
University of Southern Queensland

Faculty of Engineering & Surveying

Development of a Remote Laboratory System for

External University Students

A dissertation submitted by

A. Birkbeck

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)

Submitted: October, 2007

Abstract

This research project develops Remote Laboratory Software to allow students to per-

form laboratory experiments from off campus. The software allows students to exter-

nally use a Remote Laboratory, which is an experiment laboratory that is specially

setup so students can operate it as if they were in the laboratory itself.

Three times a year external students travel to the University of Southern Queensland

for their practical experiments at residential school. As external students often live,

and hence have families and work commitments, in different cities or other states it is

difficult for them to travel to the university campus at the required time. It was there-

fore both practical and useful to develop a Remote Laboratory System that students

use to do selected experiments from home, reducing the time they are required to be

on campus.

Currently there are several Remote Laboratories in Australia, as a number of these sys-

tems were experiencing difficulties, a new system designed specifically for the University

of Southern Queensland’s needs was a viable alternative.

The project enables students to complete selected remote laboratory experiments set up

at the University of Southern Queensland. They do this by using any computer with

Internet access throughout the world to perform the experiments, discuss outcomes

with other students, and be evaluated by practical course examiners.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

A. Birkbeck

0050007144

Signature

Date

Acknowledgments

Thanks to Steve Murray at The University of Technology, Sydney, Lachlan Webb at

University of Wollongong, Clive Ferguson at Deakin University, Euan Lindsay from

Curtin University, and James Trevelyan from University of Western Australia for shar-

ing their knowledge and information about the remote laboratories that they had deal-

ings with.

Thanks to USQ lectures for providing me with practical course books which provided

information about what experiments are currently being run at USQ.

Thanks to John Leis for being my voice, arms, and legs in Toowoomba for information

gathering and for the numerous consultations and assistance he offered throughout the

year. Lastly thank you to Merridee McKay who has been a guinea pig for my ideas,

and designs, and had the distasteful pleasure of proof reading my first draft.

Thank you!

A. Birkbeck

University of Southern Queensland

October 2007

Contents

Abstract i

Acknowledgments iv

List of Figures xii

List of Tables xiii

Glossary xv

Chapter 1 Introduction 1

1.1 What is a Remote Laboratory? . 1

1.2 Objectives . 1

1.3 Implementation . 2

1.4 Consequential Effects . 2

1.5 Methodology . 5

1.6 Risk Assessment . 8

1.6.1 During execution of the project 8

CONTENTS vi

1.6.2 Beyond the completion of the project 9

1.7 Resources Required . 10

1.8 Background Research . 11

1.9 Practical Courses . 14

1.10 Proof of Completion . 19

Chapter 2 Interface and Host Program Configuration Alternatives 20

2.1 Interface Program Connections . 21

2.1.1 Web Browser . 21

2.1.2 Remote Desktop Connection Based 21

2.1.3 VPN Based . 22

2.1.4 HTTP Tunneling . 22

2.1.5 Conclusion . 23

2.2 Interface Program . 24

2.2.1 Website . 24

2.2.2 Client Program Based . 24

2.2.3 Conclusion . 25

Chapter 3 Hardware Requirement Alternatives 26

3.1 Laboratory Equipment Interface Method 26

3.1.1 Analog Switches . 26

CONTENTS vii

3.1.2 Robotic Arm . 27

3.1.3 Digital Switch . 28

3.1.4 Conclusion . 29

3.2 Computer Interface Method . 30

3.2.1 USB . 30

3.2.2 FireWire/IEEE-1394 . 30

3.2.3 Serial Port . 31

3.2.4 Parallel Port . 31

3.2.5 Conclusion . 32

3.3 Switches . 33

3.3.1 USB Relay Alternatives . 33

3.3.2 Conclusion . 35

3.4 User Feedback . 36

3.4.1 Video . 36

3.4.2 Still Images . 36

3.4.3 Audio . 37

3.4.4 Software physical event . 37

3.4.5 Software event . 37

3.4.6 Conclusion . 38

Chapter 4 Software Requirement Alternatives 39

CONTENTS viii

4.1 Information Storage . 39

4.1.1 Domain . 39

4.1.2 Existing database . 40

4.1.3 Microsoft Access database . 40

4.1.4 MSDE database . 41

4.1.5 MySQL . 41

4.1.6 SQL Server database . 42

4.1.7 Oracle database . 42

4.1.8 Textfile . 43

4.1.9 Written into the code of the program 43

4.1.10 Conclusion . 43

4.2 Booking System . 45

4.2.1 Single User System . 45

4.2.2 User, Viewer System . 45

4.2.3 Multi-User System . 46

4.2.4 Conclusion . 47

4.3 Programming Languages . 48

4.3.1 ASP . 48

4.3.2 ASP.Net . 48

4.3.3 C . 49

CONTENTS ix

4.3.4 ColdFusion . 49

4.3.5 Java . 49

4.3.6 PHP . 50

4.3.7 Visual Basic . 50

4.3.8 Conclusion . 51

Chapter 5 Required System Specification 52

5.1 Assumptions . 52

5.2 Software Operation . 54

5.3 Interface Program Operation . 55

5.4 Host Program Operation . 57

5.5 Database Structure . 58

5.5.1 Membership and Role Provider Tables 59

5.5.2 Experiment Table . 62

5.5.3 User Grouping . 62

5.5.4 Subject Grouping . 64

5.5.5 Experiment Period Table . 65

5.5.6 Instructions Table . 65

5.5.7 Switches Table . 66

5.5.8 Booking Table . 67

5.5.9 Relationship . 68

CONTENTS x

Chapter 6 Conclusion 69

6.1 Limitations . 71

6.2 Future Work . 72

References 73

Appendix A Project Specification 78

Appendix B MySQL Database Code 80

Appendix C Interface Program Code 86

C.1 Index.ASPX . 87

C.2 Index.ASPX.VB . 87

C.3 Login.ASPX . 88

C.4 Login.ASPX.VB . 89

C.5 Passwordrecovery.ASPX . 90

C.6 Passwordrecovery.ASPX.VB . 91

C.7 Mainmenu.ASPX . 91

C.8 Mainmenu.ASPX.VB . 94

C.9 Changepassword.ASPX . 95

C.10 Changepassword.ASPX.VB . 96

C.11 Editgroup.ASPX . 96

C.12 Editgroup.ASPX.VB . 100

CONTENTS xi

C.13 Editsubjects.ASPX . 103

C.14 Editsubjects.ASPX.VB . 107

C.15 Editusers.ASPX . 110

C.16 Editusers.ASPX.VB . 119

C.17 Edituserssubjects.ASPX . 123

C.18 Edituserssubjects.ASPX.VB . 125

C.19 Default.css . 127

C.20 Mysqlconnection.VB . 131

List of Figures

5.1 Database relationships . 68

List of Tables

1.1 Current Remote Laboratories . 13

1.2 Engineering Practical Courses Offered by USQ 15

1.3 Engineering Practical Courses Offered by USQ 16

1.4 Engineering Practical Courses Offered by USQ 17

1.5 Engineering Practical Courses Offered by USQ 18

2.1 System Configuration Methods Summary 25

3.1 Laboratory Interface Methods Summary 29

3.2 Computer Interface Methods Summary 32

3.3 Relay Manufacturers . 33

3.4 Relay Specifications . 34

3.5 USB Relay Alternative Summary . 35

3.6 Feedback Methods Summary . 38

4.1 User Authentication Methods Summary 43

LIST OF TABLES xiv

4.2 Booking Systems Summary . 47

4.3 Programming Languages Summary . 51

5.1 mysql roles table . 60

5.2 mysql usersinroles table . 60

5.3 mysql membership table . 61

5.4 experiments table . 62

5.5 groups table . 63

5.6 groupusers table . 63

5.7 subjects table . 64

5.8 usersinsubjects table . 64

5.9 experimentperiod table . 65

5.10 instructions table . 65

5.11 switches table . 66

5.12 booking table . 67

6.1 Database Field Limits . 71

Glossary

Client computer is the computer that is used by the remote user to access the lab-

oratory.

Host Computer is a program that is to control the laboratory equipment.

RLS Remote Laboratory Software

Web Server is a computer that hosts the software that the remote user will interact

with.

USQ is the University of Southern Queensland.

VPN stands for Virtual Private Network and is a private data network that utilizes a

public telecommunication infrastructure.

Chapter 1

Introduction

1.1 What is a Remote Laboratory?

For the purposes of this research project a Remote Laboratory is an experiment lab-

oratory that is specially setup so that laboratory technicians can operate it as if they

were in the laboratory itself. Using a computer the technician interacts with a Remote

Laboratory Program that sends information via the Internet to the Remote Labora-

tory where the instructions are executed by robotics in the previously set up laboratory.

This improves the safety and convenience of performing an experiment by allowing it

to be performed from the next room or even across the world.

1.2 Objectives

This aim of this research project is to develop the necessary software to implement a

remote laboratory that would be suitable for performing several practical experiments

which are currently conducted by university students. The remote laboratory software

will operate on computer systems that are common to both universities and the wider

community, so that the system could be used by a home user.

1.3 Implementation 2

1.3 Implementation

External students are required to attend residential school at the University of South-

ern Queensland numerous times throughout there studies where laboratory experiments

are performed for various subjects. Although attending residential school exposes stu-

dents to a wide variety of equipment, methods, and experiences that are essential for

their education there are many possible experiments offered in the practical courses

at the University of Southern Queensland that have the potential be run as a remote

laboratory experiment. By implementing selected experiments as remote laboratories

students will be able to obtain the understanding that they would normally gain from

attending residential school without attending the university, which would save them

both time and money.

1.4 Consequential Effects

While developing the remote laboratory software many aspects of sustainability, safety

and ethics were considered.

• The set up required for the remote laboratory system will not undermine the

development and environmental needs of future generations (Towards Sustainable

Engineering Practice: Engineering Frameworks for Sustainability 1997) as the

system uses pre-existing communication lines. The only exception would be if the

system is desired by a person in an undeveloped area (i.e. isolated rural), in which

case the initial establishment of communication lines may influence developmental

and environmental needs, but the installation of these lines would be negotiated

with the local council who take all precautions to make developments while still

working towards a sustainable future.

1.4 Consequential Effects 3

• The development of this project does not influence environmental protection is-

sues (Towards Sustainable Engineering Practice: Engineering Frameworks for

Sustainability 1997) as it is software that is being developed, and as such has

no immediate or long term effects on the environment. Once the system is run-

ning there will be a minute influence in power consumption by the running of

computers to operate the software, but not enough to notably effect the environ-

ment. Also, as previously mentioned, if additional lines are required environments

may be varied with the development of these lines.

Alternatively there are positive environmental side effects from the development

of this software. As the system is accessed remotely people no longer need to

commute to the laboratory site, therefore would create less vehicle pollution.

• Possible global environmental impacts (Towards Sustainable Engineering Prac-

tice: Engineering Frameworks for Sustainability 1997) are very minimal. Long

term electricity sources will be required, so for optimal environmental preservation

the ideal system is a renewable energy source (i.e. hydro, wind or solar power).

Should the system become vastly used then high capacity communication lines

will be required. This will not impact the environment or future development as

existing phone lines will simply be replace by fibre-optic ones.

• The only aspect of this projects implementation that could cause environmental

degradation (Towards Sustainable Engineering Practice: Engineering Frameworks

for Sustainability 1997) is the long-term side effects of energy consumption, which

is currently being researched by scientists around the world.

• The participation of any concerned citizens (Towards Sustainable Engineering

Practice: Engineering Frameworks for Sustainability 1997) would be necessary

with the implementation of this project only in cases were additional communi-

cation lines are required. In these cases any concerned parties (i.e. land owners,

conservationists, and developers) would be involved in discussion with the council

before lines were constructed.

• Pollution will not be created by the implementation of this project; it stands to

possibly have a positive effect on pollution levels (as previously mentioned with

decreased vehicle pollution); hence will acquire no additional costs.

1.4 Consequential Effects 4

• The remote laboratory system will be equally accessible to all groups of peo-

ple whether majority and minority (Towards Sustainable Engineering Practice:

Engineering Frameworks for Sustainability 1997); the only requirement is a com-

puter and access to the Internet. People in a low socioeconomic group who cannot

purchase these requirements would access them elsewhere (local library or univer-

sity), which they would already be necessary for other aspects of their university

studies.

Possible effects on employment are: there will be less demand of Toowoomba

resources (accommodation, tourism, and retailers) as less people would be com-

muting there yearly. To offset that more employment opportunities would exist

in the construction, installation, and maintenance of the system. While employ-

ment opportunities still exist the necessary qualifications vary significantly from

the previous employment market to the new job fields. Further education or

training may be required by job seekers but they would be rewarded by entering

a higher paying job field.

• The remote laboratory software will not be used in under developed countries

(Towards Sustainable Engineering Practice: Engineering Frameworks for Sustainability

1997) as the software is being developed for university laboratory experiment pur-

poses. There will be no effect for countries accessing the university, as no labour

is increased or decreased in that country if students travel to the USQ campus or

access the system remotely.

• This project development could be used for global sustainability and international

understanding (Towards Sustainable Engineering Practice: Engineering Frame-

works for Sustainability 1997) as it creates opportunities for communication and

interaction between globally diverse students.

1.5 Methodology 5

1.5 Methodology

1. Research current remote laboratories to discover the basic structure of how a re-

mote laboratory works.

This research will be performed by reading reference material and by contacting

the administrators of several remote laboratories located within Australia and

requesting any documentation or manuals explaining how the software operates.

This may also include visiting current sites if this can be arranged.

2. Investigate how other programmers have developed their software.

If possible gain access to operating remote laboratories, source code used to oper-

ate the laboratory equipment or, alternatively, download a copy of the programs

used, and explore their operation and features.

3. Identify flaws associated with currently used methods.

Through current program exploration an understanding of how the program op-

erates will be gained. Then the programs strengths and weaknesses can be iden-

tified.

4. Research the software and hardware available at USQ and other potential con-

sumers.

Through investigation of the current market for remote laboratories it is possible

to determine the likely clients and through contact with the IT department of

the clients, it is possible to determine how their system is currently running.

5. Identify which platform the system will run on.

A platform, in which the system will operate on, will be decided based on the

above points mentioned; Current software, flaws in current software, and clients’

software and hardware.

6. Determine any additional hardware required for the remote laboratory.

After identifying what hardware the clients network uses and what platform the

system will run on additional hardware requirements to run the remote laboratory

can be determined.

1.5 Methodology 6

7. Evaluate hardware requirements and recommend a vendor.

Tabulate the advantages and disadvantages of each of the hardware manufactures

and weigh these options up will determine the best hardware manufacturer(s) for

the tasks.

8. Research alternative methods for the tasks required to implement the remote lab-

oratory software.

By consulting current journals and utilising current technology a list of alternative

to each task can be created.

9. Evaluate the alternative methods of performing those tasks.

Each alternative method will tabulated showing the positive and negative effects

of each method to determine the best alternative solution to the current method

of performing a task.

10. Assess programming languages to determine which best implements the remote

laboratory, and can operate on the hardware and software used by the consumers.

Each alternative method can be tabulated with higher weights given to important

features, and lower weights given to less important features so to determine the

best alternative solution to the current method of performing a task.

11. Develop a prototype of the remote laboratory software.

Code the software for the remote laboratory by completing the tasks required

using the methods decided on.

12. Extensively test the system to determine flaws.

Setup several test experiments and perform them as they would be performed by

a remote user. Perform operations that wouldn’t normally occur in an effort to

try to break the system. If a flaw is found correct it.

13. Gain user feedback on the operation of the system.

Setup an experiment and allow potential client users to operate the experiment

and get them to complete a survey on what they thought of the system. Determine

ease of use, flexibility, learning experience, and overall satisfaction.

1.5 Methodology 7

14. Implement changes to correct any flaws identified from testing and feedback.

Redesign any aspects that experienced problems or that the user wasnt happy

with based on the information in the surveys.

1.6 Risk Assessment 8

1.6 Risk Assessment

1.6.1 During execution of the project

• In the designing stage of this project the first risk could be incorrectly program-

ming the equipment. The exposure to this risk is very rare (only once during the

programming stage) and the likelihood of it occurring is slight. If programmed

incorrectly the consequences would be damage incurred to equipment. This risk

is avoidable with careful attention being given while programming. In the event

of occurrence new equipment would need to be purchased.

• During the setup of a laboratory experiment a risk of electrocution exists. The

likelihood is significant but the exposure will vary depending on how many differ-

ent experiments are used. Consequences may vary from minor injury to possible

death. The electrical power source hazard is unavoidable as it is necessary for the

experiment but the risk can be drastically minimised by checking all equipment

for faults before using, turning the power source off while connecting, and con-

firming circuit is wired correctly. Also in case of emergencies a fire extinguisher

should be easily accessible.

Minor and major damage could also occur to equipment if this incident occurred

and the same prevention steps as above would need to be taken.

• Once the equipment is connected and running there is the risk of a short circuit in

an experiment that involves an electrical circuit. The likelihood of this occurring

is slight and the exposure will vary depending on how many different experiments

and what sorts of experiments are used. As the laboratory will be being accessed

remotely no human injury will arise in the occurrence of a short circuit, however

there is a chance of minor through to major equipment damage occurring. To

minimise this risk experiment circuits will need to be designed so that no short

circuits occur mistakenly, and circuit breakers can be integrated into each of the

experiments.

