REML score equations which are used to estimate variance pa-
rameters, along with the estimation of fixed and random effects. Following this,
in Section 2.2 the selection and analysis of the primary data sets used to provide
parameters for a simulation study will be detailed. The final section of this chap-
ter, Section 2.3, explains the simulation study that was conducted to investigate
the aims of this project.

2.1 Statistical method theory

2.1.1 Linear mixed models

Consider a series of t trials (synonymous with environments) in which m varieties
have been grown. If n j are the number of plots in the jth trial, n =

∑t
j=1 n j is the

total number of plots. A general linear mixed model for the n × 1 vector of
individual plot yields, y, ordered as plots within trials, can be written as

y = 1nµ + Xeτe + Xpτp + Zgug + Zpup + e (2.1)

where µ is the overall mean, τe is a t × 1 vector of fixed trial effects with design
matrix Xe, and ug is a mt × 1 vector of random variety effects for each trial
(ordered as varieties within trials) with design matrix Zg. The vector τp contains
trial specific fixed effects with corresponding design matrix Xp and the vector up

contains trial specific random effects with corresponding design matrix Zp. The
n× 1 vector e contains residual effects. The random effects are assumed to follow
a Gaussian distribution with mean zero and variance matrix

var


ug

up

e

 =


Gg 0 0
0 Gp 0
0 0 R

 .
The vector ug represents a two-dimensional array of effects (environments and va-
rieties) and it is assumed the variance structure has a separable form meaning the
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variance of the VxE effects can be partitioned into variance due to environments
and variance due to varieties such that

Gg = Ge ⊗Gv,

where Ge and Gv are the t × t and m × m symmetric matrices for the variance
for environments and varieties respectively. A common assumption is that the
variety effects are independent (Smith et al., 2001) such that Gv = Im.

The trial specific effects and the residual effects are assumed to be indepen-
dent for each trial such that Gp = diag(Gp j) and R = diag(R j), where Gp j is the
variance matrix for the trial specific random effects at the jth trial and R j is the
residual variance matrix for trial j. The simplest form R j can take is R j = σ2

j In j

which assumes plot residual effects are independent. However, Smith et al. (2001)
utilised the approach of Gilmour et al. (1997) incorporating a spatial correlation
matrix, such that R j = σ2

jΣc j ⊗ Σr j , where Σc j and Σr j are the correlation matrices
for columns and rows respectively, and σ2

j is the associated variance.

The traditional mixed model includes a variety main effect and a VxE inter-
action effect (Patterson et al., 1977), such that

ug = (1t ⊗ Im)uv + uge,

with these random effects following a Gaussian distribution with mean zero and
variance matrix

var

 uv

uge

 =

 σ2
gIm 0
0 σ2

ge(It ⊗ Im)

 ,
where σ2

g and σ2
ge are the estimated variance components for variety and the

interaction between variety and environment respectively. This leads to

var(ug) = var((1t ⊗ Im)uv + uge)

= (1t ⊗ Im)var(uv)(1t ⊗ Im)′ + var(uge)

= (1t ⊗ Im)σ2
gIm(1′t ⊗ I′m) + σ2

ge(It ⊗ Im)

= σ2
g(1t ⊗ Im)(1′t ⊗ I′m) + σ2

ge(It ⊗ Im)

= σ2
g(1t1′t) ⊗ (ImIm) + σ2

ge(It ⊗ Im)

= (σ2
gJt + σ2

geIt) ⊗ Im (2.2)

≡ Ge ⊗ Im,
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resulting in common genetic variance, σ2
g + σ2

ge, for all environments and a com-
mon genetic covariance, σ2

g, between pairs of environments. This form of Ge is
known as a uniform variance structure.

An alternative, and generally preliminary, model for Ge is an independent
model, also known as a diagonal (DIAG) variance model. This model allows for
heterogeneity of genetic variance for different environments and assumes zero
covariance between pairs of environments, such that

var(ug) =


σ2

g1

0 σ2
g2

...
. . .

0 0 · · · σ2
gt

 ⊗ Im (2.3)

≡ Ge ⊗ Im,

where σ2
g j

is the genetic variance for the jth trial.

The most general form of the genetic variance matrix, Ge, is an unstructured
matrix, which contains t(t + 1)/2 parameters and can be expressed as

var(ug) =


σ2

g1

σg12 σ2
g2

...
. . .

σg1t σg2t · · · σ2
gt

 ⊗ Im (2.4)

≡ Ge ⊗ Im,

where σ2
g j

is the genetic variance at the jth trial, and σgi j is the genetic covariance
between trials i and j. Although this model has desirable attributes, it is difficult
to estimate from a computational perspective. Furthermore it may be inefficient
or unstable for even moderately large numbers of environments (Smith et al.,
2001), and Smith et al. (2005) suggest this is also true for large numbers of vari-
eties.

The factor analytic model proposed by Smith et al. (2001) handles these dif-
ficulties and has been shown to be a good approximation to the unstructured
matrix (Smith et al., 2005). Smith et al. (2001) applied the multiplicative model
associated with the multivariate technique of factor analysis to the variety effects
in each environment, so that the VxE interaction effects for an FA model of order
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k can be written as
ug = (Λ ⊗ Im) f + δ,

where Λ is a t × k matrix of environment loadings, f is a mk × 1 vector of variety
scores, andδ is a mt×1 vector of residuals for the VxE model. The joint distribution
of f and δ are assumed to follow a Gaussian distribution with mean zero and
variance matrix

var

 f
δ

 =

 Ik ⊗ Im 0
0 Ψ ⊗ Im

 ,
where Ψ is a diagonal t × t matrix of elements commonly referred to as specific
variances. The variance matrix of the variety scores is an identity matrix which
means that the scores have a constant variance of 1 and are all independent
of each other. The variance of the VxE effects, ug, under this model results in
heterogeneity of genetic variance for different environments and heterogeneity
of genetic covariance between pairs of environments.

var(ug) = var((Λ ⊗ Im) f + δ)

= (Λ ⊗ Im)(Ik ⊗ Im)(Λ ⊗ Im)′ +Ψ ⊗ Im

= (Λ ⊗ Im)Ikm(Λ′ ⊗ I′m) +Ψ ⊗ Im

= (ΛΛ′) ⊗ Im +Ψ ⊗ Im

= (ΛΛ′ +Ψ) ⊗ Im (2.5)

≡ Ge ⊗ Im,

where the genetic variance for each trial is given by the diagonal elements of
ΛΛ′ +Ψ and the genetic covariance between pairs of trials are the off-diagonal
elements of ΛΛ′.

2.1.2 Estimation

The variance parameters of the linear mixed model are estimated using REML
and the fixed and random effects are estimated as e-BLUEs and e-BLUPs respec-
tively as discussed in Section 1.2. The following section derives the residual
likelihood and the REML score equations, along with the estimates of the fixed
and random effects.

The model in Equation 2.1 can be rewritten using the general form for a linear
mixed model

y = Xτ + Zu + e, (2.6)

where τ =
(
µ, τ′e, τ

′

p

)′
is a vector of fixed effects with design matrix X =

[
1n Xe Xp

]
and u =

(
u′g,u′p

)′
is a vector of random effects with design matrix Z =

[
Zg Zp

]
. The
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random effects are assumed to follow a Gaussian distribution, with mean zero
and variance matrix

var

 u
e

 =

 G 0
0 R

 ,
where G = diag(Ge,Gp). The vectors of variance parameters associated with
the random and residual effects are γ =

(
γ′e,γ

′

p

)′
and φ respectively, such that

G = G(γ), R = R(φ). The distribution of y is consequently Gaussian with mean
Xτ and variance matrix H = R + ZGZ′.

Residual maximum likelihood

Verbyla (1990) provided a useful derivation of the likelihood function in which it
is partitioned into two independent parts, relating to the treatment contrasts and
the residual contrasts. Verbyla (1990) utilised a matrix, L =

[
L1 L2

]
, such that

Ln×p
1 and Ln×(n−p)

2 satisfy the conditions L′1X = IP and L′2X = 0. L is then used to
transform y to L′y such that

L′y =

 L′1
L′2

 y =

 y1

y2

 .
The mean of L′y is found by

E(L′y) = L′E(y) =

 L′1
L′2

 Xτ =

 L′1Xτ
L′2Xτ

 =

 Ipτ

0

 =

 τ0
 .

The variance of L′y is found by

var(L′y) =L′var(y)(L′)′ = L′HL =

 L′1
L′2

 H
[

L1 L2

]
=

 L′1H
L′2H

 [ L1 L2

]
=

 L′1HL1 L′1HL2

L′2HL1 L′2HL2

 .
Consequently the distribution of L′y is y1

y2

 ∼ N

 τ0
 ,  L′1HL1 L′1HL2

L′2HL1 L′2HL2

 . (2.7)

The likelihood of L′y can be expressed as the product of the conditional likelihood
of y1 given y2 and the marginal likelihood of y2. The log-likelihood of these
distributions can be expressed similarly such that

lF
(
τ, κ; L′y

)
= lT

(
τ, κ; y1|y2

)
+ lR

(
κ; y2

)
. (2.8)
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Using the standard results in Appendix A.1 and the work of Verbyla (1990) in
Appendix A.2 the mean and variance of y1|y2 can be found

E(y1|y2) = τ + L′1HL2(L′2HL2)−1 (y2 − 0
)

= τ + L′1HL2(L′2HL2)−1y2

var(y1|y2) = L′1HL1 − L′1HL2(L′2HL2)−1L′2HL1

=
[
L′1

(
H −HL2(L′2HL2)−1L′2H

)
L1

]
=

[
L′1

(
X(X′H−1X)−1X′

)
L1

]
=

[
Ip(X′H−1X)−1I′p

]
= (X′H−1X)−1.

The conditional distribution of y1|y2 is consequently

y1|y2 ∼ N
(
τ + L′1HL2(L′2HL2)−1y2, (X′H−1X)−1

)
and its corresponding log-likelihood function (excluding constants) is

lT = −
1
2

log |(X′H−1X)−1
| −

1
2

((
y1 − τ − L′1HL2(L′2HL2)−1y2

)
′

(X′H−1X)
(
y1 − τ − L′1HL2(L′2HL2)−1y2

))
= −

1
2

(
log |(X′H−1X)−1

| +
((

L′1y − τ − L′1HL2(L′2HL2)−1L′2y
)′

(X′H−1X)
(
L′1y − τ − L′1HL2(L′2HL2)−1L′2y

)))
.

The marginal distribution of y2 is

y2 ∼ N
(
0,L′2HL2

)
and its associated log-likelihood (excluding constants) is

lR = −
1
2

(
log |L′2HL2| + y′L2

(
L′2HL2

)−1 L′2y
)
.

Given that the likelihood of L′y can be expressed as the product of the condi-
tional likelihood of y1 given y2 and the marginal likelihood of y2, its determinant
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can be similarly partitioned using the determinant properties in Appendix B.3.

log |L′HL| = log |L′2HL2| + log |(X′H−1X)−1
|

log |L′L| + log |H| = log |L′2HL2| − log |X′H−1X|

log |L′2HL2| = log |L′L| + log |H| + log |X′H−1X|

The log-likelihood of the marginal distribution of y2, excluding constants, can be
rewritten as

lR = −
1
2

(
log |H| + log |X′H−1X| +

(
y′L2

(
L′2HL2

)−1 L′2y
))

= −
1
2

(
log |H| + log |X′H−1X| +

(
y′Py

))
,

where P = L2

(
L′2HL2

)−1
L′2. This residual log-likelihood is used to estimate the

variance parameters.

The REML solutions for κ =
(
γ′,φ′

)′
are obtained from the solution of the set

of equations

UR(κi) =
∂lR

∂κi
= 0,

known as score equations, for i = 1, . . . ,nk, where nk is the number of variance
parameters in κ.

The score equation for κi is given by

UR(κi) = −
1
2

{
∂
∂κi

(
log |H|

)
+
∂
∂κi

(
log |X′H−1X|

)
+
∂
∂κi

(
y′Py

)}
.

Using the derivative results in Section B.6,

∂
∂κi

(
log |H|

)
= tr

(
H−1Ḣi

)
,

where Ḣi = ∂H
∂κi

, and

∂
∂κi

(
log |X′H−1X|

)
=tr

((
X′H−1X

)−1 ∂
∂κi

(
X′H−1X

))
=tr

((
X′H−1X

)−1
X′

∂
∂κi

(
H−1

)
X
)

=tr
((

X′H−1X
)−1

X′
(
−H−1ḢiH−1

)
X
)

= − tr
((

X′H−1X
)−1

X′H−1ḢiH−1X
)
.
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Using the results in Appendix A.3,

∂
∂κi

(
y′Py

)
=y′

∂
∂κi

(P) y

=y′PḢiPy.

Combining these results, the score equation for κi is

UR(κi) = −
1
2

{
tr

(
H−1Ḣi

)
− tr

((
X′H−1X

)−1
X′H−1ḢiH−1X

)
− y′PḢiPy

}
= −

1
2

{
tr

(
H−1Ḣi −H−1X

(
X′H−1X

)−1
X′H−1Ḣi

)
− y′PḢiPy

}
= −

1
2

{
tr

((
H−1
−H−1X

(
X′H−1X

)−1
X′H−1

)
Ḣi

)
− y′PḢiPy

}
= −

1
2

{
tr

(
PḢi

)
− y′PḢiPy

}
. (2.9)

Generally solving the system of equations UR(κ) = 0 requires an iterative method
(Smith et al., 2001). One such method is the average information (AI) algorithm
(Gilmour et al., 1995). The AI algorithm is a modified Fisher scoring algorithm
which uses an approximate average of the observed and expected information
matrix rather than the expected information matrix. As shown in Smith et al.
(2005), given an estimate of κ = κ(m), it can be updated as

κ(m+1) = κ(m) +
[
I(m)

]−1
UR(κ(m)),

where I(m) is the average information matrix, I, for iteration (m) given by

I =
1
2

Q′PQ

and the columns of Q are working variables associated with κ given by

qκi = ḢiPy.

Mixed model equations

Estimates of the fixed and random effects, τ and u, can be found by maximising
a function derived from the joint distribution of y and u, such that y

u

 ∼ N

 Xτ
0

 ,  H ZG
GZ′ G

 .
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The log-density function for the joint distribution of y and u is given by

log fY(y|u) + log fU(u).

The distribution of u is given by

u ∼ N (0,G)

and its associated log-density function is

log fu = −
1
2

(
log |G| +

(
u′G−1u

))
.

Using the findings in Appendix A.1 the mean and variance of y|u can be found

E(y|u) = Xτ + ZGG−1(u − 0)

= Xτ + Zu

var(y|u) = H − ZGG−1GZ′

= H − ZGZ′

= R.

The conditional distribution of y|u is consequently

y|u ∼ N (Xτ + Zu,R)

and its associated log-density function is

log fY = −
1
2

(
log |R| +

(
(y − Xτ − Zu)′R−1(y − Xτ − Zu)

))
.

The log-density function for the joint distribution of y and u is given by

log fu + log fY = −
1
2

(
log |G| +

(
u′G−1u

))
−

1
2

(
log |R| +

(
(y − Xτ − Zu)′R−1(y − Xτ − Zu)

))
. (2.10)

Differentiating Equation 2.10 with respect to τ using results in Appendix B.6
and equating to zero results in

−2X′R−1(y − Xτ̂ − Zũ) = 0

−X′R−1y + X′R−1Xτ̂ + X′R−1Zũ = 0
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X′R−1Xτ̂ + X′R−1Zũ = X′R−1y, (2.11)

where τ̂ and ũ are the estimates of τ and u respectively. Differentiating Equation
2.10 with respect to u using results in Appendix B.6 and equating to zero results
in

2G−1ũ − 2Z′R−1(y − Xτ̂ − Zũ) = 0

G−1ũ − Z′R−1y + Z′R−1Xτ̂ + Z′R−1Zũ = 0

Z′R−1Xτ̂ +
(
G−1 + Z′R−1Z

)
ũ = Z′R−1y. (2.12)

Equations 2.11 and 2.12 are known as the mixed model equations and are more
commonly expressed using matrix notation as X′R−1X X′R−1Z

Z′R−1X (G−1 + Z′R−1Z)

  τ̂ũ
 =

 X′R−1y
Z′R−1y

 . (2.13)

Rearranging Equation 2.12 gives

ũ =
(
G−1 + Z′R−1Z

)−1 (
Z′R−1y − Z′R−1Xτ̂

)
(2.14)

and substituting Equation 2.14 into 2.11 gives

X′R−1Xτ̂ + X′R−1Z
(
G−1 + Z′R−1Z

)−1 (
Z′R−1y − Z′R−1Xτ̂

)
= X′R−1y

X′R−1Xτ̂ − X′R−1Z
(
G−1 + Z′R−1Z

)−1
Z′R−1Xτ̂ = X′R−1y − X′R−1Z

(
G−1 + Z′R−1Z

)−1
Z′R−1y

X′
(
R−1
− R−1Z

(
G−1 + Z′R−1Z

)−1
Z′R−1

)
Xτ̂ = X′

(
R−1
− R−1Z

(
G−1 + Z′R−1Z

)−1
Z′R−1

)
y.

