

University of Southern Queensland

Faculty of Engineering & Surveying

PID Controller Optimisation Using Genetic Algorithms

A dissertation submitted by

Matthew Robert Mackenzie

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)

Submitted: October, 2007

PID Controller Optimisation Using Genetic Algorithms

Abstract

Genetic Algorithms are a series of steps for solving an optimisation problem using

genetics as the model (Chambers, 1995). More specifically, Genetic Algorithms use the

concept of Natural Selection – or survival of the fittest – to help guide the selection of

candidate solutions. This project is a software design-and-code project with the aim

being to use MATLAB® to develop a software application to optimise a Proportional-

Integral-Derivative (PID) Controller using a purpose built Genetic Algorithm as the

basis of the optimisation routine. The project then aims to extend the program and

interface the Genetic Algorithm optimisation routine with an existing rotary-wing

control model using MATLAB®.

A systems approach to software development will be used as the overall

framework to guide the software development process consisting of the five main

phases of Analysis, Design, Development, Test and Evaluation.

The project was only partially successful. The Genetic Algorithm did produce

reasonably optimal values for the PID parameters; however, the processing time

required was prohibitively long. Additionally, the project was unsuccessful in

interfacing the optimised controller to the existing rotary-wing model due difficulty in

conversion between SIMULINK® and MATLAB® formats. Further work to apply code

optimisation techniques could see significant reduction in processing times allowing

more iterations of the program to execute thereby achieving more accurate results.

Thus the project results suggest that the use of Genetic Algorithms as an

optimisation method is best suited to complex systems where classical optimisation

methods are impractical.

Page ii Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying, and the staff of the University of Southern Queensland, do not accept

any responsibility for the truth, accuracy or completeness of material contained within

or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled ``Research Project'' is

to contribute to the overall education within the student's chosen degree program.

This document, the associated hardware, software, drawings, and other material

set out in the associated appendices should not be used for any other purpose: if they

are so used, it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Page iii Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Matthew Robert Mackenzie

Student Number: 001323707

Signature

Date

Page iv Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Acknowledgements

I would like to thank my supervisor Paul for guiding me through this challenge.

I would also like to thank my wife Sandra whose patience has allowed us to balance this

project, work and our young family.

My love to my wife Sandra, my eldest son Joseph and my youngest son Alec.

Matthew Mackenzie

University of Southern Queensland

October 2005

Page v Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Contents

Abstract.. ii

Certification.. iv

Acknowledgements.. v

Contents ..vi

List of Figures.. x

List of Tables ...xii

Glossary of Genetic Terms ..xiii

Chapter 1 Introduction... 1

1.1 Project Description.. 1

1.2 Aims and Objectives ... 2

1.3 Dissertation Overview .. 3

1.4 Background Literature Review... 4

1.4.1 Existing Research Emphasis.. 5

1.4.2 Future Research Areas... 7

1.4.3 Literature Review Summary.. 7

1.5 Project Methodology... 8

1.5.1 Systems Approach to Software Development... 8

1.5.2 Programming Models .. 9

1.5.3 Test Program ... 9

1.5.4 Evaluation and Extension .. 10

1.6 Summary ... 10

Chapter 2 Optimisation .. 12

2.1 Introduction... 12

2.2 Optimisation Models... 12

Page vi Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

2.3 Root Finding ... 13

2.4 Categories of Optimisation ... 14

2.5 Natural Optimisation Methods.. 15

2.6 Summary ... 16

Chapter 3 Digital Controllers .. 17

3.1 Introduction... 17

3.2 Control System Overview... 18

3.2.1 Analogue Controller .. 18

3.2.2 Computer Controller.. 19

3.2.3 Controllers ... 20

3.3 Tuning ... 22

3.4 Summary ... 24

Chapter 4 Genetic Algorithms ... 25

4.1 Introduction... 25

4.2 Biological Genetic Optimisation... 25

4.3 Genetic Algorithms... 27

4.4 Advantages and Disadvantages... 27

4.5 Genetic Algorithm Process ... 28

4.5.1 Problem Definition and Encoding ... 28

4.5.2 Initialisation... 29

4.5.3 Decoding.. 29

4.5.4 Cost.. 30

4.5.5 Selection .. 30

4.5.6 Mating.. 31

4.5.7 Mutation .. 32

4.5.8 Convergence .. 32

4.6 Summary ... 33

Chapter 5 Argo.. 35

5.1 Introduction... 35

5.2 Definition .. 35

5.3 Encoding ... 36

5.4 Argo Genetic Algorithm ... 37

5.5 Initialisation .. 39

5.6 Cost ... 40

5.6.1 CostFirst .. 40

Page vii Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

5.6.2 CostSecond.. 41

5.6.3 CostFirstRandomDelay ... 42

5.7 Natural Selection... 42

5.7.1 Tournament Selection.. 42

5.7.2 Roulette Wheel .. 43

5.8 Mating ... 43

5.9 Mutation.. 44

5.10 Convergence ... 44

5.11 Argo Input And Control GUI.. 46

5.12 Summary ... 46

Chapter 6 Testing & Analysis Of Results ... 48

6.1 Introduction... 48

6.2 Basic Argo Operation.. 49

6.2.1 First Order Test Control System.. 49

6.2.2 Second Order Test Control System ... 49

6.2.3 Conduct of Base Performance Testing .. 50

6.2.3.1 Base Performance Testing – Phase A... 50

6.2.3.1.1 Base Performance Testing – Test A1... 51

6.2.3.1.2 Base Performance Testing – Test A2... 52

6.2.3.1.3 Base Performance Testing – Test A3... 54

6.2.3.1.4 Base Performance Testing – Test A4... 55

6.2.3.1.5 Base Performance Testing – Test A5... 56

6.2.3.2 Base Performance Testing – Phase B ... 58

6.2.3.3 Base Performance Testing – Phase C ... 60

6.2.3.4 Base Performance Testing – Phase D... 61

6.3 Advanced Argo Operation .. 61

6.3.1 Conduct of Advanced Performance Testing.. 61

6.3.1.1 Advanced Performance Testing – Phase E... 62

6.3.1.2 Advanced Performance Testing – Phase F ... 64

6.3.1.3 Advanced Performance Testing – Phase G .. 64

6.3.2 Other Test Observations .. 68

6.4 Summary ... 69

6.4.1 Base Performance Testing Results .. 69

6.4.2 Advanced Performance Testing Results.. 70

Chapter 7 Conclusions.. 71

Page viii Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

7.1 Dissertation Summary... 71

7.2 Basic Argo Operation.. 72

7.2.1 Accuracy.. 72

7.2.2 Processing Time .. 72

7.2.3 Basic Parameters ... 73

7.3 Advanced Argo Operation .. 74

7.3.1 Roulette Wheel Selection .. 74

7.3.2 Rotary-Wing Control Model Simulation... 74

7.4 Further Work... 74

List of References .. 76

Bibliography .. 78

Appendix A Project Specification..A-1

Appendix B MATLAB® Source Code – Argo ... B-1

Annex A to Appendix B Argo – Main Routine... B-3

Annex B to Appendix B Argo – Genetic Algorithm Random Delay...................... B-6

Annex C to Appendix B Argo – InitialisePopulation.. B-11

Annex D to Appendix B Argo – TournamentSelection .. B-13

Annex E to Appendix B Argo – ParseBits .. B-15

Annex F to Appendix B Argo – RouletteWheel.. B-17

Annex G to Appendix B Argo – Mutate.. B-19

Annex H to Appendix B Argo – Crossover... B-21

Annex I to Appendix B Argo – CalcFitnessRandomDelay................................... B-24

Annex J to Appendix B Argo – CostFirst.. B-25

Annex K to Appendix B Argo – CostFirstRandomDelay B-27

Annex L to Appendix B Argo – CostSecond .. B-29

Annex M to Appendix B Argo – ARGOGUI.. B-31

Appendix C Cost Functions ...C-1

C.1 First Order System .. C-2

C.2 Second Order System.. C-7

C.3 First Order System – Random Delayed Input... C-10

Page ix Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

List of Figures

Figure 1-1 Systems Approach... 9

Figure 2-1 Optimisation Model... 13

Figure 3-1 Analogue Control System (based on (ELE3105 2007, mod. 1, fig. 1.1)) 18

Figure 3-2 Computer Controlled System (based on (ELE3l05 2007, mod. 5, fig. 5.1)) 19

Figure 3-3 Digital Control Loop (based on (Leis 2003, mod. 1; mod.4)) 21

Figure 3-4 Adaptive Digital Control System .. 23

Figure 4-1 Biological Genetic Algorithm Process Flow... 29

Figure 5-1 Argo Genetic Algorithm.. 38

Figure 5-2 Data Flow Diagram ... 39

Figure 5-3 Initialization Function Algorithm.. 39

Figure 5-4 Tournament Selection Algorithm.. 42

Figure 5-5 Roulette Wheel Selection Algorithm .. 43

Figure 5-6 Crossover Algorithm ... 44

Figure 5-7 Mutation Algorithm... 44

Figure 5-8 Convergence Testing... 46

Figure 5-9 Argo Input and Control GUI ... 46

Figure 6-1 Semi-Log Cost Plot Varying Crossover Points... 51

Figure 6-2 Semi-Log Cost Plot Varying Distribution... 53

Figure 6-3 Semi-Log Cost Plot Varying NKeep... 54

Figure 6-4 Semi-Log Cost Plot Varying Crossover Rate.. 55

Figure 6-5 Semi-Log Cost Plot Varying Mutation Rate ... 57

Figure 6-6 Semi-Log Cost Plot After 100,000 Generations ... 58

Figure 6-7 Semi-Log Cost Plot After 10000 Generations .. 59

Figure 6-8 Semi-log Cost Plot Varying Selection Method ... 63

Figure 6-9 Error Response From First Order System With Varying Time Delayed
Inputs... 65

Figure 6-10 Output Response From First Order System With Varying Time Delayed
Inputs... 65

Page x Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Figure 6-11 Semi-Log Cost Plot Varying Delayed Input Mean 67

Figure C -1 Optimum Response (Steady State Error) for the First Order Test Control
System with a PID Controller with Delayed Start and Unit Step Input......... C-6

Figure C -2 Optimum Response (Output) for the First Order Test Control System with
a PID Controller with Delayed Start and Unit Step Input C-6

Figure C -3 Optimum Response (Steady State Error) for the Second Order Test Control
System with a PID Controller and Unit Ramp Input C-9

Figure C -4 Optimum Response (Output) for the Second Order Test Control System
with a PID Controller and Unit Step Input ... C-9

Page xi Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

List of Tables

Table 6-1 Test Plan ... 48

Table 6-2 Legend for Figure 6-1... 52

Table 6-3 Legend for Figure 6-2... 53

Table 6-4 Legend for Figure 6-3... 54

Table 6-5 Legend for Figure 6-4... 55

Table 6-6 Legend for Figure 6-5... 57

Table 6-7 Results for Phase C Base Performance Testing (First Order Test System).... 58

Table 6-8 Results for Phase C Base Performance Testing (Second Order Test System)59

Table 6-9 Argo Execution Times.. 61

Table 6-10 Legend for Figure 6-8... 63

Table 6-11 Legend for Figure 6-11... 67

Table C -1 Random Delay Calculation ... C-10

Page xii Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Glossary of Genetic Terms

Allele 1. The American Heritage® Dictionary (2004) defines an

allele as “one member of a pair or series of genes that

occupy a specific position on a specific chromosome.”

Chromosome 1. The American Heritage® Stedman's Medical Dictionary

(2006) defines a chromosome as “a threadlike linear

strand of DNA and associated proteins in the nucleus of

eukaryotic cells that carries the genes and functions in the

transmission of hereditary information.”

Gene 2. The American Heritage® Stedman's Medical Dictionary

(2006) defines gene as “a hereditary unit that occupies a

specific location on a chromosome, determines a

particular characteristic in an organism by directing the

formation of a specific protein, and is capable of

replicating itself at each cell division.”

3. The American Heritage® Dictionary (2004) defines a

gene as “a hereditary unit consisting of a sequence of

DNA that occupies a specific location on a chromosome

and determines a particular characteristic in an organism.

Genes undergo mutation when their DNA sequence

changes.”

Page xiii Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Genetic Algorithm 4. Whitley (n.d.) defines Genetic Algorithms as “a family of

computational models inspired by evolution” which are

also “population-based models that uses selection and

recombination operators to generate new sample points in

a search space.”

5. Cantu-Paz (2001) defines Genetic Algorithms as

“stochastic search algorithms based on principles of

natural selection and genetics. Genetic Algorithms

attempt to find good solutions to the problem at hand by

manipulating a population of candidate solutions.”

6. Haupt and Haupt (2004) defines Genetic Algorithms as

“an optimization and search technique based on the

principles of genetics and natural selection.”

7. Chambers (1995) defines Genetic Algorithms as “a

problem-solving method that uses genetics as its model

of problem solving.”

Kinetochore 8. Merriam-Webster’s Medical Desk Dictionary (2002)

explains that the Kinetochore is “… the point or region

on a chromosome to which the spindle attaches during

mitosis” and that the Kinetochore is also called the

centromere.

9. Reproductive cells divide at a random point along the

chromosome known as the kinetochore (Haupt & Haupt

2004, sec. 1.4).

Page xiv Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Meiosis 10. The American Heritage® Dictionary (2004) defines

meiosis as “…the process of cell division in sexually

reproducing organisms that reduces the number of

chromosomes in reproductive cells from diploid to

haploid, leading to the production of gametes in animals

and spores in plants.”

11. Crossing mimics the genetic process of meiosis that

results in cell division (Haupt & Haupt 2004, sec. 1.4).

12. The process of cell division for higher [multiple cell]

organisms is called meiosis (Haupt & Haupt 2004, sec.

1.3). Whereas, cell division for simple single-celled

organisms is called mitosis (Haupt & Haupt 2004, sec.

1.3).

Mutation 13. The American Heritage® Stedman's Medical Dictionary

(2006) defines mutation as “the process by which such a

sudden structural change occurs, either through an

alteration in the nucleotide sequence of the DNA coding

for a gene or through a change in the physical

arrangement of a chromosome”.

14. The American Heritage® Dictionary (2004) defines

mutation as “a change of the DNA sequence within a

gene or chromosome of an organism resulting in the

creation of a new character or trait not found in the

parental type”.

Natural Selection 15. Natural Selection is the process that occurs in nature

whereby the strongest organisms, in terms of fitness for

their environment live to reproduce more often and

successfully, thus passing on their genetic traits to their

offspring and making their genetic traits more prolific in

the species.

Page xv Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Selection 16. Merriam-Webster’s Medical Desk Dictionary (2002)

defines selection as “a natural or artificial process that

results or tends to result in the survival and propagation

of some individuals or organisms but not of others with

the result that the inherited traits of the survivors are

perpetuated.”

17. The American Heritage® Dictionary (2004) defines

selection as “a natural or artificial process that favors or

induces survival and perpetuation of one kind of

organism over others that die or fail to produce

offspring”.

Page xvi Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 1

Introduction

1.1 Project Description

Genetic Algorithms are a series of steps for solving an optimisation problem using

genetics as the underpinning model (Chambers, 1995). More specifically, Genetic

Algorithms use the concept of Natural Selection – or survival of the fittest – to help

guide the selection of candidate solutions. In essence, Genetic Algorithms use an

iterative process of selection, recombination, mutation and evaluation in order to find

the fittest candidate solution [Haupt and Haupt (2004), Whitley (n.d.) and Chambers

(1995)]. This project is a software design-and-code project with the aim being to use

MATLAB® to develop a software application to optimise a PID Controller using a

purpose built Genetic Algorithm as the basis of the optimisation routine.

The core of the project is the research, design, coding and testing of the Genetic

Algorithm optimisation program. However, the project will then attempt to interface the

Genetic Algorithm optimisation routine with an existing rotary-wing control model

using MATLAB®. This interface will first require the conversion of the existing model

in SIMULINK® to a MATLAB® construct.

Without the use of a Genetic Algorithm, the PID Controller would rely upon

classical analytical optimisation techniques. Such techniques are best suited to problems

with only a few variables because of the need to develop a mathematical model of the

system from which the use of derivatives can be used to find the optimal solution. In

comparison, a Genetic Algorithm can handle multiple variables and only requires the

ability to develop a mathematical model to configure a set of inputs (the variables) in

order for the model to produce an optimal output (the cost).

Page 1 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Hence a PID Controller with three main variables – normally denoted as ,

and – is ideally suited to using a Genetic Algorithm to optimise the controller’s

response as it is a multi-variable system and it has well understood and proven cost

functions, such as Integral Time

0q 1q

2q

× Absolute Error (ITAE), Integral Absolute Error

(IAE) and Integral Squared Error (ISE).

1.2 Aims and Objectives

The aim of this project is to use MATLAB® to design-and -code an optimised PID

controller using a Genetic Algorithm to perform the optimisation routine.

The aim is then broken down to establish four primary and two secondary

objectives for the project:

Primary Objectives (Base Functionality)

Step 1. Research the background information relating to Genetic Algorithms.

Step 2. Design a Genetic Algorithm for implementation using a 3rd

generation program language, specifically MATLAB®, within set

specifications (refer Appendix A Project Specification).

Step 3. Code the designed Genetic Algorithm using MATLAB®.

Step 4. Test the Genetic Algorithm against specifications.

Secondary Objectives (Advanced Functionality)

Step 5. Increase the functionality of the Genetic Algorithm through the

addition of a user option to configure for Roulette Wheel based

selection.

Step 6. Model the Genetic Algorithm for use controlling a rotary-wing control

system using MATLAB® (SIMULINK® rotary-wing model to be

provided by the Project Supervisor).

Page 2 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

1.3 Dissertation Overview

This dissertation is structured into two main parts. The first part provides the

background to the project by explaining the goals and objectives along with a review of

background literature pertaining to Genetic Algorithms. The dissertation then discusses

optimisation and proposes a categorisation system in order to assist with determining

what optimisation problems are best suited to be solved by Genetic Algorithms. A brief

review of digital controllers is provided in order to set the context for the project itself

and explain the importance of finding the optimum values for the three PID parameters

– , and . This first part concludes with a detailed discussion of Genetic

Algorithms including their theory and operation.

0q 1q 2q

Chapter One – Introduction, including objectives, background literature review

and project methodology

Chapter Two – Optimisation

Chapter Three – Digital Controllers

Chapter Four – Genetic Algorithms

The second part of the dissertation describes the Genetic Algorithm designed and

coded in MATLAB® to solve the project problem – named Argo1. After describing how

the application is structured, the results of the optimised PID controller are then

presented. Finally, the dissertation summarises the project’s goals, objectives and results

before suggesting how the project could be extended for future projects.

Chapter Five – Argo

Chapter Six – Analysis & Results

Chapter Seven – Conclusion

1 The Argo was the ship, built by Argos with the help of Athena, in which Jason and the Argonauts

sailed in quest of the Golden Fleece. It was the largest ship ever built, and its crew included
Heracles, Orpheus, and a host of other heroes from all over Greece. Athena fitted the bow of the
ship with a speaking timber, cut from the sacred oaks of Dodona (Hunter, 2002).

Page 3 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

1.4 Background Literature Review

The first main task of this project involved the research of background literature

on Genetic Algorithms. Genetic Algorithms are computer based processes for which

optimisation of a problem is achieved by mimicking nature’s own process of Natural

Selection – also referred to as survival of the fittest (Buckland, 2005a). Although the

subtleties of the definition of Genetic Algorithms vary, the intent is the same across all

researched sources.

Although all sources provide ostensibly the same basic definition for a Genetic

Algorithm, there are variances associated with terminology. However, these differences

are often made with reference to slightly different concepts. For example, Haupt and

Haupt (2004, sec. 2.1) refer to Binary Genetic Algorithms. This terminology highlights

that the particular Genetic Algorithms described are first coded in binary before further

operation. Although some Genetic Algorithms require encoding for use on a computer,

the method of encoding can vary. Whitley (n.d.) provides another example of variances

in terminology by consistently referring to the Canonical Genetic Algorithm, in order to

baseline the discussion by establishing a standard or basic form of Genetic Algorithm

from which to later extend upon.

Whitley (n.d.) notes that research on Genetic Algorithms is generally first credited

to John Holland (1975), with substantial work following thereafter by students of his

such as DeJong (1975). Thus, it can be surmised that with such a short life thus far, the

field of Genetic Algorithms is still maturing. Indeed, whilst there exists substantial

background literature on the field of Genetic Algorithms itself, very few sources make

significant contributions to the area of Genetic Algorithm Applications. An important

exception is the work presented by Chambers (ed. 1995) with much research and

compilation of practical Genetic Algorithms.

In a similar manner, although many sources [such as Whitley (n.d.), AAAI (2000-

2005) and Cantu-Paz (2001)] describe and explain Genetic Algorithms, working

examples coded for practical use are minimal. Of note, Haupt and Haupt (2004),

Chambers (1995) and Buckland (2005a) are important exceptions providing many

valuable generic examples that can be used by the reader to code a Genetic Algorithm

for a practical application. Indeed, Buckland (2005a) provides one of the only complete,

but simple, examples of a coded Genetic Algorithm within the researched literature.

Page 4 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

1.4.1 Existing Research Emphasis

Interestingly, although most sources provide a description of what Genetic

Algorithms are and how they are structured, very few provide the important rationale

and justification for why a Genetic Algorithm would be used and when it would be best

applied. However, Haupt and Haupt (2004) provide a full and detailed introduction to

Genetic Algorithms. Importantly, Haupt and Haupt (2004) make the key insight that

Genetic Algorithms are used to solve optimisation problems. Whitley (n.d.) extends on

this insight noting that Genetic Algorithms are useful for solving parameterised

optimisation problems. Further, Haupt and Haupt (2004) then extend on this to

categorise all optimisation problems and identify those categories that are most suited to

Genetic Algorithms and which categories are more suited to classical optimisation

techniques.

