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Abstract 

 

When looking at the research and industrial landscape, the tendency to favour SLAM based algorithms is 

ever present and for a good reason. SLAM algorithms are the most mature algorithms that we have 

available today. However, competitors to this are starting to arise to fill in the gaps that SLAM has in its 

capabilities at the moment. One of these competitors is the utilisation of Deep Neural Networks or DNN’s 

- a term loosely applied to Deep Learning algorithms. 

 

The proposed study focussed on establishing the characteristic differences between SLAM based 

algorithms and CNN based algorithms within simulated environments.  

 

The Deep Neural Network being tested was developed by the author of the project and trained using data 

collected within the chosen simulation’s engine. The simulation engine utilised was Unreal Engine 4 

(version 4.24) using the latest version of the AirSim plugin (as of the March 2020 update v1.3.1). The 

SLAM algorithms being used for the comparison were MATLAB variants of ORB-SLAM and CEKF-

SLAM.  

 

The findings of the project are largely inconclusive, with the project conclusion defining that additional 

work needs to be complete in order to provide conclusive evidence for the project. However, the 

supporting findings of the project validate its position as having useful research findings. A clear 

consensus has been established on the methods required to operate within these environments and 

understanding the limitations that apply under these software conditions. This is information that is 

currently poorly defined in the Literature and as such this project serves as a strong base for future 

projects to build on. 

 

Anecdotally, it has been found that the utilisation of CNNs is far more accessible in simulated 

environments such as AirSim. However, it is a direct result of immaturity for the software utilised. 

Additionally, the strong Literature Review provides evidence in the direction of CNN utilisation over 

SLAM based algorithms however these findings were not validated.  

 

The project is aimed to be conducted across the formal 2020 academic year spread across the two courses 

ENG4111 and ENG4112 as part of the dissertation process for a graduating BENGH Engineer. 
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Chapter 1 - Introduction 

1.1 Preamble 

Complete automation has been a major point of interest for industry researchers and influencers as of 

current. It is beginning to become a requirement for underground mining globally and is a topic of interest 

and debate currently within the production automotive industry. With Tesla pushing the industry to more 

heavily focus and invest in automation there is beginning to be a dispute with respect to the methods that 

should be utilised to achieve the end goal of complete automation.  

 

For mobile robots, the general standard for building automation is based on the utilisation of mapping 

software that can produce an understanding of the environment. Generally, this is lumped together with a 

localisation method in order for the mobile robot to make sense of its position within the map it has 

produced. This is known as a SLAM algorithm - Simultaneous Localisation and Mapping.  

 

The utilisation of Neural Networks can be considered the bread and butter of modern statistical based 

inference algorithms. Neural Networks is a broad defining topic and often describes a wide genre of 

algorithms - but hold commonalities in their basic structure. It is within this field with which this project 

will reside. Deep Learning is the field of Machine Learning and Neural Network development that is 

essentially ‘large’ with respect to today's compute capability. Often, Convolutional Neural Networks 

(CNN) and Generative Adversarial Networks (GAN) are lumped into this broad term.  

 

This paper will look at the utilisation of a Deep Learning algorithm along with the industry preferred 

SLAM algorithms to investigate the current state of the industry within a simulated environment and 

utilise evidence from simulations to determine whether or not the evidence found in this paper supports 

the literature or establishes discourse in the field.. 

1.2 Project Description 

1.2.1 Aim 

This project aims to investigate the use of Deep Neural Networks compared to Simultaneous Localisation 

and Mapping based algorithms for autonomous control of drones within simulated environments and to 

validate findings within the simulated environment. This focuses on the aspects and differences of 
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developing and deploying a Deep Neural Network and a SLAM algorithm for use in a simulated 

environment and aims to establish a clear understanding of the variances between each algorithm type. 

1.2.2 Scope 

The scope of the project intends to cover the research, development and training of an appropriate Deep 

Neural Network and the comparison of it to well established SLAM based algorithms.  

 

The performance comparison will be interpreted through two main avenues; the first being the resource 

utilisation and compute performance required for the system to operate sufficiently, the second being the 

performance of the system with respect to known SLAM research difficulties. The difficulties have been 

outlined in Section 2.1 however the difficulties can be briefly outlined as; dynamic problems, illumination 

variance and the ‘kidnap’ problem. 

 

The project will attempt to limit its focus, especially with respect to the development of the Deep Neural 

Network, to that outlined in the above scope along with aiming to establish considerable understanding on 

how to operate these algorithms in a simulated environment. If the scope was only defined as a Neural 

Network approach, then the extent of research into the design of varying neural structures would expand 

the project beyond its intended and beneficial decree. To define it simply, the project is limited to the 

investigation of and comparison of a Deep Neural Network based autonomy algorithm to that of well 

researched and well-defined Simultaneous Localisation and Mapping based autonomy algorithms as 

provided by the research organisation OpenSLAM. The two SLAM algorithms to be adapted are the 

ORB-SLAM and CEKF-SLAM algorithms. The application of the autonomy algorithms will purely be 

limited to that of a monocular visual input quadcopter as defined in the AirSim documentation and the 

sensors provided within the package. 

1.2.3 Objectives 

The completion of this project involves the following objectives: 

 

1. Design and develop the appropriate simulated environments 

2. Convert and implement the known comparison SLAM algorithms from OpenSLAM 

3. Design, train and implement a DNN capable of drone flight 

4. Design and conduct experiments 

5. Determine suitability of DNN 

6. Compare performance metrics of SLAM and DNN 
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7. Present a conclusion and future work necessary 

1.2.4 Motivation and Problem Statement 

There are a variety of influences that have motivated the work completed in this project, the simplest 

being a personal desire to learn about and clarify disagreements within the industry of automation. 

Throughout my years of study leading up to this project, I have been exposed to the works of individuals 

such as Lex Friedman, Ilya Sutskever and Sertac Karaman in which my beliefs of the capabilities of 

neural networks and their applications expanding beyond categorical identifications and labelling have 

brewed.  

 

My main goal with the learnings, findings and my own personal gain throughout this project is to 

eventually begin to make general and specific autonomy better understood. This can be achieved by 

attempting to establish a consensus on the characteristics of each algorithm type and the general benefits 

or disadvantages that are inherit to them within a simulations environment. Consider mining vehicles, 

which must be able to not only determine paths, but understand friction differentials with the material 

with which they are driving upon - it is extremely common for underground paths to be either extremely 

dusty or extremely slippery due to dust suppression or burst water mains. The ability to infer differences 

in grip along with driving characteristics which best suit this can be learned and inferred within a complex 

Deep Learning model given it has the ability to abstract to this degree. 

 

Now, the reasoning for applying this to drones is the fact that there are many more degrees of freedom 

associated with the flight control of a drone compared to a land-based vehicle and that the research tool 

utilised for the project specifically focussed on the utilisation of quadrotor drones. From a mostly 

personal standpoint, I see this technology being heavily investigated within the research community, but 

its application is far behind the studies being conducted. Top performing companies are attempting to 

move into this area, but the current unreliability of neural networks is forcing the consumption of SLAM 

based algorithms - which is not exactly a detriment - as a means to resolve their current dilemma. 

 

Developing a coherent understanding between well-established SLAM algorithms compared to Deep 

Neural Networks may begin to help the industry to better understand the benefits of each method and 

ways in which both may be beneficial when combined to resolve a task. Conducting these comparisons in 

a simulated environment is beneficial for a variety of reasons. Not only for the safety factors, but the fact 

that parallel and continuous experimentation and data gathering can be conducted on a scale that is 

impossible to match in the real world.  
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1.2.5 Hypothesised Outcome 

I hypothesise that the solution based on the deep neural network architecture will present evidence in 

favour of its utilisation as opposed to simultaneous localisation and mapping algorithms. This is due to 

the end to end capability of deep learning algorithms and the ability to approximate multiple actions at 

once in a single network. This would theoretically be more computationally efficient after being trained 

than a SLAM based algorithm and provides the basis for more complex control given the network is 

trained effectively. I do believe that if SLAM algorithms provide more significant evidence in favour of 

their utilisation compared to DNN algorithms that it will be due to ineffective implementation of the DNN 

and not necessarily due to the performance benefits of a SLAM based approach. However, I will not 

misrepresent the findings in any fashion and will attempt to utilise any results to bolster improvement 

approaches for both algorithms. 

 

1.3. Background Information  

The landscape of drone automation - and the majority of vehicle-based automation in general - has long 

been built on the pillars of SLAM based automation. This is for a good reason, SLAM has long since 

established itself as a worthy algorithm to mould the industry around. However, as compute power 

becomes more viable for mobile robots, the application of AI is beginning to hold prominence. 

Specifically, Deep Learning is beginning to become more prominent for navigational and autonomous 

purposes.  

 

The project in some degree is beginning to set the scene for a SLAM and DNN showdown to find the 

optimal solution - but considering that both algorithms are largely unfinished (being that there is no “one” 

solution for all scenarios) it will be difficult to draw a clear conclusion based on this project alone. It is 

ultimately likely that the ultimate solution will not be entirely binary, but a blend that accentuates the 

superior characteristics of each method. 

 

The push for training within simulated environments is becoming stronger for a multitude of reasons. 

Regulations in the real world are beginning to limit the capability to test systems in that it may 

realistically no longer be viable to conduct research in the real world at the same scale. Looking at the 

regulations implemented throughout the early stages of 2020 due to COVID-19 it is understandable that 

simulated test and training environments are likely to become more preferable in the future. Ultimately 

the push for simulated environments has an added benefit. Training in a simulated environment allows for 
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the training of networks to be accelerated and begins to open the capabilities up for genetic networks, 

parallel operation and simultaneous training. 

 

The following section is focussed on defining the relevant background information for the project to 

begin establishing a consensus on each algorithms capability and method of operation. 

1.3.1 Drone Dynamics & Understanding Drone Flight  

In order to be able to properly approach the proposed project, a basic understanding of the dynamics of 

the system involved is required. An understanding of drone kinematics in the real world can be 

transferred to the simulated environment - but the accuracy is not identical. Looking at the white paper for 

AirSim, the necessary dynamics are outlined.  

 

To simply explain how a drone is able to fly, it is via the displacement of air such that the downward 

force of air results in a climbing force being produced by the rotors. Knowing that the rotors (or 

propellers) are directly responsible for the force production then it can be claimed that by altering the 

force produced from the rotors a change in the flight path will occur. Thus, the velocity and directions 

they spin directly correlate to the flight path and the rotations necessary to develop them. The 

displacement of air follows the rotational path of the blade and utilising this we can also begin to 

introduce rotations to the system. 

 

The present forces for the simulated quad rotor drone can be best outlined as directly noted in the white 

paper for AirSim. The model for it can be seen as follows in Figure 1: 

 

Figure 1. Force Model for Quadrotor Drone in AirSim (Shah et. al. 2017, pg. 5) 

 

As can be seen, there are three apparent general forces in the model. The inputs from the ‘motors’ are 

input as a unitless scaler control input {u1, u2, u3, u4} and can be considered the acceleration component 

of the motors. The model for the vehicle presented here is based on how it is represented in the AirSim 
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simulation engine. The input Ui develops a force normal to the rotational direction - this produces a 

calculable torque for each input. Therefore, the forces can be outlined as follows: 

 

𝑢𝑖 =  {𝑢1 , 𝑢2 , 𝑢3 , 𝑢4} 

𝐹𝑖 =  {𝐹1 , 𝐹2 , 𝐹3 , 𝐹4} 

𝜏𝑖 =  {𝜏1 , 𝜏2 , 𝜏3 , 𝜏4} 

 

The torque (𝜏𝑖 ) and force values (𝐹𝑖 ) can be defined as follows: 

 

𝐹𝑖 = 𝐶𝑇𝜌𝜔𝑚𝑎𝑥
2 𝐷4𝑢𝑖 

𝜏𝑖 =
1

2𝜋
𝐶𝑝𝑜𝑤𝜌𝜔𝑚𝑎𝑥

2 𝐷5𝑢𝑖 

(Shah et. al. 2017, pg. 5) 

Where CT and Cpow are the coefficients of thrust and power and are based on the propeller, 𝜌 is the air 

density of the environment, D is the propeller diameter and 𝜔𝑚𝑎𝑥
  is the maximum angular velocity of the 

rotor RPM (Shah et. al. 2017). The ui input values can be considered as an acceleration input to the model 

in order to develop the necessary torque at the rotors. However, the simulation model does not exactly see 

the input ui as an acceleration. It doesn't directly accrue the acceleration value of the vehicle, but it is the 

excitation percentage that indicates the ability to accelerate. Essentially, treat it as a throttle input value. 

 

When looking at the sensors that are generally used to facilitate stable flight the first that comes to mind is 

the IMU - Inertial Measurement Unit. This is a unit that records data from two sources - a gyroscope and 

an accelerometer. This provides feedback to the unit in the form of measured change in its movement in 

the form of rotational and linear accelerations. For the six degrees of freedom within which the unit can 

move, the IMU provides real-time measured data - however this will generally need to be filtered.  

 

For a quadrotor drone moving in a realistic environment it will not be exposed to an entirely 

homogeneous airspace as it is in the simulation environment. In a realistic environment the airspace will 

change throughout its movement path - meaning minor alterations in pressure, temperature, wind speed 

etc. such that minor control changes will need to be made in order to maintain accuracy. These conditions 

cannot entirely be accounted for within the simulations environment as it was not a part of the AirSim 

plugin at the time of conducting the project. Therefore, any findings for this project will need to be 

considered applicable only to simulations environments and transfer learning or accounting for these 

minor alterations will be necessary for a production drone. T 
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There are a surprising number of methods to fly a quadrotor drone. One would assume that you require all 

of the rotors to be active in order to appropriately fly the drone, but this does not appear to be the case. 

Under certain circumstances, the drone can fly with only 2 active rotors under the condition that they can 

provide enough lift to maintain altitude. These must be directly opposite one another, however under 

these conditions the drone loses its capability to directly control all of its degrees of freedom. Under these 

conditions the drone loses its ability to control rotation about the z-axis - it will spin seemingly 

uncontrollably however the drone can maintain control over all other degrees of freedom (TED | Raffaello 

D’Andrea, 2013). Developing the capabilities to do this into the drone model for this project is not 

necessary however understanding these capabilities exist may assist in future training of the models if it is 

considered necessary to implement additional modes of recovery for failed motors. 

 

One of the major research benefits of utilising the AirSim plugin is that the majority of the kinematic and 

control models for the quadcopter are already embedded in the software. It provides an API for the user to 

control the drone’s; pitch, yaw, roll, and x, y, z linear accelerations (Shah et. al. 2017). This simplifies any 

additional structure that would need to be built into the system - this structure being a model to balance 

acceleration distribution between the four motors when inputting a desired action such as a forward 

request. For a further explanation of the API control methods used for this project please refer to Chapter 

5. 

1.3.2 SLAM Algorithm Design & Implementation  

A term that will arise quite often when researching the underpinning mechanics of mobile robots is that of 

SLAM. In essence, SLAM (Simultaneous Localisation and Mapping) is an algorithm for autonomous 

mobile robots that allows them to construct a map based on the apparent environment and then 

subsequently localise itself within the map. A more formal definition can be defined as,”…the process of 

concurrently building a feature-based map of the environment and using this map to obtain estimates on 

the location of the [object].” (Williams & Dissanayake & Durrant-Whyte 2002).  This allows a mobile 

robot to have an understanding of its position in a real-world environment and to understand the 

environment around it as well - allowing it to be able to make decisions depending on the navigational 

software it is using. To break a generic SLAM algorithm into its most basic components, it consists of; 

landmark extraction, data association, state estimation, state update and landmark update (Riisgaard & 

Blas 2004, pg. 6).  

 

SLAM algorithms found their rough modern-day origins with the publication of the paper, ‘Estimating 

Uncertain Spatial Relationships in Robotics’ by Smith R. et. al. which investigated the use of spatial 
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information for a robot to produce a stochastic map that contains relationships between the origination of 

the data (consider it the mobile robot) and objects within the map it has produced. From here, it 

progressed with the publication of ‘Simultaneous Map Building and Localization for an Autonomous 

Mobile Robot’ by Leonard & Durrant-Whyte which aimed to resolve the issue of initialisation for SLAM 

algorithms. The authors presented the problem as being, “to move precisely, a mobile robot must have an 

accurate environment map; however, to build an accurate map, the mobile robot’s sensing locations must 

be known precisely.” (Leonard & Durrant-Whyte 1991) to which they likened to the age-old question 

pondered about the chicken and the egg - which comes first? 

 

A general outline of a SLAM algorithm in flowchart form can be seen below in Figure 2: 

 

Figure 2. Generic SLAM Algorithm Modified from source (Zunino 2002, pp 39) 

 

This is a flowchart utilised for a Sonar-based application shown in the paper titled, ‘Simultaneous 

Localization and Mapping for Navigation in Realistic Environments’, by Zunino, G. that utilises a Sonar 

input as the main source of data for the algorithm. The input to a SLAM algorithm can be a variety of 

sources however, including; RGB camera input, Ultrasonic sensors, Radar, thermal heat maps, etc. so 

long as it provides an ability for the algorithm to produce a map in some form of its local environment. 

 

Looking at the flowchart in Figure 2. and having the understanding of the basic components of SLAM an 

appropriate explanation of a generic SLAM algorithm can be given. Using an input from an RGB camera 

as opposed to a Sonar input the algorithm can be generalised to give an understanding of how it is applied 

in this project.  

 

The algorithm will produce a map (explained further in the section) and this map will be stored as the 

environment state at step n. In this environment state, if it is the first piece of incoming data then the 

algorithm will go through an initialisation process. This means that there is no prior data to create 
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associations with. However, let's assume that instead of looking at the environment at step n we are 

looking at the environment at step n + 1 being that initialisation has already successfully occurred. When 

assessing step n + 1 in relation to step n, data association occurs. This portion of the algorithm assesses 

the data for features in which it can produce an orientation and understanding of change from. For 

instance, if a prominent feature, such as a yellow strip, moves horizontally between steps and the 

incoming frame rate or time between keyframes is understood then inference about the change in the 

mobile robot’s position and thus the perceived map can be made. Treat this initial portion, the data 

association, simply as an identification step. From here, the algorithm will split into two simultaneous 

paths. The track initiation portion will store prominent feature points in the map and attempt to find them 

within each incoming image. If a new prominent and easily distinguishable data point is found, then it 

will be integrated into what is known as the feature map. Looking down the right-hand side of the 

flowchart, there is the process of track deletion and feature deletion. They are quite self-explanatory in 

reference to the actions on the left-hand side of the feature map; however, the initial portion maintains an 

understanding of changes that have occurred to the incoming image. If there are prominent features that 

are no longer desirable, then the algorithm will periodically remove the features from the map. With an 

understanding of the change in input data, and an understanding generally of the movement that has 

occurred, the map will be updated to reflect the new state of the system. The algorithm will then utilise 

this current map along with the incoming control input (this is generally given by the navigational 

component of the mobile robot) to make a new state prediction. This state prediction can be better 

understood by treating it as the pose estimation of the mobile robot which encompasses the location and 

rotation data for the mobile robot. From here, the state from step n+1 is fed into the system and the 

algorithm repeats the process.  

 

The prior paragraph provides a rudimentary understanding of how a generic SLAM algorithm works and 

will help when looking at future implementations of the algorithm type. However, it is a relatively poor 

technical breakdown of the algorithm. It must be understood that for the majority of applications, a 

SLAM algorithm alone will not suffice for a mobile robot to conduct autonomous operations. It will need 

a navigational and path planning algorithm that interprets the SLAM output data. There are a variety of 

path planning techniques such as A*, D*, Dijkstra and RRT (Correll, N 2007). However, it is quite often 

for a navigational algorithm to utilise what is known as an occupancy grid or an occupancy map.  

 

Mapping can be done due to optical flow and pixel movement velocities estimating depth data however it 

is significantly more difficult to conduct visual SLAM when utilising an individual input camera 

(monocular) compared to having two input cameras (stereo) or using RGB-D (depth and ToF data) 
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cameras (MathWorks n.a.). Under monocular SLAM there is generally a requirement to combine the 

image data with some form of accurate movement data (velocity, rotation and orientation). This can be 

given by an IMU sensor or by an external camera tracking the alterations in the movement of the mobile 

robot - but this isn’t always a feasible option (University Freiburg n.a.). 