Using the identity in Appendix B.4, this can be rewritten in terms of H−1, such
that

X′H−1Xτ̂ = X′H−1y

τ̂ =
(
X′H−1X

)−1
X′H−1y. (2.15)

Substituting Equation 2.15 into 2.14 gives

ũ =
(
G−1 + Z′R−1Z

)−1
(
Z′R−1y − Z′R−1X

(
X′H−1X

)−1
X′H−1y

)
=

(
G−1 + Z′R−1Z

)−1
Z′R−1

(
I − X

(
X′H−1X

)−1
X′H−1

)
y

=
(
G−1 + Z′R−1Z

)−1
Z′R−1HPy

=
[
G −GZ′ (R + ZGZ′)−1 ZG

]
Z′R−1HPy
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= GZ′
[
I −H−1ZGZ′

]
R−1HPy

= GZ′
[
I −H−1(H − R)

]
R−1HPy

= GZ′
[
I − I + H−1R

]
R−1HPy

= GZ′H−1RR−1HPy

= GZ′Py. (2.16)

Utilising Equations 2.15 and 2.16, in conjunction with the score equations
shown in Equation 2.9, the fixed and random effects can be estimated. The VxE
effects can be used to select the best performing varieties in each environment
and the estimates of genetic variance and genetic covariance provide important
information about the nature of the VxE effects and whether varieties perform
similarly in certain environments. A practical example of the implementation of
this process will be given in the following section.

2.2 Primary data sets and estimation of simulation parameters

Four primary data sets were selected and analysed to provide parameters to be
used as the basis for a simulation study. Using these parameters 20 000 data sets
were simulated to assess the performance of FA models when data sets contain
trials with small to moderate numbers of varieties. The methods and results of
this preliminary analysis are included in this section as they represent a necessary
step towards the simulation of the data sets and the subsequent analysis of these
simulated data sets, which is the focus of this research.

2.2.1 Selection of primary data sets

Four data sets originating from crop breeding programs were analysed, demon-
strating the methods typically employed in the analysis of MET data. These data
sets were chosen as they are representative of different crop types for late stage
breeding programs in Australia. The selected data sets consist of data from the
late stages of a wheat breeding program, two chickpea breeding programs (one
considering Desi chickpeas and the other Kabuli chickpeas), and a mungbean
breeding program. This section details the analysis of these data sets along with
the results of these analyses.

The chosen data sets are summarised in Table 2.1 and vary in the number of
years, trials and varieties they consider. The data set from the wheat breeding
program is the largest, containing data from 52 trials and 128 unique varieties. In
contrast the mungbean data set is much smaller, considering only 9 trials and 78
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unique varieties. The data sets differ in the level of varietal concurrence between
trials. A measure of the average varietal concurrence for each data set is given by
the number of unique trial-by-variety combinations present in the data, divided
by the potential number of unique combinations given the number of trials and
varieties. Both the Desi chickpea and mungbean data sets have an average of
approximately 60% of varieties in common between trials, while the remaining
two data sets have much lower concurrence with an average of 38% and 28% for
wheat and Kabuli chickpea respectively. The poor concurrence for these two data
sets is driven by the number of years considered. All of the data sets have nearly
perfect concurrence between trials from the same year, however, a number of
varieties are often removed from the program each year and replaced with new
varieties. This results in increasingly poor concurrence as more years are consid-
ered, and it is for this reason breeding programs tend to use a moving window
of approximately five years for the analysis of multi-environment trial data. The
analyses for all data sets were performed using yield as the dependent variable.

2.2.2 Analysis of primary data sets

The data sets were each analysed separately using standard analysis procedures
for multi-environment trials. The yield data from each trial was initially analysed
separately using a linear mixed model, equivalent to that shown in Equation 2.1.
The model fitted an overall mean and a random variety effect, along with any
significant trial specific covariates (such harvesting problems or bird damage).
Using the approach discussed in Section 1.2 (Smith et al., 2005), experimental de-
sign terms were included as random effects and spatial variation was modelled
following the procedure of Gilmour et al. (1997). The residual (plot) effects were
modelled using a separable variance structure, with a first order autoregressive
model used in both the row and column directions. Diagnostic tools were used to
assess spatial variation in the field, with formal tests used to determine whether
terms accounting for this spatial variation should be included in the model.

Table 2.1: Summary of data sets used as sources of parameter estimates for data
simulation.

Data set Years Trials Varieties Varieties per trial Concurrence (%)
Min Mean Max Overall Per year

Desi Chickpea 2 18 50 30 30 30 60 100
Kabuli Chickpea 6 39 223 51 63 85 28 99

Mungbean 2 9 78 25 52 73 66 100
Wheat 4 52 128 42 49 60 38 99
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Following the single-trial analyses, trials were combined in a multi-environment
trial (MET) analysis. Spatial and design terms along with residual effects were
modelled separately for each trial, using the models found in the single-trial
analysis. Initially the variety by environment (trial) effects were modelled in-
dependently for each trial. This model was then extended to a factor analytic
(FA) model of order 1. Higher order FA models were subsequently fitted to the
VxE effects given they provided an improvement on the previous model and the
inequality

k ≤
2t + 1 −

√
8t + 1

2
(2.17)

was satisfied, where k is the order of FA model and t is the number of trials in
the data. The Akaike information criterion (AIC) and log-likelihood ratio test
were used to determine the order of the most parsimonious FA model within
each data set, where all comparisons were made between nested models. Both
of these are measures of goodness-of-fit, where smaller relative AIC values and
a significant log-likelihood ratio test under a Chi-square distribution indicate a
more parsimonious model. A summary of the models for each data set is shown
in Table 2.2. All analyses were undertaken using ASReml-R (Butler et al., 2009)
in the R software environment (R Core Team, 2016).

2.2.3 Analysis results of data sets

Predictions of varietal performance at each environment were produced from the
analyses as e-BLUPs. Heatmaps were produced for each data set which display
graphically the genetic correlations between environments as shown in Figures
2.1 and 2.2. These correlations range from 1 to -1, where 1 indicates the ranking
of varieties between two environments is nearly identical, 0 indicates very little
or no agreement in the ranking of varieties between two environments, and -1
indicates a reversal in the ranking of varieties between two environments. As
evident in Figures 2.1 and 2.2, the nature of the VxE effects differ between the data
sets. The mungbean and Kabuli chickpea data sets contain mostly low to high
positive correlations, while the Desi chickpea and wheat data sets contain high
negative correlations as well. Summaries of the trial means, genetic variance and
error variance are summarised in Tables 2.3, 2.4, 2.5, and 2.6. The wheat data set
had a much larger range of trial mean yields than the other data sets, ranging
from 1.3 – 7.3 t/ha. The Desi chickpea trial mean yields ranged from 1.1 – 3.8 t/ha,
and the Kabuli chickpea trial mean yields ranged from 0.4 – 3.8 t/ha, while the
mungbean trial mean yields ranged from 0.5 – 1.8 t/ha. Only one mungbean trial
and three Desi chickpea trials had less genetic variance than error variance, while
32 and 24 of the wheat and Kabuli chickpea trials respectively had less genetic
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Table 2.2: Summary of models used to analyse selected data sets, showing the
number of parameters estimated in the model (n), the Akaike information crite-
rion (AIC), given here as the difference between the model and the model with
the smallest AIC in each data set, the log-likelihood (Logl), and percent of genetic
variance accounted for by the FA components in the model (% vaf).

Data set Model n AIC Logl % vaf

Mungbean

DIAG 48 76.85 1908.30
FA1 57 8.07 1951.69 45.10
FA2 64 14.24 1955.60 62.38
FA3 70 9.26 1964.09 60.05
FA4* 75 0.00 1973.72 85.95
FA5 78 1.54 1975.95 85.73

Kabuli chickpea

DIAG 201 672.79 7813.47
FA1 239 147.99 8113.86 62.05
FA2 275 75.04 8186.34 68.68
FA3 311 51.29 8234.21 74.97
FA4 343 17.75 8282.98 79.63
FA5 374 12.12 8316.80 81.95
FA6* 402 0.00 8350.86 87.14

Desi chickpea

DIAG 84 372.98 2149.25
FA1 102 40.87 2333.31 73.14
FA2 116 26.64 2354.43 86.87
FA3* 129 0.00 2380.75 92.22

Wheat

DIAG 209 1144.51 6374.67
FA1 260 512.02 6741.92 39.63
FA2 305 327.82 6879.01 50.07
FA3 353 290.69 6945.58 61.43
FA4 398 158.8 7056.52 70.97
FA5 438 68.94 7141.45 85.48
FA6* 481 0.00 7218.92 90.97

* Model which offered the best fit to the data according to a log-
likelihood ratio test.

variance than error variance. There were also two Desi chickpea trials that had
much more (over 10 times) genetic variance than error variance. This preliminary
analysis of these four data sets resulted in the parameters that formed the basis
of the simulation study as discussed in the next section.
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Figure 2.1: Heatmap showing the genetic correlations between trials from the
analysis of the (a) mungbean and (b) Desi chickpea data sets.
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Figure 2.2: Heatmap showing the genetic correlations between trials from the
analysis of the (a) Kabuli chickpea and (b) wheat data sets.
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Table 2.3: Analysis summary of mungbean data set, showing estimated trial
means, genetic variances and error variances.

Trial Mean Genetic Error Trial Mean Genetic Error
variance variance variance variance

µ + τej σ2
g j

σ2
j µ + τej σ2

g j
σ2

j

1 0.792 0.032 0.006 6 1.699 0.028 0.023
2 1.397 0.070 0.033 7 0.854 0.015 0.018
3 0.848 0.042 0.014 8 1.752 0.063 0.038
4 0.952 0.017 0.007 9 0.495 0.010 0.009
5 0.714 0.010 0.007

Table 2.4: Analysis summary of Desi chickpea data set, showing estimated trial
means, genetic variances and error variances.

Trial Mean Genetic Error Trial Mean Genetic Error
variance variance variance variance

µ + τej σ2
g j

σ2
j µ + τej σ2

g j
σ2

j

1 1.797 0.025 0.016 10 1.560 0.046 0.228
2 1.269 0.034 0.003 11 2.077 0.010 0.003
3 2.304 0.014 0.015 12 3.761 0.035 0.020
4 1.080 0.007 0.005 13 1.759 0.009 0.005
5 1.958 0.087 0.030 14 2.570 0.013 0.011
6 1.926 0.085 0.027 15 3.039 0.020 0.009
7 1.626 0.059 0.003 16 1.349 0.008 0.062
8 2.183 0.020 0.009 17 1.727 0.015 0.006
9 1.359 0.048 0.039 18 3.837 0.030 0.018
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Table 2.5: Analysis summary of Kabuli chickpea data set, showing estimated
trial means, genetic variances and error variances.

Trial Mean Genetic Error Trial Mean Genetic Error
variance variance variance variance

µ + τej σ2
g j

σ2
j µ + τej σ2

g j
σ2

j

1 1.706 0.057 0.093 21 2.961 0.036 0.047
2 2.261 0.200 0.103 22 1.024 0.049 0.010
3 2.923 0.337 0.157 23 1.759 0.013 0.016
4 1.796 0.013 0.016 24 3.689 0.078 0.025
5 3.849 0.077 0.079 25 1.187 0.021 0.013
6 2.820 0.023 0.064 26 1.415 0.013 0.007
7 2.479 0.033 0.076 27 2.732 0.032 0.046
8 2.491 0.048 0.143 28 1.764 0.029 0.050
9 3.677 0.074 0.035 29 2.398 0.012 0.055

10 1.129 0.006 0.012 30 2.017 0.012 0.134
11 1.482 0.011 0.010 31 2.577 0.016 0.016
12 3.579 0.028 0.032 32 1.329 0.007 0.014
13 0.972 0.010 0.015 33 2.662 0.047 0.051
14 1.359 0.013 0.035 34 0.424 0.011 0.013
15 1.045 0.019 0.017 35 0.964 0.021 0.019
16 2.463 0.028 0.028 36 2.374 0.055 0.033
17 1.062 0.006 0.012 37 2.454 0.013 0.030
18 1.257 0.010 0.010 38 1.833 0.027 0.015
19 2.192 0.055 0.140 39 1.282 0.011 0.013
20 2.380 0.220 0.086
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Table 2.6: Analysis summary of wheat data set, showing estimated trial means,
genetic variances and error variances.

Trial Mean Genetic Error Trial Mean Genetic Error
variance variance variance variance

µ + τej σ2
g j

σ2
j µ + τej σ2

g j
σ2

j

1 2.553 0.015 0.019 27 1.700 0.021 0.026
2 2.149 0.014 0.024 28 2.981 0.191 0.073
3 7.347 0.212 0.069 29 5.153 0.477 0.108
4 1.969 0.010 0.058 30 1.760 0.044 0.123
5 3.921 0.084 0.045 31 1.324 0.004 0.059
6 4.802 0.037 0.023 32 1.691 0.177 0.096
7 4.180 0.029 0.021 33 2.603 0.042 0.045
8 3.156 0.052 0.073 34 2.901 0.020 0.043
9 2.399 0.032 0.017 35 2.124 0.019 0.048

10 2.467 0.011 0.017 36 1.626 0.004 0.167
11 1.303 0.005 0.062 37 2.392 0.009 0.026
12 4.063 0.017 0.035 38 2.231 0.048 0.068
13 3.178 0.027 0.225 39 2.437 0.016 0.047
14 2.323 0.054 0.031 40 2.386 0.027 0.237
15 2.866 0.014 0.052 41 2.618 0.014 0.168
16 2.099 0.016 0.021 42 3.406 0.024 0.053
17 2.711 0.155 0.083 43 2.111 0.024 0.074
18 2.423 0.011 0.040 44 1.380 0.015 0.009
19 3.120 0.027 0.126 45 3.860 0.293 0.080
20 5.556 0.170 0.197 46 3.086 0.030 0.019
21 6.844 0.649 0.426 47 3.228 0.032 0.035
22 4.223 0.044 0.104 48 1.733 0.026 0.035
23 3.536 0.139 0.144 49 4.205 0.063 0.048
24 2.802 0.023 0.021 50 4.514 0.256 0.124
25 1.900 0.335 0.055 51 2.816 0.031 0.030
26 1.925 0.012 0.025 52 4.235 0.104 0.097
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2.3 Simulation study

The focus of this research is a simulation study which was conducted to inves-
tigate the adequacy of the FA model structure in comparison to other model
structures for estimating genetic performance in field trials with small numbers
of varieties.

2.3.1 Simulation of data

Forty data generation models were considered, comprising the factorial combina-
tion of five variance-covariance structures typical of MET data sets, four numbers
of varieties per trial (10, 15, 25, and 50), and two levels of varietal concurrence
(perfect and partial). The five variance-covariance structures were drawn from
the analyses of the four data sets discussed in Section 2.2.1 and shown in Table
2.1 and in addition the structure from the South Australia barley MET used by
Kelly et al. (2007) was also used. This barley MET data set is drawn from the
early stages of the South Australian barley breeding program and consisted of 10
trials and 480 varieties. Perfect concurrence (in the simulation study) meant that
all variety by trial combinations were present, while partial concurrence meant
that half of the variety by trial combinations were present. For each of the 40 data
generation models, 500 simulations were conducted. The structure of the data
generation models is illustrated in the flowchart shown in Figure 2.3.

The number of varieties per trial in the data sets that four of the variance-
covariance structures are taken from range from 25 to 85 which is higher than the
numbers of varieties considered in this simulation study. However, this is not
considered to be a limiting factor given the interest in this study is how well the
parameters in the study are estimated, not how well the true parameters in the
original data set are estimated. These estimates are merely to set up a realistic
simulation study, but in practice these numbers could have been determined us-
ing other methods. The models used to analyse these data sets have been shown
to be adequate for larger numbers of varieties per trial (>50) (Kelly et al., 2007) and
as such it is assumed that these parameters are a reasonably good representation
of the underlying patterns in the data sets.

Eight designs were generated for each data set as completely randomised
designs with three replicates. Each design corresponded to a variety number
per trial (10, 15, 25, and 50) by varietal concurrence level (perfect and partial)
combination. For the designs with partial concurrence, the varieties present at
each trial were selected so that 50% of the total variety by trial combinations were
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Figure 2.3: Flowchart demonstrating how the 40 data generation models were formed for the simulation study.



present.

Yield data was simulated according to the equation

y = 1nµ + Xeτe + Zgug + e, (2.18)

where µ is the overall mean, τe is a t × 1 vector of trial effects, and ug is a mt × 1
vector of variety effects for each trial, generated from a Gaussian distribution
with mean zero and variance matrix Ge ⊗ Im. The n× 1 vector e contains residual
effects which were generated from a Gaussian distribution with mean zero and
variance matrix ⊕σ2

j In j . The matrix Xe is a n × t design matrix for the vector of
trial effects and the matrix Zg is a n × mt design matrix for the vector of variety
effects for each trial, both formed from the generated designs.

