University of Southern Queensland Faculty of Engineering and Surveying

Estimating rippability of Brisbane Tuff using quantitative and qualitative characteristics and a modified approach to an existing rippability rating method

A dissertation submitted by Stephen Andrew Schuh

In fulfillment of the requirements of

Courses ENG4111 and 4112 Research Project

Towards the degree of

Bachelor of Engineering (Civil)

Submitted: November 1st 2007

CERTIFICATION

I certify that the ideas, designs and experimental work, results, analysis and conclusions set out in the dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Stephen Andrew Schuh

Student Number: 0019920352

Bobchul -Signature

Date 1st November, 2007

ABSTRACT

The aim of this research paper is to assess the rippability of Brisbane Tuff (welded ignimbrite) using both quantitative and qualitative information collected from geotechnical borelogs and rock strength testing for the North – South Bypass Tunnel (NSBT) project in Brisbane. Rock properties were quantified into specific ratings and used in an existing rating method ("The Estimation of Rock Rippability" F. MacGregor et al. 1994) to estimate productivity of rippability for general bulldozer types, using regression equations. Some qualitative classifications such as 'weathering / staining', were modified for the Brisbane Tuff based on interactions between weathering characteristics and strength for this rock type. These modified ratings were then re-entered into F. MacGregor et al. 1994 equations, to give an alternative estimation of rippability based on these proposed variable dependencies.

Correlations between point load index (PLI or Is 50) and unconfined compressive strength (UCS) were also determined specific to the data set used for this research, and compared to findings with existing literature on Brisbane Tuff. This UCS / PLI correlation enables use of the much faster, cheaper point load index test Is (50) to correlate a UCS (MPa) value, which forms the backbone in several F. MacGregor et al. 1994 regression equations used in estimating rippability of rock.

Results and information collected were part of a data set collected by the author whilst working for Golder Associates, and is a stand alone assessment of rippability unique to the limited data set used, and not necessarily relevant to any advice given to the client for the North-South Bypass Tunnel (NSBT).

ACKOWLEDGEMENTS

This research was carried out under the principal supervision of John Worden and David Starr (Golder Associates). Acknowledgement must also be given to Golder Associates who allowed me to use borelogs collected for the NSBT project for use in this research, whilst employed by them.

ENG4111 & ENG4112 Research Project

Limitations of use

The Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its faculty of Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the students chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are to be used, it is entirely at the risk of the user.

Prof R Smith Dean Faculty of Engineering and Surveying

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION	
1.1 Outline of Study	
1.2 Project Rationale and Objectives	
CHAPTER 2 LITERATURE REVIEW	6
2.1 Background Information	
2.1 Dackground mornation 2.1 Brisbane Tuff (welded Ignimbrite)	0 6
2.1.1 Dissuite Fun (weided Enhibitie)	
2.1.2 Weiting compaction and Degree of Weiting	, 9
2.2.1 Rippability	
CHAPTER 3 PROJECT METHODOLOGY	13
3 1 Data Collection	13
3 2 Rock Core Recovery	14
3.3 Rock Property Testing	
3.3.1 Is (50) MPa – Point Load Index (AS4133 4.2)	
3.3.2 Diametral Is (50) vs. Axial Variation in Brisbane Tuff	
3.4 Data Collation (Quantitative and Qualitative)	
CHAPTER 4 DATA ANALYSIS	
4.1 UCS / Is (50) Correlation Data Analysis	
4.1.1 Calculated UCS / Is (50) Correlation for Brisbane Tuff	
4.2 Proposed Weathering Rating for Brisbane Tuff	
4.3 Rating Analysis	
4.4 Tuff Rock Mass Properties	
4.4.1 Classification of insitu Rock	
4.4.2 Joints and Defects / & Defect Condition	
4.4.3 Defect Roughness (amplitude/length) for Brisbane Tuff)	
4.4.4 Structural Description of (4) Brisbane Tuff	
4.4.5 Fracture frequency	
4.4.6 Grain Size and Degree of Welding	
4.4.7 UCS (Unconfined Compressive Strength) MPa	
4.4.8 Seismic Velocity	
4.5 Rippability Rating	50
CHAPTER 5 CONCLUSIONS	59
CHAPTER 6 REFERENCES	61

LIST OF TABLES

TABLE 1 : MACGREGOR ET AL. 1994 EQ (6) - RIPPABILITY PRODUCTIVITY ALL ROCK T	YPES
	10
TABLE 2: SYMBOLS LEGEND AND (%) STAINING FOR CLASSIFICATION OF 'DEGREE OF	
STAINING'	12
TABLE 3 : AXIAL / DIAMETRAL TEST IS (50) VARIATION FOR BRISBANE TUFF SAMPLES .	15
TABLE 4 : TYPICAL DATA COLLATION SHOWING POINT LOAD TEST RESULTS AND PROP	OSED
'DEGREE OF STAINING AND PARAMETERS'	17
TABLE 5 : UCS AND IS(50) TEST RESULTS FOR TUFF CORE IN VARIOUS BOREHOLES	18
TABLE 6: UCS / Is (50) RATIO	23
TABLE 7: SYMBOLS LEGEND AND (%) STAINING FOR CLASSIFICATION OF 'DEGREE OF	
STAINING'	23
TABLE 8: VARIATION OF PRODUCTIVITY OVER (9) WEATHERING RATINGS	26
TABLE 9 : SUBSTANCE WEATHERING RATING : F. MACGREGOR ET. AL. 1994	26
TABLE 10: WEATHERING OF IGNEOUS AND METAMORPHIC: BASED ON MOYE (1955) AS	USED
IN F. MACGREGORS WEATHERING RATING	27
TABLE 11 : AS1726 – 1993 – CURRENT CLASSIFICATION FOR WEATHERING OF ROCK M	ASS
$T_{1} = -12$ (T.D. 1) Decomposition $T_{2} =2$	27
TABLE 12: GOLDER ASSOCIATES TECHNICAL PROCEDURE 4 (TP4) – REVISION LEVEL 3,	2002
BASED ON SUPERCEDED AUSTRALIAN STANDARD	28
TABLE 13: OTHER WEATHERING KATING PARAMETERS BY OTHER AUTHORS (CITED IN F	:
MACGREGOR ET AL. 1994)	29 20
TABLE 14 PROPOSED SUBSTANCE WEATHERING KATING FOR BRISBANE TUFF	29 22
TABLE 15. STRUCTURAL DOMAINS FOR MAPPED DRISBANE TUFF OUTCROPS	52 22
TABLE 10. MACOREGOR ET AL. STRUCTURAL DESCRIPTION / RATING	55 25
TABLE 17. EXAMPLE OF AVERAGE DEFECT SPACING IN RECOVERED ROCK CORE	55
Spacing	36
TABLE 19. IGNEOUS GRAIN SIZE RATING (MACGREGOR ET AL 1994)	30
TABLE 20 · PRODUCTIVITY VALUES FOR D9R BASED ON GRAIN SIZE RATING 1	
(MACGREGOR ET AL. 1994)	38
TABLE 21. PRODUCTIVITY VALUES FOR D9R BASED ON ADJUSTED GRAIN SIZE RATING	1.5
(MACGREGOR ET AL. 1994).	
TABLE 22 : WEATHERING AND UCS UPPER AND LOWER BOUNDS	44
TABLE 23: ICB IS (50) SUMMARY	46
TABLE 24: MACGREGOR ET AL. 1994 EQ (11) – RIPPABILITY PRODUCTIVITY OF IGNEOU	JS
Rock	47
TABLE 25: PRODUCTIVITY GROUPING (F. MACGREGOR ET AL. 1994)	48
TABLE 26: PRODUCTIVITY^0.5/MASS vs UCS FOR F. MACGREGOR ET AL. WEATHERING	G
RATINGS $(1) - (9)$	49
TABLE 27: PRODUCTIVITY VS UCS (D9R) FOR F. MACGREGOR ET AL. WEATHERING RA	TINGS
(1)-(9) & Proposed Modification of Weathering Rating and Defect Spa	CING
/ DEGREE OF STAINING INTERACTION	49
TABLE 28: PRODUCTIVITY VS UCS (D11R CD) FOR F. MACGREGOR ET AL. WEATHERIN	G
RATINGS (1) – (9) & PROPOSED MODIFICATION OF WEATHERING RATING AND DE	FECT
SPACING / DEGREE OF STAINING INTERACTION	53

LIST OF FIGURES

FIGURE 1 : NST257 – CORE PHOTO	6
FIGURE 2: POINTLOAD TESTING ON BRISBANE TUFF	. 15
FIGURE 3: POINT LOAD TESTER	. 16
FIGURE 4 : PLOT OF IS (50) VS. UCS	. 20
FIGURE 5 : PLOT OF DEPTH VS. UCS	. 21
FIGURE 6: PLOT OF DEPTH VS. IS (50)	. 22
FIGURE 7: PLOT OF IS (50) MPA VS. DEPTH (M) FOR NST207	. 24
FIGURE 8: PLOT OF IS (50) MPA VS. DEPTH (M) FOR (8) BOREHOLES (SEE APPENDIX A FOR	٤
DATA)	. 24
FIGURE 9: IS (50) MPA VS. 'DEGREE OF STAINING CATEGORIES' NOTE $1 = TS$, $2 = SS$, $3 = SS$, 3	=
DS, 4 = XS.	. 25
FIGURE 10: BRISBANE TUFF CUT FACE ADJACENT NST241	. 34
FIGURE 11: HIGHLY WELDED TUFF	. 37
FIGURE 12: VERY LOW TO LOW STRENGTH UNWELDED TUFF	. 41
FIGURE 13: 'GREEN' UNWELDED TUFF AND POROSITY CHARACTERISTICS	. 42
FIGURE 14: BRISBANE TUFF RIPPABILITY USING EQUATION (6) AND MACGREGOR	
WEATHERING RATING FOR D9R	. 52
FIGURE 15 : BRISBANE TUFF RIPPABILITY USING EQUATION (6) AND MODIFIED WEATHER	ING
RATING FOR D9R	. 52
FIGURE 16: BRISBANE TUFF RIPPABILITY USING EQUATION (6) & MACGREGOR	
WEATHERING RATING FOR D11R CD	. 54
FIGURE 17: BRISBANE TUFF RIPPABILITY USING EQUATION (6) AND MODIFIED WEATHERI	NG
RATING FOR D9R	. 55
FIGURE 18: APPLICATION OF ICB SEISMIC VELOCITIES TO MACGREGOR ET AL. 1994	
Equation (11)	. 56
FIGURE 19: MODIFIED APPROACH D11R CD 'PRODUCTIVITIES AT UCS 17.6 & 53 MPA (H	ł&
VH Strength)	. 56
FIGURE 20: F. MACGREGOR ET AL. D11R CD 'PRODUCTIVITIES AT UCS 17.6 & 53MPA (I	H &
VH STRENGTH)	. 56

LIST OF APPENDICIES

APPENDIX A – PROJECT SPECIFICATION APPENDIX B – CORE PHOTOS APPENDIX C – BOREHOLE LOGS APPENDIX D– POINT LOAD TESTING APPENDIX E – DEGREE OF STAINING

CHAPTER 1 INTRODUCTION

1.1 Outline of Study

This research presents the analysis of rippability for Brisbane Tuff, or welded ignimbrite, by standard bulldozers. A number of boreholes were used for the analysis, which were drilled for the NSBT (North South Bypass Tunnel) project in Brisbane Australia. The boreholes used in analysis were chosen out of a larger sample of boreholes drilled in various geologies. The holes specifically targeted were drilled in several locations which possessed deep fresh to highly welded ignimbrite deposits (0-50m) with no 'major' faulting and similar weathering profiles. This was done to keep the data comparable between sites, which were spread over the alignment of the proposed tunnel.

On a project such as NSBT, where huge quantities of rock are to be excavated, it is crucial to investigate the economics of rippability in regards to using bulldozers opposed to drilling and blasting. Guides are available from both manufacturers of earth moving equipment (e.g. Caterpillar), or using methods such as those proposed by authors such as Franklin, Broch & Walton (1971), Weaver (1975), Kirsten (1982) and Minty and Kearns (1983). (F. Macgregor et el. 1994). Macgregor et al. also states these methods and others summarized by Braybrook (1988), have proved to be inaccurate and subsequent contractual disputes are common, arising from a contractors inability to rip rock assessed to be rippable, or from unexpected low rippability.

This research project evolved from the concept of incorporating a bulk of field logs (logged by the author) and testing conducted by Golder Associates for the NSBT project, and attempting to assess an approximate rippability / or productivity of ripping, for different machines based on information obtained from the geotechnical borelogs and test results. Information obtained from logs and testing included material classification (e.g. rock type and grain size), strength classification (either based on qualitative assessment using Australian Standard guidelines, weathering, or quantitative measurements such as Point load index [Is 50], UCS : Unconfined Compressive Strength, rock defect type, defect planar properties (e.g. roughness), joint spacing and geophysical properties. The broad aim of this research is to utilize both the maximum and cheapest information available which can be recovered from a 'limited' geotechnical borehole survey, and applying the obtained data to regression equations to formulate a rating system specific for Brisbane Tuff and other rock types. It is also proposed that the methodologies adopted can be used to formulate rating systems for other rock types.

Brisbane Tuff was chosen for several reasons as it is a massive rock type with no bedding (being an ash deposit), and is easier to handle and prepare for testing which would minimize time constraints for this research project. Other rocks in the Brisbane area such as the Neranleigh – Fernvale Metamorphics or Aspley Conglomerates can give more variable test results due to bedding and weathering characteristics and take more time to log and interpret results.

Also investigated are some weathering properties observed in the material such as limonite staining adjacent joints, colouring, and also the strength and welding / alteration properties

of the Brisbane Tuff in proximity to contact zones with the underlying 'permeable' conglomerates. This effect on the rock strength and properties will be touched on, as it gives an idea of the variability of the rock mass properties and may be worth considering when developing a broad cross section of a Tuff formation.

In summary, Brisbane Tuff is a homogeneous rock to not only work with, but also ideal for testing preparation (i.e. gives less test result variability), and is a targeted rock type in Brisbane in regard to tunneling and excavation due to its strength and stability properties. A clearer summary of rationale and objectives which were attempted to be met are listed below.

1.2 Project Rationale and Objectives

To successfully maintain direction for this project, both semi-flexible **broad outcomes** and **specific objectives** were devised which defined the original project specification. The broad outcome was semi - flexible as specific tasks or outcomes were either satisfied, inconclusive or gave an unexpected outcome. An attempt was made to also identify limitations of results or methodologies, based on the amount of data available and the way it was tested or collected. At all times during this research there was an obligation to adhere to Golder Associates confidentiality and intellectual property clause, as the data used in this research was originally collected for Golder's client LBBJV. (Note: Golder Associates was engaged to carry out the geotechnical investigation and design for the NSBT project).

Therefore, it must be understood that the analysis in this paper does not pertain to or represent findings by Golder Associates for the NSBT project, and is a stand alone analysis for the purpose of this paper based on a limited sample of the data. Summarized below are the research project's broad aims and specific objectives.

i) **Broad Aims**: To assess a rippability or productivity rating using a modified approach to the regression equations developed by F. MacGregor et al. 1994.al 1994. Parameters used were qualitative and quantitative rock properties such as strength, weathering characteristics, rock defect type and joint spacing obtained from borehole logs and test results during the geotechnical investigation for the North-South Bypass (NSBT) tunnel project in Brisbane. Australian Standards list general weathering descriptions of rock such as XW – extremely weathered / DW distinctly weathered / SW – slightly weathered & FR – fresh rock. These weathering descriptions are based on staining, decomposition and strength properties, and often the classification given to the rock is inconsistent between field geologists. From logging experience in Brisbane Tuff it is observed that the relationship between an AS weathering descriptions and rock strength do not necessarily follow the rule of thumb in that the degree of limonite staining or colour comparison to the parent rock greatly influences the rock strength as it does for other rock types in Brisbane. It was initially a broad aim to analyse rock property relationships discovered (listed in the specific research objectives below), and possibly formulate a more relevant 'weathering rating' for this rock type, rather than a general 'igneous'

one. It was decided after initial research however, to simply numerically '**modify**' the upper and lower bounds of this semi-quantified variable as used in MacGregor's rippability rating system, and then compare the variation in rippability for different machines opposed to MacGregor's values. F. Macgregor et al. 1994 for example, semi-quantifies weathering descriptions from (1 - 10), (1) being the highest for Fresh Rock (FR), (4) being for slightly weathered rock (SW), and (10) being for extremely weathered rock (XW). A broad aim of this research was to show there is little evidence of significant numerical variation in Is (50) and UCS results from weathering grades (FR) to (SW-DW) alone, especially where a section of core will often be described by a field geologist as (SW) simply due to limonite staining adjacent joints. Staining, as seen from observing core photos, is an indicator of water ingress through fractures, and generally the amount of staining on the rock is dependant on fracture spacing (i.e. joints per metre). The MacGregor regression equations treat weathering / staining and defect spacing as independent variables within the regression equations, so a second broad aim was to not only converge the numerical values of the MacGregor weathering rating at the lower end of the weathering scale (where staining may have little influence over rippability), but also derive an interaction between the amount of staining on rock core and likely defect spacing. This aimed to change the shape of the productivity vs. mass of ripper polynomial curves. This modified approach may give a better representation of rippability, as the weathering and defect spacing parameters are weighted heavily (mathematically) in the MacGregor et al. 1994 equations. It was also a third broad aim to show that Rhyolitic Tuffs can have variable degrees of 'welding' and alteration which influence the overall strength. These variations in welding will be discussed when looking at Is (50) results and literature on cooling units within the deposition. Another factor also investigated was a loss of strength (at depth) due to proximity of contact zones with the underlying Brisbane conglomerates.

Specific Objectives: To find correlations between specific quantitative ii) and qualitative properties observed in Brisbane Tuff core sampled from specific sites. Quantitative properties include unconfined compressive strength [UCS] & Point Load Index [Is50] (and a correlation comparison literature to findings), rock density, grain size and depth. The first relationship between Point Load Index and Unconfined Compressive strength was seen to be the backbone of data validity, as the aim of this research was to use the simplistic test (Point Load Index – Is [50]), and correlate UCS from the Is (50) value to then apply in MacGregor's regression equations. Limitations of point load testing are thus discussed in later chapters as well as overall interpretive limitations due to data sample size and methodologies used. Other qualitative properties included a derived 'degree of staining' classification, colour, defect type, defect condition and defect spacing. Mineralogy and weathering interactions in Brisbane Tuff are also discussed briefly in this research. This interaction between mineralogy and weathering may need to be understood further as 'degree of staining' suggests some form of iron oxidation influencing strength due to leaching or localized water migration. It is noted that Tuff tends to exhibit various colouring from pinkish purple, grey, green, cream to an almost bleached white. Bleaching effects and other chemical alterations were initially mentioned in this research, as Guan et al. (2000) states that in respect to mineralogy, bleaching (due to oxidization of FeO) in rhyolitic Tuffs can be observed in the iron-bearing rich minerals such as biotite. Some sections of core tested for this research were observed to be 'bleached' In the end, it was considered chemical to a pale grey or white. alteration of rhyolitic Tuff was related to the rock geo-chemistry and beyond the scope of this research project. Alteration of the rock mass influences overall strength of the rock which is taken account anyway, so this specific objective was steered back towards a geotechnical problem.

CHAPTER 2 LITERATURE REVIEW

2.1 Background Information

2.1.1 Brisbane Tuff (welded Ignimbrite)

Brisbane Tuff is an ash-flow Tuff formed by a mud mixture of precipitated steam and volcanic ash, deposited during several short Triassic volcanic periods. After initial pyroclastic deposition, the ash-flow experienced deformation due to welding and compaction, and then cooled to form welded 'ignimbrite' Tuff. (Roach, 1996 – Sheridan & Wang 2005). The term 'ash-flow' is a lithologic term that refers to a rock consisting primarily of volcanic particles finer than 4mm diameter. (Sheridan & Wang 2005).

At deposition, the giant steam clouds were some distance away from the volcano giving a finer grained texture to the rock as the particles were sorted whilst falling through the air. This is in contrast to the igneous rocks and coarser volcanic agglomerates closer to the vent. (Scott, 1996)

On closer inspection of Brisbane Tuff, it is observed to contain fine glass particles and is thus classified as a 'rhyolitic' Tuff. Some Tuffs are observed to have large isolated crystals within the rock structure called phenocrysts, and therefore classified as having a porphyritic texture. (Scott, 1996). Brisbane Tuff can be of both rhyolitic and porphyritic texture. (Roach, 1996).

2.1.2 Welding Compaction and Degree of Welding

Welding compaction of rhyolitic Tuff begins as soon as the hot ash-fall comes to rest, and is the result of slow viscous deformation of glassy fragments at high temperature and pressures. The controlling factor for the welding process is the residence time at temperatures above the threshold for welding. Threshold temperature is dependant on composition of the material, and rhyolitic threshold temperatures for welding compaction have been estimated by Riehle (1973) & Sheridan & Ragan (1976) to be in the range of 550 – 625 ° C. (M.F. Sheridan & Y. Wang 2005).

Rhyolitic Tuff such as Brisbane Tuff exhibits varying degrees or 'intensities' of welding in either single or compound cooling units which have been previously quantified and ranked by numerous schemes such as those developed by Smith 1960b, Smith and Baily 1966, Sheridan and Ragan 1976, Peterson 1979, Streck and Grunder 1995, Wilson and Hildreth 2003, as cited in Quane & Russell, 2004.

Cooling and welding of ash-flow Tuff occurs after sub-aerial eruption and emplacement of gravity-driven density currents of hot air and gas. The deposition and subsequent deformation of an ash-flow Tuff, as it cools, can be considered as a series of partially overlapping events. These events include: deflation of fluidized clouds, degassing of fluidized stationary beds, mechanical compaction (rotation and compression of particles), welding compaction of ash-flow, and equal volume deformation with or without shear. (Sheridan & Ragan 1976, as cited in Sheridan & Wang 2004).

Friedman et al. 1963, as cited in Sheridan & Wang 1976 states that the process of welding in Tuff is controlled by the viscous deformation of the glass fragments. This process is further dependant on the temperature and pressure distribution within the ash-fall 'sheet', and the maximum density or highest degree of welding in Tuff occurs in the lower central part of the sheet. These highly welded zones occur because the lower central zones retain heat for longer periods. J. R Riehle et al. 2005, states that rainfall can cause heat loss at the upper boundary of the cooling unit, which can subsequently effect the heat distribution at the upper boundary and upper central zone. J. R. Riehle et al. 2005 also states that compaction and welding can continue for weeks to several years, and near emplacement temperatures can persist for over 10 years in the interiors of thick deposits.

The Tuff sampled for this research likely falls into the 'highly welded' category, which is prominent in the Brisbane Tuff formation. Degree of welding, for the purpose of this research paper will be mentioned only in that it influences the strength of rhyolitic Tuff, and may explain strength variance at depth within the Tuff deposit itself, as data shows later with plots of UCS and Is (50) vs. depth.

Air-fall Tuff deposits at depth can often exhibit bedding, and underlay the main ignimbrite body. These air-fall Tuffs are usually crystal rich, and are commonly silicified or stratified. (Roach, 1996). This coarser, more stratified (unwelded) Tuff has been observed whilst drilling for this research, overlying the 'Aspley Formation' Conglomerates at several sites. This Tuff tends to possess less limonite staining and is a 'green to creamy' colour, founding near the contact zones with underlying older deposits. Core tends to possess stratified layering with some fine to coarse fragments at times grading into a relatively unwelded conglomerate groundmass. It is quite weak with a point load index mostly from 0.1 - 1.0

MPa as shown in Appendix A for borehole NST257. Borehole NST257 was drilled in a specific area at Kangaroo Point to target the Brisbane Tuff / Aspley conglomerate contact zone as this weaker, water bearing zone has implications when tunneling. This is of some interest as the ash-flow Tuff has undergone minimal welding as it settled on the underlying conglomerate due to possible water flow.

The core photo for NST257 is shown below;

Figure 1 : NST257 – Core Photo

Observing **Figure 1**: Brisbane Tuff is extremely to distinctly weathered and highly fractured to 6.64m. Limonite staining is evident adjacent fracturing to 12.5m depth giving an oxidized appearance. The Tuff is somewhat stratified below 6.64m depth ranging from very low to medium strength (Is [50] 0.06 - 0.9MPa), as shown in attached point load test results

for NST257 in the Appendices. At about 23m depth the Tuff is grading to a conglomerate with coarse sub-angular and angular fragments cemented in a Tuffaceous claystone, before becoming high strength conglomerate at about 32m to 34m at the end of the borehole. In the research this was the only borehole which documented the stratification and grading between ash-fall Tuff and underlying conglomerate. Noted are the inconsistencies in strength shown in attached test results compared to other boreholes logged in the data set. Borehole NST257 shows the unique Brisbane Tuff contact zone geology and may explain a trend showing loss of rock strength at depth when in close proximity to a contact zone (as shown later in the Is(50) and UCS vs. Depth plots). These contact zones will produce the lower end UCS values when estimating rippability, as the Tuff is unwelded and more readily ripped. Some knowledge of the Brisbane geology would be beneficial to identify Tuff deposits with shallow contact zones, as other geotechnical issues such as water ingress while excavating or instability may cause problems during excavation.

2.2 Specific Literature

Dearman et al; Lee and De Freitas; anonymous (cited in Guan et al. 2000) state that the process of weathering modifies the chemistry, texture and strength of rocks within the shallow domain where engineering projects are founded. Various grading systems for the classification of weathered material have been proposed.

In this research an attempt will be made to quantify rock mass properties, including a 'degree of staining / defect spacing' specific to this rock type. Guan et al. (2000) theorizes that it may be useful to quantify weathering effects as index values which will lead to consistent and objective material descriptions, particularly for the non-specialist users. Guan et al. devised 'decomposition indices' as opposed to 'weathering indices' for various rock types in Hong Kong, including rhyolitic Tuff. Guan's indices categorize rock into decomposition grades I, II, III, IV, V and VI, where grades I – III relate to Rock and IV – VI relating to soil. The idea behind developing decomposition indices was that 'weathering' was seen to be too general a term to quantify an index value. Vaughan, 1988; Anonymous 1990, cited in Guan et al. 2000 states that;

"Engineering characteristics of rock are governed by a number of factors such as physical properties of the material and discontinuities within the rock mass. For an intensely weathered rock, the influences of discontinuities are greatly reduced and it is the mineralogy, grain size, micro-fabric, and secondary bonding characteristics which control its physical properties and in turn its engineering characteristics".

The decomposition grades developed by Guan were devised and quantified primarily on chemical and mineralogy characteristics of rocks which is beyond the scope of this research project. The research however, identifies that study has been done to quantify weathering or decomposition grades specifically for rock mass rating systems based on unique characteristics of specific rock types due to location, mineralogy, chemistry, porosity, grain size, oxidization and more general weathering characteristics.

As was mentioned under the specific objectives, mineralogy and colour of rhyolitic Tuff may or may not play a role in influencing weathering and strength characteristics. Research by Topal & Sozmen (2001) was done to assess weathering characteristics of Tuff in the Midas Monument, where mineralogy and strength tests on "white" and "pink" ignimbrites found differences in the relative strengths of the (2) colour categories. Amongst the indications from the study were that the pink Tuffs tested were stronger than white Tuffs, less susceptible to weathering and alteration, and slightly denser and less porous due to mineralogy. Topal & Sozman (2001) also interestingly found there was no decrease in rock density across weathering zones of the Tuff they sampled, however there was a degree of fracturing or breakdown of the feldspar minerals across weathering zones which potentially weakens the rock.

For the purpose of this paper, the colour will only be mentioned as a function of its mineralogy where the red , pink and purple Tuffs tend to be more oxidized than the other lighter colours where little oxidzation probably occurs. As is seen in the laboratory results for Is (50) tests, all colours tended to possess high strength values well in the upper and lower bounds of each strength description, except the green and pale green / grey samples which were unwelded and gave the lower strength values. The pink Tuff, as Topal & Sozmen suggest may be stronger than the other coloured Tuff, but insignificantly for the purpose of this research paper. Guan et al. 2000, as mentioned earlier, investigated in greater detail the mineralogy of rhyolitic Tuff and the influence of mineralogy vs. weathering and decomposition of this rock type. Guan refers to the geo-chemical process of mineralogy vs. weathering in detail with reference to leaching over time of elements contained within the groundmass of the Tuff, and the role such elements potassium, calcium, magnesium, iron, oxygen, sodium, manganese as well as compounds found in rock. It is discovered through their work that each element behaves in its own 'complex' way during the weathering process and influences the engineering properties of the altered rock in different ways.

Mineralogy of Brisbane Tuff was not investigated any further, and the quantitative Is (50) and UCS test results show that the amount of strength variation between the different coloured Tuffs is not significant enough to be considered a major influence in quantifying a weathering rating with colour as a variable.

2.2.1 Rippability

As mentioned in the introduction, many methods are available to estimate rippability based on geotechnical and geological mass rock rating systems. It is imperative that the rate in which a site can be excavated is assessed so that civil works can be priced and planned accordingly. Rock excavation, ripping, blasting can be seen as the first part of a major planning process incorporating loading and haulage / transportation.

G.S Pettifer & P.G Fookes, 1994 state that the excavatability of rock depends on the geotechnical properties of the material, on the method of working, and on the type and size of the excavation equipment used. As cutting parts of the equipment must be forced into discontinuities in the rock mass it is generally accepted that discontinuity spacing (or fracture spacing), effective planes of separation (defect properties) and the strength of the intact rock are particularly important factors. They also state that the joint characteristics define the individual rock *'block size'* characteristics which need to be considered as a parameter when estimating rippability. This block size, they state, can be determined simply from the fracture spacing index along a section of drill core. The index can be

expressed either as a frequency (i.e. fractures per metre), or the mean spacing of fractures per metre.

This research project will therefore weigh heavily on those factors (among a few others) in applying an estimation of rippability method specifically to Brisbane Tuff samples taken during the NSBT project. These are also specific parameters which are logged whilst on site by a geologist or engineer and the information normally noted on borehole logs. Some examples of borelogs used for this research can be seen in Appendix A.

F. MacGregor et al. 1994 developed multi-variable regression equations which predict rippability using individual factors such as those listed above, using a large database of detailed ripping and geological data gathered from highway and mine sites in new South Wales, Australia. The data collected by Macgregor et al. was obtained from areas where ripping had been observed (using standard machines) and its operations recorded. Representative samples were taken from sites and exposed surfaces or outcrops were geologically mapped. Nineteen different rocks were observed in their research including 'porphyry', as is Brisbane Tuff.

F. MacGregor et al. 1994 also collected other geological data such as rock type, colour, grain size, weathering, 'estimated unconfined compressive strength (UCS)', defect spacing/ waviness/ roughness/ defect weathering/ defect description/ defect wall strength and type of defect infilling. This is information readily available once again on borehole logs, and further explained later in this research under individual headings. Macgregor et al. 1994, assessed available methods of estimating rippability including those proposed by Caterpillar, Komatsu, Fiat Allis, Franklin (1970), Franklin et al (1971), Weaver (1975), Chevassu (1978), Kirsten (1982), Minty & kearns (1983), Scoble & Muftuoglu (1984), Pells (1985), Smith (1986), Singh, Denby & Egretli (1987) and Hadji-georgiou & Scoble (1990), in relation to their observed ripping database. MacGregor et al., after correlating observed rippability data from their database with all of the above rating systems concluded that;

'the analysis indicates that none of the rating methods is a useful predictor of productivity, all have very poor correlation coefficients, and the correlation coefficients are not greatly influenced by considering bulldozer model, i.e. D10'. (F. MacGregor et al. 1994).

G.S Pettifer & P.G. Fookes also assessed each rating method shown above and point out some individual deficiencies in the available methods such as lack of parameters (Franklin et al. 1971 : 2 parameters), incorrect correlations of strength parameters and incorrect development of weathering parameters, and the dissolving of discontinuity spacing in a broad weathering parameter (i.e. Singh, Denby & Egretli 1987).

Both F. Macgregor et al. 1994 and Pettifer & Fookes 1994 determined the strength of intact rock using the point load test or irregular lump test to give an Is (50) value for different

sample sizes and shapes. Both authors then correlated linearly a UCS value from the Is (50) values and determined a correlation of (24) (Pettifer), and (20.6) (MacGregor). These were broad correlations incorporating all rock types for Pettifer, and all igneous rocks for

MacGregor. As is shown below for this research project, a correlation of (17.6) between UCS and Is (50) was determined from the data sample used for this analysis, which was specific for Brisbane Tuff. This agrees with Look & Griffiths (2001), who assessed the correlation specifically for Brisbane Tuff and determined it to be (18) using a large sample of data, testing both axially and diametrally.

F. MacGregor et al. 1994 developed (11) multi variable regression equations based on combinations of parameters obtainable in geotechnical and geophysical investigations, each with their own (R²) correlation coefficient of regression between 0.4 and 0.85. These equations generally calculated either '*Productivity* (m^3 / hr) ', '*Productivity* $(m^3 / hr) / MASS$ of bulldozer machine including ripper', 'square root of Productivity (m^3 / hr) ' or the 'square root of Productivity $(m^3 / hr) / MASS$ of bulldozer including ripper.'

In each unique equation, (1) or more parameters are either included or omitted, giving a closer estimate of productivity comparable to the database made from records of observed rippability data. For this research, (2) regression equations from MacGregor et al. 1994 were initially considered, one weighting heavily on using seismic velocity data and the other weighted heavily on UCS (Unconfined Compressive Strength) values. The equation using seismic velocity (Equation 10) data gives the best correlation coefficient of regression of (0.85), specific to igneous rocks and the other equation weighting on UCS gives a correlation coefficient of regression of (0.53) based on all rock types. The latter equation with the lowest of the two coefficient of regressions, however, was used in this research as it incorporates the UCS value, which can easily be correlated from the Is (50) test as stated earlier.

Considering the difference in the coefficient of regressions between the two equations, and the ease and speed in which an Is (50) value can be obtained (sometimes on site whilst logging), equation (6) it is considered favourable when estimating rippability. This is because seismic velocity data is not only expensive and tedious to obtain (maybe AUD\$3000-\$10000+), but also takes time in interpretation of results.

MacGregor et al. 1994 Equation (6) is as follows;

 Table 1: MacGregor et al. 1994
 Eq (6) – Rippability Productivity all Rock Types

Equation No. (6) Factor omitted : Seismic velocity				
$\sqrt{PRODUCTIVITY / MASS}$ Note Mass = mass of Bulldozer inc. Ripper)				
Constant	+0.481			
UCS (MPa)	-0.00376			
Weathering Rating	+0.0231			

Grain Size Rating	-0.211
Roughness Rating	+0.0623
Defect Spacing (mm)	-0.000065
Structure Rating	+0.00892
R ²	0.53
S (standard error of estimate)	0.19

F. MacGregor et al. 1994

As can be seen above, MacGregor et al. uses quantitative parameters (i.e. UCS / Joint Spacing) and semi- qualitative parameters derived from qualitative judgements made by classification of rock characteristics. (I.e. Structure Rating / Weathering Rating etc) Rating of these parameters, as well as the modification and interaction of parameters such as 'weathering rating' and defect spacing will be discussed later.

This research paper aims to produce general productivity curves, as well as curves more specific to this research by 'tweaking' parameters and interactions between parameters.

CHAPTER 3 PROJECT METHODOLOGY

Research project methodology at this present time can be subdivided into several categories. These will be listed down the page under the relevant subheadings. Methodologies range from being 'collective', 'collative tasks', 'data analysis' and 'conclusions'.

3.1 Data Collection

Several sites were chosen specifically for the bulk of this research, as the risk analysis for the sampling, drilling supervision, core and defect logging as well as rock property testing had been conducted recently as 2006 - 2007.

Criteria for suitable rock core depended on the location of specific sites which ideally was to be limited, and secondly dependent on whether the rock was of similar geology and weathering profiles. In adhering to this criteria, several sites were chosen at Bowen Hills (Sneyd & Campbell street), Shaftston Avenue (East Brisbane) and Kangaroo Point, where the Brisbane Tuff is quite shallow and subsequently without much overburden or folding. These sites also have a deep Brisbane Tuff profile which was useful in observing a full weathering profile. The site at Kangaroo Point differed slightly from the other two in that it had a shallower contact with the underlying conglomerates (i.e. NST257).

Information collected both in the field, laboratory or existing reports was categorized as either **quantitative** or **qualitative** in stature. How these interacted will be understood later in this research paper when formulating quantitative or semi - quantitative ratings to be applied in an existing rippability rating method.

Examples of **quantitative** data collected include depth, Unconfined Compressive Strength - USC, Point Load Index – Is(50), grain size and defect spacing.

Examples of **qualitative** data collected included joint and defect type, joint surface properties and a proposed 'degree of staining' description on the area of core tested, which is used to derive part of a semi-quantitative 'degree of staining and fracturing' weathering index. The justification for this 'degree of staining' was explained in the broad objectives, however, the symbols and parameters are listed below and sections of core were classified by viewing either from core boxes or core photos where available. It is proposed the 'degree of staining' will be judged by the percentage (%) of iron staining on the "whole" core surface that was point load tested, and not the amount of staining at localized defects where testing cannot be done. Defects were treated separately.

Table 2: Symbols Legend and (%) staining for classification of 'degree of staining'

Degree of staining on TOTAL core surface not relating to local defect: **XS (70 -100%) DS (40-70%), SS (5-40%), TS (0-5%)** Where XS (Extreme Staining) / DS (Distinct Staining) SS (Slight Staining) / TS (Trace to NO Staining)

Collection of data and laboratory testing was done strictly to Australian Standards except for the 'degree of staining classification'. This degree of staining will replace to more standard subjective descriptions for weathering, and also be assigned minimum values of associated likely defect spacing. This will form an interaction between defect spacing and 'degree of staining', and the two parameters will become semi-dependant variables opposed to independent variables, as they are in the regression equations derived by F. MacGregor et al. 1994.

3.2 Rock Core Recovery

Recovery of Rock Core on site was achieved using a 50mm diamond NMLC core bit and 3m length core barrel. The core barrel is inside a HW casing sealed in the Tuff at the top of the rock profile using a second diamond bit. The fluid used to lubricate the drilling process is circulated in a closed system and recycled, except where water losses due to fracturing occur. Packer Testing (Luzon Testing), is normally conducted at specified intervals while drilling to ascertain loss / or discharge of water through fractures, however, these results are not included in this project, but only mentioned as part of the drilling procedure.

Rock is extracted from the core barrel, and placed in PVC splits to limit movement and damage of rock core, then stored in tin core boxes designed to hold 6m sections. Rock is normally logged on site to Australian Standards, including all defects. The onsite logging minimizes double handling of core boxes back in the laboratory (i.e. from storage to logging bench). Core boxes are photographed on site before some sections of core are wrapped to maintain field moisture content for specific rock property testing. Point load testing (Is 50) is conducted at a specified frequency of about (1) test every (2 or 3) metres, or where a change in either weathering, strength or rock classification occurs.

Appendix A shows core photographs of Brisbane Tuff, which is a typical of the way core is presented in the core boxes after drilling. As the core may be checked by senior geologists many times against the defect logs done onsite, the depths at the beginning of each line in the tray start at 'whole' metre intervals. This is so a defect can be easily related quickly to a depth by eye when viewing the photo.

Note also when observing the photo of NST207 the distinct changes in (%) of staining on the rock core, and associated degree of fracturing for each distinct weathering region. This is merely pointed out to show to that limonite staining is due to water ingress through fractures, and the top region with joint spacing up to 200mm shows the higher bounds of 'degree of staining categories' (i.e. XS - DS). It is proposed that it would be less likely to

have a fracture spacing of say 2.5m, and 70% to 100% of the core stained, simply due to the proximity of the nearest defect.

3.3 Rock Property Testing

All rock property testing is done to Australian standard and listed below. AS4133 4.1 - Determination of point load strength index AS4133 4.2 - Determination of uni-axial compressive strength AS4133.2.1.2 - Determination of rock density

3.3.1 Is (50) MPa – Point Load Index (AS4133 4.2)

Point Load Index (Is 50) is a common test used to assess strength of rock core, where a piece of core, usually of length twice its diameter, is tested. Is (50) data used in this research was the result of both axial and diametral tests performed on the rock core. Testing was conducted on specimens at regular intervals where there were no discernable defects, or where there was a noticeable change in strength or weathering. The idea behind the point load test is to back up the AS log description for strength, which may have been assessed simply from drill rates, a geological pick, by hand or finger nail as per Australian Standards. Usually rock strength is usually logged by means of a qualitative approach in the field, then confirmed by Is (50) results or UCS results. It is not unusual to reassess strength designation on logs after doing Is (50) tests and quite often the Is (50) result may not be representative of the strength of a profile of core in hindsight, but of a localized section. Care must be taken, and experience used to assess rock strength using a combination of both qualitative and Is (50) results, therefore a feel for how the samples represent the total rock profile is imperative.