1.6 Risk Assessment 9

• When software system is operating on the Internet or accessible to the public

there exists a risk that the system will be hacked into and manipulated in ways in

which the software was not designed to operated. The likelihood of such an event

occurring varies depending on the nature of the users who operate the system and

number of people who access the system. The risk can be reduced by locating the

software on a secure server and programming in several safeguards that stop the

system from operating should an attack be detected. The consequences from the

system being hacked vary from an unauthorised access to damage to equipment

or the Remote Laboratory Software.

• While users are operating the software they will be working on a computer fre-

quently for numerous hours (times will vary depending on the experiment re-

quirements) so they could stand a chance of getting eye fatigue from looking at

the monitor, or repetitive strain injury (RSI) from using the mouse, keyboard or

sitting at a desk. The likelihood of either of these occurring is very slight but

precautionary measures can be taken to minimise the risk even further. Practi-

cals could be designed to only go for short periods of time allowing the user to

have a break between experiments. Users could also be prompted with designed

short movement activities (away from the computer desk) to be completed at

appropriate intervals during the experiment process to give them a break.

1.6.2 Beyond the completion of the project

• If the remote laboratory software is destroyed at the completion of this project

no adverse effects will occur to the environment or society.

• If the project is taken onboard and used by the university all the previously men-

tioned risks will still be relevant and must be controlled with the recommended

procedures.

1.7 Resources Required 10

1.7 Resources Required

The development Remote Laboratory Software requires access to a computer which

will be used to code and test the software. Development also requires the appropriate

programming language tools, such as compilers and linkers in order to implement a

solution. During the development stage a laboratory interface device will also be needed

to test the software and, if required, a program that is used to run the website. A

feedback device is also needed to ensure that the user can understand what has occurred

in the remote laboratory.

Currently all required resources were already possessed from previous unrelated pro-

gramming projects, except the laboratory interface device which can be purchased from

a selected computer specialist parts supplier.

1.8 Background Research 11

1.8 Background Research

Currently there are many Remote Laboratories in Australia, several of which are used

for educational purposes. Table 1.1 shows several Universities in Australia that have

remote laboratories and how they are operating.

It was determined that the majority of these laboratories operated in a method that, for

the purpose of this project, will called the “interface and host method”. This method

operates by:

• The client computer interacts with an interface programs which allows the users

to change parts of the experiment. This is often a website or customised software

that is developed specifically for a particular experiment.

• The interface program then communicates these changes with a host program by

using a log file which then interprets these instructions and operates the machin-

ery or circuitry to perform the requested actions.

• The feedback of the actions performed in the laboratory are then streamed back

to the interface program which displays this to the user.

Predominately these remote laboratories were written in Java for the web interface,

and are written in portable programming languages such as C and C++ for the host

program. They generally provide video and audio feedback to the user so that they

can easily understand what is occurring.

Many remote laboratories studied operate like the remote laboratory at the University

of Technology, Sydney which utilises using a web server. This server hosts the website

that students singularly use to interface with the remote laboratory, and communicates

with the host computer, which then interacts with the laboratory equipment allowing

students to control the operation of an experiment (Murray & Lasky 2007). The remote

laboratory at the University of Technology, Sydney also provides additional features

not offered by other systems as students are able to upload code directly to dedicated

test circuit boards and see the results of their programs via live video feed (Murray &

Lasky 2007).

1.8 Background Research 12

The Telelabs Project, created at the University of Western Australia, is a remote labo-

ratory that operates differently to the others. Students are permitted to connect to the

system to perform experiments as a group, sharing control over the actions that take

place. This laboratory operates by a series of software packages that are installed and

run on the client computer to control the experiment (The Telelabs Project 2007).

1.8 Background Research 13

S
it
e

N
am

e
C

on
ta

ct
C

u
rr

en
tl
y

O
p
er

at
io

n
al

In
te

rf
ac

e
F
ee

d
b
ac

k
A

u
th

or
P

ro
gr

am
m

in
g

L
an

gu
ag

es
U

se
d

C
u
rt

in

U
n
iv

er
si

ty

of
T
ec

h
-

n
ol

og
y

E
u
an

L
in

d
sa

y

R
ed

ev
el

op
m

en
t

V
id

eo
an

d
A

u
d
io

F
ee

d
E

u
an

L
in

d
sa

y
M

at
L
ab

an
d

T
ig

h
tV

N
C

D
ea

k
in

U
n
iv

er
si

ty

C
li
ve

F
er

-

gu
so

n

N
o.

S
of

tw
ar

e

n
ot

w
or

k
in

g

W
eb

B
ro

w
se

r
V

id
eo

F
ee

d

U
n
iv

er
si

ty

of
T
ec

h
-

n
ol

og
y,

S
y
d
n
ey

S
te

ve

M
u
rr

ay

Y
es

W
eb

B
ro

w
se

r
V

id
eo

an
d

A
u
d
io

F
ee

d
U

n
d
er

gr
ad

s

an
d

E
x
te

rn
al

p
ro

gr
am

m
er

s

C
an

d
U

n
ix

S
h
el

l

U
n
iv

er
si

ty

of
W

ol
lo

n
-

go
n
g

L
ac

h
la

n

W
eb

b

R
ed

ev
el

op
m

en
t

W
eb

B
ro

w
se

r
M

P
E

G
2,

Im
ag

es
D

r.
P

h
il

C
u
if
o,

D
av

id

A
tk

in
so

n
an

d

S
te

in
K

ra
v

C
an

d
P
er

l
C

G
I

U
n
iv

er
si

ty

of
W

es
t-

er
n

A
u
s-

tr
al

ia

D
ow

n
lo

ad

S
of

tw
ar

e
an

d

W
eb

B
ro

w
se

r

Table 1.1: Current Remote Laboratories

1.9 Practical Courses 14

1.9 Practical Courses

Currently there are several practical courses running in the engineering department of

the University of Southern Queensland. Tables 1.2 to 1.5 show a list of several practice

courses offered by USQ, the experiments that are performed in that course, and whether

the experiment can be performed remotely.

The information interpreted in these tables was sourced from the practical books

of; Civil Materials Practice, Computer Systems Engineering Practice, Field Practice,

Mechatronic Practice 1, Professional Practice 1, Professional Practice 2, Electrical and

Electronic Practice A, Electrical and Electronic Practice B, Electrical and Electronic

Practice C, Electrical and Electronic Practice D, Soil and Water Engineering Practice

1, and Soil and Water Engineering Practice 2.

Experiments have been classified as not able to be performed remotely if:

• The experiment only required watching a seminar or video, which would be best

achieved with the students watching a live video feed.

• The experiment would best work with a remote desktop connection. In these

situations this experience can be obtained by allowing students to connect directly

to university computers in which the software package is installed.

• The activities are too difficult to perform remotely because of the actions re-

quired; I.E. extensive equipment set up, configuring time, and possibilities of

voiding warranty. For example, many experiments involve the use of a Cathode

Ray Oscilloscope. To operate an oscilloscope remotely would require a large num-

ber of connections interfacing with the oscilloscope and these connections would

possibly void the devices warranty. A better alternative is to operate a PC-based

oscilloscope via a remote desktop connection.

• The understanding gained by the experiment is lost when performed remotely.

1.9 Practical Courses 15

Practical Course Experiments Performed

Remotely?

Req. Feedback

Required

Civil Materials Prac-

tice

Aggregate No

Concrete No

Timber No

Bitumen,

Asphalt,

and Skid

Resistance No

Soil No

Traffic Study No

Road Maintenance

Needs Assessment

Study No

Computer Systems

Engineering Practice

1.1 to 2.6 No

Field Practice

Oral

Presentation No

Report No

Mechatronic Prac-

tice 1

Parts 1 to 6 No

Professional Practice

1

None

Professional Practice

2

None

Table 1.2: Engineering Practical Courses Offered by USQ

1.9 Practical Courses 16

Practical Course Experiments Performed

Remotely?

Req. Feedback

Required

Electrical and Elec-

tronic Practice A

1 No

2, 3 & 4 Yes 4 digital

switches

Visual

5 & 6 No

7 & 8 Yes 2 digital

switches

Visual

9 No

Act. 5.2 to 5.6 No

A1 No

A2 & A3 Yes 1 digital &

2 analog

switches

Visual

B1 & B2 Yes 2 digital &

1 analog

switches

Visual

C1 Yes 1 digital Visual

C2 No

C3 Yes 3 digital &

1 analog

switches

Visual

D1 Yes 1 digital Visual

D2 Yes 3 digital &

4 analog

switches

Visual

Table 1.3: Engineering Practical Courses Offered by USQ

1.9 Practical Courses 17

Practical Course Experiments Performed

Remotely?

Req. Feedback

Required

Electrical and Elec-

tronic Practice B

1 to 14 No

Electrical and Elec-

tronic Practice C

1.1 to 2.6 No

3.1 No

3.9 Yes 2 digital &

2 analog

switches

Visual

Electrical and Elec-

tronic Practice D

Act. 1.1 to 4.1 No

Act. 5.1 Yes 3 digital &

1 analog

switches

Visual

Act. 5.2 Yes 3 digital &

1 analog

switches

Visual

Act. 5.3 Yes 2 digital &

2 analog

switches

Visual

Act. 5.4 No

Act. 5.5 No

Act. 5.6 Yes 3 digital &

2 analog

switches

Visual

Table 1.4: Engineering Practical Courses Offered by USQ

1.9 Practical Courses 18

Practical Course Experiments Can be per-

formed RL

RL Re-

quire-

ments

Feedback

Required

Soil and Water Engi-

neering Practice 1

2.1 No

3.1 No

3.2 Yes 2 analog

switches

Visual

4.1 Yes 1 analog

switch

Visual

5.1 Yes 2 analog

switches

Visual

5.3 Yes 3 analog

switches

Visual

6.1 Yes 1 analog

switch

Visual

6.2 Yes 1 analog

switch

Visual

7.1 Yes 1 analog

switch

Visual

9.1 Yes 1 digital &

2 analog

switches

Visual

10 No

Soil and Water Engi-

neering Practice 2

1 to 8 No

Table 1.5: Engineering Practical Courses Offered by USQ

1.10 Proof of Completion 19

1.10 Proof of Completion

In order for the Remote Laboratory to become an integral part of the practical courses

the experiments which are performed remotely need to provide adequate proof of stu-

dent completion to the course examiner. Currently students attend residential school

and perform experiments in the presence of a USQ staff member who signed off on an

experiment once they have witnessed the student performing it. With the experiment

being performed remotely in a laboratory students are not being overseen constantly

and, as such, the need arises for evidence that the student has completed the experi-

ment. Evidence of students’ successful completion of experiments can be gathered in

several different ways.

As with the current method a USQ staff member could be present in the remote labo-

ratory to ensure that all current experiments are being completed correctly. Students

would log into the system and perform the experiments and the supervising staff would

sign them off once the experiment was completed correctly. This staff member would

also need to be able to communicate with the student completing the experiment so

that they could inform them of anything that was being performed incorrectly.

Alternatively a software solution could be implemented in which students are required

to take screen shots at important milestones in the experiment. These screen shots are

to be submitted along with any calculations to the examiner as proof that the student

has completed the experiment as required by the practice course.

The first method requires a staff member to be constantly present in the remote lab-

oratory to ensure that each practice course is completed correctly. In doing so the

hours that a remote laboratory experiment can be performed is reduced. The latter

alternative allows students to interact with the experiment and to save a screen shot

at their leisure. It doesn’t restrict the hours that the experiment can be performed in

and is therefore the chosen alternative for this project.

Chapter 2

Interface and Host Program

Configuration Alternatives

Using the information gained in the background research it was established that the

“interface and host” method was the best approach for the purposes of this project.

This interface and host method involves two programs that operate independently to

complete the remote laboratory.

The host program is primarily responsible for periodically checking the log (created

by the interface program), verifying the instructions, and implementing the requested

actions. The host program would also be responsible for preparing the feedback of the

experiment so that the website may portray the feedback to the user.

The interface program is responsible for interaction with the users. Users access this

program which first authenticates them, then prompts the users to select an exper-

iment. Once an experiment is entered the users are given the option to manipulate

the experiment as they wish, within the bounds of the experiment. Once a user has

implemented a change the instructions are saved to a log file. The Interface program

can be achieved by two methods; website and client program.

2.1 Interface Program Connections 21

The cost of implementing the interface and host program based solution depends on

the programming language that the site is to be written in, and whether it is being

hosted locally at the university, or remotely by an external provider.

2.1 Interface Program Connections

In the interface and host method, users are required to interact with the interface

program in order to be able to access the remote laboratory. There are several ways in

which the user can interact with the interface program.

2.1.1 Web Browser

This alternative allows the users of the remote laboratory to use any recent web browser

to access the remote laboratory. This has the advantage of not requiring specialised

software to be installed in order to access the remote laboratory which is beneficial for

those users who are trying to access the laboratory from a restricted network where

software cannot be installed.

2.1.2 Remote Desktop Connection Based

For a remote desktop connection based system a Microsoft terminal server could be

installed at the university. This would allow external and internal students to connect

to the university using client programs such as Microsoft Remote Desktop or similar and

allow them to perform experiments without attending the university. In this situation

only one program would need to be coded to allow the manipulation of the laboratory

equipment. This method is advantageous because it also allows experiments such as the

LATEX and the Protel introduction courses to be conducted as a remote laboratory. A

Remote Desktop program comes standard with Windows XP, and Vista and is available

on Linux and Mac from such providers a RealVNC (RealVNC 2007).

2.1 Interface Program Connections 22

2.1.3 VPN Based

The user could use a VPN connection to connect to the university network. This

would enable them to access the interface program without occupying any university

computers. The VPN based method provides greater network security then using a

remote desktop connection as no additional external ports would need to be opened if

a VPN pass through router was used. This method however would also allow potential

hackers access to the university network should they be able to connect via VPN. VPN

is freely available on Mac, Windows, and Linux platforms (Using a Linux L2TP/IPsec

VPN server with Mac OS X 2007).

2.1.4 HTTP Tunneling

HTTP Tunneling works by getting the client to encapsulate data within a HTTP

header. This is then received by the server which strips the HTTP encapsulation

header from the received packet and forwards it to the requested destination. HTTP

Tunneling can be used to encapsulate TCP and UDP packets (Data Driven Attacks Us-

ing Http Tunneling 2007). Network administrators will go to severe lengths to ensure

that users cannot get onto the Internet using HTTP Tunnels. This is because allowing

users HTTP Tunnel in a network would clear the way for any program to access the

Internet through the port 80 (Data Driven Attacks Using Http Tunneling 2007). The

remote laboratory can be setup to run using a HTTP tunnel but it does create a se-

curity risk at the university by making it more susceptible it external attacks and as

such should not be used. Currently HTTP tunneling is only available in the Windows

environment (Http- Tunnel 2007) and as such limits the different platforms that this

solution may be implemented on.

2.1 Interface Program Connections 23

2.1.5 Conclusion

The Web Browser approach provides clear advantages over VPN based and HTTP

Tunneling method in security. The VPN, Remote Desktop, and HTTP Tunneling

methods provide direct access to the university computer network creating a greater

security threat on their operations whereas the Web Browser based solution only allows

users to connect to the interface. The Web Browser method is more portable then The

Client Program method because it can be run from any computer with Internet access.

The Web Browser method will require that a website be written to make use of this

method. Strict security policies enforced on the university network only permit the

Web browser method to be utilised.

2.2 Interface Program 24

2.2 Interface Program

The interface program is the program that the user interacts with in order to make

changes in the remote laboratory. The interface program may be created in two different

methods.

2.2.1 Website

The website based solution could be configured using or not using the host computer

as the web server. If the host computer is the web server then the system gains the

benefits of less computers required to run the software and thus less cost. If the host

computer is not the web server then the system benefits by not requiring a web server

to be located on campus. The web server can then be hosted by a specific provider

which reduces the computer requirements at the university in order to run the system.

2.2.2 Client Program Based

The client program based method requires that the user download and install programs

onto their computer. These programs work with the users Internet to establish a

connection to the university’s remote laboratories where the client programs interact

with a host programs. This can cause problems on secure networks were users are not

allowed to install programs, such as work places, and Internet Cafe’s.

2.2 Interface Program 25

2.2.3 Conclusion

Method Cost Portability Security Ability to complete task

Website ? ? ?? ? ? ? ? ? ? ? ?? ? ? ? ? ?

Client Program ? ? ?? ? ? ? ? ? ? ? ? ??

Table 2.1: System Configuration Methods Summary

University network security should be given the highest priority to avoid potential

security breaches. The ability for the system to complete the task should be the second

highest priority, with cost and portability being of equal value as third most important.

With these priorities in mind the most secure solution is the Website, which also scores

the highest in its ability to achieve the task. This system is portable to PC, Mac, and

LINUX and is very cost effective, depending on the programming language selected.

Chapter 3

Hardware Requirement

Alternatives

3.1 Laboratory Equipment Interface Method

The system will need to be able to interface with the equipment in the laboratory in

such a way that experiment parameters may be changed by the user.

3.1.1 Analog Switches

An analog switch provides the user with the ability to adjust the circuit to a particular

value. A digital switch allows to user to turn on and off a device such as a motor,

whereas a analog switch would provide the user with the ability to change how fast

the motor would operate. An analog switch could be manufactured using a digital to

analog converter. This would generate a voltage that varies depending on the user

input. This voltage could then be used as in input into a servomechanism to allow

the user to accurately control many different applications such as motor speed, resistor

values, or room temperatures.

