
University of Southern Queensland

Faculty of Engineering and Surveying

Early Detection and Prevention of Catastrophic

Failures of Industrial

Engines

A Dissertation submitted by

Mr Mikhail Dashchinskiy

in fulfillment of the requirements of

ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Honours) (Mechanical)

Submitted October, 2017

i

Abstract

Nowadays, there is a tendency to operate some industrial machinery remotely, such as

generator sets, gas pumps, and emergency equipment. It is often impossible to directly

interfere with the operation of the equipment in the case of unexpected malfunctions.

Premature and abrupt failure of the crankshaft bearings in an industrial engine can

consequently lead to catastrophic damage. This project designed and tested an

inexpensive system that would detect failure of the crankshaft bearings and provide a

quick response.

Based on the extensive literature review and the author's experience, it was decided that

the proposed device comprised oil debris monitoring and vibration acquisition

processing systems. The rise in pressure across the filtering element was set to indicate

the presence of bearing particles in the engine oil, which would trigger a warning. The

parameters of the vibration signal, such as spectrogram, Root Mean Square (RMS), and

Crest Factor, were selected to monitor changes to the vibration profile associated with

the fault conditions. The Matlab Graphical User Interface (GUI) performed the signal

processing and displayed all necessary outputs. It also allowed the data recording and

data replay options.

The system was tested on a six-cylinder petrol engine with artificially induced failure of

one of the crankshaft bearings. The experiments failed to instigate rapid and catastrophic

bearing failure due to no load being applied to the engine. Nevertheless, the partial

bearing degradation and debris generation were achieved during the test runs.

The outcomes showed that the spectrogram and the RMS of the signal provided some

response to the progressing failure. The spectrogram revealed the change in magnitudes

of the main harmonic orders and the RMS value. For instance, the first harmonic order

became dominant and the RMS behaved erratically. Normally, the third harmonic is the

most prominent, and the RMS is proportional to the engine revolutions per minute

(RPM). Moreover, the debris detection system caught some of the particles generated by

the failing bearing. The debris blocked the filtering element, which caused the pressure

to rise across the mesh. At this stage, the system is in its conceptual form. The full

functionality, such as the ability to stop the engine based on the threshold parameters,

ii

has not been programmed. The thresholds are still to be properly determined and

confirmed by a series of experiments.

Further work is required to check the validity of the first experiments. Additional

experiments will need to be performed on the engine whilst mounted to a load cell.

Applying the load will allow simulation of the real working condition of the equipment.

Future development of the system will require designing a black box solution based on a

microcomputer, such Raspberry Pi or similar.

The project acknowledges that the system might be unable to prevent subsequent

damage to the components. The primary purpose of the system is to save other

components and reduce the repair cost.

iii

Acknowledgment

Assistance in completion of this project is thankfully acknowledged.

Dr Ray Malpress of USQ for providing the supervision and valuable advices.

Mr Jarred StClair of Cavill Power Products P/L for supplying the test engines and all

necessary accessories used for the experiments.

iv

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 and ENG4112 Research Project

Limitation of Use

The Council of the University of Southern Queensland, its Faculty of Health,

Engineering and Sciences, and the staff of the University of Southern Queensland, do

not accept any responsibility for the truth, accuracy or completeness of material

contained within or associated with this dissertation.

 Persons using all or any part of this material do so at their own risk, and not at the risk

of the Council of the University of Southern Queensland, its Faculty of Health,

Engineering and Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitles “Research Project” is

to contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and any other material set out

in the associated appendices should not be used for any other purpose: if they are so

used, it is entirely at the risk of the user.

v

vi

 Table of Contents

Abstract .. i

Acknowledgment .. iii

List of Figures .. xi

List of Tables ... xvi

List of Appendices. ... xvii

List of Acronyms and Abbreviations .. xviii

Introduction .. 1

Chapter 1 Idea Initiation and Development .. 2

1.1 Overview .. 2

1.2 Project Motivation .. 2

1.3 Implication ... 3

1.4 Research Objectives ... 5

1.5 Conclusions .. 7

Chapter 2 Literature Review .. 8

2.1 Introduction .. 8

2.2 Failure detection in engines .. 8

2.3 Engine Oil Conditions Monitoring ... 9

2.4 Engine vibration monitoring .. 10

2.5 Conclusions .. 11

Chapter 3 Information Review ... 12

vii

3.1 Introduction .. 12

3.2 Wear particles detection ... 12

3.2.1 Inductive method of the wear particles count 14

3.2.2 Pressure drop method ... 15

3.3 Vibration Signal Acquisition and Processing ... 17

3.3.1 Definition of Vibration ... 17

3.3.2 Signal Sampling .. 18

3.3.3 Signal Processing .. 19

3.3.4 Signal Filtering .. 30

3.3.5 Signal Processing Software .. 42

3.3.6 Vibration Acquisition Hardware ... 42

3.4 Conclusions .. 49

Chapter 4 Project Methodology .. 50

4.1 Introduction .. 50

4.2 Objectives and Scope ... 50

4.3 The GUI interface ... 51

4.3.1 The GUI Program Structure .. 52

4.3.2 The GUI Toolbar ... 54

4.3.3 GUI Functions ... 54

4.3.4 Main functions. .. 55

4.3.5 Post-Processing Filters ... 57

viii

4.3.6 Post-Processing Functions ... 59

4.3.7 Outputs .. 62

4.3.8 Data logging ... 65

4.4 Signal Acquisition Hardware ... 65

4.4.1 The Master Controller Algorithm ... 66

4.4.2 The Slave Controller Algorithm .. 66

4.4.3 The Communication Algorithm .. 67

4.4.4 The Hardware Design ... 68

4.5 Resources Requirements .. 70

4.6 The Prototype Description and Work Algorithm ... 71

4.7 Test Rig Specification .. 75

4.8 The Testing Procedure ... 77

4.9 Risk Assessment ... 77

4.10 Quality Assurance .. 79

Chapter 5 Oil Debris Detection System Test ... 81

5.1 Introduction .. 81

5.2 Pre-test assumptions and the size of the filtering element 81

5.3 Test prototype setting up .. 82

5.4 Testing procedures ... 83

5.5 Comparison of the Test Runs with Cold and Warm Oil 85

5.6 Conclusions .. 86

ix

Chapter 6 Vibration Acquisition and Processing System Tests 87

6.1 Introduction .. 87

6.2 Comparison of the Signal in Time Domain ... 88

6.3 Comparison of the Fast Fourier Decompositions ... 90

6.4 Determining the Optimum Location for the Accelerometer 91

6.4.1 Healthy Conditions ... 91

6.4.2 One Cylinder Disconnected .. 93

6.4.3 Two Cylinders Disconnected .. 94

6.4.4 RMS, Crest Factor and Spectrogram .. 96

6.5 Conclusions .. 98

Chapter 7 Determining the Failure Thresholds .. 99

7.1 Introduction .. 99

7.2 Discussion on Debris Formation and the Oil Clearance 101

7.3 Discussion Regarding the Frequency Analysis .. 103

7.4 Discussion Regarding the RMS and the Crest Factor Values 108

7.5 Conclusions .. 109

Chapter 8 Discussions and Conclusions ... 111

8.1 Introduction .. 111

8.2 Discussions ... 111

8.2.1 The Debris Detection System ... 111

8.2.2 The Vibration Acquisition Hardware .. 113

x

8.2.3 The Vibration Processing ... 113

8.2.4 The GUI Interface ... 114

8.2.5 Safety Considerations Associated with Implementation of the System114

8.3 Further Work .. 115

8.4 Conclusions .. 115

References ... 117

xi

List of Figures

Figure 1-1 - Major causes of premature bearing failure .. 4

Figure 3-1 - Types of bearing damage and frequency of occurrence 13

Figure 3-2 - Journal bearings composition .. 13

Figure 3-3 - Wear particle size relative to the failure mode .. 14

Figure 3-4 - Inductive wear debris sensor and the output signal 15

Figure 3-5 - Principal of the pressure drop method ... 16

Figure 3-6 - Aliasing effect .. 18

Figure 3-7 - Representation of the relation between the RMS value and the

Crest Factor .. 21

Figure 3-8 - Comparison of the RMS and the Crest factor .. 21

Figure 3-9 - Comparison of the RMS and the Kurtosis. .. 23

Figure 3-10 - Waterfall plot 2D view (left) 3D view (right) .. 24

Figure 3-11 - Sinusoidal components of complex signals ... 25

Figure 3-12 - FFT window .. 26

Figure 3-13 - Example of a signal spectrogram plot .. 27

Figure 3-14 - Frequencies present in a four cylinder engine under normal

condition .. 29

Figure 3-15 - Frequencies present in a four cylinder engine under a faulty

condition. ... 29

Figure 3-16 - Typical low-pass filter transition band... 31

Figure 3-17 - High-pass and band-pass filters examples ... 32

Figure 3-18 - Passing a signal through two filters produces two signals. 32

Figure 3-19 - Sample of a wavelet ... 33

xii

Figure 3-20 - Correlation coefficient ... 34

Figure 3-21 - Shifting of a wavelet. ... 34

Figure 3-22 - Stretching a wavelet. .. 35

Figure 3-23 - Scaling of a wavelet ... 35

Figure 3-24 - Discrete filtering vs. Wavelet's down sampling 36

Figure 3-25 - Wavelet signal decomposition ... 37

Figure 3-26 - Wavelet signal decomposition. .. 37

Figure 3-27 - Up-sampling and the signal reconstruction .. 38

Figure 3-28 - The Daubechies's wavelets. ... 38

Figure 3-29 - Kalman filtering. Top plot P=1, Bottom plot P=0.1 41

Figure 3-30 - Schematic representation of a MEMS accelerometer 43

Figure 3-31 - Schematic of a piezoelectric accelerometer ... 44

Figure 3-32 - Raspberry Pi 3 board.. 46

Figure 3-33 - Arduino board and stackable shields. .. 48

Figure 4-1 - The main window of the GUI .. 52

Figure 4-2 - The GUI script logic chart. .. 53

Figure 4-3 - The "Main Functions" group. .. 55

Figure 4-4 - The buffer size selection popup window. .. 56

Figure 4-5 - The post processing filters group. .. 58

Figure 4-6 - The post processing functions group. .. 59

Figure 4-7 - The power spectral density plot of the signal obtained from a

running engine. .. 60

Figure 4-8 - The plot of the history changes of RMS and the crest factor 61

Figure 4-9 - The pure signal wave form .. 62

xiii

Figure 4-10 - FFT signal spectrum. The red vertical lines represent RPM/60,

2*RPM/60, 3*RPM/60 respectively .. 63

Figure 4-11 - GUI output windows. ... 64

Figure 4-12 - The real time RMS (orange) and the crest factor (blue) plot 64

Figure 4-13 - The structure chart of communication logic between the host PC

and the controllers .. 68

Figure 4-14- The hardware connections schematic ... 69

Figure 4-15 - Difference between in-line, on-line and off-line oil sampling 71

Figure 4-16 - The electric gear pump .. 72

Figure 4-17 - The filtering element .. 72

Figure 4-18 - The oil debris collector with pressure sensors. .. 72

Figure 4-19 - The ADXL335 accelerometer attached to the test engine. 73

Figure 4-20 - The signal acquisition system (Slave controller (left), Master

controller (right), Block of relays (top right)) .. 73

Figure 4-21 - The oil pick up. .. 74

Figure 4-22 - The oil return. .. 74

Figure 4-23 - The test rig (R/H view). ... 76

Figure 4-24 - The test rig (L/H view). ... 76

Figure 5-1 - The inline filtering element 250 microns. .. 82

Figure 5-2 - The coarse aluminum powder (left) and the blocked filtering

mesh (right). ... 84

Figure 5-3 - Time required by the system to detect the debris. 85

Figure 6-1 - Comparison of raw signal obtained at three different locations at

the healthy engine condition .. 88

xiv

Figure 6-2 - Torsion oscillation of the engine block. ... 89

Figure 6-3 - Magnitudes to noise ratio of the FFT of the signal obtained at

different locations .. 90

Figure 6-4 - FFT decomposition of the signal at normal condition (1900 RPM) 91

Figure 6-5 - Raw signal of the healthy engine. .. 92

Figure 6-6 - Raw signal of the engine with number six cylinder disconnected. 93

Figure 6-7 - FFT decomposition of the signal at number six cylinder

disconnected (1650 RPM) ... 94

Figure 6-8 - Raw signal of the engine with number six and five cylinders

disconnected. ... 95

Figure 6-9 - FFT decomposition of the signal at number six cylinder

disconnected (1650 RPM) ... 95

Figure 6-10 - Crest factor an RMS plots. ... 96

Figure 6-11 - Spectrogram of the signal resolved in time domain (2D) 97

Figure 6-12 - Spectrogram of the signal resolved in time domain (3D) 97

Figure 7-1 - A piece of rubber blocks the oil supply hole. ... 99

Figure 7-2 - Aluminum foil was placed at the conrod cap to reduce the oil

clearance. ... 100

Figure 7-3 - Melting and smearing of the bearing's top overlay. 102

Figure 7-4 - Molten droplets of the failing bearing's top overlay being

captured by the debris detection system. ... 102

Figure 7-5- Frequency and pure signal profiles before the failure at 1900 RPM 103

Figure 7-6 - Spectrogram before the failure initiation at 1900 RPM 104

Figure 7-7 - Beginning of the failure at 1900 RPM. .. 105

xv

Figure 7-8 - Aggravation of the failure at 1900 RPM .. 106

Figure 7-9 - Spectrogram of the test engine run with induced failure at 1900

RPM. .. 107

Figure 7-10 - The plot of the history changes of RMS, the crest factor, RPM

and the oil pressure rise across the debris detection system .. 108

xvi

List of Tables

Table 3-1- Accelerometers considered for the project 44

Table 3-2 - Microcontrollers specification ... 48

Table 4-1 - Required resources and estimated cost. .. 70

Table 4-2 - Alarm triggering logic. ... 75

Table 4-3 - Risk assessment matrix. ... 78

Table 4-4 - Risk assessment and preventative measures. 79

Table 5-1 - The oil flow rate dependence on the oil temperature. 84

Table 5-2 - The outcomes of the line restriction tests. 84

xvii

List of Appendices

Appendix A - Project Specification. ... 122

Appendix B - Kalman Filter. .. 123

Appendix C - Arduino Boards Connections and Schematics 124

Appendix D - Matlab Functions and Script Structure. ... 125

Appendix E - C Program Structure .. 144

Appendix F - Matlab Output Plots and GUI Interface. .. 153

Appendix G - The Test Bench Photos .. 157

xviii

List of Acronyms and Abbreviations

ADC

COM

CPU

AC

DFT

FFT

GPU

GUI

Analog to Digital Converter

Communication Port

Central Processing Unit

Alternating Current

Discrete Fourier Transformation

Fast Fourier Transformation

Graphics Processing Unit

Graphical User Interface

ISO

 I/0

 I2C

IDE

MEMS

PC

International Organization of
Standardization

Input/Output

Inter Integrated Circuit

Integrated Development Environment

Micro Electro Mechanical System

Personal Computer

PTP

RPM

RMS

SPI

UART

USB

Peak to Peak

Revolutions per Minute

Root Mean Squared

Serial Peripheral Interface

Universal Asynchronous Receiver
Transmitter

Universal Serial Bus

1

Introduction

The reciprocating and rotating components of internal combustion engines are subject

to frictional wear. The most expensive parts of large industrial engines are cylinder

blocks and crankshafts. In some cases, the cost of a new cylinder block may exceed

AUD100 000. Premature failure of the crankshaft's bearings may cause catastrophic

damage to the cylinder block and render the whole engine unsalvageable.

This project examined a system concept that provided online monitoring of a few

critical engine parameters to detect the fault conditions. As part of the project, various

approaches to engine parameters monitoring were assessed, and the essential

parameters were selected based on the literature review. The project aimed to design,

build and test a working prototype of the engine condition monitoring device. For the

second stage of the project, the prototype was tested in situ on a passenger car engine,

attached to a test bench. The fault condition was introduced into the engine, and

performance of the system was evaluated.

2

Chapter 1 Idea Initiation and Development

1.1 Overview

The aim of this project is to design a system that monitors an engine's vibration, as well

as contamination of the lubrication oil. The conceptual design states that the system

should be able to detect the event of a crankshaft bearings failure and provide a quick

response based on feedback from the accelerometer and oil pressure sensors.

The scope of the project consists of four primary objectives. The first goal is to search

and analyse contemporary studies regarding engine conditions monitoring. The second

goal is to develop and build a working prototype of a real-time oil condition monitoring

system to detect large wear particles generated by abnormal wear of sliding surfaces.

The third goal is to build a test rig based on a passenger car engine (6-cylinder inline

engine).

The final goal of the project is to evaluate whether the system would satisfy expected

performance criteria. In order to achieve this aim, a series of experiments were

conducted with the installed prototype. The fault condition was artificially introduced,

and a crankshaft damage journal was evaluated after the tests.

1.2 Project Motivation

The current state of worldwide globalisation and the global economy imposes a new set

of rules on companies whose main assets consist of machinery. Global competition

requires businesses to constantly search for ways to reduce expenses associated with

repair and maintenance of equipment. It is inevitable that some components of large

assemblies will have premature failures. Moreover, the failure of one component,

which itself can be inexpensive, can lead to a chain reaction of consequent

3

malfunctions, resulting in the costly repair or total write-off of the whole assembly. As

such, a recent policy of the main players in the mining and power generation industries

is to invest in preventative monitoring and maintenance.

The idea of developing the proposed system arose from the observation of mechanical

faults in industrial engines. It was noted that some of the damage was the direct

consequence of surface failures caused by friction where, in many cases, the expensive

components could have been salvaged.

An initial literature review revealed that few real-time engine condition monitoring

systems exist, or are being tested; however, the majority of those systems are focused

on maintenance assistance and are also relatively expensive.

Many years of experience have proved that unexpected failures can occur after

scheduled maintenance, repairs or overhauls. The literature research identified a

knowledge gap in the development of a system that would be easy to implement and

which would allow monitoring of the key parameters, sending a warning to the operator

or to the engine control module that something is amiss.

Although there will be potential for improvements to the designed system, it will

possibly have a market value. It could be used during the dynamometer tests or within

the first few hours following a repair.

1.3 Implication

According to Cubillo, et al. (2016), the main reason for premature bearing failure is dirt

(45.4%), followed by incorrect assembly (12.8%) and misalignment (12.6%), which

can also be considered as improper assembly. Together they contribute to 70.8% of all

failures. Based on field experience, it is accepted that dirt is introduced during

scheduled repairs and maintenance.

4

Figure 1-1 - Major causes of premature bearing failure (Source: Cubillo et al.

2016).

It is widely understood that most premature failures happen within the first few hours

after maintenance, repairs or rebuilds. As such, it is paramount to carefully observe all

vital engine parameters during those critical hours.

The management systems installed on contemporary engines provide sufficient

monitoring of many essential parameters, and are capable of adjusting the engine

output based on the readings of pressures, temperatures and load factor. The seizure of

a crankshaft bearing, however, is not necessarily followed by low oil pressure, or a

noticeable increase in the oil temperature; thus, standard monitoring systems do not

have input parameters to detect such events. As a result, the engine continues to run

until the friction welding creates a rigid connection between a connection rod (conrod)

and the crankshaft. Such conditions subsequently lead to the destruction of the conrod

and may damage other components of the engine, such as the cylinder block. Clearly,

there is significant need for a system that can detect failure initiation and raise an alarm

or stop the machinery automatically.

Several systems that approach this problem in different ways are available on the

market; however, the majority of such systems focus on long-term wear and aim to

detect slight variations in measured parameters. Moreover, they are relatively

expensive and available only for limited applications.

5

1.4 Research Objectives

Based on the information review (see Chapter 3), the proposed system can be

subdivided into vibration acquisition and processing and the oil contamination

monitoring systems. It was decided that the system would utilise two microcontrollers

to monitor specified parameters. One microcontroller is responsible for reading the data

of the engine's RPM and the debris monitoring sensor. The second microcontroller acts

as the master controller. It reads the vibration signal, receives data from the slave

controller, and communicates with Matlab. A Micro-Electro-Mechanical-System

(MEMS) accelerometer (see Chapter 3) and an industrial pressure sensor will be

utilised for collecting the data.

At first, all necessary hardware was identified based on specifications such as

compatibility with the broad range of peripheral equipment, the accuracy of the analog-

to-digital converter (ADC), as well as programming aids such as user-friendly

Integrated Development Environment (IDE) and the ability to communicate with

Matlab.

• Evaluate the signal processing techniques used in vibration analysis of running

machinery.

• Based on experiments, choose which of the features extracted from the

vibration signal most accurately reflect the changing conditions of the test

engine.

The next objective was to write a suitable Matlab GUI, since it was necessary to

automate the implementation of various filtering and processing algorithms. Moreover,

it was required to replay and reprocess already recorded data to evaluate various

parameters regarding their validity for the engine condition monitoring.

As such, it was intended that the GUI would provide an easy platform for the launching

of main subroutines used during the experiments and the post-processing of the data.

The key requirements for the GUI are:

6

• Establish the communication between Matlab and the microcontrollers.

• To provide easy access to subroutines for data logging and data processing.

• To provide visual outputs by means of real-time graphs.

• To possess abilities to replay previously recorded data.

Furthermore, the Matlab program should perform the decision-making process

following the established thresholds of chosen parameters; hence, another research

objective was to establish the thresholds between normal and abnormal conditions.

The entire project was divided into the following stages:

• Select parameters to monitor based on the literature review (see chapters 2 and

3).Write all necessary Matlab functions and include them in the GUI (see

section 4.3).

• Design the system prototype (see section 4.4).

• Write C program for the microcontrollers (see sections 4.4.1- 4.4.3)

• Fabricate the test bench to accommodate the test engine and all necessary

subsystems (see section 4.7).

• Conduct initial experiments on the test engine to establish the failure thresholds

(see chapters 5 and 6).

• Test the system’s response to induced failure conditions based on established

thresholds (see chapter 7).

• Analyse outcomes of the experiments (see chapter 8).

The outcomes that the project aimed to achieve were the following:

• Present the working prototype

• Provide valid data of experiments that evaluate the prototype's performance.

7

• Prove or reject the project's assumption that the system will reduce the damage

to the engine components by warning the user of the presence of the fault

condition.

1.5 Conclusions

The primary goal of the project was to evaluate the performance of the proposed

system. The remit of the project has been extended to develop the Matlab program

accompanied by the GUI in order to provide a platform for manipulating the

experimental data. The Matlab program can potentially be used in similar experiments

as it contains many tools for recording, processing and analysing data obtained from

the vibration sensors.