A major limitation of the Point Load Index, as stated above, is that the strength of the rock mass as a whole may be weaker due to rock defects such as bedding and localized defects within the specimen, which may not be totally representative of the rock mass. This problem is amplified somewhat more when testing the bedded phyllites in Brisbane for example, where failure may occur along a bedding plane rather than in the rock mass itself. In this case a rock core should be tested in both its weakest and strongest direction, and mode of failure noted or sketched to determine if the failure plane intersected a bedding plane. Usually if failure along a bedding plane is observed the test result would be rejected.

It is noted that tests conducted by the author, the failure plane was noted or the result completely rejected if failure or crushing occurred due to a localized defect. It is unclear if the other results from point load tests conducted by James Cook University and Brisbane City Council mirrored the testing methodology used for Golder Associates internal testing and vice versa. From experience results can vary significantly between technicians and laboratories.

A second limitation of the point load test is that it is ideal that the two surfaces should be parallel and flat to obtain an accurate result. This is not always possible in Tuff unless cutting machinery is available. Some of the accuracy may at times have slightly suffered due to inadequate preparation of rock core samples, especially in the higher strength Tuff.

At times, due to the amount of testing which is required on this type of project (NSBT), and the lack of laboratory resources or personnel, samples may have been prepared more crudely by way of breaking length of core with a geological pick on site to obtain the sample. This is sometimes deemed to be acceptable in a massive rock such as Tuff if the resulting surface is near perpendicular to the core axis, as the Is (50) result is used as a secondary rock strength description to the qualitative rock strength description based on more 'observed' properties. The same limitation applies to the UCS test where the mode of failure is not always noted, possibly giving rise to varying results. However, USC samples are more likely to be cut and prepared more thoroughly, as the test is more likely to be conducted in a geotechnical laboratory.

3.3.2 Diametral Is (50) vs. Axial Variation in Brisbane Tuff

B.G Look & S. G Griffiths 2001, studied the possible variations in results for Brisbane Tuff (as well as for Argillite / Greywacke/ Arenite / Phyllite) when tested in both axial and diametral directions. Results were tabulated that were within 100mm of each other, before a statistical analysis was done to assess variations. As shown below, it was found that Brisbane Tuff had an axial / diametral ratio of about (2) or greater in the 'low - medium strength' range. Brisbane Tuff exhibited the least statistical variation in axial / diametral ratio than the other Brisbane rocks tested, and the bedded phyllite exhibited the greatest ratio of 4.4. Look & Griffiths then went on to conclude that for Brisbane Tuff, results for axial and diametral tests are approximately equal after the low to medium strength range. It is noted on point load test sheets used for this research whether a particular test is performed axially or diametrally.

	Axial / Diametral Relationship for Point Load Tests (Look & Griffiths 2001)			
Rock	Extremely low to medium strength	High to extremely high strength		
Brisbane Tuff	2	~ equal value whether done diametral or axially		

Table 3 : Axial / Diametral Test Is (50) Variation for Brisbane Tuff Samples

Shown below is a diametral point load index test being conducted on a piece of Brisbane Tuff core.

Figure 2: Pointload Testing on Brisbane Tuff

Figure 3: Point Load Tester

3.4 Data Collation (Quantitative and Qualitative)

Data is described as either quantitative or qualitative, as mentioned previously. Test result data is collated individually and referenced to the depth tested / borehole number. An example of the simplicity of collating such data is NST207 1.85m Is (50) = 2.31MPa. Qualitative data was described subjectively based on experience. For example, referring to the core photo of NST207 in Appendix A again, it can be seen when looking at the photograph there are (2) or (3) distinct degrees of staining which were categorized. This project initially strayed somewhat from the log descriptions which strictly follow Australian Standards for descriptions of weathering (XW – extremely weathered / DW distinctly weathered / SW – slightly weathered / FR – fresh rock). The idea came about to make this parameter flexible in the regression equations derived by F. MacGregor et al. 1994, to reflect observed weathering characteristics of Brisbane Tuff. Also an idea was in place to simply not 'reinvent the wheel', but manipulate an existing rating method

specifically for this rock type, not just in the broad 'igneous' category where other igneous rocks stain and weather differently to Tuff.

So in summary this research will define a new element as the degree of iron / limonite staining, which may be useful in estimating correlations between strength, degree of fracturing and "degree of staining". Degree of staining will be looked at as a modified weathering rating having upper and lower bounds (as a modification to MacGregor's weathering rating) and subsequent input into the regression equations, as the strength variations due to 'weathering alone' can be seen to be less variable for this rock type.

An example of this may be that F. MacGregor et al. 1994 uses a rating from (1) to (10) based on different weathering properties, which show variability in strength between Fresh Rock (FR) and Moderately to / Slightly Weathered (MW-SW) by a numerical factor of (5) between these weathering grades. From observation of drilling and point load results, there are only minor strength variations between these weathering grades, particularly from Fresh Rock (FR) to Slightly Weathered (SW) grades, to justify such numerical variance between the weathering grades.

It is therefore proposed to adjust the weathering ratings or converge the semi-quantitative values numerically, to mirror the observed lesser degree of variation across weathering / strength in the samples. The method proposed is a weathering description based on the percentage (%) of the 'overall' core stained from its original colour, for a particular Tuff 'colour' (i.e. grey, pink, purple, white). Staining and defect interactions will be discussed later and proposed to become dependant upon each other, but for the sake of staining vs. strength within the groundmass, the core will be looked at globally rather than adjacent defects, where the defect will likely influence the strength locally.

Table 4 below is a collated data table showing borehole number, point load test results and proposed 'degree of weathering' description and legend. Core Photographs, Logs and Point Load Test results are shown in **Appendix A**.

	NST207					
Depth (m)	Test Type	ls (50) MPa	Degree of Staining			
1.85	A	2.31	XS			
2.76	A	3.49	SS			
3.07	D	2.03	TS			
4.00	A	4.69	XS			
6.92	A	5.09	TS			
8.72	A	4.99	SS			
11.75	D	4.35	SS			
15.00	А	4.69	TS			
18.00	А	3.48	TS			
20.93	А	2.54	TS			
21.40	A	4.64	TS			
24.94	A	3.49	TS			

Table 4 : Typical Data Collation Showing Point Load Test Results and Proposed 'Degree of Staining and Parameters'.

A = Axial Test

D = Diametral Test Degree of staining on TOTAL core surface not relating to local defect: **XS (70 -100%)**, **DS DS (40-70%), SS (5-40%), TS (0-5%)** Where XS (Extreme Staining) / DS (Distinct Staining) SS (Slight Staining) / TS (Trace to NO Staining)

CHAPTER 4 DATA ANALYSIS

4.1 UCS / Is (50) Correlation Data Analysis

Table 5 : UCS and Is (50) test Results for Tuff core in various Boreholes

Borehole No	Depth	UCS (Failure ok)	Point Load (MPa)
NST1	21-26	123.7	5.75
NST8	23.5	20.3	1.3
NST8	26.8	54.7	3
NST8	35.2	54	2.7
NST8	39.8	70.1	1.3
NST9	23-25	88.24	4.42
NST9	35.3	72.5	2.4
NST13	22.1	69.1	1.4
NST13	30	86.1	3
NST13	31-33	93.5	2.68
NST24	16.1	126.5	6.3
NST24	20.8	31.2	4.2
NST24	21.83	27.7	4.4
NST25	17.1	18.1	1.4
NST26	11.78	57.6	1.6
NST26	16.1-19	77.25	2.85
NST26	17.39	53	1.8
NST26	21	47.7	1.3
NST26	24.37	17.5	1.8
NST28	8.76	38.2	1.8
NST28	17.09	39.3	3.6
NST28	20.27	42	4.3
NST29	24.67	43.7	1.4
NST29	28.17	70	2.5
NST32	41.54	63.9	1.2
NST32	45.07-46.95	10.54	1.15
NST32	47.98	11.8	1.8
NST32	50.53	24.6	2.5
NST34	34.37	73.4	5.6
NST34	37.31	31.7	8.9
NST34	41.6	49.4	5.9
NST34	45.24	38.7	7.9
NST35	13.05	74.2	3

NST35	14.1	41	3.8
NST35	18-20	45.16	5.05
NST35	21.1-21.65	108.54	11.92
NST35	22.69	80.5	3.6
NST35	27	74.4	4
NST35	27.3-27.9	82.76	10.26
NST36	7.55	41.2	4.9
NST36	10.1	37.8	7.8
NST36	13.2	40.8	7.1
NST41	16-18	75.68	2.94
NST41	20.43	47.5	3.77
NST41	24	18.2	1.58
NST45	18.25	56.6	3.51
NST45	20	43.7	3.94
NST45	22.4	30.4	2.55
NST50	24.57	43.1	3.4
NST50	28.75	27	1.96
NST50	29-31	41.73	1.9
NST55	34	21.5	4.61
NST55	38	43.5	4
NST56	19.12	51.7	5.91
NST57	12.02	47.3	4.92
NST58	17.11	30.7	3.21
NST58	20.82	47.3	1.84
NST58	21-23	81.73	2.82
NST58	26.3	41.3	2.08
NST59	3.8	31.9	1.75
NST61	23.51	51.5	2.88
NST62	38-40	70.03	4.71
NST62	42.22	33.1	3.06
NST62	44.75	60.4	5.26
NST62	48.55	57.5	3.99
NST63	59-61	123.87	3.62
NST65	28-30	54.23	2.08
NST67	13-15	9.35	0.5
NST_GA102	6.1-6.4	72.7	13.47
NST_GA102	6.9-7.2	75	15.82
NST_GA102	7.2-7.4	92.97	4.95
NST_GA102	7.4-7.6	118.96	6.11
NST_GA102	7.7-8.2	48.93	4.4
NST_GA102	11.6-11.8	106.8	16.26
NST_GA102	12.1-12.2	74.92	4.91
NST_GA102	12.7-13.1	53.6	10.52
NST_GA102	13.1-13.5	128.11	3.88
NST_GA102	15.7-16.0	87.3	4.22
NST_GA102	16.0-16.3	73.48	4.41
NST_GA102	17.6-17.8	81.5	3.35
NST_GA102	18.2-18.4	55.88	5.18

Note : Data Used from B.C.C tests results as published in NSBT Design Lot No.0802 Zone 0 Geotechnical Interpretive Report – Driven Tunnels – 0802-GT-RP-055005[04]

Figure 4 : Plot of Is (50) vs. UCS

It can be seen from **Figure 4** above there is a strong linear correlation between UCS and Is (50) which is expected. It must be said that some variation in Is (50) results will occur due to poor preparation of samples. (I.e. surfaces not perfectly flat as discussed). Taking the averages of the differences between all UCS and Is (50) results, a multiplication factor / correlation factor for UCS and Is (50) of (17.6) was calculated for the samples tested above. This included all data. The scatter appears to increase as the Is (50) value increases above 9MPa, this could possibly be attributed to the testing methodology itself, as the faces of the test samples were not always perfectly parallel, and any slipping between the pointload platens will cause a divergence of results between the 'better prepared' UCS samples and crude point load samples. Also, as the point load value is so high, it may not be apparent to the technician that the rock has failed on a micro-defect as the sample tends to shatter.

Figure 5 : Plot of Depth vs. UCS

Examining **Figure 5** above, there seems to be some trend showing variation of USC results from 5-22m depth, then a linear decrease below 22-25m. Several possibilities are offered as an explanation for these trends.

Firstly, as stated earlier in the literature by Roach 1996, the trend may be due to the proximity of the contact zone at depth to the conglomerate deposits (Aspley Formation) where, water movement / infiltration or stratification has altered the strength of the Tuff at depth long term, or interfered with the thermal welding at deposition.

Secondly, from the research done by J. R Riehle et al. 2005, it is possible more complex and multilayered cooling flows have caused some variation in welding between lower and upper cooling units due to either separate depositional events, or thermal convection variation within the ash 'sheet'. (Roach 1996, J. R Riehle et al. 2005) The cause in trend will not be researched further in this paper, but may explain the possible (2) data trends. Degree of welding and alterations within a Tuff matrix will simply be measured by their associated Is (50) strength values. The data set however, is somewhat limited to fully appreciate a trend.

Figure 6: Plot of Depth vs. Is (50)

Examining the above **Figure 6**, the Is (50) results seem to be scattered around 1.6 to 8MPa at 10 - 20m depth, then decrease somewhat linearly with depth. As per UCS vs. depth, this may be due to the proximity of the contact zone at depth to the conglomerate deposits where, water movement / infiltration or stratification has altered the strength of the Tuff at depth long term, or interfered with the thermal welding at deposition. Also, it is possible, more complex and multilayered cooling flows caused variation in welding in upper and lower cooling units.

4.1.1 Calculated UCS / Is (50) Correlation for Brisbane Tuff

Is (50) test results were plotted against UCS values and analyzed by initially drawing the resulting trend line. This will give an approximate security or calibration to the results used in design, if both Point Load Index and UCS tests are done. For most rocks, it is estimated that a multiplication factor / ratio of (24) be considered a check for Is (50) and UCS correlation based on the findings of Broch & Franklin as cited in Burt & Look 2001. An Is (50) / UCS correlation of (17.6) was determined by averaging the individual test result differences between UCS and Is (50), then calculating a multiplication factor unique to the data set. This ratio, specific to the data collected for this research, agrees with the findings of B. G Look and S.G Griffiths 2001, who adopted a ratio of (18) for Brisbane Tuff (DW & SW/Fr weather grades) based on a more rigorous testing regime than was carried out for this project. Although it was found that the (24) multiplier is probably acceptable to assign to Tuff for design purposes it was slightly high. Bert and Look also state that the correlation of point load index to UCS in Brisbane Tuff is quite reliable compared to other rocks tested during their research (i.e. Argillites, Phyllites, Arenite, Meta-greywacke) and

showed less variation most likely due to its inherent massive structure and lack of bedding and laminations.

This part of the research gave assurance that the Is (50) / UCS calibration for this data set is accurate and reliable

It is noted that samples of Brisbane Tuff tested by Burt & Look were taken from Kelvin Grove, Herston and Woolloongabba in close proximity to where samples were tested for this research paper.

Rock	UCS/Is (50) Ratio (Bert & Look 2001)	Calculated UCS / Is (50) Ratio based on NSBT Brisbane Tuff samples		
Tuff	18	17.6		

Table 6: UCS / Is (50) Ratio

4.2 Proposed Weathering Rating for Brisbane Tuff

Plots were produced of raw data sorted by Is (50) MPa, UCS MPa and depth (m), colour coded in different data series for each of the (4) categories of 'degree of staining'. As shown below, a semi-subjective judgement was made for each piece of core tested as to the percentage (%) of staining on the overall core sample not relating to a local defect. This means the rock mass as a whole was looked at globally. A judgement was also made as to whether the length of core tested (usually 100mm min), represented the weathering profile and not a lower or higher strength band. This is usually the case anyway when choosing samples to conduct Is (50) or UCS testing, to choose samples which represent a weathering grade and not just the 'best', or 'worst' section.

Often the worst sections of core may be treated as a defect such as a decomposed zone which will be a separate parameter, or a narrow band of very high strength rock within a medium strength overall groundmass may simply be logged as a band when the strength classification may remain 'medium strength with occasional very high strength bands'. This just ensures that if analyzing a borehole that the sections observed represent the greater rock profile, otherwise the analysis is meaningless. Stratified Tuff, or Tuff altered at the contact zone were not included in the 'degree of staining' assessment due to the limited limonite staining on these samples. The contact zone geology and subsequent 'unwelded Tuff' were treated separately.

 Table 7: Symbols Legend and (%) staining for classification of 'degree of staining'

Degree of staining on TOTAL core surface not relating to local defect
XS (70 -100%) DS (40-70%), SS (5-40%), TS (0-5%)
Where XS (Extreme Staining) / DS (Distinct Staining) SS (Slight Staining) / TS (Trace to NO
Staining)

Figure 7: Plot of Is (50) MPa vs. Depth (m) for NST207

Figure 8: Plot of Is (50) MPa vs. Depth (m) for (8) Boreholes (See Appendix A for Data)

Figure 8 may be somewhat inconclusive as the depth of overburden is slightly variable in each borehole. (i.e. **NST207, 228, 241, 249, 257, 347, 348 & 349**). It is noted however, the samples tested which are classified as possessing 'extreme staining (XS)' tend to occupy the middle to higher range of Is (50) Point Load Index, whereas the (SS) 'slight staining' and (TS) 'trace staining' classifications tend to be more variable, with a large number of (TS) sampled from all sites. It must be noted that this was taken from a data sample of (8) boreholes, which produced only a small sample of the (XS) category, so this analysis is only a guide or a slight justification to the weathering rating to be used.

It is also suggested that a large number of (TS) samples are in the lower range of Is (50) MPa range. In some of these boreholes, the samples tested were in close proximity to a contact zone with the more permeable conglomerates (NST257). The samples tended to be

more of a creamy / pale grey colour compared to the grey and pink / purple specimens and were observed to be more stratified in several boreholes. There seems to be little use in a 'Is(50) vs. Depth' correlation across separate boreholes. This correlation is specific to the depth of Tuff at each individual location.

Figure 9: Is (50) MPa vs. 'Degree of Staining Categories' Note 1 = TS, 2 = SS, 3 = DS, 4 = XS.

Figure 9 shows Is (50) Point Load results tabulated against their specific 'Degree of Staining' categories for the (8) boreholes mentioned in Figure (8). It can be seen clearly that Category 1 (TS), shows a complete spectrum of variation of strength, where Category 4 (XS) shows a mid to lower high end range only. This may be due to iron leaching strengthening the rock, however localized discontinuities in the rock due to water movement may have decreased the strength on the higher end of the scale. Once again, limitations in the amount of data used must be recognized, as more of the core tested has been of (TS) category.

In summary, it is concluded when developing a 'weathering index' rating based on staining and weathering in Brisbane Tuff the first (3) categories representing 0-70% of total staining on the core (TS SS DS) show only a slight variation in Is (50) values. This is important to note as Australian Standards would categorize these samples from Fresh Rock (Fr) to possibly Highly Weathered (HW), which if semi- quantified to a rating such as developed by F. MacGregor et al. 1994 would 'numerically' be rated from (1 to 8) based on these categories. Using a general average 1m defect spacing and other parameters assumed, the variation of productivity of rippability by a D9R bulldozer (in m^3/sec) from weathering rating of (1) to (8) is shown below for UCS (40MPa) Tuff using F. MacGregor et al. 1994 equation (6). Table 8: Variation of Productivity over (9) Weathering Ratings

(D9R - Multi Shank 4885kgs)

Productivity (m³/ hr) vs. Weathering Rating for 40 MPa Brisbane Tuff (F. MacGregor et al. 1994)

Weathering Rating								
1	2	3	4	5	6	7	8	9
365	430	499	574	654	739	830	925	1026

As seen in **Table 8** above, numerically there is significant variation in productivity estimates of rippability for a D9R across the (9) quantified F. MacGregor et al. 1994 weathering ratings, as it is a heavily weighted parameter in the MacGregor regressions. This is of some concern if there is actually very little value in a parameter such as 'weathering rating' alone if no significant loss of strength is found across the first few weathering ratings.

4.3 Rating Analysis

Using the data collected for (8) boreholes (i.e. NST207, 228, 241, 249, 257, 347, 348 & 349), plotted above (Figure 9) in (4) staining categories, it can be seen clearly Category 1 (TS), shows a complete spectrum of variation of strength, where Category 4 (XS) shows a mid to lower high end range only. The analysis (Is (50) vs. 'degree of staining') does show however, that with the (71) individual samples categorized by (%) staining there is only a small variation in Is (50) with increasing (%) limonite staining or colour change from the parent rock. This is not saying that weathered Tuff does not follow the normal trend of decreasing strength with increasing weathering grade, but it shows that it can be justified to adjust or converge weathering 'rating values' such as the one devised by F. MacGregor, et al. 1994 shown below. This will mirror the 'slight' variation expected across weathering grades

Rating	Description					
1	Fresh Rock					
2	Fresh Rock with Stained Joints					
3	Slightly Weathered to Fresh Rock with Stained Joints					
4	Slightly Weathered Rock					
5	Moderate to/ and Slightly Weathered Rock					
6	Moderately Weathered Rock					
7	Highly to Moderately Weathered Rock					
8	Highly Weathered Rock					
9	Highly to Extremely Weathered Rock					
10	Extremely Weathered Rock					

Table 9 : Substance Weathering Rating : F. MacGregor et al. 1994al. 1994

Table Weath	10: Weathering ering Rating	of Igneous	and	Metamorphic:	based	on	Moye	(1955)	as	used	in	F.	MacGre	gors

Term Symbol		Description			
Extremely Weathered	XW or EW	Rock which retains most of the original rock texture (fabric) but the bond between its mineral constituents is weakened by chemical weathering to the extent that the rock will disintegrate when immersed and gently shaken in water. In engineering usage this is soil.			
Highly Weathered	HW	Rock which is weakened by chemical weathering to the extent that dry pieces about the size of 50mm diameter drill core can be broken by hand across the rock fabric. Highly weathered rock does not readily disintegrate when immersed in water.			
Moderately Weathered	MW	Rock which exhibits considerable evidence of chemical weathering, such as discoloration and loss of strength but which has sufficient remaining strength to prevent dry pieces about the size of 50mm diameter drill core (of inherently hard rock) being broken by hand across the rock fabric. Moderately rock does not ring when struck with a hammer.			
Slightly Weathered SW		Rock which exhibits some evidence of chemical weathering, such as discoloration, but which has suffered little reduction in strength. Except for some inherently soft rocks, slightly weathered rock rings when struck with a hammer.			
Fresh Rock	Fr	Rock which exhibits no evidence of chemical weathering. Joint faces may be clean or coated with clay, calcite, chlorite or other minerals.			

Table 11 : AS1726 – 1993 – Current Classification for Weathering of Rock Mass

Term	Symbol	Description
Residual Soil	RS	Soil developed on extremely weathered rock. The mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported. Described using the Soil Classification System.
Extremely Weathered	XW or EW	Rock is weathered to such an extent that it has soil properties $-i.e.$ it either disintegrates or can be remoulded in water. Remoulded material can be described by the Soil Classification System.
Distinctly Weathered	HW*	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to denosition of weathering products in
	MW*	pores.
Slightly Weathered	SW	Rock is slightly discoloured but shows little or no change of strength relative to fresh rock.
Fresh Rock	Fr	Rock shows no sign of decomposition or staining.

* - The terms Highly Weathered (HW) and Moderately Weathered (MW) are not used in AS1726 - 1993. These terms are often still used where appropriate to further distinguish degree of weathering within the Distinctly Weathered (DW) classification.

 Table 12: Golder Associates Technical Procedure 4 (TP4) – Revision Level 3, 2002 based on superceded

 Australian Standard

Term	Symbol	Description
Highly Weathered	HW	Rock material affected by weathering to the extent that limonite staining or bleaching effects the whole of the rock material and/or other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and texture of the original rock material may no longer be recognizable.
Moderately Weathered MW		Rock material affected by weathering to the extent that staining extends throughout the whole of the rock material and the original colour of the fresh rock may no longer be recognizable.

As can be seen by the Moye weathering descriptions used to quantify a weathering rating in the MacGregor et al. equations, weathering is a subjective classification which can be interpreted quite differently between geologists and engineers of varying experience.

'It is recognized that the degree of weathering is a subjective measure which may be difficult to estimate'. (F. MacGregor et al. 1994)

Also, geologists and field engineers may not be using the outdated Moye weathering classification procedure, but more likely using AS1726 – 1993 as shown below it. To further complicate the matter, some companies may stray from AS1726 – 1993 to further classify rocks as Highly Weathered (HW) and Moderately Weathered (MW) which is shown in the Golder Associates technical procedures. The two descriptions given for HW and MW (Moye and superceded AS), differ significantly enough to create logging inconsistencies, as Moye's is classified mainly by the readiness of rock to be broken by hand, where the superceded AS classification speaks in terms of staining, bleaching, porosity and a decrease / or increase in strength due to iron leaching to justify the classifications. It must be remembered F. MacGregor et al. 1994 regression equations are based on Moye weathering classifications from 1955.

Brisbane Tuff, as seen in the photo in section 4.4.6 'Grainsize and Degree of Welding', can be bleached. This particular sample is observed to exhibit some bleaching as seen in the right hand side of the core, and perhaps if strictly following the guidelines some field geologists may classify the rock as Highly to Moderately Weathered (HW-MW) if using Moye (1955), and some may even classify as Fresh Rock (Fr) if using AS1726. This is pointed out to show the subjective task of classifying weathering, when in the case of 'rippability' it may be more beneficial to classify weathering in relation to decomposition and strength rather than staining and bleaching. This is provided that staining and bleaching does not alter the rock strength which it may in some rock types.
As seen by the Is (50) results in the Tuff samples tested plotted against (%) of total staining on the core tested, there is little evidence that if 0-70% of the core was stained by limonite there is any chemical alteration to the rock mass which causes a loss in strength. Even so, when 70-100% of the rock mass was stained by limonite, data was limited due to limited samples to show that once again there was any more than a slight variation in strength from the 'fresh Tuff', or 'slightly stained' Tuff. The point of this statement is somewhat based on personal experience in that geotechnical engineers and geologists will often heavily base their judgement in classifying a weathering description on limonite staining. This is often done due to inexperience or conservatism, even if there is no evidence to suggest significant loss of a strength compared to the fresh rock, or chemical alteration of the groundmass due to the observed staining.

F. MacGregor et al. 1994 rates numerically the weathering rating from Fresh Rock (FR) to Moderately weathered Rock (MW) a difference of (6). As we have no evidence that there is a 'significant' loss in overall rock mass strength due to staining across several classifications, the F. MacGregor et al. 1994 weathering rating will be modified specifically for Brisbane Tuff to use in the regression equations. This modification can perhaps be seen as an adjustment to the upper and lower bounds of the EW- FR rating, and reclassified as a new weathering characteristic (% staining).

It is noted that different rating methods assign different weighted numerical values to each parameter, and one rating system cannot be compared with another as they usually use different regression equations to which the weighted ratings are uniquely relevant to. Listed below are several weathering rating system by different authors for specific estimation methods.

50	Weaver	Smith	Minty & Kearns	Scoble & Muftu	Kirsten
Weatherin Rating	9 to 1	10 to 0	12 to -12	25 to 0	280 to 0

Table 13: Other Weathering Rating Parameters by Other Authors (cited in F MacGregor et al. 1994)

It can be seen that weighted numerical values assigned to weathering cannot be compared from one rating method to another and are only relevant to the regression equations used specifically for that method.

Modified Rating	Description
1	No staining to TS
1.5	TS to SS
3.0	SS to DS
5	DS
7.5	DS to XS

9.25	XS

These values reflect the results showing only a small variation in strength due to staining, especially at the TS to DS range (categories 1 to 3 which covers 0-70% staining in rock groundmass). However, to be conservative this research will still follow the norm of 'the more staining, the more weathered thus decrease in strength'. All that has been done is change the bounds in the first few ratings which will minimize the influence of this weathering parameter to about when 50% of the core is stained. It must be remembered only a small data sample was used for analysis and testing, and it's a certainty that extremely weathered, extremely low strength Brisbane Tuff is prone to being extremely stained (XS), more so than being completely unstained, so an upper end bound of (9.25) was still applied to maintain conservatism.

4.4 Tuff Rock Mass Properties

4.4.1 Classification of insitu Rock

Strength properties of rock samples cannot be carried out alone when assessing the global 'condition' of insitu rock on a given site. A rock mass insitu will possess localized defects

and quality alterations which are unique to either the rock type or geology / features of the site in question. The global condition of the rock mass may vary from the strength and weathering classification (A.S) of the rock core sample due to one dimensional limitation of the borehole. Strength and weathering descriptions for rock, considering Australian standards alone, may be misleading for the purposes of excavation and rippability because of this generality. In considering this, methods used to assess the overall rock quality of the site, and chosen for this research paper were rock logging / testing, measurement of spacing, classification of rock 'structure', as well as analysis of seismic velocity from a seismic surveys conducted on an adjacent site in similar geology.

4.4.2 Joints and Defects / & Defect Condition

As shown on the attached logs, for each borehole the joints and defects were logged and noted for each drill run in the ignimbrite. The defect information is used in many rock mass rating schemes, and defect conditions such as roughness, thickness and infilling greatly influence the shear strength of a defect and subsequent influence movement when excavating. (Hoek & Bray, 1974) Defects are normally logged once the NMLC rock core is placed in core boxes carefully to avoid any damage to the rock or defects themselves, to ensure an accurate description of insitu conditions.

Careful note is also taken to determine whether a break in the rock core is either a natural defect, a drilling (mechanical) break or a handling break. If the last two were the case the break is marked as to not be confused with a natural defect. Indicators of a mechanical break or handling break in rock may be sharp edges on the joint faces, lack of staining and veneer or a completely clean joint surface. Using Golder Associates technical rock logging procedures, based on the Australian Standards, all defects were logged as to their type, orientation, infill and thickness. For each defect as shown, a unique symbol was given to it

to differentiate between say joints (J), veins (V), crushed seams (CS) and shear seams (SS). For the uniqueness of logging for the NSBT project, careful use of the word 'fault' was required to differentiate between localized shear seams, SS (< 100mm), shear zones SZ (>100mm), and faults which were seen to be more of a global defect which could not be necessarily deduced from the 52mm diamond (NMLC) boreholes. This was not saying faulting did not occur on any of the sites sampled on, but more intense geological mapping was carried out separately as excavations proceeded and from exposed outcrops. A typical defect description on the attached logs may show;

Example 1: 30.23m - J, 24, St, Ro, In fine angular gravel, clay Vn, 1.5mm

This means at 30.23m depth a joint was noted 24 degrees to the horizontal axis (0), *stepped* * joint surface, Rough joint surface, infilled with fine angular gravel, some clay veneer coating the joint surface, and 1.5mm thickness when considering the vertical axis.

Example 2: 21.65m – SS, 60, Un, Sm, fine to medium angular parent fragment, healed black mineral, 62.1mm

This means at 21.65m depth a shear seam was noted 60 degrees to the horizontal axis (0), *undulating** joint surface, smooth surface, movement has sheared the parent rock to form fine to medium fragments (not transported there), the shear seam has then healed (cemented) due to some mineral infill, and 62.1mm thickness to the vertical axis.

4.4.3 Defect Roughness (amplitude/length) for Brisbane Tuff)

It is often necessary to further describe the joint surfaces which are logged as undulating, stepped and wavy, amongst other descriptions geologists and geotechnical engineers may use. This is due to the fact that 'defect roughness' tends to influence rippability of rock. Information such as amplitude / length of defect in regards to its undulation is often used as a parameter in rippability estimation regressions. From geotechnical logs which this research is based on, as well as photographs of exposed Tuff outcrops showing more global jointing (i.e. Kangaroo Point Cliffs), it is determined the vast majority of jointing was **amplitude / length ratios of 0.05 > 0.15** classifying generally as medium to very rough defect roughness.

4.4.4 Structural Description of (4) Brisbane Tuff

Brisbane Tuff is described as possessing a 'massive' structure, meaning there is no discernable bedding or laminations within the general groundmass of the rock. In 2006, Golder Associates geologists conducted geological and discontinuity mapping at (2) of the largest Brisbane Tuff outcrop locations to assess the structure of the rock globally. The two locations were Kangaroo Point Cliffs and Howard Street Wharf on the Southern side of the Brisbane River. The final assessment into the structure states;

"In the welded Tuff, the most significant structural features include subhorizontal and sub-vertical joints and occasional narrow shear zones and alteration zones. In outcrop, the welded Tuff usually displays a prominent orthogonal jointing pattern, generally with sub-horizontal joints and two to *three sets of sub-vertical joints.*" North South Bypass Tunnel Design Lot No. 0802 Zone 0 Geotechnical Report NSBT – 0802 – GT – RP – 055005[04] / Dec 2006

The welded Tuff mapped was then categorized into (4) structural domains, to be used in (Q) rock mass classification systems.

Rock Mass Unit	Description
Tuff 1	High to Very High Strength, fresh to slightly weathered. 3 joint sets, dominant sub-horizontal set, generally 600mm to 2m spacing. Rough joints. Narrow sheared zones, widely spaced. ~ UCS 100MPa
Tuff 2	High to Very High Strength, some Medium Strength, slightly weathered to fresh. 3 joint sets as above, closer spaced generally 200mm to 600mm with areas of wider and narrow spaced. Rough, mainly open stained joints which extend to ~25m. Narrow shear zones typically typically <100mm thick, widely spaced. ~ UCS 80MPa
Tuff 3	Medium to High Strength, some Low Strength, distinctly to slightly weathered. 3 joint sets, closer spaced generally 60mm to 200mm with areas of wider and narrower spaced. Rough, open joints. Narrow sheared zones. ~UCS 30MPa
Tuff 4	Very Low to Medium Strength, extremely to distinctly weathered or unwelded, 3 joint sets dominant subhorizontal set, joints generally spaced 60mm to 200mm with areas wider and narrower. Rough, open, stained joints, narrow, sheared zones. ~UCS 3MPa

Table 15: Structural Domains for Mapped Brisbane Tuff Outcrops

Data cited in North South Bypass Tunnel Design Lot No. 0802 Zone 0 Geotechnical Report NSBT – 0802 – GT – RP – 055005[04] / Dec 2006

F. MacGregor et al. 1994 quantifies structural units as ratings based on bedding characteristics and number of joint sets as shown below;

Rating	Rocks without Bedding						
	Joint Set 1	Joint Set 2	Joint Set 3				
1	Very Wide	Very Wide	Very Wide				
3	Wide	Very Wide	Very Wide				
4	Wide	Wide	Very Wide				
6	Wide	Wide	Wide				
8	Medium	Wide	Wide				
9	Medium	Medium	Wide				

Table 16: MacGregor et al. Structural Description /Rating

MacGregor et al. 1994

Where;

Very Wide -	>2m Joint separation
Wide -	0.6-2m
Medium-	0.2-0.6m
Close-	0.06-0.2m
Very Close-	0.006- 0.06

MacGregor et al. 1994

Shown below are photographs of a Brisbane Tuff cut face in the northern portal (tunnel entrance) of the North-South Bypass Tunnel directly adjacent to borehole NST241. This area was blasted to enable ripping and removal of rock. This particular cut face was photographed as an example of insitu jointing to fully understand the rock in natural state as opposed to viewing NMLC 52mm core. This face was also chosen as there are no apparent breaks in the rock due to previous blasting. Wide semi-planar jointing can be observed (0.6-2.0m), as well as some limonite staining due to water ingress through fractures. A weathering interface can also be observed between the 'yellowish' stained distinctly weathered Tuff (DW) and the 'pink' slightly weathered Tuff (SW) on the top and right of the photo. This interface is not horizontal but about 40-45 degrees which shows the limitations of borehole interpretations which are relatively 1-dimensional. (I.e. weathering interface would be quite different over 10-20m)

Figure 10: Brisbane Tuff Cut Face Adjacent NST241

4.4.5 Fracture frequency

Following logging of all defects and joints for a particular borehole, the core was divided into continuous sections of approximately equal defect spacing. An example of this division may be a 10m length of core where over 3m there were 12 defects spaced approximately 200-300mm apart, the following 4m having 8 defects spaced 450 - 500mm, and finally the last 3m having 42 defects spaced approximately 55-80mm. This gives (3) sections of core having fracture frequencies (average no. of defects per metre) of 12/3 = 4 (FF), 8/4 = 2 (FF) and 42/3 = 14 (FF). It is essential to note that it is crucial the sections of similar defect spacings are identified and divided rather than incorrectly saying there were (62) defects over 10m giving 62/10 = 6.2 (FF). The result as can be seen gives a crude average, which is misleading and will affect any further calculations in regard to defect spacing

It is therefore imperative to analyse sections of core with similar fracture / defect spacing to produce a similar table as shown below.

Borehole Depth (m)	Average Defect Spacing (mm)
8.75-11.17	50mm
11.17 – 19.72	210mm
19.72 - 28.68	560mm
28.68 - 37.23	860mm
37.23 – 49.5 (EOH)	1230mm

 Table 17: Example of Average Defect Spacing in Recovered Rock Core

These different sections of average defect spacing would typically be subdivided and analyzed separately in rippability / productivity regression equations as average defect spacing is an influential parameter in many rippability estimation methods.

As discussed earlier, an attempt will be made to correlate an interaction between 'degree of staining' and defect spacing. Staining is generally due to the migration of water through defects within the rock mass such as joints, shear seams, larger shear zones, faults, crushed zones and decomposed veins or dykes / sills. Looking at the core photos of NST207 attached in the Appendix, (2) to (3) different 'degrees of staining' and defect spacing exist globally looking at the total length of core examined. Generally between 1.85m and 7.0m the core may be classified as 'DS' to 'XS' with between 60 to 80% of the core surface stained by limonite due to water ingress through the fractures. When looking at the fracture frequency on the logs it can be seen from the (FF) – fracture frequency from the logs there are about 7-10 fractures per metre which we can say is in the range of spacing between 100 – 150mm spacing.

After this point the degree of staining is minimal at about the 'SS' to 'TS' range which is between 0 and 40% of the total core stained. The fracture spacing also increases to about 400 - 500mm (FF = 2.54 and 1.6 from logs) and even (1) defect occurring between 8.13 to 11.44m. This is mirroring the fact that staining on the rock core is primarily due to the proximity to the nearest water bearing fracture or defect. Due to this relationship between limonite staining and proximity to water bearing joints and defects, the following corresponding lower bound defect spacing values in Table 18 are proposed relating to each 'degree of staining category. Being purely lower bound the values can be flexible and used

only as a guide when looking at borehole data and core photos of Brisbane Tuff. This will mean now there is a mathematical dependency on the weathering semi – quantified rating and the quantitative defect spacing value which will influence the productivity of rippability values and shape of the polynomial curves.

Rating	Description	Proposed associated Min Defect Spacing for Eq (6) (mm) MacGregor et al. 1994
1	No staining to TS	>1000 mm
1.5	TS to SS	1000-1500mm
3.0	SS to DS	600-1000mm
5	DS	400-600mm
7.5	DS to XS	200-400mm
9.25	XS	0-200mm

Table 18 : Proposed Weathering Rating for Brisbane Tuff vs. Assoc. Defect Spacing

4.4.6 Grain Size and Degree of Welding

Grain size is described as fine and "powdery" for most of the Tuff sampled, which was predominantly welded and highly welded ignimbrite (see Figure 11 below which is a photo of highly welded Tuff). The welded Tuff appears to be of porphrytic or 'glassy' texture. The unwelded Tuff, however, seemed to possess a larger grain size (up to 1mm at greatest not including phenocrysts.) The 'greenish grey' unwelded Tuff was not observed to be porphrytic.

i) Grain Size of Highly Welded Ignimbrite (0 to < 0.5mm)

Grain Size is 'glassy to fine' (0 to 1mm), as observed in highly welded test samples and core collected from site. This high degree of welding is due to the glass being heated and causing the groundmass to be in a 'plastic state', thus cooling over time to have a glassy texture hence termed porphrytic.

Shown below is a sample of 'glassy to fine' grained Brisbane Tuff. Grains have a powdery texture when ground and at times not discernable with the naked eye at the glassy end of the scale. The larger angular fragments (2-6mm) are phenocrysts carried in the ash-flow.

Figure 11: Highly Welded Tuff

All colours of Tuff samples (pale grey, pink, purple, white etc) sampled for this research tended to fall into the medium to very high strength category except the unwelded Tuff which had the greater grainsize of all the samples. Unwelded Tuff tended to fall into the extremely low to medium strength range as shown in Is (50) test results for NST257 shown in Appendix A.

MacGregor et al. semi-quantify grainsize, for fine to 'glassy' grained igneous rocks, for use in the regression equations by rating 'grain diameter' from 1 to 7 as shown below.

Description	Grain Diameter	Rating
Fine	< 1mm	1
Glassy	0	1

Table 19: Igneo	us Grain Size	Rating (MacG	regor et al. 1994)

Attempts were made to modify the grainsize ratings specifically for the unwelded ignimbrite as discussed below, to see if changing this parameter slightly could give a better estimate of increased productivity due to the coarser grainsize rock being more rippable.

The resultant values showed quite the opposite effect in that slightly increasing the grainsize rating gave a more conservative estimate on rippability rather than less conservative for equation (6). This may not be representative of the behaviour of this rock type in that the coarser grained material is less welded. The modification of the MacGregor grainsize rating was not considered any further as it would give misleading results as shown below for a trial application on changing this parameter alone.

