
University of Southern Queensland

Faculty of Engineering & Surveying

Embedded Control System for Biogas Digesters

A dissertation submitted by

T. Sullavan

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering, Mechatronics

Submitted: October, 2007

Abstract

Biogas is also known as dump gas, marsh gas or sewer gas and is produced in a com-

mon, naturally occurring biological decomposition process. It is composed mainly of

methane, CH4, carbon dioxide, CO2, and hydrogen sulphide, H2S. Smaller quantities

of hydrogen, H oxygen O2, nitrogen, N and ammonia, NH3 may also be present.

Methanogens occur naturally in the digestive systems of ruminant animals such as

cattle, in marshes, brackish waters and sewage works, where, in addition to laboratories,

much knowledge of them has been gained.

Literature review reveals that biogas production and thus rate of decomposition is

influenced by temperature, and additionally that the loading conditions of a digester

may be deduced by monitoring the concentrations of individual component gasses of

the biogas produced.

It is the objective of this project to:

• Develop an electronic nose to monitor the biogas composition,

• Develop a fuzzy logic controller to increase or decrease the temperature of the

digester vessel, thus controlling the rate of decomposition, and

• Notify users of the digester state using semaphore style indicator lights.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

T. Sullavan

0050011624

Signature

Date

Acknowledgments

Special thanks go to the supervisors of this project, Dr Selvan Pather and Mr Mark

Phythian for their invaluable guidance, and to my family and fiance for their unending

patience and tolerance throughout the duration of this project and my studies. I could

have achieved little without them.

T. Sullavan

University of Southern Queensland

October 2007

Contents

Abstract i

Acknowledgments iv

List of Figures ix

Chapter 1 Introduction 1

1.1 Background . 1

1.1.1 History . 1

1.1.2 Ethics . 2

1.2 Objectives . 3

1.3 Methodology . 3

Chapter 2 Biogas 5

2.1 Chapter Overview . 5

2.2 Properties of Biogas . 5

2.3 Biogas Production . 6

CONTENTS vi

2.4 Digester Control . 9

2.5 Safety Considerations . 11

2.6 Chapter Summary . 12

Chapter 3 Electronic Hardware 13

3.1 Chapter Overview . 13

3.2 Microcontroller . 13

3.3 E-nose . 15

3.3.1 Amplifier . 16

3.3.2 Sensors . 18

3.4 Testing . 21

3.5 Chapter Summary . 23

Chapter 4 Software 24

4.1 Chapter Overview . 24

4.2 Implementation . 25

4.3 Fuzzy Control Software . 27

4.3.1 Fuzzifying . 27

4.3.2 De-Fuzzify . 29

4.3.3 Tuning Fuzzy Parameters . 33

4.3.4 Slope . 34

CONTENTS vii

4.3.5 Concavity . 35

4.4 Micro-controller Implementation . 36

4.5 Chapter Summary . 38

Chapter 5 Laboratory Gas Tests 39

5.1 Chapter Overview . 39

5.2 Test Equipment . 39

5.3 Sampling Procedure . 40

5.3.1 Microcontroller Configuration . 41

5.4 Testing . 42

5.4.1 Trial 1 . 42

5.4.2 Trial 2 . 43

5.4.3 Trial 3 . 46

5.5 Chapter Conclusion . 48

Chapter 6 Results 49

6.1 Chapter Overview . 49

6.1.1 Overload Data Determination . 49

6.2 Simulation Results . 53

6.3 Chapter Conclusion . 58

Chapter 7 Conclusions and Further Work 59

CONTENTS viii

7.1 Chapter Overview . 59

7.2 Conclusions . 59

7.2.1 Biological Aspects . 59

7.2.2 Electronic Aspects . 60

7.2.3 Computational Aspects . 60

7.3 Further Work . 61

7.4 Final Conclusion . 63

References 64

Appendix A Project Specification 66

Appendix B Source Code Listings 68

B.1 MATLAB Functions . 70

B.1.1 The minicomPlot.m Script . 70

B.1.2 The Simulator Scripts . 73

B.2 C Code for the Atmega8 . 84

Appendix C Raw Captured Data 104

C.1 Raw Captured Data . 105

List of Figures

1.1 Biogas Control System Proposal . 3

2.1 Types of continuous flow digesters. (Fry 1973). 6

2.2 Digester indicators, conditions, and remedies. (Stafford, Hawkes & Horton 1981). 9

2.3 Methane and hydrogen levels - no control. (Murnleitner, Becker & Delgado 2002). 10

2.4 Methane and hydrogen levels - with control. (Murnleitner et al. 2002). 10

3.1 Photo of main board with Atmega 8 microcontroller and peripherals. . . 14

3.2 Main board with microcontroller, serial line driver and voltage regulators. 16

3.3 E-nose with op-amp, and temperature and gas sensors in chamber. . . . 17

3.4 Thermistor connections to LMC660CN op-amp. 18

3.5 MG811 CO2 sensor connections to LMC660CN op-amp. 20

3.6 TGS2611 CH4 sensor connections to LMC660CN op-amp. 21

3.7 MQ7 H2 sensor connections to LMC660CN op-amp. 22

3.8 An example of a noisy signal from the CO2 sensor. 22

LIST OF FIGURES x

4.1 Main function flowchart. 26

4.2 Controller initial input membership functions used to fuzzify. 29

4.3 Controller response to an input of -20. 31

4.4 Controller response to an input of -10. 31

4.5 Controller response to an input of 0. 32

4.6 Controller response to an input of +5. 32

4.7 Controller response to an input of +20. 33

4.8 Temperature set point for expected d(CO2)/dt levels. 34

4.9 Modified Temperature set point for expected d(CO2)/dt levels. 35

4.10 Modified temperature set point for expected d(CO2)/dt levels. 36

4.11 Captured temperature set point for expected d(CO2)/dt levels. 37

4.12 Captured modified temperature set point for expected d(CO2)/dt levels. 37

5.1 Dilution equipment used throughout laboratory tests. 40

5.2 Captured data from CO2 sensor; trial 1. 43

5.3 Captured data from CH4 sensor; trial 1. 43

5.4 Captured data from H2 sensor; trial 1. 44

5.5 Captured data from CO2 sensor; trial 2. 44

5.6 Captured data from CH4 sensor; trial 2. 45

5.7 Captured data from H2 sensor; trial 2. 45

5.8 Captured data from CO2 sensor; trial 3. 46

LIST OF FIGURES xi

5.9 Captured data from CH4 sensor; trial 3. 47

5.10 Captured data from H2 sensor; trial 3. 47

6.1 Trial 3 CO2 concentrations using logarithms. 50

6.2 Trial 3 CH4 concentrations using logarithms. 50

6.3 Trial 3 H2 concentrations using logarithms. 51

6.4 Resulting temperature setpoint using captured data. 53

6.5 Gas inputs against temperature setpoint; case 1. 55

6.6 Gas inputs against temperature setpoint; case 2. 56

6.7 Gas inputs against temperature setpoint; case 3. 57

6.8 Controller response to synthesised d(CH4) levels 58

Chapter 1

Introduction

1.1 Background

1.1.1 History

The methanogenic bacteria appear to be ancient forms of life. Hydrogen and oxygen

outgassed from the Earth’s mantle could well have supported the existence of these

organisms long before the development of primitive plant species hundreds of millions

of years ago. Anaerobic digestion of biomass has occurred throughout the existence

of life on Earth, and is therefore expected to be a highly reliable, stable and efficient

process in those environments where it occurrence is essential to maintain the natural

cycle of organic matter (Smith, Bordeux, Goto, Shiralipour, Wilkie, Andrews, Ide &

Barnett 1988).

The identification of a specific gas from the anaerobic digestive process was first made

by Volta in 1776. ‘Inflammable air’ was found to be readily generated (Stafford

et al. 1981). It has been used for at least a century in developing countries for the

decomposition of animal and human waste, in most cases from a necessity to maximise

the benefit from limited available resources in rural areas. While the combustion of cow

dung for cooking provided a renewable source combustible fuel, it was at the expense of

fertiliser for local crops, and could hardly be pleasant to use in the confines of a small

1.1 Background 2

rural kitchen. Exposed human waste encourages vermin and diseases. In response,

anaerobic digesters were developed to decompose the waste to provide a rich organic

fertiliser for crops and a fuel gas to power household lighting and stoves.

1.1.2 Ethics

As it stands at the moment, the time has come to address serious shortcomings in our

current socio-economic direction. Numerous mineral fuel supply interruptions, price

spikes, bloody international conflicts, and more recently, revelations concerning global

warming and environmental degradation have stimulated interest in current energy

sources. The human race is facing increasing problems associated with disposing of

waste produced directly by the population, and by the agricultural and industrialised

systems we use to feed and otherwise occupy ourselves. Soils used by mass commercial

crop cultivation methods are also increasingly showing signs of degradation due to

intensive farming paractices reliant on the extended use of chemical fertilisers and

pesticides, often also based on mineral oil derivatives.

Reflection on the benefits and surrounding issues has led to belief that the utilisation

of anaerobic digestion to produce biogas could play an important and profitable role in

addressing a wide variety of social and environmental issues faced by human beings as

we enter the 21st century. The production of human and animal waste is independent

of crude oil supplies and available to a much wider demography. Biogas combustion

produces only a fraction of the pollution of fuels and energy systems widely used today,

and competition for the raw materials required for biogas production are unlikely to

cause conflict. The effluent of anaerobic digesters can be used to organically nourish

and restore fertility to agricultural soils and hydroponics, without the health concerns

associated with chemicals. While techniques to achieve anaerobic decomposition have

been ongoing areas for research across the world for some time, many installations

could benefit from modern technology and safety features, resulting in improved bio-

gas yields, improvements in plant safety, and reduced and better targeted operational

requirements.

1.2 Objectives 3

1.2 Objectives

The objective of this project is to improve the safety and performance of small digester

systems by:

1. Developing and constructing an array of gas sensors otherwise known as an e-nose

to monitor biogas composition,

2. Developing an embedded controller to monitor and control a digester vessel,

3. Adding user interface to notify personnel of the state of the digester.

1.3 Methodology

Figure 1.1: Biogas Control System Proposal

1. The monitoring of hydrogen H2, carbon dioxide CO2, and methane CH4 in the

gas economically and effectively in order to provide sufficient data to allow reliable

data concerning the health of the digester.

2. The development of an embedded micro-controller hardware and software using

fuzzy logic to control the system by autonomously maintaining appropriate tem-

perature.

1.3 Methodology 4

3. The microcontroller is to notify personnel of the requirements of the system

through a system of semaphore lights. This information should indicate digester

health/ overload conditions as appropriate.

A simple digram of this proposal is included in Figure 1.1.

To achieve this, the following course of action should lead to the achievement of the

objectives: The system hardware must first be developed to permit monitoring of

the target gasses. The sensors may then be connected to the micro-controller. This

will permit testing of the gas sensors in the presence of pure samples of the target

gas samples and derivation of algorithms to process the readings and estimate gas

composition. Software may then be developed interpret the readings and to and set a

suitable temperature in response.

Chapter 2

Biogas

2.1 Chapter Overview

This chapter describes details concerning the composition and production of biogas. It

then goes into aspects of control of a simple biogas digester system.

2.2 Properties of Biogas

Biogas is also known as dump gas, marsh gas or sewer gas and produced in a common,

naturally occurring decomposition process. It is composed mainly of methane CH4,

carbon dioxide CO2, and hydrogen sulfide H2S. Smaller quantities of hydrogen H2

oxygen O2, nitrogen N, and ammonia NH3 may also be present. The component most

responsible for the flammability of biogas is the methane, which usually makes up to

70% of the composition. Carbon dioxide makes up the majority of the remainder with

smaller quantities of hydrogen sulfide, which gives raw biogas its distinctive rotten

egg smell. This can easily be removed by simple scrubbing techniques. Otherwise the

biogas resembles natural gas in composition, with a slightly lower energy content. AS

4564-2005 table 3.1 imposes limits on the composition of general purpose natural gas,

necessitating additional scrubbing of biogas in most cases for compliance if a biogas

system is to supply commercially.

2.3 Biogas Production 6

2.3 Biogas Production

Biogas is a product of anaerobic decomposition by methanogens, a group of bacteria

characterised by their ability to produce methane. These bacteria flourish only in

the absence of oxygen; 0.01mg/L is enough to completely inhibit growth (Stafford

et al. 1981). They occur naturally in the digestive systems of ruminant animals such as

cattle, in marshes, brackish waters and sewage works, where in addition to laboratories,

much knowledge of them has been gained.

Methanogenic decomposition is a complex series of bio-reactions far beyond the scope of

this dissertation, but the basic mechanism relies on the co-ordinated use of two different

heterogenic groups of bacteria. The first are responsible for the decomposition of lipids,

lignins, proteins ands into H2, CH2 and volatile fatty acids (VFA’s). The second type

are the methanogens, which further decompose the products of the first reactions to

form CO2 and CH4.

Digestion is the creation of an artificial environment to encourage Methanogenic de-

composition, about which considerable research has been published.

Figure 2.1: Types of continuous flow digesters. (Fry 1973).

Most digesters in operation are regularly fed with human, animal, or organic indus-

trial waste and produce biogas and an organic sludge, low in pathogens and high in

protein and nitrogen, which make it suitable for fertiliser, or with de-watering, animal

2.3 Biogas Production 7

feed. Small scale digesters generally make use of a single reaction vessel, and may be

batch fed and sealed until gas production stops, or continually fed, using an internal

system of pipes and gravity to maintain a constant operating level as shown in Fig. 2.1.

Other types of varying degrees of sophistication are used in larger installations. It is

commonly suggested that feed with a carbon to nitrogen ratio, C:N from 20:1 to 30:1

is desirable, and an operating pH of 7 or just over is optimum for the methanogenic

bacteria (Hobson, Bousfield & Summers 1981).

There are two temperature ranges over which anaerobic digestion is most effective. The

mesophillic, usually from ambient to 42 deg C, and thermophillic from 55 to 70 deg

C. In practice, few digesters operate in the thermophillic zone because of the extra

energy required for heating and less stable micro-biological environment. A tempera-

ture around 35 deg C is common to maximise biogas yield whilst minimising digester

retention time and heating energy demands. The microbes are reportedly sensitive

to changes in operating conditions, so once they have acclimatised to the conditions

of a particular digester, sudden fluctuations in temperature or feed material are not

recommended due to the destabilisation of the reactions.

The digestate material must also be agitated to a degree to promote a homogeneous

mixture, prevent micro-biologically dead zones and reduced the build up of scum, which

is a substrate consisting of lighter fractions and fibrous material such as hair and

feathers. The latter can cause significant problems when it hardens on the surface and

prevents the escape of gas from the slurry. Careful design of vessel parameters such

as operating level, gas outlet position, maintenance and slurry agitation can greatly

reduce or eliminate problems with scum.

An additional problem with anaerobic digesters is instability caused by toxic, organic

or hydraulic overload (Stafford et al. 1981). Toxic overload can be caused by contami-

nation of the feed by substances which inhibit the digestion process. Organic overload

is commonly caused by variations in feed consistency or too short a detention time.

Hydraulic overload occurs when the feed material is low in solids and retention time

is reduced to compensate, flushing out the microbial population. For each of these

conditions, there are indicators which may be monitored to allow anticipation of such

failures and corrective action to avoid disruption of the digestion process.

2.3 Biogas Production 8

For the purposes of this research project, overload occurs when the methanogens are

unable to keep pace with the first group of bacteria responsible for breaking down

the more complex compounds. These bacteria tend to be more robust and multiply

more rapidly than the methanogens. When this occurs, the methanogens are unable

to consume the VFA’s as they are produced. This has the effect of lowering the pH

of the substrate below that which the methanogens can survive, which is only between

pH 6.4 to 7.5. This results in the poisoning of the methanogens and digester failure.

Stafford et al (Stafford et al. 1981, p77-78) compiled an inexhaustive list of these

conditions and indicators, and suggest possible remedies as included below. These

correspond to the diagram in Figure 2.2.

• Common Faults

A) Toxic Overload

B) Organic Overload

C) Hydraulic Overload

• Typical warning sign

i) methane production falls

ii) The direction of response curves of several variables when compared with

one another can warn of potential failure; for example, VFA rises as the CH4

production falls

iii) The sign of the second derivative of common variables with respect to time

changes; for example:

A concave upward change in the slope of percentage CO2

A concave upward change in the slope of pH

A concave downward change in slope of rate of CH4 production

• remedies which may be applied

2.4 Digester Control 9

1) Solids recycle

2) Increase frequency of loading

3) Adequate mixing

4) Scrubbing gas to remove CO2 before recycle

5) Addition of a base

6) Recycle micro-organisms

7) Reduce or stop feed

8) Increase initial substrate conditions

9) Add plant effluent to feed

Figure 2.2: Digester indicators, conditions, and remedies. (Stafford et al. 1981).

2.4 Digester Control

More recent research has resulted in something of a trend towards the use of fuzzy logic

control systems to monitor and control digester performance. Such systems have suc-

cessfully been implemented in scale laboratory models of wastewater treatment systems

using fluid bed reactor type digesters by Murnleitner et al and Muller et al.

Stafford (Stafford et al. 1981, p78) suggests the monitoring of methane production,

VFA levels, CH4 production, as well as CO2 and pH levels and their second derivatives

with respect to time as a method of monitoring a model fluid bed reactor.

Murnleitner et al agree (Murnleitner et al. 2002), noting the use of several easily

2.4 Digester Control 10

monitored parameters using off the shelf type sensors. The monitoring methane and

hydrogen levels, pH gas flow and oxidation-reduction potential and conductivity are

included. The results of their research show that hydrogen and methane levels in the

gas accurately reflect the health of the digester. If gas composition data is unavailable,

pH levels are used. They conclude that methane and hydrogen levels, pH and gas flow

are all that are needed to recognise overload conditions.

Figure 2.3: Methane and hydrogen levels - no control. (Murnleitner et al. 2002).

Figure 2.4: Methane and hydrogen levels - with control. (Murnleitner et al. 2002).

Figure 2.3 shows methane and hydrogen levels leading up to an overload. This data was

gathered without control. Notice distinctive increases in hydrogen and corresponding

drop in methane production. This is due to the inability of methanogens to consume

the available hydrogen produced earlier in the fermentation process, and results in

2.5 Safety Considerations 11

a corresponding, though delayed increase in VFA’s and reduction in pH. Figure 2.4

shows methane and hydrogen levels with the controller. No such indication of overload

is present.

Muller et al (Muller, Marsili-Libelli, Aivasidis, Lloyd, Kroner & Wandrey 1997) adopt

an even simpler approach using a fluid bed reactor; hydrogen level and biogas pro-

duction are used to distinguish between all three overload conditions using this simple

method. Problems with this system could arise if feeding is irregular, such as with a

batch type digester (Murnleitner et al. 2002).

Whilst these two experiments have made great gains in controlling the digestion pro-

cess, the fluid bed reactors in use rely on the co-ordinated use of two vessels with

sludge recirculation and buffering systems. Further advantage is taken of individual

conditions between the stages of the fermentation processes. These systems are able to

greatly stabilise the microbial environment and are fine models for automated, large-

scale wastewater installations. For the objectives of this project, the laboratory condi-

tions are stable and equipment is considered too complex to implement on small scale

community and farm digesters, which are often more simply constructed and operated

under less than optimal conditions.

2.5 Safety Considerations

Whilst most digesters operate at pressures far below the limits set for pressure vessels

in AS 1210-1997, there is a significant risk of excessive pressure in a digester resulting

in the combustion-less explosion of the vessel. This can be due to a number of possible

fault conditions, such as a blocked gas or sludge outlet, or incorrect valve operation.

Therefore, some kind of safety pressure relief arrangement is commonly recommended,

burst disks being about the simplest and most reliable. Being a once-off solution, these

have the disadvantage of replacement in the event of a breach.

Methane is an odourless gas and mixtures of 5-15% methane in air pose a substantial

risk of explosion resulting in serious injury or death. AS 4654-2005 Table 3.1 imposes

an upper limit of 0.2 mol% of oxygen in mains gas supplies. Air can be present during

2.6 Chapter Summary 12

the start-up of a new digester or due to leaks, although the internal pressure of the

system usually means a loss of biogas rather than the entrance of oxygen.

Hydrogen sulphide (H2S) is also extremely toxic to humans and 0.002% is the maximum

allowable concentration for prolonged exposure. Higher concentrations of H2S poses a

significant risk of injury or death.

The likelihood of excessive concentrations of CH4, CO2, H2S or any gas in a confined

space is slight, but may result in serious illness or death.

Safety measures such as regular inspection for leaks, effective ventilation and elimina-

tion of ignition sources minimise the risks and shall be followed at all times throughout

the duration of this project. It is also desirable to have an additional device to allow

the release of gas and/ or sludge in case of the presence of oxygen, poor quality gas, or

excessive pressure in the vessel, regardless of the cause.

2.6 Chapter Summary

This chapter has outlined relevant details surrounding composition and production of

biogas, and control of a digester. It concludes with safety precautions which must be

adhered to throughout the duration of this project and when dealing with toxic and/

or flammable gas installations in general.

Chapter 3

Electronic Hardware

3.1 Chapter Overview

Embedded systems are small computer systems tailored to a particular application,

usually powered by a microcontroller suited to the task. In order to gain useful infor-

mation regarding the physical environment in which the embedded system is to operate,

it must be interfaced to a series of sensors designed to provide such information. As

these sensors are the only means for the system to gain this data, the success or failure

of an embedded controller rests heavily on signals it receives from them. Such data

concerning ambient odours or gas concentrations are often determined in electronic

systems by a gas sensor array known as an electronic nose or e-nose.

This chapter contains detailed information regarding micro-controller, temperature and

gas detection sensors, and e-nose circuits.

3.2 Microcontroller

Choice of microcontroller for the project was made by comparison of features, pro-

gramming environment and cost. Accommodating analogue signals from the e-nose

necessitates at least four analogue to digital converters (ADC’s) to receive analogue

3.2 Microcontroller 14

Figure 3.1: Photo of main board with Atmega 8 microcontroller and peripherals.

signals from sensors. Demand for memory space was considered to be modest, whilst

large response time constants of most digester vessels places no extraordinary demands

on the processor speed. Required outputs are simple digital ones or zeros to control

the heater, indicator lights and ancillary equipment. Past experience with several em-

bedded system projects has shown that pulse width modulation (PWM) is often useful

if available, while input/ output (I/O) pins are often running scarce towards the later

stages of an experimental embedded system project, and also carried some weight in

the selection process.

Several microcontrollers were considered for the project, the Motorola HC12 family

and Microchip’s PIC series were also considered. The Motorola chips, despite having

many relevant features and specific fuzzy logic instructions, were considered excessive

for this project. The Microchip PICs were also considered, again having many of the

required features, but do not lend themselves to high language programming, and such

well established development environments are not free.

The Atmega 8 microcontroller was chosen due to its availability, cost, features and

versatility of programming using in-serial programming (ISP). It has an internal 1

3.3 E-nose 15

MHz oscillator, 8 kbytes of programmable flash memory for programs and data, 512

bytes of EEPROM memory, USART for serial communication, 3 timers and a total

of 23 programmable pins for miscellaneous I/O, 6 of which may be used as ADC’s.

Additionally, 3 pins are configurable for PWM which, although considered unnecessary

initially for this application, was used to provide the two precision voltages for the H2

sensor and may be useful for proportional heating at a later stage.

Available software development environment was also considered. For the Atmega

8, the C programming environment the development tools comprised of the avr-gcc

compiler, avrlibc, avrdude programmer, and avrsim simulator permit a free software

development environment for anyone using a Unix based PC. An MS Windows envi-

ronment is also available. Significant literature, code snippets, makefiles and tutorials

are freely available with the development tools and dedicated webpages.