8

Chapter 2 Literature Review

2.1 Introduction

The following literature review was conducted to evaluate the knowledge gap in the

chosen area of research. Initially, the research focused on works relevant to problems

identified in the previous chapter, pursuing the following main areas of interest:

1. Failure detection in engines.

2. Condition monitoring of engine oil.

3. Engine vibration monitoring.

Furthermore, since engine vibration monitoring is a complex subject and requires

extensive coverage, the literature review incorporates in-depth analysis of this topic.

2.2 Failure detection in engines

Analysis of the literature revealed that several methods of real-time engine condition

monitoring have been developed and tested; however, the majority of designs and

already-tested solutions concentrate on the progressive degradation of internal

components caused by natural wear. Limited information was available on studies

aiming to detect rapid and unpredictable degradation of journal bearings of

conventional reciprocating engines.

Three main types of monitoring system can be distinguished:

1. Lubrication oil condition monitoring.

2. Vibration analysing systems.

9

3. Systems that combine both methods.

Little literature can be found regarding the second and the third types. A few sources

discovered theoretically considered using parameters such as vibration level in

combination with a fluctuation of the torque and the combustion pressure, as the

reference parameters to indicate the fault state of an engine (Watzenig, et al., 2013).

2.3 Engine Oil Conditions Monitoring

For the majority of researchers, the area of interest is centred on the development of

reliable solutions for real-time oil condition monitoring. The well-known and widely

accepted oil testing technique involves manually taking oil samples on a regular basis

and performing laboratory analysis. This method has been proven to provide accurate

results that could be used for the scheduled maintenance of a customer's equipment

(Agoston, et al., 2008). The proposed research topic, however, focused on real-time

condition monitoring; hence, the literature review was mainly comprised of studies

regarding online systems.

The central principle behind online monitoring is to test parameters of the oil passing

through the device at the constant flow rate. It was possible to identify two most

common concepts in this field:

• The ferromagnetic particles count method, which is based on a sensing of the

electromagnetic field disturbances as wear particles enter a tube, with the

induction coil located outside of the tube (Stecki, 1980; Lewicki, et al., 1992;

Du, et al., 2010; Dupuis, 2010; Zhu, et al., 2013)

• Monitoring the degradation of the oil by examining properties such as the

dielectric constant and transparency (Kumar, et al., 2005; Raadnui and

Kleesuwan, 2005; Agoston, et al., 2008).

Some researchers exercised other approaches; however, to some extent, they represent

variations of both methods described above.

10

Despite the extensive work that has been done in this area, Yan, et al. (2013) point out

that we have yet to develop an adequate system that can accurately estimate the

condition of components based on the oil analysis. There is still considerable

uncertainty among researchers as they try to specify the threshold for the size of a wear

particle that would signal the presence of a fault condition (Macián, et al., 2003). Zhu,

et al. (2015) argued that abnormal wear would generate particles of 20µm to 150µm in

size, while Matsumoto, et al. (2016) proposed that particles would need to be larger

than 30µm for bearing failure to occur. Vališ, et al. (2015) targeted particular metals

such as iron (Fe) and lead (Pb), which are the base constituents of sliding bearings.

They examined dependencies between different bearing materials and contaminants

released into the oil during normal and abnormal conditions.

2.4 Engine vibration monitoring

Engine vibration monitoring is not as highly regarded as oil condition monitoring due

to uncertainties amongst researchers regarding what features of the vibration signal

fault conditions. Geng, et al. (2003), Muñoz, et al. (2012) and Peng, et al. (2005)

concentrated on acoustic emission and attempted to correlate the impact of excitations

in engines occurring during mechanical impacts, such as opening/closing of inlet/outlet

valves, and the fuel combustion. Their work is based on applying wavelet filtering (see

chapter 3 for detailed review of filter algorithms) to extract impact signatures presented

in the signal, and synchronising them with the angular position of the crankshaft.

Comparing the energy of the acoustic emission and the magnitude of the vibration with

the reference values, it is plausible to indicate abnormal conditions occurring in the

engine. Furthermore, Taghizadeh-Alisaraei, et al. (2016) applied the Fast Fourier

Transformation (FFT) and wavelet filtering, combined with a mapping of the spectrum

of the signal against the crankshaft's angular position. They concluded that abnormal

conditions, such as knocking or improper fuel combustion, would induce specific

frequencies that are not present in the reference signal.

11

Broatch, et al. (2008) suggest that measuring the angular acceleration of the engine

block reveals fluctuations in the torsion vibration caused by abnormal firing conditions

in a cylinder. In their work, they found that, under normal working conditions, the

torque pulses are proportional to the angular acceleration of the engine block about the

axis of the crankshaft's rotation. As such, the main torque pulses produce a change in

angular acceleration that is equal to the firing frequency of the engine, which in turns is

a multiple of the rotational frequency. A failure in one of the cylinders, however,

causes the firing frequency to become a fraction of the rotational frequency.

Moosavian, et al. (2016) based their work on extracting and comparing statistical

features of the vibration signals, such as RMS, Skewness, Kurtosis and Crest Factor.

Their experiments demonstrated that the induced fault condition might cause a

significant increase in values of outlined parameters.

2.5 Conclusions

From a scan of the literature, it was impossible to identify any relevant source

describing a system that could prevent the catastrophic destruction of the main

components of an engine. Most of the systems on the market, or those that are currently

proposed, mainly concentrate on fine particles oil analysis, whose aim is to provide

component condition monitoring over the long term.

The literature review failed to uncover any data regarding experiments testing the

proposed systems at critical conditions such as abnormal or rapid bearings degradation.

No comparison has been made to demonstrate the performance of such systems when

sudden crankshaft bearing failure occurs. A few similar experiments were conducted on

gearboxes and test engines (Yibo, et al., 2010; Li, et al., 2012). Despite the tests

yielding positive outcomes, they were conducted on the piston/liner group and the

valve mechanism where failures of these components usually do not lead to

catastrophic damage of engines. Moreover, during the experiments, the test engines

were driven by electric motors, providing only partial simulation of the real operational

conditions

12

Chapter 3 Information Review

3.1 Introduction

Several parameters can be monitored to detect a fault condition of a running engine.

These can be separated into two classes. The first relates to problems in the engine's

thermodynamic cycle. Parameters such as the combustion pressure and the exhaust

temperature may indicate faults in intake, exhaust or fuel systems. The second class of

parameters is used to determine problems associated with rotating and reciprocating

parts of the engine. Engine oil contamination, a loss of power, temperature rise and

vibration monitoring can provide real-time assessment criteria for the detection of fault

conditions. Since the project’s aim is to detect the failure of the plain bearings,

particularly crankshaft bearings, the second class had been considered in detail.

3.2 Wear particles detection

According to Cubillo, et al. (2016) abrasive wear contributes to around 60% of

bearings damage.

13

Figure 3-1 - Types of bearing damage and frequency of occurrence

(Source : Cubillo et al. 2016).

Wear particles that contaminate the oil are released due to friction between sliding

surfaces. To determine the particles of interest, it is necessary to consider the

composition of crankshaft bearings.

Figure 3-2 - Journal bearings composition (Source : McGeehan & Ryason 1999)

In Figure 3-2, it is shown that the plain crankshaft bearing consist of three primary

layers, as well as two flash layers that wear away in the first hours of the first run.

During normal operation, the wear interface is established between the crankshaft

14

journal and the second layer, which is called 'overlay'. Laboratory oil tests are designed

to detect the concentration of lead and tin as representatives of the machine condition.

The typical particle size ranges between 10–20µm for the average condition (see Figure

3-3) and increases towards 50–100µm in the case of abnormal wear (Du, et al., 2010;

Matsumoto, et al., 2016).

In failure mode, the overlay layer rapidly disintegrates, leaving the copper-based lining

exposed. The copper lining is soft and porous, apposite to the generation of large flakes

of metal. Since the proposed system is aimed at detecting advanced or catastrophic

failure, the target size range chosen is 1–10mm.

Figure 3-3 - Wear particle size relative to the failure mode (Source : Macián et

al. 2003).

3.2.1 Inductive method of the wear particles count

The most widely accepted methods of wear particles detection are the online

Ferromagnetic Particles count or the Magnetic Induction count. These kinds of systems

are placed in parallel to the main oil galleries in order to continuously monitor the

amount and size of wear particles passing through the sensor. The sensing algorithm is

based on detecting a disturbance in the magnetic field caused by metal debris. Each

disturbance is counted as a wear particle. By counting the number of disturbances per

15

set time and knowing the flow rate, the system provides an output of the number of

particles per control volume.

Figure 3-4 - Inductive wear debris sensor and the output signal (Source: Miller

& Kitaljevich 2000)

The inductive method requires relatively expensive sensors and a control module; thus,

it is generally only used in aircrafts and large marine engines where the good condition

of the components is critical. Moreover, the reviewed literature examined the

performance of this system for long-term wear detection. The actual behaviour of the

sensors under extreme conditions was unclear.

3.2.2 Pressure drop method

Hunt (1995) refers to a relatively simple and reliable method of detecting excessive oil

contamination by wear debris.

16

Figure 3-5 - Principal of the pressure drop method (Source :Hunt 1995).

The pressure drop method deploys two pressure sensors placed before and after a

filtering element. As the filter becomes blocked by debris, a decrease in pressure across

the element is detected and an alarm is triggered. The main limitation of this system is

that its sensitivity depends on the mesh size of the filter; however, this disadvantage

can be overcome by placing a series of meshes with additional sensors. The advantage

of this method is that it does not require expensive equipment and complicated signal

processing algorithms. This approach has promising potential in being able to detect

catastrophic failure. Moreover, the system can be simplified by reducing it to one

pressure sensor located upstream. In this case, blockage of the element will cause the

pressure to rise, which can be incorporated as the triggering point for the alarm.

Several points need to be taken into account. Firstly, the system may become blocked

by soot or by contaminants introduced during regular maintenance; therefore, the

system requires regular inspection and cleaning. An alternative to cleaning could be to

create a backflow by reversing the oil pump. Secondly, the mesh restriction should be

considered. The effect of increased viscosity of the cold oil may cause issues if

equipment operates in a cold climate. The chapter 5 will describe a set of experiments

that evaluate the effect of the mesh size on the flow restriction at different oil

temperatures.

17

3.3 Vibration Signal Acquisition and Processing

3.3.1 Definition of Vibration

Vibration can be viewed as a by-product of forces that act within a system. In other

words, it is the wasted energy that could be used to produce some work. Vibration,

however, is a rather more complicated phenomenon. Excessive vibration can accelerate

the fatigue of components, causing their premature destruction. In conventional

engines, unwanted vibrations are managed by balancing the rotational masses with

counterweights or balancing shafts. The torsion vibrations that accompany the torque

pulses can be suppressed using some viscous or rubber dumpers.

It has been found that vibration signatures produced by machinery change as the

condition of rotational components deteriorate. As such, by analysing the variance of

the vibration signature of a healthy component with current signal, it can be revealed

that some abnormality is developing in the component (Moosavian, et al., 2016).

Vibration signatures produced by reciprocating engines are much more complicated

than those generated by steady rotating machines, such as electric motors or gearboxes

(Geng, et al., 2003). The process of extraction of the useful information from the

complex signal requires various techniques that will be discussed further.

Vibration is often examined according to its two main features, which are represented

by the time domain and the frequency domain. It is possible to analyse vibration history

in the time domain implementing the statistical approach, whereas mathematical

methods are used to analyse vibrations in the frequency domain (Serridge and Licht,

1987).

18

3.3.2 Signal Sampling

i. Sampling Frequency

 To avoid the aliasing effect, the sampling frequency must be twice as high as the

maximum frequency of the sampled signal. This approach is known as the Nyquist

theorem (Misiti, et al., 1996). The processes, such as combustion and the opening and

closing of valves, occur approximately nineteen times per revolution for a six-cylinder

inline, four-stroke petroleum engine. For the test engine, the maximum RPM during the

trial did not exceed 2000–2500rpm; hence, to satisfy the Nyquist theorem, the

minimum sampling frequency is:

The sampling frequency (Nyquist rate) must be not less than 750Hz. The developed

signal acquisition system has the sampling rate of 2kHz, which provides sufficient

background for avoiding the aliasing effect (Levis, 2011).

Figure 3-6 - Aliasing effect (Source: Levis 2011)

19

ii. Discrete sampling vs. RPM referenced sampling

The sampling of the vibration data can be accomplished by either a fixed number of

samples per second or a certain sampling rate per revolution. The first method is

relatively straightforward to implement; however, the output signal reveals only the

general content of the vibration, such as harmonics orders, RMS, Crest Factor and other

parameters.

RPM referenced sampling requires an impulse to be generated as the output shaft

passes 360 degrees, to synchronise the sampled data with the angular position of the

shaft. This approach relies on more complex equipment than for the discrete sampling.

The advantage of this method, however, is that it allows the determination of a certain

event occurring along the full revolution of the shaft (Sujatha, 2010).

3.3.3 Signal Processing

i. RMS

Peak-to-peak (PTP) magnitude is one of the main features of the vibration signal that

indicates the state of a system. The direct consequence of abnormalities occurring

inside of a component can be an excessive level of vibration. Comparing the current

PTP with the reference magnitude, one can detect when the functionality of the engine

is deteriorating; however, PTP provides a poor representation of the signal's state since

it does not take into account the time history of the signal. The RMS can be used to

overcome this issue, as it represents the average level of the signal, or in other words,

the energy content of the signal.

The RMS is a square root of the mean of the sum of samples squared, and can be

calculated using the following formula:

20

Where:

a =Value of a sample

n =Number of samples

The RMS of the signal measures the vibration energy content. Comparing the current

RMS with the reference RMS provides an estimation of the state of the component.

Increasing RMS value observed for the same working condition over a fixed period

provides a good indication of a problem developing in the system (Sujatha, 2010).

ii. Crest Factor

The Crest Factor represents the ratio of peak value to the RMS. Although the RMS

value of a signal is a valuable parameter when the total vibration energy increases,

faulty components can generate random peaks of high magnitude that might not affect

the RMS value considerably. For this reason, to increase the sensitivity of the RMS

method, the ratio of the largest peak to the RMS, also called the Crest Factor, was

introduced.

In general, the short and sharp pulses that are generated by a worn bearing may not

contain enough energy to affect the RMS readings; however, increasing value of the

Crest Factor indicates the origination of a system fault or the presence of erratic

vibrations. Another apparent aspect of the Crest Factor is that it is insensitive to the

speed and load factor. When an increase in the engine speed causes a rise in the RMS

value, the Crest Factor remains the same. This feature makes the Crest Factor a good

parameter for a visual representation of the vibration data statistics (Sujatha, 2010).

21

Figure 3-7 - Representation of the relation between the RMS value and the Crest

Factor (Source: Unknown)

Figure 3-8 - Comparison of the RMS and the Crest factor (Produced with the aid

of MATLB 2016A student version).

22

Figure 3-8 depicts a vibration signal obtained from a running engine. The plot

represents a thousand frames of data, where each frame contains five hundred samples.

As seen at the beginning of the plot, the RMS (blue curve) corresponds to a certain

RPM. At the point of four hundred frames, the RPM doubled, which affected the RMS

value, whereas the magnitude of the Crest Factor (black curve) remained unchanged.

iii. Kurtosis

Kurtosis is a statistical term that is calculated as a ratio of the fourth order statistical

moment to the second order of the moment (Bruel and Kjaer, 2009).

Where:

N =Number of samples

X = Value of the sample

Kurtosis provides a similar output to the Crest Factor and is entirely independent of the

load factor and rotational speed of the shaft. Kurtosis describes the number of peaks in

a signal; hence, the more random peaks present, the higher the Kurtosis number.

Sujatha (2010) highlights that Kurtosis is more sensitive to sharp spikes in the signal;

however, as the fault progresses, the number of spikes increases, causing the Kurtosis

value to return to normal. As such, Kurtosis is only suitable for the early detection of a

fault.

In Figure 3-9, the same data of a running engine that was used in Figure 3-8 is shown.

Here, the plot illustrates the correlation between the Crest Factor (blue curve) and the

Kurtosis values (red curve). It is worth noting that the Gaussian signals (signals with

noise normally distributed according the Gaussian probability density function (Sujatha

2010)) have Kurtosis values around three.

23

Figure 3-9 - Comparison of the RMS and the Kurtosis (Produced with the aid of

MATLB 2016A student version).

iv. The decibel scale

The decibel scale represents a ratio of the measured signal to the reference signal in a

logarithmic scale. It can be used to compare the measured decibel level with the level

defined by the user. For instance, one can say that the measured signal is 20dB above

the base signal.

Where:

a= measured vibration amplitude

24

a(ref) = reference amplitude. According to International Organization of

Standardization (ISO) the value of a(ref) = 10e-6 m/s^2 (ISO 1683, 2015). The same

decibel scale can be applied to the RMS value (Serridge and Licht, 1987).

v. Waterfall Analysis

The waterfall analysis is a three-dimensional plot of a vibration signal where the X-axis

represents the frequency domain, the Y-axis shows the time domain, and the magnitude

is plotted on the Z-axis. Although waterfall analysis is not suitable for real-time signal

processing, it provides a good representation of the history of the signal. It is

extensively used to determine what happens during transient conditions. It reveals

trends in the signal that may arise due to the initiation and progression of fault

conditions.

Figure 3-10 - Waterfall plot 2D view (left) and 3D view (right) (Produced with

the aid of MATLB 2016A student version).

Figure 3-10 depicts the vibration signature of a six-cylinder four-stroke inline engine

plotted as a waterfall. Initially, the engine runs at 1100rpm. The first and third order

harmonics can be distinguished as the vertical lines (light blue). They represent a

rotational frequency of 18Hz and a firing frequency of 55Hz, respectively. After

approximately 100 seconds, the RPM increased to 2200rpm. As shown, the firing

25

harmonic became more prominent (yellow region) and caused the resonance to be

excited.

vi. Fourier Transform Analysis

Discrete Fourier Transformation (DFT) states that every signal consists of many sine

waves with various frequencies overlaid on top of one another. DFT allows the signal

to be decomposed into its sinusoidal constituents. Afterwards, the DFT results can be

plotted as a function of the magnitude and corresponding frequency. The plot is often

called the spectrum of the signal. The DFT method provides a high resolution of the

spectrum of the signal.

Figure 3-11 - Sinusoidal components of complex signals (Source :Misiti et al.

1996)

26

vii. The FFT

The high accuracy and resolution of the DFT method come at the cost of computational

time. In applications that require real-time signal processing, applying the DFT method

puts limitations on the maximum allowed sampling frequency. The introduction of Fast

Fourier Transformation (FFT) made it possible to overcome the sampling rate

limitations of DFT. The key idea of the FFT method is that the signal is divided into

frames (see Figure 3-12).

viii. Framing or Buffering

Signal samples are grouped into an array, or buffer, to perform the FFT. The more

samples placed in one buffer, the higher the resolution of the FFT will be. If the buffer

is too large, however, a substantial time frame will be compressed; for example, if the

sample rate is equals to 1kHz and the buffer length is two hundred samples, the FFT

represents only five frames per one second. As such, the time representation of the

spectrum suffers; hence, the balance between the size of the frame and desired

resolution must be maintained. Moreover, if one decides to use a large buffer while

maintaining a broad time representation, a so-called window overlap is used. The idea

is to provide approximately 25% overlap between consecutive buffers (Levis, 2011).

Figure 3-12 - FFT window (Source: Misiti et al. 1996)

27

ix. FFT for Vibration Analysis

Figure 3-13 - Example of a signal spectrogram plot (Source: Tienhaara 2004)

Figure 3-13 represents a typical FFT obtained by processing the vibration signal of a

running four-stroke diesel engine. The peaks on the graph represent orders of the main

harmonics. The first order corresponds to the engine RPM. Additionally, it can be seen

that some half orders are present. The full orders account for the mass forces, such as

bending and torsion, while the half orders occur due to an imbalance in combustion gas

forces. It is worth noting that the presence of particular harmonics and their magnitudes

greatly depends on the number of cylinders and the arrangement of crankpins; for

example, inline six or V8.

One method used to counter a mass forces imbalance is placing counterweights on the

crankshaft (Tienhaara, 2004).

x. Frequency domain

The signal frequency domain is represented by plotting the real part of the output of the

FFT function, as the FFT also produces complex numbers. The resultant graph provides

28

a baseline for the remaining calculated parameters, such as the RMS and the Kurtosis.

The spectrogram visualises the base frequencies of sinusoidal components of the signal.

For instance, the spectrogram of a four-stroke internal combustion engine will certainly

show several distinct harmonic orders, such as the rotational frequency (first order), the

firing order harmonics (third order), and some cylinder pressure variation harmonics

(usually half orders of the main harmonics). By examining such a spectrogram, one can

determine if any unusual harmonic is amplified on the plot. Comparing the spectrogram

with values of the RMS, the decibel scale, and the Crest Factor, the user can make an

informed decision about the condition of the equipment.

The torque pulses caused by combustion contribute the most to the few first harmonic

orders. The combustion frequency can be estimated as follows (Li, et al., 2016):

Where:

n = RPM

c = number of strokes (e.g. two- or four-stroke engine)

i = number of cylinders.

It is possible to detect fault conditions based solely on the signal spectrogram. The

following figures illustrate this clearly.

29

Figure 3-14 - Frequencies present in a four cylinder engine under normal

condition (Source: Broatch et al. 2008).

Figure 3-15 - Frequencies present in a four cylinder engine under a faulty

condition. (Source: Broatch et al. 2008).

Figures 3-14 and 3-15 are spectrograms of the vibrations of a four-cylinder engine in

normal working conditions and with an induced fault on a single cylinder, respectively.

It is a clear sign that when the fault is present, the first order harmonic appears as a

fraction of the firing frequency. Moreover, the amplitude of the first frequency

increases significantly.

30

3.3.4 Signal Filtering

It is inevitable that a signal will be contaminated by noise. Typically, noise is

introduced by the signal acquisition device itself. Frequencies from the Alternating

Current (AC) supplies are often the main source of electrical noise in the system. As

explained in section 3.3.3, the FFT decomposes a signal into its sinusoidal components

where one or more of them may belong to noise. Knowing the frequency of the noise

component makes it possible to eliminate it from the spectrum of the signal; however,

since the frequency of the noise is not always apparent, several methods have been

developed to aid the filtering process (Levis, 2011).

i. Discrete filtering

The discrete filter can be characterised with the pass band, the gain, and the transition

bandwidth. In other words, the filter is designed to pass the desired frequencies and

attenuate those that are not of interest (see Figure 3-16). The magnitude of the gain to

bandwidth ratio (the slope) represents how sharp the transition between the pass state

and the cut-off state is. Ideally, one would like to see a vertical, brick wall-like

transition, which is not always achievable.

