
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Eye of the Swarm: Real-Time Analysis of Factors Affecting

Dynamic UAV Pursuit of a Moving Target

A dissertation submitted by

C. Arnold

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Electrical & Electronic Engineering

Submitted: October, 2020

Abstract

The increased use of unmanned aerial vehicles (UAVs) both of a commercial or consumer

level has presented a problem of protecting nation- or company-critical sites from intelli-

gence gathering, surveillance, or reconnaissance activities. Recent attacks and intrusions

of restricted airspace by UAVs raise questions about how to tackle the problem of tracking

autonomous malicious UAVs of increasing abilities. The use of consumer or commercial

grade UAVs may provide an answer to the problem through implementing swarm forma-

tions and tactics to pursue a malicious UAV to its landing point, and thereby its operator.

Swarms of UAVs can provide redundancy and group agility greater than an individual

drone, as well as a larger tracking radius than fixed ground-based radars or expensive

military-grade UAVs. The use of UAV swarms consisting of differing sizes and formations

were examined to determine their effectiveness in pursuing a malicious UAV breaching

restricted airspace. Based within a simulated environment, the modelling involved an

analysis of the distance between the swarm and the malicious UAVs landing site at the

end of the simulation. The effects of increasing the swarm size, the formation that the

collective swarm takes, and the fight characteristics (speed, acceleration, flight path, etc.)

of the malicious UAV were varied to test the relative strengths and weaknesses of the a

swarm compared to the same number of UAV pursuers working independently.

The results show the use of collaborative formations decrease the final distance from the

target, especially in swarms containing five or more UAVs. The cone formation proved to

be the overall better choice of the two collaborative formations developed and tested. This

formation provided the greatest resilience in adapting to increases in malicious UAV flight

abilities, though in several cases the less processor-intensive surround method performed

sufficiently better than the baseline to be considered useful in certain applications. The

results from this project were utilised in a submitted, and accepted, peer-reviewed paper

presented at the IEEE UEMCON 2020 conference.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

C. Arnold

Acknowledgments

My partner, Jules, had the unenviable task of being the sounding board for untold hours

of technical issues and half-baked ideas throughout this project, knowing she could not

help.

My supervisor, Dr Jason Brown, managed to keep me from getting stuck in the technical

weeds of this project every week for over a year.

Finishing this project would not be possible without them. Thank you both.

C. Arnold

Contents

Abstract i

Acknowledgments iv

List of Figures xi

List of Tables xiv

Acronyms & Nomenclature xiv

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Problem Specification & Idea development 2

1.3 Aim and objectives . 3

1.4 Limitations . 4

1.5 Articles Published . 4

1.6 Dissertation Overview . 5

Chapter 2 Literature Review 6

CONTENTS vii

2.1 Knowledge gap . 6

2.2 Target Encirclement . 7

2.3 Coordination & Control . 8

2.3.1 Detection and pursuit . 8

2.3.2 Path finding . 8

2.3.3 Inter-UAV (swarm) coordination 9

2.3.4 Tactical coordination . 11

2.4 Communication methods . 12

Chapter 3 Simulation Design 14

3.1 Chapter Overview . 14

3.2 Simulation Environment . 14

3.2.1 OMNeT++ . 14

3.2.2 INET Framework . 15

3.2.3 Network Descriptor Files . 15

3.2.4 Initialisation Files . 16

3.2.5 Nodes Representing UAVs . 17

3.2.6 Batch Processing . 17

3.2.7 Inter-UAV Communication . 18

3.3 Simulation Implementation . 19

3.3.1 DroneMobility module . 20

3.3.2 MaliciousDroneMobility module 24

CONTENTS viii

3.3.3 DroneNetwork.ned . 25

3.3.4 omnetpp.ini . 25

3.4 Physical Constraints . 27

3.4.1 Speed & Acceleration . 27

3.4.2 Turn Radius . 27

3.5 Project-Specific Algorithms . 30

3.5.1 Swarm & Baseline Formations . 30

3.5.2 Swarm Target Efficiency . 34

3.6 Unimplemented Algorithms . 35

3.6.1 Path finding & Orientation . 36

3.6.2 Swarm Enrolment & Malicious Path Prediction 37

3.6.3 Proportional Navigation . 39

3.6.4 Multiple Malicious UAVs . 39

Chapter 4 Methodology 40

4.1 Chapter Overview . 40

4.2 Methodological Approach . 40

4.2.1 Assumptions & Rationale . 41

4.2.2 Simulated UAV Characteristics . 44

4.3 Data Collection . 46

4.4 Methods Of Analysis . 47

4.5 Methodology Justification . 51

CONTENTS ix

Chapter 5 Results & Analysis 52

5.1 Research Variables . 52

5.2 Individual Path Comparison Results . 52

5.2.1 Level 1 - 21m/s 4m/s . 53

5.2.2 Level 2 - 23m/s 4.5m/s . 54

5.2.3 Level 3 - 26m/s 5m/s . 56

5.3 Amalgamated Results . 57

5.3.1 Statistical Analysis . 57

5.3.2 Formation Comparison . 59

5.3.3 Target Optimisation Effects . 62

5.3.4 Interesting Observations . 64

Chapter 6 Conclusions and Further Work 65

6.1 Conclusions . 65

6.2 Further Work . 67

References 70

Appendix A Project Specification 74

Appendix B Project Timeline 76

Appendix C Risk Assessment 79

Appendix D DroneModule Code 80

CONTENTS x

D.1 DroneMobility.h . 80

D.2 DroneMobility.cc . 84

D.3 DroneMobility.ned . 107

Appendix E MaliciousMobility Code 109

E.1 MaliciousDroneMobility.h . 109

E.2 MaliciousDroneMobility.cc . 111

E.3 MaliciousDroneMobility.ned . 117

Appendix F DroneNetwork.ned Code 118

Appendix G omnetpp.ini Code 120

List of Figures

2.1 Centralised topology. 11

2.2 Decentralised topology. 12

2.3 Routed mesh network. 13

2.4 Flooded mesh network. 13

3.1 Initialisation configuration code. 16

3.2 Summary of batch loops. 17

3.3 Example of simulation through GUI. 19

3.4 DroneMobility function flow. 21

3.5 Initialisation file configuration layout. 26

3.6 Derived configuration classes. 26

3.7 Trigonometric calculation of a discrete vector representing a turning arc. . 28

3.8 Visual representation for derivation of ~SP and θmax. 29

3.9 Follow-type formation. 30

3.10 Surround profile of a 2 UAV swarm. 31

3.11 Surround profile of a 3 UAV swarm. 32

LIST OF FIGURES xii

3.12 Surround profile of a 4 UAV swarm. 32

3.13 Cone formation example. 34

3.14 swarmEfficiency function flow diagram. 35

3.15 Proposed method of efficient path finding. 37

3.16 Example 1 of predicted malicious UAV path. 38

3.17 Example 2 of predicted malicious UAV path. 38

4.1 Malicious UAV flight paths A-C. 46

4.2 Layout of independent variables cross-analysed. 48

4.3 Example of dependent variable measurement. 49

4.4 Flow of results graphed for visual analysis. 50

5.1 Comparison of individual formation results for Level 1. 53

5.2 Comparison of individual formation results for Level 2. 55

5.3 Comparison of individual formation results for Level 3. 56

5.4 Level 1 formation result comparison. 60

5.5 Level 2 formation result comparison. 61

5.6 Level 3 formation result comparison. 62

5.7 Level 1 surround efficiency results. 63

5.8 Level 2 surround efficiency results. 63

5.9 Level 3 surround efficiency results. 64

6.1 Modified surround formation. 68

LIST OF FIGURES xiii

6.2 Mini-swarm formation. 68

B.1 Semester 1 timeline. 76

B.2 Semester 2 timeline. 77

B.3 Timeline phase descriptions. 78

List of Tables

3.1 Static communications array index data information. 18

3.2 Separation metrics for the surround formation. 33

4.1 Comparison of consumer-grade UAVs (DJI 2020, Autel 2020, Parrot 2020) 44

4.2 Velocity and acceleration details for each Level. 45

4.3 Time for malicious UAV to complete each path type. 47

5.1 Level 1 results for Paths A, B, and C, and the average for each formation

type. 54

5.2 Level 2 results for Paths A, B, and C, and the average for each formation

type. 55

5.3 Level 3 results for Paths A, B, and C, and the average for each formation

type. 57

5.4 Mean and standard deviation statistics. 59

5.5 Mean and standard deviation statistics for anomaly-cancelled data. . . . 59

Acronyms & Nomenclature

UAV Unmanned Aerial Vehicle

UCAV Unmanned Combat Aerial Vehicle

SUAV Small Unmanned Aerial Vehicle

OMNeT Objective Modular Network Testbed

INET Product name (not acronym) for OMNeT add-on framework

GPS Global Positioning Satellite

Swarm Collection of two or more UAVs

MPC Model Predictive Control

PN Proportional Navigation

MANET Mobile Ad-hoc Network

VANET Vehicle Ad-hoc Network

WMN Wireless Mesh Network

NED Network Descriptor file extension

INI Initialisation file extension

GUI Graphical User Interface

Wi-Fi Wireless Fidelity - Wireless network connection

C++ Object-Oriented C computer language

.cc C++ source file

.h C++ header file

Kernel Simulation operating system

PNID Position Node ID

Chapter 1

Introduction

1.1 Background

From missile-capable unmanned combat aerial vehicles (UCAVs) to object-tracking con-

sumer “small UAVs” (SUAVs), airborne UAVs have become cheaper and more widely

used in the last decade (Yanmaz, Yahyanejad, Rinner, Hellwagner & Bettstetter 2018).

Over 30,000 UAVs are expected to be used in the consumer and commercial area within

the USA alone with global spending on UAVs expected to double over the decade to

2023 (West & Bowman 2016, Boussios 2014). This is attributed mainly to advances in

the material and electronic areas leading to reduced weight with increased functionality,

run time, and lower cost (West & Bowman 2016, Boussios 2014, Akram, Markantonakis,

Mayes, Habachi, Sauveron, Steyven & Chaumette 2017, George & Ghose 2009). With

these advances come a widening of mission profiles that are possible without direct human

intervention.

The recent UAV attack on a Saudi oilfield and the resulting 15% surge in oil price raised

questions regarding the vulnerability of non-military targets to improvised UAV-based

threats (NPR 2019). Just the deployment of unknown UAVs near military positions

has prompted concerns over possible incursions (Rossiter 2018). Though typically only

thought of in terms of offensive actions, unmanned vehicles originally filled a surveillance

and reconnaissance role (Cevik, Kocaman, Akgul & Akca 2013).

Today, the use of UAVs for these purposes against national infrastructure or for corpo-

1.2 Problem Specification & Idea development 2

rate espionage can have a large negative effect both economically and strategically. The

small physical size typically renders SUAVs less susceptible to site defence such as surface-

to-air missiles, electronic countermeasures, or occasionally even visual detection (Cevik

et al. 2013, BBC 2017). Several recent examples show the vulnerabilities nation-critical

infrastructure faces. In December of 2018 two UAVs caused chaos at the UK’s second-

busiest international airport (Gatwick International) by flying within restricted airspace

several times over multiple days. The airport was locked down for a total of 30 hours,

resulting in an estimated £1.4 million in lost revenue and an additional £4 million re-

quired for anti-UAV technology (BBC 2019, Guardian 2019b). These were direct costs to

the airport, with customer compensation costs of just one airline operating from Gatwick

totalling £15 million (Guardian 2019a). Other incidents involving consumer UAVs land-

ing on aircraft carriers and flying within restricted airspace of nuclear power plants are

becoming increasingly common (BBC 2017, Forbes 2019)

SUAVs – typically just referred to as UAVs – are classified as weighing between 1 – 13.5kg

and operate within “close range” (Kakar 2015). There has been increasing research and

development regarding SUAVs’ abilities to process information and act autonomously

(Boussios 2014, Yanmaz et al. 2018, George & Ghose 2009). The inclusion of GPS and

optical (landmark) way finding presents difficulties in determining the origin of malicious

UAVs by traditional means. This stems from an inability to track the radio control signal.

The only way to find the origin, therefore, is to physically follow the UAV to its landing

point.

Adding to the complexity of the problem is the large number of UAVs available to the

consumer market. Each brand and model can offer vastly different flight characteristics.

Defending corporate or commercial sites against every type of threat would require a

system that could handle the worst-case scenario. This would require expensive (possibly

military-grade) tracking capabilities which would be neither technically nor financially

feasible for all but the most critical sites.

1.2 Problem Specification & Idea development

Conventional thought would lead to the use of a single vehicle to track a malicious UAV

to its final destination. The thesis of this project stipulates the use of a fleet of UAVs

1.3 Aim and objectives 3

rather than relying on one single platform. The use of multiple (lower specification and

cost) adaptive UAVs working in concert could reliably track a malicious UAV, regardless

of agility or geographical area covered (Yanmaz et al. 2018). UAVs of this nature – that is

to say clusters of UAVs employed for similar purposes and having similar flight patterns

- are typically defined as a UAV swarm (Cevik et al. 2013).

A key advantage in utilising a swarm of UAVs for pursuit is the redundancy case if any

one UAV develops a fault. A fault may lead to the cancellation of the mission if just one

UAV were utilised. Therefore, having multiple UAVs increases the mission robustness

and likelihood of mission success (Cevik et al 2013; Akram et al 2017). Swarms of UAVs

can also provide group agility greater than an individual drone and a larger tracking

radius than fixed ground-based radars or expensive military-grade UAVs. The trade-off,

however, is that the controlling algorithm needs to be robust enough to automatically

allow for fault events (Dedousis & Kalogeraki 2018, Yanmaz et al. 2018).

1.3 Aim and objectives

The purpose of this research project is to evaluate the effectiveness of different forma-

tion algorithms controlling a UAV swarm pursuing a malicious UAV of unknown flight

characteristics. As shown in the literature review, there are several broad gaps associated

with the topic of defensive UAV swarms. In order to keep within the time constraints

of a final-year dissertation the project must be constrained to a specific area of interest.

As such, this project aims to evaluate which coordination algorithm is able to pursue a

malicious target to its final landing position for increasing levels of malicious UAV agility.

To address this question, the following objectives are set out:

� Successfully simulate a swarm of UAVs working in concert to pursue a target

� Develop specific metrics that allow formation algorithms to be compared

� Measure different formation algorithms’ ability to utilise a UAV swarm to outma-

noeuvre a malicious UAV of unknown agility

� Measure any decrease in effectiveness of different formation algorithms against in-

creasingly evasive malicious UAV flight paths

1.4 Limitations 4

1.4 Limitations

The general nature of the topic combined with the multitude uses of swarm UAVs and the

simulated nature of the project presents a danger of creating a project with unrealistic or

unattainable scope. As there is a firm deadline on completion, limitations to the scope of

the project will be implemented. Limitations to the initial scope will include:

� Malicious UAV will follow pre-set flight paths, regardless of swarm position

� Environmental obstacles will not be added

� Swarm UAVs will have fixed velocity and lateral acceleration abilities

As the project is aimed at full simulation, it will start with C++ coding to simulate both

the malicious and tracking UAVs. The code will be developed for the UAV swarm in

individual modules defined as:

� Basic flight & movement

� Individual pursuit algorithms

The malicious UAV will have some modules in common, such as the basic flight and

movement module. As it has a different mission profile to the swarm (simulating recon-

naissance by moving along a pre-set path) it will also have distinct modules coded that are

necessary only for its use. From there, coding of the swarm UAV inter-communication

network and tracking algorithm will be carried out, with the communication network

latency and range set to unlimited. This will allow analysis of the tracking algorithm

without the added complexity of different communication methods, effectively setting a

base standard from which to set context of further datasets.

1.5 Articles Published

As a result of the work completed for this project a paper titled “Performance Evaluation

for Tracking a Malicious UAV using an Autonomous UAV Swarm” was submitted for

presentation at the IEEE Ubiquitous Computing, Electronics, and Mobile Communication

1.6 Dissertation Overview 5

(UEMCON) 2020 conference. This article was peer reviewed and accepted for presentation

at the conference.

1.6 Dissertation Overview

Chapter 1 contains a brief introduction with regards to the project context, problem

specifications, and the project aim.

Chapter 2 provides a literature review on research that has been conducted into related

subjects. This includes target encirclement, object detection and pursuit, UAV path

finding, inter-UAV co-ordination, swarm tactical co-ordination, and mobile node commu-

nication methods.

Chapter 3 discusses the simulation design for the project. This includes the details of the

base program selected for simulation, the input and output information utilised, and the

bespoke algorithms and modules designed for this project.

Chapter 4 contains the project methodology including the data types required and result-

ing analysis style.

Chapter 5 contains the results of the simulations. This includes detailed analysis of both

specific and overall results with comments on unexpected outcomes.

Chapter 6 details the project conclusion with an outline of the project outcomes, whilst

providing discussions on further work achievable in this field.

Chapter 2

Literature Review

2.1 Knowledge gap

A literature review into utilising a UAV swarm for pursuing objects was conducted for

this dissertation. As UAVs have been around for many years and their popularity has

increased, research on the general topic of UAVs has become extensive. Despite the

growing rate of research into the area of robot swarms, however, information regarding

utilising a UAV swarm for pursuit of a target is not readily available. Research into the use

of swarms for tracking of targets within environmental occlusion (Jung & Sukhatme 2002),

localised targets (Ma’Sum et al 2013), and even multiple moving targets (Lee, Chong &

Christensen 2010) have been conducted. These papers, whilst providing several methods

for achieving their end goal, are primarily constrained either by a set area of operations

(Jung & Sukhatme 2002, Ma’Sum, Jati, Arrofi, Wibowo, Mursanto & Jatmiko 2013), or

within the 2D plane (Lee et al. 2010). Concentrating instead on the use of a single UAV

for pursuit yields several articles. Kakar (2015) proposes a pursuit algorithm to perform

path planning for a fixed wing UAV. The algorithm would be computed by the onboard

UAV processor. As such it has limitations based on the processing power and energy

supply available to the UAV. Though the algorithm was successfully implemented, it was

only useful in tracking ground-based targets. Lee et al. (2010) aimed to utilise a swarm of

UAVs in tracking and converging on multiple targets. The implementation also did not

require that all members of the swarm have sight of the target in order to converge on

it. The experiment saw successful coordination of the UAVs but the target UAVs were of

the same agility as those tracking it whilst just moving in a random fashion. As such the

2.2 Target Encirclement 7

swarm did not require special algorithms for anticipating the tracked UAVs’ movements

for fear of losing them.

Further analysis of the available literature found that research regarding swarm UAVs near

the topic of interest is usually specialised into three areas: encirclement, coordination &

control and communication methods.

2.2 Target Encirclement

Methods into restricting the movements of malicious UAVs are required in order to combat

the threat posed. Research has been conducted in both simulated and real models that

aim to find efficient predictive models to encircle and therefore restrict the movements

of objects, in particular UAVs. This research, whilst ongoing, typically concentrates on

restriction of stationary objects. Work by Hafez, Marasco, Givigi, Iskandarani, Yousefi

& Rabbath (2015) aimed to use model predictive control (MPC) to control a number of

UAVs in real-time in order to encircle a target whilst taking into account non-linearities

and external disturbances experienced by UAVs. The proposed MPC model was simu-

lated in a horizontal 2D plane and achieved sufficient encirclement of the target, and was

even implemented on real quad rotor UAVs within a laboratory environment. The results

showed successful encirclement within acceptable margins for two variations of the MPC

implementation. The research also clearly showed the issue of increased algorithmic com-

plexity returning diminishing returns as, though the non-linear MPC (NMPC) showed

more precise movement of the swarm UAVs, the computational effort required over linear

MPC (LMPC) was marked and ultimately only the LMPC algorithm was implementable

for real-time control.

Another form of MPC control takes away from the centralised computation and control

to leverage the natural decentralised nature of multiple UAVs working together (Marasco,

Givigi & Rabbath 2012). Decentralized MPC (DMPC) is shown to be effective in sim-

ulations involving several UAV/target types. These include simulations of a single UAV

encircling both a static and moving target, and of multiple UAVs encircling a stationary

target. Just as LMPC and NMPC, DMPC was shown as effective in encirclement of the

given targets, though the ability to encircle a moving target was limited to slow move-

ments. Hafez, Givigi, Schwartz, Yousefi & Iskandarani (2015) conducted further research

2.3 Coordination & Control 8

on LMPC implementation combined with feedback linearisation (FL) and decentralised

control for multiple UAVs. This research resulted in an overall stable team of cooperative

UAVs that can avoid collision whilst maintaining encirclement velocity and proximity.

2.3 Coordination & Control

2.3.1 Detection and pursuit

Pursuit of objects presents many obstacles, especially in real-time processing of outdoor

environments. The complexity is increased by the need to track targets not bounded by

two dimensions such as cars but instead in three. Added to this is that individual UAV

not only tracks the target but also other UAVs which are themselves moving within the 3

dimensions. Research has shown many methods to track objects through the use of UAVs,

though they are typically used to enhance the tracking ability of stationary sensors within

a bounded area (Jung & Sukhatme 2002).

For a mission area of known size and estimated number of targets, a region-based approach

can be utilised in object detection. This method distributes the swarm over the area for

coarse detection, with individual UAVs within each region executing various methods

of search or track functions (Jung & Sukhatme 2002). This method requires previous

knowledge of the area to be searched (i.e. geographic landmarks) and does not account

for targets that move outside the bounds of the search area. Fu, Feng & Gao (2012) utilises

an error-correction path finding algorithm with feedback to direct the UAV towards its

target. The targets future location is estimated through a least-squares filter applied to

its current motion. Though this algorithm was only used in the tracking of ground-based

objects, it was found to be computationally economical and reliable. This presents a

better choice for active tracking for individual UAVs as it is not geography based.

2.3.2 Path finding

Though the methods mentioned are generally suitable for advancing on a target, their

main objective is to get to the target position directly with no thought for the final

orientation of the UAV. Huang, Tung & Ciou (2009) aimed to solve this problem in the

2.3 Coordination & Control 9

context of a motorised serving robot that is required to navigate an environment with

obstacle and arrive at the correct location with the correct orientation. Fuzzy controllers

were utilised due to their popularity in the robotic research space – typically for their ease

of design with no requirement for coding mathematical models. Two fuzzy controllers were

used to guide the robot to its destination - one for navigation and the other for obstacle

avoidance. The experiment was carried out in both simulation and on hardware which

resulted in adequate performance in target intercept, though correct final orientation

was a side-effect of the intercept algorithm and not directly accounted for in the fuzzy

controller logic.

This experiment is a good basis on navigation and path finding for environments with

obstacles, but would require further work in order to produce results for simulating UAVs.

First, UAVs must contend with three dimensions. Though only one extra axis, this

represents and increase in complexity not just in navigation but also when calculating

avoidance of both stationary and mobile obstacles. Secondly, the swarm UAVs will be

operating in a real-time environment against a target that is moving. This will require

constant calculation of the most efficient method of interception coupled with heading

adjustment. Finally, unlike the robot used in the experiment, the swarm UAVs will need

to contend with increased movement abilities regarding slew, pitch and roll attributes on

manoeuvrability.

Moving targets have been considered by Belkhouche, Belkhouche & Rastgoufard (2006).

Here the final heading is a moving target and obstacles are introduced, though the path

is still constrained to the horizontal plane and, again, no direct efforts to match target

heading is introduced.

2.3.3 Inter-UAV (swarm) coordination

UAVs working within a swarm, especially SUAVs with fast and fragile moving parts,

must be coordinated around each other and the environment they operate in with care.

Coordination between UAVs will be necessary in order to outmanoeuvre the malicious

drone, but also prevent collisions with each other when working in close proximity.

There are many different types of UAV coordination currently advocated, each with their

own spin on their advantages over other types. Tang, Yang & Li (2001) theorised that

2.3 Coordination & Control 10

avoidance of dynamic objects in a real-time environment benefited from the use of fuzzy

logic. Fuzzy logic is based on degrees of truth rather than the typical true and false options

of “crisp” logic (Hooda & Raich 2015). In the case of UAV collision avoidance, fuzzy

inference would allow decisions to be made even if the input vector was not completely

accurate. This would allow for better reaction to real-time events. Fuzzy inference would

not allow for uncertain obstacles, however. Rathbun, Kragelund, Pongpunwattana &

Capozzi (2002) presents a solution in the form of an Evolutionary Algorithm (EA) for

autonomous path planning. This model, whilst being able to deal with fixed objects, aims

to factor in the uncertainty of motion of moving obstacles. Objects are treated by their

uncertainty rating. A simple object trajectory (e.g. a ball arcing through the air) will

having a low uncertainty rating, whilst a military UAV set to evade hostiles would have

a high uncertainty rating (Rathbun et al. 2002). This method would be highly effective

at not only avoiding collision with UAVs of the swarm and other environmental objects,

but also useful in tracking the malicious UAV. The cost, however, to energy consumption

from computing the algorithm necessary would be overwhelming, especially if each UAV

needed to compute their own avoidance vectors.