Grainsize Rating 1	Defect Spacing 1m		(D9R - Multi Shank 4885kgs) Productivity (m^3/hr) vs. UCS (MacGregor)) S	
Structure Rating										
1					v	Veather	ing Rati	ng		
	0	1	2	3	4	5	6	7	8	9
	10	857	954	1056	1164	1277	1395	1518	1646	1780
	20	710	799	892	992	1096	1205	1320	1440	1565
	30	577	657	742	833	929	1030	1136	1247	1364
	40	457	529	606	688	775	868	966	1069	1177
	50	352	415	484	557	636	720	809	904	1003
003	60	260	315	375	440	510	586	667	753	844
	70	182	229	280	337	399	466	538	615	698
	80	118	156	199	247	300	359	423	492	566
	90	68	97	132	171	216	266	322	382	448
	100	32	52	78	110	146	188	234	286	344
	120	0	4	13	27	47	71	101	136	176

Table 20 : Productivity Values for D9R Based on Grain Size Rating 1 (MacGregor et al. 1994)

Fable 21: Productivit	v Values for D9R	Based on Adjusted Gra	in Size Rating 1.5	(MacGregor et al. 1994)
	1		L /	

Grainsize Rating 1.5	Defect Spacing 1m	(D9R - Multi Shank 4885kgs) Productivity (m^3/hr) vs UCS (MacGregor)									
Structure Rating					•						
1					V	Veathe	ring R	ating			
	0	1	2	3	4	5	6	7	8	9	
	10	480	553	631	715	804	898	998	1102	1212	
	20	371	436	506	582	662	748	839	935	1036	
	30	277	333	395	462	534	611	693	781	874	
	40	196	244	297	356	419	488	562	641	725	
	50	130	169	214	263	318	379	444	515	591	
003	60	77	108	144	185	232	283	340	402	470	
	70	38	60	88	120	158	202	250	304	363	
	80	12	26	45	70	99	134	174	219	270	
	90	1	6	17	33	54	80	112	148	190	
	100	3	0	2	10	22	40	63	91	125	
	120	49	29	14	5	0	1	7	18	35	

It can also be seen from the above figures, that adjusting the F. MacGregor et al. grainsize rating slightly gives a more conservative estimate of rippability (by up to 50% in some cases) This is not only opposite to the expected result, but the resultant polynomial shows an anomaly as the values on the upper end of UCS start to increase at the turning point of the polynomial curve.

As grainsize of the Tuff sampled for this research was no greater than 1mm, even for the unwelded samples, the MacGregor grainsize ratings were not altered. The unwelded Tuff however, is discussed more below.

ii) Unwelded Tuff

Roach, 1996, states that 'greenish – grey' Late Triassic Tuffs in the Brisbane region are usually fine to medium grained and rarely porphyritic, usually primarily air-fall Tuffs or may be formed by ground surges. He states these ground surges are close to contact zones with the underlying basement rocks. The surge layers can be crystal rich, and contain abundant charcoal, and otherwise essentially deficient in lithic clasts. The contact zones are usually uneven with Brisbane Tuff as it was deposited as predominantly a valley fill ignimbrite.

The green Tuff was located on a site in Windsor whilst drilling large diameter piles. The texture, colour and grainsize of the samples correlate with the Roach's findings, and the strength ranged from extremely low strength to medium strength (classified by AS rock strength classification using hand and geological pick). The samples recovered showed variation in strength, but not necessarily in weathering classification. What appeared to be the defining difference between this Tuff and other welded ignimbrites sampled was its grain size, apparent lack of welding and non-porphyritic fabric. Also agreeing with Roach, 1996, was that at the Windsor site, these pockets of unwelded Tuff were located very close to highly welded, porphyritic Tuff. This was apparent when drilling bridge piers spaced at about 8 (m), where from one pier to another would change from highly welded to unwelded rock. Previous to these samples it was very difficult to find any rock samples less than low to medium strength, independent of weathering.

The piling works were associated with the NSBT project, for associated bridges in June – July 2007. The areas drilled were in Enoggera Creek approximately 500m from the northern portal of the proposed tunnel. Disturbed samples were collected directly from the Baur BG28 drill bucket for observation, as a 3m socket was required in 'slightly weathered' Tuff to satisfy both end bearing dead load of the bridge structure and lateral forces caused by the estimated live loads.

In other areas whilst piling, an 'obvious' change was noted in drilling from alluvial and residual soils into a thin (1-2metres) highly weathered Tuff profile before incurring the high to extremely high strength, slightly weathered Tuff. Highly weathered Tuff could be somewhat effortlessly drilled using a drill bucket with tungsten teeth. As these were 1.5m diameter piles, progress could be made at about 0.5m every 5-6 minutes in one dig sequence. Normally the samples would vary from small chips to angular cobbles and boulders depending on strength and orientation of joints and defects, and the material

would be of yellow, pink and pale grey colour. It must be noted that although hundreds of geotechnical boreholes have been drilled for NSBT, there are limitations in the geotechnical investigation. This is because the area of investigation is very large, and although specific areas were targeted for design of structures / shafts with specific borehole programs, often it is impossible to drill enough ground to get anything more than a general cross-sectional plot of what the rock profile 'may' be doing. This is especially the case in this area adjacent Enoggera Creek where the nearest geotechnical borehole is some distance away where the geology, deposition and welding of the ignimbrite is quite different to the creek system.

The two bridges which piers were drilled for in Enoggera Creek cross the creek twice as the creek sweeps around from the West under Horace Street at Bowen Hills to then turning near ninety degrees in a northerly direction after Horace Street. These two bridges will traffic vehicles from the Inner City Bypass and Bowen Bridge Road to the northern entrance of the tunnel. It was found whilst drilling piers for bridge MCK2 on the East – West stretch of the creek that the Tuff suddenly dips between 30 to 45 degrees towards the creek, and in some localized areas was completely unwelded. These softened areas were only located during construction and resulted in redesign of all piers on and adjacent the creek.

The new design requirement was for a minimum 3m socket opposed to a 1m socket, as one side of the socket would be less than a metre deep if the Tuff was dipping at that angle, and any socket less than 3m metres in length significantly increased the risk of a rock wedge failure between piers due to loading due to the lower strength.

At some locations in Enoggera creek, the Tuff was not only deeper, but was extremely weathered / unwelded with ghost rock structure for 2-3m metres, before becoming low to medium strength (approx 1 - 2 MPa) with some completely weathered, very low strength bands of well less than 1MPa. The Tuff was fine to medium grained, with some chert phenocrysts in the rock fabric. Samples were non-porphrytic and lumps could be broken by hand, or penetrated by a pocket knife (as shown below up to 1cm). Water was added to a sample of 'green' unwelded Tuff to show the porosity characteristics of the unwelded rock. After the water was added the sample was broken by hand and the amount of water penetration was about 3-5mm into the rock fabric. This shows the Brisbane Tuff becomes quite porous when unwelded. (See Figure 12 below)

Figure 12: Very Low to Low Strength Unwelded Tuff

Figure 13: 'Green' Unwelded Tuff and Porosity Characteristics

At times pier socket redesign was required, resulting in an 8m socket in this low strength 'unwelded' material to satisfy the load and lateral requirements.

Due to the limited 'staining' and possibly alteration of unwelded ignimbrite since deposition, following AS standards of weathering classification it may still be possible to classify as slightly weathered (SW), as was seen on the borelogs for NST257. This was pointed out to designers, and a further geotechnical note was added to some drawings giving a strength requirement as well as weathering requirement. It reinforced the observation that classifying weathering in Ignimbrites can be subjective.

4.4.7 UCS (Unconfined Compressive Strength) MPa

Depending on what information is required in regard to rippability, the UCS values may be presented by upper and lower bounds graphically, by dividing into increments commonly used in Australian Standards, and also used quite often on site. (i.e. EH - extremely high strength, VH - very high strength, H - high strength, M - medium strength, L - low strength, VL - very low strength, EL - extremely low strength). Data can then graphically represented in different series / ranges of UCS values against productivity of ripping.

Australian Standard Strength Classification	UCS (MPa) Lower and Upper bounds
ЕН	> 240
VH	70 - 240
н	24 - 70
М	7.0 – 24
L	2.4 - 7.0
VL	0.7 – 2.4
EL	0.7 – 2.4

Table 22 : Weathering and UCS Upper and Lower Bounds

4.4.8 Seismic Velocity

It was mentioned earlier under section 4.3 'Rating Analysis', that it was recognized through the research done by F. MacGregor et al. that degree of weathering was a subjective parameter when used in several regressions they developed. It was also stated that some of the equations show that weathering is a significant variable in the regression analysis of igneous rocks. (F. MacGregor et al. 1994)

'If it is considered that weathering is a difficult parameter to assess then it provides a reasonable prediction for igneous rocks without this factor. The variables which showed the best correlations with productivity were unconfined compressive strength (UCS) and seismic velocity.' (F. MacGregor et al. 1994)

Field seismic survey data is briefly discussed in this research as F. MacGregor et al. determined seismic velocity gave the best correlation coefficient when using this parameter to estimate productivity in 'igneous rocks'. (i.e. $R^2 = 0.63$). The aim of this research paper was to use borehole information opposed to seismic data. Seismic surveying can become expensive considering time taken to interpret results, and is known to have limitations of use, especially when the rockmass is highly fractured or boulders are present. Although seismic data was not available for this research in the immediate area where borehole

drilling was carried out, Golder Associates had previously done the geotechnical investigation for the Brisbane Inner City Bypass Tunnel (ICB) at Herston in the year 2000. The ICB tunnel was a cut and cover tunnel and its entrance is less than 100m from the northern portal for the NSBT tunnel. The ICB tunnel was cut through Brisbane Tuff and was blasted to enable ripping. Large bulldozers including D10 and D11 machines had limited success ripping and a decision was made to blast. Similarly, the northern portal of the NSBT tunnel had been blasted in late 2006 to enable ripping to the invert of the proposed tunnel.

Fieldwork for the ICB tunnel comprised of (8) vertical boreholes (GA48 to 50, 52 to 55 and GA62), (2) angled boreholes (GA61 and GA63). Boreholes were located on the alignment of the outer tunnel walls. Seismic traverses were also conducted to obtain additional information regarding conditions between the walls. High to very high strength Tuff rock was encountered in all boreholes from the depth at which rock was first encountered. The high strength Tuff had a low degree of fracturing. (Golder Associates 00632017 MD – ICB, June 2000)

'Tuff rock encountered across the (ICB) RNA site is either high or very high strength and is considered to be potentially very difficult to excavate. Joints within the rock, which could range from sub-horizontal to sub-vertical, may not be exploitable to assist in excavation, due to their limited extent. The use of line drilling and blasting to advance the excavation will be required in order to facilitate the efficient use of hydraulic rock breakers to further break up and remove the rock'. (Golder Associates 00632017 MD – ICB, June 2000)

Below is the summary of the point load tests conducted on (2) of the ICB boreholes which mirror the results generally found in this research.

Table 23: ICB Is (50) Summary

Borehole	Depth	TEST	Is50*	DEMADING
No.	(m)	TYPE	(MPa)	REMARKS
GA48	4.10	Diametral	4.4	Good Break Ok
	4.15	Axial	4.4	Good Break Ok
	6.05	Diametral	3.3	Good Break Ok
	6.10	Axial	3.1	Partial break only. Invalid Test
	6.15	Axial	3.6	Partial break only. Invalid Test
	8.20	Diametral	2.5	Good Break Ok
	8.25	Axial	2.3	Good Break Ok
	10.15	Diametral	3.0	Good Break Ok
	10.10	Axial	3.3	Good Break Ok
GA49	1.05	Diametral	3.5	Good Break Ok
	1.10	Axial	3.9	Good Break Ok
	3.60	Diametral	3.3	Good Break Ok
	7.20	Diametral	2.4	Good Break Ok
	8.60	Diametral	3.5	Good Break Ok

TABLE 2 - SUMMARY OF POINT LOAD STRENGTH INDEX TESTS

NOTE: * For the relationship between Is50 values and rock strength, refer to the notes at the end of Appendix A.

(Golder Associates 00632017 MD – ICB, June 2000)

Note: the Is (50) results range from 2.3 - 4.4MPa which is in the high to very high strength range.

'Seismic traverses ST2, ST3 and ST4 were carried out in the middle of the proposed excavation, rather than along the wall alignments. As can be seen, the depth to high strength rock (seismic velocities >2000-2300m/s) do not correlate closely with the results of boreholes carried out along the alignment of the wall. This highlights the variability of the depth to high strength across the site'. Golder Associates 00632017 MD – ICB, June 2000)

F. MacGregor et al. 1994 states that it could be postulated that a limiting value of efficient ripping for seismic velocity is around 3000m/s, after which the actual ripping data is not accurate.

'Above about 3000m/s, the data indicates that rock is not rippable with bulldozers of D10 size or less'. (F.MacGregor et al. 1994)

As there is no available seismic velocity information below high strength rock, the UCS values will be 24 and 70MPa respectively. This covers rock strength from the lower bound of high strength (UCS = 24MPa), to the high/very high strength interface (UCS = 70MPa) to the upper bound of very high strength (UCS = 240MPa).

In saying this, we will limit the value of seismic velocity to 3500m/s for very high strength rock used in equation (11). Seismic velocity in high strength rock will be 2300m/s as stated in the Golder report.

The ICB seismic velocities have been included in this research to apply the seismic parameters to MacGregor equation (11) for igneous rocks. This regression equation eliminates the subjective weathering rating parameter, structure rating, defect spacing as well as the grainsize parameter and gives a better correlation coefficient of $R^2 = 0.67$. This is opposed to the MacGregor regression equation (6) used for this research (which includes the weathering and grainsize ratings), which gives an R^2 value of 0.53. It must also be mentioned that equation (6) is specific to all rock types, and equation (11) specific to 'igneous rocks'. This comparison was made to compare the estimated productivity results using a different combination of parameters, and also to validate the estimated productivities from the MacGregor regressions for Brisbane Tuff, knowing that large bulldozers were unable to rip this area.

Equation No. (11) Factor omitted : Weathering Rating, Grainsize Rating, Defect Spacing &Structure Rating									
$\sqrt{PRODUCTIVITY / MASS}$ Note Mass = mass of Bulldozer inc. Ripper)									
Constant	+0.347								
UCS (MPa)	-0.00118								
Seismic Velocity (m/s)	-0.00014								
Roughness Rating	+0.108								
R ²	0.67								
S (standard error of estimate)	0.15								

 Table 24: MacGregor et al. 1994 Eq (11) – Rippability Productivity of Igneous Rock

F. MacGregor et al. 1994

4.5 Rippability Rating

Based on F. MacGregor et al. 1994, data was grouped based on the findings and ratings derived in the above headings.

Unconfined Compressive Strength (UCS) values were incremented in values of 10MPa, and weathering ratings from (1) to (9) for F. MacGregor et al., and (1), (1.5), (3), (5), (7.5) and (9.25) for the proposed 'weathering index' for this research. The Modified weathering rating had different bounds set as discussed in the last section in regard to minimum defect spacing, to reflect the typical fracture spacing / vs. degree of staining commonly encountered whilst drilling to significant depths during the investigation.

Defect roughness was given a value of (3), based on the rough nature of the defect surfaces and also the amplitude / length ratio of 0.1 to 0.15 to correspond to the F. MacGregor et al. ratings of defect roughness.

Structural description of the Tuff was categorized from the geological mapping as described earlier, which was (4) Tuff types having typically (3) joint sets for a range of strength values. F. MacGregor et al. structural rating of (1) was used which covered the joint spacing range of 'wide'; 0.6m to ' very wide; > 2m'

F. MacGregor et al. 1994 rates productivity in terms of m^3 / hr with specific reference to an 'ease of ripping'. This is based on observation and efficiency of the machine but it will differentiate between a D11 bulldozer inefficiently ripping 300m³/ hr (due to operator) 'without much effort, opposed to a D11 operating efficiently but finding it very difficult to rip more than 300m³/ hr. In the first scenario the efficiency of ripping needs to be looked at (i.e. operator experience or methodology of passes and runs), opposed to the second scenario where a larger machine or blasting maybe required. So the descriptor 'ease of ripping' indicates whether the machine is finding it difficult to be productive in ripping while operating as efficiently as possible.

Productivity (m^3/hr)	Ease of Ripping
0-250	Very Difficult (Blasting)
250-750	Difficult
750-2000	Medium
2000-3500	Easy

 Table 25: Productivity Grouping (F. MacGregor et al. 1994)

>3500	Very easy
-------	-----------

Table 26: Productivity^0.5/MASS vs. UCS for F. Macgregor et al. Weathering Ratings (1) - (9)

Grain Size	Ave defect	Brisbane Tuff - MASSIVE BEDDING										
Rating	spacing (mm)	For 3 Joint Sets Massive : Wide to Very Wide Structural Rating 1										
glassy - fine	1000	Assume Defect Roughness - Rough amplitude / length = 0.1 to 0.15 [Rating 3]										
1					Pro	ductivity	/^0.5/ MA	SS				
					١	Veatheri	ng Rating	9				
		1	2	3	4	5	6	7	8	9		
	10	0.386	0.409	0.433	0.456	0.479	0.502	0.525	0.548	0.571		
	20	0.349	0.372	0.395	0.418	0.441	0.464	0.487	0.510	0.534		
	30	0.311	0.334	0.357	0.380	0.404	0.427	0.450	0.473	0.496		
	40	0.274	0.297	0.320	0.343	0.366	0.389	0.412	0.435	0.458		
2011	50	0.236	0.259	0.282	0.305	0.328	0.351	0.375	0.398	0.421		
000	60	0.198	0.221	0.245	0.268	0.291	0.314	0.337	0.360	0.383		
	70	0.161	0.184	0.207	0.230	0.253	0.276	0.299	0.322	0.346		
	80	0.123	0.146	0.169	0.192	0.216	0.239	0.262	0.285	0.308		
	90	0.086	0.109	0.132	0.155	0.178	0.201	0.224	0.247	0.270		
	100	0.048	0.071	0.094	0.117	0.140	0.163	0.187	0.210	0.233		

Table 27: Productivity vs. UCS (D9R) for F. Macgregor et al. Weathering Ratings (1) - (9) & ProposedModification of Weathering Rating and Defect Spacing / Degree of Staining Interaction

				(D9	9R - Mi	ulti Sha	ank 48	85kgs)			
			Productivity vs. UCS (MacGregor)									
				V	Veathe	ring R	ating					
	0	1	2	3	4	5	6	7	8	9		
	10	729	819	914	1014	1120	1230	1346	1467	1593		
	20	594	675	762	854	951	1053	1160	1273	1390		
	30	473	546	624	707	795	889	988	1092	1201		
	40	365	430	499	574	654	739	830	925	1026		
	50	272	328	389	455	527	603	685	772	865		
UCS	60	192	239	292	350	413	481	555	633	717		
	70	126	165	209	258	313	373	438	508	583		
	80	74	104	140	181	227	278	335	396	463		
	90	36	58	85	117	155	197	245	299	357		
	100	11	25	43	67	96	130	170	215	265		
	120	4	0	2	9	21	38	61	88	121		
	150		Propos	ed We	athering	g Rating	(Adjust	ted Bris	bane Tu	ff)		
		1	1.5	3	5	7.5	9.3			Likely D		
UCS	10	612	773	970	1244	1654	1972					
	20	488	634	813	1066	1448	1746		1.0	1.5		
	30	379	509	670	901	1255	1533			5		
	40	284	397	541	750	1075	1334		1500	1000		
	50	202	299	425	613	910	1149					
	60	134	215	324	490	758				Likely D		
	70	80	145	236	381	620						

80	40	89	162	285		5.0	7.5	9.25
90	14	46	102				S	pacing (mm)
100	1	17	56			600	300	100
120	17	1	F					

Note : Alternate Weathering Rating based on "Degree of Staining" truncating higher end values for XS – DS Note: Upper and Lower Bounds set for defect spacing to use in regression equations (i.e. weathering / global staining & joint spacing / water ingress interactions)

The first table shows the $\sqrt{\text{Productivity}/\text{Mass}}$ of Dozer for the (9) F. MacGregor et al. 1994 weathering ratings as applied to regression equation (6). These are plotted against a range of UCS values. Assumed parameters such as defect spacing, defect roughness and grainsize are set to parameters shown in the table.

The first analysis is carried out using a common D9R multi-shank ripper, which weighs 4885kgs total with the multi-shank. This machine possesses a penetration force of 33,249lb (147 958 N), and a pry-out force of 74,639lb (324 680 N). Productivity (m³/hr) of ripping is calculated across (9) weathering ratings for a range of UCS values as shown. The resulting curves show a general consistency in shape. Equation (6) is for all rock types, whether igneous, metamorphic or sedimentary and does not take into account interactions between weathering and UCS values. An example of this is that it is not likely to achieve a UCS value of 80 MPa for weathering rating (9). Parameters such as defect spacing and staining are also independent variables in this equation.

The lower section of the table shows the introduction of a 'degree of staining' rating, instead of 'degree of weathering'. The idea is to form an interaction between the (5) of staining observed on the rock core, and the likely corresponding defect spacing. This can be justified by observing core photos such as that for NST207 as shown in the appendix. The degree of limonite staining is considered to be dependent on fracture spacing, and distinct changes in (5) of staining on the rock core coincide with increasing or decreasing defect spacing.

The resulting 'degree of staining' rating becomes simply a modification of upper and lower bounds for the weathering ratings used by MacGregor, as F. MacGregor state weathering ratings are subjective.

This is further justified by this statement on weathering;

'It is futile to attempt to devise a single scheme of description and/or classification that will be suitable for the treatment of rocks as diverse as, for example, karstic limestones, granites and shales, which have been affected by different weathering processes. A variety of approaches is required for different situations and scales. Classes may be more rigorously defined by following local experience, site-specific studies or through reference to established schemes'. (BS5930:1999 as cited in TP4 – Rock Description, Revision Level 3 April 2002)

The generic MacGregor weathering ratings of (1) to (9) have been modified to (1), (1.5), (3), (5), (7.5) & (9.25) which produces (6) curves instead of (9) curves.

Variable dependency has been introduced by proposing that average defect spacing values decrease as the 'degree of staining' rating is increased. These productivity values are therefore primarily driven by defect spacing and 'degree of staining' dependency which form a new 'weathering index'. It must be stated that this dependency may only be specific to this rock type, and another rock type would need to be investigated before assuming this particular variable dependency.

It is noted that some of the higher end UCS values have been truncated so that the highly weathered or 'stained rock' at the lower end of perhaps rating (9.25), is unlikely to achieve a UCS value of 80MPa as stated earlier.

The comparison is shown below between the F MacGregor et al. 1994 curves and the proposed modified productivity curves. These curves and subsequent productivity of rippability values are once again specific to a D9R with a multi-shank ripper, but the variance in productivity is discussed.

The proposed modification shows a more conservative spread of values in the first couple of 'degree of staining / defect spacing' categories. For example, MacGregor achieves productivities of 74, 104, 140 and 181m³/hr for the first (4) weathering categories for UCS 80MPa rock, where the modified approach achieves 40, 89, 162 and 285 m³/hr productivities respectively for the same UCS value.

This also puts the first (2) 'degree of staining' categories into the 'blast to rip' category at UCS 42 and 58 MPa (High to Very High Strength) respectively, opposed to 46 and 60 MPa (High to Very Strength) when using the unmodified weathering rating. This seems like a small variation, but it is likely a large proportion of samples will be classified in categories (1), (2) as seen by core photos (i.e. 0 - 40% staining and defect spacing to 1500mm), as well as being in the high to very high strength range. It was already shown by insitu jointing photos that the structural rating for Tuff is based on 'wide to very wide' joint set spacing predominantly. Therefore it is proposed that a larger proportion of Tuff will be unrippable based on this and require blasting if a D9R multishank ripper was the only dozer available.

When observing the values of 'degree of staining' category (3) it is noted that the productivity of rippability value becomes greater than that proposed by MacGregor for the same value of 80 MPa. This is because from category (1) to (3) on the modified approach, the defect spacing has decreased from 1500mm to 800mm. The defect spacing is starting to pull the upper end of the curve steeper, and subsequently from ratings (3) to (6) the calculated productivities are higher than MacGregors. This may be treated with some caution, however, as it must be remembered this is driven by defect spacing and a judgement would be made to categorize a 'degree of staining' as well. The Tuff would need to be highly fractured, or unwelded to achieve these values after about category (3). Once again, this would be a rarity as it is noted both the northern portal of the tunnel as well as the ICB tunnel required blasting. It is proposed that the rippability of Tuff is usually overestimated, and the modified approach would classify more area as unrippable.

Figure 14: Brisbane Tuff Rippability using Equation (6) and MacGregor Weathering Rating for D9R

Figure 15 : Brisbane Tuff Rippability using Equation (6) and Modified Weathering Rating for D9R

Adjusted Brisbane Tuff Productivity (m^3/hr) of Rippability vs UCS for D9R (Multi Shank 4885kgs) for 'defect spacing' vs weathering rating, 'structure rating' (1) / 'defect roughness' (3) / 'grainsize rating' (1) MacGregor et al. 1994

The D11R CD Dozer with single shank ripper will now be assessed as it is one of the largest rippers as listed in the Caterpillar Performance Handbook Edition 33 October 2002. The installed weight of the machine with the standard shank is 13,584kgs, with ripper

forces of about 71,560lb (318 440 N) penetration force vertically and 139,160lb (619260N) pry-out force. This large machine can rip to 1612mm maximum digging depth.

Once again, Productivity (m³/hr) of ripping is calculated across (9) weathering ratings for a range of UCS values as shown, as well as calculated across the proposed 'modified' weathering ratings.

Table 28: Productivity vs. UCS (D11R CD) for F. Macgregor et al. Weathering Ratings (1) - (9) & Proposed Modification of Weathering Rating and Defect Spacing / Degree of Staining Interaction

			(D	11R C	D - Sir	igle Sł	nank 1	3584kg	gs)		
			P	roduc	tivity v	vs UCS	6 (Mac	Grego	r)		
				Weath	ering	Rating	l				
	0	1	2	3	4	5	6	7	8	9	
	10	2027	2277	2541	2820	3113	3421	3743	4080	4431	
	20	1652	1878	2119	2374	2643	2927	3226	3539	3867	
	30	1315	1517	1734	1966	2212	2472	2747	3037	3341	
	40	1016	1195	1389	1596	1819	2056	2307	2573	2853	
	50	756	911	1081	1265	1464	1678	1905	2148	2404	
UCS	60	534	666	812	973	1148	1338	1542	1761	1994	
	70	351	459	582	719	870	1036	1217	1412	1622	
	80	206	290	389	503	631	773	930	1102	1288	
	90	99	160	236	326	430	549	682	830	993	
	100	31	69	120	187	267	363	473	597	736	
	120	10	0	5	24	58	106	168	245	337	
	150		Propose	d Weat	hering F	Rating (Adjuste	d Brisba	ane Tuff	f)	
		1	1.5	3	5	7.5	9.25		Likely	/ Defect	Spacin
	10	1701	2150	2696	3460	4601	5484			Ra	ting
	20	1358	1763	2260	2964	4025	4854		1.0	1.5	
	30	1055	1414	1863	2506	3489	4263			Spacir	ıg (mm)
	40	789	1104	1504	2087	2990	3710		1500	1000	8
	50	562	832	1183	1705	2530	3195				
UCS	60	374	598	901	1363	2108			Likely	/ Defect	Spacin
	70	223	403	657	1058	1725				Ra	ting
	80	112	246	452	792				5.0	7.5	9
	90	38	128	285						Spacir	ig (mm)
	100	3	48	156					600	300	1
	120	49	3	14							

It can be seen from above looking at the UCS = 80MPa (lower bound of very high strength) range that the F. Macgregor et al. weathering ratings estimate a productivity of rippability at 206 & 290 m³/hr (for a D11R CD 13584kg single shank) opposed to 74 & 104 m³/hr for the D9R (4885 kg multi-shank) for the first (2) weathering categories. This means a D11R CD may not be able to rip Brisbane Tuff of UCS = 80 MPa in the first and second 'degree of weathering' ratings, or do so with great 'difficulty' at 206 & 290 m³/hr. Note: Productivity grouping mentioned earlier limits 'difficult' ripping to between 250 – 750 m³/hr, so it is likely the rock may need blasting in 'degree of weathering' rating (1).

Using the modified 'degree of staining' approach, these estimated productivity of rippability values reduce to 112m³/hr & 246 m³/hr respectively in the first (2) 'degree of

weathering' categories. This shows that the modified approach used in this research is more conservative, and even the larger D11R CD will be unable to rip the rock until either the 80MPa rock has between 800mm and 1000mm defect spacing and possibly 70% staining over rock mass, or unless the Tuff is UCS 70MPa and 'degree of staining' category (2). These UCS values are still lower bound very high strength (i.e. Is 50 = 3 to 10 MPa using multiplier of 17.6 to determine UCS).

It was stated earlier that it is observed the majority of the Brisbane Tuff formation falls into this Is (50) 3-10 range as shown in test results. It was also proposed under the limitations of the Is (50) test that some samples may have Is (50) values much greater than 3MPa if the samples were prepared with care and an automatic loader was used rather than a hand lever.

Shown below are the respective regression curves for the D11R CD single shank for both the F. MacGregor et al. 1994 weathering rating and the modified approach.

Figure 16: Brisbane Tuff Rippability using Equation (6) & MacGregor Weathering Rating for D11R CD

Figure 17: Brisbane Tuff Rippability using Equation (6) and Modified Weathering Rating for D9R

Adjusted Brisbane Tuff Productivity (m^3/hr) of Rippability vs UCS for D11R CD (Single Shank 13584kgs) for 'defect spacing' vs 'degree of staining, 'structure rating' (1) / 'defect roughness' (3) / 'grainsize rating' (1) MacGregor et al. 1994

Note: from the curves above, using the modified approach places 'degree of staining' category (1) as unrippable by a D11R CD above UCS 65MPa (~ Is 50 = 3.6MPa). This is the lower bound of very high strength. It is estimated the Tuff is unrippable at ~ UCS 80MPa or thereabouts for 'degree of staining' category (1.5). This may mean any rock classified as 'high to very high' strength could be assessed to be ripped using the modified approach, provided it falls into 'degree of staining' category (1.5) with 1m average defect spacing. A similar result of UCS 90MPa for 'slightly weathered Tuff' (SW) could be expected in comparison to the F. MacGregor et al. rating which is well and truly in the very high strength range. (i.e. Is 50 > 5 MPa). Therefore the comparison is made to show that it may be tempting to rip using a dozer when using the MacGregor approach, and blast using the modified approach.

The ICB seismic velocities will now be applied directly to F. MacGregor et al. equation No. 11 which eliminates subjective parameters such as the weathering and structure rating as mentioned under 'seismic velocities'. This area was previously assessed by Golder Associates to be unrippable before construction of the cut and cover tunnel. Contrary to that advice however, large machines such as D10 and D11 dozers initially attempted to rip and failed, and the area was line blasted to loosen the rock. Applying the data to equation (11) will at least give a data comparison to a failed ripping attempt in similar geology 50-100m away from some of the boreholes that were drilled for this research. The D11R CD 13,584kg single shank dozer will be used in the analysis.

Note: Seismic velocities of 2300m/s will be used in high strength rock (Is 50 > 1MPa), and a limiting velocity of 3500m/s will be used for high and very high strength rock (Is 50 > 3 MPa) as per Golder Associates report 00632017 MD – ICB, June 2000.

Figure 18: Application of ICB Seismic Velocities to MacGregor et al. 1994 Equation (11)

Brisbane Tuff - Equation (11) using ICB seismic data Seismic velocity H - 2300m/s (UCS = 17.6 Mpa) & VH - 3500m/s (USC = 53MPa) Assume Defect Roughness - Rough amplitude / length = 0.1 to 0.15 [Rating 3]

	Мра			Productiv	/ity^0.5/ MASS						
	17.6				0.328						
000	53		0.118								
			Various Machines								
		Р	roductivity v	vs UCS (Ma	acGregor) for 2300 & 3500m/s						
	Мра	D11R - single	D10R - multi	D9R- multi							
1109	17.6	1463	745	526	Note: H - 2300m/s / VH - 3500m/s						
003	53	<mark>191</mark>	97	69							

Figure 19: Modified Approach D11R CD 'Productivities at UCS 17.6 & 53 MPa (H & VH Strength)

Degree of Staining Rating (1) ~						
UCS	(Fr – SW)	Degree of Staining Rating (1.5)				
17.6	1437m³/h	1853 m³/h				
53	<mark>501 m³/h</mark>	<mark>758 m³/h</mark>				

Figure 20: F. MacGregor et al. D11R CD 'Productivities at UCS 17.6 & 53MPa (H & VH Strength)

Weathering Rating									
UCS	1	2	3	4 (SW)	5	6	7	8	9
17.6	1738	1970	2217	2477	2753	3042	3347	3665	3999
53	<mark>685</mark>	<mark>834</mark>	<mark>996</mark>	<mark>1174</mark>	1365	1572	1792	2028	2277

The comparison above shows that the estimation of productivity of ripping is reduced further by using MacGregor equation (11), applied to the ICB seismic data. Productivities of 1463 & 191m³/hr were calculated for a D11R CD at the lower limit of high strength Tuff (UCS 17.6MPa) and the lower limit of very high strength Tuff (UCS 53MPa). The productivities indicate that the D11R will not be productive in ripping very high strength Tuff, and also the upper values of high strength (i.e. Is 50 = 2-3 MPa). The modified approach using equation (6) shows a similar productivity of ripping value at UCS 17.6 MPa Tuff, but a less conservative value of 501m³/hr at the lower UCS bound for very high strength rock (i.e. UCS = 53MPa). The MacGregor values are significantly higher for the first (4) weathering ratings with productivity values in excess of 1100m³/hr for even weathering rating (4), which is 'slightly weathered' (SW). When considering this, an observation of the borelogs and core photos show the extensive use of the weathering classification (SW) corresponding to high to very high strength rock, which may give a misleading indication that 'slightly weathered Tuff' can be ripped at excessive rates per hour (> 1100m³/hr). In the modified approach, a term such as 'slightly weathered' is taken into account 'subjectively' somewhere within the degree of staining rating (1) and (1.5), so productivity estimates could be 50 to 60% less towards the 'blasting' rating.

This shows the (3) regression curves are of different shape and gradient, and equation (11) will give more conservative values for ripping productivity at the higher UCS values. It must be pointed out that equation (11) has a higher correlation coefficient of $R^2 = 0.67$, however the seismic data used was limited and from an adjacent site.

Seismic data can easily be misinterpreted if the rock is highly fractured or boulders are present, as the seismic arrival times to geophones will be reduced if the waves intercept voids within the rock groundmass. In this case however, the result is validated as the ICB cut and cover tunnel was blasted to enable ripping of the Tuff, which was high to very high strength as indicated earlier in Table 2 of Golder Associates report 00632017 MD – ICB, June 2000.

CHAPTER 5 CONCLUSIONS

Brisbane Tuff is generally a very difficult rock to rip, or even classified as unrippable using large bulldozers such as the D11R. It is proposed that if using rating methods such as the one devised by F. MacGregor et al. (1994) to estimate rippability of Brisbane Tuff, a characteristic weathering index must be derived specific to the site to avoid an over or under-estimation rippability. As seen in several weathering ratings derived by authors such as F.MacGregor et al. (1994), Franklin (1970), Franklin et al (1971), Weaver (1975), Chevassu (1978), Kirsten (1982), Minty & Kearns (1983), Scoble & Muftuoglu (1984), Pells (1985), Smith (1986), Singh, Denby & Egretli (1987) and Hadji-georgiou & Scoble (1990), weathering is often semi-quantified as a spectrum of numerical values independent of other variables which are contributors to weathering. Some of these dependant variables which are contributors to weathering in many rocks including ignimbrite, may include defect type and spacing, geochemistry, water ingress and associated limonite staining, alteration, depositional factors or degrees of cementation and welding.

This research paper intended to firstly dispel the common idea that there is a significant strength variation in Brisbane Tuff across typically used weathering grades (Fr-HW), to justify the variation in rippability estimates (m³/hr) using F. MacGregor et al. regression equations. MacGregor and other authors listed above use the same assumption that weathering and strength are married.

In conclusion, the results showed less than expected strength variation between weathering grades, as well as a more apparent dependency between limonite staining and defect spacing in Brisbane Tuff. These (2) factors were used to develop a 'weathering index' specific to the Tuff which gave more conservative estimates of rippability when applied to F. MacGregor et al. 1994 equations. These more conservative estimates showed Brisbane Tuff generally falls into the 'blast to rip' category when point load index or Is (50) is greater than 3 MPa. Most of the attached boreholes show Tuff as Is (50) > 3MPa even at shallow depths, with limited weathering profiles. It has been found some sites such as the Brisbane ICB cut and cover tunnel could not be ripped using large machines, and rippability was in fact overestimated for a Brisbane Tuff site (Royal Brisbane Hospital -

RBH) resulting in litigation proceedings, so the more conservative rippability results obtained have some validation.

Quantitative and qualitative information was gathered from boreholes and tests to apply to MacGregors regressions to justify all numerical results.

Seismic data (from similar Brisbane Tuff geology) mirrored these more conservative values when applied to MacGregor regression number (11). The equation used gave a more accurate coefficient of regression than equation (6) which weighted heavily on UCS and weathering characteristics. It is suggested that if a site specific weathering is derived to modify the MacGregor numerical weathering rating, it may improve the accuracy of the rippability assessment.

Also, it was shown the correlation of pointload index (Is 50) to unconfined compressive strength (UCS) is much lower for Brisbane Tuff at (17.6), than the generally used correlation of (20-24) for most rock types. These results were justified by relevant literature based on extensive testing in the same area by another author.

Another conclusion is that although Brisbane Tuff may be classified as a homogeneous rock, varying degrees of welding and alteration exist within the deposit possibly due to depositional cooling units and proximity of the ash-fall to the underlying conglomerates. This may have implications when excavating or tunneling on designs based on limited borehole information. It is proposed that sections of highly welded porphrytic Tuff and unwelded Tuff can co exist within metres as found whilst drilling large diameter piles at Windsor, possibly ranging in strength from UCS 0.1MPa to UCS 150+ MPa. At the time of submission of this paper the 12m diameter TBM (tunnel boring machines) are to shortly commence boring (December 2007) in areas directly investigated for this research. The clients expectations are the TBM's will advance at 20m per day, so it will be seen if tunnel boring progress is hampered by zones of highly welded 'porphrytic' rock.

Future work may include an application of the methodologies used in this research to estimate rippability in other rock types including other igneous, metamorphic and sedimentary rocks. This may mean further analysis of specific rock characteristics and developing a 'weathering index' relevant for other rocks. Geochemistry and rockmass alterations may be included to develop an alternative index, or new regression equations developed using different parameters with greater accuracy.

CHAPTER 6 REFERENCES

- i) North South Bypass Tunnel Design Lot No. 0802 Zone 0 Geotechnical Report NSBT - 0802 - GT - RP - 055005[04] / Dec 2006
- ii) P. Guan, C.W.W.Ng, M.Sun, W.Tang., 2000 Weathering indices for rhyolitic Tuff and granite in Hong Kong. Engineering Geology 59 (2001) 147-159.
- Roach, A.F., 1996. Late Triassic Volcanism of the Ipswich Basin, in, Mesozoic Geology of the Eastern Australia Plate Conference, Geological Society of Australia, Extended Abstracts No. 43, p 476-484
- Tamar Topal & Burak Sozman, 2001, Characteristics of the Weathering Zones Developed Within the Tuffs of the Midas Monument. Turkish Journel of earth Sciences, Vol. 10, 2001, pp83-91
- "Rock mechanics in Engineering Practice", K.G. Stagg and O.C. Zienkiewicz, Division of Civil Engineering, School of Engineering, University of Wales, Swansea, John Wiley & Sons, 1969
- vi) D.U. Deere, A.J. Hendron., F.D.Patton and E.J. Cording, 'Design of Surface and Near – Surface Construction in Rock', Symp. Rock Mech., 8th, Minnesota, 1967.
- vii) Burt G. Look and Stafford G. Griffiths, 'An Engineering Assessment of the Strength and Deformation Properties of Brisbane Rocks', Australian Geomechanics September 2001.
- viii) F. MacGregor, R.Fell, G.R Mostyn, G.Hocking & G.McNally : The estimation of rock rippability, Quarterly Journal of Engineering Geology, pp27, 123-144, 1994.
- ix) G.S Pettifer & P.G Fookes : A revision of the graphical method for assessing the excavatability of rock, Quarterly Journel of Engineering Geology, pp27, 145-164, 1994
- S.L Quane & J. K. Russell : Ranking Welding Intensity in Pyroclastic Deposits, Research Article for University of British Columbia, Earth and Ocean Sciences (EOS), Springer – Verlag 2004.
- xi) Michael F. Sheridan & Yunpeng Wang : Cooling and Welding History of the Bishop Tuff in Adobe Valley and Chidago Canyon, California, Journel of Volcanology and Geothermal Research, 142 (2005), pp119-144.
- Xii) J. R. Riehle, T. F. Miller and R. A. Bailey, Cooling, degassing and compaction of rhyolitic ash flow Tuffs: a computational model, Bulletin of Vulcanology, Springer Berlin / Heidelberg, 1995
- xiii) E. Hoek and J.W Bray : Rock Slope Engineering, Institute of Mining and Metallurgy, London, 1974.
- xiv) AS1726-1993 : Geotechical Site Investigations : Standards Australia
- xv) TP4 : Rock Description, Golder Associates, Revision Level 3, April 2002
- xvi) Caterpillar: "Caterpillar Performance Handbook", Edition 33, Caterpillar inc., October 2002.
- xvii) Golder Associates report 00632017 MD ICB, June 2000

APPENDIX A – PROJECT SPECIFICATION

University of Southern Queensland Faculty of Engineering and Surveying

ENG 4111/2 Research Project **PROJECT SPECIFICATION**

FOR:	Stephen Schuh
STUDENT NO:	0019920352
SUPERVISOR:	John Worden
TECHNICAL ADVISOR:	David Starr

PROJECT AIM: This project aims to measure / correlate rock density, point load index, unconfined compressive strength (UCS), average defect spacing and weathering index for Brisbane Tuff's of similar weathering profiles, then devise a rippability index which could be used to determine costing and excavation properties.