The parameters estimated from the analysis of the four primary data sets and
the parameters from the barley data set in Kelly et al. (2007) (trial means, genetic
variance matrices and error variances) were used in Equation 2.18 to simulate the
yield data. These parameters are shown in Tables 2.3, 2.4, 2.6, 2.5, and 2.7 and
the genetic covariance matrix is shown in graphical form as a correlation matrix
in Figures 2.1, 2.2, and 2.4. For each data set by number of varieties per trial
combination, the same VxE effects were used when generating the yield data for
both the perfect and partial concurrence. The code used to simulate the data is
given in Appendix C.1.
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Table 2.7: Summary of barley data set
from Kelly et al. (2007), showing esti-
mated trial means, genetic variances and
error variances.

Trial Mean
Genetic Error
variance variance

µ + τej σ2
g j

σ2
j

1 1.300 0.039 0.011
2 1.900 0.061 0.020
3 0.830 0.019 0.014
4 2.100 0.038 0.032
5 2.100 0.089 0.067
6 1.600 0.098 0.050
7 3.500 0.093 0.055
8 0.850 0.010 0.022
9 2.100 0.064 0.043
10 2.800 0.101 0.056

2.3.2 Analysis of simulated data

The simulated data sets were analysed using four model types for the variance
of the VxE effects (Ge ⊗ Im). The four model types used were a uniform model, a
diagonal model, an unstructured model, and FA models as discussed in Section
2.1.1 with the forms shown in Equations 2.2, 2.3, 2.4, and 2.5 respectively. All
analyses were undertaken using ASReml-R (Butler et al., 2009) in the R software
environment (R Core Team, 2016).

A set of VxE effects were generated from each Ge model, resulting in 500 sets
of effects for each of the 40 data generation models. The mean square error of
prediction (MSEP) was calculated for each set of VxE effects,

MSEP =
1

mt

t∑
j=1

m∑
i=1

(ũgi j − ugi j)
2,

where ũgi j are the predicted VxE interaction effects from each model and ugi j are
the VxE effects used to simulate the data. The correlation between ũgi j and ugi j ,
the AIC, and log-likelihood (in addition to the MSEP) were also recorded for each
analysis.
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Although there are four model types applied to each simulated data set, in
practice there are actually a number of FA models sequentially fitted to the data,
each fitting a different number of factors. The number of FA models fitted to a
given simulated data set depended on the number of trials in the data set and how
well the FA models fitted the data. Higher order FA models were sequentially
fitted to the data set in question until either the model did not offer a significant
improvement on the previous FA model according to a log-likelihood ratio test,
or the condition in Equation 2.17 was not satisfied. This means that the highest
order of FA model differed between data-generation models, but also between
simulations of the same data-generation model.

To best compare the FA models to the other models, firstly the MSEPs and
correlations were each averaged over the simulations for each FA model, resulting
in an average MSEP and an average correlation for each data generation model
for each FA model. Following this, the most parsimonious FA model for each
simulation according to a log-likelihood ratio test was selected and the MSEPs
and correlations for only these models were averaged over simulations, resulting
in one average MSEP and correlation for each data generation model for FA
models as a whole. These average MSEPs and average correlations for FA models
as a single category were then compared to MSEPs and correlations averaged
over the simulations for the diagonal, uniform and unstructured models for
each data generation model. The average MSEPs and correlations were used to
compare Ge models and assess their accuracy for different numbers of varieties
and concurrence levels. The code used to analyse the simulated data sets is given
in Appendix C.2.
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Chapter 3

Results

The results of the simulation study undertaken to investigate the adequacy of
variance models for the VxE effects for small numbers of varieties, specifically
the FA structure, are given in this chapter. The accuracy of the estimation of four
models for the variance of the VxE effects, also referred to as genetic variance,
are compared for 40 data generation models using the average MSEP. The four
model types considered for the variance of the VxE effects, or VxE models, were
a uniform model, a diagonal model, FA models of order k, and an unstructured
model. As discussed in Section 2.3.1, the 40 data generation models consist of the
factorial combination of five variance-covariance structures which characterise
the data sets from which they were drawn, four numbers of varieties per trial (10,
15, 25, and 50), and two levels of concurrence (partial and perfect). The average
MSEPs for the VxE models are compared within a data set; however, the trends,
rather than the individual numbers, can be compared across data sets. The order
of FA models fitted is heavily influenced by the number of trials contained in a
MET data set and for this reason the number of FA models produced for each
data set differ.

In Section 3.1, the different order of FA models are compared for each data
generation model. In Section 3.2, the FA models are compared to the other VxE
models considered in this study and in Section 3.3, the MSEP and log-likelihood
ratio test (LLRT) are compared in their selection of superior models.

3.1 Comparison of FA models

This section considers the different orders of FA models used to estimate the
variance of the VxE effects. The average MSEP for these VxE models from the 500
simulations are shown in Figures 3.1, 3.2, and 3.3 for the different data generation
models. The data generation models from each data set are shown in separate
plots in these figures. The x-axis shows the dimension of FA model, ordered from
the lowest order FA model to the highest order FA model. The y-axis shows the
average MSEP, with this scale differing for each data set. Each colour represents a
different variety per trial number (10, 15, 25, 50) and the two line types represent
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the two concurrence levels (perfect and partial). Standard error bars are shown
for each average MSEP, with the number of times the model converged used as
the sample size (n ≤ 500). The full tables of average MSEPs are given in Appendix
D.1.

Within a data set, the MSEP gives an indication of whether one type of VxE
model for a given scenario is an improvement over another VxE model; how-
ever, it is difficult to determine how accurate a model is independently of other
models. This is because the MSEP is a relative measure of accuracy and as such
its scale is dependent on the data. It is important to recognise this because if the
most accurate model for a scenario is not accurate enough to adequately estimate
the VxE effects it is of no practical use regardless of its relative superior accuracy.
The range of average correlations between the true VxE effects and the estimated
VxE effects for the FA models for each variety number are shown on the Fig-
ures 3.1, 3.2 and 3.3 in the same colour as their respective variety number lines
and points. These correlations indicate whether the accuracy level of a model is
practical, regardless of how its accuracy compares to another model. Practical is
defined here as reaching a level of accuracy that a breeding program would be
satisfied with. This practical level could change substantially depending on the
stage of the program or the specific aims of the program, but for the purpose of
this study, a correlation of or above 0.85 is considered to be a practical level of cor-
relation. The correlations also allow comparison across data generation models
from different data sets. The full tables of correlations are shown in Appendix D.2.

As discussed in Section 2.3.2, a higher order FA model was only fitted to the
data provided the previous model offered a significant improvement based on
a log-likelihood ratio test and it fulfilled the inequality in Equation 2.17. Due
to these conditions some of the higher order models for a given data generation
model were only fitted to the data a small number of times. Tables showing the
number of simulations in which an FA model was fitted to the data are given in
Appendix D.3. In addition to this, a number of FA models were not able to con-
verge in all simulations which further reduces the sample size for some of the FA
models. The full tables of convergence information are given in Appendix D.4.
Both of these factors need to be taken into consideration when comparing the FA
models. Open circles (as opposed to solid circles) are used in Figures 3.1, 3.2, and
3.3 for any average MSEPs that have an effective sample size of 50 simulations
or less, taking into account both the number of times the model was fitted and
the percentage of time it converged. It is interesting to note that although higher
order FA models were fitted (based on improved log-likelihood) in data sets with
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Figure 3.1: Average mean square error of prediction (MSEP) for the FA models
from 500 simulations for the data generation models from the (a) mungbean and
(b) barley variance-covariance structures. The average correlation range for the
models for each variety number are shown on each plot in the same colour as
their respective variety number lines and points. Note the different y-axis scales.
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Figure 3.2: Average mean square error of prediction (MSEP) for the FA models
from 500 simulations for the data generation models from the (a) Desi chickpea
and (b) Kabuli chickpea variance-covariance structures. The average correlation
range for the models for each variety number are shown on each plot in the same
colour as their respective variety number lines and points. Note the different
y-axis scales.
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Figure 3.3: Average mean square error of prediction (MSEP) for the FA models
from 500 simulations for the data generation model from the wheat variance-
covariance structures. The average correlation range for the models for each
variety number are shown on the figure in the same colour as their respective
variety number lines and points.

larger numbers of trials, they rarely resulted in the most accurate predictions
(based on MSEP). For example, when considering 50 varieties in the wheat data
set, up to an FA11 model was fitted for both concurrence levels, however, in both
cases an FA6 was the most accurate model.

For the mungbean data set (Figure 3.1a) the FA1 model was the best perform-
ing model for 10 varieties per trial with partial concurrence (0.0077), while the
FA4 model had the highest MSEP (0.0086). For the same variety number with
perfect concurrence the FA2 and FA3 models had a larger MSEP than the FA1
model. However, the FA4 and FA5 models had smaller MSEPs than the FA1
model, with the FA5 model being the most accurate (0.0071), though it should be
noted this value has a sample size of less than 50. The MSEPs for 15 varieties per
trial were very similar for partial and perfect concurrence, aside from the FA5
model. For both perfect and partial concurrence, the average MSEPs for the FA1
model are slightly smaller than for the FA2, FA3, and FA4 models, however, the
MSEP for the FA5 model increases slightly for perfect concurrence and decreases
substantially for partial concurrence. Consequently, the most accurate model for
15 varieties with perfect concurrence was an FA1 model (0.0066), and for partial
concurrence it was an FA5 model (0.0061), however, given n < 50, this value may
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not be reliable. For 25 varieties per trial with partial concurrence the average
MSEP increased slightly as the order of FA model increased, while it decreased
for perfect concurrence between an FA1 and FA4 model, however, remained con-
sistent between an FA4 and FA5 model. For 50 varieties per trial with partial
concurrence the average MSEP remained consistent for all FA models (0.005),
while for perfect concurrence the average MSEP decreased consistently between
FA1 and FA4 models and remained consistent between FA4 and FA5 models (∼
0.0047). For both 25 and 50 varieties per trial, perfect and partial concurrence
had similar average MSEPs for FA1 and FA2 models; however, for both variety
numbers, the difference between the average MSEPs for perfect and partial con-
currence increased for the higher order FA models.

The average MSEPs for the data generation models from the barley data set
(Figure 3.1b) are fairly consistent across FA models for a given variety number
and concurrence level, with the highest order FA model fitted to a data generation
model occasionally being the exception to this, although it should be noted these
higher order models tend to have a small sample size. The average MSEPs for
the data generation models from the Desi chickpea data set (Figure 3.2a) mostly
followed the same pattern for each variety number with the average MSEP de-
creasing between FA1 and FA2 or FA3 and then increasing as the order of FA
model rose. For the data generation models from the Kabuli chickpea (Figure
3.2b) and wheat data sets (Figure 3.3) with 10 and 15 varieties per trial, the aver-
age MSEP tended to be smallest for the FA1 model. For 25 and 50 varieties per
trial, higher order FA models, such as an FA6 model, tended to have the smallest
average MSEP, aside from 25 varieties with partial concurrence, in which an FA2
or an FA3 model had the smallest average MSEP. Despite an FA11 model being
fitted for some data generation models from the Kabuli chickpea and wheat data
sets, an FA6 had the smallest average MSEP in these cases.

The consistency of the average MSEP across FA models changes depending
on the data generation model. The data generation models for perfect and partial
concurrence resulted in a similar average MSEP for their respective data sets,
numbers of varieties per trial and FA model, however, perfect concurrence tended
to result in a lower average MSEP. The average MSEP decreased as the number of
varieties per trial increased, regardless of the level of concurrence or the data set
considered. For most of the data generation models, the highest order FA model
that had been fitted to the data tended not to result in the smallest average MSEP.
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3.2 Comparison of FA models with other models

This section compares the FA model to the other models used to estimate the
variance of the VxE effects. The average MSEP from the 500 simulations are
shown in Figures 3.4, 3.5, and 3.6 for each data generation model. The average
MSEP is shown for the uniform model, diagonal model, the FA model which
offered the best fit to the data in each simulation (using a log-likelihood ratio
test), and the unstructured model. In these figures the average MSEPs for each
data set are shown in separate plots. The x-axis shows the number of varieties per
trial and the y-axis shows the average MSEP, with the scale of this axis differing
for each data set. Each colour represents a different VxE model, while the line
types represent the two concurrence levels. Standard error bars are shown for
each average MSEP. The average correlation range for the models for each variety
number are shown on the figures above their respective variety number.

In interpreting these results it should be noted that the unstructured model
failed to converge in all simulations for all of the data generation models from
the Desi chickpea, Kabuli chickpea and wheat data sets. The percentage of
simulations in which the unstructured model converged for the remaining data
generation models are shown in Table 3.1. Open circles (as opposed to solid
circles) are used in Figures 3.4, 3.5, and 3.6 for any average MSEPs that had a
sample size of 50 simulations or less.

Table 3.1: Percentage of simulations in which the unstructured model converged
in 500 simulations for mungbean and barley data sets.

Variance-covariance structure Concurrence Varieties per trial
10 15 25 50

Mungbean (9 trials) Partial 0.0 0.0 0.0 0.6
Perfect 0.0 0.6 9.8 52.6

Barley (10 trials) Partial 0.0 0.0 0.0 0.8
Perfect 0.0 40.4 77.6 89.6

For the mungbean data set (Figure 3.4a), the average MSEP for all of the VxE
models, aside from the unstructured model, were quite similar for 10 and 15
varieties per trial for both perfect and partial concurrence. The average MSEP for
the FA model for partial concurrence had a larger MSEP (0.0083) than the other
models for 10 varieties per trial for both concurrence levels, with all remaining
MSEPs for 10 varieties having very similar MSEPs (0.0078 - 0.008), however, this
difference in MSEP has limited practical implications as the correlations only
change from 0.87 to 0.88. For 15 varieties per trial the FA model with partial
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Figure 3.4: Average mean square error of prediction (MSEP) from 500 simulations
for the data generation models from the (a) mungbean and (b) barley variance-
covariance structures for the uniform model (UNIF), diagonal model (DIAG),
factor analytic model (FA), and unstructured model (US). The average correlation
range for the models for each variety number are shown on each plot in black.
Note the different y-axis scales.
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Figure 3.5: Average mean square error of prediction (MSEP) from 500 simulations
for the data generation models from the (a) Desi chickpea and (b) Kabuli chickpea
variance-covariance structures for the uniform model (UNIF), diagonal model
(DIAG), factor analytic model (FA), and unstructured model (US). The average
correlation range for the models for each variety number are shown on each plot
in black. Note the different y-axis scales.
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Figure 3.6: Average mean square error of prediction (MSEP) from 500 simulations
for the data generation model from the wheat variance-covariance structures for
the uniform model (UNIF), diagonal model (DIAG), factor analytic model (FA),
and unstructured model (US). The average correlation range for the models for
each variety number are shown on the figure in black.

concurrence improved with an average MSEP identical to that for the diagonal
model for each concurrence level (0.0068). The average MSEP for the unstruc-
tured model for 15 varieties per trial with perfect concurrence was much smaller
than the other models (0.0049); however, given that this estimate is based on only
three simulations, limited importance will be placed on this result. The differ-
ences between the models become more pronounced for 25 and 50 varieties per
trial. For 25 and 50 varieties per trial for the uniform and diagonal models there
was no difference in the average MSEP between perfect and partial concurrence.
The average MSEP for the FA model with perfect concurrence was consistently
smaller than that for partial concurrence for both 25 and 50 varieties per trial. The
average MSEPs for the unstructured model with perfect concurrence for 25 and
50 varieties were very close to those for the FA model with perfect concurrence.
For both 25 and 50 varieties per trial the FA model had a smaller average MSEP
than both the uniform and diagonal model, and the diagonal model had a smaller
average MSEP than the uniform model. However, it is important to note that for
both 25 and 50 varieties the correlations between the worst models for partial or
perfect concurrence and the best models only differed by 2%.
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For the barley data set (Figure 3.4b), the FA model for 10 varieties per trial,
and to a lesser extent for 15 varieties per trial, with partial concurrence performed
considerably poorer than the other analysis models for 10 and 15 varieties per
trial, however, the models performed similarly to each other for both 25 and 50
varieties per trial for both perfect and partial concurrence. For the Desi chickpea
(Figure 3.5a), Kabuli chickpea (Figure 3.5b), and wheat (Figure 3.6) data sets,
the differences between the models were much more pronounced. The uniform
model consistently had a higher average MSEP across variety numbers, especially
for the Kabuli chickpea and wheat data sets. The diagonal model and FA model
performed similarly to each other for the Kabuli chickpea and wheat data gen-
eration models for 10 and 15 varieties per trial, while for the Desi chickpea data
set there were clear differences between the VxE models for 10 and 15 varieties.
However, for all three of these data sets, the FA model for 25 and 50 varieties per
trial was noticeably better than the other VxE models for both partial and perfect
concurrence.

For the uniform and diagonal models in all data sets, partial and perfect
concurrence resulted in similar average MSEP values for their respective variety
numbers (Figures 3.4, 3.5, 3.6). The average MSEP for partial and perfect con-
currence differed more for the FA models, with perfect concurrence resulting in
a smaller average MSEP for the same number of varieties per trial. The average
MSEP for each data set decreased as the number of varieties per trial increased as
expected, decreasing most rapidly between 10 and 15 varieties, then 15 and 25,
followed by 25 and 50 varieties.