 

Localisation is done utilising the incoming data along with the map projection. Localisation is conducted 

in varying fashions depending on the algorithm type being utilised. ORB-SLAM takes a current keyframe 

and creates a set of 3D map points based on features within the previous keyframe and the current pose of 

the mobile robot (MathWorks n.a.). It will then apply a process known as bundle adjustment to minimise 

reprojection errors by making adjustments to the 3D points and the camera pose. From here the loop 

closure is applied and the system returns to the mapping and tracking aspect of the algorithm. 

 

However, the implementation of SLAM alone is not sufficient for autonomous control. There needs to be 

action taken on the data that a SLAM algorithm produces. This can be done through the use of an 

occupancy grid as mentioned prior. An occupancy grid is used to represent the environment or workspace 

of a mobile robot in a discrete grid (MathWorks n.a.). In the case of a monocular input, the occupancy 

grid is based on a probabilistic likelihood that that grid is navigationally satisfactory and as such suffices 

to move within. It is a free space estimate based on the images contents and creates a costmap for the 

movement path to be determined (MathWorks n.a.). 

 

The example images provided by MathWork serve best to describe its operation. This appears as follows: 

 

 

Figure 3. Estimate of Free Space Indicated by Green Overlay (MathWorks n.a.) 
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It can be seen that the pretrained algorithm in this case has determined portions of the road that are 

considered to have free space (in this instance, it is a road-based vehicle). This free space estimate is then 

overlayed with a green overlay for visual understanding for the user (MathWorks n.a.). From here, a 

confidence score on the free space estimate is determined. Taking the image shown in Figure 3. its 

confidence scores would appear as follows in Figure 4: 

 

 

Figure 4. Free Space Confidence Score Plot (MathWorks n.a.) 

 

From here, precise control algorithms can be applied to the new understanding of the environment that the 

mobile robot has developed. The control navigational execution can be done by a multitude of complex 

controllers, however the ‘simplest’ and often used case is a PID controller which adjusts speed and angle 

based on error of the centre pixels in an image such that it remains within its general path vicinity and 

moving in the direction of free space if that is its only known mission requirement. 

 

Explaining a Kalman filter may help the reader to understand filters and SLAM algorithms from a 

mathematic viewpoint. The Kalman filter shown below in Figure 5 has clearly defined objectives. The 

system begins by taking the initial estimation and parsing it through to the Kalman Gain Matrix, from 

which its output is compared with incoming measurements and an update is applied to the current 

estimate. Following on, it will update the state estimation and update the covariance matrix – this is a 

measure of the scatter of data and its variance. Utilising the new covariance values, the system will 

project the update into step k+1 of the system and produce an updated projected estimate matrix as a 

result. Here, this is compared again to the Kalman Gain of the initial estimate in order to repeat the 

process. This very closely emulates a generic SLAM algorithm as it is applied over the top of a SLAM 

algorithm. 



   

21 
 

 

 

Figure 5. Generic Kalman Filter Flow Chart with Equations (Lacey n.a., pp 138) 

 

. Taking a look at the equations attached, we can see there is an equation listed for; Kalman Gain, Update 

Estimate, Update Covariance and Project into k+1. The following equations and analogy are excerpts 

from the document ‘Tutorial: The Kalman Filter’ by Tony Lacey. 

 

Assessing the use of the Kalman Gain equation we see the following: 

 

𝐾𝑘  =  𝑃′𝑘  𝐻𝑇 (𝐻 𝑃′𝑘  𝐻𝑇  +  𝑅)−1 

 

Where; Kk is the Kalman Gain of the system in matrix form; P’k is the prior estimate of Pk, which is the 

error covariance matrix at time k with size nxn; HT is the transpose of the vector that represents a 

noiseless connection between the state vector and the measurement vector, this is defined and remains 

static; R is the covariance matrix of the measurement error and also remains static. 

 

Assessing the Update Estimate equation, we see the following: 

 

𝑥𝑘 =  𝑥𝑘
′ + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

′ ) 

 

Where; xk is the estimate matrix; x’k is the prior estimate matrix; Kk is the Kalman Gain of the system; zk 

is the actual measurement of the xk matrix; together, Kk(𝑧k −𝐻𝑥′k) is known as the measurement residual. 
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Assessing the Update Covariance equation, we see that: 

 

Pk = (𝐼−𝐾kH)𝑃′k 

 

Where; Pk is the covariance matrix; I is an identity matrix of size nxn; Kk is the Kalman Gain matrix; H is 

the noiseless vector that represents the connection between the state and measurement vector as seen in; 

P’k is the previous covariance matrix values. 

 

Finally, assessing the systems projection into k + 1 we have 2 equations present: 

 

𝑥
^

𝑘+1
′  =  𝛷𝑥

^

𝑘
′  

 

Where; 𝑥′𝑘+1 is the state projection estimate; 𝛷 is the state transition matrix; 𝑥𝑘 is the current estimate 

matrix. 

 

Where; Pk+1 is the projected error covariance matrix; 𝛷 is the state transition matrix; Pk is the current error 

covariance matrix; 𝛷𝑇 is the transpose of the state transition matrix; Q is the covariance of the noise 

matrix associated with white noise. 

 

The understandings developed here will assist in the utilisation and development of the SLAM algorithms 

for this project such that they can be used as a validation component in fulfilling the proposed project 

aim.  

1.3.3 Artificial Neural Networks & Deep Learning 

Artificial Neural Networks is a broad defining term. In essence, Artificial Neural Networks, or simply 

Neural Networks, are a computer emulated attempt at replicating the architecture that has made organic 

brains so efficient and effective at accomplishing a wide variety of tasks. But, what exactly is Deep 

Learning? In the book, ‘Programming PyTorch for Deep Learning: Creating and Deploying Deep 

Learning Applications’ by Ian Pointer lies a very succinct description of the term Deep Learning. In the 

Preface the author states, ‘A way of defining it is to say that deep learning is a machine learning technique 

that uses multiple and numerous layers of nonlinear transforms to progressively extract features from raw 

input.” (Ian Pointer 2019). That should be clear, right? Well, hardly. To describe Deep Learning in an 

informal manner in my own words; it is essentially the application of an algorithm, generally a neural 

network, in which an output state can be objectively learned and estimated as a result of either supervised 
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or unsupervised training. But how does relating the prior sentence to the claim that they are replications of 

the brain's function correlate?  

 

Developing a complete understanding of the brain is not necessary to understand the basic underlying 

mechanics of neural networks. In the absolute simplest of forms, a neural network can be presented as a 

Perceptron. This is a 3-node network in which there is an input node(s), an activation function, and an 

output node (DeepAI n.a.). The input node(s) are generally a vector or an array of vector inputs. 

Following on from here is the activation function. This looks at a sum of inputs. Say for instance, that 

there are 3 input nodes going into one summing node. The activation function at this node will look at the 

incoming values from all three inputs, and if their sum value exceeds the value determined by the 

activation function, then the summing node will become active and fire a forward response. The input 

values are generally biased by a weight which controls the amount of influence that is given to each input 

node. The simplest activation function is considered to be the binary step function. It operates on the basis 

of if the input condition is met, then it will activate and output a value of 1. If the condition is not met, 

then the output condition is 0. For the output node, it will also maintain its own activation function. If the 

incoming values exceed the output nodes activation function, then it will activate. For a standard 

condition the output node is generally tied to a class which indicates a feature within the data - take for 

example an image classifier, the output class may be a cat that has been detected in the image data, or it 

may simply be an input into another hidden layer. 

 

 

Figure 6. Example of a Multi Input Single Output Perceptron with a Binary Output Activation Function (DeepAI n.a.) 

 

Artificial Neural Networks are seemingly cutting-edge technology, but in reality their modern day 

adoption only appears to revolve around the increase in compute power and compute efficiency as it has 
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been strongly dismissed in the past. In 1969, M. Minsky and S. Papert published a text on the limitations 

of Artificial Neural Networks titled Perceptrons which is arguably recognised to have sowed doubt into 

the research community about investigating Artificial Neural Networks further and subsequently a large 

portion of funding was cut for the sector (Indiana University South Bend n.a.). Its identifications and 

explanations surrounding the limitations of the simplistic functions being used at the time was the main 

objective taken from the text. Stepping back even further in time, the first inclinations towards designing 

Artificial Neural Networks began over 70 years ago, with the first neuron model being developed in 1943 

by W. McCollough and W. Pitts (Indiana University South Bend n.a.). However, the most notable 

discovery which is often viewed as the starting point for modern neural architectures is that of the 

Perceptron. The Perceptron was developed by Frank Rosenblatt in 1958 and is actually the simple 3 node 

neural network described in the prior paragraph. When asked about the project, Rosenblatt is credited 

with saying, “... we are about to witness the birth of such a machine – a machine capable of perceiving, 

recognizing and identifying its surroundings without any human training or control.” and he held strong 

remarks for its capabilities, making the claim that the perceptron would be, “the first machine which is 

capable of having an original idea.” (Lefkowitz, 2019). Professor Rosenblatt's enthusiasm surrounding the 

capabilities of Artificial Neural Networks may have been dismissed as irrational at the time, but their 

capabilities are quickly beginning to be realised and have become the source of fear for many. With 

claims from individuals such as Elon Musk that, “I think the danger of AI is much greater than the danger 

of nuclear warheads by a lot…” (Clifford, 2018) during a questions and answers segment at his 

presentation at SXSW in 2018 showing this distrust for the technology. There are many opposing 

philosophies that consider the danger of AI to be negligible due to their current immature status. 

Regardless, investigating the future of AI and ANN hardly falls in line with the project scope. Neither is 

making judgements on its suitability for the future stability of the society. 
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To get a better understanding of the operation of a Perceptron, let's take a look at a neuron in the brain 

and its features as follows in Figure 7: 

 

 

Figure 7. Artistic Rendering of a Brain Neuron (Centre for Neuro Skills n.a.) 

 

The soma can be thought of in a similar fashion to that of the node in an Artificial Neural Network. Its 

main function is to determine the suitability of incoming information, and whether or not the information 

meets the necessary requirements to create an activation of the cell and subsequent electrical firing 

(Centre for Neuro Skills n.a.). Identically, the activation function tied to a node conducts this action by 

determining whether the significance of the incoming signal values meets or exceeds the artificial value 

determined by the weights and the activation function. Looking at the dendrites, these are a tree-like 

structure wherein the roots connect out into other cells - similar to neuron connections between layers 

within a structure (Centre for Neuro Skills n.a.). Their main role is to collect information from 

surrounding relevant neurons and convey this information to the soma for processing. The dendrites and 

axons can be considered similar when discussing the neuron structure with respect to the artificial neuron, 

however identifying the importance of the axon is necessary. Its main task is to directly connect neurons 

between one another, and its significance is reinforced by the fact that it is protected by a fatty layer 

called the Myelin sheath - this ensures signal integrity between neurons and maintains directionality in the 

signals (Centre for Neuro Skills n.a.). This can be conveyed through to an Artificial Neural Network by 

thinking of the connections with poor weightings as being dendrites - their main tasks are to collect some 

form of information and redistribute it to the surrounding neurons (Centre for Neuro Skills n.a.). Whereas 

the axons can be thought of as the connections with high priority and hold significance in their signal 

outputs and would therefore be weighted more heavily. 
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The significance of the architecture of the brain continues through to discussing the Artificial Neural 

Network of choice for this project - Convolution Neural Networks. It is noted by the paper titled, 

‘Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future’ by Lindsey, 

G. PhD. that the cognitive model of a CNN very closely resembles the visual cortex structure as found in 

the brain (Lindsey 2020). The author notes that researchers initially determined that within a cat's visual 

cortex there appeared to be two distinct types of cells - a simple and a complex cell. The simple cells were 

identified to respond to bars of light depending on their specific spatial location and orientation. Each cell 

had an association with a location and orientation and bar which activated the cell the most strongly. The 

complex cells maintain a weaker response to exact spatial data but appeared to indicate a response to the 

object itself. Therefore, leading the researchers to believe that the simple cells were feeding the complex 

cells information about the object and its spatial data (Lindsey 2020). Research that was built on top of 

these findings in 1980 identified a functional model of the visual cortex. The model was referred to as the 

Necognitron and serves as the basis of modern Convolutional Neural Network architectures (Lindsey 

2020). To understand the significance of these findings with that of the structure of a Convolutional 

Neural Network, the following image can be used: 

 

 

Figure 8. Organic Visual Cortex Relation to Convolutional Neural Network Structure (Lindsey 2020, pp. 3) 

 

This serves as a good point to begin delving into the design architecture of Convolutional Neural 

Networks. Understanding that simple cells were providing spatial information about an incoming image 

and that the complex cells were collating information to determine the objective of an image allowed 

researchers to develop two layers that mimic their operations. These are known as the convolutional layer 

and the pooling layer - these serve as the basic underlying structure of Convolutional Neural Networks. 

 



   

27 
 

To get an understanding of Convolutional Neural Networks, two books serve as a good foundation. 

Looking at ‘Foundations of Deep Reinforcement Learning: Theory and Practice in Python’ by Laura 

Graesser and Wah Loon Keng and ‘Programming PyTorch for Deep Learning: Creating and Deploying 

Deep Learning Applications’ by Ian Pointer, the basic operations and mechanism that enable CNN’s to 

operate are well established. The two books resolve the understandings in varying ways - the initial book 

looks to explain a historic rendition and reasoning for CNN whilst the latter explains the underlying 

mechanics utilising code as an example.  

 

Throughout his text, Ian Pointer identifies that a standard fully connected neural network can approximate 

any objective function, however the issue originates in the fact that the time to train this function is 

largely undefined and is reliant on the end goal and the compute power of the system (Pointer 2019). As a 

result of this, network structures such as CNN’s have arisen to improve efficiency in specific use cases.  

 

The best method to gain an understanding of CNN’s is to follow that path that data would follow within 

the network. To provide a quick overview, for the condition of visual inputs a 2D image is provided to the 

network. It is normalised prior to being input into the input layer. Then, a convolutional layer will drag a 

convolutional kernel over the 2D plane (Pointer 2019). This convolutional kernel can be either explicitly 

defined to detect edges, straight lines, curves etc. or the user can allow the training process to define the 

kernel structure. This convolutional kernel will move with respect to its size and the stride value that it is 

provided. The stride value can be either a vector or a tuple. If the convolutional kernel size and the stride 

value provided are not a factor of the dimensions of the input image, then there will be an overlap effect 

that occurs - meaning that a kernel could read outside of the defined image value. This is where a padding 

can be applied, but it is not always necessary. If the designer intends, then the final kernel can skip the 

overlapping scan effectively shrinking the input image dimensions. The opposing method is to pad the 

dimensions with a value (generally 0) such that the kernel can make a full scan of the image without 

skipping any data (Pointer 2019). The number of varying kernels that are used depend on the number of 

desired output channels defined by the user. From here, the convolutional layers - the output channels 

from the convolutional kernels - are pooled into a collection of channels. This generally matches the size 

of the output channels from the convolutional layer and serves to compress the data which helps to speed 

up training and makes the network more efficient. This pooling utilises a kernel and stride similar to the 

convolutional kernel, however rather than scanning and replicating the data, it will shrink the matrix 

according to a ruleset. There are two main methods applied, the Average Pool and the Max Pool. The 

average pool will drag the pooling kernel over the matrix and take the average value of the values within 

the kernel matrix whereas the max pool will drag the kernel over the matrix taking the maximum value 
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from each kernel scan. These are then collated into another layer with which the convolutional and 

pooling layers are generally repeated multiple times. A final major aspect to understand in a CNN is the 

use of a dropout layer. This is a layer, generally in the final fully connected layers, that essentially zeros 

out a random percentage of the data points to ensure that overfitting does not occur (Pointer 2019). It is 

not always essential to utilise this, but it is generally recommended to implement the process during 

training and not during the deployment of the network (Pointer 2019). The final main point to discuss in 

the architecture of a CNN is the utilisation of batch normalisation. This is the recentring of values to a 

known mean with a minor standard deviation - generally the maximum and minimum values are locked to 

between 0 and 1 or -1 and 1 depending on the developer. 

 

Starting with the input, let's take an image of size A pixels high and B pixels wide. This image can be 

either grayscale or RGB. Depending on the normalisation applied to the input (see Chapter 5) there will 

be some value for each pixel that indicates either a single channel value (0 - 255 indicating the range 

between white and black for a grayscale image) or in a colour condition a triple channel input will be 

present with a value of 0 - 255 indicating the intensity of the Red, Green and Blue channels for the image 

where the image input is in an 8-bit colour range (8-bit meaning 2^8 = 256 values). Using an example 

similar to the source text will be the most appropriate. Full acknowledgement must be given to Ian 

Pointer and the book ‘Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning 

Applications’ for the following description adaptation.  

 

If we use the following matrix as a sample portion of the above image in grayscale, we might have 

something similar to the following: 

 

[

15 64 12 53
35 64 51 18
1 41 1 21
5 46 5 18

] 

 

With our understanding that a convolutional kernel is scanned across the image. This kernel is generally 

learned by the network, however as an example the following kernel can be applied: 

 

[
1 0
1 0

] 

 

Therefore, scanning this from left to right the following matrix will be produced. Since a 2x2 kernel is 

being applied, if we wish to minimise overlap in the kernel scans then a stride of 2 will be applied: 
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[
15 64
35 64

] [
1 0
1 0

] 

[
12 53
51 18

] [
1 0
1 0

] 

…etc. 

 

Which will have the following product: 

 

[
50 63
6 6

] 

 

Therefore, the kernel will shrink the dimension of the image depending on the kernel size, stride and the 

initial dimensions of the image (i.e. if there is pooling that needs to be applied). 

 

This completes the convolutional portion; however we understand that the pooling layer follows on from 

here. Taking the convolutional matrix output, the pooling layer will apply a pooling kernel over the 

matrix in a similar fashion with respect to the stride and dimension of the kernel.  

 

Now, using the principal of Max Pooling, which takes the maximum value for each kernel matrix, the 

following is output from the original matrix using a kernel size of 2, stride of 2 and no padding: 

 

[

15 64 12 53
35 64 51 18
1 41 1 21
5 46 5 18

] → [
64 53
46 21

] 

 

Therefore, a rudimentary understanding of the convolutional and pooling layers has been established. 

From here, fully connected layers or regressor layers are applied to compress the output path into a series 

of classes (Pointer 2019). This forces the network to identify features such that one of the varying number 

of output classes is satisfied. It is common to have more than one class hold an equal weighting in an 

image and it is up to the designer to implement more efficient training methods and data in order to assist 

the network in better identifying individual class outputs. 

 

A detriment towards the use of CNN’s as identified by Graesser & Keng is that the use of convolutions is 

that they are local. This means that each filter or convolution only assesses a small portion of the image 

and therefore ignores the general global structure of the incoming image (Graesser & Keng 2020). They 
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do note however, that the method used to mitigate this is to increase the size of the kernels in the initial 

layers to increase the size of each convolutional assessment. They do note also that utilising an additional 

Multilayer Perceptron on top of the CNN to run a full assessment on the image improves output however 

assessing a case such as this falls outside of the scope of the project. But, having an understanding that a 

CNN only serves to emulate the visual cortex and not the entire brain, there is certainly room to estimate 

that supporting networks will be necessary in more complex applications to ensure that a full assessment 

of data occurs. It is specifically stated by the authors that consideration for networks structures used in 

control scenarios that, “if the state provided by the environment is an image, include some convolutional 

layers in the network.” (Graesser & Keng 2020). 

 

The authors clearly outline network structures in the text and their best use case which presents a 

moderate case against using a CNN for a control-oriented scenario such as the one present in this project. 