31

Figure 3-16 - Typical low-pass filter transition band (Source: Levis 2011).

Two main types of discrete filters can be distinguished. Low-pass filters attenuate

frequencies that are lower than the cut-off threshold, whereas high-pass filters allow

only frequencies above the threshold to pass. It is possible to combine both types of

filters to allow only desired bandwidths to pass, forming a band-pass filter (see Figure

3-17). By bringing the thresholds of both filters closer together, one can design a filter

that cuts off only a specific frequency (Levis, 2011). This type of filter is called a notch

filter.

32

Figure 3-17 - High-pass (top) and band-pass (bottom) filters examples (Source:

Levis 2011).

The main disadvantage of discrete filtering is that, if a signal is passed through a low-

pass filter, and the same data is then passed through a high-pass filter to obtain the

bandwidth filtering, we will end up with twice as much data as we had before the

filtering (see Figure 3-18). For this reason, in the case of real-time signal processing,

this method requires powerful computers to process the doubled amount of data.

Figure 3-18 - Passing a signal through two filters produces two signals. (Source:

Misiti et al. 1996).

33

To set the filtering thresholds, the frequency of the noise must be known. In a real

situation, the source of the noise and its frequency are not always apparent; therefore,

other methods of deriving the noise components from a signal were examined.

ii. Wavelet signal decomposition and filtering

Al though wavelet decomposition is a relatively new technique, it has gained

widespread popularity in signal processing due to its powerful potential to reveal the

time and frequency information of the signal (Moosavian, et al., 2016). It has the ability

to distinguish different trends in a signal, which other methods, such as the FFT, can

overlook.

As noted earlier in the discussion (section 3.3.3), the FFT method utilises a kind of

windowing of the signal. The window's size is chosen to balance the time density and

desired resolution (accuracy) of the spectrum plot. The main drawback of this method

is that the user is unable to vary the window's size during the sampling.

Wavelet analysis (WA) is the next step in signal processing. It allows the application of

a flexible windowing technique, or as it is called by WA authors, scaling. In short, the

wavelet is a pattern that represents various windows’ sizes. For instance, one can opt to

use large windows to reveal precise low-frequency components, while applying small

windows for higher frequencies (Misiti, et al., 1996).

Figure 3-19 - Sample of a wavelet (Source: Misiti et al. 1996)

34

Figure 3-19 shows a simple wavelet pattern. The algorithm that performs the WA uses

scaling and shifting of the wavelet pattern. Scaling is the stretching or compressing of

the wavelet, while shifting means moving along the signal; thus, the WA algorithm

selects a discrete length of the signal and compares the wavelet with the signal to

obtain the correlation coefficient (see Figure 3-20).

Figure 3-20 - Correlation coefficient (Source: Misiti et al. 1996).

It then shifts the wavelet to the next discrete piece of the signal (see Figure 3-21).

Figure 3-21 - Shifting of a wavelet (Source: Misiti et al. 1996).

After shifting to the end of the signal, the WA algorithm applies the scaling to the

wavelet and repeats shifting from the beginning of the signal (see figures 3-22 and 3-

23).

35

Figure 3-22 - Stretching a wavelet (Source: Misiti et al. 1996).

Figure 3-23 - Scaling of a wavelet (Source: Misiti et al. 1996).

Implementing wavelet decomposition and reconstruction of a signal enables the

extraction of required frequency components from a signal, avoiding side effects such

as aliasing and power leakages, which are commonly introduced by conventional

filtering techniques (Geng, et al., 2003).

Various wavelets are available through the Matlab Wavelet Toolbox. Each of the

wavelets provides different outcomes to the decomposition of a signal. By trial and

error, it is possible to select the wavelet that will reveal desired properties of the signal.

Moosavian, et al. (2016) studied the use of wavelets in detecting abnormal content in

the vibration signal of a four-stroke reciprocating engine. They suggested using the

"dmey" wavelet following eight levels of decomposition.

36

iii. Wavelet vs Discrete filtering

As discussed earlier, in section 3.3.3, the application of discrete filtering doubles the

amount of data to be processed. Wavelet filtering introduces the concept of

downsampling (see figure 3-24), which eliminates every second sample.

Figure 3-24 - Discrete filtering vs. Wavelet's down sampling (Source: Misiti et al.

1996).

It could be suggested that downsampling introduces an aliasing effect; however, it will

be explained why this should be ignored later on.

After the initial wavelet filtering, high- and low-frequency components are

decomposed into several levels (see figures 3-25 and 3-26). The user specifies the

number of the levels based on the signal background information, or an experimental

approach (Misiti, et al., 1996).

37

Figure 3-25 - Wavelet signal decomposition (Source: Misiti et al. 1996).

Figure 3-26 - Wavelet signal decomposition (Source: Misiti et al. 1996).

The user specifies which level (cD) is considered noise and initiates the signal

reconstruction. The reconstruction process is simply a reverse of the decomposition

using upsampling. This upsampling eliminates the aliasing effect (see figure 3-27).

38

Figure 3-27 - Up-sampling and the signal reconstruction (Source: Misiti et al.

1996).

Since the WA filtering output contains the same number of samples, the computational

time required for the signal’s post-processing is less than if discrete filtering had been

implemented.

The most popular wavelets were invented by Ingrid Daubechies, who is renowned in

the wavelet research discipline.

Figure 3-28 - The Daubechies's wavelets (Misiti et al. 1996).

39

In general, the higher the wavelet number, the more accurate the decomposition

becomes; however, accuracy is achieved at the cost of computational time.

iv. Kalman Filter

The Kalman filter was introduced in 1960 by the American electrical engineer Rudolf

Emil Kalman (born in Hungary). It is worth noting that in mathematical terms, the

Kalman filter is not exactly a filter; rather, it is an approximation of the state of the

signal between two measurements, based on statistics such as the Gaussian distribution.

This method is widely accepted in smoothing noisy and intermittent signals, and gained

its popularity after being used by NASA in the Apollo program. The algorithm of the

filter is simple and uses little computational time.

The derivation process of the equation is rather involved and, for transient noise

conditions and 2D and 3D measurements, requires an extensive knowledge of

mathematics to solve a set of differential equations. For instance, if the noise changes

over time, the Kalman gain coefficient must be calculated for every iteration. In the

case of filtering an electric line noise, however, the problem involves 1D measurements

of the line voltage. In this way, the Kalman algorithm is greatly simplified into a set of

linear equations.

40

Time update set of equations

 Xk = Xk-1

 Pk= Pk-1

Measurement update set of equations

Where:

Xk = Filtered signal.

Zk=Unfiltered signal.

Pk= Filter sensitivity coefficient (estimated experimentally).

R = Standard deviation of the signal.

Kk=Gain factor.

The coefficient P determines the filtering effect of the Kalman algorithm on the signal.

For instance, the greater the value of P, the more Kalman assumes that little noise is

present. If we reduce the value of P, Kalman assumes that the greater portion of the

signal consists of noise. If P equals zero, the whole signal is treated as noise.

41

The algorithm is explained thus. The initial value of the signal and the value of the

noise intensity, P, are selected and substituted into the first set of equations. The results

are passed to the second set of equations to obtain new values of Xk and Pk. These new

values are then passed back into the first set of equations, and the process is repeated

(Welch and Bishop, 2001).

Figure 3-29 - Kalman filtering. Top plot P=1, Bottom plot P=0.1 (Produces with

aid of MATLAB 2016A student version)

Matlab allows the Kalman filtering algorithm to be easily implemented for one-

dimensional signals (see Appendix B for the example code). Figure 3-29 represents a

sinusoidal signal contaminated by random noise (red) overlaid by the filtered signal

(blue). As shown, when the value of P is 1, almost no filtering is applied, whereas when

P equals 0.1, the filtered signal is almost de-noised.

42

3.3.5 Signal Processing Software

Matlab was chosen as the signal processing software for its flexibility to be used on any

platform that has Matlab installed (Howard, 1995). Other advantages of Matlab are

outlined as follows:

• The signal spectrum can be computed with very high resolution and along the

full frequency band.

• The signal data can be stored in numerous file standards.

• Powerful graphical capabilities.

• The flexible graphic user interface can be easily altered to support required

specifications.

3.3.6 Vibration Acquisition Hardware

The most common and widely accepted types of sensor used in vibration acquisition

systems are accelerometers. There are a variety of accelerometers available on the

market, from fairly expensive units with high measurement precision to relatively

cheap but reliable products. There are two types of accelerometers. These are micro-

electromechanical systems (MEMS) sensors and piezoelectric sensors.

1. MEMS sensors

The working principle of MEMS accelerometers is based on a mass that is suspended

between two electrodes. The electrodes represent a variable capacitor (O'Reilly, et al.,

2009). As acceleration occurs, the mass shifts due to inertia, causing it to move closer

43

to one of the electrodes (see Figure 3-30). As a result, the capacitance changes, leading

to variations in the output voltage. The main advantage of this type of sensor is that

they have in-built amplifiers and low-pass filters; therefore, the output voltage can be

sent directly to a microcontroller. Some MEMS sensors have an analog-to-digital

converter and can communicate via Inter-Integrated Circuit (I2C) or Serial Peripheral

Interface (SPI) interfaces, which makes them adaptable to any embedded systems. One

of the main disadvantages of MEMS sensors is their narrow bandwidth. This means

that they are not suitable for detecting vibrations consisting of a wide range of

frequencies.

Figure 3-30 - Schematic representation of a MEMS accelerometer (O'Reilly et al.

2009)

2. Piezoelectric Sensors

These kinds of sensors are similar to MEMS. The only difference is that the mass that

moves due to inertia acts on a piezoelectric crystal, causing it to generate a potential

difference in millivolts (see Figure 3-31). The main advantages of piezoelectric

accelerometers are as follows:

• The MEMS provide the output of a real-time vibration in 'g' units, whereas

piezoelectric accelerometers are able to measure the frequency of change of the

acceleration in Hz, which makes them more suitable for vibration reading.

• They are extremely responsive and possess very wideband sensitivity, ranging

from 1Hz to tens of kilohertz.

44

• They do not require an external power supply.

Figure 3-31 - Schematic of a piezoelectric accelerometer (Serridge & Licht 1987)

.

Table 3-1- Accelerometers considered for the project (Source : www.analog.com
and www.endevco.com)

Accelerometer type Voltage Range Output Bandwidth

ADXL335 MEMS 1.8-3.6 3.6 g Analog 0.5-1600Hz

ADXL345 MEMS 2.0-3.6 2-16g SPI/I2C 0.05-1600Hz

ENDEVCO Piezoelectric N/A 1-1000g Analog 1-10000Hz

Table 3-1 provides the technical characteristics of the most common accelerometers

available of the market.

3. Microcontroller

One of the major objectives of the project is to design an embedded system that is

capable of making simple, logical decisions based on inputs from sensors and

processed data from the host Personal Computer (PC). Sensors of pressure and

45

temperature, for example, provide analog outputs; therefore, availability of an analog-

to-digital converter (ADC) module is paramount.

The selected microcontroller should have the following specifications:

• 20 as the minimum number of Input/Output (I/0) pins.

• An in-built ADC.

• A programming language converter.

• Wide support from a community of enthusiasts.

There are a few distinct platforms available, such as the AVR®, the Microchip®, and

the AMR®.

Raspberry Pi 3

Raspberry Pi 3 (see figure 3-32) is a standalone computer, not a microcontroller. It has

a powerful central processing unit (CPU) and a graphics processing unit (GPU), which

are both governed by a Linux-based operating system. These features make Raspberry

Pi 3 an ideal platform for an independent system that can acquire signals, perform real-

time processing of the signal, and make logical decisions following outputs. The

project’s signal processing, however, is based on the Matlab environment, which is

currently not supported by Linux-based systems. Nevertheless, similar mathematical

packages are available for Linux platforms; thus, the Raspberry Pi 3 could be

considered as the autonomous module to perform the signal acquisition and processing

in future work.

Figure

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

built

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Figure

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

built

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Figure

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

built

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Figure

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

built

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Figure

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

built

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Figure

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

 communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

 3

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

3-

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

-32

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

32

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

32 -

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various appli

communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

- Raspber

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

various applications. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

The PIC can

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Raspber

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

 be programmed with the aid of the MPLAB

the Microchip

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written librarie

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Raspber

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

the Microchip Technology Inc

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

written libraries to communicate with peripheral

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Raspber

Microchip PIC

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Raspber

Microchip PIC ®

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

states of variables

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Raspber

®

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

1975. Since then,

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

states of variables to be observed

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

simple tasks and

outlined issues, PIC

Raspber

®

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

 the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

simple tasks and necessitate consultation

outlined issues, PIC

Raspber

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

outlined issues, PIC

Raspberry Pi 3 board

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

 microcontrollers are

ry Pi 3 board

The abbreviation PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

The abbreviation PIC®

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

The main drawback of

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

®

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

The main drawback of a

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

a PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

 stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

industrial applications for their

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

their

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

their

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

their

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

their

be programmed with the aid of the MPLAB

Technology Inc

supports entries written in assembly language. It also has

to be observed

PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

the company

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces,

their

be programmed with the aid of the MPLAB

 website. The MPLAB has

supports entries written in assembly language. It also has

to be observed

PIC platform is that the registers addressing commands and

the ports settings are not unified

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

 has

cations. PIC microcontrollers are available with various clock speeds,

communication interfaces, and I

 broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

to be observed and the breaking points in the main code

PIC platform is that the registers addressing commands and

the ports settings are not unified across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

ry Pi 3 board (

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

has

cations. PIC microcontrollers are available with various clock speeds,

and I

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

(Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

has

cations. PIC microcontrollers are available with various clock speeds,

and I

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

has

cations. PIC microcontrollers are available with various clock speeds,

and I

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

has developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

and I

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

and I/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

across

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

 different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

Source:

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

microcontrollers are widely

www.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

necessitate consultation

widely

www.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

 with the PIC datasheet

widely

www.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

with the PIC datasheet

widely

www.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins.

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

with the PIC datasheet

widely

www.raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

/O pins. They

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

with the PIC datasheet

widely

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

They

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

s to communicate with peripheral

required to directly program registers and ports of microcontrollers

with the PIC datasheet

widely

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

They

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

 devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

 used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

They

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

They

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

 gained widespread popularity in

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

broad functionality and

be programmed with the aid of the MPLAB

website. The MPLAB has

supports entries written in assembly language. It also has

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

 wide range of specifications.

be programmed with the aid of the MPLAB©

website. The MPLAB has

supports entries written in assembly language. It also has a

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

©

website. The MPLAB has

a

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

devices. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

©

website. The MPLAB has a

 de

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

 IDE

a

de

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

IDE

 dedicated C compiler and

de-

and the breaking points in the main code

PIC platform is that the registers addressing commands and

different PIC models; h

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

IDE

dedicated C compiler and

-bugger

and the breaking points in the main code

PIC platform is that the registers addressing commands and

; h

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

IDE

dedicated C compiler and

bugger

and the breaking points in the main code

PIC platform is that the registers addressing commands and

; hence

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

IDE,

dedicated C compiler and

bugger

and the breaking points in the main code

PIC platform is that the registers addressing commands and

ence

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

 which is available

dedicated C compiler and

bugger

and the breaking points in the main code

PIC platform is that the registers addressing commands and

ence

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

bugger

and the breaking points in the main code

PIC platform is that the registers addressing commands and

ence

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

bugger

and the breaking points in the main code

PIC platform is that the registers addressing commands and

ence

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

bugger,

and the breaking points in the main code

PIC platform is that the registers addressing commands and

ence, there is a lack of

. For this reason

required to directly program registers and ports of microcontrollers

with the PIC datasheet

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

 which allows

and the breaking points in the main code

PIC platform is that the registers addressing commands and

, there is a lack of

. For this reason

required to directly program registers and ports of microcontrollers,

with the PIC datasheets

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

and the breaking points in the main code

PIC platform is that the registers addressing commands and

, there is a lack of

. For this reason

,

s. Despite

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

and the breaking points in the main code

PIC platform is that the registers addressing commands and

, there is a lack of

. For this reason

 which are not

. Despite

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

and the breaking points in the main code

PIC platform is that the registers addressing commands and

, there is a lack of

. For this reason

which are not

. Despite

used in industrial application.

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

 to be

PIC platform is that the registers addressing commands and

, there is a lack of

. For this reason, the user is

which are not

. Despite

used in industrial application.

46

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

to be

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite

used in industrial application.

46

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

to be

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite

used in industrial application.

46

raspberry.piaustralia.com.au)

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

to be

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite

used in industrial application.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

to be

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite

used in industrial application.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

 set

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite

used in industrial application.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

set

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite

used in industrial application.

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

set.

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

. Despite the

used in industrial application. This

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds,

gained widespread popularity in

wide range of specifications.

which is available

dedicated C compiler and

which allows

.

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

the

This

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

cations. PIC microcontrollers are available with various clock speeds, in

gained widespread popularity in

wide range of specifications.

which is available on

dedicated C compiler and

 the

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

the

This

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

in

gained widespread popularity in

wide range of specifications.

on

dedicated C compiler and

the

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

these

This

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

in-

gained widespread popularity in

wide range of specifications.

on

dedicated C compiler and

the

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

se

This

stands for Peripheral Interface Controller. The first PIC

microcontroller was issued by General Instruments (later Microchip Technology) in

developed many different packages suitable for

gained widespread popularity in

wide range of specifications.

dedicated C compiler and

the

PIC platform is that the registers addressing commands and

, there is a lack of

, the user is

which are not

This

47

being said, they are not quite suitable for the research purposes of this project, where

working solutions should be easily prototyped and tested.

Arduino

The Arduino originated in 2003, in the Interaction Design Institute Ivrea of Italy, as an

easy-to-learn platform for students. It provided a standard interface to connect a

microcontroller to various sensors and actuators. In the following few years, the project

became widespread amongst electronic designers and hobbyists. Nowadays, it has a

large community, which constantly participates in the evolution of the platform. The

Arduino platform has a standardised circuit board and I/O pin layout, making it

possible for many enthusiasts and manufacturers to produce extension boards called

shields (see figure 3-33). The shields can be attached on top of the Arduino board to

add more functionality to it. An enormous variety of different shields, compatible

modules, and sensors for almost any task are available for sale. The generic Arduino

boasts common communication protocols such as Universal Asynchronous Receiver

Transmitter (UART), I2C, and SPI.

The software development environment is supported by dedicated IDE, which uses C

programming language. One of the disadvantages of Arduino is the absence of a de-

bugger, which makes tracing errors in code a less than trivial task. Some developers,

however, such as Autodesk, provide an alternative environment with simulation

capabilities. The main advantage of the Arduino IDE is that it is supported by many

preassembled libraries to communicate with various peripherals, which makes

programming intuitively understandable and straightforward. Based on the information

above, it can be concluded that Arduino-based boards provide an excellent platform for

the proposed system prototyping.

48

Figure 3-33 - Arduino board and stackable shields (www.gravitech.us).

Table 3-2 - Microcontrollers specification (Source: www.atmel.com,

www.microchip.com, www.raspberi.com)

ADC 10 bits 10 bits N/A

5V 5V

N/A N/A Linux based

C C C, Java, Python

Operating system

Programming Language

AVR Microchip ARM

256

8-20MHz 1.2Ghz

8/16 bitst

Cost $10-30 $10-40 $30-60

I/0 logic voltage

32 1Gb

3-5V

Flash memory (kb)

I/O pins num 52 40 40

8/16/32 bits 32/64bits

Platform Arduino PIC18 Raspberry Pi 3

Word's length

Core

Clock 16MHz

Table 3-2 lists the key features of the discussed platforms.

49

3.4 Conclusions

Recent studies have proven that monitoring wear debris in the lubrication oil in

combination with vibration analysis provides comprehensive information on the current

state of a machine (Peng, et al., 2005). The utilised advantages of both methods

complement and strengthen the system's ability to detect failure (Yibo, et al., 2010; Li,

et al., 2012). The test prototype, therefore, was chosen to be able to detect wear

particles in the oil by applying the pressure drop method, and use vibration analysis as

the secondary source for the decision-making algorithm.

It was decided that, for the vibration analysis, the Matlab environment provides the

most appropriate solutions. The signal FFT, spectrum analysis, RMS, and Crest Factor

were chosen for examination as parameters that potentially reveal faulty conditions.

De-noising algorithms based on discrete filtering, Kalman filtering, and wavelet

decomposition were implemented.

The family of Arduino microcontrollers were selected for construction of the signal

acquisition system due to their excellent compatibility with the majority of external

hardware, as well as the vast support from a community of enthusiasts. The ADXL335

MEMS accelerometer was chosen as the vibration-sensing unit due to its availability,

low price, sufficient characteristics, and direct compatibility with Arduino boards.

In the following chapter, the project methodology will be discussed in detail, outlining

each of the design criterion mentioned above.

50

Chapter 4 Project Methodology

4.1 Introduction

The entire project was divided into the following stages:

1. Design the hardware for signal acquisition.

2. Write a Matlab program and GUI to process and manipulate the vibration data.

3. Acquire all necessary resources (see Table 3-1).

4. Test and adjust the signal acquisition hardware and Matlab software.

5. Fabricate the test bench, and install the test engine with all supporting

subsystems.

6. Test the system.

7. Analyse the outcomes and draw conclusions.

4.2 Objectives and Scope

The scope of the project consisted of four primary objectives. The first objective was to

research the ways of early detection of catastrophic failures in industrial engines. The

second goal was to develop and build a working prototype of a real-time oil condition

and vibration monitoring system to detect large wear particles generated by abnormal

wear of crankshaft journal bearings, and detect changes in the vibration pattern. The

system comprises two main sections. The first one detects the presence of large wear

particles in the oil by sensing the pressure difference across a filtering element. The

51

second section reads a vibration signal from an accelerometer and sends it to Matlab for

processing.

The third objective was to build a test rig based on a passenger car engine (preferably a

Ford Falcon 6 inline engine). The test rig had to support a fixture to the test engine and

the subsystems, such as cooling and fuel systems, as well as contain all the necessary

sensors and gauges, such as oil pressure, coolant temperature, and RPM.

The final aim of the project was to evaluate whether the system would meet the

expected performance criteria, to be achieved by conducting a series of experiments

with the installed prototype. The condition monitoring system would sense and process

vibration data, in addition to the oil pressure difference across the control volume. All

parameters were recorded for further examination and post-processing.

