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Abstract 

 

This dissertation is an investigation into the feasibility of automating the 

static twist test procedure currently performed at Queensland Rail. The aim 

is to select equipment that can perform this procedure automatically while 

staying within the confines of a budget. 

The test requires synchronous jacking of train wheels and it was concluded 

from the research carried out that synchronous lifting of heavy objects can 

be successfully achieved through the use of ‘digital hydraulics’, a term 

explained in detail within this dissertation. The concept of digital hydraulics 

was tested for application to the twist test and was found to be completely 

successful. 

A final system design is specified, including equipment such as position 

transducers, hydraulic cylinders and a PLC. The equipment exceeds the 

budget specified by Queensland Rail. However it proves that a successful 

system can be constructed for reasonable cost. 
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1 Introduction 

1.1 Client Introduction 

This project was completed for the benefit of Queensland Rail and to satisfy the 

requirement of a final year research project for a Bachelor of Mechanical 

Engineering degree. 

Queensland Rail Limited (QR) is a government owned company providing rail 

services to the state of Queensland. They are a progressive company and 

conduct business in the divisions of passenger, freight and coal transportation. 

Their portfolio is expanding to include freight and coal haulage in the states of 

Western Australia, New South Wales and Victoria. 

Most of their business is centred in Brisbane where their head office, some 

smaller offices and a number of workshops are located. The workshops are used 

for maintenance, modifications, new construction and train performance testing 

procedures. 

1.2 Client Brief 

The need for this project was stipulated by QR. Engineers in the Vehicle and 

Track Engineering section of Rollingstock Engineering required that a feasibility 

study be done on automating the twist test, a rollingstock performance test 

undertaken by employees of this section. A simple description of this test is that 

it lifts wheels of the rollingstock to differing heights and the ability of the 

rollingstock to cope with this is assessed.  

The test is to be automated in the sense that the lifting of the rollingstock will be 

controlled without human interaction. 

These guidelines were also specified by QR engineers. 

• Determine if the automated test is achievable for realistic cost.  Aim for 

$20,000 maximum. 
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• Complete research into possible existing equipment that can adequately 

perform the test or be tailored to perform the test. 

• Specify what equipment is required. This will include independent 

validation of ram size, pump capacity, power requirement, valves, control 

etc.  

• Analyse safety considerations. 

1.3 Need for Project 

The twist testing procedure that QR follows currently is tedious, slow and prone 

to human error. The test takes a long time to set up. Verbal communication is 

used to synchronise the lift, which is difficult to coordinate. The test is a 

repeatable process that appears predisposed to automation which could 

improve some of the shortcomings of the current test. 

1.4 Project Aim 

The aim of this project is to design a system of twist testing that is more 

accurate, faster and less prone to human error than the current manual method 

used at QR. This will enable QR to reduce the time of train registration, reduce 

the amount of personnel engaged in performing the test and permit more 

information to be gathered from the test. 

1.5 Project Objectives 

These are the objectives of this research project. 

1. Identify outcomes QR expects from an automated twist test. 

2. Research applicable regulations. 

3. Develop clear specifications to which equipment has to perform. 

4. Research existing systems that may satisfy requirements. 

5. Research and select possible control schemes and software control 

equipment. 

6. Research and select appropriate lifting equipment. 

7. Simulate or build model system. 

8. Analyse performance of the specified system. 
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9. Calculate cost of entire system and compare with budget. 

1.6 Methodology 

The respective project objectives will aim to be achieved using these methods. 

1. To identify the outcomes QR requires from the test, negotiation will be 

undertaken with QR engineers. Specifically it must be known exactly 

what information to what accuracy will be required to be output from 

the test. 

2. With any large project involving public transport there will be 

regulations and guidelines. These will be obtained through contacts at 

QR. 

3. A large amount of information will be gathered to completely specify 

the performance requirements of an automated test. This will be done 

thorough negotiation with QR, researching the rollingstock to be tested 

and reviewing the current testing method documentation.  

4. To develop system concepts, other areas where heavy lifting is required 

will be looked at for ideas. Lifting equipment and the power these 

devices require will be researched by contacting suppliers and checking 

the capabilities and compatibility of their products. 

5. Control schemes will be compared and assessed on factors such as cost, 

accuracy and setup time. Again, suppliers of automation control 

hardware will be contacted and the suitability of their products 

assessed. 

6. Lifting equipment will be selected by completing the necessary 

calculations to estimate sizing. Product catalogues of system 

components will be inspected to select appropriate models. 

7. The system will be tested by either building a physical model or by 

computer simulation analysis. 

8. The performance of the model will be analysed in terms of its ability to 

satisfy the performance requirements. 
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9. Costs will be calculated by requesting quotes from the suppliers of the 

various system components. 

1.7 Conclusion 

This dissertation aims to describe the process involved in designing an 

automated twist test. The research and design conducted will hopefully result in 

a successful system which the QR Vehicle and Track Engineering section can 

propose to higher management in the hope of gaining funds for further 

development. The first project objective to deal with is to indentify clear 

outcomes which the test needs to satisfy. Before this is attempted, background 

details of the twist test will be covered. 
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2 Background 

2.1 Introduction 

This chapter serves the purpose of covering the background information needed to 

understand the context of the twist test in the rail industry. The concept of twist is 

explained and the need for twist testing shown.  It describes the procedure used to 

undertake twist tests currently and problems with the test will become evident. 

2.2 Track Twist 

Track twist in simple terms is the vertical variation of rail height. Twist is induced by 

the track in particular at the transition into or out of a curve. At this transition, there 

is a cant ramp. Cant is the difference in heights between the two rails so that the 

centrifugal forces of negotiating the curve at speed are balanced by the train tilting 

in the opposite direction – much like camber on a road surface. Naturally there 

needs to be some sort of ramp to gradually raise and lower the outside rail as the 

vehicle enters and exits a curve - the cant ramp. It is when the vehicle is on this 

ramp that it is subject to substantial twist.  

2.3 Train Derailments 

A derailment is an accident where a train partially or entirely leaves the tracks. They 

can range in severity from one wheel jumping the track, to rollover and possible loss 

of passengers or drivers lives. Derailment can occur for a number of reasons, but the 

particular reason we are interested in for this project is the inability of rollingstock 

to cope with track twist. This is a reasonably prevalent cause of derailment. 

2.3.1 Categorisation of Past Derailments 

To give an indication of how notable twist is in causing derailments, a report 

prepared by Risk Solutions for the UK Rail Safety and Standards Board will be 

examined (Rail Safety & Standards Board 2004). It is a study of the causes of all 

derailments over the past 10 years in the UK. The data may not be directly 
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transferable to the Australian rail industry because of the differing track widths and 

types of rollingstock but the interaction between the rails and rollingstock wheels 

will be similar. The most interesting data from this report is the breakdown of 

specific causes of derailment, and it has been presented in Figure 2-1. 

 

Figure 2-1 Categorisation of past derailments (adapted from RSSB report) 

Notice that most derailments occurred due to track twist. This is a track 

maintenance issue and cannot be diminished by better twist testing of the cars. 

However it highlights very clearly that track twist outside maintenance tolerances is 

a common occurrence. Therefore vehicles need to be carefully tested for twist 

performance because during their service they will almost certainly come into 

contact with excessively twisted track. Please ignore the different colours as this was  

Twist performance of the vehicle itself was the second most common vehicle issue, 

once again emphasizing the importance of an accurate twist test. Suspension issues, 
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the vehicle issue causing most derailments, can often be detected by QR’s twist test. 

Better highlighting of these suspension faults may well be the main advantage 

gained from producing more accurate and detailed test data. 

2.4 The Twist Test 

The twist test is designed to ensure that any new or substantially modified vehicle is 

compatible with the track twist induced by the rail network. It certifies that this 

twist does not cause an unacceptable level of wheel unloading, as this may cause 

derailment.  

A twist test is performed on any vehicle where the torsional stiffness is suspected to 

have increased due to modifications such as the following: 

• Increased suspension spring rates 

• Increase in bogie frame torsional stiffness 

• Increase in underframe torsional stiffness 

• Change in vehicle equipment or mass distribution 

The bogie frame can be viewed in Figure 2-2. 

 

Figure 2-2 Bogie frame 
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2.4.1 Wheel unloading 

Wheel unloading is important because it can cause the wheel to ‘climb the rail’ and 

ultimately derail. The critical measurement is the L/V ratio, which is the ratio of 

lateral to vertical forces. While the train is cornering there is a high lateral force 

exerted on the outside wheel. Vehicles and track are designed to keep the L/V ratio 

below 1 as this has been calculated as the safe point above which there is high risk 

of the wheel jumping the rail. Figure 2-3 shows the effect of an excessive L/V ratio. 

 

Figure 2-3  Excessive L/V ratio can cause a wheel to jump off the track while cornering 

As a train is cornering the vertical downward force will also increase due to the 

centrifugal forces trying to tilt the train and this will do somewhat to keep the L/V 

ratio at acceptable values. Unfortunately it is during this curve negotiation that track 

twist comes into play and causes significant vertical unloading, which may cause 

excessive L/V ratios. 

2.4.2 The Current Testing Procedure 

The current procedure is governed by the QR standard – Rollingstock Dynamic 

Performance. Here it is stated that the maximum wheel unloading shall not exceed 

90% and individual wheel L/V shall not exceed 1.  

rail 

wheel 

Normal running Cornering with 

excessive L/V 
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It is difficult to measure the wheel unloading dynamically on the track because of 

the need to set up a test track of the exact dimensions. For this reason a static twist 

test is used. Obviously dynamic unloading will be larger than that which occurs in a 

static test and therefore the limit for acceptable unloading is reduced to 60% for the 

static twist test. 

Currently the test procedure is quite basic. The procedure is to lift wheels to heights 

replicating the position the wheels will be in while travelling over the cant ramp. A 

representation of a vehicle negotiating a cant ramp can be viewed in Figure 2-4. 

To simulate the worst case of unloading, the possibility of track irregularities is 

included in the test. A dip is superimposed on the cant ramp at the critical front 

wheel. This is to simulate degraded track that, however, is still within maintenance 

limits.  



10 

 

 

Figure 2-4  A representation of a vehicle negotiating a cant ramp (QR standards) 

The wheel at Point A in Figure 2-4 is the wheel undergoing most unloading. This 

wheel will be called the ‘critical wheel’ throughout the rest of this dissertation and 

the twist test is designed to measure the maximum unloading that occurs on this 

wheel. 

The actual heights are calculated from the bogie wheelbase, bogie centre distance, 

cant ramp slope and dip dimensions. The following figure shows these dimensions. 

Bogies are the structure providing the link from the axles to the vehicle body.  
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Figure 2-5 Twist test dimensions (QR standards) 

Figure 2-5  is taken from QR standards and the dimensions are explained below: 

• N = Slope of cant ramp (1 in N) 

• b = Bogie Wheelbase (mm) 

• V = Bogie centre distance (mm) 

• d = Dip depth (mm) 

• L = Length over which dip acts (mm) 

• P1 =(d+L/N)b/L (mm) 

• P2 =d+V/N (mm) 

• P3 =d+(V+b)/N (mm) 

The wheels are lifted to these heights with hand operated hydraulic bottle jacks or a 

pump and cylinder set. Heights are measured by comparing a mark on the wheel 

with a steel ruler sitting against the wheel, visible in Figure 2-6. Note that the 

heights are different for each wheel. 

To achieve accuracy of the load data gathered, it is desired that the cylinders be 

lifted synchronously, meaning cylinders should reach their respective required 
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heights at the same time. Synchrony is achieved in the current test by verbal 

communication between personnel operating the bottle jacks. For example, phrases 

like “I’m nearly there” and “You jack slower” are used. This is quite obviously not 

going to be repeatable or accurate and will cause different load reading due to the 

hysteresis effect described in Section 2.5. Sometimes a mistake is made by one of 

the personnel operating the jacks and the test has to be restarted. 

 

Figure 2-6 The current manual testing method 

2.4.3 Load measurement 

As seen in Figure 2-6, load cells are positioned under the critical wheel to measure 

the amount of unloading once the wheels have been jacked to their respective 

heights. The lifting is stopped at intermediate heights, at 25% 50% and 75% of total 

stroke. This is so a plot of load vs displacement can be generated and from this, 

considerable information about the suspension system can be viewed. 