The circuit diagram in Figures 3.1 and 3.2 shows the embedded controller circuit di-

agram with peripherals. Notice this main circuit board also provides regulated power

supplies to the e-nose through the nine core shielded cable.

3.3 E-nose

E-noses in general have recently received a lot of interest due to their possible appli-

cation to numerous fields such as process control, air quality monitoring, security and

drug detection.

The e-nose construction comprised of three gas sensors for methane, carbon dioxide

and hydrogen and a resistive type temperature sensor, all connected to an LMC660CN

low power quad channel operational amplifier (op-amp). This arrangement requires

regulated voltages to power the amplifier and a total of about 2 watts (W) of power to

heating elements in the gas sensors. It plugs directly into the main circuit board via

nine core shielded cable in order to receive all power and provide analogue signals to

the analogue to digital converters (ADC’s) of the micro-controller.

The sensors were placed in a chamber, necessary to allow the three sensors exposure to

3.3 E-nose 16

Figure 3.2: Main board with microcontroller, serial line driver and voltage regulators.

a consistant gas composition while samples were taken. To form the sensor chamber,

the three gas sensors were inserted into holes in the side of an empty plastic vitamin

bottle which had been washed with detergent and thoroughly rinsed. Figure 3.3 shows

the completed e-nose assembly.

3.3.1 Amplifier

The LM324 op amp was originally selected for the positioning of individual op-amp

channels within the package, its ability to operate from a single supply rail, and famil-

iarity with the device.

The input configurations are covered in the respective gas sensor sections. The outputs

3.3 E-nose 17

Figure 3.3: E-nose with op-amp, and temperature and gas sensors in chamber.

were connected to the individual strands of 9-core shielded cable via a one kilo ohm

(kΩ) resistor to protect the amplifiers from overloading by limiting the current to

approximately 5 milliamps (mA). This was then grounded via 100 micro fared (µF)

capacitors to short AC components from the signal. This can bee seen in each of the

individual sensor circuit diagrams.

Unusually high input impedance demands of the amplifier by the CO2 sensor resulted

in replacement of the LM324 with the LMC660CN op-amp, which is a pin for pin match

with the LM324. The input impedance of over 1 Tera ohm (TΩ) and input bias and

currents of only 1 and 2 pico amps (pA) respectively meet the sensor’s requirements.

3.3 E-nose 18

3.3.2 Sensors

Gas sensors were selected on the basis of individual gas sensitivity, cost and availability.

Three sensors were selected:

• The CO2 sensor was the MG811 by Hanwei Electronics.

• The MQ7 for H2, also by Hanwei.

• The TGS2611 by Figaro for CH4.

Manufacturer’s datasheets indicate that all of these sensors return either linear or

logarithmic inputs for logarithmic variations in gas concentrations. Ambiguous data

sheets meant considerable trial and error to obtain acceptable results.

The temperature sensor was a simple linear resistive sensor with a resistance of 50 kΩ

at room temperature. This was placed in series with two other resistors and the voltage

measure by a differential feedback amplifier. The circuit diagram is shown in Figure

3.4.

Figure 3.4: Thermistor connections to LMC660CN op-amp.

Of concern to this project is expected cross-sensitivity of the TGS2611 CH4 sensor

to H2. It is proposed that this be resolved by choosing a hydrogen sensor which is

not heavily influenced by CH4, and then compensating in software by subtracting a

3.3 E-nose 19

scalar multiple of the H2 reading from the methane reading. Both Figaro and Hanwei’s

datasheets include information regarding sensitivities to other gases.

Of additional concern is the concentrations at which these sensors can provide valid

readings; composition of biogas is measured as percentages, while these sensors are

generally operated in concentrations of under 10 000 parts per million (ppm) in air.

The simplest method to achieve this is to precisely dilute sampled biogas with air in

order to carry out reliable analysis. This is covered in Chapter 5.

3.3.2.1 MG811 Carbon Dioxide Sensor

As CO2 sensors are the most easily obtained, much development of the e-nose and

software was based on trials with these. Great confusion was caused by ambiguity of

the datasheet, particularly conflicting output voltages and input impedance required of

the signal amplifier. The literature specifies such amplifiers have an input impedance

of 100 to 1000 GΩ, which resulted in the premature failure of two of these sensors and

hours of troubleshooting.

The CO2 sensor requires a precision 6 volt (V) supply and 200 mA for the heater. This

was provided by a 3 terminal regulator on the main controller board. It is an EMF type

sensor, thus producing a voltage inversely proportional to CO2 concentration. Hanwei

states that the maximum sensor output is 300 mV at atmospheric concentrations of

CO2. It is designed to return a linear EMF to logarithmic gas concentrations from 350

to 10 000 ppm. The CO2 sensor datasheet gives no indication of sensitivity to H2.

The op-amp was placed in non-inverting configuration with a conservative voltage gain

of approximately 7.7. The maximum measured output from the op-amp was about

4.95 V, meaning the sensor was producing 4.9 ÷ 7.7 ≈ 0.64 v, more than double that

stated in the datasheet. This results in slight clipping of the signal by the ADC at

atmospheric concentrations of CO2. Fortunately, the signal is inversely proportional to

concentration, so this is of no consequence to this project, as CO2 concentrations will

never be this low. Minimum measured voltage at the output of the op-amp was 0.77

V, giving a voltage swing of 4.18 V. The circuit diagram is shown in Figure 3.5.

3.3 E-nose 20

Figure 3.5: MG811 CO2 sensor connections to LMC660CN op-amp.

The National Semiconductor datasheet gives some useful hints for working with low

impedances, one of which was applied here; the output of the MG811 is soldered directly

to the input of the LMC660 instead of the usual practice via the printed circuit board.

This minimises the effect of leakage currents, as air is an excellent insulator. This was

not necessary with any of the other sensors.

3.3.2.2 TGS2611 Methane Sensor

The TGS 2611 methane/ natural gas sensor varies in resistance logarithmically to

logarithmic gas concentrations between 500 and 10 000 ppm CH4, and is similarly

sensitive to H2. It requires a precision 5 V, 60 mA supply for its heater, again provided

by the main controller board by a separate 3 terminal regulator. The op-amp was

placed in a non-inverting arrangement, with unity gain. Being a resistive sensor, it was

placed in an adjustable voltage divider circuit, whose output was fed into the op-amp.

The resulting output voltage ranged from 0.39 to 2.67 V. The circuit is shown in Figure

3.6.

3.4 Testing 21

Figure 3.6: TGS2611 CH4 sensor connections to LMC660CN op-amp.

3.3.2.3 MQ7 Hydrogen Sensor

The MQ7 H2 sensor was the most complex to set up. Hanwei specifies a 150 second

heating cycle consisting of two precision heating voltages, the first being 5 V at 150

mA for 60 seconds, and the second 1.4 V at 43 mA for 90 seconds. This ruled out the

convenient use of 3 terminal regulators. Instead, one of the micro-controller’s timers

and PWM channels were used with a power MOSFET on the e-nose circuit board to

provide the required power and timing. The MQ7’s resistance varies logarithmically in

response to logarithmic gas concentrations up to 2000 ppm. The op-amp was set up

in a non-inverting configuration with a gain of 3, which saturated the op-amp during

practical trials detailed in chapter 5 The gain was then reduced to 2, which again led

to saturation. Unity gain finally resulted in an acceptable signal from 0.31 to 4.33 V.

The circuit is shown in Figure 3.7.

3.4 Testing

Trails with this e-nose arrangement consistently showed noisy readings. A sample of

such a signal is shown in Figure 3.8. Investigation with an oscilloscope lead to the

conclusion that sources of noise were 50Hz hum and digital spikes through the power

3.4 Testing 22

Figure 3.7: MQ7 H2 sensor connections to LMC660CN op-amp.

supply due to the switching of the serial communication and pulse-width modulation

(PWM) used to control the heater voltage of the H2 sensor. This is of little surprise as

no special precautions against noise were considered short of standard decoupling ca-

pacitors and minimal length circuit connections. The PWM spikes were approximately

0.03 V, considered acceptable and of little consequence due to compensation in the

micro-controller software described in Chapter 4, and serial communications are really

only necessary during software development, not during normal operation. The 50 Hz

noise was practically eliminated by choosing another power supply, and remaining noise

is considered negligible for the purposes of this project.

Figure 3.8: An example of a noisy signal from the CO2 sensor.

3.5 Chapter Summary 23

3.5 Chapter Summary

This chapter has detailed the components, and circuits in which they have been used,

as well as management, adjustments and precautions taken to assist effective function

throughout the development and testing phases of the system.

It will be seen in successive chapters how the signals obtained from these circuits are

used to indicate the composition of gas samples for the purpose of controlling digester

temperature.

Chapter 4

Software

4.1 Chapter Overview

This chapter demonstrates the steps taken thoughout the software development process.

Three different control algorithms were considered during the initial stages of design.

The first was simple on-off control, commonly known as bang bang control, due to the

simple objectives of this project; to turn on or off a heater. Classical linear control

theory was also briefly considered, but dismissed due to the difficulty in modelling the

system due to the necessary number of inputs and the baffling number of variables

involved in the biological and physical aspects of the system.

Fuzzy logic control was chosen because of its inherent ability to deal with non-linear

systems, multiple inputs and noisy signals, with limited or unclear data available re-

garding the physical system. Prior expert knowledge may also be used as a starting

point to determine the behaviour of the system.

The hardware subroutines were based on examples provided by the avr-libc documen-

tation (Neswold 2006). The structure of the main program is a simple loop, the major

steps of which are illustrated by Figure 4.1. Implementation resulted in the files main.c,

adc.c, uart.c, timer.c and fuzzyfuncs.c, each so named to indicate the relevant device

or other subroutines within. All MATLAB and C source code is included in the ap-

4.2 Implementation 25

pendices.

The program firstly reads the temperature and gas sensors, calculates averages to re-

move noise, then determines derivatives which are passed to the function fuzzify();.

The fuzzified data is then de-fuzzified by the function defuzzify(); to obtain a crisp

output which in this case, is an ideal target temperature intended to stimulate the

methanogenic bacteria to optimise CH4 production against digester heating require-

ments. This temperature setpoint is then compared to the actual digester temperature,

semaphore lights and heater being activated or de-activated accordingly.

4.2 Implementation

Initial efforts focussed on the reading of the ADC and placing the value in the USART.

This is initiated on the overflow of timer 1 in the micro-controller. Initial sampling time

periods during development were every half-second, but were scaled up to 2.5 minutes

in the working versions to suit the H2 sensor. The USART output consists of 8 bit data

words with 1 stop bit added at 2600 baud, which once converted to RS232 signal levels,

is readable by any serial communications terminal software, Minicom being used here.

The function void uart_put_num(float) was written to convert binary numbers to

ASCII words for sending over the USART for communication with a PC. One short-

coming of this subroutine is its inability to deal with floating point numbers, which

are simply converted to integers. This was used straight from the avr-libc examples

and the benefits not considered worth the time or memory necessary to rectify. The

implications of this will become apparent later in this chapter.

It was decided to use only the first derivatives as inputs to the controller so that rates of

change in gas concentration trigger responses. This eliminates the necessity of accurate

calibration of the equipment with respect to an absolute reference. Despite several

texts recommending the use of second derivatives, it was found that noise passed from

the gas sensors was too similar to the real second derivatives to be reliable.

Derivatives were originally obtained by subtracting the previous ADC reading from

4.2 Implementation 26

Figure 4.1: Main function flowchart.

4.3 Fuzzy Control Software 27

the latest, as is common practice with computer systems. Cases were noted when

noisy signals resulted in incorrect derivative values over longer periods of time. This

was rectified by using buffer arrays to provide several consecutive readings. An running

average is then taken of the entire buffer and stored in a separate array of 3 consecutive

averages for each gas. While only 2 are necessary, a buffer of 3 allows for the calculation

of a second derivative if deemed useful later. Although this method slows the response

of the controller, it does significantly increase the reliability of detected changes in gas

concentrations over longer periods. It was found that buffer sizes of 6, 5 and 6 elements

provided adequately stable CO2, CH4 and H2 readings respectively, but these sizes can

easily be adjusted in the preprocessor #DEFINE GAS_buffer_size lines as necessary.

4.3 Fuzzy Control Software

Fuzzy algorithms were based on Mamdani type fuzzy logic controller, originally de-

veloped by Doctor Lofti Zadeh and further developed by Professor Ebrahim Mam-

dani (Reznik 1997) and (Sowell 2005). The principles of their designs will be detailed

throughout this section. The functions are located in the file fuzzyfuncs.c.

Once readings from the ADC’s were being successfully read and sent to the USART, the

fuzzy logic functions were created to determine an acceptable temperature set point be-

tween the stated 21 and 38 degrees C using the centre of gravity (COG) method. These

were first implemented using MATLAB script and then ported to C. Additional MAT-

LAB script was developed to graphically display memberships and responses, which

greatly simplified the process of matching fuzzy logic parameters to sensors.

4.3.1 Fuzzifying

For the purpose of this system, a detected gas concentration or its derivative may be

regarded as low, medium or high. These are assigned based on prior expert knowledge

of the system and are known as membership functions. This expert knowledge may be

gained from a person familiar with the operating characteristics of the system to be

controlled, ideally an experienced operator. Each input is assigned a value between 0

4.3 Fuzzy Control Software 28

and 1 to each membership function, of which there may be as many as necessary to

achieve the desired control characteristics. It is common to have membership to more

than one membership function. This implementation monitors chosen variables and

assigns them a value of membership between zero and one to the membership functions

in the software ‘LOW’, ‘NORM’, and ‘HIGH’.

The exact assignment of a membership value is dependent on geometry built into the

system by the designer. For this implementation, LOW and HIGH are trapezoidal, while

NORM is triangular. These shapes were chosen due to their simplicity of implemen-

tation and simple area centroidal calculations. The positioning and dimensioning of

the geometry lies within the upper and lower expected extremities of the range of the

variable being monitored. This range is known as ‘the universe of discourse’ in fuzzy

terminology. The triangular geometry assigns a value which varies from 0 to 1 and

back to 0 again as an input value varies from the lower limits of what may be consid-

ered normal operating conditions. The trapezoids are suited to outer geometry in this

application, as they are able to assign membership for values of 1 outside the universe

of discourse, therefore maintaining control outside of normal operating ranges, while

gradually reducing membership as an input returns to normal. All geometry is set

by three, three-element arrays, ‘LOW_membs’, ‘NORM_membs’, and ‘HIGH_membs’ in the

program code. The first element of each array corresponds to the lowest point of the

geometry on the universe of discourse, the second element sets the centre point, and

the third element dictates the highest point of the geometry within the universe of

discourse.

These concepts are best illustrated by example. The arrays used in the initial MATLAB

scripts were as follows;

LOW_membs = [-16 -16 -2];

NORM_membs = [-16 0 10];

HIGH_membs = [2 10 16];

4.3 Fuzzy Control Software 29

providing input membership functions which look like;

Figure 4.2: Controller initial input membership functions used to fuzzify.

with an input equal to zero, as indicated by circles plotted on each of the membership

functions. Here an input of zero returns a membership value of one for NORM, and zero

each for LOW and HIGH. Of importance in this example is the correlation between

the values within each array and the corresponding point along the corresponding

membership function.

Close inspection of the LOW and HIGH membership functions close to zero reveals

that membership to these functions does not occur until an input of -/+2 respectively.

This was done to provide immunity to noise, for reasons which will become clear later

in section 4.3.3.

The first element of the LOW_membs[] and the last of the HIGH_membs[] arrays are not

actually used by the fuzzy algorithms, they are only used in the MATLAB scripts to

determine the range of plots.

The code mechanisms used to arrive at a membership value are simply ‘if()’ tests

followed by statements consisting of linear equations of the form y = mx+ c, or assign-

ments of one or zero.

4.3.2 De-Fuzzify

The determined membership values LOW, NORM and HIGH are then used as the height in a

second group of pre-determined geometric response areas, which may represent appro-

4.3 Fuzzy Control Software 30

priate responses such as ‘increase temperature’, ‘maintain temperature’, or ‘decrease

temperature’. Obviously this has a direct impact on the magnitude and distribution

of area, and therefore the position of the centroid, which is how the temperature set

point is calculated. This is the principle of Mamdani’s fuzzy controller. The centroid

is calculated using equation 4.1 where An is nth area, zn is the centroid of the nth

area, and cn is a scalar weighting constant of the nth input. This allows a designer

to emphasise the influence of a particular input over the others. It may be observed

that the formula lends itself well to expansion to include multiple response areas. This

allows simple monitoring of multiple inputs to determine a single output.

Z =

∑n
n=1 cnAnzn

∑n
n=1 cnAn

(4.1)

The Mamdani fuzzy logic process is not easy to visualise through literature. Plots in

Figures 4.3 to 4.7 below show the fuzzification and defuzzification and thus response of

the controller to several progressive values of the first derivative of CO2.

As is the case with the input membership functions, the response geometry is set in the

arrays ‘DN_TEMP_membs’, ‘AB_RITE_membs’ and ‘UP_TEMP_membs’, which are included

below as implemented in MATLAB script. The upper plot in each of these figures

illustrates the membership value for each input function and is plotted as a small

circle, consistant with Figure 4.2. The lower plots show the response functions and the

temperature set point. Note that the height of each response area is dependent on the

value of the membership value of the corresponding input membership function. It is

the sum of these areas for which the centroid determines the set point.

CO2 input: CO2 output:

CO2_LOW_membs = [-16 -16 -2]; CO2_DN_TEMP_membs = [15 15 35];

CO2_NORM_membs = [-16 0 10]; CO2_AB_RITE_membs = [25 30 37];

CO_2HIGH_membs = [2 10 16]; CO2_UP_TEMP_membs = [29 39 45];

Figure 4.3 shows the controller’s response to an input outside the universe of discourse.

Notice that the temperature setpoint will never recede below the the COG of the

DN_TEMP triangle, as the geometry is set in the DN_TEMP_memb array.

4.3 Fuzzy Control Software 31

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

LOW
NORM
HIGH
d GAS/ dt

15 20 25 30 35 40 45
0

0.5

1
Response

Temperature Set Point

dn temp
ab rite
up temp
centroid

Figure 4.3: Controller response to an input of -20.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

LOW
NORM
HIGH
d GAS/ dt

15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Response

Temperature Set Point

dn temp
ab rite
up temp
centroid

Figure 4.4: Controller response to an input of -10.

Figure 4.4 depicts the input value rising to -10. Notice that the input has now been

assigned membership to two functions, LOW and NORM. These determine the height of

the DN_TEMP and AB_RITE triangles, the areas of which are summed and the COG

determined.

4.3 Fuzzy Control Software 32

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

LOW
NORM
HIGH
d GAS/ dt

15 20 25 30 35 40 45
0

0.5

1
Response

Temperature Set Point

dn temp
ab rite
up temp
centroid

Figure 4.5: Controller response to an input of 0.

Figure 4.5 exhibits the selected ideal operating point of the digester. Small fluctuations

of up to ±2 in input will not affect the setpoint, as the DN_TEMP and UP_TEMP response

triangles have a height of 0.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

LOW
NORM
HIGH
d GAS/ dt

15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

Response

Temperature Set Point

dn temp
ab rite
up temp
centroid

Figure 4.6: Controller response to an input of +5.

4.3 Fuzzy Control Software 33

The response of the controller to an input of +5 is shown in Figure 4.6. Membership

to input function NORM and HIGH determine height of AB_RITE and UP_TEMP response

triangles.

Figure 4.7 depicts the response of the controller to an input exceeding the universe of

discourse. Again, temperature setpoint cannot exceed the upper limit of the COG of

the UP_TEMP response triangle.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

LOW
NORM
HIGH
d GAS/ dt

15 20 25 30 35 40 45
0

0.5

1
Response

Temperature Set Point

dn temp
ab rite
up temp
centroid

Figure 4.7: Controller response to an input of +20.

4.3.3 Tuning Fuzzy Parameters

Mentioned in the previous section is the point that expert knowledge of a physical

system may be used to set the fuzzy parameters. These parameters are present in the

*_membs[] arrays declared in the main file. Six of these must be declared for each gas,

three each for input and output. The program requires values which form trapezoids for

two outer membership functions and triangles for those in the centre. The temperature

set point for the range of expected inputs or universe of discourse, in this case the first

derivative of CO2, is plotted in Figure 4.8.

4.3 Fuzzy Control Software 34

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

1st Derivative CO2

LOW

NORM

HIGH

−20 −15 −10 −5 0 5 10 15 20
20

25

30

35

40
Response

1st Derivative CO2

T
em

pe
ra

tu
re

 S
et

 P
oi

nt
 (

de
g

C
)

Figure 4.8: Temperature set point for expected d(CO2)/dt levels.

Of interest are the slopes either side of the above-mentioned dead zone either side of

inputs of zero, for two reasons, which will now be discussed.

4.3.4 Slope

The first reason for interest in these two slopes may have already been noticed; the

gradient influences the magnitude of the response, which in this case, is the magnitude

of the change in temperature setpoint for a given change in input. Figure 4.9 shows an

experiment with this relationship using the following input membership arrays:

LOW_membs = [-16 -10 -2];

NORM_membs = [-10 0 6];

HIGH_membs = [2 6 16];

Comparing Figure 4.9 with 4.8, it may be appreciated while steeper gradient has the

effect of increasing the magnitude of the response over small fluctuations in input, it also

considerably reduces the range of inputs over which the controller is able to respond.

4.3 Fuzzy Control Software 35

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

1st Derivative CO2

LOW

NORM

HIGH

−20 −15 −10 −5 0 5 10 15 20
20

25

30

35

40
Response

1st Derivative CO2

T
em

pe
ra

tu
re

 S
et

 P
oi

nt
 (

de
g

C
)

Figure 4.9: Modified Temperature set point for expected d(CO2)/dt levels.

4.3.5 Concavity

Secondly, while the profile of Figure 4.8 could well result in a functional controller, the

concavity of these two curves means that temperature set point adjustments are smaller

close to the upper and lower limits of the operating temperature range. Conversely,

responses are more dramatic close to the centre flat spot. This situation means that

for small inputs outside the dead zone, more dramatic adjustments are made.

Great advantage may be taken of this characteristic. As it is more likely that readings

close to zero may be caused by noise, an alternative was investigated by altering pa-

rameters in the *_membs arrays to reverse the concavity of these two areas as in Figure

4.10. This has the effect of triggering smaller adjustments in set point close to zero,

which are likely to be noise, while readings further from this region will trigger more

dramatic responses, where they are more necessary.

Figure 4.10 was created by widening the base of the AB_RITE response triangle by ini-

tialising array AB_RITE_mems = [10 30 52]. Further adjustments to input functions

are also possible, but responses are limited by the simple geometric algorithms applied.

4.4 Micro-controller Implementation 36

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

1st Derivative CO2

LOW

NORM

HIGH

−20 −15 −10 −5 0 5 10 15 20
20

25

30

35

40
Response

1st Derivative CO2

T
em

pe
ra

tu
re

 S
et

 P
oi

nt
 (

de
g

C
)

Figure 4.10: Modified temperature set point for expected d(CO2)/dt levels.

Further exploration into the effects of various membership function shapes are thought

to be of limited additional benefit to this project and so are left as specific areas worthy

of curiosity and nothing more.

4.4 Micro-controller Implementation

Once the MATLAB routines were ported to C, experimentation with the micro-controller

could begin. Minicom was used to capture ASCII text in data files which were then

read into a simple MATLAB script for plotting.

4.4 Micro-controller Implementation 37

0 5 10 15 20 25 30 35 40
−30

−20

−10

0

10

20

30
CO2: 1st Derivative

Sample No

d(
C

O
2/

dt
)

−20 −15 −10 −5 0 5 10 15 20

20

30

40

d(CO2)/dt vs Temp Setpoint

T
em

p
S

P
 (

de
g

C
)

d(CO2)/dt

Figure 4.11: Captured temperature set point for expected d(CO2)/dt levels.