3.1 Laboratory Equipment Interface Method 27

3.1.2 Robotic Arm

A robotic arm provides a more hands on approach to the experiments. The user would

be in direct control of the operation of a robotic arm in which they can make changes

as if they were doing it in person.

When using a robotic arm to control an experiment a new laboratory experiment can

be setup easily simply placing all the equipment within the reach of the robotic are

which the user has control of. The user can then more the equipment into position to

yield the desired result from the experiment.

In order to accurately control the operation of the robotic arm the user must receive

real-time feedback. Any delay in the feedback system would cause the system to be

difficult to use. The robotic arm would make the experiment more prone to short

circuits. The arm would need to be insulated so as to not short circuit the experiment.

Secondly, this increase the chances that the user will connect a conductor incorrectly

causing damage to the circuit and in more extreme circumstances, the building wiring.

There are many robotic arms available today from many different manufacturers. The

robotic arms can be controlled via joystick, mouse, keyboard, script, and via coor-

dinates making the systems very versatile to control. Robotic arms vary in price

greatly depending on quality of the device and the movement that the device provides

(Hobbytron 2007). The cheapest device found was Tower Of Hanoi Kit for $29.75 USD

as it’s sold as a learning tool not as laboratory equipment (Robotic Arm System 2007).

Commercial grade robotic arms are available for around $8000.00 USD (180 Degree, 5

or 3 Finger Robot Arm 2007).

3.1 Laboratory Equipment Interface Method 28

3.1.3 Digital Switch

A digital switch provides the users with the ability to turn on and off a circuit. A digital

switch can be easily connected directly to many different applications making this

alternative very flexibly. Digital switches can be implemented by relays, Phototransistor

Optocouplers, and transistors.

A relay is a small electronic device that uses magnetism to connect or disconnect

two internal terminals in the relay. These two terminals connect to external circuitry

allowing the relay to control whether the circuit is open or closed. Relays operate on

different voltages, typically ranging from 300 to 600 volts AC with the electromagnet

operating on voltages ranging from 24 to 120 volts AC. Relays also come is several

different configurations including single pole single throw, double pole single throw,

single pole double throw, double pole double throw, and quadruple pole double throw

(Relay - Wikipedia 2007). Due to these features offered by relays they are a flexibility

method of implementing a digital switch.

A transistor is a small current controlled semiconductive device that is used to am-

plify an electric current or as an electronic switch. The transistor works by applying

a base/emitter voltage which increases the base/emitter current which allows for an

exponential increase of the collector/emitter current (Transistor - Wikipedia 2007).

Phototransistor Optocouplers are a device which contains an infrared emitting diode

and a NPN phototransistor. This device can operate in two modes; active and switch.

In active mode the NPN transistor creates a response that is proportional to the light

intensity received on the device until the phototransistor becomes saturated. In switch

mode the phototransistor will either be on or off depending on the light received.

Optocouplers are mainly used to isolate the input and output circuits from each other

usually to protect the output circuit from damage caused by things such as surges and

to help remove noise (Optocoupler - Wikipedia 2007).

3.1 Laboratory Equipment Interface Method 29

3.1.4 Conclusion

Method Flexibility Cost Ability to complete task Safety

Robotic Arm ? ? ? ? ? ? ? ? ?? ? ? ?

Digital Switch ? ? ?? ? ? ? ? ? ? ? ? ? ? ??

Analog Switches ? ? ?? ? ? ? ? ? ? ? ?? ? ? ??

Table 3.1: Laboratory Interface Methods Summary

The robotic arm provides the user with the most flexibly means in which to manipulate

the experiment and the fastest setup of new experiments. Unfortunately it is too

expensive to implement for this research project and as such will no longer be considered

a viable option.

Providing the user with access to both digital and analog switches will allow the users to

best operate the laboratory equipment. Using such a combination will allows student

to not only turn equipment on and off, but also adjust speeds, voltages, resistance,

and other variable devices. Connecting these devices to a servomechanism will allow

users to set levels on various laboratory equipment easily ensuring that experiments

are completed quickly without users having to spend large amounts of time setting up

experiment parameters, like a 12 volt input voltage.

3.2 Computer Interface Method 30

3.2 Computer Interface Method

The Laboratory Equipment interface will need to be connected to a computer in order

for it to work correctly. This can be done in several ways.

3.2.1 USB

USB stands for Universal Serial Bus. USB 1.1 and is capable of transferring up to

12Mpbs. A singular USB port can have up to 127 devices connected to it and is hot

swappable. USB 2.0 is capable of transferring up to 480Mbps (USB 2007). USB 2.0

devices are backwards compatible with USB 1.1, meaning a USB 2.0 device can be

connected to a USB 1.1 computer and a USB 1.1 device can be connected to a USB

2.0 computer. Currently all new Asus and Gigabyte motherboards are equipt with at

lease 2 USB ports which are normally built directly onto the motherboard itself so that

devices may be connected directly to the back panel (Asus Motherboard 2007) (Gigabyte

Motherboard 2007).

3.2.2 FireWire/IEEE-1394

FireWire or IEEE-1394 can transfer at 3 different speeds, 100, 200, and 400Mbps.

FireWire 800 or IEEE-1394b is capable of transferring up to 3.2Gbps (Axelson 2005).

FireWire ports are sometime shipped with new computers. Most new Asus and Gi-

gabyte motherboards are equipt with one FireWire port which is accessibly from the

rear panel. They also come with two connectors in which external cabling and con-

nectors are used to allow FireWire connectivity (Asus Motherboard 2007) (Gigabyte

Motherboard 2007). In some instances a PCI, PCMCIA or USB FireWire card needs

to be purchased to interface with the FireWire device. FireWire devices are generally

more expensive then USB and are best suited to applications where high communication

speed is essential or the device needs to broadcast to multiple receivers (Axelson 2005).

3.2 Computer Interface Method 31

3.2.3 Serial Port

Serial ports are capable of data transfer speeds of up to 20kbps (Axelson 2005). Serial

ports are equipt on most new Gigabyte boards however the new Asus motherboards

no longer have a serial port build onto the motherboard (Asus Motherboard 2007)

(Gigabyte Motherboard 2007). In instances such as this a PCI, PCMCIA or USB to

Serial adapter card needs to be purchased to interface with the serial device.

3.2.4 Parallel Port

Parallel ports are capable of transferring up to 8Mpbs (Axelson 2005). Parallel ports are

equipt on most new Gigabyte boards however the new Asus motherboards no longer

have a parallel port built onto the motherboard (Asus Motherboard 2007) (Gigabyte

Motherboard 2007). In instances such as this a PCI, PCMCIA or USB to Parallel

adapter card needs to be purchased to interface with the parallel device.

3.2 Computer Interface Method 32

3.2.5 Conclusion

Method Speed Cost Availability

USB ? ? ?? ? ? ? ? ? ? ? ? ? ?

FireWire/IEEE-1394 ? ? ? ? ? ? ? ? ? ? ??

Serial Port ? ?? ??

Parallel Port ?? ?? ??

Table 3.2: Computer Interface Methods Summary

All of these computer interface methods can easily be acquired via the purchase of an

add-on card should the computer not have the required functionality. Although doing

so increases overall cost of the system. Interface methods such as USB and FireWire

appear to be replacing serial and parallel with the release of USB printers and scanners,

and the removal of these ports from some manufacturers motherboards.

The communication speed required by the interface is very small and as such the

increased speed benefit, offered by FireWire, is not offset by the increased cost. A USB

device sufficiently provides an easy interface for the device to connect to the computer

and adequate speed for communication.

3.3 Switches 33

3.3 Switches

In order for the Remote Laboratory to be able to operate all of the possible experiments

from Tables 1.2 to 1.5 the Remote Laboratory needs to provide 4 digital and 4 analog

switches.

3.3.1 USB Relay Alternatives

Product Name Connectors Programming Languages

ADU200 USB, RS232 VB, C++, Borland, Java

ADU208 USB, RS232 VB, C, C++, C#, Borland, Java

ADU218 USB, RS232 VB, C, C++, C#, Borland, Java

Extended USB Interface Board USB VB, C++, Delphi

LabJack U3 USB VB, C, C++, Borland, Java, Matlab

USBREL8 USB VB, C++ C#, Delphi, Java

USB ProXR USB, RS232 VB

USB Experimenter’s Interface Kit USB ?

Product Name Contact Details Website

ADU200 tfortin@vianet.on.ca http://www.ontrak.net/

ADU208 tfortin@vianet.on.ca http://www.ontrak.net/

ADU218 tfortin@vianet.on.ca http://www.ontrak.net/

Extended USB Inter-

face Board

info@vellemanusa.com http://www.vellemanusa.com

LabJack U3 info@labjack.com http://www.labjack.com

USBREL8 sales@quancom.de http://www.quancom.de/

USB ProXR tech0001@control

anything.com

http://www.controlanything.com/

USB Experimenter’s

Interface Kit

http://www.jaycar.com.au

Table 3.3: Relay Manufacturers

3.3 Switches 34

P
ro

d
u
ct

N
am

e
M

an
u
fa

ct
u
re

r
O

u
tp

u
t

P
or

ts
In

p
u
t

P
or

ts
C

os
t

A
D

U
20

0
O

n
tr

ak
C

on
tr

ol
S
y
st

em
s

4
x

12
0V

A
C

or
30

V
D

C
at

5A

4
x

T
T

L
D

ig
it
al

In
p
u
ts

$1
39

U
S

+

$6
0U

S
P

&
H

A
D

U
20

8
O

n
tr

ak
C

on
tr

ol
S
y
st

em
s

8
x

12
0V

A
C

or
30

V
D

C
at

5A

8
x

T
T

L
D

ig
it
al

In
p
u
ts

$1
89

U
S

+

$6
0U

S
P

&
H

A
D

U
21

8
O

n
tr

ak
C

on
tr

ol
S
y
st

em
s

8
x

12
0V

A
C

or
30

V
D

C
at

5A
S
ol

id
S
ta

te

8
x

T
T

L
D

ig
it
al

In
p
u
ts

$2
25

U
S

+

$6
0U

S
+

P
&

H

E
x
te

n
d
ed

U
S
B

In
te

r-

fa
ce

B
oa

rd

V
el

le
m

an
In

c
8

x
O

p
en

C
ol

le
ct

or
an

d
8

x

8
b
it

A
n
al

og

8
x

O
p
en

C
ol

le
ct

or
an

d

8
x

8
b
it

A
n
al

og

$1
24

.9
5U

S
+

P
&

H

L
ab

J
ac

k
U

3
L
ab

J
ac

k
20

x
h
ig

h
lo

w
an

d
1

8
b
it

A
n
al

og

16
x

D
ig

it
al

or
an

al
og

$9
9U

S
D

+
P

&

H

U
S
B

R
E

L
8

Q
u
an

co
m

8
x

30
V

at
1A

(P
lu

g
in

4

d
ev

ic
es

)

N
on

e
11

7.
81

E
u
ro

+

P
&

H

U
S
B

P
ro

X
R

N
at

io
n
al

C
on

tr
ol

D
ev

ic
es

8
x

?V
at

5A
(P

lu
g

u
p

to

25
6

re
la

y
s)

10
b
it

A
/D

$1
86

U
S

+
P

&

H

U
S
B

E
x
p
er

im
en

te
r’

s

In
te

rf
ac

e
K

it

J
ay

ca
r

E
le

ct
ro

n
ic

s
8

x
O

p
en

co
ll
ec

to
r

d
ig

it
al

5
x

D
ig

it
al

2x
A

n
al

og
$6

2.
95

A
U

+

P
&

H

Table 3.4: Relay Specifications

3.3 Switches 35

3.3.2 Conclusion

Method Output Ports Cost Programming languages

ADU200 ? ? ? ? ?

ADU208 ? ? ? ?? ? ? ? ? ?

ADU218 ? ? ? ? ? ? ??

Extended USB Interface Board ? ? ? ? ? ? ? ? ?

LabJack U3 ? ? ?? ? ? ? ? ? ?

USBREL8 ?? ?? ? ? ??

USB ProXR ?? ? ? ? ?

USB Experimenter’s Interface Kit ?? ? ? ? ? ? ?

Table 3.5: USB Relay Alternative Summary

The Extended USB Interface Board by Velleman Inc provides ample digital and ana-

logue switches for the current practical courses, while the other providers do not offer

enough switches. The Extended USB Interface Board also provides enough switches

to accommodate the possible development of new experiments which may be more

sophisticated.

3.4 User Feedback 36

3.4 User Feedback

The user will need to be provided with some level of feedback to show them how the

experiment reacted to the instructions issued.

3.4.1 Video

Video feedback provides the most detailed method of portraying to the user what oc-

curs in the laboratory. Windows Media Encoder is freely available for download from

Microsoft’s homepage and offers an easy implementation of both audio and video feed-

back. Through trials of running this program the bandwidth required to transmit a

video and audio signal ranges from 2000 kbps to 12 kbps depending on video size, qual-

ity, and frames per second and the audio quality, and number of audio channels. Video

and audio streaming does however require some encoding and decoded and from expe-

rience with these programs it was reveled that there is a delay in the video feed, usually

of about 10 seconds. A delay of this magnitude can make performing experiments very

difficult and slow especially when a particular event occurs very quickly.

3.4.2 Still Images

User feedback can be achieved by using a series of still images that are captured from

a camera. The frequency in which these still images are taken determines whether the

images look like a video feed or just a picture. A program such as Fwink (Fwink 2007)

can be used to read the images from the camera and upload them to an FTP server

or a local directory where they can be displayed to the user. Alternatively a similar

sub-program could be coded to read the feed from the video camera and save them as

a file to be displayed to the user. Allowing the user to control the frequency of these

images would allow users on slower connections, such as dialup, to be able to perform

these experiments.

3.4 User Feedback 37

3.4.3 Audio

Audio feedback can be useful in conveying to the user what occurred during the ex-

periment. Deakin University in Melbourne currently has a manufacturing laboratory

which is controlled remotely. They provide audio and visual feedback to their students

so that they can hear the noises that the machine makes when it cuts the material

(Wong, Ferguson, Florance, Bantwal & Jones 2007). Unfortunately audio streaming is

also subject to the delays incurred in video streaming.

3.4.4 Software physical event

The experiment could be designed so that when an special event occurs in the laboratory

a signal is received by the host computer. When this signal is received by the host

computer it triggers an event to be displayed to the user, such as a saved image,

playback of a sound, or any other event that the user could identify.

3.4.5 Software event

In this approach the remote laboratory has several pre-programmed events which, when

activated by the user entering certain information, will display an image to the user.

3.4 User Feedback 38

3.4.6 Conclusion

Method Bandwidth Realtime Flexibility Cost Portrayal

Video ?? ? ? ? ?? ? ? ? ??

Still Images ? ? ?? ? ? ? ? ? ?? ? ? ? ??

Audio ? ? ? ? ? ?? ??

Software physical event ? ? ?? ? ? ?? ? ? ?? ? ? ? ??

Software event ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ?

Table 3.6: Feedback Methods Summary

Video and audio feedback are currently the most commonly used feedback types used

in remote laboratories. These methods are also the most effective at conveying to

the user what occurred in the experiment. Unfortunately the delays incurred with

video streaming make it an unusable option in some experiments. Software event and

Software physical event methods do not portray to the user what actually occurred in

the experiments because their responses are preprogrammed to a given input. The still

images approach provides the user with an accurate portrayal of what occurred in the

laboratory and by allowing the user to adjust the frame rate will allow dialup users to

use the system similar to the speeds that broadband users do.

Chapter 4

Software Requirement

Alternatives

4.1 Information Storage

The Information storage method is used to store information about user, experiments,

and bookings. This operation can be performed by Domains, Access Databases, My

SQL Databases, Text files, or hard coding the information in. In some situations it is

also possible to utilise an existing database.

4.1.1 Domain

The use of a new or existing domain controller could be used to store data for use on the

remote laboratory software. Access to an experiment could be restricted to two domain

groups, one for students and one for administrators. When a student is authorised to

access the system they are added to the domain group for students. Once the student

has completed the experiment they are removed from the domain group so they are no

longer authorised to access the experiment.

4.1 Information Storage 40

4.1.2 Existing database

The Remote Laboratory may be able to utilise an existing database that is currently

being used at the university. This would reduce the amount of redundant information

because the existing database would contain information such as name, user name,

and a password. The remote laboratory system could then connect to the existing

database to gain this information for authentication purposes. In addition to reducing

the amount of redundant data this method also provides the advantage of students

using their current university passwords. Using this method does present problems

with portability as the system would need to be redesigned specifically for each existing

database used.

4.1.3 Microsoft Access database

A Microsoft Access database could be used to store all the information about the users

and experiments that are to be run in the remote laboratory. This method allows

the remote laboratory to be completely independent from any existing system which

would allow this system to still operate even when a complete redevelopment of existing

databases and websites is to be performed. Access is not a true client, server database

program and as such Microsoft Access databases are best implemented in situation

where the database size doesn’t exceed 2 Giga-bytes. Although many comparison

charts indicate that Microsoft Access can operate with 255 concurrent users an article

published on Microsofts stated:

“Jet can support up to 255 concurrent users, but performance of the

file-based architecture can prevent its use for many concurrent users. In

general, it is best to use Jet for 10 or fewer concurrent users.”