2.4.4 Other measurements 

During the lift more readings than just the load are taken. To determine how much 

each component of the suspension is contributing to absorbing the rail height, 

measurements of these component deflections are taken at all intermediate 

Bogie 

Steel ruler 

Load cell 

Side bearers 

not visible 

Springs 

Axlebox 
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heights. The two components measured are spring and side bearer deflections and 

the location of these components can be viewed in Figure 2-6. Side bearers are 

devices installed either side of a centre pin of a bogie and they are needed for the 

train body to lean against when cornering. The side bearers sometimes include 

friction wedges and provide an amount of friction damping similar to shock 

absorbers in a car. 

2.4.5 Test set up 

When a train needs to be tested, QR engineers pack the equipment needed in a 

4WD and drive to the workshop where the train is situated. This could be at any 

number of QR’s workshops around Brisbane depending on where it is easiest to 

drive the train to. There are a few different ways that the test is currently set up. 

The method used depends on the locations available. 

Method 1: 

The vehicle is lifted off the rails inside the workshop via the use of two overhead 

cranes and placed on a level concrete floor. Every wheel has to be placed on wood 

blocks to stop damage to the concrete and to keep them level with the front wheels, 

which will be placed on load cells. This method is being used in Figure 2-6. 

Method 2: 

The train is left on the rails and a steel plate placed to straddle the rails so that the 

load cells can have a flat base to rest on. The vehicle is moved onto the load cells by 

lifting with cranes or lifting with jacks and dragging the load cells underneath the 

wheels. 

Method 3: 

In some workshops there is a pit between the rails and a train weigher can be used. 

The train weigher is positioned as shown in Figure 2-7. The nuts are tightened and 

this pushes the weighing plates outwards against the rails, thus wedging it in to a 

secure position. The vehicle can be easily rolled onto the weighing plates of the train 



14 

 

weigher. This is the preferred set-up method because it does not require the use of 

cranes or any flat concrete floor space. 

 

Figure 2-7 Train weigher 

2.5 Twist Test Data 

Twist test data is gathered and presented in an Excel spreadsheet. The Excel sheet 

contains many calculations to find values such as body twist in degrees, rail height 

absorbed by the body and the critical, percent unloading. From this data sheet it can 

be analysed which suspension components are ‘going solid’; very useful if the train 

fails the test and it has to be decided what modifications are needed. There have 

been a quite a number of rollingstock fail the test in just the last 5 years.  

Another outcome of the test is the hysteresis graph. Two examples of these are 

given in Figure 2-8 and Figure 2-9. This again is a tool to analyse the performance of 

the suspension. The definition of hysteresis is the lagging of an effect behind its 

cause. Here the cause is the lifting of the wheel and the effect is the load measured 

at the critical wheel.  It can be seen on the graphs that load measurements are taken 
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on an upstroke and a downstroke. Notice from the two graphs below that the load 

measured on the way down is always less that the load measured on the upstroke. 

The area between these lines is a measure of the energy absorbed by the 

suspension. 

 

 

Figure 2-8 KLEX Wagon hysteresis graph (QR test data) 
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Figure 2-9 VFMQ Wagon hysteresis graph (QR test data) 

The right wheel, right test and the left wheel left test are the two important curves 

because they are the ones measuring the critical wheel. The horizontal axis of the 

graph is the jacking height. The marked points are positions where the lifting has 

been stopped to take load measurements. 

A comparison of these two graphs indicates that the amount of hysteresis varies 

widely. From the data observed, the VFMQ wagon is one of the vehicles best 

exhibiting the effect. 

An automated test will enable more accurate production of these important graphs. 

More intermediate steps can be easily entered into the control software and the 

jacks will stop at these heights to generate more points on the graph. Also the 

hysteresis effect will be more accurately measured with an automated test if the 

cylinders can be kept in near perfect synch. 
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2.6 Conclusion 

This chapter provides all the required background information for the 

commencement of the design of a new automated rollingstock twist test. The 

current procedure has been examined first hand by the author and some downfalls 

of this procedure recognised. These downfalls are hoped to be mitigated by the new 

design. However more detailed information has to first be researched to determine 

the complete constraints of this design.   
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3 Requirements of an Automated Twist Test 

3.1 Introduction 

This chapter will present the findings of the research conducted into the 

requirements for a new automated twist test. It is essential to gather all the 

performance requirements together into a complete list so that no significant 

requirement is left out and discovered at a later date, causing the need for much 

redesign. Requirements were discovered through examining documents and 

communicating with QR engineers. 

3.2 Current Twist Test Guidelines 

There are many guidelines in relation to the twist test QR performs currently. Most 

are contained in the internal document, Work Instruction - Static Twist Test. This 

document has been created to satisfy the requirements set out in QR Standard 

Rollingstock Dynamic Performance and the document Rail Infrastructure 

Corporation Standard – RSU 283 – Static twist test. The latter of these two 

documents describes the procedure for testing rollingstock which is to travel on 

standard gauge track. Standard gauge track is wider between the rails than the 

narrow gauge track used in most of Queensland. Most other states in Australia use 

standard gauge track. 

The Work Instruction sets out exactly what is required for the current test. The 

design of an automated test will need to adhere to many of these guidelines. 

Specifically, these phrases will have a large impact on the new design: 

• “All brakes should be released including handbrake and spring applied 

parking brakes” 

This is because the test needs to simulate the suspension as it is freely rolling along 

the track. Chocks of some sort will be required to keep the tested vehicle stationary 

as in the current test. 
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• “Jacks should be placed under the axleboxes or bearing cups” 

This specifies where the jacks will be positioned which leads to the need for research 

into the height of these axleboxes so the space available for jacks can be 

ascertained. 

• “Raising the wheels should be performed in a manner so that they all reach 

the required height simultaneously.” 

It is stated in the Work Instruction that this is because friction damping within the 

suspension will cause different load cell readings. The test needs to best simulate 

the actual conditions on the track, which is having the heights reached 

simultaneously. Motion control of the lifting equipment will definitely be required to 

achieve this. The two parameters requiring control will be speed and height. 

• “It is generally advantageous to take the load cell readings at 25%, 50%, 

75% and 100% of the required wheel heights.” 

The current test uses this method because extra information about suspension 

elements reaching their travel limits can be gained. A hysteresis graph is generated 

from this data and is an important tool in analysing the performance of the 

suspension.  

Using only 4 steps is a limitation of the manual method. With software control it 

would be easy to measure loads at any number of steps. However this is specified as 

a static test and the vehicle should be at rest before load readings are taken, or at 

least there should be no dynamic behaviour induced by the test and recorded.  

• “Before jacking to the next height, the security of all wheels on their chocks 

should be checked.” 

If the load readings are taken automatically and the test automated to the extent 

that it can be done “with one press of a button”, then the chocking method used 

should be checked that it will be secure throughout the whole test. 
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• “The side that has just been jacked up should be set down at the same 75%, 

50%, and 25% intermediate heights, and readings taken” 

The significance of this is that the system will need speed and height control in both 

directions because the lowering will have to be stopped at these exact intermediate 

heights, the same as for the lifting stroke. 

3.3 Types of Rollingstock  

This is an overview of the types of rollingstock that have been previously tested and 

are a good indication of what is expected to be tested in the future. The research 

into these vehicles was specific to the wheel configurations, tare weights, some 

overall maximum and minimum dimensions of axlebox heights and distance 

between wheels. These dimensions are relevant to the design of an automated twist 

test. 

3.3.1 3700 Class Locomotive 

The 3700 class locomotive is a re-manufactured version of the older 3200 class 

locomotives, which were built in 1986. It is QR’s heaviest vehicle running on narrow 

gauge track, with a tare tonnage of approximately 126 tonnes. This is currently the 

heaviest vehicle that a new twist test system would expect to lift. However some 

factor of safety for the event of future models being even heavier will be 

considered.  

Many locomotives, including the 3700 class have three bogies with two axles on 

each bogie. This means that, referring to Figure 2-4, there will be 5 wheels to lift. 

Some locomotives have two bogies with three axles, exactly as depicted in Figure 

2-4, still meaning there will be 5 wheels to lift. 

3.3.2 Harsco Track Technologies Stoneblower 

The Stoneblower is a track maintenance vehicle. It pneumatically injects ballast 

under the sleepers to repair the height of the rail. The twist test previously 

undertaken on this vehicle was quite a difficult procedure. This is because of its 
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unusual configuration of two cars sitting on three bogies. This means there is a 

distance of greater than 26 meters from leading to trailing wheel. To correctly 

simulate the dip and ramp angle of 1:400 the trailing wheel has to be jacked to a 

height of 96mm. 

3.3.3 Cairns Tilt Train 

The significant dimension of the Tilt Train is its low clearance between the axlebox 

and the ground. The Tilt Train trailer cars have wheels of diameter 810mm when 

new and down to 730mm when worn. The distance between the centre of the 

wheel and the bottom of the axlebox is 180mm. This means the minimum clearance 

under the axlebox for the positioning of a jack is: 

���� � 180 	 186mm 

This dimension provides a minimum clearance for the positioning of jacking devices. 

3.3.4 Inter-urban Multiple Unit 

The IMU is an electric passenger car. It is significant in relation to twist testing it that 

it has one of the longest spans between bogie centres at 17 meters.  

3.4 Key Requirements of the System 

From the information gathered so far we can now formulate a list of key 

requirements. 

3.4.1 Load 

The heaviest vehicles to be tested are locomotives. In particular the 3700 class is the 

current heaviest at 126 tonnes. This locomotive has 12 wheels so the approximate 

load per wheel, in the level position, is 

126/12 	 10.5 ������ 
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However as the wheels are lifted varying amounts, uneven loading will occur and 

more force will be required. Exactly how much more is difficult to determine 

because of the complicated suspension system. To find an approximate value it will 

be assumed that the 5 wheels being lifted will share equal load. Of course this is not 

the case in practise and a correction factor of 1.2 will be added to account for 

dissymmetry. To lift one side of the locomotive it will require a force of half the total 

weight. This force will be divided between 5 lifting points. Another factor of safety of 

1.2 will be added to account for future vehicles being heavier 

�126/2�/5 � 5 � 1.2 � 1.2 � 18 ������ 	 180 �� 

The number of wheels to be lifted will never exceed 5 because the maximum 

number of wheels on any of QR’s vehicles is 12. The other configurations will need 

one or three wheels lifted. 

• Lift 180 kN at up to 5 points 

3.4.2 Stroke 

• Lift these points to a maximum stroke of 105 mm 

QR’s standards dictate that the maximum height of the outside rail on a cant ramp is 

105mm, see Figure 2-4. The majority of trains tested will require a stroke less than 

this; in fact the largest stroke required for a test to date is 96mm.  

• The lifting device must safely accommodate the tilt of 5.6° created by this 

stroke. 

The train will tilt as one side is jacked up. The significance of this is that the interface 

between the jack and the bottom of the axlebox should rotate with this tilt. 

Otherwise all the force may end up on one edge of the jack bearing surface, causing 

damage to the axlebox and possibly to the jack because of the off-axis loading. The 

maximum tilt can be calculated from the maximum stroke. 
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3.4.3 Dimensions of device 

• The lifting device is required to fit within dimensions approximately 400 

by 400 by 185mm high.  

These dimensions are not fixed, but more of a general feel for how much space is 

available. It would take too much time to research exact clearance dimensions for all 

the different train types.   

The vertical clearance is more critical because it will dictate the collapsed height of 

lifting devices. As mentioned in Section 3.3, the minimum height from floor to 

axlebox found on any of QR’s fleet is 185mm.  A flat floor will be available. Non-

metallic material should be used to sit against the axlebox so as not to damage it. 

 

115mm 

1047mm 
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Figure 3-1 Space available for lifting device 

• Maximum distance between lifting points  is 26 meters 

• The distance between lifting points will vary 

• Complete system must be transportable in a 4WD to and from the 

Vehicle and Track engineers’ office. 