PROGRAMME: Issue A, 04 April 2007

1. Determine suitable Brisbane Tuff site / sites which have similar weathering profiles and 'formation / geological properties' (i.e. welding properties, no folding but vertical weathering profiles)

2. Examine existing core logs / defect logs and test result data. Choose samples / boreholes for analysis and view existing test data and conduct UCS testing, point load testing Is (50), and other tests where required.

3. Start thinking about what could be done with rock strength / weathering / fracture spacing data for the Tuff in regard to correlations.

4. Demonstrate a correlation between properties, such as strength, fracture spacing and weathering to formulate a useful 'rippability index' for this rock type.

Agreed;

John Worden:

(Supervisor) Dated: 4 /4 /2007

Stephen Schuh:

(Student)

APPENDIX B – CORE PHOTOS

PRELIMINARY REPORT OF PHOTOGRAPHS: NST207

COORDS: 53213.0 m E 161022.0 m N BCSG02 DEPTH RANGE: 1.85 - 19.00 m SURFACE RL: 9.10 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 25.00 m

DRILL RIG: FD500 DRILLER: Foundril DATE: 3/10/06 LOGGED: SS CHECKED: LBM DATE: 2/01/07

PRELIMINARY REPORT OF PHOTOGRAPHS: NST207

CLIENT: LBBJV PROJECT: NSBT LOCATION: RNA Showgrounds JOB NO: 06632062 COORDS: 53213.0 m E 161022.0 m N BCSG02 SURFACE RL: 9.10 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 25.00 m

DEPTH RANGE: 19.00 - 25.00 m

DRILL RIG: FD500 DRILLER: Foundril LOGGED: SS DA CHECKED: LBM DA

PRELIMINARY REPORT OF PHOTOGRAPHS: NST206

COORDS: 53234.0 m E 161049.0 m N BCSG02 SURFACE RL: 11.80 m DATUM: AHD INCLINATION: -64° DIRECTION: 011° HOLE DEPTH: 29.08 m

DEPTH RANGE: 1.60 – 18.70 m DRILL RIG: FD500 DRILLER: Foundril LOGGED: VAL DATE: 14/9/06 CHECKED: LBM DATE: 2/01/07

PRELIMINARY REPORT OF PHOTOGRAPHS:

NST206

LOCATION: RNA Showgrounds JOB NO: 06632062

COORDS: 53234.0 m E 161049.0 m N BCSG02 SURFACE RL: 11.80 m DATUM: AHD INCLINATION: -64° DIRECTION: 011° HOLE DEPTH: 29.08 m

DEPTH RANGE: 18.70 - 29.08 m DRILL RIG: FD500 DRILLER: Foundril LOGGED: VAL DATE: 14/9/06 CHECKED: LBM DATE: 2/01/07

PRELIMINARY REPORT OF PHOTOGRAPHS: NST213

COORDS: 53332.1 m E 160625.2 m N BSCG02 DEPTH RANGE: 2.36 - 20.00m SURFACE RL: 6.63m DATUM: AHD INCLINATION: -60° DIRECTION: 045° LOCATION: RNA (Adj Douglas Wodley Dog Pav) HOLE DEPTH: 43.16m

DRILL RIG: FD500 DRILLER: Foundril DATE: 5/10/06 LOGGED: SS CHECKED: LBM DATE: 8/01/07

PRELIMINARY REPORT OF PHOTOGRAPHS: NST213

 COORDS:
 53332.1 m E
 160625.2 m N BSCG02

 CLIENT:
 LBBJV
 SURFACE RL:
 6.63m
 DATUM:
 AHD

 PROJECT:
 NSBT
 INCLINATION:
 -60°
 DIRECTION:
 045°

 LOCATION:
 RNA (Adj Douglas Wodley Dog Pav)
 HOLE
 DEPTH:
 43.16m

 DEPTH RANGE: 20.00 - 38.00m

 DRILL RIG: FD500

 DRILLER: Foundril

 LOGGED: SS
 DATE: 5/10/06

 CHECKED: LBM
 DATE: 8/01/07

PRELIMINARY REPORT OF PHOTOGRAPHS: NST213

 CLIENT: LBBJV
 COORDS: 53332.1 m E 160625.2 m N BSCG02

 PROJECT: NSBT
 SURFACE RL: 6.63m
 DATUM: AHD

 INCLINATION: -60°
 DIRECTION: 045°

 LOCATION: RNA (Adj Douglas Wodley Dog Pav)
 HOLE DEPTH: 43.16m

DEPTH RANGE: 38.0 - 43.16m DRILL RIG: FD500 DRILLER: Foundril LOGGED: SS DATE: 5/10/06 CHECKED: LBM DATE: 8/01/07

PRELIMINARY REPORT OF PHOTOGRAPHS: NST228

COORDS: 53690.8 m E 158075.3 m N BCGS02 SURFACE RL: 19.40 m DATUM: AHD INCLINATION: -60° DIRECTION 000° HOLE DEPTH: 25.00 m
 DEPTH RANGE: 5.29 – 25.0 m

 DRILL RIG: FD500

 DRILLER: Foundril

 LOGGED: SRT/SS
 DATE: 23/6/06

 CHECKED: LBM
 DATE: 30/09/06

PRELIMINARY REPORT OF PHOTOGRAPHS: NST241

COORDS: 53158.0 m E 161215.4 m N BCSG02 SURFACE RL: 9.55 m DATUM: AHD INCLINATION: -60° DIRECTION 188° HOLE DEPTH: 26.00 m
 DEPTH RANGE: 0.10 – 18.00 m

 DRILL RIG: Fox B40

 DRILLER: Schneider Drilling

 LOGGED: SS
 DATE: 7/11/06

 CHECKED: LBM
 DATE: 5/02/07

PRELIMINARY REPORT OF PHOTOGRAPHS: NST241

COORDS: 53158.0 m E 161215.4 m N BCSG02 SURFACE RL: 9.55 m DATUM: AHD INCLINATION: -60° DIRECTION 188° HOLE DEPTH: 26.00 m
 DEPTH RANGE: 18.00 - 26.00 m

 DRILL RIG: Fox B40

 DRILLER: Schneider Drilling

 LOGGED: SS
 DATE: 7/11/06

 CHECKED: LBM
 DATE: 5/02/07

REPORT OF PHOTOGRAPHS: NST257

COORDS: 53574.4 m E 158406.8 m N BSCG02 SURFACE RL: 10.11 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 36.00m
 DEPTH RANGE: 3.00 - 20.00m

 DRILL RIG: FD500

 DRILLER: Foundril

 LOGGED: SS
 DATE 27/11/06:

 CHECKED:MSC
 DATE: 18/4/07

REPORT OF PHOTOGRAPHS: NST257

 DEPTH RANGE: 20.00 – 32.00m

 DRILL RIG: FD500

 DRILLER: Foundril

 LOGGED: SS
 DATE 27/11/06:

 CHECKED:MSC
 DATE: 18/4/07

COORDS: 53574.4 m E 158406.8m N BSCG02

SURFACE RL: 10.11m DATUM: AHD

INCLINATION: -90°

LOCATION: Deakin St, Kangaroo Point HOLE DEPTH: 36.00m

PROJECT: NSBT LOCATION: Horace St JOB NO: 06632062

PRELIMINARY REPORT OF PHOTOGRAPHS: NST348

COORDS: 53220.1 m E 161377.2 m N BCSG02 SURFACE RL: 5.00 m DATUM: AHD INCLINATION: -90° HOLE DEPTH: 21.50 m DEPTH RANGE: 16.30 m to 21.50 m DRILL RIG: Fox B40 DRILLER: Schneider Drilling LOGGED: SS/AGS DATE: 21/11/06 CHECKED: MSC DATE: 2/04/07

APPENDIX C – BOREHOLE LOGS

	F Go	der ociates	NETLOS				F	IEL	DC	RIL	LIN	IG	REPORT (SOIL OR SOIL & ROCK)		REPORT OF BOREHOLE: NST 207
CONTRAC DIATUBE AUGER (ROTARY MUD P, MUD P, CASING OTHER:	TOR: CORE/I (BLADE, (AIR/WA N: /CORI W to	DRILLING Found DTHH: HAND): 0 /TR(CONE): ITER): E: 1.8	METHOD 7.1	m Cr m Su m Su m Gr m Gr m Gr m Gr	roundwa URFACE ample V roundwa roundwa	SEEPAGE Wet at Iter Level a Iter Level a Iter Level a	ved at SEI at at	EPAGE m. deg m. on c m. ot	m depth) during TRONG II n of dril . brs da . hrs da	G drilling NFLOW hrs ling at te/	ROUND	WATER Groundwater Not Encountered while	de; rilling lepth	CLIENT: $LBBJV$ PROJECT: $NSB.T$ LOCATION: RNA BOREHOLE LOCATION: E. N SURFACE RL: m DATUM: CO-ORD. SYSTEM INCLINATION: -90 . AZIMUTH: ZONE: START: $3/0/b. at 070 hrs$ FINISH: $4/0/b. at 1500$. DRILL RIG: JM ; Denetd, LOGGED: SS
Z.,	1	DR	ILLING DRILLING OBSERVATIONS					T		FIELD) SAMPI	.ing an			FIELD MATERIAL DESCRIPTION
PENETRATIO	MAIEK DEPTH metres)	DESCR	IPTION OF CUTTINGS, DETAILS OF STRATA CHANGES PROPERTIES, DRILL METHOD, DRILL METHOD,		Зd	FROM	ЕРІН ТО	00-150mr Or Run	or Rec,	300-450 R.Q.D.	N VALUE	P.P. kPa	FIELD ASSESMENT OF RECOVERED SAMPLE e.g. Soil OR ROCK TYPE, PLASTICITY, COLOUR, INCLUSIONS, MOISTURE, STRENGTH	EPTH netres) C Symbol	SOIL / ROCK MATERIAL DESCRIPTION (SOIL OR ROCK NAME, PLASTICITY OR PARTICLE SIZE, COLOUR, SECONDARY COMPONENTS, MOISTURE, STRENGTH)
L .	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Concic Fill - fim - me MD, no sandy dh gry moist - rock	DRILL REPUSAL ETC. Le - Pavement. Lay - GRAVEL. d. gravel. g. dk. Tot CLA7 (CL), 1. p. ; fine Band, 5 - nonphighe dilla	(64) brozs 1, 4-t() r-unt	5 <i>PT</i> .	1.0.		Z	Z.	4.5	ß		Sandy CLAT (CTF), by 1, gry fine med Sad, motst, still (RS)	0 0.126C	Concrete Pavement. FILL - clay & GRAVER (GC) fine-medium gravel, dask brown, moist, medium deny. Sandy CLAY (CC), less plastick, dask grg., fine sand, moist, strift. TVFF, fine grained, pale greg strightly meethined, high sheard
	· · · · · · · · · · · · · · · · · · ·	STAR	LT CORING 1-85	5.5.	>										Sex Roet log
	· · · · · · · · · · · · · · · · · · ·														
· · · · · · · · · · · · · · · · · · ·															

3	e	G	olde	r Mes	Toowon Unit1/51 Monafiel	g, QLD 4 & Secom S	Kireet			FIELD DRILLING REP	POR	T	(RC	CK)	00	ntinu Soil	ed fron Log?	Y/N	PROJECT No: 066320	EPOR	٢
ŀ			DR	LLING	METHO	DD DD	122	- T		GROUN	DWAT	FR								CHENT LBBTY	, ,	
Ī	FROM (m)	Jo M) 0	AMETER (mm)	T	METHO	00		Grou	ndwater Observed at	121111		Scoundard	ther Net I	ncounter	alide her		* to	m death	PROJECT NSBT -	•••••	• •
Ī	1-85	25	0 1	6.70	2.	NNI	LC.		sur Sur	ACE SEEPAGE SEEPAGE STRONG INFLOW		D	roundwo	nter Not (bserved	due to i	introduct	ion of	n. oopin	LOCATION: RNA		• •
			P	~] Som	ple Wet at		_ (nilling W	later Belo	• 1.8	.m dept	h	a (BORFHOLE LOCATION		•
	(.	No.	be b	Jals	loss	22-	6.0	<u> </u>	Circu Circu	narrater Level at \dots in on completion of drilling at \dots in inductor Level at $123\dots$ in at 0700 has date 4710	na / 6		otal/Par	tial Drillin	g Water	Loss ot/	'Below ≁	2.6. т		SURFACE RL:	DATUM	•
								/I	2 Grou	ndwater Level at 11:9m at 1499hrs date 41.10	6.			mm \$	tandpipe	installed	to	won or aniling m depth		INCLINATION: - 90	• AZ	21
ł	OTHER								□ Woł	es loss 22.6. 0.06	• • • • • • • •		n Compl	letion of	Drilling					START: 3. 1.10. 16. at 0	. hrs	
Ē			DRILL	ING					FIE	D MATERIAL DESCRIPTION		Tinser	t Drilling	Method	e.g. Augo	ring, Ha	mmering I	etc.		DEFECT INFORMATION	[F D.5.	Q
	DEPTH	(m)	RUN	TCR	RQD	CORE	LOSS	DEPT	H (m)	MATERIAL DESCRIPTION	w	EATHERIN	G	T	TRENGTH					DEFECT INFORMATION	A)S
Ī	FROM	TO	(m)	(m)	(m)	FROM	то	FROM	то	(Type, Grain Size, Texture, Colour, Other)	FROM	то	CODE	FROM	то	CODE	(m)	(Typ	oe, Orientat	ion, Planarity, Roughness, Coating,		D
Ē	.85	2.7	0.85	0.82	0.68	~		1.00	2.04	THE I HAN		10.00	C.I		2.0	11.11					FROM	
ľ		<i>1</i> .			×.%.		+		K 01 .	Torr, two grained to medium	1.85	2.84	SW	1:05	321	. <i>H-</i> V#	2.00	5,0,	Un , R	eSn.		
	2.7	5.7	3.0	3.0	1.81	-		•••••	<u>†</u>	darke to 106, Staining ground	3.1.	11.67	KW-		11.67		2.06		Uh Ko	J. Krahld.		
			,	F	2.43			1	1	fractures -	P	11.00	P.N.	X 04	1100	г. У.П .	2.25	$\overline{\mathcal{T}}, \mathcal{O}_{\mathcal{O}}$	46,5m	olar vener		
								2-84	4.6.	- becaring purple simple are	11.62	25.0	FR	11.67	25.0	VH	z.31	7.10° 11		Lack 1	6 7	
	5.7	€7	3.0	3.63	2.01	-	-	4.6	6.31	-buconing pole que							2.5	T. 0°. 11	l Ro	CONCEMINDET	0.11	
1				1.08.	·	«·····		6-31 -	1.7:96	- becoming purple pake grey	[]	[2.54	J, o-s", (U. Ro	Sa rellace br.	6.87	
1	7:7	11.78	3.08	2.10	3 100			17:96.	19:1.,	- becoming pele gres							2.57	J, 5', 1	h. R.	Vaclay		1
	170			17		·····		19:(23 8	- becoming pate give & purple.		.					284	J, 10-15°, 1	1. , Ko ,	Vo clas & fine Rand Sn pelles	6 8.13	1
	ŀ Įč	14:5	21	e (19)	200		·	12 01	06.0			ļ					2.98	J, 10°, S	+, Ro, V.	classichlack mineral So pelluis	br.	
ŀ		1-1<11	201	3.0%	2.8			13-06	25.0	- becomen purple a pale gra		ļ					3.07	J.15.20°,	Un, Ro	, Sa Yellows brown	. 17:75	
ľ	£	1.2.4	5.02		.qL												3.26	7,5°, U	, R.v.,	Vn fine Sand		ł
į	7.54	20.41	2.08	3.08.	128	·				End of Barrhole 25.0							5.3	5,10°, U	<u>+ , Ro</u>	, Sn yrllow bi + blad	17:4	ł
ľ		·:.) X		100	- Uft					Und by Josephere 2000					· · · · ·		356	J, 10-15", (<u>((., K.</u> .,	Sh black		ł
2	046	23 So	3.1	300	2 23	-	Ξ.			<i>¥</i>							2:1.1. 4:07	(7 2 11	r., Ko,,	Su fellers br.		ł
Ι.	,.		· sette										••••				4.15	J.rº U.		Se relians b.	(ł
2	3.56	¢		1,00	100.					K 2							5.05	CZ. 10-15°,	Um, Ro.	time as only gravel So black	l	ł
																	5.09	J. 25°, 4	la Ro	, Sn rellois br.	,	t
ŀ		•••••					.,										6 17	T. 10°, U	Ro ,	Sn reller brown	1	ľ
ŀ																	6.31	J, 10°, UL	, Ro , .	Sn jellas brow,		ľ
ŀ	•••••																.35	Z, 10-13°,	U., Ko ,	medangular gravels-fine Sand, 20.	4	l
ŀ	•••••						····*										66	Γ , 20 , 25°, U	lu, Ro	Sn Yellows brown		I.
ŀ	•••••		•••••	•••••	·····	••••••											.87], 30°, Ц	n. Roz	Sn Jellow . brown.		ŀ
ŀ	•••••		•••••		·····												1.41	J, 35°, PI	, <u>Si</u> ., S	- yellow brown & black		
ŀ	•••••	•••••	•••••								÷						5:13	SZ , 30-33	PI, S.	time gravel, Vaclay, 40mm	.	ŀ
ŀ	•••••				·····f		•••••										1.14	1,0-5	UL, Ro,	Sn rellevobr & black		ŀ
ŀ							••••••						••••			····· "	11	7 200 1	1, Ko , n	ed grand on pelloobis black	Zom	
	• • • • • •	•••••											K					c) @ , u	γ , no , p_{U}	ed gravel. In yellis how 2 black	10.10-15	h.,

A	F	G	olde soci	ates	Unit1/ Mons	ong, QLD & 51 Secom field, QLD	4066 Street 4122			FIELD DRILLING REP	POR	Τ (RO	CK)	C	ontini Soil	LOG?	REI PROJECT No.: 06632062	PORT	OF	BOF	EHO	LE: NST 207
			DR	ILLING	MET	HOD				GROU	NDWAT	R							CLENT: LBBJV				UNLEI	0
Γ	ROM	<u>مر</u>	510	MALETER		MET	100			roundwater Observed at		<u> </u>		ter blat i			-		DENIS ASST			•••••		
F			1	Charly	+					URFACE SEEPAGE SEEPAGE STRONG INFLOW			oundwa	ter Not i	Chosened	rea whi	e				•••••	•••••	• • • • • • •	•••••••••••••••••••••••••••••••••••••••
			••••	• • • • • • • •	··•	•••••	• • • • • • •			ample Wet at		0r	illina W	nter Rela	Udserved	due to	introduc ath	tion of	LOCATION:		•••••		•••••	
· ·	•••••	····		•••••	···	•••••	• • • • • • • •		🗆 G	roundwater Level at m on completion of drilling at	hrs	□ 1₀	tal/Per	liat Drittin	na Water	Loss of	t/Below		BOREHOLE LOCATION:			E		N
	•••••		···	• • • • • • • •		• • • • • • • •				roundwater Level atm atbrs date/	<i>.</i>	В	rehole	baled to	m	depth o	on compl	etion of drilling	SURFACE RL:m I)ATUM:			co-ori	D. SYSTEM
										roundwater Level atm athrs date/	<i>[</i>	\Box .		mm \$	Standpip	e Instalk	edito	m depth	INCLINATION:	· AZ	imuth:			
0	THER:								Ц.		••••••	on	Compl	etion of	Drilling				START: 3. / 10 / 6. at	rs	_ FI≬	IISH: 4	. 610	
			DRIL	ING					F	IFLD MATERIAL DESCRIPTION		*Insert	Drilling	Method	e.g. Aug	ering, H	ammening	g etc.	DRILL RIG: J.M. Dorald . [E.D.5.0	20.) LO	GGED:	X .	helmon
1	epth	(m)	RUN	TCR	RQD	COR	E LOSS	DEP	DH (m)			TUCOW		1			+	1	DEFECT INFORMATION	AD				COMMENTS
			LENGI	1 (m)	1 (m)		T			(Type, Grain Size, Texture, Colour, Other)	W2	ATHEMING			STRENGT	1	DEPTH	(Type, Orienta	DEFECT DESCRIPTION tion, Planatity, Revenuese, Conting		DEFECT	REQUEN	CT CT	samples, in-situ tests,
Ľ		10	(14)	1	1/10) FROM	10	FROM	TO		FROM	то	CODE	FROM	то	CODE	= ^(m)	()))))	Thickness)	FROM	TO	No.	FREQU	DRILLING NOTES
																	10.70	CT OF II'	0. 0. 1	-	+	F "	1	
_	I				1	1	1	T	1				• • • • • •	·····	·	·····	62.70	Le, Alu, K	Se, time to red un Sukasgal	••••••	.	+		
1				1	1		1	1			•••••••		••••		·····	·····	15.0	J'avel, Sh re	Mais brons, 6-10mm	.	.		.	
1	····	•••••			1	· • · · · ·	· • · · · ·	1	· • • • •		· · · · · ·		····;··		[J. 75 , Uh, K	P. clar Vn , Sn ye Heis brog	s	.	.	.	
···	····	•••••			· [· · · · ·	••••••	••••••••	f	· · · · ·		+					 		J. 75°, U. , K	o, day Vn, Sn rellars brow		.	.		
	••••	•••••		·····	·····	• • • • • • •	· · · · · ·	+	+	•••	. .					 	.	healed.				.		
·	···			·····		• •••••										.	18.28	J, 20°, Un Ro,	Infill fice tane do Sand					
					.			.								[18-45	J. 75°. Un. Ro	Infill fine to med Sand	1	1	1		
							.	.	. 								18.46	CZ. 10°. Un R.	fin to reading opporter erons	/		1		1
·							.	.	.				-			[5mm	na sana wiji o jini	ľ.,		 	ł	
					.]	.		İ.,				ŝ.				1858	TTOUR	la de	•••••			ł	••••••
											11						19.70	TZOSD	cracyn	• • • • • • •			·····	
							1	Γ	T		11					,	19.21	T 2 - 0 CL P	CLAY. V. , Sn. Yellow brows			,	••••••	
						1	1	1	1		11						1912-	T 0-8 1 0	, Sa relless brows	· · · · · · ·	•••••			
1					1	1	1	1	1		++		····				20.1	. 10 j. Un. Ko.	., tine angulas gravel, Sn				ļ!	
			• • • • • •		1	+	1	•••••	÷	• •	<u></u> †·····∤							fellers brown.	1-2 mm				ļ!	
			•••••		·····	.	†	+	+	•••	<u></u> ∔	·····					23-35	J,75°, Un, Po,	file asquales gravel, 1-2 mm				ļ!	
····	· · ·		• • • • • •				 	 			.						.		·····				[]	
	· · · [· ·		•••••		 	ł	 	.	.	•	ļļ	ļ.	į.											
	· · · · ·					.		.			ļļ													
	·					.	.	ļ	ļ		. l							F.o	# 10,25.0				[]	
J								Π										•••••	[·····]	
 						.	l					ľ						*****		•••••	•••••		·····	••••••
												·····[·				•••••					•••••			
								[[tt				•••••		••••••			·····				•••••
_	1					1	[·····		[h													
						1			·····		-												,	
				•••••					• • • • • •		·····	·····												
		••••	• • • • • •	•••••		·····	·····				.													
				•••••							.									ľ	T			
							·													1	1			••••••
	 											Τ					1			t	·····†			
-		-					I											••••••••••••••••••••						I

•	Ĵ	X	Sold ISO	er jates				<u>FI</u>	ELC) D	RIL	LIN	G	REP	ORT (SOID OR SOIL & ROCK)			REPORT OF PROJECT No.: .06632-62	BOR	EHOLE: 206
				RILLING METHOD								G	ROUNE	WATER			-	CLIENT: LBBJV		
	DIATUB	actor E cof	:	GUUN()		ROUNDING	ter Observe SEEPACE	xlort		n depth ⊡len	during (iniliing F1 AW			Groundwater Nat Encountered while	u o	m. depti	PROJECT:N&BT		
	AUGER	(V, T	-C, H	ND):		iample W	Vet at		. m depi	ի	NUNIG IN	. hrs		L	J groundwater Not Observed due to introduction of			LOCATION: R.NA		
	ROTAR	r (BU) Y (AIR	/WATER	CONNE):		roundwa	ter Level a	t	monc	mpletion	of drilli	ng at	hr	• [] Total/Partial Drilling Water Loss at/Below	m		BOREHOLE LOCATION: SMANLY, SMA LON TY	Ϋ́Ε.	Qr. 1999. AFrit
	MUD P	, N:.			IЖ.	roundwa	ter Level a	t.l.10. . 30.	m. ot	<u>. ג</u>	brs dot	. K. /	.99.1		Screhole bailed tom depth on completion of	drilling		INCLINATION -64 AZIMITH	0 ⊈_(0-0RD. SYSIEM
	CASING	; ₩1	201412:. to	.1,.60m. to291.90m.			iter Level G	u	,.m. ot		nrs con	e .00.7	.sci. j.	9480., . L	an Completion of Drilling	n depth		START: 14. 199. 196. at 19 hrs FIN	SH: 18	20112 105 at 14 hrs
	OTHER				L									4	wert Drilling Method e.g. Augering, Hammering etc.			DRILL RIG: JOHN MC. DOVALD. LO	GED:	UAL
	F		-	DRILLING DRILLING OBSERVATIONS			-		I	-	FIELD	SAMPL	ING AM	ID TESTIN				FIELD MATERIAL DESCRIPTIO	N	
			-18	DESCRIPTION OF CUTTINGS, DETAILS OF STRATA CHANGES		ᇤ	DE	PIH	0-150mm	150-300	300-450	N WILLIE	P.P.		FELD ASSESSMENT OF RECOVERED SAMPLE	\neg) e	OR ROCK MALEMAL DESCRIPTION (SOIL OR ROCK NAME, PLASTICITY OR PARTICLE	ENC.	STRUCTURE AND
		WATE		Minor Properties, drill method, drill refusal etc.		٤	FROM	то	Run Length	Rec. Length	R.Q.D. Length		kPa		e.g. Soil or rock type, plasticity, colour, inclusions, moisture, strength	PEPTH	NC SV	size, colour, secondary components, moisture, strength)	MOISTU	OBSERVATIONS
UTTEN		14	0													0		BOT CONCINENT	//	SNOTE BORENOLE
	AMM	.	0.12											.		p	4/]	FU: clayey Gunz, smell to	ηZ	(inclination is
R.		1	4					•••••						.			. .	We diven one, Snown, with) 764°
	HVIH	+	19	some fire to medium rock	trapu	÷									·		.	serve raid tou ilt		\frown
	NMLC:	ŧ…ł												.		00	6 SC	Soudy Clay / Claydy SAND, fire	NF.	
		ł	f .)										.			4	to und in sond, fale		
	···	+	···•											.			4.4	Jey and fall some pur		Mendual Del
		$\left \cdot \right $	•	······				· · · · · · · · ·						 			<u> </u>	flar clay, with some west good		
-		$\left \cdot \cdot \right $	··· †·					•••••		·				.			<u>,</u> ™]	setting hander - with some fire.		Extremely wes the
	+	†••	••••	••••••										 			+ -+-	. D. WEahum. grance - orange Low	<u>} H</u>	roch
		$ \cdot $	····					•••••		•••••				.			?	Agen - Tuff		•••••
		1.1	•					•••••						••••••	••••		┥┄╟	······		
		1.1												•••••			1.1		·· [···	*** * * * * * * * * * * * * * * * * * *
		1.1												1			f ∩†	· · · ·		•••••
														1			11			•••••
														46 46	••••		1.1			•••••
															1	1	11			
														I			11			
	.																			
																	11			
]]]			
		Į																		
	[.						
	.													.						
		.							.					.						
;	[.							.		l				·····					
		.							.			İ		.						
		.							.		ŀ 	ļ		ļ						
					1				1					1			11	, , , , , , , , , , , , , , , , , , , ,	. r	

Ŧ	<u>F</u> G	olde ioci	T Aites	Uniti/:	ong, QLD 4 & 51 Secom 5 5-44, QLD 4	KUGG Street			FIELD DRILLING RE	POF	RT (<u>R0</u>	<u>CK</u>)	ľ	SOIL		PROJECT No.: 06632063	PORI	OF	BOR	EHO	2. of 5
		DR	ILLING	METH	HOD	1122			GROU	INDWA	TFR							CLIENT: LB.BJV					
FROM	10		WHETER		METHO	00			induction Observed at m death during drilling			munchind	ar block f	-	and unbits		t in m dauth	PROJECT: NAB T					
	20.0	2 50		-			-li	SUR	FACE SEEPAGE SEEPAGE STRONG INFLOW			mundriat	er Not (hserved	due to	introduc	ion of						
<u>'.</u>	44.0	<u>5197</u>	1.36.		<u>цс.</u>		···· (Sam	ple Wet athrs			nilling Wa	ter Belo	¥	.m.dep	th		LUCATION:					
		•••	•••••	···	•••••	•••••		Grou	indivater Level at m on completion of drilling at	hrs		otol/Part	ial Drillin	g Water	Loss at	/Below		BOREHOLE LOCATION: 04	WAVEY.	•	E.		N
		··•			•••••	•••••	[⊠ Grou	indiwater Level at .1.8na at	1.2.6	🖸 🛙	orehola l	aied to	m	depth o	n compl	ation of drilling	NORMACE KL:	DATUM:		0	O-ORL	. SYSTEM
	····	·· .			• • • • • • • • • •		¦	⊻JGrou ⊐	ndwater Level at <u>9.4</u> m atthrs date <u>1.12</u> /.09.	1.00	🗀 .		.mm \$	tandpipe	Installe	d to	m depth		. A/J			,	ZUNE:
OTHER:										•••••	•Inser	n Compe Drilling	tion of Nethod	Drifting e.a. Avoi	erina. He	mmerina	etc.	DRILL RIG:	INS	10	GGFD:	··· <i>f</i> ····	. <i>j</i> dI nrs
		DRILL	ING					FIEL	D MATERIAL DESCRIPTION							T		DEFECT INFORMATION	``		oon a		COMMENTS
Depth	(m)	RUN	TCR	RQD	CORE	LOSS	DEPT	H (m)	MATERIAL DESCRIPTION		WEATHERIN	G	5	TRENGT	1	DEPTH		DEFECT DESCRIPTION	AD	s 🗖	FF		
FROM	TO	(m)		(m) (X	FROM	то	FROM	TO	(Type, Grain Size, Texture, Colour, Other)	FROM	1 TO	COLE	FROM	TO	CODE	(m)	(Type, Orientat	ion, Planarity, Roughness, Coating, Thickness)	FROM	TO	No.	FREQU	DRILLING NOTES
1.6	2.5	0.9	0.9	0.56		\square	1.6	6.67	VILIFF for pay onen with Vois-auon	. 1.9	5	MW	19	29.08	H.	2.01	J. 70-90°, St, R	6. St. (On cuol orround fracture) 1.6	3.7	12/21	5,2	
			- OT					.	las isclusions from 1 to 12 mm	5	20.5	84				2.04	J.60, U. R. S	audu dau 2mm					
2.5 5	.42	2.92	10	103					gonex lale encuer to encure	25	29.08	F			[2.12	DS, 70°, fire arguel	Sand & clay 30-40 mm	37	417	4/0.43	8.5	SMEALED FORE?
									staining on one and in and around				1	1		2.30	J. 80° 11. L.	and Sclay 10 mm			1		
5. \$ 2 8	3.42	3.0	3.0	2.05					frachere					· .		2.38	J. 90°. U. R.	h	4.17	22.10	3%	25	
							6.67	19.7	Pole been Pole pille and tole fuelle	7	1					2.75	Jos Un B	Mr. Vaud 1 u.m.				p 	
8.42 1	1.45	3.03	3.03	3.82		I I			have been been to the second second	1	1	γ,				276	7800 11. 0.	N N N		†····	•••••	•••••	
T						ŀ		—		+						2.96	J. 80 11. 0 1	······					
1.45 4	4.45	300	3.0	291			197	982	Pole pupile cons with pole press und		••••••••		ý,			374	T 60-90° 22	Αφ η Γ.	· · · · · ·		†·····		
			1.1.			·····	. 1. 1. 7.	12.1.	Crowd From ~ Tolk Ore	••••••	••••••••					2 22	7 80 11 0 (6, Uh	• • • • • • • • • • • • • • • • • • • •		¦		
14.45 11	4.45	3. c	2.0	3.0	1		•••••		Maria and off said (Mari	••••••••					·····	340	1402 11 1	referrentedcoch	20 10	20 04	6	0.86	t. VENt
			12. <u>19</u> 4	r			•••••	····,	water is a i	•••••••		•••••	•••••			242	7. 10. 1. Ma., Ko.,.	.CAA	14.10	2-1.00	6.40	0.00	
17.95 2	b.45	3.0	3.9	2.93			220	262		·+····		•••••				3 12	10 0 0 1. Ko,	$\frac{\gamma}{\gamma}$	· [· · · · · ·				
			12.10	Z.31.	·····		12/T.	20.5	par profile end. fale grey con	-	+	•••••				3.00	7.20.30 Mu, k	6,.elay.Liotil.!).,	.				
2 45 2	2.45	3. OD	2.0	1:40	1	····· f	20.3.	20.00	aune Lawins with fait by leneuted in	÷	+		•••			4 0	7,50°, Un, Roy	clay (10fill?), 1.mm			····'···		
			K.1@.	F	·····		L.t	271.92	Source as alove (+)		+	•••••				6.4		lay (10Hll. ?). 2 mm	.		•••••		•••••
22.45 2	< 4<	 300	3.00	3.00	<u>∤</u>				E a la la	·	+			•••••		1.17	1,50°, 12, Pa., S):	.				
	÷		IQP.		·····				the of lou	+	•	•••••				7-36	.,		·····	• • • • • • •			•••••
2545 2	24 64	 8 00	3:05.	3.05						· · · · · ·	•••••••			••••		4.5+	n n n n .,						
0.10 4	.v	5.05	1 @.,	·(0?:						+				•••••		T, 35	6 6 6 <u>6</u> 7	-					
28 00 10	202	050	0.58	0.58	∤····∤				· · · · · · · · · · · · · · · · · · ·	+	+	•••••			· • • • • • •	1.44	2.70°, R, Bo,	51	 				
200	1490	5.20	:. 1 99.	<u>. (@</u>	łł						+	· <i>·</i> ····		•••••		4,47	. 70°, Un, Ke,	St, Sound Imm	ļ				
•••••			Þ							.	. .					9.96	J. 70. Un. C.	h u	ļ				
·····		Ç			∤ ∤	·····				. .					•••••	6.20	J.S. R. R. Ja	udy day Imm	ļ				
					<u>↓</u> ↓											5.15	J, 30°, Un, Re,	C.n	ļ				
					↓ ↓											5.57	J. Bo', Un, Ro	87					
					ļļ					.						S.SB	y ii u		[]				
									. <u>.</u>	.						5.63	J. 40-80' St. R	o, Qu					
					Į					I						6.08	J. 80° St. Ro	VENERT.					
										[6.30	J. S. U. D.	sr	r 1				
					r T	. T				T	T								1	••••••	••••••		

Deprint Internet Internet DRILLING Image: Second sector Observed at		PUF	((RU	CK)		SOIL	LOG? Y/N	PROJECT No.: 08032061		UF	DUK	EHULI Sheft	NF 206
Dividuality of main METHOD Image: Support of the supp	COULINDWA	I INIDWA	TD .			-				INCOLOT NO	**				01
Image: Standard Construction Conserved at the standard construction of the standard constructinet of the standard construction of the standard construction of	GRUUNDWA	UNDWAI								CLIENT:					•••••••••••••••••••••••••••••••••••••••
Image: Subject Constraints Image: Subject Constraints <td< td=""><td>ing</td><td></td><td></td><td>Groundwa</td><td>ter Not i</td><td>Encounte</td><td>red whil</td><td></td><td>• tom.depth</td><td>PROJECT:</td><td></td><td>h</td><td></td><td><i>.</i></td><td></td></td<>	ing			Groundwa	ter Not i	Encounte	red whil		• tom.depth	PROJECT:		h 		<i>.</i>	
Considered and the set of th)W			Groundwa	ter Not (Observed	due to	introductio	on of	LOCATION:	μ°		<u> </u>		
Construction Level at	hirs .			Dritting W	oter Belo	w	.m.dep	oth		BOREHOLE LOCATION:	/		F		N
Control of the set of the se	athrs	hrs		Total/Par	tial Drillin	ng Water	Loss a	/Below	m	SURFACE RI: md	DATINA			0-080	SYSTEM
DRILLING FIELD MATERIAL DESCRIPTION DPTH (m) RNM TCR R00 CORE LOSS DEPTH (m) MATERIAL DESCRIPTION RRM TO (m) (m) (m) (m) (m) (m) (m) RRM TO (m) (m) (m) (m) (m) (m) (m) RRM TO (m) (m) (m) (m) (m) (m) RRM TO (m) (m) (m) (m) (m) RRM TO (m) (m)		•		Borehole	baled to	m	depth	m completi	ion of drilling	INCLINATION	• A78			0 000.	7045
ONER: PIELD MATERIAL DESCRIPTION DEPTH (m) RNM (m) ROM (m) ROM (m) CORE LOSS DEPTH (m) MATERIAL DESCRIPTION FROM T0 (m) (m) (m) (m) FROM T0 FROM T0 MATERIAL DESCRIPTION FROM T0 (m) (m) (m) (m) FROM T0 FROM FROM FROM		• • • • • • • • • • • • • • • • • • • •	·· 🖵		mm :	Standpip	instali	nd to	m depth	START: / / at	hre h	EIN	licu.	, ,	/ at has
DRILLING FIELD MATERIAL DESCRIPTION DBPTH (m) RUM LENETH (m) TOR ROD CORE LOSS DEPTH (m) MATERIAL DESCRIPTION FROM TO (m) (m)<			•inse	t Drilling	Method	e.a. Aua	erina. H	ammerina	etc.	DRILL RIG:	110	10	IGGED.		/uiurs
DEPTH (m) RUN LLNGTH (m) TOR ROD CORE LOSS DEPTH (m) MATERNU. DESCRIPTION (Type, Grain Size, Texture, Colour, Colour, Colour, Co					modiod	0.9. 7.8.9		I		DEFECT INFORMATION		Lu	0010	Ī	CONNENTS
IDENCIN ID ID <t< td=""><td></td><td></td><td>FATHER</td><td>WC:</td><td>T</td><td>STRENGT</td><td></td><td></td><td></td><td></td><td>ADS</td><td></td><td>FF</td><td></td><td>COMMENTS</td></t<>			FATHER	WC:	T	STRENGT					ADS		FF		COMMENTS
	r)	<u> </u>		1			T	DEPTH	(Type, Orientati	ion, Planarity, Roughness, Coating,	D	EFECT I	REQUENC	Y	SAMPLES, IN-SITU TESTS, DRILLING MOTES
	FRO	FROM	TO	CODE	FROM	TO	COD			Thickness)	FROM	TO	190. (m	-ENCY	
					T			696	T200 11. A	I with one in	1				
				· ····	•••••••	· [·····	•••••	2 22	T 1 00 4 (MULOWITS. A TELININS.	• • • • • • • • •		+		
	•••••	••••	· • • • • • • • • • • • • • • • • • • •		••••••	•••••••		17.22	, 90.1. Mh., m.,.	н г [.]	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	+		
		••••	+				·····	7.30	1,00°, Un. No,		••••••				
			·	·				7.34	3.603 lh, Ro,	······					
							.	728	J. 30°, Uh. As.	sandytilay Ama		.	1		
								7.38	J. Bor U. A. I	imanite Activity + Hack carrie					
								8.0	J. Jo. Il. No line	mile Maining sand telan hum	1	l	1		
			1		1		1	8.65	The U. A. L	An a the state of a	• • • • • • • • • • • • • • • • • • • •		†·····		
			1		1			841	1 7.2 00 0 1 1	handland		• • • • • • •			
			+	•				600	T. (swant. Maining, Newson	- -		+ · · · · · ·		•••••••••••••••••••••••••
			+	•		• • • • • • • •		0.91	J, 60, 16, 10,	un Quik Herstang	• • • • • • • • • • • • • • • • • • • •		· · · · · ·		••••••
			+					102.5	J, to, Un Ro,	n 4					
								9.96	57,50°, Un 16, fr	sequented asch. 12mm.					
								10.34	J.60°, U. 10,	Liwowitz Staining					
							l	10.43	***						
								10.56	J. 20°. 14 A. V	inouit staining day I hum				ľ	
			1	1		1		10.76	· · · Pa ··	Stud at a star			1		
			1			l		har	T 7 0 00 A. 1	lation that is a long and			÷		••••••
			+	•••••••					1. 20 H. 0. 1.	Yemank itenning, healed	÷	•••••	+·····		••••••
	••••••	···	+	· · · · · ·				1.10	1	Wank. Herring, healed	1		·····		•••••
	·····		·	·[·····		·····		11. 53	2,303 H, P,		· []			·····	
			. 	· · · · · ·				1(37	J, 30°, H Sm	patchy beneer	. .				
			. 					1091	7,503 St. P. C.	A					
						l		11.99	* * * * *					T	
								11.81	J.750 U. C. Q	laren I limanik (Oalio					
		1	T	1	· · · · ·	· · · · ·		12.1	J. Gos II. A. D.	Tal.	11	•••••			
	•••••		1	1		l		17 25	1200 11 1 10,-19	meny render.	ł		••••••		
			1	·····				10 50	-, -, 0, , 1, MA, 1, (k, MM) ⊐ ⊃, 0/1 A 1,	inske alering, Umented, 12-12m	<i>"</i>	• • • • • • •			
	••••••		+	· · · · · ·				12, 56	J. 50 JUL, 10, 44	anite(m.m.	••••••				
			· · · · · ·					12.64		et Uhy verser.			ļļ		
			. 					12.60	J. 80. U. No ("	II				
*****								13.01	1.80-90° 54	to potchy werer					
			1					13.17	J,700, 11 No	, patily veros	[]]		[]		••••••