Generically, the Genetic Algorithm is basically on an iterative process of

selection, recombination, mutation and evaluation [Haupt and Haupt (2004), Whitley

(n.d.) and Chambers (1995)]. In defining the Canonical Genetic Algorithm, Whitley

(n.d.) distinguishes between the evaluation and fitness functions; within the sub-process

of evaluation. In this respect the evaluation function is independent of evaluation of

other chromosomes, whereas fitness is defined with respect to other members of the

population. Haupt and Haupt (2004) also distinguish between the terms fitness and cost,

whereby the goal of a Genetic Algorithm is to locate a chromosome with maximum

fitness, or, minimum cost – used dependent upon the nature of the problem at hand.

One of the key benefits that Genetic Algorithms have over conventional analytical

based methods is the ability to find the global maxima/minima. This is achieved even if

the problem space contains numerous local maxima/minima. However, dependent upon

how the Genetic Algorithm is constructed, often the selection and crossover algorithms

may be too effective. The result of this can be a population with broadly similar

characteristics – the very feature that Genetic Algorithms need not to posses in order not

to converge on local maxima/minima. Wall (n.d.) proposes that this problem – referred

to as DeJong-style crowding – can be mitigated against by using a replace-most-similar

replacement scheme. Wall (n.d.) also proposes another method for maintaining diversity

within the population by using a Goldberg style fitness scaling method.

Page 5 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chambers (1995) and Haupt & Haupt (2004) present a number of ways to encode

the parameters in order to use a Genetic Algorithm to optimise the problem, such as

binary or Gray coding. However, it is Chambers (1995) that argues that a continuous

Genetic Algorithm is superior. Chambers (1995) argues that there is no need to code a

Genetic Algorithm’s parameter as the Genetic Algorithm can be designed to work with

continuous variables. By working with continuous variables a performance gain is

achieved immediately as there is no requirement to calculate a conversion from

continuous to binary. But perhaps the major advantage of using a continuous Genetic

Algorithm is the avoidance of the problem of selecting the number of bits from which to

represent the variable (Chambers, 1995). Chambers (1995) also cites Michalewicz

(1992) to further support his argument noting that his “conducted experiments indicate

that the floating point representation is faster, more consistent from run to run, and

provides a higher precision (especially with large domains where binary coding would

require prohibitively long representations).”

Genetic Algorithms are a natural optimisation technique; based on the process of

Natural Selection (Whitley, n.d.). Haupt and Haupt (2004) provide a number of other

natural optimisation techniques including simulated annealing, particle swarm

optimization, ant colony optimization and evolutionary algorithms. Chambers (1995)

goes further to provide an overview of each technique as well as cultural algorithms.

Genetic Algorithms provide a means for providing solutions to complex

optimisation problems [Whitley (n.d.), Haupt and Haupt (2004), Chambers (1995) and

Whitley (n.d.)]. However, Cantu-Paz (2001) suggests that Genetic Algorithms are likely

to only provide a reasonably good solution given a reasonable limit to the processing

time available. Indeed, dependent upon the accuracy required and the processing cost of

the evaluation function, Genetic Algorithms may even take years to find an acceptable

solution (Cantu-Paz, 2001). Reducing the processing time of Genetic Algorithms is the

motive behind Cantu-Paz (2001) work on producing a parallel implementation of a

Genetic Algorithm.

Reinforcing Cantu-Paz’s work, Garrido et al. (n.d) propose the adaptation of a

Genetic Algorithm to result in predictive control using a technique referred to as

Restricted Genetic Optimisation (RGO). Unlike conventional Genetic Algorithms, RGO

does not search the entire solution space to generate the next generation, but rather

searches only in a point neighbourhood around the best solution. RGO does perform a

Page 6 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

global search at the beginning and then local searches thereafter. Carrido et. al. (n.d.)

explains that new solutions are oriented in the direction of the steepest slope of the cost

function with solutions restricted to points within a radius proportional to uncertainty.

Importantly, Garrido et al. (n.d., ch. 1, pp. 1-3) make the key insight that

stochastic optimisation methods (such as Genetic Algorithms) may be well suited to

time varying functions with noise, such a control systems. This is because noisy systems

are non-differentiable when modelled mathematically. Practically, noisy systems are

often optimised by ignoring the impact of noise. This technique is problematic when

dynamic optimisation is desired.

1.4.2 Future Research Areas

This review has discussed the background to the major elements of Genetic

Algorithms. However, it is important to note the areas that require further research

within the field. In doing so, this review makes the observation that there is an apparent

need for further experimental efforts to measure the actual performance improvement of

Genetic Algorithms over classical analytical techniques. Although there are many

statements made by authors indicating the benefits of using a Genetic Algorithm for

optimisation problems, there needs to be research performed to measure the

improvements across the various different categories – perhaps using Haupt and

Haupt’s (2004) categorisation scheme as a basis. Also, perhaps that research would

discover the crossover point at which a Genetic Algorithm becomes more efficient

and/or successful than a classical technique. For example, experimentation could

propose the number of variables at which point the problem is more efficient to be

solved using a Genetic Algorithm. Whilst it is unlikely that a single set of parameter

values would be uncovered suitable for all problems, there would be value in

identifying a set of rules of thumb that could be applied to optimisation problems.

1.4.3 Literature Review Summary

In summary, this literature review has attempted to canvas the background

literature available on Genetic Algorithms. In doing so, this review has noted that the

field of Genetic Algorithms is still maturing, and therefore there is still much research

yet to be conducted within the field. This review has suggested that the area within the

field that most requires further research is in measuring a Genetic Algorithm’s

Page 7 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

improvements over classical optimisation techniques and identifying what types of

problems are more suited to Genetic Algorithms.

It is noted however, that there is much detailed research on the basic topic of

Genetic Algorithms including how they function and their basis on nature. Within this

body of research there are many sources that provide examples of how elements of a

Genetic Algorithm would be coded.

1.5 Project Methodology

In order to appreciate the project results, it is important to understand how the

project was practically undertaken. Thus the project methodology is explained in the

following sections.

1.5.1 Systems Approach to Software Development

A systems approach to software development was used as the overall framework

to guide the software development process (refer Figure 1-1). The systems approach to

software development consist of five main phases:

Step 1. Analysis. Analyse the problem and define the requirements.

Step 2. Design. Design the structure of program including functions and

interfaces.

Step 3. Development. Code all functions.

Step 4. Test. Test all functions and program perform to specification.

Step 5. Evaluation. Evaluate the performance of the program and confirm it

achieves overall aim.

Page 8 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Figure 1-1 Systems Approach

In practice, each of the phases can overlap and often require iterations at each

stage. The overall process can also be conducted iteratively as the results of evaluation

are rolled back into the development process.

The systems approach was used vice a traditional waterfall approach because of

the need for iteration within the model for improvement and extension (discussed

further at 1.5.4).

1.5.2 Programming Models

There are a number of different programming models available today such as

CASE tools, Integrated Development Environments and object oriented programming.

However, MATLAB® was chosen as the programming language for two main reasons:

firstly, familiarity with the tool and procedural programming by the developer; and

secondly, suitability of the program for a medium size and medium complexity

programming task.

1.5.3 Test Program

Once the software was coded the next step was the testing program. This project

adopted a simple two-phase test program.

Step 1. Unit Level. The first phase is unit level testing. Each function is tested

in isolation in order to control its environment; specifically the inputs

and interfaces. Each unit will be tested for normal function operation,

Page 9 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

operation at the limits of the function inputs, and non-normal function

inputs.

Step 2. System Level. The second phase is system level testing. The system –

Argo – will be tested as a whole; that is, all functions correctly

interfaced. The system will be tested for normal system operation,

operation at the limits of the system inputs, and non-normal system

inputs.

Practically, in order to test the program’s operation, a test control system will be

used to allow the Genetic Algorithm to optimise the values of the PID parameters. Two-

test control systems will be used – one based on a first order system and the other based

on a second order system. The Project Supervisor provided the first order test control

system. The second order test control system was a digital control system used as part

of an assignment for the University of Southern Queensland course ELE3105 Computer

Control Systems (Mackenzie, 2004).

The optimal values of the PID parameters are known for both the test control

systems (calculated using the in-built MATLAB® function fminsearch). The known

optimal values acted as the baseline from which the Genetic Algorithm’s results will be

compared against to confirm successful operation.

1.5.4 Evaluation and Extension

The evaluation phase of the systems approach to software development was

conducted to confirm that normal operation had been successfully achieved and all

specifications were met.

Once the core of the program was operational, a second iteration of the systems

approach will be conducted again to meet the secondary objectives as set out in

Appendix A Project Specification.

1.6 Summary

In summary, this project is a software design and code project with the aim being

to use MATLAB® to develop a software application to optimise a PID Controller using

a purpose built Genetic Algorithm as the basis of the optimisation routine. The core of

the project is the research, design, coding and testing of the Genetic Algorithm

Page 10 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

optimisation program. However, the project will then attempt to interface the Genetic

Algorithm optimisation routine with an existing rotary-wing control model using

MATLAB®.

In developing the necessary software, the fundamental development philosophy

used was a simple systems approach to software development. This approach was

performed initially to confirm that the basic Project Specification requirements have

been met, and was then performed again to meet the secondary objectives.

Practically, in order to test the programs operation, a test control system will be

used to allow the Genetic Algorithm to optimise the values of the PID parameters of the

test control system. The optimal values of the PID parameters are known for the test

control system and will be used as the baseline from which the Genetic Algorithm’s

results will be compared against to confirm successful operation.

Page 11 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 2

Optimisation

2.1 Introduction

Genetic Algorithms are computer based processes for which optimisation of a

problem is achieved by mimicking nature’s own process of Natural Selection – also

referred to as survival of the fittest (Buckland, 2005a). Before the concept of Genetic

Algorithms can be studied in detail, it is relevant to review the concept of optimisation

itself, and propose a simple model for optimisation that can be used to better understand

what is required of any optimisation routine.

In doing so, this chapter will first present a generic model for optimisation

problems and then compare the mathematical process of root finding with optimisation

for completeness. The chapter will then present a categorisation scheme for optimisation

problems in order to help identify which problems may be suited to using a Genetic

Algorithm. The chapter will conclude with a brief review of other natural optimisation

methods.

2.2 Optimisation Models

Expanding upon Whitley (n.d., p. 2), a generic model for optimisation can be

viewed as the configuration of a set of parameters, variables or characteristics (the

inputs) in order for the function, model or experiment (the process) to produce an

optimal cost, objective or result (the output). Figure 2-1 graphically represents this

model.

Page 12 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

ProcessInput Output

Variables
Parameters

Characteristics

Function
Model

Experiment

Cost
Result

Objective

Optimisation is the Configuration of a System to achieve the Optimal Output

Figure 2-1 Optimisation Model

Another way to interpret the process of optimisation is in terms of searching a

function’s cost surface for the optimal result – in this manner, peaks or troughs in the

cost surface represent the optimal result (Haupt & Haupt 2004, sec. 1.1.1).

Importantly, the task of optimisation seeks to achieve the best result possible for a

given system. However, dependent upon the context or environment, the optimal result

could be represented by either a maximum or a minimum result. In most contexts –

especially the case for Genetic Algorithms – optimisation to find a maximum output is

often referred to as maximising a system’s fitness, whereas optimisation to find a

minimum output is often referred to as minimising a system’s cost. Thus, fitness is the

negative of cost (Haupt & Haupt 2004, sec. 1.1.1). However, this project uses a more

generic definition whereby fitness is simply the optimal (minimum or maximum) cost

value. For Argo, fitness is evaluated in terms of minimising the cost function.

Regardless of optimising a system’s fitness or cost, a common challenge is

finding the global minima/maxima vice any number of local minima/maxima. This is

more easily visualised using the concept of a cost surface for which there may exist any

number of smaller peaks and troughs.

2.3 Root Finding

Mathematically the process of root finding is similar to the process of

optimisation. Root finding searches for the zeros of a function whereas optimisation

searches for the zeros of a function’s derivatives (Haupt & Haupt 2004, sec. 1.1.2).

Page 13 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Root finding does not suffer from the problem of calculating local

minima/maxima, as any root is as good as another – it drives the function to zero.

Unfortunately, although root finding is mathematically well understood, in

practice, most real world systems are difficult to model and solve for the roots,

especially for non-linear, multi-variable, time variant systems.

2.4 Categories of Optimisation

This paper has chosen to adopt the six categories of optimisation presented by

Haupt and Haupt (sec. 1.1.3). Those categories being:

a) Function / Trial & Error,

b) Single Variable / Multiple Variable,

c) Static / Dynamic,

d) Discrete / Continuous,

e) Constrained / Unconstrained, and

f) Minimum Seeking / Random.

Optimisation by Trial & Error simply adjusts the inputs and observes the outputs.

Changes to inputs are made based on these outputs. No understanding of the process is

applied to the problem when adjusting the inputs. Whereas optimisation by Function

sets the inputs and uses an understanding of the process in order to identify the best

output.

Multiple variable systems are more complex than single variable systems and are

more difficult to model and solve mathematically. The number of variables can be used

to express the number of dimensions within the system, for example, the number of

dimensions to a cost surface.

Dynamic systems are systems for which the output is a function of time (Haupt &

Haupt 2004, sec. 1.1.3) – static systems are time invariant.

System variables can be classified as either discrete or continuous. Continuous

variables can take an infinite number of values; whereas discrete variables can only be

Page 14 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

assigned a finite number of possible values. A common approach to optimising

continuous systems is to first discretise the system and then attempt to optimise using

digital processes.

Constrained systems are systems for which variables can only take values within

set limits. Variables in unconstrained systems have no such limits applied.

Mathematical optimisation works best on unconstrained systems.

Minimum seeking optimisation methods use a single set of inputs in order to

normally numerically find the optimal outputs. Such methods are challenged by the

problem of local minima/maxima. Unlike minimum seeking optimisation methods,

random methods use probabilistic calculations to find the variable sets on which to

perform optimisation, thus finding local minima/maxima is not as problematic.

Typically, minimum seeking methods are computationally faster than random methods.

2.5 Natural Optimisation Methods

As eluded to when discussing root finding (refer Section 2.3), most classical

optimisation methods can be described as minimum-seeking algorithms searching the

cost surface for minimum cost and hence suffer from the challenge of local minima.

Such classical methods are often calculus based and solved numerically.

More recently, natural optimisation methods have been developed in order to

address the inherent limitations of calculus-based optimisation. Haupt and Haupt (2004,

sec. 1.1.3) provide five examples of natural optimisation methods including:

a) Genetic Algorithms,

b) Simulated Annealing,

c) Particle Swarm Optimisation,

d) Ant Colony Optimisation, and

e) Evolutionary Optimisation.

Such natural optimisation methods attempt to model a real-world process based

on a system displayed in nature. This is done because it has been observed that nature is

amazingly adept at optimising many of its natural systems.

Page 15 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

These natural methods provide an intelligent search of the solution space using

statistical methods and hence do not require finding the cost function’s derivatives; thus

natural methods can handle systems with multiple, non-continuous and discrete

variables (Haupt & Haupt 2004, sec. 1.3).

2.6 Summary

In summary, this chapter has reviewed some general optimisation concepts and

presented a generic optimisation model – the configuration of a set of inputs to a

system’s process in order to find the optimal output.

The chapter briefly also outlined some common natural optimisation techniques,

including Genetic Algorithms. Such natural optimisation methods attempt to model a

real-world process based on a system displayed in nature. These natural methods

provide an intelligent search of the solution space using statistical methods. It is the use

of statistical methods vice analytical methods that often make the use of natural

methods more successful than calculus based methods for systems with multiple, non-

continuous and discrete variables.

Page 16 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 3

Digital Controllers

3.1 Introduction

Engineering is concerned with understanding and controlling the

materials and forces of nature for the benefit of humankind. Control

system engineers are concerned with understanding and controlling

segments of their environment, often called systems, in order to

provide useful economic products for society (Dorf 1992, sec. 2, p. 2).

Ignoring the economic products, this project is fundamentally concerned with the

control of inputs to systems that maintain cause-effect relationships to the outputs (Dorf

1992, sec. 2, p. 2); whereby this control is based on linear system theory.

In practice, digital controllers are used to control real-world devices and

processes. Leis (2003, Course Overview) presents the following examples of practical

digital controller examples:

a) Aviation – Flight Control Systems for controlling flight control surfaces

b) Robotics – Motion

c) Automotive – Antilock Braking Systems

d) Industrial – temperature control systems in manufacturing

In reviewing control systems, this chapter will first present an overview of both

analogue and a computer controlled systems. After providing an overview of each type

of control system, a basic algorithm for any control system will be presented. Once the

control system has been introduced, the controller itself along with its ideal

Page 17 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

characteristics will be discussed. Finally, the PID Controller will be defined and

methods for tuning the controller’s parameters outlined.

3.2 Control System Overview

3.2.1 Analogue Controller

In order to understand computer controlled systems, it is first important to briefly

review the analogue controller. The analogue control system is generally comprised of a

summing junction, a controller ()sGc , plant ()sGp , and feedback transmittance ()sH .

The analogue controller is generally modelled in the time domain with transfer

functions using the S-Domain. A general form of an analogue control system is shown

in

()t

Figure 3-1.

Gc(s) Gp(s)

H(s)

desired output error
signal

r(t)
signal

c(t)
signal

e(t)
∑

−

+

Figure 3-1 Analogue Control System (based on (ELE3105 2007, mod. 1, fig. 1.1))

Dorf (1992, sec. 1.1, p. 2) notes that feedback systems (closed-loop systems)

provide a measure of the output signal back with the desired signal in order to control

the system; thereby enabling the control system to drive the controller to eliminate error

in the desired output signal. The feedback signal is often amplified during measurement

- . ()sH

From the control loop shown in Figure 3-1, the University of Southern

Queensland’s Computer Controlled Systems’ Study Guide (2007, mod. 1) suggests that

the basic sequence of events for any analogue controlled system can then be described

as follows:

1. Generate the desired output signal ()tr at time t

2. Measure the actual output signal ()tc

Page 18 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

3. Calculate the signal error () () ()tctrte −=

4. Apply the control algorithm to generate control signal ()tm

5. Output the control signal to plant input

6. Repeat step 1

3.2.2 Computer Controller

The computer controller is similar to the analogue controller, however, as the

signals are now digitised, a number of other devices must be considered including

digital-to-analogue converters, analogue-to-digital converters and digital samplers.

Also, as the signals in a computer controlled system are discretised, the computer

controlled system is generally modelled in the discrete time domain with transfer

functions using the Z-Domain. A general form of a computer controlled system is

shown in

()k

Figure 3-2.

Z.O.H. Gp(z)

A/D

desired
signal

r(k)

output
signal
c(k)

error
signal
e(k)

∑
A/D

Gc(z)

controller
signal
m(k)

D/A

GHP(z)

+
-

Figure 3-2 Computer Controlled System (based on (ELE3l05 2007, mod. 5, fig. 5.1))

From the digital control loop shown in Figure 3-2, the basic sequence of events

for any computer controlled system can then be described in a similar manner to

analogue systems in the preceding section (refer Section 3.2.1):

1. Generate the desired output ()kr for sample k

2. Measure the actual output ()kc

3. Calculate the error () () ()kckrke −=

4. Apply the control algorithm to generate control signal ()km

5. Output the control signal to plant input

Page 19 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

6. Repeat step 1

3.2.3 Controllers

Now that the control system has been explained, the controller itself can be

discussed. Generically, Leis (2003, mod. 4) suggests that an ideal Controller has three

key characteristics:

a) Fast response,

b) Minimal overshoot, and

c) No steady-state error.

Leis (2003, mod. 4) further suggests that these characteristics can be found by the

combination of the three base Controllers:

a) Proportional Controller – control ∝ error:

i. Increase response speed;

ii. Decrease steady-state error; and

iii. Decrease system damping.

b) Integral Controller – control ∝ accumulated error:

i. Accumulates while there is an error;

ii. Forces steady-state to zero; and

iii. Decreases stability.

c) Derivative Controller – control ∝ rate-of-change-of-error:

i. Brakes the response; and

ii. Makes the response more sluggish.

The three basic controller types – proportional, derivative and integral – can be

practically combined to forma PID Controller. Figure 3-3 shows how a PID Controller

is used within the standard digital control loop.

Page 20 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

D/A

A/D

desired
signal

r(t)

controller
signal
m(t)

output
signal

c(t)

error
signal

e(t)

Control Computer

∑ ∑ ()zGHP

()teK p

()
dt

tdeKd

() tdteKi ∫

PID Controller

-
+

+

+
+

Figure 3-3 Digital Control Loop (based on (Leis 2003, mod. 1; mod.4))

Taking the standard digital control loop, the controller’s signal can then be

mathematically modelled as:

() () () ()
dt

tdeKdtteKteKtm dip ++= ∫

 EQN 3–1

Where the constants:

 timesample is
 timederivative is

constantgain is

and ,1

T
T
K

T
T

KK

d

d
p ⎟

⎠
⎞

⎜
⎝
⎛ +=

 EQN 3–2

 timesample is
integrator theof reset time is

 timederivative is
constantgain is

and ,
2

1

T
T
T
K

T
T

T
T

KK

i

d

i

d
i ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−=

 EQN 3–3

Page 21 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 timesample is
 timederivative is

constantgain is

and ,

T
T
K

T
KT

K

d

d
d =

 EQN 3–4

It can be shown that this function can be transformed to:

() () ()
()1

2
2

1
10

1 −

−−

−
++

=
z

zEzqzqq
zM EQN 3–5

Which can then be represented as a difference equation of:

122110 −−− +++= nnnnn meqeqeqm

 EQN 3–6

Where the constants:

⎟
⎠
⎞

⎜
⎝
⎛ +=

T
T

Kq d10

 EQN 3–7

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

i

d

T
T

T
T

Kq
2

11

 EQN 3–8

T
KT

q d=2

 EQN 3–9

Ultimately it is these three constants — — that will be modelled as

Genes within the Genetic Algorithm optimisation presented within this paper using

Argo.

210 q and , qq

3.3 Tuning

In order to achieve the desired performance of the controller the three PID

parameters must be tuned. University of Southern Queensland’s Computer Controlled

Systems Study Guide (2007, mod. 4.2) suggests that tuning can be performed using a

number of methods including:

a) Trial and error,

b) Experimental results,

Page 22 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

c) Heuristics (e.g. Ziegler-Nichols),

d) Analytical analysis (e.g. Steepest decent optimisation), or

e) Natural algorithms (e.g. Genetic Algorithm).