A less processor-intensive method of avoidance is presented by Tomlin, Pappas & Sastry

(1998). This hybrid system would sense objects around the UAV within two spheres;

a small “protected” and larger “alert” sphere. The radius of the spheres would change

depending on the speed of the UAV to account for proportional avoidance reaction time.

For this model the sensors initially only need to detect the distance of objects and relate

them to the sphere radius. Only upon entering within the radius of the alert sphere would

avoidance trajectory information be computed and acted upon. This method allows low-

consumption processing until higher consumption is required. However, computation

priority issues arise in the case of multiple objects entering the alert sphere. Essentially if

two objects enter the alert sphere the UAV would not know which should take priority in

trajectory processing. The calculation may be made first on an object that never would

have collided (e.g. a stationary car in front of the drone), leaving little time to compute

and react to the real threat. The alert sphere could be increased to allow more time,

but this would allow more false positives. The increased number of threats would need

to be computed, raising energy consumption. This reduces its efficiency compared to the

previous algorithms.

Though the previously mentioned algorithms are useful in their own ways, the most

2.3 Coordination & Control 11

promising guidance method is the use of Proportional Navigation-based Collision Avoid

Guidance (PNCAG). PNCAG aims to maintain a predefined safe distance between each

drone. Though Proportional Navigation (PN) is typically used in missile guidance, the

algorithm is modified to provide a collision avoidance vector that the UAV is directed

to. A slight variant to PNCAG is a Reactive Inverse PN algorithm. This differs to

the PNCAG model in that it is designed for highly-concentrated space use (i.e. a lot

of UAVs in a small area). The inverse algorithm posits that avoiding near-misses in

such an environment is not realistic so instead near misses are accepted but “minimised”

(George & Ghose 2009). Vector information (position, direction, and velocity) for both

the host and nearby UAVs is all that is needed for both PNCAG and Reactive Inverse

PN algorithms to work (Han & Bang 2004, George & Ghose 2009).

2.3.4 Tactical coordination

Once the UAV swarm is able to avoid each other and obstacles they will require pursuit

guidance as a whole to achieve mission success. The tactical control of individual UAVs

within swarms can be divided into centralised and decentralised topologies. Centralised

topologies (Figure 2.1 and Figure 2.2) allow for a central processing point to do the heavy

lifting for computation of pursuit data and swarm formation. However, they require the

nodes being controlled to be within the communication radius of the central processing

point (Akram et al. 2017) . Decentralised topologies are more robust overall as they do

not require a central authority to operate. Instead, the individual UAVs collect data from

each other in order to make their own decisions (Akram et al. 2017).

Figure 2.1: Centralised topology.

2.4 Communication methods 12

Figure 2.2: Decentralised topology.

2.4 Communication methods

Recent research into communication between UAVs has been likened to ad-hoc mobile and

vehicle networks (MANETs and VANETs respectively). These networks, however, do not

directly compare to the overly dynamic nature of UAVs operating cooperatively in three

dimensions (Cui, Liu, Wang & Yu 2017). Wireless mesh networks (WMN) are the most

reliable network configuration for UAV swarms as it presents a robust communication

infrastructure (Cui et al 2017). This method also constitutes an ad-hoc network where

each node is both a client and router. Two main types of WMN are available; routed and

flooded. The routed mesh type (Figure 2.3) requires added power consumption for routing

data not required by that specific drone. This increases battery consumption (McCune &

Madey 2013). Further network resilience may be achieved through the use of “flooding”

type message routing (Figure 2.4). This method, rather than sending through nodes on a

preselected route, sends to all nodes within its transmission range. This method removes

the need for communication overhead due to maintaining routing paths. The increase

in processing power of redundant messages, however, usually outweighs the benefits (Cui

et al. 2017).

As shown, there resides large amounts of research targeted towards highly specific areas

of both individual and swarm UAV topics. The use of swarm UAVs purely for sustained

pursuit rather than direct engagement, however, has yet to be simulated and as such is

not well understood. An amalgamation of the above concepts is required to produce data

that can be analysed. This will produce evidence related to the benefits of cost-effective

swarm UAVs in counter-espionage or defence of nation-critical sites.

2.4 Communication methods 13

Figure 2.3: Routed mesh network.

Figure 2.4: Flooded mesh network.

Chapter 3

Simulation Design

3.1 Chapter Overview

This chapter aims to detail all relevant information of the design work that pertains

to the input, and subsequent output, of simulation data to be analysed. This includes

sections outlining the simulation environment used, the formation algorithms developed

specifically for this research project, and the implementation of the algorithms and UAV

physics within the simulation environment.

3.2 Simulation Environment

3.2.1 OMNeT++

In order to reduce the number of outside variables and ensure completion of the project

within the required time frame, the use of a simulated environment is necessary. OMNeT++

is a discrete event-based network simulator primarily based on the C++ coding language.

OMNeT is open source and has been designed to be modular, allowing users to both mod-

ify the base simulation environment whilst also creating custom extensions that build on

existing modules and templates.

Many extensions for OMNeT have been created and are available that fill niche roles

within the simulated network environment. SimuLTE builds on the OMNeT framework to

3.2 Simulation Environment 15

further simulate mobile wireless transmission methods such as 3GPP LTE (3rd Generation

Partnership Project Long Term Evolution) to perform complex systems-level analysis

of performance. VeINS (Vehicle In Network Simulation) builds on both OMNeT and

the road-traffic simulator SUMO (Simulation of Urban Mobility) to provide tools for

evaluating inter-vehicle communications. These examples show how OMNeT can be built

upon to provide more specific tools for modelling communication networks in the real

world.

3.2.2 INET Framework

Like SimuLTE and VeINS, INET is an open-source model library for the OMNeT++

simulation environment. It provides protocols, agents and other models for researchers

and students working with communication networks. INET contains many models that

can be used for further evaluating and validating communication and network protocols,

such as HTTP, physical, and link-layer tools. Though largely used in validating new

protocols, INET has modules aimed at simulating and visualising node movement within

the environment. This can include mobile phone nodes moving within a building and

communication nodes moving in 3D space. These modules are especially useful when

creating moving simulations such as vehicular networks, overlay/peer-to-peer networks,

or LTE. Several other simulation frameworks take INET as a base, and extend it into

specific directions.

3.2.3 Network Descriptor Files

As OMNeT is primarily designed as a communication simulator it uses specialised files

adjacent to the C++ logic to represent the creation of network models and simulation

initialisation variables. Network descriptor (NED) files (.ned extensions) allow networks

to be built in a modular, hierarchical fashion similar to that of classes in Object Oriented

Programming languages. Networks range from simple to compound modules with cus-

tomisable interconnections. Multiple networks for a simulated workspace can be created

that either extend on existing modules, or are stand-alone modules that act on nodes

specific to its configuration setup. NED files contain information such as the layout of

networks (including node connections), node physical parameters, and initial placement

vectors. NED files rely on modular implementation as it is impractical to code new net-

3.2 Simulation Environment 16

works for every use-case, especially niche or exotic network designs. Instead, compound

networks can be developed which build from pre-existing network designs, with the im-

petus that any module being too complex as a single entity should be broken down into

multiple simple modules that are combined into a compound module. Breaking down

complex networks into simple modules allows them to become reusable outside of the

specific use-case for which they are first written.

3.2.4 Initialisation Files

Upon simulation start, the program reads the appropriate NED files, then the initialisation

files. Initialisation files (.ini extension) are used by OMNeT to setup the overall simulation

variables. Just like network descriptor modules, initialisation configurations can be set

up in a modular, hierarchical fashion or as stand-alone configurations. This file lays

out the configurations of the simulation including network(s) utilised, node parameters,

and communication configurations. For complex systems, configuration settings are best

setup in a extendable modular fashion to allow for several configurations that have similar

parameters except for a few key changes. These parameters are assigned in the appropriate

network descriptor file of each module that is called. Not every parameter must be

assigned a value if it is assigned a “default” value within the network descriptor file. If no

value is assigned to the parameter in the initialisation file, the default is used. If a value

is not assigned, nor a default given, the program will ask for a value upon start-up of the

simulation. Figure 3.1 shows an example of code used in the initialisation file.

Figure 3.1: Initialisation configuration code.

3.2 Simulation Environment 17

3.2.5 Nodes Representing UAVs

Though shown in the figures throughout this document, and the videos of the associated

presentation, at the OMNeT kernel level the swarm and malicious UAVs are not registered

as UAVs but instead communication nodes. OMNeT is designed so that each node can be

set a range of pre-defined or even custom attributes based on what it is meant to represent

within the network. Examples include radio transmitters with propagation characteristics,

routers with associated switching and packet processing lag, or application software that

processes packet data. The INET framework further modifies and augments the nodes

through the ability to move in real-time for pre-defined or dynamic ways, as shown with

the malicious UAV and swarm UAVs respectively.

3.2.6 Batch Processing

The final simulations required the testing of multiple different independent variables,

alongside many iterations of the same simulation parameters for randomisation (see Chap-

ter 4 for details). This combination of variables results in the need to perform 2430 sim-

ulation runs. Though OMNeT allows for individual simulation runs within its Graphical

User Interface (GUI), it is also configured to carry out batch runs through the Com-

mand Line without the need to see each run. This reduces the time and effort taken

to run the simulations considerably. Utilising the GUI results in each simulation taking

approximately 7 seconds to run, with the need to physically change the parameters each

time. This would result in over 5 hours of hands-on effort. After configuring the appro-

priate loops, the batch command can carry out the same number of simulations in the

background in approximately 40 minutes with no human interaction required. Figure 3.2

shows the hierarchy of loops that the batch process runs through for this project.

Figure 3.2: Summary of batch loops.

3.2 Simulation Environment 18

3.2.7 Inter-UAV Communication

Though OMNeT is configured as a communication simulator, the functions to configure

communications exist within the NED files. From here, modules for any type of normal

or exotic communication network can be defined through pre-made packages that are

imported to the NED file. Data packet propagation delays, radio communication latency,

Wi-Fi standards - all of these communication specifications can be implemented. However

the requirement for this information to be processed within the C++ files presents the

issue of routing the relevant data into the custom DroneMobility module. This was

initially undertaken but not implemented as the time required to develop the appropriate

code became burdensome, especially considering communication effects were not part of

the core specifications of this project. As such, a work around in the form of a static array

was implemented that stood in for a flood-type broadcast network between the swarm

UAVs. Due to the nature of implementation, this array exists within “heap” memory

which can exist similar to a global variable in that it is accessible outside of the object

that created it. Unlike global variables, static variables created within an object (such

as the DroneMobility class) are only accessible to other objects of the same class type,

preventing functions from other classes within the program from manipulating the values

(Malik 2014). This means that a static array created by the swarm UAVs would be

accessible to any swarm UAV, but not to the malicious UAV which is of a different class.

Table 3.1: Static communications array index data information.

Column Index No. Information Stored

0 Target acquisition: -1 if no target, 1 if target within range

1 - 3 Targets’ percieved X/Y/Z coordinates (post-accuracy function)

4 - 6 Actual target X/Y/Z coordinates (for debugging)

7 UAV Surround formation Position Node ID

The static array s swarmInfo is used to store the information for communication between

swarm UAVs. This array is initialised with a fixed number of rows and columns (30 x 30),

with the rows representing each UAV ID and the columns storing specific information for

transmission. Table 3.1 lists the specific information stored in each array index.

3.3 Simulation Implementation 19

3.3 Simulation Implementation

Though powerful in their ability to simulate communication and moving nodes, OMNeT++

and INET allow nodes to behave in ways that would not be possible in real life. Accel-

eration, maximum speed, maximum turning rate, and sensor range are just a few of the

major factors that need to be modelled in order to evaluate the effectiveness of UAVs. As

such, custom code is required to both input simulation commands to the OMNeT/INET

framework as well as pull relevant data for analysis. The modules expanded upon below

are coded in C++, and though they ultimately are used by OMNeT as mobile nodes, they

are created as objects within the C++ environment. This allows the use of built-in C++

tools like object-specific variables, global-level array access, and the ability to create a

dynamic number of nodes without the need for pre-programming. The ability to expand

the number of swarm UAVs is especially useful for this project as 2,340 simulations are

run with varying numbers of objects (in this case pseudo-coded UAVs) for each simulation

run. Figure 3.3 shows how the OMNeT++ GUI (Graphical User Interface) represents a

simulation run involving 6 swarm UAVs.

Figure 3.3: Example of simulation through GUI.

3.3 Simulation Implementation 20

3.3.1 DroneMobility module

The DroneMobility module is comprised of the base .cc and .h C++ files with its required

OMNeT NED (Network Descriptor) file. These files represent the majority of the work for

this dissertation. DroneMobility.cc acts as the logic for all nodes created by OMNeT++

that are classed as a swarm UAV. Initialisation of each UAV upon creation is carried

out upon simulation start, with any dynamic variables being assigned at this point for

use throughout that simulation iteration. For each simulation time period the OMNeT

kernel runs all libraries and code in the background before calling each nodes’ move()

function. Outside of access to the objects constructor and destructor this is the entry

point of the kernel to the logic that directly influences the actions of the UAV nodes,

both swarm and malicious. It is from this function that all subsequent UAV functions

are called. The swarm UAVs go through specific functions before and after running the

setTargetPosition() function that sets the point the swarm UAV will move to next.

Figure 3.4 shows an overview of the function flow within the DroneMobility module.

Initialisation Functions

Two functions are called by the OMNeT kernel during initialisation. Simulation initiali-

sation has up to 12 stages, with initialize() called during the first (initial) stage. This

function allows for the initialisation of any variables needing to be created and populated

with information from the initialisation file or simulation input. setInitialPosition()

takes appropriate data from the omnetpp.ini or droneNetwork.ned files (in that order

of precedence) to place the UAVs according to their ID. This function can initialise the

location of each node based on either latitude & longitude or X & Y coordinates, but, if

both are present, will prioritise latitude and longitude inputs over X/Y coordinates.

Run-time Functions

move() is the main entry and exit point that the OMNeT kernel uses to access the module.

During the simulation run all functions are run from within this function. Upon exiting

the move() function the OMNeT kernel moves to either the next UAV (in order of ID

number). Once all swarm and malicious UAVs’ code has been run, the kernel increments

the simulation time by the specified time increment (i.e. 0.1 seconds) and begins again.

3.3 Simulation Implementation 21

Figure 3.4: DroneMobility function flow.

3.3 Simulation Implementation 22

Sub functions were created within the move() function to separate the code that controls

different aspects of the swarm UAVs. These functions and their primary roles are:

targetTrackerUpdate() - simulates acquiring information from an image processing unit

on board the UAV. Implementation of a randomised accuracy modifier were to be

added in this function

targetInfoComms() - simulates broadcasting relevant data specific to the current swarm

UAV such as perceived target position, current UAV position, and its current swarm

target node number

checkComms() - simulates receiving and storing relevant data from other swarm UAVs

mDroneFuturePosition() - performs simple linear analysis of the malicious UAVs move-

ments based on previous malicious UAV data.

setTargetPosition() - the main function called by move() and contains the state ma-

chine that defines which movement mode the swarm UAV is operating in. Except

when in the stationary state, each other state performs similar base functions of

target modification (if in a swarm mode), turn rate restriction and setting velocity.

printToFile() - used to store the information from the current time period and specific

UAV for extraction after the simulation has completed. Data such as formation

mode selected, the current iteration number (for randomised results), and the dis-

tance from the UAV to its target are stored in a static array.

placeMark() - places an “x” on the simulation to show the target position of each swarm

UAV. This helps visualise the swarm formation algorithm at work, whilst also al-

lowing for tracing bugs during development

Within the setTargetPosition() function are four UAV flight states that the swarm

UAVs may be in at any time (discussed later). Several of these states utilise sub-functions

common between them. These include:

speedModify() - takes a value input and modifies the current speed to match, within

the acceleration abilities of the UAV

3.3 Simulation Implementation 23

circleFunction() - determines if the target position is within or outside of the max-

imum turn radius. If outside, modifies target vector to conform with turn radius

restrictions

swarmTarget() - depending on the mode selected, this function either modifies the target

position to form around the malicious UAV in a cone or circle pattern, or trailing

behind for “follow”

State-based implementation

To simplify the code a state-based implementation of flight modes was applied to the

swarm UAVs within the setTargetPosition() function. Four modes were created; sta-

tionary, chase, approach, and formation.

STATIONARY - the initial state of the swarm UAVs upon initialisation. This state

checks for any objects (malicious UAVs) within sensor range. If within range, the

UAV changes to CHASE state.

CHASE - accelerates the swarm UAV to its maximum speed whilst checking the relative

velocity between the malicious UAV and itself to ensure it has enough time to slow

and not overshoot its target. If the distance to the target is less than the distance

to slow, APPROACH mode is activated. If the target moves out of sensor range,

STATIONARY mode is activated.

APPROACH - an intermediate state that slows the UAV to match speed and orienta-

tion with the malicious UAV. Once the UAV has entered within a 15-meter radius

of the target, FORMATION state is activated.

FORMATION - operating within a 15-meter radius of the target, this state ensures the

UAV can adapt to sudden changes in target position (such as moving behind the

UAV) without causing it to loop around. This is achieved by matching the heading

of the malicious UAV and regulating its speed based on the relative velocity between

itself and the target position.

Specific source code listings for the MaliciousDroneMobility module can be found in

Appendix D.

3.3 Simulation Implementation 24

3.3.2 MaliciousDroneMobility module

As with the DroneMobility collection of files, MaliciousDroneMobility incorporates a

main C++ file, as well as a header and NED file. The .cc file contains methods (class

functions) that form the basis for all movement of the malicious UAV. Figure 3.4 shows an

overview of the function flow within the DroneMobility module. The module functions

fulfil the following roles:

setNewWaypoint() - upon reaching the set waypoint, this function accesses the .movements

file to determine the next waypoint

checkWaypoint() - checks current position to see if the UAV is at the waypoint targetted.

A margin of 2 meters from the specified X/Y waypoint location is allowed to ensure

location errors do not result in the UAV not proceeding to the next waypoint

setTargetPosition() - modifies the target position (the next waypoint) to account for

restrictions of speed, acceleration, and maximum turn rate

Missing from the list are functions that have been adapted from DroneMobility that

relate to UAV flight characteristics. These include speedModify(),

setInitialPosition() , and circleFunction() and are identitical in their code and

implementation. As such, their descriptions have not been repeated.

At the initialisation of the simulation, the module accesses the specific .movements file

required that is located with the UAV project simulation folder (where the main project

omnetpp.ini configuration file is located). These files contains groups of four numbers

that represent waypoint information for the malicious UAV. The first group of four num-

bers takes the format:

[Acceleration, Initial X Position, Initial Y Position, Initial Z Position]

This is read upon simulation start by the MaliciousDroneMobility module to place the

malicious UAV at the specified coordinates, as well as set the maximum acceleration of

the UAV during that simulation run. The proceeding number-groups follow a similar

format, but are read as:

[Maximum Speed, Next Waypoint X Pos, Next Waypoint Y Pos, Next Waypoint Z Position]

3.3 Simulation Implementation 25

In both cases the Z position is set at 20 meters, though this does not affect the results

as the simulation is only conducted within the horizontal 2D plane for this project. The

“maximum speed” value represents the speed the malicious UAV will fly at until the next

waypoint, not including time taken to accelerate/decelerate to that speed. This allows

the ability to change the speed between waypoint legs. To reduce complexity and the

number of independent variables in this project, the speed is set for the entirety of the

simulation run, with the exception of slowing to 0 m/s at the end of the simulation.

In order to allow batch runs to occur, a .movements file exists for each of the 9 com-

binations of 3 speed Levels and 3 Paths defined in Chapter 4. The OMNeT simulation

program access each in turn as is required to perform the specific simulation.

Specific source code listings for the MaliciousDroneMobility module can be found in

Appendix E.

3.3.3 DroneNetwork.ned

DroneNetwork.ned is the main network layout file for this project. As mentioned, the

NED file is where the overall network structure and the nodes within are configured.

Though nodes are usually specifically created and placed by the user, OMNeT allows

nodes to be created in an array-style at start-up. Only one network is configured for this

project - “DroneNetwork” - that is utilised by all configurations within the initialisation

file. Typically communication paths would be set up within this file but, as a static array

is used for passing inter-UAV information, this is not required. Other details such as the

background image, node representations images, and common visualisation information

is set up in this file. The .ned source file can be found in Appendix F.

3.3.4 omnetpp.ini

omnetpp.ini is the main initialisation file that the simulation runs upon start-up after any

associated NED files. For this project there are three configuration setups utilised that

are extensions of one main (base) configuration setup that contains cross-config data. The

layout of the configurations created follow those shown in Figure 3.5. Figure 3.6 shows

3.3 Simulation Implementation 26

the changes made in the omnetpp.ini file that allows for easy change of formation modes

within the simulation environment. Further lower-level and generic parameters can be

found in the full omnetpp.ini listing in Appendix G.

Figure 3.5: Initialisation file configuration layout.

Figure 3.6: Derived configuration classes.

3.4 Physical Constraints 27

3.4 Physical Constraints

3.4.1 Speed & Acceleration

OMNeT nodes (through the INET framework) are not restricted to any form of physics

in their ability to move within the simulation. Nodes may have any speed, and may

achieve that speed in the discrete time period that the simulation is running (0.1 seconds

by default). Maximum speed and acceleration needs to be applied to nodes operating

within these simulations as UAVs in order to recreate real-world effects and maintain

validity of the output data. For the swarm UAVs, the maximum speed they may travel

and how fast they may accelerate or decelerate is set within the omnetpp.ini file and

is used for all simulations. The malicious UAV takes its acceleration/deceleration and

maximum speed data from the .movements files, each of which has specific information

regarding the physical limitations for the given simulation parameters.

3.4.2 Turn Radius

Due to the discrete nature of the simulation environment mentioned above, the arc that

the UAV would traverse during the 0.1 second jump is translated through an application

of the law of cosines to a vector that points to the location along the arc that the UAV

would travel in the given time. This is calculated within the circleFunction() function.

Fotouhi, Ding & Hassan (2017b) detailed the equations that define the instantaneous

manoeuvrability of a UAV for a given velocity and lateral acceleration. Specific UAV

characteristics such as lateral acceleration are not readily available, but due to the sym-

metrical nature typically found in commercial UAVs it can be taken that the forward

acceleration would be a close approximation of the overall acceleration abilities of the

UAV. The CSIRO research team detailed that the radius (r) of the circle that described

the turning arc and the angle (θ) between the current UAV position and the point on the

arc it will travel in the time period can be found thus:

r =
v2

a
; θ =

ta

v
(3.1)

where v is the current UAV velocity (m/s);

3.4 Physical Constraints 28

Figure 3.7: Trigonometric calculation of a discrete vector representing a turning arc.

a is the lateral acceleration ability of the UAV (m/s2); and

t is the time period in which the UAV turns (0.1 seconds).

Obtaining the movement vector that represents the point the UAV would travel to along

the turning arc in the given time period is simply a matter of applying the Law of

Cosines to obtain the vector from the UAV to point P in Figure 3.8. Utilising the general

equation for the Law of Cosines and using the side definitions found in Figure 3.8 results

in Equations 3.2 and 3.3:

c2 = a2 + b2 − 2ab cos(θC) (3.2)

a2 = b2 + c2 − 2bc cos(θA) (3.3)

The sides b and c in Equations 3.2 and 3.3 are of the same length r. The angle θA in

Equation 3.3 is equivalent to θ as represented in Equations 3.1. Substituting r and θ into

Equations 3.2 and 3.3 and solving Equation 3.2 for θC and results in:

θC = cos−1(
a2

2ar
) (3.4)

3.4 Physical Constraints 29

Figure 3.8: Visual representation for derivation of ~SP and θmax.

a2 = 2r2(1− cos(θ)) (3.5)

Combining Equations 3.4 and 3.5 and subtracting from π/2 results in the maximum

turning angle from the current heading θmax:

θmax =
π

2
− cos−1

(√
1− cos(θ)

2

)
(3.6)

This results in a vector
−→
SP of magnitude a denoted in Figure 3.8. Deriving a from

Equation 3.5 equates to:

a =
√

2r2(1− cos(θ)) (3.7)

and completes the formula circleFunction() uses to determine the point the swarm

UAV will be after the 0.1 second time interval. The full form vector is:

−→
SP = |a|∠θmax

= |
√

2r2(1− cos(θ))|∠π
2
− cos−1

(√
1− cos(θ)

2

)
(3.8)

3.5 Project-Specific Algorithms 30

3.5 Project-Specific Algorithms

The core of this research project is to evaluate the effectiveness of multiple UAVs (i.e.

swarms) working together to pursue a target. Formation algorithms were required to

be developed in order to achieve this objective. As the project developed several other

algorithms were conceived that would likely increase the efficiency or effect of the for-

mation algorithms. Swarm target efficiency coding and a novel path finding theory was

developed, though due to time constraints path finding was not implemented.

