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Abstract 

Genetic Algorithms are a series of steps for solving an optimisation problem using 

genetics as the model (Chambers, 1995). More specifically, Genetic Algorithms use the 

concept of Natural Selection – or survival of the fittest – to help guide the selection of 

candidate solutions. This project is a software design-and-code project with the aim 

being to use MATLAB® to develop a software application to optimise a Proportional-

Integral-Derivative (PID) Controller using a purpose built Genetic Algorithm as the 

basis of the optimisation routine. The project then aims to extend the program and 

interface the Genetic Algorithm optimisation routine with an existing rotary-wing 

control model using MATLAB®. 

A systems approach to software development will be used as the overall 

framework to guide the software development process consisting of the five main 

phases of Analysis, Design, Development, Test and Evaluation. 

The project was only partially successful. The Genetic Algorithm did produce 

reasonably optimal values for the PID parameters; however, the processing time 

required was prohibitively long. Additionally, the project was unsuccessful in 

interfacing the optimised controller to the existing rotary-wing model due difficulty in 

conversion between SIMULINK® and MATLAB® formats. Further work to apply code 

optimisation techniques could see significant reduction in processing times allowing 

more iterations of the program to execute thereby achieving more accurate results. 

Thus the project results suggest that the use of Genetic Algorithms as an 

optimisation method is best suited to complex systems where classical optimisation 

methods are impractical. 
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Glossary of Genetic Terms 

Allele 1. The American Heritage® Dictionary (2004) defines an 

allele as “one member of a pair or series of genes that 

occupy a specific position on a specific chromosome.”  

Chromosome 1. The American Heritage® Stedman's Medical Dictionary 

(2006) defines a chromosome as “a threadlike linear 

strand of DNA and associated proteins in the nucleus of 

eukaryotic cells that carries the genes and functions in the 

transmission of hereditary information.”  

Gene 2. The American Heritage® Stedman's Medical Dictionary 

(2006) defines gene as “a hereditary unit that occupies a 

specific location on a chromosome, determines a 

particular characteristic in an organism by directing the 

formation of a specific protein, and is capable of 

replicating itself at each cell division.”  

3. The American Heritage® Dictionary (2004) defines a 

gene as “a hereditary unit consisting of a sequence of 

DNA that occupies a specific location on a chromosome 

and determines a particular characteristic in an organism. 

Genes undergo mutation when their DNA sequence 

changes.” 
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Genetic Algorithm 4. Whitley (n.d.) defines Genetic Algorithms as “a family of 

computational models inspired by evolution” which are 

also “population-based models that uses selection and 

recombination operators to generate new sample points in 

a search space.” 

5. Cantu-Paz (2001) defines Genetic Algorithms as 

“stochastic search algorithms based on principles of 

natural selection and genetics. Genetic Algorithms 

attempt to find good solutions to the problem at hand by 

manipulating a population of candidate solutions.” 

6. Haupt and Haupt (2004) defines Genetic Algorithms as 

“an optimization and search technique based on the 

principles of genetics and natural selection.” 

7. Chambers (1995) defines Genetic Algorithms as “a 

problem-solving method that uses genetics as its model 

of problem solving.” 

Kinetochore 8. Merriam-Webster’s Medical Desk Dictionary  (2002) 

explains that the Kinetochore is “… the point or region 

on a chromosome to which the spindle attaches during 

mitosis” and that the Kinetochore is also called the 

centromere. 

9. Reproductive cells divide at a random point along the 

chromosome known as the kinetochore (Haupt & Haupt 

2004, sec. 1.4). 
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Meiosis  10. The American Heritage® Dictionary (2004) defines 

meiosis as “…the process of cell division in sexually 

reproducing organisms that reduces the number of 

chromosomes in reproductive cells from diploid to 

haploid, leading to the production of gametes in animals 

and spores in plants.”  

11. Crossing mimics the genetic process of meiosis that 

results in cell division (Haupt & Haupt 2004, sec. 1.4). 

12. The process of cell division for higher [multiple cell] 

organisms is called meiosis (Haupt & Haupt 2004, sec. 

1.3). Whereas, cell division for simple single-celled 

organisms is called mitosis (Haupt & Haupt 2004, sec. 

1.3).  

Mutation 13. The American Heritage® Stedman's Medical Dictionary 

(2006) defines mutation as “the process by which such a 

sudden structural change occurs, either through an 

alteration in the nucleotide sequence of the DNA coding 

for a gene or through a change in the physical 

arrangement of a chromosome”. 

14. The American Heritage® Dictionary (2004) defines 

mutation as “a change of the DNA sequence within a 

gene or chromosome of an organism resulting in the 

creation of a new character or trait not found in the 

parental type”. 

Natural Selection 15. Natural Selection is the process that occurs in nature 

whereby the strongest organisms, in terms of fitness for 

their environment live to reproduce more often and 

successfully, thus passing on their genetic traits to their 

offspring and making their genetic traits more prolific in 

the species. 

Page xv Matthew Mackenzie Q9323707 



PID Controller Optimisation Using Genetic Algorithms 

Selection 16. Merriam-Webster’s Medical Desk Dictionary (2002) 

defines selection as “a natural or artificial process that 

results or tends to result in the survival and propagation 

of some individuals or organisms but not of others with 

the result that the inherited traits of the survivors are 

perpetuated.” 

17. The American Heritage® Dictionary (2004) defines 

selection as “a natural or artificial process that favors or 

induces survival and perpetuation of one kind of 

organism over others that die or fail to produce 

offspring”. 
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Chapter 1  

Introduction 

1.1 Project Description 

Genetic Algorithms are a series of steps for solving an optimisation problem using 

genetics as the underpinning model (Chambers, 1995). More specifically, Genetic 

Algorithms use the concept of Natural Selection – or survival of the fittest – to help 

guide the selection of candidate solutions. In essence, Genetic Algorithms use an 

iterative process of selection, recombination, mutation and evaluation in order to find 

the fittest candidate solution [Haupt and Haupt (2004), Whitley (n.d.) and Chambers 

(1995)]. This project is a software design-and-code project with the aim being to use 

MATLAB® to develop a software application to optimise a PID Controller using a 

purpose built Genetic Algorithm as the basis of the optimisation routine. 

The core of the project is the research, design, coding and testing of the Genetic 

Algorithm optimisation program. However, the project will then attempt to interface the 

Genetic Algorithm optimisation routine with an existing rotary-wing control model 

using MATLAB®. This interface will first require the conversion of the existing model 

in SIMULINK® to a MATLAB® construct. 

Without the use of a Genetic Algorithm, the PID Controller would rely upon 

classical analytical optimisation techniques. Such techniques are best suited to problems 

with only a few variables because of the need to develop a mathematical model of the 

system from which the use of derivatives can be used to find the optimal solution. In 

comparison, a Genetic Algorithm can handle multiple variables and only requires the 

ability to develop a mathematical model to configure a set of inputs (the variables) in 

order for the model to produce an optimal output (the cost).  
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Hence a PID Controller with three main variables – normally denoted as ,  

and  – is ideally suited to using a Genetic Algorithm to optimise the controller’s 

response as it is a multi-variable system and it has well understood and proven cost 

functions, such as Integral Time 

0q 1q

2q

×  Absolute Error (ITAE), Integral Absolute Error 

(IAE) and Integral Squared Error (ISE). 

1.2 Aims and Objectives 

The aim of this project is to use MATLAB® to design-and -code an optimised PID 

controller using a Genetic Algorithm to perform the optimisation routine.  

The aim is then broken down to establish four primary and two secondary 

objectives for the project: 

Primary Objectives (Base Functionality) 

Step 1. Research the background information relating to Genetic Algorithms. 

Step 2. Design a Genetic Algorithm for implementation using a 3rd 

generation program language, specifically MATLAB®, within set 

specifications (refer Appendix A Project Specification). 

Step 3. Code the designed Genetic Algorithm using MATLAB®. 

Step 4. Test the Genetic Algorithm against specifications. 

Secondary Objectives (Advanced Functionality) 

Step 5. Increase the functionality of the Genetic Algorithm through the 

addition of a user option to configure for Roulette Wheel based 

selection. 

Step 6. Model the Genetic Algorithm for use controlling a rotary-wing control 

system using MATLAB® (SIMULINK® rotary-wing model to be 

provided by the Project Supervisor). 
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1.3 Dissertation Overview 

This dissertation is structured into two main parts. The first part provides the 

background to the project by explaining the goals and objectives along with a review of 

background literature pertaining to Genetic Algorithms. The dissertation then discusses 

optimisation and proposes a categorisation system in order to assist with determining 

what optimisation problems are best suited to be solved by Genetic Algorithms. A brief 

review of digital controllers is provided in order to set the context for the project itself 

and explain the importance of finding the optimum values for the three PID parameters 

– ,  and . This first part concludes with a detailed discussion of Genetic 

Algorithms including their theory and operation. 

0q 1q 2q

Chapter One – Introduction, including objectives, background literature review 

and project methodology 

Chapter Two – Optimisation 

Chapter Three – Digital Controllers 

Chapter Four – Genetic Algorithms 

The second part of the dissertation describes the Genetic Algorithm designed and 

coded in MATLAB® to solve the project problem – named Argo1. After describing how 

the application is structured, the results of the optimised PID controller are then 

presented. Finally, the dissertation summarises the project’s goals, objectives and results 

before suggesting how the project could be extended for future projects. 

Chapter Five – Argo 

Chapter Six – Analysis & Results 

Chapter Seven – Conclusion 

                                                 
1  The Argo was the ship, built by Argos with the help of Athena, in which Jason and the Argonauts 

sailed in quest of the Golden Fleece. It was the largest ship ever built, and its crew included 
Heracles, Orpheus, and a host of other heroes from all over Greece. Athena fitted the bow of the 
ship with a speaking timber, cut from the sacred oaks of Dodona (Hunter, 2002).  
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1.4 Background Literature Review 

The first main task of this project involved the research of background literature 

on Genetic Algorithms. Genetic Algorithms are computer based processes for which 

optimisation of a problem is achieved by mimicking nature’s own process of Natural 

Selection – also referred to as survival of the fittest (Buckland, 2005a). Although the 

subtleties of the definition of Genetic Algorithms vary, the intent is the same across all 

researched sources.  

Although all sources provide ostensibly the same basic definition for a Genetic 

Algorithm, there are variances associated with terminology. However, these differences 

are often made with reference to slightly different concepts. For example, Haupt and 

Haupt (2004, sec. 2.1) refer to Binary Genetic Algorithms. This terminology highlights 

that the particular Genetic Algorithms described are first coded in binary before further 

operation. Although some Genetic Algorithms require encoding for use on a computer, 

the method of encoding can vary. Whitley (n.d.) provides another example of variances 

in terminology by consistently referring to the Canonical Genetic Algorithm, in order to 

baseline the discussion by establishing a standard or basic form of Genetic Algorithm 

from which to later extend upon.  

Whitley (n.d.) notes that research on Genetic Algorithms is generally first credited 

to John Holland (1975), with substantial work following thereafter by students of his 

such as DeJong (1975). Thus, it can be surmised that with such a short life thus far, the 

field of Genetic Algorithms is still maturing. Indeed, whilst there exists substantial 

background literature on the field of Genetic Algorithms itself, very few sources make 

significant contributions to the area of Genetic Algorithm Applications. An important 

exception is the work presented by Chambers (ed. 1995) with much research and 

compilation of practical Genetic Algorithms. 

In a similar manner, although many sources [such as Whitley (n.d.), AAAI (2000-

2005) and Cantu-Paz (2001)] describe and explain Genetic Algorithms, working 

examples coded for practical use are minimal. Of note, Haupt and Haupt (2004), 

Chambers (1995) and Buckland (2005a) are important exceptions providing many 

valuable generic examples that can be used by the reader to code a Genetic Algorithm 

for a practical application. Indeed, Buckland (2005a) provides one of the only complete, 

but simple, examples of a coded Genetic Algorithm within the researched literature. 
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1.4.1 Existing Research Emphasis 

Interestingly, although most sources provide a description of what Genetic 

Algorithms are and how they are structured, very few provide the important rationale 

and justification for why a Genetic Algorithm would be used and when it would be best 

applied. However, Haupt and Haupt (2004) provide a full and detailed introduction to 

Genetic Algorithms. Importantly, Haupt and Haupt (2004) make the key insight that 

Genetic Algorithms are used to solve optimisation problems. Whitley (n.d.) extends on 

this insight noting that Genetic Algorithms are useful for solving parameterised 

optimisation problems. Further, Haupt and Haupt (2004) then extend on this to 

categorise all optimisation problems and identify those categories that are most suited to 

Genetic Algorithms and which categories are more suited to classical optimisation 

techniques. 

Generically, the Genetic Algorithm is basically on an iterative process of 

selection, recombination, mutation and evaluation [Haupt and Haupt (2004), Whitley 

(n.d.) and Chambers (1995)]. In defining the Canonical Genetic Algorithm, Whitley 

(n.d.) distinguishes between the evaluation and fitness functions; within the sub-process 

of evaluation. In this respect the evaluation function is independent of evaluation of 

other chromosomes, whereas fitness is defined with respect to other members of the 

population. Haupt and Haupt (2004) also distinguish between the terms fitness and cost, 

whereby the goal of a Genetic Algorithm is to locate a chromosome with maximum 

fitness, or, minimum cost – used dependent upon the nature of the problem at hand. 

One of the key benefits that Genetic Algorithms have over conventional analytical 

based methods is the ability to find the global maxima/minima. This is achieved even if 

the problem space contains numerous local maxima/minima. However, dependent upon 

how the Genetic Algorithm is constructed, often the selection and crossover algorithms 

may be too effective. The result of this can be a population with broadly similar 

characteristics – the very feature that Genetic Algorithms need not to posses in order not 

to converge on local maxima/minima. Wall (n.d.) proposes that this problem – referred 

to as DeJong-style crowding – can be mitigated against by using a replace-most-similar 

replacement scheme. Wall (n.d.) also proposes another method for maintaining diversity 

within the population by using a Goldberg style fitness scaling method. 
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Chambers (1995) and Haupt & Haupt (2004) present a number of ways to encode 

the parameters in order to use a Genetic Algorithm to optimise the problem, such as 

binary or Gray coding. However, it is Chambers (1995) that argues that a continuous 

Genetic Algorithm is superior. Chambers (1995) argues that there is no need to code a 

Genetic Algorithm’s parameter as the Genetic Algorithm can be designed to work with 

continuous variables. By working with continuous variables a performance gain is 

achieved immediately as there is no requirement to calculate a conversion from 

continuous to binary. But perhaps the major advantage of using a continuous Genetic 

Algorithm is the avoidance of the problem of selecting the number of bits from which to 

represent the variable (Chambers, 1995). Chambers (1995) also cites Michalewicz 

(1992) to further support his argument noting that his “conducted experiments indicate 

that the floating point representation is faster, more consistent from run to run, and 

provides a higher precision (especially with large domains where binary coding would 

require prohibitively long representations).”  

Genetic Algorithms are a natural optimisation technique; based on the process of 

Natural Selection (Whitley, n.d.). Haupt and Haupt (2004) provide a number of other 

natural optimisation techniques including simulated annealing, particle swarm 

optimization, ant colony optimization and evolutionary algorithms. Chambers (1995) 

goes further to provide an overview of each technique as well as cultural algorithms.  

Genetic Algorithms provide a means for providing solutions to complex 

optimisation problems [Whitley (n.d.), Haupt and Haupt (2004), Chambers (1995) and 

Whitley (n.d.)]. However, Cantu-Paz (2001) suggests that Genetic Algorithms are likely 

to only provide a reasonably good solution given a reasonable limit to the processing 

time available. Indeed, dependent upon the accuracy required and the processing cost of 

the evaluation function, Genetic Algorithms may even take years to find an acceptable 

solution (Cantu-Paz, 2001). Reducing the processing time of Genetic Algorithms is the 

motive behind Cantu-Paz (2001) work on producing a parallel implementation of a 

Genetic Algorithm. 

Reinforcing Cantu-Paz’s work, Garrido et al. (n.d) propose the adaptation of a 

Genetic Algorithm to result in predictive control using a technique referred to as 

Restricted Genetic Optimisation (RGO). Unlike conventional Genetic Algorithms, RGO 

does not search the entire solution space to generate the next generation, but rather 

searches only in a point neighbourhood around the best solution. RGO does perform a 
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global search at the beginning and then local searches thereafter. Carrido et. al. (n.d.) 

explains that new solutions are oriented in the direction of the steepest slope of the cost 

function with solutions restricted to points within a radius proportional to uncertainty.  

Importantly, Garrido et al. (n.d., ch. 1, pp. 1-3) make the key insight that 

stochastic optimisation methods (such as Genetic Algorithms) may be well suited to 

time varying functions with noise, such a control systems. This is because noisy systems 

are non-differentiable when modelled mathematically. Practically, noisy systems are 

often optimised by ignoring the impact of noise. This technique is problematic when 

dynamic optimisation is desired. 

1.4.2 Future Research Areas 

This review has discussed the background to the major elements of Genetic 

Algorithms. However, it is important to note the areas that require further research 

within the field. In doing so, this review makes the observation that there is an apparent 

need for further experimental efforts to measure the actual performance improvement of 

Genetic Algorithms over classical analytical techniques. Although there are many 

statements made by authors indicating the benefits of using a Genetic Algorithm for 

optimisation problems, there needs to be research performed to measure the 

improvements across the various different categories – perhaps using Haupt and 

Haupt’s (2004) categorisation scheme as a basis. Also, perhaps that research would 

discover the crossover point at which a Genetic Algorithm becomes more efficient 

and/or successful than a classical technique. For example, experimentation could 

propose the number of variables at which point the problem is more efficient to be 

solved using a Genetic Algorithm. Whilst it is unlikely that a single set of parameter 

values would be uncovered suitable for all problems, there would be value in 

identifying a set of rules of thumb that could be applied to optimisation problems. 

1.4.3 Literature Review Summary 

In summary, this literature review has attempted to canvas the background 

literature available on Genetic Algorithms. In doing so, this review has noted that the 

field of Genetic Algorithms is still maturing, and therefore there is still much research 

yet to be conducted within the field. This review has suggested that the area within the 

field that most requires further research is in measuring a Genetic Algorithm’s 
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improvements over classical optimisation techniques and identifying what types of 

problems are more suited to Genetic Algorithms. 

It is noted however, that there is much detailed research on the basic topic of 

Genetic Algorithms including how they function and their basis on nature. Within this 

body of research there are many sources that provide examples of how elements of a 

Genetic Algorithm would be coded. 

1.5 Project Methodology 

In order to appreciate the project results, it is important to understand how the 

project was practically undertaken. Thus the project methodology is explained in the 

following sections. 

1.5.1 Systems Approach to Software Development 

A systems approach to software development was used as the overall framework 

to guide the software development process (refer Figure 1-1). The systems approach to 

software development consist of five main phases: 

Step 1. Analysis. Analyse the problem and define the requirements. 

Step 2. Design. Design the structure of program including functions and 

interfaces. 

Step 3. Development. Code all functions. 

Step 4. Test. Test all functions and program perform to specification. 