The aim would then be to find correlations between the change in oil differential

pressure, which is assumed to indicate the start of a fault, and changes in vibration

signatures, such as a shift in harmonic orders, change of the RMS, and change in the

Crest Factor of the signal.

4.3 The GUI interface

Matlab was chosen as one of the methods of calculation and visualisation of the data.

To provide an interface to call different subroutines and display their output, a GUI

program was written (see figure 4-1). The main functionality of the GUI is to allow

communication between Matlab and the signal acquisition device, enable/disable signal

filters, plots and post-processing functions, and provide data-recording and replaying

features. The student version of Matlab, the Digital Signal Processing (DSP) Toolbox,

and the Wavelet Toolbox were used to write the GUI script. The DSP Toolbox was

included in the student license package; however, the Wavelet Toolbox had to be

purchased and installed separately.

52

Figure 4-1 - The main window of the GUI (Produced with the aid of MATLB

2016A student version).

4.3.1 The GUI Program Structure

The main script of the GUI interface allows data to be processed in both the online and

the offline modes. Figure 4-2 provides the GUI script logic chart that describes the

flow of data within the main program.

The online mode begins by establishing communication with the signal acquisition

hardware. The user then initiates the data reading process. The received data goes

through the data-sorting algorithm, where the vibration data becomes separated from

the sensor readings. After separation, the data is available for the output functions.

53

The offline mode starts with the user selecting the recorded data and enabling offline

data processing. The data-sorting algorithm here is different to the online mode of data

sorting; however, the signal filters and output functions are the same for both modes.

By activating corresponding radio-buttons, the user determines whether the data

undertakes filtering, or is immediately sent to the output functions. The user can also

chose which output function to enable.

Figure 4-2 - The GUI script logic chart.

54

4.3.2 The GUI Toolbar

The top toolbar of the GUI contains three menus (see Figure 4-1). The first "File"

initiates the window where log files can be selected for replay and post-processing. By

clicking on the "Port" menu, the program can be told in what Communication port

(COM) the data-logger is connected. The "Help" menu opens the simplified user

manual in *.txt format.

4.3.3 GUI Functions

The GUI made acquiring, processing and analysing of the data a straightforward and

intuitive process. By employing radio buttons, the user can insert desired functions and

filters into the signal processing chain without needing to manually alter the Matlab

script.

The control buttons are grouped into three categories: the main function, the post-

processing filters, and the post-processing functions. The following sections will

outline the functionality of each panel.

55

4.3.4 Main functions.

Figure 4-3 - The "Main Functions" group.

The "Main Functions" group (see Figure 4-3) collects all functions that are necessary to

start the online signal acquisition and processing. As shown, some of the radio buttons

appear in grey to signify that some of the functions cannot be executed if the preceding

functions are not active. The dialog boxes located below the buttons display guidance

messages. For instance, the "OPEN COM" button will not be active when offline data

processing is active. In this case, the user must stop the data log processing before the

system allows connection to the signal acquisition hardware.

The pop-up menu, "Select buffer size", is used to select the size of the data buffer (see

Figure 4-4). The data buffer determines how many characters in the string of data

Matlab receives.

56

Figure 4-4 - The buffer size selection popup window.

The larger the buffer, the denser and more precise the FFT that can be retrieved from

the signal is. The drawback of the large buffer is that it affects the latency due to the

limited sampling rate of the signal processing microcontroller; hence, the larger the gap

between the readings becomes. Specifications of different microcontrollers vary. As

such, for powerful models, the buffer size can be increased. After several experiments,

the buffer size of 2500 characters was decided upon. If the user does not specify the

buffer size, the system will apply a buffer of 2000 and display a warning message.

"OPEN COM" initialises the communication between Matlab and the signal acquisition

hardware. If this button is active, the Matlab sends a series of test commands to the

hardware to provide the pre-start initialisation. If one tries to enable the button with no

device connected to the COM port, the system will display a warning message.

"ZERO ADXL" - Since the accelerometer sensor can be situated at various locations, it

is necessary to zero-reference the readings to the current position of the sensor. The

data reading cannot be started unless this calibration is accomplished. During the

calibration process, the "READ SERIAL" button is disabled. The calibration script

sends the request to the hardware, which then launches an internal calibration

subroutine (see Appendix D for the source code) and returns the value that is used by

the program to zero-reference the signal. At times, it is necessary to repeat the sensor

calibration in order to obtain the zero-centred waveform.

"READ SERIAL" enables the online signal reading. The program uses the "fread"

function to request data from the hardware. The hardware sends two separate parcels of

57

readings, which the program receives as a string array. The first parcel contains the

vibration data, followed by the sensor readings. The hardware sends a delimiter

character between the parcels of data. Through the "regexp" function, Matlab then

splits the string into two blocks: the vibration signals and the readings from the sensors.

Finally, implementing the "cell2mat" and "eval" functions, the data is converted into

integers for further processing.

"FFT Spectrum" performs the FFT transformation of the signal. The "fft" function is

used to obtain the Fast Fourier Transformation of the signal. The GUI then plots the

real part of the FFT as the signal spectrum. See chapters 3 and 5 for examples of graphs

produced by this function.

"SAVE DATA" starts recording the data. By using the "dlmwrite" command, the data

is saved for later analysis. See section 3.3.7 for further explanation.

"WARNING" is used as the emergency stop function of the test engine. If the

"WARNING" button is active, the script sends an alert signal to the microcontroller,

which calls for an emergency shutdown.

4.3.5 Post-Processing Filters

The post-processing filters can be manually inserted into the signal processing chain to

reveal the features of the signal that could be obscured by unwanted components, such

as noise. For detailed discussion on the filtering algorithms, see Chapter 3. The current

version of the GUI includes the following filters (see Figure 4-5).

58

Figure 4-5 - The post processing filters group.

• Low-pass and High-pass filters

Both of these filters were designed with the aid of the DSP System Toolbox 9.2.

The "fdesign.lowpass" function was used and combined with the Butterworth (for more

information regarding the Butterworth method, refer to the DSP Toolbox

documentation) method to generate the "LOW_PASS.m" function. This filter cuts off

frequencies that are above the specified window of 200Hz.

The "fdesign.highpass" function and the Chebyshev method (for more information

regarding the Chebyshev method, refer to the DSP Toolbox documentation) were used

to generate the "HIGH_PASS.m". The cutoff frequency range is below the 5Hz band.

As discussed in Chapter 3, the high-pass and low-pass filters require substantial

computation power; hence, avoiding use of these filters on slow machines is

recommended.

• Wavelet 1 and Wavelet 2 filters

The wavelet filters were designed with the aid of the Wavelet Toolbox. Both filters use

three-level decomposition techniques and Daubechies’s Wavelets. Wavelet 1 provides

more aggressive de-noising than Wavelet 2, as it uses the higher level of the

Daubechies’s Wavelets. The first filter responds to the "DENOISE.m" function that

was generated with the toolbox. The second filter is integrated into the script by means

59

of the "wavedec" (signal decomposition) and the "wrcoef" (signal reconstruction)

functions. See Chapter 3 for detailed discussion regarding the wavelet decomposition

method.

• Kalman filter

The Kalman filter has almost no effect on the computational time while producing

high-quality de-noising of the signal (see Chapter 3). The algorithm was written as the

"KALMAN.m" function.

4.3.6 Post-Processing Functions

Figure 4-6 - The post processing functions group.

The post-processing functions (see Figure 4-6) allow manipulation of the real-time

outputs and recorded data. The "Plot RMS/CREST" and "PSD Periodogram" functions

cannot be used together since they share the same graphing space. In order to see the

RMS/CREST plot, one has to disable the Power Spectral Density (PSD) function.

60

• PSD Periodogram

The Power Spectral Density Periodogram (PSDP) outlines the frequencies that

contribute most to the signal power content (see Figure 4-7). For instance, it is evident

here that the 95Hz component, which is the firing order harmonic, and the 32 Hz

component, the rotational frequency, account for the majority of the noise generated by

the engine.

Figure 4-7 - The power spectral density plot of the signal obtained from a

running engine.

The PSDP is calculated using two functions, the "spectrum.periodogram" and the "psd"

functions. The first performs the FFT decomposition of the signal, passing the

parameters to the second function, which calculates the PSD.

• Plot RMS

This button enables/disables the real-time RMS plot (see "Plot RMS/CREST" section).

• Waterfall

This button generates the waterfall plot of the FFT decomposition in a separate

window. The "spectrogram" function is used to calculate all necessary values to be

passed to the "mesh" function, which produces the waterfall plot. Initially, the plot

opens in 2D mode; however, the 3D mode is also active, enabling the user to rotate the

plot. Moreover, one can activate the "Wavelet 1", "Wavelet 2" and "Kalman filter"

61

buttons to apply the corresponding filters to the data. See Chapter 3 for a detailed

description of the waterfall plot.

• Plot RMS/CREST

This button enables a real-time plot of the RMS and Crest Factor. One can exclude the

RMS data from the plot by deactivating the "Plot RMS" button. The script implements

the "rms" and the "peak2rms" functions to derive the corresponding values. See

Chapter 3 for an example of the plot.

• CREST_RMS_RPM

Figure 4-8 - The plot of the history changes of RMS and the crest factor

(Produced with the aid of MATLB 2016A student version).

Figure 4-8 shows the parameters of RMS and the Crest Factor. The figure is

automatically generated when the user activates this button.

62

• Data log processing

This button enables processing of the previously recorded data. Firstly, the user must

select the data file from the menu by clicking "file" on the main toolbar. If no file is

selected, the system will issue a warning message. All previously mentioned filters and

functions can be implemented for the logged data. The script uses the "csvread"

function to access the stored data.

• PAUSE

The pause button allows the logged data processing to be frozen at any time, resuming

as required.

4.3.7 Outputs

The Matlab script produces the following outputs and displays them on the PC screen:

• The pure signal wave form.

Figure 4-9 - The pure signal wave form (Produced with the aid of MATLB

2016A student version).

63

Figure 4-9 shows the signal waveform of 600 samples taken at the rate of 2900 samples

per second.

• FFT transformation and the signal spectrum graphical representation.

Figure 4-10 - FFT signal spectrum. The red vertical lines represent RPM/60,

2*RPM/60, 3*RPM/60 respectively (Produced with the aid of MATLB 2016A

student version).

See Chapter 3 for detailed explanation of how the FFT plot is generated.

• RPM, oil differential pressure, engine oil pressure, FFT max Hz, RMS and

Crest Factor values of the signal.

64

Figure 4-11 - GUI output windows.

The GUI provides several output windows for displaying numerical parameters of

RPM, the debris detection pressure sensor, the engine oil pressure sensor, the

maximum frequency of the FFT, RMS and the Crest Factor.

• Real-time RMS and Crest Factor plot

Figure 4-12 - The real time RMS (orange) and the crest factor (blue) plot

(Produced with the aid of MATLB 2016A student version).

It is worth noting that, since this plot is drawn in real-time, it is impractical to include

legends into the plot area. If legends are inserted, the program slows down

considerably. See section 3.3.5 for the list of functions used to produce the above plot.

65

4.3.8 Data logging

The most helpful feature of the GUI is that it allows the data to be recorded as a *.csv

file. These *.csv files can be opened and replayed in real-time, rendering this a

powerful tool for comparing different readings and determining similarities or

discrepancies in the signals. Numerous filters and outputs aid revealing trends in the

signals. The features available for post-processing of the signal can be used to establish

thresholds between signals produced by healthy and failed equipment.

4.4 Signal Acquisition Hardware

Following the design criteria, the signal acquisition hardware was designed and

assembled. The hardware performs the functions of obtaining the vibration data and

parameters, such as the engine RPM, engine oil pressure, and pressure rise across the

debris detection system. While sorting and routing the data to the Personal Computer

(PC), the hardware also accepts the commands that govern data acquisition and control

the test engine.

The design criteria require that the system's hardware is able to perform the following

functions:

• Vibration acquisition.

• Engine oil pressure reading.

• Reading oil pressure rise across the debris detection filter.

• Reading the test engine's RPM.

• Communicating with the host PC.

• Sending data to the host PC.

• Stopping the engine based on the programmed conditions.

• Stopping the engine based on commands from the host PC.

66

Based on the selection criteria (see section 3.3.6) the proposed hardware consists of

two Arduino microcontrollers. The controllers communicate with each other through

I2C protocol in the master/slave configuration. An ADXL335 three-axis accelerometer

is used to read the vibration signal. The accelerometer is connected to the master

controller, which prioritises the data processing. The master controller requests the data

from the slave controller buffer only after the completion of the vibration reading cycle.

This arrangement allows the master controller to be independent of the interrupt-driven

data acquisition of the slave controller.

4.4.1 The Master Controller Algorithm

The master controller continuously reads the data from the ADXL sensor. After each

cycle, it requests the sensor readings from the slave controller. The main task of the

master controller is to collect data and transmit it to the host PC while reacting on

commands sent from the PC. The master controller accepts commands that initiate

communication, run the accelerometer calibration routine, and begin data transmission.

In addition, if the master controller receives certain commands that are addressed to the

slave controller, it passes them to the recipient.

4.4.2 The Slave Controller Algorithm

The slave controller is responsible for reading the RPM, which is provided by the Hall

Effect sensor. The Hall Effect sensor is connected to one of the interrupt pins. The oil

sensors and the ignition relay control wires are also attached to the slave controller, and

collected data is stored in the buffer. The reading of the sensors occurs in an endless

loop; however, when the RPM sensor provides an impulse to the interrupt pin, a special

subroutine becomes engaged. This routine calculates the time since the last RPM

67

interrupt event to compute the current RPM reading. When the execution of the

interrupt routine is completed, the main program returns to query the sensors.

4.4.3 The Communication Algorithm

The communication and transmission algorithms are as follows. Firstly, the master

controller transmits a block of 500 comma-separated readings of the vibration data. It

then sends a request to the slave controller. Following the request, data is transferred

from the slave controller to the master controller. The master controller transmits the

sensor readings to the PC, separating each reading by the delimiter character. The

structure of the communication logic is depicted in the chart in Figure 4-13.

68

Figure 4-13 - The structure chart of communication logic between the host PC and the
controllers

4.4.4 The Hardware Design

Figure 4.14 shows the connections schematic for both microcontrollers and their

peripherals. The yellow and green wires enable the I2C communication. The red and

black wires are connected to power supplies of two different voltages: 5 volts and 3.3

volts.

The controllers use the 5-volt supply obtained from the Universal Serial Bus (USB)

cable plugged into the Arduino UNO (left). The Arduino Mega (right) uses 5 volts

transmitted via the cross connection of the 5V and the GND pins. The ADXL335

69

requires 3.3 volts supply, so it is connected to the corresponding pin of the Arduino

UNO. To connect the reference voltage to the UNO's internal ADC, the ''AREF'' pin of

the UNO is shorted using the 3.3-volt pin, as well.

Three LEDs provide general feedback to the user from the microcontrollers. The blue

LED flashes whenever RPM triggered interrupt occurs, which provides a visual signal

that the system is detecting the RPM. The red LED becomes active if the pressure rises

across the debris detection system exceeding the pre-programmed threshold. The green

LED is lit when the stop command is received from the host PC.

Figure 4-14- The hardware connections schematic (Produces with aid of Fritzing
v0.9.3, www.fritzing.org)

70

4.5 Resources Requirements

Most of the required hardware was sourced from local suppliers or online. Two car

engines were purchased at the local dismantlers for the test rig. The author's employer

provided access to failed engine and component samples, as well as all necessary

supporting information. Table 4-1 below outlines the total cost of components

purchased for the project, which was self-funded.

Table 4-1 - Required resources and estimated cost.

Stage Item Quantity Source Cost

Build prototype. Pressure sensor2 Used from workNill

 Accelerometer 1 Ebay $10

 Processing module

MCU

1 Ebay $50

 Oil pump with motor.1 Ebay $150

 Hardware N/A Local stores $200

 Engine oil 10L Local stores $50

 Bearing shavings.N/A From work Nill

Build test rig. Car engine 2 Dismantlers $500

 Cooling system1 Dismantlers $100

 Coolant 5L Local stores $20

 Fuel 10L Gas station $15

 Hardware N/A Local stores $200

 Fabrication N/A Help from others$100

Total estimated cost of resources. $1395

71

4.6 The Prototype Description and Work Algorithm

The prototype represents an online oil condition monitoring (see Figure 4-15) and

vibration analysis system. The main difference between that and inline systems is that

online systems do not require direct integration into the tested assembly, whereas inline

systems must be placed inside of the oil gallery.

Figure 4-15 - Difference between in-line, on-line and off-line oil sampling (Source

:Hunt 1995)

The prototype consists of the following main modules:

1. A gear-type oil pump driven by an electric motor (see Figure 4-16).

2. A filtering element comprising a coarse mesh. The filtering element is placed

after the oil pump (see Figure 4-17).

3. Two pressure sensors located before and after the filtering element (see Figure

4-18).

4. One ADXL335 MEMS accelerometer sensor (see Figure 4-19).

5. A signal acquisition and processing module based on the Arduino development

board (see Figure 4-20).

72

Figure 4-16 - The electric gear pump

Figure 4-17 - The filtering element

Figure 4-18 - The oil debris collector with pressure sensors.

73

Figure 4-19 - The ADXL335 accelerometer attached to the test engine.

Figure 4-20 - The signal acquisition system (Slave controller (left), Master
controller (right), Block of relays (top right))

The prototype's work scheme is as follows. The oil pump maintains the recirculation of

the engine oil, collected through a port at the bottom of the engine oil pan (see Figure

4-21) at the flow rate of approximately 20 litres per minute (L/s) (at the oil temperature

of 40 degrees Celsius). This flow should be sufficient to detect all contaminants that

settle at the bottom of the pan. The oil containing particles flows through the filtering

element and is then returned to the pan (see Figure 4-22). Two analog sensors are used

to monitor the oil pressure before and after the filtering element.

74

Figure 4-21 - The oil pick up.

Figure 4-22 - The oil return.

The decision-making algorithm refers to calculated pressure difference read from both

pressure sensors (see Appendix E for the C program and the script structure diagram).

Blockage of the filtering element caused by large bearing particles restricts the flow,

resulting in a rise in pressure in the supply line. The high pressure triggers the alarm

signal, indicating engine failure.

75

The system also monitors the vibration signal generated by the engine. The Arduino

board receives the signal from the accelerometer and then sends it to the Matlab

program for processing. The Matlab script makes a decision regarding the state of the

engine based on the signal analysis. If the script decides that the signal's parameter

exceeds the set thresholds, it sends a warning command to the Arduino.

The first stage alarm engages if an excessive knock or vibration is detected. The

threshold for the knock/vibration sensor supposed to be established during the rig test

(see chapter 8 for further discussions). The first stage alarm is also active if partial

filter blockage has occurred. The second stage alarm is triggered if both positive inputs

are received or complete filter blockage has occurred (see Table 4-2).

Table 4-2 - Alarm triggering logic.

Vibration or knock Partial filter blockage Complete filter blockage

First Stage First stage Second stage

Second stage

Second stage

The first stage will initiate a warning signal, while the second stage will stop the test

engine.

4.7 Test Rig Specification

The test rig comprises a passenger car engine with all supporting subsystems, such as

fuel, cooling and exhaust systems. The engine and other components are mounted on a

metal frame fabricated from available materials. The frame provides sufficient support

for all the elements while functioning (see figures 4-23 and 4-24).

76

Figure 4-23 - The test rig (R/H view).

Figure 4-24 - The test rig (L/H view).

77

4.8 The Testing Procedure

The test itself is subdivided into three stages. Each stage was videotaped and all

necessary parameters were controlled and documented. The controlled parameters were

the engine oil pressure, the oil temperature, the vibration signal, and the RPM.

The tests procedure was as follows:

1. Firstly, the debris detection system’s performance was evaluated by manually

introducing wear debris (see Chapter 5)

2. Secondly, the standard engine running condition was monitored to determine

default vibrations and noise levels. The performance of the vibration

acquisition system and the optimal location for the accelerometer sensor were

also evaluated (see Chapter 6).

3. After the initial runs, the fault condition was introduced by blocking an oil

passage in one of the crankshaft's journals. The purpose of this test was to

determine the thresholds that would indicate the fault conditions inside of the

engine (see Chapter 7). After that, the engine was partially disassembled and

the aftermath damage documented (see Chapter 8).

4.9 Risk Assessment

Several of the project stages involved working with power tools, welding equipment

and running machinery. Evaluating risks and hazards during each task and developing

preventative measures was paramount. The risk assessment matrix (Table 4-3) was

adapted from The Australian Centre for Healthcare Governance (2016). Each of the

project's tasks involving exposure to risk factors was assessed based on the likelihood

of occurrence and potential severity of the impact on a person's health.

78

Table 4-3 - Risk assessment matrix. (Source: The Australian Centre for

Healthcare Governance 2016)

 CONSEQUENCE

LIKELIHOOD Insignificant (1) Minor (2) Moderate (3) Major (4) Extreme (5)

Rare (1) Low Low Low Low Low

Unlikely (2) Low Low Low Medium Medium

Possible (3) Low Low Medium Medium Medium

Likely (4) Low Medium Medium High High

Almost certain (5) Low Medium Medium High Extreme

Table 4-4 represents the risk-associated tasks and applied control measures. By

applying preventative controls and using the necessary safety equipment, it was

possible to reduce the likelihood of a risk event taking place and minimise the potential

severity of the consequences should one occur.

79

Table 4-4 - Risk assessment and preventative measures.

Task Risks level Level Preventative actions Risk level
after

correction
Build the
prototype
Using power
tools. Cutting,
grinding, and
drilling.

 Eye injury.
Lacerations s
and broses

Medium Wear safety boots and
glasses all the time.
Wear gloves working
with power tools and
sharp objects. Keep
working area free of
tripping hazards.

Low

Build the test
rig.
Using power
tools and
welding
equipment.
Cutting,
grinding, and
drilling.
Moderate to
heavy lifting.

Eye injury.
Lacerations s
and broses.
Skin burns.
Back sprain

Medium Wear safety boots and
glasses all the time.
Wear gloves working
with power tools and
sharp objects. Keep
working area free of
tripping hazards. Use
proper welding gear and
a welding mask. Use
special lifting equipment
or ask for help.

Low

Conduct tests
. Running
equipment.
Hot and
flammable
liquid escape.
Hot gases
escape.

Eye injury.
Lacerations
and broses.
Skin burns.
Open flame.

Medium Wear safety boots and a
face shield all the time.
Wear gloves working
with hot objects. Keep
working area free of
tripping hazards. Stay
away of running
equipment. Maintain
safety barrier before
running equipment.
Keep fire extinguisher
available and ready.