3.5.1 Swarm & Baseline Formations

Follow Mode

When set to “follow”, the swarm UAVs target the direct rear of the malicious UAVs’

position (Figure 3.9). This mode is used as the baseline for which surround and cone

formations are compared. As such, the swarm UAVs also do not communicate with each

other as to the known position of the malicious UAV, nor do the swarm UAVs make

any attempt to coordinate into a formation. As noted in Section 4.2.1, collisions are not

enabled for this project as the complexity of coding collision avoidance path finding was

outside the time-frame of the project. This means that the UAVs typically are in close

proximity by the end of the simulation as they are all targetting the same position.

Figure 3.9: Follow-type formation.

3.5 Project-Specific Algorithms 31

Surround Mode

This a coordinated formation mode that transcribes a circle around the malicious UAV

with the swarm UAVs being positioned evenly around the circle perimeter. This formation

algorithm adapts to the number of UAVs within the swarm by increasing the circle radius

to maintain a constant perimeter distance between each UAV. This is achieved through

the allocation of a fixed ratio of area within the circle proportional to the number of UAVs

making up the swarm. Based on an initial radius of 150 meters for one UAV equates to

70,685 m2 per UAV. Figures 3.11 - 3.11 shows the differences in radius and perimeter

distance between swarms of 2, 3, and 4 UAVs.

Figure 3.10: Surround profile of a 2 UAV swarm.

This method of spacing and allocation allowed for a processor-friendly method of ensuring

that the space around the malicious UAV did not become crowded due to a fixed radius

resulting in decreasing perimeter separation as the swarm grew. This also meant that

an increase in swarm size meant a larger coverage of area and an increased separation

from the malicious UAV, allowing for better reaction to changes in the malicious UAVs

heading. The initial radius of 150 meters was determined as a sufficient distance based on

experience from several simulation runs, and could be adjusted to allow for a tighter or

looser formation. Table 3.2 lists the specific distances that are used for each size of swarm

in surround formation, including the individual perimeter distance and the minimum

direct separation of the UAVs. As shown in the table, this algorithms method of ensuring

relative consistency of separation for each swarm size results in an area coverage an order

of magnitude larger for 10 UAVs than for a single UAV which increases the swarms ability

to continue pursuit.

3.5 Project-Specific Algorithms 32

Figure 3.11: Surround profile of a 3 UAV swarm.

Figure 3.12: Surround profile of a 4 UAV swarm.

3.5 Project-Specific Algorithms 33

Table 3.2: Separation metrics for the surround formation.

No. UAVs Total Area Radius Perimeter UAV Separation Direct UAV Separation

(m2) (m) (m) (m)

1 70,685 150.00 N/A N/A

2 141,370 212.13 666.43 424.26

3 212,055 259.81 544.14 450.00

4 282,740 300.00 471.24 424.26

5 353,425 335.41 421.49 394.30

6 424,110 367.42 384.76 367.42

7 494,795 396.86 356.22 344.38

8 565,480 424.26 333.21 324.72

9 636,165 450.00 314.16 307.82

10 706,850 474.34 298.04 293.16

Cone Mode

This is the second coordinated formation that forms a triangle from an overhead view

with the top ’point’ just behind and the ’base’ of the triangle ahead of the malicious UAV

(Figure 3.13). the placement algorithm distributes each extra UAV added to the swarm

at a position to ensure priorities are placed on filling the points of the triangle, before

placing UAVs equally along each side. This formation was created with the intent to

determine if placing UAVs further forward and to the sides of the malicious UAV would

increase the combined abilities of the swarm to keep within pursuit range compared to

the surround method.

The restriction of working within the horizontal 2D plane means that only a triangle form

is necessary for this project. However, this formation is named ’cone’ as it is envisaged

that expansion of this research into the 3D space will revert this formation to its 3D

version which would be represented as the swarm taking up positions on the perimeter of

a cone form around the malicious UAV.

3.5 Project-Specific Algorithms 34

Figure 3.13: Cone formation example.

3.5.2 Swarm Target Efficiency

The main issue with the two swarm UAV formations developed were that the positions

that the swarm UAVs would take were based solely on their UAV ID (i.e. 1 - 10).

The initial positioning algorithm did not make any effort to determine the most efficient

allocation of position nodes based on relevant information such as which UAV was closest

to the node. Towards the end of the project, time was spent developing such an algorithm

based on each individual UAVs distance to the available target nodes.

surroundEfficiency is a subfunction developed for the surround formation as an initial

test-bed to determine if there was any significant increase in swarm pursuit ability caused

by more intelligent selection of node positioning. Figure 3.14 shows the flow diagram of

the logic used within this function.

The algorithm contained within surroundEfficiency stores the distance from the UAVs

current location to each node location available based on the number of UAVs within the

swarm, and the associated node ID number. A bubble sort is used to reorder the values in

ascending order. The function then checks the static function of each swarm UAV whose

ID number is less than its to see if they have already reserved that node position. This

is required due to the way that OMNeT runs the simulation - in particular the fact that

each UAVs’ code is not run concurrently but consecutively. This means that the UAV

that holds the ’0’ ID number will run before any others, and will not be able to react to

any updated information from subsequent UAVs within the same time period until the

3.6 Unimplemented Algorithms 35

Figure 3.14: swarmEfficiency function flow diagram.

next time period. In order to work with this, the algorithm has to allow priority to the

first UAV to run the code in that time period. This means that UAV ’drone[0]’ will always

have priority of choice over all others, even if the sum total distance is not optimal.

This function was implemented in time for final simulation runs and the results are com-

mented on within Chapter 5

3.6 Unimplemented Algorithms

Initially the project was to encompass many features that are possible through simulation.

These included:

� Efficient real-time path finding with correct final position orientation

3.6 Unimplemented Algorithms 36

� Enrolment of swarm UAVs based on the predicted path of the malicious UAV

� Enhanced tracking methods such as Proportional Navigation

� Multiple malicious UAVs

The following subsections will detail the issues encountered with implementing these fea-

tures.

3.6.1 Path finding & Orientation

One of the main issues not adequately researched within the reviewed literature whose

aim was to successfully have a device (UAV, robot, etc.) track another object was the

requirement that the robot be of the correct orientation upon reaching the target po-

sition. Even when not considering a swarm of UAVs it is important that for long-term

pursuit the pursuing device be in the correct orientation if and when it catches the target.

Initial thoughts of using navigation techniques such as proportional navigation allows for

a more efficient path to the target but, as PN techniques (and its variants) were designed

for missiles to intercept and destroy a target, these techniques do not account for final

orientation after interception.

A proposed method of path finding couples the limiting physics of a moving object having

some finite turning ability (i.e. not being able to instantaneously change their velocity

vector) with the need to reduce the total distance that the device must travel to be at

the correct position and the correct heading. This is done by determining the turning arc

of radius r as found in Equation 3.1 of the swarm UAV and apply it to the current UAV

position and the malicious UAV (specifically the formation target point). Determining the

internal or external tangent between the two circles would give the shortest path between

the swarm UAV and its target taking into account the current heading of both the swarm

and malicious UAV (Figure 3.15). This would also have the effect that the swarm UAV

would arrive at the target position at the correct heading, negating the possibility of

overshooting and having to turn around if the swarm UAV was heading in any direction

not equal to the malicious UAV.

This path finding algorithm would be processor-friendly as it requires simple trigonometric

formulae relying on only a few known variables. As the path would not change drastically

3.6 Unimplemented Algorithms 37

in a short period calculations could be skipped in a scaled manner proportional to the

recent deviation of the malicious UAV from its previous course.

Figure 3.15: Proposed method of efficient path finding.

3.6.2 Swarm Enrolment & Malicious Path Prediction

The current method of swarm enrolment is that each swarm UAV checks for any targets

within its sensor range and, if none found, checks the communications array (simulated

by a static array) to see if any other swarm UAV has a target within its sensor range.

Efforts to create code that predicted the path of the malicious UAV was carried out with

some success and the immediate future movements (i.e. within 0.5 seconds) was found to

be accurate enough that it could be developed into further algorithms. The development

of an algorithm that would intelligently decide on the likely path of the malicious UAV

proved to be outside of the main scope with regards to the amount of time required

to implement. The advantages of a predictive path algorithm lies in the ability to leave

swarm UAVs in position that would not greatly increase the ability of the swarm to pursue

the target due to the distance that swarm UAVs may have to travel to get into formation.

Though not implemented, some thought did go into how such an algorithm would perform.

Figures 3.16 and 3.17 show two examples of how different predicted flight paths may cause

the enrolment of different swarm UAVs. Levels of certainty surround the dashed predicted

flight path which would factor into which swarm UAVs would be enrolled to pursue that

target, based on current swarm size and number of remaining un-enrolled UAVs.

3.6 Unimplemented Algorithms 38

Figure 3.16: Example 1 of predicted malicious UAV path.

Figure 3.17: Example 2 of predicted malicious UAV path.

3.6 Unimplemented Algorithms 39

3.6.3 Proportional Navigation

Initial project goals included utilising existing navigation methods to increase the abilities

of the swarm in pursuing targets. As discussed in Chapter 2, Proportional Navigation

(PN) is a method of dynamic object path prediction used primarily in defensive missiles

to reduce the chance of non-collision. PN and its variants are also used in novel cases

as efficient path finding collision avoidance techniques. Efforts were made to implement

a variant of PN into the coordination code of the swarm UAVs, however it was never

successfully implemented as excessive time was used in debugging.

3.6.4 Multiple Malicious UAVs

Outside of processing power there are no limits to the number of simulated UAVs at any

given time. With this in mind it would be useful to simulate more than one malicious UAV

that is operating within the restricted area at any given time. However this would require

either the swarm enrolling less than the total amount of available UAVs for pursuit during

initial contact of the first malicious UAV or the ability to de-enrol UAVs from the first

swarm to track subsequent targets. This level of coding presents two separate issues; the

coding required for implementation would be complex and the time required to implement

and debug excessive.

Chapter 4

Methodology

4.1 Chapter Overview

This chapter aims to lay out the project methodology for this thesis. Specific sections in-

troduce the overall methodological approach, assumptions underpinning the methodology

used and their rationale, tools utilised, methods of data collection, methods of analysis,

and justification of the methodology chosen.

4.2 Methodological Approach

This dissertation aims to determine the effectiveness of UAVs operating as a swarm when

compared to individual control. In order to achieve this, it is necessary to have quantita-

tive data that can be compared between scenarios that represent a change in independent

variables. The ability to precisely control the independent variables, as well as remove

outside influences that would tarnish the data accuracy, is crucial. For these reasons this

project is completed within a simulated environment through which credible data may be

input to, and taken from, the simulation for further analysis.

Though not able to fully account for all real-life events, the use of simulations for this re-

search project is appropriate as it removes any technical aspects that may delay gathering

of data for analysis. These aspects include UAV faults, freak weather events, and uninten-

tional interference or jamming. The use of software simulation also allows for testing of

4.2 Methodological Approach 41

various UAV platforms and situations, without the time and financial cost that would be

associated with the increased scope. Use of a simulated environment eliminates the need

for ethical considerations with regards to flying experimental (i.e. modified/non-OEM

flight code) UAVs where there is potential to lose control of the UAVs resulting in injury

to personnel or damage to property. The costs of performing research involving up to 11

UAVs would also be infeasible as even consumer-level UAVs considered retail from $600

to $2500 each (DJI 2020). This would mean even a small swarm of 5 UAVs would require

$3000, without accounting for spare parts.

The data collected from the simulation constitutes primary experimental data. The data

is gathered through the manipulation of several variables that are expected to have an

effect on the overall performance of the swarm as a whole. These variables include:

� Number of UAVs that make up the swarm

� Formations the swarm UAVs take

� Flight characteristics of the malicious UAV, including maximum speed and acceler-

ation

� Path the malicious UAV takes that constitutes differing levels of evasiveness

These variables are easily manipulated within a simulated environment, and many more

may be coded to be changed to suit other research questions.

4.2.1 Assumptions & Rationale

In order to reduce the complexity of code required to be completed, a set of assumptions

were made. These assumptions allow for a reduction in coding complexity whilst providing

consistency of results between the three separate malicious UAV path models. Consistency

of results is required to be able to compare the effects that each of separate flight paths the

malicious UAV takes has on pursuit ability. The assumptions applicable to this project

include:

� Discrete time instances set at 0.1 seconds

� Limit of 10 UAVs in the swarm

4.2 Methodological Approach 42

� Constant turn speed for both malicious and swarm UAVs

� All UAVs operate at a constant altitude

� No terrain obstacles will be included, nor collision avoidance between UAVs

� No range limitations due to flight time, transmission distance, or battery capacity

� Sensor accuracy for targeting of the malicious UAV is 100%

Simulation Timing & Swarm Size

All computer-based simulators operate on discrete simulation time instances. For this

project, the simulation time is incremented in 0.1 second intervals. This time period al-

lows for sufficient granularity of movement whilst not imposing an undue burden on the

processor when simulating the maximum number of UAVs for the swarm. The number

of UAVs within the simulation also effects the ability of the processor to run the simula-

tion. For this reason a limit of 10 swarm UAVs is imposed which represents acceptable

performance of the available equipment. An offshoot effect of the discrete nature of the

simulation requires that movement be calculated as an vector residing on the UAVs’ cur-

rent location and ending at the calculated UAV position at the end of the 0.1 second time

period.

Turn Speed

In order to minimise the complexity of the movement code, the turn speed of the UAVs

(both malicious and swarm) maintain the speed at which they entered the turn for the

duration of the turn. (Fotouhi et al. 2017b) outlines the formulae that describes the arc of

a UAV for a given maximum acceleration ability for a constant speed. This only applies

in the instances that the UAV is making a hard turn left or right. Further information

regarding the implementation of a hard turn within the simulation can be found in Chapter

3.

4.2 Methodological Approach 43

Constant Altitude, Terrain & Collisions

To further reduce the large scope of the problem and therefore coding complexity, the

UAVs will operate at a consistent altitude of 20 meters. This effectively constrains the

UAV movements to the horizontal 2D plane. Though the UAVs will not move outside of

this plane for this project, the custom coding has been designed to be transferred to 3D for

further research. In line with reducing overall complexity, thought the INET framework

has modules available to simulate terrain features (both natural or man-made), these

were not introduced to the simulation for the UAVs to avoid due to the time required

to implement. Collision avoidance code was introduced but, due to the work required to

implement a suitable navigation algorithm to deal with path finding, it is disabled.

Range Limitations & Sensor Accuracy

Range limitations regarding either battery life or transmission range are key factors to

the ability of a swarm to function over a longer period of time than that used within this

projects’ simulations. With battery capacity constantly evolving and better construc-

tion techniques resulting in more efficient flight profiles, utilising current range data as

limitations would render the results of this project antiquated relatively quickly. Range

limitations, therefore, were not coded into this project.

Code was initially created to simulate sensor inaccuracy. This was achieved through the

use of a random walk algorithm. Unfortunately, due to the length of time required to

run sufficient simulations that would give a frequency distribution of the sensor accuracy,

it was left disabled. This will reduce the validity of the results though it will not be

detrimental to the overall research conclusion due to all simulations having the same

sensor accuracy. Every swarm UAV will have the exact X/Y coordinate of the malicious

UAV through its sensor function.

4.2 Methodological Approach 44

4.2.2 Simulated UAV Characteristics

Swarm UAVs

In keeping with the aim of this dissertation, readily-available consumer-grade UAV char-

acteristics need to be compared. Table 4.1 outlines the differences between market-leading

UAV models currently available (September 2020). DJI makes up the majority of the list

as they represent a large part of the global UAV market share, as well as offering far more

models than comparable companies.

Table 4.1: Comparison of consumer-grade UAVs (DJI 2020, Autel 2020, Parrot 2020)

UAV Brand Model Max Speed Max Flight Time Max Range

DJI Mavic 2 Pro 72 km/h / 20 m/s 31 min 6 km

Inspire 2 94 km/h / 26.1 m/s 27 min 3.5 km

Mavic Air 2 68.4 km/h / 19 m/s 34 min 6 km

Mavic 2 Zoom 72 km/h / 20 m/s 31 min 6 km

Mavic Spark 50 km/h / 13.8 m/s 16 min 0.5 km

Autel Robotics EVO 72 km/h / 20 m/s 30 min 7 km

Parrot Anafi 55 km/h / 15.3 m/s 25 min 4 km

From this data, utilising median speed as the swarm UAV speed results in a maximum

simulated swarm UAV speed of 20 m/s. Acceleration is set to 4 m/s2. These values are

appropriate as the time taken for the malicious UAV to complete the longest path is 1,524

seconds (as noted in Table 4.3). Adding 10% for the swarm UAVs to be able to settle

into position is just under 28 minutes flight time. This rules out the faster Inspire 2 as an

appropriate simulated UAV as its run-time is 27 minutes, with a much shorter maximum

range than the UAVs that average 20 m/s.

Swarm Initial Positions

Randomisation of the placement of the swarm UAVs is conducted upon each simulation

start to ensure that the placement of the swarm by the algorithm created does not effect

the results. This is done through a pseudo-random number generator that receives its

seed number from the current time, allowing for a sufficient level of randomness between

each simulation run. The placement algorithm pulls a new pseudo-random number for

4.2 Methodological Approach 45

each variable requiring randomisation thereby ensuring no linearities exist between them.

The placement algorithm changes the X and Y location from a preset position to one

within ±15 meters as well as the starting radial angle to any angle within the circle.

Swarm Communications

The cone and surround formations follow specific code that adapts to the varying number

of UAVs in a swarm. As the swarm shares information through the communications

array, each UAV is not restricted to engagement only when the malicious UAV is within

its sensor range.

Malicious UAV

The malicious UAV operates at three different levels of flight characteristics that relate

directly to its speed and acceleration abilities. The base level (Level 1) runs at a slightly

faster speed (21 m/s) than the swarm UAVs (20 m/s) and the same acceleration of 4

m/s2. Level 2 increases the speed to 23 m/s and acceleration to 4.5 m/s2, with Level

3 the highest at 26 m/s and 5 m/s2. These increases in flight characteristics are used

in conjunction with differing flight paths. The first flight path (Path A - Figure 4.1a)

represents a simple spiral search pattern as might be used to ensure coverage of a site for

intelligence, surveillance, and reconnaissance (ISR) reasons. Path B (Figure 4.1b) aims

to replicate site-specific waypoint targetting, and results in a more random pattern with

sharper turns. The “Path C” flight path (Figure 4.1c) is designed solely to test the effects

that an extremely erratic malicious UAV would have on the formation abilities of the

swarm.

Table 4.2: Velocity and acceleration details for each Level.

Level Velocity Acceleration

1 21 m/s 4 m/s2

2 23 m/s 4.5 m/s2

3 26 m/s 5 m/s2

4.3 Data Collection 46

(a) Flight path “A” layout. (b) Flight path “B” layout.

(c) Flight path “C” layout.

Figure 4.1: Malicious UAV flight paths A-C.

4.3 Data Collection

The data collected from the simulations is numerical in nature, mostly being floating point

values representing the distance from the swarm UAV to its formation target. This data

was analysed in Microsoft Excel. Excel can import data in a tabulated format from a text

(.txt) file. Writing the data to a text file in C++ is relatively straight-forward but this

is complicated by the expandable nature of the swarm UAV numbers in the simulation.

Upon simulation start, a text file “output.txt” is created. The code originally had each

swarm UAV open this file at each time period, then write the distance data before closing

the file. This presents a problem as, with increasing numbers of UAVs making up the

swarm, the overhead per time period would increase creating considerable lag on the

system and simulation. A work-around was implemented that involved the creation of

a static array similar to the array used to simulate communications between the swarm

UAVs. The computational effort for storing the data in the array is considerably less than

4.4 Methods Of Analysis 47

Table 4.3: Time for malicious UAV to complete each path type.

Speed/Acceleration Path A Path B Path C

21m/s / 5m/s2 1,331 sec 1,344 sec 1,524 sec

23m/s / 5.5m/s2 1,196 sec 1,230 sec 1,395 sec

26m/s / 6.5m/s2 1,060 sec 1,093 sec 1,240 sec

opening, writing, and closing the text file. In order to store the data in the static array,

the text write code is included in the destructor for the swarm class. This code loops

through each index of the 2D array, and writes the data into the text file in a format

appropriate for Excel to read. With batch processing the new data is amended to the end

of the file, allowing it to only need to be opened once the simulation batch has finished.

Given the malicious UAV does not react to the swarm UAVs and moves to specific coor-

dinates at fixed velocities and accelerations, it is possible to know the length of time that

each path will take to simulate. Table 4.3 shows the simulation times to final “landing”

point. The simulation was set to 1,800 seconds duration to ensure enough time elapsed

to allow all UAVs to finalise their positions.

The median of the ten randomisation iterations are used rather than average in the final

results. This is to allow for any instances where the swarm UAVs are unable to follow as

close resulting in a variation difference. An example would be the simulation returning a

distance of less than 1 meter for nine of the ten runs, but have one run end with a result

of over 1000 meters, which would greatly skew the overall results. This did not happen

often but was the cause of several inconsistencies within the initial dataset. Examples

can be found in Section 5.2.

4.4 Methods Of Analysis

This project conducts its analysis through quantitative means based on original data col-

lected from the simulation runs. Several runs of the same simulation parameters were

conducted in order to verify the results of each battery of tests. The project involves

three factors:

4.4 Methods Of Analysis 48

� Evaluation of swarm performance with increasing number of UAVs making up the

swarm

� Performance of separate coordination algorithms

� Malicious UAVs pre-programmed flight path level of evasiveness

The first factor is tested from two to ten UAVs. Three coordination algorithms (follow,

surround, and cone) are utilised. Of the pre-programmed flight path there are three

different paths represented differing styles of evasiveness. These paths are pre-set and

did not rely or react to the positioning of the swarm UAVs. These combined factors

(illustrated in Figure 4.2) repeated through ten iterations to allow randomisation of swarm

UAV starting positions will result in 2430 treatments, allowing for substantial analysis of

the differences each independent factor has on the other dependent settings.

Figure 4.2: Layout of independent variables cross-analysed.

In order to achieve the objectives, this project sets a baseline. This standard will be either

the successful pursuit of the malicious UAV to its landing site or the minimum distance

of the swarm UAVs from the landing site. As the swarm UAVs will be aiming for target

positions around the malicious UAVs when in swarm mode, the distance measured will be

from the swarm UAVs to its swarm position around the malicious UAVs at the landing

site. Figure 4.3 shows an example of a swarm of surround formation type that has fallen

out of sensor range of the malicious UAV before it has landed. The final distance is the

shortest distance of the 5 vectors (A- E) representing the swarm UAVs final position and

their intended formation positions around the malicious UAV if they had successfully

followed it to its final destination.

The original methodology proposed for determining the effectiveness of the swarms was

to measure the length of time that the swarm was able to stay within sensor range of the

malicious drone. As the project neared completion, this method presented problems re-

garding its ability to be used to compare the effectiveness of each differing variable change.

4.4 Methods Of Analysis 49

Figure 4.3: Example of dependent variable measurement.

The main issue with this method of measurement was that the automated placement of

swarm UAVs changed with each increase of swarm drone numbers. Upon reflection it

was noted that the main goal is to measure the effectiveness of the swarm in following

the malicious drone back to its landing site. This meant that a measure of the distance

from the malicious drones’ final position to the closest swarm drone would better show

the effectiveness of the swarm as a whole.

The resulting data is collated into graphs which plot the minimum distance of the swarm

from their final targets (Y axis) against the number of UAVs in the swarm (X axis). As

each iteration of swarm with increasing numbers will complete three different paths, the

plot will contain a composite overlay of the results of each flight path simulation. Three

composite plots are produced for each of the three different speed/acceleration levels

(Levels 1-3). Each composite plot will be converted into an separate plot that takes the

average of each flight path result for each swarm size. Final analysis is completed through

the comparison of average plots that represent follow, cone, and surround data for each

of the three flight characteristics levels (i.e. Levels 1, 2, & 3 as listed above). Figure 4.4

illustrates the process of information collation. Collation of data in this manner allows

direct visual and numerical comparison of formation effects on both differing UAV flight

paths and flight characteristics.

4.4 Methods Of Analysis 50

Figure 4.4: Flow of results graphed for visual analysis.

4.5 Methodology Justification 51

4.5 Methodology Justification

Though usually conducted with real-world experiments, similar research into individual or

swarm UAVs analysing tracking or path finding methods have relied on numerical analysis

to determine the effectiveness of their research. Research into similar areas of UAV

pursuit and encirclement has been conducted as shown in the Literature Review chapter.

Though some performed their experimental tests on real-world equipment, the typical

numerical analysis used distance as the primary measure of success. The research in Hafez,

Iskandarani, Givigi, Yousefi, Rabbath & Beaulieu (2014), Hafez, Givigi, Schwartz, Yousefi

& Iskandarani (2015) and Hafez, Marasco, Givigi, Iskandarani, Yousefi & Rabbath (2015)

all use radial distance from the target as a measure of their ability to achieve encirclement

of the target.