Step 5. Evaluation. Evaluate the performance of the program and confirm it 

achieves overall aim. 
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Figure 1-1 Systems Approach 

In practice, each of the phases can overlap and often require iterations at each 

stage. The overall process can also be conducted iteratively as the results of evaluation 

are rolled back into the development process. 

The systems approach was used vice a traditional waterfall approach because of 

the need for iteration within the model for improvement and extension (discussed 

further at 1.5.4). 

1.5.2 Programming Models 

There are a number of different programming models available today such as 

CASE tools, Integrated Development Environments and object oriented programming. 

However, MATLAB® was chosen as the programming language for two main reasons: 

firstly, familiarity with the tool and procedural programming by the developer; and 

secondly, suitability of the program for a medium size and medium complexity 

programming task. 

1.5.3 Test Program 

Once the software was coded the next step was the testing program. This project 

adopted a simple two-phase test program.  

Step 1. Unit Level. The first phase is unit level testing. Each function is tested 

in isolation in order to control its environment; specifically the inputs 

and interfaces. Each unit will be tested for normal function operation, 
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operation at the limits of the function inputs, and non-normal function 

inputs. 

Step 2. System Level. The second phase is system level testing. The system – 

Argo – will be tested as a whole; that is, all functions correctly 

interfaced. The system will be tested for normal system operation, 

operation at the limits of the system inputs, and non-normal system 

inputs. 

Practically, in order to test the program’s operation, a test control system will be 

used to allow the Genetic Algorithm to optimise the values of the PID parameters. Two-

test control systems will be used – one based on a first order system and the other based 

on a second order system. The Project Supervisor provided the first order test control 

system. The second order test control system was a digital control system used as part 

of an assignment for the University of Southern Queensland course ELE3105 Computer 

Control Systems (Mackenzie, 2004).  

The optimal values of the PID parameters are known for both the test control 

systems (calculated using the in-built MATLAB® function fminsearch). The known 

optimal values acted as the baseline from which the Genetic Algorithm’s results will be 

compared against to confirm successful operation. 

1.5.4 Evaluation and Extension 

The evaluation phase of the systems approach to software development was 

conducted to confirm that normal operation had been successfully achieved and all 

specifications were met.  

Once the core of the program was operational, a second iteration of the systems 

approach will be conducted again to meet the secondary objectives as set out in 

Appendix A Project Specification. 

1.6 Summary 

In summary, this project is a software design and code project with the aim being 

to use MATLAB® to develop a software application to optimise a PID Controller using 

a purpose built Genetic Algorithm as the basis of the optimisation routine. The core of 

the project is the research, design, coding and testing of the Genetic Algorithm 
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optimisation program. However, the project will then attempt to interface the Genetic 

Algorithm optimisation routine with an existing rotary-wing control model using 

MATLAB®.  

In developing the necessary software, the fundamental development philosophy 

used was a simple systems approach to software development. This approach was 

performed initially to confirm that the basic Project Specification requirements have 

been met, and was then performed again to meet the secondary objectives. 

Practically, in order to test the programs operation, a test control system will be 

used to allow the Genetic Algorithm to optimise the values of the PID parameters of the 

test control system. The optimal values of the PID parameters are known for the test 

control system and will be used as the baseline from which the Genetic Algorithm’s 

results will be compared against to confirm successful operation. 
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Chapter 2  

Optimisation 

2.1 Introduction 

Genetic Algorithms are computer based processes for which optimisation of a 

problem is achieved by mimicking nature’s own process of Natural Selection – also 

referred to as survival of the fittest (Buckland, 2005a). Before the concept of Genetic 

Algorithms can be studied in detail, it is relevant to review the concept of optimisation 

itself, and propose a simple model for optimisation that can be used to better understand 

what is required of any optimisation routine. 

In doing so, this chapter will first present a generic model for optimisation 

problems and then compare the mathematical process of root finding with optimisation 

for completeness. The chapter will then present a categorisation scheme for optimisation 

problems in order to help identify which problems may be suited to using a Genetic 

Algorithm. The chapter will conclude with a brief review of other natural optimisation 

methods. 

2.2 Optimisation Models 

Expanding upon Whitley (n.d., p. 2), a generic model for optimisation can be 

viewed as the configuration of a set of parameters, variables or characteristics (the 

inputs) in order for the function, model or experiment (the process) to produce an 

optimal cost, objective or result (the output). Figure 2-1 graphically represents this 

model.  
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Optimisation is the Configuration of a System to achieve the Optimal Output

 

Figure 2-1 Optimisation Model 

Another way to interpret the process of optimisation is in terms of searching a 

function’s cost surface for the optimal result – in this manner, peaks or troughs in the 

cost surface represent the optimal result (Haupt & Haupt 2004, sec. 1.1.1). 

Importantly, the task of optimisation seeks to achieve the best result possible for a 

given system. However, dependent upon the context or environment, the optimal result 

could be represented by either a maximum or a minimum result. In most contexts – 

especially the case for Genetic Algorithms – optimisation to find a maximum output is 

often referred to as maximising a system’s fitness, whereas optimisation to find a 

minimum output is often referred to as minimising a system’s cost. Thus, fitness is the 

negative of cost (Haupt & Haupt 2004, sec. 1.1.1). However, this project uses a more 

generic definition whereby fitness is simply the optimal (minimum or maximum) cost 

value. For Argo, fitness is evaluated in terms of minimising the cost function. 

Regardless of optimising a system’s fitness or cost, a common challenge is 

finding the global minima/maxima vice any number of local minima/maxima. This is 

more easily visualised using the concept of a cost surface for which there may exist any 

number of smaller peaks and troughs. 

2.3 Root Finding 

Mathematically the process of root finding is similar to the process of 

optimisation. Root finding searches for the zeros of a function whereas optimisation 

searches for the zeros of a function’s derivatives (Haupt & Haupt 2004, sec. 1.1.2).  
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Root finding does not suffer from the problem of calculating local 

minima/maxima, as any root is as good as another – it drives the function to zero.  

Unfortunately, although root finding is mathematically well understood, in 

practice, most real world systems are difficult to model and solve for the roots, 

especially for non-linear, multi-variable, time variant systems. 

2.4 Categories of Optimisation 

This paper has chosen to adopt the six categories of optimisation presented by 

Haupt and Haupt (sec. 1.1.3). Those categories being: 

a) Function / Trial & Error, 

b) Single Variable / Multiple Variable, 

c) Static / Dynamic, 

d) Discrete / Continuous, 

e) Constrained / Unconstrained, and 

f) Minimum Seeking / Random. 

Optimisation by Trial & Error simply adjusts the inputs and observes the outputs. 

Changes to inputs are made based on these outputs. No understanding of the process is 

applied to the problem when adjusting the inputs. Whereas optimisation by Function 

sets the inputs and uses an understanding of the process in order to identify the best 

output. 

Multiple variable systems are more complex than single variable systems and are 

more difficult to model and solve mathematically. The number of variables can be used 

to express the number of dimensions within the system, for example, the number of 

dimensions to a cost surface. 

Dynamic systems are systems for which the output is a function of time (Haupt & 

Haupt 2004, sec. 1.1.3) – static systems are time invariant.  

System variables can be classified as either discrete or continuous. Continuous 

variables can take an infinite number of values; whereas discrete variables can only be 
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assigned a finite number of possible values. A common approach to optimising 

continuous systems is to first discretise the system and then attempt to optimise using 

digital processes. 

Constrained systems are systems for which variables can only take values within 

set limits. Variables in unconstrained systems have no such limits applied. 

Mathematical optimisation works best on unconstrained systems. 

Minimum seeking optimisation methods use a single set of inputs in order to 

normally numerically find the optimal outputs. Such methods are challenged by the 

problem of local minima/maxima. Unlike minimum seeking optimisation methods, 

random methods use probabilistic calculations to find the variable sets on which to 

perform optimisation, thus finding local minima/maxima is not as problematic. 

Typically, minimum seeking methods are computationally faster than random methods. 

2.5 Natural Optimisation Methods 

As eluded to when discussing root finding (refer Section 2.3), most classical 

optimisation methods can be described as minimum-seeking algorithms searching the 

cost surface for minimum cost and hence suffer from the challenge of local minima. 

Such classical methods are often calculus based and solved numerically. 

More recently, natural optimisation methods have been developed in order to 

address the inherent limitations of calculus-based optimisation. Haupt and Haupt (2004, 

sec. 1.1.3) provide five examples of natural optimisation methods including: 

a) Genetic Algorithms, 

b) Simulated Annealing, 

c) Particle Swarm Optimisation, 

d) Ant Colony Optimisation, and 

e) Evolutionary Optimisation. 

Such natural optimisation methods attempt to model a real-world process based 

on a system displayed in nature. This is done because it has been observed that nature is 

amazingly adept at optimising many of its natural systems.  
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These natural methods provide an intelligent search of the solution space using 

statistical methods and hence do not require finding the cost function’s derivatives; thus 

natural methods can handle systems with multiple, non-continuous and discrete 

variables (Haupt & Haupt 2004, sec. 1.3). 

2.6 Summary 

In summary, this chapter has reviewed some general optimisation concepts and 

presented a generic optimisation model – the configuration of a set of inputs to a 

system’s process in order to find the optimal output. 

The chapter briefly also outlined some common natural optimisation techniques, 

including Genetic Algorithms. Such natural optimisation methods attempt to model a 

real-world process based on a system displayed in nature. These natural methods 

provide an intelligent search of the solution space using statistical methods. It is the use 

of statistical methods vice analytical methods that often make the use of natural 

methods more successful than calculus based methods for systems with multiple, non-

continuous and discrete variables. 
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Chapter 3  

Digital Controllers 

3.1 Introduction 

Engineering is concerned with understanding and controlling the 

materials and forces of nature for the benefit of humankind. Control 

system engineers are concerned with understanding and controlling 

segments of their environment, often called systems, in order to 

provide useful economic products for society (Dorf 1992, sec. 2, p. 2). 

Ignoring the economic products, this project is fundamentally concerned with the 

control of inputs to systems that maintain cause-effect relationships to the outputs (Dorf 

1992, sec. 2, p. 2); whereby this control is based on linear system theory. 

In practice, digital controllers are used to control real-world devices and 

processes. Leis (2003, Course Overview) presents the following examples of practical 

digital controller examples: 

a) Aviation – Flight Control Systems for controlling flight control surfaces 

b) Robotics – Motion 

c) Automotive – Antilock Braking Systems 

d) Industrial – temperature control systems in manufacturing 

In reviewing control systems, this chapter will first present an overview of both 

analogue and a computer controlled systems. After providing an overview of each type 

of control system, a basic algorithm for any control system will be presented. Once the 

control system has been introduced, the controller itself along with its ideal 
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characteristics will be discussed. Finally, the PID Controller will be defined and 

methods for tuning the controller’s parameters outlined. 

3.2 Control System Overview 

3.2.1 Analogue Controller 

In order to understand computer controlled systems, it is first important to briefly 

review the analogue controller. The analogue control system is generally comprised of a 

summing junction, a controller ( )sGc , plant ( )sGp , and feedback transmittance ( )sH . 

The analogue controller is generally modelled in the time domain  with transfer 

functions using the S-Domain. A general form of an analogue control system is shown 

in 

( )t

Figure 3-1. 

Gc(s) Gp(s)

H(s)

desired output error
signal

r(t)
signal

c(t)
signal

e(t)
∑

−

+

 

Figure 3-1 Analogue Control System (based on (ELE3105 2007, mod. 1, fig. 1.1) ) 

Dorf (1992, sec. 1.1, p. 2) notes that feedback systems (closed-loop systems) 

provide a measure of the output signal back with the desired signal in order to control 

the system; thereby enabling the control system to drive the controller to eliminate error 

in the desired output signal. The feedback signal is often amplified during measurement 

- . ( )sH

From the control loop shown in Figure 3-1, the University of Southern 

Queensland’s Computer Controlled Systems’ Study Guide (2007, mod. 1) suggests that 

the basic sequence of events for any analogue controlled system can then be described 

as follows: 

1. Generate the desired output signal ( )tr  at time t  

2. Measure the actual output signal ( )tc  
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3. Calculate the signal error ( ) ( ) ( )tctrte −=  

4. Apply the control algorithm to generate control signal  ( )tm

5. Output the control signal to plant input 

6. Repeat step 1 

3.2.2 Computer Controller 

The computer controller is similar to the analogue controller, however, as the 

signals are now digitised, a number of other devices must be considered including 

digital-to-analogue converters, analogue-to-digital converters and digital samplers. 

Also, as the signals in a computer controlled system are discretised, the computer 

controlled system is generally modelled in the discrete time domain  with transfer 

functions using the Z-Domain. A general form of a computer controlled system is 

shown in 

( )k

Figure 3-2. 
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error
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controller 
signal
m(k)

D/A

GHP(z)

+
-

 

Figure 3-2 Computer Controlled System (based on (ELE3l05 2007, mod. 5, fig. 5.1) ) 

From the digital control loop shown in Figure 3-2, the basic sequence of events 

for any computer controlled system can then be described in a similar manner to 

analogue systems in the preceding section (refer Section 3.2.1): 

1. Generate the desired output ( )kr  for sample  k

2. Measure the actual output ( )kc  

3. Calculate the error ( ) ( ) ( )kckrke −=  

4. Apply the control algorithm to generate control signal  ( )km

5. Output the control signal to plant input 
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6. Repeat step 1 

3.2.3 Controllers 

Now that the control system has been explained, the controller itself can be 

discussed. Generically, Leis (2003, mod. 4) suggests that an ideal Controller has three 

key characteristics: 

a) Fast response, 

b) Minimal overshoot, and 

c) No steady-state error. 

Leis (2003, mod. 4) further suggests that these characteristics can be found by the 

combination of the three base Controllers: 

a) Proportional Controller – control ∝  error: 

i. Increase response speed; 

ii. Decrease steady-state error; and 

iii. Decrease system damping. 

b) Integral Controller – control ∝  accumulated error: 

i. Accumulates while there is an error; 

ii. Forces steady-state to zero; and 

iii. Decreases stability. 

c) Derivative Controller – control ∝  rate-of-change-of-error: 

i. Brakes the response; and 

ii. Makes the response more sluggish. 

The three basic controller types – proportional, derivative and integral – can be 

practically combined to forma PID Controller. Figure 3-3 shows how a PID Controller 

is used within the standard digital control loop. 

Page 20 Matthew Mackenzie Q9323707 



PID Controller Optimisation Using Genetic Algorithms 

D/A

A/D

desired
signal

r(t)

controller
signal
m(t)

output 
signal

c(t)

error
signal

e(t)

Control Computer

∑ ∑ ( )zGHP

( )teK p

( )
dt

tdeKd

( ) tdteKi ∫

PID Controller

-
+

+

+
+

 

Figure 3-3 Digital Control Loop (based on (Leis 2003, mod. 1; mod.4) ) 

Taking the standard digital control loop, the controller’s signal can then be 

mathematically modelled as:  

( ) ( ) ( ) ( )
dt

tdeKdtteKteKtm dip ++= ∫   
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It can be shown that this function can be transformed to: 
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Ultimately it is these three constants —  — that will be modelled as 

Genes within the Genetic Algorithm optimisation presented within this paper using 

Argo. 

210 q and  , qq

3.3 Tuning 

In order to achieve the desired performance of the controller the three PID 

parameters must be tuned. University of Southern Queensland’s Computer Controlled 

Systems Study Guide (2007, mod. 4.2) suggests that tuning can be performed using a 

number of methods including: 

a) Trial and error, 

b) Experimental results, 
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c) Heuristics (e.g. Ziegler-Nichols), 

d) Analytical analysis (e.g. Steepest decent optimisation), or 

e) Natural algorithms (e.g. Genetic Algorithm). 

This project is fundamentally concerned with providing a Genetic Algorithm from 

which to optimise the three PID parameters for a given control system. 

The University of Southern Queensland’s Computer Controlled Systems Study 

Guide (2007, mod. 4) also explains that tuning can be either fixed or adaptive. Fixed 

tuning selects the controller parameters upon start of the control system, and they 

remain as-set whilst the control system is in operation. Adaptive tuning seeks to change 

the parameters during operation of the control system in order to provide optimal 

control performance by addressing any changes to the control system during operation 

(including environmental changes impacting the system).  
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signal
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output 
signal
c(k)

error
signal
e(k)

∑
A/D

Gc(z)

controller 
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Figure 3-4 Adaptive Digital Control System 

This project will provide a Genetic Algorithm for optimisation of a PID Controller 

using fixed tuning only. However, the project will endeavour to explain how it could be 

extended as the focus of further work to the project. 
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3.4 Summary 

In summary, this chapter presented an overview of control systems, providing 

models for both analogue and computer control systems. The chapter then discussed the 

ideal characteristics for any controller, and provided a mathematical model for a 

controller that could achieve these requirements – the PID Controller. Finally, the 

chapter briefly discussed methods of how to tune the parameters of the PID Controller, 

including: 

a) Trial and error, 

b) Experimental results, 

c) Heuristics (e.g. Ziegler-Nichols), 

d) Analytical analysis (e.g. Steepest decent optimisation), or 

e) Natural algorithms (e.g. Genetic Algorithm). 

This project will use a Genetic Algorithm in order to provide a fixed tuning 

solution to a control system. 
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Chapter 4  

Genetic Algorithms 

4.1 Introduction 

Before the MATLAB® program Argo can be explained and its interface with a 

PID Controller demonstrated, a sound understanding of Biological Genetic Algorithms 

must first be gained. To achieve this goal, this Chapter will present the general 

principles of Biological Genetic Algorithms including the fundamental concept of 

Natural Selection. Once the concept of Natural Selection has been presented, this 

Chapter will then explain the basic process that any Genetic Algorithm would follow if 

applied to a real-world problem.  

In order to understand the capabilities and limitations of applying a Genetic 

Algorithm to an engineering optimisation problem, the Chapter concludes with a brief 

discussion on the main advantages and disadvantages associated with Genetic 

Algorithms. 

4.2 Biological Genetic Optimisation 

Genetic Algorithms are simply a series of steps for solving a problem whereby the 

problem-solving method uses genetics as the basis of its model (Chambers 2005, 

preface). Genetics is the branch of biology that studies how parent organisms transfer 

their cellular characteristics to children. Genetic Algorithms attempt to model the 

concept of Natural Selection within genetics, whereby Chambers (2005, preface) 

explains that  
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“… organisms most suited for their environment tend to live long 

enough to reproduce, whereas less-suited organisms often die before 

producing young or produce fewer and/or weaker young”.  

Implicit in the concept of Natural Selection is the idea that the stronger organisms 

live long enough to reproduce often and pass their genetic traits on to their offspring, 

whereas because the weaker organisms do not produce as many offspring their genetic 

traits are not as prolific within the population.  

At the cellular level a gene is the basic unit of heredity (Haupt & Haupt, 2004, 

sec. 1.4). The gene contains information that describes a specific trait of an organism. 

Multiple genes are combined to form a chromosome – the sequence of genes within the 

chromosome is often referred to as the organism’s genetic code (Haupt & Haupt 2004, 

sec. 1.4). One common implementation for a Genetic Algorithm is to code 

chromosomes and genes as a string of bits. Individual bits in the encoded string are 

analogous to the genetic concept of an allele (Whitley n.d., p. 16). 