However, the literature surrounding the topic is in support of the use of CNN’s for control. Therefore, 

further projecting from the completion of this dissertation would be an interest in investigating the 

scenario in which a CNN and an RNN-CNN are utilised for a similar task. It makes sense to utilise a 

Recursive Neural Network (RNN) in line with a CNN from control-oriented scenarios where the data is 

sequential (Graesser & Keng 2020). This allows the network to have an understanding of how it is 

moving in a scenario rather than simply reacting to an input state. This could be looked at as a logical 

progression from a standard CNN for control-oriented algorithms and is worthy of investigation. If the 

scope of the project had permitted investigating multiple Artificial Neural Network structures, then it 

would have been included on the basis of strong evidence for its investigation. 

 

There are a number of libraries that are available to the public for the development of Deep Learning 

algorithms. To list a few there are: 

 

- Theano 

- Keras 

- TensorFlow 

- MxNet 

- CNTK 

- PyTorch 

 

Each library holds its distinct advantages and disadvantages, but it is clearly outlined in the book, 

‘Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications’ by Ian 
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Pointer that PyTorch holds distinct advantages when being applied to research scenarios. The author notes 

that PyTorch’s largest competitor is TensorFlow, however TensorFlow utilises statics graphs. These are 

graphs that have a well-defined size and graph representation upon which operations are executed as 

opposed to PyTorch which utilises dynamic graphs which allows for faster changes to the architecture of 

the network during development and during training (Pointer 2019). It is specifically identified by the 

author that PyTorch is gaining popularity within the research community due to this reason, mentioning 

that a 200% increase in PyTorch use in published papers for the International Conference on Learning 

Representations which is a significant increase. A minor point in favour of PyTorch over TensorFlow is 

its pythonic nature. TensorFlow is not directly pythonic oriented (in its standard form) but it must be 

recognised that this issue mostly comes down to personal gripe of the developer or a favouring for the 

programming design that python is well known for.  

 

A reason for selecting PyTorch over TensorFlow was that throughout the Literature Review, it was found 

that a method of stabilisation used during the training process of a Convolutional Neural Network 

significantly improves its ability to be used as a control algorithm. This required the use of Spectral 

Normalisation - which is a training method normally applied to the training of GAN Networks (PyTorch 

na.). However, it was identified that for a CNN it greatly improves flight stability as will be seen in the 

Literature Review. After researching the utilisation of Spectral Normalisation for both PyTorch and 

TensorFlow it was found that it is natively integrated into PyTorch, whilst it was not natively 

implemented in TensorFlow at the commencement of the project. 

1.3.4 CASA Regulations and Simulated Environments 

Drone operations within Australia are restricted by the regulations set by CASA (Civil Aviation Safety 

Authority). CASA regulations state that for a drone above 250g, the pilot must hold the valid drone pilot 

accreditation certificate and register the drone (CASA 2019). Additionally, BVLOS (Beyond Visual Line 

Of Sight) flight is not permitted. However, a company called Airbotics received the first approval for 

BVLOS flight in order to map an underground mine in Australia in 2019 (Hosie, E 2019). This opens the 

avenue for investigating this project in a real world scenario. It must be known however, that failure to 

abide by regulations with issues that must be taken to court can be fined up to $10,500AUD (CASA 

2019). Due to this, it is worthwhile conducting simulated tests and experimentations. 

 

Additionally, another limitation to conducting the project is the high upfront cost of the necessary 

materials and equipment. The inability to be able to personally fund the project will result in the 
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simulation aspect of the automation becoming very important. High quality drones are not a cheap 

investment nor are the mobile compute units which are capable of running real time complex SLAM 

algorithms or Deep Learning algorithms. Additionally, we want a level of abstraction to be available such 

that complete measurement and control over the process can be ensured. In order to be able to guarantee 

this, the best method to focus on ultimately resolves to that of a purely simulated environment.  

 

On top of this desire for complete control over the experimentation process, the largest limitation with 

respect to trialling the findings throughout the project is the limitation of access to the appropriate 

environments. Without the ability to access an appropriate environment there will be no capability to 

validate stages of the project. Not only is there the arrangement of an area for flight that needs to be 

conducted, but CASA approval and lodgement of the flight within regulations is necessary for the 

completion of the project. The flight will need to be within a human accessible area to ensure that 

recollection of the drone is possible if failure occurs.  

 

Based on the provided evidence in this section, there is strong evidence towards simulations environments 

being favourable for research that aligns with the project type. Therefore, this will be a simulation 

focussed project. 
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Chapter 2 - Literature Review 

 

This literature review focuses on the analysis of the methods of drone automation and entertains the idea 

of utilising Deep Neural Networks for machine vision-based automation. When inspecting the literature, 

it is easy to see that the preferred industry standard is the utilisation of SLAM algorithms.  There is an 

evident lack of papers focussing on CNN based automation (in comparison to SLAM) and an even lesser 

amount focussing on the utilisation of a simulations engine to both develop and compare the two 

algorithm types. This literature review will limit its scope to purely the main relevant topics for the 

project. The topics to be reviewed are as follows; Simultaneous Localisation and Mapping for Drone 

(Section 2.1), Neural Network Based Automation (Section 2.2) and Training in Simulated Environments 

(Section 2.3). Following from here the Knowledge Gap (Section 2.4) will be identified and clearly stated 

and the possibilities resulting from the project can be found in Section 2.5. 

 

2.1 Simultaneous Localisation and Mapping for Drones 

As noted in Section 1.3.2 SLAM algorithms are heavily utilised for autonomous mobile robots under 

conditions where appropriate input data can be utilised - however what Section 1.3.2 did not describe is 

the design and characteristics of individual SLAM algorithms. This section will analyse research proven 

SLAM algorithms and surrounding supporting research both for and against their utilisation in production 

scenarios. It will also assess two algorithms that are freely provided by OpenSLAM for use in academic 

research, these are; ORBSLAM and CEKF-SLAM. 

Monocular vision-based SLAM is very common however the positional and 3D mapping accuracy of 

these algorithms can generally fail to be viable for professional and commercial use. This is due to the 

inability to conduct triangulation on the scene where depth, orientation etc. can more accurately be 

determined by either stereo cameras or a LiDAR sensor. The paper written by Huang. R et al identifies 

that their method of visual SLAM maintained roughly a 10cm accuracy for the position of the drone at all 

times (Huang, R et al., 2015). This would generally be acceptable for generic control. However, given the 

necessity for professional equipment to maintain a high level of accuracy a discrepancy of 10cm could be 

considered unacceptable if the end goal was to provide a professional quality map. 

Some applications of visual SLAM, such as the one discussed in the paper written by Sergio Garcia, M et 

al. utilised the control technique of SLAM plus a PID controller for error-based movement within image 
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frames (Garcia, S et al., 2016). However, in this method they also utilised a secondary external camera for 

visual frame reference – which did improve the systems 3D positional understanding (Garcia, S et al., 

2016). It is not viable to be able to assume the ability to maintain a secondary visual image and as such 

this method will not be pursued for the project. However, it is worthy to note the control method utilised 

for the paper. 

The utilisation of ORB-SLAM as a reference SLAM algorithm is one that is emulated in a variety of other 

papers. The paper titled A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for 

Low-cost Micro Aerial Vehicles in GPS-Denied Environments by E, Lopez et. al. indicates that 

ORBSLAM is a visually accurate SLAM algorithm and performs well in well-lit and well-featured 

environments. The paper linked to the ORBSLAM submission on OpenSLAM titled ORBSLAM: a 

Versatile and Accurate Monocular SLAM System by R. Mur-Artal, et. al. the team identifies in their 

conclusion that (for the time period in which the algorithm was completely new) the algorithm is 

extremely well equipped to handle a variety of conditions, with the team directly stating, “To the best of 

our knowledge, no other system has demonstrated to work in as many different scenarios and with such 

accuracy. Therefore our system is currently the most reliable and complete solution for monocular 

SLAM.”(Mur-Atal & Montiel & Tardos 2015). The major advantage to ORBSLAM is its ability to only 

grow the map flexibly, meaning that the map will only develop or expand if the visual content of the 

scene changes and will store the previous version of the scene after it has been replaced. They also note 

that ORBSLAM is robust enough that it can recognise its scenery even after what they call a “severe 

viewpoint change” (Mur-Artal & Montiel & Tardos 2015) which I believe is best interpreted as a claim 

that the algorithm is capable of handling the kidnap problem - to the degree that it is able to do this 

however is not explicitly presented in the paper. This will serve as a good basis to want to use the 

algorithm throughout the project as it is a well-established algorithm with a strong research backing. 

The second SLAM algorithm to be utilised in the project is the CEKF-SLAM algorithm presented in the 

paper Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time 

Implementation by J, Guivant & E. Nebot. A simple breakdown of how the algorithm is more efficient 

than other versions is through its method of feature tracking. It will limit the number of features 

depending on the resources provided to the algorithm. It will locate the maximum number of landmarks 

and optimise for those which provide the most relevant information. This means that the algorithm comes, 

“very close to optimal” according to the authors (Guivant & Nebot 2001, pp. 255). The authors don’t 

particularly attempt to claim that the algorithm outperforms others other than in the fact that it is much 

more efficient whilst maintaining similar accuracy - mainly in local mapping sizes. They present the 

algorithm as being desirable for both high-frequency applications where sensors provide data at a high-
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frequency (highly featured environment) or for long navigational periods in a local map. Where the 

implementation of the ORB-SLAM algorithm for the experiment looks at using an algorithm designed to 

try and limit some of the known faults outlined in the following paragraph, CEKF-SLAM aims to address 

the computational expense of standard SLAM algorithms whilst trying to maintain an acceptable degree 

of accuracy. From my own interpretation of the results I would believe that the authors have achieved 

this, and that the algorithm will serve well in the project. 

To discuss the limitations of SLAM, the paper titled A REVIEW: SIMULTANEOUS LOCALIZATION 

AND MAPPING IN APPLICATION TO AUTONOMOUS ROBOT by Agunbiade OY & Zuva T outlines 

the issues quite well. Whilst the paper is not peer-reviewed, it is still quite relevant as it was published in 

May 2018 and the information it contains appears to be quite academically credible. Chapter 4 of the 

paper is where the challenges and research directions for SLAM as a whole are provided and given the 

number of relevant papers cited, the section appears quite credible. The paper identifies that there is still 

no one version of SLAM that can handle all situations. It also notes that SLAM algorithms tend to fail or 

display difficulties, unless specifically programmed, in the areas of; illumination variances and specular 

difficulties, dynamic environments, kidnap problem and the computational cost of accurate SLAM 

algorithms. This criteria will serve well as being a focus for the projects investigation. 

To add to the discoveries towards SLAM difficulties as noted above, a finding in the paper, From 

Monocular SLAM to Autonomous Drone Exploration by Stumberg, L. et. al. is the understanding that for 

efficient modern-day SLAM based systems the SLAM aspect can be considered not to be the compute 

limitation. The authors state that, ‘The creation of the occupancy map is visibly the most time consuming 

part of our method, especially at later time steps when the semi-dense depth reconstruction becomes 

large.’(Stumberg et. al. 2016). The authors are utilising a low power, monocular drone. The system 

utilises a third party device to compute the algorithm and return commands to the drone. The authors note 

that the visual tracking aspect of the algorithm limits its capabilities, stating that, ‘...depends on the 

robustness of the visual tracking. If the [drone] moves very fast into … mostly textureless regions, 

tracking can become difficult.’ (Stumberg et. al. 2016). Looking at the results of the paper there is 

evidence towards the possibility that proposing the idea of SLAM being the compute issue is incorrect, 

and that for modern SLAM algorithms the navigational component is much more compute intensive. This 

isn’t widely replicated within the general literature covered however it is noted as a point of interest. 

Therefore, the literature review on the relevant information relating to the SLAM portion of the project 

presents that ORBSLAM and CEKF-SLAM are capable of providing the correct basis for evidence 

against the DNN algorithm. The review of SLAM faults presented by Agunbiade OY & Zuva T presents a 

strong criterion for measurement on the capabilities of each algorithm within the test environment. The 
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findings by Stumberg et. al. presents the possibility that for modern day SLAM implementations the 

navigational aspect presents a larger computational issue than purely the SLAM component on its own 

which presents doubt on a direct SLAM to CNN analysis. However, it must be noted that it is consistently 

present within the literature and research sources that SLAM is inherently computationally expensive and 

thus warrants the investigation. 

 

2.2 Neural Network based Automation 

There are a limited number of papers that look into the significance of neural network-based control for 

drone dynamics – the majority application of neural networks for drones is in the feature extraction and 

machine vision department. However, the paper by Dong Ki Kim and Tsushuan Chen outline a viable 

method of control using a Convolution Neural Net (CNN) to identify pathways based on frame input (Ki 

Kim, D & Chen, T 2015). The control method achieved roughly a 70% success rate in finding and 

identifying its target. This is vastly improved over the results found within the paper by Abbas Sadat, S et 

al. which showed methods of visual mono-SLAM having only roughly a 30% success rate (Abbas Sadat, 

S et al., 2014). The main reason for utilising a CNN based control approach was that a CNN controller is 

not as limited by visual textures and incomplete information as a SLAM approach is and would generally 

outperform a SLAM algorithm in avoiding collisions with walls due to its training (Ki Kim, D & Chen, T 

2015). The network was trained to emulate flight inputs that a pilot might make based on image 

references and worked extremely well for its desired purpose. This paper provides evidence of the 

capability of neural networks for complex control and validates the pursuit of this method for a control 

purpose within this project.  

Reviewing the current literature surrounding DNN development and the application of DNN systems 

appears to be limited in specific applications - if you search for the keywords “DNN” and “Drone” on 

google scholar the top results all orient around the use of DNN to help identify or categorise scenarios - 

bar one intriguing result. A paper titled, A 64-mW DNN-Based Visual Navigation Engine for Autonomous 

Nano-Drones published by D. Palossi et. al. sufficiently outlines the development of a DNN. But, its most 

important findings is the efficiency of the DNN on the system. The system is so efficient that in operation 

it only utilises 3.5% of the total power envelope for the system whilst maintaining an 18fps input - this is 

quite impressive considering the same could not be done if the system was based on a SLAM algorithm. 

 

When one attempts to search for a paper on the direct comparative study of SLAM and DNN it is 

extremely difficult to find any direct comparisons being made. There are conditions such as the paper 
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titled Neural Lander: Stable Drone Landing Control Using Learned Dynamics by G, Shi et. al. where 

they provided evidence towards the favouring of a neural network-based lander. The Convolutional 

Neural Network (CNN) they utilised significantly outperformed the standard algorithm. However, it must 

be made clear that the comparison is made to a mathematically modelled algorithm and not explicitly a 

SLAM algorithm. The paper also notes a well-known issue for CNN based implementations - the 

difficulties in collecting sufficient data for training. The authors state that the CNN performs far better 

than the mathematical model it is being compared to as it reduces the z-axis error from 0.13m to 0m and 

the x and y axis drift by up to 90%. This is a significant improvement in flight performance. However, 

possibly the most notable finding of the paper is the relevance of the training of the CNN and the methods 

that can be used to stabilise the networks behaviour. The utilisation of Spectral Normalisation during the 

training of the model improves the generalisation capability of the network significantly - this means the 

network responds more reliably to unclear data or to situations in which it has not directly been trained 

for. This will be something that I will investigate in the development of the CNN for this project. This 

paper is a good representation of the capabilities of CNN’s compared to other models and acts as a good 

method to reinforce the case for directly investigating their capabilities compared to that of SLAM based 

algorithms. Specifically, it serves as a clear indication that the utilisation of a CNN is beneficial for this 

type of control scenario and reinforces the statement made in the Introduction chapter for the utilisation of 

a CNN as the base algorithm type. 

When assessing the market, a term begins to become prevalent which strongly defines the approach type 

for this project. The idea of an end-to-end model being deployed. This is simply put as a network in 

which the entirety of the model is employed to conduct multiple steps in the process. These steps being 

identification of patterns and objects, path navigation, general flight controls and a variety of additional 

tasks. The naming scheme of end-to-end is designated due to the capability of the agent to act from input 

to output solely without the assistance of hardcoded algorithms - such as SLAM, navigational algorithms 

etc. such that it has not been explicitly defined. These agents begin to build these behaviours solely based 

on the information that is being fed into their networks - along with the sufficiency of the training 

program within which they are solely exposed to.  

One of the most prominent papers identifying end to end learning and the application of the agent is the 

paper, End to End Learning for Self-Driving Cars published by Nvidia Corporation. The authors, 

Bojarski, M et.al., noted that the system “optimizes all processing steps simultaneously” and that even 

with the system being mostly successful, they, “never explicitly trained it to detect … the outline of 

roads.” (Bojarski et. al. 2016). Almost the most impressive aspect of the system is that it was trained on a 

relatively minimal amount of data and the system learnt to drive in traffic on local roads with or without 
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the appropriate indicators. The system utilised by the team was built on Torch 7 and ran on an Nvidia 

DRIVE PX and a Nvidia DevBox. The focus on the use of Torch and Nvidia GPUs as accelerators is 

supportive of the process utilised within this project. Please note: Torch 7 and PyTorch are not the same. 

Torch 7 utilises Lua wrappers whereas PyTorch utilises Python wrappers - there are other variations 

between the two however for the project aim it is not necessary to delineate between them. One thing 

from this paper I would like to note is the importance of modelling the output control of the network 

model. The authors stated that using an output of 1/r compared to simply r (r being the radius) prevented 

the system from experiencing singularity issues as it drove in straight lines (Bojarski et. al. 2016). This 

can be investigated for its feasibility to be implemented into the control model for this project and 

presents a solution to possible singularity issues that may be present throughout the project.  

 

Therefore, based on the evidence provided in this section, it is apparent that Artificial Neural Networks 

are capable of providing autonomous control of mobile robots. It has been specifically identified that 

Convolution Neural Networks are heavily utilised when visual input is apparent due their high accuracy 

under these scenarios. The paper published by Nvidia shows that the capability to provide an end to end 

solution for autonomous control is viable. This section of the literature review has not invested the 

utilisation of other algorithm structures such as Reinforcement learning, Imitation Learning, Transformers 

or Large Aggregate Networks as they fall outside of the scope of utilising a CNN for autonomous control. 

However, it must be noted that these structures are far more recent in design and note investigation in 

future work. 

 

However, it must be made clear that there is a relatively minor amount of evidence surrounding the use of 

CNN’s entirely without supporting algorithms and therefore its utilisation as a standalone algorithm will 

serve well for the understanding of the research community. This is the delineation between end to end 

implementations and supporting implementations of which an end to end solutions is utilised for this 

project. The large portion of research papers indicate the utilisation of a CNN in line with a 

mathematically programmed system utilising the CNN as a supporting aspect only. 

 

2.3 Training in Simulated Environments 

The use case for investing in determining the validity of simulated environments to conduct these tests is 

best described in the abstract for the paper by Shah, S et. al.  in which they directly state, “Developing and 

testing algorithms for autonomous vehicles in [the] real world is an expensive and time consuming 
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process. Also, in order to utilize recent advances in machine intelligence and deep learning we need to 

collect a large amount of annotated training data in a variety of conditions and environments.” (Shah, S et. 

al. 2017, pp. 1). To which they then proceed to breakdown the topic more in depth throughout the paper. 

Their point of view reflects the points of view which I currently hold - to put it simply it is that 

reinforcement learning in its many forms are, “...proving to be a natural way to train various robotics 

systems.” (Shah, S et. al. 2017, pp. 1). The largest limitation to real world training of CNN’s is the ability 

to collect copious amounts of usable data - that is data that is actually appropriate for training a CNN. 

Possibly the best proof for the validity of the simulator to emulate real world scenarios and data is that of 

the experimental results published in the paper. The team emulated a controlled flight that was conducted 

simultaneously in real time with a real drone and compared it to that of the drone in the simulated 

environment. Referring to Figure 9 and Figure 10 which is an excerpt from the paper published by Shah, 

S et. al. indicates that the accuracy of the simulated environment compared to the real-world results are 

extremely close. They note that small variations in the data likely arise from factors such as integration 

errors, vehicle model approximations and mild randomisations in winds. 