Chapter 5

Results & Analysis

5.1 Research Variables

This dissertation aimed to determine the effectiveness of multiple UAVs working in concert

to pursue a moving target. The independent variables within the simulation were the

swarm formation, the number of UAVs within the swarm, and the malicious UAV flight

characteristics. The malicious UAV flight characteristics are made up of its velocity,

lateral acceleration, and path type. The monitored dependent variable is the distance

from the closest swarm UAV to its formation target point around the malicious UAV

at the final landing point of the simulation. All of the described variables are of the

continuous type. The swarm UAV flight characteristics (speed and lateral acceleration)

are also factors that would influence the outcome of the simulations. These are controlled

for by fixing the speed and acceleration to be the same value for all simulations. Another

independent variable requiring control is the initial placement of the swarm UAVs, which

are controlled through the use of a randomisation algorithm and multiple simulation runs

to average out the effect of UAV placement.

5.2 Individual Path Comparison Results

This section aims to provide in-depth analysis of the values from the median result of the

ten randomised iterations, comparing the effects of the different malicious UAV paths on

each formation type. As noted in Section 4.3, the median results are used rather than the

5.2 Individual Path Comparison Results 53

mean as any iteration of a swarm that loses sight of the malicious UAV at (for example)

1005 meters would give an output final distance several orders of magnitude larger than

a swarm that lasted another 6 meters which, due to the malicious UAVs landing position

being within the 1000 meter sensor range, is then able to track the UAV to sub-10 meter

distance. This is represented in Figure 5.2 where the results for swarms utilising the

cone formation and following a malicious UAV in Path B configuration had a sudden step

from 1129.2 meters to 4.7 meters final distance between swarm sizes of 2 and 3 UAVs

respectively.

5.2.1 Level 1 - 21m/s 4m/s

Though the results for malicious UAV travelling at 21 m/s had a downwards trend of

final distance, all formation types were within 10 meters of the final target. Results this

close to the target can be classed as having reached the final target position as it is within

100 meters of the final distance. As all formations and swarm compositions reached their

destination, there is no clear data at this flight characteristic level to show any advantages

of swarm formations when pursuing a malicious UAV.

(a) Follow formation results. (b) Surround formation results.

(c) Cone formation results.

Figure 5.1: Comparison of individual formation results for Level 1.

5.2 Individual Path Comparison Results 54

Table 5.1: Level 1 results for Paths A, B, and C, and the average for each formation type.

Follow Surround Cone

A B C Avg A B C Avg A B C Avg

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

1 7.03 5.88 4.19 5.70 4.20 8.07 4.23 5.50 4.22 8.06 4.24 5.51

2 3.81 5.87 4.38 4.68 6.69 4.96 4.79 5.48 6.82 4.00 4.22 5.01

3 3.30 3.49 3.38 3.39 4.37 4.24 4.50 4.37 4.52 4.39 3.49 4.13

4 3.41 3.38 3.54 3.44 3.88 4.36 4.61 4.28 5.70 4.22 3.86 4.59

5 3.32 3.43 4.29 3.68 4.38 4.24 4.64 4.42 4.29 4.39 4.69 4.46

6 3.27 3.40 4.20 3.62 3.45 3.48 3.43 3.45 3.45 4.26 4.45 4.05

7 3.26 3.32 3.35 3.31 3.55 3.41 4.42 3.79 4.40 4.27 4.43 4.37

8 3.23 3.31 3.20 3.25 3.38 3.48 3.52 3.46 4.40 3.86 4.34 4.20

9 3.24 2.92 3.37 3.18 3.50 3.47 3.42 3.46 3.47 4.52 4.16 4.05

10 3.27 3.28 3.36 3.30 3.48 4.21 3.85 3.84 4.34 3.45 4.60 4.13

5.2.2 Level 2 - 23m/s 4.5m/s

The baseline follow-type formation had some interesting artefacts present over the span of

swarm UAV composition numbers. The resulting drop-off points for both A and B path

types stay relatively consistent at 1725 m and 3591 m respectively for all 10 iterations of

swarm size. Path C results in an erratic decreasing of final distance. This seems to be due

to the path having several long sections which allowed for the malicious UAV to outrun

smaller swarm sizes. The cone formation had artefacts present for swarm of sizes 5,7, and

10 (Figure 5.2c). This was due to inconsistencies in the data that came from the results

of Path C, as shown in Table 5.2. These inconsistencies were found to be a result of the

cone formation placement algorithm which assigns the swarm UAVs placements based on

the number of UAVs in the swarm. Uneven numbers are placed with a preference to the

far sides of the cone, whilst even numbers place UAVs with a preference to the direct

front. This, alongside the fact the swarm UAVs have a sensor radius of 1000 meters,

means that the swarm UAVs of larger odd swarm sizes were placed in a position that put

them just out of range of 1000 meters from the final landing site of the malicious UAV,

hence coming to a stop at 1390 - 1660 meters.

5.2 Individual Path Comparison Results 55

(a) Follow formation results. (b) Surround formation results.

(c) Cone formation results.

Figure 5.2: Comparison of individual formation results for Level 2.

Table 5.2: Level 2 results for Paths A, B, and C, and the average for each formation type.

Follow Surround Cone

A B C Avg A B C Avg A B C Avg

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

1 1725.5 3591.1 3100.3 2805.6 1956.8 4966.1 3404.5 3442.5 1956.8 4965.9 3404.5 3442.4

2 1725.5 3591.1 3083.2 2799.9 1539.9 4982.7 1930.4 2817.7 4.3 1129.2 4.2 379.2

3 1725.5 3591.1 3100.4 2805.6 3.5 2119.9 2976.2 1699.8 4.1 4.7 4.4 4.4

4 1725.5 3592.1 3100.4 2806.0 4.4 1980.5 1712.1 1232.4 4.2 4.2 3.5 4.0

5 1725.5 3591.1 3092.4 2803.0 3.4 1564.7 4.3 524.1 4.6 3.9 1391.9 466.8

6 1725.5 3590.8 1496.4 2270.9 4.4 1393.7 3.4 467.2 4.2 4.3 4.3 4.3

7 1725.5 3591.1 1909.1 2408.5 4.3 1311.0 3.5 439.6 3.8 3.9 1657.6 555.1

8 1725.5 3588.0 1835.4 2383.0 3.6 1.7 4.2 3.2 3.5 4.2 0.0 2.6

9 1725.5 3591.0 1042.2 2119.6 3.5 3.5 4.2 3.7 3.5 4.3 5.9 4.6

10 1725.5 3581.1 1461.6 2256.1 3.6 3.9 4.3 3.9 6.0 5.7 1487.7 499.8

5.2 Individual Path Comparison Results 56

5.2.3 Level 3 - 26m/s 5m/s

Table 5.3 outlines the individual results for each swarm size for Level 3 simulations. For

all formation types Path B was the easiest path to track (Figure 5.3). The follow-type

formation had steady results for Paths A and B, with a general trend downwards for Path

C for increasing swarm size. The surround formation (Figure 5.3b) showed a preference for

Path A over C, with a small downwards trend for all three paths. The cone formation had

the greatest trend downwards and final distance for increasing swarm size, showing that

it benefits more from increased number of UAVs in forward positions over the surround

formation.

(a) Follow formation results. (b) Surround formation results.

(c) Cone formation results.

Figure 5.3: Comparison of individual formation results for Level 3.

5.3 Amalgamated Results 57

Table 5.3: Level 3 results for Paths A, B, and C, and the average for each formation type.

Follow Surround Cone

No. A B C Avg A B C Avg A B C Avg

UAVs (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

1 4578.2 3628.9 6174.5 4793.9 4665.9 4088.5 6375.6 5043.3 4665.9 4087.4 6375.6 5043.0

2 4578.2 3628.9 6174.3 4793.8 3838.3 4014.3 5371.2 4407.9 2824.1 2582.0 5728.4 3711.5

3 4578.2 3628.1 5671.3 4625.9 3732.9 2994.1 5023.4 3916.8 2998.9 2160.0 3344.5 2834.5

4 4578.2 3627.8 4947.2 4384.4 3779.8 2812.8 5154.1 3915.6 2830.7 2140.4 3274.4 2748.5

5 4578.2 3628.1 6167.8 4791.4 2939.8 2702.1 4094.2 3245.4 2862.3 2010.7 3553.2 2808.7

6 4578.1 3627.2 4618.2 4274.5 2966.4 2593.8 4059.3 3206.5 2578.8 1979.2 3880.7 2812.9

7 4578.0 3627.0 4810.6 4338.5 2981.5 2533.9 3980.0 3165.1 2293.1 1893.7 3636.2 2607.7

8 4578.1 3625.6 4606.8 4270.2 2832.1 2062.8 4648.5 3181.1 2149.4 1851.9 2959.9 2320.4

9 4578.1 3626.6 4896.5 4367.1 2893.7 2064.7 3947.9 2968.8 1592.0 1806.7 3056.5 2151.8

10 4575.9 3622.2 4592.2 4263.5 2869.6 2036.9 3932.1 2946.2 1265.1 1737.9 3157.8 2053.6

5.3 Amalgamated Results

Figure 5.4 - 5.6 shows the amalgamated results that compare the different swarm forma-

tions to each other for Levels 1, 2, and 3. These plots are based on the UAV with the

minimum final distance from the malicious UAV at the end of the simulation. As there

was a complete set of simulations carried out before randomisation code was introduced,

both graphs from single- and multi-iteration (left and right graphs respectively) are added

to compare and validate the final results.

5.3.1 Statistical Analysis

Table 5.4 outlines the mean final distances and their standard deviation (SD) for each

formation and flight characteristic level. As noted previously, all formation types success-

fully pursued the malicious UAV for Level 1. Level 2 resulted in follow formation mean

distance of 2545 meters with a small SD of 282 meters, surround formation mean distance

of 1063 meters with a large 1228 meter SD, and cone formation mean distance of 536 me-

ters with a SD of 1048 meters. The high SD present in the surround and cone formations

for Level 2 is derived from the smaller swarm sizes having a significantly larger distance to

the target point than swarm sizes over 5 UAVs. Level 3 presented follow formation mean

5.3 Amalgamated Results 58

distance as 4490 meters with a 233 meter SD, surround formation 3600 meters and SD of

700 meters, and cone formation presenting 2909 meters mean distance with 881 meters

SD. Level 3 had smaller SD than Level 2 due to a more consistent downwards trend per

increase in swarm size. Both Level 2 and Level 3 results show a clear improvement in

results over the follow formation type, though the standard deviation of both coordinated

formations are much higher than the follow-type formation.

The higher standard deviation indicates that, though the coordinated swarm types are

better than uncoordinated on average, the results have a wider range than the follow type.

This was initially seen as being a result of the nature of the final distance being used as

the dependent variable. As noted in Section 5.2, the results for a swarm that was less

than 1000 meters (the sensor distance) from the malicious UAV when the malicious UAV

reached its final position would be sub-10s of meters. The results for anything over 1000

meters would mean the swarm would lose sight before the malicious UAV stopped and

therefore not be able to cover the final distance to the formation points. This is why the

median of the iteration results were used to ensure outliers would not cause large shifts

in the overall results.

In an attempt to account for this anomaly the data was put through a simple if-then-else

filter that reduced any value over 1000 meters by 1000 meters, and the statistical analysis

run again (Table 5.5). As expected, no change occurred for the Level 1 formations as all

simulations successfully pursued the target to the final position. There was no change

in SD for the follow-type formation against Level 2 flight characteristics as the 1000 me-

ter reduction is applied across all iterations and swarm sizes. The main effect was with

surround and cone formations, where the reduction of SD was slightly larger than the

reduction in mean final distance for surround type, and significantly larger for cone type

formation. This shows that for the cone formation with Level 2 parameters the sensor

cut-off had a larger effect than for the surround formation method. All three formations

were reduced by the 1000 meters as no simulations successfully pursued the malicious

UAV to the final point, meaning there were no sensor cut-off issues.

5.3 Amalgamated Results 59

Table 5.4: Mean and standard deviation statistics.

FC Level Formation Type Mean Final Distance SD % SD

1

Follow 3.76 m 0.809 22%

Surround 4.21 m 0.771 11%

Cone 4.45 m 0.477 5%

2

Follow 2545.82 m 282.840 18%

Surround 1063.41 m 1228.184 115%

Cone 536.32 m 1048.469 19%

3

Follow 4490.30 m 233.150 11%

Surround 3599.67 m 699.765 195%

Cone 2909.25 m 881.334 30%

Table 5.5: Mean and standard deviation statistics for anomaly-cancelled data.

FC

Level

Formation

Type

Mean Final

Distance
SD %SD

∆ Mean

Final Distance
∆ SD ∆ %SD

1

Follow 3.76 m 0.81 22% 0.00 m 0.00 0%

Surround 4.21 m 0.77 18% 0.00 m 0.00 0%

Cone 4.45 m 0.48 11% 0.00 m 0.00 0%

2

Follow 1545.82 m 282.84 18% -1000.00 m 0.00 7%

Surround 663.41 m 823.17 124% -400.00 m -405.01 9%

Cone 436.32 m 743.97 171% -100.00 m -304.50 -25%

3

Follow 3490.30 m 233.15 7% -1000.00 m 0.00 1%

Surround 2599.67 m 699.77 27% -1000.00 m 0.00 7%

Cone 1909.25 m 881.33 46% -1000.00 m 0.00 16%

5.3.2 Formation Comparison

This sections outlines specific comparison of each formation type through analysis of the

mean results for each flight characteristic level.

5.3 Amalgamated Results 60

Level 1

Figure 5.4 (a) and (b) shows the results of Level 1 simulations for both pre- and post-

randomisation implementation. Due to the method by which the simulator determines

the closest point at the end of the simulation, the results of the randomisation are larger

than pre-randomisation. This is to be expected as the pre-randomisation code took the

minimum distance at the end of the simulation such that the UAVs crossing over the

target point would produce sub-meter distances. However the post-randomisation code

slowed the swarm UAVs to a stop upon hitting the stationary targets, resulting in an

overrun of up to 6 meters. Nevertheless, considering the results typical of Level 2 and 3

and the sensor range of the UAVs (1000 meters), it can be concluded that any distance

sub- 100 meters is a successful pursuit of the malicious UAV to its landing point.

All types of formations (including the base ’follow’ case) successfully pursued the target

to the landing point. As the results are an amalgamation of the three different Path

types, this shows that the swarm UAVs in any configuration can pursue a malicious UAV

of slightly better flight characteristics.

(a) Single-run simulation results. (b) Multi-run randomised simulation results.

Figure 5.4: Level 1 formation result comparison.

Level 2

Figure 5.5 (a) and (b) details the final results pre- and post-randomisation for Level 2.

The post-randomisation data sets a more consistent level for the base follow case, though

not without artefacts present with the cone formation. Regardless, both the surround

and cone formations show significant pursuit abilities over the base follow formation. For

the surround formation the number of UAVs within the swarm has a direct effect on

5.3 Amalgamated Results 61

the ability pursue the malicious UAV, with significant gains found with 5 UAVs or more

within the swarm significantly reducing the final distance.

The cone formation had better results as, due to the layout of the formation, more UAVs

were placed ahead and to the far left and right of the malicious UAV. This resulted in an

increase in reaction time for the swarm as a whole, with the passing of target information

allowing swarm UAVs that fall out of sensor range to still be able to catch up and get

back into position.

(a) Single-run simulation results. (b) Multi-run randomised simulation results.

Figure 5.5: Level 2 formation result comparison.

Level 3

Application of Level 3 flight characteristics to the malicious UAV represented a significant

superiority of speed and acceleration over the swarm UAVs. Level 3 had consistent trends

between the pre- and post-randomisation results, though the averaging of the ten random

iterations led to the distances being lower than the single-run simulations. Though no

formation was able to successfully pursue the malicious UAV to the final resting point,

both the surround and cone formations performed consistently better than the baseline

follow formation for all swarm sizes. The cone formation was able to track the malicious

UAV to within 2000 meters of the final target with the maximum swarm size of 10 UAVs,

with the surround formation being able to track within 3000 meters. Increases in swarm

size had diminishing returns after 5 UAVs for surround formation, and was showing a

slope returning to level values for the cone formation, indicating that an increase in swarm

size would likely not increase the overall ability of the swarm to track a malicious UAV

of such superior flight characteristics. Despite this, both cone and surround formations

showed significant increases in tracking ability over both the non-collaborative follow

5.3 Amalgamated Results 62

formation (51.8% and 30.9% decrease in distance respectively) as well as swarms of the

same formation type but minimum size (44.7% and 33.2% distance decrease respectively).

Even though neither cooperative formations were successful in tracing the malicious UAV

to the final point, the ability to reduce the range to the final location by up to 52% shows

significant reductions in the total distance that would be required to search for the UAV

by other means. This extra time in pursuit may also allow time for long-distance and

better-equipped equipment (e.g. fixed wing UAVs) to be deployed from further afield

which would take over before the swarms battery capacity or communication range is

reached.

(a) Single-run simulation results. (b) Multi-run randomised simulation results.

Figure 5.6: Level 3 formation result comparison.

5.3.3 Target Optimisation Effects

A noticeable effect of the coding of the formations was the lack of flexibility for the swarm

to optimise their targetted positions. As detailed in Chapter 3, a simple efficiency algo-

rithm was implemented that allowed swarm UAVs to better choose the target position

best for the individual UAV, though not without compromises. This algorithm was imple-

mented and showed promise in how the swarm UAVs, within the confines of the algorithm

given, optimised their target preference to reduce the distance they were required to travel

to reach their target. Time constraints resulted in this algorithm only being implemented

for the surround formation.

Subsequent simulation runs were conducted with the randomisation algorithm in place.

Though presenting in the GUI simulations as visually more efficient, the datasets rep-

resented in Figures 5.7 - 5.9 show that there were no significant and consistent gains

made over the non-modified surround formation. This is likely due to the compromise

5.3 Amalgamated Results 63

discussed in Chapter 3 where position node assignment priority is based on swarm UAV

ID. The algorithm could be made more efficient within the confines of the coding restric-

tions through the use of a priority system that has the first UAV determine the smallest

combined distance and assigns position node IDs to each swarm UAV at the start of each

time period. This would represent a shift from a decentralised swarm (decisions are made

individually) to a centralised swarm (some decisions are made by a central node).

Figure 5.7: Level 1 surround efficiency results.

Figure 5.8: Level 2 surround efficiency results.

5.3 Amalgamated Results 64

Figure 5.9: Level 3 surround efficiency results.

5.3.4 Interesting Observations

An overall observation of the three paths defined for the malicious UAV to follow (Paths

A, B, & C) showed that, for the “search pattern” path (Path A), the swarm fell out of

sensor range when the malicious UAV was travelling at 26 m/s but, due to the nature

of the path, was picked back up when the malicious UAV came back around. Another

interesting observation common to all three paths were that increasing the speed of the

malicious UAV did not specifically mean the swarm UAVs would lose the malicious UAV

earlier as, because the swarm UAVs had fallen behind (but not out of range) they were

in a more advantageous position when the malicious UAV changed directions than if they

were closer to it.

Chapter 6

Conclusions and Further Work

6.1 Conclusions

This project aimed to distinguish between different methods of swarm UAV coordination

and their effectiveness in pursuing a target UAV. These results would verify if UAV swarms

can provide redundancy and greater group agility than traditional ground-based radar

systems and expensive individual military-grade UAV solutions. In order to have sufficient

data to distinguish between the different swarm formations and compositions, multiple

simulations were conducted against a malicious UAV of increasing flight characteristics.

Three different levels of flight agility, alongside three differing flight paths, were used to

test the overall effectiveness of the swarm.

The original methodology proposed for determining the effectiveness of the swarms was

to measure the length of time that the swarm was able to stay within sensor range of the

malicious UAV. As discussed, this proved untenable as a method of comparison between

the different independent variables. Instead, the distance from the final position of the

malicious UAV and the closest swarm UAV was chosen as a more appropriate method of

determining swarm effectiveness. Factors that would have an affect the simulation results

but which were not part of this projects scope or were expected to have a linear effect

through all types were set to a fixed value for all simulations. This included the velocity

and lateral acceleration of the swarm UAVs, which were set to 20 m/s and 4 m/s2. The

use of randomisation allowed the effect of initial swarm placement to be averaged out

through ten iterations of each simulation run. The use of random iterations with the

6.1 Conclusions 66

independent variables resulted in 2430 simulation runs being performed for this project.

The quantitative analysis of the final distances from the malicious UAV having completed

differing flight paths with increasing levels of agility (both speed and handling) showed

that both surround and cone formations outperformed a follow-type formation when pur-

suing malicious UAVs operating with flight characteristics far greater than the individual

swarm UAVs ability. Swarm sizes over 5 UAVs were able to successfully pursue the ma-

licious UAV for Level 2 conditions which was operating at a 7.2 km/h velocity and 0.5

m/s2 lateral acceleration advantage over the swarm UAVs. Though not able to success-

fully pursue the malicious UAV to the final point, Level 3 results still showed significant

decreases in the final distance for both formation types over the stock follow-type. The

cone formation showed a 51.8% decrease in distance over the baseline for the maximum

swarm size, and a 44.7% decrease in distance for a swarm of 2 UAVs in cone formation

mode. The surround formation saw a smaller distance decrease of 30.9% over baseline,

and 33.2% when compared to a 2-UAV swarm in the same surround mode. These de-

creases in distance are due to the formations overall increased ability to stay within sensor

range, effectively increasing the time spent in pursuit and maximising the swarms’ ability

to follow the malicious UAV to its final landing place. Even when not able to track the

malicious UAV back to the target point, the ability to stay in pursuit longer reduces the

final distance - hence allowing for a reduction in the search radius required to locate the

landing point of the UAV by other means - whilst also allowing more time for other meth-

ods of tracking to be deployed. It can be concluded from the results presented that use of

either a surround or cone method as described increases the overall flight characteristics

of the swarm, resulting in a group ability that is greater than the sum of its parts. The

use of cone formation presented the best overall results, though the final distance results

in combination with the lower computing resources necessary show there is a place for

the surround method in real-world applications.

This research has provided insight into cost-effective methods of asset protection through

the use of swarm UAVs, whilst developing a foundation from which other related swarm

research can be conducted. This project has enhanced the practical applications of UAV

swarms through the development of two formation algorithms that can be easily adapted

within the base code of user-built UAVs. Applications within the research community have

been created through the development of bespoke modular code within an open-source

simulation environment that allows for further development and testing of swarm and

6.2 Further Work 67

individual UAV-related projects and practical work. As noted in Chapter 1, the design

work, data, and results from this project has been used in a paper that was subsequently

accepted through the peer-review process for presentation at the IEEE UEMCON 2020

conference.

6.2 Further Work

From the outset of this project there have been many topics and lines of inquiry that lend

themselves to further beneficial research for which this research can be used as a base.

Many areas relating to more efficient methods of tracking a malicious UAV can be applied

to determine if an increase in pursuit ability is achieved. As shown in the literature review,

these methods include (but are not limited by) Proportional Navigation, centralised and

decentralised networks, and advanced path finding.

Efforts to adapt the swarm formation algorithm to be more efficient in the allocation

of swarm UAV positions would be expected to result in significant overall gains to the

abilities of the swarm. Different methods of approach for this problem (and resulting

analysis) could range from a straight-coded function native to each UAV to application

of machine learning algorithms. As this would require the use of communication within

the swarm (to broadcast each UAVs current and target positions) analysis of the effects

of different communication methods (e.g. radio, LI-FI, etc.) on the proposed algorithms

could also be conducted.

As noted in the assumptions and rationale section of the methodology chapter, terrain

and path finding were not enabled for these simulations. This was done to reduce overall

complexity of the project, though the ability to add these features are already supported

by the INET framework. This could be coupled with transmission characteristics sup-

ported by the overall OMNeT++ framework to analyse the effects of different terrain

scenarios on the ability for the swarm to pursue a target. Possible scenarios could in-

clude the effects of operating in an area containing hills, buildings, etc. These test-bed

scenarios could also provide research focuses on determining what effects different swarm

compositions (e.g. centralised versus decentralised) would have on the swarms ability to

operate within those environments.

Other types of formations could be checked with the results from this project used as

6.2 Further Work 68

a base of comparison. Modifying the surround formation to bias the circle forward into

an ellipse as in Figure 6.1 or utilising mini-swarms shown in Figure 6.2 may increase the

overall abilities of the swarm.

Figure 6.1: Modified surround formation.

Figure 6.2: Mini-swarm formation.

Other limitations of this project could be lifted and researched, such as moving the re-

search focus of this project from the horizontal 2D plane to a full 3D simulation. This is

supported within the INET framework, with the ability to work with the INET or OMNeT

OSG (Open Scene Graph) modules (each are used slightly differently) would provide a

realistic environment to simulate, especially if coupled with the previously mentioned

6.2 Further Work 69

terrain code. Analysis for this type of simulation could be made for the effects of novel

malicious UAV flight paths including operating at relatively high altitudes.

As UAVs are heavily dependent on their battery capacity in determining the time they can

stay in pursuit, research into whether increases in complexity of formation (i.e. processor

time required to calculate positions & therefore increased battery usage) negates the

advantages of specific swarm formations such as the cone formation recommended above

can be conducted. Further research on this line would include the use of a centralised

topology for the swarm where one UAV conducts the calculations and broadcasts to the

swarm.