	FG As	olde	r vies	Toowo	at Secom	4066 Street			FIELD DRILLING RE	POR	Τ ((<u>R0</u>	<u>CK)</u>)	n a c	NTINU Soil	ED FROM LOG? Y/N	REF PROJECT No.:	20R
-		DR	LUNG	METH	OD	+122	Т		GRO	INDWATE	R							CLIENT:	/
FROM (m)	70 (m) D	WHETER (mm)		METH	00		Grou	undwater Observed at	.hrs		round wat round wat rilling Wa otal/Fart	ter Not E ter Not C ater Belon ial Drillin	incounte Voserved Voter	red while due to . m depi Loss at,	introducti th /Below		BOREHOLE LOCATION:	e
other:				<u> </u>				Grou	undwater Level atm athrs date/		o tinsed	n Corapi Drilling	odied to mm S etion of i Method (tandpipe Drilling e.g. Aug	aeptn o Instalie ening, Ha	n compe d to mmening	ion or dnilling m depth etc.	INCLINATION:	• A
		DRILL	ING		т		1	FIE	LD MATERIAL DESCRIPTION									DEFECT INFORMATION	
DEPTH	(m)	RUN	TCR	RQD	CORE	LOSS	DEPT	H (m)	MATERIAL DESCRIPTION	WE	ATHERIN	G	5	TRENGT	H .	DEPTH	(Type Orientat	DEFECT DESCRIPTION	Ľ
ROM	TO	(m)	(TH)		FROM	TO	FROM	TO	(Type, order Size, Texture, Colour, Outer)	FROM	TO	CODE	FROM	TO	CODE	(m)	(1)(0) 01101101	Thickness)	FRO
																13.5 13.74 13.87	J. 60°, ll, le,	tely, resider mit Aninip, Hace reners, Carly lo onit Nainip, Lace reners, Carlo	
										· · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		13.88 14.06 14,13	J. 40°, U.O. Ro, St. J. 65°, R. B. C.	himonite healed 4mm	
													 	·····		14,18 14,3 14,47	J.603 12, B, St. 3 303 Un B, M, J.703 12, B, St.	himonite healed . 4 mm.	, ,
										······						14.4 15 15.44	J.75°, U. Ro, 1 J.75°, U. Ro, 1 J.70°, U. Ro, 8	Heries. Hung. verses. V. Mark. reves.	
												· · · · · · · ·	······			12.76 5.76 6.03	J, 60°, UL, R, J, 60°, II, R,	Rotely, benes. St. clay.lmm	
			·····	•••••						· · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		16.15 16.13	J. 20°, St., Ro, S	Z. IC-or, to, paring venen. 7. fatuy renur.	
												······		· · · · · · · · ·		16.99 15.99	J, 60°,	4 A	
			·····	••••••							·····	·····			·····	.16.16 .16.32	J, 20°, 14, 16, J, 20°, 14, 16,	" M, healed.	, ,
		·····									·····	· · · · · · · · · · · · · · · · · · ·							
		•••••										•••••••		•••••	·			zee following fage	

٠

Associ	aics			, <u></u>	اعاجا			ال البيا.		SOIL & ROCK)		PROJECT No.:		SHEET
DR	ILLING METHOD							GR	ROUND	VATER		CLIENT:		·····
CONTRACTOR: DIATUBE CORE/DTHH: AUGER (V, T-C, HAND ROTARY (BLADE/TRICO ROTARY (AIR/WATER): MUD P, N: NMLC/ /CORE: CASING HW to		Grounds Grounds Grounds Grounds Grounds Grounds Grounds Grounds	rater Observi E SEEPAGE Wet at water Level a water Level a	ed at SEE at at	PAGE .m.dep .m.on.de m.de	m depth	during d TRONG IN n of drilli . brs date . hrs date	trilling FLOW hrs ing at e/. e/	hrs /.	Groundwater Not Encountered while	to m. de f . ra of drilling m depth	pth PROJECT: LOCATION: BOREHOLE LOCATION: SURFACE RL: INCLINATION: START: 	E H:E	CO-ORD. SYSTEM ZONE: 3/09/06 at 141
OTHER:	DDII (INIC	- 11			_		000	6.11 /Pr		Minsert Drilling Method e.g. Augering, Hammering etc.		DRILL RIG:	LOGGED:	
z	DRILLING OBSERVATIONS				1		RESULT	<u>SAMPL</u>	ING AN	SAMPLE DESCRIPTION		FIELD MATERIAL DESCRIP	TION	
METHOD PENETRATIC RESISTANCS WATER WATER (metres)	description of cuttings, details of strata changes Minor properties, drill method, drill refusal etc.	TYPE	FROM	то	0-150m Run Length	N 150-300 Rec. Length	300-450 R.Q.D.	H WILLE	P.P. kPa	FIELD ASSESSMENT OF RECOVERED SAMPLE e.g. Soil or Rock type, plasticity, colour, inclusions, moisture, strength	EPH metres) C. Sumbol	OR ROCK MALE PLASTICITY OR PARTICLE SIZE, COLOUR, SECONDARY COMPONENTS, MOISTURE, STREMGTH) DESCAS	OKSTURE	STRUCTURE AND ADDITIONAL OBSERVATIONS
				1	T	T					V.Q	Tenº II de la		1
			1		t	1	1					1 2-2 00 1	···	
			1		•••••	†		•••••	•••••	······		1, 10°, W., 60, wareh		
					†	†	.					J. D. M. Ko, Viree, Hallol		,
·····································					•••••	ł	••••••					J. to", Vl, 10, Veren		
••••••••••••••••			+		.	+	••••••					J. 30, Il, Ro, sand and clay 7 mm		
	•••••••••••••••••••••••••••••••••••••••		•••••••••		.	.					18.01	1.20°, the by renees (Mach), Non-ed		
J-+-+			•••••••		¦	.				·····		5.70°, Un, le, Cn		
· · · · · · · · · · · · · · · · · · ·							J.40°, 12, fe, St. Leelad		
·			.		.	.					16,94	5, 30°, & to stay Imm (istil)		
			.		.	.					1898	3 ros, Re, 6 viren		
					.	.					19.4	J. 308 R. B. M. Leolud	TT	
			.		<u> </u>	I					19,5	J.50° * " "		
					1	Ι					19.6	J.30° , " " "		
				· · · ·	T	T					19.6	J40° "		
			1		1	1					1989	1 40° 11. 0 Xt. Lack 4	••••••	
			1		t	t						T 0 - 2 B 0		
			1		t	t	1				·····	TOPHA DA MARKEN		
	•		1	i	t	t	f					1. J. Co. M. Ko. M. tereer Black Imm.		
I	•••••••••••••••••••••••••••••••••••••••		1		t	ł	ł				····	1, 69, Uk, 6, Ch.		
			ł		•••••	ł	 					2,60° Un lo, patchy reaser		
··············	·····		+		ł	+	·					S. to. U., No, St., Vencen (block)		
1			+		ł	ł	· · · · · ·				a,m	P. fc°,		
<u> </u>					.	.				~		J, 40°, Uh, B., pating versees		
- [£	.	.	.				21,96	F, So? St. Co. versee		
					.	.	.				208	I to. Un la Jakin vereen.		
					I		.			lw _	23,06	J.10° 14 B Harrow		den "ount"
											24,83	J. 30° Us Q. (Jose (Hart)		provering provide the
			Ι		1	T	Γ				15.11	J 30° St. O Cm		
			1	l	1	1	1				2 3	TAP I A CO WILL CO A C		
			1	1	t	t	1				2.0	1 2 all Q C	··••	
			4		4	4		L				1, D, White Ch		1

•				Hs -[x(0) u	[H3 + U	j f s	hilk u	ŗ.						· · · · · · · · · · · · · · · · · · ·
		Gold	er Lates			<u>F</u>	IELC) [RI	LIN	IG	REPORT (SOIL OR SOIL & ROCK)			REPOR PROJECT No.: 06632062
		D	RILLING METHOD							G	ROUND	WATER			CLIENT: LBBJV
	DIATUBE	CTOR: CORE/DTHH	t: m to form	Groundy	rater Obsen E. SEEPAGE	ved at SEI	EPAGE	m depth □ S	i during TRONG I	drilling NFLOW		Groundwater Not Encountered while	n	n. dept	h PROJECT: NSBT LOCATION: RNA (adj. Den
	ROTARY	(BLADE/TRIC	CONE):	Sample	Wet at		m dep	th		hrs		Drilling Water Below f S. m depth			BOREHOLE LOCATION:
	ROTARY	(AIR/WATER)):m. tom	Grounds	rater Level	at at	. mon c	ompletio	n of dri	lling at	hrs	Total/Partial Drilling Water Loss at/Below			SURFACE RL: m DATUM
	MULC/	/CORE:		Groundw	ater Level	at	m at		. hrs da	nte	(nning leoth		INCLINATION:
	CASING	HW to	m. NW tom	•••••								on Completion of Drilling	,		START: 5. 1. 10. 1. 6. at hrs
	OTHER: .								CIELO	CAND		*Insert Drilling Method e.g. Augering, Hammering etc.			DRILL RIG:F.05.0.0.
	Z		DRILLING OBSERVATIONS			соти	1		RESUL	<u>, samp</u> TS	LING AN	SAMPLE DESCRIPTION	╢─	П	FIELD MATERIAL D
	0 INVESTIGATION	<u>م عر</u>	description of cuttings, details of strata changes	뉟	Ļ	CF 10	0-150mm	150-300	300-450	N WALVE	P.P.	FIELD ASSESSMENT OF RECOVERED SAMPLE	1_3	æ	OR ROCK NAME, PLASTICITY OR PARTICLE
	RESK	DEPT (met	MINOR PROPERTIES, DRILL METHOD, DRILL REFUSAL ETC.	F	FROM	TO	Run Length	Rec. Length	R.Q.D. Length	1.200	kPa	e.g. SUL OR ROCK TYPE, PLASTICITY, COLOUR, INCLUSIONS, MOISTURE, STRENGTH		UC S	MOISTURE, STRENGTH)
	AM	0	Bilumen.				Τ	Γ			Ι		0	Π	Ritimen Pavenent
0	A	0.15	Fill- clayer GRAVEL (6C)).				1	1				0.1	6/	Ful - clarge GRAINI (11) to
U	DL.	4	f-m angula gravel. dk	61	1			1	1	1			12.0	Ĩ	medius angular gravel dark
		R	ND, moist.					1	1	1		*	1	1.1	matst medium dease
		0.25	becoming yellow brown		1			1	1	1			0.25	11	-becaming vellows proven
		0.6 5	Silly CLAY (CI), nol,		1					1		3	0.6	a	sille (LAY (17) medium -las
			gruy & brown, firm, mai	151	l		1	1	1			4		t l	area & bross, maret from
		1.0	becomin brown firm la-ch	4)		1	1		1	1		2	1.0	ET -	- becoming medium to high pla
		13 q	ravelly CLAY (CH) Lpl,			I	1			1		}	ľ`	14	brown
		J.	rown, fine to med angular g	rad						1			1.3	сH	gravely CLAT(CH) high plastic
		170	oist, shit.						[1				11	brows, fine to medium anou
		1.8 R	S (sith CLAY) CH, pake gry						[1				1.1	gravel moist still
	M	(24-0	ased to 2 for cased to 1.	8.									1.8	ez	Silly CLAY (CI), medium plash
-	R	Rid 1	Nok: #1 cattings.					[2			pale and & entres brews, marth
- 0	D	2.35	TVFF (SW) - H ?? pole	974	[[ver still. (NATURA - RS).
	H.	ļ	ine grained			[[225		TUFF, fire to Ardium protect
		0	change to NMLC a												See sheet 2
			Rock log												SEE ROCK LOG - SHEET 2.
									[1			
						A			[
									[
												· · · · · · · · · · · · · · · · · · ·			
							.								
												<			
							.								
							<u> </u>								
		listene Ferr	A DO 109 DELD DOULING DEDOOT CO	IL N DOCK da	- C 00	2000 1	F7 5								

RT OF BOREHOLE: NST 213 SHEET 1 of 4 ugles Wodly Dog Pavilion) E Ν M: CO-ORD. SYSTEM AZIMUTH: ZONE: , . at. . . . hrs LOGGED: S.S.c.hu ESCRIPTION MOISTURE CONSISTENCY DENSITY STRUCTURE AND ADDITIONAL OBSERVATIONS ____ no to t brown shicity, stict, csty, ıla herty , *t.,*.... d.....

Ģ		old	ales	Toowo Unit1/5 Mansfi	ing, QLD & il Secom ieki, QLD	4066 Street 4122		(3.5 S 2,6 C	FIELD DRILLING REF	POR	<u>T</u> ((RC	CK)	α	XNTINU Soil	ed fron Log? Y/I	N PROJECT No.: 0663206	POR z	t of
FROM <i>χ</i> -35	43 43	200 200 216	Contraction Contra	MEIH	Neth	00 		Grou	GROUI Indivater Observed at	NDWAT		iroundivo iroundivo irilling W otal/Par orehole	ter Not ter Not ater Belo tiat Drillin baled to	Encounte Observed ow ng Water m Standajoe	red while due to . m dep Loss at, depth o	introduct th /Below n comple d to		CLIENT: USBJV PROJECT: NSBJ LOCATION: RNA (C BOREHOLE LOCATION: SURFACE RL: m INCLINATION: 765	DATUM	Doug : zimuth:
OTHE	8	DRIL	LING				'	 FIE	D MATERIAL DESCRIPTION		. or finsert	n Compl Drilling	etion of Method	Drilling e.g. Aug	ering, Ho	mmering	etc.	START: 5 / 10. / 6 at 0.73 DRILL RIG: F.D.5.0.0.	hirs	FII
DEPT	H (m)	RUN	TCR	RQD	CORE	LOSS	DEPT	H (m)	MATERIAL DESCRIPTION	W	EATHERIN	G	Τ	STRENGT	1	DEPTH	_	DEFECT INFORMATION DEFECT DESCRIPTION		DS 🔲
FROM	то	(m)	(m) (X)		FROM	TO	FROM	10	(Type, Grain Size, Texture, Colour, Other)	FROM	то	CODE	FROM	то	CODE	(m)	(Type, Orie	ntation, Planarity, Roughness, Coating, Thickness)	FRO	M TO
2.36	5.36	3.0	30 100	2.00		ļ	2-36	3.5	TUPF, fins to medium grains of ,	2.36	5.93	SV.	2.36	5.93	: vH	2.44	J, 25.30°; Un,	Ro, Clas Vn.	2.44	1 2.78
5.36	8-36	3.0	300	1.82	-	-		.	Massine, pak gras purph Subargalas. class to 15 mm, staining odj to jombs,	5.93	7.65	SW:- FR	5.93	7.67	VH	2.46	[2, 20.30°, PI, Po, J. 30° Un Ro	, two. to as a geocal and clay, 5-39 So vertices becare	3.5	5-73
8.36	11-53	3.19	3.19. 3.10?	2.89		-	35 4.6	4.6	- becoming purple and pole gree - but	7.65	43.16	FR	7.65			3.85	J. 30-40°, U., K	Saula da altad	5-7	3 86
11.55	12.55	2.0	10	1:12	e		8.63	9-3	- become pale generist give		77					4.33	J,20° U. Ru,	clay Va Sa yellow brown	11-2	1 11-78
12.55	1/ 7	¢	100	245			7:3 10:27	11.1	- becoming penkish gry angular becoming dark purple / gry clasts	bicce	۱ <u></u>					4.4° 4.42	J, 20-25° Un. 1	Ro, slap and fin sand Va. Ro, Sa Yelley brown	14.2	14-46
	16.6	2.6	100	é,			1.1	11.55	1- 20 mm increasing within rock madrix.							4.71 5.04	J. 30°, UL, Ro,	Sa relless be		
5.8	19.2	3.0	3.0	3.00			11.55	13:15	-becoming doit purple / gre, angula			24. 				5.24	(2, 0-40' St. R.	, gravel to low and fine to		
9.2	21.24	3.00	3 00	2.85	-	-	13.15	/3·6Z	- becoling pole greg , Some subangul	4						5.44	J. 40.43°, UL	Dr. jellen been, Seman		
22.2	25.2	3.0	3 100	3.6.	-		13-62	15.0	clasts to 10 mc Mto-15-0 peconyme Npak grey, trave Subargale clasts flow	band	nette	3				5 6.	s black	-1- 4 C (4)		
15-2		RI	200	20	-		16.0	19.2	becan us pale greened and subary be							5 73	T, 25°, U. , L.	, Sa Yellow brown		
		r 2.19	100	202			19.2	25:95. 197	becoming pinkish grey, Subangular clasts							6.36 7 . 5	T, 20. 23°, Un, T, 30°, St. R.	Ro, So, Yellow brown	her	
7:8:-	30-82	3.0	10.0	100		-	25.95	27.0	to 10-12 mm increasing	 - 2		·				7:59	52, 30°, U., Ro	, fine angule gravel. So je llo		
 30 <i>.</i> 8	33.87	2.07	3.01.	3.07	۲		27.0	32-2	becoming pindish gry , subangulas clash			ана 1911 - Салан 1911 - Салан				8.57	J. 45°, Unika,	, Clar, & Said Vn		
22 41		296		2.94			32.Z	37.0	becoming purple / pink and gray	,	÷					8-6 11-21	1, 40° Un Sn (1, 35°, Un , fji	, Sn. yellow brown & black, m. grained rock, ~11mm		
?? <u></u>	36.9	¥	\$.60 	2/95 :			37.0 -	43.16	becoming for the	sŝ	Ş					11.72	T. O. 10°, Un , Ro	2	ļ	
\$6.83 ¢.7	38.7 14 4	1.87	1.00	1.8100	-	-					ŧ,	÷.				4.2	1,70°, Un	fine grained rock , 7-8mm		<u> </u>
4.17	43 16	1.46	190	100 100								1				14-46	1. 70° i Uri, Fi	grained lock , ~ 85 mm		
							1		End of Rosehaly 43.16 m			(Carrier)	[19.20	92	in the second second	hd a - t t t t	 	††

	Q	A	olde soci	ates ILLING	611 C Toowr Unit1/5 Monst	Coronation ang, QLD At 51 Secom Field, QLD 10D	Drive 4066 Street 4122			FIELD DRILLING REF	OR	T ((R <mark>C</mark>)CK)	CC	NITINU Soil	ed fron Log?	Y/N	PROJECT No.: 0663206	POR z
	FRom (m)	10 (n		MMETER (mm)		METH			Grou	ndwater Observed at	3		Groundin Groundin Drilling 1 Total/Far Borehole M Comp t Drilling	ater Not Inter Not Inter Belo tiol Driller baled to mm Netion of Method	Encounter Diserved w g Water m Standpipe Drilling e.g. Auge	red while due to . m depi Loss at, depth or Installed ering, Ha	introducti th /Below n comple d to	to	.m. depth	PROJECT: $NSBT$ LOCATION: RNA (a dj BOREHOLE LOCATION: SURFACE RL: Abc m INCLINATION: - 60 START: 5. (19 (6 at 0]) DRILL RIG: $FD500$	DATUM
	DEPTH	i (m)	RUN	TCR	RQD	CORE	LOSS	DEP	<u> </u>	D MALERIAL DESCRIPTION			<u>_</u>	T .				1		DEFECT INFORMATION	
	FROM	TO	(m)		m	FROM	то	FROM	ТО	(Type, Grain Size, Texture, Colour, Other)	FROM	то	CODE	FROM	то	CODE	DEPTH (m)	(Ту	pe, Orientati	DEFECT DESCRIPTION ion, Planarity, Roughness, Coating, Thickness)	-
0																	20.6	CZ, 65-7 Rof associ	o°, Um, I ahd seas	nickness) le, fine & nexting grand and black n cemented in doorn mineral,	20-0
																{	.20.85. 20. 85 21:15	clay Vn. V, 60-80° minerals	, 80 mm. st, fin	grained and and black	. 2.7.5
	•••••													. e e e e e e e e e e e e e e e e e e e			21-98	sz, 45°, ,5mm. T 100	PI, Ro,	lamina gravel 1900 or golos 1 30mm lengt	()
																,	22-62	V, 45°, 44 NiH 610	in an quel	e gravels coase fond cement 1, 10mm	
-													in the second second second second second second second second second second second second second second second				23-55	Cemenkas decompos	n, fine a viH blac ed ~ 40	ngulo gravels coase saud (mineral) Smb partly (, 8mm.	
0	· · · · · · · · · · · · · · · · · · ·			1, August													-23.9 23.97	V, 65-80° čementod V, 45°, P	Why, fine WTK bla 1, fine an	angula gravels coarse sand ch minural, 2-8 mm gula grand & coarse sand	
			······		•••••												-24.1 24-22	cemented J, 60°, Un & coarse	NTH blo , Ro, U	ed minors, 5-6 mm emeriled fine angular grand	
	 													Į		-{to	24.43 24.50	SZ, 45°,	PI, Ro ,	. 5-6 u.m.	
		·····		·····													25-65	V, 45°, U Douth hea	1. Ro , 9	medium to coose sand 2mm. programme el comented, Imm.	
				•••••								,	····				27-53	T,60°, U. T,60°, U. T, 30°, U.	Ro, fin Ro fin	x Sand Vn.	
							••••••						•••••				29.97	итН da T, 0-5°, Ш	L brown	minual, 15mm	· · · · · ·

K.dwg Dec 09, 200

Q		iold soc	er ates	Too Unit1, Man	irong, QL & /51 Seco stield, QL	D 4066 m Stree D 4122	i et !			FIELD DRILLING RE	POR	T	(RC)CK)	α)ntinu Soil	LOG? Y/N	REF PROJECT No.:	PORT	OF	BO	REHO	E: NST 213
		DF	RILLING	; met	HOD					GROU	JNDWAT	ER							CLIENT: LBBJ√					1
FROM	1 2	0)	DAMETER	2	MÉ	THOD			Grou	ndwater Observed at			Grounder	ther Not	Encounter	nd while		to m death	PROJECT: NSBT					
	1								SURF	FACE SEEPAGE 🔲 SEEPAGE 🔲 STRONG INFLOW			Groundw	ter Not (Observed	due to	introduct	ion of	LOCATION RNA Ad	; D	ougl	as h	adle	Paulina)
					•••••	•••••		···· [🗔 Samp	ple Wet athrs			Dritting W	foter Belo	·····	. m dep	th		LOCATION:		vugi		und	10.011164
	···	···•		••••		•••••	•••••	···· C	Grou	ndwater Level atm on completion of drilling at	hrs		Total/Pa	tial Drillin	ng Water	Loss at	/Below	m	BOREHOLE LOCATION:	•••••••	• • • • • •	E		N
		···	• • • • • • • • •	···			•••••		Grou	ndwater Level atna atbrs date/			Borehole	baled to	m	depth o	n comple	tion of drilling	SURFACE RL:	DATUM:	• • • • • •	•••••	CO-ORE	. System
								L	i Grour	ndwater Level atm athrs date/	. /	. 🗆	i	mm \$	Standpipe	Installe	d to	m depth	INCLINATION:	· AZI	MUTH:			ZONE:
OTHER	R:							L]		•••••		on Comp	letion of	Drilling				START: 9	Irs	FI	NISH: .		
		DRIL	LING						FIFI	D MATERIAL DESCRIPTION		*inse	rt Dniling	Method	e.g. Auge	ring, Ho	mmering	etc.	DRILL RIG:		B)GGED:		Sechal
DEPT	TH (m)	RUN	TCR	RO		REIO	88	DEPTH	(m)			CATUCTN		T	CTDC1/OT				DEFECT INFORMATION	AD	5 🗖	FF	7	COMMENTS
	1	- LENG	TH (m)	16		1	~		1	MATERIAL DESCRIPTION (Type, Grain Size, Texture, Colour, Other)		EATHER	MG		SIRENGIN		DEPTH	(Type, Orientat	DEFECT DESCRIPTION on, Planarity, Roughness, Conting,		DEFECT	FREQUE	<u>cr</u>	SAMPLES, IN-SITU TEST
FROM	10	(11)	1/0		X) FRO	м	TO	FROM	TO	()py control of the order of th	FROM	TO	CODE	FROM	то	CODE	(m)	- 32	Thickness)	FROM	то	No.	FREQU	DRILLING NOTES
						Τ											211.00	T 150 11 1	f. e	211.04		112	110	
	1	1				1			[· · · · ·			†····	·····	· ····			21.1	The PLO	P., Sand Vn.	12:4:9]	36:5	1.2.4	4.8	
	1		·· ····		·· †···	··†··			•••••			ł	· · · · ·	••••••	·		34.16	1,45,11,K	, time - coarse Sand Vn.	.	ł	· · · · ·		
	••••••	· [····	•• ••••	••••••••	·· · · ·		•••••	• • • • • • •	• • • • • • • •			 	·····;	·[·····	· [· · · · ·		24.46	outy decomposed	s, 40nn sparing, PI,	.				
	•	• • • • • • •		· • • • • • • •		· · • · ·			••••••			 					39.54	Ro JA, dask bion	a cemerted nine al, 4mm					
	· · · · · ·											.					34.56	V , 55°, Un, Ro	party decomposed, dark	.				
												.		.			.	brown minural,	4mm .	I				
																	35-0	V, 35°, Um, Ro,	dask brown cemented minuel,	1	1	T	T	
																	1	10 mm.		eso.		1		
											T	·····		1			35-47	J. 35° PI. R. S	angola me fire d'avel	a Siga.		•••••	1	
						T	Ī										25 AL	T TE PIC	//	•••••		••••••	••••••	
	1	1		1		- I					•	····	1			•••••	25 91	THE P/ S	1 1/			+	+	
	1			1							•••••••		· • • • •			• • • • • •	31 10	T THE BUL C	lay Vn.		.	+	+	
							····†	,				•••••	· ···· •			•••••	00.00	7 - 2 21 6	cray in.					
• • • • • •	1	• • • • • •		• • • • • •	· • • · · ·		••••		•••••				•••••;			•••••	26-4/	J. 55, FT, Sm,	clay Vn. 5mm					
		•		· [· · · ·		·· •	····						· · · · · · · · · · · · · · · · · · ·				36-57	J,65-70, Uh,	Ko, associated vein Stan					
	••••••	• • • • • • •		· [· · · · ·									· · · · ·]					thickness, dk b	own cumented minut,					
				· 		 												clay Vh.					.	
																	38.2	V, 35°, PI, brown	cemented minural, 4-5m.					
																	38:B							
										-							4224	T, 35° Pl. Ro	clay Vn.		,	1	T	
													1				····/	••••	·····			1	1	
				1	1	1	T						1					•••••			•••••	t	†·····	
	[]	1		1	1	1							····;					•••••			• • • • • •	ł	· · · · · ·	
	1		• • • • • • •	•	1	·†··	···†				••••••••		••••••			•••••								•••••
••••••		••••••		+	· · · · ·	· • • • •						••••	•••••••									.		
•••••		••••••	•	· • • • • • •	· · · · ·								••••••									.	ļ	
••••••	····.			· ·····									ļ											a 1. 4. ⁴ .
																						1		1 • • • • •
]												••••••	•••••			[
						Τ	T	Ī					1									[****	1	,*************************************
	[1	1	1	1	1	T.	t				•••••	8		•••••	••••••		••••••••••••••••••••••••••••••		••••••	•••••	•••••	<u>.</u>	
		No.	_																					

	G		G	lolder sociates				<u> </u>	IEL	DI	DRI	LIN	IG	REPO	RT (SOIL OR SOIL & ROCK)			RE PROJECT No.: 056321
	CON DIAT AUG ROT NUC NUC NUC CAS OTH	TRAC UBE ER (U NRY (P, 1 C/ NG H ER:	TOR: COR BLAI (AIR/ N: /CI	DRILLING METHOD Found.11: Contraction R HAND):		Grounds Grounds Grounds Grounds Grounds Grounds Grounds Grounds	nater Obser E SEEPAGE Wet at nater Level nater Level	ved et SE at at at at	EPAGE m. de m. on m. o	. m dept	h during STRONG on of dri brs de brs de	G drilling INFLOW hrs liting at ste, rte,	ROUNI	OWATER	goundwater Not Encountered while	on a dritting depth	n, depth	CLIENT: P.B Man PROJECT: N.S.B.T LOCATION: Shaftsto BOREHOLE LOCATION: SG. DS SURFACE RL: m INCLINATION: 60 START: 22/6/6 at 07 DRILL RIG: F0500.
. -	-	-	-	DRILLING							FIEL	D SAMP	LING AN	ID TESTING				FIELD MAT
Canal of the second sec	e.ihou Exetidation	ESSTANCE	AIER	BESCRIPTION OF CUTTINGS, DET B OF STRATA CHWIGES MINOR PROPERTIES, DRILL METH	WLS Od,	Ш	FROM	ЕРТН То	0-150a Run	m 150-30	RESUL 300-45 R.Q.D.	IS IN WILLE	P.P.	l e.g	AD ASSESSMENT OF RECOVERED SAMPLE SOL OR ROCK TYPE, PLASTICITY, COLOUR, WOLLING, MORTING ETBRAND	H	Symbol	SOIL / ROCK MATERIAL DESCRIPTIK OR ROCK NAME, PLASTICITY OR P SIZE, COLOUR, SECONDARY COMPU MOISTURE, STREWCTUD
Ē		,]		SS DRAL REFUSAL ETC.		-	1		Lengt	h Lengt	Lengt	D.C.	N'U		AND AND A MUSICINE, SINENSIN		131	woord on the other
#P.		<u>-</u>	·· ·	Fill - Sand -16KAV	<u> </u>				6(FILL - sandy clayer (
·				(60-60), f-c grow	red,				· ·		ļ., ļ.	fine to coarse gravely.
- I.				dk br, some hol fin	رجع						.]				Some high plasticity for
				nD, ma				. ·						-				nedium dence, moisi
.			0	5 pale gry day .		1				1	1	T	[1		0.5		becomine acte are, d
			1.	C. Sandy cint (c1) ,	1.				1	1	1			f		1.0	ez	Count CLAR modius
ľ	Т	Т		ernoe, by fin en		- F					1	1			******		f t	sanay con i heard
ľ		1	1	Part a grand of	·····	•••••••••••••••••••••••••••••••••••••••		••••••	†	+	!				· · · · · · · · · · · · · · · · · · ·	•	<u>}</u> ∤.	c. C. I.
ŀ	÷	·†·		Jacob Jec graver une		•		h	÷	+						··	<u></u> · · ·	one Time to coarse
. I.	÷	· • • •	· ··	acmoli Hor Tubble	viq.	· · · · · ·				.	.				÷	· · · · · ·	·	gravel and demoliti
4	+	╋	÷	Still, merth									Į	icy still, maist
RP?	<u>-</u>	·+·	. 2	Jorange-brown and	pole				.	1	.					2-		becoming erange - be
			.	brown, RS, feedu	1 X L	/	l		1						-		1	rown tending XH
		1.		@ 4.0 m.	· · · · · · · · · · · · · · · · · · ·			1.1	1	T		1			2			Him.
	M	1	4	I Tuff XW, EL	nale			 	1	1	1				1	4.	5.	-terdin XW rock
				Greek & Ormer by					1	1	1	1		· · · · · · · · · · · · · · · · · · ·	2 2 4	- II	9	sucherster. Et -
	Τ	Τ.	Τ	entrus				·····	†	t		·····	••••••	•••••		17		THER (DIG) M
1.		1	1	-		•		·····		+	·					. F	[]∷	(DU-50)
1.	÷	••••	1					·····	 	.		·····		••••••		·	- I/	a tr. grig & yellow
ŀ	·ŀ·	·†·	••••		•••••			•••••	ļ	.	.	ļ				. 5.1	7	grained.
	· þ.	· [·							.		ļ				· · · · · · · · · · · · · · · · · · ·			change to rol
	. 	·+·		······································						.	ľ							A 5:29 m
.																		- /
				<u> </u>														
										1						1		
1.	1	1	1			•	•••••	·····		f				• • • • • • • • • • • • • • • • •		•••••••		
1.	÷	1	1		•••••	• [] • • • • •		• • • • • • • • • •		 				••••••		·		• • • • • • • • • • • • • • • • • • • •
	÷	÷+	·[…	•	••••••					ļ						•		
-	.	.								ļ								
.	.	.	Į			<u> </u>				.								
I		<u> </u>																
							•••••	• • • • • • • • • • •		[·····				······	- ,	1		
1	1	1	[]			1	••••••	•••••	• • • • • • •		•••••					· #····		••••••••••••••••••••••••••••••
	-																	