 

Figure 9 Positional data comparison of simulated and real time drone data (Shah, S et. al. 2017, pp. 12) 

 

Fig. 10 Barometer and Magnetometer data collected during simulated and real time drone flight (Shah, S et. al. 2017, pp. 13) 

When looking at the data presented in Figure 9 we can see that the simulated and real world data align 

closely. However, the paper notes that sensor data variations do occur and can be explained. The IMU 

data varies due to the model not accounting for vibrations developed by the rotors which at the time of 

publishing the paper, had not been modelled yet. As for the Barometer and Magnetometer data, they are 
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extremely similar. It was noted that the Barometer data varies slightly due to differences in absolute 

pressure of the environment and due to temperature not being modelled at the time of publishing.  

The findings of the paper published in backing of the AirSim simulations engine prove that the data 

captured and observed in a simulated environment, bar that of the limitations of camera input variability, 

are close enough to assume that any model trained in it shall be sufficient in a real world deployment. 

This provides a solid backing to my assumption that simulated environments are sufficient for the 

comparison of the two algorithm types and that it shall be sufficient for the development and training of 

the DNN for comparison. 

Further evidence in support of the utilisation of the engine for the training and development of a CNN for 

research purposes is the paper titled, ‘Deep Convolutional Neural Network-Based Autonomous Drone 

Navigation‘ by Amer, K et. al. This paper aligns closely with the nature of this project in that it utilises 

the AirSim research toolset and Unreal Engine 4 to develop a CNN for autonomous flight control (Amer 

et. al. 2019). The paper does not explicitly state benefits or detriments towards AirSim but it can be 

interpreted that the in-engine tools provided allowed for flexible modelling of their project and that the 

inbuilt physics for the drone greatly assisted in the completion of the paper. Additionally, the assistive 

training tools and API’s provided for both deployment and development can be believed to have assisted 

heavily in the success of the project.  

Therefore, based on the aforementioned evidence provided in the literature, it can be understood that the 

AirSim plugin and Unreal Engine 4 are proficient tools that can serve as the underlying structure to 

conduct the project upon. Although, there are lacking publications and literature available for the 

utilisation of the tool. 

 

2.4 Knowledge Gap 

It has been clearly shown throughout the Literature Review that the case for both algorithm types is 

strong. There is supporting evidence that the performative nature of CNN algorithms exceeds 

mathematical models and it can be inferred from D. Palossi et. al. that the compute characteristics of a 

deployed CNN are favourable in comparison to a SLAM algorithm, especially when referenced with the 

findings by L. Stumberg et. al. 

It has been clearly defined due to the lack of evidence that the there is case to develop a direct 

understanding of research proven SLAM algorithms against the performance of a DNN algorithm for 
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automated flight within a simulated environment. There are evident cases in which both algorithm types 

are performance tested singularly yet there is a clear lack of understanding on how the two algorithm 

types perform within Unreal Engine 4 utilising the AirSim research plugin. There is also a clear lack of 

understanding of a comparison between the two algorithm types. However, it also presents the fact that 

SLAM vs CNN is possibly the wrong question. This is why the aim of the project is to establish an 

understanding of their fundamental characteristics within a simulated environment and to establish 

consensus on the performance variations of each algorithm type. 

Comparing the two algorithms in a simulated environment provides a uniform test environment in which 

the performance nature of the two algorithm types - both in compute and in inference as defined by 

Agunbiade OY & Zuva T - can be clearly tested and utilised as validation data. Due to the abstract nature 

of each algorithm type and their method of deployment it will be difficult to directly associate compute 

characteristics, however progress can be made in defining a clear understanding of both the deployment 

aspect, the compute aspect and the limitations of their ability when it comes to operating the algorithms 

within Unreal Engine 4 utilising the AirSim plugin. 

 

2.5 Importance and Possibilities 

Having a clear understanding of the most appropriate algorithm type for conducting automation of mobile 

robots - notably in simulated quadrotor drones - will allow for the industry to begin to make conscious 

efforts towards providing the optimal solution for their automated products. It is clear that this is a 

burgeoning industry with quite an infantile understanding of the market options that are present.  

Looking at a field which is considerably the most desiring of accurate end-to-end automation is the 

mining industry. Within the paper written by Jones, E et al., the importance of drone technology for 

underground mining operations is only just starting to begin being realised (Jones, E et al. 2019). The 

industry uptake of the HoverMap system and its applications are extensive with obvious improvements in 

safety, efficiency and productivity for underground mines (Jones, E et al. 2019). The same paper 

identifies the future of these automated drone systems and some of the requirements that need to be 

satisfied. Out of the list, there is 1 main topic that applies to the importance of this research project and is 

categorised as;  
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● Autonomy Level 3 – Autonomous Exploration  

○ Single-click mission execution  

○ No waypoints  

 

The ability for level 3 autonomy could be improved as a result of the understandings established within 

this paper. It is only natural to expect this level of control and it is currently not being satisfied by the 

current market.  

Therefore, it has been shown that the pursuit of this project has real-world and research-based importance. 

There is an industry demand for defining a clear understanding of the capabilities and characteristics of 

the two algorithm types in simulated environments. It will better inform the industry and aim to satisfy 

points of misunderstanding within the industry. The literature review has identified a gap in the 

knowledge base with respect to these algorithms in real world and simulated environments when 

assessing their direct comparisons and this project shall serve to begin establishing a precedent on the 

exact comparison of their characteristics. 

 

  



   

43 
 

Chapter 3 - Methodology  

 

This section focuses on the aspects required to execute the research project. The project and 

experimentation methodology will be discussed in detail to set the precedence for Chapters 5, 6 and 7. A 

risk assessment will be conducted to define appropriate guidelines for the project. Additionally, aspects 

such as the necessary resources and data points with the method of analysis are noted. 

 

3.1 Project Methodology 

In order to achieve the outlined objectives in, there is a need for additional prior readings and actions to 

be completed. The areas of further reading can be broken down to: 

 

● Types of Neural Networks & Neural Network Control Systems 

● Construction and training of Neural Networks 

● SLAM algorithms 

● Machine Vision 

● Image filtering and manipulation techniques 

● Simulation techniques within Unreal Engine  

● Dynamics of drone control theory 

 

Once these further readings – not all are essential readings that contribute to the furthering of the 

Literature Review but are for personal or understanding purposes – are complete the project can begin to 

move into the corresponding phase. The phases for the project are outlined as such: 

 

1. Literature Review and Resource Acquirement: This phase focuses on identifying the critical 

literature relating to the topic and shall be utilised to present the understanding of the current 

research platform in the project area and present the gap in the knowledge. 

 

2. Development of Simulations Environments: This phase is focused on the development of the 

simulated environments for experimentations.  
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3. Development of CNN and Conversion of OpenSLAM Algorithms: This phase is focused on the 

development of the DNN and the OpenSLAM algorithms for the project. This runs in line with 

the second phase of this project. See Chapter 5 and 6 for further details. 

 

4. Data Collection and Training of CNN: This phase involves the collection of appropriate training 

data and subsequent training of the chosen CNN for the project. See Chapter 5 for further details. 

 

5. Conduct Experiments: This phase focuses on the implementation and execution of the algorithm 

types noted in a controlled environment such that their characteristics can be validated. 

 

6. Assess Results and Update: This phase focuses on analysing the data and identifying resultant 

patterns or notable results that may need to be re-assessed due to anomalous outcomes. 

 

7. Repeat Experimentations: This phase is conducted as a reassessment phase of the initial 

experiments conducted in Phase 5. This is conducted in order to either affirm outcomes or to 

challenge the results of the experiments with evidence.  

 

8. Identification of Results and Future Studies: The final phase is an identification of the results 

which leads to a clear conclusion for the proposed hypothesis for the project. From here, notable 

future efforts can be recorded for students who may wish to continue the project in a different 

direction. 

 

3.2 Experimentation Methodology 

Initially, it was proposed that there may be a possibility of testing and comparing the algorithms in not 

only the simulations environment, but also in a controlled real-world scenario. Due to the limitations that 

became present with the COVID-19 pandemic in Australia and the travel bans placed throughout the first 

half of the year the ability to entertain this point was nullified. Additionally, personal distress experience 

throughout this time adversely impacted the project. 

The experiment was conducted in Unreal Engine 4 (v. 4.24.x) utilising the AirSim plugin (v. 1.3.1). When 

looking at the utilisation of the prior software, there is a clear indication that it will be necessary to run the 

simulations within a Windows environment. This is influenced by the limitations outlined by AirSim in 

their GIT page stating that Unreal Engine does not currently support editing in a Linux environment. It 

could be feasible to investigate running on a Mac platform utilising OSX however due to MacOS not 

currently supporting up to date Nvidia drivers natively it is not a suitable option. In order to execute the 
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algorithms chosen, the CNN will be run ‘in-the-editor’ by selecting the Python script as an execute at 

launch script within Visual Studio 2019 giving access to the script for AirSim. As for the two SLAM 

algorithms, they present a significant amount of difficulty towards successfully running the algorithms. 

CEKF-SLAM is written natively in MATLAB and AirSim is capable of connecting to SIMULINK in 

order to execute commands as mentioned in Appendix G however these are not methods supported by 

AirSim or MATLAB. When looking at running the MATLAB code within Octave as was intended for 

this project it does not have complete resources as would be found when using MATLAB. This is 

expected to present significant difficulties and it is likely that MATLAB will be used to run the programs. 

In order to run ORBSLAM there is a requirement to use RoS Fuerte/Groovy on Ubuntu 12.04. These are 

both packages that are largely out of date (5+ years old) and will therefore need to run on either a virtual 

machine with control via utilising UDP out from the Virtual Machine, or it can be run using a Docker 

container built with only the necessary kernel for RoS Groovy and Ubuntu 12.04 with which ORBSLAM 

can run. In both cases, the need for UDP control and additional layers of abstraction is expected to 

provide skewed data with respect to the compute performance characteristics. However, with the finding 

of a MATLAB variant of ORB-SLAM it is viable to execute the program using the MATLAB AirSim 

link previously noted. The occupancy grid code outlined in Appendix H provides a strong base for the 

utilisation of both SLAM algorithms on a common navigational component for the project and aims to 

improve the quality of evidence for validation. 

Therefore, the experimentations were entirely confined to simulated environments and training data 

collected entirely within the engine itself. The experiments are coordinated into four main areas. Within 

the four main areas, the experiments are split into 2 phases - individual and combined. These are defined 

as follows: 

The individual phase explicitly assesses each of the focus areas as defined in the Project Scope (Section 

1.2.2) and in Chapter 2 (Section 2.1) which are; image illumination issues, dynamic problems and the 

kidnap problem. 

These focus areas will have their experiment philosophy outlined by the following ideology: 

● Image Illumination Issues: Attempt to trick the camera inputs, using mirrored/reflective/see 

through, along with well and poorly lit areas. Shadows and highlights will play a big part in 

visual based input. Whole point of this aspect is to trick the system into not being able to 

appropriately identify its environment's features.  

 

● Dynamic problems: moving objects in the environment in both a linear and non-linear path in an 

attempt to trick both systems into improperly assessing its placement in the environment. 
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● Kidnap problem: By removing the camera and other sensor inputs the system will have to fly 

blind for a small amount of time. Doing this generally causes SLAM algorithms to fail when 

attempting to begin remapping however we will assess how both systems handle this and identify 

whether it can be trained into the CNN how to solve this issue. 

The combined phase incorporates the aspects of all cases together into a few environments or scenarios in 

order to assess how it will dynamically handle the worst case conditions that it can be exposed to - 

somewhat of a ‘real-world’ test of the efficiency and accuracy of the algorithms. There will be four areas 

designed to emulate the scenarios. These will be built using the textures provided within Unreal Engine 4.  

The performance of both algorithms will be recorded on a failure rate basis (number of object collisions 

or complete flight failure). This is a measure of accuracy and is looking at the statistical performance 

characteristics of each algorithm. Additionally, the compute load of each algorithm will be recorded to 

understand the ability to deploy the algorithm in mobile scenarios. 

There will not be an attempt made to create a 1:1 scenario in regards to the utilisation of sensors for each 

algorithm type. The CNN will utilise only a visual monocular input and will make judgements for flight 

control based on this information. As for the two SLAM algorithms, they require the use of an IMU 

(virtualised in this case) along with visual monocular input data. It is common for visual SLAM 

algorithms to require the use of two cameras to achieve visual stereo SLAM however the two chosen 

SLAM algorithms specialise in the use of a monocular input. This decision was made not only to attempt 

to provide a reasonable standard in terms of the amount of data each algorithm can work with, but also 

due to limitations within AirSim. It is possible to implement a multi-camera setup utilising two cameras 

on the drone however it natively supports a monocular camera in the API and for the sake of stability it 

was not elected to alter this. 

Additionally, literature evidence and anecdotal findings throughout the paper will be utilised to attempt to 

draw a conclusion on the project’s outcome. 

3.3 Resources 

The preliminary hardware resources for the project are listed below in Table 1 along with their associated 

costs, source/supplier and the acquisition status of the item. Subsequently, the software resources can be 

found listed in Table 2. The lists will cover the main items necessary for the project and will neglect 

minor or insignificant resources that can be altered without affecting the outcome of the project by any 

measurable degree i.e. power supply or case used.  
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The hardware resources listed below are configured in such a way that it satisfies the recommended 

operating requirements outlined by both Epic Games for the use of Unreal Engine 4 and by Microsoft 

Research Team for the appropriate use of AirSim. The hardware resources listed are a reflection of the 

system conducting the simulations. 

Table 1. Hardware Resources 

ITEM QUANTITY COST SOURCE Acquired 

AMD 3900x  1 $849 Student YES 

32GB DDR4 RAM 1 $499 Student YES 

NVIDIA 2070 Super 1 $1199 Student YES 

1TB SSD 1 $289 Student YES 

 

Table 2. Software Resources 

ITEM QUANTITY COST SOURCE Acquired 

Unreal Engine 4 1 -- Epic Games YES 

AirSim Plugin 1 -- Microsoft Research Team YES 

GIT  1 -- GIT YES 

Microsoft Visual Studio 

2019 

1 -- Microsoft YES 

KITTI Training Dataset 1 -- KITTI YES 

Microsoft Visual Studio 

Code 

1 -- Microsoft YES 

Python 3.x.x 1 -- Python  YES 

PyTorch 1 -- Facebook YES 

MATLAB 1 $115 MathWorks YES 
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Octave 1 -- GNU Octave YES 

VirtualBox 1 -- Oracle VM YES 

Docker Toolbox 1 -- Docker YES 

 

3.4 Data Analysis 

The results will be analysed on a mean basis where a single condition will be run multiple times and the 

mean of each run will be compared along with the max, min and spread in time variants such that the 

mean and variance of each condition can be compared to determine optimal results in varying conditions.   

The compute characteristics of each algorithm type will be assessed along with the general compute 

requirements necessary to develop the environment. A focus will be placed on determining the base level 

compute requirements for an environment by using manual control of the drone prior to deployment of 

each algorithm type. This will allow for a relative reference to the compute impact of each algorithm type 

and to understand when compute limitation is affecting an algorithm's performance. 

The data to be analysed can be categorised into 2 sectors - compute characteristics and performance 

characteristics. The compute characteristics - CPU, RAM, GPU utilisation etc. will be recorded with 

background tasks accounted for over multiple runs. There will be no temperature controlled or scenario-

controlled data included as attempting to maintain these values will be almost impossible and relies too 

heavily on external manipulations such as ambient temperatures. The performance characteristics are the 

accuracy and time taken to complete tasks. Repeating each experiment at least 5 times will produce an 

adequate average value however they will be run as many times as deemed necessary to produce an 

average result. Training of the CNN is not to be assessed. The training of the CDNN will be included in 

the discussion and understanding of the project but its direct impact is not a focus of the project.  

Additionally, anecdotal evidence and findings from the literature will be assessed to provide a conclusion 

on the projects findings. 

Table 3.5.1 Includes the necessary data that will be produced from each experiment and how it will be 

interpreted with respect to its data type. 
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Table 3. Methods of Results Analysis 

FOCUS FACTOR ANALYSIS METHOD 

COMPUTE 

CHARACTERISTICS 

CPU  Percentage Utilisation 

COMPUTE 

CHARACTERISTICS 

GPU Percentage Utilisation 

COMPUTE 

CHARACTERISTICS 

RAM Percentage Utilisation 

IMAGE ILLUMINATION Shadows Collision and detection accuracy 

IMAGE ILLUMINATION Highlights Collision and detection accuracy 

IMAGE ILLUMINATION Specular Reflections Collision and detection accuracy 

IMAGE ILLUMINATION Transparent materials Collision and detection accuracy 

DYNAMIC PROBLEM Linear moving objects 

in environment 

Collision and detection accuracy 

DYNAMIC PROBLEM Non-linear moving 

objects in environment 

Collision and detection accuracy 

KIDNAP PROBLEM Removal of inputs Ability and percentage success of 

re-localising and returning to path 
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Chapter 4 - Development of Simulated Test Environments  

 

The major benefit of running the project in a simulation-based environment is the ability to design and 

develop environments which can be specifically tuned to provide a desired result. This chapter will 

discuss the development process of the environments to be used for the project. 

 

There will be three environments produced, each focussing on a different aspect of the difficulties 

identified for SLAM algorithms. These are as follows: 

 

● Looking at the first environment produced, it will focus on image illumination issues. These 

being the issues surrounding reflections and specular conditions such as lighting difficulties and 

optical illusions as defined prior in project. 

 

● The second environment produced will be directly focussed on dynamic components of the 

environment. These being the ability to have moving objects that can disrupt the localisation 

capabilities of each algorithm type. 

 

● The third environment is a semi-realistic scenario environment in which the two above issues will 

be combined. It will be attempted to emulate real world conditions, such as dynamic conditions 

coming from moving objects that are realistic like trees, grass etc. but there is also a need to use 

some artificial components to properly test the algorithm strengths such as moving boxes and 

spheres on defined paths. 

 

I would like to remind the reader about the Kidnap issue as discussed in Section 2 and 3. This will be 

implemented in the disabling of the camera from the model, essentially removing visual capabilities in a 

somewhat realistic scenario. A ‘gate’ (called a trigger in the engine assets) will be applied to the map 

which removes the camera for a randomised period of time between 1 and 5 seconds. This is an arbitrarily 

chosen time limit which will be applied to the simulations using a randomised time value selected. This 

aims to truly test each algorithms ability to maintain stability without visual input and then also its ability 

to re-localise within the environment. 

 

As a quick overview of the building process of an environment, it is a long and difficult process. 

Removing the steps required to open the application and create a new file with the necessary plug-ins 

installed, the first true step is actually to create a rough hand sketch of the desired path so that you can 
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visualise the map to be built. From here, using a BSP brush and geometry it is possible to develop a rough 

outline of the path that can be built into the environment. This allows for judging size and suitability of 

the design for the given task. Now, BSP (Binary Space Partitioning) is not realistically suitable for the 

simulations compared to meshes with textures applied to the models. 

 

Therefore, a rough design process (this is based on my own process, although I didn't always follow this 

as sometimes jumping between steps is necessary) would look as follows: 

 

1. Create a rough sketch of the environment outline 

2. Create a BSP outline of the desired environment 

3. Ensure the environment sizing and outline is suitable 

4. Replace BSP outline with static mesh 

5. Apply textures to static meshes 

6. Implement dynamic components such as moving objects and interactive objects 

7. Compile Visual Studio project files 

8. Test and debug environment  

 

Now, it must be understood that it is extremely difficult to create a realistic 1:1 emulation of a real-world 

scenario. Unreal engine measures the environment in terms of ‘unreal units’ which are not a 

representation of any realistic measurements. But they are somewhat relative to the standard cm and are 

generally treated this way by developers. However, considering that the in-engine meshes do provide 

static meshes with a rough estimate size (in cm) then these can be used as a reference for developing the 

in-engine environments. 