For a Genetic Algorithm to model the real world, the first important step is that of 

selection. Selection is the process where organisms are chosen to mate and produce 

offspring (Haupt & Haupt 2005, sec. 2.2.5). Natural Selection often occurs in nature by 

mating two parents to produce one offspring. Although Genetic Algorithms are not 

necessarily limited to a set number of parents, it is common to select only two parents 

for mating. Argo requires the selection of two parents for mating which in turn produces 

two offspring. 

Once two offspring are selected mating occurs. Mating is the process that mimics 

sexual recombination of cells. Genetic Algorithms perform mating by a process of 

crossing chromosomes. Crossing is a process whereby two parent cells divide and then 

arrange themselves such that they recombine to form offspring that have part of their 

chromosome provided by both parents. Crossing mimics the genetic process of meiosis 

that results in cell division (Haupt & Haupt 2004, sec. 1.4) – reproductive cells divide at 

a random point along the chromosome known as the kinetochore (Haupt & Haupt 2004, 

sec. 1.4).  

A rare but important part of mating is mutation. Chambers (1995, p. 48) explains 

that mutation “is the process of randomly disturbing genetic information”. Mutation 

manifests itself by randomly altering a gene (more specifically an allele) within the 
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chromosome. Similar to nature, Genetic Algorithms seldomly apply the process of 

mutation. Natural Selection leads to the maintenance of a strong genetic population 

through heredity of strong genes. Mutation counters this, and hence is used to 

reintroduce alleles/genes that may have been lost in the population after selection and 

crossing but which actually make the chromosome stronger in terms of its environment. 

Genetic Algorithms apply mutation in order to avoid prematurely converging to a sub-

optimum genetic solution. 

4.3 Genetic Algorithms 

Obviously nature applies the processes of selection, mating, crossing, mutation 

and reproduction continuously whilst ever the species continues to survive. However, 

Genetic Algorithms are an optimisation and search technique based on the principles of 

genetics and natural selection in order to maximise genetic fitness (Haupt & Haupt 

2004, sec. 1.5). Often Genetic Algorithms encode the parameters of a real-world 

problem and then attempt to maximise an associated fitness function (Whitley n.d., p. 

1). Thus, whereas nature applies the process of natural selection continuously, Genetic 

Algorithms apply the process iteratively until a set of encoded parameters is found that 

maximises the modelling function. Hence Genetic Algorithms are often used as a 

function optimising technique.  

The key difference between Genetic Algorithms and analytical optimisation is that 

in effect Genetic Algorithms are a population-based model that searches the fitness 

space to find the optimum parameters (Whitley n.d., p. 1). Whereas analytical 

optimisation attempts to mathematically model the process and optimise using either 

calculus or numerical techniques. 

4.4 Advantages and Disadvantages 

As already eluded to, Genetic Algorithms have numerous inherent advantages 

over classical numerical optimisation techniques. Haupt & Haupt (2005, sec. 1.5) attest 

that some of the advantages of Genetic Algorithms are that they: 

a) Can handle discrete and continuous variables; 

b) Don’t require the calculation of function derivates (not calculus based); 
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c) Are suited to parallel computing (still the current means from which 

personal computers are attempting to gain significant increases in 

processing power); 

d) Can provide a list of optimal variables; 

e) Can handle complex cost surfaces (local minima/maxima do not falt the 

method); and 

f) Can handle large numbers of variables. 

However, despite the many advantages over classical analytical optimisation 

techniques, the Genetic Algorithms own process of searching a large solution space 

results in a significant disadvantage. That disadvantage being a high computational cost 

associated with processing and searching a large solution space. Such a computational 

cost is normally manifested by a slow computational process and a high demand for 

memory. Hence, classical analytical optimisation techniques still remain the best for 

complex analytical functions with few variables. 

4.5 Genetic Algorithm Process 

4.5.1 Problem Definition and Encoding 

The generic Genetic Algorithm process is shown in Figure 4-1 Biological Genetic 

Algorithm Process Flow. The process commences with the definition of the problem 

and the encoding of chromosomes from which to apply the Genetic Algorithm process 

digitally. 

This step is also important as the convergence criteria must be defined. The 

convergence criterion defines the situations under which the Generic Algorithm will be 

deemed completed. 
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Figure 4-1 Biological Genetic Algorithm Process Flow 

4.5.2 Initialisation 

Once coding of chromosomes is defined, the starting population of chromosomes 

within the search space can be initialised. The process of initialisation can be tailored 

dependent upon the problem and how the system operates in practise. For example, 

initialisation could be achieved by setting all chromosomes to be the same sequence 

with the chromosome value being arbitrarily chosen, selected at random or specifically 

nominated. Regardless, this method is not normally recommended as the Genetic 

Algorithms strength lies in its ability to provide and search a diverse solution space, and 

this method slows the diversification of the population – and hence slows the 

optimisation process in general. However, the speed of the optimisation problem could 

be increased if the arbitrary value representing the chromosome was known to be near 

the optimal value.  

Nevertheless, if the optimal value for a chromosome is unknown, the best 

initialisation method of the population is to randomly assign values to all chromosomes 

within appropriate limits for the system variables that the chromosomes are modelling. 

4.5.3 Decoding 

The next step in the process is to decode the chromosome’s value to enable 

calculation of the cost. Obviously this step depends upon the coding scheme used. For 

Argo, a binary code was utilised. 
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4.5.4 Cost 

Once each chromosome has been decoded, the chromosome’s cost can then be 

calculated. The cost function is normally a mathematical function, but, it could be 

programmed to be derived from an experimental result or even an outcome from a game 

(Haupt and Haupt, 2004, sec 2.2.1). Referring to the generic optimisation model 

presented in Chapter 2 (refer Section 2.2), the cost is the system’s output derived from a 

set of inputs. Further, the cost can also be considered to be the difference between the 

actual output value for the given set of inputs and the optimal output (Haupt and Haupt, 

2004, sec 2.2.1). 

As previously discussed in Chapter 1 (refer Section 1.4.1), Whitley (n.d.) 

prescribes that there is a difference between the evaluation and fitness functions within 

the Genetic Algorithm. The evaluation function determines the cost independent of 

evaluation of other chromosome’s cost. Whereas the fitness function determines the 

cost of the chromosome relative to all other chromosome’s within the population. 

Practically this could take the form of a simple sorting algorithm. 

4.5.5 Selection 

Once each chromosome’s cost has been calculated, the Genetic Algorithm can use 

this data to determine which chromosomes should be selected to mate. The selection 

function is generally the aspect that contains the most differences between Genetic 

Algorithms and arguably has the greatest impact upon the Genetic Algorithm’s eventual 

success.  

A number of selection methods have been proposed including: 

a) Ranked pairing, 

b) Random pairing, 

c) Weighted random pairing, and 

d) Tournament Selection. 

Ranked pairing is a simple selection method whereby two adjacent chromosomes 

are selected from a rank sorted list, whereby ranking is based on cost. Extensions to this 

method include Fit-Fit and Fit-Weak selection (Chambers, 1995, sec. 1.14.1.3 and 
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1.14.1.4). Fit-Fit (pairing with next fittest chromosome) is highly conservative 

compared to Fit-Weak (pairing with next weakest chromosome) which is highly 

disruptive of the genetic information. Obviously ranked pairing does not follow nature’s 

model, however, it is simple to program (Haupt and Haupt, 2004, sec. 2.2.5). This 

method also has the computational penalty of requiring a sort of each population. 

Random pairing is also a simple selection method whereby two chromosomes are 

selected at random from the population, regardless of ranking. This method has some 

similarities with nature, and, has the added advantage of not requiring the computational 

cost of sorting each population. 

Weighted Random selection, also known as Roulette Wheel selection, is one of 

the most common selection methods used in practical Genetic Algorithms. Roulette 

Wheel selection is based on its namesake whereby each slot in the wheel is weighted in 

proportion to its fitness. Hence, selection is more likely for fitter chromosomes. A 

random number is used to determine which chromosome on the Roulette Wheel is 

selected. Weighted Random selection can be refined by using either the ranking or the 

cost to calculate the probability of selection (Haupt and Haupt, 2004, sec. 2.2.5). This 

method has similarities with nature, as it attempts to provide a model that mimics the 

concept of Natural Selection. However, this method is computationally expensive. Also, 

Chambers (1995, Sec 1.14.1.1) notes that this method is “only a moderately strong 

selection technique, since fit individuals are not guaranteed to be selected for, but have a 

somewhat greater chance”. Chambers (1995, Sec 1.14.1.1) also warns for practical 

application that it is essential not to sort the population, as this will dramatically bias the 

selection. 

Haupt and Haupt (2004, sec. 2.2.5) suggests that Tournament Selection is perhaps 

the method that most closely mimics nature. This method identifies a pool of candidate 

chromosomes at random and then selects the fittest candidate as the first successful 

parent. This method has the added advantage of not requiring the computational cost of 

sorting each population. 

4.5.6 Mating 

The next step in the Genetic Algorithm is to mate the parent chromosomes to form 

an offspring. Typically, mating uses the process of crossover whereby a crossover point 

(kinetochore) is chosen and the genetic codes of each parent are then swapped around 
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that point (Haupt and Haupt, 2004, Sec 2.2.6). Multiple crossover points can be used, 

however, the greater the number of crossover points used the greater the disruption of 

the genetic information in the population. Normally the crossover point itself is chosen 

at random from the genetic code (Haupt and Haupt, 2004, Sec 2.2.6). 

4.5.7 Mutation 

Mutation is a change in a gene’s characteristics. The change occurs randomly in 

order to re-introduce/introduce genetic traits not found in the population. This process is 

key to a Genetic Algorithm’s ability to eventually converge on the global optimal 

solution – mutation helps prematurely converging on a local minima/maxima. 

However, mutation by concept is disruptive. Therefore, the mutation rate for most 

Genetic Algorithms is very low, often in the order of 1% or lower. Also, it is normal 

practice for most Genetic Algorithms not to allow mutation on the current fittest 

chromosome.  

Practically, mutation on a binary encoded Genetic Algorithm is simply a change 

in an allele’s value from a ‘1’ to a ‘0’ or vice versa. Also, although most Genetic 

Algorithms only allow a single mutation to occur on any given gene, they can be 

tailored to allow any number of mutations. However, it is important to realise that the 

more mutations possible, the more disruptive the Genetic Algorithm. In practice, this 

may be a useful mechanism to help solve optimisation problems for which it is known a 

priori that there are numerous local maxima/minima. 

4.5.8 Convergence 

The final step in any Genetic Algorithm is the test for convergence. Nature 

evolves making the species stronger by adapting to its environment whilst ever the 

species itself exists; whereas the purpose of a Genetic Algorithm is to eventually 

converge on a single solution to an optimisation problem. Thus, as part of the initial 

problem definition phase convergence criteria are normally defined, including 

tolerances. Thus, at the completion of selection, mating, and mutation of the current 

population a convergence test is performed. If the Genetic Algorithm is deemed to have 

successfully converged on the optimal solution then the Genetic Algorithm will 

terminate. If not, the Genetic Algorithm will continue again using the end-state of the 

current population as the stating population for the next generation. 
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It is also normal practice for all Genetic Algorithms to hardcode exit criteria in 

addition to any convergence criteria. Typically, such exit criteria includes a limit to the 

total number of generations allowed on any run of a Genetic Algorithm. As Genetic 

Algorithms rely upon random number selection for their operation, some Genetic 

Algorithms may take many more generations to converge upon the optimal solution, if 

at all. 

4.6 Summary 

In summary, this Chapter discussed the basic concept of biological genetic 

optimization. It was noted that Genetic Algorithms attempt to model the concept of 

Natural Selection in order to solve an optimization problem. Natural Selection is a 

concept whereby the stronger organisms live to reproduce and pass their genetic traits to 

their offspring; whereas because the weaker organisms do not produce as many 

offspring their genetic traits are not as prolific within the population. Obviously nature 

applies the processes of selection, mating, crossing, mutation and reproduction 

continuously whilst ever the species continues to survive. However, Genetic Algorithms 

are an optimisation and search technique based on the principles of genetics and Natural 

Selection in order to maximise genetic fitness (Haupt & Haupt 2004, sec. 1.5). 

The chapter also briefly considered the advantages and disadvantages of using a 

Genetic Algorithm as an optimization method over classical analytical optimization 

techniques. Haupt & Haupt (2005, sec. 1.5) attest that some of the advantages of 

Genetic Algorithms are that they: 

a) Can handle discrete and continuous variables; 

b) Don’t require the calculation of function derivates (are not calculus based); 

c) Are suited to parallel computing (still the current means from which 

personal computers are attempting to gain significant increases in 

processing power); 

d) Can provide a list of optimal variables; 

e) Can handle complex cost surfaces (local minima/maxima do not falt the 

method); and 
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f) Can handle large numbers of variables. 

However, despite the numerous advantages that Genetic Algorithms provide, 

perhaps their greatest disadvantage results from the high computational cost associated 

with processing and searching a large solution space. 

Finally, the chapter concluded with a detailed overview of a basic Genetic 

Algorithm, specifically the iterative process of: 

Step 1. Problem definition and encoding 

Step 2. Population initialization 

Step 3. Decoding chromosome values 

Step 4. Calculation of chromosome cost/fitness 

Step 5. Selection of parent chromosomes 

Step 6. Mating of parents to generate offspring – new chromosomes 

Step 7. Mutation of the genetic code 

Step 8. Convergence against pre-determined criteria for identifying optimal 

solution 

Step 9. Repeat step 3 if not converged. 
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Chapter 5  

Argo 

5.1 Introduction 

Thus far the dissertation has discussed optimisation in general, the concept of 

Natural Selection at length, the common Genetic Algorithm itself, and a brief overview 

of digital controllers. Thus the foundation has been laid on which to present the projects 

Genetic Algorithm coded in MATLABR – Argo. 

This chapter will first define the problem and the method of encoding for the 

binary Genetic Algorithm. Then the chapter will explain the Genetic Algorithm used 

and follow-on to cover the functions that perform initialisation, cost evaluation, 

selection, mating, mutation and convergence. 

5.2 Definition 

In relation to the optimisation model presented in Chapter 1 (refer Figure 2-1), the 

genes that comprise the chromosome represent the inputs. The fitness/cost function 

represents the process and the chromosome fitness values represent the outputs. 

Generically, a chromosome is represented as: 

Chromosome [ ]ngggg K321 ,,=  

 EQN 5–1 

Where, 

=ng  gene number n  

 EQN 5–2 

And, 
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 EQN 5–3 

For Argo, there are three genes comprising a single chromosome. The genes 

represent the parameters within the generic PID Controller function (refer Section 3.1): 

122110 −−− +++= nnnnn meqeqeqm  

 EQN 5–4 

Where the constants represent the three genes, 

10 gq =  

 EQN 5–5 

21 gq =  

 EQN 5–6 

32 gq =  

 EQN 5–7 

5.3 Encoding 

Before each function within Argo can be described, the method of encoding 

chromosomes must first be presented. Argo encodes three PID parameters – , ,  

– as three genes in a chromosome. In order to meet the project specification, each gene 

is 30 bits. This results in the following maximum operating limits for each parameter: 

0q 1q 2q

10737418231073741823 −<<+ nq  

 EQN 5–8 

However, for any given value of q, a division by 10,000 will be performed to 

achieve the decimal accuracy required by the project. Thus the practical operating limits 

for each parameter are: 

41823.1073741823.10737 −<<+ nq  

 EQN 5–9 

In addition, a single sign bit will be appended at the front of each gene. Hence, 

each gene is constructed as: 

xxxxxxxxxxfloats  [.]  ]/[ −+  

 EQN 5–10 

Where x can be either a: 
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a) 1 (representing a positive number), or  

b) 0 (representing a negative number). 

Note, the decimal point is not actually coded – division by a 10,000 performed 

procedurally. Thus each gene is actually 31 bits: 

 bits bits)(magnitude  bit)sign ( 31301 =+  

 EQN 5–11 

And therefore a complete chromosome is 93 bits: 

 bits  x genes 933 =  

 EQN 5–12 

Changing the project specification or method of encoding would require a 

significant redesign of Argo. 

The ParseBits function is used to decode a chromosome’s binary code. 

5.4 Argo Genetic Algorithm 

The C++® source code provided online by Buckland (2005b) was used to provide 

a conceptual template for how the main routine could be structured within any practical 

Genetic Algorithm (akin to the process illustrated by Figure 4-1). This conceptual 

framework was used as a starting point and subsequently extensively modified and built 

upon to meet the specific requirements of Argo itself. 

The high-level Genetic Algorithm applied by Argo is outlined in Figure 5-1. 

% set Constants 
%      GENE_LENGTH => 30 
%      CHROMO_LENGTH => 93  
%      POP_SIZE => 50 
%      FALSE => 0 
%      TRUE => 1 
% 
% set Parameters 
%      SELECTION => ‘Tournament’ 
%      NUMBER_OF_CROSSOVER_POINTS => 1 
%      DISTRIBUTION => ‘uniform’ 
%      MUTATION_RATE => 0.001 
%      MUTATIONS_PER_CHROMOSOME => 1 
%      MAX_GENERATIONS => 10000 
%      NKEEP => 0.7 
%      SAME_MIN => 20 
% 
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%   initialise all variables 
% 
%   initialise population using function [InitialisePopulation] 
% 
%   calculate fitness scores for population using function  
%      [CalcFitness] 
%   keep the best chromosome Old_Best_Chromo 
 
%   while Generations < than MAX_GENERATIONS AND Stop == FALSE 
%       
%    create Intermediate_Population 
% 
%      loop POP_SIZE – inter_pop_size times   
%         select two parents using function  
%            [TournamentSelection] 
%         crossover the parents to form offspring using 
%            function [Crossover] 
%         mutate the offspring using function [Mutate] 
%       
%      replace the parents with the new offspring 
%   
%    keep the new best chromosome => New_Best_Chromo 
%    population => Intermediate_Population  
%       
%      calculate fitness scores for new population using 
%         function [CalcFitness] 
% 
%   end while loop 

Figure 5-1 Argo Genetic Algorithm 

To aid in understanding how Argo operates, the program’s Data Flow Diagram is 

provided (refer Figure 5-2). 
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Figure 5-2 Data Flow Diagram 

5.5 Initialisation 

The first function within Argo is initialisation of the starting chromosome 

population – also referred to as the first generation. Initialisation is used to randomly 

assign values to all chromosomes within the population. This is done to ensure that the 

Genetic Algorithm starts with an initial population that has values that are spread within 

the input’s operating limits. 

The initialisation algorithm is provided in Figure 5-3. 

% seed initial population based on: 
%  (i,j)=(rand*(10737.41823))*100000 
% ensure all numbers are rounded down 
% 
% convert decimal to binary string: 
% loop for each three components (genes) of the seeded matrix 
%  convert using dec2str 
%  convert using num2str 
%  concatenate string of three genes into a chromosome 
%  concatenate chromosomes to form the population 
% end 
%  
% randomly set each sign bit of each gene (bits 1,32,63)  

Figure 5-3 Initialization Function Algorithm 
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5.6 Cost 

This project uses three cost functions in order to test the system across a broad 

range of applications: 

a) CostFirst – models a first order control system, 

b) CostSecond – models a second order system, and 

c) CostFirstRandomDelay – models the same first order control system but 

with a random delayed input. 