3.3 Model selection

Given that the parameters used to simulate the data in this study are known, the
MSEP can be used to determine the model which best estimates the true effects.
In practice the true effects are unknown and a different method of choosing the
best model which does not rely on this knowledge must be used, such as the log-
likelihood ratio test (LLRT) or AIC. The percentage of simulations in which each
type of model had the smallest MSEP and the percentage of simulations in which
each model type was determined to be the most parsimonious model according
to a LLRT are summarised in Tables 3.2, 3.3, 3.4, 3.5, and 3.6. The percentage of
simulations in which models were selected to be the most parsimonious using the
AIC were very similar to those selected using the LLRT and are consequently not
presented. These tables demonstrate the differences between the model which
would be selected as the best model using these two methods.
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These tables show that in selecting the best model, the MSEP tended to lead to
a choice of a simpler model than the LLRT. For the mungbean data set (Table 3.2)
for 10 varieties with partial concurrence the uniform model was selected most fre-
quently (26% of simulations), while the LLRT selected the FA2 model most often
(57.2% of simulations) and only selected the uniform model in 0.2% of simula-
tions. Similarly for 10 varieties with perfect concurrence the MSEP selected the
FA1 model and uniform model most frequently (27% and 26.6% of simulations
respectively), while the LLRT selected the FA2 model most frequently (49.4% of
simulations). For 15 varieties per trial the FA2 model was selected approximately
a third of the time for both concurrence levels using the MSEP, while the LLRT
predominantly selected the FA2 and FA3 models (31.6 - 41.6% of simulations).
For 25 varieties per trial the MSEP selected the FA1 model most often (43.6% of
simulations) for partial concurrence, while for perfect concurrence the FA1 and
FA3 model were both selected in 22% of simulations. The LLRT for 25 varieties
selected the FA1, FA2, and FA3 models most frequently for partial concurrence
and the FA2, FA3, and FA4 models most often for perfect concurrence. Using
the MSEP the FA1 model was selected as the best model approximately a third
of the time for 50 varieties with partial concurrence, while the LLRT selected
the FA3 model approximately a third of the time. For 50 varieties with perfect
concurrence the MSEP and LLRT both selected the FA4 model most frequently,
however, the percentage of simulations in which this model was selected as the
best varied considerably, being selected by the MSEP in 39.8% of simulations,
while the LLRT selected it in 62.8% of simulations.

For the barley data set the uniform and diagonal models had the smallest
MSEP in a large proportion of simulations for 10 and 15 varieties per trial regard-
less of concurrence, while these models were barely ever selected as the best using
the LLRT. For 25 varieties with perfect and partial concurrence and 50 varieties
with partial concurrence the FA1 model was selected most frequently using the
MSEP, while the LLRT selected the FA2 model most frequently. Both methods
selected the FA2 model for 50 varieties with perfect concurrence. For all of the
data generation models from the Desi chickpea data set, aside from 10 varieties
with perfect concurrence, the LLRT most frequently selected the FA3 model as
the best model. The model selected by the MSEP varied much more according
to variety number and concurrence, with an FA1 model selected most frequently
for 10 varieties with partial concurrence, an FA2 model selected most often for
10 varieties with perfect concurrence, 15 varieties with both perfect and partial
concurrence, and 25 varieties with partial concurrence, and an FA3 model se-
lected most frequently for 25 varieties with perfect concurrence, and 50 varieties
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for both concurrence levels.

For the Kabuli data set, the MSEP and LLRT selected the same model most
frequently for 15 and 25 varieties per trial with perfect concurrence. For 25
varieties with partial concurrence the MSEP selected the FA3 model most often
while the LLRT selected the FA6 model most often, however, for all remaining
data generation models from the Kabuli data set the LLRT selected the FA model
of and equal to orhigher than that selected using the MSEP. The MSEP and LLRT
selected similar models for the data generation models from the wheat data set
with the LLRT most often selecting an FA model one order higher than that
selected most often by the MSEP. However, the diagonal model was selected
as the best model using the MSEP in 34% of simulations for 10 varieties with
partial concurrence and in 26.6% of simulations with perfect concurrence, while
the LLRT selected this model in only 1.41% and 2.4% of simulations respectively.
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Table 3.2: Percent of simulations in which model was best according to the MSEP and log-likelihood ratio test (LLRT) for 500 simulations
for the mungbean data set.

Method Varieties Concurrence UNIF DIAG FA1 FA2 FA3 FA4 FA5 US

MSEP

10 Partial 26.0 23.8 20.4 13.4 15.6 0.8
10 Perfect 26.6 18.8 27.0 13.4 12.2 2.0
15 Partial 14.4 18.4 34.6 15.8 11.4 5.4
15 Perfect 14.2 13.4 31.2 18.4 11.4 9.8 1.6
25 Partial 5.8 16.4 43.6 19.6 8.2 5.4 1.0
25 Perfect 4.2 4.8 22.0 16.6 22.6 18.0 9.0 2.8
50 Partial 0.6 5.6 34.4 22.8 18.8 10.8 7.0
50 Perfect 0.2 4.6 7.4 14.6 39.8 20.4 13.0

LLRT

10 Partial 0.2 0.4 21.2 57.2 21.0
10 Perfect 1.2 0.2 27.2 49.4 18.6 3.2 0.2
15 Partial 0.2 21.6 41.6 35.8 0.8
15 Perfect 19.0 31.6 33.6 14.8 1.0
25 Partial 26.8 31.6 33.6 8.0
25 Perfect 9.8 21.0 33.0 29.0 6.4 0.8
50 Partial 11.6 27.4 34.6 22.8 3.6
50 Perfect 2.0 13.4 62.8 15.8 6.0
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Table 3.3: Percent of simulations in which model was best according to the MSEP and a log-likelihood ratio test (LLRT) for 500
simulations for the barley data set.

Method Varieties Concurrence UNIF DIAG FA1 FA2 FA3 FA4 FA5 US

MSEP

10 Partial 40.3 23.8 21.2 6.8 7.0 0.8
10 Perfect 43.4 18.2 21.8 12.6 3.8 0.2
15 Partial 33.0 19.6 27.8 13.0 4.0 2.6
15 Perfect 29.8 13.4 35.2 14.6 3.6 0.4 3.0
25 Partial 19.2 14.6 43.4 16.6 4.8 1.0 0.4
25 Perfect 15.0 4.8 41.2 28.6 5.8 1.0 0.2 3.4
50 Partial 4.0 2.2 56.4 27.2 8.4 1.0 0.6 0.2
50 Perfect 0.6 0.4 37.0 40.6 15.6 2.4 0.2 3.2

LLRT

10 Partial 0.4 1.8 25.3 50.9 21.6
10 Perfect 0.6 1.8 37.4 48.2 11.2 0.8
15 Partial 0.6 34.4 32.2 30.2 2.6
15 Perfect 0.4 0.2 39.0 40.0 15.2 3.4 0.6 1.2
25 Partial 31.8 38.6 21.8 7.6 0.2
25 Perfect 26.4 49.2 18.0 4.2 0.4 1.8
50 Partial 24.2 50.0 20.8 4.6 0.4
50 Perfect 7.0 51.2 30.4 6.6 1.2 3.6
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Table 3.4: Percent of simulations in which model was best according to a log-likelihood ratio test (LLRT) for 500 simulations for the
Desi chickpea data set.

Method Varieties Concurrence UNIF DIAG FA1 FA2 FA3 FA4 FA5 FA6

MSEP

10 Partial 4.0 5.8 47.4 30.2 9.2 3.4
10 Perfect 3.8 2.4 31.4 39.0 18.6 4.8
15 Partial 1.2 0.8 31.4 53.0 11.8 1.8
15 Perfect 0.4 0.4 14.2 49.8 29.2 6.0
25 Partial 0.2 0.2 10.0 56.0 31.8 1.8
25 Perfect 2.6 26.0 69.2 2.2
50 Partial 16.2 83.0 0.8
50 Perfect 3.0 96.8 0.2

LLRT

10 Partial 0.6 40.2 57.8 1.4
10 Perfect 2.8 57.6 37.0 2.6
15 Partial 15.6 58.2 26.0 0.2
15 Perfect 0.2 33.4 55.4 10.0 1.0
25 Partial 4.6 50.2 40.2 5.0
25 Perfect 3.8 61.4 29.6 4.4 0.8
50 Partial 49.5 42.2 8.2
50 Perfect 60.2 33.8 5.8 0.2
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Table 3.5: Percent of simulations in which model was best according to a log-likelihood ratio test (LLRT) for 500 simulations for the
Kabuli chickpea data set.

Method Varieties Concurrence UNIF DIAG FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 FA10

MSEP

10 Partial 22.8 57.2 13.3 5.9 0.8
10 Perfect 0.2 12.6 51.1 25.7 8.0 2.4
15 Partial 9.8 51.0 24.7 9.8 3.6 0.8 0.2
15 Perfect 0.2 1.6 31.6 33.4 22.8 9.2 1.2
25 Partial 0.4 14.4 28.0 33.2 15.0 5.6 2.4 0.8 0.2
25 Perfect 6.6 19.2 31.8 21.8 13.0 7.0 0.6
50 Partial 0.2 9.0 18.6 28.0 42.6 1.4 0.2
50 Perfect 0.6 0.8 0.8 9.4 88.2 0.2

LLRT

10 Partial 7.3 64.4 25.9 2.0 0.4
10 Perfect 0.2 38.1 38.9 15.6 5.2 1.8 0.2
15 Partial 1.2 23.7 43.2 25.3 6.2 0.4
15 Perfect 18.4 43.2 22.2 10.8 4.0 1.2 0.2
25 Partial 1.2 1.0 4.0 16.2 52.0 25.6
25 Perfect 3.8 24.8 27.0 21.0 16.2 6.6 0.6
50 Partial 0.2 17.2 50.4 30.2 2.0
50 Perfect 1.2 0.2 1.2 28.0 42.8 22.4 4.0 0.2
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Table 3.6: Percent of simulations in which model was best according to a log-likelihood ratio test (LLRT) for 500 simulations for the
wheat data set.

Method Varieties Concurrence DIAG FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 FA10

MSEP

10 Partial 34.0 47.9 14.3 3.4 0.4
10 Perfect 26.6 43.4 21.6 6.2 1.8 0.4
15 Partial 12.5 39.0 28.1 16.0 3.6 0.8
15 Perfect 6.0 29.0 30.0 21.8 9.8 3.4
25 Partial 0.2 6.8 24.2 23.4 25.6 15.2 3.8 0.8
25 Perfect 0.6 5.0 12.8 17.6 26.0 24.2 11.6 2.2
50 Partial 0.2 0.8 0.8 3.2 21.6 73.2 0.2
50 Perfect 0.4 0.2 0.6 0.8 1.8 3.8 86.6 5.8

LLRT

10 Partial 1.4 20.3 65.8 12.3 0.2
10 Perfect 2.4 37.8 34.8 15.4 7.0 2.2 0.4
15 Partial 2.8 43.6 36.6 13.9 2.8 0.2
15 Perfect 1.4 20.0 32.2 18.6 15.4 9.8 2.6
25 Partial 2.6 5.8 13.6 29.4 35.4 11.8 1.4
25 Perfect 0.6 1.6 16.6 15.2 22.0 21.4 20.4 2.2
50 Partial 1.0 0.8 1.4 0.2 3.6 29.2 45.6 17.2 1.0
50 Perfect 0.4 0.2 0.6 0.8 1.8 2.4 41.8 35.6 14.2 2.0 0.2



Chapter 4

Discussion

In the early stages of a crop breeding program large numbers of varieties are
grown at each trial, however, in the later stages of the program these numbers
are dramatically reduced. Accuracy is important at all stages of a program, but
in these final stages, where final decisions are made regarding the varieties to be
recommended for commercial release, it is of paramount importance. There has
been limited research regarding the accuracy of FA models for late stage breeding
trials, despite FA models being commonly used for the analysis of such data. The
aims of this project were to determine whether the adequacy of an FA variance
structure changes as the number of crop varieties within a trial decreases; and,
when dealing with these small numbers, to investigate the impact the underlying
VxE variance structure and level of varietal concurrence between environments
have on the accuracy of the FA model.

The main focus of this study was to investigate whether the accuracy of com-
monly used models is influenced by decreasing the number of varieties per trial
in a MET data set. There is limited research regarding how accurate the models
investigated are in the analysis of MET data for small numbers of varieties. Wel-
ham et al. (2010) undertook a simulation study dealing with small numbers of
varieties per trial, however, variety number was not a parameter being altered in
this study and consequently conclusions cannot be made regarding how chang-
ing the variety number impacts on the accuracy of the models. Furthermore the
focus of the study undertaken by Welham et al. (2010) was in comparing one- and
two-stage analyses of MET data and only investigated an FA2 model, a uniform
model, and a modified uniform model that fitted fixed variety effects and random
environment effects.

The results of this study showed that changing the number of varieties per
trial impacts on the accuracy of models for the variance of the VxE effects. In
Figures 3.1, 3.2, and 3.3, where each colour represents a variety number, and in
Figures 3.4, 3.5, and 3.6, where the x-axis represents variety number, it can be seen
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that as the number of varieties decrease, the accuracy also decreases (increased
MSEP). This trend is true for all of the VxE models investigated, and is consistent
regardless of data set or varietal concurrence. The rate at which the accuracy of
the models improves is greater when dealing with small numbers of varieties per
trial, with the change in accuracy between 10 and 15 varieties being greater than
or equivalent to the change in accuracy between 25 and 50 varieties.

There appears to be some distinction between 15 and 25 varieties per trial,
with the patterns in the results very similar for 10 and 15 varieties and very
similar for 25 and 50 varieties. This suggests that although all variety numbers
considered in this study are “small” by crop breeding program standards, 10 and
15 varieties fall into a different “small” category compared to 25 and 50 varieties.
For the scenarios which had 10 or 15 varieties per trial, in two of the data sets
the uniform model performed better than or equivalent to the other VxE models,
however, in the remaining three data sets the uniform model was substantially
less accurate than the other VxE models. The poor accuracy of the uniform model
in most cases is not surprising with many authors (including Patterson & Silvey
1980; Patterson & Nabugoomu 1992; Cullis et al. 1998; Smith et al. 2005) noting
that the assumptions inherent in this model are questionable. However, these re-
sults also indicate that in some cases (perhaps those with small numbers of trials)
a uniform model can accurately predict the VxE effects, even with the limiting
constraints on the underlying variance structure fitted by this model. In contrast,
for these same scenarios the diagonal model performs very similarly to the FA
model in all but one of the data sets. This suggests that for many data sets a
diagonal model, which is equivalent to analysing the trials separately, is just as
accurate as an FA model for very small numbers (10 - 15) of varieties per trial,
despite being a much simpler model and ignoring all covariance.

There is no data on the unstructured model for 10 varieties because it did
not converge for any scenarios and there are only two average MSEPs for the
unstructured model for 15 varieties and one of these had a sample size of three.
Given these limited results no conclusions will be made regarding the accuracy of
the unstructured model for very small numbers of varieties. However, its failure
to converge in this study indicates a potentially severely limiting factor in the
use of this model for such scenarios. The computational difficulties involved in
fitting the unstructured model have been well documented particularly for large
data sets (Smith et al. 2001, 2005; Kelly et al. 2007; Smith et al. 2015), however, in
this study it was found that in many cases even for relatively small data sets (9 or
10 trials with 10 varieties) the unstructured model failed to converge even once
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in 500 simulations.

In all scenarios with 25 or 50 varieties per trial either the FA or unstructured
model resulted in the most accurate predictions of the VxE effects, and in all of
these cases the average MSEPs for these models were very similar. It is difficult
to compare the unstructured model due to its poor convergence, however, for
the scenarios with an adequate sample size (n > 50) the unstructured model
always resulted in equally accurate or less accurate estimation of the VxE effects
than the FA model. When considering 25 and 50 varieties, in four of the five
data sets (mungbean, Desi chickpea, Kabuli chickpea and wheat data sets) there
is a noticeable difference in accuracy between the uniform model and the other
VxE models, and in three of these data sets the difference is very pronounced
(Desi chickpea, Kabuli chickpea and wheat data sets). There is also a distinction
between the accuracy of the diagonal model and the FA model in these four data
sets, however, the difference is less than that between the FA and uniform model.
These results suggest that for moderately small numbers of varieties (25 - 50),
the FA model results in the most accurate estimate of the VxE effects. The results
for the barley data set show that there are situations in which the uniform and
diagonal models can result in a similar accuracy to the FA model. The findings
for 25 and 50 varieties per trial are mostly consistent with the findings of Kelly
et al. (2007) for large numbers of varieties.

The study undertaken by Kelly et al. (2007) investigated the accuracy of FA
models for trials with 80, 200, and 500 varieties with data sets containing eight
to 10 trials. The study showed that the uniform and diagonal model performed
poorly compared to the FA and unstructured models for all variety numbers
investigated. One set of parameters used in the study from Kelly et al. (2007)
were also used in this study and the results can be compared for small and large
variety numbers. Considering just the cases from the barley data set with perfect
concurrence (as in Kelly et al. (2007)), for 10 varieties the uniform model was the
most accurate model, while for 15 varieties the FA 1 model was the most accurate
followed by the uniform model. However, for 25 and 50 varieties the FA model
was the most accurate model, in agreement with the previous study by Kelly et al.
(2007) with much larger variety numbers. However, it should be noted that in
the Kelly et al. (2007) study the FA models outperformed both the diagonal and
uniform models to a much greater extent.