 

The model used to estimate sizing is the wall_500x500 model which has the rough dimensions of 500cm 

width, 500cm height and 20cm in depth. This works well for estimating path length and the width of the 

path such that it can be properly varied throughout the building phase of the environments. I would like to 

point out again that a true 1:1 emulation of the real-world is not necessary as the goal with this project is 

to compare the two algorithms. If the goal was to develop networks for development, then this also would 

only be a minimal issue and transfer learning on an almost true 1:1 emulation of the environment could 

still be conducted whilst maintaining the original Deep Learning algorithm. It is reasonable to believe that 

in the future, as we are beginning to see it occur today, there will be an almost true 1:1 recreation of the 

real world in a simulated environment such that we could train a multitude of networks on the data that is 

able to be captured within the simulations. But, I do believe that we will approach the 1:1 emulation 
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asymptotically and it is not likely that we could truly emulate the randomness in nature down to a particle 

level for the entirety of the universe - for localised portions of earth perhaps but on a galactic scale it is far 

beyond today's capabilities. 

 

As much as I would like to completely explain the building process, such as map warping and producing 

height maps; I think this is best left as a task for the reader if they wish to truly understand the use of the 

Unreal Engine. I want to use this chapter to discuss and explain the philosophy behind the designs and 

how I went about building them, this will of course involve explanations but will not walk through 

exactly how to do it yourself. 

 

When beginning a new ‘level’ the user will be presented with the following screen. From here, the 

development of the new environment will begin following the steps listed prior. A generic floor and a few 

other items are generated automatically, however, they are far too small in scale. See below for reference: 

 

 

Figure 11. Standard Starting Level with Blueprint Models Removed 
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Therefore, using the 500x500 wall model for scale we can expand the floor map to look more like the 

following: 

 

 

Figure 12. Scaled Floor Plan of Initial Floor Map 

 

The floor plan has been scaled up by a factor of 10 in the x and y direction however the z direction does 

not need to be modified as its thickness is not relevant for the simulation and it makes sense to keep it as 

thin as reasonably possible to limit any technical issues. Using this as a base, we can now begin designing 

the simulated environments for the project. 

 

4.1 Landscape 1: Image and Specular Difficulties 

For the first landscape, the focus was on producing an environment around the known image illumination 

issues that SLAM algorithms experience. Essentially, this environment's aim is to utilise textures and 

lighting in such a way that obscure reflection and specular issues such as glare can be produced in order 

to hinder the camera and the algorithm's ability to detect its environment. The flow on from this is that 

poor input data is expected to derail the algorithms ability to conduct SLAM - the mapping and the 

localisation that the algorithm is built for. Reflections are expected to confuse the feature tracking 

component of a SLAM algorithm and the glare/lighting issues are expected to do a similar job - however 

it is through either saturation or removal of data rather than proposing ‘confusing’ data to the algorithm. 

 

For instance, how would a rather generic SLAM algorithm understand that a drone is moving forward 

with respect to a mirror? How about when reflections display repeated points of reference/interest to the 
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algorithm? We understand that this is an issue for almost all current algorithms and producing such a 

confusing environment may help us to understand exactly how each algorithm type performs under these 

conditions. 

 

Now, a completely mirrored environment is not going to work. Humans even struggle in mirrored 

environments, that's why they exist as carnival attractions as the confusion is novel for us to experience. 

Therefore, we do need to introduce some form of texturing and differentiation between segments in the 

map as a way to indicate progression in the environment. For this level, I believe that following a 

somewhat corridor-like design will be useful. I am be able to simply populate the environment with the 

textures required to create the specular difficulties.  

 

Also, having a controlled width means that creating plausible collision events between the drone and the 

walls can be fairly controlled in which I can place objects that will disrupt a simple straight path through 

the corridor. Enclosing the path with a floor, walls and a roof means that I can create shadows using a 

global light source and windows. It also means I can create dimly lit and overly well-lit segments 

throughout the path. Another major advantage of utilising a completely enclosed environment such as a 

corridor or hallway style design is that I do not have to set a boundary for the z direction for the drone. 

This also allows me to determine the capability of the drone to a greater degree. 

 

Building using concrete textures and static meshes, we see the starting area of the map looking as such: 

 

 

Figure 13. Starting Point of Map 

 

There is a point light placed where the model for a hanging ceiling light resides which is outputting light 

in a 360 degree window and even without the lighting being appropriately rebuilt, it is obvious that the 
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room now keeps a reasonable amount of interior lighting and shadows given by the external ‘sun’ source 

and the windows. 

 

One of the most important things to do during the building process is to continually check the lighting of 

each section as you build it. This means rebuilding the lighting when a section is finished to check that 

light bleed is not occurring and that there are no collisions between static meshes that would indicate an 

incomplete model. Having completed the hallway extension of the above starting point on the map, and 

rebuilt the lighting, the outcome is as follows: 

 

 

Figure 14. Rebuilt Lighting for Starting Hallway 

 

Looking at the above image you can see that the light reflects from the windows properly onto the ground 

level, the point light source is illuminating the starting point appropriately and there doesn't appear to be 

any flickering or incorrect light in the scene. I will provide an example of an improperly sealed model as 

follows: 
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Figure 15. Example of Break in Ceiling Model Allowing Light to Bleed Through 

 

 

Figure 16. Ceiling Break Fixed - Note there is still light bleed occurring however in the roof to wall attachment 

 

In order to properly combat light bleed on complex textured static meshes, the lighting resolution needs to 

be increased and a UV map needs to be produced. However, for the project's purposes, incorrect lighting 

conditions such as this aren’t considered to be a fault and therefore a UV map is not required for each 

static mesh. I will instead aim to take advantage of this using reflective textures and utilise the light bleed 

as a disruptive source. 
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The starting area for the map is set up in a way that the initial hallway presents no real difficulties to the 

drone other than the two open windows on either side of the hallway which bring in ‘natural’ light and the 

two lights in the hallway which through shadows and create a lighting differential within the hallway. If 

you take note of the brick pillars on either side hallway - these are being used as consistent reference 

points throughout this map.  

 

 

Figure 19. Starting walkway with player start in position 

 

The second hallway is a short run and serves only to test the drones ability to detect the general shape of 

the hallway and detect the open space to continue moving forward. The light is used to produce glare on 

the mirrored surfaces however this and the first hallway are not explicitly aimed to ‘fail’ the drone. 

 

 

Figure 20. Second hallway 
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The third run is designed to be the first actual test of specular understanding for each drone. It is almost 

impossible with this current package to replicate true specular conditions however the inclusion of ray 

traced lighting would sufficiently improve the lighting accuracy - however the computer used for the 

environments is not powerful enough to be able to run ray tracing and GPU accelerated compute at the 

same time without limiting the compute availability for all algorithms.  

 

 

Figure 21. Beginning of third hallway 

 

Looking at the third hallway run above, the most notable feature in Figure X is the two chrome crossbars 

connecting the walls. These are used to test each algorithm's ability to detect the edges of the two bars and 

implement them as features in the mapping process. Looking at their placements, it is obvious that they 

are not purely there to disrupt the flight path and more to confuse the algorithms. 

 

 

Figure 22. Middle of third hallway 
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The middle of the third hallway presents some inconsistencies compared to the previous hallways. From 

the starting position to this point the specular difficulties have either been orthogonal to the corridor or 

purely specular from lighting/glare. This hallway uses obscurant structures at angles that aren’t consistent 

with the hallways direction. There is an expectation that non-orthogonal structures such as this will reflect 

the surroundings in a way that will be the most ‘confusing’ for each algorithm type. The circular 

reflective structures are hollow pipes with a darkened metallic reflective metal texture applied such that 

its reflective nature changes paths depending on the position of the drone with respect to the interior and 

exterior of the pipe. 

 

 

Figure 23. End of third hallway 

 

The last portion of the third hallway is set up to present a few varying issues at the same time. The 

chrome crossbars are difficult to detect edges and even to distinguish its location in the corridor. The 

major point to note for this section is the light placed at the end of the hallway and the mirror placed on 

the wall behind that - this is to emulate conditions for glare and reflections simultaneously. This is a 

condition that any automated mobile robot would be expected to experience in the real world. 
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Figure 24. Fourth hallway 

 

Moving on from the third hallway is a short fourth corridor. This is purely focussed on reflections and 

obscure lighting. The window allows for natural light to come into the section and is the only source of 

light for this corridor. The mirrors are different shapes and sizes such that it is easier to determine if either 

algorithm type can detect a reflection - when turning the corner from the third section to the fourth the 

mirrors reflect an obscured view of the continuing path and will be a good test of the algorithms ability to 

determine a forward path. 

 

 

Figure 25. Fifth hallway  

 

This path is extremely short but the utilisation of multiple mirrors and an inconsistent light source (the 

sparks emanating from the ground in the centre of the path) align with the short through lighting creating 

long vertical shadows will again test each algorithm's ability to detect features in the path. 
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Figure 26. Sixth hallway 

 

This is a short path that really only serves as a way to re-introduce ‘natural’ light into the next section. 

Glass has been placed on the right hand wall to produce a wall that's inconsistent with the previous walls 

and a mirror is placed on the left wall to produce the same effect however this section is not truly aimed at 

detecting any major performance characteristics and mostly serves as a transfer to the next section. 

 

 

Figure 27. Seventh hallway 

 

For the seventh hallway it is a glass/see through run. I wanted to use a shape that wasn’t exactly a 

rectangle made to appear like glass. I wanted a model that was complex in shape and with rounded edges 

such that it could more appropriately create reflections and obscure light paths. I thus chose the 

SM_Statue prop and suck its solid base through the surrounding static mesh to hide any non-glass 

features of the statue as they may become indicating features for each algorithm to detect.  
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Figure 28. Eighth hallway - darkened room with reflective components to  

 

The final two hallways are aimed at utilising poorly lit corridors and the drones ability to detect edges on 

objects in the path. The eighth corridor aims to use reflective shapes as they give a more pronounced 

visual on their location in the path and a poor visual on their true shape and boundary of the geometry. 

This path is not overly populated and simply provides three obstacles that obstruct the simplest straight 

path through the run but not much movement is necessary to successfully navigate the corridor. 

 

 

Figure 29. Final hallway  

 

The final path is difficult to appropriately represent due to the lighting conditions but looking down the 

path there are simple poles oriented either vertically and horizontally in varying distances from one 

another. There is no possibility of following the central path through this corridor to successfully 

complete this section and thus it will require the system to appropriately detect features in the path to be 

able to complete the course.  
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Whilst there are a variety of methods available to improve the capability of the lighting for levels like 

this, such as baked lighting, they will not be implemented in this level. The improvement of the lighting 

system and lighting accuracy is a feature I would like to improve in future work and I believe that in order 

to appropriately measure the effect of a lighting system on camera and detection functions, real time ray 

tracing would need to be implemented. This is a feature that will be native to Unreal Engine 5 and would 

be a natural progression for this area of study - I believe it would also create a more realistic environment 

in general compared to rasterization methods of light calculations. But I do also believe that in this case, 

the inconsistency in lighting conditions and inability of the system to render accurate lighting conditions 

for all cases presents an interesting specular condition for both algorithms to be exposed to. 

 

Realistically, the goal of creating environments such as this is to emulate the worst-case scenarios that 

would reasonably occur and the more accurate the lighting representations can be then the more 

applicable the simulated training is to real world scenarios. Of course, transfer learning can occur and is 

likely to be the best initial method to transfer to real world applications but the goal would be to be able to 

capture a network from the simulated scenarios and directly test its applicability to real world scenarios. 

4.2 Landscape 2: Dynamic Environment and Objects 

For the second environment, we are aiming to focus on producing an environment that best focuses on the 

known dynamic environment issues that SLAM algorithms experience. Essentially, this environments aim 

is to provide components that move in a variety of patterns in an attempt to confuse the algorithms ability 

to both localise (as the environment it is localising within is not static) and produce reliable maps (as 

features are moving not with the drones path and may be either moving linearly, rotating or exponentially 

accelerating and decelerating). There is no attempt to create difficult specular conditions for this map as 

was apparent in the previous environment. 

 

The flow of this environment is to slowly introduce an extra layer of difficulty with each ‘room’ that the 

drone enters. The starting area is relying simply on horizontal and vertical linear displacement at a linear 

velocity. There is also ample room between moving objects for the drone to stop and wait until the path is 

clear again.  

 

Moving between the first room to the second room the drone will need to handle a change in path size - 

shrinking considerably both in height and width to a smaller ‘corridor’ type design. From here the drone 

will enter the second room. This room is building on what the drone experienced in the first room 
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There are animation methods for the static meshes utilised in the model of the environment. In general, 

the preferred method for Unreal Engine to animate a mesh is to create a blueprint class for the mesh and 

then produce an InterpControlPoint action. This is generally done in a visual flow chart style of 

programming. For the linear movement of the meshes the following flowchart is used: 

 

 

Figure 38. Visual Flowchart Script for Linear Motion 

 

The linear movement script is designed in such a way that it allows the user to copy meshes and paste 

them around the environment without having to create individual scripts. There are three variables created 

for the user to alter; Location1, Location2 and Duration. When the user places the object into the 

environment the two location variables populate an XYZ point in the environment, whereas the duration 

variable is able to be defined in the ‘Details - Default’ option box in the PiE. All mesh objects must be set 

to movable in order to allow the script to run. When altering the script to include additional locations, the 

Make Array block must contain the number of locations and then the number of location variables must 

exist to populate the array. 

 

For the nonlinear movement scripts, the design is completely different and requires the use of an animator 

timeline as opposed to being able to use the construction script path for linear movements. The visual 

blocks can be seen as follows over the page: 
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Figure 39. Acceleration Animation Visual Script  

 

The animation visual script relies on three event blocks that are the basis for the script. The starting block 

is the Event BeginPlay block which serves almost as a header file does for C code. The BeginPlay event 

captures the initial position and rotation of the object when the play button is clicked and defines the rate 

at which the animation will execute (within the Timeline animator, the timeline execution path is defined 

as 1 which indicates that if the play rate is defined at 1, then the vector divide will result in a play rate of 

1). Following the play rate defining block is the Set Float Curve block which is where we define the rate 

at which the path is executed, this essentially means that our acceleration curve is set by this block which 

is why its float track name is defined at the Alpha output for the Timeline animator. From here we now 

jump to a Start Movement block which jumps to the StartMovement event. There are actually two blocks 

that feed into the Timeline animator block, if you look at their connection points, you'll see that it is at the 

Play and Reverse input nodes. These are not indicators but are event triggers that define the direction that 

the animation will play. Following on from the Update pin on the Timeline animator the path travels to a 

Set Lerp Alpha block. This defines the float curve that will be applied to the movement path. Following 

on from this block the SetRelativeLocationAndRotation block is placed. This block essentially does as the 

name suggests, it takes an initial position and rotation value and a final position and rotation value and 

defines the movement path necessary to execute the animation. However, we want the blocks to be 

modular and not hardcoded, therefore there is a need to create a capture method for the user to modify the 

starting and ending location in the PiE. This is done using the orange Transformations block which has 
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had the transform pin split to be a location vector, a location rotation and a scale value. Since the 

locations are relative to one another (as defined by SetRelativeLocationAndRotation) the two vectors will 

need to be added together to define Location 2’s position in the global space, this is done using a Vector + 

Vector addition block and then combined into a movement path using the Lerp (Vector) block. Note the 

Lerp Alpha input is included so that the movement path between the two locations is defined by the 

AccelerationCurve input created by the user and allows for modular control over the movement type. This 

is emulated for the rotation aspect of the object however the method that rotator values are combined is 

using the CombineRotators function block instead of the Vector + Vector addition block. Once the 

animation has executed, the Timeline animator will look at what is connected to the Finished output pin. 

Here a Flip Flip block is used such that it will continuously swap between the two on each iteration - this 

allows the animation to change between forward and reverse motion and ensures a smooth transition 

occurs. 

 

The float acceleration path is as follows also: 

 

 

Figure 40. Acceleration Curve labeled CapsuleCurve 

 

The acceleration curve means that the object accelerates to its centre point, rebounds slightly over the 

centre point, and then continues through its path till the end point as defined by the user. It follows the 
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curve of a third-degree polynomial with an inflection point about its centre value. In this case the values 

are between 0 and 1 on both the x and y axis with the inflection point approximated to the coordinate 0.5, 

0.5. 

 

4.3 Landscape 3: Realistic Complex Environment  

The goal with the third landscape was to create an emulation of a somewhat realistic scenario. This 

scenario would have included factors such as wind, natural moving objects, changes in view distance etc. 

to emulate a flight through a realistic environment. Although, due to limitations of the compute ability of 

the computer used for this test, along with the time limitations of the project this section had to be 

considered null. The results of this section are not directly indicative of any measurable outcome that is 

not identifiable in Landscape 1 or Landscape 2 and served only as a bridging agent to collate and 

reinforce any relationships or outcomes determined. 

 

There is the possibility of utilising a pre-built environment from the Unreal Engine Marketplace, 

however, none of the apparent ‘realistic’ environments met the conditions that were desirable for the 

project. Thus, this portion of the project had to be forgone to meet timeline requirements, however its 

necessity for the project's execution was minimal. 

 

4.4 Building AirSim  

When building AirSim for an individual landscape, I noticed that it was common for a landscape to 

become corrupted if it was not done correctly. It also occurred occasionally without a cause that I could 

repeatedly discern and serves as good evidence towards the necessity to retain multiple backups and 

utilise GIT for local back ups. Therefore, once an environment is finished it is duplicated and the building 

of AirSim is done on the duplicate version (which is also stored in a separate folder) such that the original 

copy of the environment remains uncorrupted.  

 

I had many occasions where AirSim would not allow an environment to be rebuilt using the plugins when 

the environment is entirely custom. The solution is actually to store the environments and the AirSim 

master files in a disk that is not C:\ as it generally requires admin access to natively run command and 

batch files from the command line in this directory and can be disrupted when attempting to call them 

within the PiE. 
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Therefore, a simplified process of building AirSim for a modified environment or an environment built by 

the individual is as follows: 

 

- Pull AirSim from the Git Repository 

- Move files into D:| directory 

- Run build.cmd 

 

From here, the files will be available on the system to run. Also, the example environment ‘blocks’ is 

available to test out your system. However, it is not yet ready to run on the desired environment (i.e. the 

custom environments built). To get the plug-in ready for use in the custom environment, the plugin files 

from the AirSim master files need to be copied into the working directory of the custom environment. 

Then, the project file for the environment needs to be customised such that is appears similar to the 

following: 

 

{ 

    "FileVersion": 3, 

    "EngineAssociation": "4.24", 

    "Category": "", 

    "Description": "", 

    "Modules": [ 

        { 

            "Name": "", 

            "Type": "Runtime", 

            "LoadingPhase": "Default", 

            "AdditionalDependencies": [ 

                "AirSim" 

            ] 

        } 

    ], 

    "Plugins": [ 

        { 

            "Name": "AirSim", 

            "Enabled": true 

        } 

    ] 

} 

 

Where sections such as Modules - Name are filled in with the desired project file. The user must then run 

the clean.bat file to ensure intermediate files are correct and then proceed to run GenerateProjectFiles.bat 

to generate the necessary Visual Studio file in the format of .sln as this is the file that the actual AirSim 

simulations tool operates within. Then, opening the file within Visual Studio the user is to select the 

DebugGame Editor option along with the Win64 build configuration prior to running the program. There 

are steps not present in the official AirSim guide (as far as I was able to find) which are necessary to 
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getting the package to work on custom environments. The user will need to set the environment they are 

working on as the startup project for Visual Studio otherwise they risk the system attempting to open a 

file that is not existent (it will look in the original C:\ for the UE4 files however it will be unable to find 

any files or run them if it does due to admin issues). After this the user needs to go to World Settings and 

change GameMode Override to AirSimGameMode and then when the user attempts to play a level it will 

automatically populate the PlayerStart object with the desired vehicle (it will prompt the user for either a 

quadrotor/drone or a car if the user has not specified the vehicle in the settings.json file). 