Low

4.10 Quality Assurance

The accuracy of the running tests conducted on the test rig was dependent on several

factors. Factors such as engine oil grade, RPM, oil temperature and coolant temperature

may all contribute to the significance of the damage to be examined after the initiated

fault.

80

To ensure that accuracy of the test results was not affected by those factors, all

experiments were conducted using the same values for the listed parameters. The

following values were consistent in each test:

• Engine RPM = 1900-2100

• Oil temperature = 80 degrees Celsius

• Coolant temperature = 80 degrees Celsius

• Oil grade = SAE5W30

81

Chapter 5 Oil Debris Detection System Test

5.1 Introduction

A number of experiments were conducted to validate the performance characteristics of

the oil contamination detection system. The experiments were designed to evaluate

parameters that might influence the oil filtering element blockage detection. Two

parameters were evaluated: the oil flow rate and the oil temperature. The first

parameter affects the time required for contaminants to be trapped by the stream of oil

and transferred to the filtering element. The second parameter can potentially cause

high differential pressure across the mesh.

5.2 Pre-test assumptions and the size of the filtering
element

The size of the test engine is relatively small compared to large industrial applications.

At the failure condition, it was assumed that the crankshaft bearings would produce a

limited number of metal particles; hence, the filtering element has a small surface area

to decrease the time and number of particles needed to block it. The mesh calibre is 250

microns, which represents the average size of wear particles generated during failure

mode (see Chapter 2).

82

Figure 5-1 - The inline filtering element 250 microns.

The filtering element is comprised of a funnel shaped cone that can be inserted inside

of a male AN type fitting, and clamped by a female fitting.

5.3 Test prototype setting up

The test prototype consists of the engine sump with the suction outlet located at the

lowest point and the return line connected to the side wall. The 24-volt electric oil

pump collects the oil from the sump and transfers it through the oil pressure sensor and

filtering element (see section 4.5 for figures). Despite the fact that there are two

pressure sensors installed, the system reads only one sensor. The second sensor

performs a backup function.

It is worth noting that reading the oil pressure in conventional units, such as kPa or PSI,

is not of interest. It is only necessary to know whether the reading is low or high;

therefore, the sensor is not calibrated to read units of pressure. It reads an analog value

resolved in 1024 units, being the range of the ten-bit ADC of the Arduino board. When

the system is not running, there is no pressure; hence, the sensor reads zero. When the

filter is free of contaminants, the oil pressure sensor would display a small number due

to restrictions caused by the mesh and oil lines. When wear particles start blocking the

mesh, the pressure reading would start to increase due to restriction.

83

5.4 Testing procedures

The testing procedure comprises three series of experiments. The first batch of the tests

was conducted to evaluate the flow rate and restriction due to the oil lines and mesh. At

this stage, clean engine oil, SAE10W40, was used without the addition of

contaminants. The testing procedure was performed under the following conditions:

• Cold oil (approximately 12 to 20 degrees Celsius) without filtering element to

see the pressure caused by the restriction in the oil lines.

• Cold oil with mesh installed to see the pressure caused by the mesh restriction.

• Warm oil (approximately 40 degrees Celsius) without filtering element.

• Warm oil with mesh installed.

The test results can be seen in tables 5-1 and 5-2. As shown, there is a significant

difference in value between the pressure in an open line and when the line is blocked.

In addition, the flow rate increases fourfold as the temperature difference reaches

almost thirty degrees, which explains the free-flow and the full-block pressure rise.

Ideally, the experiment should have utilised a constant flow oil pump; however, this

would have significantly increased the project cost. Nevertheless, it is apparent that the

filtering mesh of 250 microns introduces the same restriction of 70 units for both cold

and warm oils when it is installed in the line.

The second series of tests show whether the system can capture the wear particles

dropped in the oil, and how the oil temperature affects the time required to block the

mesh. The experiment utilised a coarse aluminium powder to simulate crankshaft

bearing wear particles (see Figure 5-2). The powder was dispersed by hand while the

pump was running to simulate the wear particles being dropped as the bearing fails.

The time lapse between dispersion and the full blockage of the mesh was measured and

compared for each test. Whenever mesh blockage occurred, the system was stopped,

the oil changed, and the filter washed.

84

Table 5-1 - The oil flow rate dependence on the oil temperature.

Table 5-2 - The outcomes of the line restriction tests.

Figure 5-2 - The coarse aluminum powder (left) and the blocked filtering mesh
(r ight).

Cold oil (12 degrees) 0.08 L/sec

Warm oil (40 degrees) 0.3 L/sec

TEST Flow Rate

TEST Free Flow Pressure
Full block

pressure

Cold oil no mesh (20 degrees) 70 420

Cold oil with mesh (20 degrees) 140 420

Warm oil no mesh (40 degrees) 100 530

Warm oil with mesh (40 degrees) 170 530

85

5.5 Comparison of the Test Runs with Cold and Warm
Oil

Figure 5-3 shows the timeframe from introduction of the particles to the moment when

the pressure reaches full blockage pressure. It is evident that the time required for the

particles to block the filter is almost identical for both cases. As shown, it takes

approximately ten seconds for the debris to start reaching the mesh. Over the next 13

seconds there is a gradual rise in pressure until the full blockage condition occurs at the

25th second.

Figure 5-3 - Time required by the system to detect the debris (Produced with the

aid of MATLB 2016A student version).

It is possible to conclude that it is unnecessary to wait until the pressure reading

reaches full blockage. The threshold can be set to the middle of the inclined line, which

represents about 320 of the pressure units. This chosen threshold adjusts the time

required by the system to detect wear debris to 18 seconds.

It is worth noting that the experiments did not take into account the flow that can be

created by the engine oil suction line. If the failing bearing is located in the proximity

of the oil pick-up, the generated debris may be trapped by the engine oil system, failing

86

to reach the prototype system. For this project, the oil pick-up was diverted away from

the test system inlet.

5.6 Conclusions

A series of experiments were conducted to evaluate the time taken to block the filtering

element, and test whether the oil temperature and the restriction caused by the 250-

micron mesh would cause considerable pressure rise. The tests produced the following

outcomes:

• The oil temperature did not significantly affect the pressure rise.

• The restriction due to the mesh size of 250 microns was negligible in

comparison with the full blockage pressure.

• The full blockage pressure was considerably higher than the open line pressure,

regardless of the oil temperature.

• The time taken to block the filter was independent of the oil temperature.

• The oil flow rate affected the system's ability to capture the wear particles. For

this reason, it is recommended to maintain the flow rate at as high a level as

possible.

Based on these results, it can be concluded that, for the Australian climate, the

restriction imposed by the filtering mesh due to the increased viscosity at low

temperatures does not affect the system's performance considerably. The oil pump used

in the system, however, was not able to maintain a constant flow rate, regardless of the

temperature. It is not known, therefore, whether the same flow rate of cold oil would

elevate the pressure rise across the filter due to mesh restriction. Nevertheless, the

variation of the flow rate can be regarded as a simulation of the cold oil bypass valve

that is usually implemented in the oil coolers or the oil filter housing of contemporary

engines.

 It is worth noting that if the system is used in sub-zero temperatures, the high viscosity

issue must be addressed.

87

Chapter 6 Vibration Acquisition and Processing
System Tests

6.1 Introduction

An evaluation of the performance of the vibration data acquisition and process system

was undertaken. This was determined the best location for the accelerometer since it

would be able to provide a clean and informative signal.

The accelerometer was placed at the piston, top dead centre, at the middle of the stroke

and to the axis of the crankshaft. The misfire condition was simulated by disconnecting

one or two power leads from the spark plugs at about 1900rpm.The tests revealed that

the most compelling and informative signal could be obtained when the location of the

accelerometer was on the axis of the crankshaft. From this place, the magnitude of the

peaks of the main harmonics was prominent and could be easily distinguished from the

noise.

In the following section, the abovementioned findings, as well as other aspects, will be

discussed in detail.

88

6.2 Comparison of the Signal in Time Domain

Bottom of the block Middle of the block

1800 RPM 1800 RPM

Top of the block

1800 RPM

Figure 6-1 - Comparison of raw signal obtained at three different locations at the

healthy engine condition (Produced with the aid of MATLB 2016A student

version).

89

Figure 6-1 shows the magnitudes of the raw signal measured at three different

locations. As shown, the signal is clearest at the bottom of the cylinder block. At the

middle of the block, the signal is weak and contains an excessive amount of noise. The

difference in these signals can be explained based on a study conducted by Broatch, et

al. (2008). They concluded that an engine could be regarded as a rigid body oscillating

about its centre of rotation (see Figure 6-2), where the position of the centre depends on

the mounting of the engine. The signal measured by an accelerometer represents the

tangential acceleration. The greater the distance from the centre, the greater the

magnitude of the acceleration is.

Figure 6-2 - Torsion oscillation of the engine block. ω - angular displacement, ὠ -

angular velocity, ὢ - angular acceleration, T - torque, f - frequency, k - spring

constant (Source : Broach et al. 2008).

It can be concluded, therefore, that the centre of oscillation for the test engine should be

located in the middle of the cylinder block, as the position at the bottom of the block

represents the farthest point from the centre of oscillation.

90

6.3 Comparison of the Fast Fourier Decompositions

In Figure 6-3 it can be seen that at the intermediate location, the FFT is contaminated

by noise frequencies, making it difficult to determine the main frequencies of the

engine, whereas the FFT of the signal obtained at the bottom of the block reveals the

main harmonics. Here, the RPM reading was synchronised with the FFT plot. The three

vertical red lines correspond to RPM/60, 2*RPM/60, and 3*RPM/60, respectively. This

allows correlation of the engine RPM with the first, second and third harmonic orders.

Bottom the block Middle of the block

Top of the block

Figure 6-3 - Magnitudes to noise ratio of the FFT of the signal obtained at

different locations (Produced with the aid of MATLB 2016A student version).

91

6.4 Determining the Optimum Location for the Accelerometer

6.4.1 Healthy Conditions

Before taking the vibration measurements, the engine was warmed to the temperature

of the coolant, 80 degrees Celsius. The accelerometer was then positioned at the bottom

of the block near the second crank pin. At the beginning, the engine was running at

approximately 1900rpm. The signal was sent to the Matlab GUI program, which

performed data logging, FFT decomposition, calculation of RMS and Crest Factor

values, and real-time plotting of the data.

Figure 6-4 - FFT decomposition of the signal at normal condition (1900 RPM)

(Produced with the aid of MATLB 2016A student version).

92

Figure 6-4 represents the vibration signal FFT decomposition. The vertical red lines

represent the first three harmonic orders. The torque pulses caused by combustion

contribute most to the first few harmonic orders. Combustion frequency can be

estimated as follows (Li, et al., 2016):

2

60

Where:

 n = RPM

 c = number of strokes (e.g. two- or four-stroke engine)

 i = number of cylinders.

Substituting known parameters into the equation, we obtain:

As such, it is apparent that the third order harmonic is the combustion frequency. For

an engine in healthy condition, this dominates over the first two harmonics; however,

the first order harmonic, which is the rotational frequency, is not apparent.

Figure 6-5 - Raw signal of the healthy engine (Produced with the aid of MATLB

2016A student version).

93

The raw vibration signal from the healthy engine consists of an apparent sinusoidal

curve (see Figure 6-5).

6.4.2 One Cylinder Disconnected

Simulation of a fault by disconnecting one of the cylinders produced the following
outcomes.

Figure 6-6 - Raw signal of the engine with number six cylinder disconnected

(Produced with the aid of MATLB 2016A student version).

When the number six cylinder was disconnected, the engine RPM dropped to 1650. On

Figure 6-6, it is evident that the pattern of the raw signal has noticeably altered

compared with that from the healthy signal.

94

Figure 6-7 - FFT decomposition of the signal at number six cylinder disconnected

(1650 RPM) (Produced with the aid of MATLB 2016A student version).

The FFT graph (Figure 6-7) shows that the dominating harmonic has shifted to between

the first and second orders. It can also be seen that the first order frequency is more

prominent than it was when there was no fault, while the magnitude of the third order

harmonic has reduced from 3500 to 2500.

6.4.3 Two Cylinders Disconnected

Figure 6-8 depicts the raw signal obtained when the number six and number five

cylinders were disconnected. Again, it is evident that the vibration profile has been

significantly affected.

95

Figure 6-8 - Raw signal of the engine with number six and five cylinders

disconnected (Produced with the aid of MATLB 2016A student version).

Figure 6-9 clearly shows that the first and the third harmonics diminished; however, the

magnitude of the half order harmonic doubled in comparison to when only one cylinder

was disconnected.

Figure 6-9 - FFT decomposition of the signal at number six cylinder disconnected

(1650 RPM) (Produced with the aid of MATLB 2016A student version).

96

6.4.4 RMS, Crest Factor and Spectrogram

Figures 6-10, 6-11 and 6-12 represent the RMS and Crest Factor plot, and the

spectrogram in 2D and 3D, respectively. The data is plotted versus the time taken to

perform the whole test run, including the healthy condition stage and the simulated

misfiring.

Figure 6-10 - Crest factor an RMS plots (Produced with the aid of MATLB

2016A student version).

From Figure 6-10, it is clear that the RMS value has three sudden rises, which are

related to the disconnection and re-engagement of the cylinders. It is evident that the

RMS is sensitive to the misfire. The last rise of the RMS depicts where two cylinders

were disengaged. In the Crest Factor, however, there seems to be no response to the

changes in operation of the cylinders.

97

Figure 6-11 - Spectrogram of the signal resolved in time domain (2D) (Produced

with the aid of MATLB 2016A student version).

Figure 6-12 - Spectrogram of the signal resolved in time domain (3D) (Produced

with the aid of MATLB 2016A student version).

98

Figures 6-11 and 6-12 provide a clear representation of events occurring during the

tests. As shown, the engine ran for sixty-five seconds. Shifts in frequency can be seen

at 15, 35 and 50 seconds. With respect to these, the spectrogram plot provides

information regarding any drift of the data from the reference parameters.

6.5 Conclusions

The initial set of experiments were conducted to determine the optimal location for the

accelerometer and to examine the system's response to a simulated fault, such as a

misfire. Furthermore, the signal processing functions, such as RMS, Crest Factor, FFT,

and spectrogram were evaluated in terms of their suitability for fault detection.

Comparing the presence of noise, as well as the strength of the signal, the best location

for the accelerometer was determined to be close to the axis of the crankshaft. The

signal read from this position exhibited sufficient readability and signal/noise ratio.

During the simulation of the misfire, it was noted that the RMS value reacted rapidly to

the altered conditions, whereas the Crest Factor failed to provide any detectable

response. The FFT plot showed distinct frequency shifts in the main harmonics, while

the spectrogram plot provided a clear representation of the frequency change when a

misfire was introduced. Despite the possible application of the spectrogram to examine

the logged data, however, it cannot be used during online monitoring.

99

Chapter 7 Determining the Failure Thresholds

7.1 Introduction

The experiments were conducted to understand the processes occurring at the initiation

and aggravation of a failure in the engine, and to evaluate the systems' performance.

Before the trial run, the cooling system was warmed to 50 degrees Celsius, and the

engine oil temperature increased to 70 degrees Celsius. At this oil temperature, the oil

pump used in the debris detection system provided 0.5 L/s of flow; therefore, the entire

volume of engine oil was circulated through the filtering mesh every ten seconds.

The failure mode was initiated by blocking the oil supply hole at the #2 big end bearing

(see Figure 7-1). Initially, it was assumed that simulating oil starvation would be

sufficient to instigate a failure; however, after the first twenty minutes, there was no

noticeable change in the engine's operation. Neither a change in the vibration profile

was detected, nor did the full blockage of the debris detection system occur.

Subsequently, the engine was stopped and the bearing removed for examination. No

signs of severe damage to the bearing were found.

Figure 7-1 - A piece of rubber blocks the oil supply hole.

100

Based on experience, it was concluded that the main drawback of the current test set-up

was that the engine could not be loaded by opposing torque; therefore, marginal

lubrication due to oil splashing provided sufficient lubricant to the bearing to maintain

its stable state. The decision was made to reduce the bearing/journal clearance and

repeat the test. The clearance was reduced by placing a couple of strips of aluminium

foil under the bearing of the connecting rod (conrod) cap (see Figure 7-2). After the

tensioning of the cap, there was a noticeable resistance to the engine rotation.

Figure 7-2 - Aluminum foil was placed at the conrod cap to reduce the oil

clearance.

After the first five minutes of the second run, a noticeable ticking noise became

apparent; however, the pressure rise in the debris detection system indicated only

partial blockage of the filter. For this reason, the engine was left to operate for another

20 minutes to investigate whether the failure would worsen; however, no obvious

degradation of the running condition was detected. The pressure rise due to the debris

being trapped by the filtering mesh reached only half the maximum value.

101

7.2 Discussion on Debris Formation and the Oil
Clearance

A second examination of the bearings revealed that the top bearing underlay had

vanished and the copper lining appeared visible. Nevertheless, the test had failed to

achieve severe damage to the crankshaft bearing. One possible explanation for this

phenomenon is that the top layer of the bearing had worn down, allowing sufficient oil

clearance to consequently restore marginal lubrication of the journal.

The processes at work inside of the engine during the second run can be outlined in the

following sequence:

1. In the beginning, due to reduced oil clearance, the temperature at the bearing

journal interface rose rapidly, forcing the top bearing layer to flake off or melt.

At this stage, the rate of wear debris generation was high enough to partially

block the filtering mesh.

2. Rapid wear of the bearing's top overlay provided sufficient oil clearance, which

restored marginal lubrication of the journal. The temperature of the journal

decreased, and the rate of wear particles generation dropped to a minimum,

which was insufficient to trigger the debris detection system.

102

Figure 7-3 - Melting and smearing of the bearing's top overlay.

Figure 7-4 - Molten droplets of the failing bearing's top overlay being captured

by the debris detection system.

As shown in figure 7-3, the tin lining started to melt and became smeared over the

bearing while the molten droplets of tin were pushed outside into the oil. The pictures

of the filtering mesh (see Figure 7-4) show the captured molten droplets.

103

Unfortunately, without loading the engine, it was impossible to initiate rapid and severe

bearing degradation that would produce enough debris to clog the mesh completely.

7.3 Discussion Regarding the Frequency Analysis

During the test run, vibration data was recorded and analysed using the replay feature

of the Matlab GUI program.

Figure 7-5 shows plots of the FFT and the pure signal waveform. The Kalman filter

was applied to provide effective noise reduction of the signal. It is clear that the

dominating frequency is the third harmonic, induced by fuel combustion.

Figure 7-5- Frequency and pure signal profiles before the failure at 1900 RPM

(Produced with the aid of MATLB 2016A student version).

104

Figure 7-6 - Spectrogram before the failure initiation at 1900 RPM (Produced

with the aid of MATLB 2016A student version).

The spectrogram shown in Figure 7-6 distinguishes the first and the third harmonics

associated with 1900rpm (light blue regions). No apparent spikes or sudden frequency

shifts can be seen.

105

Figure 7-7 - Beginning of the failure at 1900 RPM (Produced with the aid of

MATLB 2016A student version).

As the failure began to aggravate, the first order harmonic became amplified, as evident

in Figure 7-7. Nevertheless, the signal waveform was apparently unaltered.

Figure 7-8 shows that, as the failure progressed, the third harmonic became

overwhelmed by the rotation frequency. Moreover, the waveform profile altered

substantially.

106

Figure 7-8 - Aggravation of the failure at 1900 RPM (Produced with the aid of

MATLB 2016A student version).

Figure 7-9 represents the frequency spectrogram of the vibration data collected during

the first eight minutes of the second run. On the plot, there are three distinct regions.

The first region reflects the standard running condition of the first two minutes of the

test run. During this period, it was expected that the top bearing overlay would provide

the sliding surface with a low friction coefficient. At this stage, it is evident that the

dominating frequency is 100Hz, which is the firing frequency. The rotation frequency

of 33Hz is also apparent.

107

Figure 7-9 - Spectrogram of the test engine run with induced failure at 1900

RPM (Produced with the aid of MATLB 2016A student version).

With marginal lubrication, however, the temperature rise due to friction would cause

the top layer to melt away, exposing the second bearing overlay. The second overlay is

made of copper, which has a relatively higher friction coefficient than the top overlay;

therefore, it is assumed that the second region of the spectrogram represents the

condition of the top layer starting to break away.

The third region reveals that the rotation frequency started gradually increasing to the

point where it was dominating other frequencies indicating abnormalities in the engine

condition.

108

7.4 Discussion Regarding the RMS and the Crest Factor
Values

Figure 7-10 - The plot of the history changes of RMS, the crest factor, RPM and

the oil pressure rise across the debris detection system. (Produced with the aid of

MATLB 2016A student version, see Appendix F for bigger picture).

Figure 7-10 plots the Crest Factor (blue line) and RMS (orange line) calculated over the

course of the test run. Two additional lines were inserted to visually represent the

correlation between the RPM readings (yellow line) and the pressure rise across the

debris detection system (purple line) and the other two readings. The RPM and pressure

lines were scaled to fit into the plotting space. The function of the plot is to represent

the correlation between these four parameters; hence, it is unnecessary to provide the

exact values of RPM and oil pressure rise. Showing how the parameters are

interconnected is sufficient. In the previous experiments (see Chapter 6), it was

demonstrated that the Crest Factor and the RMS were reliable indicators of changes in

the vibration profile due to misfire.

109

Figure 7-10 demonstrates that the RPM remains relatively stable. The pressure curve

exhibits a steady rise, followed by a plateau region. The plateau may indicate the

moment when the oil clearance between the crankshaft journal and the bearing was

restored; thus, the debris formation process had ceased. The RMS curve clearly shows

sudden peaks in the last quarter of the plot. This may be an indication of a temporary

bearing seizure, which generates an opposing momentum to rotation resulting in

fluctuation of the torque delivered by the engine (Broatch, et al., 2008).

The Crest Factor remained stable throughout the entire run. Accelerometer error due to

the engine temperature rise may explain the slight drift of the RMS data towards the

top. It can be concluded that, while the Crest Factor may provide a suitable response to

a gradually propagating failure, it has limited application where rapidly progressing

malfunctions occur.

7.5 Conclusions

The set of experiments including an induced failure mode revealed that there is

potential for the system to perform as expected during the design phase. At this stage,

the experiment was partially successful. The main limitation of the test rig was the

absence of the loading. As such, the experiment failed to initiate rapid or catastrophic

failures of the crankshaft bearings to test the full potential of the proposed system.

Nevertheless, the debris detection system managed to capture some of the wear

particles. Moreover, it was shown that changes in the vibration data could be detected

as the failure propagated.