Appendix C Cost Functions provides the mathematical background for calculating 

the respective costs including difference equations for the output and error { ( )kc  and 

 respectively}, as well as derivation of the difference equations to support a random 

delayed input.  

( )ke

It is the error function that maps directly to derivation of cost through the 

application of the ITAE Performance Criterion. Whereby, the cost function, , is 

calculated by: 

S

( )∑
=

=
m

k
kekS

1

 

 EQN 5–13 

Where, 

 m  is the maximum number of simulations, in this case set to 100; and 

k  is the discrete sample number from 1 to m . 

Also, optimisation of the cost function, , is performed using a simple 

implementation of the steepest descent method. 

S

5.6.1 CostFirst 

The CostFirst function is modelled on a transfer function for a first order 

plant , such that: )(sG p
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( )
5

5 5
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s
esG
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p  

 EQN 5–14 

With an assigned sample interval of, 

1.0=T  

 EQN 5–15 

The built-in MATLAB® function fminsearch indicated that the global 

minimum in terms of the error value was obtained with the parameter values: 

6342.0
7336.1

2360.1

3

1

0

=
−=

=

q
q
q

 

 EQN 5–16 

101.7713cos min =t  

 EQN 5–17 

5.6.2 CostSecond 

The CostSecond function is modelled on a transfer function for a second order 

plant , such that: )(sG p

( )
( )109.2

3)( 2 ++
+

=
ss

ssGp  

 EQN 5–18 

With an assigned sample interval of, 

05.0=T  

 EQN 5–19 

The built-in MATLAB® function fminsearch indicated that the global 

minimum in terms of the error value was obtained by the parameter values: 

0663.464
8283.1127

1620.878

3

1

0

=
=
=

q
q
q

 

 EQN 5–20 

99.4803 cos min =t  

 EQN 5–21 
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5.6.3 CostFirstRandomDelay 

The CostFirstRandomDelay function is modelled on the same transfer 

function for the first order plant , such that: )(sG p

( )
5

5 5

+
=

−

s
esG

Ts

p  

 EQN 5–22 

With an assigned sample interval of, 

1.0=T  

 EQN 5–23 

The random delay input is defined by calculating a random number around a user 

set mean and standard deviation values (refer Appendix C Cost Functions). 

5.7 Natural Selection 

5.7.1 Tournament Selection 

Tournament Selection in Argo is performed by using the 

TournamentSelection function. The TournamentSelection algorithm is outlined 

in Figure 5-4. Argo uses a Tournament Selection algorithm to perform selection of 

parent chromosomes. The TournamentSelection function simply selects three 

candidate parent chromosomes at random from the current population. The function 

then calculates the fitness of each chromosome. The fittest chromosome is then selected 

as the parent chromosome. Argo calls the TournamentSelecton function twice in 

order to select two parents – noting Argo selects two parents to produce two offspring. 

%   randomly select candidate_parent_1_index from POP_SIZE 
%   randomly select candidate_parent_2_index from POP_SIZE 
%   randomly select candidate_parent_3_index from POP_SIZE 
% 
%   check that each candidate parent is unique 
% 
%   calculate fitness of candidate_parent_1_index 
%   calculate fitness of candidate_parent_2_index 
%   calculate fitness of candidate_parent_3_index 
% 
%   find minimum candidate parent 
% 
%   return the minimum candidate parent as the selected parent 

Figure 5-4 Tournament Selection Algorithm 
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5.7.2 Roulette Wheel 

Roulette Wheel selection in Argo is performed using the RouletteWheel 

function. The RouletteWheel algorithm is outlined in Figure 5-5. Argo uses a 

Roulette Wheel algorithm to perform selection of parent chromosomes. The 

RoulettWheel function assigns a probability to each chromosome based on its fitness. 

The function randomly picks a target value (slice point) and the population is stepped 

through until the target value is reached. Argo calls the RouletteWheel function twice 

in order to select two parents – noting Argo selects two parents to produce two 

offspring. 

%   Calculate total fitness value using 
%      Total_Fitness=sum(abs(Fitness_Array)); 
% 
%   Assign each chromosome a prob based on fitness score using 
%      Prob_Array=abs(Fitness_Array)./Total_Fitness;  
% 
%   Calculate the Cumulative Probability Array => Cum_Prob_Array 
% 
%   Check that the total probability equals 1 
% 
%   Randomly assign the selection point 
% 
%   Find the chromosome by 
%      loop POP_SIZE number of times 
%         test if Selection Point < Cum_Prob_Array(index) 
%            set index 
%         end 
%      end 
% 
%   Test if index not set, then assign to last chromosome 
% 
%   Assign Selected_Chromo_Index => Index; 

Figure 5-5 Roulette Wheel Selection Algorithm 

5.8 Mating 

Mating in Argo is performed using the Crossover function. The Crossover 

algorithm is outlined in Figure 5-6. The Crossover function has two configurable 

parameters. The first configurable parameter is the number of crossover points that can 

be set to either one or two points. The second configurable parameter is the type of 

distribution used to randomly select the crossover points. The distribution can be set as 

either a uniform or normal distribution. 

Page 43 Matthew Mackenzie Q9323707 



PID Controller Optimisation Using Genetic Algorithms 

%   randomly select crossover point using 
%      abs(floor(CHROMO_LENGTH*normrnd(.5,.25))) or 
%      floor(CHROMO_LENGTH*rand); 
% 
%   if crossover point is a sign bit (1-32-63) then 
%      crossover point = crossover point + 1 
% 
%   get prefixB => (from 1:crossover point) 
%   get postfixA => (from crossover point+1:CHROMO_LENGTH) 
%   get postfixB => (from crossover point+1:CHROMO_LENGTH) 
%   Crossed_chromosome_A => strcat(prefixA and postfixB) 
%   Crossed_chromosome_B => strcat(prefixB and postfixA) 

Figure 5-6 Crossover Algorithm 

5.9 Mutation 

Mutation in Argo is performed using the Mutate function. The Mutation 

algorithm is outlined in Figure 5-7. The Mutate function has two configurable 

parameters. The first configurable parameter is the mutation rate that can be set to any 

number between one and zero. The mutation rate is used to test whether a single bit 

(allele) will invert (mutate) or remain unchanged. The second configurable parameter is 

the number of mutated bits allowed in any given chromosome. 

%   loop chromosome length number of times 
%      test if index is not a sign bit (1-32-63) 
%         test if rand is less than mutation rate 
%            invert sign of bit 
%            increment counter 
%            test if counter is less than mutation number 
%         end loop 
%      end loop 
%   end loop 

Figure 5-7 Mutation Algorithm 

5.10 Convergence 

Importantly, because the optimum chromosome may never actually evolve, 

convergence testing is used to test for improvement in the population rather then 

stopping upon a singular evolutionary event. To achieve this Argo uses a bank of 

statistics. These statistics are updated and stored each generation in order to test against 

the trends of the statistics as well as the individual statistics themselves. In broad terms, 

the convergence testing is used to stop the Genetic Algorithm when the fitness scores in 

the population cease to improve. The statistics measured are: 
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1. Min_array: An array of the best fitness value for each generation. 

2. Min_Fitness_Mag: The magnitude of the fitness value for the fittest 
chromosome in the population. 

3. SameMin: The number of times (generations) the fittest chromosome has 
not changed. 

4. SmallerMin: A Boolean used as flag to denote if the current population 
has a smaller best fitness value then the previous generation. 

5. SmallerMean: A Boolean used as flag to denote if the current population 
has a better mean fitness value then the previous generation. 

Argo can be configured to allow only a set number of generations to evolve 

without an improvement to the optimum chromosome. This is controlled via the 

parameter SAME_MIN.  

Argo also tests for improvement in both the minimum and mean fitness values. 

The minimum value is used to track the fittest chromosome, whereas the mean is used 

to track the overall fitness of the population. 

To simply testing, Argo places the fittest chromosome at the first position in the 

population. 

The convergence algorithm used in Argo is outlined in Figure 5-8. 

%   test each generation test for improving fitness    
%   calculate the population’s fitness statistics 
 
%   test if Min_Fitness_Mag equal to the minimum of Min_array 
%      if yes then increment SameMin 
%      else if no then reset SameMin 
% 
%   test if Min_Fitness_Mag is less than minimum of Min_array 
%      if yes then then SmallerMin => TRUE 
%      else if no then SmallerMin => FALSE 
% 
%   test if Mean_Fitness is less than mean of Min_array 
%      if yes then SmallerMean => TRUE 
%      else if no SmallerMean => FALSE 
% 
%   test each generation for improving fitness by 
%   test if SmallerMin is TRUE  
%      OR SmallerMean is TRUE  
%      OR SameMin less than SAME_MIN 
%         if yes continue and evolve next generation 
%            (improvement in fitness) 
%         if no then stop 
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%            (no improvement in fitness) 

Figure 5-8 Convergence Testing 

5.11 Argo Input And Control GUI 

A basic Graphical User Interface (GUI) for input of the Genetic Algorithm’s 

parameters and control the simulation process was developed in order to facilitate ease 

of operation of testing. A screen shot of the basic GUI is shown at Figure 5-9. The 

MATLAB® source code provided online by Land (2007) was used as a template for the 

GUI framework and was subsequently extensively modified and altered to meet the 

GUI requirements for Argo.  

 

Figure 5-9 Argo Input and Control GUI 

5.12 Summary 

In summary, this chapter has described the structure and operation of the Genetic 

Algorithm program itself – Argo. The chapter also provided a brief overview of the 
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algorithms for the key functions that performed initialisation, cost evaluation, selection, 

mating, mutation and convergence.  
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Chapter 6  

Testing & Analysis Of Results 

6.1 Introduction 

This chapter presents the testing and analysis of test results conducted on Argo to 

perform verification against the project specification. The chapter is split into two 

sections to individually address the basic and advanced project specifications. For ease 

of readability, the results pertaining to the performance controlling the first order test 

control system with delayed inputs has been captured alongside the advanced project 

specifications in section 6.3.  

For ease of understanding, the test plan is illustrated in Table 6-1. 

Table 6-1 Test Plan 

Performance 

Testing 

Project 

Specification 

Under Test 

Test 

Phase

Description Of Test Performance 

Baseline 

(Test Control 

System) 

nd A Setting GA Parameters 2 Order 

System  

B Converging To Optimal 

PID Parameters 

1st & 2nd Order 

Systems 

Basic 

Argo 

Operation 

Base 

Specifications

(refer 

Appendix A 

Project 

Specification, 

Para 2) 
C Number Of Generations 

Required For Convergence 

1st & 2nd Order 

Systems 
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D Speed Of Convergence 2nd Order 

System 

E Performance Using 

Roulette Wheel Selection 

2nd Order 

System 

F Simulated Control Of 

Rotary-Wing Model 

Rotary-Wing 

System 

Advanced 

Argo 

Operation 

Advanced 

Specifications

(refer 

Appendix A 

Project 

Specification, 

Para 5 and 6) 
1stG Performance Controlling 

1

 Order 

System 

With Delayed 

Input 

st Order System With A 

Delayed Input 

6.2 Basic Argo Operation 

Performance testing of basic Argo functionality was achieved by comparison 

against a known performance baseline. Test control systems were used as this baseline 

(refer Section 1.5.3 and Section 5.6). Testing used both a first order and a second order 

test control system in order to achieve results from a broader application. 

6.2.1 First Order Test Control System 

In essence, the first order test control system baseline was the optimal cost value 

of: 

101.7664cos min =t  

Resulting from the optimal PID parameter values of: 

6342.0
7337.1

2360.1

3

1

0

=
−=

=

q
q
q

 

6.2.2 Second Order Test Control System 

Likewise, the second order test control system baseline was the optimal cost value 

of: 
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98.8382cos min =t  

Resulting from the optimal PID parameter values of: 

0663.464
8283.1127

1620.878

3

1

0

=
=
=

q
q
q

  

6.2.3 Conduct of Base Performance Testing 

To analyse the base performance of the Genetic Algorithm the testing was 

conducted in four phases. The phases were: 

a) Phase A – Testing Genetic Algorithm parameters to aid optimising 

performance (testing against second order test control system only). 

b) Phase B – Testing Genetic Algorithm outputs for convergence to optimum 

PID parameter values (testing against both first and second order test control 

systems). 

c) Phase C – Testing to identify the number of generations required by the 

Genetic Algorithm to achieve optimum results (testing against both first and 

second order test control systems). 

d) Phase D – Testing to determine how quickly the Genetic Algorithm 

converges to optimum results to identify suitability for practical applications 

(testing against second order test control system only). 

6.2.3.1 Base Performance Testing – Phase A 

Phase A testing aims to determine which parameters are significant in optimising 

the performance of the Genetic Algorithm. Further, Phase A testing will also attempt to 

identify a set of parameter values which can be used with some confidence to achieve 

good performance.  

Only the second order test control system was used as a baseline for ‘Base 

Performance Testing – Phase A’ in order to simplify test procedures. The second order 

system was used as it represents a more complex control system. 
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The parameters analysed included: 

a) TEST A1 NUMBER_OF_CROSSOVER_POINTS: Number of crossover points, 

b) TEST A2 DISTRIBUTION: Distribution type, 

c) TEST A3 NKEEP: % of population kept each generation, 

d) TEST A4 CROSSOVER_RATE: Crossover Rate, and 

e) TEST A5 MUTATION_RATE: Mutation Rate. 

6.2.3.1.1 Base Performance Testing – Test A1 

The Genetic Algorithm performed reasonably well after only 100 generations. 

Figure 6-1 shows that there is no significant advantage to optimizing the test control 

system by varying either one or two crossover points. 

 

Figure 6-1 Semi-Log Cost Plot Varying Crossover Points 
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Table 6-2 Legend for Figure 6-1

Parameter Simulation A Simulation B 

Plot line  Blue Stars Green Circles 

Simulation Runs 10 10 

Generations 100 100 

Crossover Points 2 1 

Distribution Normal Normal 

Mutation Rate 0.001 0.001 

%Keep 70% 70% 

Crossover Rate 0.5 0.5 

Same Minimum 20 20 

 
 

6.2.3.1.2 Base Performance Testing – Test A2 
The Genetic Algorithm performed reasonably well after only 100 generations. 

Figure 6-2 shows that there is no significant advantage to optimizing the test control 

system by varying the distribution method using either a normal or uniform random 

distribution. 
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Figure 6-2 Semi-Log Cost Plot Varying Distribution 

Table 6-3 Legend for Figure 6-2

Parameter Simulation A Simulation B 

Plot line  Blue Stars Green Circles 

Simulation Runs 10 10 

Generations 100 100 

Crossover Points 1 1 

Distribution Normal Uniform 

Mutation Rate 0.001 0.001 

%Keep 70% 70% 

Crossover Rate 0.5 0.5 

Same Minimum 20 20 
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6.2.3.1.3 Base Performance Testing – Test A3 
The Genetic Algorithm performed reasonably well after only 100 generations. 

Figure 6-3 shows that varying  varies the result significantly. Clearly a 90% NKEEP

NKEEP does not provide enough diversification in the population in order to allow 

successful evolution. Evolution still occurs but at a retarded rate as most of the 

population remains unchanged. 

 

Figure 6-3 Semi-Log Cost Plot Varying NKeep 

Table 6-4 Legend for Figure 6-3

Parameter Simulation A Simulation B 

Plot line  Blue Stars Green Circles 

Simulation Runs 10 10 

Generations 100 100 

Crossover Points 1 1 

Distribution Uniform Uniform 
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Mutation Rate 0.001 0.001 

%Keep 70% 90% 

Crossover Rate 0.5 0.5 

Same Minimum 20 20 

 

6.2.3.1.4 Base Performance Testing – Test A4 

The Genetic Algorithm performed reasonably well after only 1000 generations 

with a least cost value of 164, as compared to the optimum value of 98.8382. Figure 

6-4 shows that there is no significant advantage to optimizing the test control system by 

varying Crossover Rate. 
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Figure 6-4 Semi-Log Cost Plot Varying Crossover Rate 

Table 6-5 Legend for Figure 6-4

Parameter Simulation A Simulation B 

Plot line  Blue Stars Green Circles 
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Simulation Runs 10 10 

Generations 100 100 

Crossover Points 1 1 

Distribution Uniform Uniform 

Mutation Rate 0.001 0.001 

%Keep 70% 70% 

Crossover Rate 0.75 0.5 

Same Minimum 20 20 

 

6.2.3.1.5 Base Performance Testing – Test A5 
The Genetic Algorithm performed reasonably well after only 1,000 generations. 

Figure 6-5 shows that varying the Mutation Rate varies the result significantly. Clearly 

a 10% Mutation Rate provided more diversification in the population which for this test 

control system allowed it to evolve more quickly than at a 0.1% rate. Evolution still 

occurs using the lower Mutation Rate but at a retarded rate because most of the 

population remains unchanged. This result is somewhat surprising as many background 

literature sources recommend a 0.1% Mutation Rate. 
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Figure 6-5 Semi-Log Cost Plot Varying Mutation Rate 

Table 6-6 Legend for Figure 6-5

Parameter Simulation A Simulation B 

Plot line  Blue Stars Green Circles 

Simulation Runs 10 10 

Generations 1000 1000 

Crossover Points 1 1 

Distribution Uniform Uniform 

Mutation Rate 0.001 0.1 

%Keep 70% 70% 

Crossover Rate 0.5 0.5 

Same Minimum 20 20 
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6.2.3.2 Base Performance Testing – Phase B 

Phase B testing aims to identify how well the Genetic Algorithm actually 

converges to the optimal result. To test this, Argo was simulated controlling both the 

first and second order systems. Because of the different rates of convergence, Phase B 

testing was run over 100,000 generations for three sample simulation runs using the first 

order test control system, then it was run over 10,000 generations for ten sample 

simulation runs using the second order test control system. The simulation results 

associated with the first order test control system are plotted in Figure 6-6 and listed in 

Table 6-7. The simulation results associated with the second order test control system 

are plotted in Figure 6-7 and listed in Table 6-8. 
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Figure 6-6 Semi-Log Cost Plot After 100,000 Generations 

Table 6-7 Results for Phase C Base Performance Testing (First Order Test System) 

 First Order Control System 

Simulation Minimum Cost Value 

1 106.2222 
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2 793.4189 

3 133.9407 

Average 106.2222 

Best 344.5273 
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Figure 6-7 Semi-Log Cost Plot After 10000 Generations 

Table 6-8 Results for Phase C Base Performance Testing (Second Order Test System) 

 Second Order Control System 

Simulation Minimum Cost Value 

1 150.1698 

2 119.0186 

3 113.4128 
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4 103.3038 

5 686.0307 

6 129.6848 

7 100.4632 

8 101.5698 

9 1184.4477 

10 151.0626 

Average 283.9164 

Best 100.4632 

 

Although Argo failed to ever actually evolve the optimum set of PID parameters, 

on average, Argo did produce some reasonable solutions. It should be noted that these 

solutions may be suitable depending upon the actual performance requirements of the 

PID in terms of its practical application. Of the three samples for the first order test 

control system the best result was 106.2222. This is compared to the optimum result of 

. Of the ten samples for the second order test control system the best result 

was 100.4632. This is compared to the optimum result of 99.4803. 