 

In order to achieve the desired output from the AirSim plugin the settings.json file needs to be updated to 

include alterations to the standard values. The settings.json code used for all environments is as follows: 

 

{ 

  "SeeDocsAt": "https://github.com/Microsoft/AirSim/blob/master/docs/settings_json md", 

  "SettingsVersion": 1.2, 

  "SimMode": "Multirotor", 

  "ClockSpeed": 1.0, 

  "ViewMode" : "Fpv", 

  "Recording": { 

    "RecordOnMove": false, 

    "RecordInterval": 0.05, 

    "Cameras": [ 

        { "CameraName": "0", "ImageType": 0, "PixelsAsFloat": false, "Compress": true } 

    ] 

  }, 

  "CameraDefaults": { 

    "CaptureSettings": [ 

      { 

        "ImageType": 0, 

        "Width": 480, 

        "Height": 480, 

        "FOV_Degrees": 90, 

        "AutoExposureSpeed": 100, 

        "AutoExposureBias": 0, 

        "AutoExposureMaxBrightness": 0.64, 

        "AutoExposureMinBrightness": 0.03, 

        "MotionBlurAmount": 0, 

        "TargetGamma": 1.0, 

        "ProjectionMode": "", 

        "OrthoWidth": 5.12 

      } 

    ] 

  }, 

  "Vehicles": { 

    "SimpleFlight": { 

      "VehicleType": "SimpleFlight", 

      "DefaultVehicleState": "Armed", 

      "EnableCollisionPassthrough": false, 

      "EnableCollisions": true, 

      "AllowAPIAlways": true, 
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      "RC": { 

        "RemoteControlID": 0, 

        "AllowAPIWhenDisconnected": false 

      } 

    } 

  } 

} 

 

The most notable feature in the above code is that all values are left mostly default, however the camera 

resolution is changed from 256x144 to 480x480 with the images being fed at 20 frames per second if the 

system can render at that FPS. Also, to help with the collection of training data, the viewmode for the 

drone is set to first person view (FPV) so that the pilot's view is a replica of the onboard camera. 

Additionally, further settings are explained in Chapter 5. 
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Chapter 5 - Development & Training of DNN 

 

The development and training of the DNN used for this project is an implementation of a Deep 

Convolutional Network as has been mentioned throughout the paper. This section aims to divulge the 

process and decision-making process coinciding with the development of the algorithm for the project.  

 

When looking at the design and development of a Convolutional Neural Network there are general 

accepted criteria that substantiates the network structure being labelled a CNN. As outlined in Chapter 1, 

a CNN requires convolutional and pooling layers as its essential underpinnings and a regressor is 

generally applied to force the network into a decision-making process towards identifying the output 

classes. The process of developing this will be discussed throughout the chapter. 

 

There is a ‘marketplace’ for prebuilt CNNs which can be accessed via the PyTorch library by loading a 

torchvision.model library. For instance, one of the most prominent architectures, AlexNet, can be 

downloaded and prepared for training by using the following code: 

 

Import torchvision as models 

Alexnet = models.alexnet(num_classes=n) 

 

What this does is it preloads a built architecture and defines the regressor state to have an output of n for 

the number of classes desired to be identified by the network. AlexNet is a quite simple (but revolutionary 

for its time - 2012) architecture and serves as a common starting point for most simple architecture design 

in modern systems. Its main identifying features is that it introduced the concept of MaxPool and Dropout 

and made use of the ReLU activation function which wasn’t overly common at the time of its inception 

(Pointer 2019).   

 

The design architecture for the CNN utilised in this project will be very similar to AlexNet and somewhat 

approximates the architecture style outlined by VGG-16 which implements a series of 2 to 3 

convolutional layers followed by a pooling aggregate layer (Pointer 2019). 
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 VGG-16 can be seen as follows: 

 

  

Figure 41. VGG-16 Network Architecture (Khandelwal 2017)  

 

The architecture design for this project went through several iterations, in which it was simplified in its 

design and simplified in the way it was programmed. Initially, it was very hard coded and was absolvent 

of the class inheritance and ease of design that was mentioned in Chapter 1 for the utilisation of PyTorch. 

It was still using PyTorch, but it treated the problem and was almost complex for the sake of complexity. 

Which is never a good thing. The architecture for this project utilises 6 individual convolutional layers 

and 3 fully connected layers leading to the output classes. Looking back onto Figure 41. it can be seen 

that this interprets the architecture of VGG-16 from conv4 through to fc8 however it is fundamentally 

different in its size per convolutional layer and filter kernel size producing a vastly different network 

output. The similarities to a proven high performing architecture provides confidence in the networks 

ability to perform its intended task. 

 

5.1 AirSim API & Defining Drone Control 

In order to appropriately utilise the Deep Neural Network, there needs to be an appropriate method to not 

only collect relevant data for training purposes but also a method to parse images from the “camera” in 

the simulated environment to the active algorithm. AirSim provides an API to connect external algorithms 

to the environment, written in both C++ and Python.  
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The example connector API for controlling a drone in Python is shown below: 

 

# ready to run example: PythonClient/multirotor/hello_drone.py 

import airsim 

 

# connect to the AirSim simulator 

client = airsim.MultirotorClient() 

client.confirmConnection() 

client.enableApiControl(True) 

client.armDisarm(True) 

 

# Async methods returns Future. Call join() to wait for task to complete. 

client.takeoffAsync().join() 

client.moveToPositionAsync(-10, 10, -10, 5).join() 

 

# take images 

responses = client.simGetImages([ 

    airsim.ImageRequest("0", airsim.ImageType.DepthVis), 

    airsim.ImageRequest("1", airsim.ImageType.DepthPlanner, True)]) 

print('Retrieved images: %d', len(responses)) 

 

# do something with the images 

for response in responses: 

    if response.pixels_as_float: 

        print("Type %d, size %d" % (response.image_type, len(response.image_data_float))) 

        airsim.write_pfm(os.path.normpath('/temp/py1.pfm'), airsim.getPfmArray(response)) 

    else: 

        print("Type %d, size %d" % (response.image_type, len(response.image_data_uint8))) 

        airsim.write_file(os.path.normpath('/temp/py1.png'), response.image_data_uint8) 

(AirSim 2018) 

This will be manipulated to be operational for the implementation of the DNN. When considering this 

API, it provides access to a few of the most important operations that are required to control the drone; 

access to the live image, access to the drone location, well defined start locations and simulated control 

inputs in the form of manipulation of the 6 axis inputs. 

 

The recommended method to move the quadcopter using the API is to utilise the command: 

 

client.moveByVelocityAsync(vel_x, vel_y, vel_z, duration),join() 

(AirSim 2018) 

However, it must be noted that this inadvertently ignores the use of pitch, yaw and roll mechanics 

available for the drone. But, how important is it to use these mechanics? Well, using this method the yaw, 

pitch and roll are automatically inferred in order to move using these mechanics. There is also the 

command: 

client.moveByVelocityZAsync(vel_x, vel_y, z, duration),join() 

(AirSim 2018) 
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Where again the control is placed into a medium level instance except here the altitude of the drone can 

be set to remain constant, leaving only the x and y velocity values to be determined. This would be useful 

if there were no apparent elevation variations between the levels. However, Landscape 2 utilises elevation 

and as such this method can’t be a viable option. This appears to be a command more in line with vehicle 

control scenarios such as cars and trucks however the API control for those is different to the quadrotor 

API. 

 

In order to describe to the API how to move the drone, a setting known as the Drivetrain needs to be 

defined. By setting the drivetrain to always be forward the system will keep the camera facing forward at 

all times, if it is set to MaxDegreesofFreedom then the algorithm will need to indicate to the drone when 

to rotate such that the camera aligns with its movement path. To do this, the drivetrain parameter is set to 

airsim.DrivetrainType.ForwardOnly 

 

The selected method of control will be: 

 

client.moveByVelocityAsync(vel_x, vel_y, vel_z, duration),join()  

(AirSim 2018) 

In which the output classes can be simplified down from the 6 classes previously identified for the control 

of each degree of freedom down to only 3 classes necessary. The output classes for the network can be 

defined then as: (1) vel_x, (2) vel_y, (3) vel_x. However, if the output is passed through a ReLU gate then 

the values presented will struggle to operate as the ReLU value is a figure between 0 and 1. Therefore this 

would indicate that it is necessary to use six classes in which the output classes result in a summed value 

between the vel_x positive and vel_x negative values to indicate the vel_x value required. Alternatively, 

the user could indicate a Tanh function and utilises the percent positive or negative for the associated 

class as its control measure. The appropriate decision here is to utilise the ReLU function and clearly 

define which option to utilise for the objective output. This is solely due to being simpler in training and 

deployment as it can be specifically indicated in the training data whether a positive or negative value is 

required for the velocity of an axis. 

5.2 Image Collection and Input Into Neural Network 

The AirSim plugin provides a variety of methods for the user to capture training data. Within a built 

environment, such as the standard BLOCKS environment, it is possible to fly the drone manually and 

capture data utilising the record button located on the standard interface. This will capture data from a 
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forward-facing virtual camera located on the drones body. As standard, this data is relatively low quality, 

stored in a resolution of 256 x 144 pixels in the PNG format. 

 

Considering that for the project we are aiming to improve the amount of data captured as to improve the 

ability of the network to abstract and infer from its presented information, the input resolution will be 

increased to 480x480 pixels. The colour input bit depth will be left standard and the output format will 

remain to be PNG as it is effective for the end goal of the project. However, the image will be 

transformed when importing it into the network. 

 

In order to alter the setting of the built-in data collection method within the AirSim plugin, there is a 

settings.JSON file which can be manipulated as the user wishes. However, the code settings for the file 

can be found in Chapter 4. 

 

As standard, the simulator will elect to use the multirotor option (quadrotor drone) and the settings file 

will appear as seen below with no indication of any non-default settings: 

 

{ 

 “SeeDocsAt”: “https://github.com/Microsoft/AirSim/blob/master/docs/settings.md” 

 “SettingsVersion”: 1.2 

} 

 

It is possible for the user to alter the location of the camera when operating in CV mode using a variety of 

different Python API calls. These are as follows: front_center, front_left, front_right, bottom_center, 

back_center. The standard location is front_center and this will remain the same for the implementation in 

this project. As it does not need to be altered, it is not included as the default settings are automatically 

populated. 

 

In order to capture accurate paths, it is possible to place the system into a Computer Vision mode where 

the physics engine is disabled and only a camera object exists. Here, you can clearly define paths or 

manually control the object to collect controlled training data. Whilst this is a viable method, the inability 

to capture physics related information - such as IMU data - limits its capability to be utilised for this 

project. Additionally, an IMU is not used in the engine as it would natively work in the ‘real world’ as it 

provides real world location data and elevations. Realistically, for the algorithms to be applicable there is 

a need to use actual movement data and this can be collected but only in a different form. This was 

included in the most recent update to AirSim (v1.3.1) which included native IMU support for the Python 

API and would have been beneficial to include had it been included at the time of commencement.  
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When parsing images to the DNN for operation, utilising the prior mentioned Image API in Python allows 

complete control over the input of the image. It is possible to use the library and push the images to an 

array using the Numpy library, taking advantage of Numpy’s compute benefits. The example provided 

codes are as follows: 

 

Standard: 

import airsim #pip install airsim 

# for car use CarClient()  

client = airsim.MultirotorClient() 

responses = client.simGetImages([ 

    # png format 

    airsim.ImageRequest(0, airsim.ImageType.Scene),  

    # uncompressed RGB array bytes 

    airsim.ImageRequest(1, airsim.ImageType.Scene, False, False), 

    # floating point uncompressed image 

    airsim.ImageRequest(1, airsim.ImageType.DepthPlanner, True)]) 

(AirSim 2018) 

 

Numpy: 

responses = client.simGetImages([airsim.ImageRequest("0", airsim.ImageType.Scene, False, False)]) 

response = responses[0] 

# get numpy array 

img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8)  

# reshape array to 4 channel image array H X W X 4 

img_rgb = img1d.reshape(response.height, response.width, 3) 

# original image is flipped vertically 

img_rgb = np flipud(img_rgb) 

# write to png  

airsim.write_png(os.path normpath(filename + '.png'), img_rgb)  

(AirSim 2018) 

We can see that the example codes above are extremely similar to the example drone control code using 

the API shown prior. The client agent is created in order to interact with the AirSim environment in the 

form of the quadrotor drone i.e. client.Multirotorclient(). Using client.simGetImages() the ‘live’ feed of 

the environment can be fed into the algorithm. However, the API needs to understand what type of image 

to provide. The documentation for AirSim defines the possible ImageType values as being: 

 

  Scene = 0,  

  DepthPlanner = 1,  

  DepthPerspective = 2, 

  DepthVis = 3,  

  DisparityNormalized = 4, 

  Segmentation = 5, 

  SurfaceNormals = 6, 

  Infrared = 7 
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(AirSim 2018) 

For this application, only the Scene (ImageType = 0) is required. This is the closest 1:1 interpretation of 

the environment as a standard RGB camera would see it. When bringing an image into a neural network 

for analysis, there is a need to convert the data into a usable value. We can represent the image as a 

segment of numbers indicative of the values in that pixel. However, let's first assess pushing the image to 

the algorithm, and then assessing how it is normalised for use in the network. 

 

The input layer can be considered to be a one dimensional representation of the input image with a total 

number of nodes indicative of the total number of pixels in the image i.e. 256 x 144 pixel image would 

result in an input layer of 36,864 not including IMU data or any other input information. The input 

resolution for the network is 480 x 480 resulting in an input layer of 230,400 nodes not including IMU 

data or any additional input values. The problem is however, is that this is the case for a singular input 

layer i.e. a one channel input. A one channel input is a grayscale image. If a three-channel input was to be 

used then an RGB image is being fed into the network. Therefore, a tuple for each cell is provided that is 

a representation of the amount of Red, Green and Blue channel that is active for an 8-bit colour scale i.e. 

0 - 255. This means that for an RGB image to be fed into the network will have a simulated 3 x 480 x 480 

input layer resulting in just under 700,000 nodes at the input level. This is a large number of active nodes 

in the network. 

 

The normalisation of a layer is the process of modifying the input value of each cell to a discrete range - 

generally between -1 and 1 or between 0 and 1 it is dependent on the activation function being used. In 

PyTorch the following code is used to normalise an image for processing: 

 

       img_transforms = transforms.Compose([ 

            transforms.Resize((480,480)),     

            transforms.ToTensor(), 

            transforms.Normalize(mean=[0.485, 0.456, 0.406], 

                            std=[0.229, 0.224, 0.225] )]) 

          (Pointer 2019) 

This code is implemented from the exemplar code provided by the book, ‘Programming PyTorch for 

Deep Learning’ by Ian Pointer. In a normal scenario, the camera settings of the camera to be used would 

define the normalisation values. However, in this condition the camera is virtualised and as such the 

generalised normalisation values provided above are to be used. It is noted in the book that even though 
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the values will produce minimal amounts of error, it is often still used as the errors are not significant 

enough to warrant alteration (Pointer 2019). 

 

5.3 Convolutional, Pooling & Normalisation Layers 

The major benefit to the use of a package such as PyTorch is the simplicity with which generalised 

networks can be built. For our condition, we mostly do not care about minute alterations to the network 

and are more concerned with its general production and training. Using the PyTorch library we are able to 

construct layers and define their connections relatively easily.  

 

torch nn.Conv2d(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T, T]], stride: Union[T, 

Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] = 0, dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, 

bias: bool = True, padding_mode: str = 'zeros') 

           (PyTorch 2019) 

The shape and size of each convolutional layer is defined (within PyTorch) by the following equations. If 

the input shape is defined by (N, Cin, Hin, Win) and (N, Cout, Hout, Wout) then we get the following: 

 

𝐻𝑜𝑢𝑡 = [
𝐻𝑖𝑛 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔[0] − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛[0] × (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒[0] − 1) − 1

𝑠𝑡𝑟𝑖𝑑𝑒[0]
+ 1] 

𝑊𝑜𝑢𝑡 = [
𝑊𝑖𝑛 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔[1] − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛[1] × (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒[1] − 1) − 1

𝑠𝑡𝑟𝑖𝑑𝑒[1]
+ 1] 

           (PyTorch 2019) 

Where N is batch size, C is the number of channels, H is the height of input plane in pixels and W is the 

width in pixels. (PyTorch 2019) 

 

For the implementation in this project it is only necessary to define the in_channels, out_channels, 

kernel_size, stride and padding values. Therefore, the code utilised for the initial convolutional layer is as 

follows: 

 

nn.Conv2d(3, 32, kernel_size=10, stride=10, padding=0) 

 

Where the convolutional output values are determined by the equation: 

𝑜𝑢𝑡(𝑁𝑖 , 𝐶𝑜𝑢𝑡𝑗) = 𝑏𝑖𝑎𝑠(𝐶𝑜𝑢𝑡𝑗) + ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝐶𝑜𝑢𝑡𝑗, 𝑘) ∗ 𝑖𝑛𝑝𝑢𝑡(𝑁𝑖 , 𝑘)

𝐶𝑖𝑛−1

𝑘=0

 

(PyTorch 2019) 
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Where the * function is a 2D cross-correlation operator. 

 

However, following the convolutional layer there is a need to normalise the incoming data prior to being 

fed through the ReLU activation function. During research for this project it was found that there is 

significant discourse surrounding whether to utilise normalisation before or after the ReLU function, 

however due to significant evidence in AlexNet and similar networks towards the use of normalisation 

prior to the ReLU then this shall be followed for this project. 

 

Normalisation is applied to the network in a similar fashion to the creation of a layer. It takes a filter of 

the size of the incoming layers, identifies the number of features (input channels) and then conducts 

normalisation. In a condition where there are multiple incoming features from an image-based network it 

is necessary to utilise Batch Normalisation in the 2D plane.  

 

This is implemented by the function BatchNorm2d by PyTorch and is described in the documentation as 

being implemented by the following: 

 

torch.nn.BatchNorm2d (num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

           (PyTorch 2019) 

Batch Normalisation is governed by the following equation: 

 

𝑦 =  
𝑥 − 𝐸[𝑥]

√𝑉𝑎𝑟[𝑥] + 𝜖
× 𝛾 + 𝛽 

(PyTorch 2019) 

Where the mean and standard deviation are calculated per dimension. The factors 𝛾 and 𝛽 are learnable 

parameter vectors of the size of the input with 𝛾 initialised to 1 in its values and 𝛽 initialised with its 

values at 0 when beginning the process. 

 

It is implemented in the project using the following line for the first layer as follows: 

 

nn.BatchNorm2d(32) 

 

From here, the layers now pass through a ReLU function. A ReLU is fairly simple in implementation and 

design. It is a positively linear algorithm ranging from 0 to N and follows a plot as shown in the 

documentation for PyTorch: 
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Figure 42. ReLU Output Function (PyTorch 2019) 

 

The ReLU activation utilises the following equation: 

 

𝑅𝑒𝐿𝑈(𝑥) = (𝑥)+ = max (0, 𝑥) 

          (PyTorch 2019) 

This equation is provided by PyTorch in the documentation and simply defines that the output is 

equivalent to zero until the value exceeds the gate value in which is will output value x linearly increasing 

as the input value increases.  

 

For the actual network used, there are still another 2 more convolutions prior to reaching the pooling 

layer, however it can be described here. The pooling can be implemented in 2 methods; MaxPool2d and 

AdaptiveAvgPool2d. In the convolutional portion of the network, MaxPool2d is utilised and prior to 

moving into the regressor the AdaptiveAvgPool2d is utilised. 

 

MaxPool2d is utilised in the hidden layers as it is arguably faster in implementation than the AvgPool2d 

function (Pointer 2019). It is simple when considering it in the terms of its use, depending on the filter 

size and stride it will take the maximum value of each matrix from its movement across the data. It will 

output a value based on the following equation: 

 

𝑜𝑢𝑡(𝑁𝑖 , 𝐶𝑗, ℎ, 𝑤)

=  𝑚𝑎𝑥𝑚=0,…,𝑘𝐻−1𝑚𝑎𝑥𝑛=0,…,𝑘𝑤−1 𝑖𝑛𝑝𝑢𝑡 (𝑁𝑖 , 𝐶𝑗, 𝑠𝑡𝑟𝑖𝑑𝑒[0] × ℎ + 𝑚, 𝑠𝑡𝑟𝑖𝑑𝑒[1] × 𝑤 + 𝑛 

           (PyTorch 2019) 
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Where kH and kW is the kernel dimensions in height and width. It is implemented using the following 

code: 

 

torch.nn.MaxPool2d (kernel_size: Union[T, Tuple[T, ...]], stride: Optional[Union[T, Tuple[T, ...]]] = 

None, padding: Union[T, Tuple[T, ...]] = 0, dilation: Union[T, Tuple[T, ...]] = 1, return_indices: bool = 

False, ceil_mode: bool = False) 

(PyTorch 2019) 

However, only the kernel_size and stride values are defined for each hidden layer. It is implemented in its 

first position as the following: 

 

nn.MaxPool2d(kernel_size=3, stride=2) 

 

For the final connector to the regressor layers, the AdaptiveAgvPool2d is utilised as it takes an arguably 

more data inclusive snapshot of the layers and is exclusive of influence for overly maximum values 

skewing features within the layers. It is implemented via the following code: 

 

torch.nn.AdaptiveAvgPool2d (output_size: Union[T, Tuple[T, ...]]) 