(MSDE for Microsft Visual Studio 6.0: An Alternative to Jet for Building 2007)

Microsoft Access provides a relatively inexpensive method of implementing a database

because is is part of the Microsoft Office packages currently available (Benefits and

Constraints of using Microsoft Access Database & Office 2007).

4.1 Information Storage 41

4.1.4 MSDE database

An MSDE database provides a database alternative similar to the specification of a

Microsoft Access Database. The architecture of an MSDE database differs from Access

in that a separate program is used to interface with the database. This allows for

faster data access and more concurrent connections. The MSDE database system was

designed for small scale use and as such allows for only five concurrent users but has

the advantage of using a smaller amount of system resources (What are the capacities

of Access, SQL Server, and MSDE? 2007).

4.1.5 MySQL

MySQL is a database management alternative that is available on many different plat-

forms for substantially less then Oracle and SQL Server. Implementing a MySQL server

is free for private and educational use. Websites such as Wikipedia have adopted

MySQL as their database engines (SQL Server vs MySQL 2007). Features that are

standard to SQL Server such as triggers, stored procedures, and foreign keys have not

been fully implemented until the most recent release of MySQL 5.X. MySQL databases

generally perform better then SQL Server database because of the default table format

of it’s MyISAM database, which is both compact and uses less resources then SQL

Server (MySQL 5.0 vs. Microsoft SQL Server 2005 2007). MySQL has also been found

to read data very fast, however updating of records is slower then SQL Server (Choosing

The Right Programming Language 2007).

4.1 Information Storage 42

4.1.6 SQL Server database

SQL Server was designed to be a robust database management system using similar

architecture to MSDE and as such provides support for 32,767 concurrent user con-

nections (Benefits and Constraints of using Microsoft Access Database & Office 2007).

Microsoft SQL Server is available in several different versions to suit the specific clients

database needs. The Express edition of SQL Server is available free at Microsoft’s home-

page. SQL Servers greatest benefits is that it provides a broad range of native data

analysis and reporting tools. Theses tools do however degrade the overall performance

of the system (What are the capacities of Access, SQL Server, and MSDE? 2007).

SQL Server comes with reporting services which are widely used. Other database

alternatives, such as MySQL, don’t come with these reporting tools which can be

purchased from a third party provider at an additional cost (SQL Server vs MySQL

2007). SQL Server has been certified as C-2 compliant, which means that SQL Server is

suitable for use in government applications because it contains the appropriate security

requirements (MySQL 5.0 vs. Microsoft SQL Server 2005 2007)

4.1.7 Oracle database

An Oracle Database provides similar features and performance to a SQL Server database

however it is substantially more expensive to implement, costing at least $10,000 more

for the Standard version then an equivalent SQL Server. Oracle is considered by most

to be more difficult to setup and configure then equivalent SQL Servers. An Oracle

database does, provide that advantage of being platform independent and fine tuning

can be implemented using start up parameters (SQL Server vs Oracle 2007).

4.1 Information Storage 43

4.1.8 Textfile

Text files are a common method for storing information. User authentication details

can be stored and retrieved quickly and simply, and require no special software to be

installed or running. Textfile storage is able to be viewed and changed by any ASCII

file viewer which leaves a security hole in the system. Any user who can view this

textfile is able to see all the user names and passwords that allow access to the system.

4.1.9 Written into the code of the program

Writing the database into the code of the program, or hard coding, provides little to no

flexibility. In doing so most programming languages require a recompiling of the source

files in order to reflect changes. This is not only time consuming but requires constant

interaction from the writer of the software to implement changes in the system. This

method would only be used as a last resort.

4.1.10 Conclusion

Method Cost Portability Redundancy Changeability Security

Domain ? ? ? ? ? ? ? ? ? ? ?? ? ? ?? ? ? ? ? ?

Existing DB ? ? ?? ? ? ? ?? ? ? ? ?

Access DB ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ??

MSDE ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ??

MySQL ??

SQL Server ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

Oracle ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

Text File ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Hard Code ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Table 4.1: User Authentication Methods Summary

4.1 Information Storage 44

There are many database products on the market and within this project several of the

popular methods have been analysed.

Due to current security restrictions on the university network the domain and existing

database methods shall not be used. Using textfiles to store information (particularly

relational databases) can be very difficult to code, maintain, and troubleshoot. A

database alternative provides an easier and cleaner method to store information.

The Oracle database does provide a stable alternative to the Microsoft products how-

ever it comes at a substantially higher cost. The increased cost outweighs the advan-

tages, such as portability, as it would be cheaper to purchase a Windows server and

an equivalent version of SQL Server then it would be to purchase the Oracle database

solution.

The Microsoft Access and MSDE alternatives provide very similar specification with

architecture the main difference. In the event that the resources required to run the re-

mote laboratory software exceed the capabilities of both Access and MSDE the database

system will need to be up-sized to a SQL Server installation. In this case it is easier

to up-size an MSDE database then an Access one because of the similar architecture

used in both MSDE and SQL Server.

A MySQL database provides a cost-effective alternative to Oracle and SQL Server.

It is a command prompt based program which can be more difficult to setup then

the Microsoft equivalent. Due to the portability and cost effectiveness of a MySQL

database alternative this shall be implemented for use in the remote laboratory.

4.2 Booking System 45

4.2 Booking System

The booking system is used to allow students to book times that they wish to use the

remote laboratory. The user will be able to log into the system, see the times that

the remote laboratory will be available, and book an unallocated time. The booking

system can be added into the information storage system to stop people who aren’t

booked in from controlling the hardware.

4.2.1 Single User System

A single user system would be designed to only let one user access the system at a time.

The system has no need for communication between users and all experiments would

need to be programmed for individual work.

4.2.2 User, Viewer System

In the user, viewer system there is only one person who can manipulate the operations

of an experiment. The system would also allow for one other person to view the

system, possibly an examiner watching the experiment to observe and assess that the

experiment is being performed correctly, safely, and so that the outcomes are achieved.

Communication between the user and the viewer would be of benefit especially in

explaining why something was done or occurred during the course of the experiment.

4.2 Booking System 46

4.2.3 Multi-User System

A multi-user system would allow a team of students or examiners to interact with the

experiment creating an experience more like the atmosphere at residential school. The

experiment could be controlled via a token system, whoever holds the token has the

ability to manipulate the experiment as they wish. The token may be passed to another

student as required. Users would need to communicate with each other and this could

be achieved via an audio system however this would require that all the users have

access to fast connections, speakers, and a microphone. A more appropriate solution

would be to have a text based chat program so that all user can communicate, even

those with slow Internet connections. As the participation of a group experiment is

difficult to judge the experiment could be broken into tasks and logs could be used to

record the actions of each user to ensure that all members are participating. However,

it is difficult to ensure that all users are participating fully when they are operating as

a group as other members can instruct an individual on what to do to complete their

section. Secondly, the other members of a group who are not controlling the experiment

may become inattentive or disruptive. Under these circumstances it may be better to

implement one of the other alternatives.

4.2 Booking System 47

4.2.4 Conclusion

Method Flexibility Complexity Determination of

User Participation

Student Interaction

Single User ? ? ? ? ? ? ? ?

User, Viewer ?? ? ? ? ? ? ? ??

Multi User ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Table 4.2: Booking Systems Summary

The single user booking system provides an uncomplicated method in which individual

students can perform a remote laboratory experiment and be clearly seen to have

participated in the experiment. However, it does remove one of the key elements of

attending the university campus which is student interaction. The multi-user and the

user, viewer methods are equally as complicated to implement, however the multi-user

system provides substantially more student interaction and cooperation while the user

viewer section does only allows an additional user to view the session to see how it

works.

A booking system which employs the concepts found in all three methods will be used

in this project. Experiments will be setup stating how many users may work together

to complete the experiment. This allows for several people to work on an experiment

at once but at the same time an experiment may be setup to only allow one user at a

time to participate. One of the operators will have a control token which allows them

to manipulate the experiment as they see fit. The other users may invoke an election

in which all users will vote on who will have the control token to stop one user from

holding control. The system will allow the administrator to assign users to a group

were they will be able to perform and observe the experiment. Administrators will

be able to interact with any operational remote laboratory and may take the control

token. Users will be able to communicate with each other using a text based system

where they will type a message and the other users will be able to see and respond if

desired.

4.3 Programming Languages 48

4.3 Programming Languages

4.3.1 ASP

ASP is a programming language used on many websites throughout the world and as

such there is no language on the web better supported. ASP is an interpreted scripting

language which means that the code used in ASP pages is interpreted line by line, each

time that they are run. ASP websites have the advantage of being low cost because

the software require to host these pages comes with every Microsoft Windows Server

and the ASP pages can be written in any text programs, such as Microsoft Wordpad

and Notepad (Choosing The Right Programming Language 2007).

4.3.2 ASP.Net

ASP.Net is a newer version of ASP. ASP.Net pages are not interpreted scripting pages

like ASP, but are part of the DotNet Framework. ASP.Net pages contain scripts that

are automatically compiled by the hosting server (similar to how C++ programs are

compiled). The pages are then stored in memory for the next visitor which makes the

compilation of ASP.Net pages a lot faster then ASP. ASP.Net is an object oriented

programming language which offers a unique way of triggering code on the server from

web pages in the client’s web browsers. ASP.Net offers Membership and Role provider

access with standardised login controls that can be easily inserted onto web forms as

well as intelligent caching and garbage collection (Choosing The Right Programming

Language 2007).

4.3 Programming Languages 49

4.3.3 C

C and C++ programming languages is a multi-platform programming language that

supports procedural programming, data abstraction, object-oriented programming, and

generic programming. C and C++ programming languages are commonly found run-

ning on Windows, Linux, and UNIX systems and appear to be an ideal language to

develop the host program because of it’s strengths and simplicity (C - Wikipedia 2007).

C and C++ are coded in any text program then complied using the appropriate com-

piler for the system that it will run on.

4.3.4 ColdFusion

ColdFusion is a programming language for websites that consists of a series of predefined

tags that do server side instructions, such as connecting to a database. Unfortunately

there is a predefined number of tags and some tasks require a large amount of processing,

which can be done easier in a different language. The software required to host a

ColdFusion website is not as common as others researced, however there are still many

hosting companies that support ColdFusion sites (Choosing The Right Programming

Language 2007).

4.3.5 Java

Currently there are several remote laboratories that are under redevelopment that were

written in Java. It was found that Java was having problems over the years and error

messages were being received by the client computers making the system inoperable.

Java does have the advantage of being both a website language and a desktop engine

which allows for one programming language to be used throughout the project.

4.3 Programming Languages 50

4.3.6 PHP

PHP is the programming language of choice for many Linux users. It is free to host on

both Windows and Linux operating systems. PHP is an interpreted scripting language

making it similar to the operation of ASP and is mostly used with MySQL database

systems (Choosing The Right Programming Language 2007).

4.3.7 Visual Basic

Microsoft’s Visual Basic is a programming language that has been developed by the Mi-

crosoft Corporation to allow graphical user interface (GUI) programs to be developed

quickly and easily but to have the power and sophistication to perform complex opera-

tions. Visual Basic does have several disadvantages. Being developed for the Windows

operating system it is not compatible with Linux or Unix, although compilers for these

systems are being developed (Mono brings Visual Basic Programs to Linux 2007). It

is not a proper object oriented language nor does it support threading of processes

(Visual Basic - Wikipedia 2007). Visual Basic, as the name suggests, is a easy language

to learn and start with, making it suitable for the host program.

4.3 Programming Languages 51

4.3.8 Conclusion

Method Ability perform the task Requirements Portability Cost

ASP ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

ASP.Net ? ? ? ? ? ? ? ?? ? ? ?? ? ? ?

C ?

ColdFusion ? ? ?? ? ? ? ? ? ? ? ? ? ? ?

Java ?

PHP ?

Visual Basics ? ? ?? ?? ? ??

Table 4.3: Programming Languages Summary

Java provides a solution that would only require the knowledge of one programming lan-

guage, however with several remote laboratories currently using Java and not working

this could be a risky move and as such will not be used for this project.

ColdFusion provides an easy language to get started in website development but the

hosting of this can be expensive. ASP and PHP provide similar alternatives to develop-

ing a website but PHP is free. Although PHP provides a free solution for the hosting of

websites ASP.Net utilises the latest Dot Net Framework technology. This programming

language is personally more familiar and as such will be used for the development of

the Website interface with this research project.

C and C++ provide a portable solution for the host program so this will be used as

Visual Basics currently can only be run on a Windows operating systems.

Chapter 5

Required System Specification

5.1 Assumptions

Currently there are 26 experiments from 4 different subjects with experiments that can

be done in a remote laboratory and it is assumed that this will grow to 50 experiments

from 10 different subjects with, at most, 5 students interacting with each experiment.

It is also assumed that 1 lecturer from each course will be able to log into the system to

observe the experiments. Therefore the system should be able to cope with 260 users

concurrently being logged in.

Several of these experiments perform the same tasks as another experiment but they

are for a different subject so the focus of the experiment might be slightly different and

as such these experiments will be considered as a different experiment.

5.1 Assumptions 53

The following assumptions have been made:

• Requirement for laboratory will be 4 digital switches and 4 analog switches.

• Growth rate will be 10% per year for 10 years before the system will be redevel-

oped.

• 260 concurrent users could be logged in.

• The university is responsible for identifying students and providing them with

unique student ID’s

5.2 Software Operation 54

5.2 Software Operation

The required software operations are to:

• Implement a booking system for students to book the laboratory for use.

• Allow the authenticated users to change states of an experiment.

• Display to authenticated users what has occurred in the laboratory.

• Monitor the users access to insure:

– Safety of the user

– Safety of the laboratory equipment

– Only authenticated users can access the laboratory

– Duration of time the user has logged onto the system

– A user isn’t idly logged on

• Provide easy reconfiguring for different experiments.

• Ability to save the feedback shown to the user.

• Provide 4 digital and 4 analog switches for users to change.

• Provide access for 260 concurrent users.

• Provide adequate proof to course assessor that the experiment was completed

correctly.

Proof of completion shall be shown to the examiners by a series of screen shots that

are taken by the user when they request it to be taken.

Web-page based design shall be used to allow the user to interface with the remote

laboratory system.

5.3 Interface Program Operation 55

5.3 Interface Program Operation

When the website is opened it should prompt the user for a user name and password,

and display any messages to the users. After logged in the user will then see either the

Administrator or Student interface.

The Administrator Interface will contain the ability to:

• Add/edit users.

• Enable/disable a user to use the system.

• Add/edit bookings for any user.

• Create/change an experiment

• Enable/disable an experiment from use.

• Change the time a student can spend on an experiment.

• Join any session to view and chat with the student/s.

5.3 Interface Program Operation 56

The Student Interface will contain:

• The ability to change password.

• A description for each experiment.

• The available times for all of the laboratories that they may enter.

• The amount of time that they have left working on a remote laboratory.

• Any remote laboratories that they may enter. The user will only be able to enter

a remote laboratory if:

– The experiment is functional.

– The experiment has started.

– The experiment has not finished.

– The student has time allocated to that experiment.

– They have previously booked for the current time.

– The laboratory isnt booked and not in use by another user.

After the user enters an experiment it displays:

• Time remaining.

• Instructions on the experiment.

• Any available changes that can be made.

• Pause video feed button.

• Save image button.

• Chat interface

After the user enters a change it is appended to the database which is periodically

read by the host computer which implements the changes in the remote laboratory.

When the user believes that the experiment is completed a collection of saved images

is emailed to the course assessor as proof that the experiment was completed correctly.

5.4 Host Program Operation 57

5.4 Host Program Operation

The host computer will run a program as a service or daemon that is responsible for the

interaction with the laboratory. It will periodically contact the database and download

a copy of the actions to be implemented in the remote laboratory. Any changes to

the states of the switches are then implemented. The host computer software will

also upload a still image from the video camera/s for use in user feedback. The host

computer is also responsible for monitoring the frequency of changes to avoid damage

to the equipment. Once the changes have been implemented in the remote laboratory

they are deleted from the database.

5.5 Database Structure 58

5.5 Database Structure

The database will contain two main tables; the User and Experiment tables. The

records entered into these tables should not be deleted, but if necessary they can be

disabled to stop a user logging in, or stop an experiment from running. This ensures that

the database keeps its integrity and can be done with a boolean field called ‘Enabled’

which is set to false.

In a relational database tables are linked together. This reduces redundant code but

does create problems during the update and deletion on records. To overcome this

problem extra conditions are enforced on the database to maintain integrity. The two

main options are; cascade update and cascade delete. Cascade update is valuable in

that when a record is updated, any records that link to that record are updated as

well. Applying cascade updates increases update time but ensures that no references

are left hanging. Cascade delete is used to remove hanging references when a record

is deleted. It does this by deleting all other records that reference the deleted record.

When cascade delete is not used, and the delete command is issued, an error message

will occur if the record is being referenced by another record.

ID fields will be using in some tables as a unique identifier for the records. This is

done because it is faster to perform updates when tables are linked by a static field.

In situations where tables are joined together using a name field for example, when

an update to that name is issued, all records referencing that name also need to be

updated, whereas if the tables were linked by an ID field and the name was updated,

then only one record is updated. The ID fields will mainly be autonumbers.

The remote laboratory software for this projecg will use cascade update but not cascade

delete. This will ensure that records are updated and that should a referenced record

be requested to be deleted an error message will be generated. A complete copy of the

code required to create the database is found in Appendix B.