This project is fundamentally concerned with providing a Genetic Algorithm from

which to optimise the three PID parameters for a given control system.

The University of Southern Queensland’s Computer Controlled Systems Study

Guide (2007, mod. 4) also explains that tuning can be either fixed or adaptive. Fixed

tuning selects the controller parameters upon start of the control system, and they

remain as-set whilst the control system is in operation. Adaptive tuning seeks to change

the parameters during operation of the control system in order to provide optimal

control performance by addressing any changes to the control system during operation

(including environmental changes impacting the system).

GHP(z)

A/D

desired
signal
r(k)

output
signal
c(k)

error
signal
e(k)

∑
A/D

Gc(z)

controller
signal
m(k)

D/A+
-

Tuner

tuned
parameters
q0, q1 & q2

Figure 3-4 Adaptive Digital Control System

This project will provide a Genetic Algorithm for optimisation of a PID Controller

using fixed tuning only. However, the project will endeavour to explain how it could be

extended as the focus of further work to the project.

Page 23 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

3.4 Summary

In summary, this chapter presented an overview of control systems, providing

models for both analogue and computer control systems. The chapter then discussed the

ideal characteristics for any controller, and provided a mathematical model for a

controller that could achieve these requirements – the PID Controller. Finally, the

chapter briefly discussed methods of how to tune the parameters of the PID Controller,

including:

a) Trial and error,

b) Experimental results,

c) Heuristics (e.g. Ziegler-Nichols),

d) Analytical analysis (e.g. Steepest decent optimisation), or

e) Natural algorithms (e.g. Genetic Algorithm).

This project will use a Genetic Algorithm in order to provide a fixed tuning

solution to a control system.

Page 24 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 4

Genetic Algorithms

4.1 Introduction

Before the MATLAB® program Argo can be explained and its interface with a

PID Controller demonstrated, a sound understanding of Biological Genetic Algorithms

must first be gained. To achieve this goal, this Chapter will present the general

principles of Biological Genetic Algorithms including the fundamental concept of

Natural Selection. Once the concept of Natural Selection has been presented, this

Chapter will then explain the basic process that any Genetic Algorithm would follow if

applied to a real-world problem.

In order to understand the capabilities and limitations of applying a Genetic

Algorithm to an engineering optimisation problem, the Chapter concludes with a brief

discussion on the main advantages and disadvantages associated with Genetic

Algorithms.

4.2 Biological Genetic Optimisation

Genetic Algorithms are simply a series of steps for solving a problem whereby the

problem-solving method uses genetics as the basis of its model (Chambers 2005,

preface). Genetics is the branch of biology that studies how parent organisms transfer

their cellular characteristics to children. Genetic Algorithms attempt to model the

concept of Natural Selection within genetics, whereby Chambers (2005, preface)

explains that

Page 25 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

“… organisms most suited for their environment tend to live long

enough to reproduce, whereas less-suited organisms often die before

producing young or produce fewer and/or weaker young”.

Implicit in the concept of Natural Selection is the idea that the stronger organisms

live long enough to reproduce often and pass their genetic traits on to their offspring,

whereas because the weaker organisms do not produce as many offspring their genetic

traits are not as prolific within the population.

At the cellular level a gene is the basic unit of heredity (Haupt & Haupt, 2004,

sec. 1.4). The gene contains information that describes a specific trait of an organism.

Multiple genes are combined to form a chromosome – the sequence of genes within the

chromosome is often referred to as the organism’s genetic code (Haupt & Haupt 2004,

sec. 1.4). One common implementation for a Genetic Algorithm is to code

chromosomes and genes as a string of bits. Individual bits in the encoded string are

analogous to the genetic concept of an allele (Whitley n.d., p. 16).

For a Genetic Algorithm to model the real world, the first important step is that of

selection. Selection is the process where organisms are chosen to mate and produce

offspring (Haupt & Haupt 2005, sec. 2.2.5). Natural Selection often occurs in nature by

mating two parents to produce one offspring. Although Genetic Algorithms are not

necessarily limited to a set number of parents, it is common to select only two parents

for mating. Argo requires the selection of two parents for mating which in turn produces

two offspring.

Once two offspring are selected mating occurs. Mating is the process that mimics

sexual recombination of cells. Genetic Algorithms perform mating by a process of

crossing chromosomes. Crossing is a process whereby two parent cells divide and then

arrange themselves such that they recombine to form offspring that have part of their

chromosome provided by both parents. Crossing mimics the genetic process of meiosis

that results in cell division (Haupt & Haupt 2004, sec. 1.4) – reproductive cells divide at

a random point along the chromosome known as the kinetochore (Haupt & Haupt 2004,

sec. 1.4).

A rare but important part of mating is mutation. Chambers (1995, p. 48) explains

that mutation “is the process of randomly disturbing genetic information”. Mutation

manifests itself by randomly altering a gene (more specifically an allele) within the

Page 26 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

chromosome. Similar to nature, Genetic Algorithms seldomly apply the process of

mutation. Natural Selection leads to the maintenance of a strong genetic population

through heredity of strong genes. Mutation counters this, and hence is used to

reintroduce alleles/genes that may have been lost in the population after selection and

crossing but which actually make the chromosome stronger in terms of its environment.

Genetic Algorithms apply mutation in order to avoid prematurely converging to a sub-

optimum genetic solution.

4.3 Genetic Algorithms

Obviously nature applies the processes of selection, mating, crossing, mutation

and reproduction continuously whilst ever the species continues to survive. However,

Genetic Algorithms are an optimisation and search technique based on the principles of

genetics and natural selection in order to maximise genetic fitness (Haupt & Haupt

2004, sec. 1.5). Often Genetic Algorithms encode the parameters of a real-world

problem and then attempt to maximise an associated fitness function (Whitley n.d., p.

1). Thus, whereas nature applies the process of natural selection continuously, Genetic

Algorithms apply the process iteratively until a set of encoded parameters is found that

maximises the modelling function. Hence Genetic Algorithms are often used as a

function optimising technique.

The key difference between Genetic Algorithms and analytical optimisation is that

in effect Genetic Algorithms are a population-based model that searches the fitness

space to find the optimum parameters (Whitley n.d., p. 1). Whereas analytical

optimisation attempts to mathematically model the process and optimise using either

calculus or numerical techniques.

4.4 Advantages and Disadvantages

As already eluded to, Genetic Algorithms have numerous inherent advantages

over classical numerical optimisation techniques. Haupt & Haupt (2005, sec. 1.5) attest

that some of the advantages of Genetic Algorithms are that they:

a) Can handle discrete and continuous variables;

b) Don’t require the calculation of function derivates (not calculus based);

Page 27 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

c) Are suited to parallel computing (still the current means from which

personal computers are attempting to gain significant increases in

processing power);

d) Can provide a list of optimal variables;

e) Can handle complex cost surfaces (local minima/maxima do not falt the

method); and

f) Can handle large numbers of variables.

However, despite the many advantages over classical analytical optimisation

techniques, the Genetic Algorithms own process of searching a large solution space

results in a significant disadvantage. That disadvantage being a high computational cost

associated with processing and searching a large solution space. Such a computational

cost is normally manifested by a slow computational process and a high demand for

memory. Hence, classical analytical optimisation techniques still remain the best for

complex analytical functions with few variables.

4.5 Genetic Algorithm Process

4.5.1 Problem Definition and Encoding

The generic Genetic Algorithm process is shown in Figure 4-1 Biological Genetic

Algorithm Process Flow. The process commences with the definition of the problem

and the encoding of chromosomes from which to apply the Genetic Algorithm process

digitally.

This step is also important as the convergence criteria must be defined. The

convergence criterion defines the situations under which the Generic Algorithm will be

deemed completed.

Page 28 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Figure 4-1 Biological Genetic Algorithm Process Flow

4.5.2 Initialisation

Once coding of chromosomes is defined, the starting population of chromosomes

within the search space can be initialised. The process of initialisation can be tailored

dependent upon the problem and how the system operates in practise. For example,

initialisation could be achieved by setting all chromosomes to be the same sequence

with the chromosome value being arbitrarily chosen, selected at random or specifically

nominated. Regardless, this method is not normally recommended as the Genetic

Algorithms strength lies in its ability to provide and search a diverse solution space, and

this method slows the diversification of the population – and hence slows the

optimisation process in general. However, the speed of the optimisation problem could

be increased if the arbitrary value representing the chromosome was known to be near

the optimal value.

Nevertheless, if the optimal value for a chromosome is unknown, the best

initialisation method of the population is to randomly assign values to all chromosomes

within appropriate limits for the system variables that the chromosomes are modelling.

4.5.3 Decoding

The next step in the process is to decode the chromosome’s value to enable

calculation of the cost. Obviously this step depends upon the coding scheme used. For

Argo, a binary code was utilised.

Page 29 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

4.5.4 Cost

Once each chromosome has been decoded, the chromosome’s cost can then be

calculated. The cost function is normally a mathematical function, but, it could be

programmed to be derived from an experimental result or even an outcome from a game

(Haupt and Haupt, 2004, sec 2.2.1). Referring to the generic optimisation model

presented in Chapter 2 (refer Section 2.2), the cost is the system’s output derived from a

set of inputs. Further, the cost can also be considered to be the difference between the

actual output value for the given set of inputs and the optimal output (Haupt and Haupt,

2004, sec 2.2.1).

As previously discussed in Chapter 1 (refer Section 1.4.1), Whitley (n.d.)

prescribes that there is a difference between the evaluation and fitness functions within

the Genetic Algorithm. The evaluation function determines the cost independent of

evaluation of other chromosome’s cost. Whereas the fitness function determines the

cost of the chromosome relative to all other chromosome’s within the population.

Practically this could take the form of a simple sorting algorithm.

4.5.5 Selection

Once each chromosome’s cost has been calculated, the Genetic Algorithm can use

this data to determine which chromosomes should be selected to mate. The selection

function is generally the aspect that contains the most differences between Genetic

Algorithms and arguably has the greatest impact upon the Genetic Algorithm’s eventual

success.

A number of selection methods have been proposed including:

a) Ranked pairing,

b) Random pairing,

c) Weighted random pairing, and

d) Tournament Selection.

Ranked pairing is a simple selection method whereby two adjacent chromosomes

are selected from a rank sorted list, whereby ranking is based on cost. Extensions to this

method include Fit-Fit and Fit-Weak selection (Chambers, 1995, sec. 1.14.1.3 and

Page 30 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

1.14.1.4). Fit-Fit (pairing with next fittest chromosome) is highly conservative

compared to Fit-Weak (pairing with next weakest chromosome) which is highly

disruptive of the genetic information. Obviously ranked pairing does not follow nature’s

model, however, it is simple to program (Haupt and Haupt, 2004, sec. 2.2.5). This

method also has the computational penalty of requiring a sort of each population.

Random pairing is also a simple selection method whereby two chromosomes are

selected at random from the population, regardless of ranking. This method has some

similarities with nature, and, has the added advantage of not requiring the computational

cost of sorting each population.

Weighted Random selection, also known as Roulette Wheel selection, is one of

the most common selection methods used in practical Genetic Algorithms. Roulette

Wheel selection is based on its namesake whereby each slot in the wheel is weighted in

proportion to its fitness. Hence, selection is more likely for fitter chromosomes. A

random number is used to determine which chromosome on the Roulette Wheel is

selected. Weighted Random selection can be refined by using either the ranking or the

cost to calculate the probability of selection (Haupt and Haupt, 2004, sec. 2.2.5). This

method has similarities with nature, as it attempts to provide a model that mimics the

concept of Natural Selection. However, this method is computationally expensive. Also,

Chambers (1995, Sec 1.14.1.1) notes that this method is “only a moderately strong

selection technique, since fit individuals are not guaranteed to be selected for, but have a

somewhat greater chance”. Chambers (1995, Sec 1.14.1.1) also warns for practical

application that it is essential not to sort the population, as this will dramatically bias the

selection.

Haupt and Haupt (2004, sec. 2.2.5) suggests that Tournament Selection is perhaps

the method that most closely mimics nature. This method identifies a pool of candidate

chromosomes at random and then selects the fittest candidate as the first successful

parent. This method has the added advantage of not requiring the computational cost of

sorting each population.

4.5.6 Mating

The next step in the Genetic Algorithm is to mate the parent chromosomes to form

an offspring. Typically, mating uses the process of crossover whereby a crossover point

(kinetochore) is chosen and the genetic codes of each parent are then swapped around

Page 31 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

that point (Haupt and Haupt, 2004, Sec 2.2.6). Multiple crossover points can be used,

however, the greater the number of crossover points used the greater the disruption of

the genetic information in the population. Normally the crossover point itself is chosen

at random from the genetic code (Haupt and Haupt, 2004, Sec 2.2.6).

4.5.7 Mutation

Mutation is a change in a gene’s characteristics. The change occurs randomly in

order to re-introduce/introduce genetic traits not found in the population. This process is

key to a Genetic Algorithm’s ability to eventually converge on the global optimal

solution – mutation helps prematurely converging on a local minima/maxima.

However, mutation by concept is disruptive. Therefore, the mutation rate for most

Genetic Algorithms is very low, often in the order of 1% or lower. Also, it is normal

practice for most Genetic Algorithms not to allow mutation on the current fittest

chromosome.

Practically, mutation on a binary encoded Genetic Algorithm is simply a change

in an allele’s value from a ‘1’ to a ‘0’ or vice versa. Also, although most Genetic

Algorithms only allow a single mutation to occur on any given gene, they can be

tailored to allow any number of mutations. However, it is important to realise that the

more mutations possible, the more disruptive the Genetic Algorithm. In practice, this

may be a useful mechanism to help solve optimisation problems for which it is known a

priori that there are numerous local maxima/minima.

4.5.8 Convergence

The final step in any Genetic Algorithm is the test for convergence. Nature

evolves making the species stronger by adapting to its environment whilst ever the

species itself exists; whereas the purpose of a Genetic Algorithm is to eventually

converge on a single solution to an optimisation problem. Thus, as part of the initial

problem definition phase convergence criteria are normally defined, including

tolerances. Thus, at the completion of selection, mating, and mutation of the current

population a convergence test is performed. If the Genetic Algorithm is deemed to have

successfully converged on the optimal solution then the Genetic Algorithm will

terminate. If not, the Genetic Algorithm will continue again using the end-state of the

current population as the stating population for the next generation.

Page 32 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

It is also normal practice for all Genetic Algorithms to hardcode exit criteria in

addition to any convergence criteria. Typically, such exit criteria includes a limit to the

total number of generations allowed on any run of a Genetic Algorithm. As Genetic

Algorithms rely upon random number selection for their operation, some Genetic

Algorithms may take many more generations to converge upon the optimal solution, if

at all.

4.6 Summary

In summary, this Chapter discussed the basic concept of biological genetic

optimization. It was noted that Genetic Algorithms attempt to model the concept of

Natural Selection in order to solve an optimization problem. Natural Selection is a

concept whereby the stronger organisms live to reproduce and pass their genetic traits to

their offspring; whereas because the weaker organisms do not produce as many

offspring their genetic traits are not as prolific within the population. Obviously nature

applies the processes of selection, mating, crossing, mutation and reproduction

continuously whilst ever the species continues to survive. However, Genetic Algorithms

are an optimisation and search technique based on the principles of genetics and Natural

Selection in order to maximise genetic fitness (Haupt & Haupt 2004, sec. 1.5).

The chapter also briefly considered the advantages and disadvantages of using a

Genetic Algorithm as an optimization method over classical analytical optimization

techniques. Haupt & Haupt (2005, sec. 1.5) attest that some of the advantages of

Genetic Algorithms are that they:

a) Can handle discrete and continuous variables;

b) Don’t require the calculation of function derivates (are not calculus based);

c) Are suited to parallel computing (still the current means from which

personal computers are attempting to gain significant increases in

processing power);

d) Can provide a list of optimal variables;

e) Can handle complex cost surfaces (local minima/maxima do not falt the

method); and

Page 33 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

f) Can handle large numbers of variables.

However, despite the numerous advantages that Genetic Algorithms provide,

perhaps their greatest disadvantage results from the high computational cost associated

with processing and searching a large solution space.

Finally, the chapter concluded with a detailed overview of a basic Genetic

Algorithm, specifically the iterative process of:

Step 1. Problem definition and encoding

Step 2. Population initialization

Step 3. Decoding chromosome values

Step 4. Calculation of chromosome cost/fitness

Step 5. Selection of parent chromosomes

Step 6. Mating of parents to generate offspring – new chromosomes

Step 7. Mutation of the genetic code

Step 8. Convergence against pre-determined criteria for identifying optimal

solution

Step 9. Repeat step 3 if not converged.

Page 34 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 5

Argo

5.1 Introduction

Thus far the dissertation has discussed optimisation in general, the concept of

Natural Selection at length, the common Genetic Algorithm itself, and a brief overview

of digital controllers. Thus the foundation has been laid on which to present the projects

Genetic Algorithm coded in MATLABR – Argo.

This chapter will first define the problem and the method of encoding for the

binary Genetic Algorithm. Then the chapter will explain the Genetic Algorithm used

and follow-on to cover the functions that perform initialisation, cost evaluation,

selection, mating, mutation and convergence.

5.2 Definition

In relation to the optimisation model presented in Chapter 1 (refer Figure 2-1), the

genes that comprise the chromosome represent the inputs. The fitness/cost function

represents the process and the chromosome fitness values represent the outputs.

Generically, a chromosome is represented as:

Chromosome []ngggg K321 ,,=

 EQN 5–1

Where,

=ng gene number n

 EQN 5–2

And,

Page 35 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

),(
)(

3,21 nggggf
ChromosonefFitness

K=
=

 EQN 5–3

For Argo, there are three genes comprising a single chromosome. The genes

represent the parameters within the generic PID Controller function (refer Section 3.1):

122110 −−− +++= nnnnn meqeqeqm

 EQN 5–4

Where the constants represent the three genes,

10 gq =

 EQN 5–5

21 gq =

 EQN 5–6

32 gq =

 EQN 5–7

5.3 Encoding

Before each function within Argo can be described, the method of encoding

chromosomes must first be presented. Argo encodes three PID parameters – , ,

– as three genes in a chromosome. In order to meet the project specification, each gene

is 30 bits. This results in the following maximum operating limits for each parameter:

0q 1q 2q

10737418231073741823 −<<+ nq

 EQN 5–8

However, for any given value of q, a division by 10,000 will be performed to

achieve the decimal accuracy required by the project. Thus the practical operating limits

for each parameter are:

41823.1073741823.10737 −<<+ nq

 EQN 5–9

In addition, a single sign bit will be appended at the front of each gene. Hence,

each gene is constructed as:

xxxxxxxxxxfloats [.]]/[−+

 EQN 5–10

Where x can be either a:

Page 36 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

a) 1 (representing a positive number), or

b) 0 (representing a negative number).

Note, the decimal point is not actually coded – division by a 10,000 performed

procedurally. Thus each gene is actually 31 bits:

 bits bits)(magnitude bit)sign (31301 =+

 EQN 5–11

And therefore a complete chromosome is 93 bits:

 bits x genes 933 =

 EQN 5–12

Changing the project specification or method of encoding would require a

significant redesign of Argo.

The ParseBits function is used to decode a chromosome’s binary code.

5.4 Argo Genetic Algorithm

The C++® source code provided online by Buckland (2005b) was used to provide

a conceptual template for how the main routine could be structured within any practical

Genetic Algorithm (akin to the process illustrated by Figure 4-1). This conceptual

framework was used as a starting point and subsequently extensively modified and built

upon to meet the specific requirements of Argo itself.

The high-level Genetic Algorithm applied by Argo is outlined in Figure 5-1.

% set Constants
% GENE_LENGTH => 30
% CHROMO_LENGTH => 93
% POP_SIZE => 50
% FALSE => 0
% TRUE => 1
%
% set Parameters
% SELECTION => ‘Tournament’
% NUMBER_OF_CROSSOVER_POINTS => 1
% DISTRIBUTION => ‘uniform’
% MUTATION_RATE => 0.001
% MUTATIONS_PER_CHROMOSOME => 1
% MAX_GENERATIONS => 10000
% NKEEP => 0.7
% SAME_MIN => 20
%

Page 37 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

% initialise all variables
%
% initialise population using function [InitialisePopulation]
%
% calculate fitness scores for population using function
% [CalcFitness]
% keep the best chromosome Old_Best_Chromo

% while Generations < than MAX_GENERATIONS AND Stop == FALSE
%
% create Intermediate_Population
%
% loop POP_SIZE – inter_pop_size times
% select two parents using function
% [TournamentSelection]
% crossover the parents to form offspring using
% function [Crossover]
% mutate the offspring using function [Mutate]
%
% replace the parents with the new offspring
%
% keep the new best chromosome => New_Best_Chromo
% population => Intermediate_Population
%
% calculate fitness scores for new population using
% function [CalcFitness]
%
% end while loop

Figure 5-1 Argo Genetic Algorithm

To aid in understanding how Argo operates, the program’s Data Flow Diagram is

provided (refer Figure 5-2).

Page 38 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

GeneticAlgorithm
RandomDelayInitialisePopulation

Crossover

Tournament
Selection

FitnessStats

CalcFitness
RandomDelay

RouletteWheel

ParseBits

Mutate

pop_size
GENE_LENGTH

Init_Population

population
GENE_LENGTH, random_delay

Fitness_Array .