101.7664

6.2.3.3 Base Performance Testing – Phase C 

Phase C testing aims to identify the number of generations required by Argo to 

achieve optimal results. The data collected in Phase B was deemed sufficient for 

analysis under Phase C. The data associated with the first order test control system is 

graphically represented in Figure 6-6 and listed in Table 6-7. The data associated with 

the second order test control system is graphically represented in Figure 6-7 and listed 

in Table 6-8. These plots showed that for the majority of samples Argo achieved its best 

results for the first order control system after approximately 25,000 generations, and 

approximately 5,000 generations for the second order test control system. 

Improvements to the population were minimal from these respective points onwards. 
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Statistically, improvement to Argo’s results would continue if allowed to create further 

generations. 

6.2.3.4 Base Performance Testing – Phase D 

Phase D testing aimed to identify how quickly the Genetic Algorithm converges 

to its optimum results to identify suitability for practical applications. To test this, 

Argo’s execution time was recorded over 10,000 generations and averaged to estimate a 

single generation’s execution time. The results against the second order test control 

system are shown in Table 6-9. The experimental results were captured using an IntelR 

PentiumRM 1.86GHz processor on a Dell D610 laptop.  

Table 6-9 Argo Execution Times 

Generations Execution Calculation Remarks 

Time Method 
(seconds) 

10,000 1,740 Experimental Large sample base 

1 0.1740 Interpolation Base computational cost 

5,000 870 Extrapolation Hypothesised execution time for 

achieving optimum results2

 

Thus, it can be hypothesised that for a reasonably optimum result at least 5,000 

generations is required which would require a processing time of approximately 870 

seconds (~13 minutes). Obviously this processing time would be vastly different for an 

embedded system. 

6.3 Advanced Argo Operation 

6.3.1 Conduct of Advanced Performance Testing 

To analyse the advanced performance of the Genetic Algorithm the testing was 

conducted in three phases. The phases were: 

                                                 
2  The number of generations required to achieve optimum results is based on the testing results 

described at Section 6.2.3.3. 
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a) Phase E – Comparing the Genetic Algorithm’s performance using Roulette 

Wheel and Tournament selection methods (testing against the second order 

test control system only). 

b) Phase F – Testing the rotary-wing control system using the Genetic 

Algorithm as the Optimiser of PID Controller Parameters using MATLAB®. 

c) Phase G – Testing the Genetic Algorithm’s performance controlling the 

first order test control system with a delayed input. 

6.3.1.1 Advanced Performance Testing – Phase E 

Phase E testing aimed to analyse the performance of the Genetic Algorithm using 

alternative selection methods. Specifically, Phase E testing aims to compare the 

performance of the Genetic Algorithm using both Tournament Selection and Roulette 

Wheel Selection. To test this, Argo’s performance was compared using both selection 

methods over 10 simulation runs of 1,000 generations. Results against the second order 

test control system are shown in Figure 6-8. The comparison clearly shows that 

Tournament Selection out-performs Roulette Selection when controlling the second 

order test control system. Further, noting that the optimal cost value for the second 

order system is , the Tournament Selection method achieved a best cost value 

of , compared with Roulette Selection method which achieved a best cost value in 

excess of  both after 1,000 generations. 

98.8382

5.128
1110
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Figure 6-8 Semi-log Cost Plot Varying Selection Method 

Table 6-10 Legend for Figure 6-8

Parameter Simulation A Simulation B 

Plot line  Blue Stars Green Plus Signs 

Simulation Runs 10 10 

Generations 1000 1000 

Selection Method Roulette Wheel Selection Tournament Selection 

Crossover Points 1 1 

Distribution Uniform Uniform 

Mutation Rate 0.1 0.1 

%Keep 70% 70% 

Crossover Rate 0.5 0.5 
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Same Minimum 20 20 

 

6.3.1.2 Advanced Performance Testing – Phase F 

Phase F testing was not conducted as the rotary-wing model was not integrated 

and simulated. This outcome was the result of two main factors: firstly, the processing 

time was considered impractically long; and secondly, the rotary-wing model was not 

available in MATLAB® ®, but only in SIMULINK  (conversion between the two formats 

was beyond the developer’s ability at this point in the project). 

6.3.1.3 Advanced Performance Testing – Phase G 

Phase G testing aims to analyse the performance of the Genetic Algorithm 

controlling the first order test control system with delayed inputs. Specifically, Phase E 

testing aims to compare the performance of the Genetic Algorithm using five mean 

delayed input values of 1,3, 6, 10 and 30 samples (noting 6 represents the optimal 

delay) each with a standard deviation of 1. To test this, Argo’s performance was 

compared over 3 simulation runs of 1,000 generations for each mean delayed input 

value.  

However, before attempting to analyse the results from the simulation runs it is of 

value to examine how the system would be expected to behave in general. To provide 

this understanding two graphs (refer Figure 6-9 and Figure 6-10) have been provided to 

show the Output and Error response to the first order system using a short, optimum and 

long delay to the input. The short delay was based on 2 samples, optimum delay based 

on 6 samples and the long delay based on 10 samples. 
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Figure 6-9 Error Response From First Order System With Varying Time Delayed Inputs 
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Figure 6-10 Output Response From First Order System With Varying Time Delayed Inputs 

As can be seen from these graphs, the short delay produces an overdamped 

response in both cases. Likewise, the long delay produces an underdamped response. 

Both the short and optimum delays achieve steady state about the same time, whereas 

the long delay takes many more samples to achieve a stead state response. 
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It is important to then match this behaviour with the use of the ITAE Performance 

Criterion. That is, the ITAE function basically sums the area under the error curve 

(proportional to time) in order to provide a value representing the error. Hence, the long 

delay would be expected to display the worst ITAE values as the area under the curve 

for an underdamped response is the greatest. 

Now that the system’s expected behaviour has been considered, the actual test 

results may be analysed. The test results comparing the performance of each of the five 

delayed input scenarios using the first order test control system are shown in Figure 

6-11. Unfortunately, the comparison graph shows the opposite of the expected response 

whereby the short delays return the greatest error and the longest delays return the least 

error. This is likely to be an artificial response due to the implementation of the 

costfirstrandomdelay function; most likely specific way in which the steepest 

descent minimisation routine handles the delayed samples in terms of the overall sample 

array. Regardless, the important behaviour to identify is that systems with delayed 

inputs will vary the error significantly (and hence cost) associated with the control 

system. 
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Figure 6-11 Semi-Log Cost Plot Varying Delayed Input Mean 

Table 6-11 Legend for Figure 6-11

Parameter Delayed Delayed Delayed Delayed Delayed 

Input A Input B Input C Input D Input E 

Blue Solid 

Line 

Magenta 

Dotted Line 

Cyan Dash-

Dotted Line 

Green 

Dashed 

Line 

Plot line  Red 

Triangle 

Point Line 

Simulation 

Runs 

3 3 3 3 3 

Generations 1000 1000 1000 1000 1000 
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Delayed 

Input –

Mean 

1 3 6 10 30 

1 1 1 1 1 Delayed 

Input – 

Standard 

Deviation 

Selection 

Method 

Tournament 

Selection 

Tournament 

Selection 

Tournament 

Selection 

Tournament 

Selection 

Tournament 

Selection 

Crossover 

Points 

1 1 1 1 1 

Distribution Uniform Uniform Uniform Uniform Uniform 

Mutation 

Rate 

0.1 0.1 0.1 0.1 0.1 

%Keep 70% 70% 70% 70% 70% 

Crossover 

Rate 

0.5 0.5 0.5 0.5 0.5 

Same 

Minimum 

20 20 20 20 20 

 

6.3.2 Other Test Observations 

At the conclusion of the test program itself, two other general observations 

regarding the results have been made. The first regarding the operation of different plant 

systems, and secondly the operation of the ITAE Performance Criterion within the cost 

function.  

As would be expected, different plant systems return significantly different cost 

plots. The second order control system was able to converge to a reasonably accurate 
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result within 5,000 – 10,000 generations; whereas the first order control system required 

in the order of 100,000 generations to reach similar levels. 

Secondly, the ITAE Performance Criterion used as the method for calculating the 

cost value also has an impact on the cost plot. That is, the ITAE value is basically a 

numerical representation of the area under the error curve (proportional to time). By its 

very nature, the error is also weighted proportional to the number of integrations used 

(that is, if a large number of iterations are used, the error at the beginning is weighted 

less than the error at the end). Thus, poor candidate solutions may have very high cost 

values; whereas good candidate solutions tend not to vary significantly. This problem is 

further exacerbated for the first order control system with delayed inputs. The result of a 

short input delay is an extremely large cost value (values in the order of  were 

achieved for inputs delayed 5 samples from the optimum delay). This result suggests 

that although the ITAE Criterion may return large cost values for poor candidate 

solutions, its use may be quite appropriate for dealing with delayed inputs as it places 

more weight upon the steady state error (that is, the error associated with the latter 

iterations). 

14010

6.4 Summary 

In summary, this chapter has presented and analysed the test results of the Genetic 

Algorithm program itself – Argo. To do this the chapter presented the results against 

both the basic and advance specifications of the project. 

6.4.1 Base Performance Testing Results 

In brief, Argo performed reasonably well against the basic specifications, noting 

that it took significant processing time to achieve a satisfactory outcome. Typically 

Argo took in excess of 25 minutes to process 10,000 generations to achieve a result only 

one order of magnitude greater than the optimum value. Reasons for this significant 

processing cost are discussed further in the final chapter.  

In terms of the parameter settings themselves, the test results show that in general 

the Genetic Algorithm itself is not sensitive to minor changes in parameter values.  
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6.4.2 Advanced Performance Testing Results 

The test results also suggested that Tournament Selection was the superior 

selection method (over Roulette Wheel) for use with both test control systems. 

Unfortunately, testing against the final advanced specification was not undertaken 

as a MATLAB® rotary-wing control model was not able to be sourced (only a 

SIMULINK® model was available). 
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Chapter 7  

Conclusions 

7.1 Dissertation Summary 

In summary, the aim of this project was to design and code – using MATLAB® – 

an optimised PID controller using a Genetic Algorithm to perform the optimisation 

routine. The aim was then further broken down to establish four primary and two 

secondary objectives for the project: 

Primary Objectives (Base Functionality) 

Step 1. Research the background information relating to Genetic Algorithms. 

Step 2. Design a Genetic Algorithm for implementation using a 3rd 

generation program language, specifically MATLAB®, within set 

specifications (refer Appendix A Project Specification). 

Step 3. Code the designed Genetic Algorithm using MATLAB®. 

Step 4. Test the Genetic Algorithm against specifications. 

Secondary Objectives (Advanced Functionality) 

Step 5. Increase the functionality of the Genetic Algorithm through the 

addition of a user option to configure for Roulette Wheel based 

selection. 

Page 71 Matthew Mackenzie Q9323707 



PID Controller Optimisation Using Genetic Algorithms 

Step 6. Model the Genetic Algorithm for use controlling a rotary-wing control 

system using MATLAB® (MATLAB® rotary-wing model to be 

provided by the Project Supervisor). 

In summarising the projects performance, this chapter is structured into three main 

sections: Basic Argo Operation; Advanced Argo Operation; and Further Work. In doing 

so, the paper critiques the project’s successes as well as shortcomings. 

7.2 Basic Argo Operation 

7.2.1 Accuracy 

The results achieved by using Argo to control the test control systems indicate 

that convergence to the known optimal solutions was reasonably successful. However, 

under no test conditions did Argo actually converge to the optimal solution. Further, the 

absolute error from the known optimal solution varied greatly with each run. Whilst the 

results overall were not as positive as first hoped, the results must be viewed in 

perspective of total operation. That is, Argo has an extremely large solution space 

whereby each chromosome could be assigned any value in the gene’s range (refer  

EQN 7–1): 

823,741,073,1823,741,073,1230 +<<−⇒ nq  

 EQN 7–1 

When the range of each gene and then chromosome is considered along with the 

population size of 50, it is perhaps not surprising that convergence to the known 

optimum results were not achieved within 10,000 generations. 

As the test results indicated, different plant systems also resulted in vastly 

different cost plots. The second order control system was able to converge to a 

reasonably accurate result within 5,000 – 10,000 generations; whereas the first order 

control system required in the order of 100,000 generations to reach similar levels. 

7.2.2 Processing Time 

The results presented in Chapter 6 were achieved with significantly high 

processing times. This penalty is undoubtedly due to the high computational cost of the 

Genetic Algorithm itself. Typically, 1 simulation of 10,000 generations within a 

population size of 50 took approximately 26 minutes to process (refer Table 6-10). 
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Although this significantly high processing time could be directly caused because of the 

specific nature and design of Argo itself, the result does suggest that Genetic 

Algorithms are not suitable to all practical applications. That is, it would still appear to 

be more practical to use classical analytical optimisation techniques for problems that 

can be easily solved as such; whereas Genetic Algorithm optimisation, regardless of 

time penalty, may be more suitable for complex problems not able to be solved using 

classical methods. Interestingly though, the long processing times associated with 

Genetic Algorithms are mimicked within Nature – philosophically Genetic Algorithms 

simulate the process of evolution, not revolution! 

It is also noted that the application of standard coding optimisation techniques 

(such as the use of registers vice variables) may result in improved processing times for 

Argo. Undoubtedly, the use of MATLAB®’s inherent vectorisation ability could also be 

used more effectively within Argo – especially considering the number of iterative 

programming loops used and the number of array operations. It is also possible that the 

use of an alternate programming language could see improvements in processing time. 

Additionally, the modification of the Genetic Algorithm to employ a RGO approach 

(refer Section 1.4.1) may also improve processing time by reducing the solution space. 

Finally, the deployment of the Genetic Algorithm to an embedded system will also 

likely improve the computational efficiency significantly. 

7.2.3 Basic Parameters 

The results as presented in Chapter 6 suggest that the Genetic Algorithm is not 

very sensitive to minor changes in the basic parameters such as 
NUMBER_OF_CROSSOVER_POINTS, DISTRIBUTION, NKEEP, CROSSOVER_RATE 

or MUTATION_RATE. This indicates that no single parameter has optimum or ideal 

values for operation as part of a Genetic Algorithm. There would however appear to be 

a range outside of which that each parameter would cause undesirable disruption within 

the Genetic Algorithm’s operation. If the Genetic Algorithm is too disruptive it may 

converge at a slower rate. For example, clearly a mutation rate around 1% is ideal: less 

than 1% results in retarded convergence rates; likewise greater than 1% cases too much 

disruption and again results in retarded convergence rates. 
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7.3 Advanced Argo Operation 

7.3.1 Roulette Wheel Selection 

The test results using the second order test control system clearly indicated that 

the Tournament Selection method produced superior results to the Roulette Wheel 

Selection method. This result was surprising as Roulette Wheel based selection would 

appear to be the most commonly used method across the background literature 

reviewed. Conceptually though, Tournament Selection does more closely mimic nature 

in operation. Also, Tournament Selection does not require ranked sorting of each 

generation’s population, thus avoiding a significant computational time penalty. Hence 

this paper makes the recommendation to use a Tournament Selection method for 

practical Genetic Algorithm applications. 

7.3.2 Rotary-Wing Control Model Simulation 

Unfortunately Argo was not able to be simulated controlling the rotary-wing 

control model. This outcome was the result of two main factors: firstly, the processing 

time was considered impractically long; and secondly, the rotary-wing control model 

was not available in MATLAB®, but only in SIMULINK® (conversion between the two 

formats was beyond the developer’s ability at this point in the project). Whilst the long 

processing times make adaptive tuning impractical, theoretically it is still possible 

(dependent upon possession of a MATLAB® based model) to integrate and simulate the 

rotary-wing control model in a fixed tuning configuration (refer Section 3.3). 

Interestingly, the need to employ adaptive tuning would depend upon the practical 

application. It is likely that for most practical applications a well optimised fixed-tuned 

configuration digital control system would suffice – the very nature of the feedback 

design and PID controller should force an acceptable output signal in most situations 

barring a rapidly changing operating environment. 

7.4 Further Work 

Following completion of the project and presentation of results, this paper makes 

five suggestions for areas that could be undertaken as further work to the project. 

Firstly, the opportunity clearly exists for the optimisation of the current MATLAB® 

code. As suggested in Section 7.2.2 this could be further extended to alternate 

Page 74 Matthew Mackenzie Q9323707 



PID Controller Optimisation Using Genetic Algorithms 

programming languages and development of an embedded GA optimisation system. 

Secondly, the opportunity still remains for the integration and simulation of rotary-wing 

model in SIMULINK®. Thirdly, in terms of simplification of operation, an improved 

GUI could prove a simple and effective extension to the application (refer Section for 

current interface design). The fourth opportunity would be to attempt to modify the 

Genetic Algorithm to employ a RGO approach in an attempt to improve processing 

time. Finally, from a purely research perspective in the field of Genetic Algorithms, the 

challenge of developing a set of Rules of Thumb for the configuring of Genetic 

Algorithm parameters could be undertaken. This would greatly assist developers of 

practical Genetic Algorithm applications. 