5.5 Database Structure 59

5.5.1 Membership and Role Provider Tables

ASP.Net 2.0 has implemented a scheme to authenticate users called the Membership

and Role Providers. This schema provides web developers with an easy way to secure

their websites because it performs all the tasks required to secure a website behind

the scenes. The Membership and Role Provider was originally implemented to work

with MS SQL Server and Microsoft Access but the developers of MySQL have created

a connector called ‘Connector/Net 5.1’ which, as of 5th of September 2007 is still a

beta release, allows MySQL database to be used as a Membership and Role Provider

(MySQL AB 2007).

The following MySQL membership table, roles table, and users in roles table are created

by using a Membership and Role Provider in the MySQL Database.

MySQL Membership Table

The MySQL Membership table contains the information about the user, such as user

name, password, and statistics. This table was designed so that when new users enter

a website they can register and then log in without any interaction with the site admin-

istrator. It also provides functionality for users to; reset their password, cancel their

account, and see which other users are currently online. The ‘comment’ field will be

used to store the users first and last names. This is done because the MySQL Member-

ship table does not have first and last name fields. Table 5.3 shows all the information

stored in the mysql membership table.

5.5 Database Structure 60

MySQL Roles Table

The MySQL Roles Table contains two fields. The first field, Rolename, specifies the

name of a role. The role name is often granted or denied permissions on a directory, or

file of the website. This is useful in stopping unauthorised users from performing func-

tions but allowing authorised users to perform these actions. This table also stores the

application name. This allows one singular membership database to be used for several

different applications. Table 5.1 shows all the information stored in the mysql roles

table.

MySQL Users In Roles Table

The Users in Roles table is used to create a many-to-many join on the Membership

and Roles tables. This allows for many users to be in many different roles and many

roles to belong to many different users. This table contains three fields; Username and

Role name, to create the many-to-many join, and the application name, so that one

membership database can be used for many different applications. Table 5.2 shows all

the information stored in the mysql usersinroles table.

Field Type Null Key Default

Rolename varchar(255) NO MUL

ApplicationName varchar(255) NO

Table 5.1: mysql roles table

Field Type Null Key Default

Username varchar(255) NO MUL

Rolename varchar(255) NO

ApplicationName varchar(255) NO

Table 5.2: mysql usersinroles table

5.5 Database Structure 61

Field Type Null Key Default

PKID varchar(36) NO PRI

Username varchar(255) NO

ApplicationName varchar(255) NO

Email varchar(128) NO

Comment varchar(255) YES NULL

Password varchar(128) NO

PasswordQuestion varchar(255) YES NULL

PasswordAnswer varchar(255) YES NULL

IsApproved tinyint(1) YES NULL

LastActivityDate datetime YES NULL

LastLoginDate datetime YES NULL

LastPasswordChangedDate datetime YES NULL

CreationDate datetime YES NULL

IsOnline tinyint(1) YES NULL

IsLockedOut tinyint(1) YES NULL

LastLockedOutDate datetime YES NULL

FailedPasswordAttemptCount int(10) unsigned YES NULL

FailedPasswordAttemptWindowStart datetime YES NULL

FailedPasswordAnswerAttemptCount int(10) unsigned YES NULL

FailedPasswordAnswerAttemptWindow

Start

datetime YES NULL

Table 5.3: mysql membership table

5.5 Database Structure 62

5.5.2 Experiment Table

The experiments table is used to store information about the experiments so contains

a name, experiment description, and experiment instructions. In order for students to

book a time to complete the experiment it is important to know the maximum running

time needed to completed the experiment and the number of operators that may use

the system at once. To reference a record uniquely an ID field is used. Table 5.4 shows

all the information stored in the experiments table.

Field Type Required Key Unique

ID autonumber Yes Yes Yes

Name varchar(30) Yes Yes

Description varchar(256) No

Instructions text No

TimeReq time Yes

BookingSlot time Yes

NoOfOps tinyint (unsigned) Yes

IsGroupBookable boolean Yes

Enabled boolean Yes

Table 5.4: experiments table

5.5.3 User Grouping

There are currently several experiments that may be completed as a group. As an

additional part of the database the system administrators will be able to assign users

to groups. This is an optional setting which will not influence the operation of the

remote laboratory if not used. The creation of user groups requires a many-to-many

relationship between the Users and Groups tables.

5.5 Database Structure 63

Group Table

The group table stores the name of a group and an ID field. Table 5.5 shows all the

information stored in the groups table.

Field Type Required Primary Key Unique

ID autonumber Yes Yes Yes

Group Name varchar(20) Yes Yes

Table 5.5: groups table

Group Users Table

The group users table stores the username of a member and the group ID of the group

they are in. Both the username and group ID are primary keys which enforces that

any one user can only be in a particular group once, but that one user can be in

many groups, and that groups contain many users. The username field is linked to the

username field in the MySQL Membership table and the group ID field is linked to the

ID field in the Groups tables so that an update in any of these fields will update the

other tables as required. Table 5.6 shows all the information stored in the groupusers

table.

Field Type Required Primary Key Unique

Username varchar(255) Yes Yes Yes

Group ID int (unsigned) Yes Yes Yes

Table 5.6: groupusers table

5.5 Database Structure 64

5.5.4 Subject Grouping

Subject grouping will stop users who are not in a particular subject from performing

an experiment for a subject that they are not studying. Users are added to the usersin-

subects table so they can perform an experiment and once they have completed the

subject they are removed so that they cannot perform the experiment again.

The creation of subject grouping requires 2 tables with a many-to-many relationship.

Subjects Table

The subjects table is used to store a list of all the subjects that have experiments that

will be performed in the remote laboratory. The ID field will be used to store the

subject code.

Field Type Required Primary Key Unique

ID varchar(20) Yes Yes Yes

Name varchar(20) Yes Yes

Table 5.7: subjects table

Users In Subjects table

The users in subjects table will store a list of the usernames of students and the corre-

sponding subjects that they may perform experiments in.

Field Type Required Primary Key Unique

UserName varchar(255) Yes Yes Yes

Subject ID int (unsigned) Yes Yes Yes

Table 5.8: usersinsubjects table

5.5 Database Structure 65

5.5.5 Experiment Period Table

The experiment period table is used to create times which an experiment can be con-

ducted. This table stores the experiment ID for which the time constrains apply to,

the start date and time, and stop date and time. The experiment ID field is linked to

the Experiments table ID field, so that an update on the Experiments table ID field

will update the Experiment Period table. Table 5.9 shows all the information stored in

the experimentperiod table.

Field Type Required Primary Key Unique

Experiment ID int (unsigned) Yes Yes Yes

Start Date/Time Yes Yes Yes

Finish Date/Time Yes Yes Yes

Table 5.9: experimentperiod table

5.5.6 Instructions Table

Changes to the experiment will be added to this table where they will be read by the

host program and implemented on the equipment in the laboratory.

Field Type Required Primary Key Unique

Switch ID int (unsigned) Yes Yes Yes

Experiment ID int (unsigned) Yes Yes Yes

Switch Value tiny int Yes

Time Date/Time Yes Yes Yes

UserName varchar(255) Yes

Table 5.10: instructions table

5.5 Database Structure 66

5.5.7 Switches Table

The switches tabl is used to add switches to experiments. This table contains the

Experiment ID and switch description. These fields are unique so that one experiment

cannot have two switches with the same description. This table also contains a boolean

field to determine if the switch is digital or analog. There is also a default value field

which is used to set the state of the switch when the experiment is started. This field

has been given the type of unsigned tiny integer. This allows an 8-bit analog switch to

set values to the full resolution of the device. Digital switches may be given the values

0 for off and 255 for on. The experiment ID field is linked to the Experiments table

ID field, so that an update on the Experiments table ID field, will update the Switches

table. Table 5.11 shows all the information stored in the switches table.

Field Type Required Primary Key Unique

ID autonumber Yes Yes Yes

Experiment ID int (unsigned) Yes Yes

Description varchar(255) Yes Yes

Default Value tinyint (unsigned) Yes

Is Digital boolean Yes

Table 5.11: switches table

5.5 Database Structure 67

5.5.8 Booking Table

The booking table is used to book students in for a particular experiment time slot.

This table contains the user ID and the experiment ID as well as booking start and

finish times. The Username field is linked to the MySQL Membership table Username

field and the Experiment ID field is linked to the Experiments table ID field, so that

an update on either of these tables will update the Booking table. Table 5.12 shows all

the information stored in the booking table.

Field Type Required Primary Key Unique

UserName varchar(255) Yes Yes Yes

Experiment ID int (unsigned) Yes

Start Date/Time Yes Yes Yes

Finish Date/Time Yes

Table 5.12: booking table

5.5 Database Structure 68

5.5.9 Relationship

Figure 5.1: Database relationships

Chapter 6

Conclusion

Research was conducted into several remote laboratories that are currently in oper-

ation. The depth of this research was limited by several factors of which time was

the major limiting factor. There are many remote laboratories throughout the world

which were not examined because communication with these laboratories would require

large amounts of time in language translation or correspondence. Expanding the time

allowed for research would possibly yield different alternatives in the structure of a

remote laboratory and the technologies used to implement these structures.

Several flaws were identified in the remote laboratories examined, mainly in the area

of programming languages used, and measures taken to ensure that these flaws are

not transfer to the system being developed. The flaws in these systems were only

obtained from a limited knowledge of how the system works, which was obtained by the

documentation that was provided and researched. A more comprehensive list of flaws

could also have been identified if a team of developers who created and/or maintained

a remote laboratory had worked together rather then one persons interpretation.

70

Research into the software and hardware available was conducted mainly at USQ. Po-

tential consumers were also considered, however it was hoped that by using equipment

that was both common and inexpensive, such as common operating systems and by

only requiring small amounts of additional hardware or software, potential consumers

would be attracted to the system. Equipment costs were reduced by researching several

different manufacturers of the equipment required.

Research and evaluation of the tasks required to complete a remote laboratory was

conducted and the evaluation was done on the basis of what was capable of running at

the university and on the boundaries enforced in this research project.

Programming languages that may be used to complete the tasks to impliment the

remote laboratory were researched and evaluation. With so many programming lan-

guages being used today only several of the main languages were examined. This in

turn limited the scope of this section and as such there may be a better programming

language alternatives that were not considered.

A system prototype was partially developed (Code in Appendix C), however the labora-

tory equipment interface method was too expensive to be purchased and subsequently

the Host program could not be developed, leading to the remote laboratory system not

being implimenting or testing.

None of the ‘As time permits’ tasks were completed.

6.1 Limitations 71

6.1 Limitations

By using a MySQL database the limit imposed on the amount of records in a table is

4,294,967,295.

The following limitations have been directly or indirectly created as a result of the size

of the fields used in the database and as such may be adjusted in the database before

implementation to increase these values. (MySQL AB 2007)

Description Limit

Users in one experiment 255

Character in User ID 255

Character in Passwords 128

Character in First Name 20

Character in Last Names 30

Character in Experiment names 30

Character in Subject codes 10

Character in Descriptions 256

Character in Instructions 65535

Character in Group Names 20

Character in Switch Descriptions 256

Switch values Range 0 to 256

Table 6.1: Database Field Limits

6.2 Future Work 72

6.2 Future Work

In the future more detailed research needs to be conducted into the current laboratory

system configurations, flaws, and programming languages. This would best be done

with a specific research and development team consisting of the creators, operators,

and maintainers of any existing remote laboratory system. In addition to this a team

to examine the requirements of other potential consumers would provide the system

with the flexibility to be integrated into the market outside of the educational and

scientific areas.

The system could also be expanded to allow student to program in events to occur at a

particular point in time. This can be implemented with a slight change to the operation

of the host program and the interface program as the database already excepts the time

field in the instructions table. Further investigation could be conducted into how to

provide the user with visual and audio feedback through a website without the delay

that was experienced in this research project.

References

180 Degree, 5 or 3 Finger Robot Arm (2007).

http://www.mrisar.com/robot-arm-5-f-180.htm

current June 2007.

Asus Motherboard (2007).

http://au.asus.com/products1.aspx?l1=3

current June 2007.

Axelson, J. (2005), USB Complete, 3rd edn, Lakeview Reasearch LLC.

Benefits and Constraints of using Microsoft Access Database & Office (2007).

http://www.galleryimage.com.au/Why-Access-Database.htm

current July 2007.

Choosing The Right Programming Language (2007).

http://www.dmxzone.com/ShowDetail.asp?NewsId=4305

current July 2007.

C - Wikipedia (2007).

http://en.wikipedia.org/wiki/C%2B%2B

current June 2007.

Data Driven Attacks Using Http Tunneling (2007).

http://www.securityfocus.com/infocus/1793

current April 2007.

Davidson, P. & Griffin, R. W. (2000), Management, 3rd edn, John Wiley and Sons

Australia, Ltd.

http://www.mrisar.com/robot-arm-5-f-180.htm
http://au.asus.com/products1.aspx?l1=3
http://www.galleryimage.com.au/Why-Access-Database.htm
http://www.dmxzone.com/ShowDetail.asp?NewsId=4305
http://en.wikipedia.org/wiki/C%2B%2B
http://www.securityfocus.com/infocus/1793

REFERENCES 74

Fwink (2007).

http://lundie.ca/fwink/

current April 2007.

Gigabyte Motherboard (2007).

http://www.gigabyte.com.tw/Products/Motherboard/Default.aspx

current June 2007.

Hobbytron (2007).

http://www.hobbytron.com/RobotArmKits.html

current June 2007.

Http- Tunnel (2007).

http://www.http-tunnel.com/html/support/faq.asp#16

current June 2007.

Mono brings Visual Basic Programs to Linux (2007).

http://www.linuxdevices.com/news/NS9725385854.html

current July 2007.

MSDE for Microsft Visual Studio 6.0: An Alternative to Jet for Building (2007).

http://msdn2.microsoft.com/en-us/library/ms811092.aspx

current August 2007.

Murray, S. & Lasky, V. (2007), UTS Engineering Remote Laboratory Project.

MySQL 5.0 vs. Microsoft SQL Server 2005 (2007).

http://www.tometasoftware.com/MySQL-5-vs-Microsoft-SQL-Server-2005.asp

current July 2007.

MySQL AB (2007).

http://www.mysql.com/

current September 2007.

Optocoupler - Wikipedia (2007).

http://en.wikipedia.org/wiki/Optocoupler

current June 2007.

http://lundie.ca/fwink/
http://www.gigabyte.com.tw/Products/Motherboard/Default.aspx
http://www.hobbytron.com/RobotArmKits.html
http://www.http-tunnel.com/html/support/faq.asp#16
http://www.linuxdevices.com/news/NS9725385854.html
http://msdn2.microsoft.com/en-us/library/ms811092.aspx
http://www.tometasoftware.com/MySQL-5-vs-Microsoft-SQL-Server-2005.asp
http://www.mysql.com/
http://en.wikipedia.org/wiki/Optocoupler

REFERENCES 75

RealVNC (2007).

http://www.vnc.com/download.html

current June 2007.

Relay - Wikipedia (2007).

http://en.wikipedia.org/wiki/Relay

current June 2007.

Robotic Arm System (2007).

http://www.roboworld.com.sg/roboshop/product_list.aspx

current June 2007.

Servomechanism - Wikipedia (2007).

http://en.wikipedia.org/wiki/Servomechanism

current June 2007.

SQL Server vs MySQL (2007).

http://searchsqlserver.techtarget.com/tip/

current July 2007.

SQL Server vs Oracle (2007).

http://www.mssqlcity.com/Articles/Compare/sql_server_vs_oracle.htm

current July 2007.

The University of Southern Queensland (2006a), Civil Materials Practice, The Univer-

sity of Southern Queensland.

The University of Southern Queensland (2006b), Computer Systems Engineering Prac-

tice, The University of Southern Queensland.

The University of Southern Queensland (2006c), Electrical and Electronic Practice A,

The University of Southern Queensland.

The University of Southern Queensland (2006d), Electrical and Electronic Practice B,

The University of Southern Queensland.

The University of Southern Queensland (2006e), Electrical and Electronic Practice C,

The University of Southern Queensland.

http://www.vnc.com/download.html
http://en.wikipedia.org/wiki/Relay
http://www.roboworld.com.sg/roboshop/product_list.aspx
http://en.wikipedia.org/wiki/Servomechanism
http://searchsqlserver.techtarget.com/tip/
http://www.mssqlcity.com/Articles/Compare/sql_server_vs_oracle.htm

REFERENCES 76

The University of Southern Queensland (2006f), Electrical and Electronic Practice D,

The University of Southern Queensland.

The University of Southern Queensland (2006g), Engineering Management Introductory

BOOK, The University of Southern Queensland.

The University of Southern Queensland (2006h), Engineering Management Study

BOOK 2, The University of Southern Queensland.

The University of Southern Queensland (2006i), Field Practice, The University of

Southern Queensland.

The University of Southern Queensland (2006j), Mechatronic Practice 1, The University

of Southern Queensland.

The University of Southern Queensland (2006k), Professional Practice 1, The University

of Southern Queensland.

The University of Southern Queensland (2006l), Professional Practice 2, The University

of Southern Queensland.

The University of Southern Queensland (2006m), Soil and Water Engineering Practice

1, The University of Southern Queensland.

The University of Southern Queensland (2006n), Soil and Water Engineering Practice

2, The University of Southern Queensland.