           (PyTorch 2019) 

This takes the average value from each kernel output and constructs a new matrix utilising these values. It 

is implemented in the code as follows: 

 

self.avgpool = nn.AdaptiveAvgPool2d((6,6)) 

 

Utilising the self-class identifier as it sits as a separate layer compared to the hidden layers which are 

stored as a features class. From here, the network will identify one of the output nodes with a class in the 

training data and the association occurs. 

 

5.4 Output Values & Fully Connected Final Layers 

When looking at the output of the network, it is difficult to properly visualise what the output needs to be. 

But, if the scenario is broken down it is easy to identify the necessary controls. Referring back to the 

drone model shown in Section 1.3.1 we can see that a drone has 6 degrees of freedom 

(x,y,z,pitch,yaw,roll) and therefore we can structure the output of the model around this idea. However, 

the API control of the system limits exactly how we can interact with the simulations environment. 
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Remembering back to Section 5.1 it was found that the general recommended control surrounds the 

manipulation of each axial velocity with the assumed rotations being handled by the AirSim API. 

 

Stepping away from these limitations for the moment, the output structure of the network can be 

interpreted now as a set of classes aligning with an input to one of the degrees of freedom within which 

the drone can move. Therefore, the structure in a simple sense would be as follows: 

 

- Input layers and Image Manipulation 

- Hidden layer compute (Convolutions, Pooling, Batch Normalisation) 

- AveragePooling Aggregate Layer 

- Fully connected output layers  

 

The fully connected output layer will have six classes for each of the six degrees of freedom. However, 

the network itself will not directly interact with the drone. The program will need to take the output value 

and the indicated class that the network has indicated needs to be active and transform it into a usable 

value for control. This can be converted into a scalar output value that falls in line with the AirSim plugin 

standard of providing a unitless scalar input value to the motors for control of the drone. 

 

However, focussing on the building of the fully connected linear layers (this has been referenced to as the 

regressor throughout the paper) utilises the following code: 

 

torch.nn.Linear (in_features: int, out_features: int, bias: bool = True) 

          (PyTorch 2019) 

Which is fairly simple in its implementation, however in this function the in_features and out_features do 

not refer to a number of layer, but a number of individual nodes within that layer. These layers close out 

to a defined number of nodes that are identified as being the classes – noted in the code as num_classes 

which align to an indication of that velocity value for each axis. 

 

The indication percentage of each class is then multiplied by a value such that its velocity input makes 

sense for the control scenario. It was unsuccessful in attempting to validate the value, but the control 

scenario was defined out of a value of 10 meaning the maximum output velocity was 10m/s in either 

direction however this value was summed for a combined output value for each axis velocity.  
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5.5 Selection of training data and training 

As was noted in the literature review, the use case of spectral normalisation for training networks is 

highly important. When looking at the formal documentation for PyTorch we can see that spectral 

normalisation is built into the package. The documentation outlines that it is implemented using the 

following: 

 

torch nn.utils.spectral_norm(module, name=’weight’, n_power_iterations=1, eps=1e-12, dim=None) 

(PyTorch 2019) 

Normally the use of spectral normalisation is utilised when developing General Adversarial Networks, 

however the paper in the literature reviewed clearly outlined its usefulness in training CNN systems for 

stability.  

 

Applying spectral normalisation utilises the following equation: 

 

𝑊𝑆𝑁 =
𝑊

𝜎(𝑊)
, 𝜎(𝑊) = 𝑚𝑎𝑥ℎ:ℎ≠0

‖𝑊ℎ‖2

‖ℎ‖2
 

          (PyTorch 2019) 

Where its implementation focusses on the weight matrices that are built for the network and rebalancing 

their values with respect to the standard deviation of their distribution. However, the method of utilising 

spectral normalisation doesn’t currently work with the method of training being implemented and as such 

will need to be elected as future work. 

 

Moving on from the importance of balancing the network, we can investigate the data that is being fed 

into the network in order to train it. Now, it must be understood that it is not necessary to feed a complete 

live view of the environment into the network in order for it to operate. In fact, this would end up 

producing a negative outcome for a standard CNN. This would most likely result in ‘overfitting’ where 

the network optimises too strongly for a certain characteristic too early within the training batches. 

Theoretically, a network can recover from this however it is not typically seen in actual models and 

therefore it is better to avoid the issue at the source. 

 

In an attempt to help prevent overfitting of the model, data is selected and shuffled as the network is 

trained. Realistically, we can treat the network as being agnostic to the reality of the data that it is being 

fed. What this means is that we do not need to feed the data to the network in the order within which it 

was captured. Additionally, not every instance of data is required. Frames that are extremely similar, or 
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data that can be considered essentially replica of another frame of data is to be ignored. This too will 

result in overfitting. Essentially, the network reinforces a specific task rather than developing a 

generalised understanding of the data and how to respond to it. If it was desired to develop an 

understanding of the sequency of data, then an RNN-CNN would be utilised. 

 

Luckily, there is a technique built into PyTorch’s training capabilities that allows for this to happen easily. 

The package allows you to split the training into batches, with each batch's data being able to be a 

shuffled selection from a data pool. This is done using DataLoader which is built into PyTorch, since the 

data being imported is a series of images, the torchvision DataLoader will need to be utilised. The 

example code provided in the documentation for this looks as follows: 

 

imagenet_data = torchvision.dataset.ImageNet(‘path/to/imagenet_root/’) 

data loader = torch.utils.data.DataLoader(imagenet_data, batch_size=4, shuffle=True, 

num_workers=args.nThreads) 

           (PyTorch 2019) 

To break this down simply, the data set is being identified with its stored location on the computer and 

then the data is imported into the data_loader in 4 batches which the data shuffled and we tell the system 

to utilise multiple threads when doing this. 

 

The training algorithm for the network utilises an Adam optimisation as opposed to a Stochastic Gradient 

Descent. As is found in the literature surrounding the development of CNN’s by both Ian Point and 

Grasser and Keng it is somewhat established that the utilisation of Adam presents faster convergences 

when assessing large amounts of data with multiple output classes. The loss is also defined as being 

CrossEntropyLoss simply because it is utilised for conditions where there is not a binary output (where 

BinaryCrossEntropyLoss would be implemented) and shall suffice for the training and optimisation of the 

network. 

 

A sample of the training data can be found in Appendix J. When assessing the training data collected for 

the project, the use of the KITTI training database was not considered viable as the conditions expressed 

in the dataset did not closely align with the use case of the network for this project. Its use would have 

further convoluted the training process as transfer learning would have needed to have been applied in 

order for it to be useable. However, the labels and objectives of the data do not match that of this project 

and as such it was elected not to use the database.  
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Data in this project is stored such that it can be brought into the network as a class label. In the storage 

directory for the images, each image is stored as a class denoted by its folder name. It is possible to label 

images with multiple classes, however this was determined unnecessary for the project and was likely to 

adversely affect the training of the network. The storage labels are aligned with the output class names 

mentioned prior in the chapter. Therefore, the class names are; vel_x_pos, vel_x_neg, vel_y_pos, 

vel_y_neg, vel_z_pos, and vel_z_neg. 

 

5.6 Moving Neural Networks Between Development, Training & Production 

The code in its development phase is emulated in the training phase as they are essentially one in the 

same. The codes structure, parameters and all additional information can be stored within the operating 

directory as a pickle file (known as saving the state DICT). It can be saved using the following code: 

 

torch.save(model.state_dict(), PATH) 

            (PyTorch 2019) 

And loaded again using the following code as shown within the PyTorch documentation: 

 

model = TheModelClass(*args, **kwargs) 

model.load_state_dict(torch.load(PATH)) 

model.eval() 

            (PyTorch 2019) 

Now, the model can have its output states assigned to control values in the production code and it 

becomes the production version of the model. It is possible to do this within one script and indicate 

operation based on selecting an operating mode, however it is easier to debug the code when the training 

and production variants are kept separate from one another (from experience in the project). 
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5.7 Discussion of Completed Network Structure 

The structure of the network is as follows, it can be found by inputting cnnNet() into the Spyder Terminal 

after building the network: 

 

Training: 

cnnNet( 

  (features): Sequential( 

    (0): Conv2d(3, 32, kernel_size=(10, 10), stride=(10, 10)) 

    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (2): ReLU() 

    (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) 

    (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (5): ReLU() 

    (6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) 

    (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (8): ReLU() 

    (9): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

    (10): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1)) 

    (11): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (12): ReLU() 

    (13): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1)) 

    (14): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (15): ReLU() 

    (16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)) 

    (17): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (18): ReLU() 

    (19): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

  ) 

  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6)) 

  (classifier): Sequential( 

    (0): Dropout(p=0.2, inplace=False) 

    (1): Linear(in_features=4608, out_features=1152, bias=True) 

    (2): ReLU() 

    (3): Dropout(p=0.2, inplace=False) 

    (4): Linear(in_features=1152, out_features=1152, bias=True) 

    (5): ReLU() 

    (6): Linear(in_features=1152, out_features=6, bias=True) 

  ) 

) 
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Production: 

cnnNet( 

  (features): Sequential( 

    (0): Conv2d(3, 32, kernel_size=(10, 10), stride=(10, 10)) 

    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (2): ReLU() 

    (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) 

    (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (5): ReLU() 

    (6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) 

    (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (8): ReLU() 

    (9): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

    (10): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1)) 

    (11): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (12): ReLU() 

    (13): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1)) 

    (14): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (15): ReLU() 

    (16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)) 

    (17): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

    (18): ReLU() 

    (19): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) 

  ) 

  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6)) 

  (classifier): Sequential( 

    (1): Linear(in_features=4608, out_features=1152, bias=True) 

    (2): ReLU() 

    (4): Linear(in_features=1152, out_features=1152, bias=True) 

    (5): ReLU() 

    (6): Linear(in_features=1152, out_features=6, bias=True) 

  ) 

) 

 

The network structure closely approximates structures such as AlexNet and VGG-16 and can be 

considered to be a hybridised model based on these two model structures.  

 

The Dropout layers are not present in the production version of the network. This is as it is not desirable 

to remove data when it is being utilised for control as a Dropout layer in this instance reduces pixel data 

by up to 20% (denoted by 0.2) during training. However, it is desirable during training to help reduce 

overfitting and to improve the rate at which the network converges (Pointer 2019). 

A large kernel is utilised initially with a size of 10*10 as it helps the system better identify features in 

larger general locations of the image as identified by Graesser and Keng in the book, ‘Foundations of 
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Deep Reinforcement Learning’ and serves better for scene understanding as opposed to feature 

identification. 

 

The code for Training can be found in Appendix D. The old code for the network that was attempted 

initially can also be found. It failed to take advantage of Pythons inheritance properties as much as the 

final model code did and that was evidently the reason for its inability to work. The code would compile; 

however, this is deceiving and when attempting to view the network errors such as what follows would 

occur: 

 

TypeError: __init__() missing 3 required positional arguments: 'lr', 'epochs', and 'batch_size' 

 

Which is actually the incorrect issue. This issue was originally being given by an incorrect match in the 

BatchNorm2d function due to a 128 layer convolutional input attempting to be normalised to 32 rather 

than 128 as is the required input. After fixing this the following error was received: 

 

TypeError: new() received an invalid combination of arguments - got (float, int), but expected one of: 

 * (torch.device device) 

 * (torch.Storage storage) 

 * (Tensor other) 

 * (tuple of ints size, torch.device device) 

      didn't match because some of the arguments have invalid types: (!float!, !int!) 

 * (object data, torch.device device) 

      didn't match because some of the arguments have invalid types: (!float!, !int!) 

 

Which is a common problem when attempting to program the network structure in this method. It will 

result in incorrect value types being assigned to the nn.Convd2d and other layers such that are input as a 

float value which will not work with PyTorch. Fundamentally, this architecture design was flawed and 

failed to take into account the Pythonic nature of PyTorch as well as it could have. As such it was 

dropped during development as it was unable to get running or accept any incoming data into the 

network. The network can be found in Appendix D. 

 

A lot of time was ‘wasted’ on attempting to fix an arguably flawed code structure that is found in 

Appendix I and ultimately should have been recognised sooner that large issues were apparent. For the 

completion of the control scenario for the drone, an agent needs to be developed further. 
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Chapter 6 - Executing OpenSLAM Algorithms 

The two algorithms selected for this project were selected upon the criteria that they were research proven 

algorithms and they were freely available for individuals to utilise for their own research purposes – with 

appropriate credit given to the original authors of course. OpenSLAM hosts a variety of SLAM based 

algorithms that meet these criteria. Background research that had been conducted prior to the selection of 

the algorithms indicated that ORBSLAM was already a viable option to attempt to outperform the known 

SLAM issue criteria as outlined in the Literature Review. However, CEKF-SLAM was chosen based on 

its description given on the site and for the reason that it presented reasonably usable code. Upon further 

findings throughout this project, it has been determined that whilst ORB-SLAM is a viable algorithm for 

the project, CEKF-SLAM is less viable. It should have reasonably been investigated using the much more 

recent EKFmonocularSLAM algorithm provided by OpenSLAM which also aligns much more closely 

with the intended use case for SLAM in this project. As the name suggests, EKFmonocularSLAM utilises 

a monocular input however its advantage is the ability to determine camera movement based on this 

image in a 6DOF format and produce a sparse 3D map of the salient point features. If the project is so to 

be carried further by other individuals, EKFmonocularSLAM and LSD-SLAM are two viable SLAM 

algorithms worth investigating as they are much more recent and prove to be very effective in their 

utilisation. 

 

In the initial stages of the project, it was intended to convert the algorithms over to Python such that they 

can be run as native scripts for AirSim without needing to utilise external connectors of UDP streams. A 

tool exists for the conversion of MATLAB code into Python code called LiberMate. However, the tool 

has since been deprecated and a list of known issues with the conversion are noted on the GIT repository. 

Most notably is the inability to convert command style inputs from MATLAB to Python and that not all 

MATLAB functions are able to be mapped to any reasonable Python (SciPy/Numpy) equivalent. There 

are other variations which made this not viable such as the fact that Python and MATLAB behave very 

different with the way they handle arrays and that certain MATLAB specific instructions, such as those 

linked to SIMULINK, are solely unable to be remapped within Python. When initially converting the 

programs over to Python, it was misleading in the progress that was being achieved as simple linking or 

header files could be directly ported to Python due to their simple nature. Its estimated that about 40% of 

the original code for CEKF-SLAM was ported from MATLAB to Python however as mentioned, any 

code linked to the utilisation of MATLAB specific features and functions did not have a direct Python 

equivalent port and it was chosen that for the sake of reasonability, the source code will remain in its 

original format and will need to be linked to AirSim and Unreal Engine 4 in order to operate. 
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Additionally, looking at ORB-SLAM and its conversion to Python was entirely not feasible. Its utilisation 

of features that are specific to RoS and RoS libraries are not able to be ported to Python. Additionally, it 

is code that is written in C++ which is entirely different in its operation to Python. Python is an 

interpreted language and is not converted to machine code at runtime as opposed to C++ which is. Being 

that C++ is a compiled language as opposed to Python being an interpreted language there are 

fundamental differences in the code architecture which limit direct ports – actions such as Boolean 

expressions operate in a fundamentally different method in each language along with variable types and 

the limitations of inheritance differences between each of the languages. Although it was initially desired 

to conduct a conversion, it was determined not to be feasible and in reality it is not a conversion of the 

code that would be necessary but a complete re-write of the algorithms from first principles in order to 

achieve a successful result. This applies to both MATLAB and C++ variants of the chosen algorithms. 

 

Additionally, as has been mentioned throughout the paper, SLAM is not inherently a method of 

navigation and requires a navigational component in order to perform appropriately. The use of visual 

odometry can be combined when a navigational component known as an occupancy grid in which the 

least populous grid on the map aligns with an open frame with which the mobile robot can move. The 

application of an occupancy grid for this project was intended to be implemented through the Nvidia Isaac 

package, however it only natively supports stereo camera input to develop its occupancy grid. MathWorks 

provides example code for Monocular Visual Odometry based occupancy grid development with a 

notable aspect – it utilises a pretrained network to identify depth in the image and produce a occupancy 

grid in the form of a Free Space Confidence map on the incoming image. 

 

The discussion of each algorithm, and the method utilised to run the algorithms and link them to AirSim 

will be discussed individually in the following sections.  

 

6.1 ORBSLAM 

ORBSLAM in the form provided by OpenSLAM is designed to run on RoS Fuerte/Groovy on a Unix 

which is indicated to be Ubuntu 12.04 in the run files. These are two far outdated platforms which are not 

directly available for download from the original sources anymore due to deprecation. However, they are 

accessible in the form of a legacy download through the RoS website. The team at RoS recommend 

running RoS Fuerte/Groovy in a docker environment. This was tested with a download build being 

successfully built from the source fabian/ubuntu-12.04-ros-fuerte but it is a ‘headless’ environment 



   

99 
 

meaning that it does not project a visual output of the environment and can only be interacted with via the 

command line. This is appropriate for general cases however it limits the visualisation of the SLAM 

algorithms and lessens the ability to debug issues in the container and as such it had to be abandoned as a 

plausible option to run the software. Additionally, I was unable to get the docker container to establish a 

UDP stream outside of the container and as such any reasonable number of findings that could be 

achieved utilising this method were considered to be null. However, it does establish that this method is 

not viable for test utilisation cases. 

 

The authors of ORBSLAM state its prerequisites in the README file from the download from 

OpenSLAM as being: 

 

1. Boost - a package for Linux based systems and is utilised to launch multiple threads of a 

workload 

2. RoS Fuerte/Groovy/Hydro - RoS (Robot Operating System) is utilised in this case for retrieving 

and interpreting incoming image data (rosbag), and for visualisation of the process (rviz, 

image_view) and is required to run on the following OS; 

3. Ubuntu 12.04 - This is the proven OS outlined in the prerequisites and is out of date as of 

publishing this paper.  

4. g2o dependencies - this was used to perform the optimisations on the code, utilising the Eigen3, 

BLAS, LAPACK and CHOLMOD libraries.  

5. DBoW2 - components of this library serve as the underlying components that allow for place 

recognition and feature matching in the data. It is reliant on OpenCV. 

 

Therefore, running ORB-SLAM in the nature as it was provided directly from OpenSLAM may not be 

viable. It was investigated the plausibility of running the environment within a Virtual Machine. Ubuntu 

12.04.5 LTS is openly available through Ubuntu directly in the form of a LTS image however it stopped 

receiving development support in April, 2017. However, the limitations of operating with a Virtual 

Machine are noticeable especially on consumer hardware with minimal resources that are able to be 

allocated. If the Virtual Machine is allocated 50% resources than the main desktop is left with 50% 

resources available to conduct rendering, background tasks, etc. This means a fair analysis is entirely 

unfeasible unless an entire GPU could be allocated to the Virtual Machine to provide equal compute 

capability. If this cannot be done than any performance comparisons would be inadequate as they would 

not be under the same controlled conditions. Subsequently, algorithm performance (beyond just compute 

characteristics) would be hindered due to removal of resources also. In the condition that an algorithm 
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which requires a locked FPS cannot receive the locked FPS than it will be out of phase from the incoming 

data and unable to react at appropriate intervals. This would result in inappropriate key frame data being 

presented to the SLAM algorithms. 