Finally, whilst this project has successfully designed and implemented a Genetic 

Algorithm to optimise a PID Controller, it can be seen that there remains many 

improvements and challenges before the technology could be practically deployed to 

industry. However, as the field itself matures, it is expected that this concept could yet 

see real success. 
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Appendix A 

Project Specification 

A signed copy of the Project Specification is provided on the following page. 
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Appendix B 

MATLAB® Source Code – Argo 

The MATLAB code for the following functions is found in the corresponding 

Annexes: 

a) Annex A to 

Appendix B  

Argo – Main Routine 

Annex B to 

Appendix B  

Argo – Genetic Algorithm

b) 

 

Annex C to 

Appendix B  

Argo – InitialisePopulation

c) 

 

d) Annex D to 

Appendix B  

Argo – TournamentSelection 

e) Annex E to 

Appendix B  

Argo – ParseBits 

Annex F to 

Appendix B  

Argo – RouletteWheel

f) 
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g) Annex G to 

Appendix B  

Argo – Mutate 

Annex H to 

Appendix B  

Argo – Crossover

h) 

 

Annex I to 

Appendix B  

Argo – CalcFitness

i) 

 

Annex J to 

Appendix B  

Argo – CostFirst

j) 

 

Annex K to 

Appendix B  

Argo – CostFirstRandomDelay

k) 

 

Annex L to 

Appendix B  

Argo – CostSecond

l) 

 

m) Annex M to 

Appendix B  

Argo – ARGOGUI 
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Annex A to 
Appendix B  

Argo – Main Routine 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   ARGOR.m interfaces with the Genetic Algorithm in order to 
%   optimise the parameters q0,q1 and q2 for a PID controller. 
% 
%   INPUT   user can set parameters for: 
%           displaying comments 
%           selection method, either 'Tournament' or  
%               'Roulette Wheel' 
%           simulation runs 
%           number of crossover points, either 1 or 2  
%           distribution type, either 'uniform' or 'normal' 
%           mutation rate 
%           mutations per chromosome 
%           maximum generations allowed 
%           percentage of population to keep each generation 
%           crossover rate 
%           average of random delay input 
%           standard deviation of random delay input 
%           maximum same minimum cost value allowed in  
%               consecutive generations 
% 
%   OUTPUT  semi log plot of the minimum costs within each  
%           generation 
% 
%   Updated 18 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
% SET CONSTANTS 
TRUE=1; 
FALSE=0; 
  
% SET INFO 
INFO=TRUE; %TRUE = comments ON, FALSE = comments OFF 
  
% DISPLAY INFORMATION 
if (INFO == TRUE) 
    fprintf('\n\n\n\n=============ARGO===========\n'); 
    fprintf('Welcome to ARGO, a Genetic Algorithm for finding the 
\n'); 
    fprintf('optimum values for parameters q0, q1 and q2 for a 
PID\n'); 
    fprintf('controller.\n\n'); 
%    fprintf('STATUS ... UNDER TEST\n\n'); 
    fprintf('STATUS ... PROTOTYPE\n\n'); 
%    fprintf('STATUS ... OPERATIONAL\n\n'); 
    fprintf('Written by Matthew Mackenzie\n\n'); 
else 
    fprintf('ARGOS\n'); 
end 
  
% SET PARAMETERS 
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SELECTION='Tournament'; 
SIMULATION_RUNS=1; 
NUMBER_OF_CROSSOVER_POINTS=1;  
DISTRIBUTION='uniform';  
MUTATION_RATE=0.1; 
MUTATIONS_PER_CHROMOSOME=1;  
MAX_GENERATIONS=500;  
NKEEP=.7;  
CROSSOVER_RATE=.5; 
AVERAGE=3; 
STDDEV=1; 
SAME_MIN=20;  
                    % var for convergence testing - #times can 
continue 
                    % with same min 
COMMENTS=FALSE; %TRUE = comments ON, FALSE = comments OFF 
if (INFO == TRUE) 
    fprintf('SELECTION = %s\n',SELECTION);  
    fprintf('SIMULATION_RUNS = %d\n',SIMULATION_RUNS);  
    fprintf('NUMBER_OF_CROSSOVER_POINTS = 
%d\n',NUMBER_OF_CROSSOVER_POINTS); 
    fprintf('DISTRIBUTION = %s\n',DISTRIBUTION); 
    fprintf('MUTATION_RATE = %f\n',MUTATION_RATE); 
    fprintf('MUTATIONS_PER_CHROMOSOME = 
%d\n',MUTATIONS_PER_CHROMOSOME); 
    fprintf('MAX_GENERATIONS = %d\n',MAX_GENERATIONS); 
    fprintf('NKEEP = %f\n',NKEEP); 
    fprintf('CROSSOVER_RATE = %f\n',CROSSOVER_RATE); 
    fprintf('SAME_MIN = %d\n',SAME_MIN); 
    fprintf('Parameters set ...\n\n'); 
end 
  
% INITIALISE VARIABLES 
MATRIX=zeros(SIMULATION_RUNS,MAX_GENERATIONS-1); 
  
for z = 1:SIMULATION_RUNS, 
     
    fprintf('Current simulation run is = %d\n',z); 
    % each simulation run must have the same random delay for the 
control 
    % system in order to compare results against a common baseline 
    Random_Delay=round(AVERAGE+STDDEV.*randn); 
    % CALL GENETIC ALGORITHM FUNCTION 
    
[New_Best_Mag,gene1dec,gene2dec,gene3dec]=GeneticAlgorithmRandomDelays
(SELECTION,NUMBER_OF_CROSSOVER_POINTS,DISTRIBUTION,MUTATION_RATE,MUTAT
IONS_PER_CHROMOSOME,MAX_GENERATIONS,NKEEP,CROSSOVER_RATE,SAME_MIN,COMM
ENTS,Random_Delay); 
                                     
    % OUTPUT SUMMARY 
    fprintf('\n========OUTPUT SUMMARY======\n'); 
    fprintf('q0 %g\n q1 %g\n q2 %g \n\n',gene1dec,gene2dec,gene3dec); 
    figure(1); 
    semilogy(New_Best_Mag,'b*-'); 
    fprintf('\n========END OF SUMMARY=======\n\n\n\n\n'); 
    title('\bfPlot Of Cost (Fitness) Each Generation'); 
    grid on; 
    hold on; 
    xlabel('\bfGenerations'); 
    ylabel('\bfCost'); 
     
    %   matrix of minimum costs each generation and each simulation 
    %   run kept for data collection purposes 
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    MATRIX(z,:)=New_Best_Mag; 
  
end 
  
% MATRIX 
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Annex B to 
Appendix B  

Argo – Genetic Algorithm Random Delay 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   GeneticAlgorithmRandomDelays.m performs Genetic Algorithm 
%   selection to optimise the parameters q0,q1 and q2 for a  
%   PID controller. 
% 
%   The C++® source code provided online by: 
%    
%     Buckland, M (2005b) Basic Genetic Algorithm – ga_tutorial.cpp,  
%     <http://www.ai-junkie.com/ga/intro/gat3.html> 
%    
%   was used to provide a conceptual template for how the main  
%   routine could be structured within any practical Genetic  
%   Algorithm. This conceptual framework was used as a starting  
%   point and subsequently extensively modified and built upon to  
%   meet the specific requirements of Argo itself. 
%    
%   INPUT   SELECTION:  selection method, either 'Tournament' 
%                       or 'Roulette Wheel' 
%           NUMBER_OF_CROSSOVER_POINTS: the number of crossover 
%                       points to be used during mating 
%           DISTRIBUTION: the random distribution function, either 
%                       'normal' or 'uniform' 
%           MUTATION_RATE: the rate of mutation for allele 
%           MUTATIONS_PER_CHROMOSOME: the maximum number of  
%                       mutations allowed on a single chromosome 
%                       following mating 
%           MAX_GENERATIONS: the maximum generations allowed 
%                       before termination of the program 
%                       should convergence not occur 
%           NKEEP:      the percentage of the population kept 
%                       each generation 
%           CROSSOVER_RATE: the liklihood of crossing over 
%                       genetic codes between mating parents 
%           SAME_MIN:   the maximum number of times no improvement 
%                       between generations can occur before the  
%                       genetic algorithm will terminate 
%           COMMENTS:   boolean to denote if comments are on or off 
%           random_delay: the random delay to input 
% 
%   Updated 18 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function 
[New_Best_Mag,gene1dec,gene2dec,gene3dec]=GeneticAlgorithmRandomDelays
(SELECTION,NUMBER_OF_CROSSOVER_POINTS,DISTRIBUTION,MUTATION_RATE,MUTAT
IONS_PER_CHROMOSOME,MAX_GENERATIONS,NKEEP,CROSSOVER_RATE,SAME_MIN,COMM
ENTS,random_delay) 
  
% Set Constants 
GENE_LENGTH=30;  
CHROMO_LENGTH=93;  
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POP_SIZE=50;  
FALSE=0;  
TRUE=1;  
if (COMMENTS == TRUE) 
    fprintf('GENE_LENGTH = %d\n',GENE_LENGTH); 
    fprintf('CHROMO_LENGTH = %d\n',CHROMO_LENGTH); 
    fprintf('POP_SIZE = %d\n',POP_SIZE); 
    fprintf('FALSE = %d\n',FALSE); 
    fprintf('TRUE = %d\n',TRUE); 
    fprintf('Constants set ...\n\n'); 
end 
  
% Initialise Variables 
Generations=2; % index into which generation current operation is on, 
                    % the first generation is the initialised 
generation 
Min_array=zeros(1,MAX_GENERATIONS); % global statistic for convergence 
testing 
Mean_array=zeros(1,MAX_GENERATIONS); % global statistic for 
convergence testing 
Stop=FALSE; % set main loop to start for begining of first run 
SmallerMin=TRUE; 
SmallerMean=TRUE; 
SameMin=0; 
SameMean=0; 
New_Best_Mag=0; 
New_Best_Index=0; 
New_Best_Chromo=0; 
Old_Best_Mag=0; 
Old_Best_Index=0; 
Old_Best_Chromo=0; 
Fitness_Matrix=zeros(POP_SIZE); 
if (COMMENTS == TRUE) 
    fprintf('Variables initialised ...\n\n'); 
end 
  
% INITIALISE POPULATION 
[population]=InitialisePopulation(POP_SIZE,GENE_LENGTH); 
if (COMMENTS == TRUE) 
    fprintf('Population initialised ...\n\n'); 
    fprintf('Commencing main routine, please wait ...\n\n'); 
end 
  
% CALCULATE FIRST FITNESS VALUES 
[Fitness_Array]=CalcFitnessRandomDelay(population,GENE_LENGTH,random_d
elay); 
[Min_Fitness_Mag,Min_Fitness_Index,Mean_Fitness]=FitnessStats(Fitness_
Array); 
Min_array(1)=Min_Fitness_Mag;   % store pop fitness statistics to  
Mean_array(1)=Mean_Fitness;        % use for convergence testing 
Fitness_Matrix=[Fitness_Matrix;Fitness_Array]; 
  
Old_Best_Index=Min_Fitness_Index; 
Old_Best_Mag=Min_Fitness_Mag; 
Old_Best_Chromo=population(Min_Fitness_Index,:); 
    
while ((Generations < (MAX_GENERATIONS)) & (Stop == FALSE)) 
       
   % CREATE INTERMEDIATE POPULATION 
   inter_pop_size=floor(POP_SIZE*NKEEP); 
   IntermediatePopulation=population; 
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   for i=1:(POP_SIZE - inter_pop_size) % loop to replace non-surviving 
chromosomes 
       
      % SELECTION 
      if (strcmpi(SELECTION,'Tournament')==1)  
          
Selected_Chromo_Index_A=TournamentSelection(POP_SIZE,Fitness_Array); 
          
Selected_Chromo_Index_B=TournamentSelection(POP_SIZE,Fitness_Array); 
      elseif (strcmpi(SELECTION,'Roulette')==1)  
          
Selected_Chromo_Index_A=RouletteWheel(POP_SIZE,Fitness_Array); 
          
Selected_Chromo_Index_B=RouletteWheel(POP_SIZE,Fitness_Array);     
      end 
      chromo_A=IntermediatePopulation(Selected_Chromo_Index_A,:); 
      chromo_B=IntermediatePopulation(Selected_Chromo_Index_B,:); 
       
      % CROSSOVER 
      if (rand < CROSSOVER_RATE) 
         
[child_A,child_B]=Crossover(chromo_A,chromo_B,NUMBER_OF_CROSSOVER_POIN
TS,DISTRIBUTION); 
      else 
         child_A=chromo_A; 
         child_B=chromo_B; 
      end 
          
      % MUTATION 
      
mutant_child_A=Mutate(child_A,MUTATION_RATE,MUTATIONS_PER_CHROMOSOME,G
ENE_LENGTH,CHROMO_LENGTH); 
      
mutant_child_B=Mutate(child_B,MUTATION_RATE,MUTATIONS_PER_CHROMOSOME,G
ENE_LENGTH,CHROMO_LENGTH); 
       
      % REPLACE SELECTED CHROMOSOMES WITH CROSSEDOVER AND MUTATED 
CHROMOSOMES 
      %    replacing provides greater efficiency compared to other GAs 
that 
      %    require sorting by fitness each generation 
      
IntermediatePopulation(Selected_Chromo_Index_A,:)=mutant_child_A; 
      
IntermediatePopulation(Selected_Chromo_Index_B,:)=mutant_child_B; 
       
      i=i+1; % genetic algorithm works on pairs 
   end   
    
    % KEEP BEST CHROMOSOME FROM CURRENT GENERATION 
   Old_Best_Chromo=population(1,:); 
   
[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(Old_
Best_Chromo,GENE_LENGTH); 
   
Old_Best_Mag=CostFirstRandomDelay([gene1dec;gene2dec;gene3dec],random_
delay); 
    
   % INTERMEDIATE POPULATION IS NOW THE NEW POPULATION 
   population=IntermediatePopulation; 
    
   % CALCULATE NEW FITNESS 
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[Fitness_Array]=CalcFitnessRandomDelay(population,GENE_LENGTH,random_d
elay); 
   
[Min_Fitness_Mag,Min_Fitness_Index,Mean_Fitness]=FitnessStats(Fitness_
Array); 
    
   % KEEP THE FITEST AND PUT BACK TO TOP! 
   % first test which chromosome is best -> new or old? 
   if (Min_Fitness_Mag < Old_Best_Mag) 
      New_Best_Chromo=population(Min_Fitness_Index,:); 
   else 
      New_Best_Chromo=Old_Best_Chromo; 
   end 
   % put best chromosome at top of population 
   population(1,:)=New_Best_Chromo; 
    
   % BELOW FOR TESTING ONLY 
   
[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(New_
Best_Chromo,GENE_LENGTH); 
   
New_Best_Mag(Generations)=CostFirstRandomDelay([gene1dec;gene2dec;gene
3dec],random_delay); 
   % TESTING ONLY FOR ABOVE 
    
    % STORE FITNESS STATISTICS    
   Min_array(Generations)=Min_Fitness_Mag;  % store pop fitness 
statistics to  
   Mean_array(Generations)=Mean_Fitness;       % use for convergence 
testing 
   Fitness_Matrix=[Fitness_Matrix;Fitness_Array]; 
    
    % TEST FOR CONVERGENCE 
   %    test for increasing trend in fitness scores 
   if (Min_Fitness_Mag == min(Min_array)) 
      SameMin=SameMin+1; 
   else 
      SameMin=0; 
   end 
   if (Min_Fitness_Mag < min(Min_array)) 
      SmallerMin=TRUE; 
   else 
      SmallerMin=FALSE; 
   end 
   if (Mean_Fitness < mean(Mean_array)) 
      SmallerMean=TRUE; 
    else 
      SmallerMean=FALSE; 
   end 
    
    
   if ((SmallerMin==TRUE) | (SmallerMean==TRUE) | (SameMin<SAME_MIN)) 
      Stop = FALSE; % improvement in population fitness therefore 
continue 
      % fprintf('CONTINUE GA\n'); 
      % display note to user every 100 generations just to show that  
      % GA is still working 
      remainder=mod(Generations,100); 
      if remainder==0 
          if (COMMENTS == TRUE) 
            fprintf('No convergence after %d generations, please 
wait\n',Generations); 
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          end 
      end 
   else 
      Stop = TRUE; 
        if (COMMENTS == TRUE) 
            fprintf('STOP GA\n'); 
            fprintf('Generation %d \n\n',Generations); 
        end 
   end 
  
   if (COMMENTS == TRUE) 
       fprintf('Generation %d \n\n',Generations-1); 
   end 
   Generations=Generations+1; % increment counter of generations  
end 
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Annex C to 
Appendix B  

Argo – InitialisePopulation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   InitialisePopulation.m initialises the population of  
%   chromsomes by selecting random values for q0,q1 and q2. 
% 
%   INPUT       pop_size:   the total number of chromsomes 
%                           within the population 
%               GENE_LENGTH: the constant that defines the number 
%                           of bits in a gene 
%    
%   OUTPUT      Init_Population: an array of randomised  
%                           chromosomes in binary string format 
%                           whereby the array size is [pop_size,93]  
% 
%   Updated 18 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function [Init_Population]=InitialisePopulation(pop_size,GENE_LENGTH) 
  
% Initialise Seeded_Population matrix 
Seeded_Population=zeros(3,pop_size);  % 3 rows for q values 
Converted_Population=''; 
  
% Populate Seeded_Population matrix 
for i=1:3 
   for j=1:pop_size 
      Seeded_Population(i,j)=(rand*(10737.41823))*100000; 
   d en
end 
Seeded_Population=floor(Seeded_Population); 
  
% Convert decimal to binary string 
for i=1:pop_size 
   % convert all gene1 
   first=Seeded_Population(1,i);    
   first=dec2bin(first,(GENE_LENGTH+1)); % leave room for sign bit 
   first=num2str(first); 
   % convert all gene2 
   second=Seeded_Population(2,i);    
   second=dec2bin(second,(GENE_LENGTH+1)); % leave room for sign bit 
   second=num2str(second); 
   % convert all gene3 
   third=Seeded_Population(2,i);    
   third=dec2bin(third,(GENE_LENGTH+1)); % leave room for sign bit 
   third=num2str(third); 
  
   chromo=strcat(first,second,third); % creat chromosome from 3 genes 
  
    Converted_Population=strvcat(Converted_Population,chromo); 
    % add the chromosome to the population 
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end 
  
% Randomly set first bit i.e. the sign bit 
for i=1:pop_size 
   sign=round(rand); 
   if (sign == 1) % positive 
      Converted_Population(i,1)='1'; 
   else % negative 
      Converted_Population(i,1)='0'; 
   end 
   sign=round(rand); 
   if (sign == 1) % positive 
      Converted_Population(i,32)='1'; 
   else % negative 
      Converted_Population(i,32)='0'; 
   end 
   sign=round(rand); 
   if (sign == 1) % positive 
      Converted_Population(i,63)='1'; 
   else % negative 
      Converted_Population(i,63)='0'; 
   end 
end 
  
Init_Population=Converted_Population; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Structured English 
%    
%   seed initial population based on: 
%       (i,j)=(rand*(10737.41823))*100000 
%   ensure all numbers are rounded down 
% 
%   convert decimal to binary string: 
%   loop for each three componenets (genes) of the seeded matrix 
%       convert using dec2str 
%       convert using num2str 
%       concatenate string of three genes into a chromosome 
%       concatenate each chromosome to others to form population 
%   end 
%    
%   randomly set each sign bit of each gene (bits 1,32,3)    
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
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Annex D to 
Appendix B  

Argo – TournamentSelection 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   TournamentSelection.m selects a chromosome from the population 
%   using "Tournament" selection. That is, it selects at random 
%   3 candidate parents and the candidate with the best 
%   fitness (i.e. least cost) survives to be a parent. 
% 
%   INPUT   Fitness_Array:  array of fitness values 
%           POP_SIZE:       constant defining the size of population 
%    
%   OUTPUT  parent:         index into population of the  
%                           chromosome selected to be a parent 
% 
%   Updated 17 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function [parent]=TournamentSelection(POP_SIZE,Fitness_Array) 
  
%initialise variables 
candidate_parent_1_index=1; 
candidate_parent_2_index=1; 
candidate_parent_3_index=1; 
parent=0  ;
FALSE=0; 
TRUE=1; 
same=TRUE; 
  
% select 3 random parent candidates from population, 
% repeat random selection if any of the three parents are 
% the same 
while (same == TRUE) 
   candidate_parent_1_index=ceil(rand*POP_SIZE); 
    candidate_parent_2_index=ceil(rand*POP_SIZE); 
   candidate_parent_3_index=ceil(rand*POP_SIZE); 
   same=FALSE; 
   if (candidate_parent_1_index == candidate_parent_2_index) 
      same = TRUE; 
   end 
   if (candidate_parent_1_index == candidate_parent_3_index) 
      same = TRUE; 
   end 
   if (candidate_parent_2_index == candidate_parent_3_index) 
      same = TRUE; 
   end 
end 
  