The Telelabs Project (2007).

http://telerobot.mech.uwa.edu.au/index.html

current April 2007.

Towards Sustainable Engineering Practice: Engineering Frameworks for Sustainability

(1997), Institution of Engineers, Australia, Canberra.

Transistor - Wikipedia (2007).

http://en.wikipedia.org/wiki/Transistor

current June 2007.

USB (2007).

http://www.webopedia.com/TERM/U/USB.html

current April 2007.

http://telerobot.mech.uwa.edu.au/index.html
http://en.wikipedia.org/wiki/Transistor
http://www.webopedia.com/TERM/U/USB.html

REFERENCES 77

Using a Linux L2TP/IPsec VPN server with Mac OS X (2007).

http://www.jacco2.dds.nl/networking/freeswan-panther.html

current June 2007.

Visual Basic - Wikipedia (2007).

http://en.wikipedia.org/wiki/Visual_Basic

current June 2007.

What are the capacities of Access, SQL Server, and MSDE? (2007).

http://sqlserver2000.databases.aspfaq.com/what-are-...-msde.html

current July 2007.

Wong, K., Ferguson, C., Florance, J., Bantwal, B. & Jones, T. (2007), Flexible Delivery

of Practical Learning Experience Through the Internet: The Remotely Operated

CNC Machine Teaching Project.

http://www.jacco2.dds.nl/networking/freeswan-panther.html
http://en.wikipedia.org/wiki/Visual_Basic
http://sqlserver2000.databases.aspfaq.com/what-are-...-msde.html

Appendix A

Project Specification

Appendix B

MySQL Database Code

81

create database RLS;

use RLS;

create user InetUser;

Grant all on RLS.* to InetUser;

Set Password for InetUser = Password(’RLSUser’);

create table tblgroups(

gid int unsigned not null auto_increment default NULL,

gname varchar(30) not null,

PRIMARY KEY(gid)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create unique index tblgroupsI on tblgroups (gname);

create table tblsubjects(

sid varchar(10) not null,

sname varchar(255) not null,

PRIMARY KEY(sid, sname)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create unique index tblsubjectsI on tblsubjects (sname);

82

create table tblswitches(

sid int unsigned not null auto_increment default NULL,

seid int unsigned not null,

sdescription varchar(256) not null,

sdefaultvalue tinyint unsigned not null,

sisdigital boolean not null,

PRIMARY KEY(sid)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create unique index tblewithcesi on tblSwitches (seid, sdescription);

create table tblexperiments(

eid int unsigned not null auto_increment default NULL,

ename varchar(30) not null,

edescription varchar(256),

einstructions text,

etimereq time not null,

ebookingslot time not null,

enoofops tinyint unsigned not null,

egroupbookable boolean not null,

eenabled boolean not null,

PRIMARY KEY(eid)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create unique index tblexpi on tblexperiments (ename, esubjectcode);

83

create table tblgroupusers(

guusername varchar(255) not null,

gugid int unsigned not null,

FOREIGN KEY (guusername) REFERENCES mysql_membership (username)

ON UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (gugid) REFERENCES tblgroups(gid)

ON UPDATE CASCADE ON DELETE RESTRICT,

PRIMARY KEY(guusername, gugid)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create table tblusersinsubjects(

ususername varchar(255) not null,

ussid varchar(10) not null,

FOREIGN KEY (ususername) REFERENCES mysql_membership (username)

ON UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (ussid) REFERENCES tblsubjects(sid)

ON UPDATE CASCADE ON DELETE RESTRICT,

PRIMARY KEY(ususername, ussid)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create table tblexperimentsinsubjects(

eseid int unsigned not null

essid varchar(10) not null,

FOREIGN KEY (eseid) REFERENCES tblexperiments (eid)

ON UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (ussid) REFERENCES tblsubjects(sid)

ON UPDATE CASCADE ON DELETE RESTRICT,

PRIMARY KEY(ususername, ussid)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

84

create table tblexperimentperiod(

epeid int unsigned not null,

epstart datetime not null,

epfinish datetime not null,

FOREIGN KEY (epeid) REFERENCES tblexperiments(eid)

ON UPDATE CASCADE ON DELETE RESTRICT,

PRIMARY KEY(epeid,epstart,epfinish)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

create table tblbookings(

busername varchar(255) not null,

beid int unsigned not null,

bstart datetime not null,

bfinish datetime not null,

FOREIGN KEY (busername) REFERENCES mysql_membership (username)

ON UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (beid) REFERENCES tblexperiments(eid)

ON UPDATE CASCADE ON DELETE RESTRICT,

PRIMARY KEY(busername, bstart)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

85

create table tblinstructions(

isid int unsigned not null ,

ieid int unsigned not null,

iswitchvalue varchar(256) not null,

itime tinyint unsigned not null,

iusername boolean not null,

FOREIGN KEY (isid) REFERENCES tblswitches (sid)

ON UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (ieid) REFERENCES tblexperiments(eid)

ON UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (iusername) REFERENCES mysql_membership (username)

ON UPDATE CASCADE ON DELETE RESTRICT,

PRIMARY KEY(isid, ieid, itime)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

Appendix C

Interface Program Code

C.1 Index.ASPX 87

C.1 Index.ASPX

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="index.aspx.vb"

Inherits="RemoteLab.index" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>USQ Remote Laboratory</title>

<link href="styles/default.css" rel="stylesheet" type="text/css" />

</head>

<body>

<form id="form1" runat="server" style="background-color:white">

<center>

Enter

</center>

</form>

</body>

</html>

C.2 Index.ASPX.VB

Public Partial Class index

Inherits System.Web.UI.Page

End Class

C.3 Login.ASPX 88

C.3 Login.ASPX

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="login.aspx.vb"

Inherits="RemoteLab.login" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head id="Head1" runat="server">

<title>USQ Remote Laboratory Login</title>

<link href="styles/default.css" rel="stylesheet" type="text/css" />

</head>

<body>

<form id="form1" runat="server" style="background-color:white">

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<asp:Login ID="Login1" runat="server" DestinationPageUrl=

"/student/mainmenu.aspx" BackColor="#F7F6F3"

BorderColor="#E6E2D8" BorderStyle="Solid"

BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em" PasswordRecoveryText=

"Forgot your Password?" PasswordRecoveryUrl=

"~/passwordrecovery.aspx" BorderPadding="4"

ForeColor="#333333" >

<TitleTextStyle BackColor="#5D7B9D" Font-Bold="True"

ForeColor="White" Font-Size="0.9em" />

<InstructionTextStyle Font-Italic="True"

ForeColor="Black" />

<TextBoxStyle Font-Size="0.8em" />

C.4 Login.ASPX.VB 89

<LoginButtonStyle BackColor="#FFFBFF"

BorderColor="#CCCCCC" BorderStyle="Solid"

BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em" ForeColor="#284775" />

</asp:Login>

</center>

</ContentTemplate>

</asp:UpdatePanel>

</form>

</body>

</html>

C.4 Login.ASPX.VB

Public Partial Class login

Inherits System.Web.UI.Page

End Class

C.5 Passwordrecovery.ASPX 90

C.5 Passwordrecovery.ASPX

<%@ Page Language="vb" AutoEventWireup="false" MasterPageFile="~/default.Master"

CodeBehind="passwordrecovery.aspx.vb" Inherits="RemoteLab.passwordrecovery"

title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphMain" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<asp:PasswordRecovery ID="PasswordRecovery1" runat="server"

BackColor="#F7F6F3" BorderColor="#E6E2D8" BorderPadding="4"

BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em">

<InstructionTextStyle Font-Italic="True" ForeColor="Black" />

<SuccessTextStyle Font-Bold="True" ForeColor="#5D7B9D" />

<TextBoxStyle Font-Size="0.8em" />

<TitleTextStyle BackColor="#5D7B9D" Font-Bold="True"

Font-Size="0.9em" ForeColor="White" />

<SubmitButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC"

BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em" ForeColor="#284775" />

</asp:PasswordRecovery>

</center>

</ContentTemplate>

</asp:UpdatePanel>

</asp:Content>

C.6 Passwordrecovery.ASPX.VB 91

C.6 Passwordrecovery.ASPX.VB

Public Partial Class passwordrecovery

Inherits System.Web.UI.Page

End Class

C.7 Mainmenu.ASPX

<%@ Page Language="vb" AutoEventWireup="false" MasterPageFile="~/default.master"

CodeBehind="mainmenu.aspx.vb" Inherits="RemoteLab.mainmenu"

title="Main Menu" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphmain" Runat="Server">

<table class="tblMain">

<tr>

<td>

<div id="idAdminSection" runat="server">

<asp:Table ID="Table1" runat="server"

CssClass="tblCenteredWide">

<asp:TableHeaderRow>

<asp:TableHeaderCell ColumnSpan="3">

Administratation</asp:TableHeaderCell>

</asp:TableHeaderRow>

<asp:TableRow>

<asp:TableCell>

Add\Edit Subjects</asp:TableCell>

<asp:TableCell></asp:TableCell>

<asp:TableCell>

Add\Edit Groups</asp:TableCell>

</asp:TableRow>

<asp:TableRow>

<asp:TableCell>Add\Edit Users to Groups</asp:TableCell>

<asp:TableCell>

C.7 Mainmenu.ASPX 92

Add\Edit Users</asp:TableCell>

<asp:TableCell>Add\Edit Users to Subjects

</asp:TableCell>

</asp:TableRow>

<asp:TableRow>

<asp:TableCell>Add\Edit Experiment Switches

</asp:TableCell>

<asp:TableCell>Add\Edit Experiments

</asp:TableCell>

<asp:TableCell>Add\Edit Experiment Periods

</asp:TableCell>

</asp:TableRow>

</asp:Table>

</div>

</td>

</tr>

<tr>

<td>

<div id="idAccountSettings" runat="server">

<asp:Table ID="Table2" runat="server" Width="100%"

CssClass="tblCenteredWide">

<asp:TableHeaderRow>

<asp:TableHeaderCell>Account Settings

</asp:TableHeaderCell>

</asp:TableHeaderRow>

<asp:TableRow>

<asp:TableCell>

Change Password</asp:TableCell>

</asp:TableRow>

</asp:Table>

</div>

</td>

</tr>

C.7 Mainmenu.ASPX 93

<tr>

<td>

<div id="idCurrentExperiments" runat="server">

<asp:Table ID="Table3" runat="server" Width="100%"

CssClass="tblCenteredWide">

<asp:TableHeaderRow>

<asp:TableHeaderCell>Current Experiments

</asp:TableHeaderCell>

</asp:TableHeaderRow>

</asp:Table>

</div>

</td>

</tr>

<tr>

<td>

<div id="idExperimentInfo" runat="server">

<asp:Table ID="Table4" runat="server" Width="100%"

CssClass="tblCenteredWide">

<asp:TableHeaderRow>

<asp:TableHeaderCell>Experiment Information

</asp:TableHeaderCell>

</asp:TableHeaderRow>

</asp:Table>

</div>

</td>

</tr>

</table>

</asp:Content>

C.8 Mainmenu.ASPX.VB 94

C.8 Mainmenu.ASPX.VB

Public Partial Class mainmenu

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs) Handles Me.Load

If Roles.IsUserInRole(HttpContext.Current.User.Identity.Name,

"Admins") = True Then

idAdminSection.Visible = True

idAccountSettings.Visible = True

idCurrentExperiments.Visible = True

idExperimentInfo.visible = True

Else

idAdminSection.Visible = False

idAccountSettings.Visible = True

idCurrentExperiments.Visible = True

idExperimentInfo.Visible = True

End If

End Sub

End Class

C.9 Changepassword.ASPX 95

C.9 Changepassword.ASPX

<%@ Page Language="vb" AutoEventWireup="false" MasterPageFile="~/default.Master"

CodeBehind="changepassword.aspx.vb" Inherits="RemoteLab.changepassword"

title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphMain" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<asp:ChangePassword ID="ChangePassword1" runat="server"

BackColor="#F7F6F3" BorderColor="#E6E2D8"

BorderPadding="4" BorderStyle="Solid" BorderWidth="1px"

Font-Names="Verdana" Font-Size="0.8em"

CancelDestinationPageUrl="/student/mainmenu.aspx">

<CancelButtonStyle BackColor="#FFFBFF"

BorderColor="#CCCCCC" BorderStyle="Solid"

BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em" ForeColor="#284775" />

<InstructionTextStyle Font-Italic="True" ForeColor="Black" />

<PasswordHintStyle Font-Italic="True" ForeColor="#888888" />

<ChangePasswordButtonStyle BackColor="#FFFBFF"

BorderColor="#CCCCCC" BorderStyle="Solid"

BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em" ForeColor="#284775" />

<ContinueButtonStyle BackColor="#FFFBFF"

BorderColor="#CCCCCC" BorderStyle="Solid"

BorderWidth="1px" Font-Names="Verdana"

Font-Size="0.8em" ForeColor="#284775" />

<TitleTextStyle BackColor="#5D7B9D"

Font-Bold="True" Font-Size="0.9em" ForeColor="White" />

<TextBoxStyle Font-Size="0.8em" />

</asp:ChangePassword>

C.10 Changepassword.ASPX.VB 96

</center>

</ContentTemplate>

</asp:UpdatePanel>

</asp:Content>

C.10 Changepassword.ASPX.VB

Public Partial Class changepassword

Inherits System.Web.UI.Page

End Class

C.11 Editgroup.ASPX

<%@ Page Language="vb" AutoEventWireup="false" MasterPageFile="~/default.master"

CodeBehind="editgroups.aspx.vb" Inherits="RemoteLab.editgroups"

title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphmain" Runat="Server">

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<h2>Groups</h2>

<table id="tblAddInfo" runat="server" class="tblAddNew">

<tr>

<th>Group Name:</th>

<td></td>

</tr>

<tr>

<td><asp:TextBox ID="txtAddGroup" Runat="server" />

<asp:RequiredFieldValidator

C.11 Editgroup.ASPX 97

Runat="server"

ID="Requiredfieldvalidator1"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddGroup"

ErrorMessage="Group Name."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator1"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddGroup"

ValidationExpression="[\w\s \-]{1,20}"

ErrorMessage="Group Name."

>*</asp:RegularExpressionValidator>

</td>

<td><asp:LinkButton ID="IDAdd" runat="server" Text="Add"

OnClick="IDAdd_Click" /></td>

</tr>

</table>

<asp:ValidationSummary ID="ValidationSummary1"

DisplayMode="SingleParagraph" ShowSummary="True"

ValidationGroup="Add" Runat="server" HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:DataGrid ID="dgdGroup" runat="server"

HorizontalAlign="Center" CssClass="DGNormal"

AutoGenerateColumns="False" DataKeyField="gid"

C.11 Editgroup.ASPX 98

OnEditCommand="dgdGroup_EditCommand"

OnUpdateCommand="dgdGroup_UpdateCommand"

OnCancelCommand="dgdGroup_CancelCommand"

OnItemCommand="dgdGroup_ItemCommand">

<Columns>

<asp:TemplateColumn HeaderStyle-Width="30"

HeaderText="Group ID:" HeaderStyle-CssClass=

"DGHNormal" Visible="false">

<ItemTemplate>

<asp:Literal ID="litEditGroupID" Text=

’<%#DataBinder.Eval(Container.DataItem,

"gid")%>’ Runat="server" />

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="Group Name:" HeaderStyle-CssClass=

"DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditGroupName" Text=

’<%#DataBinder.Eval(Container.DataItem,

"gname")%>’ Runat="server"/>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox ID="txtEditGroup" Text=

’<%#DataBinder.Eval(Container.DataItem,

"gname")%>’ Runat="server"/>

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator1"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Edit"

C.11 Editgroup.ASPX 99

controlToValidate="txtEditGroup"

ErrorMessage="Group Name."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator1"

SetFocusOnError = "true"

EnableClientScript="False"

Display="Dynamic"

ValidationGroup="Edit"

controlToValidate="txtEditGroup"

ValidationExpression="[\w\s \-]{1,20}"

ErrorMessage="Group Name."