Again this is a general constraint on dimensions. It also means that the system must 

be designed to be portable i.e. handles required on equipment for easy carrying. 

3.4.4 Time constraints 

• Desired lifting speed of 115 mm/min 

This converts to a stroke of 115mm completed in 60 seconds. An incomplete report 

by a QR employee specified that the lift should take less than 60 seconds. The lift 

rate is purely a question of convenience for the personnel running the test. However 

it is stated in the project aim that the test should be faster than the current manual 

method.  

• Desirable set up time of less than 20 minutes 

Set up time is critical because decreasing the total time of completing a test is part 

of the project aim. Therefore any methods to minimise set up time should be 

implemented. The equipment will have to be moved from one side of the train to 
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the other as both have to be tested. The time required to this should also be 

minimised. 

3.4.5 Automation 

• Stop the lift automatically at four or more stages i.e. 25%, 50%, 75% and 

100% of full height. These heights vary from vehicle to vehicle so a means 

of inputting the dimensions into the control software is required.  

As mentioned in Chapter 2 the calculation of the heights to lift each wheel is made 

from the bogie wheel base and bogie centre distance dimensions and the track 

conditions. This calculation can be either integrated into the system or pre-

calculated and input simply as a height for each lifting point. 

• Minimise the amount of input by the operator. 

This point is to help reduce the overall time taken for the test. Ideally the 

parameters of the individual tests would be input into the software beforehand in 

the office, then only a few presses of buttons required once the system is in place in 

the workshop. 

• Stop the lift within 1mm of the required height. The required heights will 

be different for each point.  

• Lift and lower the points simultaneously to differing heights. The points 

should all reach their specified height within approximately 2mm of each 

other. 

This is better accuracy than you would expect from the current manual twist test. 

From looking at previous hysteresis graphs, a lag of 2mm by one cylinder will not 

affect accuracy of measured data. 

• Measure load readings of the critical wheel of interest at all five heights. 

The readings are simply taken from the portable Train Weigher or load cells once the 

lift has stopped at intermediate heights. Load readings will not be taken 

automatically. 
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3.5 Conclusion

A complete list of performance requirements for an automated twist test has been 

established. The next step in this design is to start to examine equipment which will 

fulfil the above requirements.  
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4 Existing Systems used for Synchronous Heavy 

Lifting 

4.1 Introduction 

The basic function of the system required to complete the twist test is that a heavy 

load has to be lifted synchronously. It is important with any new design to research 

the pre-existing products that are available. There are two methods of lifting heavy 

loads which are already used extensively at QR for lifting rollingstock; power screws 

and hydraulics. This chapter aims to review these two options and to identify 

products that use these methods of actuation and incorporate electronic control. 

4.2 Hydraulic Synchronous Lifting Systems 

There are a few hydraulic lifting products on the market that have already been 

developed as a package with electronic position control. They are called 

synchronous lifting systems.  

However after examination of their capabilities it is obvious they will not be suitable 

for direct application to twist testing because they are all designed towards keeping 

heavy loads balanced. This means the displacement of each lifting point is controlled 

so that it moves upwards as close as possible to exactly the same rate, thus keeping 

all cylinders at the same level. The twist test needs points to be lifted to varying 

heights. They are also much too expensive for this application. However studying 

these systems gives valuable insight into possible methods of lifting synchronously. 

4.2.1 Enerpac SLS  

Enerpac is a worldwide producer of hydraulics equipment. They sell a system called 

the Synchronous Lift System (SLS). The SLS has been used in bridge launching, 

dragline maintenance and tunnel jacking. Some extremely heavy objects have been 

lifted with this system such as a 3500 tonne dragline in a recent project at Carragh 

coal mine, Queensland. The dragline had to be lifted 200mm so that the main pivot 
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bearing could be replaced. A picture of the SLS in action on this project is shown 

below. 

For this project the hydraulic system was composed of 80 high pressure hydraulic 

cylinders. They can be seen grouped together in four’s with stabilising structure in 

Figure 4-1. Also visible in the photo is the pump, control equipment, hydraulic hose 

and electrical cable for feedback from the cylinders. 

 

 

Figure 4-1 Dragline lifting with the Enerpac SLS (Enerpac catalogue) 

The system makes use of a Programmable Logic Controller (PLC) to very accurately 

control the movement of up to 64 hydraulic cylinders.  A PLC is a dedicated hardware 

device that controls and monitors equipment using electrical input and output ports. The 

purpose of such an accurate system is primarily that the object is lifted safely with 

little risk of the load slipping horizontally and it ensures that no excessive stresses 

are placed on the object and cylinders. 
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As described in the document Lift Anything, (Hohensee, 2005) cylinders are 

positioned and extended to a specific initial load, the user specifies a tolerance and a 

target, then the system is put in automatic mode and lifting/lowering commences. 

While in automatic mode the user has no input. Lifting is controlled by feedback 

from pressure sensors and Linear Variable Differential Transformers (LVDT’s).  

LVDT’s are a device which outputs a voltage proportional to its armature 

displacement and thus can provide position feedback. 

On this system LVDT’s are connected parallel to each cylinder. They are not placed 

on the actual cylinder because in the initial stages of lifting very heavy objects the 

displacement of the cylinder is not exactly the same as the movement of the object. 

There will always be a small amount of slack in the cylinder. Therefore the LVDT’s 

are connected to the load and to a stationary platform next to the cylinder. 

The pressure sensors are used to measure load at each cylinder. If information 

about the position of the cylinders is combined with this load measurement, the 

centre of gravity can be calculated continuously as the object is lifted. The centre of 

gravity information is vital in ensuring the object is balanced. The pressure sensors 

are also used in initial positioning of the cylinders. The cylinders are told to extend 

until they reach a certain load.  

This system is interesting in that control is performed via ‘digital hydraulics’. In this 

sense digital hydraulics simply means that every cylinder is controlled by a 2/2 valve 

that only has on and off positions. No proportional valves are used. The reason that 

this is acceptable is that they use high performance valves that can switch from 

closed to open in 30 milliseconds and the lifting will be done appropriately slow. The 

rate of reporting from the LVDT’s is also very fast.  

The software control works with the use of a protocol file which indicates how often 

the measured values have to be achieved. In effect this is dividing the stroke into 

many small targets for the software. These divisions can be set to a fraction of an 
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inch or second. The LVDT’s start tracking the position of the cylinders when the 

system enters automatic mode. Once a cylinder reaches one of these intermediate 

targets it is switched off. If one cylinder is lagging behind the others outside the 

tolerance, the 2/2 valve opens briefly, followed by a new reading. Once all cylinders 

have reached the increment specified in the protocol file, the software moves on to 

the next target. This correction process happens very rapidly and it appears that the 

cylinders are moving upwards continuously. 

Enerpac uses a hydraulic rectifier on each of its cylinder circuits so that oil can only 

flow in one direction. This lets each cylinder act independently and thus means that 

different sized cylinders can be used at each lifting point. 

The Enerpac system allows input and output of results through the PLC/touch screen 

input device. Figure 4-2 is a picture of the components used in this system. 

 

Figure 4-2 Enerpac SLS system components - note touch screen in bottom left corner 

This system costs approximately $120 000 for the control system alone, without 

cylinders. This seems ridiculously priced but being one of the few systems of this 

kind on the market, Enerpac is at liberty to set their prices high.  
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4.2.2 Euro Press SLS 

The Euro Press SLS appears to work in a similar fashion to the Enerpac version. It 

also uses the concept of digital hydraulics with feedback from LVDT’s. The tolerance 

of variation between cylinders can be set, equivalent of the protocol file on the 

Enerpac SLS. Also an accuracy value can be input, which specifies at what 

percentage error the valve will be opened. 

This system also uses a PLC but relies on a laptop running Microsoft Windows to 

provide input and output. It ships with necessary software into which the user can 

input how many cylinders are being used, effective areas of these cylinders, whether 

they are single or double acting and accuracy tolerances. The controlled lift is also 

started and stopped from the laptop. 

4.2.3 Hydra-Capsule SLS 

Hydra-Capsule is an English company who supply another line of the same high 

pressure jacks and control systems. However they sell a few different variations of 

these synchronous lifting systems. 

They sell a fully functioned system exactly like the two above using the same digital 

hydraulics concept and a laptop for input. (Hydra-Capsule 2007) 

They also sell a unit called the multiple-flow unit. This synchronous system has no 

electronic control and just relies on multiple pumps driven from the same motor to 

provide even flow to the separate cylinders, regardless of pressure differences. 

Obviously the same size and number of jacks will have to be used on each pump 

outlet. 

The other SLS variation they sell is their method using single-flow pumps. This 

system is used for operations carried out over large distances. A number of 

individual pumps are used and each individual pump is monitored and its speed 

controlled so that cylinders move synchronously. 



 

Their method of gaining position feedback is described on their website. LVDT’s are 

mounted in a mechanism that serves to provide attachment to the load. A plumb 

bob weight is suspended from the load by a wire and the LVDT is secured to a 

stationary object. The wire is kept taut by the spring return mechanism inside.

Figure 4-3 LVDT mounting used on Hydra

 

4.3 Power Screws 

A power screw is sometimes called a linear actuator, screw jack or a translation 

screw. Their purpose is to create linear motion from rotary motion

power screw is shown in 

Their method of gaining position feedback is described on their website. LVDT’s are 

a mechanism that serves to provide attachment to the load. A plumb 

bob weight is suspended from the load by a wire and the LVDT is secured to a 

stationary object. The wire is kept taut by the spring return mechanism inside.

 

LVDT mounting used on Hydra-Capsule systems (Hydra-capsule 2007

 

A power screw is sometimes called a linear actuator, screw jack or a translation 

screw. Their purpose is to create linear motion from rotary motion. A depiction of a 

power screw is shown in Figure 4-4. 
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Their method of gaining position feedback is described on their website. LVDT’s are 

a mechanism that serves to provide attachment to the load. A plumb 

bob weight is suspended from the load by a wire and the LVDT is secured to a 

stationary object. The wire is kept taut by the spring return mechanism inside. 

capsule 2007) 

A power screw is sometimes called a linear actuator, screw jack or a translation 

A depiction of a 
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Figure 4-4 A power screw 

Mechanical advantage is gained through the screw mechanism, which in turn means 

that the nut or the screw has to be rotated relatively quickly to produce the linear 

motion of the load. This leads to the idea of using an electric motor as the means of 

generating rotation as electric motors are most efficient when running at high 

speeds. 

An electric motor drive will be essential for power screws in their application to the 

twist test because of the high precision needed. The speed of an electric motor can 

be controlled by altering the voltage applied to it and the linear position can be kept 

track of by recording how many fractions of a rotation the motor has turned. 

Feedback is provided by encoders or resolvers. Encoders work by converting their 

position to a digital or analogue code. The code is generated by mechanically or 

optically recognising a pattern on the rotating shaft. Resolvers are a type of rotary 

electrical transformer and produce an analogue output (Wikipedia 2007). 

Motors incorporating position control are very common because they are the 

primary source of power used in robotics. There are two types of electric motors, 

servomotors and stepper motors. The stepper motor, as its name suggests, has its 
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rotation broken into a large number of steps. The required angle of the shaft can be 

reached by electronically informing the motor which step it should be at. Feedback 

is not needed to control position, although it can be used. Stepper motors have the 

disadvantage of sometimes missing steps if there is a large torque applied or when 

driven at high speeds. If the motor starts to miss steps the accuracy of its position 

control will obviously suffer. The twist test application will make high torques 

because of the heavy loads and therefore stepper motors are not suitable. 

Servo motors on the other hand rely on feedback from resolvers or encoders to 

accurately move to a certain angle. The feedback device is often built into the servo 

motor package. Servo motors are much more commonly used in high load 

applications such as the twist test and for that reason there are a range of high 

powered motors on the market exceeding the power required to lift a locomotive in 

acceptable time. 

A search of the internet revealed no ready-made synchronous lifting systems 

incorporating power screws. However there was plenty of evidence of their 

suitability for the twist test and the components of a likely system are readily 

available. 