Although the accuracy of all the models declined as the number of varieties
decreased, it is important to recognise whether the level of accuracy reached was
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practical. If even the most accurate model for a given variety number cannot
adequately estimate the VxE effects, this implies that these trials do not contain
enough varieties to accurately estimate genetic variance. However, if the least
accurate models still reach a high enough level of accuracy this implies that these
simpler models are sufficient to estimate genetic variance for a given variety
number. For 10 varieties none of the models for any data generation model have
a correlation between the true and estimated VxE effects greater than 0.89, and
for 15 varieties the models rarely have a correlation above 0.89, aside from those
in the mungbean and Desi chickpea data sets. It is interesting to note that for the
mungbean and barley data sets, which have a similar (small) number of trials,
all of the models for 25 and 50 varieties have correlations of 0.9 or greater. In
contrast for the Kabuli chickpea and wheat data sets, and to a lesser extent the
Desi chickpea data set, the uniform model has a poor level of accuracy regardless
of the number of varieties, while the FA model frequently has a correlation of
0.9 or greater for all scenarios with 25 or 50 varieties per trial. This suggests that
regardless of the VxE model used to analyse the data, the accuracy of the models
are curtailed by the number of varieties. When MET data sets have very small
numbers of varieties it is much more difficult to reach a practical level of accuracy,
although, for all scenarios involving 15, 25 and 50 varieties there were models
that were able to do this, suggesting the 10 varieties per trial is not enough in
most cases if a correlation of greater than 0.85 is desired.

In addition to investigating the accuracy of FA models for small numbers
of varieties per trial, the impact the underlying VxE variance structure has on
the accuracy in such cases was also investigated. In the studies undertaken by
Welham et al. (2010) and Kelly et al. (2007) only two data sets for the VxE variance-
covariance patterns were used. Kelly et al. (2007) also used two versions of each
variance structure, one derived from an FA model and one derived from an un-
structured model. The differences between these two versions were not large
enough to represent different data sets, but rather had mathematical properties
appropriate to addressing the hypothesis of the study. Consequently their ability
to investigate how the trends they noticed changed across scenarios was limited.

The five data sets from which the variance-covariance structures were drawn
for this study were chosen as they reflect typical MET data sets with varying
variance-covariance patterns and different numbers of trials. Given that the un-
derlying patterns in the variance of the VxE effects are intrinsically linked to
the number of trials in this study, it is impossible to determine which aspect of
the data sets, the underlying VxE pattern or the number of trials, is driving the
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results. Two of the data sets (mungbean and barley) have quite a low number of
trials (≤ 10), while two of the remaining data sets (Kabuli chickpea and wheat)
have a substantial number of trials (≥ 36). The underlying pattern in the variance
of the VxE effects for the mungbean and barley data sets are quite consistent.
Most of the trials have moderate positive genetic correlations with each other.
In the barley data set there is one trial that has poor genetic correlations with
the other trials, and in the mungbean data set there are two trials that have
poor genetic correlations with the other trials. The VxE pattern for the Kabuli
chickpea data set is also quite consistent with most trials having moderate to
strong positive genetic correlations with each other. In contrast the patterns in
the variance-covariance structure for the Desi chickpea and wheat data sets are
much less consistent, with some trials having very strong positive genetic corre-
lations and other pairs of trials having very strong negative genetic correlations.
In both of these data sets the VxE patterns suggest there are distinct groups of
trials in which varieties perform similarly, with the rankings of varieties in trials
from different groups changing substantially. In this study, the data sets that
have a greater range in genetic correlations also have a larger number of trials.
Using this range of underlying patterns for the variance of the VxE effects allows
the impact of small numbers of varieties to be investigated for a range of scenarios.

Comparing the individual FA models between data sets is difficult as the
number of trials a data set contains heavily influences the order of FA model
fitted and the order found to be most accurate. Despite this, the data sets have
similar ranges in the correlations for the FA models considered for a given vari-
ety number. Higher order FA models are fitted for the data sets with more trials
and when variety numbers are larger. The difference in the order of FA model
that most frequently has the more accurate predictions for 10 and 50 varieties
is greater when the MET data set has more trials. For example, an FA1 model
most often results in the best predictions of the VxE effects for 10 varieties and
frequently also for 15 varieties regardless of the data set, however, for 50 varieties
per trial the model that most frequently has the smallest MSEP ranges from an
FA1 to an FA6 model. The order of FA models fitted in this study are much higher
than the case studies given in the literature. Smith et al. (2001) and Kelly et al.
(2007) considered up to an FA3 model, while Welham et al. (2010) considered an
FA2 model, and Smith et al. (2015) considered up to an FA5 model, though it
should be noted this was a two-stage analysis with 129 trials.

The trend of accuracy decreasing as the number of varieties per trial decrease
is consistent across the data sets representing different VxE patterns, however,
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the ranking of the models differs between data sets, especially for very small
numbers of varieties (10 - 15). The mungbean and barley data sets have similar
characteristics. They have 9 and 10 trials respectively and in addition the range
of genetic correlations for the mungbean data set is (-0.14, 0.78) and for the barley
data set is (-0.09, 0.76) and the mean genetic correlation is 0.34 and 0.36 for the
munbean and barley data sets respectively. Despite these similarities, the pat-
terns in the results of the two data sets are very different. This suggests that it is
the individual components in the variability in the VxE pattern rather than the
broad characteristics that are driving the differences in the results, indicating that
the underlying VxE variance structure can substantially impact how VxE models
perform in comparison to each other.

In contrast to this, the Kabuli chickpea and wheat data sets have very similar
patterns in their respective results, despite having quite different VxE patterns.
The wheat data set is somewhat larger than the Kabuli chickpea data set, con-
taining 13 more trials, although it should be noted that both data sets are large
in terms of trial number. Despite this difference in trial numbers, the diagonal
model more often results in more accurate predictions for the wheat data set than
in the Kabuli chickpea data set, however, while the proportion of simulations in
which a model is most accurate differs somewhat between the two data sets, the
average correlations between the true VxE effects and the estimated VxE effects
are very similar.

The accuracy of the uniform model seems to be most heavily influenced by
the underlying characteristics of the data set, whether that be the VxE pattern or
the number of trials. For two data sets it offered reasonably accurate predictions,
however, in the other three it offered a poor fit across variety numbers. This is
not overly surprising given that this model constrains the genetic variance to be
equal across trials and constrains the genetic covariance between pairs of trials to
be equal, providing only a measure of the magnitude of VxE interaction (Smith
et al., 2005). The two data sets in which the uniform model resulted in accurate
VxE effects had nine and 10 trials, and in addition to this, had more consistent
genetic correlations than the other data sets, meaning there was less loss of infor-
mation due to averaging. However, for a data set with a similar number of trials
but a much more variable VxE pattern these results may not hold.

Growing the same number of varieties at each trial, but differing these va-
rieties between trials means that a larger number of varieties can be tested in a
MET analysis, while still utilising the same resources. Collecting more data for
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the same amount of work is a very appealing idea and consequently something
that is regularly employed. Partial concurrence also frequently occurs within a
breeding program due to selection over years. After a certain number of years
a variety is either recommended for commercial release or dropped from the
program and new varieties take their place, resulting in declining concurrence
over years. If perfect concurrence was to be maintained over years new mate-
rial could not enter the program, however, if too few varieties are in common
between environments, the ability to accurately estimate genetic covariance is
limited, not to mention unreliable and not representative. For this reason it was
decided to investigate the impact of varietal concurrence on the accuracy of FA
models when data sets contain small numbers of varieties per trial. Concurrence
is not a factor that has been properly included in any of the existing studies, and
has been highlighted as needing investigation (Smith et al., 2015). Kelly et al.
(2007) used perfect concurrence and the scenarios used by Welham et al. (2010)
also contained high levels of varietal concurrence (86% and 92%).

Only two levels of varietal concurrence were investigated in this study, perfect
concurrence in which all varieties were grown at every trial, and partial concur-
rence in which an average of 50% of varieties were in common between trials,
meaning that the total unique varieties in the MET data set was double the num-
ber of varieties at any trial. Although only two levels of varietal concurrence were
considered, there was a reasonable range in the numbers of varieties in common
between two sites when partial concurrence was employed. When considering
partial concurrence for a given variety number investigated, on average trials had
half of this number of varieties in common. This resulted in trials having between
two and nine varieties in common, between three and 12 varieties in common,
between seven and 19 varieties in common, and between 16 and 35 varieties in
common for the data generation models for 10, 15, 25, and 50 varieties per trial
respectively.

Perfect concurrence resulted in a more accurate estimate of the VxE effects for
the same variety number, however, it is important to note that these differences
were generally small. It was expected that perfect concurrence would result in
more accurate estimates of the VxE effects because fewer varieties (in total) were
tested, hence more data was available on each variety. The results of the study
suggest that the FA model is more heavily influenced by concurrence than the
other models. For the uniform and diagonal model the difference in accuracy
between perfect and partial concurrence is very small, if not non-existent. In
contrast, the difference between concurrence levels for the FA model are more
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pronounced. This is not surprising given it is the only model (aside from the
unstructured model, which rarely converged) making a decent attempt at esti-
mating the genetic covariance between environments. The range in the number
of varieties in common means that for the scenarios with 10 or 15 varieties per
trial in some cases the genetic covariance between trials was estimated based on
the performance of only two common varieties. Despite this, the difference be-
tween the accuracy of the FA model with perfect concurrence and the FA model
with partial concurrence for 10 and 15 varieties per trial tends to be similar to the
change in accuracy when considering 25 or 50 varieties per trial. This suggests
that even when trials have very low connectivity, provided on average they are
reasonably connected, genetic covariance between trials can be adequately esti-
mated. The concurrence patterns in this study were random, however, in practice
a breeding program could be designed to test partially balanced sets of varieties
across trials. This could potentially improve the accuracy of partial concurrence
even more through a strategic allocation of concurrence.

For the different order of FA models the difference in accuracy between par-
tial and perfect concurrence varies somewhat according to data set, as it does
for the best FA model. For three data sets the difference between concurrence
levels for the FA model was smaller for 10 and 15 varieties, and increased for
25 and 50 varieties, however, for the two remaining data sets the difference was
greatest at 10 and 50 varieties. This suggests that concurrence level interacts
with the underlying VxE patterns. However, the difference in accuracy between
the concurrence levels for FA models is very small in practical terms, especially
considering it allows for the testing of twice as many varieties. This suggests that
any loss in accuracy is minimal and most plant breeders would most likely argue
is worth it.

The results of this study indicate that the accuracy of the FA model is affected
when there are small numbers of varieties per trial, however, these losses in ac-
curacy for the most part have limited practical implications. The accuracy of the
FA model compared to the other VxE models varied according to the underlying
characteristics of the data set, such as the VxE pattern and the number of trials,
however, in most cases for moderately small numbers of varieties (25 - 50) the
FA model results in the most accurate estimate of the VxE effects. For very small
numbers of varieties (10 - 15) the FA model is not always the most accurate model;
however, in all cases for 15 varieties, and in nearly all for 10 varieties, its accuracy
is of a practical level. It should also be noted that for very small numbers of
varieties in nearly all cases the diagonal model for the variance of the VxE effects

64



was just as accurate as the FA model.

The MSEP was used in this study to determine which model resulted in the
most accurate estimate of the VxE effects. However, when dealing with real data
the MSEP cannot be used to compare models and the LLRT (or AIC) is instead
used to compare model fit. There were many discrepancies between the mod-
els chosen using the two different methods. Despite the MSEP showing that in
some cases the uniform and diagonal models can most accurately predict the
VxE effects, the LLRT rarely ever selected either of these models for any data set.
Among the FA models, the LLRT generally selected a model one or two orders
higher than that selected by the MSEP. This suggests that models that are more
complicated than necessary, and less accurate, are frequently being fitted in the
analysis of MET data sets. For example the uniform model resulted in the best
estimate of the VxE effects most often according to the MSEP for 10 varieties
for the barley data set, however, using the LLRT an FA2 model was most often
selected as offering the best fit to the data. These two models involve estimating
two versus 29 variance parameters respectively. Smith et al. (2015) also noted the
tendency of residual maximum likelihood ratio tests (and AIC) to lead to the se-
lection of very high order models that are unnecessarily complicated. Both Smith
et al. (2001) and Smith et al. (2015) suggest the ideal approach in the selection of
the most appropriate order of FA model involves comparing a given model to
the unstructured model, however, they note the difficulties in fitting this model,
something that has been very evident in this study. Smith et al. (2015) suggest the
need for an alternative test statistic, something that is the subject of their current
research.

In order for variety number to be properly compared, within a given scenario
all trials had the same number of varieties per trial. While this often occurs within
a single year of a breeding program, it is frequently not the case across years. This
may have some impact on the results, however, if the trials had similar numbers
of varieties it is unlikely this would have a substantial effect, especially if larger
numbers of varieties are being dealt with. Similarly the concurrence between
trials was kept reasonably consistent to allow it to be best investigated, however,
this may not reflect many data sets from the late stages of a crop breeding program.

4.1 Conclusions and future work

This study has provided important information regarding the analysis of MET
data with small numbers of varieties. Although the aims of this study have been
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successfully addressed, it has also highlighted areas for future work. Lower
levels of concurrence could be investigated, along with a greater variability in
concurrence patterns. As mentioned early, in this study concurrence was ran-
domly allocated based on an overall average concurrence percentage. The impact
of planning the breeding program to allow testing of partially balanced groups
of varieties in a strategic way is worthy of further research. This study has high-
lighted the shortcomings of using the log-likelihood ratio test to select the most
parsimonious model and future research could be conducted on a better model
selection tool and the scenarios in which the MSEP and LLRT are in the greatest
disagreement. In recent years the inclusion of pedigree information into the anal-
ysis of MET data has become more common (Oakey et al., 2007). The impact the
inclusion of such information would have on how the accuracy changes as vari-
ety numbers decrease is unknown and should be investigated in the future. In
this study the variance-covariance structures used to represent different data sets
were confounded with the different numbers of trials. This means that although
differences between the data sets can be recognised, cause cannot be attributed
solely to the underlying VxE pattern. A study could be structured with this aim
in mind to allow this component to be further investigated.

This study has shown that 15 varieties per trial is sufficient in a MET data
set to accurately estimate the VxE effects, and that in some cases MET data sets
with even as few as 10 varieties could be considered (Aim 1). It was found that
different data sets, characterised by the underlying pattern in the variance of
the VxE effects and the number of trials, impacted on how the accuracy of the
FA model compared to the accuracy of other models, especially for very small
numbers of varieties (Aim 2). However, despite changes in the accuracy of the
models according the the VxE pattern, the FA model was the superior model for
moderately small numbers of varieties. While it was reasonably accurate for very
small numbers of varieties, it was not necessarily the most accurate model. This
study demonstrated that the FA model is affected by changes in concurrence more
than the other models that were considered (Aim 3). Despite this, the impact of
this change in accuracy is minimal, especially when considering the additional
number of varieties for which data is collected when concurrence is lower.
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Appendix A

Useful results

A.1 Joint normal distribution

If y ∼ N
(
µ,Σ

)
and y =

 y1

y2

, µ =

 µ1

µ2

, Σ =

 Σ11 Σ12

Σ21 Σ22

, then

y2|y1 ∼ N
(
µ2 + Σ21Σ

−1
11 (y1 − µ1),Σ22 − Σ21Σ

−1
11Σ12

)
A.2 Orthogonal projection

If matrices X and L2 are chosen such that L′2X = 0 and H is positive definite then

H −HL2 (L2
′HL2)−1 L2

′H = X
(
X′H−1X

)−1
X′

Proof (Verbyla, 1990)
If Equation 2.6 is transformed by the inverse square root of H, H−1/2, orthogonal
projections can be used. Then if X∗ = H−1/2X a basis for the orthogonal com-
plement of projections onto the column space of X∗ is given by the columns of
L∗2 = H1/2L2. Given that the orthogonal projection onto the orthogonal comple-
ment of the columns space of W is In −W(W ′W)−1W ′, then

L∗2
(
L∗2
′L∗2

)−1 L∗2
′ = In − X∗ (X∗′X∗)−1 X∗′

H1/2L2

(
L2
′H1/2H1/2L2

)−1
L2
′H1/2 = In −H−1/2X

(
X′H−1/2H−1/2X

)−1
X′H−1/2

H1/2L2 (L2
′HL2)−1 L2

′H1/2 = In −H−1/2X
(
X′H−1X

)−1
X′H−1/2

H1/2L2 (L2
′HL2)−1 L2

′H1/2H1/2 = InH1/2
−H−1/2X

(
X′H−1X

)−1
X′H−1/2H1/2

H1/2L2 (L2
′HL2)−1 L2

′H = H1/2
−H−1/2X

(
X′H−1X

)−1
X′

H1/2
−H1/2L2 (L2

′HL2)−1 L2
′H = H−1/2X

(
X′H−1X

)−1
X′

H1/2H1/2
−H1/2H1/2L2 (L2

′HL2)−1 L2
′H = H1/2H−1/2X

(
X′H−1X

)−1
X′

H −HL2 (L2
′HL2)−1 L2

′H = X
(
X′H−1X

)−1
X′

71



From this it follows also that

In −HL2 (L2
′HL2)−1 L2

′ = X
(
X′H−1X

)−1
X′H−1

A.3 Derivative of P

Given that
P = H−1

−H−1X
(
X′H−1X

)−1
X′H−1

the derivative of P is

∂P
∂κi

=
∂
∂κi

(
H−1
−H−1X

(
X′H−1X

)−1
X′H−1

)
=
∂
∂κi

(
H−1

)
−
∂
∂κi

(
H−1

)
X

(
X′H−1X

)−1
X′H−1

−H−1X
∂
∂κi

((
X′H−1X

)−1
)

X′H−1
−H−1X

(
X′H−1X

)−1
X′

∂
∂κi

(
H−1

)
= −H−1ḢiH−1 + H−1ḢiH−1X

(
X′H−1X

)−1
X′H−1

−H−1X
(
−

(
X′H−1X

)−1 ∂
∂κi

(
X′H−1X

) (
X′H−1X

)−1
)

X′H−1

−H−1X
(
X′H−1X

)
X′

(
−H−1ḢiH−1

)
= −H−1ḢiH−1 + H−1ḢiH−1X

(
X′H−1X

)−1
X′H−1

−H−1X
(
X′H−1X

)−1
X′H−1ḢiH−1X

(
X′H−1X

)−1
X′H−1

+ H−1X
(
X′H−1X

)
X′H−1ḢiH−1

= −H−1Ḣi

(
H−1
−H−1X

(
X′H−1X

)−1
X′H−1

)
+ H−1X

(
X′H−1X

)
X′H−1ḢiH−1

(
In − X

(
X′H−1X

)−1
X′H−1

)
= −H−1ḢiP + H−1X

(
X′H−1X

)
X′H−1ḢiP

= −
(
H−1
−H−1X

(
X′H−1X

)
X′H−1

)
ḢiP

= − PḢiP
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Appendix B

Matrix results

The following matrix results are drawn from Mardia et al. (1979).