Beyond the simulation realm, the formations within this research and that proposed

as further research needs to be applied in the real world to judge their effectiveness

when presented with outside forces. Application within real UAVs will necessitate more

processor-efficient code to ensure that the benefits of the algorithms developed are not

outweighed by the subsequent shortening of flight time through increased battery drain.

References

Akram, R. N., Markantonakis, K., Mayes, K., Habachi, O., Sauveron, D., Steyven, A. &

Chaumette, S. (2017), Security, privacy and safety evaluation of dynamic and static

fleets of drones, in ‘2017 IEEE/AIAA 36th Digital Avionics Systems Conference

(DASC)’, IEEE, pp. 1–12.

Autel (2020), ‘Evo’. Viewed: 5 September 2020.

URL: https://auteldrones.com/products/evo

BBC (2017), ‘Tiny drone lands on queen elizabeth aircraft carrier’. Viewed: 10 October

2019.

URL: https://www.bbc.com/news/uk-scotland-highlands-islands-40910087

BBC (2019), ‘Gatwick airport police “not prepared for two drones”’. Viewed: 9 October

2020.

URL: https://www.bbc.com/news/uk-england-sussex-48929442

Belkhouche, F., Belkhouche, B. & Rastgoufard, P. (2006), ‘Line of sight robot navigation

toward a moving goal’, IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics) 36(2), 255–267.

Boussios, E. G. (2014), ‘The proliferation of drones: A new and deadly arms race’, Journal

of Applied Security Research 9(4), 387–392.

Cevik, P., Kocaman, I., Akgul, A. S. & Akca, B. (2013), ‘The small and silent force

multiplier: a swarm uav—electronic attack’, Journal of Intelligent & Robotic Systems

70(1-4), 595–608.

Cui, Q., Liu, P., Wang, J. & Yu, J. (2017), Brief analysis of drone swarms communica-

tion, in ‘2017 IEEE International Conference on Unmanned Systems (ICUS)’, IEEE,

pp. 463–466.

REFERENCES 71

Dedousis, D. & Kalogeraki, V. (2018), A framework for programming a swarm of uavs, in

‘Proceedings of the 11th PErvasive Technologies Related to Assistive Environments

Conference’, pp. 5–12.

DJI (2020), ‘Dji - the world leader in camera drones/quadcopters for aerial photography’.

Viewed: 5 September 2020.

URL: https://www.dji.com/au

Ehrhard, T. P. (2010), Air force uavs: The secret history, Technical report, Mitchell Inst

for Airpower Studies Arlington VA.

Forbes (2019), “drone swarm’ invaded palo verde nuclear power plant last september —

twice’. Viewed: 10 August 2019.

URL: https://www.forbes.com/sites/davidhambling/2020/07/30/drone-swarm-

invaded-palo-verde-nuclear-power-plant/3940307a43de

Fotouhi, A., Ding, M. & Hassan, M. (2017a), ‘Dronecells: Improving 5g spectral efficiency

using drone-mounted flying base stations’, arXiv preprint arXiv:1707.02041 .

Fotouhi, A., Ding, M. & Hassan, M. (2017b), Understanding autonomous drone ma-

neuverability for internet of things applications, in ‘2017 IEEE 18th International

Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)’,

IEEE, pp. 1–6.

Fu, X., Feng, H. & Gao, X. (2012), ‘Uav mobile ground target pursuit algorithm’, Journal

of Intelligent & Robotic Systems 68(3-4), 359–371.

George, J. & Ghose, D. (2009), A reactive inverse pn algorithm for collision avoidance

among multiple unmanned aerial vehicles, in ‘2009 American Control Conference’,

IEEE, pp. 3890–3895.

Guardian (2019a), ‘Easyjet says gatwick drone chaos cost it £15m’. Viewed: 20 Septem-

ber 2020.

URL: https://www.theguardian.com/business/2019/jan/22/easyjet-gatwick-drone-

cost-brexit-flights

Guardian (2019b), ‘Gatwick drone disruption cost airport just £1.4m’. Viewed: 20

September 2020.

URL: https://www.theguardian.com/uk-news/2019/jun/18/gatwick-drone-

disruption-cost-airport-just-14m

REFERENCES 72

Hafez, A. T., Givigi, S. N., Schwartz, H. M., Yousefi, S. & Iskandarani, M. (2015), Real

time tactic switching for multiple cooperative uavs via model predictive control, in

‘2015 Annual IEEE Systems Conference (SysCon) Proceedings’, IEEE, pp. 432–438.

Hafez, A. T., Iskandarani, M., Givigi, S. N., Yousefi, S., Rabbath, C. A. & Beaulieu, A.

(2014), Using linear model predictive control via feedback linearization for dynamic

encirclement, in ‘2014 American Control Conference’, IEEE, pp. 3868–3873.

Hafez, A. T., Marasco, A. J., Givigi, S. N., Iskandarani, M., Yousefi, S. & Rabbath, C. A.

(2015), ‘Solving multi-uav dynamic encirclement via model predictive control’, IEEE

Transactions on control systems technology 23(6), 2251–2265.

Han, S.-C. & Bang, H. (2004), Proportional navigation-based optimal collision avoid-

ance for uavs, in ‘2nd International Conference on Autonomous Robots and Agents’,

pp. 13–15.

Hooda, D. & Raich, V. (2015), Fuzzy Set Theory and Fuzzy Controller, Alpha Science

International.

Huang, G.-S., Tung, C.-K. & Ciou, J.-C. (2009), To achieve the path planning of mo-

bile robot for a correct destination and direction using fuzzy theory, in ‘2009 IEEE

International Symposium on Industrial Electronics’, IEEE, pp. 1737–1742.

Jung, B. & Sukhatme, G. S. (2002), ‘Tracking targets using multiple robots: The effect

of environment occlusion’, Autonomous robots 13(3), 191–205.

Kakar, J. A. (2015), UAV communications: Spectral requirements, MAV and SUAV chan-

nel modeling, OFDM waveform parameters, performance and spectrum management,

PhD thesis, Virginia Tech.

Lee, G., Chong, N. Y. & Christensen, H. (2010), ‘Tracking multiple moving targets with

swarms of mobile robots’, Intelligent Service Robotics 3(2), 61–72.

Malik, D. S. (2014), C++ programming: Program design including data structures, Nelson

Education.

Marasco, A. J., Givigi, S. N. & Rabbath, C. A. (2012), Model predictive control for the

dynamic encirclement of a target, in ‘2012 American Control Conference (ACC)’,

IEEE, pp. 2004–2009.

REFERENCES 73

Ma’Sum, M. A., Jati, G., Arrofi, M. K., Wibowo, A., Mursanto, P. & Jatmiko, W.

(2013), Autonomous quadcopter swarm robots for object localization and tracking,

in ‘MHS2013’, IEEE, pp. 1–6.

McCune, R. R. & Madey, G. R. (2013), ‘Swarm control of uavs for cooperative hunting

with dddas’, Procedia Computer Science 18, 2537–2544.

NPR (2019), ‘Attack on saudi oil facilities makes oil prices spike’. Viewed: 20 September

2020.

URL: https://www.npr.org/2019/09/16/761118726/oil-prices-jump-following-

drone-attack-on-saudi-oil-facility

Parrot (2020), ‘Parrot - european leader in professional and consumer drones’. Viewed:

5 September 2020.

URL: https://www.parrot.com/en/shop/buy-anafi

Rathbun, D., Kragelund, S., Pongpunwattana, A. & Capozzi, B. (2002), An evolution

based path planning algorithm for autonomous motion of a uav through uncertain en-

vironments, in ‘Proceedings. The 21st Digital Avionics Systems Conference’, Vol. 2,

IEEE, pp. 8D2–8D2.

Rossiter, A. (2018), ‘Drone usage by militant groups: exploring variation in adoption’,

Defense & Security Analysis 34(2), 113–126.

Tang, P., Yang, Y. & Li, X. (2001), Dynamic obstacle avoidance based on fuzzy inference

and transposition principle for soccer robots, in ‘10th IEEE International Conference

on Fuzzy Systems.(Cat. No. 01CH37297)’, Vol. 3, IEEE, pp. 1062–1064.

Tomlin, C., Pappas, G. J. & Sastry, S. (1998), ‘Conflict resolution for air traffic man-

agement: A study in multiagent hybrid systems’, IEEE Transactions on automatic

control 43(4), 509–521.

West, J. P. & Bowman, J. S. (2016), ‘The domestic use of drones: An ethical analysis of

surveillance issues’, Public Administration Review 76(4), 649–659.

Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H. & Bettstetter, C. (2018), ‘Drone

networks: Communications, coordination, and sensing’, Ad Hoc Networks 68, 1–15.

Appendix A

Project Specification

ENG4111/4112 Research Project

Project Specification

For: Chris Arnold

Title: Drone swarm for tracking malicious drone

Major: Electrical & Electronics Engineering

Supervisor: Dr. Jason Brown

Enrolment: ENG4111 – ONL S1, 2020 ENG4112 – ONL S2, 2020

Project Aim: To determine the effectiveness of different drone swarm algorithms when

pursuing a malicious drone of unknown agility or performance.

Programme: Version 1, 16th March 2020

1. Gather information relating to currently used methods for controlling and organising

swarms of UAV’s or other semi-autonomous machines.

2. Create a custom program module that simulates individual UAV drones taking into

account real-world issues such as turn rate, acceleration, target tracking accuracy,

etc.

3. Integrate inter-swarm communications methods for passing data between swarm

UAV’s.

4. Create a custom program module to simulate malicious UAV drone(s) that fly along

a pre-set path.

75

5. Design algorithms for pathfinding, collision avoidance, and swarm positioning.

6. Test code for software bugs and suitability to perform within the simulation frame-

work.

7. Design appropriate simulation parameters to test effectiveness of swarm algorithm

such as the malicious drone flight path and manoeuvring properties or swarm size

and initial positions.

8. Run the simulations and gather appropriate data.

9. Analyse simulation data and adjust simulation parameters if further data is required.

If time permits:

10. Determine if simple machine learning code will increase effectiveness of swarm track-

ing abilities.

11. Convert from 2 axis flight paths (horizontal) to 3 axis simulations.

12. Add environmental obstacles for collision avoidance

13. Source data from real-world UAV’s to use in the simulations.

14. Utilise OMNET++ built-in communication functions to simulate real-world com-

munication issues (latency, range attenuation, packet loss etc)

Appendix B

Project Timeline

Figure B.1: Semester 1 timeline.

77

Figure B.2: Semester 2 timeline.

78

Figure B.3: Timeline phase descriptions.

Appendix C

Risk Assessment

This project was expected to be fully completed in simulation as, without the foundation

that this project laid down, the ability to implement in real-world within the time frame

was not feasible. As such, there were no identifiable physical risks to record. Risks

to the project from not meeting deadlines were considered due to the implications of

unforeseen coding complications on the timeline. These were mitigated by utilising a

modular approach to the research project; there were three overall aims to be achieved

depending on time available. The three aims listed in order of priority are:

� Simulation of drones working in a swarm to pursue a target

� Simulation of different drone coordination algorithms

� Simulation of communication network limitations applied to drone swarm

This ensured a base level of research output in the worst-case scenario that outside influ-

ences caused delays.

Appendix D

DroneModule Code

D.1 DroneMobility.h

#ifndef INET DRONEMOBILITY H

#define INET DRONEMOBILITY H

#include ” i n e t /common/INETDefs . h”

#include ” i n e t /mob i l i ty /base /LineSegmentsMobil ityBase . h”

#include ” i n e t /common/geometry/common/GeographicCoordinateSystem . h”

#include <c s t d l i b>

#include <iostream>

#include <iomanip>

#include <f stream>

#include <s t d i o . h>

#include <ctime>

#include <s t r i ng>

#include <chrono>

//#inc l ude <s t r i n g . h>

namespace i n e t {

/*

* @br ie f Base model f o r swarm drone de c i s i on and con t r o l

*

* @author Chris Arnold

*/

class INET API DroneMobil ity : public LineSegmentsMobil ityBase

D.1 DroneMobility.h 81

{

protected :

double maxSpeed = 1 . 0 ; ///< speed o f the hos t

double speed = 0 . 0 ; ///< speed mean

double speedStdDev = 0 . 0 ; ///< speed standard d e v i a t i on

rad ang le = rad (0 . 0) ; ///< ang l e o f l i n e a r motion

rad angleMean = rad (0 . 0) ; ///< ang l e mean

rad angleStdDev = rad (0 . 0) ; ///< ang l e s tandard d e v i a t i on

double alpha = 0 . 0 ; ///< a lpha parameter in [0 ; 1] i n t e r v a l

double margin = 0 . 0 ; ///< margin at which the hos t g e t s r e p e l l e d from

the border

IMob i l i t y * sourceMob i l i ty = nu l l p t r ;

IMob i l i t y * t a rg e tMob i l i t y = nu l l p t r ;

double sensorRange ;

int droneNum = 0 ;

Coord target , source , targetActua l , swarmTarget ;

double range ;

double maxAccelerat ion ;

double a c c e l e r a t i on , d e c e l e r a t i o n ;

double sensorAccuracy ;

Coord mDronePrevPos ;

Coord mDroneHeading ;

Coord mDroneFuturePos ;

std : : s t r i n g outputFileName ;

std : : o f s tream dataOut ;

int f in i shCount = 0 ;

int seed ;

double i n i tD i s t = =1;

Coord swarmAvTarget ;

double turnRate ;

stat ic std : : s t r i n g s comms [] ;

int swarmSize , swarmPositionNum , to ta l sDrones ;

stat ic double s swarmInfo [3 0] [3 0] ;

stat ic double s dataOut [3 0 0 0 0] [3 0] ;

s td : : s t r i n g outputF i l e = ”outputDrones . txt ” ;

double indSwarmInfo [3 0] [3 0] ;

Coord prevPos i t i on ;

Coord droneHeading ;

Coord d i r e c t i o n ;

double droneElev = 10 ;

double randNum ;

Coord accuracyTrack ;

double accuracyModi f i e r ;

D.1 DroneMobility.h 82

Coord targetWalkModi f ier ;

s td : : s t r i n g targetTrackMode , droneMode , swarmPosMode ;

double surroundRadius ;

double vClosing , prevLOSmag , N;

int i n i t S t a g e ;

int i t e r a t i o n ;

Coord targetPrev , sourcePrev ;

double formationRadius = 0 ;

double mDroneAvgSpeed = 0 , mDroneMaxSpeed = 0 , mDroneAgility = 0 ,

mDroneAcceleration = 1 , mDroneCurrentSpeed = 0 ;

double mDronePrevSpeed = 0 ;

int averageCount = 0 ;

double approachDistance ;

bool overshootMode = fa l se ;

enum movement{STATIONARY, CHASE, APPROACH, FORMATION, END} movementMode ;

double r e lV e l o c i t y ;

bool in i tCheck ;

cTextFigure * t ex tF igure ;

protected :

virtual int numInitStages () const ove r r i d e { return NUM INIT STAGES ; }

/** @br ie f I n i t i a l i z e s mob i l i t y model parameters . */

virtual void i n i t i a l i z e (int s tage) ov e r r i d e ;

/** @br ie f I f the hos t i s too c l o s e to the border i t i s r e p e l l e d */

void preventBorderHugging () ;

/** @br ie f Move the hos t */

virtual void move () ov e r r i d e ;

/** @br ie f Ca l cu l a t e a new t a r g e t p o s i t i o n to move to . */

virtual void s e tTarge tPos i t i on () ov e r r i d e ;

/** @br ie f I n i t i a l i z e s the p o s i t i o n accord ing to the mob i l i t y model . */

virtual void s e t I n i t i a l P o s i t i o n () ove r r i d e ;

// v i r t u a l vo id r e f r e s hD i s p l a y () o v e r r i d e ;

double quadrantHeading () ;

void mDroneFuturePosition () ;

void targetAccuracyAdjust () ;

D.1 DroneMobility.h 83

void targetTrackerUpdate () ;

void checkComms () ;

void targetInfoComms () ;

void c i r c l eFunc t i on () ;

void c i r c l eFunc t i on (double) ;

void c i r c l eFunc t i on (bool) ;

bool c o l l i s i o nChe ck () ;

void c o l l i s i o nAvo i d () ;

void setAccuracyTrack () ;

void targetTrackModeModify () ;

void swarmPosit ioning () ;

void targetApproach () ;

void speedModify (std : : s t r i n g) ;

void speedModify (double) ;

void convergeDiverge () ;

void tangentCoord () ;

void updateVar iab les () ;

void placeMark () ;

void surroundCheck () ;

int l e f tRightCheck () ;

void pr in tToFi l e () ;

D.2 DroneMobility.cc 84

void su r r oundE f f i c i en cy () ;

unsigned long xorsh f96 (void) ;

public :

virtual double getMaxSpeed () const ove r r i d e { return speed ; }

DroneMobil ity () ;

˜DroneMobil ity () ;

} ;

} // namespace i n e t

#endif // i f n d e f INET GAUSSMARKOVMOBILITY H

D.2 DroneMobility.cc

#include ” i n e t /mob i l i ty / s i n g l e /DroneMobil ity . h”

#define MAX DRONE LIMIT 30

#define COMMSARRAYDATA 20

#define SWARMNUM 0

#define TARGETX 1

#define TARGETY 2

#define TARGET Z 3

#define SOURCE X 4

#define SOURCE Y 5

#define SOURCE Z 6

#define SWARMPOS 7

#define COLLISION RADIUS 10

#define PI osg : : PI

#define TARGETTRACK ” d i r e c t ”

#define FASTER true

#define SLOWER fa l se

#define ENABLED true

#define PICONV *180/PI

#define DEG *180/PI

namespace i n e t {

enum s i d e {LEFT,RIGHT,STRAIGHT} ;

Define Module (DroneMobil ity) ;

D.2 DroneMobility.cc 85

std : : s t r i n g DroneMobil ity : : s comms [MAX DRONE LIMIT] ;

double DroneMobil ity : : s swarmInfo [3 0] [3 0] ;

double DroneMobil ity : : s dataOut [3 0 0 0 0] [3 0] ;

DroneMobil ity : : DroneMobil ity ()

{

// s t d : : remove (” outputDrones . t x t ”) ;

}

DroneMobil ity : : ˜ DroneMobil ity ()

{

i f (droneNum == 0) {

std : : s t r i n g outputFileName = swarmPosMode + ” . txt ” ;

dataOut . open (”output . txt ” , s td : : i o s b a s e : : app) ;

for (int j = 0 ; j < 10+2; j++){

i f (j < swarmSize+2){

dataOut << std : : t o s t r i n g (s dataOut [swarmSize] [j]) << ”\ t ” ;

} else {

dataOut << ”\ t ” ;

}

}

dataOut << endl ;

}

dataOut . c l o s e () ;

}

void DroneMobil ity : : i n i t i a l i z e (int s tage)

{

LineSegmentsMobil ityBase : : i n i t i a l i z e (s tage) ;

EV INFO << ” i n i t i a l i z i n g DroneMobil ity s tage ” << s tage << endl ;

i n i t S t a g e = stage ;

i f (s tage == INITSTAGE LOCAL) {

droneNum = par (”droneNumber”) ;

EV INFO << ” should be only here on i n i t s tage 0 . s tage : ” << s tage

<< ” drone : ” << droneNum<<endl ;

maxSpeed = par (”maxSpeed”) ;

speed = par (” speed”) ;

to ta l sDrones = par (” swarmSize”) ;

s t a t i ona ry = fa l se ;

movementMode = CHASE;

EV INFO << ”movementMode : ” << movementMode << endl ;

averageCount = 0 ;

D.2 DroneMobility.cc 86

sourceMob i l i ty = getModuleFromPar<IMobi l i ty >(par (” sourceMob i l i ty ”) ,

this) ;

t a r g e tMob i l i t y = getModuleFromPar<IMobi l i ty >(par (” ta rg e tMob i l i t y ”) ,

this) ;

sensorRange = par (” sensorRange ”) ;

Coord targetWalkModi f ier ;

i t e r a t i o n = par (” i t e r a t i o n ”) ;

swarmSize = par (” swarmSize”) ;

seed = i t e r a t i o n + swarmSize *10 + time (NULL) ;

srand (seed) ;

a c c e l e r a t i o n = de c e l e r a t i o n = par (” a c c e l e r a t i o n ”) ;

sensorAccuracy = par (” sensorAccuracy ”) ;

surroundRadius = par (” surroundRadius ”) ;

in i tCheck = true ;

targetTrackMode = par (” targetTrackMode”) . s td s t r i ngVa lue () ;

droneMode = par (”droneMode”) . s td s t r i ngVa lue () ;

swarmPosMode = par (”swarmPosMode”) . s td s t r i ngVa lue () ;

mDronePrevPos = mDroneFuturePos = Coord () ; // i n i t i a l i s e prev pos as

0 ,0 ,0

turnRate = par (” turnRate ”) ; // turn ra t e shou ld be i n v e r s e l y

p ropo r t i ona l to speed (in degrees per second

s comms [droneNum] = ” t e s t ” ;

overshootMode = par (”overshootMode”) ;

double animSpeed = getEnvir ()=>getAnimationSpeed () ;

EV INFO << s comms [droneNum]<< droneNum << ” ani speed : ” << animSpeed

<< endl ;

s swarmInfo [MAX DRONE LIMIT] [2 9] = {} ;

s dataOut [3 0 0 0 0] [2 9] = {} ;

cCanvas * canvas = getSystemModule ()=>getCanvas () ; // t o p l e v e l canvas

canvas=>setAnimationSpeed (1 . 0 , this) ; //smooth animation

cFigure * f i g u r e ;

switch (droneNum) {

case 0 :{

f i g u r e = canvas=>getFigureByPath (”drone0 . l a b e l ”) ;

break ;

}

case 1 :{

f i g u r e = canvas=>getFigureByPath (”drone1 . l a b e l ”) ;

break ;

}

case 2 :{

f i g u r e = canvas=>getFigureByPath (”drone2 . l a b e l ”) ;

break ;

D.2 DroneMobility.cc 87

}

case 3 :{

f i g u r e = canvas=>getFigureByPath (”drone3 . l a b e l ”) ;

break ;

}

case 4 :{

f i g u r e = canvas=>getFigureByPath (”drone4 . l a b e l ”) ;

break ;

}

case 5 :{

f i g u r e = canvas=>getFigureByPath (”drone5 . l a b e l ”) ;

break ;

}

case 6 :{

f i g u r e = canvas=>getFigureByPath (”drone6 . l a b e l ”) ;

break ;

}

case 7 :{

f i g u r e = canvas=>getFigureByPath (”drone7 . l a b e l ”) ;

break ;

}

case 8 :{

f i g u r e = canvas=>getFigureByPath (”drone8 . l a b e l ”) ;

break ;

}

case 9 :{

f i g u r e = canvas=>getFigureByPath (”drone9 . l a b e l ”) ;

break ;

}

default :

break ;

}

t ex tF igure = check and cast<cTextFigure *>(f i g u r e) ;

textFigure=>setText (”x”) ;

textFigure=>s e tCo lo r (” red ”) ;

}

}

void DroneMobil ity : : preventBorderHugging ()

{

bool l e f t = (l a s tP o s i t i o n . x < constraintAreaMin . x + margin) ;

D.2 DroneMobility.cc 88

bool r i g h t = (l a s tP o s i t i o n . x >= constraintAreaMax . x = margin) ;

bool top = (l a s tP o s i t i o n . y < constraintAreaMin . y + margin) ;

bool bottom = (l a s tP o s i t i o n . y >= constraintAreaMax . y = margin) ;

i f (top | | bottom) {

angleMean = bottom ? deg (270 . 0) : deg (9 0 . 0) ;

i f (r i g h t)

angleMean == deg (4 5 . 0) ;

else i f (l e f t)

angleMean += deg (4 5 . 0) ;

}

else i f (l e f t)

angleMean = deg (0 . 0) ;

else i f (r i g h t)

angleMean = deg (180 . 0) ;

}

void DroneMobil ity : : move ()

{

s imt ime t now = simTime () ;

i f (now == nextChange) {

targetTrackerUpdate () ; // s imu la t e s p u l l s the i n f o from the image

proce s s ing

targetInfoComms () ;

checkComms () ; // s imu la t e s p u l l i n g i n f o from s t a t i c comms array

mDroneFuturePosition () ; // p r e d i c t mDrone heading = mainly f o r

sDrone enro l lment

prevPos i t i on = l a s tP o s i t i o n ;

l a s tP o s i t i o n = ta r g e tPo s i t i o n ;

s e tTarge tPos i t i on () ;

l a s tV e l o c i t y = (t a r g e tPo s i t i o n = l a s tP o s i t i o n) / (nextChange =

simTime ()) . dbl () ;

EV INFO << ” l a s tV e l o c i t y : ” << l a s tV e l o c i t y << ” speed : ” << speed