0 5 10 15 20 25 30 35 40
−30

−20

−10

0

10

20

30
CO2: 1st Derivative

Sample No

d(
C

O
2/

dt
)

−20 −15 −10 −5 0 5 10 15 20

20

30

40

d(CO2)/dt vs Temp Setpoint

T
em

p
S

P
 (

de
g

C
)

d(CO2)/dt

Figure 4.12: Captured modified temperature set point for expected d(CO2)/dt levels.

It is here that the limitations of the simple function void uart_put_num(float) be-

come apparent. However a clear correlation between the plots in Figures 4.11 and 4.8,

and 4.12 and 4.10 can be easily identified.

4.5 Chapter Summary 38

4.5 Chapter Summary

This chapter has detailed the process of software development for the fuzzy logic con-

troller for a biogas system. The process has been illustrated using examples from the

first derivative of CO2 readings. Changes to the gradient of the controller’s response

and the ease with which parameters may be adjusted to suit sensor response character-

istics leads to the conclusion that this procedure may be followed to develop suitable

controller responses for all analogue inputs required throughout this project.

Chapter 5

Laboratory Gas Tests

5.1 Chapter Overview

This section explains the equipment and process used to test the response of the sensors

to expected gas concentrations and levels. The data is required to tune fuzzy parameters

to individual sensors. It concludes with comments regarding the suitability of the

signals for use with the fuzzify() and defuzzify() functions.

5.2 Test Equipment

The necessary function of the sampling equipment is to precisely dilute a gas sample

to a known concentration and expose the sensors to a consistant concentration for a

period long enough to allow the sensors to respond.

Hypodermic syringes of 6 and 3 mL volume were used to take accurately measured gas

samples. Considering the implications of 1mL variation in volumes of the sample gas

and air with which to dilute the samples, accurate measuring of air was not considered

so crucial as precision. A plastic 600 ml bottle was cleaned and pierced on the bottom

to provide a snug fit for the syringes, one of which was then inverted and inserted

into a larger vessel containing purified water to form a gasometer. With these two

5.3 Sampling Procedure 40

consitant volumes, gas samples could be diluted with sufficient precision to a desired

concentration for analysis.

A sketch of the essential components of the apparatus is shown in Figure 5.1. Arrows

indicate the direction of applied force during a dilution operation.

Figure 5.1: Dilution equipment used throughout laboratory tests.

Pure test gas samples of CO2 and H2 were provided by the USQ Faculty of Sciences,

but CH4 was not available and so was substituted with town gas. Australian Stan-

dard 4564-2000 is somewhat arbitrary with constituent components of natural gas, the

implications of which become clear in later in Section 5.4.

5.3 Sampling Procedure

Having two known volumes allowed gas concentration to be determined using the fol-

lowing simple calculation:

5.3 Sampling Procedure 41

V OLUMEsyringe =
V OLUMEbottle × CONCENTRATION(ppm)

106
(5.1)

Where V OLUMEbottle = 600 mL, and CONCENTRATION is the concentration

desired.

To sample a gas, a syringe was placed on the outlet of the gas regulator without the

plunger and thoroughly purged. The plunger was then replaced and inserted to give

the calculated volume, V OLUMEsyringe at a positive pressure.

The syringe was then quickly inserted into the hole in the base of the 600 mL bottle

which was raised slightly to give a negative pressure. The syringe plunger was then

depressed into the bottle until empty and the bottle raised to its maximum height in the

water. The breach was then covered and great care was taken to ensure the mouth of

the bottle remained below the waters surface at a consistant level. The gas sample may

then be considered diluted to the greatest precision available under the circumstances.

To test the sample, the inverted pill bottle and sensors were placed above the hole and

the 600 mL bottle pushed gently and consistently downward so that the diluted gas

entered the sensor chamber. The cap was then promptly replaced and the equipment

allowed to sit for analysis.

5.3.1 Microcontroller Configuration

As mentioned in Chapter 3, the MQ7 H2 sensor requires a 150 second heating cycle. The

timer interrupt subroutine was altered to provide the necessary sensor heating states

over the required time period. Buffers were implemented as described in Chapter 4.

Raw readings, averages and first derivatives were sent via the serial port and captured

to file.

5.4 Testing 42

5.4 Testing

Unfortunately time constraints permitted only 3 useful tests, each of a single sample.

The details of these are listed below.

• Trial 1: 10 000 ppm CO2

• Trial 2: 1 000 ppm H2

• Trial 3: 10 000 ppm town gas

From these it was expected that an algorithm based on 3 linear equations could be

derived to extract individual gas concentrations, which could then be sent to the fuzzy

functions to derive a temperature setpoint.

Plots in Figures 5.2 to 5.10 show the data captured in the trails. The horizontal

axis represents the sample number, or time in increments of 150 s, while the vertical

axes represent the voltage captured by the micro-controller’s ADC’s. Apparent lags in

averages and derivatives are a result of updates in buffer arrays. Captured data files

are included in Appendix C.

5.4.1 Trial 1

Figures 5.2 to 5.4 show data captured in trial 1.

Inspection of these plots show a dramatic response from the CO2 sensor, with only

a slight, but noisy response from the CH4 sensor, and what may be interpreted as

background noise from the H2 sensor. Having replaced the noisy power supply, the

source of this noise is unknown, it is thought that it may be a characteristic of the

sensors’ cross-sensitivity, or fluctuations in air quality in the laboratory, as USQ staff

were cleaning and preparing equipment on the day. This aside, the result was very

encouraging, as it appears that CO2 levels affect the other sensors minimally. It can be

seen in the centre plots that the averaging algorithms remove the spikes to an acceptable

degree.

5.4 Testing 43

0 5 10 15 20 25 30 35 40
0

100

200
CO2

0 5 10 15 20 25 30 35 40
0

100

200
CO2 averaged

0 5 10 15 20 25 30 35 40
−50

0

50
CO2: 1st Derivative

Figure 5.2: Captured data from CO2 sensor; trial 1.

0 5 10 15 20 25 30 35 40
60

80

100
CH4

0 5 10 15 20 25 30 35 40
70

80

90
CH4 averaged

0 5 10 15 20 25 30 35 40
−5

0

5
CH4: 1st Derivative

Figure 5.3: Captured data from CH4 sensor; trial 1.

5.4.2 Trial 2

Trial 2 as defined here did not run as smoothly as expected due to excessive gain in

the amplifier as mentioned in Chapter 3. Once this was rectified, the trial carried on

5.4 Testing 44

0 5 10 15 20 25 30 35 40
150

200

250
H2

0 5 10 15 20 25 30 35 40
150

200

250
H2 averaged

0 5 10 15 20 25 30 35 40
−10

0

10
H2: 1st Derivative

Figure 5.4: Captured data from H2 sensor; trial 1.

as anticipated, yielding the plots 5.5 to 5.7.

0 5 10 15 20 25
0

50

100
CO2

0 5 10 15 20 25
0

20

40
CO2 averaged

0 5 10 15 20 25
−20

0

20
CO2: 1st Derivative

Figure 5.5: Captured data from CO2 sensor; trial 2.

Comparing Figures 5.5 and 5.7, it appears from trial 2 plots that H2 appears to affect

the CO2 sensor noticeably, but not excessively. This is unexpected as the MG811

data sheet mentions nothing regarding sensitivity to H2. The CH4 in Figure 5.6 is

5.4 Testing 45

0 5 10 15 20 25
0

200

400
CH4

0 5 10 15 20 25
0

100

200
CH4 averaged

0 5 10 15 20 25
−50

0

50
CH4: 1st Derivative

Figure 5.6: Captured data from CH4 sensor; trial 2.

0 5 10 15 20 25
0

500

1000
H2

0 5 10 15 20 25
0

500

1000
H2 averaged

0 5 10 15 20 25
−200

0

200
H2: 1st Derivative

Figure 5.7: Captured data from H2 sensor; trial 2.

also significantly affected, and this is noted in the TGS2611 datasheet. Looking at

the derivative plots, both of these signals are clearly unable to be concealed by simple

noise allowance techniques covered in Chapter 4, indicating some kind of compensation

is necessary to extract individual gas concentrations.

5.4 Testing 46

5.4.3 Trial 3

Trial 3 also suffered from complications, but this time the major source is uncertainty

in town gas composition.

Plots are shown in Figures 5.8 to 5.10.

0 5 10 15 20 25 30 35 40
0

20

40

CO2

0 5 10 15 20 25 30 35 40
0

20

40
CO2 averaged

0 5 10 15 20 25 30 35 40
−10

0

10
CO2: 1st Derivative

Figure 5.8: Captured data from CO2 sensor; trial 3.

It is clear that all 3 sensors have again reacted to town gas, but is unclear at this point

as to exactly why. It appears the CO2 sensor’s response closely resembles that in trial

2. The CH4 sensor has also reacted strongly, as should be expected due to the high

percentage of CH4 in town gas. The H2 sensor has also reacted strongly.

Unfortunately no gas spectrum analyser was available, so it is unclear to exactly what

these responses may be attributed, and to what degree it/ these affect each sensor. The

Australian Government (Roarty 1998) suggests that natural gas may contain propane,

C3H8 and butane C4H10, which are the major constituents of liquefied petroleum gas

(LPG). Australian Standard 4564-2000 does not impose limits on the composition of

natural gas for consumption; only a minimum calorific combustion value known as the

Wobbe Index of between 46 and 52 MJ/m3. Hanwei inform that the MQ7 H2 sensor is

sensitive to LPG and also slightly to CH4.

5.4 Testing 47

0 5 10 15 20 25 30 35 40
0

500

1000
CH4

0 5 10 15 20 25 30 35 40
0

500

1000
CH4 averaged

0 5 10 15 20 25 30 35 40
−100

0

100
CH4: 1st Derivative

Figure 5.9: Captured data from CH4 sensor; trial 3.

0 5 10 15 20 25 30 35 40
0

500

1000
H2

0 5 10 15 20 25 30 35 40
0

500
H2 averaged

0 5 10 15 20 25 30 35 40
−100

0

100
H2: 1st Derivative

Figure 5.10: Captured data from H2 sensor; trial 3.

Additionally, it may be expected that in the presence of such a confused array of

hydrocarbon gases, the MQ7 may also be affected by other gases present, one of which

could well be free H2. In the absence of any information, excluding the datasheet, it is

assumed that the MQ7’s response is due to the presence of LPG and/ or free hydrogen.

5.5 Chapter Conclusion 48

The significance of this assumption will become clear in Chapter 6.

Similar conclusions may be drawn regarding the response of the CO2 sensor. It is

known that town gas does contain CO2, but it is uncertain in what quantity, and it is

also unknown to what degree the sensor is affected by other gases.

5.5 Chapter Conclusion

This chapter has detailed and commented on the equipment and procedure to test the

responses of the sensors to expected gas composition.

On cursory inspection, it may appear that the unravelling of this data to provide

useful information concerning individual gas concentrations, as proposed earlier in this

dissertation, means that significant further work is necessary in this area, and this is

indeed the subject of a great deal of recent research.

For the purpose of this project, two points must be highlighted. The first is that the

method used to gather this data is highly inconsistent in nature due to the sudden

exposure of the sensors to the sample, therefore resulting in rapid fluctuations in con-

centration of all gases simultaneously. This is not the case in a real biogas system,

which with appropriate feeding and maintenance, will provide a much more consistant

flow, and composition of biogas, even during an overload.

The second point is that only the first derivatives are being passed to the fuzzy logic

functions. This implies that once the micro-controller’s buffers are flushed and aver-

ages stabilised, it is expected that individual gas concentrations are largely irrelevant,

provided they remain within the limits of the individual sensors. Further modelling in

MATLAB may provide more accurate expectations of the behaviour of the controller

in response to what here, initially looks like largely unusable data. This is explored in

Chapter 6.

Chapter 6

Results

6.1 Chapter Overview

As mentioned in Chapter 5, data measuring the response of the gas sensors contains

considerable uncertainty caused by significant cross-sensitivity between the gas sensors

and unknown constituents of town gas. This may be accommodated to some degree by

the fact that this controller responds only to the first derivatives of the signals. This

chapter describes the procedure used to obtain and utilise data written to reflect an

overload for use in a MATLAB script written to simulate the microcontroller’s response.

6.1.1 Overload Data Determination

Two attempts were made to extract meaningful data for use with the MATLAB simu-

lation scripts. These are explored in the following sections.

6.1.1.1 Logarithmic Technique

Some experimentation into the use of logarithms with linear equations was conducted.

MATLAB code is included in Appendix B.1.1. Experiments focussed on the extrac-

tion of individual gas concentration in ppm × 1000, or less conventionally, parts per

6.1 Chapter Overview 50

thousand. Plots using data from trial 3 using town gas in Chapter 5 are included below.

0 5 10 15 20 25 30 35 40
0

20

40

CO2

0 5 10 15 20 25 30 35 40
−100

0

100
CO2 averaged

0 5 10 15 20 25 30 35 40
−20

0

20
CO2: 1st Derivative

Figure 6.1: Trial 3 CO2 concentrations using logarithms.

0 5 10 15 20 25 30 35 40
0

500

1000
CH4

0 5 10 15 20 25 30 35 40
0

50

100
CH4 averaged

0 5 10 15 20 25 30 35 40
−20

0

20
CH4: 1st Derivative

Figure 6.2: Trial 3 CH4 concentrations using logarithms.

One can see that gas concentrations appear to be close those that were expected from

trial 3 in Chapter 5. Minimal further experimentation with the algorithm should pro-

vide acceptably accurate gas concentration data. Consideration must be made during

such investigation, of the limitations of logarithms at zero, as can be seen in Figure

6.1 Chapter Overview 51

0 5 10 15 20 25 30 35 40
0

500

1000
H2

0 5 10 15 20 25 30 35 40
0

10

20
H2 averaged

0 5 10 15 20 25 30 35 40
−2

0

2
H2: 1st Derivative

Figure 6.3: Trial 3 H2 concentrations using logarithms.

6.1. It is unknown how the micro-controller might respond to such data. Together with

adjustment of the fuzzy geometry parameters as outlined in Chapter 4, it is expected

that a robust controller is realisable, even with the sensors employed here.

6.1.1.2 Heuristic Technique

Due mainly to time constraints, considerable simplification of the data was made by

taking the readings on face value, thereby ignoring its logarithmic nature. Instead,

allowance of this simplification was made by adjusting fuzzy parameters to suit.

Relevant data suitable for the simulation of an overload was performed heuristically.

Characteristic curves representing gas concentration levels were based on captured data

exhibited in Chapter 5.

It was ascertained in Chapter 5 that the MQ7 H2 sensor is minimally influenced by the

presence of CO2. There is little evidence to support that it is dramatically affected by

CH4 levels, and this seems further unlikely considering CH4 sensitivity is included in

Hanwei’s datasheet and minimal. The effect of CH4 on the MQ7 is therefore assumed

6.1 Chapter Overview 52

negligible. H2 increases perceived by the micro-controller’s ADC should therefore be

sufficiently accurate. Overload level was 701 from Figure 5.7.

The MG811 CO2 has been proven sensitive to H2, but not CH4 according to the

datasheet. It is therefore hypothesised that increases in H2 will be perceived by the

micro-controller as simultaneous increases in CO2, while decreases in CH4 should have

little impact. In addition to the expected increase in CO2 levels to 143 from Figure 5.2

in trail 1, CO2 levels were inflated slightly by summing a multiple of 1

14
of H2 levels,

to reflect the measured cross sensitivity. This scalar value was determined by dividing

the CO2 response by that of the H2 from trial 2 in Chapter 5. These values were 38 in

Figure 5.5 and 546 in Figure 5.7.

Considerable uncertainty surrounds the TGS2611 CH4 sensor. Both Figaro’s datasheet

and experimentation show considerable sensitivity to H2, while experimentation addi-

tionally shows slight sensitivity to CO2. All literature reviewed indicates a reduction in

CH4 levels during overload, while H2 and CO2 levels increase. It is therefore uncertain

exactly how CH4 levels will be perceived by the micro-controller through its ADC.

In order to test the controller, 3 possible CH4 response cases were considered. The

first, and most optimistic is the possibility that the presence of CO2 and H2 reduce the

normal attenuation of the signal from the TGS2611 due to the fall in CH4 concentration.

CH4 readings were synthesised by the addition of scalar multiples of CO2 and H2 to the

CH4 readings to reflect these trends. Under the second possible scenario, CO2 and H2

concentrations completely mask the response of the TGS2611, producing a constant,

unchanged signal throughout the overload. The third case indicates that the CO2

and H2 trigger responses in the TGS2611 stronger than that of the fall in CH4 levels,

resulting in a perceived increase in CH4 levels. It is predicted that this is the condition

most likely to provoke inappropriate temperature setpoints from the micro-controller.

It must be highlighted here that while this approach seems reasonable, data used does

not produce trends which approximate the responses of the sensors. The linear char-

acteristics of the collected data have not been completely ignored, however. Original

synthesised data more closely resembled the data collected, but allowed little insight

into the behaviour of the controller over a range of first derivatives. A plot is included

6.2 Simulation Results 53

in Figure 6.4. Therefore, while maintaining significant values based on the captured

data, the data used here has been deliberately altered to permit such scrutiny. There

is much extra work necessary to establish data that replicates with absolute certainty,

the responses of the sensors to an actual overload.

0 5 10 15 20 25 30 35 40
0

200

400

600

800
Gas Readings

A
D

C
 r

ea
di

ng

0 5 10 15 20 25 30 35 40
−50

0

50

100

1st Derivative Inputs

d(
ga

s)
/d

t

CO2

CH4

H2

0 5 10 15 20 25 30 35 40
25

30

35

40
Response

T
em

p
S

P
 (

de
g

C
)

Sample number

Figure 6.4: Resulting temperature setpoint using captured data.

6.2 Simulation Results

Trends and values for the signals received from the CO2 and H2 sensors are considered

reasonably well established. However, three simulations were executed, one for each of

the possible responses from the CH4 sensor.

The fuzzy parameters were tuned individually to suit the ranges of the synthesised data

and are tabulated below.

6.2 Simulation Results 54

CO2 input: CO2 output:

CO2_LOW_membs = [-16 -16 -2]; CO2_DN_TEMP_membs = [15 15 35];

CO2_NORM_membs = [-16 0 10]; CO2_AB_RITE_membs = [10 30 52];

CO_2HIGH_membs = [2 10 16]; CO2_UP_TEMP_membs = [29 39 45];

CH4 input: CH4 output:

CH4_LOW_membs = [-50 -50 -10]; CH4_DN_TEMP_membs = [15 15 35];

CH4_NORM_membs = [-20 0 18]; CH4_AB_RITE_membs = [26 30 36];

CH4_HIGH_membs = [10 80 80]; CH4_UP_TEMP_membs = [29 39 45];

H2 input: H2 output:

H2_LOW_membs = [-60 -60 -5]; H2_DN_TEMP_membs = [15 15 35];

H2_NORM_membs = [-20 0 18]; H2_AB_RITE_membs = [10 30 52];

H2_HIGH_membs = [5 18 50]; H2_UP_TEMP_membs = [29 39 45];

Included are two plots for each of the simulations, one each for absolute inputs to the

controller and for the first derivatives into the fuzzy functions. These are provided to

help the reader visualise the gas levels during the overload.

In all figures, the first 12 data points reflect fluctuations while the controller is started

and averaging buffers are yet to be filled. The second 14 data points approximate an

overload, and the final 14 represent a return to normal after an overload.

6.2 Simulation Results 55

6.2.0.3 Case 1: CH4 decrease attenuated by CO2 and H2 sensitivity.

0 5 10 15 20 25 30 35 40
0

200

400

600

800
Gas Readings

A
D

C
 r

ea
di

ng

0 5 10 15 20 25 30 35 40
−50

0

50

100

1st Derivative Inputs

d(
ga

s)
/d

t

CO2

CH4

H2

0 5 10 15 20 25 30 35 40
20

25

30

35

40
Response

T
em

p
S

P
 (

de
g

C
)

Sample number

Figure 6.5: Gas inputs against temperature setpoint; case 1.

Figure 6.5 from case 1 shows the most optimistic scenario, in which the normal reduced

signal from the TGS2611 CH4 sensor is attenuated due to its cross-sensitivity with CO2

and H2. This situation shows the normal expected fluctuation in temperature setpoint.

The controller appears to operate quite confidently under these circumstances.

6.2 Simulation Results 56

6.2.0.4 Case 2: CH4 decrease cancelled by CO2 and H2 sensitivity.

0 5 10 15 20 25 30 35 40
0

200

400

600

800
Gas Readings

A
D

C
 r

ea
di

ng

0 5 10 15 20 25 30 35 40
−50

0

50

100

1st Derivative Inputs

d(
ga

s)
/d

t

CO2

CH4

H2

0 5 10 15 20 25 30 35 40
20

25

30

35

40
Response

T
em

p
S

P
 (

de
g

C
)

Sample number

Figure 6.6: Gas inputs against temperature setpoint; case 2.

Figure 6.6 shows case 2 in which cross-sensitivity completely cancels the expected re-

duction in CH4 levels. There is a reduction of only 1 degree C in the range of possible

temperature setpoints.

6.2 Simulation Results 57

6.2.0.5 Case 3: CH4 decrease hidden by CO2 and H2 sensitivity.

0 5 10 15 20 25 30 35 40
0

200

400

600

800
Gas Readings

A
D

C
 r

ea
di

ng

0 5 10 15 20 25 30 35 40
−50

0

50

100

1st Derivative Inputs

d(
ga

s)
/d

t

CO2

CH4

H2

0 5 10 15 20 25 30 35 40
20

25

30

35

40
Response

T
em

p
S

P
 (

de
g

C
)

Sample number

Figure 6.7: Gas inputs against temperature setpoint; case 3.

Figure 6.7 from case 3 shows the scenario in which increases in CO2 and H2 result in a

perceived increase in CH4 levels. This is estimated to be the worst case. The response

closely resembles that of case 1.

It appears that the controller may be tuned to largely ignore an input of questionable

accuracy. Further tuning may result in even further improvements, but it must be

noted that the less the controller relies on this input, the less reason for having it

connected at all. This would have been more the case had it been decided to use the

weighting constant during defuzzification as covered in 4.3.2. It does appear that using

fuzzy logic, an acceptable compromise may be reached. A large contributer to this

result is the tweaking of the fuzzy parameters related to the CH4 input to ignore CH4

readings until the first derivative becomes excessive. For the record, the response of

the controller to the fuzzy parameters dialled in is shown in Figure 6.8.

6.3 Chapter Conclusion 58

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1
Input Membership Functions

1st Derivative CO2

LOW
NORM
HIGH

−60 −40 −20 0 20 40 60
10

20

30

40
Response

1st Derivative CO2

T
em

pe
ra

tu
re

 S
et

 P
oi

nt
 (

de
g

C
)

Figure 6.8: Controller response to synthesised d(CH4) levels

.

6.3 Chapter Conclusion

This chapter has explained the process through which data collected from the micro-

controller has been used to derive data that may be used to examine the responses

of the controller. The data reflects likely inputs from the chosen gas sensors. While

the data may not reflect exactly that which was obtained, using it with the MATLAB

simulation scripts does show the potential of this system to be able to perform well

under a variety of situations which may be encountered during a real overload.

Chapter 7

Conclusions and Further Work

7.1 Chapter Overview

This Chapter reviews and draws conclusions from the findings of this research project.

It additionally looks at further work arising from the conclusions and makes recom-

mendations as to the direction in which such work may prove beneficial.

It may be appreciated from Chapter 6, the developed embedded controller does indeed

respond as intended, in that a temperature setpoint is determined from the gas sensor

inputs using fuzzy logic algorithms. However, several complications mean that im-

proved performance, in terms of robust control, should be possible with further efforts.