>*</asp:RegularExpressionValidator>

</EditItemTemplate>

</asp:TemplateColumn>

<asp:EditCommandColumn EditText="Edit" UpdateText=

"Update" CancelText="Cancel" />

<asp:ButtonColumn CommandName="Delete" Text="Delete" />

</Columns>

</asp:DataGrid>

<asp:ValidationSummary ID="ValidationSummary2" DisplayMode=

"SingleParagraph" ShowSummary="True" ValidationGroup="Edit"

Runat="server" HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:Label ID="lblDBErrors" runat="server"

CssClass="DBErrors"/>

</center>

</ContentTemplate>

</asp:UpdatePanel>

</asp:Content>

C.12 Editgroup.ASPX.VB 100

C.12 Editgroup.ASPX.VB

Imports RemoteLab.MySQLConnection

Partial Public Class editgroups

Inherits System.Web.UI.Page

Protected Overrides Sub OnInit(ByVal e As System.EventArgs)

If (Not IsPostBack) Then

BindDataGrid()

End If

End Sub

Protected Sub IDAdd_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs)

’ Clear Errors

ClearDBErrors()

Page.Validate("Add")

If Page.IsValid Then

Try

Dim GroupQuery As New MySQLQuery(QueryNums.InsertGroup, "",

txtAddGroup.Text.Trim)

BindDataGrid()

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

End If

End Sub

Sub dgdGroup_EditCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

tblAddInfo.Visible = False

ClearDBErrors()

dgdGroup.EditItemIndex = e.Item.ItemIndex

BindDataGrid()

End Sub

Sub dgdGroup_UpdateCommand(ByVal sender As Object,

C.12 Editgroup.ASPX.VB 101

ByVal e As DataGridCommandEventArgs)

Dim litGroupID As Literal = e.Item.FindControl("litEditGroupID")

Dim txtGroupName As TextBox = e.Item.FindControl("txtEditGroup")

ClearDBErrors()

Page.Validate("Edit")

If Page.IsValid Then

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.AppendGroup,

"", txtGroupName.Text.Trim, litGroupID.Text.Trim)

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

tblAddInfo.Visible = True

dgdGroup.EditItemIndex = -1

BindDataGrid()

End If

End Sub

Sub dgdGroup_ItemCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

Select Case e.CommandName

Case "Delete"

Dim litGroupID As Literal = e.Item.FindControl("litEditGroupID")

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.DeleteGroup, "",

litGroupID.Text.Trim)

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

BindDataGrid()

If dgdGroup.Items.Count < 1 Then

CancelAction()

End If

Case Else

C.12 Editgroup.ASPX.VB 102

End Select

End Sub

Sub dgdGroup_CancelCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

CancelAction()

End Sub

Private Sub BindDataGrid()

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.SelectGroups,

"ORDER BY gname")

dgdGroup.DataSource = GroupsQuery.Reader

dgdGroup.DataBind()

Catch ex As Exception

End Try

End Sub

Private Sub CancelAction()

tblAddInfo.Visible = True

dgdGroup.EditItemIndex = -1

BindDataGrid()

End Sub

Private Sub ClearDBErrors()

lblDBErrors.Text = ""

End Sub

Private Sub ShowDBErrors(ByVal ex As MySQLException)

lblDBErrors.Text = ex.message

End Sub

End Class

C.13 Editsubjects.ASPX 103

C.13 Editsubjects.ASPX

<%@ Page Language="vb" AutoEventWireup="false" MasterPageFile="~/default.Master"

CodeBehind="editsubjects.aspx.vb" Inherits="RemoteLab.editsubjects"

title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphMain" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<h2>Subjects</h2>

<table id="tblAddInfo" runat="server" class="tblAddNew">

<tr>

<th>Code:</th>

<th>Name:</th>

<td></td>

</tr>

<tr>

<td>

<asp:TextBox ID="txtAddSubjectCode" Runat="server" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator1"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddSubjectCode"

ErrorMessage="Code."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator1"

C.13 Editsubjects.ASPX 104

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddSubjectCode"

ValidationExpression="[\w\s]{1,10}"

ErrorMessage="Code."

>*</asp:RegularExpressionValidator>

</td>

<td>

<asp:TextBox ID="txtAddSubjectName" Runat="server" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator2"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddSubjectName"

ErrorMessage="Name."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator2"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddSubjectName"

ValidationExpression="[\w\s]{1,255}"

ErrorMessage="Name."

>*</asp:RegularExpressionValidator>

</td>

C.13 Editsubjects.ASPX 105

<td><asp:LinkButton ID="IDAdd" runat="server" Text="Add"

OnClick="IDAdd_Click" /></td>

</tr>

</table>

<asp:ValidationSummary ID="ValidationSummary1"

DisplayMode="SingleParagraph" ShowSummary="True"

ValidationGroup="Add" Runat="server" HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:DataGrid ID="dgdSubject" runat="server"

HorizontalAlign="Center" CssClass="DGNormal"

AutoGenerateColumns="False" DataKeyField="sid"

OnEditCommand="dgdSubject_EditCommand"

OnUpdateCommand="dgdSubject_UpdateCommand"

OnCancelCommand="dgdSubject_CancelCommand"

OnItemCommand="dgdSubject_ItemCommand">

<Columns>

<asp:TemplateColumn HeaderStyle-Width="30"

HeaderText="Code:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Literal ID="litEditSubjectCode" Text=

’<%#DataBinder.Eval(Container.DataItem, "sid")%>’

Runat="server" />

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="Name:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditSubjectName"

Text=’<%#DataBinder.Eval(Container.DataItem,

"sname")%>’ Runat="server"/>

</ItemTemplate>

<EditItemTemplate>

C.13 Editsubjects.ASPX 106

<asp:TextBox ID="txtEditSubjectName" Text=

’<%#DataBinder.Eval(Container.DataItem,

"sname")%>’ Runat="server"/>

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator4"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Edit"

controlToValidate="txtEditSubjectName"

ErrorMessage="Name."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator4"

SetFocusOnError = "true"

EnableClientScript="False"

Display="Dynamic"

ValidationGroup="Edit"

controlToValidate="txtEditSubjectName"

ValidationExpression="[\w\s]{1,255}"

ErrorMessage="Name."

>*</asp:RegularExpressionValidator>

</EditItemTemplate>

</asp:TemplateColumn>

<asp:EditCommandColumn EditText="Edit" UpdateText="Update"

CancelText="Cancel" />

<asp:ButtonColumn CommandName="Delete" Text="Delete" />

</Columns>

</asp:DataGrid>

<asp:ValidationSummary ID="ValidationSummary2"

DisplayMode="SingleParagraph" ShowSummary="True"

C.14 Editsubjects.ASPX.VB 107

ValidationGroup="Edit" Runat="server" HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:Label ID="lblDBErrors" runat="server"

CssClass="DBErrors"/>

</center>

</ContentTemplate>

</asp:UpdatePanel>

</asp:Content>

C.14 Editsubjects.ASPX.VB

Imports RemoteLab.MySQLConnection

Partial Public Class editsubjects

Inherits System.Web.UI.Page

Protected Overrides Sub OnInit(ByVal e As System.EventArgs)

If (Not IsPostBack) Then

BindDataGrid()

End If

End Sub

Protected Sub IDAdd_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs)

’ Clear Errors

ClearDBErrors()

Page.Validate("Add")

If Page.IsValid Then

Try

Dim GroupQuery As New MySQLQuery(QueryNums.InsertSubject, "",

txtAddSubjectCode.Text.Trim, txtAddSubjectName.Text.Trim)

BindDataGrid()

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

C.14 Editsubjects.ASPX.VB 108

End If

End Sub

Sub dgdSubject_EditCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

tblAddInfo.Visible = False

ClearDBErrors()

dgdSubject.EditItemIndex = e.Item.ItemIndex

BindDataGrid()

End Sub

Sub dgdSubject_UpdateCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

Dim litSubjectCode As Literal = e.Item.FindControl("litEditSubjectCode")

Dim txtSubjectName As TextBox = e.Item.FindControl("txtEditSubjectName")

ClearDBErrors()

Page.Validate("Edit")

If Page.IsValid Then

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.AppendSubject, "",

txtSubjectName.Text.Trim, litSubjectCode.Text.Trim)

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

tblAddInfo.Visible = True

dgdSubject.EditItemIndex = -1

BindDataGrid()

End If

End Sub

Sub dgdSubject_ItemCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

Select Case e.CommandName

Case "Delete"

Dim litSubjectCode As Literal =

e.Item.FindControl ("litEditSubjectCode")

C.14 Editsubjects.ASPX.VB 109

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.DeleteSubject,

"", litSubjectCode.Text.Trim)

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

BindDataGrid()

If dgdSubject.Items.Count < 1 Then

CancelAction()

End If

Case Else

End Select

End Sub

Sub dgdSubject_CancelCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

CancelAction()

End Sub

Private Sub BindDataGrid()

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.SelectSubjects,

"ORDER BY sid")

dgdSubject.DataSource = GroupsQuery.Reader

dgdSubject.DataBind()

Catch ex As Exception

End Try

End Sub

Private Sub CancelAction()

tblAddInfo.Visible = True

dgdSubject.EditItemIndex = -1

BindDataGrid()

End Sub

Private Sub ClearDBErrors()

lblDBErrors.Text = ""

C.15 Editusers.ASPX 110

End Sub

Private Sub ShowDBErrors(ByVal ex As MySQLException)

lblDBErrors.Text = ex.message

End Sub

End Class

C.15 Editusers.ASPX

<%@ Page Language="vb" AutoEventWireup="false" MasterPageFile=

"~/default.Master" CodeBehind="editusers.aspx.vb"

Inherits="RemoteLab.editusers" title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphMain"

runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<h2>Users</h2>

<table id="tblAddInfo" runat="server" class="tblAddNew">

<tr>

<th>User Name:</th>

<td><asp:TextBox ID="txtAddUserName" Runat="server" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator1"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddUserName"

ErrorMessage="User Name."

C.15 Editusers.ASPX 111

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator1"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddUserName"

ValidationExpression="[\w\s \-]{1,255}"

ErrorMessage="User Name."

>*</asp:RegularExpressionValidator>

</td>

<td></td>

</tr>

<tr>

<th>First Name:</th>

<td><asp:TextBox ID="txtAddFirstName" Runat="server" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator2"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddFirstName"

ErrorMessage="First Name."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator2"

EnableClientScript="False"

SetFocusOnError = "true"

C.15 Editusers.ASPX 112

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddFirstName"

ValidationExpression="[\w\s \-]{1,20}"

ErrorMessage="First Name."

>*</asp:RegularExpressionValidator>

</td>

<td></td>

</tr>

<tr>

<th>Last Name:</th>

<td><asp:TextBox ID="txtAddLastName" Runat="server" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator7"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddLastName"

ErrorMessage="Last Name."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator3"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddLastName"

ValidationExpression="[\w\s \-]{1,20}"

ErrorMessage="Last Name."

>*</asp:RegularExpressionValidator>

C.15 Editusers.ASPX 113

</td>

<td></td>

</tr>

<tr>

<th>Password:</th>

<td><asp:TextBox ID="txtAddPassword" Runat="server"

TextMode="Password" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator8"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddPassword"

ErrorMessage="Password."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator4"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddPassword"

ValidationExpression="[\w\s \-]{1,20}"

ErrorMessage="Password."

>*</asp:RegularExpressionValidator>

</td>

<td></td>

</tr>

<tr>

<th>Email:</th>

C.15 Editusers.ASPX 114

<td><asp:TextBox ID="txtAddEmail" Runat="server" />

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator9"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddEmail"

ErrorMessage="email."

>*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator

Runat="server"

ID="Regularexpressionvalidator5"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Add"

controlToValidate="txtAddEmail"

ValidationExpression=

"\w+([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"

ErrorMessage="Email."

>*</asp:RegularExpressionValidator>

</td>

<td></td>

</tr>

<tr>

<th>Role:</th>

<td>

<asp:RadioButtonList ID="rblRole" runat="server">

<asp:ListItem Selected="True">Student

</asp:ListItem>

<asp:ListItem>Administrator</asp:ListItem>

C.15 Editusers.ASPX 115

</asp:RadioButtonList>

</td>

<td> <asp:LinkButton ID="IDAdd" runat="server"

Text="Add" OnClick="IDAdd_Click" /></td>

</tr>

</table>

<asp:ValidationSummary ID="ValidationSummary1"

DisplayMode="SingleParagraph" ShowSummary="True"

ValidationGroup="Add" Runat="server" HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:DataGrid ID="dgdUsers" runat="server"

HorizontalAlign="Center" CssClass="DGNormal"

AutoGenerateColumns="False" DataKeyField="pkid"

OnEditCommand="dgdUsers_EditCommand"

OnUpdateCommand="dgdUsers_UpdateCommand"

OnCancelCommand="dgdUsers_CancelCommand">

<Columns>

<asp:TemplateColumn HeaderStyle-Width="30"

HeaderText="PKID:" HeaderStyle-CssClass="DGHNormal"

Visible="false">

<ItemTemplate>

<asp:Literal ID="litEditPKID" Text=

’<%#DataBinder.Eval(Container.DataItem,

"pkid")%>’ Runat="server" />

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="Username:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditUsername" Text=

’<%#DataBinder.Eval(Container.DataItem,

C.15 Editusers.ASPX 116

"username")%>’ Runat="server"/>

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="First Name:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditFirstname" Text=

’<%#GetFirstName(DataBinder.Eval

(Container.DataItem,"comment"))%>’

Runat="server"/>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox ID="txtEditFirstname" Text=

’<%#GetFirstName(DataBinder.Eval(Container.DataItem,

"comment"))%>’ Runat="server"/>

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator4"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Edit"

controlToValidate="txtEditFirstname"

ErrorMessage="First Name."

>*</asp:RequiredFieldValidator>

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="Last Name:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditLastname" Text=

’<%#GetLastName(DataBinder.Eval

(Container.DataItem, "comment"))%>’

C.15 Editusers.ASPX 117

Runat="server"/>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox ID="txtEditLastname" Text=

’<%#GetLastName(DataBinder.Eval

(Container.DataItem, "comment"))%>’

Runat="server"/>

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator5"

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Edit"

controlToValidate="txtEditLastname"

ErrorMessage="Last Name."

>*</asp:RequiredFieldValidator>

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="Email:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditEmail" Text=

’<%#DataBinder.Eval(Container.DataItem,

"email")%>’ Runat="server"/>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox ID="txtEditEmail" Text=

’<%#DataBinder.Eval(Container.DataItem,

"email")%>’ Runat="server"/>

<asp:RequiredFieldValidator

Runat="server"

ID="Requiredfieldvalidator6"

C.15 Editusers.ASPX 118

EnableClientScript="False"

SetFocusOnError = "true"

Display="Dynamic"

ValidationGroup="Edit"

controlToValidate="txtEditEmail"

ErrorMessage="Email."

>*</asp:RequiredFieldValidator>

</EditItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText="Group:"

HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<%#GetRoleName(DataBinder.Eval

(Container.DataItem, "username")) %>

</ItemTemplate>

</asp:TemplateColumn>

<asp:TemplateColumn HeaderText="Locked Out?:

" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:CheckBox ID="chkAddIsLockedOut" Checked=

’<%#DataBinder.Eval(Container.DataItem,

"IsLockedOut")%>’ runat="server" Enabled="false"/>

</ItemTemplate>

<EditItemTemplate>

<asp:CheckBox ID="chkEditIsLockedOut" Checked=

’<%#DataBinder.Eval(Container.DataItem,

"IsLockedOut")%>’ runat="server" />

</EditItemTemplate>

</asp:TemplateColumn>

<asp:EditCommandColumn EditText="Edit"

UpdateText="Update" CancelText="Cancel" />

</Columns>

</asp:DataGrid>

C.16 Editusers.ASPX.VB 119

<asp:ValidationSummary ID="ValidationSummary2"

DisplayMode="SingleParagraph" ShowSummary="True"

ValidationGroup="Edit" Runat="server"

HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:Label ID="lblDBErrors" runat="server"

CssClass="DBErrors"/>

</center>

</ContentTemplate>

</asp:UpdatePanel>

</asp:Content>

C.16 Editusers.ASPX.VB

Imports RemoteLab.MySQLConnection

Partial Public Class editusers

Inherits System.Web.UI.Page

Public Shared Function GetFirstName(ByVal comments) As String

Dim result() As String

Dim strcomments As String = comments

result = strcomments.Split(", ")

Try

Return result(1)

Catch ex As Exception

Return ""

End Try

End Function

Public Shared Function GetLastName(ByVal comments) As String

Dim result() As String

Dim strcomments As String = comments

result = strcomments.Split(", ")

Try

C.16 Editusers.ASPX.VB 120

Return result(0)

Catch ex As Exception

Return ""

End Try

End Function

Protected Overrides Sub OnInit(ByVal e As System.EventArgs)

If (Not IsPostBack) Then

BindDataGrid()

End If

End Sub

Sub dgdUsers_EditCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

ClearDBErrors()

dgdUsers.EditItemIndex = e.Item.ItemIndex

BindDataGrid()

End Sub

Sub dgdUsers_UpdateCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

Dim litPKID As Literal = e.Item.FindControl("litEditPKID")

Dim txtUserName As Label = e.Item.FindControl("lblEditUsername")

Dim txtFirstName As TextBox = e.Item.FindControl("txtEditFirstname")

Dim txtLastName As TextBox = e.Item.FindControl("txtEditLastname")

Dim txtEmail As TextBox = e.Item.FindControl("txtEditEmail")

Dim chkIsLockedOut As CheckBox = e.Item.FindControl("chkEditIsLockedOut")

ClearDBErrors()

Page.Validate("Edit")

If Page.IsValid Then

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.AppendUser, "",

txtUserName.Text.Trim, _

txtLastName.Text.Trim & ", " & txtFirstName.Text.Trim,

txtEmail.Text.Trim, chkIsLockedOut.Checked,

C.16 Editusers.ASPX.VB 121

litPKID.Text.Trim)

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

dgdUsers.EditItemIndex = -1

BindDataGrid()

End If

End Sub

Sub dgdUsers_CancelCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

CancelAction()

End Sub

Private Sub BindDataGrid()

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.SelectUsers,

"ORDER BY comment")

dgdUsers.DataSource = GroupsQuery.Reader

dgdUsers.DataBind()

Catch ex As Exception

End Try

End Sub

Private Sub CancelAction()

dgdUsers.EditItemIndex = -1

BindDataGrid()

End Sub

Private Sub ClearDBErrors()

lblDBErrors.Text = ""