4.4 Conclusion 

The most important information gained from this study is the fact that all 

synchronous heavy lifting systems common on the market today use hydraulic 

cylinders as the lifting mechanism and ‘digital hydraulics’ as the control scheme.  

Interestingly all systems also use high pressures of 700bar. This is most likely 

because it is more cost effective to manufacture high load cylinders for high 

pressure since a smaller effective diameter is needed. The cylinders will also be 

lighter for transporting and positioning.  



35 

 

The method used by Hydra-Capsule of synchronising the lift by flow adjustment 

without electronic control could possibly be developed into a viable system for the 

twist test. 

Power screws coupled with servo motors also provide a feasible lifting system at this 

stage. 

The study of these synchronous lifting systems has provided invaluable insight into 

possible designs for a twist test system. The next chapter will deal with determining 

the best control method and check feasibility of using such components as power 

screws and hydraulic cylinders. 
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5 System Concept 

5.1 Introduction 

There are a number of options and schemes when considering components and 

control systems for the twist test. The two areas that will govern the rest of the 

system design are the lifting mechanisms and the control system. Once a decision 

has been made on the best choice of options in these areas the rest of the design for 

the system should be straightforward. This chapter aims to introduce concepts and 

discern which appear viable at this stage. 

5.2 Lifting Devices 

A decision must be made on which lifting device will be most appropriate for the 

twist test so that the rest of the system can be designed around the chosen device. 

From the review of lifting mechanisms in the previous chapter the two viable 

options of are: 

• Power Screws 

• Hydraulic cylinders 

 

Other devices, such as winches or scissor lifts, fail to meet performance 

requirements because they are not portable. 

We already know that hydraulic cylinders are viable because they are used currently 

on the manual twist test as described in Chapter 2.  
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Figure 5-1 Hydraulic cylinder are viable for the twist test 

The same cannot be said for power screws and their viability still has to be checked. 

5.3 Power Screw Viability 

Linear Bearings, a power screw supplier located in Brisbane, was contacted and their 

range of power screws assessed. For heavy loads, they recommended their 

Powerjacks range. A couple of different configurations of jacks available in this range 

are shown in Figure 5-2. 

 

Figure 5-2 Powerjack E series screw jacks 

There were two options for achieving the required load rating of 180 kN. There is a 

300 kN version of Powerjack, but this has a collapsed height of 235mm or more 

depending on the type of top plate used, and it weighed 86 kg. This was not 

acceptable because the inadequate collapsed height would not have allowed the 

jacks to fit under a large quantity of vehicles to be tested. Also 86kg cannot be 



38 

 

considered easily portable. The other option was utilising two 100 kN jacks. These 

have a collapsed height of 147mm and only weigh 25kg each.  

 The next problem was to specify the appropriate configuration and placement of 

these screw jacks. There are two options, rotating or non-rotating.  

5.3.1 Rotating Type 

The rotating version of a screw jack rotates the screw while a nut is driven up and 

down the screw. Observably, the nut has to be restrained so that it cannot rotate.  

 

Figure 5-3 Rotating type screw jack (Power Jack catalogue) 

The problem with this configuration is the screw protruding from the top, which is 

where we want to rest the axlebox. However as there are two jacks needed they 

could be configured as in the conceptual drawing, Figure 5-4. 
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Figure 5-4 Rotating type jack placement 

Unfortunately the jacks will foul with other parts of the bogie on some trains. 

Certain types of bogies have structural members in the area of the red circle shown 

in Figure 5-4, which will not allow the jacks to be positioned as they are here. 

Therefore there is no viable solution using rotating type jacks. 

5.3.2 Non-rotating Type 

A non-rotating screw jack has a worm gear mechanism inside which allows the 

screw to raise and lower without rotating. This is useful because we do not want the 

surface touching the axlebox to rotate. However the disadvantage is that it means 

the screw needs to be stored below the motor when in the lowered position, as 

seen in Figure 5-5. 

Axlebox 

Jacks 
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Figure 5-5 Non-rotating power screw (adapted from Power Jack catalogue 2004) 

This type of jack does not appear to be designed with the purpose of jacking from 

the floor. However, Linear Bearings came up with the solution shown in Figure 5-6, 

using the non-rotating screw jacks: 

 



41 

 

 

Figure 5-6 Linear Bearings solution for jack placement 

 

Again, similar dimensional constraint issues as with the rotating type concept could 

arise. Also the whole lifting mechanism is starting to become quite large. By the time 

servo motors are added, this device would weigh at least 70kg, which is not easily 

portable. 

5.3.3 Power screw viability conclusion 

The viability of power screws as lifting devices for the twist test has been analysed 

and it can be concluded that they are not feasible. The issue of portability was the 

main concern and hydraulic cylinders are much more favourable in this area. 

Therefore from this point forward only hydraulic systems will be considered. 

5.4 Traverse-Time Graph 

The cylinders have to move in the fashion shown in Figure 5-7. Each cylinder has to 

move to different positions but in a synchronous manner.  



42 

 

 

Figure 5-7 Cylinder positions (adapted form QR standards) 

The stroke and load required has been calculated in Chapter 3. We can put this 

together with the synchrony required in the traverse-time graph shown in Figure 

5-8. 
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Figure 5-8 Traverse-time graph. Each line represents a lifting device's position 

The traverse-time graph gives an easily readable picture of what movement of the 

cylinders is required. This is the particular traverse-time graph for rollingstock with 6 

axles and a length long enough to require maximum stroke. Obviously the graph will 

vary depending on the number of wheels and dimensions of the train. 
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Traverse-time graphs are usually used in hydraulics to visualise the sequencing of 

cylinders. The twist test system does not require any sequencing in the sense of 

cylinders hitting limit switches and activating another cylinder. However the graph 

depicts clearly that there needs to be some sort of control to move the cylinders 

relative to each other i.e. ‘micro-sequencing’.  

The time delay between strokes is not fixed as shown on the graph as the horizontal 

portions of the stroke; it will be controlled by the press of a button to start the next 

stage of the stroke. 

5.5 Control Methods 

Control theory can be split into two distinct methods, open-loop and closed-loop. 

Open-loop control means that a device is controlled without feedback. The output is 

simply proportional in some way to the input. An example of open-loop control is a 

heating system where the output of the heater is calculated from the outside 

temperature only. Closed-loop control requires a device to provide feedback, from 

which an error from the target can be obtained. Input into the device to be 

controlled is then based on this error. An example of closed-loop control is where 

the aforementioned heating system adjusts its heat output according to the 

difference between the inside temperature and a desired temperature, such as 

20°C. 

The twist test system needs a closed-loop system. The foremost reason for this is 

the variance in the load between different rollingstock. In fact the accuracy required 

would be difficult to obtain even if the same load was lifted every time. Open-loop 

systems are not generally used in position control where any accuracy is required 

because of the uncertainties of friction and other unforeseen disturbances.  
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An example of an open-loop hydraulic system is one where the position of an 

actuator is controlled by opening a valve for a certain amount of time, see Figure 

5-9.  

 

Figure 5-9 Open-loop control example 

 

The amount of time is the input and the displacement of the cylinder is a function of 

such parameters as: flow rate, cylinder diameter and cylinder leakage. Obviously it 

will only take a small variation in parameters, such as the voltage applied to the 

pump and the flow rate will change, causing considerable error in the result from 

the predicted displacement. A system such as this will certainly not generate 

accuracy of better than 1mm. 

An example of a closed-loop hydraulic system is where the same actuator has a 

position transducer parallel to it, generating a signal that can be fed back to a 

Programmable Logic Controller, see Figure 5-10. 

 

Figure 5-10 Closed-loop control example 
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The PLC contains code to analyse the feedback and output a suitable position of the 

hydraulic valve to minimise the error in the actual stroke compared to the desired 

stroke. This type of system should provide the accuracy necessary for the twist test 

application. 

5.6 Control Concepts for a Hydraulic System 

There are three concepts of control for a hydraulic system, ranging from simple and 

probable low accuracy, to complex with expected high accuracy. We will give them 

these names to distinguish between them: 

• Limited feedback 

• Pump speed control 

• Digital control 

• Proportional control 

5.6.1 Limited feedback system 

The purpose of this concept is to minimise the amount of control hardware needed, 

thus reducing equipment cost and design complexity.  

The idea is to pre-set the flow entering each separate cylinder before the lift is 

started. The flow should be set, using manual flow control valves, to a rate 

proportional to the stroke required for that cylinder. Once the lift is started the 

cylinders should then move up at the correct rate so that they reach the end of their 

stroke at the same time. This will mitigate the need for position feedback 

transducers and these are quite expensive so this is a worthwhile concept to 

analyse. 

The question arises of how the lift will be stopped at exact intermediate heights 

without position transducers. Cam-operated valves could be placed so that they are 

tripped when the cylinders are at the correct height. A mechanism would need to be 

designed to house these valves and allow the cam stop to be slid to new positions, 
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see Figure 5-11. The concept is basically to use hydraulic logic rather than electronic. 

It would have to be tested but it may be possible to achieve 1mm accuracy using this 

method. 

 

Figure 5-11 Hydraulic logic concept 

 

The other concern with this system is setting the flow to exactly the right amount 

will be difficult. A table would have to be generated to specify the amount of turns 

the flow control valve should be turned for a specific total stroke. This is not 

expected to be very accurate and to analyse whether this form of operation is 

acceptable we need to look at the effect of hysteresis on the accuracy of results. 

Below in Figure 5-12 is a hysteresis graph exhibiting a large hysteresis effect. 
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Figure 5-12 Hysteresis graph of a DSOP 43181 wagon (QR test data) 

It is impossible to get a completely accurate value from this data but we will attempt 

to analyse the graph and see how much effect a lagging cylinder will have. 

If we take the point marked on the graph at 75% stroke on the right side, the 

difference between loads on the up-stoke and down-stroke for the right wheel is 0.5 

tonnes. This means that 0.25 tonnes of the load is being caused by the hysteresis 

effect. The previous value on the up-stroke (50%) is 0.2 tonnes more than the load 

at 75%. There were three cylinders contributing to the lift in this test. The average 

cylinder distance moved for the stroke from 50% to 75% was 11mm.  

Now assume that this rear wheel lags the maximum amount behind the other two 

i.e. it only starts moving after the other two have reached 75%. This will have the 

same effect as releasing and re-raising the rear cylinder and this will be releasing 

approximately 1/3 of the load caused by the hysteresis effect, or 0.083 tonnes. 
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So as a guide we could say that for this test the effect on the load per asynchrony 

mm is: 

0.08311 	 0.0075 tonnes/mm 

That is, the load recorded will be inaccurate by 7.5 kg for every mm that a cylinder 

lags behind the others. For this test, since it was already so close to the 60% 

unloading limit, this means that a cylinder only had to lag 2mm for the test to have 

passed when it really should have failed. 

Of course this all depends on the particular test and other rollingstock will exhibit 

greater inaccuracies due to asynchrony. The actual justification for synchrony of 

2mm or better is to be more accurate and repeatable than the manual jacking 

method. These calculations just serve to provide a judgement on the cost of 

asynchrony. Whether an inaccuracy of 20 kg on a 20 tonne wagon will be the 

difference between derailing or not is very doubtful. 

In conclusion, probably the greatest concern with this system is the inability of 

stopping the lift within 1mm of the desired height with a hydraulic cam switch. Also 

the system does not satisfy the requirement set out in chapter 3 of minimising the 

amount of input by the operator. It would take a few minutes for each vehicle, to 

look up a table for the amount of turns the flow valve should be opened and 

5.6.2 Pump speed control 

This concept was conceived when looking at systems for synchronous lifting. Hydra-

capsule mentioned on their website that they sometimes use variable-flow pumps 

as the control method in their lifting systems. The idea is to move the control back 

to the flow of the pump in the control loop as seen in Figure 5-13. 
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Figure 5-13 Pump speed control feedback scheme 

The PLC will control the flow of five separate pumps, with each pump thus 

controlling the speed of a cylinder. Ideally no valves will be needed, with even the 

lift to be stopped at a height with only the control of the pump. The advantage in 

this is power will be saved because valves are not used to dissipate energy as heat. 