Fitness_Array

Max_Fitness_Mag,
Max_Fitness_Index,

Mean_Fitness

Fitness_Array
POP_SIZE

Selected_Chromo_Index

 Selected_Chromo_Index

Fitness_Array
POP_SIZE

child_A,
child_B

chromo_A,chromo_B,
NUMBER_OF_CROSSOVER_POINTS,

DISTRIBUTION

chromosome, MUTATION_RATE,
MUTATIONS_PER_CHROMOSONE,

 GENE_LENGTH, CHROMO_LENGTH

Mutated_Chromosome

 chromosone
GENE_LENGTH

 gene1dec,gene2dec,gene3dec,
 gene1bin,gene2bin,gene3bin

NKEEP,
SAME_MIN,
COMMENTS,
random_delay
SELECTION,
DISTRIBUTION,
MUTATION_RATE,
MAX_GENERATIONS,
CROSSOVER_RATE,
MUTATIONS_PER_CHROMOSOME,
NUMBER_OF_CROSSOVER_POINTS,

New_Best_Mag,
gene1dec,
gene2dec,
gene3dec

population:
chromosones

Max(generations)
Mean(generations)

Max(generations)
Mean(generations)

population

LEGEND:
Italics represent data

directly into ARGO

NOTE:
Key data stores

ARGO: MATLAB Program for PID Controller Optimisation Using Genetic Algorithm

ARGOR
(main MATLAB

routine)

CostFirst
RandomDelay

gene1dec;
gene2dec;
gene3dec,

random_delay

 Fitness_Array(i)

gene1dec;
gene2dec;
gene3dec,

random_delay

Best_Mag

Figure 5-2 Data Flow Diagram

5.5 Initialisation

The first function within Argo is initialisation of the starting chromosome

population – also referred to as the first generation. Initialisation is used to randomly

assign values to all chromosomes within the population. This is done to ensure that the

Genetic Algorithm starts with an initial population that has values that are spread within

the input’s operating limits.

The initialisation algorithm is provided in Figure 5-3.

% seed initial population based on:
% (i,j)=(rand*(10737.41823))*100000
% ensure all numbers are rounded down
%
% convert decimal to binary string:
% loop for each three components (genes) of the seeded matrix
% convert using dec2str
% convert using num2str
% concatenate string of three genes into a chromosome
% concatenate chromosomes to form the population
% end
%
% randomly set each sign bit of each gene (bits 1,32,63)

Figure 5-3 Initialization Function Algorithm

Page 39 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

5.6 Cost

This project uses three cost functions in order to test the system across a broad

range of applications:

a) CostFirst – models a first order control system,

b) CostSecond – models a second order system, and

c) CostFirstRandomDelay – models the same first order control system but

with a random delayed input.

Appendix C Cost Functions provides the mathematical background for calculating

the respective costs including difference equations for the output and error { ()kc and

 respectively}, as well as derivation of the difference equations to support a random

delayed input.

()ke

It is the error function that maps directly to derivation of cost through the

application of the ITAE Performance Criterion. Whereby, the cost function, , is

calculated by:

S

()∑
=

=
m

k
kekS

1

 EQN 5–13

Where,

 m is the maximum number of simulations, in this case set to 100; and

k is the discrete sample number from 1 to m .

Also, optimisation of the cost function, , is performed using a simple

implementation of the steepest descent method.

S

5.6.1 CostFirst

The CostFirst function is modelled on a transfer function for a first order

plant , such that:)(sG p

Page 40 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

()
5

5 5

+
=

−

s
esG

Ts

p

 EQN 5–14

With an assigned sample interval of,

1.0=T

 EQN 5–15

The built-in MATLAB® function fminsearch indicated that the global

minimum in terms of the error value was obtained with the parameter values:

6342.0
7336.1

2360.1

3

1

0

=
−=

=

q
q
q

 EQN 5–16

101.7713cos min =t

 EQN 5–17

5.6.2 CostSecond

The CostSecond function is modelled on a transfer function for a second order

plant , such that:)(sG p

()
()109.2

3)(2 ++
+

=
ss

ssGp

 EQN 5–18

With an assigned sample interval of,

05.0=T

 EQN 5–19

The built-in MATLAB® function fminsearch indicated that the global

minimum in terms of the error value was obtained by the parameter values:

0663.464
8283.1127

1620.878

3

1

0

=
=
=

q
q
q

 EQN 5–20

99.4803 cos min =t

 EQN 5–21

Page 41 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

5.6.3 CostFirstRandomDelay

The CostFirstRandomDelay function is modelled on the same transfer

function for the first order plant , such that:)(sG p

()
5

5 5

+
=

−

s
esG

Ts

p

 EQN 5–22

With an assigned sample interval of,

1.0=T

 EQN 5–23

The random delay input is defined by calculating a random number around a user

set mean and standard deviation values (refer Appendix C Cost Functions).

5.7 Natural Selection

5.7.1 Tournament Selection

Tournament Selection in Argo is performed by using the

TournamentSelection function. The TournamentSelection algorithm is outlined

in Figure 5-4. Argo uses a Tournament Selection algorithm to perform selection of

parent chromosomes. The TournamentSelection function simply selects three

candidate parent chromosomes at random from the current population. The function

then calculates the fitness of each chromosome. The fittest chromosome is then selected

as the parent chromosome. Argo calls the TournamentSelecton function twice in

order to select two parents – noting Argo selects two parents to produce two offspring.

% randomly select candidate_parent_1_index from POP_SIZE
% randomly select candidate_parent_2_index from POP_SIZE
% randomly select candidate_parent_3_index from POP_SIZE
%
% check that each candidate parent is unique
%
% calculate fitness of candidate_parent_1_index
% calculate fitness of candidate_parent_2_index
% calculate fitness of candidate_parent_3_index
%
% find minimum candidate parent
%
% return the minimum candidate parent as the selected parent

Figure 5-4 Tournament Selection Algorithm

Page 42 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

5.7.2 Roulette Wheel

Roulette Wheel selection in Argo is performed using the RouletteWheel

function. The RouletteWheel algorithm is outlined in Figure 5-5. Argo uses a

Roulette Wheel algorithm to perform selection of parent chromosomes. The

RoulettWheel function assigns a probability to each chromosome based on its fitness.

The function randomly picks a target value (slice point) and the population is stepped

through until the target value is reached. Argo calls the RouletteWheel function twice

in order to select two parents – noting Argo selects two parents to produce two

offspring.

% Calculate total fitness value using
% Total_Fitness=sum(abs(Fitness_Array));
%
% Assign each chromosome a prob based on fitness score using
% Prob_Array=abs(Fitness_Array)./Total_Fitness;
%
% Calculate the Cumulative Probability Array => Cum_Prob_Array
%
% Check that the total probability equals 1
%
% Randomly assign the selection point
%
% Find the chromosome by
% loop POP_SIZE number of times
% test if Selection Point < Cum_Prob_Array(index)
% set index
% end
% end
%
% Test if index not set, then assign to last chromosome
%
% Assign Selected_Chromo_Index => Index;

Figure 5-5 Roulette Wheel Selection Algorithm

5.8 Mating

Mating in Argo is performed using the Crossover function. The Crossover

algorithm is outlined in Figure 5-6. The Crossover function has two configurable

parameters. The first configurable parameter is the number of crossover points that can

be set to either one or two points. The second configurable parameter is the type of

distribution used to randomly select the crossover points. The distribution can be set as

either a uniform or normal distribution.

Page 43 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

% randomly select crossover point using
% abs(floor(CHROMO_LENGTH*normrnd(.5,.25))) or
% floor(CHROMO_LENGTH*rand);
%
% if crossover point is a sign bit (1-32-63) then
% crossover point = crossover point + 1
%
% get prefixB => (from 1:crossover point)
% get postfixA => (from crossover point+1:CHROMO_LENGTH)
% get postfixB => (from crossover point+1:CHROMO_LENGTH)
% Crossed_chromosome_A => strcat(prefixA and postfixB)
% Crossed_chromosome_B => strcat(prefixB and postfixA)

Figure 5-6 Crossover Algorithm

5.9 Mutation

Mutation in Argo is performed using the Mutate function. The Mutation

algorithm is outlined in Figure 5-7. The Mutate function has two configurable

parameters. The first configurable parameter is the mutation rate that can be set to any

number between one and zero. The mutation rate is used to test whether a single bit

(allele) will invert (mutate) or remain unchanged. The second configurable parameter is

the number of mutated bits allowed in any given chromosome.

% loop chromosome length number of times
% test if index is not a sign bit (1-32-63)
% test if rand is less than mutation rate
% invert sign of bit
% increment counter
% test if counter is less than mutation number
% end loop
% end loop
% end loop

Figure 5-7 Mutation Algorithm

5.10 Convergence

Importantly, because the optimum chromosome may never actually evolve,

convergence testing is used to test for improvement in the population rather then

stopping upon a singular evolutionary event. To achieve this Argo uses a bank of

statistics. These statistics are updated and stored each generation in order to test against

the trends of the statistics as well as the individual statistics themselves. In broad terms,

the convergence testing is used to stop the Genetic Algorithm when the fitness scores in

the population cease to improve. The statistics measured are:

Page 44 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

1. Min_array: An array of the best fitness value for each generation.

2. Min_Fitness_Mag: The magnitude of the fitness value for the fittest
chromosome in the population.

3. SameMin: The number of times (generations) the fittest chromosome has
not changed.

4. SmallerMin: A Boolean used as flag to denote if the current population
has a smaller best fitness value then the previous generation.

5. SmallerMean: A Boolean used as flag to denote if the current population
has a better mean fitness value then the previous generation.

Argo can be configured to allow only a set number of generations to evolve

without an improvement to the optimum chromosome. This is controlled via the

parameter SAME_MIN.

Argo also tests for improvement in both the minimum and mean fitness values.

The minimum value is used to track the fittest chromosome, whereas the mean is used

to track the overall fitness of the population.

To simply testing, Argo places the fittest chromosome at the first position in the

population.

The convergence algorithm used in Argo is outlined in Figure 5-8.

% test each generation test for improving fitness
% calculate the population’s fitness statistics

% test if Min_Fitness_Mag equal to the minimum of Min_array
% if yes then increment SameMin
% else if no then reset SameMin
%
% test if Min_Fitness_Mag is less than minimum of Min_array
% if yes then then SmallerMin => TRUE
% else if no then SmallerMin => FALSE
%
% test if Mean_Fitness is less than mean of Min_array
% if yes then SmallerMean => TRUE
% else if no SmallerMean => FALSE
%
% test each generation for improving fitness by
% test if SmallerMin is TRUE
% OR SmallerMean is TRUE
% OR SameMin less than SAME_MIN
% if yes continue and evolve next generation
% (improvement in fitness)
% if no then stop

Page 45 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

% (no improvement in fitness)

Figure 5-8 Convergence Testing

5.11 Argo Input And Control GUI

A basic Graphical User Interface (GUI) for input of the Genetic Algorithm’s

parameters and control the simulation process was developed in order to facilitate ease

of operation of testing. A screen shot of the basic GUI is shown at Figure 5-9. The

MATLAB® source code provided online by Land (2007) was used as a template for the

GUI framework and was subsequently extensively modified and altered to meet the

GUI requirements for Argo.

Figure 5-9 Argo Input and Control GUI

5.12 Summary

In summary, this chapter has described the structure and operation of the Genetic

Algorithm program itself – Argo. The chapter also provided a brief overview of the

Page 46 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

algorithms for the key functions that performed initialisation, cost evaluation, selection,

mating, mutation and convergence.

Page 47 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 6

Testing & Analysis Of Results

6.1 Introduction

This chapter presents the testing and analysis of test results conducted on Argo to

perform verification against the project specification. The chapter is split into two

sections to individually address the basic and advanced project specifications. For ease

of readability, the results pertaining to the performance controlling the first order test

control system with delayed inputs has been captured alongside the advanced project

specifications in section 6.3.

For ease of understanding, the test plan is illustrated in Table 6-1.

Table 6-1 Test Plan

Performance

Testing

Project

Specification

Under Test

Test

Phase

Description Of Test Performance

Baseline

(Test Control

System)

nd A Setting GA Parameters 2 Order

System

B Converging To Optimal

PID Parameters

1st & 2nd Order

Systems

Basic

Argo

Operation

Base

Specifications

(refer

Appendix A

Project

Specification,

Para 2)
C Number Of Generations

Required For Convergence

1st & 2nd Order

Systems

Page 48 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

D Speed Of Convergence 2nd Order

System

E Performance Using

Roulette Wheel Selection

2nd Order

System

F Simulated Control Of

Rotary-Wing Model

Rotary-Wing

System

Advanced

Argo

Operation

Advanced

Specifications

(refer

Appendix A

Project

Specification,

Para 5 and 6)
1stG Performance Controlling

1

 Order

System

With Delayed

Input

st Order System With A

Delayed Input

6.2 Basic Argo Operation

Performance testing of basic Argo functionality was achieved by comparison

against a known performance baseline. Test control systems were used as this baseline

(refer Section 1.5.3 and Section 5.6). Testing used both a first order and a second order

test control system in order to achieve results from a broader application.

6.2.1 First Order Test Control System

In essence, the first order test control system baseline was the optimal cost value

of:

101.7664cos min =t

Resulting from the optimal PID parameter values of:

6342.0
7337.1

2360.1

3

1

0

=
−=

=

q
q
q

6.2.2 Second Order Test Control System

Likewise, the second order test control system baseline was the optimal cost value

of:

Page 49 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

98.8382cos min =t

Resulting from the optimal PID parameter values of:

0663.464
8283.1127

1620.878

3

1

0

=
=
=

q
q
q

6.2.3 Conduct of Base Performance Testing

To analyse the base performance of the Genetic Algorithm the testing was

conducted in four phases. The phases were:

a) Phase A – Testing Genetic Algorithm parameters to aid optimising

performance (testing against second order test control system only).

b) Phase B – Testing Genetic Algorithm outputs for convergence to optimum

PID parameter values (testing against both first and second order test control

systems).

c) Phase C – Testing to identify the number of generations required by the

Genetic Algorithm to achieve optimum results (testing against both first and

second order test control systems).

d) Phase D – Testing to determine how quickly the Genetic Algorithm

converges to optimum results to identify suitability for practical applications

(testing against second order test control system only).

6.2.3.1 Base Performance Testing – Phase A

Phase A testing aims to determine which parameters are significant in optimising

the performance of the Genetic Algorithm. Further, Phase A testing will also attempt to

identify a set of parameter values which can be used with some confidence to achieve

good performance.

Only the second order test control system was used as a baseline for ‘Base

Performance Testing – Phase A’ in order to simplify test procedures. The second order

system was used as it represents a more complex control system.

Page 50 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

The parameters analysed included:

a) TEST A1 NUMBER_OF_CROSSOVER_POINTS: Number of crossover points,

b) TEST A2 DISTRIBUTION: Distribution type,

c) TEST A3 NKEEP: % of population kept each generation,

d) TEST A4 CROSSOVER_RATE: Crossover Rate, and

e) TEST A5 MUTATION_RATE: Mutation Rate.

6.2.3.1.1 Base Performance Testing – Test A1

The Genetic Algorithm performed reasonably well after only 100 generations.

Figure 6-1 shows that there is no significant advantage to optimizing the test control

system by varying either one or two crossover points.

Figure 6-1 Semi-Log Cost Plot Varying Crossover Points

Page 51 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Table 6-2 Legend for Figure 6-1

Parameter Simulation A Simulation B

Plot line Blue Stars Green Circles

Simulation Runs 10 10

Generations 100 100

Crossover Points 2 1

Distribution Normal Normal

Mutation Rate 0.001 0.001

%Keep 70% 70%

Crossover Rate 0.5 0.5

Same Minimum 20 20

6.2.3.1.2 Base Performance Testing – Test A2
The Genetic Algorithm performed reasonably well after only 100 generations.

Figure 6-2 shows that there is no significant advantage to optimizing the test control

system by varying the distribution method using either a normal or uniform random

distribution.

Page 52 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Figure 6-2 Semi-Log Cost Plot Varying Distribution

Table 6-3 Legend for Figure 6-2

Parameter Simulation A Simulation B

Plot line Blue Stars Green Circles

Simulation Runs 10 10

Generations 100 100

Crossover Points 1 1

Distribution Normal Uniform

Mutation Rate 0.001 0.001

%Keep 70% 70%

Crossover Rate 0.5 0.5

Same Minimum 20 20

Page 53 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

6.2.3.1.3 Base Performance Testing – Test A3
The Genetic Algorithm performed reasonably well after only 100 generations.

Figure 6-3 shows that varying varies the result significantly. Clearly a 90% NKEEP

NKEEP does not provide enough diversification in the population in order to allow

successful evolution. Evolution still occurs but at a retarded rate as most of the

population remains unchanged.

Figure 6-3 Semi-Log Cost Plot Varying NKeep

Table 6-4 Legend for Figure 6-3

Parameter Simulation A Simulation B

Plot line Blue Stars Green Circles

Simulation Runs 10 10

Generations 100 100

Crossover Points 1 1

Distribution Uniform Uniform

Page 54 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Mutation Rate 0.001 0.001

%Keep 70% 90%

Crossover Rate 0.5 0.5

Same Minimum 20 20

6.2.3.1.4 Base Performance Testing – Test A4

The Genetic Algorithm performed reasonably well after only 1000 generations

with a least cost value of 164, as compared to the optimum value of 98.8382. Figure

6-4 shows that there is no significant advantage to optimizing the test control system by

varying Crossover Rate.

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

X: 998
Y: 164.1

Plot Of Cost (Fitness) Each Generation

Generations

C
os

t

Figure 6-4 Semi-Log Cost Plot Varying Crossover Rate

Table 6-5 Legend for Figure 6-4

Parameter Simulation A Simulation B

Plot line Blue Stars Green Circles

Page 55 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Simulation Runs 10 10

Generations 100 100

Crossover Points 1 1

Distribution Uniform Uniform

Mutation Rate 0.001 0.001

%Keep 70% 70%

Crossover Rate 0.75 0.5

Same Minimum 20 20

6.2.3.1.5 Base Performance Testing – Test A5
The Genetic Algorithm performed reasonably well after only 1,000 generations.

Figure 6-5 shows that varying the Mutation Rate varies the result significantly. Clearly

a 10% Mutation Rate provided more diversification in the population which for this test

control system allowed it to evolve more quickly than at a 0.1% rate. Evolution still

occurs using the lower Mutation Rate but at a retarded rate because most of the

population remains unchanged. This result is somewhat surprising as many background

literature sources recommend a 0.1% Mutation Rate.

Page 56 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

0 100 200 300 400 500 600 700 800 900 1000

10
10

1020

10
30

10
40

10
50

10
60

10
70

10
80

10
90

X: 999
Y: 1.563e+013

Plot Of Cost (Fitness) Each Generation

Generations

Co
st

Figure 6-5 Semi-Log Cost Plot Varying Mutation Rate

Table 6-6 Legend for Figure 6-5

Parameter Simulation A Simulation B

Plot line Blue Stars Green Circles

Simulation Runs 10 10

Generations 1000 1000

Crossover Points 1 1

Distribution Uniform Uniform

Mutation Rate 0.001 0.1

%Keep 70% 70%

Crossover Rate 0.5 0.5

Same Minimum 20 20

Page 57 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

6.2.3.2 Base Performance Testing – Phase B

Phase B testing aims to identify how well the Genetic Algorithm actually

converges to the optimal result. To test this, Argo was simulated controlling both the

first and second order systems. Because of the different rates of convergence, Phase B

testing was run over 100,000 generations for three sample simulation runs using the first

order test control system, then it was run over 10,000 generations for ten sample

simulation runs using the second order test control system. The simulation results

associated with the first order test control system are plotted in Figure 6-6 and listed in

Table 6-7. The simulation results associated with the second order test control system

are plotted in Figure 6-7 and listed in Table 6-8.

0 1 2 3 4 5 6 7 8 9 10

x 104

100

105

1010

1015

1020

1025

1030

1035

1040

1045
Plot Of Cost (Fitness) Each Generation

Generations

C
os

t

X: 1e+005
Y: 106.2

Figure 6-6 Semi-Log Cost Plot After 100,000 Generations

Table 6-7 Results for Phase C Base Performance Testing (First Order Test System)

 First Order Control System

Simulation Minimum Cost Value

1 106.2222

Page 58 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

2 793.4189

3 133.9407

Average 106.2222

Best 344.5273

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
100

102

104

106

108

1010

1012

1014

1016

1018
Plot Of Cost (Fitness) Each Generation

Generations

Co
st

X: 9999
Y: 101.6

Figure 6-7 Semi-Log Cost Plot After 10000 Generations

Table 6-8 Results for Phase C Base Performance Testing (Second Order Test System)

 Second Order Control System

Simulation Minimum Cost Value

1 150.1698

2 119.0186

3 113.4128

Page 59 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

4 103.3038

5 686.0307

6 129.6848

7 100.4632

8 101.5698

9 1184.4477

10 151.0626

Average 283.9164

Best 100.4632

Although Argo failed to ever actually evolve the optimum set of PID parameters,

on average, Argo did produce some reasonable solutions. It should be noted that these

solutions may be suitable depending upon the actual performance requirements of the

PID in terms of its practical application. Of the three samples for the first order test

control system the best result was 106.2222. This is compared to the optimum result of

. Of the ten samples for the second order test control system the best result

was 100.4632. This is compared to the optimum result of 99.4803.

101.7664

6.2.3.3 Base Performance Testing – Phase C

Phase C testing aims to identify the number of generations required by Argo to

achieve optimal results. The data collected in Phase B was deemed sufficient for

analysis under Phase C. The data associated with the first order test control system is

graphically represented in Figure 6-6 and listed in Table 6-7. The data associated with

the second order test control system is graphically represented in Figure 6-7 and listed

in Table 6-8. These plots showed that for the majority of samples Argo achieved its best

results for the first order control system after approximately 25,000 generations, and

approximately 5,000 generations for the second order test control system.

Improvements to the population were minimal from these respective points onwards.

Page 60 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Statistically, improvement to Argo’s results would continue if allowed to create further

generations.

6.2.3.4 Base Performance Testing – Phase D

Phase D testing aimed to identify how quickly the Genetic Algorithm converges

to its optimum results to identify suitability for practical applications. To test this,

Argo’s execution time was recorded over 10,000 generations and averaged to estimate a

single generation’s execution time. The results against the second order test control

system are shown in Table 6-9. The experimental results were captured using an IntelR

PentiumRM 1.86GHz processor on a Dell D610 laptop.

Table 6-9 Argo Execution Times

Generations Execution Calculation Remarks

Time Method
(seconds)

10,000 1,740 Experimental Large sample base

1 0.1740 Interpolation Base computational cost

5,000 870 Extrapolation Hypothesised execution time for

achieving optimum results2

Thus, it can be hypothesised that for a reasonably optimum result at least 5,000

generations is required which would require a processing time of approximately 870

seconds (~13 minutes). Obviously this processing time would be vastly different for an

embedded system.