The main disadvantage of the debris detection system was revealed, however. Since the

pick-up of the engine oil system is located in proximity to the debris detection intake, it

is possible that the majority of wear particles were captured by the engine oil filter.

Even diverting the pick-up tube away from the system’s oil collector did not improve

the situation. In order to avoid this, the debris detection system should be incorporated

into the engine oil circuit. The engine oil pump would ingest the oil from the sump, and

110

transfer it through the debris detector before passing it through the main oil filter. A

bypass valve should also be included to prevent a complete cut in oil supply due to

filtering mesh blockage.

111

 Chapter 8 Discussions and Conclusions

8.1 Introduction

The primary objective of this project to research, design and assess the proposed

system was fulfilled with partial success. The initial test of the system produced

positive responses. The debris detection system was able to react promptly to manually

dispersed metal particles while the vibration processing system reacted to simulated

misfire. The experiments performed on the test engine had failed to achieve the rapid

bearing degradation or delaminating. As stated previously, it was impractical to

sufficiently load the test engine without a dynamometer. For this reason, the full

potential of the proposed system could not be evaluated. Although the system showed

some positive response to the partially failing bearing, further experiments with a

properly loaded engine are required.

8.2 Discussions

8.2.1 The Debris Detection System

In the early stages of the project, potential problems associated with filtering mesh

restriction were addressed. Tests were conducted using two different temperatures of

the test oil: ten and 40 degrees Celsius. This set of tests revealed that the mesh used in

the system causes minimal restriction compared to the pressure rise induced by full

blockage. It was found, however, that the oil temperature has a negligible effect on the

flow restriction.

112

It is worth repeating that these results are only valid for this particular arrangement.

First of all, the system's oil pump is unable to maintain a stable flow rate. The

clearances inside of the pump's housing allow the oil to be regurgitated if full blockage

of the mesh occurs. Pumping the colder oil required increased power input, which

slowed down the pump, equalising the power to flow rate ratio. Utilising this particular

pump eliminated the need for a bypass valve.

It was suggested that high oil viscosity might affect machinery operating in cold

climates. The bypass valve must be included in cases where constant oil flow is

provided. The valve will ensure that, in the event of filter blockage or a high rise in

pressure due to viscosity, ruptures to the supply lines do not occur. The bypass valve

can act as a switch to trigger the warning. In this case, it is advised that the system

controller should be programmed to ignore the opened valve during a cold start or

operate the pump only when the oil is warm.

Another aspect of the debris detection system requires particular attention. The location

of the intake line of the system is fixed, whereas any of the crankshaft bearings may

fail. As the length of large industrial engines may exceed two metres, aids to improve

the debris pick-up rate should be discussed. One suggestion could be to use a number

of intake ports, equally spaced along the oil sump. Moreover, funnels could be utilised

to guide the particles into the ports.

One more issue with the test engine that potentially had an effect on the debris

detection system was that the pick-up tube of the engine oil pump was situated close to

the intake of the debris detection system. It is assumed that the engine oil filter will

capture the majority of wear particles. One possible solution, therefore, could be to

insert the debris detection system before the engine oil pump. In this way, the engine

oil pump would be transferring the oil from the sump through the debris detector before

passing it to the main oil filter. The design must incorporate a bypass valve to prevent

oil supply interruption if the filtering element becomes fully blocked.

The abovementioned solution significantly complicates the system, compromising one

of the design goals, which was to design a system that is easy to implement. The

majority of industrial engines have several holes already drilled and plugged in the

sump to connect various accessories; hence, multiple intake points would be the most

viable solution, as they could utilise existing holes.

113

8.2.2 The Vibration Acquisition Hardware

The experiments showed that the current hardware set-up is capable of delivering

adequate performance to comply with the design requirements. Moreover, the sampling

rate should be sufficient to avoid the aliasing effect. There is, however, a bottleneck

between the Arduino ADC and the serial port due to the low frequency of the main

buss. The bottleneck creates gaps between the data block because the controller does

not read the new information while processing the buffer. It is possible that certain

events can be overlooked if they occur during these gaps. The author discovered that

the STM32 microcontroller has a much greater serial transfer speed than that of

Arduino. The STM32 controller is compatible with the Arduino IDE and can be used to

improve the system. Despite this fact, there was not sufficient time to adapt the existing

design to employ the STM32.

Another aspect of the hardware is the deficiencies of the ADXL335 accelerometer.

Tests revealed that it is sensitive to temperature rise, which induces a drift of the data

from the zero reference. Moreover, the limited bandwidth and the excessive noise

affect the accuracy of the readings significantly; therefore, it is advisable to implement

industrial standard accelerometers from manufacturers such as ENDEVCO or Brüel

and Kjaer. These are piezoelectric types of accelerometers, however, require additional

amplification circuitry.

8.2.3 The Vibration Processing

Noise was consistently present in the data and became one of the main issues that

challenged the project in the normalisation of erratic readings. It appears that the

developed Kalman filter provides the most efficient and adequate smoothing of

parameters obtained from the sensors. It has been found that the data should be

processed by the Kalman filter twice to reveal reliable trends in the RMS plot. This

approach is used for offline datalog analysis. Firstly, the raw vibration data is passed

through the Kalman filter before a special function calculates the RMS value of the

114

filtered data. Finally, the array of RMS values obtained during the experiment passes

through the Kalman filter a second time. The obtained curve provides the most precise

correlation between the RMS and other parameters.

In real-time signal processing, the main Matlab script can be improved to perform in

the same manner as the offline processing script. Normally, the system receives raw

signals in blocks, which are passed through the chosen filter. The RMS and other

parameters are then extracted and plotted immediately. An improved algorithm should

combine a user-defined number of RMS readings into the array, to be passed through

the Kalman filter again before plotting. The length of the array should be determined

experimentally.

8.2.4 The GUI Interface

The GUI interface evolved into a standalone tool that can be used outside of the

proposed system. It could be employed to analyse any vibration data saved in *.csv

format. The current version of GUI contains all necessary signal processing functions

and filters, such as the spectrogram, RMS, and Crest Factor. The outputs provided by

the GUI could then be used to analyse the signal, revealing its features and trends

effectively.

8.2.5 Safety Considerations Associated with
Implementation of the System

One of the concerns with the commissioning of the proposed system is that it could

potentially induce a probability of failure. The failure would mainly occur due to a

rupture in one of the lines of the debris detection system. A suggested solution is to use

high quality steel braided lines, as the maximum burst pressure of steel braided lines

significantly exceeds pressure in the system. The lines would need to be sufficiently

115

secured with proper mounting hardware and located away from the exhaust manifolds.

If there is a risk of the engine oil coming into contact with the hot exhaust, the lines

must be shielded.

8.3 Further Work

As outlined in the above paragraphs, there is huge potential for improving the system.

The performance and accuracy of the signal acquisition hardware could be enhanced by

implementing an STM32® microcontroller and an industrial accelerometer. It is also

possible to compile the Matlab script into a standalone application to be embedded in a

microcomputer such as Raspberry Pi, which would allow the development of a black

box solution. Online processing of the RMS value could be improved by two-stage

filtering, which it is already possible to implement in offline processing; however, the

online version will require additional buffering of the RMS data.

Issues concerning the debris detection system can be addressed by reviewing the design

regarding the number of oil intake ports and designing the housing to accommodate a

bypass valve.

Finally, the most important amendment will be to conduct future experiments with the

test engine mounted on a dynamometer stand to enable application of a full load.

8.4 Conclusions

The project culminated in the design, development and testing of an easily

implementable and straightforward system to prevent the catastrophic failures of

industrial engines. The system is able to detect the presence of debris in engine oil in

reasonable time, and the vibration acquisition and analysis part of the system provides

an adequate response to artificially induced fault conditions. Findings suggest that

116

parameters such as spectrogram and RMS are the main features of the signal that can

indicate abnormal conditions in stationary industrial equipment.

Although the potential market value of the proposed system might be not sufficient to

promote further development of the prototype into a marketable product, the premise

and outcomes of the experiments are viable and may be considered as the background

to further improvements of the system.

117

References

1. Agoston, A., Schneidhofer, C., Dörr, N. and Jakoby, B., 2008. A concept of an

infrared sensor system for oil condition monitoring.e & i Elektrotechnik und

Informationstechnik, 125(3), pp.71-5.

2. Broatch, A., Tormos, B., Ruiz, S. and Olmeda, P., 2008. A contribution to the

diagnosis of internal combustion engines through rolling block oscillations.

Insight: Non-Destructive Testing & Condition Monitoring, 50(11), pp.637-41.

3. Brüel and Kjaer, 2009.Kurtosis in Random Vibration Control. [online] Brüel

and Kjaer Group. Available at:<http://www.bksv.com/controllers> [Accessed

15 February 2017]

4. Cubillo, A., Perinpanayagam, S. and Esperon-Miguez, M., 2016. A review of

physics-based models in prognostics: Application to gears and bearings of

rotating machinery.Advances in Mechanical Engineering, 8(8).

5. Du, L., Zhe, J., Carletta, J., Veillette, R. and Choy, F., 2010. Real-time

monitoring of wear debris in lubrication oil using a microfluidic inductive

Coulter counting device.Microfluidics and Nanofluidics,9(6), pp.1241-5.

6. Dupuis, R., 2010. Application of oil debris monitoring for wind turbine

gearbox prognostics and health management. In:Annual Conference of the

Prognostics and Health Management Society, PHM 2010.[online] Available

at:<https://www.scopus.com/inward/record.uri?eid=2-

s2.0 84920545843&partnerID=40&md5=beaa001ea054ec1700c92be12e3ea03

1>[Accessed 20 March 2017]

7. Geng, Z., Chen, J. and Barry Hull, J., 2003. Analysis of engine vibration and

design of an applicable diagnosing approach. International Journal of

Mechanical Sciences, 45(8), pp.1391-410.

118

8. Howard, I., 1995. VibrationSignal Processing using MATLAB. Acoustics

Australia, 23, pp.113.

9. Hunt, T., 1995. Monitoring particles in liquids.Filtration & Separation, 32(3),

pp.205-11.

10. International Organization for Standardization. (2015). Preferred reference

values dor acoustical and vibratory level (ISO 1683:2015).

Available < https://www.iso.org/standard/64648.html> [Accessed 15 February

2017]

11. Kumar, S., Mukherjee, P.S. and Mishra, N.M., 2005. Online condition

monitoring of engine oil.Industrial lubrication and tribology, 57(6), pp.260-7.

12. Levis, J.W., 2011.Digital Signal Processing Using MATLAB for Students and

Researchers, vol. 1, 1 vols..New Jersey: John Wiley & Sons, Inc.

13. Lewicki, D., Blanchette, D. and Biron, G., 1992.Evaluation of an Oil-Debris

Monitoring Device for Use in Helicopter Transmissions. [online] Available at:

<https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6

&cad=rja&uact=8&ved=0ahUKEwjWx_q1qY7OAhUFHJQKHcwwDagQFgg

_MAU&url=http%3A%2F%2Fntrs.nasa.gov%2Farchive%2Fnasa%2Fcasi.ntrs.

nasa.gov%2F19930013637.pdf&usg=AFQjCNFzodI3LZNDtcVUgFwLSFJIU

e1xig> [Accessed 25 July 2016].

14. Li, G., Chen, J., Xie, H. and Wang, S., 2016. Vibration test and analysis of

mini-tiller. International Journal of Agricultural & Biological Engineering,

9(3), pp.97-103.

15. Li, Z., Yan, X., Guo, Z., Liu, P., Yuan, C. and Peng, Z., 2012. A New

Intelligent Fusion Method of Multi-Dimensional Sensors and Its Application to

Tribo-System Fault Diagnosis of Marine Diesel Engines.Tribology Letters,

47(1), pp.1-15.

119

16. Macián, V., Tormos, B., Olmeda, P. and Montoro, L., 2003. Analytical

approach to wear rate determination for internal combustion engine condition

monitoring based on oil analysis.Tribology International, 36(10), pp.771-6.

17. Matsumoto, K., Tokunaga, T. and Kawabata, M., 2016. Engine Seizure

Monitoring System Using Wear Debris Analysis and Particle

Measurement.SAE 2016 World Congress and Exhibition, (2016-April, April).

18. McGeehan, J.A. and Ryason, P.R., 1999. Million mile bearings: Lessons from

diesel engine bearing failure analysis. In:International Fall Fuels and

Lubricants Meeting and Exposition.Toronto, Canada, 25-28 October

1999.[online] Available at: <http://dx.doi.org/10.4271/1999-01-3576>

[Accessed 15 February 2017]

19. Miller, J.L. and Kitaljevich, D., 2000. In-line oil debris monitor for aircraft

engine condition assessment. In:IEEE Aerospace Conference Proceedings, pp.

49-56,<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

0034431589&partnerID=40&md5=6f0ebd201fb404dd4e30ab263c78435c>

[Accessed 5 April 2017]

20. Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J.M., 1996.Wavelet Toolbox

for Use with MATLAB, The MathWorks, Inc.

21. Moosavian, A., Najafi, G., Ghobadian, B., Mirsalim, M., Jafari, S.M. and

Sharghi, P., 2016. Piston scuffing fault and its identification in an IC engine by

vibration analysis. Applied Acoustics, 102, pp.40-8.

22. Muñoz, M., Moreno, F., Bernal, N., Arroyo, J. and Paniagua, L., 2012. Engine

diagnosis method based on vibration and acoustic emission energy. Insight:

Non-Destructive Testing & Condition Monitoring, 54(3), pp.149-54.

120

23. O'Reilly, R., Khenkin, A. and Harney, K., 2009. Sonic Nirvana: Using MEMS

Accelerometers as Acoustic Pickups in Musical Instruments, Analog Dialogue,

43.

24. Peng, Z., Kessissoglou, N.J. and Cox, M., 2005. A study of the effect of

contaminant particles in lubricants using wear debris and vibration condition

monitoring techniques.Wear, 258(11-12), pp.1651-62.

25. Raadnui, S. and Kleesuwan, S., 2005. Low-cost condition monitoring sensor

for used oil analysis.Wear, 259 (7–12), pp.1502-6.

26. Serridge, M. and Licht, T.R., 1987.Piezoekectric Accelerometers andVibration

Preamplifiers. Denmark: K Larsen& Son A/S.

27. Stecki, J., 1980. Failure Prediction Using Ferrographic Oil Analysis

Techniques. In:National Conference on Lubrication, Friction and Wear in

Engineering(1980 : Melbourne, Vic.): Proceedings of the National Conference

on Lubrication, Friction and Wear in Engineering. Melbourne, Australia,

1980. Barton: Institution of Engineers, Australia, Barton, ACT.

28. Sujatha, C., 2010.Vibration and acoustics: measurement and signal analysis.

New Delhi: Tata McGraw Hill Education Private Ltd.

29. Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., Mohtasebi,

S.S., Rezaei-asl, A. and Azadbakht, M., 2016. Characterization of engine's

combustion-vibration using diesel and biodiesel fuel blends by time-frequency

methods: A case study. Renewable Energy, 95, pp.422-32.

30. The Australian Centre for Healthcare Governance, 2016. [online]Available at:

<www.healthcaregovernance.org.au> [Accessed 10 October 2016].

31. Tienhaara, H., 2004. Guidelines to Engine Dynamics and Vibration. Marine

News, 2, pp.20-5.

121

32. Vališ, D., Žák, L.& Pokora, O., 2015. Failure prediction of diesel engine based

on occurrence of selected wear particles in oil.Engineering Failure Analysis,

56, pp.501-11.

33. Watzenig, D.S.M. and Steiner, G., 2013. Model-Based Condition and State

Monitoring of Large Marine Diesel Engines.

34. Welch, G & Bishop, G 2001, An Introduction to the Kalman Filter, University

of North Carolina at Chapel Hill Department of Computer Science, Chapel

Hill, NC.

35. Yibo, C., Xiaopeng, X., Yan, L. and Tianhuai, D., 2010. Fault Diagnosis of

Gear Using Oil Monitoring Samples and Vibration Data. In: J Luo, et al.,

eds.,Advanced Tribology: Proceedings of CIST2008 & ITS-IFToMM2008,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 934-9.

36. Zhu, J., Yoon, J.M., He, D., Qu, Y. and Bechhoefer, E, 2013. Lubrication oil

condition monitoring and remaining useful life prediction with particle

filtering.International Journal of Prognostics and Health Management, 4

(SPECIAL ISSUE 2).

37. Zhu, X., Du, L. and Zhe, J., 2015. An integrated lubricant oil conditioning

sensor using signal multiplexing.Journal of Micromechanics and

Microengineering, 25(1).

122

Appendix A - Project Specification

 University of Southern Queensland

 Faculty of Mechanical Engineering and Surveying

ENG4111/4112 Research Project
PROJECT SPECIFICATION

FOR : Mikhail Dashchinskiy

TOPIC: Early Detection and Prevention of Catastrophic Failures in Industrial
Engines

MAJOR: Mechanical Engineering

SUPERVISOR: Dr Ray Malpress

PROJECT AIM: Determine a moment at which a crankshaft bearing begins to rapidly
deteriorate due to abnormal conditions and stop the equipment before the catastrophic
failure occurs.

PROGRAMME: Issue D, 6th March 2017

1. Review methods of bearings’ failure detection and prevention. Review systems
of real time engine condition monitoring being tested or developed.

2. Conceptualize the idea of the engine condition monitoring system using
schematics or diagrams.

3. Develop the oil filtering, pressure sensing prototype and the test bench to
accommodate the engine and engine supporting systems such as fuel, cooling
etc.

4. Review the signal processing and vibration analysis literature and develop
software based on MATLAB signal processing toolbox to analyse the vibration
data and represent it numerically and graphically.

5. Develop the signal acquisition device based on the Arduino board and the
ADXL335 accelerometer.

6. Conduct test runs of two identical engines with all systems incorporated and
fault condition induced.

7. Investigate if the system provides sufficient warning of the fault condition by
examining resulting damage of the crankshaft. Damage of induced bearing
failures will be compared in the engine which was not stopped by the prototype
diagnostic system with the engine which was stopped by the prototype system.

123

Appendix B - Kalman Filter

clc

clear all

close all

%% Generate noisy signal

vn=0.2; % The noise amplitude

v=1; % The voltage in volts

f=1000; % The frequency in Hertz

w=2*pi*f; % Signal's period

t=linspace(0,5,1000)*1e-3; % time = 0 to 5ms

sig=v*sin(w*t)+vn*rand(size(t));

 %% Kalman filter%%

P=1; % Filter sensitivity

R = std(sig); % Standard deviation of the signal

K=P/(P+R); % Gain coefficient

X = zeros(1,length(sig)); % Filtered signal

P = P*ones(1,length(sig));

for i=2:length(sig)

X(i)=X(i-1);

P(i)=P(i-1);

X(i)=X(i)+K*(sig(i)-X(i));

P(i)=(1-K)*P(i);

end

plot(sig,'r');

hold on

plot(X,'b');

hold off

124

Appendix C - Arduino Boards Connections and Schematics

125

Appendix D - Matlab Functions and Script Structure.

126

List of files and toolboxes used by the Matlab GUI.

MATLAB Version: 9.0.0.341360 (R2016a)

The following toolboxes must be installed:

Use "ver" command to verify that required toolboxes are available in your system

Control System Toolbox Version 10.0 (R2016a)

DSP System Toolbox Version 9.2 (R2016a)

Data Acquisition Toolbox Version 3.9 (R2016a)

Signal Processing Toolbox Version 7.2 (R2016a)

Wavelet Toolbox Version 4.16 (R2016a)

List of files

GUI_4_EDITED.fig GUI_4_EDITED.m LOW_PASS.m HIGH_PASS.m

DENOISE.m KALMAN.m

127

GUI_4_EDITED.m

function varargout = GUI_4_EDITED(varargin)
% GUI_4_EDITED MATLAB code for GUI_4_EDITED.fig

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton' , gui_Singleton, ...
 'gui_OpeningFcn', @GUI_4_EDITED_OpeningFcn, ...
 'gui_OutputFcn' , @GUI_4_EDITED_OutputFcn, ...
 'gui_LayoutFcn' , [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before GUI_4_EDITED is made visi ble.
function GUI_4_EDITED_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for GUI_4_EDITE D
handles.output = hObject;
set(handles.SIGNAL_FFT,'String', '0');
se t(handles.READING_STATUS,'String', 'OPEN COM FIRST');
se t(handles.SEND_WARNING,'String', 'OPEN COM FIRST');
se t(handles.COM_STATUS,'String', 'OFF LINE');
set(handles.SIGNAL_RMS,'String', '0');
se t(handles.oil_diff,'String', '0');
se t(handles.oil_press, 'String', '0');
se t(handles.crest,'String', '0');
se t(handles.RPM, 'String', '0');
se t(handles.ZERO_ADXL, 'Enable', 'off');
set(handles.SAVE_DATA, 'Enable', 'off');

% % Update handles structure
guidata(hObject, handles);

function varargout = GUI_4_EDITED_OutputFcn(hObject, eventda t a,
handles)
varargout{1} = handles.output;

%%%
%% GROUP ALL DISPLAY WINDOWS %%
%%%

%% Engine oil pressure display window
function oil_press_Callback(hObject, eventdata, handles)

f unction oil_press_CreateFcn(hObject, eventdata, handles)

i f ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))

128

 set(hObject, 'BackgroundColor', 'white');
end

%% Oil differential pressure display window
function oil_diff_Callback(hObject, eventdata, handles)

f unction oil_diff_CreateFcn(hObject, eventdata, handles)

i f ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

%% Crest factor display window
function crest_Callback(hObject, eventdata, handles)

f unction crest_CreateFcn(hObject, eventdata, handles)

i f ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

% WINDOW TO DISPLAY FFT HZ
function SIGNAL_FFT_Callback(hObject, eventdata, handles)
function SIGNAL_FFT_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

% WINDOWS TO DISPLAY SERIAL READ STATUS
function READING_STATUS_Callback(hObject, eventdata, handles)
function READING_STATUS_CreateFcn(hObject, eventdata, handle s)
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

% WINDOWS TO DISPLAY PUMP STATUS
function SEND_WARNING_Callback(hObject, eventdata, handles)
function SEND_WARNING_CreateFcn(hObject, eventdata, handles)
i f ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

% WINDOWS TO DISPLAY COM PORT STATUS
function COM_STATUS_Callback(hObject, eventdata, handles)
function COM_STATUS_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

% WINDOW TO DISPLAY SIGNAL RMS
function SIGNAL_RMS_Callback(hObject, eventdata, handles)
function SIGNAL_RMS_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...