DRUMM KETHOD CROWNALER CROWNALER CROWNALER RM B. PROM CROWNALER CROWNALER CROWNALER RM B. PROM CROWNALER CROWNALER CROWNALER CROWNALER S22 C7. Proves I MMALLEL STRUE FILO CROWNALER	Ć	G	old soci	T ales	611 Co Toowo Unit1/51	aronation ng, QLD 4 & 1 Secum 1	Drive 4066 Street			FIELD DRILLING REF	POR	T	(RC	CK)	00	NTINU Soil	ed fron Log?	Y/N	PROJECT No.: 0563
Test District Heads Description Descripti			DR	ILLING	METH	OD	1122	Т		GROU	NDWAT	ER								CLIENT: PBOMAGE
5:27 7:9 J. AMACK SWOK SUDK SUDK NOT Concrete to the induction of the	FROM (m)	- Io	3	WAVETER (mm)		MÉTH	OD		Grou	ndwater Observed atm depth during drilling			Groundwa	ter Not	Encounte	red while			m. depth	PROJECT: NSBT
Image many mark Image mark I	5-2	920	7	8.4		NM	.v.		SUR	ace seepage 🖾 seepage 🖾 strong inflow			Groundwa	ter Not)bserved	due to	introducti	ion of		LOCATION: Shaff.
Openhanter Description DESCRIPTION <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>				· · · · · · · · · ·					Som	ndwater Level at			Drilling W Coded /Deed	oter Belo	*	. mi depi	th /n.t			BOREHOLE LOCATION; 53
Image: Image:<				• • • • • • • • •	. .]i	Grou	ndwater Level at	"• /	. 🗖	Borehole	baled to	g woter ຫ	depth of	n comple	ru tion of drillin	10	SURFACE RL:
OPER		·							Grou	ndwater Level at	/	. 🗆	• • • • • • •	mm	Standpipe	Installe	1 to	m dept	h	INCLINATION: - 60
OPELLAG TED D MICRAL DESCRIPTION DEFECT NFORMULE DEFECT NF	OTHER	•••••										. (on Compl t Drilling	letion of Method	Drilling e.a. Aua	erina, Ha	mmerina	etc.		DRILL RIG:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			DRIL	ING	1				FIEL	D MATERIAL DESCRIPTION				_			I.			DEFECT INFORMATION
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH	(m)	RUN	H	RQD	CORE	LOSS	DEPT	H (m)	MATERIAL DESCRIPTION		EATHER	łG		STRENGT	ł	DEPTH		tine Administra	DEFECT DESCRIPTION
$ \begin{array}{c} 5.87 \\ 7.05 \\ 1.705 \\ $	FROM	TO	(m)	(1)		FROM	10	FROM	TO	(type, Grain Size, lexture, Colour, Other)	FROM	TO	CODE	FROM	то	CODE	(m)		ype, unenter	Thickness)
$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \begin{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \begin{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \begin{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \begin{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \begin{array} \\ \\ & \end{array} \\ \\ \\ \\ & \end{array} \\ \\ \\ \\ & \end{array} \\ \begin{array} \\ \\ & \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \begin{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\$	5.29	7.05	1.7	1.10	2.5	<u> </u>	~	5-29	5 34	TUFF, pake grup & gellow be	5 29	5-34	D	\$ 5.29	5-34	L-M				
$ \begin{array}{c} 534 \ 7.00 \ DM_{3}^{20} M-H & for 6 \ gres. \\ \hline 5.34 \ 7.0 \ DM_{3}^{20} M-H & for 6 \ gres. \\ \hline 7.0 \ T.1 \ EL \ green \ Me \ Seen \ Me \ St. \ T.0 \ T.1 \ Me \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.1 \ EL \ Me \ T.0 \ T.$. [ļ., *	l	.	 		Fine grained. L-M DW-SW	<u> </u>	I				<u> </u>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • •				ļ	 		5.34	-7.06	DW.SW M-H. pake greg.	5-34	7.0	84	5-34	7.0	М-Н.				
$ \begin{array}{c} 1.50 \ 4.15 \ 2.51 \ 2.52 \ 2.51 \ - \ 7.1 \ 4.15 \ 1.51 \ 1.52 \ 1.51 \ 1.52 \ 1.51 \ 1.52 \ 1.52 \ 1.51 \ 1.52 \ 1.52 \ 1.51 \ 1.52 $				1212	1			7:0.	7:1	EW, yellow bi sean. By EL-VL.	7:0	7:1	120	7-0	<u>.7.1</u>	EL-VI	<u>.</u>			
$\begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \left \left \left \left \left \left \left \left \left \left \left \left $	1.95	I:D.		100	1.35			7.1	9.15	MMM/H, MM-SW, pake gres,	.7:1	9:15	SN	7.0	9.15	M-H	[
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·····			÷			 	high tractured, tending VL adj		·	·							
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	9.15	1.77	26	2.42	22	[_ `	-			jeinting pare gre + yellow bi	.	· · · · ·	· · · · · · ·					••••		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $				Je 10-	F. 40.	1	 	9.15	1251	HI SW Hack are slight.	2.15	11.17	SUP	9.15	11.27	<i>µ</i> .				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1		r (Fractured - some exidization to be			1.4	1.12	1.8.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	8-05-					@ 9-45 1.55 \$ 11-27-11-27										
$\frac{1}{1477} \frac{1}{16.82} \frac{1}{2 \cdot 0} \frac{1}{12} \frac{1}{127} \frac{1}{147} \frac{1}{1477} \frac{1}{1777} \frac{1}{1477} \frac{1}{1477} \frac{1}{1477} \frac{1}{1777} \frac{1}{1477} \frac{1}{1477} \frac{1}{1477} \frac{1}{1777} $	11:72	1477	3.0	3.00	630	-	5		l	@ 12 17 - Since from anyular	11-27	11.77	BW	4-27	11.77	Ħ.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		••••••				.	<u> </u>			dasts within rack natrix /	11.17	12.1	51	11.77	12.1	Ħ				
$\frac{1}{10} \frac{1}{10} \frac$	11-17	16-82	2.0	2.25	175		·····	11 4	21	pake grz > pick gra	12.5	1.2.8	ISW.	17 5	12 89	H				
$\frac{14.77}{14.87} \frac{14.87}{54.57} \frac{14.77}{54.57} \frac{14.77}{54.57} \frac{14.87}{54.57} \frac{14.77}{54.57} \frac{14.82}{54.57} \frac{14.77}{54.57} \frac{14.77}{54.$	11.0		\$	100	er.	l		14.2	14-7	is chard in the and a to	12.5	199.2	\$1.	12.8	.19:7)	H				
$\frac{14771 \text{ (4.82} \text{ 5m} - \text{Fe} (\text{H})^{4} \text{ pake gray, fine } 4777 \text{ (4.82} \text{ H}}{\text{grained}, \text{R} stightly fractured}, \text{gray or fine } 4777 \text{ (4.82} \text{ H}}{\text{grained}, \text{R} stightly fractured}, \text{gray or fine } 4777 \text{ (4.82} \text{ H}}{\text{grained}, \text{gray or fine } \text{gray or fine } 4777 \text{ (4.82} \text{ H}}{\text{grained}, \text{gray or fine } \text{gray or fine } 1777 \text{ (4.82} \text{ H}}{\text{grained}, \text{gray or fine } \text{gray or fine } 1777 \text{ (4.82} \text{ H})}{1777 \text{ (4.82} \text{ H}}{\text{grained}, \text{gray or fine } 11.877 \text{ (4.82} \text{ H})}{1777 \text{ (4.82} \text{ H}}{\text{gray or fine } 1777 \text{ (4.82} \text{ H})}{1777 \text{ (4.82} \text{ H})}{1777 \text{ (4.82} \text{ H}}{1777 \text{ (4.82} \text{ H})}{1777 (4.8$			•••••		1		·····		••••••	peter grade er br.										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								14:17	16-82	SW-FR (H) bale any fine	16.77	16.87	9.5	14.77	16-82	Ħ				· · · · · · · · · · · · · · · · · · ·
$\frac{16.52}{17.770} \frac{17.50}{95} \frac{10.62}{100} = -\frac{11.42}{17.77} \frac{11.44}{17.77} \frac{11.44}{17.47} \frac{11.44}{17.47} \frac{11.44}{17.77} \frac{11.44}{17.47} \frac{11.44}{17.47} \frac{11.44}{17.47} \frac{11.44}{17.47} \frac{11.44}{17.47} \frac{11.44}{17.47} \frac{11.44}{17.477} \frac{11.44}{17.47} \frac{11.44}{17.$										grained & slightly fractured		A.Y. 7.3	1		*F. 7. F	. 33				
$\frac{16 \cdot 22 (17.77) (17.87)}{17.77} (17.87) (17.87) (17.87) (17.87) (17.77) (18.87) (17.77) (18.77) (17.77) (1$				199.00	۹۵ ۲					Sere exidization adj jesuts										
$\frac{17.72}{17.87} \frac{17.87}{100} \frac{1}{100} - \frac{17.77}{17.87} \frac{17.87}{17.87} \frac{11.47}{17.87} \frac{11.77}{17.87} \frac{17.87}{17.87} \frac{11.77}{17.87} $	16 X	<u>.7.77</u>	0.95					[(-82	1.7:77	(H-M), SW-FR (broken from deilling	16.81	17:17	F2	16-82	17.77	H				
$\frac{17.67}{20.0} \frac{20.0}{100} \frac{1}{100} \frac{1}{1$	12:77	(7 :8 ?]	<u>P:{</u>	100	.100			17:77	17.87	(H), SW, bilerbr	17.77	17.87	ØW.	n:n	17.67	H				
110/ 20.0 100 100 100 100 100 100 100 100 100	1701	20.0	NY.	in	55%	·····	<u></u>			(1) (1) (1) (1)			i) Ki iz			<i>H</i> = 1				·····
$\frac{7 a_{me} \circ x_{i} a_{c} d_{rot} \otimes \mathcal{O}}{5 light} = \frac{2}{20} 207 (u - vH), q_{ref} \otimes \mathcal{O}_{rot}	(1:0/6	20.0	///	<u> </u>	13		····	.[7:67	20.0	(H-V4) SW-M2 grag = orb1 ;	17-87	20.	ĨЛ.	17:67	20	ÿH.				<u>ং</u> ল
$\frac{20}{571} = \frac{100}{100} = \frac$	••••••		•••••			·····	·····>	1		elichtly for a joint and			·			······		······		
	20. 1	10.7	of a	0.00	220	<u> </u>	~	20	200	(4-VH) gree deller	20	200	Sil	20	200	н.,			••••••	
		1			571.				r:r	4. sa			rK.		·	.v.₩.			••••••	•••••
								. ·			·····				•••••		÷	· · · · · · · · · · · · · · · · · · ·		••••••
													<u></u>		• • • • • • •					

	er-	tai	LV	entre	
	OF	BOR	EHOL	E: NST 228	1
			HEET .		
Ś	4000	ex 1	-36	BJV	
•				•••••••••••••••••••••••••••••••••••••••	
	<u> .</u>				
	5	E	6.94 0_080	SYSTEM W/6C 8/4	
k	AUTH: .			. ZONE:	· ·
	FIN	ISH:	1		
	LO	GGED:	85.	COUNTRY	
5		FF [<u> </u>		
1	TO	No.	FREQU	DRILLING NOTES	
		<u> </u>	-061		
-	• • • • • •				
					:
Ì					
		ļ			
		ļ			
-	· · · · · · · · · · · · · · · · · · ·			с. С	
				••••••	
	••••••				
			,		
		•••••		· · · · · · · · · · · · · · · · · · ·	
				······,	
I					
					2
l					
ŀ					
ŀ	•••••				
ŀ	• • • • • •				
ľ					
ŀ					
ŀ					
					1
ŀ	•••••	•••••			
	BQ-106	j VE	rsion n	o. 7 REVISED 09/12/04	

		Â	DI		G ME	1/51 Se nafield, THO	ecam S QLD 4	Street 122	—						UN	1		SOIL	LOG?	PROJECT No.: 0563	2.65
- s	. 29	1)))	PIANETE (mm 76	R R	NA	METHO	ю 		Gro Sulf San Gro Gro Gro	undwater Observed atm depth during drilling IFACE SEEPAGE SEEPAGE STRONG INFLOW aple Wet atm on completion of drilling athrs undwater Level atm athrs date// undwater Level atm athrs date/	nDWAI ns (roundwa roundwa nilling W atal/Par lorehole	nter Not I Iter Not (later Belo Gal Drittin baled to mm S	Encounter Observed Wm g Water I m Standpipe	ed while due to m depi Loss aty lepth or Installed	introduct th /Below n comple 1 to		CLIENT: LESISJU PROJECT: NSBT LOCATION: SHAFTS BOREHOLE LOCATION: SURFACE RL: INCLINATION: -60	Tor-1 0503 m DAT
Ľ	DTHER:												o . treeni*	n Compl Drilling	letion of Method	Drilling e.a. Auge	rina. Ha	mmerioa	elc.	START: 2.2.1.6.1.06. dt	070 <i>0</i> t hrs
H		(-)	DRIL	LING						FIE	D MATERIAL DESCRIPTION		-						-	DEFECT INFORMATION	
E		(m)	LENG	H(m)			CORE	LOSS	DEPT	H (m)	MATERIAL DESCRIPTION	W	EATHERIN	G		STRENGTH		DEPTH	A	DEFECT DESCRIPTION	
Ľ	NUM	10	(11)	Z		x) ^{FI}	ROM	το	FROM	10	(i)po, ocar occi, ioxuro, colour, ourer)	FROM	TO	CODE	FROM	TO	CODE	(m)	(Type, Onentat	on, Pionanty, Koughness, Coating, Thickness)	
5	29	7.05	1.70			.	÷	-	5.2	l	TUFE	5.Z9	7.10	SW-	5.29	2.10	H- VH	5:32	J. 60° U. L	s Sa hran	4
•••											File to coarse grated cream							S.45	J. 75-80° W	See Ro Sa km	
		· · · · · · · ·									brain & yellew brann slightly to	7.10	11.13	SW	7.10	25.0	٧H	5,78	5 70° U	R SA BROWN	
				· · · · ·					.		districtly weathered high to very							5.96	J 500 W	in Sa Louis	
]			17.10	2/12						high strangth							6.19	IS 55° Un	to In class any	120
.7	:5.	1.15	2.	-10	•	e t	-					.						6.39	J. 50° Un-9	at Ro Sr. bran	9, 9 , 9, 4
•••		• • • • • •							.									6.57	IS. 35-40° P	L-UNSM-BIT Filecla	my graw
				253	1:59					ļ	والمحاد والمحمود والمحمور والمعرور والمترين والمترجون والمحمور والمحمور والمحمور والمحمور والمحمور والمحمور							6,96	IS, 30°, AL	h. Sm. fo. In clay stil	- graid
ŀ.		11.11	2,62	10		19			7.10	ļ	very high strength							7.44	J 25-30° U	n Ro. Cn	
•••		•••••		• • • • • •	· ····					 								751	J 65° Un R	o, Sn dark brown	
h -		A	7	3.0	7.87		····			 .								7.97	J. 70° U. 1	o, Cr	7
	<u> </u>	1.17	3.0		2	6												8.07	J, 750, Un R	o, Sn, brown	
	••••			·	· · · · ·	·· ···	····											8.14	J. 200 Un Ro	Sa, yellowbrow	
4	72	681	7 .5	2.05	1.93		····											8,22	J 60-650 UL	St. Ro Sn yellen br	ran 8
		0.00	2.03		?	t												7.73	8.30 Nunero	is drylling breaks	
•••	••••		•••••		• • • • • • •	··	····								. <i></i>			8,45	J, 45°, Un P	o, Sr, brown	
 [6:	821	7,77	29.0	0:95	0.53	2				• • • • • • • •								8.63	J, 50-55° U	Ro, Sa brown	
17	771	782	0.lo	212	010					•••••				· · · <i>·</i> · · ·				8.78	55,30°, PL-U	n, Sl, In, clay, 8-10.	·
174	8212	00	2.17	213	213		····			••••••				,				6.83	J, 30°, Un, S	-RgCa	8
••••	1			1.19f.		·			1117					sii)				10.07	J, 40-50°, U	Sry brown closes	٤
••••			• • • • • •		· [· · · ·	1					sugnery weathered with distance	11-13	21.90	6W				1.13	J, 30-25° U	Lo Sr, closed	~/
	· · ·				•••••	· [· · · ·	···•	····•			prathering around joints			,				1.46	J, 5-35°, U	ka Vr dark brown b	shell
20.0	0 2	0.70	0.70	0.72	0.79	12	-			••••••								1.7-0	J, 20-300,U	SRO, In oxidisation he	eater S
				K.199	1.106	· [····	···•	····•	12.70	·· 940 /								1.79	J. 35°, Un, R	Sn In bealed	widiali
•••				•••••	†	· • · · ·	···•		<u> </u>		Cean bown yeller from I Some							2.06	J. 30°, Un, Ro	Try I men	ex60/11
• • •			•••••		·····	·†…	··· [··	····†			fur per notting				.			2,65	J 30-35°, PL,	Ro. Vr. clay Shes	
• • •					·····	· · · ·	··· † ·						·····				····	2.69	T, 60°, U, K	Sn yellow brown	~
•••				•••••	(·····	· [· · · ·	···•	····•		•••••		····						3,00	T, to-70° St,	to Vr weathering sto	~~~ ~~k
		····		•••••	†	· f				·····			·····					4ھ	05,50-65°, Un	Ro Weathering 4-8m	~
-		I			L								- 1					5 15	J 45-50° Un	Bo Hammell	

F	OF	BOF	REHO	LE: NST 228]
•••	••••		. Sheet		
		•••••			
2	E			al 2-2	
>. :		E	CO-OR	D. SYSTEM Was 84	
ZI)	WUTH:			ZONE: 56	
	FI L(Nish: Dgged: .		/athrs	
DS		FF	1-1	COMMENTS	
D	EFECT	FREQUEN		SAMPLES, IN-SITU TESTS, ORILLING NOTES	
-	10	6	n) -ENC	Ŷ	
1	0.01	1.2	8		
ż	793	13			
	7-17	1.4			
		ļ	.		
			.		
	•••••	†	+		
	8.22	102	16		
	•••••		.		
2	8,83	5.61	8	Ér i i i	
+		ļ	ļ		
ł		.	•	·····	
ļ					
	11-13	2.30			
ł					
I	•••••				
ł					
	12.06	3/93	3.5		
	•••••			•••••	
1	3Q-106	i Vi	RSION N	o. 7 REVISED 09/12/04	

Q	A S	olde socia	r Vies	Toowa Unit1/5 Mansf	at at il Secam ield, QLD	4066 Street 4122			FIELD DRILLING RE	POR	T	(R0	CK))	00	ntinu Soil	jed fron Log? Y/N	REI PROJECT No: 056321	PORT	OF	BORE	HOLE:	NST Z
		DRI	LLING	METH	IOD				GROU	JNDWAT	ER							CLIENT: LBBTU					
FIROM (m)	Į.	D D	(mm)		METH	OD		Grou	indwater Observed at			Groundwa	ter Not E	ncounter	red while		tio m death	PROJECT: NSBT	•••••			*****	
								SUR	FACE SEEPAGE 🔲 SEEPAGE 🛄 STRONG INFLOW			Groundwa	ter Not C)bserved	due to i	introduct	tion of	IOCATION SHATTST		A_ 12-			
				1		•••••		C Sam	ple Wet athrs			Dritting We	ater Below	w	. m depti	h			·····/	<u></u>	••••••	101	
			•••••	••••••		•••••		Grou	individer Level at m on completion of dritting at	hrs		Total/Parl	ial Drillin	g Water	Loss et/	Below	m.	BOREHOLE LOCATION:	5 683		E	6969	5855
				· • • • • • •		•••••		Grou	indwater Level at	<i>.</i> .	. 🗆 I	Borehole	baled to	n	depth on	comple	etion of drilling	SURFACE RL:	DATUM:	• • • • • • •	CO	-ORD. S	YSTEM WGS
			•••••	· • • • • • •	•••••	•••••		പ്രംപ	indwater Level at	<i>. [</i>	. 🗀	• • • • • • •	mm S	Standpipe	Installed	to	m depth	INCLINATION:	· AZ	MUTH: .		•••••	ZONE:
OTHER	£				•••••					•••••	- (on Compi + Dration	etion of I	Drilling	utan Nas			START:/	rs	FIN	ISH:	1	athrs
		DRILL	NG				Τ	FIEL	D MATERIAL DESCRIPTION		- RISCI	C Drinaing	Method (e.g. Auge	ening, nar	mmening	j etc.	DEELCT INCODUCTION		LO	GGED:	214	
DEPTH	i (m)	RUN	TCR	RQD	CORE	LOSS	DEPT	NH (m)			FATHER	NC	T ,	TROUCTU				DEFECT INFORMATION	AD	s 🗖	न		COMMEN
FROM	TO	(m)	(m)	(m)	FROM	то	FROM	То	(Type, Grain Size, Texture, Colour, Other)		1	1		I	T	DEPTH	(Type, Orientati	n, Planarity, Roughness, Coating,		EFECT F	REQUENCY	:	SAMPLES, IN-SIT
			<u> (%)</u>	<u>(x)</u>		L.~	Thum	10		FROM	10	CODE	FROM	TO	CODE	(11)		Thickness)	FROM	то	No. (m)	FREQU - ENCY	DHILLING NO
			282	7.2.2		.										1556	TATO DI	The oridisation here le			F T	-	
20.70	23.70	3.0	5.90	100	-	-	13.80	,	purple green over low duelle	*	1					17 1.5		7~0 11 P T 11	15.20	701	5/		
						1	1		lamon			•				,	1413 - 1,0-	ss un to in dark	12.06	10.50	100	4	
					1	1	1	1		•	+	••••••		•••••			brown blacks	ridisation Sam, Lealed,		ł	ļ		
23,70	25.0	1.30	1.30	1.39	- 1	-	1				+	•					amplifude)	SZm	15.56	14.58		6	
			1.00		† · · · · ·		†			· • • • • • • • • • • • • • • • • • • •	+					1458	5,60°, PC	in Sn dark brown		.			
			•••••			 										15.33	J,45° PL,S	n Sa dark brownibleck	14.58	15.90	\$1.32	3	
·····				•••••	• • • • • • •		20.1	1	green grey, brown & yellow brown		.					15.49	J. 700 Un R	· Sn yeller Som					
		•••••••							15.90	J. 25-200 PL	Ro, Sn. dark brown	1	1	1		
					ļ		.									16,11	J. 600 Mr.	Lo. Sa dad Spainblad	1090	16.80	4/	5	
							L									16.18	J. 25-300 11	O T Och brown black	193 <u>, 1</u>		.0.0.	×	
		: 					21.90		grey green Slightly weathered	2190	25.0	Sw				ILth	T 40° 1/ . (- C. day bran black	ŧ	• • • • • • •	·····•		•••••
									to fresh			15.				ih (~		o I D Faidiselver	1180	10 70	••••••	7	****
								1							•••••	(9,95	16,10-50-50	, un Ko Sr date brond	10.00	1.00		<u> </u>	
							23.10		and a com and	••••••			•••••		• • • • • • •		black existing	- 10-15m umpurnae /es		• • • • • • • •			
								1		•••••••					•••••	14.05	-1641: 5, 0-	30°, Un Ro, Sn, dark			·		
						•••••		••••••									brown oxid.3~	-le-	19.08	20.52	1.42	.5	
					·····			••••••		· · · · · · ·						17.7	J, 35-60° U	n, Sm C					
•••••					••••	•••••		2								18.37	J. 55-60° AL	Sin Sn yellow brown closel	20.SZ	24.30		1	
					·····	•••••		25.0		÷						1890	J. 40°, Un Ro	Sn yellor brom			Ī	ľ	
			·····				25.0	ļļ	END OF BOLEHOLE @ 25,0 m						!	9.08	J, 60° PL, Sm	Sn brown					
								ļļ							h	19.55	J. 700 AL.S.	Sn. yeller Loan			1		
.								ļļ								6.1Z	-20.20: 7 200 6	(-11, Ro. Sn d. 1		•••••	••••••		••••••
										Ţ					Ē	\sim	bosing last	V. I	•••••	••••••			· · · · · · · · · · · · · · · · · · ·
]								····· ·	•••••	·····	7. 0.7	T 1100 11 A	e lill 11	2474	70-			···· · ·······························
		1	ľ			1				††	••••	•••••	·····[·	·····		~24	T 2	1 on rape bring bla ?	24.9	63.0	·····	<u></u>	
		·····	ľ							+			····· ·		····· 6	1.76	J, 59-35, PL-	Mr. Ko Sn dalberd oxid.					
		····· ·			·····†		••••••			∤ ····· ∤	•••••	•••••				1.86	J. 45, PL, Sn-	to, Sn, dark br bloridischi					
	·····	·····			·····					h				·····	P	2,58	J. 20-25, PL,S	n, Snotorkbrown classed]				
·····	····· ·				••••••			•••••							2	23.42	JAS Un Ro	in , law strength around july !		T			
	·····	·····[·	·····	·····						ļļ					2	3.70	J, 20-25° Un-St	fo Cn	1				•••••
		····. .											T	ľ	6	175	T, 30°, UN, R. C	<u> </u>					•••••
															ž	4.30	J, 50°, Ph Smile, Cn	«	·····†	·····†	•••••		•••••
AUN Brief	bone Fo	ms\GA	80_106	66.0	DELENS.	DCDODT	DOOM		AA AAA						2	1 8 7 1	E AL OL CL M	r				1	

.

Ć	言う	Go	ide ocia DRII	tes Ling	611 Co Tooman Unit1/51 Manafie METH	onction D g, QLD 4 & Secam S d, QLD 4 OD	brive 066 Street 122			FIELD DRILLING REP		T ((RO	CK)	1	CO	ntinui Soil	ED FROM LOG? Y/N	N <u>PROJECT No.:</u> 0.4622666 CLIENT: 1.557V	REPOR
FRC (m)M / IER: .	[6] 26-0		WETER (mm)		METHO PM (D		Groun SURF Groun Groun Groun Groun	ndwater Observed atm depth during drilling ACE SEEPAGE STRONG INFLOW ole Wet atm depthhrs ndwater Level atm on completion of drilling athr ndwater Level atm athrs date/. ndwater Level atm athrs date/	3		iroundwate iroundwate irilling Wa otal/Parti iorehole t n Comple t Drilling	er Not E er Not O ter Below al Drilling valed to . mm S stion of I Method o	ncounter bserved r ().(g Water (m (tandpipe Drilling e.g. Auge	ed while due to i m depti Loss ot/ depth on Installed ring, Ha	ntroducti h Below complet to	* tom.depti on of m tion of drilling m depth etc.	h PROJECT: NSC7 LOCATION: SHC20 S BOREHOLE LOCATION: SURFACE RL: INCLINATION: 60 START: 7. 1. 1. 6. at DRILL RIG: 60%	m DATUN
			DRILLI	NG	1				FIEL	D MATERIAL DESCRIPTION	T			r					DEFECT INFORMATION	
DEI	РПН ((m)	RUN LENGTH (m)	TCR (m)	RQD (m)	CORE	LOSS	DEPTH	+ (m)	MATERIAL DESCRIPTION (Type, Grain Size, Texture, Colour, Other)	WE	EATHERIN		S	TRENGTH	0005	DEPTH (m)	(Type, Orie	DEFECT DESCRIPTION Intation, Planarity, Roughness, Coating,	
rito	-	10		(%)	(%)	TRUM		FROM	10		FROM	- 10	- 0002	FRUM	10	CODE			Inicknessy	FRC
				7.87	1.0 .											11 15	0.25	T. P. Holes	<u>So</u>	
<u>.</u> 9/	<i>l</i>	.7	1:.Ę.,	Z	Z			<u></u> .	. <u>Z.S</u>	1.4.1.5. Live. 30 min. d pok. 31.59 le ch la.	0.{	15.49	13.W.	.C.:L.	<u> 26:9.</u> ,	<i>#-</i> ₹₽	C-52	(2,30,S1,F*,	mid gec. il 500,	
 74	···· / .	1.9	 8.0	7.9%	4.02			1 00	10.60	52 Proto	il. hte	56-15	\$1.51.1. 1. 12				5.71	1 6° 11 6.	Har growel , 200 -	
1.1.1				2.49.2						: New Wey Jest	12.13.	F	<u></u>					1.52 W. R.		• • • • • • • • • • • •
ц.	9	8-0	3.1	377	15			10.67	16.11	property when and at a factor daste da			·····					58, 10°, 21, Ko, 4	24 loved and 28	
. (1.1"	5. č. i	· · · ć y	6.1¥5.	******				11.1.12	гран пач жираны приотеля к ступаць на так так так так. По вых							1.34		las movel. So 10mm	
2	0 1	10	3.0	1/20				16-43	20 0	pupple, & red. bross.							1-51	07,6.5', PI, S.	lin land good So 10m	
										. 7							1.64	(7, 1°, H, K-7)	a guardy 5 Ma	
11-0		4.0.	¥2	3 <u>9</u> /	7.85			200	26-0	pole grap & jourphe							1-76	J, 30°, U. Fr. S		0-25
									.	·····			and lange				2.08	2.15°. U R.	clog Vy, Inn.	
μ.	e. [7.9.	2	3400	2.29												2-3	1,30°, St, Ro	<u>.</u>	
									.								2-55	J. 10', U., Ro	£4.	
<u>!/:</u>	0.17	0.0	5-0	2782.	2.9?.		••••••										2-2	57, 40°, U. Ro	diara dia karia georety Sig 3	d 594
				792													3.19	J, 20', 11, Fb		
20.	<u>ା</u> ଜ		.2,	<. 19?.	2.303					211-7			···				2.24 H > W	56,89,00,8%, 1-20°70 - 20	1 C	
 72 i		 1. e	 2.0	72	1:93			19 Ng	<u></u>	x 1.7 - orgin 1955							 4 6 9	T. W. H. R.	Lata h	•••••
4.211		<u>0.14</u>		.C.Q.S.						765 End of Hole show		ļ				• • • • • • •	4.5	J. 75° 11 P.		•••••
										7.3			1			•••••	5.47	J. 30' . U Ko	- y A. 25: y . 17:	•••••
								1				1					548	J, 75°, P1, Ko.	dor Vn Sn 2an	
																	531	Jibs, Uniker	her genetic barre	
													and the second se				5-58	J, O, St, Ro,	highd, Sm.	
												.	A.				5-13	J, 70, U., Po	iclar VI.	
												.	and the second se				5-94	SZ, 65°, Pl, S.	n chéy va s 73mm	
												 					6.6	$\mathcal{I}, \mathfrak{p}^*, \mathcal{U}_{\mathfrak{h}}, \mathcal{\ell}_{\mathfrak{s}}$	<u>, S</u>	
												.	the summary of the				(e.35 7	J, 15°, U., K	colon growled lay Un. 3mi	
												 	Performant period			, ,	6 43 6 46	JIS U. K. TRº 0 0		
													R3-motivetty			• • • • • •	1 art	YIG, U. K Taza A	e ; wh	
					l	l	l	L	I	L	L		14				0.1/	VIZY BUCK		

RT.	OF	BOR	HOL	E: NS9 24 1
	•••••	S	HEET .	
./.				
		E		N
M: Azin	iuth: .		J-UKD.	. ZONE:
	FINI	SH:	1	athrs
400		on f	7	COMMENTS
ADS Di	EFECT FR	HF L		Samples, in—situ tests, drilling notes
01	TO	/10. (m)	-ENCY	
••••				
	• • • • • • •			
 5	 1-76	10	6.6.	
. <i></i> .	· · · · · · · · ·			
		6	·	
3.6	3-54 		¥:I.	

		Gol SSO	der ciai DRIL	tes	611 Cor Toowon	g, QLD 4	Drive 066			· · · · · · · · · · · · · · · · · · ·						LCO	ATTINI IE	D FROM		pp	DOD
FROM		10,	DRIL	HCB	01001/01	Secam S	Street			<u>FIELD DRILLING REP</u>	OR	Γ(RQ	<u>CK)</u>			SOIL	LOG?	Y/N	PROJECT No.:	rur
FROM (m)	1	<u>70,</u>	DIVIL	LINC	Manifiel	a, QLD 4	122			CROUN	IDWATE	- - 								CLIENT: 15824	
(m)		1	DW	METER	T	METHO	Ð	- ,		GNUOI	UNAIL			ine Mat E		d while		1 ka	m doolb	PROJECT: NSUT	
		(m)		(mm) ?		1		—l`	Grou	RFACE SEEPAGE SEEPAGE STRONG INFLOW			oundwat	ter Not C	ncountere bserved (o writte lue to in	ntroductio		.т. аерт	LOCATION SWEYD	37
	- 1			<i></i>	•••••••	Nei II	· · · · · · · · · · · ·	····· ī	Sam;	mple Wet athrs		Dr	illing Wo	ater Below	v	m depti	1				
								····· [[Grou	undwater Level atm on completion of drilling ath	ſS	П	tai/Parti	ial Drilling	y Water L	oss ot/	Below	m		SURFACE RIV m	DATIN
					••••••••				Grou	bundwater Level at m at hrs date	! ,		orehole l	baled to	m.d	epth on	complet	ion of drilling)	INCLINATION: 60	A
								·····] Grou	sundwater Level at		or	Combie	mm S etion of I	tandpipe Dallina	installed	to	m cepth	1	START: 7.1.1. 1.6 at 7	hrs
OTHER	R:											*Insert	Drilling	Method e	e.g. Auger	ing, Har	nmering	etc.		DRILL RIG:	
		0	RILLI	NG					FIEL	ELD MATERIAL DESCRIPTION	T		2							DEFECT INFORMATION	
DEPT	H (m)	u	run Ength	TCR	RQD	CORE	LOSS	DEPTH	H (m)	MATERIAL DESCRIPTION (Type, Groin, Size, Texture, Colour, Other)	WE	ATHERING	3	s	TRENGTH		DEPTH	(1)	/pe, Oriental	DEFECT DESCRIPTION tion, Planarity, Roughness, Coating,	
FROM	TO		(m)		(m) (X)	FROM	TO	FROM	то	(type, orall size, rectare, outer)	FROM	TO	CODE	FROM	TO	CODE	(11)			Thickness)	FRO
													diameter a				7. ch	J,23°,	PI, S. I	Galed.	4.30
																	7.66	SZ, 25',	(1. Ř. J	In general, Sn. 100.	
1																	7.95	J, 25 , L	L. Roel	Çe .	
																	884	7,5 6	15 Roce	lay VI, lin	
																	2.58	I, 5; Un	Reise		
																	8-63	J.20°,4	$(\mathcal{R}_{2}, \mathcal{S})$	n. 23.40	
											.						861), 3.10°	U. Roy	<u>\$</u>	
																	8.70	9,6s*, u	C. R. S.	е. См	
											.						8.85	7.15	St. Kern	<u>ç</u>	
																	9-31	57,20°,	Us, Roy	fler grand, Shy, Sman	
																	9.45	J - 15° /	F1, R.,	55 7	
																	7-37	1.1.1.5°.1.	PI_K.	tin stad y Sa	
	• • • • • •							•			+						10-57	<u>84,181,1</u>	linke	l'Archergrad Little Atom	
1	• • • • • •																11:39		MELER.	^	10.5
	• • • • • • •							•		••••	+		·····				1127 19-27.	A. A.G CC N.S	125	<u>9 88</u> 9	
	• • • • • • •			• • • • • • •				••••••	• • • • • • • •								1813. 12-42	J. Hat.l	unalin 1. Ro		
	• • • • • •																12 83		ST R.	la. Vi za	
													1111				12 94	9. 40°.	tts. Ro	s. 16. 3. 1. 18. 3 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	
										-							13.07	J. 60°	U., R.	Sh	
													(Action of the second s				13-24	7,60°	U. , Ko	, Sn	12-3
									1								/J•80	J,40°,	Un, Ro	, Cn.	
											[7	19.0	J,60°.	11. "Ro	, S.y.,	13.8
																	15-78],20°,	Us Ro	, Sn	
																	16-64	J. 60°	U. Ro	<u>, Sn</u>	
																	16-22	sz , (s ;	U. Roy	for grout, Sny 10mm	
																	16-43	3,20%	St. Ro. 1	ine genetic lag structure	15-71
								.									17.1	7.7.10.4.1	la la	*	
																	26.47	<u>, 257, 1</u>	the Real	<u>Sa.</u>	
										<u> </u>							21-43	J,50°,1	Un Ro	ξ'n.	

OLCANKS\ Briehans Forme\CA RO...106 FIFLD DRILLING REPORT - ROCK dwn Auto 29, 2006 - 12-42nm

|--|--|

985

ON NED ENDLI ON DO THE MEDERAN NA 7 DEVICED ON /10 /04

Ð	GG	ider ocia	tes	Toowo Unit1/5 Monsfie	ng, QLD & 1 Secon eld, QLD	4066 5 Stree 4122	rt			FIELD DRILLING REF	POR	Γ ((<u>R0</u>	<u>CK</u>))	CO	ntinui Soil	ED FROM LOG? Y/N	REP <u>PROJECT No.:</u> A6632.962	PORT	OF	BORE	HOL	E: NST241 3of
		DRIL	LING	METH	OD			Т		GROU	NDWATE	R							CLIENT:(. <u>じま</u> フ,√					
FROM (m)	[0 (m)	DiA	WETER (mm)		MET	HOD			Groun	dwater Observed atm depth during drilling ACE SEEPAGE STRONG INFLOW le Wet atm depth	ha		roundwa roundwa rilling W	ier Not E ier Not C iter Belov iel Dellie	incounter Ibserved	ed while due to i . m dept	ntroducti h		PROJECT: <u>MSET</u> LOCATION: <u>SNETD</u> ST BOREHOLE LOCATION:		•••••	E		
OTHER:									Groun	dwater Level atm athrs date/ dwater Level atm athrs date/	/ /	Inser	otal/Pail korehole in Compl t Drilling	baled to mm S etion of Method of	g water m Standpipe Drilling e.g. Auge	depth on Installed	complet to	tion of drilling m depth	SURFACE RL:	ATUM: AZIN	AUTH: . Fini	C()-ORD.	SYSTEM ZONE:
		DRILLI	NG						FIEL	D MATERIAL DESCRIPTION									DEFECT INFORMATION					COMMENTS
DEPTH ((m)	RUN	TCR	RQD	COR	RE LOS	ss	DEPTH	(m)	MATERIAL DESCRIPTION	WE	ATHERI	(G		STRENGTH	1	OEPTH		DEFECT DESCRIPTION	ADS		FF [RECUENCY	Ĵ	samples, in-situ test
FROM	то	(m)	(m) (3)	(m) (x)	FROM	4	то	FROM	TO	(Type, Grain Size, Texture, Colour, Other)	FROM	то	CODE	FROM	TO	CODE	(m)	(Type, Orienta	tion, Planarity, Roughness, Coating, Thickness)	FROM	TO	No. (m)	FREQU -ENCY	DRILLING NOTES
			<u> </u>	<u> </u>													4.7s.	J. 50', Un Ro	clarva, Chin.	20.42	21-75	3	2.2	
																	27-66	J. 45°, Un. P.	<u> </u>					
																	73.0	J. O. Un Ro	ndsyz. Ford. Yn					
													· · · · · · · · · · · · · · · · · · ·				23-79 28 60	J. 45, Un Ko	, (1a., Vr. P	n.G.	12.65	Rat	4.0	
••••											-					······	24-45	5 J. 75°, H. R.	, Ing Cal, So Jum		. <u>84.</u> 11,	C.0:71.		
					1										1	e de la compañía de la	74-83	07,45°, U. Ro	Jin to come grovel SA, 50 min					
													.		0° 10.0	2	25 24	15, 40°, U. Ro	S	.				
															alue		25-36	DS 30° U. R.	2 Ema			27		
															. Zazi As	at 있는 '	2545	$(\leq u \circ, u \circ, R_{\ell})$. tin growle ford, 20m	24-45	<u>75-45</u>	Z.i		
							• • • • •		• • • • • • • •		· • • • • • • • • • • • • • • • • • • •		· · · · ·		ويتجاهبوه وا									
																·								
					.								j						Eoll.					
																				.				
		• • • • • •			·								 *		•••••					l				
											••		· · · · ·		hi shinin									
					1																			
				ļ						·····	, ,													
													· · · · .;.								,,,	,		
••••							····													·····				
					• • • • • • •															••••••				
													· · · · ·							·····				
					. .		· · · ·					L								I			6	

C-\CABUC\Reichans Forme\Cd RO-108 FIFLD DRILING REPORT - ROCK dwn dun 29 2006 - 12:42mm
Ģ		olde							F	IEL	D	DRI	LIN	IG	REPORT	(SOIL OR SOIL & ROCK)			REPORT	of Bor	EHOLE: NST 257
		DRI	LING M	ETHOD									G	ROUN	DWATER		2		CLIENT LBBJV		SHEET
CONT DIATU AUGE ROTA ROTA MUD	IRACTOR: JBE CORE IR (V,) RY (BLAD RY (AIR/) P, N:	/DTHH: C. HAND) E/TRICON WATER):	Founds, 0. E):	7. mm dia 5 m to	m to to2.5 .m to. 3.** .m to] Groundy] SURFAC] Sample] Groundy] Groundy	vater Obser E SEEPAGE Wet at vater Level vater Level	rved at .	EPAGE m.de m.on m.o	pth Ø.	th during STRONG 8/5 on of dri brs do	drilling INFLOW hrs Iling at the	hi	Ground Ground Drilling S Total/F Boreho	water Not Encountered while	tom. f .ro of drilling	depth	DROJECT: NSBT LOCATION: BOREHOLE_LOCATION: SURFACE RL: m DATUM:	E. (CO-ORD. SYSTEM
CASIN	₩ to R:			m NW	to				·····				····/		on Cor *Insert Drill	pletion of Drilling Method e.g. Augering, Hammering etc.	m depth		START:/	FINISH:	/
	T		DRILLI	NG Ling obse	PVATIONS			1				FIEL	SAMP	ling a	ID TESTING				FIELD MATERIAL DESCI	RIPTION	
METHOD	resistance Water Depth	(metres)	Descripti Of Minor Pr	ON OF CUT STRATA C OPERTIES,	Tings, det/ Hanges Drill Meth N. etc.	uls Od,	ЗЫ	FROM	DEPTH TO	0-150m or Run	n 150-30 Or Rec.	0 300-45	IS H WALKE	P.P. kPa	FIELD A e.g. SOIL INC	SAMPLE DESCRIPTION SSESMENT OF RECOVERED SAMPLE OR ROCK TYPE, PLASTICITY, COLOUR, USIONS, MOISTURE, STRENGTH	EPTH hetres)	C Symbol	SOIL / ROCK MATERIAL DESCRIPTION (SOIL OR ROCK NAME, PLASTICITY OR PARTICLE SIZE, COLOUR, SECONDARY COMPONENTS, MOISTURE, STRENGTH)	DISTURE INSISTENCY MISTEN	STRUCTURE AND ADDITIONAL OBSERVATIONS
A M	· -	sil	GRAVE	2 (61	4), f-n	gra	SPT	1.0	1.45	9	9	6	15		1.2m Silly	curifor) and Aking		-			1
) # 2		, bie 3. f - e	wi, d grav	Υ.MD el.			SPT	2.5	2.92	10	22	30			& grez, m; stilly cloyer	Strtf 84-40 / EL TUFF ,	····				
	10	bre bre	3.93.51. 22. M. icd to	<u>vp (sc</u> .MP.: 1 ·0),.f.:^^	Sp.d.,					 				pake grief &	erange brons	····				
R	2 - Z:	0 RJ 8 TVI	بر (بر)	[EL	Ç									·····							
 	3.	0 5	witch	to 10	ch log	k								•••••	, 					•••••	
M L			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																	
				··· <i>†</i> ····		ŝ.									· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·										•••••			1000000				
	•••••	-					2 2 2 2 2 2 2 2 2 2	· .									····				
	•••••	-		· · · · · · · · · · · · · · · · · · ·																	
					· · · · · · · · · · · · · · · · · · ·												····				
·····	· · · · · · · · ·													•••••			Alternation of the second second second second second second second second second second second second second s				
												6					···•	1			