6.3 Advanced Argo Operation

6.3.1 Conduct of Advanced Performance Testing

To analyse the advanced performance of the Genetic Algorithm the testing was

conducted in three phases. The phases were:

2 The number of generations required to achieve optimum results is based on the testing results

described at Section 6.2.3.3.

Page 61 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

a) Phase E – Comparing the Genetic Algorithm’s performance using Roulette

Wheel and Tournament selection methods (testing against the second order

test control system only).

b) Phase F – Testing the rotary-wing control system using the Genetic

Algorithm as the Optimiser of PID Controller Parameters using MATLAB®.

c) Phase G – Testing the Genetic Algorithm’s performance controlling the

first order test control system with a delayed input.

6.3.1.1 Advanced Performance Testing – Phase E

Phase E testing aimed to analyse the performance of the Genetic Algorithm using

alternative selection methods. Specifically, Phase E testing aims to compare the

performance of the Genetic Algorithm using both Tournament Selection and Roulette

Wheel Selection. To test this, Argo’s performance was compared using both selection

methods over 10 simulation runs of 1,000 generations. Results against the second order

test control system are shown in Figure 6-8. The comparison clearly shows that

Tournament Selection out-performs Roulette Selection when controlling the second

order test control system. Further, noting that the optimal cost value for the second

order system is , the Tournament Selection method achieved a best cost value

of , compared with Roulette Selection method which achieved a best cost value in

excess of both after 1,000 generations.

98.8382

5.128
1110

Page 62 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
2

104

10
6

108

10
10

1012

10
14

1016

10
18

X: 997
Y: 128.5

Plot Of Cost (Fitness) Each Generation

Generations

Co
st

Figure 6-8 Semi-log Cost Plot Varying Selection Method

Table 6-10 Legend for Figure 6-8

Parameter Simulation A Simulation B

Plot line Blue Stars Green Plus Signs

Simulation Runs 10 10

Generations 1000 1000

Selection Method Roulette Wheel Selection Tournament Selection

Crossover Points 1 1

Distribution Uniform Uniform

Mutation Rate 0.1 0.1

%Keep 70% 70%

Crossover Rate 0.5 0.5

Page 63 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Same Minimum 20 20

6.3.1.2 Advanced Performance Testing – Phase F

Phase F testing was not conducted as the rotary-wing model was not integrated

and simulated. This outcome was the result of two main factors: firstly, the processing

time was considered impractically long; and secondly, the rotary-wing model was not

available in MATLAB® ®, but only in SIMULINK (conversion between the two formats

was beyond the developer’s ability at this point in the project).

6.3.1.3 Advanced Performance Testing – Phase G

Phase G testing aims to analyse the performance of the Genetic Algorithm

controlling the first order test control system with delayed inputs. Specifically, Phase E

testing aims to compare the performance of the Genetic Algorithm using five mean

delayed input values of 1,3, 6, 10 and 30 samples (noting 6 represents the optimal

delay) each with a standard deviation of 1. To test this, Argo’s performance was

compared over 3 simulation runs of 1,000 generations for each mean delayed input

value.

However, before attempting to analyse the results from the simulation runs it is of

value to examine how the system would be expected to behave in general. To provide

this understanding two graphs (refer Figure 6-9 and Figure 6-10) have been provided to

show the Output and Error response to the first order system using a short, optimum and

long delay to the input. The short delay was based on 2 samples, optimum delay based

on 6 samples and the long delay based on 10 samples.

Page 64 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

0 20 40 60 80 100 120 140 160 180 200

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (Samples)

A
m

pl
itu

de

Error Response From First Order System With Varying Time Delayed Inputs

Short Delay
Optimal Delay
Long Delay

Figure 6-9 Error Response From First Order System With Varying Time Delayed Inputs

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Output Response From First Order System With Varying Time Delayed Inputs

Time (Samples)

A
m

pl
itu

de

Short Delay
Optimal Delay
Long Delay

Figure 6-10 Output Response From First Order System With Varying Time Delayed Inputs

As can be seen from these graphs, the short delay produces an overdamped

response in both cases. Likewise, the long delay produces an underdamped response.

Both the short and optimum delays achieve steady state about the same time, whereas

the long delay takes many more samples to achieve a stead state response.

Page 65 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

It is important to then match this behaviour with the use of the ITAE Performance

Criterion. That is, the ITAE function basically sums the area under the error curve

(proportional to time) in order to provide a value representing the error. Hence, the long

delay would be expected to display the worst ITAE values as the area under the curve

for an underdamped response is the greatest.

Now that the system’s expected behaviour has been considered, the actual test

results may be analysed. The test results comparing the performance of each of the five

delayed input scenarios using the first order test control system are shown in Figure

6-11. Unfortunately, the comparison graph shows the opposite of the expected response

whereby the short delays return the greatest error and the longest delays return the least

error. This is likely to be an artificial response due to the implementation of the

costfirstrandomdelay function; most likely specific way in which the steepest

descent minimisation routine handles the delayed samples in terms of the overall sample

array. Regardless, the important behaviour to identify is that systems with delayed

inputs will vary the error significantly (and hence cost) associated with the control

system.

Page 66 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Figure 6-11 Semi-Log Cost Plot Varying Delayed Input Mean

Table 6-11 Legend for Figure 6-11

Parameter Delayed Delayed Delayed Delayed Delayed

Input A Input B Input C Input D Input E

Blue Solid

Line

Magenta

Dotted Line

Cyan Dash-

Dotted Line

Green

Dashed

Line

Plot line Red

Triangle

Point Line

Simulation

Runs

3 3 3 3 3

Generations 1000 1000 1000 1000 1000

Page 67 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Delayed

Input –

Mean

1 3 6 10 30

1 1 1 1 1 Delayed

Input –

Standard

Deviation

Selection

Method

Tournament

Selection

Tournament

Selection

Tournament

Selection

Tournament

Selection

Tournament

Selection

Crossover

Points

1 1 1 1 1

Distribution Uniform Uniform Uniform Uniform Uniform

Mutation

Rate

0.1 0.1 0.1 0.1 0.1

%Keep 70% 70% 70% 70% 70%

Crossover

Rate

0.5 0.5 0.5 0.5 0.5

Same

Minimum

20 20 20 20 20

6.3.2 Other Test Observations

At the conclusion of the test program itself, two other general observations

regarding the results have been made. The first regarding the operation of different plant

systems, and secondly the operation of the ITAE Performance Criterion within the cost

function.

As would be expected, different plant systems return significantly different cost

plots. The second order control system was able to converge to a reasonably accurate

Page 68 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

result within 5,000 – 10,000 generations; whereas the first order control system required

in the order of 100,000 generations to reach similar levels.

Secondly, the ITAE Performance Criterion used as the method for calculating the

cost value also has an impact on the cost plot. That is, the ITAE value is basically a

numerical representation of the area under the error curve (proportional to time). By its

very nature, the error is also weighted proportional to the number of integrations used

(that is, if a large number of iterations are used, the error at the beginning is weighted

less than the error at the end). Thus, poor candidate solutions may have very high cost

values; whereas good candidate solutions tend not to vary significantly. This problem is

further exacerbated for the first order control system with delayed inputs. The result of a

short input delay is an extremely large cost value (values in the order of were

achieved for inputs delayed 5 samples from the optimum delay). This result suggests

that although the ITAE Criterion may return large cost values for poor candidate

solutions, its use may be quite appropriate for dealing with delayed inputs as it places

more weight upon the steady state error (that is, the error associated with the latter

iterations).

14010

6.4 Summary

In summary, this chapter has presented and analysed the test results of the Genetic

Algorithm program itself – Argo. To do this the chapter presented the results against

both the basic and advance specifications of the project.

6.4.1 Base Performance Testing Results

In brief, Argo performed reasonably well against the basic specifications, noting

that it took significant processing time to achieve a satisfactory outcome. Typically

Argo took in excess of 25 minutes to process 10,000 generations to achieve a result only

one order of magnitude greater than the optimum value. Reasons for this significant

processing cost are discussed further in the final chapter.

In terms of the parameter settings themselves, the test results show that in general

the Genetic Algorithm itself is not sensitive to minor changes in parameter values.

Page 69 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

6.4.2 Advanced Performance Testing Results

The test results also suggested that Tournament Selection was the superior

selection method (over Roulette Wheel) for use with both test control systems.

Unfortunately, testing against the final advanced specification was not undertaken

as a MATLAB® rotary-wing control model was not able to be sourced (only a

SIMULINK® model was available).

Page 70 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Chapter 7

Conclusions

7.1 Dissertation Summary

In summary, the aim of this project was to design and code – using MATLAB® –

an optimised PID controller using a Genetic Algorithm to perform the optimisation

routine. The aim was then further broken down to establish four primary and two

secondary objectives for the project:

Primary Objectives (Base Functionality)

Step 1. Research the background information relating to Genetic Algorithms.

Step 2. Design a Genetic Algorithm for implementation using a 3rd

generation program language, specifically MATLAB®, within set

specifications (refer Appendix A Project Specification).

Step 3. Code the designed Genetic Algorithm using MATLAB®.

Step 4. Test the Genetic Algorithm against specifications.

Secondary Objectives (Advanced Functionality)

Step 5. Increase the functionality of the Genetic Algorithm through the

addition of a user option to configure for Roulette Wheel based

selection.

Page 71 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Step 6. Model the Genetic Algorithm for use controlling a rotary-wing control

system using MATLAB® (MATLAB® rotary-wing model to be

provided by the Project Supervisor).

In summarising the projects performance, this chapter is structured into three main

sections: Basic Argo Operation; Advanced Argo Operation; and Further Work. In doing

so, the paper critiques the project’s successes as well as shortcomings.

7.2 Basic Argo Operation

7.2.1 Accuracy

The results achieved by using Argo to control the test control systems indicate

that convergence to the known optimal solutions was reasonably successful. However,

under no test conditions did Argo actually converge to the optimal solution. Further, the

absolute error from the known optimal solution varied greatly with each run. Whilst the

results overall were not as positive as first hoped, the results must be viewed in

perspective of total operation. That is, Argo has an extremely large solution space

whereby each chromosome could be assigned any value in the gene’s range (refer

EQN 7–1):

823,741,073,1823,741,073,1230 +<<−⇒ nq

 EQN 7–1

When the range of each gene and then chromosome is considered along with the

population size of 50, it is perhaps not surprising that convergence to the known

optimum results were not achieved within 10,000 generations.

As the test results indicated, different plant systems also resulted in vastly

different cost plots. The second order control system was able to converge to a

reasonably accurate result within 5,000 – 10,000 generations; whereas the first order

control system required in the order of 100,000 generations to reach similar levels.

7.2.2 Processing Time

The results presented in Chapter 6 were achieved with significantly high

processing times. This penalty is undoubtedly due to the high computational cost of the

Genetic Algorithm itself. Typically, 1 simulation of 10,000 generations within a

population size of 50 took approximately 26 minutes to process (refer Table 6-10).

Page 72 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Although this significantly high processing time could be directly caused because of the

specific nature and design of Argo itself, the result does suggest that Genetic

Algorithms are not suitable to all practical applications. That is, it would still appear to

be more practical to use classical analytical optimisation techniques for problems that

can be easily solved as such; whereas Genetic Algorithm optimisation, regardless of

time penalty, may be more suitable for complex problems not able to be solved using

classical methods. Interestingly though, the long processing times associated with

Genetic Algorithms are mimicked within Nature – philosophically Genetic Algorithms

simulate the process of evolution, not revolution!

It is also noted that the application of standard coding optimisation techniques

(such as the use of registers vice variables) may result in improved processing times for

Argo. Undoubtedly, the use of MATLAB®’s inherent vectorisation ability could also be

used more effectively within Argo – especially considering the number of iterative

programming loops used and the number of array operations. It is also possible that the

use of an alternate programming language could see improvements in processing time.

Additionally, the modification of the Genetic Algorithm to employ a RGO approach

(refer Section 1.4.1) may also improve processing time by reducing the solution space.

Finally, the deployment of the Genetic Algorithm to an embedded system will also

likely improve the computational efficiency significantly.

7.2.3 Basic Parameters

The results as presented in Chapter 6 suggest that the Genetic Algorithm is not

very sensitive to minor changes in the basic parameters such as
NUMBER_OF_CROSSOVER_POINTS, DISTRIBUTION, NKEEP, CROSSOVER_RATE

or MUTATION_RATE. This indicates that no single parameter has optimum or ideal

values for operation as part of a Genetic Algorithm. There would however appear to be

a range outside of which that each parameter would cause undesirable disruption within

the Genetic Algorithm’s operation. If the Genetic Algorithm is too disruptive it may

converge at a slower rate. For example, clearly a mutation rate around 1% is ideal: less

than 1% results in retarded convergence rates; likewise greater than 1% cases too much

disruption and again results in retarded convergence rates.

Page 73 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

7.3 Advanced Argo Operation

7.3.1 Roulette Wheel Selection

The test results using the second order test control system clearly indicated that

the Tournament Selection method produced superior results to the Roulette Wheel

Selection method. This result was surprising as Roulette Wheel based selection would

appear to be the most commonly used method across the background literature

reviewed. Conceptually though, Tournament Selection does more closely mimic nature

in operation. Also, Tournament Selection does not require ranked sorting of each

generation’s population, thus avoiding a significant computational time penalty. Hence

this paper makes the recommendation to use a Tournament Selection method for

practical Genetic Algorithm applications.

7.3.2 Rotary-Wing Control Model Simulation

Unfortunately Argo was not able to be simulated controlling the rotary-wing

control model. This outcome was the result of two main factors: firstly, the processing

time was considered impractically long; and secondly, the rotary-wing control model

was not available in MATLAB®, but only in SIMULINK® (conversion between the two

formats was beyond the developer’s ability at this point in the project). Whilst the long

processing times make adaptive tuning impractical, theoretically it is still possible

(dependent upon possession of a MATLAB® based model) to integrate and simulate the

rotary-wing control model in a fixed tuning configuration (refer Section 3.3).

Interestingly, the need to employ adaptive tuning would depend upon the practical

application. It is likely that for most practical applications a well optimised fixed-tuned

configuration digital control system would suffice – the very nature of the feedback

design and PID controller should force an acceptable output signal in most situations

barring a rapidly changing operating environment.

7.4 Further Work

Following completion of the project and presentation of results, this paper makes

five suggestions for areas that could be undertaken as further work to the project.

Firstly, the opportunity clearly exists for the optimisation of the current MATLAB®

code. As suggested in Section 7.2.2 this could be further extended to alternate

Page 74 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

programming languages and development of an embedded GA optimisation system.

Secondly, the opportunity still remains for the integration and simulation of rotary-wing

model in SIMULINK®. Thirdly, in terms of simplification of operation, an improved

GUI could prove a simple and effective extension to the application (refer Section for

current interface design). The fourth opportunity would be to attempt to modify the

Genetic Algorithm to employ a RGO approach in an attempt to improve processing

time. Finally, from a purely research perspective in the field of Genetic Algorithms, the

challenge of developing a set of Rules of Thumb for the configuring of Genetic

Algorithm parameters could be undertaken. This would greatly assist developers of

practical Genetic Algorithm applications.

Finally, whilst this project has successfully designed and implemented a Genetic

Algorithm to optimise a PID Controller, it can be seen that there remains many

improvements and challenges before the technology could be practically deployed to

industry. However, as the field itself matures, it is expected that this concept could yet

see real success.

Page 75 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

List of References

AAAI 2000-2005, Genetic Algorithm: A Subtopic of Machine Learning, online,
<http://www.aaai.org/AITopics/html/genalg.hml>

AS/NZS 4360:2004 Risk Management, Australian and New Zealand Standard.

Buckland, M (2005a), AI-Junkie: Genetic Algorithms in Plain English, online,
http://wwww.ai-junkie.com/ga/intro/gat1.html

Buckland, M (2005b), Basic Genetic Algorithm – ga_tutorial.cpp,
<http://www.ai-junkie.com/ga/intro/gat3.html>

Cantu-Paz, E (2001), Genetic Algorithms and Evolutionary Computation: Efficient and
Accurate Parallel Genetic Algorithms, Second Printing, Kluwer Academic Publishers,
USA, Massachusetts.

Chambers, L (ed) 1995, Practical Handbook of Genetic Algorithm Applications, vol. 1, CRC
Press, Florida.

DeJong, K (1975), An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD
Dissertation. Department of Computer and Communication Sciences, University of
Michigan, Ann Arbor.

thDorf, RC (1992), Modern Control Systems, 6 edn, Addison-Wesley, Sydney.

ELE3105 Computer Controlled Systems: Study Guide (2007), University of Southern
Queensland, Toowoomba.

Garrido, S, Moreno, L & Salichs, MA (n.d.), Predictive Control With Restricted Genetic
Optimization, Research Paper, Universidad Carlos II de Madrid, Spain.

ndHaupt, RL & Haupt, SE 2004, Practical Genetic Algorithms, 2 edn, Wiley-Interscience,
Canada.

Holland, J 1975, Adaptation In Natural and Artificial Systems. University of Michigan Press.

Hunter, J 2002, Encyclopedia MythicaTM: Argo, online,
http://www.pantheon.org/articles/a/argo.html

Land, B 2007, BIONB441 Biological Instrumentation: Matlab Graphical User Interface
Design. Cornell University, online,
http://courses.cit.cornell.edu/bionb442/GUIdesign/GUIdemo.m

Leis, J 2003, ELE3105 Computer Controlled Systems: Course Notes, University of Southern
Queensland, Toowoomba.

Page 76 Matthew Mackenzie Q9323707

http://www.aaai.org/AITopics/html/genalg.hml
http://wwww.ai-junkie.com/ga/intro/gat1.html
http://www.ai-junkie.com/ga/intro/gat3.html
http://www.pantheon.org/articles/a/argo.html
http://courses.cit.cornell.edu/bionb442/GUIdesign/GUIdemo.m

PID Controller Optimisation Using Genetic Algorithms

Mackenzie, M (2004), ELE 3105 Computer Controlled Systems: Assignment 2, University of
Southern Queensland, Toowoomba.

Merriam-Webster's Medical Desk Dictionary, 2002, Revised Edition, Merriam-Webster, Inc.,
Dictionary.com website, viewed 27 Nov 2006,
http://dictionary.reference.com/search?db=mwmed&q=centromere

The American Heritage® Dictionary of the English Language, 2004, Fourth Edition,
Dictionary.com website, viewed 27 Nov 2006,
http://dictionary.reference.com/browse/Meiosis

The American Heritage® Stedman's Medical Dictionary, 2006, Fourth Edition,
Dictionary.com website, viewed 27 Nov 2006,
http://dictionary.reference.com/browse/Meiosis

Whitley, W (n.d.), A Genetic Algorithm Tutorial, Computer Science Department, Colorado
State University, Colorado.

Page 77 Matthew Mackenzie Q9323707

http://dictionary.reference.com/search?db=mwmed&q=centromere
http://dictionary.reference.com/browse/Meiosis
http://dictionary.reference.com/browse/Meiosis

PID Controller Optimisation Using Genetic Algorithms

Bibliography

The GP Tutorial, 1996-2003, Members of the Castles of the World Network, viewed 30 Jan 05,
<http://geneticprogramming.com/Tutorial/>

The Institution of Engineers, Australia (2000), Code of Ethics, online,
<http://www.engineersaustralia.org.au/index.cfm>

Towards Sustainable Engineering Practice: Engineering Frameworks for Sustainability,
Institution of Engineers, Australia, Canberra, 1997.

Wall, M (n.d.), Overview of Genetic Algorithms, viewed 30 Jan 05,
<http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/P001.html>

Wright, A (n.d.), Genetic Algorithms for Real Parameter Optimisation, Department of
Computer Science, University of Montana.

Page 78 Matthew Mackenzie Q9323707

http://geneticprogramming.com/Tutorial/
http://www.engineersaustralia.org.au/index.cfm
http://lancet.mit.edu/%7Embwall/presentations/IntroToGAs/P001.html

PID Controller Optimisation Using Genetic Algorithms

Appendix A

Project Specification

A signed copy of the Project Specification is provided on the following page.