<< ” simtime : ”<<simTime () . dbl ()<<endl ;

placeMark () ;

p r in tToFi l e () ;

}

hand le I fOuts ide (REFLECT, l a s tPo s i t i o n , l a s tVe l o c i t y , ang le) ;

}

void DroneMobil ity : : p r in tToFi l e () {

D.2 DroneMobility.cc 89

int timeStamp = c e i l (simTime () . dbl () *10) ;

int modeOut = =1;

i f (swarmPosMode == ” f o l l ow ”) {

modeOut = 1 ;

} else i f (swarmPosMode == ”surround”) {

modeOut = 2 ;

} else i f (swarmPosMode == ”cone”) {

modeOut = 3 ;

}

i f (droneNum == 0) {

s dataOut [swarmSize] [0] = modeOut ;

s dataOut [swarmSize] [1] = i t e r a t i o n ;

}

s dataOut [swarmSize] [droneNum+2] = source . d i s t ance (swarmTarget) ;

}

void DroneMobil ity : : placeMark () {

textFigure=>s e tPo s i t i o n (cFigure : : Point (t a r g e t . x , t a r g e t . y)) ;

}

void DroneMobil ity : : checkComms () {

int tempCheck = 0 ;

for (int i = 0 ; i<MAX DRONE LIMIT; i++){

for (int j = 0 ; j<COMMSARRAYDATA; j++){

indSwarmInfo [i] [j] = s swarmInfo [i] [j] ;

}

i f (indSwarmInfo [i] [0] !==1 && indSwarmInfo [i] [0] ! = 0) {// i f t h a t drone

has a t a r g e t

t a r g e t . x = s swarmInfo [i] [TARGETX] ;

t a r g e t . y = s swarmInfo [i] [TARGETY] ;

t a r g e t . z = s swarmInfo [i] [TARGET Z] ; // use t h e i r i n f o

i f ((swarmPosMode == ”surround” | | swarmPosMode == ”cone”) &&

movementMode == STATIONARY) {

movementMode = CHASE;

}

}

tempCheck += s swarmInfo [i] [SWARMNUM] ;

}

EV INFO << ”swarmSize : ” << swarmSize ;

}

void DroneMobil ity : : targetInfoComms () {

D.2 DroneMobility.cc 90

// sends in format ion to s t a t i c array

i f (movementMode != STATIONARY) {

s swarmInfo [droneNum] [SWARMNUM] = 1 ;

s swarmInfo [droneNum] [TARGETX]= ta rg e t . x ;

s swarmInfo [droneNum] [TARGETY]= ta rg e t . y ;

s swarmInfo [droneNum] [TARGET Z]= ta rg e t . z ;

s swarmInfo [droneNum] [TARGETX+3]= targe tActua l . x ;

s swarmInfo [droneNum] [TARGETY+3]= targe tActua l . y ;

s swarmInfo [droneNum] [TARGET Z+3]= targe tActua l . z ;

} else { // i f drone doesn ’ t have a t a r g e t or i s a t end (so i s s t a t i ona r y)

s swarmInfo [droneNum] [SWARMNUM] = =1;// unenrol from swarm

s swarmInfo [droneNum] [TARGETX]= =1;

s swarmInfo [droneNum] [TARGETY]= =1;

s swarmInfo [droneNum] [TARGET Z]= =1;

s swarmInfo [droneNum] [TARGETX+3]= =1;

s swarmInfo [droneNum] [TARGETY+3]= =1;

s swarmInfo [droneNum] [TARGET Z+3]= =1;

}

s swarmInfo [droneNum] [SOURCE X]= source . x ;

s swarmInfo [droneNum] [SOURCE Y]= source . y ;

s swarmInfo [droneNum] [SOURCE Z]= source . z ;

}

void DroneMobil ity : : updateVar iab les () {

EV INFO << ”mdroneCurrentSpeed : ” << mDroneCurrentSpeed << ” ” <<

mDroneHeading ;

mDroneCurrentSpeed = mDronePrevPos . d i s t anc e (t a r g e t) / update Inte rva l . dbl ()

;

EV INFO << ”mdroneCurrentSpeed : ” << mDroneCurrentSpeed << ” ” <<

mDronePrevPos . d i s t ance (t a r g e t) <<endl ;

}

void DroneMobil ity : : s e tTarge tPos i t i on ()

//mainly used to update t a r g e tPo s i t i o n through speed (speedModify) &

d i r e c t i o n (c i r c l eFunc t i on) v a r i a b l e s

{

EV INFO << ” here : ” << (mDroneCurrentSpeed < 0 .5 && speed < 0 . 5) << endl ;

i f (mDroneCurrentSpeed < 0 .5 && speed < 0 . 5) {

i f (f in i shCount++ > 10) {

EV INFO << ”end here ” << endl ;

movementMode = END;

D.2 DroneMobility.cc 91

}

}

nextChange = simTime () + update Inte rva l ;

source = sourceMobi l i ty=>getCurrentPos i t i on () ;

droneHeading = (source = prevPos i t i on) ;

EV INFO << ” ta r g e t : ” << t a r g e t << ” targetPrev : ” << targetPrev <<

endl ;

switch (movementMode) {

case STATIONARY:{

swarmPosit ioning () ;

i f (speed>0){

speedModify (0 . 0) ; // s low down to s top

t a r g e tPo s i t i o n = l a s tP o s i t i o n + d i r e c t i o n * (speed *

update Inte rva l . dbl ()) ;

}

// check f o r change in s t a t e

EV INFO << ” d i s t : ” << source . d i s t anc e (t a r g e t)<< ” range : ” <<

sensorRange<<endl ;

i f (source . d i s t anc e (t a r g e t)<= sensorRange) {

movementMode = CHASE;

EV INFO << ” here ” << endl ;

}

break ;

}

case CHASE:{

EV INFO << ” chase mode” << endl ;

EV INFO << ”sDroneHeading : ” << droneHeading<< ” prev pos : ” <<

prevPos i t ion<< ” source : ” << source<< ” d i f f : ” <<(source =

prevPos i t i on)<<endl ;

targetTrackModeModify () ; // changes where the t a r g e t po in t i s +

targetApproach

i f (c o l l i s i o nChe ck ()) {

c o l l i s i o nAvo i d () ; //modify t a r g e tPo s i t i o n to avoid o b s t a c l e

c i r c l eFunc t i on (true) ; // check w i th in bounds o f turn ing c i r c l e &

modify speed based on mDrone pos in turn c i r c l e

EV INFO << ”near c o l l i s i o n ”<<endl ;

t a r g e tPo s i t i o n = l a s tP o s i t i o n + d i r e c t i o n * (speed *

update Inte rva l . dbl ()) ;

} else {// i f not go ing to c o l l i d e wi th something

c i r c l eFunc t i on (true) ; // check w i th in bounds o f turn ing c i r c l e &

modify speed based on mDrone pos in turn c i r c l e

speedModify (maxSpeed) ;

D.2 DroneMobility.cc 92

t a r g e tPo s i t i o n = l a s tP o s i t i o n + d i r e c t i o n * (speed *

update Inte rva l . dbl ()) ; //need to change f o r t a r g e t i n g method

}

EV INFO << ” cur rent heading (degree s) : ” << (atan2 (droneHeading . y ,

droneHeading . x) *180/PI) << ” ta r g e t heading : ” << (atan2 (

d i r e c t i o n . y , d i r e c t i o n . x) *180/PI) <<endl ;

EV INFO << ”my l o c a t i o n : ” << source << ” : : next l o c a t i o n : ” <<

t a r g e tPo s i t i o n << ” speed : ”<< speed<< endl ;

double ang le = atan2 (t a r g e t . y=source . y , t a r g e t . x=source . x) ;

EV INFO << ” ang le : ” << ang le *180/PI<<” ta r g e t : ”<<target<<” source : ”

<< source<< endl ;

Coord temp = droneHeading = mDroneHeading ;

r e lV e l o c i t y = sq r t (pow(temp . x , 2) + pow(temp . y , 2)) / update Inte rva l . dbl

() ;

double distanceToSlow = (pow(speed=r e lVe l o c i t y , 2) = pow(speed , 2))

/(2* d e c e l e r a t i o n) ;

EV INFO << ” r e l v e l : ” << r e lV e l o c i t y << ” distanceToSlow : ” << abs (

distanceToSlow) << ” act d i s t ance : ”<<source . d i s t anc e (

swarmTarget)<< endl ;

i f (in i tCheck) {

in i tCheck = fa l se ;

break ;

}

i f (source . d i s t anc e (ta rge tActua l) > sensorRange) {

movementMode = STATIONARY;

} else i f (overshootMode == ENABLED && source . d i s t ance (swarmTarget) <=

abs (distanceToSlow)) {

movementMode = APPROACH;

EV INFO << ”approach mode ac t i va t ed ” << endl ;

}

break ;

}

case APPROACH:{

EV INFO << ”approach mode” << endl ;

targetTrackModeModify () ;

Coord temp = droneHeading = mDroneHeading ;

r e lV e l o c i t y = sq r t (pow(temp . x , 2) + pow(temp . y , 2)) / update Inte rva l . dbl

() ;

double distanceToSlow = (pow(speed=r e lVe l o c i t y , 2) = pow(speed , 2))

/(2* d e c e l e r a t i o n) ;

EV INFO << ” r e l v e l : ” << r e lV e l o c i t y << ” distanceToSlow : ” << abs (

D.2 DroneMobility.cc 93

distanceToSlow) << ” act d i s t ance : ”<<source . d i s t anc e (

swarmTarget)<< endl ;

speedModify (mDroneCurrentSpeed) ;

c i r c l eFunc t i on (true) ;

EV INFO << ” r e l v e l : ” << r e lV e l o c i t y << ” distanceToSlowmod : ” <<

abs (distanceToSlow *1 . 2) << ” act d i s t ance : ”<<source . d i s t anc e (

swarmTarget)<< endl ;

t a r g e tPo s i t i o n = l a s tP o s i t i o n + d i r e c t i o n * (speed * update Inte rva l .

dbl ()) ;

EV INFO << ”a : ” <<(source . d i s t anc e (swarmTarget) > distanceToSlow

+1.2) << ” b : ” <<(r e lV e l o c i t y > a c c e l e r a t i o n) << endl ;

i f (source . d i s t anc e (swarmTarget) > abs (distanceToSlow+1.2)) {// | |

r e lV e l o c i t y > a c c e l e r a t i o n){

movementMode = CHASE;

}

i f (source . d i s t anc e (swarmTarget) < 15 | | r e lV e l o c i t y <= ac c e l e r a t i o n)

{

formationRadius = 10 ;

movementMode = FORMATION;

}

break ;

}

case FORMATION:{

EV INFO << ” format ion mode” << endl ;

targetTrackModeModify () ;

speedModify (mDroneCurrentSpeed<0.5 ? 0 : mDroneCurrentSpeed) ;

Coord temp = droneHeading = mDroneHeading ;

r e lV e l o c i t y = sq r t (pow(temp . x , 2) + pow(temp . y , 2)) / update Inte rva l . dbl

() ;

double distanceToSlow = (pow(speed=r e lVe l o c i t y , 2) = pow(speed , 2))

/(2* d e c e l e r a t i o n) ;

EV INFO << ” r e l v e l : ” << r e lV e l o c i t y << ” distanceToSlow : ” << abs (

distanceToSlow) << ” act d i s t ance : ”<<source . d i s t anc e (

swarmTarget)<< ” ta r g e t : ” << swarmTarget << endl ;

double mDroneHeadingAngle = atan2(=mDroneHeading . y , mDroneHeading . x)

;

c i r c l eFunc t i on (true) ;

t a r g e tPo s i t i o n = l a s tP o s i t i o n + d i r e c t i o n * (speed * update Inte rva l .

dbl ()) ;

i f (source . d i s t anc e (swarmTarget) > formationRadius) {

movementMode = CHASE;

}

D.2 DroneMobility.cc 94

break ;

}

case END:{}

default :{

break ;

}

}

}

void DroneMobil ity : : targetApproach () {

speedModify (mDroneCurrentSpeed) ;

EV INFO << ”approach mode . s e t t i n g speed to ” << mDroneCurrentSpeed <<

endl ;

}

void DroneMobil ity : : c i r c l eFunc t i on (double headingInput) {// take s r e f e r ence

input . not s t opp ing sudden turns

double rad iu s = speed * speed / a c c e l e r a t i o n ; //meters

double theta = (speed * update Inte rva l . dbl () * a c c e l e r a t i o n / speed) ;

double maxTurnAngle = PI/2 = acos (sq r t (1= cos (theta) /2)) ;

// determine the r e l a t i v e ang l e o f the mDrone

double heading = (atan2(=droneHeading . y , droneHeading . x)) ; // rads

Coord mHeadingCoord = ta rg e t = source ;

//EV INFO << ” t a r g e t : ” <<t a r g e t<< ” source : ” <<source<< ”

mHeadingCoord : ” <<mHeadingCoord<<end l ;

double angleToTarget = (atan2(=mHeadingCoord . y , mHeadingCoord . x)) ;

double d i f f e r e n c e = headingInput = heading ;

EV INFO << ” headingInput : ” << headingInput DEG<< ” heading : ” <<

heading DEG;

EV INFO << ” d i f f e r e n c e : ” << d i f f e r e n c e DEG;

i f (d i f f e r e n c e > PI) {

d i f f e r e n c e = d i f f e r e n c e =(2*PI) ;

EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

} else i f (d i f f e r e n c e < =PI) {

d i f f e r e n c e = d i f f e r e n c e + (2*PI) ;

EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

}

EV INFO << endl ;

i f (abs (d i f f e r e n c e) > maxTurnAngle) { // t a r g e t ou t s i d e turn arc

double turnAngle = 0 ;

i f (speed == 0) {

speedModify (”FASTER”) ;

D.2 DroneMobility.cc 95

} else i f (d i f f e r e n c e > 0) { // t a r g e t to l e f t o f drone

turnAngle = heading + maxTurnAngle ;

EV INFO << ” turn l e f t ” << endl ;

} else {

turnAngle = heading = maxTurnAngle ;

EV INFO << ” turn r i gh t ” << endl ;

}

double xMove = cos (turnAngle) ;

double yMove = =s i n (turnAngle) ;

d i r e c t i o n = Coord (xMove , yMove , 0 . 0) ;

} else { // wi th in turn arc

i f (speed == 0)

speedModify (”FASTER”) ;

d i r e c t i o n = (ta r g e t = source) . normal ize () ;

}

}

void DroneMobil ity : : c i r c l eFunc t i on (bool check) {

double rad iu s = speed * speed / a c c e l e r a t i o n ; //meters

double theta = (speed * update Inte rva l . dbl () * a c c e l e r a t i o n / speed) ;

double maxTurnAngle = PI/2 = acos (sq r t (1= cos (theta) /2)) ;

double heading = (atan2(=droneHeading . y , droneHeading . x)) ; // rads

Coord mHeadingCoord = ta rg e t = source ;

double angleToTarget = (atan2(=mHeadingCoord . y , mHeadingCoord . x)) ;

double d i f f e r e n c e = angleToTarget = heading ;

i f (d i f f e r e n c e > PI) {

d i f f e r e n c e = d i f f e r e n c e =(2*PI) ;

EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

} else i f (d i f f e r e n c e < =PI) {

d i f f e r e n c e = d i f f e r e n c e + (2*PI) ;

EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

}

i f (abs (d i f f e r e n c e) > maxTurnAngle) { // t a r g e t ou t s i d e turn arc

double turnAngle = 0 ;

i f (speed == 0 && movementMode != FORMATION) {

speedModify (”FASTER”) ;

} else i f (d i f f e r e n c e > 0) { // t a r g e t to l e f t o f drone

turnAngle = heading + maxTurnAngle ;

EV INFO << ” turn l e f t ” << endl ;

} else {

turnAngle = heading = maxTurnAngle ;

EV INFO << ” turn r i gh t ” << endl ;

}

D.2 DroneMobility.cc 96

double xMove = cos (turnAngle) ;

double yMove = =s i n (turnAngle) ;

d i r e c t i o n = Coord (xMove , yMove , 0 . 0) . normal ize () ;

} else { // wi th in turn arc

i f (speed == 0)

speedModify (”FASTER”) ;

double xMove = cos (d i f f e r e n c e) ;

double yMove = =s i n (d i f f e r e n c e) ;

d i r e c t i o n = (ta r g e t = source) . normal ize () ;

}

}

int DroneMobil ity : : l e f tRightCheck () {

double heading = (atan2(=droneHeading . y , droneHeading . x)) ; // rads

Coord mHeadingCoord = ta rg e t = source ;

double angleToTarget = (atan2(=mHeadingCoord . y , mHeadingCoord . x)) ;

double d i f f e r e n c e = angleToTarget = heading ;

i f (d i f f e r e n c e > PI) {

d i f f e r e n c e = d i f f e r e n c e =(2*PI) ;

EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

} else i f (d i f f e r e n c e < =PI) {

d i f f e r e n c e = d i f f e r e n c e + (2*PI) ;

EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

}

i f (d i f f e r e n c e > 0) { // t a r g e t to l e f t o f drone

return 1 ;

EV INFO << ” ta r g e t l e f t ” << endl ;

} else {

return =1;

EV INFO << ” ta r g e t r i g h t ” << endl ;

}

}

void DroneMobil ity : : tangentCoord () {

double radiusSDrone = speed * speed / a c c e l e r a t i o n ; //meters

double radiusMDrone = mDroneCurrentSpeed*mDroneCurrentSpeed/

mDroneAcceleration ;

double droneDistance = source . d i s t anc e (t a r g e t) ;

double tangentAngle , tangentA2 ;

double angleToMDrone = atan2 (t a r g e t . y=source . y , t a r g e t . x=source . x) ;

double angleToSDrone = atan2 (source . y=t a r g e t . y , source . x=t a r g e t . x) ;

D.2 DroneMobility.cc 97

Coord tangentA1Coord , tangentA2Coord , sTurnCenterPoint , mTurnCenterPoint ;

//=cen t r epo in t o f turn ing c i r c l e

double sDroneHeading = atan2 (droneHeading . y , droneHeading . x) ;

s i d e sDroneSide = STRAIGHT;

s i d e mDroneSide = STRAIGHT;

i f (angleToMDrone=sDroneHeading < 0) {// t a r g e t to drones r i g h t

sDroneSide = RIGHT;

sTurnCenterPoint = source + Coord (radiusSDrone * cos (sDroneHeading=PI

/2) , radiusSDrone * s i n (sDroneHeading=PI /2)) ;

EV INFO << ” turn r i gh t : ” <<Coord (radiusSDrone * cos (sDroneHeading=PI

/2) , radiusSDrone * s i n (sDroneHeading=PI /2)) ;

} else {

sDroneSide = LEFT;

sTurnCenterPoint = source + Coord (radiusSDrone * cos (sDroneHeading+PI

/2) , radiusSDrone * s i n (sDroneHeading+PI /2)) ;

EV INFO << ” turn l e f t : ” <<Coord (radiusSDrone * cos (sDroneHeading+PI

/2) , radiusSDrone * s i n (sDroneHeading+PI /2)) ;

}

double mDroneHeadingAngle = atan2 (mDroneHeading . y , mDroneHeading . x) ;

i f (angleToSDrone = mDroneHeadingAngle < 0) {

mDroneSide = RIGHT;

EV INFO << ” mDrone r i g h t s i d e ”<<angleToSDrone *180/PI<<” ”<<

mDroneHeadingAngle*180/PI ;

mTurnCenterPoint = ta rg e t + Coord (radiusMDrone* cos (

mDroneHeadingAngle=PI /2) , radiusMDrone* s i n (mDroneHeadingAngle=PI

/2)) ;

} else {

mDroneSide = LEFT;

EV INFO << ” mDrone l e f t s i d e ”<<angleToSDrone *180/PI<<” ”<<

mDroneHeadingAngle*180/PI ;

mTurnCenterPoint = ta rg e t + Coord (radiusMDrone* cos (

mDroneHeadingAngle+PI /2) , radiusMDrone* s i n (mDroneHeadingAngle+PI

/2)) ;

}

EV INFO << ” turnCenterPoint : ” << sTurnCenterPoint<< endl ;

i f (sDroneSide == STRAIGHT) {

} else i f (sDroneSide != mDroneSide) {// i n t e r n a l tangent

EV INFO << ” i n t e r n a l tangent ” ;

double radiusAdd = radiusSDrone + radiusMDrone ;

double hypA1 = 0 ;

double r a t i o = radiusAdd/radiusMDrone ;

D.2 DroneMobility.cc 98

double x = droneDistance /(r a t i o +1) ;

tangentAngle = acos (radiusAdd /(droneDistance = x)) ;

tangentAngle += angleToSDrone ;

tangentA2Coord = mTurnCenterPoint + Coord (radiusAdd* cos (tangentAngle

) , radiusAdd* s i n (tangentAngle)) ;

// tangentA2Coord =

} else {// e x t e r na l tangent

EV INFO << ” ex t e rna l tangent ” ;

double rad iusSubt rac t = radiusSDrone = radiusMDrone ;

tangentAngle = acos (rad iu sSubt rac t / droneDistance) ;

}

}

void DroneMobil ity : : convergeDiverge () {

}

void DroneMobil ity : : speedModify (std : : s t r i n g input) {

EV INFO << ” speed : ” << speed ;

i f (input == ”FASTER”) {

EV INFO << ” speed up ” ;

i f (speed < maxSpeed) {

i f (speed + (a c c e l e r a t i o n * update Inte rva l . dbl ()) > maxSpeed) {

speed = maxSpeed ;

} else {

speed += (a c c e l e r a t i o n * update Inte rva l . dbl ()) ;

}

}

} else i f (input == ”SLOWER”) {

EV INFO << ” slow down ” ;

i f (speed > 0) { //

i f (speed = (a c c e l e r a t i o n * update Inte rva l . dbl ()) < 0) {

speed = 0 ;

} else {

speed == (a c c e l e r a t i o n * update Inte rva l . dbl ()) ;

}

}

}

EV INFO << ” new speed : ” << speed << endl ;

}

D.2 DroneMobility.cc 99

void DroneMobil ity : : speedModify (double newSpeed) { //mainly used to ad j u s t

speed f o r use in s e tTarge tPos i t i on

EV INFO << ” speed : ” << speed << ” s e t speed : ” << newSpeed ;

double d i f f e r e n c e = newSpeed = speed ;

double maxAccelerat ion = a c c e l e r a t i o n * update Inte rva l . dbl () ;

i f (newSpeed > speed) {

EV INFO << ” a c c e l e r a t i n g to ” << newSpeed ;

i f (speed < maxSpeed && d i f f e r e n c e >= maxAccelerat ion) {

i f (speed + (maxAccelerat ion) > maxSpeed) {

speed = maxSpeed ;

} else {

speed += (maxAccelerat ion) ;

}

} else i f (speed < maxSpeed && d i f f e r e n c e < maxAccelerat ion) {

speed = newSpeed ;

}

} else i f (newSpeed < speed) {

i f (speed > 0) { //

EV INFO << ” d e c e l e r a t i n g to ” << newSpeed ;

i f (speed = (maxAccelerat ion) < 0) {

speed = 0 ;

} else i f (speed > maxSpeed && d i f f e r e n c e > maxAccelerat ion) {

} else {

speed == (maxAccelerat ion) ; //same here

}

}

}

EV INFO << ” new speed : ” << speed << endl ;

}

void DroneMobil ity : : s e t I n i t i a l P o s i t i o n ()

{

auto coordinateSystem = getModuleFromPar<IGeographicCoordinateSystem>(

par (” coordinateSystemModule ”) , this , fa l se) ;

i f (coordinateSystem != nu l l p t r && hasPar (” i n i t i a l L a t i t u d e ”) && hasPar (”

i n i t i a l L on g i t u d e ”) && hasPar (” i n i t i a l A l t i t u d e ”)) {

auto i n i t i a l L a t i t u d e = deg (par (” i n i t i a l L a t i t u d e ”)) ;

auto i n i t i a l L on g i t u d e = deg (par (” i n i t i a l L on g i t u d e ”)) ;

auto i n i t i a l A l t i t u d e = m(par (” i n i t i a l A l t i t u d e ”)) ;

EV INFO << ” input type : ”<<(typeid (i n i t i a l L a t i t u d e) . name ())<<endl ;

l a s tP o s i t i o n = coordinateSystem=>computeSceneCoordinate (GeoCoord (

i n i t i a l L a t i t u d e , i n i t i a l Long i t ud e , i n i t i a l A l t i t u d e)) ;

D.2 DroneMobility.cc 100

EV INFO << ” po s i t i o n i n i t i a l i z e d from i n i t i a l L a t i t u d e /Longitude /

Al t i tude parameters : ” << l a s tP o s i t i o n << endl ;

} else i f (coordinateSystem == nu l l p t r && hasPar (” i n i t i a l X ”) && hasPar (”

i n i t i a l Y ”) && hasPar (” i n i t i a l Z ”)) {

double radsPerDrone = 2*PI/ to ta l sDrones ;

double rad iu s = 1145 ;

double xRand = rand ()%10=5;

double yRand = rand ()%10 = 5 ;

double rotationRand = rand () %(360)=(180) ;