	Ĵ	Go	ocia	r tes	611 Cor Toowong Unit1/51 Mansfiel	onation D g, QLD 40 & Secam S d, QLD 41	hive D66 Street 122		2 36	FIELD DRILLING REF	POR	Τ ((RO	CK))	CO	ntinu Soil	ed from Log?	Y/N	RE PROJECT No.: 0663206	2 2
	-	1 70	DRI	LLING	METHO	D			. [.1	GROU	NDWAT	<u></u>								CLIENT: LBDOV	
Ľ	FROM (m)	(m)		(mm)		METHO	0	2		dwater Observed atm depth during drilling			roundwat	ter Not E	ncounter	ed while		* to	m. depth	PROJECT:	
	3.0	38.0). 	Ke .		IMLC	•	L	SURF	ICE SEEPAGE STRONG INFLOW			roundwat	ter Not O	bserved	due to	introducti	on of		LOCATION: DEARCING S	<i></i>
1.									⊇ Grour	dwater Level at $7.5.$ m on completion of drilling at 0900	nrs		otal/Part	ial Drilling	Water	Loss at/	/Below	30 m		BOREHOLE LOCATION:	
					.			I	Groun	dwater Level at 7.5m at .9909.hrs date 29.1.11	16	. 🗆 🛛	korehole i	baled to	m	depth or	n comple	tion of drillin	g	SURFACE RL:	DATU
					.				Groun	dwater Level at	<i>[</i>	. 🗆 .		. mm S	tandpipe	Installed	1 to	m depti	•	STADT: 27/11/6-at 07	àp_
h	OTHER:							^L	580		•••••	· o •Inseri	n Comple Drilling	etion of I Method e	Drilling e.a. Avae	rina. Ha	mmerina	etc.		DRILL RIG: FU500	. nrs
F			DRILL	ING					FIEL	MATERIAL DESCRIPTION		in our		inverted (ng. nag		I			DEFECT INFORMATION	
Γ	DEPTH	(m)	RUN	TCR	RQD	CORE	LOSS	DEPTH	l (m)	MATERIAL DESCRIPTION	W	EATHERIN	IG I	s	TRENGTH		DEDITH			DEFECT DESCRIPTION	
h	FROM	то	LENGII (m)	m	(m)	FROM	TO	FROM	то	(Type, Grain Size, Texture, Colour, Other)	FROM	то	CODE	FROM	то	CODE	(m)	(1)	ype, Orientat	ion, Planarity, Roughness, Coating, Thickness)	FR
╞			-		(%)						7.0								2.5		_
13	3.9	3:6	0.8	2.100	<i></i>			3.0	12.5	TUFF, fine & COarse graind, pc he	15-0	15.7	XW	3-0		1.60	6.66	9,5,0	Ko, Sn		
1.	- 6-			1:9:		····				griz + browz	3.7	4.0	PW.	3.7	4.0	11	6.73	PZ,0',U.	Ko 5	"Omymy.	
13	3.0	5-7	.1:9	1.100				<u></u> .		b.6 clasts to 15mm, staining adj	40	6.6	DW.	4.0	6.6	. L.	7.26	J , 30°, U	n, Ro.		
		. <u>.</u>		122		<i>ș</i>			160 ⁴ 2	Spaints	6.6	12.5	54	6-6	2.5	H= 17	7.44	CZ, 10°, L	In Ro, f	ine to medium gravely 10mm	
۽ ا	5.7.	7.0	1.3	1.100.	<u>}</u>			12.5	/4.47	-becoming pake grey, five and grained	12.5	14.47	54	12.5	14:47	H-V4.	7.79	CS,0-5°,0	ha, Ro , V	(n., Sn, 10m	
Ι.		·			0.0			14:47	.1.7:4	- becoming ned to coase grained.	.14:47.	R73	SW.	(4,47	18.6	M- H	7.88	CS, 0-5° (h Ro I	In, 10 ~~	
	7.0	9.0	2.0	2/100	100			.17:4.	18-6	- da & gray, coasy grained	27:0	30.1	DW	18.6	20-46	H	7.94	J. 5° e. 4	he Ro .	Mr, Sma	
						٠		18.6.	32.62	CONGLOMERATE, fine to coase		ļ		20.46		M- H	8.22	CZ, 10°,	th Ro,	ting to medium gravel, Vn 201	n
1.	9.0	11.36.	2.36	100	<u></u>					grained, clasts to Joan	30.1	· · · · ·	SW				9.4	J. 0.5	Un, Ro.		
						J		32-62	33.73	SANDSTONE, fine to cearse grained,	·		I				9.54	J,0°,U	~, Ro, V	n, 5, un.	
1	1.36	14:47	3.11	3.100	2	· · ·	-	30.		gicy .							9.58	J, 0°, Us	Ro V	n, 5m	
1.				1	28.2	<i>.</i>		33-73		CONGLOMERATE: AS PER 18-6-32-62	. .						9.7	J, 10, UL	R	δι, _{δι,.}	
11	4:47.	17.42	30	3 100	3100		-		<u></u>	· · · · · · · · · · · · · · · · · · ·	. .	- 69,					9.82	J, 5º, 1	In Roj 1	Ornh	
١.				.93.							ļ						9.9	J, 5°, P	I, Ro, Vi	1, Snylam	
1	1.47.	20.4	2:93	100	2/	. <u> </u>	· +			· · · · · · · · · · · · · · · · · · ·	. .						10-1	J,0°, P	17. Ro 1	(n , Sh .	
						e				· · · · · · · · · · · · · · · · · · ·	. .						10-2	J,0°, PI	, Ro , A	h. ~	
ė	20.4	23.5	3.1	3 100	3.100	·~~	-	.		Mask	. .		l.				10.28	cz, 0°,	Un, Ro,	fine to medium grovel, 15mm.	
				1	20 F.					6403821112							10.4	J, 5°, L	In Ro ,	Vn, Sn, 12m	
2	23.5	26.5	3.0	3100	17								· · · · ·				10.55	J, 10°, U	the Ro.	Sn.	
								.	а. Политика Политика Политика								10.95	J, 0-5°,	Un, Po,	Vn, Sn, 5mm	
é	26.5	27.5	1.0.	100	0.50.	<u> </u>	-	.				- 					11.05	J,20°, 1	1, R., SA	·	
	27.5	28.7	1.2	12	U/		<u> </u>			· · · · · · · · · · · · · · · · · · ·			.				11.28	DZ, 25°,	Un, Ro	, 100 mm	
4	28-7	30.0	1.3	120	1.	-	~										11-63	J, 5°, (Un, Ro.	·····	
1					1. 16												11.65	J 0.5°	Un Ro.		
	30	22.5	2.5	2:00	2	<i>e</i>											11.91	J, 5',	Un, Ro,	Sn, 5mm	
	32.5	340	1.5	1.500	1.0	-	-		ļ	· · · · · · · · · · · · · · · · · · ·				÷			12:51	SZ, 0.10°	Un Ro	Sn, Vn, fine Loned grayel, 15m	·
	34.0	36:0	20	2.00	12												12-64	SZ, 5°	Un, Ro	Sn, Va fine to not growel, 10m	ih.
							.			·····							13.07	J, 30°,	PI, Ro, V	n, Sn, dmm	
										5						,	13.32	J ,0°, U	In, Roge	V _h	
- 11						1	1	1	1	5-11-17 5 4 1			I 16.	I				and a second			

RT	OF	BOR	ehol	E: NST 257	
			Sheet .	of	
			· · · · · · · · ·		
ĸ	4 NG /	9R 00	Po	INT-	
	•••••	E		N	
M: AZII	MUTH: .		U-UKD	. STSTEM	
	FIN	ISH:		athrs	
	LO	GGED:	.5.5.4	COMMENTS	
ADS	EFECT F	FF [,	samples, in-situ tests,	
OM	то	No. (m)	FREQU -ENCY	DRILLING NOTES	
	• • • • • • • •				
,					
		·····			
••••					
	•••••				
•••					
		• • • • • • •			
···					
…		···-;			
GA	BO-106	۲ VF	RSION N	0 7 REVISED 09/12/04	

	ŝ				611 Co Toowon	ronation a. OLD	Drive 4066					-		A1.	<u> </u>		NTINU	ED FROM	DE			DOD		F. NOT 257
Ê		Go	lde	Ľ	Unit1/51	å Secam	Street			<u>FIELD DRILLING REI</u>	<u>-0K</u>	(RU	CK) 1	 1 1 1 1 1 1 1 1 1 1 1 1 	SOIL	LOG? Y/N	RE DEDIECT No. 06632062	PURI	UF	DUKI		3 4
		55	DRI		Mansfie	ND ND	4122			CPOL		CD.		1947 (1947) 1949 (1947)			s		PROJECT NO.:				DHEEF	or
FIRO	M	J0,	DI	AMETER		METH	IOD			underster Observed at an death during death	NUMAI						<u> </u>		DROJECT NSBT					
("	-+	(m)	+	(mm)						RFACE SEEPAGE SEEPAGE STRONG INFLOW			roundwa	ter Not	Encounter Observed	ed while due to	introducti		LOCATION DEAKIN S	TREE	7.	KANG	4 Rol	POINT.
····			+		••••••••		• • • • • • • •		🗆 San	nple Wet athrs		0	rilling 🖗	oter Bek	w	m dept	h .					re:		
			· · · ·		•				Grou	undwater Level atm on completion of drilling at	.hrs		otal/Par	tial Drilli	ng Water	Loss at/	Below	m	SURFACE RL:	DATUM:	•••••	C	0-0RD.	SYSTEM
			1						Grou	undwater Level at	 1		orehole	boled to	m Standoipe	depth or Installed	to	tion of drilling m depth	INCLINATION: 90	. AZ	MUTH:			ZONE:
OTH	ER:								□			. 0	n Comp	etion of	Drilling				START: 2.7. /	hrs	FI	NISH:		/athrs
			DRILL	ING				1	FIF	ID MATERIAL DESCRIPTION	-	*Insert	Drilling	Method	e.g. Auge	ring, Ha	mmering 1	etc.	DEEECT INFORMATION		L(OGGED:		huck
DEF	TH (m)	RUN	TCR	RQD	COR	E LOSS	DEP	РТН (m)		w	EATHERIN	G	NS -	STRENGTH				DEFECT DESCRIPTION	AD	s 🗖	FF [COMMENTS
FRO		0	ENGTH (m)	m	m	FROM	TO	FRO	м то	(Type, Grain Size, Texture, Colour, Other)	FROM	то		FROM	то	CODE	(m)	(Type, Oriental	tion, Planarity, Roughness, Coating, Thickness)	EPON	TO	REQUENC	FREQU	DRILLING NOTES
-	┿			(%)	(%)		-										10.01		monicaly	FINOM		(m)	-ENCY	
• • • •		••• •	•••••				• • • • • • •	•••••••	••••	· · · · · · · · · · · · · · · · · · ·	•••••••••			1			13.91	DL, 15 th, Ro	, 10 m, m.			••••••	· · · · · ·	
}····			•••••				• • • • • • •	•••••••									14.15	J. ZO, U. Ko	, VN, Zmm					••••••
• • • •	· • • • •		• • • • •				• • • • • • •									••••	14.71	J. 15° U. R.	, Vn V. 3.	. .		+	• • • • • • •	••••••
• • • • •	· • • • • •						· [· · · ·				••••••••						14 93	CS 10° Un Ro	date and 25mg		 			
								1			•			1.1.20	J.C		15.1	J. 0°, UL , Ro	(142,4 31228)	•	 			
												[15.57	52, 5°, U. , Ro,	Vn, fine gravel, Jmm.	1	•			••••••
																	15-69	J. 15°, Un, Ro	Vh., 5-6 km	1				
														ļ			16-29	J. 40°, Ch. Ro,	.Vn, 4nn					
		.															16-38	J. 70 - 90°, Un,	Ro, Vn, 2mm					
	· · • • • · · ·												2416A Pr			••••	17.35	T, 50°, Pl, R.	, <u>Vn</u>		ļ			
	•••		• • • • •		• • • • • • • •			· · · · ·					· · · · ·			ų́	17-23	0,30°, P1, Ro	, V					
	•••	··· ·			•••••		+	••••••	••••••••		•••		·····			•••••	11.16	J.O. Un Kor	Vn					
]	•••••••	.					••••••	+								•••••	18:07	J. 50 U. R. V	V9	•		·		
· · · ·	· · · · ·				•••••	•••••	+		•				Contraction of			•••••	18.42	CS. 5° UL R.	20m.	+		+		
								1						[·····		•••••	18.57	CS, 0° U Ro	20 m.	••••••••		••••••		
]						and the second				18.75	J, 300, Un, Ro.	Sz .	1		1		
]				19.0	DZ, 30°, PI, Ro	1. 45mh	1				
		.					ļ										19-21	DZ, 25°, UL, Ro	, 35~					
		.					.										19.37	cz, 20" Pl, Ro,	10 mm.					
	· · [· · ·						.										19.9	J, 70°, PI, Ro.				ļļ		
••••	· • · · ·	.															20.03	J, 40", Un, R	, lomm					
••••							.		••••••••				····-;				20-46	DZ, 15°, Un, PI	1. 12.0m					
••••	· · · · ·		· · · ·		•••••								••••••				2).10	J160 JUL, RO.	<u></u>	.		••••••		······································
• • • • •	··[···	.		• • • • • • •	•••••	•••••		+	••••••••				ن ز	· · . · ·			~~ 13 B.TI	17. 25° H. D.		•••••		∤ ····∤		
		•••			•••••		÷••••	÷	••••••••				·····				24.87	CS, 5° Un R.	mahu ca 1 210			·····		
							-			-									- Joine mad, all white	1		i 1	- 1	

				-											043	2862	00 R	hi Book							
		old	er	611 Too Unit1	Coronat wong, Qi & /51 Sec	ion Driv LD 4066 am Stree	e S			FIELD DRILLING RE	POR	T	(RC	CK	()	C	ontinu Soil	ED FROM LOG?	· Y/N	REP	ORT	OF	BOR	EHOL	E: NST 257
Y	AS	SOC		Mar	THOD	LD 4122	ĩ			000					_					PROJECT No.: USB SCOUL		•••••	•••••	SHEET	of
FROM	T		DIAMETER		M	THOD				GRU	UNDWAI			<u>.</u>											
(m)	+-"	m)	(mm)	-						Indwater Observed atm depth during drilling			Groundwi	ater Not	Encounte	red whi	ie	* to	.m. depth	PROJECT: NOUT				 DT	••••••
•••••		••••					• • • • •		Sam	ple Wet atm depth			Groundw Drilling	itter Not Inter Rel	Observed	due to	introduct	ion of		LOCATION: DEALIN S		ANG	4K D Q	. <u>P1</u>	
•••••			• • • • • • • •	•••					Grou	indwater Level at m on completion of drilling at	.hrs		Total/Pa	tial Drilli	ing Water	Loss o	t/Below	m		BOREHOLE LOCATION:		•••••	E		
										indwater Level at	· . /	. 🖸	Borehole	baled to	m	depth	on comple	tion of drilling	l	INCLINATION: - 90.	AIUM:		C	0-ord.	SYSIEM
							• • • • •			indwater Level at		. LJ		mm letion_of	Standpipe	e Install	ed to	m depth		START: / / ot h	AL rs	IMUIN: FIN	IISH:	1	/ at hrs
OTHER			•••••			• • • • • •						*Inse	rt Drilling	Method	e.g. Aug	ering, H	lammering	etc.		DRILL RIG: FD500		LO	GGED:	SSel	hul
		DRIL	LING						FIEL	D MATERIAL DESCRIPTION									1	DEFECT INFORMATION					COMMENTS
DEPTH	1 (m)	RUN	TH TCR	RQ	D CC	ORE LOS	SS	DEPT	1H (m)	MATERIAL DESCRIPTION	W	EATHERI	NG		STRENGT	H	DEPTH		Ger≊e Ger≊e	DEFECT DESCRIPTION		is [] Defect i	FF REQUENC	Y	Samples, in-situ tes
FROM	то	(m)	(m) (X		x) FR(M	то	FROM	то	(Type, Grain Size, Texture, Colour, Other)	FROM	TO	COD	FROM	то	COD	E (m)	(1)	pe, Unenta	ion, Mananty, Roughness, Coating, Thickness)	FROM	то	No. (m	FREQU -ENCY	DRILLING NOTES
																1	27.67	J, 75°,	Un, Ro	Vn., San					
																	28.53	TS 5	Un, Ro,	time Sand & cool, 80 mm		1	1		
																	28.85	J, 60',	Un, Ro	, 4mm.			1		
	· · · ·																29.27	C2,5°,0	h, Ro,	fin grand, Sand & coch, 100m			1		
				.								.				l	30.0	CZ, 60,	St. Ro.	fin to ned grand & coarse					
	 															l		Sard, 1	00 mm	, ,					
												.			5e		32.43	J,65°,	Un, Ro						
												 					33-21	J,5°, u	s. Ro	Vn, Sn.					
]					ļ		<u>e</u>			33-3	J, 5°, U	r, Roy.	Vn, Sn					
			· [· · · · ·														33-37	J.,5",U	n., Ro,	Vh, Sh.					
																	33.54	CZ, 0°,	h, Ro,	coase Sad & fine gravel, 100mm					
				• • • • • • •					+			ļ	· ····	 			33-73	J, 20°, U	h. , Ko .	·····					
				· [:			•••••				••••		· · · · · ·				33.82	J, 60°, (In lo.		•••••				
				· · · · ·				•••••					· · · · · · · · · · · · · · · · · · ·			ļ	34.05	J ₁ 15°, U	n, Ro, to	in grand & coarse fand, 30mm					
			· · · · · ·	· [····							•••		· · · · ·			·····	34.66	V , 15°, S	+ Ko	Σ <u>α</u>					~
			•	· [····							•••••••••						35.46	DL, 20° (lu, Ko	, 40 mm		.			
		·····	• • • • • • • • • • • • • • • • • • • •	· [····	·· [···	••••	••••		+	· · · · · · · · · · · · · · · · · · ·	•						·····					••••••			
					···						•••••••••						·····				•••••		••••••		
				1	· • • • • •	••••	• • • • •	•••••													•••••	•••••	•••••		·····
				1	•••	••••	••••				•		····				[·····]		•••••			•••••			
				1	···									ļ			••••••	с	•••••			†·····	•••••		
				1	·· [· · · ·	· † · ·	····												•••••			÷			
			1	1	· · [· · ·	· · · · ·				······						• • • • • •	••••••	•••••	•••••		•••••	.	• • • • • • •		
				1		1										•••••							•••••	· · · · · · · · · · · · · · · · · · ·	••••••
			1	1	1	· · · ·	T.										1				••••				
					1						•			- 		•••••	1	•••••		······	•••••		• • • • • • •		
											1				- -	•••••	1		• • • • • • • • • • • •		• • • • • • •		•••••		••••••
							Ĩ						[````		[·····	· · · · ·	1						•••••		······
				1					r		•••••••••		rk	· · · · · ·			••••••	• • • • • • • • • • • • •					• • • • • • • •		

CONTRA	GG ASS	DRILLING METHOD	7	Star Ota	F	EL) [RIL	<u>LIN</u> GF	IG	REPORT (SOIL OR SOIL & ROCK)		REPOR PROJECT No.: 66632062 CLIENT: LEBTV PROJECT. NS 57
DIATUBE AUGER ROTARY ROTARY MUD P, NMLO/ CASING OTHER:	CORE/I V,/T-C, (BLADE/ (AIR/WA N:/COR HW to	DTHH:	Grounds SURFAC Sample Grounds Grounds Grounds	water Obser E SEEPAGE Wet at water Level water Level	at at	PAGE m dep m on c m ot	m depth	TRONG IN TRONG IN n of drill . brs dat	drilling NFLOW hrs ling at te/	hr /	Groundwater Not Encountered while	m. depth epth	PROJECT: 703.57 LOCATION: BOREHOLE LOCATION: SURFACE RL: INCLINATION: 70 A START: 20/11/6-athrs DRILL RIG: 408
z	1	DRILLING DRILLING OBSERVATIONS		1		—		FIELD RESULT	<u>) sampl</u> Ts	ing an			FIELD MATERIAL D
NCC N	1	DESCRIPTION OF CUTTINGS, DETAILS	μ	1	Depth	0-150m	150-300	300-450	N VALUE	P.P.	FIELD ASSESSMENT OF RECOVERED SAMPLE	- Pa	SOIL / ROCK MATERIAL DESCRIPTION (SOIL OR ROCK NAME, PLASTICITY OR PARTICLE
PENET	DEPTH	MINOR PROPERTIES, DRILL METHOD, DRILL: REFUSAL ETC.	ج ج	FROM	TO	or Run Length	Rec. Length	R.Q.D.	12400	kPa	e.g. SOIL OR ROCK TYPE, PLASTICITY, COLOUR, INCLUSIONS, MOISTURE, STRENGTH	EPTH metres	SIZE, COLOUR, SECONDARY COMPONENTS, MOISTURE, STRENGTH)
M		- BITUMEN -		T	T				Ī				Situmen Pavenut
	03	Silly GRANTI (GM), F. C gran	1	1				1			*	0.3 GM	Silk GRAVEL (GM) King to a
		Some time Sand, brown, day	SPT	1.0.	1.45	4	9	6	15		growelly CLAT (12), mol. br. f-c	9	varel Some fine said been
		MD_ (FILL).					[gravel, dor to morst, VSt. (FILC-		yedium dense
	18	granelly claying PAND - FIL.										1.0. CI	gravelly CLAY (CI), medium
	3.0	?? clen ? Yep. Silly CLAP See SPI	SPT	2.5	2.95	3	3	Z	5.		growelly cloury SAND (&-GM) f-c		plasticity, brown, fine to cear
	. 4·š										Sand, dk br, h ph finis for		growel, moist, very staff
		*									grand, dir to moint, poses in	18 52	gravelly clayer SAND (sc). fi
	5.5	- Soft. In to we to	SPT	4.0	4-45		Z	3	5		Silly CLAY (Ct-CH) much pl. grue br,		coase sand dark brown, fine
	6:2	CH, Sand lenses									trave f. sal, firm mart		coase gravel, dry to meist,
		· ·		· · · · · · · · · · · · · · · · · · ·						د. منبع م		SECU	Silly CLAI (CI-CH) mediu
	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	U50	5.5	5.95	 				60.	AS ABOVE		high plastick, are show
£.].	10.7	rede									CT ST ST	$ \rightarrow $	raise time said, firm, marst
1	<u>.</u>	START Corvy	SPT	7.0.	7:45	.1		2			Silly CLAY (CH), Lal, gray, Wety	55	becoming soft morst to a
	10.7	See Rock Log	. 5) (j) V T						Soft / bonded Sand Verses - leaf	6.004	Stop (147 (in), high plestic
		0	. C. P.T.	8-5	8.95.		2	2			aditto" material		gree wet "Soft.
						.: 		,				10.084	Sandy CLATLEH), high pla
. .			SPT	10.0	0.45	. 1 -		. 6 .	.7.		Sandy CLAT(CH), hpt Im-can		adre gree medium to ce
									.:		Sand, gry, firm soft		Rand, morst firm-soff
						·						10-7 7	VFF - See Rock lag.
						ं • क्रु. • • •				ن 			0
						<u>,</u>			,			<u> </u>	
1													
			. .							<u>.</u>			
		а 	. .	2000 2000						نېږي. د و			<u> </u>
				· · · · · · · · · · · ·						/			
		مَنْ الْمَنْ ال المَنْ الْمَنْ أ	. T								the second second second second second second second second second second second second second second second se		£
		3°	•	а. Станада									
				<u>_</u> 2									i
				a. 2	S			120		4. S.C.			
	íoh a nế		BOOK 4				1	P					

rt of	B	OR	CEHOLE: NST. 347 SHEET	
• • • • • • • • • • • • • •	 	· · · · ·		
JM:	••••	E.	N X0-ord. system	
AZIMUTH:	WISH	:	ZONE:	
DESCRIPTI				
IL E E	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
coare				
anj.	D	n		
·····				
re				
fine to	m	VSr	. ب	
e to	 ກ4			
t, leose	n	Le.	×-	
un to			NATURAL.	
4	m	fi,		
wet	nt Ns	? <u>.</u>		
hi		ţ	occassional Sand	
lachici	4		mables.	
carse]	.,		
<i>f</i>	2	<u>f%</u>	n 6504 (RS.)	
		••••		

	G	olde socia	er Ades	61 To Unit Ma	1 Corr cowong 1/51 Insfield	onation a, QLD 4 Secam 2 d, QLD 4)D	Drive 066 Street 122			FIELD DRILLING RE		T ((RO	CK))	CC	ntinu Soil	ed fron Log?	Y/N	R PROJECT No.: 0663206 CLIENT: LEBJV	2 POI
FROM 10 - 7	15.9 15.9		WWETER (mm)		N	METHO	λ Ο (Grou SUR Grou Grou Grou	ndwater Observed at <i>H</i> :9m depth during drilling ACE SEEPAGE SEEPAGE STRONG INFLOW ole Wet atm depth	-hrs ./	-11 G G G G G G G G G G G G G	roundwat roundwat rilling Wo otal/Part orehole I n Comple Drilling	ter Nat E ter Nat C ter Belon ial Drillin baled to mm S etion of Method o	incounte Ibserved Water m Itandpipe Drilling e.g. Aug	red while due to . m dep Loss at, depth o e Installe ering, Ho	introduct h /Below n comple i to	* to on of m tion of drilli m depl etc.	. m. depth ng	PROJECT: <u>MSGT</u> LOCATION: BOREHOLE LOCATION: SURFACE RL: INCLINATION: <u>70</u> START: <u>9</u> <u>J. 11</u> <u>J. 6</u> . at DRILL RIG: <u>FOX</u>	m DATU hrs
		DRILL	LING	—					FIEL	D MATERIAL DESCRIPTION										DEFECT INFORMATION	
DEPTH Rom	(m) TO	LENGT (m)		R(FROM	LOSS TO	DEP1 FROM	H (m) TO	MATERIAL DESCRIPTION (Type, Grain Size, Texture, Colour, Other)	FROM	TO	G CODE	FROM	TRENGT	CODE	DEPTH (m)	_ູ (Type, Oriental	DEFECT DESCRIPTION ion, Planarity, Roughness, Coating, Thickness)	F
				T						and the second second second second second second second second second second second second second second second							10.84	(8,0-	5°. Un. t	20. Vr. 5mm	+
		[_	1	`							10-90	DZ, 20	, Un , R	o, Vn, 240mm.	
			12:12	,													11+15.	CZ, 5°,	Un, Ko,	tine gravel, Vn, 10 mm	
<u>o.7</u>	13-8	31		?		-		10.7	15-9	TUFF, fine to redrum grained,	10.97	11-07	λ (-) Dbl	[P.7	11.07	EL.	11-2	J, 35°,	Un, Ro,	Vn, 3mm	
· · · · ·								.	·	puckish group, clasts to bar		15.9.	ξ.v	11.07	15.9	NH.	11-25	52,10°,	Uh, Ro,	fine gravel, 5-10mm	
	11- 0		al.	<i>.</i>									····				11.47	J, 5°, U	la, Ro, In	en la la la companya de la companya de la companya de la companya de la companya de la companya de la companya	
5.8	13.11.	Ø.:!		? {.					+								11.50	cs, 5°, 6	h, Ro, hij	th plasticity clay, 35mm	H.
				•••••			l	•••••									11.92	57 50 1	Un Ko 3	0mm	
				•				†····	••••••		•••		····				12-15	52 0' 11	Ro L	in gravel, brun	
				1				†····					····				12.49	J. 30° IL	. Ro So	Lealed 5mg	
				1	1			1									12.53	J, 10°, U	h, Ro, Sn	healed, 5mm.	
				1				1	1								12.56	J, 70°,	Un, Ro;	2m.n	1;
																	12-73	J, 15°, (ln, Sm,		
								ļ					÷				12.82	J,5°, U	hy, Ro, S	n, Imm	13
				. .													12.90	J, 35°,	St, Ro, S	n, 5m.	
							· · · · · · · · · · · · · · · · · · ·	11								<u>.</u>	13.06	J, 10',	UL, Ro, E	mm.	14
				· [i Naj									13-37	CZ, 10°,	Un Kort	ine granel, Vn, lon.	
				· · · ·			. 3		•						•••••		13-45	J1.60,	Un Ko	tike sand a five gravel, Vn, 4n	m. [5
				· [· · ·			1000						••••				12.9	1,30,2	DI D A	1, domm	
				· [···			· · · · · ·				••••••••		•••••• :		• • • • • •		14.16	57.501	I. P. I	00mm	
		••••		· [· · ·	···•								•••••		• • • • • •		14-3	DZ.5°	lla Ra	140	
				1	···†			•••••			•••••••		• • • • • • •	·····	• • • • • •		14.44	J, 15°,1	Un Ro.	1 4 V 1000	
				1				1									14.5	J 15°, 8	St, Ro, L	in gravel, Vn, 5mm	
																	1452	J,0°,U	, Ro, S	3m.	
]								[14.58	J, 0°, Un	, Ro, 101	, , , , , , , , , , , , , , , , , , ,	
																	14-62	J,0°, U	Ro, Vn		
			 	.				.					····.		• • • • • •		14.67	CZ, p°, l	La, Ro, fi	regravel, Vn, 10mm	
																	14.81	TIC. U	h. ku 2.		

T	OF	Bori	EHOL	E: NST 347
•••		\$	Sheet .	2 of <u>3</u>
•••				
		E		N
: 70		C	0-ord	SYSTEM
1211	FIN	ISH:	1	
	LO	GGED:		hul.
ADS		FF (
)M	TO	No.	FREQU	DRILLING NOTES
-			Liter	·
•••				
••••				
84	11-50	7.66	10.6.	
···	12.48	4	4.0	
			y	
[8]	13.06	0.5.8	10.3	
6	¥ 14.2	6/14	4.8	
<u>.</u>		7.1.:K.). 		
<u>}</u>	15.05	10.75	13:3	
*	15.07	2/1	2.6	
	.1.5***	.6.11		
•••				
				~
•••				
~	00 100		DCION N	3 00/00/04

Ē		Go	ide ocia	r Jæs	611 Co Toowoo Unit1/51	aronation ng, QLD & Secam	Drive 4066 Street			FIELD DRILLING REP	OR	T ((RO	CK)		CO)ntinu Soil	ed from Log? Y/N	RE PROJECT No.:	PORT	OF	BORE		E: NST347
			DRI	LING	METH		4122	r		CPOLINI		D							AUGUE I RR TI/					
FRO	M	TO.		AMETER	T	METH	00			GROUN	DWAID	<u>.</u>				_								•••••
(m	2	(m)		(mm)				_		roundwater Observed at		Ц¢	roundwat	er Not E	ncounter	ed while		* tom. depth	PROJECT:					
		• • • • •								ample Wet at m death has			roundwate	er Not O	bserved	due to i	introducti	ion of	LOCATION:		••••••			
										roundwater Level at			nilling wa atol/Parti	ter Below		. m dept	ih /Deleur	_	BOREHOLE LOCATION:			E		N
									Gro	roundwater Level at	•		orehole b	aled to	mater	denth or		tion of drilling	SURFACE RL:m	DATUM:		CC)-ORD.	SYSTEM
									🗀 Gro	roundwater Level at				. mm S	landpipe	Installed	1 to	m depth	INCLINATION:	· AZ	MUTH: .			: ZONE:
OTH	ER:											0	n Comple	tion of l	Drilling				START:/	hrs	FIN	ISH:		
_				NC					00			*Insert	Drilling	Method e	.g. Auge	ering, Ha	mmering	etc.	DRILL RIG: <u>20</u> 2		LOC	GGED:	<u>Ç</u>	chul.
DEC	mu (<u>, </u>		100	800	0000	1000	0.000		IELD MATERIAL DESCRIPTION			:						DEFECT INFORMATION	1 40		55	_	COMMENTS
UEP	nn (m	-	LENGTH	ICK	KUU	CORE	. LOSS	DEPT	IH (m)	MATERIAL DESCRIPTION	WE	ATHERIN	G	S	TRENGTH		DEPTH	(Tune Oriente	DEFECT DESCRIPTION		DEFECT FI	REQUENCY		samples, in-situ tests,
FROM		ro	(m)	(11)	(11)	FROM	TO	FROM	то	(Type, Gruin Size, Texture, Colour, Other)	FROM	TO	CODE	FROM	TO	CODE	(m)	(iype, onento	Thickness)	FROM	TO	No. (m)	FREQU -ENCY	DRILLING NOTES
						 											14.86	J, 8°, Un, R.						
													[]				14-93	J. O. Ha Ro	Sn.					
							l										15.05	7,5' Un. R.	Sn.	1				
							<u> </u>										15.4	J. 83° Un Ro	healed. 5mm	1				
																	15.82	T. 5° UL D.		1				
							1	1	1									84	,					
							1	1	1						•••••			• • • • • • • • • • • • • • • • • • • •	•••••	+		• • • • • • •		
								1	1				• • • • • • •				• • • • • • •			••••••				••••••
	· • • • •						†····					• • • • • •				• • • • • • •		• • • • • • • • • • • • • • • • • • • •						
	· • • • • •	···· ·					+ · · · · ·								• • • • • •									
	•	••••			• • • • • • •	• • • • • • •	+		+											.				
	•••••	···· ·			• • • • • •			••••••	· · · · · ·							·				.				
• • • • •	••••••					• • • • • •			•															
• • • • •							.																	
	·							.																
									. .															
									.]								
								.												[
								.												1			1	
]]												1							
											Ĩ					·····				1				•••••
								Γ	T								• • • • • • •		• • • • • • • • • • • • • • • • • • • •	·····	• • • • • • •			
								ľ	1				•••••				•••••							
	1		····								•••••		•••••		• • • • • •		•••••			•••••	• • • • • • •	•••••		
								1									•••••					·····		
		··· ·				• • • • • • •				••••	·····	• • • • • •	•••••	·		•••••	· · · · · · · · · · ·			•••••		•••••		
	• • • • • •	··· ··		•••••							·····		•••••				••••••							
• • • • •	• • • • • •	•••	•••••	•••••		• • • • • • •				•••••••••••••••••••••••••••••••••••••••			•••••	····· ·			••••••	•••••						
• • • • •	••••••			•••••				• • • • • • •		•••••••••••••••••••••••••••••••••••••••			•••••											
	1		- 1	- 1							- 1	- 1	I	- 1	I	- 1				I	I I	- 1	- 1	

	Gol	der ciates	; ;		<u>F</u>	EL) [RIL			REPORT (SOIL OR SOIL & ROCK)		PROJECT No.: 6652062
CONTRACT DIATUBE C AUGER (V ROTARY (L ROTARY (L MUD P, N NMLC) CASING HU OTHER:	OR: CORE/DT T-C, BLADE/T WR/WATT WR/WATT	Divide Involvementation Schnetaes HH:	Ground SURFA Ground Ground Ground	dwater Obse CE SEEPAGE e Wet at . dwater Level dwater Level dwater Level	erved at ESEE Le O Lat Lat	F. Q PAGE m. dep m. on o m. on o m. on	m depth	i during TRONG II brs da hrs da	drilling NFLOW ing at te	hr //	Groundwater Not Encountered while	m. depth illing epth	PROJECT: $NSE7$ LOCATION: BOREHOLE LOCATION: $10.5.0.3.2$ SURFACE RL: -8.7 m DATUM: INCLINATION: -9.0 AZ START: $2.1.1.1.1.6.6$ at 0.70 hrs DRILL RIG: 6.02
		DRILLING						FIELD) SAMPI	LING A	ND TESTING		FIELD MATERIAL DE
METHOD PENETRATION RESISTANCE WATER	DEPTH (metres)	DRILLING OBSERVATIONS DESCRIPTION OF CUTINOS, DETAILS OF STRATA CHANGES MINOR, PROPERTIES, DRILL METHOD, DRILL REFUSAL ETC.	TYPE	FROM	DEPTH TO	0-150m or Run Length	n 150-300 or Rec. Length	RESUL 300-450 R.Q.D. Length	TS N WALLE	P.P. kPa	SAMPLE DESCRIPTION FIELD ASSESMENT OF RECOVERED SAMPLE e.g. SOIL OR ROCK TYPE, PLASTICITY, COLOUR, INCLUSIONS, MOISTURE, STRENGTH	DEPTH (metres) UC Symbol	SOIL / ROCK MATERIAL DESCRIPTION (SOIL OR ROCK NAME, PLASTICITY OR PARTICLE SIZE, COLOUR, SECONDARY COMPONENTS, MOISTURE, STRENGTH)
A M	0	Bihines		<i>`</i> 16	4	Å.	No.	<u>.</u>	Ī	Ī		0	Bitumen
# //	0.3	Silly GPAVEL (GM), f. n.				l'an			1.1.50	timbe			
	1.25	ganel, br, the day		1.0	1.45	H	3	Viel	1	F.	classes Sondy GRAVEL. (Gp) f-n	0.36M	FILL Clayey sandy GRAVEL (GM)
	<u>c</u> 27	the be fstert.							Que provi		to dry to north		sine to monium grained, brow
	15		SPT	25	2.95	Z	2	Z	4	·[·····	CLAYEV SAND coarse grained said		measur dense ang
M		Clayey sond									dark grow brown moist	1-35	with some timber/steel
	46	-note water table at 40.	m. PT.	31/5 4	445	.2	01	2	3		CLAYEY SAND, conse grand sand	<u> </u>	
			·····			t	4212	Y	12		dark brown, wet CFILL)	1,264	714- / clayey SAND, course of
· 77	4:6	Class CH			5.95	1.8		1	2		(day hich lad all (?) (If (natural)	··	dark brown, moist, loose
	5.5					e de cale					arees and why some wood		•••••••••••••••••••••••••••••••••••••••
2			450	7.0	TWT	A				55,45	clay, high plasticity, gray story \$ 50 St	4	
2	. 12:3										to very soft		
•••		Gravely clay class	9. <u> </u> 5P7	8.5	8.42	<i>Q</i> .,	HW.			N=0	<i>ν</i>	4.9CH C	LAY high plasticity grey, with
	•	are mason graver	us.	010	10.45				• • • • • • •	55	j. H	n	have wood, wet soft to very
	11-0	gravely clay (residual)				1			· ·			9	vey, wet, very soft
		high plasticity most stift	SPT	11.5	11.95	hid		-7	0		CLAY, high plasticity, grey, with	140 CH g	ravelly CLAY, high plasticity
		ing and an				ļ					same angonics and, wet soft	<u> </u>	rown, moist, stiff
	10	Eli Tuss grey a car me	sei. sei	13.0		····	.l.2		l!		GRANEY Elayey SAND/SARAY CLAY	16 C	xtremoly weathered TUFS-
	· · · · •			•••	•		••••••				are with MM miler soft		y strength
		·····	SP	14.5	14.95	3	4	5	9		gravely ester clay, high plasticity, brown		000 ST SSG1 - 1
	163	charge to coring (rock log)				.		[172		moust shiss (residual clay)	188	
	×8		<u>s</u> P1	16 m	16.3	<u>+</u>	30/105	.	les)	1	EW Tuff green merst		
	• • • • •						.				vory low strength	*	
	1.4				•		•				·····		
				1		1					<i>ų</i> .		
	shana	CA RO-108 FIELD ORILLING REDORT S		dwa Sea Di	2006 - 1	530m	L	L	L	L			COLDED FORM OF

				•
ΤOF	В	OF	REHOLE: NST 348	
			SHEET / of 2-	
			SHELT	
$\frac{1}{2}$				
10		-	19141-1	
41¶		. E.		KPS
• W		(CO-ORD. SYSTEM . WG.S.& F.C.	ľ' –
ZIMUTH:		N,	4 ZONE:	
FI	NISH	:	2/ 1.12. 1. 04. at 1330 hrs	
L(OGG	ED:.	Sechal /AG3	
ESCRIPT	ION			
		ξ	STRUCTURE AND	
	lË	텛	ADDITIONAL	
	Sign	NOS	OBSERVATIONS	
	1.4	Lu		
	·P?	12		
	. .	ļ		
)		MD		
ωn				
	1	1		
	÷	 		
	÷	 		
	.	.		
connel		L		
ginne	1	1		
• • • • • • • •	·			
• • • • • • • •	 			
	L			
	W			
	1			
 /	ŀ	c	- L'anta	
?	ŀ		Marine Serunerys	
sost		v 3		
g ranned		VS		
<i>,</i>				
	м	5+	sor duel soil	
<i>].</i>	1	976). 		
	ŀ···		· · · · · · · · · · · · · · · · · · ·	
ronely		ĔĻ		
	l			
	···			
	[```			
		••••		
		••••		
GA BO-10)8	V	ERSION No. 10 REVISED 30/05/06	