Flow from a pump is usually controlled by varying the displacement, not the speed 

of the motor. Displacement can be controlled manually, electronically with servos, 

or with internal hydraulic controls (Rohner, 1995). Obviously the option we need is 

servo control.  

There are few models of variable-displacement pumps with servo control available 

on the market. Parker sells a model, but it is designed with the purpose of being 

driven by a power source such as a tractor P.T.O. Designing a whole new pump is not 

desirable for the twist test system. 

No hydraulic pumps driven by variable speed motors could be found on the market 

as a standalone unit. This is probably because it is not a practical option and design 

of this type of pump system will not be looked into. The concept has been used 

before but the lack of available products means that extensive design work would 

need to be completed. 
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The issue with a variable displacement pump is that it will be difficult to stop the 

cylinder movement completely. The motor will still be rotating while the cylinder is 

stopped and we will need a complex control system managing the variable 

displacement to keep the cylinder steady at a certain height. 

Another negative for this concept is that variable displacement pumps, due to their 

complicated internal mechanisms are much more expensive than fixed displacement 

pumps (Rohner, 1995).  

With so many disadvantages we can conclude that this concept can be immediately 

discounted. It appears that variable-displacement pumps are not suitable for a 

portable type system such as is needed for the twist test. They are more suited to 

large production applications where power savings are more critical. Hydra-Capsule 

must have used this type of system where conventional valve control was not viable 

because of the large distances between lifting points. In this situation hydraulic 

pipes would cause large amounts of friction and the use of electrical lines to 

transmit power is a more economical option. 

5.6.3 Digital control 

Again this concept is spawned from the review of synchronous lifting systems. All 

three systems reviewed used the digital hydraulic concept, leading to the notion 

that there is merit in this method. 

The digital hydraulic system uses the closed-loop control scheme shown in Figure 

5-10. The valves used to control the cylinders are simple directional control valves, 

but are switched on and off according to the control algorithm programmed into the 

PLC.  

The synchronous lifting systems used software to split the lift stroke into tiny 

segments and ensured all cylinders had travelled this segment before opening all the 

valves again to progress to the next segment. The twist test requires that cylinders 
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progress at different rates. The obvious solution is to make the segments of varying 

size for depending on the stroke required at a particular cylinder. This is the same as 

saying that each cylinder’s stroke should be divided into the same number of 

segments. 

The issues with this concept may be the difficulty of sourcing valves with quick 

response times and this system is expected to be slower than the other methods 

because of the restriction of flow that the constant switching will cause.  

5.6.4 Proportional control 

The proportional control method uses the same control loop as shown in Figure 

5-10. Indeed it is very similar to the digital hydraulic method, but the directional 

control valves are replaced with proportional valves or servo valves. There are a 

wide variety of proportional valves with different internal mechanism and slightly 

different performance, but their basic function is to allow a flow though the valve 

that is proportional to the input voltage applied to the solenoid.  

The proportional valves will allow for very precise control of speed and position of 

the cylinder.  

A negative of proportional control is that proportional valves are somewhat less 

robust than directional control valves. They are more susceptible to particulate 

contaminants in the hydraulic oil (Rohner 1995). They are also more expensive and 

design of software for the analogue valves will be more complex. 

5.7 Conclusion 

Reviewing all of these concepts, the digital and proportional hydraulic are both 

viable at this stage. If the digital hydraulic system works acceptably the proportional 

hydraulic valves have no advantage and the higher cost and more complex software 

means that they are less desirable. Hence a digital hydraulic system will attempt to 
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be applied to the application of the twist test. The next stage of design is to 

somehow appraise the performance of a digital hydraulic system. 
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6 Analysis of Digital Hydraulics 

6.1 Introduction 

The digital hydraulics system seems to be a suitable control system for the twist test. 

However there are a few issues that need to be analysed: whether the response 

time of valves will affect accuracy and if the switching nature of the system restricts 

flow too much. It will be attempted to answer these by the use of a computer 

simulation. Flow restriction is important because it will take a lot of power to lift a 

locomotive and therefore we may need a large pump. We want the pump to lift the 

train quickly but to still be small enough to lift into the back of a 4WD. Another 

purpose of the computer analysis is to determine how difficult it is to write code for 

the application of digital hydraulics. 

6.2 Model Description 

The model was constructed with Matlab code. The desired output was an animation 

of the position of the cylinders as the model stepped through time. This animation 

was easily generated using Matlab’s inbuilt plot command. Only three cylinders 

were simulated as more would not help in analysing digital hydraulics. The strokes 

for these cylinders used in most of the analysis were 120, 80 and 40mm and the 

space between cylinders was constant so that the success of the simulation could be 

checked visually by ensuring that a straight line could always be drawn between the 

points as shown in the plot below. 
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Figure 6-1 Cylinder positions mid-traverse showing synchronous behaviour 

To test the animation code it was initially set up to simply step through time and 

raise the dots representing cylinders to equal heights. 

From there the stroke was broken into miniature targets, called synchrony targets in 
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before they all progress to the next target. As the model loops a displacement is 

added to the current displacement. If a cylinder has not reached its synchrony target 

its valve is left open. The model continues to loop until the synchrony target is 

reached or exceeded and then the valve is turned off. The number of these 

synchrony targets that a stroke is split into is called the resolution. Increasing the 

resolution is expected to increase the time for a lift but increase the accuracy. 
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The velocity of the cylinders when a valve was fully open was specified in the code 

as 2.7mm/s. This value was calculated as a ballpark figure by looking at pump flow 

rates of some portable pumps and cylinder sizes from an Enerpac catalogue. 

The intermediate targets are where the lift is stopped the suspension component 

measurements are taken and the load under the critical wheel recorded. Once an 

intermediate target is reached all valves are turned off and the cylinder position is 

recorded so it can be checked for accuracy. A key is pressed to progress to the next 

target much like what is expected on the real system.  

Once the cylinders reach the final stroke the signs of the cylinder position and the 

targets are reversed. This way, the same code to check cylinder position against 

targets can be used for the downstroke. At this stage the code in the real system 

would specify that the downstroke has begun and that each time a valve is turned 

on, this would mean the valves are actually moved to the release position. 

The model behaved appropriately and the “cylinders” could be seen moving up the 

screen at varying rates but in synchrony. However the model was not realistic 

because there were no inaccuracies of the LVDT’s or valves included. This was giving 

a forgiving picture of the system because sometimes the cylinder positions would 

stop exactly on the target. Aside from the fact that this is unlikely to happen in real 

life it meant the accuracy of the system could not be meaningfully assessed. 

LVDT and valve flow inaccuracies were simulated by adding different random 

amounts to the cylinder position and the cylinder velocity each time the model 

looped. The errors were changed each loop instead of having just a static error as 

this will be a much better simulation of real life. 

To test the importance of valve response time, code had to be written to simulate 

the position of the valve between its open and closed position. This was done by 

creating a new variable for valve position and if the command is given for the valve 
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to move for closed to open position the valve moves the correct amount evaluated 

from the value of the time step and the valve response time.  For this simulation it 

was assumed that acceptable accuracy would be gained by relating flow to valve 

position in a direct linear manner. 

6.3 Results 

Two plots were produced; the animation of cylinder positions as they moved up and 

down, and a plot of cylinder position vs time. The animation is hard to view on paper 

but it was essential for checking the sequence of the code and ensuring that the 

cylinder did stop at intermediate heights. An example of the animations is given in 

Figure 6-2. The position vs time graph was useful for analysing the accuracy of the 

model and an example of these graphs is given in Figure 6-3. 

 

Figure 6-2 Animation plot 
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Figure 6-2 shows the actual intermediate positions of a test previously done on a 

VFMQ wagon. As described in Chapter 3, the cylinders have to be stopped at 

intermediate heights to take load readings. From each position shown here, a key is 

pressed and the dots move to the next position on the screen. The four positions on 

the graph depict the synchronous behaviour that is required. 

 

Figure 6-3 Cylinder position plot 

In Figure 6-3 we can see that the shape of the graph matches the transverse-time 

graph specified in Chapter 5. It is interesting to note how the lowest cylinder moves 

in a bumpier fashion. This is obviously because this cylinder’s valve has to be in the 

off position more regularly to slow it down. The small crosses are the positions 

where the cylinders have stopped so load cell readings and other data can be 

gathered. 
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With these graphs the following scenarios can be analysed. 

6.3.1 Effect of resolution on lift time and accuracy 

The accuracy we are concerned about is how accurately the cylinders stop at the 

intermediate heights. The tolerance on variation from the desired height is set at 

0.5mm and hopefully by achieving this accuracy, we can achieve better than 1mm 

on the real system. For the comparison, valve response time is set constant at 20ms, 

which is about standard for directional valves. 

 

Figure 6-4 Resolution: 10 

At this extremely low resolution the maximum error occurring at any intermediate 

height was 2.57mm, an unacceptable error. The 10 steps can clearly be seen on two 
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cylinder reaches its intermediate height approximately 8mm before the highest 

cylinder. This will have an effect on the load measured because of the hysteresis 

effect discussed in Chapter 2. 

 

Figure 6-5 Resolution: 120 

It might be expected that a resolution of 120 synchrony targets, for a stroke of 

120mm will give an accuracy of approximately 1mm. However this is not the case. 

The intermediate targets are calculated separate from the resolution. The resolution 

only serves to keep the cylinders in synch. The maximum error for this particular 

scenario occurred at 75% on the downstroke on the middle cylinder and was 

0.263mm. 
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Figure 6-6 Resolution: 240 

At twice the resolution there is a small increase in accuracy with the maximum error 

being 0.21mm. The better synchrony at high resolution means there is less time for 

cylinders to move because of LVDT inaccuracies while they are waiting for the other 

cylinders to catch up. This is probably an effect only seen in the simulation and 

accuracy is not expected to improve this much in the real system. Time for the 

complete lift has increased by a few seconds. 
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Figure 6-7 Resolution 480 

At even higher resolution we achieve a maximum error of 0.12mm. However lifting 

time increases by about 5 seconds. 

The comparison has shown that resolution does not affect accuracy greatly except if 

it is extremely low. As resolution is increased the time taken for the lift only 

increases marginally. It is recommended that a resolution of twice the largest stroke 

be used. 
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6.3.2 Effect of valve response time on accuracy 

If we zoom in on the transverse-time graphs that we have been analysing we can see 

the response of the valve. For this comparison the number of simulation steps is 

increased so that the response curve is smooth. Below, in Figure 6-8, is the response 

of a cylinder turning off after it reaches the height of 30mm and then turning on 

again once a key has been pressed. In this simulation the delay while reading the 

value into the PLC, processing and sending the signal to the solenoid is ignored. 

 

Figure 6-8 Typical valve response curve 

For the purpose of this comparison the resolution is set constant at 240. 
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Figure 6-9 Response time 20ms 

In Figure 6-9 the target height is 10mm. There is an error of 0.19mm. Intriguingly the 

cylinder stops, then starts to move again, even after it has travelled past 10mm. 

Again this is probably just an abnormality of the simulation. The valve is staying 

open because of the simulated errors in the feedback, whereas it should be closing 

and producing a smooth curve as shown in Figure 6-8. 
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Figure 6-10 Response time 50ms 

For the response time of 50ms shown in Figure 6-10, the error was 0.132mm, which 

is smaller than the error of the previous response time. However the maximum 

error over the whole lift was 0.29mm whereas the maximum for the 20ms valve was 

0.22mm.  

At 100ms the maximum error was 0.4mm. This is getting close to our tolerance of 

0.5 mm and therefore we can conclude that if the real system exhibits these strange 

valve control behaviours then the valve response needs to be at least 100ms. 

As expected valve response time had very little effect on the overall lifting time. 
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6.4 Effect of Step Size on Solutions 

In this simulation increasing the step size gives a better approximation of the real 

system due to the response curves being smoother. It also has the effect of 

increasing the frequency of feedback and the aim of this comparison is to estimate 

the minimum frequency the feedback loop should operate at in the real system. 

 

Figure 6-11 Time step: 0.1 seconds 

The interesting result about Figure 6-11 is how the highest cylinder is stationary 

quite a few times throughout the stroke, shown by the bumpy top line. This is 

slowing down the lift and it has taken more than a second longer to reach the first 

intermediate height. So, being somewhat unintuitive, the lift time is actually 

increased when an exceptionally slow feedback frequency is used. The maximum 

error measured at the intermediate heights was 0.55mm. 