7.2 Conclusions

7.2.1 Biological Aspects

Literature review revealed that the biological aspects of anaerobic decomposition are

well researched, and a genuine interest and commitment in this area would be required

in order to make an original contribution in this field.

7.2 Conclusions 60

7.2.2 Electronic Aspects

The concept of using the signals from gas sensors as inputs to a fuzzy logic controller

is also well established, but implementing such a system requires attention to several

details.

The major hurdle in this project arose during analysis of sensor responses. There were

three main aspects, each contributing to difficulties using these low cost devices. The

first was cross-sensitivity, which resulted in unintentional sensor response to gases other

than the target gas. The second was the logarithmic nature of the response of each of

the three sensors, and the third was the absence of pure samples of each of the 3 target

gases during the testing procedure.

The simplest method to reduce cross-sensitivity is the utilisation of better quality gas

sensors with more informative documentation. Although the sensors employed in this

project are able to perform tolerably, the selection of gas sensors for a particular ap-

plication is no trivial task, and significant literature is available on the subject. Points

worthy of consideration are target and background gas concentrations, sensor construc-

tion and characteristics, such as noise susceptibility, heater or other power requirements,

output characteristics such as resistive, emf, logarithmic, linear, or necessary amplifier

input impedance. The careful selection of sensors could greatly reduce the necessary

signal processing.

Testing procedures, though considered adequate, needed to be more numerous and

varied. Further trials using slightly different compositions were necessary in order to

better determine the responses of the sensors.

7.2.3 Computational Aspects

It must be noted that development on embedded systems is not without unique chal-

lenges of its own. Graphical analysis on a PC based simulator is extremely advanta-

geous, development from scratch being close to impossible on the target system alone.

Memory constraints pose another limitation, this project approaching the limits of the

7.3 Further Work 61

Atmega 8 micro-controller in this respect, even without the use of logarithmic signal

processing. Further optimisation of the C code would definitely be possible, but signif-

icantly more ambitious projects would require the use of assembly language or a chip

with a more generous memory.

Implementation of simple fuzzy logic algorithms to determine a single output setpoint

proved to be a relatively straightforward and rewarding exercise. One interesting aspect

was the possibility of the tuning of fuzzy parameters to suit uncertainty in the inputs.

To be able to do so with multiple inputs is a great strength of fuzzy logic, and is a

major reason for its use in so many consumer products and services.

Signal processing algorithms are another area in which considerable simplification was

made. The employment of logarithmic signal data using linear methods would result

in significant deviations from actual values. There were experiments conducted using

logarithms with linear equations to extract individual target gas concentrations. These

resulted in definite improvements in the available data, but were hampered by the

absence of data from tests with pure CH4 samples, thus demanding significant trial and

error to arrive at acceptable parameters. Unfortunately time did not permit adequate

experimentation, the success of which would additionally necessitate adjustment of

fuzzy logic parameters, due to the difference in order of the obtained response data.

However, extra time spent tuning these parameters is thought to be of major benefit,

considering time invested and achievable results.

7.3 Further Work

This research project has encompassed a wide range of disciplines, from electronic

and computing fields to biological processes which are to be controlled. While every

attempt was made to cover the relevant details from each area in the available time,

it is accepted that assumptions and simplifications have been made in the interest of

practicality. Suggested further research into specific areas is recommended below.

Several parts of the programs need to be investigated, finished and thoroughly tested.

This includes the logarithmic concentration extraction algorithm, fuzzy logic using all

7.3 Further Work 62

3 inputs, and the semaphore lights. These were left due to the time constraints on this

project. A basic working controller has been simulated, but not implemented.

Thorough investigation into gas sensors and their peculiarities are mentioned in the

conclusion. The selection of those with more suitable responses as opposed to those

of suitable cost, is expected to reduce the necessity of sophisticated signal processing

techniques. Better laboratory testing conditions using pure, or at least known target

gases and mixtures to investigate their responses during overload conditions would be

of great additional assistance.

As mentioned in Chapter 3, E-noses in general have been a recent buzz topic due to their

possible application to numerous fields such as process control, air quality monitoring,

security and drug detection. Cross-sensitivity and noise in e-noses is therefore not a new

area of concern, and again, significant literature is available. A recent area of interest is

the use of artificial neural networks (ANN’s) to determine accurate gas concentrations

from confused signals. Interested readers are referred to the following works listed in

the bibliography:

• Electronic noses - a mini review: (Strike, Meijerink & Koudelka-Hep 1999)

• Data analysis for electronic nose systems: (Simon, James & Zulfiquer 2006)

• An artificial olfactory system based on gas sensor array and back propagation

neural network: (Huiling, Guangzhong & Yadong n.d.)

• Monitoring growth of the methanogenic archaea methanobacterium formicicum

using an electronic nose: (Brandgard, Sundh, Nordburg, Schnurer, Mandenius &

Mathisen 2001)

The final test for this controller would be to place it on a working digester and tune the

fuzzy parameters to suit. It may also be found that the monitoring of other parameters,

such as absolute gas concentrations and second derivatives may be necessary to achieve

robust control. Analysis of the response of a digester to fluctuations in temperature

and its use as a valid method of control should also be assessed.

7.4 Final Conclusion 63

7.4 Final Conclusion

It was established through literature review that the largest problem with anaerobic

digesters is that with overloading of the digester. It was found that a series of microbial

processes produce an increase in CO2 and H2, and a reduction in CH4 concentrations

during an overload. These gases and their derivatives with respect to time indicate an

impending overload. Using electronic gas sensors, these variables may be monitored

to determine an ideal temperature setpoint in an attempt to increase the activity of

methanogenic bacteria, thus reducing the possibility of an overload.

In order to implement a possible controller, an embedded system was designed and

developed to read gas concentrations from electronic hardware. Fuzzy logic MATLAB

scripts were developed, then ported to C for use on the embedded platform. The

response of the embedded system was compared to the MATLAB simulator to ascertain

the relevance of the simulator. The system was then tested in a laboratory with target

gas samples, and the data used to tune the fuzzy parameters, and to derive estimates

of overload conditions as perceived by the microcontroller. Data reflecting an overload

was then put into MATLAB simulation scripts and then critically analysed. The results

were promising, but further research is necessary to ensure that this controller is able

to adequately prevent a digester overload.

It is hoped that the results of this project are used to make anaerobic digesters a more

competitive, reliable, and safe option to produce renewable fuel gas for households and

small communities. The greatest success is desired for any further progress towards

this end, and persuits in ethical energy solutions for the future in general.

References

Brandgard, J., Sundh, I., Nordburg, A., Schnurer, A., Mandenius, C. F. & Mathisen,

B. (2001), ‘Monitoring growth of the methanogenic archaea methanobacterium

formicicum using an electronic nose’, Biotechnology Letters 23, 241–248.

Fry, J. L. (1973), ‘Methane digesters for fuel and fertiliser’.

Hobson, P. N., Bousfield, S. & Summers, R. (1981), Methane production from agricul-

tural and domestic wastes, Applied Science Publishers LTD.

Huiling, T., Guangzhong, X. & Yadong, J. (n.d.), ‘An artificial olfactory system based

on gas sensor array and back propagation neural network’.

Muller, A., Marsili-Libelli, S., Aivasidis, A., Lloyd, T., Kroner, S. & Wandrey, C.

(1997), ‘Fuzzy logic control of disturbances in a wastewater treatment process’.

Murnleitner, E., Becker, T. M. & Delgado, A. (2002), ‘State detection and control

of overloads in the anaerobic wastewater treatment using fuzzy logic’, Water

Reasearch 36.

Neswold, R. (2006), Avrlibc Reference Manual 1.4.5.

http://savannah.nongnu.org/projects/avr-libc/

current February 2007.

Reznik, L. (1997), Fuzzy Controllers, Newnes.

Roarty, M. (1998), Natural Gas: Energy for the New Millenium.

http://www.aph.gov.au/library/pubs/rp/1998-99/99rp05.htm

current November 2007.

http://savannah.nongnu.org/projects/avr-libc/
http://www.aph.gov.au/library/pubs/rp/1998-99/99rp05.htm

REFERENCES 65

Simon, S. M., James, D. & Zulfiquer, A. (2006), ‘Data analysis for electronic nose

systems’.

Smith, P., Bordeux, F., Goto, M., Shiralipour, A., Wilkie, A., Andrews, J., Ide, S.

& Barnett, M. (1988), Biological production of methane from biomass, Elsevier

Science Publishers LTD, p. 291.

Sowell, T. (2005), Fuzzy Logic for Just Plain Folks.

http://www.fuzzy-logic.com

current August 2005.

Stafford, D., Hawkes, D. & Horton, R. (1981), Methane Production from Organic

Wastes, CRC Press Inc.

Strike, D. J., Meijerink, M. G. H. & Koudelka-Hep, M. (1999), ‘Electronic noses - a

mini review’.

http://www.fuzzy-logic.com

Appendix A

Project Specification

67

University of Southern Queensland

Faculty of Engineering and Surveying

ENG 4111/2 Research Project

Project Specification

FOR: Terence Michael Sullavan

TOPIC: Embedded Control System for Biogas Digester

SUPERVISORS: Selvan Pather

Mark Phythian

PROJECT AIM: This project aims to investigate, design and develop an em-

bedded control system to control the temperature of, and to

improve the efficiency, reliablity and safety of domestic scale

biogas digesters.

PROGRAMME: Issue C, 27th April, 2007

1. Research anaerobic digestion requirements.

2. Select appropriate microcontroller chip and establish development environment.

3. Research and develop electronic circuits and microcontroller program subroutines.

4. Critically evaluate controller performance in laboratory.

5. Tune program parameters to improve performance.

AGREED:

(student), , (supervisors)

(dated) / /

Appendix B

Source Code Listings

69

A large part of this research project has been developing MATLAB source code to assist

with the development of C code, and to provide visual assistance with, and insight into

the behaviour of the controller. These scripts were used to plot many of the figures

throughout this dissertation.

There were two main types of script developed, one which simply reads data files

captured by Minicom from the micro-controller and plots it, and the second which uses

the same fuzzy algorithms as the controller. The latter is able to assign temperature

setpoints to the data provided.

The second section contains C source code suitable for use with recent versions of avr-

gcc, version 4.1.2 used in this project. The fuzzy C code development followed a similar

evolution to the MATLAB scripts, but with hardware subroutines, based heavily on

those from the avrlibc examples, developed first. All have been included.

B.1 MATLAB Functions 70

B.1 MATLAB Functions

B.1.1 The minicomPlot.m Script

The MATLAB script file minicomPlot.m is a simple read and plot type script. It is

able to calculate averages and CH4 and H2 derivatives, necessitated by bugs in the

averaging buffers which arose when the controller was activated without having its

memory erased. These mimic the behaviour of the micro-controller on startup and

were uncommented when appropriate. It also includes 2 attempts at logarithmic gas

concentration extraction, the first used to produce the plots in section 6.1.1.1. This

script is shown in Listing B.1.

Listing B.1: minicomplot1m.

%Just reads the f i l e ’ Tr ia l n . cap ’ in current d i r and p l o t s i t out .

clear ; clc ;

[temp , temp avg , CO2, CO2 avg , d CO2 , CH4, CH4 avg , d CH4 , H2 ,
→H2 avg , d H2] = . . .

t ex t r ead (’ T r i a l 4 . cap ’ , ’Temp : %s Temp avg : %s CO2: %s CO2 avg : %
→s d CO2 : %s CH4 : %s CH4 avg : %s d CH4 : %s H2 : %s H2 avg : %s
→d H2 : %s ’) ;

%Tria l 1 : 10 000 ppm CO2
%Tr ia l 2 : 1000 ppm H2; gain = 3
%Tr ia l 3 : 1000 ppm H2; gain = 2
%Tr ia l 3 1 : 1000ppm H2; gain = 1
%Tr ia l 4 : 10 000 ppm town gas

CH4 = hex2dec(CH4) ;
CH4 avg = hex2dec(CH4 avg) ;
d CH4 = hex2dec(d CH4) ;

CO2 = hex2dec(CO2) ;
CO2 avg = hex2dec(CO2 avg) ;
d CO2 = hex2dec(d CO2) ;

H2 = hex2dec(H2) ;
H2 avg = hex2dec(H2 avg) ;
d H2 = hex2dec(d H2) ;

for i = 1 : length (CO2)
i f CH4(i) > 32667

CH4(i) = CH4(i) − 65536 ;
end

i f CH4 avg(i) > 32667
CH4 avg(i) = CH4 avg(i) − 65536 ;

end

i f d CH4(i) > 32667
d CH4(i) = d CH4(i) − 65536 ;

end

i f CO2(i) > 32667
CO2(i) = CO2(i) − 65536 ;

end

B.1 MATLAB Functions 71

i f CO2 avg (i) > 32667
CO2 avg (i) = CO2 avg (i) − 65536 ;

end

i f d CO2(i) > 32667
d CO2(i) = d CO2(i) − 65536 ;

end

i f H2(i) > 32667
H2(i) = H2(i) − 65536 ;

end

i f H2 avg (i) > 32667
H2 avg (i) = H2 avg (i) − 65536 ;

end

i f d H2 (i) > 32667
d H2 (i) = d H2 (i) − 65536 ;

end

end

%Work around fo r dodgy b u f f e r s in Tr i a l 3 1
%Read raw sensor data and c a l c u l a t e averages and d e r i v a t i v e s in

→MATLAB

%averages :
for n = 1 :4

CH4 avg(n) = (sum(CH4(1 : n)) /5) ;
end

for n=5: length (CH4)
CH4 avg (n) = ((sum(CH4((n−4) : n))) / 5) ;

end

for n = 1 :5
H2 avg (n) = sum(H2(1 : n)) /6 ;

end

for n=6: length (H2)
H2 avg (n) = sum(H2((n−5) : n)) ;
H2 avg (n) = H2 avg (n) / 6 ;

end

%Logarithmic compensation f o r cros s s e n s i t i v i t y 1
%fo r n = 1: l en g t h (CH4 avg)
% H2 avg (n) = 4∗(log10 ((H2 avg (n))))% − l og10 (CO2 avg (n)) /20;
% CO2 avg (n) = 50∗ l og10 (CO2 avg (n)) − 6∗H2 avg (n) ;
% CH4 avg (n) = 180∗ l og10 (log10 (CH4 avg (n)))% − CO2 avg (n) /20 −

→45.5 ;
%end

%Logarithmic compensation f o r cros s s e n s i t i v i t y 2
%fo r n = 1: l en g t h (CH4 avg)
% H2 avg (n) = 4∗ l og10 ((log10 ((H2(n))))) − 1 ;
% CO2 avg (n) = 50∗ l og10 (CO2(n)) − H2 avg (n) ;
% CH4 avg (n) = 180∗ l og10 (log10 (CH4(n))) − CO2(n) /50 − 15∗H2 avg (n)

→ −48;
%end

d CO2(1) =0;
d CH4(1) =0;
d H2 (1) =0;
%de r i v a t i v e s :
for n=1:(length (CH4 avg)−1) ;

d CO2(n+1) = (CO2 avg (n+1) − CO2 avg (n)) ;
d CH4(n+1) = (CH4 avg(n+1) − CH4 avg(n)) ;

d H2 (n+1) = (H2 avg (n+1) − H2 avg (n)) ;
end

%Plot averaged reading

B.1 MATLAB Functions 72

%Plot raw and averaged read ings wi th d e r i v a t i v e s on 3 separa t e
→ f i g u r e s ; 1

%fo r each sensor .
subplot (3 , 1 , 1) , plot (1 : i , CO2) ;
t i t l e (’CO2 ’) ;
grid on ;

subplot (3 , 1 , 2) , plot (1 : i , CO2 avg) ;
t i t l e (’CO2 averaged ’) ;
grid on ;
%ax i s (s u bp l o t (312) , [0 i 0 250]) ;

subplot (3 , 1 , 3) , plot (1 : i , d CO2) ;
t i t l e (’CO2: 1 s t Der iva t iv e ’) ;
grid on ;
%ax i s (s u bp l o t (313) , [0 i −15 25]) ;

figure ;

subplot (3 , 1 , 1) , plot (1 : i , CH4) ;
t i t l e (’CH4 ’) ;
grid on ;

subplot (3 , 1 , 2) , plot (1 : i , CH4 avg) ;
t i t l e (’CH4 averaged ’) ;
grid on ;
%ax i s (s u bp l o t (312) , [0 i 0 250]) ;

subplot (3 , 1 , 3) , plot (1 : i , d CH4) ;
t i t l e (’CH4 : 1 s t Der iva t iv e ’) ;
grid on ;
%ax i s (s u bp l o t (313) , [0 i −15 25]) ;

figure ;

subplot (3 , 1 , 1) , plot (1 : i , H2) ;
t i t l e (’H2 ’) ;
grid on ;

subplot (3 , 1 , 2) , plot (1 : i , H2 avg) ;
t i t l e (’H2 averaged ’) ;
grid on ;
%ax i s (s u bp l o t (312) , [0 i 0 250]) ;

subplot (3 , 1 , 3) , plot (1 : i , d H2) ;
t i t l e (’H2 : 1 s t Der iva t iv e ’) ;
grid on ;
%ax i s (s u bp l o t (313) , [0 i −15 25]) ;

B.1 MATLAB Functions 73

B.1.2 The Simulator Scripts

The MATLAB based simulator was created in stages.

B.1.2.1 Simulator Stage 1

The first stage were 3 files consisting of a main file and fuzzify and de-fuzzify function

files. These scripts plotted input and output membership functions, with the input

(d(CO2)/dt) and output response (temperature setpoint) values shown as small circles.

The main script, FL_CO2_temp.m is able to produce several different plots, the relevant

lines commented or uncommented as necessary. These scripts are shown in Listings

B.2 to B.4. The main function calls the other two. Scripts are listed in the order in

which they are called.

Listing B.2: FLCO2temp.m

% MAIN func t ion
%A f i r s t at tmept at producing a fu z z y l o g i c s imu la t ion us ing d CO2

→ in and
% temperature out .
% The lower and upper membership and response f un c t i on s must be

→ t r a p e z o i d a l
% and the cen t r e membership and response f un c t i on s must be

→ t r i a n g u l a r .
%

% mem1 mem2
% ∗∗∗∗∗∗ ∗ ∗∗∗∗∗∗∗
% ∗ ∗ ∗ ∗
% ∗ ∗ ∗
% ∗ ∗
% ∗ ∗ ∗
% ∗ ∗ ∗
% ∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗
% mem3

clear ; clc ;

%Globa l var s f o r membership parameters
global LOW membs NORM membs HIGH membs ;
%Responses
global DN TEMP membs AB RITE membs UP TEMP membs

%fu z z y l ims = [−2 2] ;

%Define membership f un c t i on s

%These va lu e s seem about r i g h t f o r the 1 s t d e r i v a t i v e o f C02
%Input
LOW membs = [−16 −16 −2];
NORM membs = [−16 0 1 0] ;
HIGH membs = [2 10 1 6] ;

%Output
DN TEMP membs = [15 15 3 5] ;
AB RITE membs = [25 30 3 7] ;

B.1 MATLAB Functions 74

UP TEMP membs = [29 39 4 5] ;

%These va lu e s seem about r i g h t f o r the 1 s t d e r i v a t i v e o f C02
%Input
%LOW membs = [−16 −16 −2];
%NORM membs = [−16 0 10] ;
%HIGH membs = [2 10 45] ;

%Output
%DN TEMP membs = [15 15 35] ;
%AB RITE membs = [10 30 52] ;
%UP TEMP membs = [29 39 45] ;

%d CO2 reading from sensor read func t ion
d CO2 = [LOW membs(1) −5: . 1 : HIGH membs (3)] ; %CO2 array used to
→ p l o t

d CO2(length (d CO2)+1) = 16 ; % ∗∗∗ Append user de f ined reading o f
→ i n t e r e s t here ∗∗∗

temp = [DN TEMP membs(1) : . 1 : UP TEMP membs(3)] ; %temperature
→array used to p l o t

%d CO2 reading from sensor read func t ion
%d CO2 = [LOW membs(1) − 5 : . 1 : HIGH membs(3) − 29] ; %CO2 array used

→ to p l o t

%d CO2(l en g t h (d CO2)+1) = 20; % ∗∗∗ Append user de f ined reading o f
→ i n t e r e s t here ∗∗∗

%temp = [DN TEMP membs(1) : . 1 : UP TEMP membs(3)] ; %temperature
→array used to p l o t

%∗∗∗∗∗∗∗∗∗∗∗∗∗End o f user de f ined v a r i a b l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%Obtain membership to f u z z y r u l e s
for i =1: length (d CO2)

[LOW(i) , NORM(i) , HIGH(i)] = f u z z i f y (d CO2(i)) ;

end

figure ;
%p l o t membership f un c t i on s
subplot (2 , 1 , 1) , plot (d CO2 (1 : length (d CO2)−1) , LOW(1 : length (d CO2)
→−1) , . . .

d CO2 (1 : length (d CO2)−1) , NORM(1 : length (d CO2)−1) , . . .
d CO2 (1 : length (d CO2)−1) , HIGH(1 : length (d CO2)−1) . . .
) ; grid on ; hold on ;

%Plot c i r c l e s around membership f un c t i on s
subplot (2 , 1 , 1) , plot (d CO2(length (d CO2)) , LOW(length (d CO2)) , ’ o ’
→ , . . .

d CO2(length (d CO2)) , NORM(length (d CO2)) , ’ o ’ , . . .
d CO2(length (d CO2)) , HIGH(length (d CO2)) , ’ o ’) ;

t i t l e (’ Input Membership Functions ’) ;
%legend (’LOW’ , ’NORM’ , ’HIGH’ , ’ d GAS/ dt ’)

%Required response ;
%i f CO2 LOW, down temp ,
%i f CO2 NORM, temp ˜=temp ,
%i f CO2 HIGH, up temp .