Page A-1 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Page A-2 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Page A-3 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Appendix B

MATLAB® Source Code – Argo

The MATLAB code for the following functions is found in the corresponding

Annexes:

a) Annex A to

Appendix B

Argo – Main Routine

Annex B to

Appendix B

Argo – Genetic Algorithm

b)

Annex C to

Appendix B

Argo – InitialisePopulation

c)

d) Annex D to

Appendix B

Argo – TournamentSelection

e) Annex E to

Appendix B

Argo – ParseBits

Annex F to

Appendix B

Argo – RouletteWheel

f)

Page B-1 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

g) Annex G to

Appendix B

Argo – Mutate

Annex H to

Appendix B

Argo – Crossover

h)

Annex I to

Appendix B

Argo – CalcFitness

i)

Annex J to

Appendix B

Argo – CostFirst

j)

Annex K to

Appendix B

Argo – CostFirstRandomDelay

k)

Annex L to

Appendix B

Argo – CostSecond

l)

m) Annex M to

Appendix B

Argo – ARGOGUI

Page B-2 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex A to
Appendix B

Argo – Main Routine

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% ARGOR.m interfaces with the Genetic Algorithm in order to
% optimise the parameters q0,q1 and q2 for a PID controller.
%
% INPUT user can set parameters for:
% displaying comments
% selection method, either 'Tournament' or
% 'Roulette Wheel'
% simulation runs
% number of crossover points, either 1 or 2
% distribution type, either 'uniform' or 'normal'
% mutation rate
% mutations per chromosome
% maximum generations allowed
% percentage of population to keep each generation
% crossover rate
% average of random delay input
% standard deviation of random delay input
% maximum same minimum cost value allowed in
% consecutive generations
%
% OUTPUT semi log plot of the minimum costs within each
% generation
%
% Updated 18 Sep 07
%
%%5%%%

% SET CONSTANTS
TRUE=1;
FALSE=0;

% SET INFO
INFO=TRUE; %TRUE = comments ON, FALSE = comments OFF

% DISPLAY INFORMATION
if (INFO == TRUE)
 fprintf('\n\n\n\n=============ARGO===========\n');
 fprintf('Welcome to ARGO, a Genetic Algorithm for finding the
\n');
 fprintf('optimum values for parameters q0, q1 and q2 for a
PID\n');
 fprintf('controller.\n\n');
% fprintf('STATUS ... UNDER TEST\n\n');
 fprintf('STATUS ... PROTOTYPE\n\n');
% fprintf('STATUS ... OPERATIONAL\n\n');
 fprintf('Written by Matthew Mackenzie\n\n');
else
 fprintf('ARGOS\n');
end

% SET PARAMETERS

Page B-3 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

SELECTION='Tournament';
SIMULATION_RUNS=1;
NUMBER_OF_CROSSOVER_POINTS=1;
DISTRIBUTION='uniform';
MUTATION_RATE=0.1;
MUTATIONS_PER_CHROMOSOME=1;
MAX_GENERATIONS=500;
NKEEP=.7;
CROSSOVER_RATE=.5;
AVERAGE=3;
STDDEV=1;
SAME_MIN=20;
 % var for convergence testing - #times can
continue
 % with same min
COMMENTS=FALSE; %TRUE = comments ON, FALSE = comments OFF
if (INFO == TRUE)
 fprintf('SELECTION = %s\n',SELECTION);
 fprintf('SIMULATION_RUNS = %d\n',SIMULATION_RUNS);
 fprintf('NUMBER_OF_CROSSOVER_POINTS =
%d\n',NUMBER_OF_CROSSOVER_POINTS);
 fprintf('DISTRIBUTION = %s\n',DISTRIBUTION);
 fprintf('MUTATION_RATE = %f\n',MUTATION_RATE);
 fprintf('MUTATIONS_PER_CHROMOSOME =
%d\n',MUTATIONS_PER_CHROMOSOME);
 fprintf('MAX_GENERATIONS = %d\n',MAX_GENERATIONS);
 fprintf('NKEEP = %f\n',NKEEP);
 fprintf('CROSSOVER_RATE = %f\n',CROSSOVER_RATE);
 fprintf('SAME_MIN = %d\n',SAME_MIN);
 fprintf('Parameters set ...\n\n');
end

% INITIALISE VARIABLES
MATRIX=zeros(SIMULATION_RUNS,MAX_GENERATIONS-1);

for z = 1:SIMULATION_RUNS,

 fprintf('Current simulation run is = %d\n',z);
 % each simulation run must have the same random delay for the
control
 % system in order to compare results against a common baseline
 Random_Delay=round(AVERAGE+STDDEV.*randn);
 % CALL GENETIC ALGORITHM FUNCTION

[New_Best_Mag,gene1dec,gene2dec,gene3dec]=GeneticAlgorithmRandomDelays
(SELECTION,NUMBER_OF_CROSSOVER_POINTS,DISTRIBUTION,MUTATION_RATE,MUTAT
IONS_PER_CHROMOSOME,MAX_GENERATIONS,NKEEP,CROSSOVER_RATE,SAME_MIN,COMM
ENTS,Random_Delay);

 % OUTPUT SUMMARY
 fprintf('\n========OUTPUT SUMMARY======\n');
 fprintf('q0 %g\n q1 %g\n q2 %g \n\n',gene1dec,gene2dec,gene3dec);
 figure(1);
 semilogy(New_Best_Mag,'b*-');
 fprintf('\n========END OF SUMMARY=======\n\n\n\n\n');
 title('\bfPlot Of Cost (Fitness) Each Generation');
 grid on;
 hold on;
 xlabel('\bfGenerations');
 ylabel('\bfCost');

 % matrix of minimum costs each generation and each simulation
 % run kept for data collection purposes

Page B-4 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 MATRIX(z,:)=New_Best_Mag;

end

% MATRIX

Page B-5 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex B to
Appendix B

Argo – Genetic Algorithm Random Delay

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% GeneticAlgorithmRandomDelays.m performs Genetic Algorithm
% selection to optimise the parameters q0,q1 and q2 for a
% PID controller.
%
% The C++® source code provided online by:
%
% Buckland, M (2005b) Basic Genetic Algorithm – ga_tutorial.cpp,
% <http://www.ai-junkie.com/ga/intro/gat3.html>
%
% was used to provide a conceptual template for how the main
% routine could be structured within any practical Genetic
% Algorithm. This conceptual framework was used as a starting
% point and subsequently extensively modified and built upon to
% meet the specific requirements of Argo itself.
%
% INPUT SELECTION: selection method, either 'Tournament'
% or 'Roulette Wheel'
% NUMBER_OF_CROSSOVER_POINTS: the number of crossover
% points to be used during mating
% DISTRIBUTION: the random distribution function, either
% 'normal' or 'uniform'
% MUTATION_RATE: the rate of mutation for allele
% MUTATIONS_PER_CHROMOSOME: the maximum number of
% mutations allowed on a single chromosome
% following mating
% MAX_GENERATIONS: the maximum generations allowed
% before termination of the program
% should convergence not occur
% NKEEP: the percentage of the population kept
% each generation
% CROSSOVER_RATE: the liklihood of crossing over
% genetic codes between mating parents
% SAME_MIN: the maximum number of times no improvement
% between generations can occur before the
% genetic algorithm will terminate
% COMMENTS: boolean to denote if comments are on or off
% random_delay: the random delay to input
%
% Updated 18 Sep 07
%
%%5%%%

function
[New_Best_Mag,gene1dec,gene2dec,gene3dec]=GeneticAlgorithmRandomDelays
(SELECTION,NUMBER_OF_CROSSOVER_POINTS,DISTRIBUTION,MUTATION_RATE,MUTAT
IONS_PER_CHROMOSOME,MAX_GENERATIONS,NKEEP,CROSSOVER_RATE,SAME_MIN,COMM
ENTS,random_delay)

% Set Constants
GENE_LENGTH=30;
CHROMO_LENGTH=93;

Page B-6 Matthew Mackenzie Q9323707

http://www.ai-junkie.com/ga/intro/gat3.html

PID Controller Optimisation Using Genetic Algorithms

POP_SIZE=50;
FALSE=0;
TRUE=1;
if (COMMENTS == TRUE)
 fprintf('GENE_LENGTH = %d\n',GENE_LENGTH);
 fprintf('CHROMO_LENGTH = %d\n',CHROMO_LENGTH);
 fprintf('POP_SIZE = %d\n',POP_SIZE);
 fprintf('FALSE = %d\n',FALSE);
 fprintf('TRUE = %d\n',TRUE);
 fprintf('Constants set ...\n\n');
end

% Initialise Variables
Generations=2; % index into which generation current operation is on,
 % the first generation is the initialised
generation
Min_array=zeros(1,MAX_GENERATIONS); % global statistic for convergence
testing
Mean_array=zeros(1,MAX_GENERATIONS); % global statistic for
convergence testing
Stop=FALSE; % set main loop to start for begining of first run
SmallerMin=TRUE;
SmallerMean=TRUE;
SameMin=0;
SameMean=0;
New_Best_Mag=0;
New_Best_Index=0;
New_Best_Chromo=0;
Old_Best_Mag=0;
Old_Best_Index=0;
Old_Best_Chromo=0;
Fitness_Matrix=zeros(POP_SIZE);
if (COMMENTS == TRUE)
 fprintf('Variables initialised ...\n\n');
end

% INITIALISE POPULATION
[population]=InitialisePopulation(POP_SIZE,GENE_LENGTH);
if (COMMENTS == TRUE)
 fprintf('Population initialised ...\n\n');
 fprintf('Commencing main routine, please wait ...\n\n');
end

% CALCULATE FIRST FITNESS VALUES
[Fitness_Array]=CalcFitnessRandomDelay(population,GENE_LENGTH,random_d
elay);
[Min_Fitness_Mag,Min_Fitness_Index,Mean_Fitness]=FitnessStats(Fitness_
Array);
Min_array(1)=Min_Fitness_Mag; % store pop fitness statistics to
Mean_array(1)=Mean_Fitness; % use for convergence testing
Fitness_Matrix=[Fitness_Matrix;Fitness_Array];

Old_Best_Index=Min_Fitness_Index;
Old_Best_Mag=Min_Fitness_Mag;
Old_Best_Chromo=population(Min_Fitness_Index,:);

while ((Generations < (MAX_GENERATIONS)) & (Stop == FALSE))

 % CREATE INTERMEDIATE POPULATION
 inter_pop_size=floor(POP_SIZE*NKEEP);
 IntermediatePopulation=population;

Page B-7 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 for i=1:(POP_SIZE - inter_pop_size) % loop to replace non-surviving
chromosomes

 % SELECTION
 if (strcmpi(SELECTION,'Tournament')==1)

Selected_Chromo_Index_A=TournamentSelection(POP_SIZE,Fitness_Array);

Selected_Chromo_Index_B=TournamentSelection(POP_SIZE,Fitness_Array);
 elseif (strcmpi(SELECTION,'Roulette')==1)

Selected_Chromo_Index_A=RouletteWheel(POP_SIZE,Fitness_Array);

Selected_Chromo_Index_B=RouletteWheel(POP_SIZE,Fitness_Array);
 end
 chromo_A=IntermediatePopulation(Selected_Chromo_Index_A,:);
 chromo_B=IntermediatePopulation(Selected_Chromo_Index_B,:);

 % CROSSOVER
 if (rand < CROSSOVER_RATE)

[child_A,child_B]=Crossover(chromo_A,chromo_B,NUMBER_OF_CROSSOVER_POIN
TS,DISTRIBUTION);
 else
 child_A=chromo_A;
 child_B=chromo_B;
 end

 % MUTATION

mutant_child_A=Mutate(child_A,MUTATION_RATE,MUTATIONS_PER_CHROMOSOME,G
ENE_LENGTH,CHROMO_LENGTH);

mutant_child_B=Mutate(child_B,MUTATION_RATE,MUTATIONS_PER_CHROMOSOME,G
ENE_LENGTH,CHROMO_LENGTH);

 % REPLACE SELECTED CHROMOSOMES WITH CROSSEDOVER AND MUTATED
CHROMOSOMES
 % replacing provides greater efficiency compared to other GAs
that
 % require sorting by fitness each generation

IntermediatePopulation(Selected_Chromo_Index_A,:)=mutant_child_A;

IntermediatePopulation(Selected_Chromo_Index_B,:)=mutant_child_B;

 i=i+1; % genetic algorithm works on pairs
 end

 % KEEP BEST CHROMOSOME FROM CURRENT GENERATION
 Old_Best_Chromo=population(1,:);

[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(Old_
Best_Chromo,GENE_LENGTH);

Old_Best_Mag=CostFirstRandomDelay([gene1dec;gene2dec;gene3dec],random_
delay);

 % INTERMEDIATE POPULATION IS NOW THE NEW POPULATION
 population=IntermediatePopulation;

 % CALCULATE NEW FITNESS

Page B-8 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

[Fitness_Array]=CalcFitnessRandomDelay(population,GENE_LENGTH,random_d
elay);

[Min_Fitness_Mag,Min_Fitness_Index,Mean_Fitness]=FitnessStats(Fitness_
Array);

 % KEEP THE FITEST AND PUT BACK TO TOP!
 % first test which chromosome is best -> new or old?
 if (Min_Fitness_Mag < Old_Best_Mag)
 New_Best_Chromo=population(Min_Fitness_Index,:);
 else
 New_Best_Chromo=Old_Best_Chromo;
 end
 % put best chromosome at top of population
 population(1,:)=New_Best_Chromo;

 % BELOW FOR TESTING ONLY

[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(New_
Best_Chromo,GENE_LENGTH);

New_Best_Mag(Generations)=CostFirstRandomDelay([gene1dec;gene2dec;gene
3dec],random_delay);
 % TESTING ONLY FOR ABOVE

 % STORE FITNESS STATISTICS
 Min_array(Generations)=Min_Fitness_Mag; % store pop fitness
statistics to
 Mean_array(Generations)=Mean_Fitness; % use for convergence
testing
 Fitness_Matrix=[Fitness_Matrix;Fitness_Array];

 % TEST FOR CONVERGENCE
 % test for increasing trend in fitness scores
 if (Min_Fitness_Mag == min(Min_array))
 SameMin=SameMin+1;
 else
 SameMin=0;
 end
 if (Min_Fitness_Mag < min(Min_array))
 SmallerMin=TRUE;
 else
 SmallerMin=FALSE;
 end
 if (Mean_Fitness < mean(Mean_array))
 SmallerMean=TRUE;
 else
 SmallerMean=FALSE;
 end

 if ((SmallerMin==TRUE) | (SmallerMean==TRUE) | (SameMin<SAME_MIN))
 Stop = FALSE; % improvement in population fitness therefore
continue
 % fprintf('CONTINUE GA\n');
 % display note to user every 100 generations just to show that
 % GA is still working
 remainder=mod(Generations,100);
 if remainder==0
 if (COMMENTS == TRUE)
 fprintf('No convergence after %d generations, please
wait\n',Generations);

Page B-9 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 end
 end
 else
 Stop = TRUE;
 if (COMMENTS == TRUE)
 fprintf('STOP GA\n');
 fprintf('Generation %d \n\n',Generations);
 end
 end

 if (COMMENTS == TRUE)
 fprintf('Generation %d \n\n',Generations-1);
 end
 Generations=Generations+1; % increment counter of generations
end

Page B-10 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex C to
Appendix B

Argo – InitialisePopulation

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% InitialisePopulation.m initialises the population of
% chromsomes by selecting random values for q0,q1 and q2.
%
% INPUT pop_size: the total number of chromsomes
% within the population
% GENE_LENGTH: the constant that defines the number
% of bits in a gene
%
% OUTPUT Init_Population: an array of randomised
% chromosomes in binary string format
% whereby the array size is [pop_size,93]
%
% Updated 18 Sep 07
%
%%5%%%

function [Init_Population]=InitialisePopulation(pop_size,GENE_LENGTH)

% Initialise Seeded_Population matrix
Seeded_Population=zeros(3,pop_size); % 3 rows for q values
Converted_Population='';

% Populate Seeded_Population matrix
for i=1:3
 for j=1:pop_size
 Seeded_Population(i,j)=(rand*(10737.41823))*100000;
 d en
end
Seeded_Population=floor(Seeded_Population);

% Convert decimal to binary string
for i=1:pop_size
 % convert all gene1
 first=Seeded_Population(1,i);
 first=dec2bin(first,(GENE_LENGTH+1)); % leave room for sign bit
 first=num2str(first);
 % convert all gene2
 second=Seeded_Population(2,i);
 second=dec2bin(second,(GENE_LENGTH+1)); % leave room for sign bit
 second=num2str(second);
 % convert all gene3
 third=Seeded_Population(2,i);
 third=dec2bin(third,(GENE_LENGTH+1)); % leave room for sign bit
 third=num2str(third);

 chromo=strcat(first,second,third); % creat chromosome from 3 genes

 Converted_Population=strvcat(Converted_Population,chromo);
 % add the chromosome to the population

Page B-11 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

end

% Randomly set first bit i.e. the sign bit
for i=1:pop_size
 sign=round(rand);
 if (sign == 1) % positive
 Converted_Population(i,1)='1';
 else % negative
 Converted_Population(i,1)='0';
 end
 sign=round(rand);
 if (sign == 1) % positive
 Converted_Population(i,32)='1';
 else % negative
 Converted_Population(i,32)='0';
 end
 sign=round(rand);
 if (sign == 1) % positive
 Converted_Population(i,63)='1';
 else % negative
 Converted_Population(i,63)='0';
 end
end

Init_Population=Converted_Population;

%%
%
% Structured English
%
% seed initial population based on:
% (i,j)=(rand*(10737.41823))*100000
% ensure all numbers are rounded down
%
% convert decimal to binary string:
% loop for each three componenets (genes) of the seeded matrix
% convert using dec2str
% convert using num2str
% concatenate string of three genes into a chromosome
% concatenate each chromosome to others to form population
% end
%
% randomly set each sign bit of each gene (bits 1,32,3)
%
%%5%%%

Page B-12 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex D to
Appendix B

Argo – TournamentSelection

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% TournamentSelection.m selects a chromosome from the population
% using "Tournament" selection. That is, it selects at random
% 3 candidate parents and the candidate with the best
% fitness (i.e. least cost) survives to be a parent.
%
% INPUT Fitness_Array: array of fitness values
% POP_SIZE: constant defining the size of population
%
% OUTPUT parent: index into population of the
% chromosome selected to be a parent
%
% Updated 17 Sep 07
%
%%5%%%

function [parent]=TournamentSelection(POP_SIZE,Fitness_Array)

%initialise variables
candidate_parent_1_index=1;
candidate_parent_2_index=1;
candidate_parent_3_index=1;
parent=0 ;
FALSE=0;
TRUE=1;
same=TRUE;

% select 3 random parent candidates from population,
% repeat random selection if any of the three parents are
% the same
while (same == TRUE)
 candidate_parent_1_index=ceil(rand*POP_SIZE);
 candidate_parent_2_index=ceil(rand*POP_SIZE);
 candidate_parent_3_index=ceil(rand*POP_SIZE);
 same=FALSE;
 if (candidate_parent_1_index == candidate_parent_2_index)
 same = TRUE;
 end
 if (candidate_parent_1_index == candidate_parent_3_index)
 same = TRUE;
 end
 if (candidate_parent_2_index == candidate_parent_3_index)
 same = TRUE;
 end
end

% calculate fitness of the 3 parent candidates
[candidate_parent_1_fitness]=Fitness_Array(candidate_parent_1_index);
[candidate_parent_2_fitness]=Fitness_Array(candidate_parent_2_index);
[candidate_parent_3_fitness]=Fitness_Array(candidate_parent_3_index);

Page B-13 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

% determine fitest candidate parent
a=[candidate_parent_1_fitness,candidate_parent_2_fitness,candidate_par
ent_3_fitness];
[minimum,index]=min(a);

if (index == 1)
 parent=candidate_parent_1_index;
end
if (index == 2)
 parent=candidate_parent_2_index;
end
if (index == 3)
 parent=candidate_parent_3_index;
end

Page B-14 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex E to
Appendix B

Argo – ParseBits

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% ParseBits.m will convert the binary chromosome string into an
% array of genes to be returned in decimal format
%
% INPUT chromosome: string (e.g. '00101010101010101010101010')
% GENE_LENGTH: the constant defining the number of
% bits in a gene
%
% OUTPUT gene1: decimal (e.g. 1023.1023)
% gene2: decimal (e.g. -234.333)
% gene3: decimal (e.g. 234.333)
% gene1: binary (e.g. '00101010101010101010101010')
% gene2: binary (e.g. '00101010101010101010101010')
% gene3: binary (e.g. '00101010101010101010101010')
%
% Updated 18 Sep 07
%
%%5%%%

function
[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(chro
mosome,GENE_LENGTH)

% remember chromosome is 93 bits long
% comprised of 3 x (1 + 30) bit encoded gene numbers
% in the format (+/-)xxxxx(.)xxxxx
% provided values between +10737.41823 < q < -10737.41823

% determine the sign of the gene
sign1=chromosome(1);
sign2=chromosome(32);
sign3=chromosome(63);

% get gene values in binary string format
gene1=chromosome((2+0*GENE_LENGTH):(1+1*GENE_LENGTH));
gene2=chromosome((3+1*GENE_LENGTH):(2+2*GENE_LENGTH));
gene3=chromosome((4+2*GENE_LENGTH):(3+3*GENE_LENGTH));

% return the binary string format values for each gene
gene1bin=gene1;
gene2bin=gene2;
gene3bin=gene3;

% convert binary string value to decimal value
gene1=bin2dec(gene1);
gene2=bin2dec(gene2);
gene3=bin2dec(gene3);

% divide by 100,000 to get decimal accuracy
gene1=gene1/100000;

Page B-15 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

gene2=gene2/100000;
gene3=gene3/100000;

% correct the sign of the gene decimal and binary values
if sign1 == '0'
 gene1dec=gene1*(-1);
 gene1bin=strcat('0',gene1bin);
else
 gene1bin=strcat('1',gene1bin);
 gene1dec=gene1;
end

if sign2 == '0'
 gene2dec=gene2*(-1);
 gene2bin=strcat('0',gene2bin);
else
 gene2bin=strcat('1',gene2bin);
 gene2dec=gene2;
end

if sign3 == '0'
 gene3dec=gene3*(-1);
 gene3bin=strcat('0',gene3bin);
else
 gene3bin=strcat('1 ',gene3bin);
 gene3dec=gene3;
end

Page B-16 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex F to
Appendix B

Argo – RouletteWheel

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% RouletteWheel.m selects a chromosome from the population
% using "Roulette Wheel" selection. That is, a chromosome
% fitness is propotional to its chance of selection.
%
% INPUT Fitness_Array: array of fitness values
% POP_SIZE: constant defining the number of
% chromosomes in a population
% OUTPUT Selected_Chromo_Index: index into the population
% array that points to the selected
% chromosome
%
% Updated 17 Sep 07
%
%%5%%%

function [Selected_Chromo_Index]=RouletteWheel(POP_SIZE,Fitness_Array)

% Calculate total fitness value
Total_Fitness=sum(abs(Fitness_Array)); % In terms of probability,
 % absolute values only

% Assign each chromosome a prob based on fitness score
Prob_Array=abs(Fitness_Array)./Total_Fitness; % To ensure total
probability
 % equals one, absolute
values
 % only
Cum_Prob_Array=cumsum(Prob_Array); % Create a cummulative probability
array

% Check that the total probability = 1
Total_Prob=sum(Prob_Array);
error=1-Total_Prob;
if (abs(error) > eps)
 fprintf('ERROR: Total Probability does NOT equal 1, but
%f\n',Total_Prob);
end

% Assign the selection point ('slice') randomly
Selection_Point=rand;

% Find the chromosome in the population chosen through
% Roulette Wheel selection
Index=0;
for i=1:POP_SIZE
 if (Selection_Point < Cum_Prob_Array(i))
 Index=i;
 break;
 end

Page B-17 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

end

if (Index == 0) % index not set above
 Index = POP_SIZE; % manually set index to last index
end