B.1 Transpose

The transpose satisfies the properties

(A′)′ = A (A + B)′ = A′ + B′ (AB)′ = B′A′.

If A is symmetric, then
A′ = A.

B.2 Trace

The trace of A is given by
tr(A) =

∑
ai j

and satisfies the properties, when A(p × p), B(p × p), C(p × n), and D(n × p)

tr(A ± B) = tr(A) ± tr(B)

tr(CD) = tr(DC) =
∑

i, j

ci jdi j

B.3 Determinants

A square matrix is non-singular if |A| , 0, and the following result holds if a
matrix is non-singular:

|AB| = |A||B|.

B.4 Inverse

For non-singular matrices A(p×p) and C(n×n), and matrices B(p×n) and D(n×p),

(A + BCD)−1 = A−1
− A−1B

(
C−1 + DA−1B

)−1
DA−1

B.5 Kronecker products

For matrices A, B and C, the properties below hold:
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(I) α(A ⊗ B) = (αA) ⊗ B = A ⊗ (αB) for scalar α
(II) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C

(III) (A ⊗ B)′ = A′ ⊗ B′

(IV) (A ⊗ B)(F ⊗G) = (AF) ⊗ (BG)
(V) (A + B) ⊗ C = A ⊗ C + B ⊗ C

(VI) A ⊗ (B + C) = A ⊗ B + A ⊗ C

B.6 Matrix differentiation

If the derivative of f (X) with respect to X(n × p) is defined as the matrix

∂ f (X)
∂X

=

(
∂ f (X)
∂xi j

)
the following results hold

∂a′x
∂x

= a

∂x′x
∂x

= 2x
∂x′Ax
∂x

= (A + A′)x
∂x′Ay
∂x

= Ay

If B is a symmetric non-singular matrix whose elements are functions of κ.
Define Ḃi = ∂B/∂κi. Then the following results hold

∂ log |B|
∂κ

= tr
(
B−1Ḃi

)
∂B−1
∂κ

= tr
(
−B−1ḂiB−1

)
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Appendix C

R code

C.1 Simulation code

fieldgen <- function(genodes,sitemn,evar,Ge){
#######################################

## Code to generate data for a MET

#######################################

## INPUT:

## genodes - list containing trial designs (one for each concurrence

## level)

## sitemn - a vector of site means

## evar - a vector of error variances

## Ge - a genetic variance matrix

## OUTPUT:

## des - the inputted design with added simulated plot yields

## gxe - a matrix of sim gxe effects m cols by p rows

## require necessary packages

require(mvtnorm)
require(MASS)

g.check <- ldply(genodes,function(x){
nm <- length(unique(x[["Trt"]])) # no genos

np <- length(unique(x[["Site"]])) # no sites

nn <- dim(x)[1]
data.frame(nm,np,nn)

})

nm <- max(g.check$nm)

## generate genotype effects

genetic <- mvrnorm(nm,mu=rep(0,unique(g.check$np)),Sigma=Ge)

des.y <- list()
for (i in names(genodes)){

des <- genodes[[i]]

## y = Xt + Zu + e
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np <- length(unique(des[["Site"]])) # no sites

npi <- c(table(des[["Site"]])) # trial size for each site
nn <- dim(des)[1]

des <- des[order(des$Site,des$Column,des$Row),]
## plots within sites

e <- matrix(rnorm(nn)*rep(sqrt(evar),npi),ncol=1)

X <- matrix(0,ncol=np,nrow=nrow(des))
for(j in 1:nrow(des)){

X[j,des$Site[j]] <- 1

}

tau <- matrix(sitemn,ncol=1)

ug <- matrix(genetic,ncol=1)
Z <- matrix(0,ncol=nm*np,nrow=nrow(des))
colnames(Z) <- paste(paste('S_',rep(1:np,each=nm),sep=''),

paste('G_',rep(1:nm,np),sep=''),sep='.')
for(j in 1:nrow(des)){

s <- des$Site[j]

g <- des$Trt[j]

ind <- paste(paste('S_',s,sep=''),paste('G_',g,sep=''),sep='.')
Z[j,ind] <- 1

}

## put it all together

des$yvar <- X %*% tau + Z %*% ug + e

des.y[[i]] <- des

}

list(des=des.y,gxe=genetic)
}

C.2 Code for analysis of simulated data

#####################################################

#####################################################

## code to compare models for different data sets

## and numbers of genotypes

#####################################################

#####################################################

## require packages

require(asreml)
require(myf)
options(width=185)
require(plyr)
require(reshape2)
require(ggplot2)
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require(readxl)
source("simulate dataV3.R")
source("AIC.R")
source("sum_fa_func.R")

sitenumber <- data.frame(Set=c('Chickpea Kabuli','Chickpea Desi',
'Mungbean','Wheat','SA Barley'),

sites=c(39,18,9,52,10))
sitenumber$L <- paste(sitenumber$Set,sitenumber$sites,sep='_')

## import data

fielddes <- list()
site.mean <- list()
site.evar <- list()
site.Ge <- list()
con.sum <- list()

## sort out parameters

data.sets <- c("Chickpea Kabuli",'Chickpea Desi','Mungbean',
'Wheat','SA Barley')

genos <- c(10,15,25,50)

## load up sets of parameters

for (k in data.sets){
par <- read_excel(paste(k," data parameters.xlsx",sep=''),"Parameters")
site.mean[[k]] <- par$mean

site.evar[[k]] <- par$evar

ge <- read_excel(paste(k," data parameters.xlsx",sep=''),
"Genetic variance")

ge <- as.matrix(ge[,-1])
dimnames(ge) <- list(NULL,NULL)
site.Ge[[k]] <- ge

}

## load up designs

for (k in data.sets){
wrkbook <- paste(k," designs.xlsx",sep='')
s <- excel_sheets(wrkbook)
fd <- list()
for (i in s){

fd[[i]] <- read_excel(wrkbook,i)
}

fielddes[[k]] <- fd

}

pred.alld <- list()
se.alld <- list()
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gam.alld <- list()
con.alld <- list()
corel.alld <- list()
msep.alld <- list()
logl.alld <- list()
npar.alld <- list()
aic.alld <- list()
pvaf.alld <- list()
fa.level.alld <- list()
time.record.alld <- list()
model.time.alld <- list()
vxe.alld <- list()

for (k in data.sets){

pred.allg <- list()
se.allg <- list()
gam.allg <- list()
con.allg <- list()
corel.allg <- list()
msep.allg <- list()
logl.allg <- list()
npar.allg <- list()
aic.allg <- list()
pvaf.allg <- list()
fa.level.allg <- list()
time.record.allg <- list()
model.time.allg <- list()
vxe.allg <- list()

for (h in genos){
fd <- fielddes[[k]]

conc <- names(fd)[grep(paste("G_",h,".",sep=''),names(fd))]
fd <- fd[conc]

g.check <- ldply(fd,function(x){
nm <- length(unique(x[["Trt"]])) # no genos
nm2 <- length(unique(x$Trt))

nm.s <- unique(tapply(x$Trt,x$Site,function(d){
length(unique(d))

}))

np <- length(unique(x[["Site"]])) # no sites
nn <- dim(x)[1]
data.frame(nm,nm.s,np,nn,nm2)

})

ns <- unique(g.check$np)
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ng <- max(g.check$nm)

## maximum fa model that can be fitted

v <- floor(0.5*(2*ns+1-sqrt(8*ns+1)))

## number of simulations

m <- 500

mod.names <- c('DIAG','CC',paste('FA',1:v,sep=''),'US')
n.mod <- length(mod.names)

vxe <- matrix(nrow=(ng*ns),ncol=m)
rownames(vxe) <- paste(rep(paste('Site',1:ns,sep='_'),each=ng),

rep(paste('Trt',1:ng,sep='_'),ns),sep=':')

pred <- list()
for(z in conc){
pred[[z]] <- list()
for (q in mod.names){
pred[[z]][[q]] <- matrix(nrow=(ng*ns),ncol=m)
rownames(pred[[z]][[q]]) <- paste(rep(paste('Site',1:ns,sep='_'),

each=ng),

rep(paste('Trt',1:ng,sep='_'),
ns),sep=':')

}

}

se <- list()
for(z in conc){

se[[z]] <- list()
for (q in mod.names){
se[[z]][[q]] <- matrix(nrow=(ng*ns),ncol=m)
rownames(se[[z]][[q]]) <- paste(rep(paste('Site',1:ns,sep='_'),

each=ng),

rep(paste('Trt',1:ng,sep='_'),
ns),sep=':')

}

}

gam <- list()
gam.s <- c(ns,2,((1:v+1)*ns),(ns*(ns+1)/2))
for(z in conc){

gam[[z]] <- list()
for (q in mod.names){

gam[[z]][[q]] <- matrix(nrow=gam.s[
which(q==mod.names)],ncol=m)

}

}

79



con <- list()
for(z in conc){

con[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(con[[z]]) <- mod.names

}

msep <- list()
for(z in conc){

msep[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(msep[[z]]) <- mod.names

}

corel <- list()
for(z in conc){

corel[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(corel[[z]]) <- mod.names

}

logl <- list()
for(z in conc){

logl[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(logl[[z]]) <- mod.names

}

npar <- list()
for(z in conc){

npar[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(npar[[z]]) <- mod.names

}

aic <- list()
for(z in conc){

aic[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(aic[[z]]) <- mod.names

}

pvaf <- list()
for(z in conc){

pvaf[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(pvaf[[z]]) <- mod.names

}

fa.level <- list()
time.record.start <- c()
time.record.finish <- c()
time.record <- c()

model.time <- list()
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for(z in conc){
model.time[[z]] <- matrix(nrow=n.mod,ncol=m)
rownames(model.time[[z]]) <- mod.names

}

for (i in 1:500) {
start.time <- Sys.time()

fieldrun <- fieldgen2(fd,site.mean[[k]],site.evar[[k]],
site.Ge[[k]])

des <- fieldrun$des

gxe <- fieldrun$gxe

vxe[,i] <- as.vector(gxe)

for(o in conc){
## factorise

fdes <- des[[o]]

fdes$Trt <- factor(fdes$Trt)
fdes$Site <- factor(fdes$Site)
fdes$Column <- factor(fdes$Column)
fdes$Row <- factor(fdes$Row)

npi <- table(fdes$Site)
np <- length(fdes$Trt)

## ################################

## Start running models

## ################################

##===============##

## DIAG

##===============##

model <- "DIAG"

mt1 <- Sys.time()
mod <- asreml(yvar ˜ Site,

random = ˜ diag(Site):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,workspace=80e6)

mod <- update(mod)
mt2 <- Sys.time()
model.time[[o]][model,i] <- mt2 - mt1

summary(mod)$varcomp

con[[o]][model,i] <- mod$converge

if(con[[o]][model,i]){
prd <- predict(mod,class="Site:Trt",maxiter=1,

only='Site:Trt')

81



prd <- prd$pred$pvals

tt <- table(fdes$Trt,fdes$Site)
prd$pres <- as.vector(tt)
prd$predicted.value[prd$pres==0] <- NA

prd$standard.error[prd$pres==0] <- NA

prd$l <- paste('Site_',prd$Site,':Trt_',prd$Trt,
sep='')

pred[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$pred

se[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$stan

gam[[o]][[model]][,i] <- mod$gammas[1:ns]

if (is.null(rownames(gam[[o]][[model]]))){
rownames(gam[[o]][[model]]) <- names(mod$gammas)[

1:ns]}

msep[[o]][model,i] <- sum((pred[[o]][[model]][,i]-
as.vector(gxe))ˆ2,

na.rm=TRUE)/

(sum(!is.na(prd$predicted.value)))
corel[[o]][model,i] <- cor(pred[[o]][[model]][,i],

as.vector(gxe),
use='pairwise.complete.obs')

logl[[o]][model,i] <- mod$logl

npar[[o]][model,i] <- sum(!(grepl('fa',rownames(
summary(mod)$varcomp)) &

summary(mod)$varcomp$constraint!='Fixed')
aic[[o]][model,i] <- aic.fun(mod)

}else{

model.time[[o]][model,i] <- NA

}

mod.d <- mod

##===============##

## CC

##===============##

model <- "CC"

mt1 <- Sys.time()
mod <- asreml(yvar ˜ Site,

random = ˜ cor(Site):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,workspace=80e6)
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mod <- update(mod)
mt2 <- Sys.time()
model.time[[o]][model,i] <- mt2 - mt1

con[[o]][model,i] <- mod$converge

## if didn't converge we don't want results
if(con[[o]][model,i]){

prd <- predict(mod,class="Site:Trt",maxiter=1,
only='Site:Trt')

prd <- prd$pred$pvals

tt <- table(fdes$Trt,fdes$Site)
prd$pres <- as.vector(tt)
prd$predicted.value[prd$pres==0] <- NA

prd$standard.error[prd$pres==0] <- NA

prd$l <- paste('Site_',prd$Site,':Trt_',prd$Trt,sep='')

pred[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$pred

se[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$stan

gam[[o]][[model]][,i] <- mod$gammas[1:2]

if (is.null(rownames(gam[[o]][[model]]))){
rownames(gam[[o]][[model]]) <- names(mod$gammas)[

1:2]}

msep[[o]][model,i] <- sum((pred[[o]][[model]][,i]-
as.vector(gxe))ˆ2,

na.rm=TRUE)/

(sum(!is.na(prd$predicted.value)))
corel[[o]][model,i] <- cor(pred[[o]][[model]][,i],

as.vector(gxe),
use='pairwise.complete.obs')

logl[[o]][model,i] <- mod$logl

npar[[o]][model,i] <- sum(!(grepl('fa',rownames(
summary(mod)$varcomp)) &

summary(mod)$varcomp$constraint=='Boundary') &
summary(mod)$varcomp$constraint!='Fixed')

aic[[o]][model,i] <- aic.fun(mod)
}else{

model.time[[o]][model,i] <- NA

}

##===============##

## FA

##===============##

model <- "FA1"

p <- 0
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np <- c()
np.f <- c()
fa.logl <- c()
fa.con <- c()
g <- 1

mod.fa <- list()
## initial values from diag for fa1

mod.sv <- asreml(yvar ˜ Site,
random = ˜ fa(Site,g):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes, start.values=TRUE)

ss <- c(1:ns)
diag.gam <- matrix(summary(mod.d,nice=T)$nice[["Site:Trt"]],

ncol=g)

dimnames(diag.gam) <- list(ss,c('psi'))
temp <- mod.sv$gammas.table

temp$Value[-grep('Trt',temp$Gamma)] <- mod.d$gammas[

-grep('Trt', names(mod.d$gammas))]
temp$Value[abs(temp$Value)<1e-5] <- .001
temp$Value[grep('*fa1',temp$Gamma)] <- c(rep(0.01,ns))
temp$Value[grep('Trt.*var',temp$Gamma)] <- diag.gam[,'psi']

mt1 <- Sys.time()
mod <- asreml(yvar ˜ Site,

random = ˜ fa(Site,g):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,G.param=temp,R.param=temp,

workspace=80e6)

for (l in 1:10){
if(mod$converge) break
mod <- update(mod)