2 4 6 8 10 12 14

5

10

15

20

25

30

35

Time(s)

C
y
lin

d
e
r 
P
o
s
it
io
n
 (
m
m
) 

 

Cylinder Position Simulation 



66 

 

When the step size was decreased to 0.01 seconds the error was reduced to 

0.21mm. 

As the step size was further reduced to 0.001 seconds the error was 0.38mm. It is 

difficult to explain why the error has actually increased and this may reflect 

inaccuracy of the simulation. However it means that the solution has converged and 

that decreasing the time step further will not be beneficial. 

In conclusion the best performance was observed when feedback cycle time was 

0.01 seconds, or 100 Hz. PLC’s can operate at frequencies much higher that this. It 

should be recommended to alter the cycle time if the high cylinder appears to be 

stopping at all.  

 

6.5 Problems with the Model 

The model was a useful tool in analysing the concept of digital hydraulics. However 

there were quite a few problems and it did not seem to match the performance of a 

real system in some aspects. 

One issue was trying to get the valve of the highest cylinder to be open all the time. 

This is the ideal situation where flow is not restricted at all and the lift will be 

completed in the shortest time possible. Before the code was improved the 

simulation was outputting graphs like the one in Figure 6-12. 
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Figure 6-12 Inefficient code example 

This example shows that the highest cylinder is stopping at numerous times along its 

stroke. The inefficiency was in the sequence of the code execution. Initially the code 

was written to check all valves were stopped before moving to the next synchrony 

target. Obviously this entails that all the cylinders will be stopping frequently. The 

code was then improved to check that all cylinders had reached or exceeded their 

synchrony targets before continuing to the next target. The next target was 

specified immediately after this check, allowing the high cylinder to always be 

moving towards the next target, with no stoppages. 

6.6 Real Program Considerations 

The simulation program developed for this analysis can be used as a model for the 

real program in the PLC. However there are many considerations in the generation 
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as it is used to generate values that are already part of a real system, such as the 

error of LVDT readings. Also the simulation code is quite simple and better code for 

stopping the cylinder accurately would be desired.  

6.6.1 Implementing more cylinders 

The simulation code is set to use three cylinders. A twist test may require five. The 

simulation code could easily be modified to simulate five cylinders. It would only 

need a few more ‘if’ statements for each cylinder. An input from the user would be 

required to ask, ‘How many cylinders?’, and the appropriate code then run. 

6.6.2 Using more intermediate steps 

 

 

Figure 6-13 Simulation with 8 intermediate steps 
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The simulation code already handles any number of intermediate steps. Again a 

simple question should be put to the user in the real code; ‘How many intermediate 

steps?’ 

6.6.3 Calculating the stroke heights 

The stroke heights should be calculated from the bogie wheelbase, bogie centre 

distance, cant ramp slope and dip depth. The equations for these heights can be 

seen in Chapter 2 and these can easily be written into the real code. 

6.6.4 Configuration code 

There will be much more to the actual PLC program than the code to control the 

cylinders throughout the lift. Some features that will need to be built in are: 

• Emergency stop buttons 

• A  routine to zero the position transducers once they have been placed in 

position 

• A calibrating routine which will extend the cylinder to a certain height to 

check the system accuracy before lifting. 

6.6.5 Difference in programming language 

There is considerable difference between Matlab code and PLC code. However the 

coding concepts used in the simulation should transfer nicely to the real PLC code. 

PLC’s are coded using ladder logic. Ladder logic is a graphical method of 

representing electrical logic schemes and PLC’s are commonly programmed using 

this graphical interface from a PC (Wikipedia). The simulation code is based on if-else 

statements which transfer to the and, not and or statements which are used in 

ladder logic. Manufacturers also can supply software which will transform C type 

code like Matlab into equivalent PLC code. 
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6.7 Conclusion 

The concept of digital hydraulics has been analysed and it has passed with flying 

colours. With the right code sequence and step time there is zero flow restriction of 

the highest cylinder. Accuracy was less than 0.3mm using the optimum parameters. 

This is entirely acceptable as an error of 0.5mm was hoped for in the simulation so 

that we create a factor of safety of two for the real system accuracy of 1mm.  

The code to actually apply the concept of digital hydraulics was very simple and 

could be written in a few lines of code. The real code programmed into the PLC 

should be quite simple to create. 

The next step in evaluating the digital hydraulic system is to check that all the 

components of a hydraulic system can meet performance specifications and to 

design a hydraulic diagram that will allow for the control of cylinders in a manner 

similar to this simulation. 
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7 Hydraulic system design 

7.1 Introduction 

The next step in determining the feasibility of a digital hydraulic system is to look at 

the individual components. Equipment will be selected that will fulfil all 

performance requirements. The equipment selected may not necessarily be the 

cheapest brand or model but will prove that the overall system is feasible. As 

mentioned in Chapter 1 the maximum budget is $20 000 and the cost of 

components will be established and the overall system cost checked against this 

budget. 

7.2 System Pressure 

It is important to first establish what maximum pressure the system should be able 

to handle. A point of interest is that pumps create flow, not pressure (Rohner 1995). 

It is only when there is a resistance to this flow that pressure is created. Obviously 

the system has to be designed to handle the maximum pressure which will be 

created when a heavy locomotive has to be lifted.  

The maximum force a cylinder can apply is governed by the maximum system 

pressure and the cylinder effective area. The effective area is the area available for 

the oil to act against. For a double acting cylinder this means the rod area has to be 

subtracted from the bore area to calculate area in the secondary direction. 

Here is a comparison of cylinder sizes to lift 200 kN, the force required to lift a 

locomotive, using the common pressure of 200 bar compared to high pressure of 

700 bar. 

200 bar 

Effective cylinder area 	 ForcePressure 	 200 000 N20 MPa 	 10000mm2 
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Cylinder Diameter 	 4467 	 44 8 100007 	 113mm 

700 bar 

Effective cylinder area 	 ForcePressure 	 200 000 N70 MPa 	 2857mm2 
Cylinder Diameter 	 4467 	 44 8 28577 	 60mm 

Using high pressure means the cylinders will only need to be approximately half the 

diameter, making them more portable. Looking at some general figures in product 

catalogues this could mean an approximate weight difference of 10kg compared to 

20kg. 

Of course this weight saving is not the all important consideration when comparing 

systems pressures. High pressure pumps are likely to be much more expensive 

because of the mechanism used; they are usually piston pumps compared to the 

cheaper gear pumps used in 200 bar systems. 

Another consideration is availability. While there might be more pumps with a limit 

of 200 bar on the market overall, there is a portable pump niche in the market that 

seems to be standardised on 700 bar. These pumps are supplied by companies such 

as Enerpac, Simplex and SGS Engineering. Using a portable pump already set up with 

power supply, electric motor and oil reservoir will save huge amounts of needless 

design. This is reason enough alone to specify that the system will be designed with 

a maximum pressure of 700 bar. 
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7.3 Cylinder Selection 

The first consideration is to specify whether the cylinders should be double or single 

acting. Single acting means there is only one hydraulic connection and force can only 

be applied in one direction. For the twist test system this is fine and only a single 

acting cylinder is needed. When pressure is released the weight of the train will 

force the cylinder closed again.  

Single acting cylinders also have the option of including a spring return – an internal 

spring to force the cylinder closed when pressure is released but no load is applied. 

This may be useful to counteract any rogue pressure that may build up in the return 

line. If there is any pressure at all in the return line it will be difficult to slide the 

cylinders out from underneath the axlebox because it will be still forced against the 

load. 

The other parameters that need to be examined for cylinder selection are collapsed 

height, stroke and load capacity. We have already specified the system pressure so 

load capacity can be calculated from the bore diameter. These parameters were 

looked at in an Enerpac catalogue and other catalogues online. It was more difficult 

than expected to find a match. There was the same difficulty of achieving a stroke of 

115mm with a collapsed height of 200mm as with the power screws. An example 

cylinder is the Enerpac RC-254. It is a single acting spring return cylinder having a 

stroke of 102mm and a collapsed height of 215mm. This meets neither of the 

dimension constraints, especially when the interface between the cylinder and 

axlebox is added to the collapsed height. The question arises of which of these two 

dimensions is more important.  

All twist tests previously completed have not required a stroke above 96mm. The 

average stroke from the twist test data that was examined was approximately 60 to 

70mm. Therefore a stroke of 80mm may be acceptable. However a stroke of 50mm 
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(this appears a standard stroke size in the catalogues) will never be acceptable 

because practically every test will then require lifting in stages. If exceptionally large 

strokes are required again in the future it is not a major concern to lift in stages 

occasionally. In fact SGS Engineering supply purpose built cribbing blocks for their 

RSS ‘Shorty’ cylinder series.  

 

Figure 7-1 Specialised cribbing blocks (SGS 2005) 

These allow for quick and safe lifting in stages by inserting an outer ring, releasing a 

cylinder, inserting a stacking pad, then re-lifting. These would be a wise investment. 

If the collapsed height is not small enough for certain rollingstock the consequences 

are more serious. It means that the rollingstock can only be tested in a workshop 

with raised rails and it could be difficult to schedule time at these workshops. 

Therefore a cylinder which meets the collapsed height constraints will be chosen.  
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Two sets of cylinders could be purchased to cover all possible strokes and clearance 

requirements. However this will push up the price of the overall system considerably 

and will be avoided. 

An Enerpac CLS-504 cylinder will be selected and it has a stroke of 100mm and a 

collapsed height of 178mm. It is rated to lift 50 tons giving a safety factor of more 

than 2 for load capacity, but this is the lightest cylinder in this model range. It is a 

specialised model with reduced collapsed height for heavy lifting applications. It 

achieves the reduced collapsed height partly by forgoing a spring return mechanism. 

As mention above this may present issues in that the cylinders may still be wedged 

underneath the load when they have been fully retracted. Of course the system can 

be turned off completely and pressure bled to ensure that the cylinders can be 

removed. The CLS-504 weighs 18kg, just suitable for one person to lift. RTP price was 

given as $1535 each. It is worth noting here for interest’s sake that equivalent power 

screws would have cost more than $4000 each. 

7.4 Cylinder – Axlebox Interface 

The interface between cylinder and axlebox has to be designed so as not to damage 

the axlebox by marking the surface. The other function of this interface is to provide 

a larger surface for the axlebox to rest on and prevent it slipping off the cylinder. 

Currently, with the manual test method there is a wood block inserted as shown in 

Figure 7-2. 



 

Figure 7

The problem with this design is that it takes up too much of the collapsed height and 

it does not allow for the 5° that the rollingstock will tilt if it is li

stroke. 

The tilt can easily be accounted for by purchasing a tilt saddle with the Enerpac 

cylinder. A tilt saddle fits to the top of the plunger and allows tilting up to 5° in any 

direction, as seen in the conceptual drawing in 

to the collapsed height. 

 

 

7-2 Wood block used as cylinder - axlebox interface 

The problem with this design is that it takes up too much of the collapsed height and 

it does not allow for the 5° that the rollingstock will tilt if it is lifted to the maximum 

The tilt can easily be accounted for by purchasing a tilt saddle with the Enerpac 

cylinder. A tilt saddle fits to the top of the plunger and allows tilting up to 5° in any 

, as seen in the conceptual drawing in Figure 7-3. It will add another 24mm 

 

 

Figure 7-3 Tilt saddle 

71mm 
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The problem with this design is that it takes up too much of the collapsed height and 

fted to the maximum 

The tilt can easily be accounted for by purchasing a tilt saddle with the Enerpac 

cylinder. A tilt saddle fits to the top of the plunger and allows tilting up to 5° in any 

. It will add another 24mm 
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The saddle for this cylinder is already 71mm in diameter, which should be wide 

enough to be safe from slipping. To guard against marking the axlebox surface a high 

strength plastic can simply be placed over the top of the saddle as shown in Figure 

7-4. 