129

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

% WINDOW TO DISPLAY RPM
function RPM_Callback(hObject, eventdata, handles)
function RPM_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0, 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

%%%
%% GROUP ALL RADIOBUTTONS %%%
%%%

%%%%%%%%%%%%%%%%%%%%%%%% ENABLE COM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function OPEN_COM_Callback(hObject, eventdata, handles)
button_state = get(hObject,'Value');
lo g_state=get(handles.PROCESS_DATA_LOG, 'Value');
if log_state==0
se t(handles.OPEN_COM,'Enable', 'on');
if button_state == 1 && log_state ==0
set(handles.COM_STATUS,'String', 'INITIALIZE');
delete(instrfindall);
try
port=char(handles.port);
s1 = serial(port);
catch
 err_str = {'YOU HAVE NOT CONNECTED ANY DEVICE', ...
 'OR HAVE NOT SELECTED THE COM PORT'};
 ed = errordlg(err_str,'Error');
se t(ed, 'WindowStyle', 'modal');
ui wait(ed);
port=0;
s1=0;
set(handles.OPEN_COM,'Value' ,0);
return;
end
s1.StopBits=1;
s1.DataBits=8;
s1.BaudRate=115200;
% set(s1,'Terminator', 'Z');
try
buffer=eval(char(handles.choise)); % The size of the buffer is set
% according to the user's selection
catch
 buffer=2000;
 ed = errordlg('The buffer set to default size 2000', 'Warning');
 set(ed, 'WindowStyle', 'modal');
end
set(s1, 'InputBufferSize', buffer);
handles.s1=s1;
guidata(hObject,handles);
pause(1); % Give the Arduino time to reboot
fo pen(s1);
s1.ReadAsyncMode = 'continuous';
r eadasync(s1);
pause(2);
% Radio button status
se t(handles.COM_STATUS,'String', 'ON LINE');

130

set(handles.STOP_ENG,'Enable', 'on');
se t(handles.ZERO_ADXL, 'Enable', 'on');
% Edit text status
set(handles.READING_STATUS,'String', 'Zero ADXL First');
se t(handles.SEND_WARNING,'String', 'OFF');
else
 set(handles.OPEN_COM,'Value' ,0);
 set(handles.COM_STATUS,'String', 'OFF LINE');

end
if button_state == 0
 set(handles.READ_SERIAL, 'Value' ,0);
 set(handles.STOP_ENG,'Value' ,0);
 set(handles.SAVE_DATA,'Value' ,0);
 set(handles.COM_STATUS,'String', 'OFF LINE');
 set(handles.READ_SERIAL, 'Enable', 'off');
 set(handles.STOP_ENG,'Enable', 'off');
 set(handles.ZERO_ADXL,'Enable', 'off');
 set(handles.READING_STATUS,'String' , 'OPEN COM FIRST');
 set(handles.SEND_WARNING,'String', 'OPEN COM FIRST');
 set(handles.SIGNAL_FFT,'String',0);
 set(handles.SIGNAL_RMS,'String',0);
 set(handles.SAVE_DATA,'Enable', 'off');
 pause(1);
 cla(handles.axes1);
 cla(handles.axes2);
 cla(handles.axes3);
 delete(instrfindall);
end
else
 set(handles.OPEN_COM,'Enable', 'off');
end
%%%

%%%
%% ONLINE DATA PROCESSING %%%
%%%

% Enable FFT spectrum plot
function enable_FFT_Callback(hObject, eventdata, handles)

% Kalman Filter
function kalman_Callback(hObject, eventdata, handles)

% ENABLE PLOTTING CREST FACTOR AND RMS
function crest_RMS_Callback(hObject, eventdata, handles)
handles.axes3;
cla;

%%%%%%%%%%%%%%%%%%%%%% READ SERIAL PORT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function READ_SERIAL_Callback(hObject, eventdata, handles)
button_state = get(hObject,'Value');
% handles.Read_Serial=button_state;
% guidata(hObject,handles);
cl c
set(handles.READING_STATUS,'String', 'READING');
if button_state == 1
 set(handles.SAVE_DATA,'Enable', 'on');
while (button_state > 0);

131

 % Get states of radio buttons
button_state = get(hObject,'Value');
button_state_3=get(handles.OPEN_COM,'Value');
button_state_9=get(handles.SAVE_DATA,'Value');
button_state_10=get(handles.enable_FFT, 'Value');
if button_state == 0 && button_state_3 == 1
 set(handles.READING_STATUS,'String' , 'OFF');
 break
elseif button_state == 0 && button_state_3 == 0
 set(handles.READING_STATUS,'String' , 'OPEN COM FIRST');
 break
end
%% VERSION WITH "fread" IMPROVED PERFORMANCE
a_in =fread(handles.s1)'; % Read sensor
a_in=char(a_in); % Convert input string to characters array

% GET SENSORS DATA OUT OF THE DATA STRING
% In this section the main string contains vibration data with included
% RPM readings
% value. So we are catching this RPM value then excl ude it from the
% data string.
% Then we combine the parts of the string in one stri ng and send it for
% further processing. The sensors readings are separa ted by
% 'Z'characters in the data string.

 expression = 'Z' ; % Define the delimeter character
 % Split by the patern
 [match,noMatch]=regexp(a_in,expression,'match' , 'split');
 assignin('base', 'val' ,noMatch);
 try
 RPM=noMatch(2); % Catch up the RPM value
 RPM=eval(cell2mat(RPM));

 OIL=noMatch(3); % Catch up the OIL press
 OIL=eval(cell2mat(OIL));

 DIFF=noMatch(4); % Catch up the OIL press
 DIFF=eval(cell2mat(DIFF))-9;

 % Combine data to be saved in csv file
 Sens_data=[RPM,OIL,DIFF];

 % Display sensors data
 set(handles.RPM,'String',num2str(RPM)); % Display RPM
 set(handles.oil_press,'String',num2str(OIL)); %Display Oil press
 set(handles.oil_diff,'String',num2str(DIFF)); %Display Oil press
 catch
 % If DATA data is empty
 RPM=0;
 OIL=0;
 DIFF=0;
 Sens_data=0;
 end
 try
 % Concatinate the vibration data string
 splitStr = regexp(a_in, '\,' , 'split'); %Split the string onto values
 catch
 splitStr = regexp(a_in, '\,' , 'split'); % If RPM data is empty
 end
 splitStr = splitStr(10:end-10); % Remove spikes in the data
 % Convert characters into numerical array for further processing
 z =0;
 for k=1:(length(splitStr))

132

 b=cell2mat(splitStr(k));
 z=z+1;
try
 a(z)=eval(b)-handles.calibval; % Substruct calibration value
catch
 z=z-1; % In case of data error (jitter)
end
 end
 a=a(1:end-1);
%% WRITE DATA TO THE FILE
if button_state_9 == 1
dl mwrite('FRIQUENCY.csv',a, '-append');
dl mwrite('FRIQUENCY.csv',Sens_data,'-append');
end

%% FFT TRANSFORMATION
if button_state_10 == 1
f s=2900; % Sampling frequiency
nf =2900; % number of point in DTFT
%%
Y = fft(a,nf);%,nf);
f = fs/2*linspace(0,1,nf/2+1);
Y=abs(Y);
% Plot FFT
[pk,MaxFreq]=findpeaks(abs(Y(1:nf/2+1)));
b=max(pk);
c=MaxFreq(find(pk==max(pk)));
set(handles.SIGNAL_FFT, 'String',['Max ' ,num2str(c), ' Hz']);
pl ot(handles.axes1,f,abs(Y(1:nf/2+1)),c,b,'o' ,[RPM/60 RPM/60],[1 b], 'r-
');
x l im(handles.axes1,[0 400]);
title(handles.axes1,'FTT');
xl abel(handles.axes1,'Frequency');
yl abel(handles.axes1,'Magnitude');
se t(handles.RPM, 'String',['RPM= ' , num2str(RPM)]); % Display RPM
dr awnow
end
% Plot raw signal
pl ot(handles.axes2,a);
title(handles.axes2,'PURE SIGNAL');
xl abel(handles.axes2,'N samples');
y l abel(handles.axes2,'Magnitude');
dr awnow
end
se t(handles.WATERFALL, 'Enable', 'On');
else set(handles.SAVE_DATA,'Enable', 'off');
end

% ENGINE STOP COMMAND TO BE SENT TO ARDUINO
function STOP_ENG_Callback(hObject, eventdata, handles)
button_state=get(hObject,'Value');
if button_state == 1
 set(handles.SEND_WARNING,'String', 'WARNING');
 fprintf(handles.s1,'%i' ,1, 'async');
 flushinput(handles.s1);
 pause(1);
elseif button_state==0
 set(handles.SEND_WARNING,'String', 'No WARNING');
 fprintf(handles.s1,'%i' ,0, 'async');
 pause(1);
 flushinput(handles.s1);

133

end

% LOW PASS FILTER
function LOW_PASS_Callback(hObject, eventdata, handles)

% HIGH PASS FILTER
function HIGH_PASS_Callback(hObject, eventdata, handles)

% WAVELET DENOISE 1
function Wavelet_1_Callback(hObject, eventdata, handles)

% WAVELET DENOISE 2
function Wavelet_2_Callback(hObject, eventdata, handles)

% PLOT SPECTROGRAM
function PSD_SPECTROGRAM_Callback(hObject, eventdata, handles)
% Since RMS/CREST plot and Spectrogram plot shares th e same axes. The
% RMS/CREST plot button must be disabled.
if get(hObject,'Value') == 0
 set(handles.crest_RMS,'Enable', 'on');
else
 set(handles.crest_RMS,'Enable', 'off');
 set(handles.crest_RMS,'Value' ,0);
end

% SAVE DATA
function SAVE_DATA_Callback(hObject, eventdata, handles)
button_state=get(hObject,'Value');
pause(1);
% When user decides to finish writing the data GUI w i ll ask to save the
% file.
if button_state == 0
[f ile,path] = uiputfile('*.csv' , 'Save as'); % Initiates "save as"
% dialog and returns user selected filename and the path
try
l og=csvread('FRIQUENCY.csv'); % Reads current vibration data file
cs vwrite([path,file],log); % Saves to specified folder under
sp ecified
% filename
catch % If user hits cancel
er r_str = { 'NO DATA HAS BEEN SAVED. THE DATA STILL EXISTS UNDER' , . ..
 '"FRIQUENCY.csv" BUT WILL BE LOST AFTER NEXT RECORDIN G' };
ed = errordlg(err_str, 'Error');
se t(ed, 'WindowStyle', 'modal');
return;
end
end
if exist('FRIQUENCY.csv', 'file')==2
 delete('FRIQUENCY.csv'); % Delete peviously recorded data
end

% GET RMS OF THE SIGNAL
function INCLUDE_RMS_Callback(hObject, eventdata, handles)

% CALIBRATE ADXL
% This function used to zero reference the ADXL accelerometer
function ZERO_ADXL_Callback(hObject, eventdata, handles)
button_state=get(hObject,'Value');
if button_state==1;
 set(handles.READ_SERIAL, 'Enable', 'off');
 set(handles.READ_SERIAL, 'Value' ,0);
 set(handles.READING_STATUS,'String' , 'Zero ADXL');

134

 fprintf(handles.s1,'%i' ,2); % Warm up the hardware
 pause(1);
 fprintf(handles.s1,'%i' ,3); % Initialize ADXL calibration
 pause(1);
 flushinput(handles.s1);
 a_in =fread(handles.s1)';
 a_in=char(a_in);
 splitStr = regexp(a_in, '\,' , 'split');
 splitStr=splitStr(250); % Pick mid value
 b=cell2mat(splitStr);
try
 calibval=eval(b);
catch
 calibval=0; % In case of data error (jitter)
end
 fprintf(handles.s1,'%i' ,2); % Enable sensor reading
 handles.calibval=calibval;
 guidata(hObject,handles);
 pause(1);
 %%
 set(handles.READ_SERIAL, 'Enable', 'on');
 if handles.READ_SERIAL == 1
 set(handles.READING_STATUS,'String' , 'READING');
 else
 set(handles.READING_STATUS,'String' , 'NOT READING');
 end
 set(hObject, 'Value' ,0);
end

%%%
%% LOGGED DATA OFFLINE PROCESSING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

function PROCESS_DATA_LOG_Callback(hObject, eventdata, handl es)
button_state=get(hObject,'Value');
if button_state==1;
% tic;
 set(handles.OPEN_COM,'Value' ,0);
 set(handles.READ_SERIAL, 'Value' ,0);
 set(handles.STOP_ENG,'Value' ,0);
 set(handles.SAVE_DATA,'Value' ,0);
 set(handles.READ_SERIAL, 'Enable', 'off');
 set(handles.STOP_ENG,'Enable', 'off');
 set(handles.OPEN_COM,'Enable', 'off');
 set(handles.SAVE_DATA,'Enable', 'off');
 set(handles.ZERO_ADXL,'Enable', 'off');
 set(handles.WATERFALL,'Enable', 'off');
 set(handles.READING_STATUS,'String' , 'OPEN COM FIRST');
 set(handles.SEND_WARNING,'String', 'OPEN COM FIRST');
 set(handles.SIGNAL_FFT,'String',0);
 set(handles.SIGNAL_RMS,'String',0);
 pause(1);
 cla(handles.axes1);
 cla(handles.axes2);
 cla(handles.axes3);

% GET THE DATA BLOCK
% Check if logged data exist and read the file
 try
 file=handles.file;
 log=csvread(file);

135

 catch
 set(hObject,'Value' ,0);
 set(handles.OPEN_COM,'Enable', 'on');
 set(handles.COM_STATUS,'String' , 'OFF LINE');
 ed = errordlg('Open file first' , 'Error');
 set(ed, 'WindowStyle', 'modal');
 log=0;
 return;
 end
% Process data
[r ,c]=size(log);
%Remove empty data before and after the engine start
% All data before 1500 RPM achieved will be erased
st art=find(log(1:r,:)>=1500);
log(1:start(1),:)=[];
log(start(end):end,:)=[];

% Separate Sensors data from vibration data.
[r ,c]=size(log);
Sens_data=log;
Sens_data(1:2:r,:)=[]; % Remove vibration data
% Sens_data=Sens_data(find(Sens_data)); % Co mbine sensors data
lo g(2:2:r,:)=[]; % Remove sensors data
for i=1:r/2
button_state=get(hObject,'Value');
 % Get states of radio buttons
button_state_4=get(handles.LOW_PASS,'Value');
button_state_5=get(handles.HIGH_PASS,'Value');
button_state_6=get(handles.Wavelet_1,'Value');
button_state_7=get(handles.Wavelet_2,'Value');
button_state_8=get(handles.PSD_SPECTROGRAM,'Value');
button_state_9=get(handles.kalman, 'Value');
button_state_10=get(handles.INCLUDE_RMS,'Value');
button_state_11=get(handles.PAUSE, 'Value');
button_state_12=get(handles.crest_RMS,'Value');
button_state_13=get(handles.enable_FFT, 'Value');

 % Remove erratic data
 if i>1
 if sum(log(i,:))>10000
 log(i,:)=log(i-1,:);
 end
 end
 %
 a=log(i,:); % Get vibration data
 RPM(i)=Sens_data(i,1); % Get RPM
 % Ignor errors in RPM reading
 if i>1
 if RPM(i)<RPM(i-1)-1000 || RPM(i)>RPM(i-1)+1000
 RPM(i)=RPM(i-1);
 end
 end

 OIL(i)=Sens_data(i,2); % Get Oil Pressure
 DIFF(i)=Sens_data(i,3); % Get Oil Differential pressure

% Stop offline data processing if button is un-presse d
if button_state == 0
 break ;
end

if button_state_9 == 1
P = 1; % Kalman filter sensitivity

136

a = KALMAN(a,P); % Call the Kalman filter
end

%% PAUSE THE EXECUTION
if button_state_11 == 1
while (button_state_11 > 0);
 pause(1);
 button_state_11=get(handles.PAUSE,'Value');
end
end

%% SHOW RMS and CREST factor
 RMS(i)=rms(a);
 CREST(i)=peak2rms(a); % Calculate Crest Factor
 k(i) = kurtosis(a); % Calculate kurtosis
 % Correct errors in data to avoid spikes
 if i>1
 if RMS(i)>RMS(i-1)+4 || CREST(i)>CREST(i-1)+4
 RMS(i)=RMS(i-1);
 CREST(i)=CREST(i-1);
 end
 end
 set(handles.crest, 'String',num2str(CREST(i)));
 set(handles.SIGNAL_RMS,'String', num2str(RMS(i)));

%% PLOT RMS AND CREST FACTOR
if button_state_12 == 1 && button_state_8 == 0
 handles.axes3;
 cla;
 title('Real time RMS,CREST,RPM and PRESS DIFF');
 plot(CREST);
 ylim([0 15]);
 xlim([0,100]);
 if button_state_10 == 1
 handles.axes3;
 hold on ;
 plot(RMS);
 plot(RPM/1000);
 plot(DIFF/100);
 end
 if i>100;
 xlim([i-100,i]);
 end

else
 handles.axes3;
 hold off ;
end
%% WAVELET DENOISE FILTERS
if button_state_6 == 1
a=DENOISE(a); % DENOISE USING WAVELET.
end
if button_state_7 == 1
[C,L] = wavedec(a,3,'db3'); %% Three levels of denosing
a = wrcoef('a' ,C,L, 'db3' ,3); %% Reconstruct the signal
end

%% LOW PASS AND HIGH PASS FILTERS
if button_state_4 == 1
a=filter(LOW_PASS,a); % BATERWOTH PRE_FILTER LOW_PASS
end
if button_state_5 == 1
a=filter(HIGH_PASS,a); % CHEBUSHEV PRE_FILTER HIGH_PASS

137

end

%% FFT Transformation and Spectrum plot
f s=2900;
nf=2900; %number of point in DTFT
Y = fft(a,nf);%,nf);
f = fs/2*linspace(0,1,nf/2+1);
Y=abs(Y);
% Plot FFT
if button_state_13 == 1;
[pk,MaxFreq]=findpeaks(abs(Y(1:nf/2+1)));
b=max(pk);
c=MaxFreq(find(pk==max(pk)));
set(handles.SIGNAL_FFT,'String',['Max ' ,num2str(c), ' Hz']);
pl ot(handles.axes1,f,abs(Y(1:nf/2+1)),c,b,'o' ,[RPM(i)/60 RPM(i)/60], ...
 [1 b],'r-' ,[RPM(i)/30 RPM(i)/30],[1 b],'r-' , ...
 [RPM(i)/20 RPM(i)/20],[1 b],'r-');
xl im(handles.axes1,[0 400]);
ylim(handles.axes1,[0 3000]);
title(handles.axes1,'FFT');
x l abel(handles.axes1,'Frequency');
yl abel(handles.axes1,'Magnitude');
end

% Display sensors data
set(handles.RPM, 'String',num2str(RPM(i))); % Display RPM
se t(handles.oil_press, 'String',num2str(OIL(i))); %Display Oil press
se t(handles.oil_diff,'String',num2str(DIFF(i))); %Display Oil press

% Plot raw signal
pl ot(handles.axes2,a);
title(handles.axes2,'PURE SIGNAL');
xl abel(handles.axes2,'N samples');
yl abel(handles.axes2,'Magnitude');
yl im(handles.axes2,[-25 25]);

% Plot PSD periodogram
if button_state_8 == 1;
set(handles.crest_RMS, 'Enable', 'off');
se t(handles.crest_RMS, 'Value' ,0);
axes(handles.axes3);
cla;
plot(psd(spectrum.periodogram,a,'Fs' ,2900,'NFFT',length(a)));
xl im(handles.axes3,[0.01 0.4]);
ylim(handles.axes3,[-20 20]);
end
dr awnow

end
 set(hObject,'Value' ,0);
 set(handles.OPEN_COM,'Enable', 'on');
 set(handles.COM_STATUS,'String' , 'OFF LINE');
else
 set(handles.COM_STATUS,'String', 'OFF LINE');
 set(handles.OPEN_COM,'Enable', 'on');
 set(handles.SAVE_DATA,'Enable', 'on');
 set(handles.WATERFALL,'Enable', 'on');
end

% PAUSE OF THE LOGGED DATA
function PAUSE_Callback(hObject, eventdata, handles)

138

%%%
%% GENERATED PLOTS BASED ON RECORDER DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

% PLOT SPECTRUM DENSITY OF LOGGED DATA "WATERFALL"
function WATERFALL_Callback(hObject, eventdata, handles)
button_state=get(hObject,'Value');
ka lman = get(handles.kalman, 'Value');
wavelet_1 = get(handles.Wavelet_1, 'Value');
wavelet_2 = get(handles.Wavelet_2,'Value');
if button_state == 1
 try
 file=handles.file;
 log=csvread(file);
 [r,c]=size(log);

%Remove empty data before and after the engine start
% All data before 1500 RPM achieved will be erased
st art=find(log(1:r,:)>=1500);
log(1:start(1),:)=[];
log(start(end):end,:)=[];

 [r,c]=size(log);
 log(2:2:r,:)=[]; % Remove RPM
 catch
 set(hObject,'Value' ,0); % In case if the file does not exist
 ed = errordlg('Open file first' , 'Error');
 set(ed, 'WindowStyle', 'modal');
 return;
 end
% Clean up errors from the data
 [r,c]=size(log);
 for i=1:r

 if i>1
 if sum(log(i,:))>10000
 log(i,:)=log(i-1,:);
 end
 end

 % Apply Kalmnn filter to the data
 if kalman == 1;
 a = log(i,:);
 P = 1;
 log(i,:) = KALMAN(a,P);
 end

 % WAVELET DENOISE
 if wavelet_1 == 1;
 log(i,:)=DENOISE(log(i,:)); % DENOISE USING WAVELET.
 end
 if wavelet_2 == 1;
 [C,L] = wavedec(log(i,:),3,'db3'); %% Three levels of denosing
 log(i,:) = wrcoef('a' ,C,L, 'db3' ,3); %% Reconstruct the signal
 end

 end
% Make a single row array out of matrix.
% Remember to transpose matrix "log'"
OUT=reshape(log',1,[]);
OUT=OUT';

139

Seg=c; % Size of segment of data.
Fs=2900; % SAMPLE FRIQUENCY
OvLap=200; % Overlap between samples
wi ndow = hamming(Seg);
[S, F, T, P] = spectrogram(OUT, window, OvLap, Seg,
Fs, 'MinThreshold' ,100);
fi g=figure;
mesh(T,F,abs(S));
view([-90.3 90])
ylim([10 300]);
% zlim([0 5000]);
t i tle('SPECTROGRAM');
xl abel('Time (sec)');
y l abel('Friquency (Hz)');
xl im auto ;
ro tate3d on ;
fi gure(fig);
else
 cla(handles.axes1);
 rotate3d off ;
end