}

mt2 <- Sys.time()
model.time[[o]][model,i] <- mt2 - mt1

summary(mod)$varcomp
np[g] <- length(summary(mod)$varcomp$constraint)
np.f[g] <- sum(summary(mod)$varcomp$constraint=="Fixed"

|summary(mod)$varcomp$constraint=="Boundary")
fa.logl[g] <- mod$loglik

con[[o]][model,i] <- mod$converge

fa.con[g] <- mod$converge
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if(con[[o]][model,i]){
prd <- predict(mod,class="Site:Trt",maxiter=1,

only="fa(Site, g):Trt")
prd <- prd$pred$pvals

tt <- table(fdes$Trt,fdes$Site)
prd$pres <- as.vector(tt)
prd$predicted.value[prd$pres==0] <- NA

prd$standard.error[prd$pres==0] <- NA

prd$l <- paste('Site_',prd$Site,':Trt_',prd$Trt,
sep='')

pred[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$pred

se[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$stan

gam[[o]][[model]][,i] <- mod$gammas[1:((g+1)*ns)]

if (is.null(rownames(gam[[o]][[model]]))){
rownames(gam[[o]][[model]]) <-

names(mod$gammas)[1:((g+1)*ns)]
}

msep[[o]][model,i] <- sum((pred[[o]][[model]][,i]-
as.vector(gxe))ˆ2,

na.rm=TRUE)/

(sum(!is.na(prd$predicted.value)))
corel[[o]][model,i] <- cor(pred[[o]][[model]][,i],

as.vector(gxe),
use='pairwise.complete.obs')

logl[[o]][model,i] <- mod$logl

npar[[o]][model,i] <- sum(!(grepl('fa',rownames(
summary(mod)$varcomp)) &

summary(mod)$varcomp$constraint=='Boundary') &
summary(mod)$varcomp$constraint!='Fixed')

aic[[o]][model,i] <- aic.fun(mod)
mod.sum <- sum.fa.func(mod)
pvaf[[o]][model,i] <- mod.sum$'total %vaf'

}else{

model.time[[o]][model,i] <- NA

}

mod.fa[[g]] <- mod

fac <- fa.con[g]

g <- 2

while (g<=v & p<0.05 & fac){
model <- paste("FA",g,sep='')
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mod.sv <- asreml(yvar ˜ Site,
random = ˜ fa(Site,g):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,start.values=TRUE)

## put gammas in matrix

fa.gam <- matrix(summary(mod,nice=T)$nice[[
"fa(Site, g):Trt"]],ncol=(g))

dimnames(fa.gam) <- list(ss,c("psi",paste("lam",1:(g-1),
sep='')))

temp <- mod.sv$gammas.table

temp$Value[-grep('Trt',temp$Gamma)] <- mod$gammas[
-grep('Trt', names(mod$gammas))]

temp$Value[abs(temp$Value)<1e-5] <- .001

for (t in 1:(g-1)){
temp$Value[grep(paste('*fa',t,sep=''),temp$Gamma)] <-

fa.gam[,paste('lam',t,sep='')]
}

temp$Value[grep(paste('*fa',g,sep=''),temp$Gamma)] <-
c(rep(0,g-1),rep(0.01,ns-(g-1)))

temp$Value[grep('Trt.*var',temp$Gamma)] <- fa.gam[,'psi']*0.8

mt1 <- Sys.time()
mod <- asreml(yvar ˜ Site,

random = ˜ fa(Site,g):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,G.param=temp,R.param=temp,

workspace=80e6)

for (t in 1:40){
if(mod$converge) break
mod <- update(mod)

}

mt2 <- Sys.time()
model.time[[o]][model,i] <- mt2 - mt1

summary(mod)$varcomp

## if didn't converge don't keep results
con[[o]][model,i] <- mod$converge

fa.con[g] <- mod$converge

if(con[[o]][model,i]){
prd <- predict(mod,class="Site:Trt",maxiter=1,

only=paste("fa(Site, g):Trt",
sep=""))

prd <- prd$pred$pvals

tt <- table(fdes$Trt,fdes$Site)
prd$pres <- as.vector(tt)

86



prd$predicted.value[prd$pres==0] <- NA

prd$standard.error[prd$pres==0] <- NA

prd$l <- paste('Site_',prd$Site,':Trt_',
prd$Trt,sep='')

pred[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$pred

se[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$stan

gam[[o]][[model]][,i] <- mod$gammas[1:((g+1)*ns)]

if (is.null(rownames(gam[[o]][[model]]))){
rownames(gam[[o]][[model]]) <-

names(mod$gammas)[1:((g+1)*ns)]
}

msep[[o]][model,i] <- sum((pred[[o]][[model]][,i]-
as.vector(gxe))ˆ2,

na.rm=TRUE)/

(sum(!is.na(prd$predicted.value)))
corel[[o]][model,i] <- cor(

pred[[o]][[model]][,i],as.vector(gxe),
use='pairwise.complete.obs')

logl[[o]][model,i] <- mod$logl

npar[[o]][model,i] <- sum(!(grepl('fa',rownames(
summary(mod)$varcomp)) &
summary(mod)$varcomp$constraint=='Boundary') &
summary(mod)$varcomp$constraint!='Fixed')

aic[[o]][model,i] <- aic.fun(mod)
mod.sum <- sum.fa.func(mod)
pvaf[[o]][model,i] <- mod.sum$'total %vaf'

}else{

model.time[[o]][model,i] <- NA

}

np[g] <- sum(!(grepl('fa',rownames(
summary(mod)$varcomp)) &

summary(mod)$varcomp$constraint=='Boundary') &
summary(mod)$varcomp$constraint!='Fixed')

dif <- (np[g]-np[g-1])

fa.logl[g] <- mod$loglik

logdiff <- 2*(fa.logl[g]-fa.logl[(g-1)])

p <- 1- pchisq(logdiff, df=dif)
mod.fa[[g]] <- mod

fac <- fa.con[g]

g <- g+1

if (is.na(p)){p <- 1}
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}

if (p>=0.05){
fa.level[[o]][i] <- (g-2)

}else{

fa.level[[o]][i] <- (g-1)

}

mod <- mod.fa[[fa.level[[o]][i]]]

mod.sum <- sum.fa.func(mod)
Gmat <- mod.sum$Gmat

us.init <- Gmat[!lower.tri(Gmat)]

##===============##

## US

##===============##

model <- 'US'
mod.sv <- asreml(yvar ˜ Site,

random = ˜ us(Site):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,start.values=TRUE)

temp <- mod.sv$gammas.table

temp$Value[1:(ns*(ns+1)/2)] <- us.init

mt1 <- Sys.time()
mod <- asreml(yvar ˜ Site,

random = ˜ us(Site):Trt ,
rcov = ˜ at(Site):Column:Row ,
data=fdes,G.param=temp,R.param=temp,

workspace=80e6)

if(!mod$converge){
mod <- update(mod)
if(!mod$converge){

for (t in 1:10){
if (mod$converge) break
mod <- update(mod)

}

}

}

mt2 <- Sys.time()
model.time[[o]][model,i] <- mt2 - mt1

## if didn't converge we don't want results
con[[o]][model,i] <- mod$converge
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if(con[[o]][model,i]){
prd <- predict(mod,'Site:Trt',maxiter=1,

only='Site:Trt')
prd <- prd$pred$pvals

tt <- table(fdes$Trt,fdes$Site)
prd$pres <- as.vector(tt)
prd$predicted.value[prd$pres==0] <- NA

prd$standard.error[prd$pres==0] <- NA

prd$l <- paste('Site_',prd$Site,':Trt_',prd$Trt,sep='')

pred[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$pred

se[[o]][[model]][

match(prd$l,rownames(pred[[o]][[model]])),
i] <- prd[order(prd$Site,prd$Trt),]$stan

gam[[o]][[model]][,i] <- mod$gammas[1:(ns*(ns+1)/2)]

if (is.null(rownames(gam[[o]][[model]]))){
rownames(gam[[o]][[model]]) <-

names(mod$gammas)[1:(ns*(ns+1)/2)]
}

msep[[o]][model,i] <- sum((pred[[o]][[model]][,i]-
as.vector(gxe))ˆ2,

na.rm=TRUE)/

(sum(!is.na(prd$predicted.value)))
corel[[o]][model,i] <- cor(pred[[o]][[model]][,i],

as.vector(gxe),
use='pairwise.complete.obs')

logl[[o]][model,i] <- mod$logl

npar[[o]][model,i] <- sum(!(grepl('fa',rownames(
summary(mod)$varcomp)) &

summary(mod)$varcomp$constraint=='Boundary') &
summary(mod)$varcomp$constraint!='Fixed')

aic[[o]][model,i] <- aic.fun(mod)

}else{

model.time[[o]][model,i] <- NA

}

} ## end concurrence loop

end.time <- Sys.time()
time.record[i] <- end.time-start.time

print(i)
if((i %% 10)==0){

save.image()
}

} ## end number simulations loop
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time.record.allg[[paste('G_',h,sep='')]] <- time.record

pred <- ldply(pred,function(x){
v <- ldply(x)
colnames(v)[1] <- 'Model'
v$Order <- rep(1:(ns*ng),length(mod.names))
data.frame(v)

})

colnames(pred)[1] <- 'Conc'
colnames(pred)[c(-1,-2,-ncol(pred))] <- paste('Sim',1:m,sep='')
pred.allg[[paste('G_',h,sep='')]] <- pred

se <- ldply(se,function(x){
v <- ldply(x)
colnames(v)[1] <- 'Model'
v$Order <- rep(1:(ns*ng),length(mod.names))
data.frame(v)

})

colnames(se)[1] <- 'Conc'
colnames(se)[c(-1,-2,-ncol(se))] <- paste('Sim',1:m,sep='')
se.allg[[paste('G_',h,sep='')]] <- se

gam <- ldply(gam,function(x){
v <- ldply(x,function(f){

f <- data.frame(f);
f$VC <- rownames(f);data.frame(f)

})

colnames(v)[1] <- 'Model'
data.frame(v)

})

colnames(gam)[1] <- 'Conc'
colnames(gam)[c(-1,-2,-ncol(gam))] <- paste('Sim',1:m,sep='')
gam.allg[[paste('G_',h,sep='')]] <- gam

msep <- ldply(msep,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(msep)[1] <- 'Conc'
colnames(msep)[c(-1,-ncol(msep))] <- paste('Sim',1:m,sep='')
msep.allg[[paste('G_',h,sep='')]] <- msep

model.time <- ldply(model.time,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})
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colnames(model.time)[1] <- 'Conc'
colnames(model.time)[c(-1,-ncol(model.time))] <-

paste('Sim',1:m,sep='')
model.time.allg[[paste('G_',h,sep='')]] <- model.time

corel <- ldply(corel,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(corel)[1] <- 'Conc'
colnames(corel)[c(-1,-ncol(corel))] <- paste('Sim',1:m,sep='')
corel.allg[[paste('G_',h,sep='')]] <- corel

logl <- ldply(logl,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(logl)[1] <- 'Conc'
colnames(logl)[c(-1,-ncol(logl))] <- paste('Sim',1:m,sep='')
logl.allg[[paste('G_',h,sep='')]] <- logl

npar <- ldply(npar,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(npar)[1] <- 'Conc'
colnames(npar)[c(-1,-ncol(npar))] <- paste('Sim',1:m,sep='')
npar.allg[[paste('G_',h,sep='')]] <- npar

aic <- ldply(aic,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(aic)[1] <- 'Conc'
colnames(aic)[c(-1,-ncol(aic))] <- paste('Sim',1:m,sep='')
aic.allg[[paste('G_',h,sep='')]] <- aic

pvaf <- ldply(pvaf,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(pvaf)[1] <- 'Conc'
colnames(pvaf)[c(-1,-ncol(pvaf))] <- paste('Sim',1:m,sep='')
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pvaf.allg[[paste('G_',h,sep='')]] <- pvaf

con <- ldply(con,function(x){
x <- data.frame(x)
x$Model <- rownames(x)
data.frame(x)

})

colnames(con)[1] <- 'Conc'
colnames(con)[c(-1,-ncol(con))] <- paste('Sim',1:m,sep='')
con.allg[[paste('G_',h,sep='')]] <- con

fa.level <- ldply(fa.level)
colnames(fa.level)[1] <- 'Conc'
fa.level.allg[[paste('G_',h,sep='')]] <- fa.level

vxe <- data.frame(vxe)
vxe$Order <- 1:nrow(vxe)
colnames(vxe)[c(-ncol(vxe))] <- paste('Sim',1:m,sep='')

vxe.allg[[paste('G_',h,sep='')]] <- vxe

save.image(paste(k,"_",h,".RData",sep=''))

} ## end geno loop

con.alld[[k]] <- ldply(con.allg)
colnames(con.alld[[k]])[1] <- 'genos'

pred.alld[[k]] <- ldply(pred.allg)
colnames(pred.alld[[k]])[1] <- 'genos'
se.alld[[k]] <- ldply(se.allg)
colnames(se.alld[[k]])[1] <- 'genos'
gam.alld[[k]] <- ldply(gam.allg)
colnames(gam.alld[[k]])[1] <- 'genos'
vxe.alld[[k]] <- ldply(vxe.allg)
colnames(vxe.alld[[k]])[1] <- 'genos'
msep.alld[[k]] <- ldply(msep.allg)
colnames(msep.alld[[k]])[1] <- 'genos'
model.time.alld[[k]] <- ldply(model.time.allg)
colnames(model.time.alld[[k]])[1] <- 'genos'
corel.alld[[k]] <- ldply(corel.allg)
colnames(corel.alld[[k]])[1] <- 'genos'
logl.alld[[k]] <- ldply(logl.allg)
colnames(logl.alld[[k]])[1] <- 'genos'
npar.alld[[k]] <- ldply(npar.allg)
colnames(npar.alld[[k]])[1] <- 'genos'
aic.alld[[k]] <- ldply(aic.allg)
colnames(aic.alld[[k]])[1] <- 'genos'
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pvaf.alld[[k]] <- ldply(pvaf.allg)
colnames(pvaf.alld[[k]])[1] <- 'genos'
fa.level.alld[[k]] <- ldply(fa.level.allg)
colnames(fa.level.alld[[k]])[1] <- 'genos'
time.record.alld[[k]] <- ldply(time.record.allg)
colnames(time.record.alld[[k]])[1] <- 'genos'

} ## end data set loop

con.alld <- ldply(con.alld)
colnames(con.alld)[1] <- 'Set'
con.alld$Set <- sitenumber$L[match(con.alld$Set,sitenumber$Set)]

pred.alld <- ldply(pred.alld)
colnames(pred.alld)[1] <- 'Set'
pred.alld$Set <- sitenumber$L[match(pred.alld$Set,sitenumber$Set)]

vxe.alld <- ldply(vxe.alld)
colnames(vxe.alld)[1] <- 'Set'
vxe.alld$Set <- sitenumber$L[match(vxe.alld$Set,sitenumber$Set)]

se.alld <- ldply(se.alld)
colnames(se.alld)[1] <- 'Set'
se.alld$Set <- sitenumber$L[match(se.alld$Set,sitenumber$Set)]

gam.alld <- ldply(gam.alld)
colnames(gam.alld)[1] <- 'Set'
gam.alld$Set <- sitenumber$L[match(gam.alld$Set,sitenumber$Set)]

corel.alld <- ldply(corel.alld)
colnames(corel.alld)[1] <- 'Set'
corel.alld$Set <- sitenumber$L[match(corel.alld$Set,sitenumber$Set)]

msep.alld <- ldply(msep.alld)
colnames(msep.alld)[1] <- 'Set'
msep.alld$Set <- sitenumber$L[match(msep.alld$Set,sitenumber$Set)]

model.time.alld <- ldply(model.time.alld)
colnames(model.time.alld)[1] <- 'Set'
model.time.alld$Set <- sitenumber$L[match(model.time.alld$Set,

sitenumber$Set)]

logl.alld <- ldply(logl.alld)
colnames(logl.alld)[1] <- 'Set'
logl.alld$Set <- sitenumber$L[match(logl.alld$Set,sitenumber$Set)]

npar.alld <- ldply(npar.alld)
colnames(npar.alld)[1] <- 'Set'
npar.alld$Set <- sitenumber$L[match(npar.alld$Set,sitenumber$Set)]
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aic.alld <- ldply(aic.alld)
colnames(aic.alld)[1] <- 'Set'
aic.alld$Set <- sitenumber$L[match(aic.alld$Set,sitenumber$Set)]

pvaf.alld <- ldply(pvaf.alld)
colnames(pvaf.alld)[1] <- 'Set'
pvaf.alld$Set <- sitenumber$L[match(pvaf.alld$Set,sitenumber$Set)]

fa.level.alld <- ldply(fa.level.alld)
colnames(fa.level.alld)[1] <- 'Set'
colnames(fa.level.alld)[c(-1,-2,-3)] <- paste('Sim',1:m,sep='')
fa.level.alld$Set <- sitenumber$L[match(fa.level.alld$Set,sitenumber$Set)]

time.record.alld <- ldply(time.record.alld)
colnames(time.record.alld)[1] <- 'Set'
colnames(time.record.alld)[c(-1,-2)] <- paste('Sim',1:m,sep='')
time.record.alld$Set <- sitenumber$L[match(time.record.alld$Set,sitenumber$Set)]
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Appendix D

Results

D.1 MSEP

Table D.1: Average mean square error of prediction for 500 simulations for the
data generation models from the mungbean variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.0080 0.0080 0.0070 0.0071 0.0062 0.0063 0.0057 0.0058
DIAG 0.0078 0.0078 0.0068 0.0068 0.0060 0.0059 0.0053 0.0053
FA* 0.0083 0.0079 0.0068 0.0067 0.0058 0.0056 0.0050 0.0047
US 0.0049 0.0056 0.0045 0.0046

FA1 0.0077 0.0077 0.0065 0.0066 0.0056 0.0056 0.0050 0.0049
FA2 0.0083 0.0079 0.0068 0.0067 0.0058 0.0057 0.0050 0.0048
FA3 0.0083 0.0079 0.0069 0.0068 0.0059 0.0056 0.0050 0.0047
FA4 0.0086 0.0076 0.0067 0.0068 0.0059 0.0055 0.0050 0.0046
FA5 0.0071 0.0061 0.0069 0.0060 0.0056 0.0050 0.0047
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.