 

Figure 7-4 Polymer cap shown shaded 

The cap could be purchased from Modern Engineering, a common supplier of 

bearing composites to QR, for less than $50 each. Because of its high strength the 

composite should only need to be 5mm thick. This means the overall collapsed 

height will be 207mm. 

7.5 Pump Selection 

As mentioned in Section 7.2 the pump selected will be a portable version with a 

maximum pressure of 700 bar. The criteria governing the selection of a pump is that 

it has to be driven by 240VAC and has to provide enough flow to lift the cylinders 

105mm in less than a minute. A simple calculation will tell us how much power this 

requires. 

Now, if the highest cylinder has to be lifted 105mm, the average cylinder extension 

over all 5 will be approximately half that – 55mm. The 3700 class locomotive will 

exert an average force of 105 kN per wheel. The power required is then: 

9�:�; 	 5 8 <�;=� 8 >�;����?@� 	 5 8 105000 8 0.05560 � 480 Watts 
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Assuming a typical efficiency of 50% for the combined electric motor and hydraulic 

pump, we are looking for a pump rated at better than 1 kW. One such pump is the 

Enerpac ZU4 rated at 1.25 kW. This is a portable hydraulic piston pump, driven by an 

electric motor which requires only single phase electrical power. 

 

Figure 7-5 ZU4 models and performance chart (Enerpac product catalogue) 

The speed this pump will operate the cylinders at will now be checked. The CLS-504 

cylinders are rated for much larger loads than 105kN, meaning they will be 

operating at pressures much less than 700 bar. The effective area of these cylinders 

is 71cm2 so they will be operating at this pressure: 

9 	 <6 	 1050000.0071 	 14.7 MPa 	 147 bar 

An examination of the ZU-4’s performance chart reveals that the pump can output 

approximately 1.3 litres/min at 147 bar. This translates to a velocity of: 

 

C 	 D6 	 1l/min71cm2 	 1.66 8 10EFm3/s0.0071m2 	 2.3mm/s 
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Therefore the cylinders theoretically will traverse 105mm in 45 seconds. Of course 

there will be many losses in the system due to restrictions from valves and friction 

losses in the hydraulic hose. However these extra losses will be counteracted by the 

fact that most rollingstock to be tested will not be this heavy and at reduced 

pressures the flow output will be greater. In fact, the ZU-4 is a two stage pump, 

meaning flow increases dramatically at low pressures. A 20 ton wagon will allow the 

pump to output flow at approximately 7 l/min. A ZU-4 pump will cost $4770. 

7.6 Reservoir Size 

The ZU-4 is supplied with oil reservoirs ranging in size from 4 to 40 litres. We can 

calculate the amount of oil required be adding the maximum oil capacities of the 

cylinders. Oil capacity of a cylinder is found by multiplying the stroke by the effective 

area. 

Total oil capacity 	 5 8 A 8 Stroke 	 5 8 71cm2 8 10cm 	 3550cm3
	 3.55 litres 

The oil capacity of the hoses is actually more than that of a cylinder over distances 

of 15m. However the hoses can be filled first and then the reservoir topped up. An 8 

litre reservoir will be selected as this will provide enough oil so that it does not have 

to be topped up often. 

7.7 Hose Selection 

Judging by a list of previous twist tests, most tests will be on rollingstock with 

lengths of approximately 10 to 15m. Therefore, for a 6 axle vehicle, three 15m hoses 

and two 6m hoses will be selected. The diameter is important for this system, not 

because of the losses, but because of the back pressure that hoses will create when 

cylinders are retracting. The cylinders selected have no spring return, which makes 

back pressure more critical. Therefore the larger of Enerpac’s two choices of hose 

diameter will be used. These hoses have an internal diameter of 9.7mm. Exact cost 
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of these hoses was not confirmed but scaling up from prices obtained for shorter 

hoses, we can guess that cost would be: 

3 x 15m hose @ $600 each = $1800 

2 x 6m hose @ $300 each = $600 

Total cost of hose = $2400 

For exceptionally long vehicles such as the Stoneblower, more hose will have to be 

purchased. 

7.8 Hydraulic System Schematic 

The layout of the hydraulic system can now be designed and appropriate valves 

selected. There are many points to consider for a successful system, such as 

incorporating inherent safety. The paramount safety issue is the risk of cylinders 

losing pressure and causing the load to drop rapidly, which is likely to cause 

extensive damage to the cylinders, and more importantly, the rollingstock. 

The hydraulic schematic can be viewed in Appendix A. 

7.8.1 Valves 

The directional valves used to control the single acting cylinder are specified as 3-

way, 3-position, spring centred, closed centre, solenoid valves, with pilot operated 

check valves. For reference their diagram is shown below in Figure 7-6. 
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Figure 7-6 Directional control valve required 

There are three positions because we need one each for the functions; extend, hold 

and retract. Solenoid S0 will give the command to retract the cylinder while solenoid 

S1 will give the command to extend. If no solenoid is actuated the springs will centre 

the valve and the cylinder will be held stationary. 

The piloted operated check valve can be inbuilt into the directional valve. It is shown 

as the extension on the top the valve in Figure 7-6 and it serves to provide secure 

load holding capability. Check valves give a better seal than the spool within the 

directional control valve because they use oil pressure to seal them selves off. When 

the valve is in the centre position the check valve seals itself. When the valve is in 

the retract position, pressure is routed to release the check valve and allow flow 

back to the tank. 

Usually valves have a tandem centre where the oil under pressure is routed back to 

the tank when the directional valve is in the centre position. However for this 

system this will cause a problem in that pressure will escape out one valve when the 

other cylinders still need it to extend. Therefore a closed centre is need, but this will 

mean that a pressure relief valve must be installed so as not to cause excess 

pressure build up. A relief valve will allow oil to pass back to the tank when it 

exceeds a certain pressure. 

S0 S1 
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The other valve needed is a counterbalance valve, sometimes called a back pressure 

valve. This is depicted on the schematic as the valve just before the cylinder. The 

counterbalance valve controls the pressure on the retract stroke so that flow is 

proportional to the pressure, ensuring that the cylinder never ‘free falls’. This valve 

is essential for safety reasons but it will increase the chance of the cylinder retaining 

pressure on the retract stroke and getting jammed under the axlebox. If this system 

does not operate successfully a spring return cylinder may be needed. 

Enerpac was asked for a quote on the directional control valve and a price of $4500 

each was given. This is incredibly expensive and would exceed the budget. Therefore 

cheaper versions were sought and Hystar valves can be purchased for approximately 

$500 each. These valves are only rated at 315 bar but the relief valve can be set 

below this because the cylinders will lift the maximum load at 147 bar as calculated 

in Section 7.5. Counterbalance valve prices are unknown so we will assume they are 

$500 as well. A manifold will be used to mount the valves and one will cost $500. 

Miscellaneous fittings and connectors could cost a further $200. 

This hydraulic system is not proven to work and a prototype system should be 

tested first to make sure it operates successfully. 

7.9 Position Transducer Design 

The first thing to be considered is the actual locating of the transducer. Optimally we 

want it to be located as close as possible to the train wheel as this will give an 

accurate displacement of the wheel. 
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Figure 7-7 Locating the transducer 

The other consideration is that in a closed-loop system the accuracy of the feedback 

is the more critical when compared to the controlling mechanisms (the valves and 

software code) (Wen et al. 2007). 

Although we have already selected a cylinder model it is interesting to note that 

there are hydraulic cylinders available with displacement transducers integrated, 

from companies such as Hydro-Line. However, housing the electronics means that 

the collapsed height of these cylinder are much larger than standard. 

There are a few options for position transducers, which vary considerably in their 

underlying concept. There are two possibilities mechanically; the transducer can 

operate in a rotary or linear fashion. A rotary encoder would need a string and 

spring return system, similar to a self retracting tape measure. The actual 

transformation from physical movement to an electrical signal can be performed by 

a myriad of devices, such as: encoders, potentiometers and Linear Variable 

Differential Transformers (LVDT’s).  

The option selected for this feasibility study is a draw-wire potentiometer, which 

uses the rotary spring mechanism just mentioned. This type of position transducer 

Transducer 

should be 

placed as 

close as 

possible to 

the wheel. 



 

may not be quite as accurate as an

wheel and it still produces accuracy that should be acceptable. Below is schematic of 

a probable method of mounting the draw

Figure 

Issues with this design are that it is susceptible to being bumped out of position and 

the wheel may rotate and ruin the 

purchased with string tensions of only a few Newtons so the wheel is not likely to 

shift. This design is advantageous because it will be extremely quick to attach to the 

wheel, which satisfies the primary goal of the new 

time. 

A particular model that will be suitable is the Micro

This model has a non-linearity of 0.2% of full scale output

the 150mm stroke model this will mean an accuracy 

the accuracy within the 1mm tolerance. This particular brand was more accurate 

than some others researched. It requires an input of up to 32VDC and outputs a 

proportion of this voltage. This is relevant to PLC selection.

MPM’s cost approximately $1800 each.

Extendable 

wire 

Rotary 

transducer 

may not be quite as accurate as an LVDT but it is much easier to locate it near the 

wheel and it still produces accuracy that should be acceptable. Below is schematic of 

a probable method of mounting the draw-wire potentiometer: 

 

Figure 7-8 Draw-wire potentiometer placement 

Issues with this design are that it is susceptible to being bumped out of position and 

the wheel may rotate and ruin the measurement. However models can be 

purchased with string tensions of only a few Newtons so the wheel is not likely to 

shift. This design is advantageous because it will be extremely quick to attach to the 

wheel, which satisfies the primary goal of the new automated test of a quick setup 

A particular model that will be suitable is the Micro-Epsilon wireSENSOR WDS

linearity of 0.2% of full scale output (Micro-Epsilon n.d.)

the 150mm stroke model this will mean an accuracy of 0.3mm, which should keep 

the accuracy within the 1mm tolerance. This particular brand was more accurate 

than some others researched. It requires an input of up to 32VDC and outputs a 

proportion of this voltage. This is relevant to PLC selection. wireSEN

’s cost approximately $1800 each. 
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LVDT but it is much easier to locate it near the 

wheel and it still produces accuracy that should be acceptable. Below is schematic of 

 

Issues with this design are that it is susceptible to being bumped out of position and 

measurement. However models can be 

purchased with string tensions of only a few Newtons so the wheel is not likely to 

shift. This design is advantageous because it will be extremely quick to attach to the 

automated test of a quick setup 

wireSENSOR WDS-MPM. 

Epsilon n.d.). For 

which should keep 

the accuracy within the 1mm tolerance. This particular brand was more accurate 

than some others researched. It requires an input of up to 32VDC and outputs a 

wireSENSOR WDS-

Heavy 

mounting 
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end 

attachment 
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7.10 PLC Selection 

As with the hydraulic components different brands of electronics will not be 

compared and a suitable model from Koyo’s DirectLogic line of PLC’s will be selected 

(Automation Direct 2007). Information we have relative to PLC selection has been 

gathered over the last two chapters.  

• 5 inputs required at 0 up to 32VDC from the draw-wire potentiometer. 

• 5 outputs required to operate Hystar solenoid valves. These valves can be 

purchased in a range of voltages; 100VAC-240VAC or 12-48VDC. From the 

Hystar documentation AC powered valves will have faster response times. 

• Very little memory space or processor speed required, because the code to 

implement digital hydraulics is simple and high speed scanning is not 

required for better accuracy. 

The second base model, the DL06 PLC, will be selected because it meets all of these 

requirements. This model has 20 inputs and 16 outputs. In particular the D0-06DR-D 

base unit should be selected as it has inputs of 12-24VDC which should successfully 

interface with the draw-wire potentiometer. The outputs are relay type with a 

voltage of 240VAC at 2 amps, which will operate the Hystar valves at their maximum 

response time.  