%% Plot CREST_RMS_RPM.
function CREST_RMS_RPM_Callback(hObject, eventdata, handles)
%% PLot CREST,RMS, Pressure rise and RPM in separate window.
% This is the plot that can be called to reveal data recorded during
% the experiment. It does not work in real time signal reading. This
% plot can be used for determining a relation between plotted
% parameters.

button_state=get(hObject,'Value');
ka lman = get(handles.kalman, 'Value');
wavelet_1 = get(handles.Wavelet_1,'Value');
wavelet_2 = get(handles.Wavelet_2, 'Value');
if button_state == 1
 try
 file=handles.file;
 log=csvread(file);
 [r,c]=size(log);

%Remove empty data before and after the engine start
% All data before 1500 RPM will be erased
st art=find(log(1:r,:)>=1500);
log(1:start(1),:)=[];
log(start(end):end,:)=[];
 [r,c]=size(log);
 Sensors=log;
 Sensors(1:2:r,:)=[]; % Remove vibration data
 log(2:2:r,:)=[]; % Remove RPM
 catch
 set(hObject,'Value' ,0); % In case if the file does not exist
 ed = errordlg('Open file first' , 'Error');
 set(ed, 'WindowStyle', 'modal');
 log = 0;
 return;
 end
% Clean up errors from the data
 [r,c]=size(log);
 for i=1:r
 RPM(i)=Sensors(i,1);
 OIL(i)=Sensors(i,3);
% Remove data errors
 if i>1

140

 if sum(log(i,:))>10000
 log(i,:)=log(i-1,:);
 end
 if RPM (i)<RPM(i-1)-1000;
 RPM(i)=RPM(i-1);
 end
 end

 % Apply Kalmann filter to the data
 if kalman == 1;
 a = log(i,:);
 P = 1;
 log(i,:) = KALMAN(a,P);
 end

 % WAVELET DENOISE
 if wavelet_1 == 1;
 log(i,:)=DENOISE(log(i,:)); % DENOISE USING WAVELET.
 end
 if wavelet_2 == 1;
 [C,L] = wavedec(log(i,:),3, 'db3');
 log(i,:) =wrcoef('a' ,C,L, 'db3' ,3);
 end

RMS(i) = rms(log(i,:));
CREST(i) = peak2rms(log(i,:));
 end

fi gure(1);
hold on
t i tle('Signal Crest Factor and RMS');
% Kalman filter for the global data
P=0.05;
P1=0.05;
P2=1;
X = KALMAN(CREST,P);
X1 = KALMAN(RMS,P1);
X2 = KALMAN(OIL,P2);
plot(X);
plot(X1);
plot(RPM/1000);
plot(X2/50);
ylim([0 20]);
legend('CREST Factor', 'RMS' , 'RPM' , 'OIL PRESSURE');
hold off
else
 close(figure(1));
end
%%%

%%%
%% TOOLBAR MENU %%%
%%%

%%%%%%%%%%%%%%%%%%%%%% FILE %%%

function file_menu_Callback(hObject, eventdata, handles)

% GET HELP FILE
function help_Callback(hObject, eventdata, handles)
wi nopen GUI_HELP.txt;

141

% SELECT PORT FOR THE MICROCONTROLLER
% When user presses 'port' item in the toolbar menu t he function
% initiates a COM port selection dialog and passes selected port to the
% OPEN COM function.

function select_port_Callback(hObject, eventdata, handles)
l i st = instrhwinfo('serial'); % Get available COM ports
if isempty(list.SerialPorts) == 0 % Check if anything plugged to USB
for i=1:length(list.SerialPorts)
ports(i) = list.SerialPorts(i); %Create a cell array of available ports
end
% Create list dialog. s-return the number of selecte d component from
% the ports cell array. v-returns 1 if selection was made a nd 0 if
% no selection.
[s ,v]=listdlg('PromptString' , 'Select COM
port' , 'SelectionMode', 'single', ...
 'ListString' ,ports);
if v==1
handles.port=char(ports(s));
guidata(hObject, handles);
else
handles.port={};
guidata(hObject, handles);
end
else
set(handles.port,'Label' , 'No device connected');
end

% -- - -----------------
function port_Callback(hObject, eventdata, handles)

% OPEN FILE
% This function initiates a browse window to navigat e to
% the vibration data *.csv file

function open_file_Callback(hObject, eventdata, handles)
fi le = uigetfile('*.csv');
handles.file=file;
guidata(hObject, handles);

%%%
%% POPUP MENUES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

% Select Buffer Size POPUP menu
function buffer_Callback(hObject, eventdata, handles)
content=cellstr(get(hObject, 'String'));
ch oise=content(get(hObject,'Value'));
handles.choise=choise;
guidata(hObject, handles);

function buffer_CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0, ...
 'defaultUicontrolBackgroundColor'))
 set(hObject, 'BackgroundColor', 'white');
end

142

LOW_PASS.m

function Hd = LOW_PASS
%LOW_PASS Returns a discrete-time filter object.

% MATLAB Code
% Generated by MATLAB(R) 9.0 and the DSP System Toolbox 9.2.
% Generated on: 26-Dec-2016 13:19:40

% Butterworth Lowpass filter designed using FDESIGN.LOWPASS.

% All frequency values are in Hz.
Fs = 2900; % Sampling Frequency

Fpass = 150; % Passband Frequency
Fstop = 200; % Stopband Frequency
Apass = 1; % Passband Ripple (dB)
Astop = 80; % Stopband Attenuation (dB)
match = ' passband'; % Band to match exactly

% Construct an FDESIGN object and call its BUTTER method.
h = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs);
Hd = design(h, ' butter', 'MatchExactly' , match);

% [EOF]

HIGH_PASS.m

function Hd = HIGH_PASS
%HIGH_PASS Returns a discrete-time filter object.

% MATLAB Code
% Generated by MATLAB(R) 9.0 and the DSP System Toolbox 9.2.
% Generated on: 26-Dec-2016 13:41:52

% Chebyshev Type II Highpass filter designed using FDESIGN.HIGHPASS.

% All frequency values are in Hz.
Fs = 2900; % Sampling Frequency

N = 100; % Order
Fstop = 5; % Stopband Frequency
Astop = 80; % Stopband Attenuation (dB)

% Construct an FDESIGN object and call its CHEBY2 method.
h = fdesign.highpass(' N,Fst,Ast', N, Fstop, Astop, Fs);
Hd = design(h, ' cheby2');

143

DENOISE.m

function sigDEN = DENOISE(SIG)
% FUNC_DENOISE_DW1D Saved Denoising Process.
% SIG: vector of data
% -------------------
% sigDEN: vector of denoised data

% Auto-generated by Wavelet Toolbox on 11-Jan-2017 19:40:07

% Analysis parameters.
%---------------------
wname = ' db10';
level = 3;

% Denoising parameters.
%----------------------
% meth = 'sqtwolog';
% scal_or_alfa = one;
sorh = ' s' ; % Specified soft or hard thresholding
thrSettings = [. ..
 5.231591207698597 ; . ..
 10.052555720277580 ; . ..
 4.543068930466854 . ..
];

% Denoise using CMDDENOISE.
%--------------------------
sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrSettings);

KALMAN.m

%% The Kalman filter.
% This fucntios is fritten based on the literature review.
% Matlab has its own "kalman" function which I consider to be
% a little bit complicated for a simple denoise.
% The aray a contains the data, P determines the filter's
% sensitivity. X is is the denoised data.
function X = KALMAN(a,P)
X = zeros(1,length(a)); % Filtered signal
R = std(a); % Standard deviation of the signal
K=P/(P+R); % Gain coefficient
P = P*ones(1,length(a));
for j=2:length(a)
 X(j)=X(j-1);
 P(j)=P(j-1);
 X(j)=X(j)+K*(a(j)-X(j));
 P(j)=(1-K)*P(j);
end

144

Appendix E - C Program Structure

The Master Board Script

///
////////////////////////THE MASTER BOARD SCRIPT/////////
///

// The following script has to be loaded into the master board
// it controls communication between the master, the slave board and PC
// by means of I2C protocol and serial COM interface. Also the master board is
// responsible for queering the ADSL accelerometer, gathering all data received
// from the slave board in send it to PC.

#include <Wire.h> // Header file used for I2C communication

// DECLARATIONS
int zPin = A3; // Z axis of the ADXL335
int block=500; // Block of data
unsigned int rawZ; // DATA FROM ADXL
int ave;

// void EVENT declarations
boolean DATA_ON = false; // SENT DATA
boolean CALIB_DONE = false; // CALIBRATION VERIFICATION

// OVERCLOCK ADC. Set bits that control prescaler of the ADC clock
// Refer to ATmega328 Specifications.
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

///
/////////////////////////// INITIAL SETUP //////////////////
///

void setup(){

 analogReference(EXTERNAL); // Reference the ADC to external 3.5 V
 Serial.begin(115200); // Begin serial communication at 115200 baud rate
 Wire.begin(); // Join I2C bus (address optional for master)

 //OVERCLOCK ADC .Set the prescaler value 16 which gives Fs=70kHz
// Refer to ATmega328 Specifications.

 sbi(ADCSRA, ADPS2);
 cbi(ADCSRA, ADPS1);
 cbi(ADCSRA, ADPS0);
}

///
//////////////////////////////END OF INITIAL SETUP///////////
//

145

// This is a subroutine initiated by Matlab scrip to zero reference the ADXL accelerometer

void calibrate(){
// Declare Variables
ave = 0;
unsigned int zCalib = 0;

// If Boolean CALIB_DONE is false the board will read number of samples
// specified by the variable' block' and then average the block of data.

if (!CALIB_DONE) {
for (int i=0; i<block; i++){
 zCalib=analogRead(zPin); // Read the voltage coming from the Z axis of
// the ADXL
 ave+=zCalib; // Make cumulative sum of the readings.

//DEBUG (Uncomment for debugging)
 //Serial.println(zCalib);
 //Serial.println(ave);
 }
ave=ave/block; // Average the block of data
}

 CALIB_DONE = true; // Finish reading the accelerometer and toggle the
// Boolean
// The function will continue to send calibration data to PC until it receives
// the response setting the Boolean DATA_ON true.

 while (DATA_ON == false){
 Serial.print(ave);
 Serial.print(',');
 serialEvent();
 }
 delay(1000); // Provide some delay to accommodate for latencies
}

///
///////////////// THE MAIN LOOP/////////////////////////////////
///

void loop(){

 if (DATA_ON & CALIB_DONE){
 // PRINT BLOCK OF DATA
// The function will send a number of consecutive reading specified
// by the 'block' variable

 for (int i=0; i<block; i++){
 rawZ=analogRead(zPin); // Read the ADXL
 Serial.print(rawZ); // Send the vibration data to PC
 Serial.print(','); // Send delimiter character
 }

146

 getRPM(); // Launch the subroutine that takes care of receiving the
// sensors data from the slave board and sending them to PC
 }
}

//
/////////// END OF THE MAIN LOOP///////////////////////////
//

// REACT ON COMMANDS COMING FROM MATLAB
// This function interrupts the main routine when data from PC is
// available at the serial port. The function will generate four different
// responses according to received integer from PC

void serialEvent(){
 byte m = 1;
 byte n = 0;

 switch (Serial.read()) { // Read a character from serial port

 case '1': // Send Warning to slave
 // This part is used to sent data to slave to get reaction
 Wire.beginTransmission(8);
 Wire.write(m); // Send character 'm' to the slave
 Wire.endTransmission();
 break;

 case '0': // Call off Warning
 Wire.beginTransmission(8);
 // This part is used to sent data to slave to get reaction
 Wire.write(n); // Send character 'n' to the slave
 Wire.endTransmission();
 break;

 case '2': // READY TO RECEIVE DATA
 DATA_ON = true;
 break;

 case '3': // CALIBRATE ADXL
 CALIB_DONE = false;
 calibrate();
 break;
 }
 while (Serial.read() >= 0); // flush any extra characters
}

// This subroutine reads data from the slave board, combine one byte words
// into two byte words. Then it sends the data to PC through the serial port.

void getRPM() {

 // Request RPM data from the slave
 Wire.requestFrom(8, 6); // request 6 bytes from slave device #8

147

 while (Wire.available()) {
 //I2C can only send one byte per cycle. So for long numbers
 // we need to split them in two bytes
 int RPM,OIL,Diff; // Declare the variables
 byte a, b,c,d,e,f; // Declare the bytes characters
 a = Wire.read();
 b = Wire.read();
 c = Wire.read();
 d = Wire.read();
 e = Wire.read();
 f = Wire.read();

 RPM = a; // Get first byte
 RPM = (RPM << 8) | b; // Bitwise shift left and add second byte

 OIL = c; // Get first byte
 OIL = (OIL << 8) | d; // Bitwise shift left and add second byte

 Diff = e; // Get first byte
 Diff = (Diff << 8) | f; // Bitwise shift left and add second byte

 // It sends the delimiter character 'Z' between the readings. The delimiter
 //is recognized by the Matlab scrip as a divider between the values.
 Serial.print("Z");
 Serial.print(RPM);
 Serial.print("Z");
 Serial.print(OIL);
 Serial.print("Z");
 Serial.print(Diff);
 Serial.print("Z");
 Serial.print(',');
 }
}
//
/////////// END OF THE MASTER SCRIPT /////////////////
//

148

The Slave Board Script

///
/////////////////////THE SLAVE BOARD SCRIPT//////////////////
//

// Thanks to the members of the arduino.cc forum for their assistance. The great part
// of this script is the collective effort of the Arduino community.
// This script should be uploaded into the slave board. This scrip is responsible for
// reading the RPM and the oil pressure as well as controlling the accessory relays.

#include <Wire.h> // Header file used for I2C communication

///
///DECLARATIONS OF RPM RELATED VARIABLES////
//
// Volatile variables are used for unstable parameters

extern volatile unsigned long timer0_overflow_count; // Record the most recent
 // timer ticks
volatile boolean ticks_valid; // Indicates a valid reading
volatile unsigned long ticks_per_rev; // Number of ticks counted in the
 //current revolution
unsigned long msSinceRPMReading; // Number of mSec since the last
 //rpm_sense (used to spot zero RPM)
int lastRPM, peakRPM; // Most recent RPM reading, and highest
 //RPM recorded since last reset

const float __TICKS_TO_RPMS = 15e6; // Convert clock ticks to RPM by
 // dividing ticks into this number
 // The number will change if there are more magnets in an rpm
 // (e.g. 2 magnets = 29296.875)

const unsigned int __WAIT_BEFORE_ZERO_RPM = 1000; // Number of ms to wait
 // for an rpm_sense before assuming RPM = 0.

int INTPIN = 18; // RPM SENSOR INTERUPT PIN SET FOR 18 (Only for AtMEGA)

unsigned long msSinceSend; // mSec when the last data was sent to the serial port

const unsigned int __WAIT_BETWEEN_SENDS = 0; // Number of ms to wait
 // before sending a batch of data.

///
 /////////////// DECLARATION OF OUTPUTS ///////////////////////
///

int STARTER = 10; // STARTER RELAY PIN
int IGNITION = 11; // IGNITION RELAY PIN
int WARNING_1 = 51; // WARNING 1 LED
int WARNING_2 = 52; // WARNING 2 LED
int RPM_LED = 3; // COONECT LED HERE TO SEE IF RPM GETTING PICKED
int eng_press = A0; // ENG OIL PRESS SENSOR
int diff_press1 = A1; // PRESS DIFF SENSOR 1

149

int diff_press2 = A2; // PRESS DIFF SENSOR 2
float engpress; // STORE CONVERTED VALUE OF THE OIL PRESSURE
int engpress_scaled; // SCALED VALUE OF THE OIL PRESSURE READING
int diff1;
int diff2;
boolean warning1 = false;
boolean warning2 = false;

///
/////////////////////////// INITIAL SETUP/////////////////////////////////////
//

void setup(){

Serial.begin(115200); // Open serial port at 115200 baud rate
 Wire.begin(8); // join i2c bus with address #8
 Wire.onRequest(requestEvent); // Send data requested by the master
 // device
 Wire.onReceive(receiveCallback); // React on data received from the
 // master device
pinMode(IGNITION,OUTPUT); // IGNITION RELAY
pinMode(STARTER,OUTPUT); // STARTER RELAY
pinMode(RPM_LED,OUTPUT); // RPM PICK UP LED
pinMode(WARNING_1,OUTPUT); // WARNING LED 1
pinMode(WARNING_2,OUTPUT); // WARNING LED 2
digitalWrite(WARNING_1, LOW); // DISABLE LED 1 BY DEFAULT
digitalWrite(WARNING_2, LOW); // DISABLE LED 2 BY DEFAULT

 msSinceSend = millis(); // Data sent counter

 attachInterrupt(digitalPinToInterrupt(INTPIN), rpm_sense, RISING);
// The Hall effect sensor will cause an interrupt on pin2 which will initiate the 'rpm_sense' subroutine.

 msSinceRPMReading = 0; // If more than 2000 (i.e. 2 seconds),
 // then RPMs can be assumed to be zero (< 15rpm
 // at most, with a single magnet, no small IC
 // can run that slowly).
 lastRPM = 0; // SET Current RPM to zero
 peakRPM = 0; // SET Max recorded RPM to zero

}
//
//////////////////////////END OF INITIAL SETUP///////////////////////
///

// This subroutine is getting called at the interrupt event. Its comprises the inbuilt
// timer overflow interrupt to provide a stopwatch function. So internally this function
 // counts how many times the timer overflow interrupt occurred since the last RRP
// interrupt was issued.

void rpm_sense()
{

150

 static unsigned long pre_count; // Last timer0_overflow_count value
 unsigned long ticks_now;

 ticks_now = timer0_overflow_count; // Read the timer

// To understand the timer registers refer to ATmega 328 specifications
 byte t = TCNT0;
 if ((TIFR0 & _BV(TOV0)) && (t<255))
 ticks_now++;
 ticks_now = (ticks_now << 8) + t;

 if (pre_count == 0) { // First time around the loop?
 pre_count = ticks_now; // Yes - set the precount, don't use this number.
 }
else {
 ticks_per_rev = ticks_now - pre_count; // No - calculate the number of ticks...
 pre_count = ticks_now; // ...reset the counter...
 ticks_valid = true; // ...and flag the change up.
 }
 digitalWrite(RPM_LED,HIGH); // COONECT LED HERE TO SEE IF RPM
 //GETTING PICKED
}

//
/////////////////// THE MAIN LOOP///////////////////////////////////////
//

void loop(){

engpress=analogRead(eng_press); // READ THE ENGINE OIL PRESSURE

engpress_scaled=(engpress-100)/105; //Scale engine press reading
// The scaling converts the voltage reading into the 0-4 Psi scale

diff1=analogRead(diff_press1); // READ OIL DIFF SENSOR 1
diff2=analogRead(diff_press2); // READ OIL DIFF SENSOR 2

if (warning1) digitalWrite(STARTER, HIGH); // ENGAGE STERTER RELAY
else digitalWrite(STARTER, LOW); // KEEP STARTER RELAY DEACTIVATED

digitalWrite(RPM_LED,LOW); // KEEP RPM LED LOW BETWEEN INTERRUPTS
unsigned long thisMillis = millis(); // READ THE SYSTEM TIMER (in ms)

 /////////////////////////////// Calculate RPM///

 if (ticks_valid) { // Only come here if we have a valid RPM reading
 unsigned long thisTicks;

 noInterrupts(); // Disable interrupts while calculating
 thisTicks = ticks_per_rev;
 ticks_valid = false;
 interrupts(); // Enable interrupts

151

 lastRPM = __TICKS_TO_RPMS / thisTicks; // Convert ticks to RPMs
 ticks_valid = false; // Reset the flag.
 msSinceRPMReading = thisMillis; // Set the time we read the RPM.
 if (lastRPM > peakRPM)
 peakRPM = lastRPM; // New peak RPM
 }
else {
 // No tick this loop - is it more than X seconds since the last one?
 if (thisMillis - msSinceRPMReading > __WAIT_BEFORE_ZERO_RPM) {
 lastRPM = 0; // At least 2s since last RPM-sense, so assume zero RPMs
 msSinceRPMReading = thisMillis; // Reset counter
 }
 }

 if (thisMillis < msSinceSend) // If thisMillis has recycled, reset it
 msSinceSend = millis();

 if (thisMillis - msSinceSend > __WAIT_BETWEEN_SENDS) {

 msSinceSend = millis(); // Reset the timer
 }
// UNCOMMENT FOR DIRECT OUTPUT TO THE SERIAL PORT
 //Serial.print(engpress);
//Serial.print(',');
//Serial.print(lastRPM);
//Serial.println();
}

///
////////// Subroutine to send RPM via I2C //////////////////////////
///

 void requestEvent() {
 int a=lastRPM;
 int b=engpress_scaled;
 int c=diff2-479; // 479 is zero reading for particular sensor. For different sensors this
 // value should be determined experimentally
 //
 //// I2C can only transmit one byte per cycle so we need ////
 /////////////to split long number onto two bytes ///////////////////
 //
 // Split data onto 2 bytes
 byte RPMmyArray[2]; // Two bytes array to store RPM
 byte OILmyArray[2]; // Two bytes array to store the engine oil pressure
 byte DiffmyArray[2]; // Two bytes array to store the debris filter oil pressure

// BYTES MANIPULATION
 RPMmyArray[0] = (a >> 8) & 0xFF; // Byte shift
 RPMmyArray[1] = a & 0xFF; // Combine into two bytes
 OILmyArray[0] = (b >> 8) & 0xFF; // Byte shift
 OILmyArray[1] = b & 0xFF; // Combine into two bytes
 DiffmyArray[0] = (c >> 8) & 0xFF; // Byte shift
 DiffmyArray[1] = c & 0xFF; // Combine into two bytes

152

 Wire.write(RPMmyArray, 2); // Send 2 bytes
 Wire.write(OILmyArray, 2); // Send 2 bytes
 Wire.write(DiffmyArray, 2); // Send 2 bytes
}
///
//// Subroutine to read vibration warning sent by MATLAB ////
///

void receiveCallback(int aCount) {
if(aCount == 1) { // If interrupt triggered due to incoming data
byte receivedValue = Wire.read() ; // Read data from serial port

if (receivedValue >0){ // If incoming integer is greater than zero
warning1 = true; // Set the warning flag
}
 else { // If received integer equals zero
warning1 = false; // Remove the warning flag
 }
 }
}

153

Appendix F - Matlab Output Plots and GUI Interface

154

155

156

157

Appendix G - The Test Bench Photos

158

159

160

161