%Obtain c r i s p temperature s e t p o i n t (response)
temp SP = Dfuzz i fy (LOW(length (LOW)) , NORM(length (NORM)) , HIGH(length
→(HIGH))) ;

%Obtain c r i s p temperature s e t p o i n t array (response)
%temp SP=Dfu z z i f y (LOW, NORM, HIGH) ;

%Do a p l o t o f response
for i =1: length (temp)

B.1 MATLAB Functions 75

%Membership r u l e s DN TEMP
i f (temp(i) < DN TEMP membs(2))

DN TEMP(i) = LOW(length (LOW)) ;
end

i f (temp(i) >= DN TEMP membs(2) & temp(i) < DN TEMP membs(3))
DN TEMP(i) = LOW(length (LOW)) + (DN TEMP membs(2) − temp(i))
→ ∗ LOW(length (LOW)) /(DN TEMP membs(3) − DN TEMP membs(2)) ;

end

i f (temp(i) >= DN TEMP membs(3))
DN TEMP(i) = 0 ;

end

%Membership r u l e s AB RITE
i f (temp(i) < AB RITE membs (1) | temp(i) >= AB RITE membs (3))

AB RITE(i) = 0 ;
end

i f (temp(i) >= AB RITE membs (1) & temp(i) < AB RITE membs (2))
AB RITE(i) = (temp(i) − AB RITE membs (1)) ∗ NORM(length (NORM
→)) / (AB RITE membs (2) − AB RITE membs (1)) ;

end

i f (temp(i) >= AB RITE membs (2) & temp(i) < AB RITE membs (3))
AB RITE(i) = NORM(length (NORM)) + (AB RITE membs (2) − temp(
→ i)) ∗ NORM(length (NORM)) / (AB RITE membs (3) −
→AB RITE membs (2)) ;

end

%Membership r u l e s UP TEMP
i f (temp(i) < UP TEMP membs(1))

UP TEMP(i) = 0 ;
end

i f (temp(i) >= UP TEMP membs(1)) & (temp(i) < UP TEMP membs(2))
UP TEMP(i) = (temp(i) − UP TEMP membs(1)) ∗ HIGH(length (HIGH
→)) / (UP TEMP membs(2) − UP TEMP membs(1)) ;

end

i f temp(i) >= UP TEMP membs(2)
UP TEMP(i) = HIGH(length (HIGH)) ;

end
end

%p l o t response f un c t i on s
subplot (2 , 1 , 2) , plot (temp , DN TEMP, temp , AB RITE, temp , UP TEMP) ;
→grid on ; hold on ;

%f i g u r e ;
%Plot input (d CO2)
%su bp l o t (2 ,1 ,1) , p l o t (1 : l en g t h (d CO2) , d CO2 , 1 : l en g t h (d CO2) ,

→ f u z z y l ims (1) , ’ r ’ , 1 : l e n g t h (d CO2) , f u z z y l ims (2) , ’ r ’) ;
%g r i d on ; ho ld on ;
%t i t l e (’ Input d (CO2)/dt ’) ;
%y l a b e l (’ d (CO2)/dt ’) ;

%Plot s e t p o i n t on x ax i s (temp SP array)
subplot (2 , 1 , 2) , plot (temp SP , 0 , ’ o ’) ; grid on ; hold on ;
axis (subplot (212) , [DN TEMP membs(1) UP TEMP membs(3) 0 1]) ;

t i t l e (’ Response ’) ;
%x l a b e l (’1 s t De r i v a t i v e CO2’) ;
xlabel (’ Temperature Set Point (deg C) ’) ;

%EOF

B.1 MATLAB Functions 76

Listing B.3: fuzzifyV1.m

function [LOW, NORM, HIGH] = f u z z i f y (d CO2)
% A func t ion to f u z z i f y .
% The lower and upper membership and response f un c t i on s must be

→ t r a p e z o i d a l
% and the cen t r e membership and response f un c t i on s must be

→ t r i a n g u l a r f o r
% the membership c a l c u l a t i o n s .

global LOW membs NORM membs HIGH membs ;

%Membership r u l e s LOW
i f (d CO2 < LOW membs(2))

LOW = 1 ;
end

i f (d CO2 >= LOW membs(2)) & (d CO2 < LOW membs(3))
LOW = 1 − (d CO2 − LOW membs(2)) /(LOW membs(3)−LOW membs(2)

→) ;
end

i f (d CO2 >= LOW membs(3))
LOW = 0 ;

end

%Membership r u l e s NORM
i f (d CO2 < NORM membs(1) | d CO2 >= NORM membs(3))

NORM = 0 ;
end

i f (d CO2 >= NORM membs(1) & d CO2 < NORM membs(2))
NORM = (d CO2 − NORM membs(1)) / (NORM membs(2) − NORM membs

→ (1)) ;
end

i f (d CO2 >= NORM membs(2) & d CO2 < NORM membs(3))
NORM = 1 − (d CO2 − NORM membs(2)) / (NORM membs(3) −

→NORM membs(2)) ;
end

%Membership r u l e s HIGH
i f (d CO2 < HIGH membs (1))

HIGH = 0 ;
end

i f (d CO2 >= HIGH membs (1) & d CO2 < HIGH membs (2))
HIGH = (d CO2 − HIGH membs (1)) / (HIGH membs (2) − HIGH membs
→ (1)) ;

end

i f d CO2 >= HIGH membs (2)
HIGH = 1 ;

end

%EOF

Listing B.4: DfuzzifyV1.m

function temp SP = Dfuzz i fy (LOW, NORM, HIGH)
% A func t ion to de−f u z z i f y .

B.1 MATLAB Functions 77

% The lower and upper membership and response f un c t i on s are
→ t r ape z o i da l ,

% and the cen t r e membership and response f un c t i on s t r i a n g u l a r f o r
% the area and c en t r o i d a l c a l c u l a t i o n s .

global DN TEMP membs AB RITE membs UP TEMP membs

%Calcu la t e areas
Area DN TEMP = LOW(length (LOW)) ∗ ((DN TEMP membs(2) − DN TEMP membs
→ (1)) + (DN TEMP membs(3) − DN TEMP membs(2)) /2)

Area AB RITE = NORM(length (NORM)) ∗ (AB RITE membs (3) −
→AB RITE membs (1)) /2

Area UP TEMP = HIGH(length (HIGH)) ∗ ((UP TEMP membs(3) −
→UP TEMP membs(2)) + (UP TEMP membs(2) − UP TEMP membs(1)) /2)

%Work out response areas h o r i z on t a l c en t r o i d s

%z DN TEMP = ((DN TEMP membs(2)−DN TEMP membs(1)) ˆ2 + . . .
% ((DN TEMP membs(3)−DN TEMP membs(2)) ˆ2) /3 + . . .
% (DN TEMP membs(2)−DN TEMP membs(1)) ∗ (DN TEMP membs(3)−

→DN TEMP membs(2))) / . . .
% (2∗(DN TEMP membs(2)−DN TEMP membs(1)) + (DN TEMP membs(3) −

→DN TEMP membs(2)))

z DN TEMP = ((DN TEMP membs(2)−DN TEMP membs(1)) ˆ2 + 2∗DN TEMP membs
→ (1) ∗(DN TEMP membs(2)−DN TEMP membs(1)) + . . .

((DN TEMP membs(3)−DN TEMP membs(2)) ˆ2) /3 + . . .
DN TEMP membs(2) ∗ (DN TEMP membs(3)−DN TEMP membs(2))) / . . .
(2∗ (DN TEMP membs(2)−DN TEMP membs(1)) + (DN TEMP membs(3) −
→DN TEMP membs(2)))

z AB RITE = (2 ∗ ((AB RITE membs (2)−AB RITE membs (1)) ˆ2) /3 +
→AB RITE membs (1) ∗ (AB RITE membs (2)−AB RITE membs (1)) + . . .

((AB RITE membs (3)−AB RITE membs (2)) ˆ2) /3 + AB RITE membs (2) ∗(
→AB RITE membs (3)−AB RITE membs (2))) / . . .

(AB RITE membs (2)−AB RITE membs (1) + AB RITE membs (3)−
→AB RITE membs (2))

z UP TEMP = (4∗ ((UP TEMP membs(2)−UP TEMP membs(1)) ˆ2) /3 + 2∗
→UP TEMP membs(1) ∗(UP TEMP membs(2)−UP TEMP membs(1)) + . . .

3∗ ((UP TEMP membs(3)− UP TEMP membs(2)) ˆ2) /2 + 3∗UP TEMP membs
→ (2) ∗(UP TEMP membs(3)−UP TEMP membs(2))) / . . .

(2∗ (UP TEMP membs(2)−UP TEMP membs(1)) + 3∗(UP TEMP membs(3)−
→UP TEMP membs(2)))

%f i n a l temperature s e t p o i n t i s cen t ro id o f e n t i r e response area
temp SP = (Area DN TEMP∗z DN TEMP + Area AB RITE∗z AB RITE +
→Area UP TEMP∗z UP TEMP) . . .

/ (Area DN TEMP + Area AB RITE + Area UP TEMP)

B.1 MATLAB Functions 78

B.1.2.2 Simulator Stage 2

The second stage involved re-writing the scripts to handle 3 different inputs, one for

each gas, plus membership function geometry parameters as necessary. The second

stage contains the data used to simulate an overload. Included are two sets of data;

one mimicking the captured data as closely as possible, and the second with a range of

derivatives used to explore the performance of the controller. These scripts are shown

in Listings B.5 to B.7. Again, the functions are listed in the order in which they are

called.

Listing B.5: FL3SensTemp.m

% MAIN func t ion
%A f i r s t at tmept at producing a fu z z y l o g i c s imu la t ion us ing d CO2

→ in and
% temperature out .
% The lower and upper membership and response f un c t i on s must be

→ t r a p e z o i d a l
% and the cen t r e membership and response f un c t i on s must be

→ t r i a n g u l a r .
%

% mem1 mem2
% ∗∗∗∗∗∗ ∗ ∗∗∗∗∗∗∗
% ∗ ∗ ∗ ∗
% ∗ ∗ ∗
% ∗ ∗
% ∗ ∗ ∗
% ∗ ∗ ∗
% ∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗
% mem3

clear ; clc ;

f u z zy l ims = [−2 2] ;

%Define membership f un c t i on s

%These va lu e s seem about r i g h t f o r the 1 s t d e r i v a t i v e o f C02
%+d(CO2)/ dt r e qu i r e in c r ea s e s in temp
%Input
CO2 LOW membs = [−16 −16 −2];
CO2 NORM membs = [−16 0 1 0] ;
CO2 HIGH membs = [2 10 1 6] ;

%Output
CO2 DN TEMP membs = [15 15 3 5] ;
CO2 AB RITE membs = [10 30 5 2] ;
CO2 UP TEMP membs = [29 39 4 5] ;

%These va lu e s seem about r i g h t f o r the 1 s t d e r i v a t i v e o f CH4
%−d (CH4)/ dt r e qu i r e in c r ea s e s in temp
%Input
CH4 LOW membs = [−50 −50 −10];
CH4 NORM membs = [−20 0 1 8] ;
CH4 HIGH membs = [10 80 8 0] ;

%Output
CH4 DN TEMP membs = [15 15 3 5] ;

B.1 MATLAB Functions 79

CH4 AB RITE membs = [26 30 3 6] ;
CH4 UP TEMP membs = [29 39 4 5] ;

%These va lu e s seem about r i g h t f o r the 1 s t d e r i v a t i v e o f H2
%+D(H2)/ dt r e qu i r e in c r ea s e s in temp
%Input
H2 LOW membs = [−60 −60 −5];
H2 NORM membs = [−20 0 1 8] ;
H2 HIGH membs = [5 18 5 0] ;

%Output
H2 DN TEMP membs = [15 15 3 5] ;
H2 AB RITE membs = [10 30 5 2] ;
H2 UP TEMP membs = [29 39 4 5] ;

%Readings from micro sensor read func t ion . F i r s t 12 repre sen t
→ s t a r t u p . Next

%14 repre sen t o/ load . Fina l 14 repre sen t oppo s i t e cond i t ion .
%CO2 avg=[0 0 1 2 5 10 16 23 29 33 36 38 38 46 54 62

→ 70 78 86 94 102 110 118 126 134 142 142 134 126 118 110
→102 94 86 78 70 62 54 46 38] ;

%CH4 avg=[81 78 76 75 75 80 167 265 363 458 544 546 546 546 546
→546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546
→546 546 546 546 546 546 546 546 546] ;

%H2 avg= [58 57 57 58 59 62 138 217 289 357 422 483 483 500 517
→534 551 568 585 602 619 636 653 670 687 701 701 687 670 653 636
→619 602 585 568 551 534 517 500 483] ;

CO2 avg=[0 0 1 2 5 10 16 23 29 33 36 38 38 40 44 50
→ 58 68 82 98 112 122 130 136 140 142 142 140 136 130 122 112
→ 98 82 68 58 50 44 40 3 8] ;

CH4 avg=[81 78 76 75 75 80 167 265 363 458 544 546 546 546 546 546
→ 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546
→ 546 546 546 546 546 546 546 5 4 6] ;

H2 avg= [58 57 57 58 59 62 138 217 289 357 422 483 483 487 495 507
→ 523 543 571 613 641 661 677 689 697 701 701 697 689 677 661 641
→ 613 571 543 523 507 495 487 4 8 3] ;

%Modify read ings to r e f l e c t cross−s e n s i t i v i t y

for n=13: length (CO2 avg)
CO2 avg (n)=CO2 avg (n) + (H2 avg (n)−483) /7 ; %remove cons tant
→ o f f s e t and add s e n s i t i v i t y to H2

CH4 avg(n)=CH4 avg(n) − ((CO2 avg (n)−38)−(H2 avg (n)−483)) /3 ;
%CH4 avg (n)=0;

end

d CO2(1) =0;
d CH4(1) =0;
d H2 (1) =0;

%de r i v a t i v e s :
for n=1:(length (CO2 avg)−1) ;

d CO2(n+1) = (CO2 avg (n+1) − CO2 avg (n)) ;
d CH4(n+1) = (CH4 avg(n+1) − CH4 avg(n)) ;

d H2 (n+1) = (H2 avg (n+1) − H2 avg (n)) ;
end
%d H2=[−150:150]; %Just f o r p l o t t i n g tempsp vs d H2
%d CH4=[−80:120];

%∗∗∗∗∗∗∗∗∗∗∗∗∗End o f user de f ined v a r i a b l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%Obtain membership to f u z z y r u l e s
for i =1: length (d CH4)

[CO2 LOW(i) , CO2 NORM(i) , CO2 HIGH(i)] = f u z z i f y (d CO2(i) ,
→CO2 LOW membs, CO2 NORM membs, CO2 HIGH membs) ;

B.1 MATLAB Functions 80

[CH4 LOW(i) , CH4 NORM(i) , CH4 HIGH(i)] = f u z z i f y (d CH4(i) ,
→CH4 LOW membs, CH4 NORM membs, CH4 HIGH membs) ;

[H2 LOW(i) , H2 NORM(i) , H2 HIGH(i)] = f u z z i f y (d H2 (i) ,
→H2 LOW membs , H2 NORM membs, H2 HIGH membs) ;

end

%Obtain c r i s p temperature s e t p o i n t array (response)
for i =1: length (d CH4)

[CO2 A DN TEMP(i) CO2 z DN TEMP(i) CO2 A AB RITE(i)
→CO2 z AB RITE(i) CO2 A UP TEMP(i) CO2 z UP TEMP(i)] = . . .

D fuzz i fy (CO2 DN TEMP membs, CO2 AB RITE membs ,
→CO2 UP TEMP membs , CO2 LOW(i) , CO2 NORM(i) , CO2 HIGH(i)) ;

[CH4 A DN TEMP(i) CH4 z DN TEMP(i) CH4 A AB RITE(i)
→CH4 z AB RITE(i) CH4 A UP TEMP(i) CH4 z UP TEMP(i)] = . . .

D fuzz i fy (CH4 DN TEMP membs , CH4 AB RITE membs ,
→CH4 UP TEMP membs , CH4 HIGH(i) , CH4 NORM(i) , CH4 LOW(i)) ;

[H2 A DN TEMP(i) H2 z DN TEMP(i) H2 A AB RITE(i) H2 z AB RITE(i)
→ H2 A UP TEMP(i) H2 z UP TEMP(i)] = . . .

D fuzz i fy (H2 DN TEMP membs , H2 AB RITE membs ,
→H2 UP TEMP membs , H2 LOW(i) , H2 NORM(i) , H2 HIGH(i)) ;

end

%f i n a l temperature s e t p o i n t i s cen t ro id o f e n t i r e response area : A l l
→ gases

for i =1: length (d CO2)
temp SP(i) = ((CO2 A DN TEMP(i) ∗CO2 z DN TEMP(i) + CO2 A AB RITE
→(i) ∗CO2 z AB RITE(i) + CO2 A UP TEMP(i) ∗CO2 z UP TEMP(i)) . . .

+ (CH4 A DN TEMP(i) ∗CH4 z DN TEMP(i) + CH4 A AB RITE(i) ∗
→CH4 z AB RITE(i) + CH4 A UP TEMP(i) ∗CH4 z UP TEMP(i)) . . .

+ (H2 A DN TEMP(i) ∗H2 z DN TEMP(i) + H2 A AB RITE(i) ∗
→H2 z AB RITE(i) + H2 A UP TEMP(i) ∗H2 z UP TEMP(i))) . . .

/ ((CO2 A DN TEMP(i) + CO2 A AB RITE(i) + CO2 A UP TEMP(i))
→ . . .

+ (CH4 A DN TEMP(i) + CH4 A AB RITE(i) + CH4 A UP TEMP(i))
→ . . .

+ (H2 A DN TEMP(i) + H2 A AB RITE(i) + H2 A UP TEMP(i))) ;
end

%f i n a l temperature s e t p o i n t i s cen t ro id o f e n t i r e response area : CO2
→ & H2

%for i =1: l en g t h (d H2)
% temp SP(i) = (CO2 A DN TEMP(i)∗CO2 z DN TEMP(i) + CO2 A AB RITE

→(i)∗CO2 z AB RITE(i) + CO2 A UP TEMP(i)∗CO2 z UP TEMP(i) . . .
% + H2 A DN TEMP(i)∗H2 z DN TEMP(i) + H2 A AB RITE(i)∗

→H2 z AB RITE(i) + H2 A UP TEMP(i)∗H2 z UP TEMP(i)) . . .
% / (CO2 A DN TEMP(i) + CO2 A AB RITE(i) + CO2 A UP TEMP(i)

→ . . .
% + H2 A DN TEMP(i) + H2 A AB RITE(i) + H2 A UP TEMP(i)) ;
%end

%f i n a l temperature s e t p o i n t i s cen t ro id o f e n t i r e response area : CO2
%for i =1: l en g t h (d CO2)
% temp SP(i) = (CO2 A DN TEMP(i)∗CO2 z DN TEMP(i) + CO2 A AB RITE

→(i)∗CO2 z AB RITE(i) + CO2 A UP TEMP(i)∗CO2 z UP TEMP(i)) . . .
% / (CO2 A DN TEMP(i) + CO2 A AB RITE(i) + CO2 A UP TEMP(i)) ;
%end

%f i n a l temperature s e t p o i n t i s cen t ro id o f e n t i r e response area : H2
%fo r i =1: l en g t h (d H2)
% temp SP(i) = (H2 A DN TEMP(i)∗H2 z DN TEMP(i) + H2 A AB RITE(i)

→∗H2 z AB RITE(i) + H2 A UP TEMP(i)∗H2 z UP TEMP(i)) . . .
% / (H2 A DN TEMP(i) + H2 A AB RITE(i) + H2 A UP TEMP(i)) ;
%end

%f i n a l temperature s e t p o i n t i s cen t ro id o f e n t i r e response area : CH4
%for i =1: l en g t h (d CH4)

B.1 MATLAB Functions 81

% temp SP(i) = (CH4 A DN TEMP(i)∗CH4 z DN TEMP(i) + CH4 A AB RITE
→(i)∗CH4 z AB RITE(i) + CH4 A UP TEMP(i)∗CH4 z UP TEMP(i)) . . .

% / (CH4 A DN TEMP(i) + CH4 A AB RITE(i) + CH4 A UP TEMP(i)) ;
%end

figure ;
%Plot inpu t s
subplot (3 , 1 , 1) , plot (1 : length (CO2 avg) , CO2 avg , 1 : length (CH4 avg) ,
→CH4 avg , 1 : length (H2 avg) , H2 avg) ;

grid on ; hold on ;
t i t l e (’Gas Readings ’) ;
ylabel (’ADC reading ’) ;
axis (subplot (311) , [0 (length (CO2 avg)) 0 8 0 0]) ;

%Plot d e r i v a t i v e s
subplot (3 , 1 , 2) , plot (1 : length (d CO2) , d CO2 , 1 : length (d CH4) , d CH4 ,
→ 1 : length (d H2) , d H2) ;

grid on ; hold on ;
t i t l e (’ 1 s t Der iva t iv e Inputs ’) ;
ylabel (’d(gas) /dt ’) ;
legend (’CO2 ’ , ’CH4 ’ , ’H2 ’) ;
axis (subplot (312) , [0 (length (CO2 avg)) −50 1 1 0]) ;

%Plot c o n t r o l l e r response
subplot (3 , 1 , 3) , plot (1 : length (d CO2) , temp SP) ; grid on ; hold on ;
grid on ; hold on ;
%t i t l e (’ Input H2’) ;
%y l a b e l (’H2 ’) ;
t i t l e (’ Response ’) ;
ylabel (’Temp SP (deg C) ’) ;
xlabel (’ Sample number ’) ;

%Plot range o f va lu e s f o r tun ing
%p l o t (d H2 , temp SP) ;
%gr i d on ; ho ld on ;
%t i t l e (’ Input d (H2)/dt ’) ;
%x l a b e l (’ d (H2)/dt ’) ;
%y l a b e l (’ Temperature Set Point (deg C) ’) ;

%f i g u r e ;
%Plot range o f va lu e s f o r tun ing
%p l o t (d CH4 , temp SP) ;
%gr i d on ; ho ld on ;
%t i t l e (’ Input d (CH4)/dt ’) ;
%x l a b e l (’ d (CH4)/dt ’) ;
%y l a b e l (’ Temperature Set Point (deg C) ’) ;

%EOF

Listing B.6: fuzzifyV2.m

function [LOW, NORM, HIGH] = f u z z i f y (d GAS , LOW membs, NORM membs,
→HIGH membs)

% A func t ion to f u z z i f y .
% The lower and upper membership and response f un c t i on s must be

→ t r a p e z o i d a l
% and the cen t r e membership and response f un c t i on s must be

→ t r i a n g u l a r f o r

B.1 MATLAB Functions 82

% the membership c a l c u l a t i o n s .

%Membership r u l e s LOW
i f (d GAS < LOW membs(2))

LOW = 1 ;
end

i f (d GAS >= LOW membs(2)) & (d GAS < LOW membs(3))
LOW = 1 − (d GAS − LOW membs(2)) /(LOW membs(3)−LOW membs(2)

→) ;
end

i f (d GAS >= LOW membs(3))
LOW = 0 ;

end

%Membership r u l e s NORM
i f (d GAS < NORM membs(1) | d GAS >= NORM membs(3))

NORM = 0 ;
end

i f (d GAS >= NORM membs(1) & d GAS < NORM membs(2))
NORM = (d GAS − NORM membs(1)) / (NORM membs(2) − NORM membs

→ (1)) ;
end

i f (d GAS >= NORM membs(2) & d GAS < NORM membs(3))
NORM = 1 − (d GAS − NORM membs(2)) / (NORM membs(3) −

→NORM membs(2)) ;
end

%Membership r u l e s HIGH
i f (d GAS < HIGH membs (1))

HIGH = 0 ;
end

i f (d GAS >= HIGH membs (1) & d GAS < HIGH membs (2))
HIGH = (d GAS − HIGH membs (1)) / (HIGH membs (2) − HIGH membs
→ (1)) ;

end

i f d GAS >= HIGH membs (2)
HIGH = 1 ;

end

%EOF

Listing B.7: DfuzzifyV2.m

function [Area DN TEMP z DN TEMP Area AB RITE z AB RITE
→Area UP TEMP z UP TEMP] = . . .

Dfuzz i fy (DN TEMP membs, AB RITE membs , UP TEMP membs, LOW, NORM,
→ HIGH)

% A func t ion to de−f u z z i f y .
% The lower and upper membership and response f un c t i on s are

→ t r ape z o i da l ,
% and the cen t r e membership and response f un c t i on s t r i a n g u l a r f o r
% the area and c en t r o i d a l c a l c u l a t i o n s .

%Ca lcu la t e areas
Area DN TEMP = LOW(length (LOW)) ∗ ((DN TEMP membs(2) − DN TEMP membs
→ (1)) + (DN TEMP membs(3) − DN TEMP membs(2)) /2) ;

Area AB RITE = NORM(length (NORM)) ∗ (AB RITE membs (3) −
→AB RITE membs (1)) /2 ;

B.1 MATLAB Functions 83

Area UP TEMP = HIGH(length (HIGH)) ∗ ((UP TEMP membs(3) −
→UP TEMP membs(2)) + (UP TEMP membs(2) − UP TEMP membs(1)) /2) ;

%Work out response areas h o r i z on t a l c en t r o i d s

z DN TEMP = ((DN TEMP membs(2)−DN TEMP membs(1)) ˆ2 + 2∗DN TEMP membs
→ (1) ∗(DN TEMP membs(2)−DN TEMP membs(1)) + . . .