The DL06 includes an auxiliary 24VDC power supply with 300 mA. This will be plenty 

of power to supply the draw-wire potentiometers. The DL06 itself is powered by 

normal 240AC mains power. It costs less than $300. Electrical signal cables should 

cost less than $100 
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7.11 Total Equipment Cost Breakdown 

 

Item Cost per item Quantity Total cost 

CLS-504 Cylinder $1535 5 $7675 
Load bearing cap $50 5 $250 

ZU-4 Pump $4770 1 $4770 

Hoses $2400 1 $2400 

Directional Valves $500 5 $2500 

Manifold $500 1 $500 

Miscellaneous fittings $200 1 $200 

DL06 PLC $300 1 $300 

Draw-wire pot $1800 5 $9000 

Electrical cables $100 1 $100 

  Grand total $27695 

 

This system exceeds the budget. However it is likely that this equipment cost could 

be reduced considerably. As mentioned at the start of this chapter no price 

comparisons between product brands were undertaken. An example of reducing the 

price by selecting another brand is that cheaper 200 bar hose can be obtained for 

less than $100 for a 15m length. Indeed for price reasons it will probably be 

beneficial to reduce the overall maximum system pressure to 200 bar and source an 

appropriate pump. Also only one cylinder with a stroke of 150mm needs to be 

purchased, the others could be shorter. By doing this it should be possible to reduce 

the equipment cost below the budget of $20 000. 

7.12 Conclusion 

This chapter has proven that equipment can be selected that meets all performance 

requirements of an automated twist test. However, the total cost of the system 

exceeds the specified budget of $20 000. This cost may be reduced by selecting 

cheaper brands and reducing the maximum system pressure. 

A maximum system pressure of 700 bar was specified because of the wide range of 

portable pumps operating at this pressure. However after analysis of the costs it is 
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recommended that this pressure be reduced to 200 bar. Over-capable cylinders 

were selected meaning the maximum load can still be lifted at this reduced 

pressure. 

The hydraulic system still needs to be tested as it is uncertain if the valves will 

operate entirely successfully. The electrical system also needs to be tested to ensure 

compatibility between components and to check accuracy.  
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8 Conclusions and Further Work 

8.1 Introduction 

This chapter will draw conclusions on the success of the whole project. It will also 

describe the further work that has to be done before the new twist testing system 

can enter service. The main project objective of selecting equipment that will 

perform an automated twist test has been achieved. 

8.2 Discussion 

The most important conclusion from this project is that it appears that equipment 

could be selected for the construction of an automated twist test for approximately 

$20 000, meaning it is successful from QR’s perspective. The real cost to QR will be 

significantly more than this when final design costs are considered. 

Another achievement of this project was to apply the concept of digital hydraulics to 

a new application. This type of hydraulic control was proved to work for the 

application of the twist test. Accordingly, it is proved that it will also work for 

applications with similar functions to the twist test. Digital hydraulics, as the term is 

used in this dissertation, is a relatively new and unheard of concept. However it 

seems to be growing in popularity, especially in the business of heavy duty 

synchronous lifting. 

8.2.1 Time savings 

It is unlikely that the digital hydraulic system defined will save any time compared to 

the manual jacking method. Setup time will be longer. The draw wire 

potentiometers will have to be set up and calibrated. Hoses, cables and cylinders will 

have to be dragged into position and connected. A rough estimate of setup time is 

around 30 minutes once employees have been trained to use the system. It will also 

take longer to transfer the equipment to the other side of the train for the second 

half of the test. 
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However, once the test has been set up, the actual lifting part of the test will be 

slightly quicker. The system should be more reliable than manual jacking and 

therefore restarting the test due to synchrony errors will be avoided, thus saving 

time. 

8.2.2 Accuracy and repeatability benefits 

The best feature of the new test will be its accuracy and repeatability. The final PLC 

control software will be more accurate than the simulation conducted in Chapter 6, 

and therefore the goal of accuracy better than 0.5mm for the stopping height of 

cylinders should be achieved. This will be much better than the accuracy achieved 

with manually jacking while judging height on a steel ruler. This method would 

struggle to achieve accuracy of better than 1mm because of parallax errors and the 

difficulty of controlling the jacking perfectly. Better height accuracy will mean that 

the load data collected will be more reliable. 

More accuracy will also be achieved in terms of synchrony. The cylinders will trace 

their positions very accurately and reach their required heights at almost the exactly 

the same time. This will be a substantial benefit it terms of the accuracy of 

hysteresis graphs produced from the test data. Hysteresis has a substantial effect on 

the load recorded and the better synchrony accuracy will mean load data is more 

accurate again. Also, hysteresis graphs could be compared between tests with 

confidence, knowing that each test is exactly the same.  

8.3 Further Work and Recommendations 

The next action that needs to be taken in the line of further work is an appraisal of 

the advantages and disadvantages of the system by QR engineers. They will have to 

weigh the cost and the extra setup time of this new test system, against their 

judgement on the benefits of better accuracy and repeatability.  If they deem it 

worthwhile the process of preparing a business case for proposal to higher 

management will begin. 
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If the new test project proceeds this far, there will be further work to do on the 

design in these areas: 

• Detailed design of draw-wire potentiometer mounting and bearing cap. 

• Maintenance considerations 

• Safety considerations  

• PLC programming 

• Selection of most cost effective equipment 

• Prototype testing 

A prototype could be constructed from a single cylinder and draw-wire 

potentiometer, a PLC and a pump already in possession of QR. The system could be 

proved to work with this equipment. 

8.4 Summary 

The project was successful because a system was specified which will meet 

performance requirements for a cost of approximately $20 000. It was determined 

that time savings would not be significant and would probably be negative. However 

the major advantage of a new system was specified as improved accuracy and 

comparability of test data. There is much further work to be completed to realize a 

new automated twist test, however this is dependent on QR’s commitment to this 

project in the future. 

The project objectives have been achieved and a feasible concept design for an 

automated twist test has been developed.  
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University of Southern Queensland 

 

FACULTY OF ENGINEERING AND SURVEYING 
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FOR:  Carson Holzheimer 

 

TOPIC: Automation of the Rollingstock Twist Test 

 

SUPERVISORS: Selvan Pather 

      Ian Burns, QR Vehicle and Track Engineer 

 

SPONSORSHIP: Queensland Rail, Rollingstock Engineering Division 

 

PROJECT AIM: Design a machine to automate the Rollingstock Twist Test. 
   

PROGRAMME:  (Issue B, 10-9-07) 

1. Identify outcomes QR expects from an automated twist test. 

2. Research applicable regulations. 

3. Develop clear specifications to which equipment has to perform. 

4. Research existing systems that may satisfy requirements. 

5. Research and select possible control schemes and software control equipment. 

6. Research and select appropriate lifting equipment. 

7. Simulate or build model system. 

8. Analyse performance of the specified system. 

9. Calculate cost of entire system and compare with budget. 

 

 
 

 

 

 

   

AGREED          (student)                     (supervisor) 
 
  Date:        /         / 2007                                   Date:         /             / 2007 

 

Co-examiner: 
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Appendix B – Digital Hydraulics Simulation Code 

% Calibration code need here 

clc; clear all; 

 

 

%stroke(1)=40;stroke(2)=80;stroke(3)=120; 

stroke = [21 56 60] 

intsteps=4;                             % the amount of 

intermediate heights to stop and read loads 

strokestop=stroke/intsteps; 

n=240;                                  % the resolution of 

synchrony target strokes 

cpos(1)=0;cpos(2)=0;cpos(3)=0; 

dt=0.01; 

starget=[0 0 0]; 

currentstep= 0; 

downstroke=0; 

counter=0; 

stopping=0; 

valvestate=[0 0 0]; 

valvestroketime=[0.05 0.05 0.05];       % in seconds 

valvemove=1./(valvestroketime./dt); 

x=[1675 10362 12037]; 

 

p = plot(x,cpos,'x','EraseMode','xor','MarkerSize',8);  

axis([0 13000 0 70]) 

set(gca,'YGrid','on') 

hold off 

xlabel('Horizontal cylinder position (mm)') 

ylabel('Cylinder Stroke (mm)') 

title('Cylinder position animation') 

 

 

for t = 0:dt:120; 

    % Velocity variance simulated in this line 

    vel=[2.3+normrnd(0,0.1),2.3-

normrnd(0,0.2),2.3+normrnd(0,0.3)] ; 

    % position transducer inaccuracies are simulated in this 

line 

    lvdterr=[normrnd(0,0.1),normrnd(0,0.1),normrnd(0,0.1)]; 

    % Check if all cylinders are at their synchrony targets. 

     

    if cpos(1) + lvdterr(1) >= starget(1) & cpos(2) + 

lvdterr(2) >= starget(2)... 

            & cpos(3) + lvdterr(3) >= starget(3) 

       

    %if valvestate==0 

    starget = starget + stroke/n; 

    end 
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    if cpos > stroke  & downstroke == 0        % Downstroke - 

reversal of signs. At this stage a signal is sent to change to 

the  

                                               % hydraulic 

scheme for lowering.    

    starget = -abs(starget); 

    cpos = -abs(cpos); 

    strokestop = -abs(strokestop); 

    downstroke = 1; 

    end 

     

    if cpos >= strokestop 

        valvestate=valvestate - valvemove; 

        stopping=1; 

         

        if valvestate <= 0 

        fprintf('Press enter to move to next stroke 

position\n') 

        pause 

        strokestop=strokestop+stroke/intsteps; 

        currentstep = currentstep + 1; 

        stopping=0; 

         

         

        % stored variables to check tolerance on cylinder 

stopping position 

        cposstop(currentstep,:)=abs(cpos) 

        tstop(currentstep)=t-dt; 

     

        end 

    end 

     

     

    if currentstep >= intsteps*2 

        'Testing complete' 

        break 

    end 

     

    if stopping == 0 

    if cpos(1) + lvdterr(1) < starget(1) 

        valvestate(1)=valvestate(1) + valvemove(1); 

    else 

        valvestate(1)=valvestate(1) - valvemove(1); 

    end 

     

    if cpos(2) + lvdterr(2) < starget(2) 

        valvestate(2)=valvestate(2) + valvemove(2); 

    else 

        valvestate(2)=valvestate(2) - valvemove(2); 

    end 

     

    if cpos(3) + lvdterr(3) < starget(3)  
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        valvestate(3)=valvestate(3) + valvemove(3); 

    else 

        valvestate(3)=valvestate(3) - valvemove(3); 

    end 

    end 

    % Limit valvestate to real values between 1 and 0 

    if valvestate(1) > 1 

        valvestate(1)=1; 

    elseif valvestate(1) < 0 

        valvestate(1)=0; 

    end 

    if valvestate(2) > 1 

        valvestate(2)=1; 

    elseif valvestate(2) < 0 

        valvestate(2)=0; 

    end 

    if valvestate(3) > 1 

        valvestate(3)=1; 

    elseif valvestate(3) < 0 

        valvestate(3)=0; 

    end 

     

         

     

    % Cylinder position simulation assuming that velocity of 

cylinder is 

    % directly proportional to the position of valve spool. 

     

    cpos(1)= cpos(1) + vel(1)*dt*valvestate(1); 

    

     

    cpos(2)= cpos(2) + vel(2)*dt*valvestate(2); 

     

     

    cpos(3)= cpos(3) + vel(3)*dt*valvestate(3); 

     

     % Move dots on graph to new position 

    set(p,'XData',x,'YData',abs(cpos))  

    %pause(0.1) 

    drawnow 

 

     

    %Store variables for later plotting 

    counter=counter + 1; 

    cpos1plot(counter)=abs(cpos(1)); 

    cpos2plot(counter)=abs(cpos(2)); 

    cpos3plot(counter)=abs(cpos(3)); 

    t2plot(counter)=t; 

     

    end 

    figure 
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plot(t2plot,cpos1plot,'r',t2plot,cpos2plot,'bl',t2plot,cpos3pl

ot,'g') 

    xlabel('Time(s)') 

    ylabel('Cylinder Position (mm)') 

    title('Cylinder Position Simulation') 

    grid on 

    hold on 

    plot(tstop,cposstop,'x','MarkerSize',8) 

     

    %Error at stopping positions 

     

    for k = 1:intsteps*2; 

    if k <= intsteps 

        err(k,:)=cposstop(k,:)-((stroke/intsteps)*k); 

    else 

        err(k,:)=cposstop(k,:)-(stroke/intsteps)*(intsteps-(k-

intsteps)); 

    end 

    end 

    max(abs(err)) 
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