Table D.2: Average mean square error of prediction for 500 simulations for the
data generation models from the barley variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.0152 0.0155 0.0136 0.0136 0.0123 0.0123 0.0113 0.0112
DIAG 0.0158 0.0158 0.0140 0.0138 0.0125 0.0125 0.0113 0.0113
FA* 0.0176 0.0161 0.0147 0.0138 0.0123 0.0120 0.0106 0.0104
US 0.0141 0.0123 0.0112 0.0107

FA1 0.0160 0.0157 0.0137 0.0134 0.0118 0.0118 0.0105 0.0104
FA2 0.0175 0.0162 0.0145 0.0137 0.0122 0.0119 0.0106 0.0103
FA3 0.0182 0.0166 0.0151 0.0143 0.0125 0.0122 0.0108 0.0105
FA4 0.0198 0.0162 0.0151 0.0149 0.0126 0.0126 0.0110 0.0107
FA5 0.0195 0.0171 0.0142 0.0122 0.0126 0.0114 0.0112
FA6 0.0197 0.0119 0.0147 0.0122 0.0115
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.

95



Table D.3: Average mean square error of prediction for 500 simulations for the
data generation models from the Desi chickpea variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.0097 0.0097 0.0085 0.0087 0.0079 0.0079 0.0074 0.0075
DIAG 0.0088 0.0089 0.0076 0.0077 0.0067 0.0066 0.0061 0.0060
FA* 0.0077 0.0074 0.0059 0.0057 0.0046 0.0042 0.0033 0.0029

FA1 0.0070 0.0074 0.0055 0.0059 0.0047 0.0047 0.0039 0.0039
FA2 0.0071 0.0073 0.0053 0.0055 0.0042 0.0041 0.0033 0.0031
FA3 0.0078 0.0074 0.0058 0.0056 0.0044 0.0040 0.0032 0.0028
FA4 0.0084 0.0075 0.0063 0.0059 0.0048 0.0044 0.0034 0.0030
FA5 0.0097 0.0075 0.0068 0.0069 0.0051 0.0048 0.0036 0.0033
FA6 0.0078 0.0062 0.0053 0.0051 0.0039 0.0037
FA7 0.0061 0.0053
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.

Table D.4: Average mean square error of prediction for 500 simulations for the
data generation models from the Kabuli chickpea variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.0224 0.0225 0.0216 0.0219 0.0210 0.0211 0.0205 0.0205
DIAG 0.0146 0.0144 0.0131 0.0132 0.0119 0.0118 0.0109 0.0108
FA* 0.0152 0.0137 0.0130 0.0120 0.0111 0.0097 0.0086 0.0073

FA1 0.0138 0.0137 0.0121 0.0123 0.0106 0.0107 0.0095 0.0094
FA2 0.0150 0.0145 0.0124 0.0123 0.0104 0.0103 0.0089 0.0087
FA3 0.0155 0.0142 0.0129 0.0120 0.0103 0.0099 0.0084 0.0079
FA4 0.0162 0.0157 0.0132 0.0118 0.0105 0.0096 0.0083 0.0075
FA5 0.0181 0.0146 0.0138 0.0120 0.0108 0.0095 0.0082 0.0072
FA6 0.0197 0.0214 0.0147 0.0133 0.0111 0.0093 0.0082 0.0069
FA7 0.0147 0.0137 0.0142 0.0113 0.0096 0.0085 0.0073
FA8 0.0196 0.0116 0.0114 0.0088 0.0076
FA9 0.0089 0.0079
FA10 0.0088 0.0084
FA11 0.0088
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.
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Table D.5: Average mean square error of prediction for 500 simulations for the
data generation models from the wheat variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.0424 0.0425 0.0409 0.0412 0.0405 0.0400 0.0395 0.0396
DIAG 0.0235 0.0233 0.0206 0.0211 0.0187 0.0186 0.0169 0.0170
FA* 0.0239 0.0229 0.0201 0.0195 0.0168 0.0150 0.0130 0.0106

FA1 0.0229 0.0229 0.0194 0.0200 0.0170 0.0171 0.0150 0.0151
FA2 0.0242 0.0236 0.0195 0.0198 0.0164 0.0163 0.0139 0.0137
FA3 0.0246 0.0228 0.0199 0.0196 0.0162 0.0156 0.0132 0.0128
FA4 0.0264 0.0248 0.0209 0.0194 0.0161 0.0150 0.0126 0.0119
FA5 0.0237 0.0219 0.0196 0.0164 0.0146 0.0120 0.0109
FA6 0.0283 0.0227 0.0207 0.0168 0.0144 0.0117 0.0101
FA7 0.0251 0.0214 0.0174 0.0148 0.0125 0.0106
FA8 0.0182 0.0162 0.0131 0.0112
FA9 0.0192 0.0136 0.0115
FA10 0.0141 0.0115
FA11 0.0147 0.0129
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.
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D.2 Correlation

Table D.6: Average correlation for 500 simulations for the data generation models
from the mungbean variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.8778 0.8804 0.8919 0.8935 0.9033 0.9035 0.9103 0.9106
DIAG 0.8784 0.8815 0.8925 0.8965 0.9059 0.9068 0.9148 0.9152
FA* 0.8723 0.8812 0.8928 0.8982 0.9091 0.9132 0.9206 0.9270
US 0.9219 0.9150 0.9288 0.9274

FA1 0.8795 0.8836 0.8982 0.8997 0.9118 0.9122 0.9210 0.9223
FA2 0.8721 0.8805 0.8929 0.8978 0.9094 0.9116 0.9206 0.9239
FA3 0.8719 0.8799 0.8925 0.8975 0.9082 0.9131 0.9208 0.9255
FA4 0.8719 0.8866 0.8958 0.8992 0.9100 0.9151 0.9217 0.9272
FA5 0.8820 0.8984 0.9050 0.9074 0.9158 0.9220 0.9277
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.

Table D.7: Average correlation for 500 simulations for the data generation models
from the barley variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.8739 0.8761 0.8886 0.8913 0.9000 0.9013 0.9069 0.9082
DIAG 0.8670 0.8719 0.8841 0.8883 0.8973 0.8987 0.9057 0.9065
FA* 0.8549 0.8696 0.8788 0.8884 0.8991 0.9032 0.9114 0.9145
US 0.8932 0.9014 0.9002 0.9125

FA1 0.8657 0.8732 0.8863 0.8920 0.9028 0.9048 0.9125 0.9147
FA2 0.8547 0.8687 0.8799 0.8883 0.8996 0.9037 0.9116 0.9150
FA3 0.8510 0.8686 0.8756 0.8846 0.8976 0.9017 0.9105 0.9142
FA4 0.8474 0.8713 0.8784 0.8856 0.8984 0.9018 0.9084 0.9134
FA5 0.8180 0.8772 0.8887 0.9045 0.9015 0.9064 0.9120
FA6 0.8934 0.8925 0.8984 0.8954 0.9143
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.
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Table D.8: Average correlation for 500 simulations for the data generation models
from the Desi chickpea variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.8363 0.8386 0.8571 0.8528 0.8660 0.8639 0.8748 0.8727
DIAG 0.8530 0.8526 0.8742 0.8715 0.8865 0.8875 0.8980 0.8995
FA* 0.8792 0.8845 0.9087 0.9112 0.9266 0.9337 0.9463 0.9539

FA1 0.8858 0.8804 0.9119 0.9044 0.9235 0.9233 0.9362 0.9374
FA2 0.8859 0.8855 0.9171 0.9129 0.9318 0.9341 0.9464 0.9507
FA3 0.8774 0.8835 0.9099 0.9117 0.9297 0.9366 0.9489 0.9562
FA4 0.8742 0.8850 0.9039 0.9086 0.9234 0.9306 0.9447 0.9521
FA5 0.8563 0.8931 0.8985 0.8957 0.9197 0.9244 0.9418 0.9485
FA6 0.8923 0.8962 0.9200 0.9186 0.9376 0.9402
FA7 0.9086 0.9285
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.

Table D.9: Average correlation for 500 simulations for the data generation models
from the Kabuli chickpea variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.7280 0.7252 0.7406 0.7381 0.7487 0.7473 0.7547 0.7546
DIAG 0.8261 0.8302 0.8469 0.8478 0.8604 0.8621 0.8722 0.8735
FA* 0.8295 0.8432 0.8547 0.8666 0.8779 0.8919 0.9036 0.9189

FA1 0.8398 0.8406 0.8613 0.8611 0.8774 0.8775 0.8900 0.8911
FA2 0.8301 0.8317 0.8594 0.8628 0.8807 0.8833 0.8968 0.9005
FA3 0.8268 0.8401 0.8557 0.8694 0.8826 0.8894 0.9033 0.9104
FA4 0.8198 0.8480 0.8537 0.8736 0.8817 0.8933 0.9054 0.9156
FA5 0.8156 0.8157 0.8482 0.8670 0.8795 0.8950 0.9068 0.9198
FA6 0.7864 0.8513 0.8480 0.8516 0.8775 0.8957 0.9073 0.9232
FA7 0.7826 0.8581 0.8279 0.8763 0.8913 0.9041 0.9193
FA8 0.8344 0.8756 0.8865 0.9016 0.9161
FA9 0.9016 0.9141
FA10 0.9038 0.9048
FA11 0.8949
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.
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Table D.10: Average correlation for 500 simulations for the data generation
models from the wheat variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 0.7164 0.7113 0.7262 0.7254 0.7395 0.7419 0.7475 0.7471
DIAG 0.8428 0.8425 0.8611 0.8600 0.8776 0.8787 0.8895 0.8896
FA* 0.8452 0.8500 0.8698 0.8750 0.8957 0.9059 0.9187 0.9343

FA1 0.8493 0.8470 0.8707 0.8687 0.8897 0.8897 0.9027 0.9026
FA2 0.8434 0.8421 0.8716 0.8714 0.8947 0.8957 0.9105 0.9123
FA3 0.8427 0.8493 0.8709 0.8739 0.8966 0.9008 0.9153 0.9188
FA4 0.8363 0.8354 0.8666 0.8772 0.8981 0.9059 0.9197 0.9250
FA5 0.8437 0.8634 0.8767 0.8975 0.9088 0.9236 0.9313
FA6 0.8016 0.8648 0.8832 0.8956 0.9109 0.9260 0.9373
FA7 0.8756 0.8551 0.8937 0.9065 0.9218 0.9345
FA8 0.8904 0.8928 0.9182 0.9306
FA9 0.8884 0.9153 0.9285
FA10 0.9126 0.9237
FA11 0.9105 0.9279
* Average of FA models which offered the best fit to the data according to a log-likelihood
ratio test.
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D.3 Sample size of FA models

Table D.11: Number of times model was used in 500 simulations for the data
generation models from the mungbean data set.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

FA1 500 500 500 500 500 500 500 500
FA2 500 500 500 500 500 500 500 500
FA3 459 384 428 419 386 449 446 495
FA4 105 110 183 247 208 342 305 470
FA5 0 17 4 79 40 177 132 394

Table D.12: Number of times model was used in 500 simulations for the data
generation models from the barley data set.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

FA1 500 500 500 500 500 500 500 500
FA2 500 500 500 500 500 500 500 500
FA3 436 306 384 325 376 371 390 457
FA4 108 59 164 96 148 113 129 191
FA5 0 4 13 20 39 23 25 39
FA6 0 0 0 3 1 2 2 6

Table D.13: Number of times model was used in 500 simulations for the data
generation models from the Desi chickpea data set.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

FA1 500 500 500 500 500 500 400 400
FA2 500 500 500 500 500 500 400 400
FA3 497 484 500 499 500 500 400 400
FA4 296 198 422 332 477 481 400 400
FA5 7 13 131 55 226 174 202 159
FA6 0 0 1 5 25 26 33 24
FA7 0 0 0 0 0 4 0 1
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Table D.14: Number of times model was used in 500 simulations for the data
generation models from the Kabuli chickpea data set.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

FA1 500 500 500 500 500 500 500 500
FA2 500 499 500 500 500 500 500 500
FA3 440 303 490 383 500 472 500 500
FA4 140 115 375 192 494 357 500 494
FA5 12 37 159 81 489 222 500 493
FA6 2 10 33 27 469 117 500 493
FA7 0 1 2 7 388 36 499 487
FA8 0 0 0 1 128 3 413 347
FA9 0 0 0 0 0 0 161 133
FA10 0 0 0 0 0 0 10 21
FA11 0 0 0 0 0 0 0 1

Table D.15: Number of times model was used in 500 simulations for the data
generation models from the wheat data set.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

FA1 500 500 500 500 500 500 500 500
FA2 493 488 500 493 500 497 500 498
FA3 338 299 481 382 500 482 500 497
FA4 62 125 266 232 487 406 495 494
FA5 1 48 84 139 458 330 491 490
FA6 0 13 15 62 390 220 484 481
FA7 0 2 1 13 243 113 483 469
FA8 0 0 0 0 66 11 465 260
FA9 0 0 0 0 7 0 319 82
FA10 0 0 0 0 0 0 91 11
FA11 0 0 0 0 0 0 5 1

D.4 Convergence
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Table D.16: Percentage of time model converged in 500 simulations for the data
generation models from the mungbean variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 100 100 100 100 100 100 100 100
DIAG 100 100 100 100 100 100 100 100
FA1 99 99 99 100 100 99 100 100
FA2 100 100 100 100 100 100 100 100
FA3 98 100 100 100 100 100 100 100
FA4 91 98 89 100 100 100 100 100
FA5 76 75 97 80 99 100 100
US 0 0 0 1 0 10 1 53

Table D.17: Percentage of time model converged in 500 simulations for the data
generation models from the barley variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 100 100 100 100 100 100 100 100
DIAG 100 100 100 100 100 100 100 100
FA1 100 100 100 100 100 100 100 100
FA2 100 100 100 100 100 100 100 100
FA3 99 100 100 100 100 100 100 100
FA4 97 100 99 100 100 100 100 100
FA5 100 92 100 92 100 100 100
FA6 100 100 100 100 100
US 0 0 0 40 0 78 1 90

Table D.18: Percentage of time model converged in 500 simulations for the data
generation models from the Desi chickpea variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 100 100 100 100 100 100 100 100
DIAG 100 100 100 100 100 100 100 100
FA1 100 100 100 100 100 100 100 100
FA2 100 100 100 100 100 100 100 100
FA3 100 100 100 100 100 100 100 100
FA4 98 99 100 100 100 100 100 100
FA5 100 100 92 100 100 100 100 100
FA6 100 100 72 100 94 100
FA7 100 100
US 0 0 0 0 0 0 0 0
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Table D.19: Percentage of time model converged in 500 simulations for the data
generation models from the Kabuli chickpea variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 100 100 100 100 100 100 100 100
DIAG 100 100 100 100 100 100 100 100
FA1 100 100 100 100 100 100 100 100
FA2 100 96 100 98 100 100 100 100
FA3 100 65 100 96 100 100 100 100
FA4 96 62 100 82 100 100 100 100
FA5 100 53 100 65 100 100 100 100
FA6 100 50 100 70 100 96 100 100
FA7 100 100 86 100 94 100 100
FA8 100 99 100 100 100
FA9 100 99
FA10 100 100
FA11 100
US 0 0 0 0 0 0 0 0

Table D.20: Percentage of time model converged in 500 simulations for the data
generation models from the wheat variance-covariance structure.

Model 10 Varieties 15 Varieties 25 Varieties 50 Varieties
Partial Perfect Partial Perfect Partial Perfect Partial Perfect

UNIF 100 100 100 100 100 100 100 100
DIAG 100 100 100 100 100 100 100 100
FA1 99 98 100 99 100 99 100 100
FA2 98 75 100 98 100 100 100 100
FA3 88 53 99 81 99 98 99 100
FA4 45 54 89 69 98 94 99 99
FA5 0 54 85 50 97 85 99 98
FA6 23 87 29 95 75 100 99
FA7 0 100 23 84 54 99 93
FA8 88 55 98 88
FA9 100 99 85
FA10 99 73
FA11 100 100
US 0 0 0 0 0 0 0 0
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