((DN TEMP membs(3)−DN TEMP membs(2)) ˆ2) /3 + . . .
DN TEMP membs(2) ∗ (DN TEMP membs(3)−DN TEMP membs(2))) / . . .
(2∗ (DN TEMP membs(2)−DN TEMP membs(1)) + (DN TEMP membs(3) −
→DN TEMP membs(2))) ;

z AB RITE = (2 ∗ ((AB RITE membs (2)−AB RITE membs (1)) ˆ2) /3 +
→AB RITE membs (1) ∗ (AB RITE membs (2)−AB RITE membs (1)) + . . .

((AB RITE membs (3)−AB RITE membs (2)) ˆ2) /3 + AB RITE membs (2) ∗(
→AB RITE membs (3)−AB RITE membs (2))) / . . .

(AB RITE membs (2)−AB RITE membs (1) + AB RITE membs (3)−
→AB RITE membs (2)) ;

z UP TEMP = (4∗ ((UP TEMP membs(2)−UP TEMP membs(1)) ˆ2) /3 + 2∗
→UP TEMP membs(1) ∗(UP TEMP membs(2)−UP TEMP membs(1)) + . . .

3∗ ((UP TEMP membs(3)− UP TEMP membs(2)) ˆ2) /2 + 3∗UP TEMP membs
→ (2) ∗(UP TEMP membs(3)−UP TEMP membs(2))) / . . .

(2∗ (UP TEMP membs(2)−UP TEMP membs(1)) + 3∗(UP TEMP membs(3)−
→UP TEMP membs(2))) ;

B.2 C Code for the Atmega8 84

B.2 C Code for the Atmega8

One version of each file is presented in Listings B.8 to B.18, as later versions of the

code contain roughly the same code as earlier versions, just with fewer bugs and extra

signal processing and fuzzy code. The semaphore LED code has not yet been included

due to the fact that the system is still rather too immature to be concerned about user

interfaces just yet.

Listing B.8: Main File

// Fuzzy Logic app . f o r the ATMega8
// Takes a va lu e from the ADC, f u z z y f i e s & de− f u z z i f i e s and re tu rns
→areas and c en t r o i d s .

// Inc ludes
#include <i n t t yp e s . h>
#include <avr/ i n t e r r up t . h>
#include <uart . h>
#include <adc . h>
#include <t imer . h>
#include <avr/ s l e ep . h>
#include <avr/ i o . h>
#include <avr/pgmspace . h> // inc luded to enab l e the wr i t i n g o f

→ s t r i n g s from rom
#include <f u z z y func s . h>
#include <adc . inc>

// cons t an t s
#define FCPU 1000000 /∗ CPU speed ∗/

#define temp buf sz 5
#define c o 2 bu f s z 6 //These can be increased as

→necessary to smooth s i g n a l s . min 3
#define ch4 bu f s z 5
#define h2 bu f s z 6

#define avg s bu f s z 3 //min 2

//
→−−−
→

//a s t r u c t u r e o f i n t e r r u p t f l a g s
volati le struct
{

u in t 8 t tmr0 int : 1 ; // as s i gn a 1 b i t f l a g
u in t 8 t adc i n t : 1 ;

} i n t f l a g s ;

f loat data ; //A genera l purpose var to f e t c h s t u f f , o f t en ADC
→r ead ings .

//−−−

// Main − a s imple loop program
int main (void)
{

//3 f l o a t s to s t o r e the outpu t from f u z z i f y () and input to
→ d e f u z z i f y ()

// [LOW, NORM, HIGH]
f loat CO2 membership [3] ;

B.2 C Code for the Atmega8 85

//An array o f 3 areas from d e f u z z i f y
f loat CO2 areas [3] ;

//An array o f 3 c en t r o i d s from d e f u z z i f y
f loat CO2 centrds [3] ;

//CO2 input membership func t ion data
static f loat CO2 LOW membs [3] = {−16, −16, −2};
static f loat CO2 NORM membs [3] = {−16, 0 , 10} ;
static f loat CO2 HIGH membs [3] = {2 , 10 , 45} ;

// responses ; used to d e f u z z i f y
static f loat CO2 DN TEMP membs [3] = {15 , 15 , 35} ;
static f loat CO2 AB RITE membs [3] = {10 , 30 , 52} ;
static f loat CO2 UP TEMP membs [3] = {29 , 39 , 45} ;

//Gas reading b u f f e r s
f loat temp [temp buf sz] ;
f loat temp avg ;
f loat temp SP ;

f loat CO2[c o 2 bu f s z] ; // [0−>6]
f loat CO2 avgs [a vg s bu f s z] ; // [0−>2]; keep 3 averages
f loat d CO2 [(a vg s bu f s z − 1)] ; // [0−>1]; keep 2 1 s t
→ d e r i v a t i v e s

f loat CH4 [ch4 bu f s z] ;
f loat CH4 avgs [a vg s bu f s z] ;
f loat d CH4 [(a vg s bu f s z − 1)] ;

f loat H2 [h2 bu f s z] ;
f loat H2 avgs [a vg s bu f s z] ;
f loat d H2 [(a vg s bu f s z − 1)] ;

// I n i t i a l i s e b u f f e r s
CO2 avgs [(avg s bu f s z −1)] = 0 ;
d CO2 [(avg s bu f s z −2)] = 0 ;

CH4 avgs [(avg s bu f s z −1)] = 0 ;
d CO2 [(avg s bu f s z −2)] = 0 ;

H2 avgs [(avg s bu f s z −1)] = 0 ;
d H2 [(avg s bu f s z −2)] = 0 ;

u i n t 8 t i ; // index ing v a r i a b l e

USART Init (UART BAUD SELECT(2400 ,FCPU) ,USART SET 8 1 N) ;
→//2400 bps , 8 data b i t s , 1 s t op b i t , no pa r i t y
s e i () ; // enab l e i n t e r r u p t s

ua r t put s p (PSTR(”∗ ∗ ∗ ∗ ∗ CO2, CH4 & H2 Test App ∗ ∗ ∗ ∗ ∗
→”)) ; //Welcome message

USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e

t i m e r i n i t () ;

MCUCR |= BV(SE) ; //Enable s l e e p mode (i d l e)

while (1) // f o r e v e r
{

i f (i n t f l a g s . tmr0 int)
{

i n t f l a g s . tmr0 int = 0 ;

temp avg = 0 ;

//−−

// l e f t s h i f t array o f [t emp bu f s z] temp
→ va lu e s

for (i =0; i <(temp buf sz − 1) ; i++)
{

B.2 C Code for the Atmega8 86

temp [i] = temp [i +1] ;
temp avg += temp [i] ;

}

// Le f t s h i f t arrays o f averages
for (i =0; i <(avg s bu f s z −1) ; i++) //
→max i = (a v g s b u f s z − 2) (1)
{

CO2 avgs [i] = CO2 avgs [i +1] ; //
→CO2 avgs [0] = CO2 avgs [1] −>
→CO2 avgs [2]

CH4 avgs [i] = CH4 avgs [i +1] ;
H2 avgs [i] = H2 avgs [i +1] ;

}

// Le f t s h i f t array o f CO2 samples
for (i =0; i <(c o 2 bu f s z − 1) ; i++) //
→max i = (c o 2 b u f s z − 2) (5)
{

CO2[i] = CO2[i +1] ; // 1) CO2[0]
→ = CO2[1] −> CO2[5] = CO2[6]

CO2 avgs [(avg s bu f s z −1)] += CO2[i] ;
}

// Le f t s h i f t array o f CH4 samples
for (i =0; i <(ch4 bu f s z − 1) ; i++) //
→max i = (c o 2 b u f s z − 2) (5)
{

CH4[i] = CH4 [i +1] ; // 1) CO2[0]
→ = CO2[1] −> CO2[5] = CO2[6]

CH4 avgs [(avg s bu f s z −1)] += CH4 [i] ;
}

// Le f t s h i f t array o f H2 samples
for (i =0; i <(h2 bu f s z − 1) ; i++) //
→max i = (c o 2 b u f s z − 2) (5)
{

H2 [i] = H2 [i +1] ; // 1) CO2[0] = CO2
→ [1] −> CO2[5] = CO2[6]

H2 avgs [(avg s bu f s z −1)] += H2 [i] ;
}

// Le f t s h i f t e lements o f 1 s t d e r i v a t i v e
→arrays

for (i =0; i <(avg s bu f s z −2) ; i++) // i=
→ 0−>1
{

d CO2 [i] = d CO2 [i +1] ;
d CH4 [i] = d CH4 [i +1] ;
d H2 [i] = d H2 [i +1] ;

}

//−−

// ge t r ead ings a l l a t once to reduce noise
a d c i n i t c h 1 () ; //Temp ac t u a l l y on CH5
temp [(temp buf sz − 1)] = (0 x 3 f f − 0x070 −
→ADC read ()) ; //Append l a s t ADC reading

a d c i n i t c h 2 () ; //CO2 ac t u a l l y on CH1
CO2[(c o 2 bu f s z − 1)] = 0 x 3 f f − ADC read () ;

a d c i n i t c h 3 () ; //CH4 ac t u a l l y on ch2
CH4 [(ch4 bu f s z − 1)] = ADC read () ;

a d c i n i t c h 5 () ; //H2 a c t u a l l y on CH3
H2 [(h2 bu f s z − 1)] = ADC read () ;

B.2 C Code for the Atmega8 87

//−−

// Fin ish averag ing
temp avg += temp [(temp buf sz −1)] ;
temp avg = temp avg / (temp buf sz) ;

CO2 avgs [(avg s bu f s z −1)] += CO2[(c o 2 bu f s z
→ −1)] ; //CO2[0−>5] + CO2 [6] ; add most
→ r ecen t reading

CO2 avgs [(avg s bu f s z −1)] = CO2 avgs [(
→avg s bu f s z −1)] / (c o 2 bu f s z +1) ;

CH4 avgs [(avg s bu f s z −1)] += CH4 [(ch4 bu f s z
→ −1)] ;

CH4 avgs [(avg s bu f s z −1)] = CH4 avgs [(
→avg s bu f s z −1)] / (ch4 bu f s z +1) ;

H2 avgs [(avg s bu f s z −1)] += H2 [(h2 bu f s z
→−1)] ;

H2 avgs [(avg s bu f s z −1)] = H2 avgs [(
→avg s bu f s z −1)] / (h2 bu f s z +1) ;

//−−−

// ge t arrays o f 1 s t d e r i v a t i v e s
for (i =0; i <(avg s bu f s z −1) ; i++) // i
→=0−>1
{

d CO2 [i] = CO2 avgs [i +1] − CO2 avgs [
→ i] ; //d CO2[0−>1] = CO2 avgs[1−>2]
→ − CO2 avgs[0−>1]

d CH4 [i] = CH4 avgs [i +1] − CH4 avgs [
→ i] ;

d H2 [i] = H2 avgs [i +1] − H2 avgs [i] ;
}

//−−

//Output to screen
ua r t put s p (PSTR(”Temp : ”)) ;
for (i =(temp buf sz −1) ; i <(temp buf sz) ; i++)
→ // i= 0−>6
{

uart put num (temp [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ; //new l i n e

ua r t put s p (PSTR(”Temp avg : ”)) ;
uart put num (temp avg) ;
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

ua r t put s p (PSTR(” ”)) ;

ua r t put s p (PSTR(”CO2: ”)) ;
for (i =(co2 bu f s z −1) ; i <(c o 2 bu f s z) ; i++)
→ // i= 0−>6
{

uart put num (CO2[i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ; //new l i n e

ua r t put s p (PSTR(”CO2 avg : ”)) ;

B.2 C Code for the Atmega8 88

for (i =(avg s bu f s z −1) ; i <(a vg s bu f s z) ; i
→++) // i= 0−>2
{

uart put num (CO2 avgs [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ; //new l i n e

ua r t put s p (PSTR(”d CO2 : ”)) ;
for (i =(avg s bu f s z −2) ; i <(avg s bu f s z −1) ; i
→++) // i= 0−>1
{

uart put num (d CO2 [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ; //new l i n e

ua r t put s p (PSTR(”CH4: ”)) ;
for (i =(ch4 bu f s z −1) ; i <(ch4 bu f s z) ; i++)
→ // i= 0−>1
{

uart put num (CH4 [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

ua r t put s p (PSTR(”CH4 avg : ”)) ;
for (i =(avg s bu f s z −1) ; i <(a vg s bu f s z) ; i
→++) // i= 0−>1
{

uart put num (CH4 avgs [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

ua r t put s p (PSTR(”d CH4 : ”)) ;
for (i =(avg s bu f s z −2) ; i <(avg s bu f s z −1) ; i
→++) // i= 0−>1
{

uart put num (d CH4 [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

ua r t put s p (PSTR(”H2 : ”)) ;
for (i =(h2 buf sz −1) ; i <(h2 bu f s z) ; i++)
→ // i= 0−>1
{

uart put num (H2 [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

ua r t put s p (PSTR(”H2 avg : ”)) ;
for (i =(avg s bu f s z −1) ; i <(a vg s bu f s z) ; i
→++) // i= 0−>1
{

uart put num (H2 avgs [i]) ;

B.2 C Code for the Atmega8 89

ua r t put s p (PSTR(” ”)) ;
}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

ua r t put s p (PSTR(”d H2 : ”)) ;
for (i =(avg s bu f s z −2) ; i <(avg s bu f s z −1) ; i
→++) // i= 0−>1
{

uart put num (d H2 [i]) ;
ua r t put s p (PSTR(” ”)) ;

}
//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ;

USART Transmit(0 x0d) ; USART Transmit(0 x0a) ;

// f u z z i f y (CO2 membership , d CO2 avg ,
→CO2 LOW membs , CO2 NORM membs,
→CO2 HIGH membs) ;

// determine m/ sh ip v a l s

/∗
USART Transmit(0 x0d) ; USART Transmit(0 x0a) ;
→// new l i n e
ua r t pu t s p (PSTR(”main () : LOW: ”)) ; //
→ f u z z i f y debugg ing outpu t

uart put num (CO2 membership [0]) ;

u a r t pu t s p (PSTR(” NORM: ”)) ;
uart put num (CO2 membership [1]) ;

u a r t pu t s p (PSTR(” HIGH: ”)) ;
uart put num (CO2 membership [2]) ;

USART Transmit(0 x0d) ; USART Transmit(0 x0a) ;
→// new l i n e
∗/

// d e f u z z i f y (CO2 areas , CO2 centrds ,
→CO2 membership , CO2 DN TEMP membs,
→CO2 AB RITE membs , CO2 UP TEMP membs) ;

// f i n a l temperature s e t p o i n t i s cen t ro id o f
→ e n t i r e response area

//temp SP = (CO2 areas [0] ∗ CO2 centrds [0] +
→CO2 areas [1] ∗ CO2 centrds [1] + CO2 areas
→ [2] ∗ CO2 centrds [2]) / (CO2 areas [0] +
→CO2 areas [1] + CO2 areas [2]) ;

//USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ; // new l i n e

// uar t pu t s p (PSTR(” Temp SP : ”)) ;
// uart put num (temp SP) ;

USART Transmit(0 x0d) ; USART Transmit(0 x0a)
→ ; // new l i n e

}

s leep mode () ;
}

}

B.2 C Code for the Atmega8 90

Listing B.9: Fuzzy Logic Functions

/∗ Fuzz i f y and de−f u z z i f y f un c t i on s l i v e in here .
Written by Terry Su l l avan f o r USQ ENG4111/4112
∗/

#include <avr/ i n t e r r up t . h>
#include <avr/pgmspace . h>
#include <math . h>
#include <avr/ i o . h>
#include <uart . h>
#include <adc . h>
#include <adc . inc> // setup the t x and rx que s i z e here
#include <avr/ s l e ep . h>

void f u z z i f y (f loat membership [] , f loat gas read ing , f loat LOW membs
→ [] , f loat NORM membs [] , f loat HIGH membs [])
{

/∗
USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
ua r t pu t s p (PSTR(” f u z z i f y () : LOW membs : ”)) ; // f u z z i f y
→debugg ing outpu t

uart put num (LOW membs [1]) ;
u a r t pu t s p (PSTR(” NORM membs: ”)) ;
uart put num (NORM membs [1]) ;
u a r t pu t s p (PSTR(” HIGH membs : ”)) ;
uart put num (HIGH membs [1]) ;
∗/

//Membership r u l e s LOW
i f (ga s r ead ing < LOW membs [1])
{

membership [0] = 1 ;
}

i f ((ga s r ead ing >= LOW membs [1]) && (ga s r ead ing <
→LOW membs [2]))
{

membership [0] = 1 − (ga s r ead ing − LOW membs [1]) /(
→LOW membs[2]−LOW membs [1]) ;

}

i f (ga s r ead ing >= LOW membs [2])
{

membership [0] = 0 ;
}

//Membership r u l e s NORM
i f ((ga s r ead ing < NORM membs [0]) | | (ga s r ead ing >=
→NORM membs [2]))
{

membership [1] = 0 ;
}

i f ((ga s r ead ing >= NORM membs [0]) && (ga s r ead ing <
→NORM membs [1]))
{

membership [1] = (ga s r ead ing − NORM membs [0]) / (
→NORM membs [1] − NORM membs [0]) ;

}

i f ((ga s r ead ing >= NORM membs [1]) && (ga s r ead ing <
→NORM membs [2]))
{

membership [1] = 1 − (ga s r ead ing − NORM membs [1]) /
→(NORM membs [2] − NORM membs [1]) ;

B.2 C Code for the Atmega8 91

}

//Membership r u l e s HIGH
i f (ga s r ead ing < HIGH membs [0])
{

membership [2] = 0 ;
}

i f ((ga s r ead ing >= HIGH membs [0]) && (ga s r ead ing <
→HIGH membs [1]))
{

membership [2] = (ga s r ead ing − HIGH membs [0]) / (
→HIGH membs [1] − HIGH membs [0]) ;

}

i f (ga s r ead ing >= HIGH membs [1])
{

membership [2] = 1 ;
}

/∗
USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
ua r t pu t s p (PSTR(” f u z z i f y () : LOW: ”)) ; // f u z z i f y debugg ing
→outpu t

uart put num (membership [0]) ;
u a r t pu t s p (PSTR(” NORM: ”)) ;
uart put num (membership [1]) ;
u a r t pu t s p (PSTR(” HIGH: ”)) ;
uart put num (membership [2]) ;
∗/

}

void d e f u z z i f y (f loat a r ea s [] , f loat c ent rds [] , f loat membership [] ,
→ f loat DN TEMP membs [] , f loat AB RITE membs [] , f loat UP TEMP membs
→ [])
{
// Ca lcu la t e areas
//Area DN TEMP

a r ea s [0] = membership [0] ∗ ((DN TEMP membs [1] −
→DN TEMP membs [0]) + (DN TEMP membs [2] − DN TEMP membs [1])
→/2) ;

//Area AB RITE
a r ea s [1] = membership [1] ∗ (AB RITE membs [2] − AB RITE membs [0]) /2 ;
//Area UP TEMP
a r ea s [2] = membership [2] ∗ ((UP TEMP membs [2] − UP TEMP membs [1]) +
→(UP TEMP membs [1] − UP TEMP membs [0]) /2) ;

/∗ uar t pu t s p (PSTR(” d e f u z z i f y () : A DN TEMP: ”)) ; //
→debugg ing outpu t

uart put num (areas [0]) ;

u a r t pu t s p (PSTR(” A AB RITE: ”)) ;
uart put num (areas [1]) ;

u a r t pu t s p (PSTR(” A UP TEMP: ”)) ;
uart put num (areas [2]) ;

USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
∗/

//Work out response areas h o r i z on t a l c en t r o i d s ∗∗∗∗∗∗∗∗This doesn ’ t
→have to be done every time ! ! !∗ ∗ ∗ ∗ ∗ ∗ ∗

//z DN TEMP
c ent rds [0] = ((DN TEMP membs[1]−DN TEMP membs [0]) ∗(
→DN TEMP membs[1]−DN TEMP membs [0]) + 2∗DN TEMP membs [0] ∗ (

B.2 C Code for the Atmega8 92

→DN TEMP membs [1] − DN TEMP membs [0]) + ((DN TEMP membs[2]−
→DN TEMP membs [1]) ∗(DN TEMP membs[2]−DN TEMP membs [1])) /3 +
→ (DN TEMP membs [1]) ∗(DN TEMP membs[2]−DN TEMP membs [1])) /
→ (2∗ (DN TEMP membs[1]−DN TEMP membs [0]) + (DN TEMP membs
→ [2] − DN TEMP membs [1])) ;

//z AB RITE
c ent rds [1] = (2∗ ((AB RITE membs [1]−AB RITE membs [0]) ∗(
→AB RITE membs [1]−AB RITE membs [0])) /3 +

AB RITE membs [0] ∗ (AB RITE membs [1]−AB RITE membs
→ [0]) + ((AB RITE membs[2]−AB RITE membs [1]) ∗(
→AB RITE membs [2]−AB RITE membs [1])) /3 +
→AB RITE membs [1] ∗ (AB RITE membs [2]−AB RITE membs
→ [1])) / (AB RITE membs[1]−AB RITE membs [0] +
→AB RITE membs [2]−AB RITE membs [1]) ;

//z UP TEMP
c ent rds [2] = (4∗ ((UP TEMP membs[1]−UP TEMP membs [0]) ∗(
→UP TEMP membs[1]−UP TEMP membs [0])) /3 + 2∗UP TEMP membs
→ [0] ∗ (UP TEMP membs[1]−UP TEMP membs [0]) + 3∗ ((
→UP TEMP membs[2]− UP TEMP membs [1]) ∗(UP TEMP membs[2]−
→UP TEMP membs [1])) /2 + 3∗UP TEMP membs [1] ∗ (UP TEMP membs
→ [2]−UP TEMP membs [1])) / (2∗ (UP TEMP membs[1]−
→UP TEMP membs [0]) + 3∗(UP TEMP membs[2]−UP TEMP membs [1]))
→ ;

/∗USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e

ua r t pu t s p (PSTR(” d e f u z z i f y () : z DN TEMP: ”)) ; // debugg ing
→outpu t

uart put num (cen t rds [0]) ;

u a r t pu t s p (PSTR(” z AB RITE : ”)) ;
uart put num (cen t rds [1]) ;

u a r t pu t s p (PSTR(” z UP TEMP: ”)) ;
uart put num (cen t rds [2]) ;

USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e ∗/

}

Listing B.10: Fuzzy Logic Header

/∗Fuzzy f un c t i on s header f i l e ∗/

void f u z z i f y (f loat membership [] , f loat gas read ing , f loat LOW membs
→ [] , f loat NORM membs [] , f loat HIGH membs []) ;

void d e f u z z i f y (f loat CO2 areas [] , f loat CO2 centrds [] , f loat
→CO2 membership [] , f loat CO2 DN TEMP membs [] , f loat
→CO2 AB RITE membs [] , f loat CO2 UP TEMP membs []) ;

B.2 C Code for the Atmega8 93

Listing B.11: ADC Subroutines

//
→∗∗∗/
→

//Using the ADC.
// This f i l e con ta in s the ADC i n i t i a t i o n and i n t e r r u p t r ou t in e s .
//
// Last modi f ied : 26 October 2006
// Changed to work with WinAVR 20060421

// Written 3 Nov 2005 By Murray Horn .
//
→∗∗∗/
→

#include <avr/ i n t e r r up t . h>
#include <avr/pgmspace . h>
#include <avr/ i o . h>
#include <uart . h>
#include <adc . h>
#include <adc . inc> // setup the t x and rx que s i z e here
#include <avr/ s l e ep . h>

//−−−

extern f loat data ;

extern volati le struct
{

u in t 8 t tmr0 int : 1 ; // as s i gn a 1 b i t f l a g
u in t 8 t adc i n t : 1 ;

} i n t f l a g s ;

#define c i r c u l a r t u i n t 8 t
//−−−
// S t a t i c Var iab l e s
static u in t 1 6 t ADC Buf [ADC BUFSIZE] ;
static volat i le c i r c u l a r t ADC head ;
static volat i le c i r c u l a r t ADC tail ;
//−−−