% calculate fitness of the 3 parent candidates 
[candidate_parent_1_fitness]=Fitness_Array(candidate_parent_1_index); 
[candidate_parent_2_fitness]=Fitness_Array(candidate_parent_2_index); 
[candidate_parent_3_fitness]=Fitness_Array(candidate_parent_3_index); 
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% determine fitest candidate parent 
a=[candidate_parent_1_fitness,candidate_parent_2_fitness,candidate_par
ent_3_fitness]; 
[minimum,index]=min(a); 
  
if (index == 1) 
   parent=candidate_parent_1_index; 
end 
if (index == 2) 
   parent=candidate_parent_2_index; 
end 
if (index == 3) 
   parent=candidate_parent_3_index; 
end 
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Annex E to 
Appendix B  

Argo – ParseBits 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   ParseBits.m will convert the binary chromosome string into an   
%   array of genes to be returned in decimal format 
% 
%   INPUT   chromosome: string (e.g. '00101010101010101010101010') 
%           GENE_LENGTH: the constant defining the number of  
%                       bits in a gene 
% 
%   OUTPUT  gene1:      decimal (e.g. 1023.1023  )
%           gene2:      decimal (e.g. -234.333 ) 
%           gene3:      decimal (e.g. 234.333 ) 
%           gene1:      binary (e.g. '00101010101010101010101010') 
%           gene2:      binary (e.g. '00101010101010101010101010') 
%           gene3:      binary (e.g. '00101010101010101010101010') 
% 
%   Updated 18 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function 
[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(chro
mosome,GENE_LENGTH) 
  
% remember chromosome is 93 bits long 
% comprised of 3 x (1 + 30) bit encoded gene numbers 
% in the format (+/-)xxxxx(.)xxxxx 
% provided values between +10737.41823 < q < -10737.41823 
  
% determine the sign of the gene 
sign1=chromosome(1); 
sign2=chromosome(32); 
sign3=chromosome(63); 
  
% get gene values in binary string format 
gene1=chromosome((2+0*GENE_LENGTH):(1+1*GENE_LENGTH));  
gene2=chromosome((3+1*GENE_LENGTH):(2+2*GENE_LENGTH)); 
gene3=chromosome((4+2*GENE_LENGTH):(3+3*GENE_LENGTH)); 
  
% return the binary string format values for each gene 
gene1bin=gene1; 
gene2bin=gene2; 
gene3bin=gene3; 
  
% convert binary string value to decimal value 
gene1=bin2dec(gene1); 
gene2=bin2dec(gene2); 
gene3=bin2dec(gene3); 
  
% divide by 100,000 to get decimal accuracy 
gene1=gene1/100000; 
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gene2=gene2/100000; 
gene3=gene3/100000; 
  
% correct the sign of the gene decimal and binary values 
if sign1 == '0' 
   gene1dec=gene1*(-1); 
   gene1bin=strcat('0',gene1bin); 
else 
   gene1bin=strcat('1',gene1bin); 
   gene1dec=gene1; 
end 
  
if sign2 == '0' 
   gene2dec=gene2*(-1); 
   gene2bin=strcat('0',gene2bin); 
else 
   gene2bin=strcat('1',gene2bin); 
   gene2dec=gene2; 
end 
  
if sign3 == '0' 
   gene3dec=gene3*(-1); 
   gene3bin=strcat('0',gene3bin); 
else 
   gene3bin=strcat('1  ',gene3bin);
   gene3dec=gene3;    
end 
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Annex F to 
Appendix B  

Argo – RouletteWheel 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   RouletteWheel.m selects a chromosome from the population 
%   using "Roulette Wheel" selection. That is, a chromosome 
%   fitness is propotional to its chance of selection. 
% 
%   INPUT   Fitness_Array:  array of fitness values  
%           POP_SIZE:       constant defining the number of 
%                           chromosomes in a population 
%   OUTPUT  Selected_Chromo_Index:  index into the population 
%                           array that points to the selected 
%                           chromosome 
% 
%   Updated 17 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function [Selected_Chromo_Index]=RouletteWheel(POP_SIZE,Fitness_Array) 
  
% Calculate total fitness value 
Total_Fitness=sum(abs(Fitness_Array)); % In terms of probability,  
                                       % absolute values only 
  
% Assign each chromosome a prob based on fitness score 
Prob_Array=abs(Fitness_Array)./Total_Fitness; % To ensure total 
probability 
                                              % equals one, absolute 
values 
                                              % only 
Cum_Prob_Array=cumsum(Prob_Array); % Create a cummulative probability 
array 
  
% Check that the total probability = 1 
Total_Prob=sum(Prob_Array); 
error=1-Total_Prob; 
if (abs(error) > eps) 
   fprintf('ERROR: Total Probability does NOT equal 1, but 
%f\n',Total_Prob); 
end 
  
% Assign the selection point ('slice') randomly 
Selection_Point=rand; 
  
% Find the chromosome in the population chosen through 
% Roulette Wheel selection 
Index=0; 
for i=1:POP_SIZE 
   if ( Selection_Point < Cum_Prob_Array(i) ) 
      Index=i; 
      break; 
   end 
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end 
  
if (Index == 0) % index not set above 
   Index = POP_SIZE; % manually set index to last index 
end 
  
Selected_Chromo_Index=Index; 
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Annex G to 
Appendix B  

Argo – Mutate 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   Mutate.m mutates a chromosome's bits dependent upon the  
%   specified mutation rate. 
% 
%   INPUT   chromosome:     binary string 93 bits long (e.g. 
'0010101') 
%                           defining the chromosome that may 
%                           or may not become mutated 
%           mutation_rate:  decimal value between 1 and 0  
%                           defining the liklihood of mutation 
%           mutation_number: the maximum number of mutations 
%                           allowed per chromosome, either 1 or 2 
% 
%   OUTPUT  Mutated_Chromosome: binary string 93 bits long 
%                           (e.g. '0010101') with individual 
%                           bits possibly inverted (mutated) 
%                           dependent upon mutation_rate 
% 
%   Updated 18 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function 
Mutated_Chromosome=Mutate(chromosome,mutation_rate,mutation_number,GEN
E_LENGTH,CHROMO_LENGTH) 
  
% remember chromosome is 93 bits long 
% comprised of 3 x (1 + 30) bit encoded gene numbers 
% in the format (+/-)xxxxx(.)xxxxx 
% provided values between +10737.41823 < q < -10737.41823 
  
counter=0; 
  
% mutate chromosome 
for i=1:(CHROMO_LENGTH) 
   if ((rand < mutation_rate) & (i ~= 1) & (i ~= 31) & (i ~= 62)) 
      % ensure the sign bit is not mutated as this will 
      % drastically change the solution 
      if chromosome(i) == '1' 
         chromosome(i) = '0'; 
         counter=counter+1; 
         %fprintf('MUTATION %d counter is %d mutation_number is 
%d\n',i,counter,mutation_number); 
         if counter == mutation_number 
            break; % only allow mutation_number mutated allele per 
chromosome 
         end 
      elseif chromosome(i) == '0' 
         chromosome(i) = '1'; 
         counter=counter+1; 
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         %fprintf('MUTATION %d counter is %d mutation_number is 
%d\n',i,counter,mutation_number); 
         if counter == mutation_number 
            break; % only allow mutation_number mutated allele per 
chromosome 
         d en
      end 
   end 
end 
  
Mutated_Chromosome=chromosome; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Structured English 
%    
%  loop for chromosome size 
%       test if rand less than mutation_rate and is not a sign bit 
%           invert sign of allele 
%           increment counter 
%           test if counter is equal to mutation_number 
%               break 
%           end 
%       end 
%   end 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
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Annex H to 
Appendix B  

Argo – Crossover 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   Crossover.m performs single or double point crossover for a  
%   chromosome. The algorithm uses either normal or uniform  
%   distributions to select random numbers to determine the  
%   crossover point. 
% 
%   INPUT   chromosome_A:   parent binary string 93 bits long 
%                           (e.g. '0010101') 
%           chromosome_B:   parent binary string 93 bits long 
%                           (e.g. '0010101') 
%           point:          the number of crossover points as an 
%                           integer, either 1 or 2 
%           distribution:   random distribution function, either 
'normal' 
%                           'uniform' 
% 
%   OUTPUT  Crossed_chromosome_A: child binary string 93 bits long 
%                           (e.g. '0010101') with crossover applied 
%           Crossed_chromosome_B: child binary string 93 bits long  
%                           (e.g. '0010101') with crossover applied 
% 
%   Updated 18 Nov 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function 
[Crossed_chromosome_A,Crossed_chromosome_B]=Crossover(chromosome_A,chr
omosome_B,point,distribution) 
  
% GENE_LENGTH=30; not required 
CHROMO_LENGTH=length(chromosome_A); % should be 93; 
cross_point=0; 
cross_point_1=0; 
cross_point_2=0; 
  
% DEFAULT to single point crossover 
  
if (point == 2) % double point crossover 
   %fprintf('double point\n'); 
   %fprintf('distribution is %s \n',distribution);  
   while (cross_point_1<1 | cross_point_1>93 | cross_point_2<1 | 
cross_point_2>93) 
    if (strcmpi(distribution,'normal')==1)  
        % find crossover point based on random number from a normal 
distribution 
        cross_point_1 = abs(floor(CHROMO_LENGTH*normrnd(.5,.25))); 
        cross_point_2 = abs(floor(CHROMO_LENGTH*normrnd(.5,.25))); 
    end 
    if (strcmpi(distribution,'uniform')==1)  
        % find crossover point based on random number from a uniform 
distribution 
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        cross_point_1 = floor(CHROMO_LENGTH*rand); 
         cross_point_2 = floor(CHROMO_LENGTH*rand); 
      end 
      if (cross_point_1 > cross_point_2) % sort the cross points 
         temp = cross_point_1; 
         cross_point_1 = cross_point_2; 
         cross_point_2 = temp; 
      end 
   end 
   if ((cross_point_1 == 1) | (cross_point_1 == 32) | (cross_point_1 
== 63)) 
      cross_point_1 = cross_point_1 +1; % move crossover point off the 
sign value 
   end 
   if ((cross_point_2 == 1) | (cross_point_2 == 32) | (cross_point_2 
== 63)) 
      cross_point_2 = cross_point_2 +1; % move crossover point off the 
sign value 
   end 
   %fprintf('crossover point one is %d crossover point two is 
%d\n',cross_point_1,cross_point_2); 
   % perform first point crossover on chromosomes 
   prefixA=chromosome_A(1:cross_point_1); 
   prefixB=chromosome_B(1:cross_point_1); 
   postfixA=chromosome_A((cross_point_1+1):CHROMO_LENGTH); 
   postfixB=chromosome_B((cross_point_1+1):CHROMO_LENGTH); 
   Crossed_chromosome_A=strcat(prefixA,postfixB); 
   Crossed_chromosome_B=strcat(prefixB,postfixA);  
    
   % perform second point crossover on chromosomes 
   prefixA=Crossed_chromosome_A(1:cross_point_2); 
   prefixB=Crossed_chromosome_B(1:cross_point_2); 
   postfixA=Crossed_chromosome_A((cross_point_2+1):CHROMO_LENGTH); 
   postfixB=Crossed_chromosome_B((cross_point_2+1):CHROMO_LENGTH); 
   Crossed_chromosome_A=strcat(prefixA,postfixB); 
   Crossed_chromosome_B=strcat(prefixB,postfixA);  
   return;    
end 
  
if (point == 1) % single point crossover 
   %fprintf('single point\n'); 
   %fprintf('distribution is %s \n',distribution);  
   while (cross_point<1 | cross_point >93) 
      if (strcmpi(distribution,'normal')==1)  
        % find crossover point based on random number from a normal 
distribution 
        cross_point = abs(floor(CHROMO_LENGTH*normrnd(.5,.25))); 
    end 
    if (strcmpi(distribution,'uniform')==1)  
        % find crossover point based on random number from a uniform 
distribution 
        cross_point = floor(CHROMO_LENGTH*rand); 
    end 
    if ((cross_point == 1) | (cross_point == 32) | (cross_point == 
63)) 
        cross_point = cross_point +1; % move crossover point off the 
sign value 
      end 
   end 
   % fprintf('crossover point is %d\n',cross_point); 
   % perform single point crossover on chromosomes 
   prefixA=chromosome_A(1:cross_point); 
   prefixB=chromosome_B(1:cross_point); 
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   postfixA=chromosome_A((cross_point+1):CHROMO_LENGTH); 
   postfixB=chromosome_B((cross_point+1):CHROMO_LENGTH); 
   Crossed_chromosome_A=strcat(prefixA,postfixB); 
   Crossed_chromosome_B=strcat(prefixB,postfixA);    
   return; 
end 
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Annex I to 
Appendix B  

Argo – CalcFitnessRandomDelay 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE4111/2 
%   Student No:     Q9323707 
% 
%   CalcFitnessRandomDelay.m calculates the fitness 
%   of the population using the CostFirstRandomDelay.m function. 
% 
%   INPUT   population:     population of chromosomes in binary 
%                           string format 
%           GENE_LENGTH:    constant defining the number of bits in a 
%                           gene 
%           random_delay:   the random delay to the start of the input 
%                           signal 
% 
%   OUTPUT  Fitness_Array:  decimal array of fitness values for 
%                           the entire population 
% 
%   Updated 18 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function 
[Fitness_Array]=CalcFitnessRandomDelay(population,GENE_LENGTH,random_d
elay) 
  
pop_size=size(population,1); 
  
for i=1:pop_size 
    chromosome=population(i,:); 
   
[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(chro
mosome,GENE_LENGTH) 
   % replace CostFirstRandomDelay with CostSecond for second order 
system 
   
Fitness_Array(i)=(CostFirstRandomDelay([gene1dec;gene2dec;gene3dec],ra
ndom_delay)); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Structured English 
%    
%  loop for population size 
%       assign population(i,:) to chromosome 
%       ParseBits 
%       assign cost to Fitness_Array(i) 
%   end 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
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Annex J to 
Appendix B  

Argo – CostFirst 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE3105 
%   Student No: Q9323707 
% 
%   CostFirst.m calculates the value of S (cost function) 
%   for the First Order Test Control system given the input values  
%   of q0, q1, and q2 for the PID controller. 
% 
%   The cost function, S is calculated using the ITAE criterion: 
% 
%       S = Summation of (k*|e(k)|) a total of M times  
% 
%   INPUT   Q:              is an array of values representing the PID 
%                           parameters q0, q1 and q2 
%                            
%   OUTPUT  error:          the final error value 
%           C:              is an array of values for c(k) - output 
signal 
%           E:              is an array of values for e(k) - error 
signal 
%     
%   Updated 18 Nov 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function [error,C,E]=CostFirst(Q) 
Q0=Q(1); 
Q1=Q(2); 
Q2=Q(3); 
  
% m is set for 100 summations for this exercise 
m=100; 
% T assigned 0.1 in order to simplify calculations 
T=0.1; 
  
a=-exp(-0.5); 
  
E=zeros(m,1); %zeroise error array 
C=zeros(m,1); %zeroise output array 
R=zeros(m,1); %zeroise input array 
  
for k=9:m 
    R(k)=1; %step input delayed after 9 samples i.e. 9*.1 sec = .9 sec 
delay to input 
end 
  
%calculate error and output arrays 
for k=9:m 
   r=R(k)-(1-a)*R(k-1)-a*R(k-2); 
   e=(1-a)*E(k-1)+a*E(k-2)-Q0*(1+a)*E(k-6)-Q1*(1+a)*E(k-7)-
Q2*(1+a)*E(k-8); 
   E(k)=r+e; 
   C(k)=(1-a)*C(k-1)+a*C(k-2)+Q0*(1+a)*E(k-6)+Q1*(1+a)*E(k-
7)+Q2*(1+a)*E(k-8); 
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end 
  
%calculate error 
error=0; 
i=1:m; 
k_error=i.*abs(transpose(E)); 
error=sum(k_error); 
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Annex K to 
Appendix B  

Argo – CostFirstRandomDelay  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE3105 
%   Student No:     Q9323707 
% 
%   CostFirstRandomDelay.m calculates the value of S (cost function) 
%   for the First Order Test Control system given the input values  
%   of q0, q1, and q2 for the PID controller. 
% 
%   The cost function, S is calculated using the ITAE criterion: 
% 
%       S = Summation of (k*|e(k)|) a total of M times  
% 
%   INPUT   Q:              is an array of values representing the PID 
%                           parameters q0, q1 and q2 
%           random_delay:   is the random delay to the start of the 
%                           input signal 
%   OUTPUT  error:          the final error value 
%           C:              is an array of values for c(k) - output 
signal 
%           E:              is an array of values for e(k) - error 
signa  l
%     
%   Updated 18 Nov 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function [error,C,E]=CostFirstRandomDelay(Q,random_delay) 
Q0=Q(1); 
Q1=Q(2); 
Q2=Q(3); 
%Q3=random_delay; 
  
% m is set for 100 summations for this exercise 
m=100; 
% T assigned 0.1 in order to simplify calculations 
T=0.1; 
random_delay=abs(floor(random_delay));  %ensure a positive delay and 
sample number an integer 
a=-exp(-0.5); 
  
E=ones(m,1); %zeroise error array to be unit input signal until delay 
C=zeros(m,1); %zeroise output array 
R=zeros(m,1); %zeroise input array 
  
for k=(random_delay+3):m 
    R(k)=1; %step input delayed after random delay  
end 
  
%calculate error and output arrays 
for k=(random_delay+3):m 
   r=R(k)-(1-a)*R(k-1)-a*R(k-2); 
   e=(1-a)*E(k-1)+a*E(k-2)-Q0*(1+a)*E(k-random_delay)-Q1*(1+a)*E(k-
random_delay-1)-Q2*(1+a)*E(k-random_delay-2); 
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   E(k)=r+e; 
   %   calculation of output value not required, only error for the 
purposes 
   %   of calculating the cost function 
   C(k)=(1-a)*C(k-1)+a*C(k-2)+Q0*(1+a)*E(k-random_delay)+Q1*(1+a)*E(k-
random_delay-1)+Q2*(1+a)*E(k-random_delay-2); 
end 
  
%calculate error ITAE 
error=0; 
i=1:m; 
k_error=i.*abs(transpose(E)); 
error=sum(k_error);
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Annex L to 
Appendix B  

Argo – CostSecond 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Name:           Matthew Mackenzie 
%   Unit:           ELE3105 
%   Student No:     Q9323707 
% 
%   CostSecond.m calculates the value of S (cost function) 
%   for the Second Order Test Control system given the input values  
%   of q0, q1, and q2 for the PID controller. 
% 
%   The cost function, S is calculated using the ITAE criterion: 
% 
%       S = Summation of (k*|e(k)|) a total of M times  
% 
%   INPUT   Q:              is an array of values representing the PID 
%                           parameters q0, q1 and q2 
%                            
%   OUTPUT  error:          the final error value 
%           C:              is an array of values for c(k) - output 
signal 
%           E:              is an array of values for e(k) - error 
signal 
%     
%   Updated 18 Nov 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%% 
  
function [error,C,E]=CostSecond(Q) 
q0=Q(1); 
q1=Q(2); 
q2=Q(3); 
  
% m is set for 100 summations for this exercise 
m=101; 
% T was calculated in a previous assignment part 
T=0.05; 
  