EV INFO << ”xRand : ”<< xRand << ”yRand : ”<< yRand << ”rotRand : ”<<

rotationRand<<endl ;

double x = par (” i n i t i a l X ”) ;

double y = par (” i n i t i a l Y ”) ;

double droneRads = droneNum * radsPerDrone+rotationRand *PI/180 +

rotationRand ;

l a s tP o s i t i o n . x = x+rad iu s * cos (droneRads)+xRand ;

l a s tP o s i t i o n . y = y+rad iu s * s i n (droneRads)+yRand ;

l a s tP o s i t i o n . z = par (” i n i t i a l Z ”) ;

EV INFO << ” po s i t i o n i n i t i a l i z e d from i n i t i a l X /Y/Z parameters : ” <<

l a s tP o s i t i o n << endl ;

}

}

void DroneMobil ity : : mDroneFuturePosition () {

// s e t

i f (mDronePrevPos != Coord ()) { // i f s e t to i n i t i a l (0 ,0 ,0)

i f (t a r g e t = mDronePrevPos != Coord ()) {

mDroneHeading = (ta r g e t = mDronePrevPos) ; // . normal ize () ;

mDroneFuturePos = ta rg e t + mDroneHeading ;

mDroneCurrentSpeed = mDronePrevPos . d i s t anc e (t a r g e t) /

update Inte rva l . dbl () ;

i f (mDroneCurrentSpeed > mDroneMaxSpeed) {

mDroneMaxSpeed = mDroneCurrentSpeed ;

}

mDroneAvgSpeed = (mDroneAvgSpeed * averageCount +

mDroneCurrentSpeed) /(averageCount+1) ;

averageCount++;

double cur rentAcce l = (mDronePrevSpeed=mDroneCurrentSpeed) /

update Inte rva l . dbl () ;

i f (currentAcce l>mDroneAcceleration) {

mDroneAcceleration = currentAcce l ;

EV INFO << ”max mDroneAccel : ”<<mDroneAcceleration<<endl ;

}

D.2 DroneMobility.cc 101

mDronePrevSpeed = mDroneCurrentSpeed ;

}

}

mDronePrevPos = ta rg e t ;

}

void DroneMobil ity : : targetTrackerUpdate () {

t a r g e t = targe tMob i l i ty=>getCurrentPos i t i on () ;

ta rge tActua l = ta rg e t ;

targetInfoComms () ;

}

void DroneMobil ity : : targetAccuracyAdjust () {

//random walk to go here

/*

accuracyModi f i er = ((100= sensorAccuracy) /100) ;

i n t temp = rand ()%3=1;

EV INFO << ”temp : ” << temp ;

doub le x = (rand ()%3=1)* accuracyModi f i er ;

doub l e y = (rand ()%3=1)* accuracyModi f i er ;

doub l e z = (rand ()%3=1)* accuracyModi f i er ;//

Coord randomWalkModifier (x , y) ; // z s e t to zero f o r 2d implementat ion

targe tWalkModi f i e r = targe tWalkModi f i e r+randomWalkModifier ;

EV INFO << ”rand coord:”<< targe tWalkModi f i e r << end l ;

// accuracyTrack+= Coord (uniform(=) , uniform ())

EV INFO << ” t a r g e t b e f o r e : ” << t a r g e t ;

t a r g e t += targe tWalkModi f i e r ;

EV INFO << ” f u z z y t a r g e t : ” << t a r g e t <<end l ; */

}

bool DroneMobil ity : : c o l l i s i o nChe ck () {

// perform d i s t ance ca l c on each drone in swarm or not

int c losestDroneID = =1;

double c l o s e s tDrone = INFINITY ;

for (int i =0; i<swarmSize ; i++){

i f (i != droneNum) {

Coord distCoord (indSwarmInfo [i] [SOURCE X] , indSwarmInfo [i] [

SOURCE Y] , indSwarmInfo [i] [SOURCE Z]) ;

double otherDroneDistance = source . d i s t ance (distCoord) ;

i f (otherDroneDistance > 10000) { otherDroneDistance = 0 ;} // i f

drones are exac t same po s i t i o n w i l l r e turn i n f f o r d i s t ance

i f (otherDroneDistance < COLLISION RADIUS && otherDroneDistance <

D.2 DroneMobility.cc 102

c l o s e s tDrone) {

c l o s e s tDrone = otherDroneDistance ;

c losestDroneID = i ;

}

}

}

i f (c losestDroneID != =1){

return true ;

}

return fa lse ;

}

void DroneMobil ity : : c o l l i s i o nAvo i d () {//modify t a r g e tPo s i t i o n to avoid

o b s t a c l e

//need to inc l ude c i r c l eFunc t i on as i t i s the d e l im i t e r o f movement ,

r e g a r d l e s s o f c o l l i s i o n

}

void DroneMobil ity : : targetTrackModeModify () {

// in PN mode = modi f i e s the p o s i t i o n o f the t a r g e t f o r more e f f i c i e n t

t r a c k i n g . This needs to be c a l l e d

// be f o r e the swarm po s i t i o n i n g a l gor i thm

i f (i n i t S t a g e < 12 && in i t S t a g e >0){

//EV INFO << ”sTP s tage ” << i n i t S t a g e << end l ;

return ;

}

i f (swarmPosMode == ”surround” | | swarmPosMode == ”cone”) { // not

t r a c k i n g to the mDrone s p e c i f i c a l l y

swarmPosit ioning () ; //modify the t a r g e t Coord to in s t ead t a r g e t

drones swarm po s i t i o n

} else {

swarmTarget = ta rg e t ;

}

Coord temptargetprev = ta rg e t ;

i f ((swarmPosMode == ” f o l l ow ” && movementMode == CHASE) | | (speed < 1 &&

movementMode != FORMATION)) {

// dont modify t a r g e t pos

EV INFO <<” j e r e ” << movementMode << endl ;

speedModify (maxSpeed) ;

} else i f (targetTrackMode == ”PN” && (movementMode == CHASE | |

D.2 DroneMobility.cc 103

movementMode == FORMATION)) {

// l a t a c c e l (v e c t o r add to t a r g e t pos)= N(3 to5) * LOS change ra t e *

c l o s i n g v e l o c i t y (r e l a t i v e v e l)

Coord temptargetprev = ta rg e t ;

N=3;

Coord RTMold = (targetPrev = sourcePrev) ;

Coord RTMnew = (ta r g e t = source) ;

Coord LOSdelta = RTMnew = RTMold ;

double LOSrate = LOSdelta . l ength () ;

double Vc = (RTMold . l ength () = RTMnew. l ength ()) ;

double currentLOSAngle = atan2(=RTMnew. y ,RTMnew. x) ;

vClos ing = source . d i s t ance (targetPrev) = source . d i s t anc e (t a r g e t) ;

double latAccelMag = (N * LOSrate * =Vc) *RTMnew. l ength () ;

// l e f t r i g h t ?

int t e s t = le f tRightCheck () ;

EV INFO << ” targetPrev : ” << targetPrev << ” ta r g e t : ” << t a r g e t <<

” sourcePrev : ” << sourcePrev<< ” source : ” << source << endl ;

EV INFO << ”RTMold : ” << RTMold << ” RTMnew: ” << RTMnew << ”

LOSrate : ” << LOSrate << ” Vc : ” << Vc << ” l e f t r i g h t : ” << t e s t

<< ” currentLOSAngle” << currentLOSAngle DEG<<endl ;

Coord Acmd = Coord (latAccelMag* cos (currentLOSAngle+PI/2* t e s t) ,

latAccelMag* s i n (currentLOSAngle+PI/2* t e s t)) ;

EV INFO << ” targetb4 : ” <<t a r g e t << ”Acmd: ” << Acmd ;

t a r g e t += Acmd;

EV INFO << ” t a r g e t a f t e r : ” <<t a r g e t <<endl ;

}

targetPrev = swarmTarget ;

sourcePrev = source ;

}

// s e t s the p o s i t i o n s o f drones based on po s i t i o n i n g mode and number o f

drones

void DroneMobil ity : : swarmPosit ioning () {

enum{ f o l l ow , surround , modif iedSurround } ;

double d i s t anc eMod i f i e r = (swarmSize/(1+swarmSize /20)) ;

double mDroneHeadAngle = atan2 (mDroneHeading . y , mDroneHeading . x) ;

i f (swarmPosMode == ”surround”) {

i f (droneMode == ” e f f i c i e n t ”) {

su r r oundE f f i c i en cy () ;

} else {

double radsPerDrone = 2*PI/swarmSize ;

double thisDroneRads = radsPerDrone*droneNum ;

D.2 DroneMobility.cc 104

double s ta r tAng le = 0 ;

i f (swarmSize%2==0){// i f swarm s i z e i s even

s ta r tAng le = mDroneHeadAngle = PI /2 ;

} else {

s ta r tAng le = mDroneHeadAngle = PI ;

}

double pos i t i onAng l e = star tAng le + thisDroneRads ;

double tempRadius = sq r t (70685* swarmSize/PI) ;

t a r g e t += Coord (cos (pos i t i onAng l e) , s i n (pos i t i onAng l e)) *

tempRadius ;

}

} else i f (swarmPosMode == ”cone”) {

double s ta r tAng le = 0 ;

double ahead = 300 ;

double s i d e s = 150 ;

Coord mDroneCoord (cos (mDroneHeadAngle) , s i n (mDroneHeadAngle)) ;

i f (swarmSize%2!=0){

i f (droneNum == (swarmSize=1)) t a r g e t == mDroneCoord*(ahead /2) *

d i s t anc eMod i f i e r ;

}

i f (swarmSize == 10) {

i f (droneNum == 9) ta r g e t += (Coord (cos (mDroneHeadAngle) , s i n (

mDroneHeadAngle)) * ahead = mDroneCoord*(ahead /2)) *

d i s t anc eMod i f i e r ;

i f (droneNum == 8) ta r g e t == Coord (cos (mDroneHeadAngle) , s i n (

mDroneHeadAngle)) *(ahead /2) * d i s t anc eMod i f i e r ;

}

switch (swarmSize) {

case 10 :

case 9 :

case 8 :

i f (droneNum == 7 | | droneNum == 6) {

double pos i t i onAng l e = atan ((s i d e s /2) /ahead) ;

double hyp = sq r t (pow(ahead , 2) + pow(s i d e s /2 ,2)) ;

pos i t i onAng l e = pos i t i onAng l e * (((droneNum=6)*2)=1) +

mDroneHeadAngle ;

t a r g e t += (Coord (cos (pos i t i onAng l e) , s i n (pos i t i onAng l e)) *

hyp = mDroneCoord*(ahead /2)) * d i s t anc eMod i f i e r ;

}

case 7 :

case 6 :

i f (droneNum == 5 | | droneNum == 4) {

double pos i t i onAng l e = atan ((s i d e s) /(ahead)) ;

D.2 DroneMobility.cc 105

double hyp = sq r t (pow(ahead , 2) + pow(s ide s , 2)) /3 ;

pos i t i onAng l e = pos i t i onAng l e * (((droneNum=4)*2)=1) +

mDroneHeadAngle ;

t a r g e t += (Coord (cos (pos i t i onAng l e) , s i n (pos i t i onAng l e)) *

hyp = mDroneCoord*(ahead /2)) * d i s t anc eMod i f i e r ;

}

case 5 :

case 4 :

i f (droneNum == 3 | | droneNum == 2) {// top middle

double pos i t i onAng l e = atan ((s i d e s) /(ahead)) ;

double hyp = sq r t (pow(ahead , 2) + pow(s ide s , 2)) *2/3 ;

pos i t i onAng l e = pos i t i onAng l e * (((droneNum=2)*2)=1) +

mDroneHeadAngle ;

t a r g e t += (Coord (cos (pos i t i onAng l e) , s i n (pos i t i onAng l e)) *

hyp = mDroneCoord*(ahead /2)) * d i s t anc eMod i f i e r ;

}

case 3 :

case 2 :

i f (droneNum == 0 | | droneNum == 1) {

double pos i t i onAng l e = atan (s i d e s /ahead) ;

double hyp = sq r t (pow(ahead , 2) + pow(s ide s , 2)) ;

pos i t i onAng l e = pos i t i onAng l e * ((droneNum*2)=1) +

mDroneHeadAngle ;

t a r g e t += (Coord (cos (pos i t i onAng l e) , s i n (pos i t i onAng l e)) *

hyp = mDroneCoord*(ahead /2)) * d i s t anc eMod i f i e r ; // p l ace

l e f t or r i g h t

}

break ;

default :

break ;

}

}

swarmTarget = ta rg e t ;

}

void DroneMobil ity : : s u r r oundE f f i c i en cy () {

double surroundDistance [1 0] [2] = {} ;

double s ta r tAng l e = 0 ;

double mDroneHeadAngle = atan2 (mDroneHeading . y , mDroneHeading . x) ;

i f (swarmSize%2==0){// i f swarm s i z e i s even

s ta r tAng le = mDroneHeadAngle = PI /2 ;

} else {

s ta r tAng le = mDroneHeadAngle = PI ;

D.2 DroneMobility.cc 106

}

for (int i = 0 ; i < swarmSize ; i++){

double radsPerDrone = 2*PI/swarmSize ;

double t h i s I t e r a t i onRad s = radsPerDrone* i ;

double pos i t i onAng l e = star tAng le + th i s I t e r a t i onRad s ;

double tempRadius = sq r t (70685* swarmSize/PI) ;

Coord i tTarge t = ta rg e t + Coord (cos (pos i t i onAng l e) , s i n (

pos i t i onAng l e)) * tempRadius ;

surroundDistance [i] [0] = i ;

surroundDistance [i] [1] = abs (i tTarge t . d i s t anc e (source)) ;

EV INFO << surroundDistance [i] [1] << ” : ” ;

}

EV INFO << endl ;

{

int i , j ;

for (i = 0 ; i < swarmSize=1; i++){

// Last i e lements are a l r eady in p l ace

for (j = 0 ; j < swarmSize=i =1; j++){

i f (surroundDistance [j] [1] > surroundDistance [j +1] [1]) {

double temp1 = surroundDistance [j] [1] ;

int temp2 = surroundDistance [j] [0] ;

surroundDistance [j] [1] = surroundDistance [j + 1] [1] ;

surroundDistance [j +1] [1] = temp1 ;

surroundDistance [j] [0] = surroundDistance [j + 1] [0] ;

surroundDistance [j +1] [0] = temp2 ;

}

}

}

}

for (int i = 0 ; i < swarmSize ; i++){

EV INFO << surroundDistance [i] [0] << ” : ”<< surroundDistance [i

] [1] << ” : ” ;

}

EV INFO << endl ;

int i =0, f l a g = 0 , sent = 0 ;

do{

sent = 0 ;

f l a g++;

for (int j =0; j<droneNum ; j++){

EV INFO <<” s ” <<s swarmInfo [j] [SWARMPOS] <<” a ”<<

surroundDistance [i][0]<< endl ;

i f (s swarmInfo [j] [SWARMPOS] == surroundDistance [i] [0]) {

D.3 DroneMobility.ned 107

sent = 1 ;

}

}

i++;

}while (sent == 1 && f l a g < 10) ;

s swarmInfo [droneNum] [SWARMPOS] = surroundDistance [i = 1] [0] ;

EV INFO <<”aiming f o r node ” << s swarmInfo [droneNum] [SWARMPOS] <<

endl ;

double radsPerDrone = 2*PI/swarmSize ;

double t h i s I t e r a t i onRad s = radsPerDrone* surroundDistance [i = 1] [0] ;

double pos i t i onAng l e = star tAng le + th i s I t e r a t i onRad s ;

double tempRadius = sq r t (70685* swarmSize/PI) ;

t a r g e t += Coord (cos (pos i t i onAng l e) , s i n (pos i t i onAng l e)) * tempRadius ;

}

void DroneMobil ity : : setAccuracyTrack () {

i f (sensorAccuracy > 100) {

sensorAccuracy = 100 ;

} else {// implement random walk

double d i s t ance = source . d i s t ance (t a r g e t) ;

accuracyModi f i e r = ((100= sensorAccuracy) /100) ; // g i v e s heading

l im i t s

Coord d i r e c t i o n = ta rg e t = source ;

Coord l im i t s = d i r e c t i o n * accuracyModi f i e r ;

double randX = uniform((= l im i t s) . x , l im i t s . x) ; //random number

between range o f s i z e d determined by accuracy

double randY = uniform((= l im i t s) . y , l im i t s . y) ;

double randZ = uniform((= l im i t s) . z , l im i t s . z) ;

accuracyTrack = Coord (randX , randY , randZ) ;

}

}

} // namespace i n e t

D.3 DroneMobility.ned

package i n e t . mob i l i ty . s i n g l e ;

import i n e t . mob i l i ty . base . MovingMobilityBase ;

s imple DroneMobil ity extends MovingMobilityBase

{

D.3 DroneMobility.ned 108

parameters :

@class (DroneMobil ity) ;

double maxSpeed @unit (mps) = default (10mps) ;

double speed @unit (mps) = default (16mps) ;

s t r i n g sourceMob i l i ty = default (” . ”) ; // the d e f a u l t source mob i l i t y

i s t h i s

s t r i n g ta rg e tMob i l i t y = default (” . ”) ;

double sensorRange @unit (m) = default (100m) ;

int droneNumber ;

double i n i t i a l X = default (0) ;

double i n i t i a l Y = default (0) ;

double i n i t i a l Z @unit (m) = default (0m) ;

double range @unit (m) = default (500m) ;

double a c c e l e r a t i o n @unit (mpss) = default (10mpss) ;

double sensorAccuracy @unit (pc) = default (100 pc) ;

double turnRate @unit (radper sec) = default (10 radper sec) ;

int swarmSize ;

s t r i n g targetTrackMode ; //= d e f a u l t (” d i r e c t ”) ;

double i n i t i a l L a t i t u d e @unit (deg) = default (nan deg) ;

double i n i t i a l L on g i t u d e @unit (deg) = default (nan deg) ;

double i n i t i a l A l t i t u d e @unit (m) = default (20m) ;

double i n i t i a lH e ad i n g @unit (deg) = default (0 deg) ;

s t r i n g droneMode ;

s t r i n g swarmPosMode ; // = d e f a u l t (” f o l l ow ”) ;

double surroundRadius @unit (m) = default (10m) ;

double approachDistance @unit (m) = default (0m) ;

bool overshootMode = default (fa l se) ;

int i t e r a t i o n ;

}

Appendix E

MaliciousMobility Code

E.1 MaliciousDroneMobility.h

#ifndef INET MALICIOUSDRONEMOBILITY H

#define INET MALICIOUSDRONEMOBILITY H

#include ” i n e t /common/INETDefs . h”

#include ” i n e t /mob i l i ty /base /LineSegmentsMobil ityBase . h”

#include ” i n e t /mob i l i ty / s i n g l e /BonnMotionFileCache . h”

namespace i n e t {

/**

* @br ie f Uses the BonnMotion na t i v e f i l e format . See NED f i l e f o r more i n f o

.

*

* @ingroup mob i l i t y

* @author Chris Arnold

*/

class INET API Mal ic iousDroneMobi l i ty : public LineSegmentsMobil ityBase

{

protected :

// s t a t e

bool is3D ;

const BonnMotionFile : : Line * l i n e s ;

int cur rentL ine ;

double maxSpeed , speed , a c c e l e r a t i o n ;

Coord d i r e c t i o n ;

E.1 MaliciousDroneMobility.h 110

Coord lastWaypoint ;

Coord nextWaypoint ;

Coord prevPos ;

IMob i l i t y * sourceMob i l i ty = nu l l p t r ;

Coord source ;

int i n i t S t a g e ;

protected :

virtual int numInitStages () const ove r r i d e { return NUM INIT STAGES ; }

/** @br ie f I n i t i a l i z e s mob i l i t y model parameters . */

virtual void i n i t i a l i z e (int s tage) ov e r r i d e ;

/** @br ie f I n i t i a l i z e s the p o s i t i o n accord ing to the mob i l i t y model . */

virtual void s e t I n i t i a l P o s i t i o n () ove r r i d e ;

/** @br ie f Overridden from LineSegmentsMobi l i tyBase . */

virtual void s e tTarge tPos i t i on () ov e r r i d e ;

/** @br ie f Overridden from LineSegmentsMobi l i tyBase . */

virtual void move () ov e r r i d e ;

virtual void computeMaxSpeed () ;

void setNewWaypoint () ;

bool checkWaypoint () ;

void c i r c l eFunc t i on () ;

void speedModify () ;

public :

Mal ic iousDroneMobi l i ty () ;

virtual ˜Mal ic iousDroneMobi l i ty () ;

virtual double getMaxSpeed () const ove r r i d e { return maxSpeed ; }

} ;

} // namespace i n e t

E.2 MaliciousDroneMobility.cc 111

#endif // i f n d e f INET MALICIOUSDRONEMOBILITY H

E.2 MaliciousDroneMobility.cc

//

// 2020 Chris Arnold

//

//

#include ” i n e t /common/INETMath . h”

#include ” i n e t /mob i l i ty / s i n g l e /BonnMotionFileCache . h”

#include ” i n e t /mob i l i ty / s i n g l e /Mal ic iousDroneMobi l i ty . h”

#define TOLERANCE 5

#define DEG *180/PI

namespace i n e t {

Define Module (Mal ic iousDroneMobi l i ty) ;

Mal ic iousDroneMobi l i ty : : Mal ic iousDroneMobi l i ty ()

{

is3D = fa l se ;

l i n e s = nu l l p t r ;

cur rentL ine = =1;

maxSpeed = 0 ;

//waypoint = Coord () ;

}

void Mal ic iousDroneMobi l i ty : : computeMaxSpeed ()

{

const BonnMotionFile : : Line& vec = * l i n e s ;

double lastTime = 0 ;

a c c e l e r a t i o n = vec [0] ;

Coord la s tPos (vec [1] , vec [2] , (is3D ? vec [3] : 0)) ;

unsigned int s tep = (is3D ? 4 : 3) ;

for (unsigned int i = step ; i < vec . s i z e () ; i += step)

{

double elapsedTime = vec [i] = lastTime ;

Coord currPos (vec [i +1] , vec [i +2] , (is3D ? vec [i +3] : 0)) ;

double d i s t ance = currPos . d i s t anc e (l a s tPos) ;

double speed = d i s t ance / elapsedTime ;

E.2 MaliciousDroneMobility.cc 112

i f (speed > maxSpeed)

maxSpeed = speed ;

l a s tPos . x = currPos . x ;

l a s tPos . y = currPos . y ;

l a s tPos . z = currPos . z ;

lastTime = vec [i] ;

}

}

Mal ic iousDroneMobi l i ty : : ˜ Mal ic iousDroneMobi l i ty ()

{

BonnMotionFileCache : : d e l e t e I n s t an c e () ;

}

void Mal ic iousDroneMobi l i ty : : i n i t i a l i z e (int s tage)

{

LineSegmentsMobil ityBase : : i n i t i a l i z e (s tage) ;

//EV INFO << ” i n i t i a l i z i n g Mal ic iousDroneMobi l i ty s t a g e ” << s t a g e <<

end l ;

i n i t S t a g e = stage ;

i f (s tage == INITSTAGE LOCAL) {

// sourceMob i l i t y = getModuleFromPar<IMob i l i t y >(par (” sourceMob i l i t y ”)

, t h i s) ;

is3D = par (” is3D”) ;

int nodeId = par (”nodeId”) ;

i f (nodeId == =1)

nodeId = getContainingNode (this)=>getIndex () ;

const char * fname = par (” t r a c eF i l e ”) ;

const BonnMotionFile *bmFile = BonnMotionFileCache : : g e t In s tance ()=>

g e tF i l e (fname) ;

// a c c e l e r a t i o n = 4 .755 ;

l i n e s = bmFile=>getLine (nodeId) ;

i f (! l i n e s)

throw cRuntimeError (” Inva l i d nodeId %d == no such l i n e in f i l e

’%s ’ ” , nodeId , fname) ;

cur rentL ine = 0 ;

// a c c e l e r a t i o n = par (”mAccel ”) ;

// load f i r s t waypoint

sourceMob i l i ty = getModuleFromPar<IMobi l i ty >(par (” sourceMob i l i ty ”) ,

this) ;

computeMaxSpeed () ;

E.2 MaliciousDroneMobility.cc 113

cCanvas * canvas = getSystemModule ()=>getCanvas () ; // t o p l e v e l canvas

canvas=>setAnimationSpeed (1 . 0 , this) ; //smooth animation

}

}

void Mal ic iousDroneMobi l i ty : : s e t I n i t i a l P o s i t i o n ()