//−−−

SIGNAL(SIG ADC)
{
// Read the r e c e i v ed data

data = ADCL; // always read the lower by t e f i r s t
data = data + (ADCH << 8) ;
i n t f l a g s . a d c i n t = 1 ;

}

//−−−

//ADC channel i n i t i a l i s a t i o n rou t i n e s

void a d c i n i t c h 0 (void)
{

i n t f l a g s . a d c i n t = 0 ;

ADMUX = 0 ; // s e l e c t ch0
ADMUX = (1 << REFS0) ; // s e l e c t vcc as a r e f wi th r i g h t

→ j u s t i f i c a t i o n

// enab l e the adc , s e t i n t e r r u p t s , s e t the p r e s ca l e r 1MHz/8
ADCSRA = (1 << ADEN) | (1 << ADIF) | (1 << ADIE) | (1 <<
→ADPS1) | (1 << ADPS0) ;

// uar t pu t s p (PSTR(” I n i t c h 0 ”)) ; // in t o s t r i n g
// USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
}

B.2 C Code for the Atmega8 94

void a d c i n i t c h 1 (void)
{

i n t f l a g s . a d c i n t = 0 ;

ADMUX = 0 ; // s e l e c t ch1 f o r CO2
ADMUX = (1 << REFS0) | (1 << MUX0) ; // s e l e c t vcc as a r e f

→with r i g h t j u s t i f i c a t i o n

ADCSRA = (1 << ADEN) | (1 << ADIF) | (1 << ADIE) | (1 <<
→ADPS1) | (1 << ADPS0) ;

// uar t pu t s p (PSTR(” I n i t c h 1 ”)) ; // in t o s t r i n g
// USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
}

void a d c i n i t c h 2 (void)
{

i n t f l a g s . a d c i n t = 0 ;

ADMUX = 0 ; // s e l e c t ch2
ADMUX = (1 << REFS0) | (1 << MUX1) ; // s e l e c t vcc as a r e f

→with r i g h t j u s t i f i c a t i o n

// enab l e the adc , s e t i n t e r r u p t s , s e t the p r e s ca l e r 1MHz/8
ADCSRA = (1 << ADEN) | (1 << ADIF) | (1 << ADIE) | (1 <<
→ADPS1) | (1 << ADPS0) ;

// uar t pu t s p (PSTR(” I n i t c h 2 ”)) ; // in t o s t r i n g
// USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
}

void a d c i n i t c h 3 (void)
{

i n t f l a g s . a d c i n t = 0 ;

ADMUX = 0 ; // s e l e c t ch3
ADMUX = (1 << REFS0) | (1 << MUX0) | (1 << MUX1) ; // s e l e c t

→ vcc as a r e f wi th r i g h t j u s t i f i c a t i o n

// enab l e the adc , s e t i n t e r r u p t s , s e t the p r e s ca l e r 1MHz/8
ADCSRA = (1 << ADEN) | (1 << ADIF) | (1 << ADIE) | (1 <<
→ADPS1) | (1 << ADPS0) ;

// uar t pu t s p (PSTR(” I n i t c h 2 ”)) ; // in t o s t r i n g
// USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
}

void a d c i n i t c h 5 (void)
{

i n t f l a g s . a d c i n t = 0 ;

ADMUX = 0 ; // s e l e c t ch5 f o r temperature
ADMUX = (1 << REFS0) | (1 << MUX0) | (1 << MUX2) ; // s e l e c t

→vcc as a r e f wi th r i g h t j u s t i f i c a t i o n

// enab l e the adc , s e t i n t e r r u p t s , s e t the p r e s ca l e r 1MHz/8
ADCSRA = (1 << ADEN) | (1 << ADIF) | (1 << ADIE) | (1 <<
→ADPS1) | (1 << ADPS0) ;

// uar t pu t s p (PSTR(” I n i t c h 5 ”)) ; // in t o s t r i n g
// USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new l i n e
}

//−−−

//Obtains the average o f 64 samples from the ADC and re tu rns
// the average o f 32 o f t he se read ings
f loat ADC read(void)
{

u in t 1 6 t i ;
u i n t 1 6 t va l 1 ;

B.2 C Code for the Atmega8 95

va l 1 = 0 ;
ADCSRA |= BV(ADSC) ; // s t a r t the adc

for (i =0; i <64; i++)
{

ADCSRA |= BV(ADSC) ; // s t a r t the adc

//MCUCR |= BV(SM0) ;
// s leep mode () ;
while (i n t f l a g s . a d c i n t != 1)
{

// uar t pu t s p (PSTR(”ADC read wai t loop
→ ; ”)) ; // in t o s t r i n g

// USART Transmit(0 x0d) ;
→USART Transmit(0 x0a) ; // new l i n e

} // wai t f o r adc
i n t f l a g s . a d c i n t = 0 ;
c l i () ; // atomic read
va l 1 += data ;
s e i () ;

}

c l i () ;
v a l 1 = va l 1 >> 6 ;
//ADC val += va l 1 ;
s e i () ;

ADCSRA = 0 ;
ADMUX = 0 ; // Disab l e ADC
s e i () ;

// uar t pu t s p (PSTR(”ADC read re tu rns : ”)) ; // in t o
→ s t r i n g

// uart put num (va l 1) ;
// USART Transmit(0 x0d) ; USART Transmit(0 x0a) ; // new
→ l i n e

return va l 1 ;
}

//−−

Listing B.12: ADC Subroutine Header

/∗Header f i l e f o r adc subrou t ines
∗/

void a d c i n i t c h 0 (void) ;
void a d c i n i t c h 1 (void) ;
void a d c i n i t c h 2 (void) ;
void a d c i n i t c h 3 (void) ;
void a d c i n i t c h 4 (void) ;
void a d c i n i t c h 5 (void) ;

u i n t 1 6 t ADC get (void) ;
u i n t 8 t ADC DataInBuffer (void) ;
f loat ADC read(void) ;
u i n t 1 6 t buf f pop (void) ;
void buf f push (u i n t 1 6 t data) ;

B.2 C Code for the Atmega8 96

Listing B.13: ADC Include File

// Created : 2 Nov 2005
//==
// UART Buffer Def ines
//==
// Val Buf fer S i z e
//
// 0 2
// 1 4
// 2 8
// 3 16
// 4 32
// 5 64
// 6 128
// 7 256
//

#define ADC BUFFER BITS 3 /∗ 2 ,4 ,8 ,16 ,32 ,64 ,128 or 256 by t e s ∗/

//
//==
// do not change ! ! ! do not change ! ! ! do not change

// the so f tware expec t s the b u f f e r s i z e to be a mu l t i p l e o f 2

#define ADC BUFSIZE (1 << (7 & (1+ADC BUFFER BITS)))
#define ADC BUFFER MASK (ADC BUFSIZE − 1)

// do not change upto here ! ! ! do not change upto here ! ! !
//==

Listing B.14: Timer Subroutines

/∗ t imer . c Rout ines and fun c t i on s f o r the t imer ∗/

#include <avr/ i o . h>
#include <avr/ i n t e r r up t . h>
#include <avr/pgmspace . h> // inc luded to enab l e the wr i t i n g o f

→ s t r i n g s from rom

extern volati le struct
{

u in t 8 t tmr0 int : 1 ; // as s i gn a 1 b i t f l a g
u in t 8 t adc i n t : 1 ; // not needed here

} i n t f l a g s ;

enum { HEAT H, HEAT L, HEAT L READ, SLEEPING } ;
//H2 hea t e r s t a t e s , VH = 5v , VL = 1.4V (preheat f o r 90 sec s & read) ,
→hea t e r o f f .

ISR (TIMER0 OVF vect)
{

static u in t 1 6 t in t count ; // counter f o r t imer ; 305 i s about 20
→ seconds
static u in t 8 t s e n s h e a t s t ; // sensor hea t e r s t a t e

B.2 C Code for the Atmega8 97

// uar t pu t s p (PSTR(” Entered t imer ISR ”)) ; // in t o s t r i n g

switch (s e n s h e a t s t)
{

case HEAT H:
i f (++int count == 2046) //No. i s t ime o f the l a s t s t a t e
{

s e n s h e a t s t = HEAT L;
OCR1A = 880 ;
in t count = 0 ;

}
break ;

case HEAT L:
i f (++int count == 29950) //60 secs
{

s e n s h e a t s t = HEAT L READ;
OCR1A = 250 ;
in t count = 0 ;

}
break ;

case HEAT L READ:
i f (++int count == 44900) //90 secs
{

s e n s h e a t s t = SLEEPING;
in t count = 0 ;
i n t f l a g s . tmr0 int = 1 ; // enab l e the main program to
→resume

}
break ;

case SLEEPING:
i f (++int count == 5000) // time to read & do fu z z y s t u f f
{

s e n s h e a t s t = HEAT H;
OCR1A = 0 ;
in t count = 0 ;

}
}

}
/∗End o f ISR∗/

void t i m e r i n i t (void)
{

i n t f l a g s . tmr0 int = 0 ;

// enab l e t imer 0 to s e t sampling per iod
TCCR0 |= BV(CS01) ;

// s e t up t imer 1 f o r pwm (H2 sensor)
TCCR1A |= BV(WGM10) | BV(WGM11) | BV(WGM12) | BV(COM1A1) ;
TCCR1B |= BV(CS10) ;

/∗ Set PB3 va lue to 0 . ∗/
OCR1A = 0 ;

/∗ Enable PB3 as outpu t . ∗/
DDRB = BV(DDB1) ;

TIMSK = BV (TOIE0) ; /∗Timer In t e r ru p t Mask Bit0 ∗/
s e i () ;

}

B.2 C Code for the Atmega8 98

Listing B.15: Timer Subroutine Header

/∗ t imer . h func t ion pro to t ypes f o r the t imer ∗/

void t i m e r i n i t (void) ;

u i n t 8 t t imer ov f (void) ;

Listing B.16: Serial USART Subroutines

// Based on ap note AVR306 by ATMEL
// Rout ines f o r i n t e r r u p t c on t r o l l e d USART

// Last modi f ied : 26 October 2006
// Changed to work with WinAVR 20060421

// Changed : 3 Nov 2005
// changed rx b u f f e r access , added checks f o r non−atomic i n t e r r u p t
→po in t e r mod i f i ca t ion

// changed func t ion name DataInReceiveBuf fer to USART DataRx

// modi f ied : 10 APR 2005
// added doub le speed baud suppor t ;
// Modif ied by : Murray Horn

// t h i s f i l e i n c l u de s the t x and rx r ou t i n e s f o r a s i n g l e uar t mega
→avr .

// sepera t e t x and rx ques are a v a i l a b l e and can be s i z e d in the .
→ inc f i l e

// a s t r i n g t x f e a t u r e from rom has been added (ua r t pu t s p) .

// Inc ludes
#include <i n t t yp e s . h>
#include <avr/ i n t e r r up t . h>

#include <avr/pgmspace . h> // used f o r the s t r i n g p r in t i n g
→ f e a t u r e

#include <uart . h> // Prototypes

#define c i r c u l a r t u i n t 8 t

// S t a t i c Var iab l e s
static u in t 8 t USART RxBuf [USART RX BUFS] ;
static volat i le c i r c u l a r t USART RxHead;
static volat i le c i r c u l a r t USART RxTail ;

static u in t 8 t USART TxBuf [USART TX BUFS] ;
static volat i le c i r c u l a r t USART TxHead ;
static volat i le c i r c u l a r t USART TxTail ;

//−−−
// I n i t i a l i z e USART
void USART Init (u i n t 1 6 t baudrate , u i n t 8 t setup)
{
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// the doub lespeed s e l e c t o r

i f (baudrate > 0 x 7 f f)
{

baudrate += 1 ;
baudrate = baudrate >> 1 ;
baudrate −= 1 ;
UCSRA = 0 ;

}

B.2 C Code for the Atmega8 99

else
UCSRA = (1<<U2X) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Set the baud ra t e
UBRRH = (u in t 8 t) (0 x0 f &(baudrate >> 8)) ;

UBRRL = (u in t 8 t) baudrate ;

// Enable UART rec e i v e r and transmmitter and r e c e i v e
→ i n t

UCSRB = (1<<RXEN) |(1<<TXEN) |(1<<RXCIE) ;

// Set frame format : data b i t s , s t op b i t s , pa r i t y e t c
UCSRC = (1<<URSEL) | setup ; // s e t the uar t b i t s , baudrate ,
→ s t op b i t s

// Flush b u f f e r s
USART RxTail = 0 ;
USART RxHead = 0 ;
USART TxTail = 0 ;
USART TxHead = 0 ;

}
//−−−

//−−−
// RX In t e r ru p t handler
// the on ly func t ion t ha t i s a l l owed to change rx head
SIGNAL(SIG UART RECV)
{

u in t 8 t data ;
c i r c u l a r t tmp head , nxt head , tmp ta i l ;

// Read the r e c e i v ed data
data = UDR;

// Ca lcu la t e b u f f e r index
tmp head = USART RxHead ;
nxt head = (tmp head + 1) & USART RX BUFFER MASK;

// non atomic p ro t e c t i on
do

tmp ta i l = USART RxTail ;
while (tmp ta i l != USART RxTail) ;

i f (nxt head == tmp ta i l)
{

// ERROR! Receive b u f f e r over f l ow
}
else
{

USART RxBuf [tmp head] = data ; // Store r e c e i v ed data
→ in b u f f e r

USART RxHead = nxt head ; // Store new index
}

}
//−−−

//−−−
// TX In t e r ru p t handler
// the on ly func t ion t ha t i s a l l owed to change t x t a i l
SIGNAL(SIG UART DATA)
{

c i r c u l a r t tmp ta i l , tmp head ;

// non atomic p ro t e c t i on
do

tmp head = USART TxHead ;
while (tmp head != USART TxHead) ;

B.2 C Code for the Atmega8 100

tmp ta i l = USART TxTail ;
// Check i f a l l data i s t ransmi t t ed

i f (tmp head != tmp ta i l)
{

// Ca lcu la t e b u f f e r index
UDR = USART TxBuf [tmp ta i l] ; // S t a r t t ransmi t ion
tmp ta i l = (tmp ta i l + 1) & USART TX BUFFER MASK;
USART TxTail = tmp ta i l ; //
→Store new index

}
else
{

UCSRB &= ˜(1<<UDRIE) ; // Disab l e
→UDRE in t e r r u p t

}
}
//−−−

//−−−
// RX func t ion
// the on ly func t ion t ha t i s a l l owed to change r x t a i l
u in t 8 t USART Receive(void)
{

c i r c u l a r t tmp ta i l , tmp head ;
u i n t 8 t b ;

do
{
tmp ta i l = USART RxTail ;
→ //

// doub le ge t the head to ensure no i n t e r r u p t based cor rup t ion o f
→ the po in t e r

do
tmp head = USART RxHead ;

while (tmp head != USART RxHead) ; //
→non atomic p ro t e c t i on
}

while (tmp head == tmp ta i l) ; // Wait f o r
→incomming data

b = USART RxBuf [tmp ta i l] ;

tmp ta i l = (tmp ta i l + 1) & USART RX BUFFER MASK; //
→Calcu la t e b u f f e r index

USART RxTail = tmp ta i l ;
→ // Store new index

return b ; // Return data
}
//−−−

//−−−
// TX func t ion
// the on ly func t ion t ha t i s a l l owed to change USART TxHead
void USART Transmit(u i n t 8 t data)
{

c i r c u l a r t tmp head , nxt head , tmp ta i l ;

// Ca lcu la t e b u f f e r index
tmp head = USART TxHead ;
nxt head = (tmp head + 1) & USART TX BUFFER MASK; //
→Next po in t in b u f f e r

// wai t f o r f r e e space
do

B.2 C Code for the Atmega8 101

{
// non atomic p ro t e c t i on

do tmp ta i l = USART TxTail ;
while (tmp ta i l != USART TxTail) ;

}
while (nxt head == tmp ta i l) ;

USART TxBuf [tmp head] = data ; // Store
→data in b u f f e r

USART TxHead = nxt head ;
→ // Store new index

UCSRB |= (1<<UDRIE) ; //
→ Enable UDRE in t e r r u p t

}
//−−−

//−−−
u in t 8 t USART DataRx(void)
{

u in t 8 t again ;
c i r c u l a r t tmp ta i l , tmp head ;

// pro t e c t i on aga in s t i n t e r r u p t i n t e r f e r e n c e (non atomic acces s)
do {

again = 0 ;
tmp head = USART RxHead;
tmp ta i l = USART RxTail ;
i f (tmp head != USART RxHead) again = 1 ;
i f (tmp ta i l != USART RxTail) again = 1 ;
}

while (again) ;

i f (tmp head == tmp ta i l)
return (0) ;

else
return (1) ;

}
//−−−

//−−−
// wr i t e a s t r i n g to the u sar t from the program memory
void ua r t put s p (const char ∗progmem s)
{
register char c ;

while ((c = pgm read byte (progmem s++)))
USART Transmit(c) ;

}
//−−−

//Converts a 16 b i t number and puts i t to the UART
void uart put num (f loat number) //Changed from u in t 16 t . Change back
→ i f no good
{

u in t 1 6 t w;
u i n t 1 6 t i ;
f loat b ;

w = number ;

//a cheap word to a s c i i convers ion
for (i =0; i <4; i++)
{

b = (w >> 12) & 0x0 f ;
i f (b <= 0x09)

b = b + ’ 0 ’ ;

B.2 C Code for the Atmega8 102

else
b = b − 10 + ’A ’ ;

USART Transmit(b) ;
w = w << 4 ;

}
}

Listing B.17: Serial USART Subroutine Header

//A header f i l e f o r f un c t i on s o f the uar t

#include ” uart . i nc ”

// Prototypes
void USART Init (u i n t 1 6 t baudrate , u i n t 8 t setup) ;
u i n t 8 t USART Receive(void) ;
void USART Transmit(u i n t 8 t data) ;
void ua r t put s p (const char ∗progmem s) ;
u i n t 8 t USART DataRx(void) ;
void uart put num (f loat number) ;

Listing B.18: Serial USART Include File

// Last modi f ied : 10 APR 2005
// added doub le speed baud suppor t ;
//==
// UART Buffer Def ines
//==
// Val Buf fer S i z e
//
// 0 2
// 1 4
// 2 8
// 3 16
// 4 32
// 5 64
// 6 128
// 7 256
//
#define USART RX BUFFER BITS 4 /∗ 2 ,4 ,8 ,16 ,32 ,64 ,128 or 256

→ b y t e s ∗/
#define USART TX BUFFER BITS 4 /∗ 2 ,4 ,8 ,16 ,32 ,64 ,128 or 256

→ b y t e s ∗/
//==

//==
// do not change ! ! ! do not change ! ! ! do not change

// the so f tware expec t s the b u f f e r s i z e to be a mu l t i p l e o f 2
#define USART RX BUFS (1 << (7 & (1+USART RX BUFFER BITS)))
#define USART TX BUFS (1 << (7 & (1+USART RX BUFFER BITS)))

B.2 C Code for the Atmega8 103

#define USART RX BUFFER MASK (USART RX BUFS − 1)
#define USART TX BUFFER MASK (USART TX BUFS − 1)

#define UART BAUD SELECT(baudRate , xtalCpu) ((xtalCpu/baudRate /8)−1)

#define USART SET 8 1 N 0x006
#define USART SET 7 1 N 0x004
#define USART SET 6 1 N 0x002
#define USART SET 5 1 N 0x000

#define USART SET 8 1 E 0x026
#define USART SET 7 1 E 0x024
#define USART SET 6 1 E 0x022
#define USART SET 5 1 E 0x020

#define USART SET 8 1 O 0x036
#define USART SET 7 1 O 0x034
#define USART SET 6 1 O 0x032
#define USART SET 5 1 O 0x030

#define USART SET 8 2 N 0x00e
#define USART SET 7 2 N 0x00c
#define USART SET 6 2 N 0x00a
#define USART SET 5 2 N 0x008

#define USART SET 8 2 E 0x02e
#define USART SET 7 2 E 0x02c
#define USART SET 6 2 E 0x02a
#define USART SET 5 2 E 0x028

#define USART SET 8 2 O 0x03e
#define USART SET 7 2 O 0x03c
#define USART SET 6 2 O 0x03a
#define USART SET 5 2 O 0x038

// do not change upto here ! ! ! do not change upto here ! ! !
//==

Appendix C

Raw Captured Data

C.1 Raw Captured Data 105

C.1 Raw Captured Data

This appendix contains raw data captured during laboratory trials. This data was used

to obtain plots, and values of significance were used as a basis for synthesised data for

simulations.