% set up simultaneous equations to solve for AX=B where X=[e;c;m] 
a=(3/109); 
b=(1/109)*(-3*exp(-3*T)*cos(10*T)+10*exp(-3*T)*sin(10*T)); 
c=(1/109)*(3*exp(-6*T)-3*exp(-3*T)*cos(10*T)-10*exp(-3*T)*sin(10*T)); 
d=-2*exp(-3*T)*cos(10*T); 
e=exp(-6*T); 
  
A=[1 1 0;-q0 0 1;0 1 -a]; 
  
%first iteration  
B=[0;0;0]; 
X=inv(A)*B; 
E(1)=X(1); 
C(1)=X(2); 
M(1)=X(3); 
  
%second iteration  
B=[1;0;0]; 
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X=inv(A)*B; 
E(2)=X(1); 
C(2)=X(2); 
M(2)=X(3); 
  
%iterative after first two 
for k=3:(m+1) 
   b1=k-1;  % r(k) = 1 for unit ramp input, for k > 0  
    b2=q1*E(k-1)+q2*E(k-2)+M(k-1); 
    b3=b*M(k-1)+c*M(k-2)-d*C(k-1)-e*C(k-2); 
    B=[b1;b2;b3]; 
    X=inv(A)*B; % the \ operator is more efficient than the matlab 
function inv() for this application 
    E(k)=X(1); 
    C(k)=X(2); 
   M(k)=X(3); 
end 
  
%calculate error 
error=0; 
%for i=1:100 
i=1:(m+1); 
k_error=(i-1).*abs(E); 
error=sum(k_error); 
%end 
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Annex M to 
Appendix B  

Argo – ARGOGUI 

function ARGOGUI(fcn) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This GUI code is based on the source code downloaded from 
%   Cornell University 
% 
%   Course:     BioNB 441 - Biological Instrumentation  
%   Subject:    Graphical User Interface Design 
%   Staff:      Bruce Land 
%   Date:       May 2007 
%   Address:     
%   http://courses.cit.cornell.edu/bionb442/GUIdesign/GUIdemo.m 
% 
% The GUI code has then been extensively modified by Matthew Mackenzie 
%   as part of ENG4111/112 Reasearch Project 
%   25 Sep 07 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%This code detects the first entry into the function 
%from the command line with no parameters 
if nargin == 0 
   fcn = 'makeGUI'; 
end 
  
%This is the main decision point of the function. 
%The switch statement is executed once-per-fuction call 
switch fcn 
    
   %This code is executed ONCE when the function enters with 
   %no arguments 
case 'makeGUI' 
    
   % Determine the name of this function and store it in the 
   %figure plotinfo variable. 
   %Since variables used in a function are not persistent after 
   %the function exits we will need to store the state-variables 
   %in a data structure associated with the persistent Figure-window. 
   %The plotinfo sturcture will be saved into the Figure's UserData 
   %area and retrieved from there as necessary. 
   plotinfo.myname = mfilename; 
    
   % ===Create main figure========================== 
   fig = figure('Position',centerfig(900,600),... 
      'Resize','off',... 
      'NumberTitle','off',... 
      'Name','Genetic Algorithm Parameter Input Menu',... 
      'Interruptible','off',... 
      'Toolbar','figure',... 
      'Menubar','figure',... 
      'Color',get(0,'DefaultUIControlBackgroundColor')); 
    
   %===Header Text=================================== 
   uicontrol(gcf,'Style','text', ... 
      'String','Genetic Algorithm Parameter Input Menu',... 
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      'fontsize',18, ... 
      'HorizontalAlignment','Center',... 
      'Position',[100,565,700,30],... 
      'BackgroundColor',[0.4 0.7 0.8]); 
   
   % ===Create Axes================================= 
   plotinfo.ax = axes('Units','pixels',... 
      'Position',[235 50 580 480],... 
      'Box','on',... 
      'XLim',[0 1],'YLim',[-1 1]); 
   xlabel('Generations'); ylabel('Cost'); 
    
   %==Frequency slider===========================  
%   plotinfo.freq=1.0; 
%   plotinfo.s1 = uicontrol(gcf,'Style','text', ... 
%      'String','frequency',... 
%      'Position',[10,240,100,20],... 
%      'BackgroundColor',[0.8,0.8,0.8]); 
%   plotinfo.s2 = uicontrol(gcf,'Style','edit',... 
%      'String',num2str(plotinfo.freq),... 
%      'Position',[110,240,50,20],... 
%      'BackgroundColor',[0.8,0.8,0.8],... 
%      'callback', [plotinfo.myname,' editfreq']); 
%   plotinfo.s3 = uicontrol(gcf,... 
%      'Style','slider',... 
%      'Min' ,1,'Max',20, ... 
%      'Position',[10,220,150,20], ... 
%      'Value', 1,... 
%      'SliderStep',[0.01 0.1], ... 
%      'BackgroundColor',[0.8,0.8,0.8],... 
%      'CallBack', [plotinfo.myname,' setfreq']); 
    
   %==Crossover ===========================  
   plotinfo.cross=0.5; 
   plotinfo.c1 = uicontrol(gcf,'Style','text', ... 
      'String','Crossover Rate',... 
      'Position',[10,240,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.c2 = uicontrol(gcf,'Style','edit',... 
      'String',num2str(plotinfo.cross),... 
      'Position',[110,240,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editcross']); 
  
   %==Simulations ===========================  
   plotinfo.sims=3; 
   plotinfo.d1 = uicontrol(gcf,'Style','text', ... 
      'String','Simulation Runs',... 
      'Position',[10,210,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.d2 = uicontrol(gcf,'Style','edit',... 
      'String',num2str(plotinfo.sims),... 
      'Position',[110,210,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editsims']); 
  
   %==Number of Crossover Points ===========================  
   plotinfo.crosspt=1; 
   plotinfo.e1 = uicontrol(gcf,'Style','text', ... 
      'String','# Crossover Points', . ..
      'Position',[10,270,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.e2 = uicontrol(gcf,'Style','edit',... 
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      'String',num2str(plotinfo.crosspt),... 
      'Position',[110,270,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editcrosspt']); 
   
   %==Mutation Rate ===========================  
   plotinfo.mute=.001; 
   plotinfo.f1 = uicontrol(gcf,'Style','text', ... 
      'String','Mutation Rate',... 
      'Position',[10,300,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.f2 = uicontrol(gcf,'Style','edit',... 
      'String',num2str(plotinfo.mute),... 
      'Position',[110,300,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editmute']); 
   
   %==Mutations per Chromo ===========================  
   plotinfo.mutenum=1; 
   plotinfo.g1 = uicontrol(gcf,'Style','text', ... 
      'String','# Mutations',... 
      'Position',[10,330,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.g2 = uicontrol(gcf,'Style','edit',... 
      'String',num2str(plotinfo.mutenum),... 
      'Position',[110,330,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editmutenum']); 
   
   %==Maximum Generations ===========================  
   plotinfo.gen=100; 
   plotinfo.h1 = uicontrol(gcf,'Style','text', ... 
      'String','Max Generations',... 
      'Position',[10,360,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.h2 = uicontrol(gcf,'Style','edit',... 
      'String',num2str(plotinfo.gen)  ,...
      'Position',[110,360,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editgen']); 
   
   %==Population to Keep ===========================  
   plotinfo.keep=.7; 
   plotinfo.i1 = uicontrol(gcf,'Style','text', ... 
      'String','% Keep',... 
      'Position',[10,390,100,20],... 
      'BackgroundColor',[0.8,0.8,0.8]); 
   plotinfo.i2 = uicontrol(gcf,'Style','edit',... 
      'String',num2str(plotinfo.keep),... 
      'Position',[110,390,50,20],... 
      'BackgroundColor',[0.8,0.8,0.8],... 
      'callback', [plotinfo.myname,' editkeep']); 
  
  % ===The Quit Button=============================== 
   uicontrol(gcf,'Style','pushbutton',... 
      'String','Quit',... 
      'Interruptible','off',... 
      'BusyAction','cancel',... 
      'Position',[840 20 45 25],... 
      'BackgroundColor',[1,0.8,0.8], ... 
      'Callback',[plotinfo.myname,' quit']); 
   
  %==The Launch GA=========================== 
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   uicontrol(gcf,'Style','pushbutton', ... 
      'String','Launch ARGOR',... 
      'Interruptible','off',... 
      'BusyAction','cancel',... 
      'Position',[10,60,70,20],... 
      'BackgroundColor',[1,0.8,0.8], ... 
      'CallBack',[plotinfo.myname,' launchga']);  
   
   %==Selection Chooser========================= 
   plotinfo.sel='Tournament'; 
   plotinfo.selchoice=uicontrol(gcf,'Style','PopupMenu', ... 
      'String','Tournament|Roulette',... 
      'Position',[10,430,150,50],... 
      'BackgroundColor',[0.8,0.8,0.8], ... 
      'CallBack',[plotinfo.myname,' selchoice'] );   
   
   %==Distribution Chooser========================= 
   plotinfo.dist='uniform'; 
   plotinfo.distchoice=uicontrol(gcf,'Style','PopupMenu', ... 
      'String','uniform|random',... 
      'Position',[10,390,150,50],... 
      'BackgroundColor',[0.8,0.8,0.8], ... 
      'CallBack',[plotinfo.myname,' distchoice'] );   
    
   %==Axes Title==================================== 
   plotinfo.title='Use edit field to change the plot title'; 
   plotinfo.ttl=uicontrol(gcf,'Style','edit', ... 
      'String','Edit Figure title',... 
      'Position',[10,500,150,20],... 
      'BackgroundColor',[1,1,1], ... 
      'CallBack',[plotinfo.myname,' edttl'] ); 
    
   %==Context sensitive menu========================== 
   %====Also note reference to this menu in the plot== 
   % Define the context menu (taken from Matlab docs) 
   plotinfo.cmenu = uicontextmenu; 
   % Define the context menu items 
    plotinfo.item1 = uimenu(plotinfo.cmenu, 'Label', 'dashed', ... 
       'Callback',[plotinfo.myname,' linemenu1']) ; 
    plotinfo.item2 = uimenu(plotinfo.cmenu, 'Label', 'dotted', ... 
       'Callback', [plotinfo.myname,' linemenu2']); 
    plotinfo.item3 = uimenu(plotinfo.cmenu, 'Label' 'solid',... , 
       'Callback', [plotinfo.myname,' linemenu3']); 
    uicontrol('style','text',... 
       'string','Hit Lauch ARGO button, then right-click the plot line 
for options',... 
       'backgroundcolor','white',... 
       'position',[100,50,100,60]); 
  
   %put all the variables in a safe place (the figure's data area) 
   set(fig,'UserData',plotinfo); 
    
%case 'setfreq' 
%   %Get data from the figure's data area 
%   plotinfo=get(gcf,'UserData');  
%   %Get the value from the slider 
%   plotinfo.freq=get(plotinfo.s3,'Value'); 
%   %Update the text which shows the slider value 
%   set(plotinfo.s2,'String',plotinfo.freq); 
%   %Store the new slider value back into the figure's data area 
%   set(gcf,'UserData',plotinfo); 
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%case 'editfreq' 
%   plotinfo=get(gcf,'UserData');  
%   plotinfo.freq=str2num(get(plotinfo.s2,'string')); 
%   set(plotinfo.s3,'value',plotinfo.freq); 
%   set(gcf,'UserData',plotinfo); 
  
case 'editcross' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.cross=str2num(get(plotinfo.c2,'string')); 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'editsims' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.sims=str2num(get(plotinfo.d2,'string')); 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'editcrosspt' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.crosspt=str2num(get(plotinfo.e2,'string')); 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'editmute' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.mute=str2num(get(plotinfo.f2,'string')) 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'editmutenum' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.mutenum=str2num(get(plotinfo.g2,'string')) 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'editgen' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.gen=str2num(get(plotinfo.h2,'string')) 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'editkeep' 
   plotinfo=get(gcf,'UserData');  
   plotinfo.keep=str2num(get(plotinfo.i2,'string')) 
  % set(plotinfo.c3,'value',plotinfo.cross); 
   set(gcf,'UserData',plotinfo); 
    
case 'selchoice' 
   plotinfo=get(gcf,'UserData'); 
   plotinfo.sel=get(plotinfo.selchoice,'value'); 
   switch plotinfo.sel 
   case 1 
      plotinfo.sel='Tournament'; 
   case 2 
      plotinfo.sel='Roulette'; 
   end 
   set(gcf,'UserData',plotinfo); 
  
case 'distchoice' 
   plotinfo=get(gcf,'UserData'); 
   plotinfo.dist=get(plotinfo.distchoice,'value'); 
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   switch plotinfo.dist 
   case 1 
      plotinfo.dist='uniform'; 
   case 2 
      plotinfo.dist='random'; 
   end 
   set(gcf,'UserData',plotinfo); 
     
case 'edttl' 
   plotinfo=get(gcf,'UserData'); 
   plotinfo.title=get(plotinfo.ttl,'string'); 
   title(plotinfo.title); 
   set(gcf,'UserData',plotinfo); 
  
case 'linemenu1' 
   plotinfo=get(gcf,'UserData'); 
   set(plotinfo.line, 'LineStyle', '--') 
    
case 'linemenu2' 
   plotinfo=get(gcf,'UserData'); 
   set(plotinfo.line, 'LineStyle', ':') 
    
case 'linemenu3' 
   plotinfo=get(gcf,'UserData'); 
   set(plotinfo.line, 'LineStyle', '-') 
      
case 'launchga' 
    plotinfo=get(gcf,'UserData');   
%   number of sims      = plotinfo.sim  s
%   max generations     = plotinfo.gen 
%   selection method    = plotinfo.sel 
%   distribution type   = plotinfo.dist 
%   population kept     = plotinfo.keep 
%   mutation rate       = plotinfo.mute 
%   # mutations         = plotinfo.mutenum 
%   crossover rate      = plotinfo.cross 
%   number of crossovers= plotinfo.crosspt 
   launch_reply = questdlg('Execute ARGO?'); 
   if strcmp(launch_reply,'Yes') 
      fig=gcf; 
      refresh(fig); 
      tic 
      ARGOR(    plotinfo.sims,... 
                plotinfo.gen,... 
                plotinfo.sel,... 
                plotinfo.dist,... 
                plotinfo.keep,... 
                plotinfo.mute,... 
                plotinfo.mutenum,... 
                plotinfo.cross,... 
                plotinfo.crosspt); 
       duration=toc; 
       duration=num2str(duration); 
       message1='Processing time was  '; 
       message2=' seconds'; 
       message=strcat(message1,duration,message2); 
       msgbox(message); 
   end 
  
case 'quit' 
   fig = gcf; 
   quit_reply = questdlg('Are you sure you wish to quit ARGO?'); 
   if strcmp(quit_reply,'Yes') 
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      close(fig); 
   end 
    
  
end 
  
%===A utility to center the window on the screen============ 
function pos = centerfig(width,height) 
  
% Find the screen size in pixels 
screen_s = get(0,'ScreenSize'); 
pos = [screen_s(3)/2 - width/2, screen_s(4)/2 - height/2, width, 
height]; 
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Appendix C 

Cost Functions 

This project uses three cost functions in order to test the system: 

a) – models a first order control system, CostFirst 

b) CostSecond – models a second order system, and 

c) CostFirstRandomDelay – models the same first order control system but 

with a random delayed input. 

This appendix provides the mathematical background for calculating the 

respective costs of the test control systems. 

For ease of reading, the first order system was modelled by direct solution of 

equations for ,  and ( )ZE ( )ZC ( )ZM ; whereas the second order system was modelled 

by solving a set of simultaneous equations for ( )ZE ( )ZC,  and .  ( )ZM

The solution for the second order system was conducted as part of this project; 

whereas, the solution for the second order system was conducted as part of a previous 

assignment for ELE3105 Computer Controlled Systems at the University of Southern 

Queensland (Mackenzie, 2004). 
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C.1 First Order System 

The CostFirst function was calculated from the transfer function , such 

that: 
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Then using Partial Fractions to simplify the Z Transform, 
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Then substituting the partial fraction equivalent back into EQN  5, it simplifies to, 
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Now that  has been found, need to solve the following set of equations, ( )zGHP

( ) ( ) ( )ZCZRZE −=  
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( ) ( ) ( )ZMZGZC HP ×=  

 EQN  10 

( ) ( ) ( )ZEZGZM C ×=  

 EQN  11 
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Substituting EQN  10 into EQN  9 results in, 

( ) ( ) ( ) ( )ZMZGZRZE HP ×−=  
 EQN  12 

Then substituting EQN  11 into EQN  12 results in, 
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Noting that G (Z) for a PID Controller has the standard equation, C
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Now EQN  13 can be solved substituting in EQN  8 and EQN  14, 
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EQN  15 can then be transformed into a difference equation, 
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Where 

5.0−−= ea  

 EQN  17 

Finally, a difference equation for C(Z) can then be derived. Firstly, substitute 

EQN  11 into EQN  10, 
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 EQN  18 

Where, 

5.0−−= ea  

 EQN  19 

Now EQN  16 and EQN  19 can then be simulated using a step input. The 

MATLAB simulation code is found at Annex J to Appendix B Argo – CostFirst. 

The built-in MATLAB® function fminsearch indicated that the global 

minimum was obtained by the parameter values: 

891166341993437.0
59397336492800.1
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Figure C -1 Optimum Response (Steady State Error) for the First Order Test Control System  
with a PID Controller with Delayed Start and Unit Step Input 
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Figure C -2 Optimum Response (Output) for the First Order Test Control System  
with a PID Controller with Delayed Start and Unit Step Input 
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C.2 Second Order System 

The CostSecond function is a pre-existing function that was developed as part of 

a previous assignment. Whereby the open-loop response  to a unit ramp input can 

be calculated from the transfer function , such that: 
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The CostSecond function uses ITAE Criterion. 

Using the sampling interval of 0.05s, Ghp(z) numerically simplifies to: 
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Where, 

7408.0
5107.1
0383.0

0171.0
0275.0

=
−=
−=

=
=

E
D
C
B
A

 

Page C-7 Matthew Mackenzie Q9323707 



PID Controller Optimisation Using Genetic Algorithms 

The PID controller transfer function can be written as: 
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This can be written in the form of a difference equation: 
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km  is calculated by solving the simultaneous equations: 
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These simultaneous equations were converted to difference equations. Then the 

simultaneous equations were solved by setting up the matrix equation  where: BAX =
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The built-in MATLAB® function fminsearch indicated that the global 

minimum was obtained by the parameter values: 
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Figure C -3 Optimum Response (Steady State Error) for the Second Order Test Control System  
with a PID Controller and Unit Ramp Input 
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Figure C -4 Optimum Response (Output) for the Second Order Test Control System  
with a PID Controller and Unit Step Input 
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C.3 First Order System – Random Delayed Input 

The CostFirstRandomDelay function is a modification of the CostFirst 

function with the addition of a random delay to input. The random delay is defined main 

the main routine using a mean and standard deviation. 

Table C -1 Random Delay Calculation 

Random_Delay=round(AVERAGE+STDDEV.*randn); 
 

The difference equations for both the error (refer EQN  16) and output (refer  

EQN  18) have been modified to support a random delay, resulting in new difference 

equations: 
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( ) ( ) ( ) ( )
system delay to  timerandom is  and ; where
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