{

const BonnMotionFile : : Line& vec = * l i n e s ;

l a s tP o s i t i o n . x = vec [1] ; //x

l a s tP o s i t i o n . y = vec [2] ; //y

l a s tP o s i t i o n . z = vec [3] ; // z

// currentPos = l a s t P o s i t i o n ;

t a r g e tPo s i t i o n = l a s tP o s i t i o n ;

speed = vec [0] ;

cur rentL ine += 4 ;

maxSpeed = vec [cur rentL ine] ;

lastWaypoint = nextWaypoint ;

nextWaypoint . x = vec [cur rentL ine + 1] ;

nextWaypoint . y = vec [cur rentL ine + 2] ;

nextWaypoint . z = vec [cur rentL ine + 3] ;

//EV INFO <<” i n i t i a l i s e x :” << l a s t P o s i t i o n . x << ” y :” <<

l a s t P o s i t i o n . y <<” z :” << l a s t P o s i t i o n . z <<” speed :” << speed <<

end l ;

//EV INFO <<”i n i t=nextWaypoint :” <<nextWaypoint << end l ;

// las tWaypoint = l a s t P o s i t i o n ;

//need to s e t f i r s t waypoint

}

void Mal ic iousDroneMobi l i ty : : s e tTarge tPos i t i on ()

{

i f (i n i t S t a g e < 12 && in i t S t a g e >2){

//EV INFO << ”sTP s tage ” << i n i t S t a g e << end l ;

return ;

}

nextChange = simTime () + update Inte rva l ;

source = sourceMobi l i ty=>getCurrentPos i t i on () ;

//EV INFO << ”next i n t e r v a l : ” << nextChange << end l ;

const BonnMotionFile : : Line& vec = * l i n e s ;

// check i f a t waypoint t a r ge t= ge t next waypoint i f yes

i f (checkWaypoint ()) {

setNewWaypoint () ;

E.2 MaliciousDroneMobility.cc 114

}

// check i f waypoint t a r g e t i s ou t s i d e turn ing c i r c l e

c i r c l eFunc t i on () ;

// ad j u s t speed i f not a t c o r r e c t speed

i f (speed != maxSpeed) {

speedModify () ;

}

}

void Mal ic iousDroneMobi l i ty : : speedModify () { //mainly used to ad j u s t speed

f o r use in s e tTarge tPos i t i on

//EV INFO << ” speed : ” << speed << ” s e t speed : ” << maxSpeed ;

double d i f f e r e n c e = maxSpeed = speed ;

double maxAccelerat ion = a c c e l e r a t i o n * update Inte rva l . dbl () ;

i f (maxSpeed > speed) {

//EV INFO << ” a c c e l e r a t i n g to ” << maxSpeed ;

i f (speed < maxSpeed && d i f f e r e n c e >= maxAccelerat ion) {

i f (speed + (maxAccelerat ion) > maxSpeed) {

speed = maxSpeed ;

} else {

speed += (maxAccelerat ion) ;

}

} else i f (speed < maxSpeed && d i f f e r e n c e < maxAccelerat ion) {

speed = maxSpeed ;

}

} else i f (maxSpeed < speed) {

i f (speed > 0) { //

//EV INFO << ” d e c e l e r a t i n g to ” << maxSpeed ;

i f (speed = (maxAccelerat ion) < 0) {

speed = 0 ;

} else i f (speed > maxSpeed && d i f f e r e n c e > maxAccelerat ion) {

} else {

speed == (maxAccelerat ion) ; //same here

}

}

}

//EV INFO << ” new speed : ” << speed << end l ;

}

E.2 MaliciousDroneMobility.cc 115

void Mal ic iousDroneMobi l i ty : : c i r c l eFunc t i on () {

double rad iu s = speed * speed / a c c e l e r a t i o n ; //meters

double theta = (speed * update Inte rva l . dbl () * a c c e l e r a t i o n / speed) ;

double maxTurnAngle = PI/2 = acos (sq r t (1= cos (theta) /2)) ;

// determine the r e l a t i v e ang l e o f the mDrone

Coord droneHeading = (source = prevPos) ;

double heading = (atan2(=droneHeading . y , droneHeading . x)) ; // rads

Coord mHeadingCoord = nextWaypoint = source ;

//EV INFO << ” t a r g e t : ” <<nextWaypoint<< ” source : ” <<source<< ”

mHeadingCoord : ” <<mHeadingCoord<<” prevPos : ” << prevPos << end l ;

double angleToTarget = (atan2(=mHeadingCoord . y , mHeadingCoord . x)) ;

double d i f f e r e n c e = angleToTarget = heading ;

//EV INFO << ” heading : ” <<heading DEG<< ” angleToTarget : ” <<

angleToTarget DEG<< ” d i f f e r e n c e : ” <<d i f f e r e n c e DEG<< end l ;

//EV INFO << ” d i f f e r e n c e : ” << d i f f e r e n c e DEG;

i f (d i f f e r e n c e > PI) {

d i f f e r e n c e = d i f f e r e n c e =(2*PI) ;

//EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

} else i f (d i f f e r e n c e < =PI) {

d i f f e r e n c e = d i f f e r e n c e + (2*PI) ;

//EV INFO << ” d i f f e r e n c e changed to : ” << d i f f e r e n c e DEG;

}

//EV INFO << end l ;

//EV INFO << ” angleToTarget : ” << angleToTarget DEG << ” heading : ” <<

heading DEG << ” d i f f e r e n c e : ” << d i f f e r e n c e DEG<< ” maxTurnAngle : ”

<< maxTurnAngle DEG << end l ;

i f (abs (d i f f e r e n c e) > maxTurnAngle) { // t a r g e t ou t s i d e turn arc

double turnAngle = 0 ;

i f (speed == 0) {

// speedModify (”FASTER”) ;

} else i f (d i f f e r e n c e > 0) { // t a r g e t to l e f t o f drone

turnAngle = heading + maxTurnAngle ;

//EV INFO << ” turn l e f t ” << end l ;

} else {

turnAngle = heading = maxTurnAngle ;

//EV INFO << ” turn r i g h t ” << end l ;

}

double xMove = cos (turnAngle) ;

double yMove = =s i n (turnAngle) ;

d i r e c t i o n = Coord (xMove , yMove , 0 . 0) . normal ize () ;

} else { // wi th in turn arc

i f (speed == 0)

// speedModify (”FASTER”) ;

E.2 MaliciousDroneMobility.cc 116

double xMove = cos (d i f f e r e n c e) ;

double yMove = =s i n (d i f f e r e n c e) ;

// d i r e c t i o n = Coord (xMove , yMove , 0 . 0) . normal i ze () ;

d i r e c t i o n = (nextWaypoint = source) . normal ize () ;

}

}

void Mal ic iousDroneMobi l i ty : : setNewWaypoint () {

const BonnMotionFile : : Line& vec = * l i n e s ;

cur rentL ine += 4 ;

lastWaypoint = nextWaypoint ;

maxSpeed = vec [cur rentL ine] ;

nextWaypoint . x = vec [cur rentL ine + 1] ;

nextWaypoint . y = vec [cur rentL ine + 2] ;

nextWaypoint . z = vec [cur rentL ine + 3] ;

//EV INFO << ” setWaypoint:”<< nextWaypoint << ” maxSpeed : ”<< maxSpeed

<< end l ;

}

bool Mal ic iousDroneMobi l i ty : : checkWaypoint () {

bool xTest = (source . x > nextWaypoint . x=TOLERANCE && source . x <

nextWaypoint . x+TOLERANCE) ;

bool yTest = (source . y > nextWaypoint . y=TOLERANCE && source . y <

nextWaypoint . y+TOLERANCE) ;

bool zTest = (source . z > nextWaypoint . z=TOLERANCE && source . z <

nextWaypoint . z+TOLERANCE) ;

//EV INFO << ” xTest : ” << xTest<< ” yTest : ” << yTest<< ” zTest : ” <<

zTest << end l ;

i f (xTest && yTest && zTest) {

return true ;

}

return fa lse ;

}

void Mal ic iousDroneMobi l i ty : : move ()

{

s imt ime t now = simTime () ;

i f (now == nextChange) {

l a s tP o s i t i o n = ta r g e tPo s i t i o n ;

// currentPos = source ;

//EV INFO << ” reached curren t t a r g e t p o s i t i o n = ” << l a s t P o s i t i o n <<

E.3 MaliciousDroneMobility.ned 117

end l ;

s e tTarge tPos i t i on () ;

//EV INFO << ” source t e s t : ” << source << end l ;

l a s tV e l o c i t y = (t a r g e tPo s i t i o n = l a s tP o s i t i o n) . normal ize () *(speed *

update Inte rva l . dbl ()) ;

// l a s tV e l o c i t y = (t a r g e tPo s i t i o n = l a s t P o s i t i o n) / (nextChange =

simTime ()) . d b l () ;

//EV INFO << ” l a s t P o i s t i o n : ” << l a s tPo s i t i o n<< ” d i r e c t i o n : ” <<

d i r e c t i o n << ” speed : ” << speed<< end l ;

t a r g e tPo s i t i o n = l a s tP o s i t i o n + d i r e c t i o n * (speed * update Inte rva l .

dbl ()) ;

//EV INFO << ”new t a r g e t p o s i t i o n = ” << t a r g e tPo s i t i o n << ” , next

change = ” << nextChange << end l ;

prevPos = source ;

}

//LineSegmentsMobi l i tyBase : : move () ;

// ra i s eEr ro r I fOu t s i d e () ;

}

} // namespace i n e t

E.3 MaliciousDroneMobility.ned

package i n e t . mob i l i ty . s i n g l e ;

import i n e t . mob i l i ty . base . MovingMobilityBase ;

s imple Mal ic iousDroneMobi l i ty extends MovingMobilityBase

{

parameters :

bool is3D = default (fa l se) ; // whether the t race f i l e con ta ins

t r i p l e t s or quadrup l e s

s t r i n g t r a c eF i l e ; // the BonnMotion t race f i l e

int nodeId ; // s e l e c t s l i n e in t race f i l e ; =1 g e t s s u b s t i t u t e d to

parent module ’ s index

s t r i n g sourceMob i l i ty = default (” . ”) ; // the d e f a u l t source mob i l i t y

i s t h i s

double mAccel = default (6 . 5) ;

@class (Mal ic iousDroneMobi l i ty) ;

}

Appendix F

DroneNetwork.ned Code

package i n e t . examples . t e s t I n e t ;

import i n e t . node . i n e t . StandardHost ;

import i n e t . v i s u a l i z e r . i n t e g r a t ed . I n t e g r a t e dV i s u a l i z e r ;

import i n e t . node . i n e t . Wire lessHost ;

import i n e t . node . i n e t . AdhocHost ;

import i n e t . network layer . c on f i gu r a t o r . ipv4 . Ipv4NetworkConfigurator ;

import i n e t . node . i n e t . AdhocHost ;

import i n e t . p hy s i c a l l a y e r . i e ee80211 . p a ck e t l e v e l . Ieee80211ScalarRadioMedium ;

// import i n e t . v i s u a l i z e r . con t rac t . I I n t e g r a t e dV i s u a l i z e r ;

// import i n e t . common . geometry . common . OsgGeographicCoordinateSystem ;

// import i n e t . environment . common . PhysicalEnvironment ;

network DroneNetwork

{

parameters :

int numDrones ;

@f igure [drone0] (type=r e c t ang l e ; pos =10 ,50; s i z e =50 ,50;) ;

@f igure [drone0 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone1] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone1 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone2] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone2 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone3] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone3 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

119

@figure [drone4] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone4 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone5] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone5 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone6] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone6 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone7] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone7 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone8] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone8 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@f igure [drone9] (type=r e c t ang l e ; pos =10 ,50; s i z e =1 ,1;) ;

@f igure [drone9 . l a b e l] (type=text ; pos =20 ,80; t ex t=p la c eho lde r) ;

@display (”bgb=20800 ,9550; bg i=background/ t own sv i l l e S c a l e 2 ”) ;

submodules :

v i s u a l i z e r : I n t e g r a t e dV i s u a l i z e r {

parameters :

@display (”p=0,50”) ;

}

// coordinateSystem : OsgGeographicCoordinateSystem {

// parameters :

// @disp lay (”p=12868.674 ,3622.9373”) ;

// }

drone [numDrones] : StandardHost {

parameters :

@display (”p=382 ,50; i=misc/drone , b lue ”) ;

}

radioMedium : Ieee80211ScalarRadioMedium {

@display (”p=12868.674 ,5217.03 ”) ;

}

mDrone : StandardHost {

@display (” i=misc/drone , red ”) ;

}

// physica lEnvironment : PhysicalEnvironment {

// @disp lay (”p=13129.525 ,2115.7954”) ;

// }

c on f i gu r a t o r : Ipv4NetworkConfigurator {

@display (”p=13129.525 ,550.68646 ”) ;

}

}

Appendix G

omnetpp.ini Code

[General]

image=path = ”/home/ user / In t e g r a t i on / i n e t / showcases / gene ra l / s impleMobi l i ty ”

user=i n t e r f a c e = Qtenv # Tkenv does not support 3D v i s u a l i z a t i o n

** . arp . typename = ”GlobalArp”

Vi s u a l i z e r s e t t i n g s

#* . v i s u a l i z e r . o s gV i s u a l i z e r . typename = ” Int eg ra t edOsgV i sua l i z e r ”

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . typename = ”

SceneOsgEarthVisua l i zer ”

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . mapFile = ”boston . earth ”

Coordinates o f the scene o r i g i n on the map

#* . coordinateSystem . sceneLongitude = 150 .8 deg richmond

##*. coordinateSystem . sceneLat i tude = =33.6deg

#* . coordinateSystem . sceneLongitude = 146.766402 deg #town sv i l l e

#* . coordinateSystem . sceneLat i tude = =19.248006deg

** . networkConfiguratorModule = ””

* . v i s u a l i z e r . * . mob i l i t yV i s u a l i z e r . d i sp l ayMob i l i t y = true # master switch

* . v i s u a l i z e r . * . mob i l i t yV i s u a l i z e r . d i s p l a yPo s i t i o n s = true

* . v i s u a l i z e r . * . mob i l i t yV i s u a l i z e r . d i s p l ayOr i en t a t i on s = true

* . v i s u a l i z e r . * . mob i l i t yV i s u a l i z e r . d i s p l a yV e l o c i t i e s = true

* . v i s u a l i z e r . * . mob i l i t yV i s u a l i z e r . displayMovementTrai ls = true

* . v i s u a l i z e r . * . mob i l i t yV i s u a l i z e r . po s i t i onC i r c l eRad iu s = 4

#* . v i s u a l i z e r . * . mediumVisual izer . displayCommunicationRanges = true

121

#[Conf ig Mtest]

#network = EarthVisua l i zat ionShowcase

Vi s u a l i z e r s e t t i n g s

#* . v i s u a l i z e r . o s gV i s u a l i z e r . typename = ” Int eg ra t edOsgV i sua l i z e r ”

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . typename = ”

SceneOsgEarthVisua l i zer ”

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . mapFile = ”boston . earth ”

#

Coordinates o f the scene o r i g i n on the map

#* . coordinateSystem . sceneLongitude = 150 .8 deg

#* . coordinateSystem . sceneLat i tude = =33.6deg

[Conf ig DroneConfig3D]

#network = EarthVisua l i zat ionShowcase

network = DroneNetwork

#* .mDrone . osgModel = ”3d/drone . i v e . 1 0 0 . s c a l e . 0 , 0 , 9 0 . ro t ”

#* . drone [*] . numApps = 1

#* . drone [*] . app [0] . typename = ”UdpBasicApp”

#* . v i s u a l i z e r . * . mediumVisual izer . displayCommunicationRanges = true

#* . drone [*] . wlan [*] . r ad io . t r an smi t t e r . power = 10mW

#* . drone [*] . forward ing = true

#* . drone [*] . wlan [*] . mgmt . typename = ”Ieee80211MgmtAdhoc”

#* . drone [*] . wlan [*] . agent . typename = ””

#* . numDrones = 2 #max 10 drones

#* . drone [*] . mob i l i ty . swarmSize = 2 #must match numDrones

* . drone [*] . mob i l i ty . typename = ”DroneMobil ity ”

* . drone [*] . mob i l i ty . surroundRadius = 150m

* .mDrone . mob i l i ty . typename = ”Mal ic iousDroneMobi l i ty ”

#** .mDrone . mob i l i ty . t r a c eF i l e = ”mal ic iousDrone . movements”

** .mDrone . mob i l i ty . is3D = true

** .mDrone . mob i l i ty . nodeId = =1

* . drone [*] . mob i l i ty . maxSpeed = 20mps

* . drone [*] . mob i l i ty . speed = 0mps

* . drone [*] . mob i l i ty . sensorRange = 1000m#680m

* . drone [*] . mob i l i ty . a c c e l e r a t i o n = 4mpss

#* . drone [0] . mob i l i ty . sensorAccuracy = 50pc

122

#* . drone [2] . mob i l i ty . sensorAccuracy = 90pc

#* . drone [3] . mob i l i ty . sensorAccuracy = 90pc

* . drone [*] . mob i l i ty . overshootMode = true

#v e r t i c a l a c c e l e r a t i o n = 3mpss

** . mob i l i ty . margin = 0m

** . mob i l i ty . speedStdDev = 0 .5mps

** . mob i l i ty . angleStdDev = 0 .5 deg

** . mob i l i ty . alpha = 0 .5

* . drone [0] . mob i l i ty . droneNumber = 0

* . drone [1] . mob i l i ty . droneNumber = 1

* . drone [2] . mob i l i ty . droneNumber = 2

* . drone [3] . mob i l i ty . droneNumber = 3

* . drone [4] . mob i l i ty . droneNumber = 4

* . drone [5] . mob i l i ty . droneNumber = 5

* . drone [6] . mob i l i ty . droneNumber = 6

* . drone [7] . mob i l i ty . droneNumber = 7

* . drone [8] . mob i l i ty . droneNumber = 8

* . drone [9] . mob i l i ty . droneNumber = 9

* . drone [*] . mob i l i ty . i n i t i a l Z = 20m

#* . drone [*] . app [0] . destPort = 0

#* . drone [*] . app [0] . messageLength = 0B

#* . drone [*] . app [0] . s end In t e rva l = 0 s

* . drone [*] . mob i l i ty . t a r g e tMob i l i t y = ” ˆ . ˆ . mDrone . mob i l i ty ”

Phys i ca l environment s e t t i n g s

#* . physicalEnvironment . coordinateSystemModule = ” coordinateSystem”

#* . physicalEnvironment . c on f i g = xmldoc (” ob s t a c l e . xml”)

Vi s u a l i z e r s e t t i n g s

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . sceneShading = true

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . sceneColor = ”#000000”

#* . v i s u a l i z e r . o s gV i s u a l i z e r . s c e n eV i s u a l i z e r . sceneOpacity = 1

Coordinate system s e t t i n g s

#* . coordinateSystem . s c eneA l t i tude = 0m

#* . coordinateSystem . sceneHeading = 68 .3 deg

123

#* . drone [*] . mob i l i ty . coordinateSystemModule = ” coordinateSystem”

Node po s i t i o n s e t t i n g s

#* . drone [0] . mob i l i ty . i n i t i a l L a t i t u d e = =19.24809deg #=19.239009deg

#* . drone [0] . mob i l i ty . i n i t i a l L on g i t u d e = 146.76649 deg #146.752424deg

#* . drone [*] . mob i l i ty . i n i t i a l A l t i t u d e = 20m

#

#* . drone [1] . mob i l i ty . i n i t i a l L a t i t u d e = =19.234457deg

#* . drone [1] . mob i l i ty . i n i t i a l L on g i t u d e = 146.769012 deg

#

#* . drone [2] . mob i l i ty . i n i t i a l L a t i t u d e = =19.240155deg

#* . drone [2] . mob i l i ty . i n i t i a l L on g i t u d e = 146.776072 deg

#

#* . drone [3] . mob i l i ty . i n i t i a l L a t i t u d e = =19.251766deg

#* . drone [3] . mob i l i ty . i n i t i a l L on g i t u d e = 146.774744 deg

#

#* . drone [4] . mob i l i ty . i n i t i a l L a t i t u d e = =19.263054deg

#* . drone [4] . mob i l i ty . i n i t i a l L on g i t u d e = 146.769320 deg

#

#* . drone [5] . mob i l i ty . i n i t i a l L a t i t u d e = =19.250118deg

#* . drone [5] . mob i l i ty . i n i t i a l L on g i t u d e = 146.750906 deg

#

#* . drone [6] . mob i l i ty . i n i t i a l L a t i t u d e = =19.250118deg

#* . drone [6] . mob i l i ty . i n i t i a l L on g i t u d e = 146.750906 deg

#

#* . drone [*] . mob i l i ty . i n i t i a l L a t i t u d e = =19.250130deg

#* . drone [*] . mob i l i ty . i n i t i a l L on g i t u d e = 146.750906 deg

#* . drone [0] . mob i l i ty . i n i t i a l X = 5169 #=19.239009deg

#* . drone [0] . mob i l i ty . i n i t i a l Y = 1473 #146.752424deg

#* . drone [*] . mob i l i ty . i n i t i a l A l t i t u d e = 20m

#

#* . drone [1] . mob i l i ty . i n i t i a l X = 9724

#* . drone [1] . mob i l i ty . i n i t i a l Y = 3893

#

#* . drone [2] . mob i l i ty . i n i t i a l X = 8152

#* . drone [2] . mob i l i ty . i n i t i a l Y = 5661

#

#* . drone [3] . mob i l i ty . i n i t i a l X = 10028

124

#* . drone [3] . mob i l i ty . i n i t i a l Y = 5161

#

#* . drone [4] . mob i l i ty . i n i t i a l X = 7780

#* . drone [4] . mob i l i ty . i n i t i a l Y = 4393

#

#* . drone [5] . mob i l i ty . i n i t i a l X = 8860

#* . drone [5] . mob i l i ty . i n i t i a l Y = 5941

#

#* . drone [6] . mob i l i ty . i n i t i a l X = 9004

#* . drone [6] . mob i l i ty . i n i t i a l Y = 3581

* . drone [*] . mob i l i ty . i n i t i a l X = 8948

* . drone [*] . mob i l i ty . i n i t i a l Y = 4769

record=event log = true

sim=time=l im i t = 1800 s

* .mDrone . mob i l i ty . typename = ”Mal ic iousDroneMobi l i ty ”

#** .mDrone . mob i l i ty . t r a c eF i l e = ”M2. movements”

** .mDrone . mob i l i ty . is3D = true

** .mDrone . mob i l i ty . nodeId = =1

* . drone [*] . mob i l i ty . targetTrackMode = ” d i r e c t ” #d i r e c t or PN

[Config DroneNetworkFollow]

extends = DroneConfig3D

#* . drone [*] . mob i l i ty . droneMode = ” d i r e c t ” #d i r e c t or swarm

* . drone [*] . mob i l i ty . swarmPosMode = ” f o l l ow ”

#r epeat = 10

* . numDrones = ${N=1..10} #${N drones =1. .10} #max 10 drones

* . drone [*] . mob i l i ty . swarmSize = ${N} #must match numDrones

* . drone [*] . mob i l i ty . i t e r a t i o n = ${N2=1. .10}

[Conf ig DroneNetworkCone]

extends = DroneConfig3D

* . drone [*] . mob i l i ty . droneMode = ”swarm” #d i r e c t or swarm

* . drone [*] . mob i l i ty . swarmPosMode = ”cone”

* . numDrones = ${N=1..10} #${N drones =1. .10} #max 10 drones

* . drone [*] . mob i l i ty . swarmSize = ${N} #must match numDrones

* . drone [*] . mob i l i ty . i t e r a t i o n = ${N2=1. .10}

[Conf ig DroneNetworkSurround]

125

extends = DroneConfig3D

* . drone [*] . mob i l i ty . droneMode = ” e f f i c i e n t ” #d i r e c t or swarm

* . drone [*] . mob i l i ty . swarmPosMode = ” surround”

** .mDrone . mob i l i ty . t r a c eF i l e =”C2 . movements”

* . numDrones = ${N=1..10} #${N drones =1. .10} #max 10 drones

* . drone [*] . mob i l i ty . swarmSize = ${N} #must match numDrones

* . drone [*] . mob i l i ty . i t e r a t i o n = ${N2=1. .10}

#

#[Conf ig DroneNetwork3DlinearPN]

#extends = DroneConfig3D

#* . drone [*] . mob i l i ty . targetTrackMode = ”PN” #d i r e c t or PN

#

[Conf ig DroneNetworkAll]

extends = DroneConfig3D

* . drone [*] . mob i l i ty . droneMode = ” d i r e c t ” #d i r e c t or swarm

#repeat = 10

** .mDrone . mob i l i ty . t r a c eF i l e = ${N4=”M1. movements” , ”M2. movements” , ”M3.

movements” , ”C1 . movements” , ”C2 . movements” , ”C3 . movements”}

* . numDrones = ${N=1..10}#${N=1..10} #${N drones =1. .10} #max 10 drones

* . drone [*] . mob i l i ty . swarmSize = ${N} #must match numDrones

* . drone [*] . mob i l i ty . swarmPosMode =${N3=” f o l l ow ” , ” surround” , ” cone”}

* . drone [*] . mob i l i ty . i t e r a t i o n = ${N2=1. .10}