Selected_Chromo_Index=Index;

Page B-18 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex G to
Appendix B

Argo – Mutate

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% Mutate.m mutates a chromosome's bits dependent upon the
% specified mutation rate.
%
% INPUT chromosome: binary string 93 bits long (e.g.
'0010101')
% defining the chromosome that may
% or may not become mutated
% mutation_rate: decimal value between 1 and 0
% defining the liklihood of mutation
% mutation_number: the maximum number of mutations
% allowed per chromosome, either 1 or 2
%
% OUTPUT Mutated_Chromosome: binary string 93 bits long
% (e.g. '0010101') with individual
% bits possibly inverted (mutated)
% dependent upon mutation_rate
%
% Updated 18 Sep 07
%
%%5%%%

function
Mutated_Chromosome=Mutate(chromosome,mutation_rate,mutation_number,GEN
E_LENGTH,CHROMO_LENGTH)

% remember chromosome is 93 bits long
% comprised of 3 x (1 + 30) bit encoded gene numbers
% in the format (+/-)xxxxx(.)xxxxx
% provided values between +10737.41823 < q < -10737.41823

counter=0;

% mutate chromosome
for i=1:(CHROMO_LENGTH)
 if ((rand < mutation_rate) & (i ~= 1) & (i ~= 31) & (i ~= 62))
 % ensure the sign bit is not mutated as this will
 % drastically change the solution
 if chromosome(i) == '1'
 chromosome(i) = '0';
 counter=counter+1;
 %fprintf('MUTATION %d counter is %d mutation_number is
%d\n',i,counter,mutation_number);
 if counter == mutation_number
 break; % only allow mutation_number mutated allele per
chromosome
 end
 elseif chromosome(i) == '0'
 chromosome(i) = '1';
 counter=counter+1;

Page B-19 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 %fprintf('MUTATION %d counter is %d mutation_number is
%d\n',i,counter,mutation_number);
 if counter == mutation_number
 break; % only allow mutation_number mutated allele per
chromosome
 d en
 end
 end
end

Mutated_Chromosome=chromosome;

%%
%
% Structured English
%
% loop for chromosome size
% test if rand less than mutation_rate and is not a sign bit
% invert sign of allele
% increment counter
% test if counter is equal to mutation_number
% break
% end
% end
% end
%
%%5%%%

Page B-20 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex H to
Appendix B

Argo – Crossover

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% Crossover.m performs single or double point crossover for a
% chromosome. The algorithm uses either normal or uniform
% distributions to select random numbers to determine the
% crossover point.
%
% INPUT chromosome_A: parent binary string 93 bits long
% (e.g. '0010101')
% chromosome_B: parent binary string 93 bits long
% (e.g. '0010101')
% point: the number of crossover points as an
% integer, either 1 or 2
% distribution: random distribution function, either
'normal'
% 'uniform'
%
% OUTPUT Crossed_chromosome_A: child binary string 93 bits long
% (e.g. '0010101') with crossover applied
% Crossed_chromosome_B: child binary string 93 bits long
% (e.g. '0010101') with crossover applied
%
% Updated 18 Nov 07
%
%%5%%%

function
[Crossed_chromosome_A,Crossed_chromosome_B]=Crossover(chromosome_A,chr
omosome_B,point,distribution)

% GENE_LENGTH=30; not required
CHROMO_LENGTH=length(chromosome_A); % should be 93;
cross_point=0;
cross_point_1=0;
cross_point_2=0;

% DEFAULT to single point crossover

if (point == 2) % double point crossover
 %fprintf('double point\n');
 %fprintf('distribution is %s \n',distribution);
 while (cross_point_1<1 | cross_point_1>93 | cross_point_2<1 |
cross_point_2>93)
 if (strcmpi(distribution,'normal')==1)
 % find crossover point based on random number from a normal
distribution
 cross_point_1 = abs(floor(CHROMO_LENGTH*normrnd(.5,.25)));
 cross_point_2 = abs(floor(CHROMO_LENGTH*normrnd(.5,.25)));
 end
 if (strcmpi(distribution,'uniform')==1)
 % find crossover point based on random number from a uniform
distribution

Page B-21 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 cross_point_1 = floor(CHROMO_LENGTH*rand);
 cross_point_2 = floor(CHROMO_LENGTH*rand);
 end
 if (cross_point_1 > cross_point_2) % sort the cross points
 temp = cross_point_1;
 cross_point_1 = cross_point_2;
 cross_point_2 = temp;
 end
 end
 if ((cross_point_1 == 1) | (cross_point_1 == 32) | (cross_point_1
== 63))
 cross_point_1 = cross_point_1 +1; % move crossover point off the
sign value
 end
 if ((cross_point_2 == 1) | (cross_point_2 == 32) | (cross_point_2
== 63))
 cross_point_2 = cross_point_2 +1; % move crossover point off the
sign value
 end
 %fprintf('crossover point one is %d crossover point two is
%d\n',cross_point_1,cross_point_2);
 % perform first point crossover on chromosomes
 prefixA=chromosome_A(1:cross_point_1);
 prefixB=chromosome_B(1:cross_point_1);
 postfixA=chromosome_A((cross_point_1+1):CHROMO_LENGTH);
 postfixB=chromosome_B((cross_point_1+1):CHROMO_LENGTH);
 Crossed_chromosome_A=strcat(prefixA,postfixB);
 Crossed_chromosome_B=strcat(prefixB,postfixA);

 % perform second point crossover on chromosomes
 prefixA=Crossed_chromosome_A(1:cross_point_2);
 prefixB=Crossed_chromosome_B(1:cross_point_2);
 postfixA=Crossed_chromosome_A((cross_point_2+1):CHROMO_LENGTH);
 postfixB=Crossed_chromosome_B((cross_point_2+1):CHROMO_LENGTH);
 Crossed_chromosome_A=strcat(prefixA,postfixB);
 Crossed_chromosome_B=strcat(prefixB,postfixA);
 return;
end

if (point == 1) % single point crossover
 %fprintf('single point\n');
 %fprintf('distribution is %s \n',distribution);
 while (cross_point<1 | cross_point >93)
 if (strcmpi(distribution,'normal')==1)
 % find crossover point based on random number from a normal
distribution
 cross_point = abs(floor(CHROMO_LENGTH*normrnd(.5,.25)));
 end
 if (strcmpi(distribution,'uniform')==1)
 % find crossover point based on random number from a uniform
distribution
 cross_point = floor(CHROMO_LENGTH*rand);
 end
 if ((cross_point == 1) | (cross_point == 32) | (cross_point ==
63))
 cross_point = cross_point +1; % move crossover point off the
sign value
 end
 end
 % fprintf('crossover point is %d\n',cross_point);
 % perform single point crossover on chromosomes
 prefixA=chromosome_A(1:cross_point);
 prefixB=chromosome_B(1:cross_point);

Page B-22 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 postfixA=chromosome_A((cross_point+1):CHROMO_LENGTH);
 postfixB=chromosome_B((cross_point+1):CHROMO_LENGTH);
 Crossed_chromosome_A=strcat(prefixA,postfixB);
 Crossed_chromosome_B=strcat(prefixB,postfixA);
 return;
end

Page B-23 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex I to
Appendix B

Argo – CalcFitnessRandomDelay

%%
%
% Name: Matthew Mackenzie
% Unit: ELE4111/2
% Student No: Q9323707
%
% CalcFitnessRandomDelay.m calculates the fitness
% of the population using the CostFirstRandomDelay.m function.
%
% INPUT population: population of chromosomes in binary
% string format
% GENE_LENGTH: constant defining the number of bits in a
% gene
% random_delay: the random delay to the start of the input
% signal
%
% OUTPUT Fitness_Array: decimal array of fitness values for
% the entire population
%
% Updated 18 Sep 07
%
%%5%%%

function
[Fitness_Array]=CalcFitnessRandomDelay(population,GENE_LENGTH,random_d
elay)

pop_size=size(population,1);

for i=1:pop_size
 chromosome=population(i,:);

[gene1dec,gene2dec,gene3dec,gene1bin,gene2bin,gene3bin]=ParseBits(chro
mosome,GENE_LENGTH)
 % replace CostFirstRandomDelay with CostSecond for second order
system

Fitness_Array(i)=(CostFirstRandomDelay([gene1dec;gene2dec;gene3dec],ra
ndom_delay));
end

%%
%
% Structured English
%
% loop for population size
% assign population(i,:) to chromosome
% ParseBits
% assign cost to Fitness_Array(i)
% end
%
%%5%%%

Page B-24 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex J to
Appendix B

Argo – CostFirst

%%
%
% Name: Matthew Mackenzie
% Unit: ELE3105
% Student No: Q9323707
%
% CostFirst.m calculates the value of S (cost function)
% for the First Order Test Control system given the input values
% of q0, q1, and q2 for the PID controller.
%
% The cost function, S is calculated using the ITAE criterion:
%
% S = Summation of (k*|e(k)|) a total of M times
%
% INPUT Q: is an array of values representing the PID
% parameters q0, q1 and q2
%
% OUTPUT error: the final error value
% C: is an array of values for c(k) - output
signal
% E: is an array of values for e(k) - error
signal
%
% Updated 18 Nov 07
%
%%5%%%

function [error,C,E]=CostFirst(Q)
Q0=Q(1);
Q1=Q(2);
Q2=Q(3);

% m is set for 100 summations for this exercise
m=100;
% T assigned 0.1 in order to simplify calculations
T=0.1;

a=-exp(-0.5);

E=zeros(m,1); %zeroise error array
C=zeros(m,1); %zeroise output array
R=zeros(m,1); %zeroise input array

for k=9:m
 R(k)=1; %step input delayed after 9 samples i.e. 9*.1 sec = .9 sec
delay to input
end

%calculate error and output arrays
for k=9:m
 r=R(k)-(1-a)*R(k-1)-a*R(k-2);
 e=(1-a)*E(k-1)+a*E(k-2)-Q0*(1+a)*E(k-6)-Q1*(1+a)*E(k-7)-
Q2*(1+a)*E(k-8);
 E(k)=r+e;
 C(k)=(1-a)*C(k-1)+a*C(k-2)+Q0*(1+a)*E(k-6)+Q1*(1+a)*E(k-
7)+Q2*(1+a)*E(k-8);

Page B-25 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

end

%calculate error
error=0;
i=1:m;
k_error=i.*abs(transpose(E));
error=sum(k_error);

Page B-26 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex K to
Appendix B

Argo – CostFirstRandomDelay

%%
%
% Name: Matthew Mackenzie
% Unit: ELE3105
% Student No: Q9323707
%
% CostFirstRandomDelay.m calculates the value of S (cost function)
% for the First Order Test Control system given the input values
% of q0, q1, and q2 for the PID controller.
%
% The cost function, S is calculated using the ITAE criterion:
%
% S = Summation of (k*|e(k)|) a total of M times
%
% INPUT Q: is an array of values representing the PID
% parameters q0, q1 and q2
% random_delay: is the random delay to the start of the
% input signal
% OUTPUT error: the final error value
% C: is an array of values for c(k) - output
signal
% E: is an array of values for e(k) - error
signa l
%
% Updated 18 Nov 07
%
%%5%%%

function [error,C,E]=CostFirstRandomDelay(Q,random_delay)
Q0=Q(1);
Q1=Q(2);
Q2=Q(3);
%Q3=random_delay;

% m is set for 100 summations for this exercise
m=100;
% T assigned 0.1 in order to simplify calculations
T=0.1;
random_delay=abs(floor(random_delay)); %ensure a positive delay and
sample number an integer
a=-exp(-0.5);

E=ones(m,1); %zeroise error array to be unit input signal until delay
C=zeros(m,1); %zeroise output array
R=zeros(m,1); %zeroise input array

for k=(random_delay+3):m
 R(k)=1; %step input delayed after random delay
end

%calculate error and output arrays
for k=(random_delay+3):m
 r=R(k)-(1-a)*R(k-1)-a*R(k-2);
 e=(1-a)*E(k-1)+a*E(k-2)-Q0*(1+a)*E(k-random_delay)-Q1*(1+a)*E(k-
random_delay-1)-Q2*(1+a)*E(k-random_delay-2);

Page B-27 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 E(k)=r+e;
 % calculation of output value not required, only error for the
purposes
 % of calculating the cost function
 C(k)=(1-a)*C(k-1)+a*C(k-2)+Q0*(1+a)*E(k-random_delay)+Q1*(1+a)*E(k-
random_delay-1)+Q2*(1+a)*E(k-random_delay-2);
end

%calculate error ITAE
error=0;
i=1:m;
k_error=i.*abs(transpose(E));
error=sum(k_error);

Page B-28 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex L to
Appendix B

Argo – CostSecond

%%
%
% Name: Matthew Mackenzie
% Unit: ELE3105
% Student No: Q9323707
%
% CostSecond.m calculates the value of S (cost function)
% for the Second Order Test Control system given the input values
% of q0, q1, and q2 for the PID controller.
%
% The cost function, S is calculated using the ITAE criterion:
%
% S = Summation of (k*|e(k)|) a total of M times
%
% INPUT Q: is an array of values representing the PID
% parameters q0, q1 and q2
%
% OUTPUT error: the final error value
% C: is an array of values for c(k) - output
signal
% E: is an array of values for e(k) - error
signal
%
% Updated 18 Nov 07
%
%%5%%%

function [error,C,E]=CostSecond(Q)
q0=Q(1);
q1=Q(2);
q2=Q(3);

% m is set for 100 summations for this exercise
m=101;
% T was calculated in a previous assignment part
T=0.05;

% set up simultaneous equations to solve for AX=B where X=[e;c;m]
a=(3/109);
b=(1/109)*(-3*exp(-3*T)*cos(10*T)+10*exp(-3*T)*sin(10*T));
c=(1/109)*(3*exp(-6*T)-3*exp(-3*T)*cos(10*T)-10*exp(-3*T)*sin(10*T));
d=-2*exp(-3*T)*cos(10*T);
e=exp(-6*T);

A=[1 1 0;-q0 0 1;0 1 -a];

%first iteration
B=[0;0;0];
X=inv(A)*B;
E(1)=X(1);
C(1)=X(2);
M(1)=X(3);

%second iteration
B=[1;0;0];

Page B-29 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

X=inv(A)*B;
E(2)=X(1);
C(2)=X(2);
M(2)=X(3);

%iterative after first two
for k=3:(m+1)
 b1=k-1; % r(k) = 1 for unit ramp input, for k > 0
 b2=q1*E(k-1)+q2*E(k-2)+M(k-1);
 b3=b*M(k-1)+c*M(k-2)-d*C(k-1)-e*C(k-2);
 B=[b1;b2;b3];
 X=inv(A)*B; % the \ operator is more efficient than the matlab
function inv() for this application
 E(k)=X(1);
 C(k)=X(2);
 M(k)=X(3);
end

%calculate error
error=0;
%for i=1:100
i=1:(m+1);
k_error=(i-1).*abs(E);
error=sum(k_error);
%end

Page B-30 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Annex M to
Appendix B

Argo – ARGOGUI

function ARGOGUI(fcn)

%%
% This GUI code is based on the source code downloaded from
% Cornell University
%
% Course: BioNB 441 - Biological Instrumentation
% Subject: Graphical User Interface Design
% Staff: Bruce Land
% Date: May 2007
% Address:
% http://courses.cit.cornell.edu/bionb442/GUIdesign/GUIdemo.m
%
% The GUI code has then been extensively modified by Matthew Mackenzie
% as part of ENG4111/112 Reasearch Project
% 25 Sep 07
%
%%

%This code detects the first entry into the function
%from the command line with no parameters
if nargin == 0
 fcn = 'makeGUI';
end

%This is the main decision point of the function.
%The switch statement is executed once-per-fuction call
switch fcn

 %This code is executed ONCE when the function enters with
 %no arguments
case 'makeGUI'

 % Determine the name of this function and store it in the
 %figure plotinfo variable.
 %Since variables used in a function are not persistent after
 %the function exits we will need to store the state-variables
 %in a data structure associated with the persistent Figure-window.
 %The plotinfo sturcture will be saved into the Figure's UserData
 %area and retrieved from there as necessary.
 plotinfo.myname = mfilename;

 % ===Create main figure==========================
 fig = figure('Position',centerfig(900,600),...
 'Resize','off',...
 'NumberTitle','off',...
 'Name','Genetic Algorithm Parameter Input Menu',...
 'Interruptible','off',...
 'Toolbar','figure',...
 'Menubar','figure',...
 'Color',get(0,'DefaultUIControlBackgroundColor'));

 %===Header Text===================================
 uicontrol(gcf,'Style','text', ...
 'String','Genetic Algorithm Parameter Input Menu',...

Page B-31 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 'fontsize',18, ...
 'HorizontalAlignment','Center',...
 'Position',[100,565,700,30],...
 'BackgroundColor',[0.4 0.7 0.8]);

 % ===Create Axes=================================
 plotinfo.ax = axes('Units','pixels',...
 'Position',[235 50 580 480],...
 'Box','on',...
 'XLim',[0 1],'YLim',[-1 1]);
 xlabel('Generations'); ylabel('Cost');

 %==Frequency slider===========================
% plotinfo.freq=1.0;
% plotinfo.s1 = uicontrol(gcf,'Style','text', ...
% 'String','frequency',...
% 'Position',[10,240,100,20],...
% 'BackgroundColor',[0.8,0.8,0.8]);
% plotinfo.s2 = uicontrol(gcf,'Style','edit',...
% 'String',num2str(plotinfo.freq),...
% 'Position',[110,240,50,20],...
% 'BackgroundColor',[0.8,0.8,0.8],...
% 'callback', [plotinfo.myname,' editfreq']);
% plotinfo.s3 = uicontrol(gcf,...
% 'Style','slider',...
% 'Min' ,1,'Max',20, ...
% 'Position',[10,220,150,20], ...
% 'Value', 1,...
% 'SliderStep',[0.01 0.1], ...
% 'BackgroundColor',[0.8,0.8,0.8],...
% 'CallBack', [plotinfo.myname,' setfreq']);

 %==Crossover ===========================
 plotinfo.cross=0.5;
 plotinfo.c1 = uicontrol(gcf,'Style','text', ...
 'String','Crossover Rate',...
 'Position',[10,240,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.c2 = uicontrol(gcf,'Style','edit',...
 'String',num2str(plotinfo.cross),...
 'Position',[110,240,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editcross']);

 %==Simulations ===========================
 plotinfo.sims=3;
 plotinfo.d1 = uicontrol(gcf,'Style','text', ...
 'String','Simulation Runs',...
 'Position',[10,210,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.d2 = uicontrol(gcf,'Style','edit',...
 'String',num2str(plotinfo.sims),...
 'Position',[110,210,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editsims']);

 %==Number of Crossover Points ===========================
 plotinfo.crosspt=1;
 plotinfo.e1 = uicontrol(gcf,'Style','text', ...
 'String','# Crossover Points', . ..
 'Position',[10,270,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.e2 = uicontrol(gcf,'Style','edit',...