OF 5.2	RE PROJECT No.: 06632 C	YN	ed from Log?	ntinui Soil	CO		CK)	RO	Γ (<u>OR</u>	FIELD DRILLING REP			rive 066 treet 122	onation D g. QLD 40 & Secam S d, QLD 4	611 Cor Toowon Unit1/51 Wansfiel	tes -	ide i ocia	G	Ð
β.).	CLIENT: NSBTP L(R	DWATE	GROUN	71.		0)D METHO	METHO	LING	DRIL	То	FROM
		m. depth	*to on of	ntroduction	d while due to i .m depti	countere served	r Not Ei r Not O er Below	oundwate oundwate illing Wat			ndwater Observed at?:m depth during drilling FACE SEEPAGESEEPAGESTRONG INFLOW ple Wet at	Grou SURF Samp				NM	(mm) 0	5	(m) 21-5	(m) 16+3
	SURFACE RL: 6.8	ng Ih	m lion of drillin m dept	Below complet to	.oss at/ lepth on Installed	Water I m (andpipe	l Drilling lied to . mm S	tal/Parti rehole b		s 	ndwater Level atm on completion of drilling ath ndwater Level atm athrs date/ ndwater Level atm athrs date/	Groui	···· [
rs 	DRILL RIG: F. 0.X.		etc.	nmering	ring, Har	rilling g. Auge	ion of (lethod e	Comple Drilling I	o *insert	•••••										OTHER
1	DEFECT INFORMATION				Ŋ	14, 6	мВ,	L,4	EL,V		D MATERIAL DESCRIPTION	FIEL					NG	DRILLI		
L	DEFECT DESCRIPTION ion, Planarity, Roughness, Coating,	(Type, Orientati	a	DEPTH		RENGTH	S		ATHERIN	WE	MATERIAL DESCRIPTION	i (m)	DEPT	LOSS	CORE	RQD	TCR	RUN LENGTH	(m)	DEPTH
F	Thickness)			(11)	CODE	TO	FROM	CODE	TO	FROM		TO	FROM	TO	FROM	(11)	(11)	(m)	TO	ROM
ļţ	UN, Ro, Clay, 2mm	, and	1680	16.5	Н	.17	16.3	DW	18.5	16.3	TUFF, Sue to coarse graved grey with	2/108	16.3	····		97%	100	306	19:36	6.3
Ŀ	os Klay, Imm	, <u>St, R</u> u	J, 45°	16.93	VH.	21-5	17	SN	19:52	18.5	arange staining, with clasts smaller				• • • • • • •	100%	100	2.14	21.50	9:36
Ľ	clay/UL taff, 35mm	UN, Ro,	02,0	16.97				sw-fR	21:5	19.52	the Smm.									
Ľ	. clay, 2mm	UN, RO,	J, 80 ,	1742				· · · · ·			with 20mm Breccia piece		21.2.5							•••••
þ!	clay, vorcer, partially he	,un,Rb	J. 75	18,42							black vein, 15mm, dipping at 70		21.42							
ŀ	o, limonite, veneer	5 PI, P	₩J,2	18.75				·						• • • • • • •						
 	limonite, veree	C.L., <u>R.</u> , !	lle`,.!	18.78						• • • • • • • •										•••
	linen ite, veneer	UN, Ro,		12.07																
ŀ.,	, sardy day , 6.mm	UN, Ro	<u>, 10</u>	19.66																
	, Ro., clean	, Une UN	50	17.23		•••••		••••							• • • • • • •				•••••	•••
	healed	UN RO	1,80,	19.46																
 		am/ke	1,100	n																• • •
	imonia, veneer	51, 10), 10,	20.75																
	nonte, veneer	NN, Ro In	1,5,0	20.89																
	e, lineate, 2nm	,UN, R	1,250	21-26														•••••		• • • •
			4	-		• • • • • • •														• • • •
			•••••																	• • • •
	······		•••••			u, ust								· · · · · ·						
							-ș, îs c							ç i	• • • • • • •					• • • •
			•••••					····{		<u>.</u>				•••••						
:								···•												
								····							• • • • • •			• • • • • •	• • • • • •	••••
			•••••	••••••										• • • • • • • •	• • • • • • •			•••••		••••
			•••••					•••••										• • • • • •		••••
	•••••		•••••	••••••				••••				· · · · · ·								
•••	•••••					•••••		••••				• • • • • • • •			• • • • • •	• • • • • • •	• • • • • • •		• • • • • • •	
	•••••		• • • • • • • • • • • • •	••••••				••••						• • • • • • •					•••••	
	•••••		······							• • • • • • •									• • • • • • •	
											L	1								

 $(1-\frac{1}{2})^{-1} \frac{\partial p}{\partial t} (1-\frac{1}{2})^{-1} \frac{\partial p}{\partial t} (1-\frac{1}{2})^{-$

REP	ORT	OF	BOR	ehol	E: N578 348
52.00		• • • • • • • •		SHEET .	of
	Q.V				
ι	 ۲				
	·	a			a
1.0.5.0.1	3. 7. I.	.9	E		7.6.5.1.5.1. N
mu/	ATUM:			U-UKU	* 70NF
at.0719 hr	's	FIN	SH:	1.1.	/ 06 . at 1336 hrs
		LOC	GED:	. Á 4. s	,
N	ADS		a l	x	COMMENTS
ng,	D	EFECT FR	REQUENC		SAMPLES, IN-SITU TESTS,
	FROM	TO	No. (m)	Frequ -ency	DIVILLING NUTES
1	16.3	17.42		400	
	1742	18.42		1000	
inn.	18.42	19.23		250	
	19.23	20.75		1000	
ally heale	d 2075	21.5		250	
v					
				,	
				الا المانية. مستحد	
		6.,			
					<

Q		iolde: socia	tes 0425704	126 - Be	rite	<u>F</u>	ELC) [RIL	LIN	IG	REPORT	(SOIL OR SOIL & ROCK)		PROJECT No.: 066320
		DRIL	LING METHOD					A. 1	4. ¹	G	ROUND	WATER			CLIENT: LBBJV
CONT DIATU AUGE ROTA ROTA	iractor JBE Cof Ir (V, T Ir (B) Ir (B) Ir (Air Ir (Air)	e/dthh: -c, hand): de/tricon /water):	neider Drillig m to. 20mm dia. to. 2.5 E): 2.5 m to 20:7 m to.	m Groundw	ater Obser SEEPAGE Wet at ater Level ater Level	ved ot SEE ot	PAGE m dep m on c m at	m depth S th ompletion	during TRONG IN n of drill . hrs dat	drilling NFLOW hrs ling at te	hrs	Groundwate Groundwate Drilling Wate Total/Portia Borehole ba	r Not Encountered while	m. de	PROJECT:
CASI	NG HW	XORE:	20-7 m ta 25-92/ m NW to	.mg Groundw	ater Level	ot	m.at		. hrs dat	te/	/ <i>j</i> .	on Complet	. mm Standpipe Installed to m ion of Drilling	depth	INCLINATION: 90 START: 9 / 11 / 6
-	,		DRILLING			-			FIELD	SAMPL	LING AN	ID TESTING	ietnoa e.g. Augening, hammening etc.	1	FIELD
NOIL	ы Ц		DRILLING OBSERVATIONS DESCRIPTION OF CUTTINGS, DETAIL	s	C	EPTH	0-160-	J (50, 100	RESUL	IS 4		SAM	PLE DESCRIPTION	_	SOIL / ROCK MATERIAL DESC
PENETRA	RESISTA WATER	(metres)	of Strata Changes Minor Properties, drill method Drill Refusal etc.	D, Ž	FROM	TO	or Run Length	or Rec. Length	R.Q.D. Length	1946	kPa	FIELD ASSES e.g. SOIL OR I INCLUSIO	MIENT OF RECOVERED SAMPLE Rock type, plasticity, colour, DNS, moisture, strength	DEPTH (metres) UC Svmt	SIZE, COLOUR, SECONDARY (MOISTURE, STRENG
A L H D	<u></u>	0. Fict :	- gravelly clayes sa 2 Sand, brows, hpl access provide loss	ND(SL) Fines, SPT		.1.45.	2	4	5 (í		Silly Cung Co	н), Lpl., brawka.grq	o sc	grovelly clayer SAND medium Sond, brown,
· · · · · · · · · · · · · · · · · · ·	2	0.8 S: 20 NA	14 ссят (сн), brooz d Turence (сн), grez	e. 9.3 SPT	2.5	2.95	/	2	2	4		Silly CLAY (CH)), Lpl, grey, soft firm	0.8 CH	Silts CLAY (CH), high p motst, Soft-firm
r.5 R D	•••••	- 'se 50 (and lenses to (chi c	lang. VSO	4.0	4.45		· · · · · ·	-7	Sard	f Ba	ы (сн)з.sp.		2-0 C#	NATURAL - Sills CLAY
	1	5 5	silk clay (CH) grave	\$PT.	5.5	5.95	4.,	3	$\left \right\rangle$	4.		507 (CH) gra	150% Soud/gravel (barded	5.0	firm.
		20 - be	ioning stiff	<i>9</i> 91	7.0	7-45,	7.	2	4	6		7-7.2 SAND (S CLAT(CH), 10	sp) 7.2-7.45 . 5.14 2.2 pelles b, strtt.	. <u>6.</u> z	biconing gregs yellor stiff.
		11.0. bei 16 - be	coming firm.	cla)	85	8.95	3	4	¢	10	250	Still, CLAT (CAT)	, hpl, gry + jellow, bx	11.0. 13.0	- Sene fine ironstone gi
- Ħ		16.6 - 91 17. 910 18 10	Nelly PAND (SP) / as	grave Sprave SPT	11.5	11.95	Z	s Z	4	6	150	c diffe		14-5 16-0CH	Sandy CLAY (LH), Light
1	 	944 19:5 - 91	at gravel a rock . ravel drilling	SPT SPT	13:0 14:5	13:45 14:95	3 3	2 3	5 Z	7	163	"ditto" Some "ditto" / 56%	fin ironston grand	17 59	gravelly SAND (SP) fine
		20.1 - ro bro	ch XW, greenich greg	j.€	16 0	16.45	2	5	8	(13)		Sand (CLAY () H five Sand	1) hpl, gaze bion is.		brown, fine grovel, n medium dense.
····· 2	·····		Rock Log.	SH OT	17:5	1.7.93		13.		51	Couse Marine Marine Marine	gravelly SAND / P. A. gravel , l	SP) f. c. Sand, higher. lo.MD, ncf	<u>18 GC</u>	clayer Sandy GRAVEL (G Coarse gravel, coarse Si
 				SPT	20.5	20.73	22	30	د م 	1.6		gravel, Coas	Rad hel Kutoh	205 07	silly CLAY (CI), medic
									5	, ,		7 5714 6144 (1	(I) /xw, nolise	207	dryshad

4

-

Ē	F G G	olde ocia	r vies	Unit1/5 Mansfi	å 1 Secam eld, QLD 4	Street			FIELD DRILLING RE	POR	(<u>R0</u>	CK,]		SOIL	LOG? Y/N	PROJECT No.:				SHEET .	
		DRI	LLING	METH	IOD				GROU	UNDWAT	ER							CLIENT:					
20.7	<u>(m)</u> 25.9	D 2	80	,	METHO VMLC			Grour	ndwater Observed at	.hrs		roundwat roundwat rilling Wa otal/Part arehole	er Not E er Not O iter Belov ial Drilling baled to	incounter Ibserved V 2.5 g Water	ed while due to i . m dept Loss at/ deoth or	introducti th /Below		PROJECT:)ATUM:		E	:0-0RD	. System
OTHER:	<u> </u>			<u> </u>	·····	· · · · · · · · · · · · · · · · · · ·		Grour	ndwater Level at m at hrs date/			n Compl	. mm S	itandpipe Drilling	Installed	d to	m depth	INCLINATION:	AZI	Muth: . Fin	ISH: .!!	./.M	
		DRILI	ING					FIFI	D MATERIAL DESCRIPTION	1	*Inser	Drilling	Method e	e.g. Aug	ering, Ha	mmering	etc.	DEFECT INFORMATION		LO	GEU:	. 2 2 4	COM
DEPTH	(m)	RUN	TCR	ROD	CORF	LOSS	DEPT	ዝ (m)		w	EATHERIN	G		TRENGT	1			DEFECT DESCRIPTION	AD	s 🗀	FF		CUIT IS IN
FROM	то	LENGTI (m)	(m)	(m)	FROM	то	FROM	то	(Type, Grain Size, Texture, Colour, Other)	FROM	то	CODE	FROM	то	CODE	(m)	(Type, Oriento	tion, Planarity, Roughness, Coating, Thickness)	FROM	TO	No.	FREQU	DRILLING
							20.	25.92	TUFF, medium to coarse arained.	20.7	21.6	XW	20.7	21.6	EL-							Enor	
20-7	22.82	2.12	2 100	115	1-	-			gixconit & gree .											.	.		
22.82	25.92	3:1	3-100	12:00		·					25.92	sw.	21.6	25.92	M :					••••••			
						1	1												1				
				.		ļ	Į		Eo.H. = 2.5.9.2										ļ				
							.				.,							• • • • • • • • • • • • • • • • • • •					
						ļ																	
							+																
						 	1		······														
						.																	
						.		·····															
				<i>.</i>		·····																	
																					• • • • • • • •		
						.	.		· · · · · · · · · · · · · · · · · · ·		[
												·											
						·····															•••••	• • • • • • • •	
				[[
																·····					••••••		
						h		••••••													•••••		
						1	1 •	1			[

NSBT

Shaftston Avenue

PROJECT:

LOCATION:

PRELIMINARY REPORT OF BOREHOLE: NST249

COORDS: 53691 m E 158051 m N BCSG02 SURFACE RL: 17.50 m DATUM: AHD INCLINATION: -90° SHEET: 1 OF 3 DRILL RIG: FD500 DRILLER: Foundril LOGGED: SS DATE: 29/6/06

JOB NO: 06632062 HOLE DIA: 100/76 mm HOLE DEPTH: 10.18 m CHECKED: LBM (C) DATE: 30/9/06 Drilling Sampling Field Material Description METHOD PENETRATION RESISTANCE CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS Symbol SAMPLE OR FIELD TEST GRAPHIC LOG MOISTURE SOIL / ROCK MATERIAL DESCRIPTION WATER DE PTH (metres) DEPTH RL USC SM Silty SAND - TOPSOIL - FILL Fine sand, dark brown, loose to medium dense, building rubble including concrete and boulders C 17.50 2 0.50 • CH Silty CLAY High plasticity, grey and yellow brown, trace fine gravel ADT N 1 SPT 1.00-m 6,6,8 N = 14 Vst 1.50 16.00 2 TUFF Extremely to distinctly weathered, yellow brown, very low to low strength м 2 н 2.00 For Continuation Refer to Sheet 2 3 MERISBARE DRIGE OTECH 06/06/2002 NSBT STE INVESTIGNING 2002 2 GPS 1 CDT 01/05/2007 1 C.34:38 AM 4 5 6 7 8 APS 018ETA BRISICLE FULL PAGE g This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. BAP gINT FN. F01a RL2

CLIENT: PROJEC LOCATIO JOB NO	CT: ON:	LBBJV NSBT Shaftstor 0663206	Aveni 2	COORDS: 53691 m SURFACE RL: 17.5 INCLINATION: -90° HOLE DIA: 100/76 r	E 15 0 m nm	580 D. HC	51 m ATUN DLE D	N M: A DEPT	BCSG02 HD TH: 10.18 m	SHEET: 3 OF 3 DRILL RIG: FD500 DRILLER: Foundril LOGGED: SS CHECKED: LBM (C)	DATE: DATE:	: 29/ : 30/	6/06 9/06
	Drilli	ng		Field Material Description						Defect Information	1		
METHOD WATER	TCR % RQD %	DEPTH (moters) RL	E GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL DOB 00=		RED GTH IPa 	DEFE & Add	ECT DESCRIPTION litional Observations		FRA FRE (Def uni k	ACTUR QUEN fects pr it metre ength)
				I ₄₉₀₎ = 4.84 MPa (D). 5.30 MPa (A) END OF BOREHOLE @ 10.18 m									

APPENDIX D-POINT LOAD TESTING

	Golder sociate	s			POINT	LOAI	O STRE	NGTH TI	EST RE	SUL	ГS	
Client :	LBBJV							Job No :	06632062			
Project :	NSBT							Report No :	NST 207			
Location :	RNA							Date Drilled :	3/10/2006			
Fested by :	SS											
Test Method :						AS 413	3.4.1 - 1993					
Sample Histor	ry :											
Preliminary R	esults Given :						No :			Date :		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	I _s	I _{s(50)}	Descriptive Strength
Number		Type	-	Length	Diameter	Type 1	Separation	Load	Load ²	-	-()	Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST207	1.85	Tuff	SW	70.0	52.0	А	69.0	9.2	9.20	2.01	2.31	н
NST207	2.76	Tuff	SW-FR	73.0	52.0	A	65.0	13.3	13.31	3.09	3.49	VH
NST207	3.07	Tuff	SW-FR	92.0	52.0	D	49.0	4.9	4 91	2.04	2.03	н
NST207	4.00	Tuff	SW-FR	63.0	52.0	A	60.0	16.8	16.78	4 22	4.69	VH
NST207	6.92	Tuff	SW-FR	71.0	52.0	A	66.0	19.6	19.60	4.49	5.09	VH
NST207	8.72	Tuff	SW-FR	70.0	52.0	A	64.0	18.8	18.76	4.43	4.99	VH
NST207	11.75	Tuff	FR	60.0	52.0	D	55.0	12.6	12.60	4 17	4.35	VH
NST207	15.00	Tuff	FR	54.0	52.0	Δ	50.0	14.6	14.56	4.40	4.69	VH
NST207	18.00	Tuff	FR	70.0	52.0	Δ	63.0	13.0	12.95	3 10	3.48	VH
NST207	20.93	Tuff	FR	70.0	52.0	Δ	68.0	10.0	10.02	2.23	2 54	н
NST207	20.33	Tuff	FR	68.0	52.0	A	59.0	16.4	16.38	1 10	4.64	VH
NST207	21.40	Tuff	FR	60.0	52.0	Δ	58.0	12.2	12.18	3.17	3.49	VH
1101201	24.04	run	T K	00.0	02.0	~	00.0	12.2	12.10	0.17	0.40	
	+											
1 D= Diamet 2 Gauge cali	ral A= Axial brated on 22/9	9/05								Labora Checke	tory : ed By :	BRISBANE BJF

l

POINT LOAD STRENGTH TEST RESULTS

Job No : 06632062 Report No : NST206

Date Drilled : 14/09/2006

Client : LBBJV Project : NSBT Location : RNA Tested by: SS Test Method : Sample History : Preliminary Results Given :

						-						
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	۱ _s	I _{s(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²			Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST206	2.60	Tuff	SW	100.0	52.0	D	48.0	6.4	6.37	2.76	2.71	Н
NST206	2.60	Tuff	SW	45.0	52.0	A	45.0	11.2	11.20	3.76	3.91	VH
NST206	6.60	Tuff	SW	110.0	52.0	D	48.0	11.7	11.74	5.10	5.00	VH
NST206	6.60	Tuff	SW	30.0	52.0	A	25.0	10.2	10.17	6.14	5.60	VH
NST206	11.70	Tuff	SW	110.0	52.0	D	44.0	14.7	14.67	7.58	7.15	VH
NST206	11.70	Tuff	SW	30	52.0	A	30.0	13.4	13.39	6.74	6.40	VH
NST206	17.10	Tuff	SW	160	52.0	D	47.0	6.7	6.65	3.01	2.93	H-VH
NST206	17.10	Tuff	SW	30	52.0	A	29.0	8.1	8.12	4.23	3.99	VH
NST206	23.90	Tuff	FR	200	52.0	D	49.0	8.0	7.98	3.32	3.29	VH
NST206	23.90	Tuff	FR	15	52.0	Α	27.0	9.0	8.98	5.02	4.66	VH
NST206	28.70	Tuff	FR	200	52.0	D	45.0	10.7	10.67	5.27	5.03	VH
NST206	28.7	Tuff	FR	30.0	52.0	A	25.0	7.3	7.25	4.38	3.99	VH
										<u> </u>		
NOTES : 1 D= Diametr 2 Gauge calib	al A= Axial prated on 22/	/9/05								Labora Checke	tory : ed By :	BRISBANE MSC/10.4.07

GOLDER ASSOCIATES

Ø	Folder sociate	s			POINT	LOAI	O STREI	NGTH TI	EST RES	SULT	S	
Client :	I BB IV							Job No ·	06632062			
Project :	NSBT							Report No :	NST 213			
Location :	DNIA							Date Drilled :	F/10/2006			
Tested by	NNA CC							Date Diffied .	5/10/2000			
Tested by.	33					10 410	2 4 4 4002					
Comple Llister						AS 4150	5.4.1 - 1995					
Sample Histor	y:											
Preliminary Re	suits Given .						NO.			Date .		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	I _s	I _{s(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²			Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST213	2.61	Tuff	SW	100.0	52.0	Α	49.0	9.7	9.67	2.98	3.16	VH
NST213	3.85	Tuff	SW	60.0	52.0	Α	57.0	12.9	12.90	3.42	3.75	VH
NST213	6.00	Tuff	SW-FR	60.0	52.0	D	58.0	10.2	10.20	3.03	3.24	VH
NST213	9.10	Tuff	FR	70.0	52.0	Α	67.0	25.5	25.51	5.75	6.54	VH
NST213	12.00	Tuff	FR	60.0	52.0	Α	58.0	13.1	13.06	3.40	3.75	VH
NST213	14.76	Tuff	FR	69.0	52.0	Α	67.0	15.9	15.89	3.58	4.08	VH
NST213	17.00	Tuff	FR	74.0	52.0	D	47.0	12.4	12.43	5.63	5.47	VH
NST213	20.05	Tuff	FR	70.0	52.0	A	66.0	21.8	21.79	4.99	5.65	VH
NST213	23.00	Tuff	FR	120.0	52.0	A	50.0	20.9	20.88	6.31	6.72	VH
NST213	25.94	Tuff	FR	55.0	52.0	A	46.0	12.1	12.06	3.96	4.14	VH
NST213	28.00	Tuff	FR	80.0	52.0	A	50.0	12.2	12.15	3.67	3.91	VH
NST213	29.75	Tuff	FR	57.0	52.0	A	55.0	16.4	16.42	4.51	4.91	VH
NST213	32.94	Tuff	FR	60.0	52.0	Α	58.0	21.2	21.21	5.52	6.08	VH
NST213	36.74	Tuff	FR	55.0	52.0	Α	53.0	18.0	17.95	5.12	5.52	VH
NST213	40.00	Tuff	FR	87.0	52.0	Α	50.0	14.8	14.75	4.46	4.75	VH
NST213	42.74	Tuff	FR	55.0	52.0	А	53.0	15.8	15.84	4.51	4.87	VH
NOTES :												
1 D= Diametri 2 Gauge cali	ral A= Axial brated on 22/	9/05								Labora Checke	tory : ed By :	BRISBANE BJF

Г

	Golder Sociate	s			POINT	LOAI) STREI	NGTH TI	EST RES	SULT	ſS	
Client : Project : Location :	LBBJV NSBT Sneyd St					Lorn		Job No : Report No : Date Drilled :	06632062 NST 241 7/11/2006	5011		
tested by:	SS											
Test Method :						AS 4133	3.4.1 - 1993					
Sample Histor Preliminary Re	y : esults Given :						No :			Date :		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	l,	I _{e(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²	5	5(00)	Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST 241	1.00	Tuff	DW-SW	62.0	52.0	D	51.0	11.2	11.23	4.32	4.36	VH
NST 241	5.00	Tuff	DW-SW	68.0	52.0	Α	66.0	14.7	14.74	3.37	3.82	VH
NST 241	8.00	Tuff	DW-SW	80.0	52.0	D	51.0	13.5	13.48	5.18	5.23	VH
NST 241	11.94	Tuff	SW	57.0	52.0	Α	56.0	12.2	12.17	3.28	3.59	VH
NST 241	15.00	Tuff	SW	65.0	52.0	D	51.0	12.7	12.71	4.89	4.93	VH
NST 241	18.00	Tuff	SW	100.0	52.0	D	51.0	13.1	13.09	5.03	5.08	VH
NST 241	21.00	Tuff	SW	65.0	52.0	Α	62.0	15.4	15.39	3.75	4.19	VH
NST 241	24.05	Tuff	SW	105.0	52.0	D	51.0	14.7	14.68	5.64	5.69	VH
NOTES												
1 D= Diamet 2 Gauge cali	ral A= Axial brated on 22/9	9/05								Labora Checke	tory : ed By :	BRISBANE BJF

Ø	Golder ssociate	s			POINT	LOAI	O STRE	NGTH T	EST RI	ESUI	LTS	
Client : Project :	LBBJV NSBT	10						Job No : Report No :	06632062 NS249	2	16	
Location .	Shaiston Av	/e						Date Diffied .	23	9/00/200	0	
Test Method :						AS 413	3.4.1 - 1993					
Sample Histor	ry :											
Preliminary R	esults Given :						No :			Date :		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	I _s	I _{s(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²	-	-()	Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST249	3.60	Tuff	SW-FR	170.0	50.0	D	49.0	5.2	5.15	2.14	2.13	
NST249	3.60	Tuff	SW-FR	35.0	50.0	А	33.0	6.6	6.57	3.13	3.01	
NST249	6.40	Tuff	FR	300.0	50.0	D	47.0	10.6	10.64	4.82	4.68	
NST249	6.40	Tuff	FR	40.0	50.0	A	38.0	11.9	11.94	4.94	4.90	
NST249	9.70	Tuff	FR	75.0	50.0	D	40.0	8.6	8.56	5.35	4.84	
NST249	9.70	Tuff	FR	30	50.0	A	31.0	11.0	11.04	5.59	5.30	
						-						
									+			
	+							+				
											<u> </u>	
NOTES : 1 D= Diamet 2 Gauge cali	ral A= Axial	9/05			1	<u>ı</u>	1		1	Labora Checke	itory : ed By :	BRISBANE MSC/18.04.07

POINT LOAD STRENGTH TEST RESULTS

Job No · 06632062 Report No: NST257 Date Drilled : 27/11/2006

AS 4133.4.1 - 1993 Stored 2 weeks under tarp prior to testing

No : Date :

Descriptive Strength Borehole Depth Rock Weathering Sample Sample Test Platen Gauge Actual I_{s} I_{s(50)} Number Туре Length Diameter Туре Separation Load Load Classification (m) (mm) (mm) (kN) (kN) MPa (MPa) (mm) NST257 3.06 Tuff FW 32.0 51.0 А 30.0 0.35 0.35 0.18 0.17 Т NST257 3.94 Tuff EW-DW 40.0 51.0 D 49.0 0.10 0.10 0.04 0.04 VL EW-DW VL **NST257** 4.77 Tuff 35.0 51.0 D 50.0 0.10 0.10 0.04 0.04 NST257 4.77 Tuff EW-DW 42.0 51.0 А 31.0 1.41 1.41 0.70 0.67 Μ 6.64 Tuff DW-SW D NST257 30.0 51.0 50.0 0.90 0.90 0.36 0.36 Μ NST257 6.64 Tuff DW-SW 26.0 51.0 А 19.0 1.25 1.25 1.02 0.87 Μ Tuff DW-SW 38.0 VL NST257 7.95 45.0 51.0 А 0.14 0.14 0.06 0.06 8.15 Tuff DW-SW D 50.0 NST257 35.0 51.0 0.71 0.71 0.28 0.28 L NST257 8.20 Tuff DW-SW 30.0 51.0 А 25.0 1.49 1.49 0.92 0.84 Μ NST257 10.15 Tuff DW-SW 51.0 D 0.53 0.53 0.21 35.0 50.0 0.21 L NST257 10.15 Tuff DW-SW 30.0 51.0 А 26.0 0.83 0.83 0.49 0.45 Μ NST257 13.05 Tuff SW 51.0 D 50.0 2.55 2.56 1.02 Н 30.0 1.02 NST257 13.05 Tuff SW 45.0 40.0 н 51.0 А 3.18 3.19 1.23 1.24 NST257 14.52 Tuff DW-SW 35.0 51.0 D 50.0 1.47 1.47 0.59 0.59 Μ NST257 14.52 Tuff DW-SW 29.0 51.0 А 26.0 3.33 3.34 1.98 1.81 н DW-SW **NST257** 16.00 Tuff 26.0 51.0 А 22.0 1.49 1.49 1.05 0.92 Μ NST257 17.00 Tuff DW-SW 36.0 51.0 А 34.0 1.70 1.71 0.77 0.75 Μ DW-SW D 0.22 NST257 17.84 Tuff 35.0 51.0 50.0 0.56 0.56 0.22 L NST257 17.84 Tuff DW-SW 29.0 51.0 А 25.0 1.07 1.07 0.66 0.60 М DW-SW NST257 18.80 Cgl 29.0 51.0 А 24.0 1.97 1.98 1.27 1.14 н DW-SW D NST257 18.80 Cgl 35.0 51.0 50.0 0.63 0.63 0.25 0.25 L NST257 21.05 Cgl DW-SW 50.0 51.0 D 50.0 1.70 1.71 0.68 0.68 Μ NST257 21.05 DW-SW 45.0 51.0 44.0 2.03 2.04 0.73 Μ А 0.71 Cgl NST257 23 95 Cgl DW-SW 40.0 51.0 D 50.0 0 27 0 27 0 11 0.11 1 NST257 23.95 DW-SW 38.0 51.0 35.0 1.83 1.84 0.81 0.79 Μ Cgl А NST257 26.41 DW-SW 40.0 51.0 D 50.0 1.51 1.51 0.61 Μ 0.61 Cgl NST257 26.41 Cgl DW-SW 40.0 51.0 А 35.0 2.10 2.11 0.93 0.91 М SW NST257 30.17 Cgl 50.0 51.0 D 49.0 2.29 2.30 0.96 0.95 Μ SW **NST257** 30.17 Cgl 51.0 51.0 А 47.0 2.67 2.68 0.88 0.92 Μ NST257 32.20 Cgl SW 26.0 51.0 D 50.0 2.48 2.49 1.00 1.00 Μ NST257 SW 3.57 1.54 32.20 38.0 51.0 35.0 3.56 1.57 н Cql А NST257 32 95 Sst SW 40.0 51.0 D 50.0 2 55 2 56 1 02 1.02 н NST257 32.95 SW 40.0 51.0 35.0 4.34 4.35 1.92 1.87 Н Sst А NST257 34.13 SW 50.0 51.0 D 49.0 1.41 1.41 0.59 0.58 М Cql NOTES : 1 D= Diametral A= Axial Laboratory : BRISBANE Checked By : MSC/18.04.2007

2 Gauge calibrated on 22/9/05

Golder sociates

I BB.IV

NSBT

SS

Preliminary Results Given :

Deakin Street

Client :

Project :

Tested by

Location :

Test Method :

Sample History :

C:\lab\labcalcs\point.xls

Ø	Golde ssocia	r Ates			POINT	LOA	D STRI	ENGTH	TEST	RE	SULI	TS .
Client : Project : Location :	LBBJV NSBT Deakin Str	eet						Job No : Report No : Date Drilled	0663206 NST257 : 27	52 7/11/20	06	
Test Method Sample His Preliminary	d : tory : Results Giv	en :				AS 4133 Stored 2	3.4.1 - 1993 2 weeks unde No :	r tarp prior to	o testing	Date :		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	١ _s	I _{s(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²			Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST257	34.13	Cgl	SW	37.0	51.0	A	36.0	0.90	0.90	0.39	0.38	M
NST257	34.13	Cgl	SW	35.0	51.0		50.0	1.39	1.39	0.56	0.56	M
NS1257	37.31	Cal	SW	26.0	51.0		20.0	2.64	2.65	1.06	1.00	н
1131237	57.51	Cyi	300	31.0	51.0	~	29.0	2.03	2.04	1.40	1.31	п
										-		
	+											
				1								
									-			
NOTES : 1 D= Diam 2 Gauge c	etral A= A alibrated on	xial 22/9/05	1		1	1	1		<u>1</u>	Labora Check	atory : ed By :	BRISBANE MSC/18.04.2007

	sociales				POINT	LOAI	O STRE	NGTH T	EST RES	SULT	ſS	
Client : Project : Location :	LBBJV NSBT Horace Street							Job No : Report No : Date Drilled :	06632062 NST347 21/11/2006			
Test Method :	55					AS 413	3.4.1 - 1993					
Preliminary R	ry : esults Given :						No :			Date :		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	I _s	I _{s(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²			Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST347	10.78	Tuff	EW	70(35)	52.0	D	51.0	0.4	0.37	0.14	0.14	L
	11.35	Tuff	DW-SW	120(47)	52.0	D	50.0	3.4	3.43	1.37	1.37	н
	11.35	Tuff	DW-SW	51.5	52.0	Α	51.0	5.6	5.62	1.66	1.78	н
	12.40	Tuff	DW-SW	80(37)	52.0	D	50.0	6.4	6.38	2.55	2.55	н
	12.40	Tuff	DW-SW	40.5	52.0	Α	35.0	13.8	13.81	5.96	5.86	VH
	13.69	Tuff	DW-SW	120(35)	52.0	D	49.5	4.3	4.29	1.75	1.74	Н
	13.69	Tuff	DW-SW	33.5	52.0	A	30.0	2.5	2.50	1.26	1.20	Н
	14.61	Tuff	DW-SW	45(26)	52.0	D	50.0	5.6	5.59	2.24	2.24	н
	14.61	Tuff	DW-SW	29	52.0	A	25.0	5.3	5.30	3.20	2.92	Н
	15.85	Tuff	DW-SW	50(35)	52.0	D	50.0	3.0	2.95	1.18	1.18	Н
	15.85	Tuff	DW-SW	23	52.0	A	19.5	7.6	7.55	5.85	5.04	VH
	+											
										-		
	+					<u> </u>						
	+		+									
NOTES : 1 D= Diamet 2 Gauge cali	ral A= Axial brated on 22/9/0	5								Labora Checke	tory : ed Bv :	BRISBANE MSC/10.05.07

Golder

GOLDER ASSOCIATES

Ø	Golder ssociates	2			POINT	LOAI	O STRE	NGTH TI	EST RES	SULT	S	
Client : Project :	LBBJV NSBT							Job No : Report No :	06632062 NST348			
Location :								Date Drilled :	21/11/2006			
Tested by:	SS											
Test Method :						AS 4133	3.4.1 - 1993					
Sample History :												
Preliminary Re	esuits Given :						NO :			Date :		
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	l _s	I _{s(50)}	Descriptive Strength
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²			Classification
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)	
NST348	16.70	Tuff	DW	140(32)	52.0	D	51.0	0.3	0.27	0.10	0.10	L
	16.70	Tuff	DW	37.5	52.0	A	30.0	0.8	0.79	0.40	0.38	М
	17.58	Tuff	DW	80(35)	52.0	D	50.0	2.5	2.53	1.01	1.01	Н
	17.58	Tuff	DW	37.5	52.0	A	30.0	1.6	1.57	0.79	0.75	М
	18.78	Tuff	SW	40(32)	52.0	D	50.0	3.2	3.16	1.26	1.26	H
	18.78	Tuff	SW	35.0	52.0	A	30.0	6.0	6.03	3.04	2.88	н
	19.24	Tuff	SW	120(34)	52.0	D	50.0	5.5	5.46	2.18	2.18	H
	19.24	l uff	SW	36.50	52.0	A	31.0	7.5	7.50	3.65	3.50	VH
	20.90	l uff	SW-FR	100(37)	52.0	D	50.0	3.0	2.96	1.18	1.18	H
	21.00	Tuff	SW-FR	50(33)	52.0	D	50.0	10.2	10.20	4.08	4.08	VH
	21.00	TUTT	SW-FK	31.00	52.0	A	25.0	9.8	9.79	5.91	5.39	VH
									+			
NOTES :	1		1			1	1	1	1	1	1	
1 D= Diametral A= Axial Laboratory : BRISBANE 2 Gauge calibrated on 22/9/05 Checked By : MSC/10.05.07												

	ssociate	25			POINT	LOAI) STRE	NGTH TI	EST RI	ESUI	LTS	
Client : Project : Location :	LBBJV NSBT adj Campbe	ell Street						Job No : Report No : Date Drilled :	06632062 NST349 9	2 /11/2006	6	
Tested by: Test Method :	ested by: SS Test Method :					AS 4133.4.1 - 1993						
Sample Histor Preliminary R	ry : esults Given :						No :			Date :		
Borehole Number	Depth	Rock Type	Weathering	Sample Length	Sample Diameter	Test Type ¹	Platen Separation	Gauge Load	Actual Load ²	(MPa)	I _{s(50)} (MPa)	Descriptive Strength Classification
NST349	21.90	Tuff	SW	58.0	52.0	А	56.0	3.0	2.95	0.80	0.87	М
NST349	25.00	Tuff	SW	53.0	52.0	A	50.0	2.9	2.92	0.88	0.94	M
NOTES : 1 D= Diamet 2 Gauge cali	ral A= Axial ibrated on 22/	9/05								Labora Checke	tory : ed By :	BRISBANE BJF

Ø	Golder ssociate	s			POINT	LOAI) STRE	NGTH TI	EST RES	SULT	S			
Client : Project :	LBBJV NSBT							Job No : Report No :	06632062 NST 228					
Location :	Shaftston A	ve						Date Drilled :	22/06/2006					
Tested by:	SS													
Test Method :	Test Method :						AS 4133.4.1 - 1993							
Sample History : Preliminary Results Given :					No :				Date :					
Borehole	Depth	Rock	Weathering	Sample	Sample	Test	Platen	Gauge	Actual	I _s	I _{s(50)}	Descriptive Strength		
Number		Туре		Length	Diameter	Type ¹	Separation	Load	Load ²			Classification		
	(m)			(mm)	(mm)		(mm)	(kN)	(kN)	(MPa)	(MPa)			
NST228	5.80	Tuff	DW-SW		52.0	D	50.0	2.5	2.50	1.00	1.00	Н		
NST228	7.80	Tuff	SW		52.0	D	50.0	2.0	2.00	0.80	0.80	М		
NST228	9.80	Tuff	SW		52.0	D	47.0	5.8	5.80	2.63	2.55	Н		
NST228	11.80	Tuff	DW-SW		52.0	D	49.0	6.6	6.60	2.75	2.72	Н		
NST228	13.80	Tuff	DW-SW		52.0	D	49.0	5.5	5.50	2.29	2.27	Н		
NST228	15.80	Tuff	DW-SW		52.0	D	48.0	5.9	5.90	2.56	2.51	Н		
NST228	17.80	Tuff	DW-SW		52.0	D	45.0	4.8	4.80	2.37	2.26	Н		
NST228	19.80	Tuff	DW-SW		52.0	D	47.0	11.4	11.40	5.16	5.02	VH		
NST228	21.80	Tuff	SW-FR		52.0	D	48.0	13.7	13.70	5.95	5.84	VH		
NST228	23.90	Tuff	SW-FR		52.0	D	49.0	3.1	3.10	1.29	1.28	Н		
NOTES : 1 D= Diamet 2 Gauge cali	ral A= Axial brated on 22/	9/05				<u>.</u>				Labora Checke	tory : ed By :	BRISBANE BJF		

APPENDIX E – DEGREE OF STAINING for (8) BOREHOLES

	Depth			
	(m)	Test Type	ls (50) MPa	Observed Degree of Staining by (%)
	2.76	A	3.49	SS
	8.72	A	4.99	SS
	11.75	D	4.35	SS
	3.07	D	2.03	TS
	6.92	A	5.09	TS
NST207	15.00	A	4.69	TS
	18.00	A	3.48	TS
	20.93	A	2.54	TS
	21.40	A	4.64	TS
	24.94	A	3.49	TS
	1.85	A	2.31	XS
	4.00	A	4.69	XS
	5.80	D	1.00	TS
	7.80	D	0.80	TS
	9.80	D	2.55	TS
	11.80	D	2.72	XS
NGT220	13.80	D	2.27	DS
N31220	15.80	D	2.51	TS
	17.80	D	2.26	XS
	19.80	D	5.02	TS
	21.80	D	5.84	DS
	23.90	D	1.28	DS
	1.00	D	4.36	XS
	5.00	А	3.82	DS
	8.00	D	5.23	DS
	11.94	А	3.59	TS
NST241	15.00	D	4.93	TS
	18.00	D	5.08	TS
	21.00	A	4.19	TS
	24.05	D	5.69	TS
	3.60	A	3.01	TS
NST249	6 40	A	4 90	TS
	9 70	A	5 30	TS
	3.06	A	0.17	Disregard (decomposed)
	3.94	D	0.04	Disregard (decomposed)
	4.77	Ā	0.04	Disregard (decomposed)
	6.64	A	0.67	DS
	7.95	A	0.06	SS
	8.15	D	0.28	SS
NST257	8.20	А	0.84	DS
	10.15	А	0.45	SS
	13.05	А	1.24	TS
	14.52	А	1.81	TS
	16.00	А	0.82	TS
	17.00	А	0.75	TS
	17.84	А	0.60	TS
NST347	10.78	D	0.14	TS
	11.35	А	1.78	SS
	12.40	А	5.86	DS
	13.69	А	1.20	SS
	14.61	А	2.92	DS

	15.85	А	5.04	DS
NST348	16.70	А	0.38	TS
	17.58	A	0.75	DS
	18.78	A	2.88	DS
	19.24	A	3.50	XS
	20.90	D	1.18	TS
	21.00	A	5.39	TS
	21.90	A	0.87	TS
	25.00	A	0.94	TS
	0.90	D	3.06	TS
	5.90	D	3.34	TS
	8.00	D	5.12	SS
NST3/0	10.00	D	4.11	TS
	12.20	D	2.33	TS
	14.00	D	3.26	TS
1101040	16.60	D	2.09	SS
	18.00	D	3.45	TS
	20.00	D	3.30	TS
	22.00	D	3.88	TS
	24.00	D	3.41	TS
	26.00	D	4.27	SS
	28.00	D	4.15	TS
	30.00	D	4.27	TS