Listing C.1: Data for Trial 1; Pure CO2

Temp : 00D9 Temp avg : 00D9 CO2: 0000 CO2 avg : 0001 d CO2 : FFFC CH4: 0047 CH4 avg : 0049 d CH4 :
→0000 H2 : 00E0 H2 avg : 00D2 d H2 : 0009

Temp : 00DB Temp avg : 00D9 CO2: 0000 CO2 avg : 0000 d CO2 : 0000 CH4: 004A CH4 avg : 004A d CH4 :
→0000 H2 : 00E2 H2 avg : 00D8 d H2 : 0006

Temp : 00DE Temp avg : 00DA CO2: 0005 CO2 avg : 0001 d CO2 : 0000 CH4: 0048 CH4 avg : 004A d CH4 :
→0000 H2 : 00E1 H2 avg : 00DC d H2 : 0004

Temp : 00E3 Temp avg : 00DD CO2: 0004 CO2 avg : 0001 d CO2 : 0000 CH4: 004A CH4 avg : 004A d CH4 :
→0000 H2 : 00EA H2 avg : 00E0 d H2 : 0003

Temp : 00E5 Temp avg : 00DE CO2: 009D CO2 avg : 0015 d CO2 : 0013 CH4: 005E CH4 avg : 004C d CH4 :
→0002 H2 : 00DD H2 avg : 00E1 d H2 : 0000

Temp : 00E3 Temp avg : 00E0 CO2: 0096 CO2 avg : 002A d CO2 : 0014 CH4: 0059 CH4 avg : 004F d CH4 :
→0003 H2 : 00C9 H2 avg : 00DE d H2 : FFFE

Temp : 00DF Temp avg : 00E1 CO2: 0098 CO2 avg : 003F d CO2 : 0015 CH4: 0053 CH4 avg : 0051 d CH4 :
→0002 H2 : 00BD H2 avg : 00D9 d H2 : FFFC

Temp : 00DA Temp avg : 00E0 CO2: 0095 CO2 avg : 0055 d CO2 : 0015 CH4: 0051 CH4 avg : 0053 d CH4 :
→0001 H2 : 00BA H2 avg : 00D4 d H2 : FFFB

Temp : 00E5 Temp avg : 00E1 CO2: 008E CO2 avg : 0069 d CO2 : 0014 CH4: 0052 CH4 avg : 0055 d CH4 :
→0001 H2 : 00C6 H2 avg : 00D0 d H2 : FFFC

Temp : 00E6 Temp avg : 00E1 CO2: 008B CO2 avg : 007C d CO2 : 0013 CH4: 0051 CH4 avg : 0053 d CH4 :
→FFFF H2 : 00D6 H2 avg : 00CE d H2 : FFFF

Temp : 00E3 Temp avg : 00E1 CO2: 0086 CO2 avg : 008F d CO2 : 0012 CH4: 0053 CH4 avg : 0052 d CH4 :
→FFFF H2 : 00D5 H2 avg : 00CB d H2 : FFFE

Temp : 00E1 Temp avg : 00E1 CO2: 007D CO2 avg : 008D d CO2 : FFFF CH4: 0050 CH4 avg : 0051 d CH4 :
→0000 H2 : 00D0 H2 avg : 00C9 d H2 : FFFF

Temp : 00DF Temp avg : 00E2 CO2: 007A CO2 avg : 008A d CO2 : FFFD CH4: 0052 CH4 avg : 0051 d CH4 :
→0000 H2 : 00C5 H2 avg : 00C8 d H2 : 0000

Temp : 00E9 Temp avg : 00E3 CO2: 0076 CO2 avg : 0085 d CO2 : FFFC CH4: 0053 CH4 avg : 0051 d CH4 :
→0000 H2 : 00C5 H2 avg : 00C9 d H2 : 0000

Temp : 00E9 Temp avg : 00E4 CO2: 0075 CO2 avg : 0080 d CO2 : FFFC CH4: 004D CH4 avg : 0051 d CH4 :
→0000 H2 : 00C7 H2 avg : 00CB d H2 : 0001

Temp : 00ED Temp avg : 00E6 CO2: 006B CO2 avg : 007B d CO2 : FFFC CH4: 0050 CH4 avg : 0050 d CH4 :
→0000 H2 : 00C5 H2 avg : 00CB d H2 : 0000

Temp : 00EB Temp avg : 00E8 CO2: 006A CO2 avg : 0077 d CO2 : FFFC CH4: 0052 CH4 avg : 0050 d CH4 :
→0000 H2 : 00C9 H2 avg : 00C9 d H2 : FFFF

Temp : 00EB Temp avg : 00EA CO2: 0062 CO2 avg : 0072 d CO2 : FFFB CH4: 0052 CH4 avg : 0050 d CH4 :
→0000 H2 : 00CD H2 avg : 00C8 d H2 : FFFF

Temp : 00EE Temp avg : 00EB CO2: 0065 CO2 avg : 006E d CO2 : FFFD CH4: 0052 CH4 avg : 0050 d CH4 :
→0000 H2 : 00CF H2 avg : 00C8 d H2 : 0000

Temp : 00ED Temp avg : 00EC CO2: 0061 CO2 avg : 006A d CO2 : FFFD CH4: 0052 CH4 avg : 0051 d CH4 :
→0000 H2 : 00CF H2 avg : 00C9 d H2 : 0001

Temp : 00E8 Temp avg : 00EB CO2: 0052 CO2 avg : 0065 d CO2 : FFFC CH4: 004D CH4 avg : 0051 d CH4 :
→0000 H2 : 00D1 H2 avg : 00CB d H2 : 0001

Temp : 00DE Temp avg : 00E8 CO2: 004A CO2 avg : 005F d CO2 : FFFB CH4: 0053 CH4 avg : 0051 d CH4 :
→0000 H2 : 00D0 H2 avg : 00CC d H2 : 0001

Temp : 00E0 Temp avg : 00E6 CO2: 0050 CO2 avg : 005B d CO2 : FFFC CH4: 0053 CH4 avg : 0051 d CH4 :
→0000 H2 : 00D2 H2 avg : 00CE d H2 : 0001

Temp : 00E0 Temp avg : 00E3 CO2: 004F CO2 avg : 0057 d CO2 : FFFD CH4: 0056 CH4 avg : 0052 d CH4 :
→0000 H2 : 00CA H2 avg : 00CE d H2 : 0000

Temp : 00E9 Temp avg : 00E3 CO2: 0042 CO2 avg : 0053 d CO2 : FFFC CH4: 004B CH4 avg : 0051 d CH4 :
→FFFF H2 : 00C5 H2 avg : 00CD d H2 : 0000

Temp : 00E9 Temp avg : 00E3 CO2: 0043 CO2 avg : 004E d CO2 : FFFC CH4: 004D CH4 avg : 0050 d CH4 :
→0000 H2 : 00C1 H2 avg : 00CB d H2 : FFFF

Temp : 00E2 Temp avg : 00E4 CO2: 003F CO2 avg : 0049 d CO2 : FFFC CH4: 0050 CH4 avg : 0050 d CH4 :
→0000 H2 : 00BB H2 avg : 00C9 d H2 : FFFE

Temp : 00E8 Temp avg : 00E5 CO2: 0022 CO2 avg : 0043 d CO2 : FFFA CH4: 004B CH4 avg : 004E d CH4 :
→FFFF H2 : 00C9 H2 avg : 00C7 d H2 : FFFF

Temp : 00E8 Temp avg : 00E7 CO2: 0008 CO2 avg : 003A d CO2 : FFF7 CH4: 0052 CH4 avg : 004D d CH4 :
→0000 H2 : 00DE H2 avg : 00C9 d H2 : 0001

Temp : 00EE Temp avg : 00E8 CO2: 0000 CO2 avg : 002E d CO2 : FFF5 CH4: 004A CH4 avg : 004D d CH4 :
→0000 H2 : 00DA H2 avg : 00CA d H2 : 0001

Temp : 00EF Temp avg : 00E9 CO2: 0000 CO2 avg : 0023 d CO2 : FFF5 CH4: 0049 CH4 avg : 004C d CH4 :
→0000 H2 : 00BD H2 avg : 00C9 d H2 : FFFF

Temp : 00F4 Temp avg : 00ED CO2: 0000 CO2 avg : 0019 d CO2 : FFF7 CH4: 004A CH4 avg : 004B d CH4 :
→FFFF H2 : 00D0 H2 avg : 00CA d H2 : 0001

Temp : 00F5 Temp avg : 00EF CO2: 0000 CO2 avg : 0010 d CO2 : FFF7 CH4: 0048 CH4 avg : 004B d CH4 :
→0000 H2 : 00E2 H2 avg : 00CE d H2 : 0004

Temp : 00EA Temp avg : 00F0 CO2: 0001 CO2 avg : 0007 d CO2 : FFF8 CH4: 0045 CH4 avg : 0048 d CH4 :
→FFFE H2 : 00E2 H2 avg : 00D4 d H2 : 0005

Temp : 00F1 Temp avg : 00F0 CO2: 0000 CO2 avg : 0002 d CO2 : FFFB CH4: 0047 CH4 avg : 0047 d CH4 :
→0000 H2 : 00DF H2 avg : 00D7 d H2 : 0003

Temp : 00F0 Temp avg : 00F0 CO2: 0000 CO2 avg : 0000 d CO2 : FFFF CH4: 004C CH4 avg : 0048 d CH4 :
→0000 H2 : 00CF H2 avg : 00D6 d H2 : FFFF

Temp : 00EE Temp avg : 00EF CO2: 0000 CO2 avg : 0000 d CO2 : 0000 CH4: 0050 CH4 avg : 0049 d CH4 :
→0001 H2 : 00CA H2 avg : 00D5 d H2 : FFFF

C.1 Raw Captured Data 106

Listing C.2: Data for Trial 3; Pure H2

Temp : 038F Temp avg : 00B6 CO2: 0014 CO2 avg : 0003 d CO2 : 0003 CH4: 0050 CH4 avg : 4ED8 d CH4 :
→4ED8 H2 : 0032 H2 avg : 0000 d H2 : 0000

Temp : 00E3 Temp avg : 00E3 CO2: 001D CO2 avg : 0008 d CO2 : 0004 CH4: 0050 CH4 avg : E294 d CH4 :
→93BC H2 : 0043 H2 avg : 0000 d H2 : 0000

Temp : 00DE Temp avg : 0110 CO2: 001C CO2 avg : 000C d CO2 : 0004 CH4: 004F CH4 avg : FB41 d CH4 :
→18AC H2 : 004D H2 avg : 0000 d H2 : 0000

Temp : 00DB Temp avg : 013B CO2: 0019 CO2 avg : 0010 d CO2 : 0004 CH4: 0050 CH4 avg : FF6B d CH4 :
→042A H2 : 004B H2 avg : 0000 d H2 : 0000

Temp : 00DF Temp avg : 0168 CO2: 0025 CO2 avg : 0016 d CO2 : 0005 CH4: 0079 CH4 avg : 0030 d CH4 :
→00C5 H2 : 0271 H2 avg : 0000 d H2 : 0000

Temp : 00E1 Temp avg : 00DF CO2: 0049 CO2 avg : 0021 d CO2 : 000B CH4: 011D CH4 avg : 0073 d CH4 :
→0043 H2 : 0376 H2 avg : 0000 d H2 : 0000

Temp : 00E9 Temp avg : 00E0 CO2: 0034 CO2 avg : 0027 d CO2 : 0006 CH4: 00E1 CH4 avg : 0096 d CH4 :
→0023 H2 : 033E H2 avg : 0000 d H2 : 0000

Temp : 00E6 Temp avg : 00E2 CO2: 001A CO2 avg : 0028 d CO2 : 0000 CH4: 00AD CH4 avg : 00AC d CH4 :
→0015 H2 : 02EE H2 avg : 0000 d H2 : 0000

Temp : 00E2 Temp avg : 00E3 CO2: 0018 CO2 avg : 0027 d CO2 : 0000 CH4: 0096 CH4 avg : 00BB d CH4 :
→000F H2 : 0276 H2 avg : 0000 d H2 : 0000

Temp : 00E9 Temp avg : 00E5 CO2: 0015 CO2 avg : 0026 d CO2 : 0000 CH4: 0074 CH4 avg : 00BD d CH4 :
→0001 H2 : 01E7 H2 avg : 0000 d H2 : 0000

Temp : 00E9 Temp avg : 00E7 CO2: 000B CO2 avg : 0023 d CO2 : FFFD CH4: 006A CH4 avg : 009F d CH4 :
→FFE3 H2 : 0137 H2 avg : 0000 d H2 : 0000

Temp : 00E9 Temp avg : 00E7 CO2: 000E CO2 avg : 001A d CO2 : FFF8 CH4: 005D CH4 avg : 0084 d CH4 :
→FFE6 H2 : 00AD H2 avg : 0000 d H2 : 0000

Temp : 00E4 Temp avg : 00E6 CO2: 000D CO2 avg : 0013 d CO2 : FFFA CH4: 0055 CH4 avg : 0071 d CH4 :
→FFED H2 : 006D H2 avg : 0000 d H2 : 0000

Temp : 00E9 Temp avg : 00E8 CO2: 0002 CO2 avg : 000E d CO2 : FFFC CH4: 0059 CH4 avg : 0064 d CH4 :
→FFF3 H2 : 004A H2 avg : 0000 d H2 : 0000

Temp : 00E7 Temp avg : 00E7 CO2: 000A CO2 avg : 000C d CO2 : FFFE CH4: 005A CH4 avg : 005D d CH4 :
→FFFA H2 : 0047 H2 avg : 0000 d H2 : 0000

Temp : 00E6 Temp avg : 00E7 CO2: 0003 CO2 avg : 0009 d CO2 : FFFE CH4: 005C CH4 avg : 005A d CH4 :
→FFFD H2 : 003E H2 avg : F700 d H2 : 0000

Temp : 00EB Temp avg : 00E7 CO2: 0000 CO2 avg : 0007 d CO2 : FFFF CH4: 005A CH4 avg : 0059 d CH4 :
→FFFF H2 : 0036 H2 avg : 9120 d H2 : 9A00

Temp : 00E8 Temp avg : 00E8 CO2: 0001 CO2 avg : 0005 d CO2 : FFFE CH4: 005C CH4 avg : 005A d CH4 :
→0000 H2 : 0031 H2 avg : F068 d H2 : 5F40

Temp : 00EA Temp avg : 00E8 CO2: 0006 CO2 avg : 0003 d CO2 : FFFF CH4: 0053 CH4 avg : 0059 d CH4 :
→0000 H2 : 003D H2 avg : 4720 d H2 : 56B8

Temp : 00E3 Temp avg : 00E7 CO2: 000B CO2 avg : 0004 d CO2 : 0001 CH4: 0054 CH4 avg : 0058 d CH4 :
→FFFF H2 : 0048 H2 avg : C139 d H2 : 7A19

Temp : 00ED Temp avg : 00E9 CO2: 000B CO2 avg : 0005 d CO2 : 0000 CH4: 0058 CH4 avg : 0057 d CH4 :
→0000 H2 : 0042 H2 avg : 4060 d H2 : 7F28

Temp : 00EF Temp avg : 00E9 CO2: 000C CO2 avg : 0006 d CO2 : 0001 CH4: 0054 CH4 avg : 0056 d CH4 :
→FFFF H2 : 003D H2 avg : 771D d H2 : 36BD

Temp : 00EC Temp avg : 00EA CO2: 0006 CO2 avg : 0007 d CO2 : 0001 CH4: 0053 CH4 avg : 0054 d CH4 :
→FFFF H2 : 0039 H2 avg : 1138 d H2 : 9A1C

Temp : 00EC Temp avg : 00EB CO2: 0002 CO2 avg : 0007 d CO2 : 0000 CH4: 0054 CH4 avg : 0054 d CH4 :
→0000 H2 : 0039 H2 avg : 02AB d H2 : F173

Temp : 00F1 Temp avg : 00ED CO2: 0006 CO2 avg : 0007 d CO2 : 0000 CH4: 0053 CH4 avg : 0054 d CH4 :
→0000 H2 : 003D H2 avg : 0097 d H2 : FDEC

Listing C.3: Data for Trial 4; Town Gas
Temp : 00F8 Temp avg : 00F5 CO2: 0000 CO2 avg : 0001 d CO2 : FFFF CH4: 0049 CH4 avg : 0051 d CH4 :
→FFFE H2 : 003E H2 avg : 003A d H2 : 0000

Temp : 00FA Temp avg : 00F7 CO2: 0000 CO2 avg : 0001 d CO2 : 0000 CH4: 0049 CH4 avg : 004E d CH4 :
→FFFE H2 : 0037 H2 avg : 0039 d H2 : 0000

Temp : 00FF Temp avg : 00F8 CO2: 0001 CO2 avg : 0000 d CO2 : 0000 CH4: 004D CH4 avg : 004C d CH4 :
→FFFF H2 : 0042 H2 avg : 0039 d H2 : 0000

Temp : 00F6 Temp avg : 00F8 CO2: 0000 CO2 avg : 0000 d CO2 : 0000 CH4: 0049 CH4 avg : 004B d CH4 :
→FFFF H2 : 003D H2 avg : 003A d H2 : 0000

Temp : 00FA Temp avg : 00F9 CO2: 0000 CO2 avg : 0000 d CO2 : 0000 CH4: 0052 CH4 avg : 004B d CH4 :
→0000 H2 : 0044 H2 avg : 003B d H2 : 0000

Temp : 00F6 Temp avg : 00F9 CO2: 0000 CO2 avg : 0000 d CO2 : 0000 CH4: 0069 CH4 avg : 0050 d CH4 :
→0005 H2 : 0044 H2 avg : 003E d H2 : 0003

Temp : 0103 Temp avg : 00FB CO2: 0006 CO2 avg : 0001 d CO2 : 0000 CH4: 024C CH4 avg : 00A7 d CH4 :
→0056 H2 : 024A H2 avg : 008A d H2 : 004B

Temp : 0106 Temp avg : 00FC CO2: 000A CO2 avg : 0002 d CO2 : 0001 CH4: 0243 CH4 avg : 0109 d CH4 :
→0062 H2 : 0215 H2 avg : 00D9 d H2 : 004F

Temp : 0108 Temp avg : 0100 CO2: 0016 CO2 avg : 0005 d CO2 : 0003 CH4: 0234 CH4 avg : 016B d CH4 :
→0062 H2 : 01EB H2 avg : 0121 d H2 : 0048

Temp : 00F9 Temp avg : 0100 CO2: 0020 CO2 avg : 000A d CO2 : 0005 CH4: 0226 CH4 avg : 01CA d CH4 :
→005E H2 : 01D5 H2 avg : 0165 d H2 : 0044

Temp : 00FC Temp avg : 0101 CO2: 0026 CO2 avg : 0010 d CO2 : 0006 CH4: 0212 CH4 avg : 0220 d CH4 :
→0056 H2 : 01C5 H2 avg : 01A6 d H2 : 0040

Temp : 00FF Temp avg : 0100 CO2: 002A CO2 avg : 0017 d CO2 : 0006 CH4: 0200 CH4 avg : 0222 d CH4 :
→0001 H2 : 01B1 H2 avg : 01E3 d H2 : 003D

Temp : 00FB Temp avg : 00FE CO2: 0026 CO2 avg : 001D d CO2 : 0005 CH4: 01F1 CH4 avg : 0215 d CH4 :
→FFF3 H2 : 01A4 H2 avg : 01D4 d H2 : FFF2

Temp : 0103 Temp avg : 00FD CO2: 0022 CO2 avg : 0021 d CO2 : 0004 CH4: 01D9 CH4 avg : 0203 d CH4 :
→FFEF H2 : 0192 H2 avg : 01C0 d H2 : FFEC

Temp : 0105 Temp avg : 00FF CO2: 0029 CO2 avg : 0024 d CO2 : 0003 CH4: 01C5 CH4 avg : 01F0 d CH4 :
→FFED H2 : 018A H2 avg : 01AF d H2 : FFF0

Temp : 00FE Temp avg : 0100 CO2: 0025 CO2 avg : 0026 d CO2 : 0001 CH4: 01AD CH4 avg : 01DC d CH4 :
→FFEC H2 : 016E H2 avg : 019E d H2 : FFEF

Temp : 0104 Temp avg : 0101 CO2: 0022 CO2 avg : 0025 d CO2 : 0000 CH4: 019F CH4 avg : 01C9 d CH4 :
→FFED H2 : 015C H2 avg : 018C d H2 : FFEF

Temp : 0105 Temp avg : 0103 CO2: 0025 CO2 avg : 0024 d CO2 : 0000 CH4: 0190 CH4 avg : 01B5 d CH4 :
→FFED H2 : 0151 H2 avg : 017C d H2 : FFF0

C.1 Raw Captured Data 107

Temp : 0106 Temp avg : 0103 CO2: 0024 CO2 avg : 0024 d CO2 : 0000 CH4: 017C CH4 avg : 01A3 d CH4 :
→FFEE H2 : 0144 H2 avg : 016C d H2 : FFF0

Temp : 0105 Temp avg : 0103 CO2: 0025 CO2 avg : 0024 d CO2 : 0000 CH4: 0162 CH4 avg : 018F d CH4 :
→FFED H2 : 0139 H2 avg : 015D d H2 : FFF1

Temp : 0102 Temp avg : 0104 CO2: 001E CO2 avg : 0023 d CO2 : FFFF CH4: 0157 CH4 avg : 017D d CH4 :
→FFEF H2 : 0127 H2 avg : 014D d H2 : FFF0

Temp : 0100 Temp avg : 0103 CO2: 0014 CO2 avg : 0020 d CO2 : FFFE CH4: 0140 CH4 avg : 016B d CH4 :
→FFEE H2 : 0114 H2 avg : 013E d H2 : FFF1

Temp : 0106 Temp avg : 0103 CO2: 0013 CO2 avg : 001E d CO2 : FFFE CH4: 012F CH4 avg : 0157 d CH4 :
→FFED H2 : 0101 H2 avg : 012E d H2 : FFF1

Temp : 0106 Temp avg : 0103 CO2: 0016 CO2 avg : 001B d CO2 : FFFE CH4: 012A CH4 avg : 0146 d CH4 :
→FFF0 H2 : 0106 H2 avg : 0121 d H2 : FFF4

Temp : 0109 Temp avg : 0104 CO2: 001D CO2 avg : 001A d CO2 : FFFF CH4: 0111 CH4 avg : 0136 d CH4 :
→FFF0 H2 : 00FA H2 avg : 0115 d H2 : FFF4

Temp : 010B Temp avg : 0106 CO2: 0015 CO2 avg : 0017 d CO2 : FFFE CH4: 0102 CH4 avg : 0125 d CH4 :
→FFF0 H2 : 00E2 H2 avg : 0107 d H2 : FFF2

Temp : 010A Temp avg : 0108 CO2: 0010 CO2 avg : 0015 d CO2 : FFFE CH4: 00F0 CH4 avg : 0115 d CH4 :
→FFF0 H2 : 00CA H2 avg : 00F8 d H2 : FFF1

Temp : 0108 Temp avg : 0108 CO2: 0007 CO2 avg : 0013 d CO2 : FFFE CH4: 00E1 CH4 avg : 0105 d CH4 :
→FFF1 H2 : 00B5 H2 avg : 00E8 d H2 : FFF1

Temp : 010B Temp avg : 0109 CO2: 0009 CO2 avg : 0011 d CO2 : FFFF CH4: 00D5 CH4 avg : 00F5 d CH4 :
→FFF0 H2 : 00A5 H2 avg : 00D8 d H2 : FFF1

Temp : 010B Temp avg : 010A CO2: 0003 CO2 avg : 000E d CO2 : FFFE CH4: 00C6 CH4 avg : 00E5 d CH4 :
→FFF1 H2 : 009C H2 avg : 00C7 d H2 : FFEF

Temp : 010A Temp avg : 010A CO2: 0009 CO2 avg : 000B d CO2 : FFFD CH4: 00BC CH4 avg : 00D7 d CH4 :
→FFF2 H2 : 0094 H2 avg : 00B6 d H2 : FFEF

Temp : 010C Temp avg : 010A CO2: 0010 CO2 avg : 000A d CO2 : FFFF CH4: 00B5 CH4 avg : 00CB d CH4 :
→FFF4 H2 : 0092 H2 avg : 00A8 d H2 : FFF3

Temp : 0105 Temp avg : 0109 CO2: 0000 CO2 avg : 0007 d CO2 : FFFE CH4: 005B CH4 avg : 00B3 d CH4 :
→FFE8 H2 : 0094 H2 avg : 009E d H2 : FFF7

Temp : 010F Temp avg : 010A CO2: 0000 CO2 avg : 0006 d CO2 : FFFF CH4: 0045 CH4 avg : 0097 d CH4 :
→FFE4 H2 : 005B H2 avg : 0090 d H2 : FFF2

Temp : 0108 Temp avg : 010A CO2: 0000 CO2 avg : 0004 d CO2 : FFFF CH4: 0045 CH4 avg : 007C d CH4 :
→FFE6 H2 : 0057 H2 avg : 0083 d H2 : FFF3

Temp : 010E Temp avg : 010A CO2: 0000 CO2 avg : 0004 d CO2 : 0000 CH4: 0045 CH4 avg : 0064 d CH4 :
→FFE8 H2 : 0054 H2 avg : 0077 d H2 : FFF4

Temp : 0111 Temp avg : 010B CO2: 0000 CO2 avg : 0002 d CO2 : FFFF CH4: 0047 CH4 avg : 004E d CH4 :
→FFEA H2 : 0055 H2 avg : 006C d H2 : FFF6

	Abstract
	Acknowledgments
	List of Figures
	Chapter Introduction
	Background
	History
	Ethics

	Objectives
	Methodology

	Chapter Biogas
	Chapter Overview
	Properties of Biogas
	Biogas Production
	Digester Control
	Safety Considerations
	Chapter Summary

	Chapter Electronic Hardware
	Chapter Overview
	Microcontroller
	E-nose
	Amplifier
	Sensors

	Testing
	Chapter Summary

	Chapter Software
	Chapter Overview
	Implementation
	Fuzzy Control Software
	Fuzzifying
	De-Fuzzify
	Tuning Fuzzy Parameters
	Slope
	Concavity

	Micro-controller Implementation
	Chapter Summary

	Chapter Laboratory Gas Tests
	Chapter Overview
	Test Equipment
	Sampling Procedure
	Microcontroller Configuration

	Testing
	Trial 1
	Trial 2
	Trial 3

	Chapter Conclusion

	Chapter Results
	Chapter Overview
	Overload Data Determination

	Simulation Results
	Chapter Conclusion

	Chapter Conclusions and Further Work
	Chapter Overview
	Conclusions
	Biological Aspects
	Electronic Aspects
	Computational Aspects

	Further Work
	Final Conclusion

	References
	Appendix Project Specification
	Appendix Source Code Listings
	MATLAB Functions
	The minicomPlot.m Script
	The Simulator Scripts

	C Code for the Atmega8

	Appendix Raw Captured Data
	Raw Captured Data