End Sub

Private Sub ShowDBErrors(ByVal ex As MySQLException)

lblDBErrors.Text = ex.message

End Sub

Shared Function GetRoleName(ByVal Username) As String

Dim UserRoles As String() = Roles.GetRolesForUser(Username)

C.16 Editusers.ASPX.VB 122

Return UserRoles(0)

End Function

Shared Function IsAdmin(ByVal Username) As String

If GetRoleName(Username) = "Admins" Then

Return True

Else

Return False

End If

End Function

Shared Function IsStudent(ByVal Username) As String

If GetRoleName(Username) = "Students" Then

Return True

Else

Return False

End If

End Function

Protected Sub IDAdd_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs)

Dim user As MembershipUser

Dim status As MembershipCreateStatus

Membership.CreateUser(txtAddUserName.Text.Trim,

txtAddPassword.Text.Trim, txtAddEmail.Text.Trim,

"Student Number", txtAddUserName.Text.Trim,

True, status)

If status = MembershipCreateStatus.Success Then

user = Membership.GetUser(txtAddUserName.Text.Trim)

user.Comment = txtAddFirstName.Text.Trim & " " &

txtAddLastName.Text.Trim

If rblRole.SelectedItem.Text = "Administrator" Then

Roles.AddUserToRole(txtAddUserName.Text.Trim, "Admins")

Else

Roles.AddUserToRole(txtAddUserName.Text.Trim, "Students")

C.17 Edituserssubjects.ASPX 123

End If

Membership.UpdateUser(user)

txtAddUserName.Text = ""

txtAddEmail.Text = ""

txtAddFirstName.Text = ""

txtAddLastName.Text = ""

BindDataGrid()

Else

lblDBErrors.Text = status.ToString

End If

End Sub

End Class

C.17 Edituserssubjects.ASPX

<%@ Page Language="vb" AutoEventWireup="false"

MasterPageFile="~/default.Master" CodeBehind=

"editusersubjects.aspx.vb" Inherits=

"RemoteLab.editusersubjects" title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="cphMain" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<center>

<h2>User in Subjects</h2>

<asp:DropDownList ID="ddlUsers" runat="server"></asp:DropDownList>

<asp:DropDownList ID="ddlSubjects" runat="server">

</asp:DropDownList>

<asp:Label ID="lblUserName" runat="server" />

<asp:DataGrid ID="dgdUserInSubject" runat="server"

HorizontalAlign="Center" CssClass="DGNormal"

C.17 Edituserssubjects.ASPX 124

AutoGenerateColumns="False" DataKeyField="ususername"

OnItemCommand="dgdUserInSubject_ItemCommand">

<Columns>

<asp:TemplateColumn HeaderStyle-Width="100px"

HeaderText="Subjects:" HeaderStyle-CssClass="DGHNormal">

<ItemTemplate>

<asp:Label ID="lblEditUsername" Text=

’<%#DataBinder.Eval(Container.DataItem,

"ussid")%>’ Runat="server"/>

</ItemTemplate>

</asp:TemplateColumn>

<asp:ButtonColumn CommandName="Delete" Text="Delete" />

</Columns>

</asp:DataGrid>

<asp:ValidationSummary ID="ValidationSummary2"

DisplayMode="SingleParagraph" ShowSummary="True"

ValidationGroup="Edit" Runat="server"

HeaderText=

"You must enter a valid input in the following fields:"/>

<asp:Label ID="lblDBErrors" runat="server"

CssClass="DBErrors"/>

</center>

</ContentTemplate>

</asp:UpdatePanel>

</asp:Content>

C.18 Edituserssubjects.ASPX.VB 125

C.18 Edituserssubjects.ASPX.VB

Imports RemoteLab.MySQLConnection

Partial Public Class editusersubjects

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs) Handles Me.Load

End Sub

Protected Overrides Sub OnInit(ByVal e As System.EventArgs)

If (Not IsPostBack) Then

BindDataGrid()

End If

End Sub

Private Sub BindDataGrid()

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.SelectUsers,

"ORDER BY comment")

dgdUserInSubject.DataSource = GroupsQuery.Reader

dgdUserInSubject.DataBind()

Catch ex As Exception

End Try

End Sub

Private Sub ClearDBErrors()

lblDBErrors.Text = ""

End Sub

Private Sub ShowDBErrors(ByVal ex As MySQLException)

lblDBErrors.Text = ex.message

End Sub

Sub dgdGroup_ItemCommand(ByVal sender As Object,

ByVal e As DataGridCommandEventArgs)

C.18 Edituserssubjects.ASPX.VB 126

Select Case e.CommandName

Case "Delete"

Dim litGroupID As Literal = e.Item.FindControl("litEditGroupID")

Try

Dim GroupsQuery As New MySQLQuery(QueryNums.DeleteGroup, "",

litGroupID.Text.Trim)

Catch ex As MySQLException

ShowDBErrors(ex)

End Try

BindDataGrid()

Case Else

End Select

End Sub

End Class

C.19 Default.css 127

C.19 Default.css

/* Page widths set for the body */

body

{

background-color:Gray;

font-family:Arial;

margin-left:auto;

margin-right:auto;

vertical-align:top;

width:990px;

}

table.tblMain

{

width:100%;

border-style:none;

}

table.tblMain td

{

text-align:left;

vertical-align:top;

}

h2, h3

{

padding:0px 10px 5px 10px;

}

h1{

text-align:center;

}

C.19 Default.css 128

h2

{

text-decoration:underline;

}

h3

{

}

p, table {

padding:0px 20px 10px 20px;

}

.DBErrors

{

color:Red;

}

/* Default Setup for tables*/

table

{

border:outset thin InactiveBorder;

}

td, th

{

padding:3;

text-align:left;

}

/* The width for wide objects in the main place holder */

table.tblAddNewWide, .DGNormalWide, table.tblCenteredWide, table.tblWide

{

C.19 Default.css 129

width:100%;

}

table.tblAddNew th, table.tblAddNewWide th, table.tblWide th,

table.tblCenteredWide th

{

text-decoration:underline;

}

table.tblClear

{

border-style:none;

}

table.tblCenteredWide td

{

text-align:center;

}

/* Datagrid Settings */

.DGNormal, .DGNormalWide

{

background-color:Transparent;

font-size:small;

text-align:left;

font-weight:normal;

border:outset thin InactiveBorder;

}

.DGNormalWide{

width:95%

}

C.19 Default.css 130

.DGNormal th, .DGNormalWide th

{

}

.DGNormal td, .DGNormalWide td

{

border-style:none;

padding:0px 4px 5px 4px;

}

/* Heading Cells for the DataGrids */

.DGHNormal, .DGHListOnly, .DGFListOnly

{

font-weight:bolder;

text-decoration:underline;

width:160px;

}

.DGHListOnly

{

}

.Number

{

text-align:right;

width:50px;

}

C.20 Mysqlconnection.VB 131

C.20 Mysqlconnection.VB

Imports System.Data

Imports System.Data.Odbc

Namespace MySQLConnection

Public Enum QueryNums

SelectGroups = 1

InsertGroup = 2

AppendGroup = 3

DeleteGroup = 4

SelectSubjects = 5

InsertSubject = 6

AppendSubject = 7

DeleteSubject = 8

SelectUsers = 9

AppendUser = 10

End Enum

Public Class MySQLQuery

Private Shared ConnectionCount As Integer = 0

Private P_Command As OdbcCommand

Private P_Connection As New OdbcConnection

Private P_DataReader As OdbcDataReader

Private P_DataSet As DataSet

Private Shared P_ConnectionString As String =

"Driver={MySQL ODBC 3.51 Driver};Server=localhost;

Database=rls;uid=InetUser;pwd=RLSUser;option=3"

Private Function GetQueryStr(ByVal QRYNum As Integer)

Select Case QRYNum

Case 1

Return "SELECT * " & _

"FROM tblgroups"

Case 2

C.20 Mysqlconnection.VB 132

P_Command.Parameters.Add("@gname", OdbcType.VarChar, 255)

Return "INSERT INTO tblgroups (gname) " & _

"VALUES (?)"

Case 3

P_Command.Parameters.Add("@gname", OdbcType.VarChar, 255)

P_Command.Parameters.Add("@gid", OdbcType.Int)

Return "UPDATE tblgroups " & _

"SET gname = ? " & _

"WHERE gid = ?"

Case 4

P_Command.Parameters.Add("@gname", OdbcType.VarChar, 255)

Return "DELETE " & _

"FROM tblgroups " & _

"WHERE gid = ?"

Case 5

Return "SELECT * " & _

"FROM tblsubjects"

Case 6

P_Command.Parameters.Add("@sid", OdbcType.VarChar, 255)

P_Command.Parameters.Add("@sname", OdbcType.VarChar, 255)

Return "INSERT INTO tblsubjects (sid, sname) " & _

"VALUES (?, ?)"

Case 7

P_Command.Parameters.Add("@sname", OdbcType.VarChar, 255)

P_Command.Parameters.Add("@sid", OdbcType.VarChar, 25)

Return "UPDATE tblsubjects " & _

"SET sname = ? " & _

"WHERE sid = ?"

Case 8

P_Command.Parameters.Add("@sid", OdbcType.VarChar, 255)

Return "DELETE " & _

"FROM tblsubjects " & _

"WHERE sid = ?"

C.20 Mysqlconnection.VB 133

Case 9

Return "SELECT PKID, Username, Comment, email, IsLockedOut "

"FROM mysql_membership"

Case 10

P_Command.Parameters.Add("@username", OdbcType.VarChar, 255)

P_Command.Parameters.Add("@comment", OdbcType.VarChar, 255)

P_Command.Parameters.Add("@email", OdbcType.VarChar, 255)

P_Command.Parameters.Add("@IsLockedOut", OdbcType.VarChar)

P_Command.Parameters.Add("@pkid", OdbcType.VarChar, 255)

Return "UPDATE mysql_membership " & _

"SET username = ?, comment = ?, email= ?,

IsLockedOut = ? WHERE pkid = ?"

Case Else

Return ""

End Select

End Function

Private Sub New(ByVal ExistingQuery As MySQLQuery)

Me.P_Command = ExistingQuery.P_Command

Me.P_Connection = ExistingQuery.P_Connection

Me.P_DataReader = ExistingQuery.P_DataReader

Me.P_DataSet = ExistingQuery.P_DataSet

End Sub

Public Sub New(ByVal Query As MySQLConnection.QueryNums,

ByVal PostQueryString As String, ByVal ParamArray Parameters()

As String)

Dim x As Integer

’ Trys to connect to the database and run the query

Try

P_Connection = New OdbcConnection(P_ConnectionString)

P_Connection.Open()

ConnectionCount = ConnectionCount + 1

’ Connect to the database and run the query

P_Command = New OdbcCommand

C.20 Mysqlconnection.VB 134

’ Adds the post query to the end of the current query

P_Command.CommandText = GetQueryStr(Query) & " " & PostQueryString

’ If the query string was not found throw an error

If P_Command.CommandText.Length < 1 Then

Throw New MySQLException("Could not locate query string")

End If

’ Adds the connection to the command

P_Command.Connection = P_Connection

’ If the input Parameters and the required parameters are the same

If Me.P_Command.Parameters.Count = Parameters.Length Then

’ While there are more parameters in the parameter array add

value of the parameter to the command

For x = 0 To (Parameters.Length - 1)

If Parameters(x) = "" Then

P_Command.Parameters(x).Value = DBNull.Value

ElseIf Parameters(x) = "True" Then

P_Command.Parameters(x).Value = 1

ElseIf Parameters(x) = "False" Then

P_Command.Parameters(x).Value = 0

Else

P_Command.Parameters(x).Value = Parameters(x)

End If

Next

Else

Throw New MySQLException

("Incorrect Number of Parameters Given")

End If

’ Saves the information into a reader

P_DataReader = P_Command.ExecuteReader

(CommandBehavior.CloseConnection)

’ Converts the reader to a dataset

’P_DataSet = convertDataReaderToDataSet(New MySQLQuery(Me).Reader)

Catch ex As Odbc.OdbcException

C.20 Mysqlconnection.VB 135

Throw New MySQLException(GetFriendlyErrorMessage(ex))

End Try

End Sub

Public ReadOnly Property Reader() As OdbcDataReader

Get

Return New MySQLQuery(Me).P_DataReader

End Get

End Property

’Public ReadOnly Property DataSet() As DataSet

’ Get

’ Return New MySQLQuery(Me).P_DataSet

’ End Get

’End Property

Protected Overrides Sub finalize()

Try

P_Command.Dispose()

P_DataReader.Close()

P_DataSet.Clear()

P_DataSet.Dispose()

Catch ex As Exception

Finally

Try

P_Connection.Close()

P_Connection.Dispose()

ConnectionCount = ConnectionCount - 1

Catch ex As Exception

Throw New MySQLException("Cannot disconnect from database")

Finally

MyBase.Finalize()

End Try

End Try

End Sub

Private Function GetFriendlyErrorMessage

C.20 Mysqlconnection.VB 136

(ByVal ex As OdbcException) As String

If ex.Message.Contains("Data too long for column") Then

Return "One or more data fields is of the incorrect size."

ElseIf ex.Message.Contains

("Cannot delete or update a parent row") Then

Return "This record cannot be deleted as it is being used

by other records."

ElseIf ex.Message.Contains("Duplicate") Then

Return "This record is already in database."

ElseIf ex.Message.Contains("Data source name not found") Then

Return "Could not connect to the database"

ElseIf ex.Message.Contains("error in your SQL syntax") Then

Return "Syntax Error"

Else

Return "An undefined error has occured"

End If

End Function

Private Function convertDataReaderToDataSet

(ByVal reader As OdbcDataReader) As DataSet

Dim dataSet As DataSet = New DataSet()

Dim schemaTable As DataTable = reader.GetSchemaTable()

Dim dataTable As DataTable = New DataTable()

Dim intCounter As Integer

Try

For intCounter = 0 To schemaTable.Rows.Count - 1

Dim dataRow As DataRow = schemaTable.Rows(intCounter)

Dim columnName As String = CType(dataRow("ColumnName"),

String)

Dim column As DataColumn = New DataColumn(columnName,

CType(dataRow("DataType"), Type))

dataTable.Columns.Add(column)

Next

C.20 Mysqlconnection.VB 137

dataSet.Tables.Add(dataTable)

While reader.Read()

Dim dataRow As DataRow = dataTable.NewRow()

For intCounter = 0 To reader.FieldCount - 1

dataRow(intCounter) = reader.GetValue(intCounter)

Next

dataTable.Rows.Add(dataRow)

End While

Return dataSet

Catch ex As Exception

Return Nothing

End Try

End Function

End Class

Public Class MySQLException

Inherits System.Exception

Private P_Message As String

Friend Sub New(ByVal Message As String)

P_Message = Message

End Sub

Public Overrides ReadOnly Property message() As String

Get

Return P_Message

End Get

End Property

End Class

End Namespace

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Glossary
	Chapter Introduction
	What is a Remote Laboratory?
	Objectives
	Implementation
	Consequential Effects
	Methodology
	Risk Assessment
	During execution of the project
	Beyond the completion of the project

	Resources Required
	Background Research
	Practical Courses
	Proof of Completion

	Chapter Interface and Host Program Configuration Alternatives
	Interface Program Connections
	Web Browser
	Remote Desktop Connection Based
	VPN Based
	HTTP Tunneling
	Conclusion

	Interface Program
	Website
	Client Program Based
	Conclusion

	Chapter Hardware Requirement Alternatives
	Laboratory Equipment Interface Method
	Analog Switches
	Robotic Arm
	Digital Switch
	Conclusion

	Computer Interface Method
	USB
	FireWire/IEEE-1394
	Serial Port
	Parallel Port
	Conclusion

	Switches
	USB Relay Alternatives
	Conclusion

	User Feedback
	Video
	Still Images
	Audio
	Software physical event
	Software event
	Conclusion

	Chapter Software Requirement Alternatives
	Information Storage
	Domain
	Existing database
	Microsoft Access database
	MSDE database
	MySQL
	SQL Server database
	Oracle database
	Textfile
	Written into the code of the program
	Conclusion

	Booking System
	Single User System
	User, Viewer System
	Multi-User System
	Conclusion

	Programming Languages
	ASP
	ASP.Net
	C
	ColdFusion
	Java
	PHP
	Visual Basic
	Conclusion

	Chapter Required System Specification
	Assumptions
	Software Operation
	Interface Program Operation
	Host Program Operation
	Database Structure
	Membership and Role Provider Tables
	Experiment Table
	User Grouping
	Subject Grouping
	Experiment Period Table
	Instructions Table
	Switches Table
	Booking Table
	Relationship

	Chapter Conclusion
	Limitations
	Future Work

	References
	Appendix Project Specification
	Appendix MySQL Database Code
	Appendix Interface Program Code
	Index.ASPX
	Index.ASPX.VB
	Login.ASPX
	Login.ASPX.VB
	Passwordrecovery.ASPX
	Passwordrecovery.ASPX.VB
	Mainmenu.ASPX
	Mainmenu.ASPX.VB
	Changepassword.ASPX
	Changepassword.ASPX.VB
	Editgroup.ASPX
	Editgroup.ASPX.VB
	Editsubjects.ASPX
	Editsubjects.ASPX.VB
	Editusers.ASPX
	Editusers.ASPX.VB
	Edituserssubjects.ASPX
	Edituserssubjects.ASPX.VB
	Default.css
	Mysqlconnection.VB