Page B-32 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 'String',num2str(plotinfo.crosspt),...
 'Position',[110,270,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editcrosspt']);

 %==Mutation Rate ===========================
 plotinfo.mute=.001;
 plotinfo.f1 = uicontrol(gcf,'Style','text', ...
 'String','Mutation Rate',...
 'Position',[10,300,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.f2 = uicontrol(gcf,'Style','edit',...
 'String',num2str(plotinfo.mute),...
 'Position',[110,300,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editmute']);

 %==Mutations per Chromo ===========================
 plotinfo.mutenum=1;
 plotinfo.g1 = uicontrol(gcf,'Style','text', ...
 'String','# Mutations',...
 'Position',[10,330,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.g2 = uicontrol(gcf,'Style','edit',...
 'String',num2str(plotinfo.mutenum),...
 'Position',[110,330,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editmutenum']);

 %==Maximum Generations ===========================
 plotinfo.gen=100;
 plotinfo.h1 = uicontrol(gcf,'Style','text', ...
 'String','Max Generations',...
 'Position',[10,360,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.h2 = uicontrol(gcf,'Style','edit',...
 'String',num2str(plotinfo.gen) ,...
 'Position',[110,360,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editgen']);

 %==Population to Keep ===========================
 plotinfo.keep=.7;
 plotinfo.i1 = uicontrol(gcf,'Style','text', ...
 'String','% Keep',...
 'Position',[10,390,100,20],...
 'BackgroundColor',[0.8,0.8,0.8]);
 plotinfo.i2 = uicontrol(gcf,'Style','edit',...
 'String',num2str(plotinfo.keep),...
 'Position',[110,390,50,20],...
 'BackgroundColor',[0.8,0.8,0.8],...
 'callback', [plotinfo.myname,' editkeep']);

 % ===The Quit Button===============================
 uicontrol(gcf,'Style','pushbutton',...
 'String','Quit',...
 'Interruptible','off',...
 'BusyAction','cancel',...
 'Position',[840 20 45 25],...
 'BackgroundColor',[1,0.8,0.8], ...
 'Callback',[plotinfo.myname,' quit']);

 %==The Launch GA===========================

Page B-33 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 uicontrol(gcf,'Style','pushbutton', ...
 'String','Launch ARGOR',...
 'Interruptible','off',...
 'BusyAction','cancel',...
 'Position',[10,60,70,20],...
 'BackgroundColor',[1,0.8,0.8], ...
 'CallBack',[plotinfo.myname,' launchga']);

 %==Selection Chooser=========================
 plotinfo.sel='Tournament';
 plotinfo.selchoice=uicontrol(gcf,'Style','PopupMenu', ...
 'String','Tournament|Roulette',...
 'Position',[10,430,150,50],...
 'BackgroundColor',[0.8,0.8,0.8], ...
 'CallBack',[plotinfo.myname,' selchoice']);

 %==Distribution Chooser=========================
 plotinfo.dist='uniform';
 plotinfo.distchoice=uicontrol(gcf,'Style','PopupMenu', ...
 'String','uniform|random',...
 'Position',[10,390,150,50],...
 'BackgroundColor',[0.8,0.8,0.8], ...
 'CallBack',[plotinfo.myname,' distchoice']);

 %==Axes Title====================================
 plotinfo.title='Use edit field to change the plot title';
 plotinfo.ttl=uicontrol(gcf,'Style','edit', ...
 'String','Edit Figure title',...
 'Position',[10,500,150,20],...
 'BackgroundColor',[1,1,1], ...
 'CallBack',[plotinfo.myname,' edttl']);

 %==Context sensitive menu==========================
 %====Also note reference to this menu in the plot==
 % Define the context menu (taken from Matlab docs)
 plotinfo.cmenu = uicontextmenu;
 % Define the context menu items
 plotinfo.item1 = uimenu(plotinfo.cmenu, 'Label', 'dashed', ...
 'Callback',[plotinfo.myname,' linemenu1']) ;
 plotinfo.item2 = uimenu(plotinfo.cmenu, 'Label', 'dotted', ...
 'Callback', [plotinfo.myname,' linemenu2']);
 plotinfo.item3 = uimenu(plotinfo.cmenu, 'Label' 'solid',... ,
 'Callback', [plotinfo.myname,' linemenu3']);
 uicontrol('style','text',...
 'string','Hit Lauch ARGO button, then right-click the plot line
for options',...
 'backgroundcolor','white',...
 'position',[100,50,100,60]);

 %put all the variables in a safe place (the figure's data area)
 set(fig,'UserData',plotinfo);

%case 'setfreq'
% %Get data from the figure's data area
% plotinfo=get(gcf,'UserData');
% %Get the value from the slider
% plotinfo.freq=get(plotinfo.s3,'Value');
% %Update the text which shows the slider value
% set(plotinfo.s2,'String',plotinfo.freq);
% %Store the new slider value back into the figure's data area
% set(gcf,'UserData',plotinfo);

Page B-34 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

%case 'editfreq'
% plotinfo=get(gcf,'UserData');
% plotinfo.freq=str2num(get(plotinfo.s2,'string'));
% set(plotinfo.s3,'value',plotinfo.freq);
% set(gcf,'UserData',plotinfo);

case 'editcross'
 plotinfo=get(gcf,'UserData');
 plotinfo.cross=str2num(get(plotinfo.c2,'string'));
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'editsims'
 plotinfo=get(gcf,'UserData');
 plotinfo.sims=str2num(get(plotinfo.d2,'string'));
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'editcrosspt'
 plotinfo=get(gcf,'UserData');
 plotinfo.crosspt=str2num(get(plotinfo.e2,'string'));
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'editmute'
 plotinfo=get(gcf,'UserData');
 plotinfo.mute=str2num(get(plotinfo.f2,'string'))
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'editmutenum'
 plotinfo=get(gcf,'UserData');
 plotinfo.mutenum=str2num(get(plotinfo.g2,'string'))
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'editgen'
 plotinfo=get(gcf,'UserData');
 plotinfo.gen=str2num(get(plotinfo.h2,'string'))
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'editkeep'
 plotinfo=get(gcf,'UserData');
 plotinfo.keep=str2num(get(plotinfo.i2,'string'))
 % set(plotinfo.c3,'value',plotinfo.cross);
 set(gcf,'UserData',plotinfo);

case 'selchoice'
 plotinfo=get(gcf,'UserData');
 plotinfo.sel=get(plotinfo.selchoice,'value');
 switch plotinfo.sel
 case 1
 plotinfo.sel='Tournament';
 case 2
 plotinfo.sel='Roulette';
 end
 set(gcf,'UserData',plotinfo);

case 'distchoice'
 plotinfo=get(gcf,'UserData');
 plotinfo.dist=get(plotinfo.distchoice,'value');

Page B-35 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 switch plotinfo.dist
 case 1
 plotinfo.dist='uniform';
 case 2
 plotinfo.dist='random';
 end
 set(gcf,'UserData',plotinfo);

case 'edttl'
 plotinfo=get(gcf,'UserData');
 plotinfo.title=get(plotinfo.ttl,'string');
 title(plotinfo.title);
 set(gcf,'UserData',plotinfo);

case 'linemenu1'
 plotinfo=get(gcf,'UserData');
 set(plotinfo.line, 'LineStyle', '--')

case 'linemenu2'
 plotinfo=get(gcf,'UserData');
 set(plotinfo.line, 'LineStyle', ':')

case 'linemenu3'
 plotinfo=get(gcf,'UserData');
 set(plotinfo.line, 'LineStyle', '-')

case 'launchga'
 plotinfo=get(gcf,'UserData');
% number of sims = plotinfo.sim s
% max generations = plotinfo.gen
% selection method = plotinfo.sel
% distribution type = plotinfo.dist
% population kept = plotinfo.keep
% mutation rate = plotinfo.mute
% # mutations = plotinfo.mutenum
% crossover rate = plotinfo.cross
% number of crossovers= plotinfo.crosspt
 launch_reply = questdlg('Execute ARGO?');
 if strcmp(launch_reply,'Yes')
 fig=gcf;
 refresh(fig);
 tic
 ARGOR(plotinfo.sims,...
 plotinfo.gen,...
 plotinfo.sel,...
 plotinfo.dist,...
 plotinfo.keep,...
 plotinfo.mute,...
 plotinfo.mutenum,...
 plotinfo.cross,...
 plotinfo.crosspt);
 duration=toc;
 duration=num2str(duration);
 message1='Processing time was ';
 message2=' seconds';
 message=strcat(message1,duration,message2);
 msgbox(message);
 end

case 'quit'
 fig = gcf;
 quit_reply = questdlg('Are you sure you wish to quit ARGO?');
 if strcmp(quit_reply,'Yes')

Page B-36 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

 close(fig);
 end

end

%===A utility to center the window on the screen============
function pos = centerfig(width,height)

% Find the screen size in pixels
screen_s = get(0,'ScreenSize');
pos = [screen_s(3)/2 - width/2, screen_s(4)/2 - height/2, width,
height];

Page B-37 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Appendix C

Cost Functions

This project uses three cost functions in order to test the system:

a) – models a first order control system, CostFirst

b) CostSecond – models a second order system, and

c) CostFirstRandomDelay – models the same first order control system but

with a random delayed input.

This appendix provides the mathematical background for calculating the

respective costs of the test control systems.

For ease of reading, the first order system was modelled by direct solution of

equations for , and ()ZE ()ZC ()ZM ; whereas the second order system was modelled

by solving a set of simultaneous equations for ()ZE ()ZC, and . ()ZM

The solution for the second order system was conducted as part of this project;

whereas, the solution for the second order system was conducted as part of a previous

assignment for ELE3105 Computer Controlled Systems at the University of Southern

Queensland (Mackenzie, 2004).

Page C-1 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

C.1 First Order System

The CostFirst function was calculated from the transfer function , such

that:

)(sG p

Given,

()
5

5 5

+
=

−

s
esG

Ts

p

 EQN 1

Then,

() () ()

()
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
+Ζ×−=

⎭
⎬
⎫

⎩
⎨
⎧Ζ×−=

−

−

−

s
s
e

z

s
sGzzG

Ts

P
HP

5
5

1

1

5

1

1

 EQN 2

Let,

1.0=T

 EQN 3

Then by definition,

()

s

s

sT

ez
ez
ez

5.05

1.055

−−

××−−

=

=

=

 EQN 4

()zGHPThen substituting EQN 4 back into EQN 2, simplifies to,

() ()

() ()⎭
⎬
⎫

⎩
⎨
⎧

+
Ζ×−=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
+Ζ×−=

−−

−−

5
51

5
5

1

51

51

ss
zz

s
szzzGHP

 EQN 5

Then using Partial Fractions to simplify the Z Transform,

Page C-2 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

() ()

()5
5

55
5

+
++

=

+
+=

+

ss
BsAAs

s
B

s
A

ss

EQN 6

Comparing coefficients,

1
0:
1

55:

1

0

−=
+=

=
=

B
BAs

A
As

 EQN 7

Then substituting the partial fraction equivalent back into EQN 5, it simplifies to,

() ()

() ()

() () ()
() () ()

()()
()
()
()

()
()

()⎭⎬
⎫

⎩
⎨
⎧

−
−

×=

=
⎭
⎬
⎫

⎩
⎨
⎧

−
−

×=

⎭
⎬
⎫

⎩
⎨
⎧

−
−

×=

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−−

×−=

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
×−=

⎭
⎬
⎫

⎩
⎨
⎧

+
Ζ×−=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
+Ζ×−=

−−

−
−

−−

−
−

−−

−−−
−

−−−

−−−
−−

−−−
−−

−−

−−

15.0

5.0
6

15

5
6

15

151
5

151

115
15

151
15

51

51

1
1

1.0
1

1

1

11
111

1
1

1
11

5
51

5
5

1

ze
ez

Tgrememberin
ze

ez

ze
zezz

zez
zzezz

zez
zz

ss
zz

s
szzzG

T

T

T

T

T

T

T

HP

 EQN 8

Now that has been found, need to solve the following set of equations, ()zGHP

() () ()ZCZRZE −=

 EQN 9

() () ()ZMZGZC HP ×=

 EQN 10

() () ()ZEZGZM C ×=

 EQN 11

Page C-3 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

Substituting EQN 10 into EQN 9 results in,

() () () ()ZMZGZRZE HP ×−=
 EQN 12

Then substituting EQN 11 into EQN 12 results in,

() () () () ()
() () ()() ()

()
() ()()ZGZG
ZR

ZRZGZGZE
ZEZGZGZRZE

CHP

CHP

CHP

+
=

=×+
××−=

1

1

 EQN 13

Noting that G (Z) for a PID Controller has the standard equation, C

() ()
()1

2
2

1
10

1 −

−−

−
++

=
z

zqzqq
ZGC

 EQN 14

Now EQN 13 can be solved substituting in EQN 8 and EQN 14,

() ()
() ()()

()
()

()
()

()
()

()

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−−++++−−
+−−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−−
−−−++++−−

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

+−−
−−−++

+

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−
++

⎭
⎬
⎫

⎩
⎨
⎧

−
−

×+

=

+
=

−−−−−−−−−−−−−−

−−−−−

−−−−−

−−−−−−−−−−−−−−

−−−−−

−−−−−−−−−

−

−−

−−

−
−

8
2

5.07
1

5.06
0

5.08
2

7
1

6
0

25.015.01

25.015.01

25.015.01

8
2

5.07
1

5.06
0

5.08
2

7
1

6
0

25.015.01

25.015.01

8
2

5.07
1

5.06
0

5.08
2

7
1

6
0

1

2
2

1
10

15.0

5.0
6

1
1

1
1

1
1

11
11

1

zqezqezqezqzqzqzezez
zezezZR

zezez
zqezqezqezqzqzqzezez

ZR

zezez
zqezqezqezqzqzq

ZR

z
zqzqq

ze
ez

ZR
ZGZG

ZRZE
CHP

 EQN 15

EQN 15 can then be transformed into a difference equation,

Page C-4 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

() ()

() ()
() () () ()

() () () () () 8271602121

8
2

7
1

6
0

21

21

8
2

5.07
1

5.06
0

5.08
2

7
1

6
0

25.015.01

25.015.01

11111
11111

11

1
1

−−−−−−−

−−−−−

−−

−−−−−−−−−−−−−−

−−−−−

+−+−+−+−+−−−=

⎥
⎦

⎤
⎢
⎣

⎡

++++++−−−
−−−

=

⎥
⎦

⎤
⎢
⎣

⎡

−−−++++−−
+−−

=

kkkkkkkkk eaqeaqeaqaeeaarrare
zaqzaqzaqazza

azzaZR

zqezqezqezqzqzqzezez
zezezZRZE

 EQN 16

Where

5.0−−= ea

 EQN 17

Finally, a difference equation for C(Z) can then be derived. Firstly, substitute

EQN 11 into EQN 10,

() () ()
() () ()

()
()

()
() ()

()

() () () ()
()

() () () () 82716021

21

8
2

7
1

6
0

25.015.01

8
2

5.07
1

5.06
0

5.08
2

7
1

6
0

1

2
2

1
10

15.0

5.0
6

1111
11

111

1

11
1

−−−−−

−−

−−−

−−−−−

−−−−−−−−−

−

−−

−−

−
−

+++++++−=

⎥
⎦

⎤
⎢
⎣

⎡

−−−
+++++

=

×⎥
⎦

⎤
⎢
⎣

⎡

+−−
−−−++

=

×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−
++

⎭
⎬
⎫

⎩
⎨
⎧

−
−

×=

××=
×=

kkkkkk

CHP

HP

eaqeaqeaqaccac
azza

zaqzaqzaq
ZE

ZE
zezez

zqezqezqezqzqzq

ZE
z

zqzqq
ze

ez

ZEZGZG
ZMZGZC

 EQN 18

Where,

5.0−−= ea

 EQN 19

Now EQN 16 and EQN 19 can then be simulated using a step input. The

MATLAB simulation code is found at Annex J to Appendix B Argo – CostFirst.

The built-in MATLAB® function fminsearch indicated that the global

minimum was obtained by the parameter values:

891166341993437.0
59397336492800.1

71312360331896.1

3

1

0

=
−=

=

q
q
q

 EQN 20

Page C-5 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Optimal Response (Steady State Error) for the First Order Test Control System with a PID Controller

Time (seconds)

Am
pl

itu
de

Figure C -1 Optimum Response (Steady State Error) for the First Order Test Control System
with a PID Controller with Delayed Start and Unit Step Input

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Am
pl

itu
de

Time (seconds)

Optimal Response (Output) for the First Order Test Control System with a PID Controller

Figure C -2 Optimum Response (Output) for the First Order Test Control System
with a PID Controller with Delayed Start and Unit Step Input

() () () () () 8271602121 11111 −−−−−−− +−+−+−+−+−−−= kkkkkkkkk eaqeaqeaqaeeaarrare

 EQN 21

Page C-6 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

C.2 Second Order System

The CostSecond function is a pre-existing function that was developed as part of

a previous assignment. Whereby the open-loop response to a unit ramp input can

be calculated from the transfer function , such that:

)(tc

)(sG p

Given,

()
)(
)(

sM
sCsGp =

 EQN 22

And,

()
()109.2

3)(2 ++
+

=
ss

ssGp

 EQN 23

Then,

()
⎭
⎬
⎫

⎩
⎨
⎧×

⎭
⎬
⎫

⎩
⎨
⎧

++
+

=

=

sss
s

sMsGsC
1

109.2
3
)().()(

2

 EQN 24

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧×

⎭
⎬
⎫

⎩
⎨
⎧

++
+

=
sss

stc 1
109.2

3 of Laplace Inverse)(2

 EQN 25

The CostSecond function uses ITAE Criterion.

Using the sampling interval of 0.05s, Ghp(z) numerically simplifies to:

⎥
⎦

⎤
⎢
⎣

⎡
++
++

= −−

−−

21

21

..1
..)(
zEzD
zCzBAzGhp

 EQN 26

Where,

7408.0
5107.1
0383.0

0171.0
0275.0

=
−=
−=

=
=

E
D
C
B
A

Page C-7 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

The PID controller transfer function can be written as:

⎥
⎦

⎤
⎢
⎣

⎡
−

++
= −

−−

1

2
2

1
10

1
..

)(
z

zqzqq
zGc

 EQN 27

This can be written in the form of a difference equation:

122110 .. −−− +++= kkkkk meqeqeqm

km is calculated by solving the simultaneous equations:

)().()(

)().()(
)()()(

zEzGzM

zMzGzC
zCzRzE

c

hp

=

=
−=

 EQN 28

These simultaneous equations were converted to difference equations. Then the

simultaneous equations were solved by setting up the matrix equation where: BAX =

[]

)2(.)1(.)2(.)1(.
)1()2(.)1(.

)(

)()()(
10

10
011

3

212

1

2

1

0

−−−−−+−=
−+−+−=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

kCekCdkMckMbb
kMkEqkEqb

krb

b
b
b

B

kmkckeX
a

qA

 EQN 29

The built-in MATLAB® function fminsearch indicated that the global

minimum was obtained by the parameter values:

90663112109.464
98283436685.1127

821620191620.878

3

1

0

=
=
=

q
q
q

 EQN 30

Page C-8 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

0 20 40 60 80 100 120
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (seconds)

Am
pl

itu
de

Optimal Response (Steady State Error) for the Second Order Test Control System with a PID Controller

Figure C -3 Optimum Response (Steady State Error) for the Second Order Test Control System
with a PID Controller and Unit Ramp Input

0 20 40 60 80 100 120
0

20

40

60

80

100

120
Optimal Response (Output) for the Second Order Test Control System with a PID Controller

Am
pl

itu
de

Time (seconds)

Figure C -4 Optimum Response (Output) for the Second Order Test Control System
with a PID Controller and Unit Step Input

Page C-9 Matthew Mackenzie Q9323707

PID Controller Optimisation Using Genetic Algorithms

C.3 First Order System – Random Delayed Input

The CostFirstRandomDelay function is a modification of the CostFirst

function with the addition of a random delay to input. The random delay is defined main

the main routine using a mean and standard deviation.

Table C -1 Random Delay Calculation

Random_Delay=round(AVERAGE+STDDEV.*randn);

The difference equations for both the error (refer EQN 16) and output (refer

EQN 18) have been modified to support a random delay, resulting in new difference

equations:

() () () () ()
system delay to timerandom is and ; where

11111
5.0

221102121

xea

eaqeaqeaqaeeaarrare xkxkxkkkkkkk
−

−−−−−−−−−

−=

+−+−+−+−+−−−=

 EQN 31

() () () ()
system delay to timerandom is and ; where

1111
5.0

2211021

xea

eaqeaqeaqaccac xkxkxkkkk
−

−−−−−−−

−=

+++++++−=

 EQN 32

Page C-10 Matthew Mackenzie Q9323707

	Glossary of Genetic Terms
	Chapter 1 Introduction
	1.1 Project Description
	1.2 Aims and Objectives
	1.3 Dissertation Overview
	1.4 Background Literature Review
	1.4.1 Existing Research Emphasis
	1.4.2 Future Research Areas
	1.4.3 Literature Review Summary

	1.5 Project Methodology
	1.5.1 Systems Approach to Software Development
	1.5.2 Programming Models
	1.5.3 Test Program
	1.5.4 Evaluation and Extension

	1.6 Summary

	Chapter 2 Optimisation
	2.1 Introduction
	2.2 Optimisation Models
	2.3 Root Finding
	2.4 Categories of Optimisation
	2.5 Natural Optimisation Methods
	2.6 Summary

	Chapter 3 Digital Controllers
	3.1 Introduction
	3.2 Control System Overview
	3.2.1 Analogue Controller
	3.2.2 Computer Controller
	3.2.3 Controllers

	3.3 Tuning
	3.4 Summary

	Chapter 4 Genetic Algorithms
	4.1 Introduction
	4.2 Biological Genetic Optimisation
	4.3 Genetic Algorithms
	4.4 Advantages and Disadvantages
	4.5 Genetic Algorithm Process
	4.5.1 Problem Definition and Encoding
	4.5.2 Initialisation
	4.5.3 Decoding
	4.5.4 Cost
	4.5.5 Selection
	4.5.6 Mating
	4.5.7 Mutation
	4.5.8 Convergence

	4.6 Summary

	Chapter 5 Argo
	5.1 Introduction
	5.2 Definition
	5.3 Encoding
	5.4 Argo Genetic Algorithm
	5.5 Initialisation
	5.6 Cost
	5.6.1 CostFirst
	5.6.2 CostSecond
	5.6.3 CostFirstRandomDelay

	5.7 Natural Selection
	5.7.1 Tournament Selection
	5.7.2 Roulette Wheel

	5.8 Mating
	5.9 Mutation
	5.10 Convergence
	5.11 Argo Input And Control GUI
	5.12 Summary

	Chapter 6 Testing & Analysis Of Results
	6.1 Introduction
	6.2 Basic Argo Operation
	6.2.1 First Order Test Control System
	6.2.2 Second Order Test Control System
	6.2.3 Conduct of Base Performance Testing
	6.2.3.1 Base Performance Testing – Phase A
	6.2.3.1.1 Base Performance Testing – Test A1
	6.2.3.1.2 Base Performance Testing – Test A2
	6.2.3.1.3 Base Performance Testing – Test A3
	6.2.3.1.4 Base Performance Testing – Test A4
	6.2.3.1.5 Base Performance Testing – Test A5

	6.2.3.2 Base Performance Testing – Phase B
	6.2.3.3 Base Performance Testing – Phase C
	6.2.3.4 Base Performance Testing – Phase D

	6.3 Advanced Argo Operation
	6.3.1 Conduct of Advanced Performance Testing
	6.3.1.1 Advanced Performance Testing – Phase E
	6.3.1.2 Advanced Performance Testing – Phase F
	6.3.1.3 Advanced Performance Testing – Phase G

	6.3.2 Other Test Observations

	6.4 Summary
	6.4.1 Base Performance Testing Results
	6.4.2 Advanced Performance Testing Results

	Chapter 7 Conclusions
	7.1 Dissertation Summary
	7.2 Basic Argo Operation
	7.2.1 Accuracy
	7.2.2 Processing Time
	7.2.3 Basic Parameters

	7.3 Advanced Argo Operation
	7.3.1 Roulette Wheel Selection
	7.3.2 Rotary-Wing Control Model Simulation

	7.4 Further Work

	List of References
	Bibliography
	Appendix A Project Specification
	Appendix B MATLAB® Source Code – Argo
	Annex A to Appendix B Argo – Main Routine
	1.1
	Annex B to Appendix B Argo – Genetic Algorithm Random Delay
	Annex C to Appendix B Argo – InitialisePopulation
	Annex D to Appendix B Argo – TournamentSelection
	Annex E to Appendix B Argo – ParseBits
	Annex F to Appendix B Argo – RouletteWheel
	Annex G to Appendix B Argo – Mutate
	Annex H to Appendix B Argo – Crossover
	1.1
	Annex I to Appendix B Argo – CalcFitnessRandomDelay

	
	Annex J to Appendix B Argo – CostFirst
	Annex K to Appendix B Argo – CostFirstRandomDelay
	Annex L to Appendix B Argo – CostSecond
	Annex M to Appendix B Argo – ARGOGUI

	Appendix C Cost Functions