 

After establishing that this was also not a viable option to run the algorithm, it was found that MathWorks 

has adapted ORB-SLAM as a direct option to run on MATLAB. The algorithm itself is labelled as 

vSLAM however it utilises ORBSLAM as the underpinning algorithm and thus can serve as a viable 

basis to operate the algorithm. This also allows for the limitations of a Virtual Machine to be removed as 

MATLAB has complete compute capability available to the algorithm during runtime i.e. the machines 

resources are not pre-allocated as they are in a Virtual Machine. 

 

Running ORB-SLAM in its MATLAB variant as provided by MathWorks was ultimately decided to be 

the chosen implementation.  

 

The complete code for ORB-SLAM in its MATLAB form is included in Appendix E with complete 

acknowledgement given to MathWorks for the code. 

 

6.2 CEKF-SLAM 

CEKF-SLAM is a MATLAB based algorithm built on top of EKF-SLAM as noted by the authors 

README file. CEKF-SLAM utilises MATLAB toolboxes and as such is required to run directly in 

MATLAB. There are packages available that will allow the user to run the code directly in GNU Octave 

however the packages are not direct ports and feasibility of operation for the code cannot be considered to 

be reliable. Therefore, running directly within MATLAB will be necessary. 

 

In order to run CEKF-SLAM, the user is it load the loop902.mat file and run “data = cekfslam(lm,wp)” in 

the command window in MATLAB. However, the algorithm still needs to be linked to AirSim and there 

is still the requirement to utilise a navigational agent for both ORB-SLAM and CEKF-SLAM. 

 

The complete CEKF-SLAM code used in this project can be found in Appendix F. 
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6.3 Linking MATLAB with AirSim 

Considering that the algorithm types selected are natively operable in MATLAB there is a need to 

identify a method to link MATLAB to AirSim such that usable control and connection can be established. 

It is generally recommended to utilise a PIXHAWK controller via a UDP stream to connect MATLAB to 

AirSim however this is only relevant in cases where a physical device is being controlled. As the is an 

entirely simulations focussed project the utilisation of a PIXHAWK was deemed unviable. 

 

There is the option of utilising a Python based MATLAB link as posted by user hashikemu onto their 

personal GIT page (Hashikemu 2018). The opposing method is to utilise a UDP connection written by 

user xiaolin360 which utilises a C++ established UDP connection into AirSim such that MATLAB can 

operate under UDP conditions. The method utilised were based on code developed by hashikemu and 

must be noted that established methods of connecting AirSim to other applications has been determined to 

be ill-defined in the source material and in common materials from other projects and as such attracts 

attention as a research topic within itself. AirSim is extremely capable and defining an open connection 

standard is a must to ensure it gets appropriately utilised for research purposes where the code cannot 

natively be executed within the operating directory of the environment.  

 

The Python code to link AirSim to MATLAB can be found in Appendix F.  
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Chapter 7 - Experimentation Conditions 

7.1 Defining Experiment Conditions 

Referring back to Chapter 3, the points of interest for the experimentations surround around identifying 

the characteristics of each algorithm type and its performance in regard to; 

 

● Image Illumination Issues 

● Dynamic Problems 

● Kidnap Problem 

● Compute - System Utilisation 

 

Within Unreal Engine 4 utilising the AirSim plugin. Running the experimentation portion of the project 

led to a large amount of changes to the project structure and additionally led to speculation about the 

question proposed for the project and whether or not the correct question has been proposed. These points 

shall be addressed in depth in Chapter 8 and 9.  

 

It was determined that the SLAM algorithms are not capable of being run directly within Unreal Engine 

due to their underlying requirements as mentioned in Chapter 6. It was also found that during the 

investigation and conversion of the SLAM algorithms to python that it was not viable directly porting the 

code between languages due to variations in Python code and C++/MATLAB along with varying libraries 

being unavailable for Python as addressed in Chapter 6. As a result of this, the experimentation 

environment had to be altered in order to attempt to produce a viable outcome.  

 

To ensure that the test conditions are as similar as possible, the temperature control implementation that 

can be utilised revolves around setting all fan curves and pump speed values to aggressive within Corsair 

ICUE and NZXT CAM to ensure there is enough airflow and cooling capability available and prevent 

thermal throttling. This creates a scenario of maximum possible cooling at all times and limits the ingress 

of thermal throttling as much as possible in the apparent data and results. As a result, this is a step 

towards ensure optimal compute availability at all times and limit loss of compute power due to thermal 

throttling. 

 

This was done by modifying the custom fan curve providing the most aggressive fan control and the 

extreme output curve on the pump following the following settings within the Corsair iCUE software. It 
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must be noted that the CPU is water-cooled using a Corsair H100i Platinum AIO and has shown to be 

effective in maintaining appropriate operating temperatures. The Corsair iCUE conditions are: 

 

 

Figure 43. Corsair iCUE Cooling Settings 

 

Additionally, the NZXT CAM case fan settings can be seen utilising the following fan characteristics: 

 

 

Figure 44. NZXT CAM Fan Settings 
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What is labelled EXTREME within Corsair iCUE is generally matched by settings labelled Performance 

within the NZXT CAM software. The GPU is set to a predefined aggressive profile and will remain in its 

default BIOS settings. There will be no overclocking of the CPU, GPU or RAM to achieve speeds that are 

not profiled within the specifications of the equipment and serve to add stability when executing the 

project software. 

 

Monitor resolutions are not expected to produce a measurable effect on the execution of the algorithms. 

This is due to the input image being rendered from a virtual camera on the drone and not from a screen 

capture or direct screen rendering of the experimentation environment. If the conditions for rendering 

were directly tied to the screen resolution then the alteration in performance would be very apparent. With 

the main monitor resolution being 3440 x 1440 there are 4,953,600 active pixels compared to 480 x 480 

which is 230,400 active pixels. This is a 21.5 times increase in pixel data over the rendered camera input 

and if the conditions remain linear for rendering load when aligned to pixel data then an over 20 times 

impact could be seen in rendering performance.  

 

7.2 Image Illumination and Specular Obscuration  

Assessing the characteristics of each algorithm type within the scenario of Image Illumination and 

Specular Obscuration revolves around the algorithms ability to limit collisions. For the cases of SLAM, 

the algorithms can be ran such that significant features are identified within the environment however the 

identification of features is not a common task for both algorithm types. The SLAM based algorithms will 

produce some form of a map depending on whether it is ORB-SLAM or CEKF-SLAM and will identify 

notable features in the data from here however the CNN network is ignorant to specific features as a result 

of its training and is likely to converge on emulating the operations of an occupancy grid. This means the 

CNN will attempt to identify open zones that are viable for the drone to move and subsequently feed 

instructions based on class outputs as opposed to the mathematically constructed decisions based on a 

mathematically determined visual occupancy grid.  

 

By identifying each algorithms ability to navigation within this environment, it can be inferred each 

algorithms ability to understand local data about its surroundings. Now, it is not ignorant to believe that 

all algorithms types will be capable of executing flight through the map with no apparent collisions. If 

this scenario occurs it would be obtrusive to present a more complex scenario in the aims that it intends to 

make either algorithm fail. If the case arises, then it shall be assessed to determine if the initial map 
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design aligned strongly with the criteria identified for visual issues for SLAM algorithms. If the 

environment is determined to be insufficiently aligned, then a new environment will be made that more 

strongly correlates with the required criteria. 

 

The criteria has been mentioned throughout the project. However, to clearly state the criteria it is: 

 

• Produces sufficient reflections such that obscuration of a clear pathway is present 

• Produces sufficient ‘glare’ such that camera exposure is obscured 

• Produces sufficiently dark conditions and shadows such that edge and feature detection are 

limited 

• Produces sufficient light scattering such that inconsistent lighting is present  

 

Looking at Chapter 4 Section 4.1 the environment has been sufficiently documented such that these 

criteria can be assessed. The criteria, ‘Produces sufficient reflections that obscure clearly defined paths’ is 

notably met through the utilisation of reflective and mirrored surfaces in positions that make a well-

defined path somewhat difficult to discern. The criteria of, ‘Produces sufficient ‘glare’ such that camera 

exposure is obscured’ is met through the use of particle effects and mirrored surfaces exposed after open 

windows using natural light for glare in hallway 3 and hallway 4. The criteria of ‘Produces sufficiently 

dark conditions and shadows such that edge and feature detection are limited’ is apparent in the last 2 

hallways such that limited light exposure and apparent objects in the path fulfil this requirement. The 

criteria of ‘Produces sufficient light scattering such that inconsistent lighting is present’ is fulfilled by the 

seventh hallway which uses ground-based lighting scattered through glass structures to test feature 

acquisition in these conditions. It must be understood that the method by which the camera is utilised by 

AirSim does not entirely emulate a ‘real-world’ camera in its visual state. 

 

The drone will be initialised and started in the exact same location every time as indicated by the Player 

Location marker in the map to ensure initial conditions remain the same. The run is considered complete 

once the drone has exited the final hallway. The points of measurement for the experiments are as 

follows: 

 

1. Collection of collision data as a number of collisions counter reading 

2. CPU utilisation as percentage of total capacity and core utilisation 

3. GPU utilisation as a percentage of total capacity 

4. RAM utilisation 

5. Assessment of general flight behaviour 
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7.3 Dynamic Objectives 

Assessing the characteristics of each algorithm type within the scenario of Dynamic Objectives or 

Dynamic Environments revolves around the algorithms ability to limit collisions and judge future 

positional data. This is designed to test the state estimation features of SLAM algorithms and analyse its 

ability to detection future positions based on objects in the environment moving without any defined 

relationship to the drone itself. This directly impacts the localisation and mapping aspects of SLAM 

algorithms and serves as a strong measure of their ability to execute the algorithm under stress conditions. 

For the condition of the CNN, it is not building a map (not intentionally) of its environment as a reference 

and therefore is a good measure of its ability to be reactive to environmental states and determine whether 

or not end to end CNN algorithms trained similarly on similar data can perform under these conditions. 

 

By identifying each algorithms ability to navigate and fly within this dynamic environment. It can be 

estimated that these conditions will present a significant amount of difficulty for each algorithm – both 

SLAM and CNN – and directly aligns with a known fault for ORB-SLAM which is that for fast moving 

or large moving objects within its environment it can have difficulties executing its SLAM requirements.  

 

This experiment, and subsequent experiment type, has been designed to strongly coincide with the 

necessary criteria that would suffice the identification of an algorithms ability operate within a dynamic 

environment. The criteria has been mentioned separately throughout the paper, but to clearly state it, it is: 

 

• Produces objects with sufficient vertical and horizontal linear velocity movement in the 

environment 

• Produces sufficient elevation and open-space change within the environment 

• Produces objects with sufficient nonlinear movement velocities and paths in the environment 

• Produces objects with sufficient rotational elements at a linear velocity 

• Produces objects with sufficient rotational elements at a non-linear velocity 

 

Looking at Chapter 4 Section 4.2 it can be understood that the environment sufficiently aligns with the 

necessary requirements to execute the dynamic conditions experimentation. As with the previous 

experiment, the drone will be initialised in the exact same location with every pass as indicated by the 

player location marker in the environment. The run is considered complete once the drone has exited the 

final room and will be manually stopped. The points of measure for the experiment are as follows: 

 

1. Collection of collision data as a number of collisions counter reading 

2. CPU utilisation as percentage of total capacity and core utilisation 
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3. GPU utilisation as a percentage of total capacity 

4. RAM utilisation 

5. Assessment of general flight behaviour 

 

7.4 Kidnap Issue 

Assessing the characteristics of each algorithm type with the scenario of a ‘kidnap’ state revolves around 

the algorithms ability to re-initialise within the environment after the removal of input data for the 

algorithms. This is designed to specifically test the ability of an algorithm to continue about its flight path 

even once it has been artificially moved within the path. This breaks the consistent state update and places 

the drone within an environment within which it may have no prior features that can be aligned with the 

prior environment – leaving it without a reference and subsequent ability to directly localise. This is not 

expected to be an issue for the CNN algorithm as it is ignorant to sequential data and acts purely on the 

input image data. Removing the camera input is expected to introduce unknown behaviours however once 

it receives input data again it is assumed that it will begin to react to its input data as if the ‘kidnap’ 

scenario had never occurred. 

 

By identifying how each algorithm performs under this condition it can be inferred the beneficial 

algorithm to utilise in a case where this may be a suspected scenario. This experiment is environment or 

landscape agnostic – it is designed to be executed on both Landscape 1 and Landscape 2 and is 

implemented through the use of removal of the camera input and transport between locations on the map 

using a teleportation within Unreal Engine 4. This sounds difficult, but essentially if the hitbox detects 

that the drone has collided with its boundaries, then a timer is set to input a zeroed out input image and 

the drone is moved from location A on the map to location B via an immediate update to the X, Y and Z 

coordinates. It will retain the orientation it had prior to the ‘teleportation’. 

 

The points of measure for the experiment are as follows: 

 

1. Time to localise  

2. Localised successfully Y/N 

3. Assessment of general flight behaviour 
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7.5 Realistic Environment 

It was intended to repeat the aforementioned experiments on an environment that as closely emulated a 

realistic scenario as possible to determine whether or not the findings of the prior experiments where 

indicative of worst case scenario performance only or if whether the resulting data was truly indicative of 

the performance of the algorithms.  

 

However, this portion of the project was determined to be cut due to limitations in the design process for 

the map. The time to build a realistic environment as opposed to a corridor like design in both Landscape 

1 and Landscape 2 is exponentially (in terms of my capability) longer and was thus dropped as a viable 

option.  

 

Data captured from this experiment would have served as a strong reference for the algorithm 

performance in general conditions and would have likely provided strong evidence for or against an 

algorithm type. For instance, if the CNN algorithm heavily outperformed in all tests, but the SLAM based 

algorithms outperformed in the realistic environment then it could be inferred that under very tightly 

controlled scenarios the CNN is more beneficial and that the SLAM would be more beneficial for real 

world applications. This type of finding would support the current industry belief in SLAM algorithms 

and provide strong evidence against the hypothesis that CNNs would outperform SLAM algorithms. 

 

Regardless, further investigation into this area can be noted for future work and can be an optimal area of 

investigation for future projects due to the limited data and supporting evidence within the field. 

 

7.6 Experiment Execution 

Each experiment is intended to be run a minimum of five times to ensure that a sufficient amount of data 

is acquired with enough variation to produce a mean value with standard deviations of the data. 

Exceeding three experiment attempts allows for beyond a 66% reasonability towards the result (as would 

be found generally in experiments repeated three times) with up to an 80% reasonability on the outcome 

being true and exactly repeatable. 
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Chapter 8 - Results and Discussion 

8.1 Defining Baseline Performance Values 

In order to appropriately measure the compute impact that each algorithm has on the system, there is a 

baseline value that must be determined for each landscape. In order to accurately estimate this baseline, 

there is a level of background noise that must be maintained. The PC will be running Windows 10 with 

all settings set as default and those that are changed do not directly affect the performance. Windows 

security is active. All tasks except those necessary for the simulations will be closed and any unnecessary 

background tasks will be closed (i.e. NZXT CAM).  

 

The data will be captured within the Visual Studio 2019 data logging software for debugging purposes. It 

will allow the user to track CPU utilisation (even per core utilisation) and GPU utilisation. These two 

points of data are plotted with respect to time. Therefore, appropriately timing the start of the test runs 

will allow for a measurable baseline to be developed. An issue in using this method however is that it 

does not allow the user to collect information on the memory usage during the debugging process (the 

debugging process is necessary to run the AirSim plugin in the PiE).  

 

The baseline system load, without any applications open (from a cold boot of windows) leaves the CPU 

utilisation at roughly 1-2% (arguably in the range of error as such low utilisation generally ignores impact 

of cumulative small tasks). The GPU is close to 1% utilisation and the RAM (memory) usage idles at 

roughly 18% of 32gb which is approximately 5.76gb. 

 

Looking at Landscape 1, this is expected to be the most compute intensive due to a high number of 

reflections and the lighting conditions that are placed on the environment. Dynamic lighting from the 

sparks and adjacent mirror exist and are computationally expensive for the GPU. The data will be 

captured using AirSim as the GameMode under global details with the drone being flown manually to 

reduce any additional computational load. Understanding this, the baseline load can be determined as 

follows: 
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Figure 45. CPU Compute Load and RAM Utilisation Capture from Visual Studio 2019 – Landscape 1 

 

It can be determined that the CPU utilisation and minimal, only seeing spikes when the system initialises 

flight as can be seen in the initial quarter of the CPU processor utilisation graph. As for RAM utilisation, 

it is also quite minimal only using an average of 2.8GB of RAM continuously. The GPU fails to be able 

to have its utilisation captured within Visual Studio when using AirSim – it is unsure if this is a bug or 

due to other causes. However, the GPU was captured using Performance Monitor. Please note, this is not 

an entirely accurate representation of the GPU utilisation and will be used as a reference only. 

 

 

Figure 46. GPU Compute Load for Landscape 1 

 

Looking at the compute characteristics of this environment there are worrying results presented. The 

compute environment, when entering heavily reflective or conditions such as can be see in Figures 23, 24 

and 26 in Chapter 4 of the project the GPU utilisation reaches 100% utilisation. This leaves no available 
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computer capability for either algorithm to be able to be executed on the GPU. Even though CUDA 

acceleration far exceeds the compute speeds of a CPU for CNN deployment there may be no option but to 

train the CNN on the GPU and deploy it on the CPU such that it is not artificially limited by Landscape 

1’s compute profile. 

 

Looking at Landscape 2, this is expected to be the least compute intensive due to less complex scenarios 

revolving the environment. There are no ‘tricks’ being played on the system in the form of mirrors or 

shadows, the system simply needs to compute linear and nonlinear movement paths and render the scene 

in real time. The lighting is purely global with simple lighting fixtures used to remove shadowing as 

much as possible and to highlight internal objects. The data will be captured using AirSim as the 

GameMode under global details with the drone being flown manually to reduce any additional 

computational load. Understanding this, the baseline load can be determined as follows: 

 

 

Figure 47. CPU and RAM Profile for Landscape 2 

  

As was the case with Landscape 1, CPU and RAM utilisation are minor and negligible with consideration 

to the total capacity of the system. Assessing the GPU profile provides the following: 
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Figure 48. GPU Profile for Landscape 2 

 

In this environment the utilisation of the GPU is far below the average utilisation as seen in Landscape 1. 

At not point throughout test flights was it possible to force the GPU to exceed 60% utilisation and as such 

this can be considered a much stronger environment for the assessment of the algorithm’s utilisation 

compared to Landscape 1. 

 

With a basic understanding of the generalised compute load for each complete landscape it is understood 

that Landscape 1 may present errors in the form of a small compute window available for either algorithm 

to be executed. Under this scenario, the SLAM algorithms running on the CPU are expected to perform 

the best however utilising a control scenario of the CNN and SLAM algorithms being run on the CPU and 

GPU where possible shall minimise computational limitations due to underlying compute loads. This 

already begins to present a minor underlying issue with the utilisation of simulations for a project such as 

this and lends to the benefits of possibly utilising a dual GPU array - being able to allocate a single GPU 

to render the landscape and a single GPU to process the algorithms. This would be possible using Nvidia 

2070 Super GPU’s through an NVLink bridge however they can also be left disconnected and this would 

leave GPU0 (the one in the top most slot for the majority of motherboards - taking the 16x lane) being the 

primary card for rendering the landscapes and then the left over GPU can be addressed through PyTorch 

and allocated by defining device as being GPU1. It is not understood what the outcome would be for this 

scenario and it does not fall within the scope of the project to entertain the idea. Additionally, not utilising 

NVLink would result in the GPU’s being unable to parallelise the workload and share the GPU buffer for 

additional shared memory. 
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The results from this section can be used to establish a baseline performance value for each scenario and 

allows for the results to be normalised such that the common compute elements can be removed and a 

clear understanding of the compute load of each algorithm can be established. 

8.2 Results Identification & Understanding 

Understanding results of a direct comparison within the Unreal Engine environment utilising AirSim was 

not able to be achieved. A significant amount of progress has been made towards the completion of the 

goal however software limitations and hurdles discovered along the way have hampered the ability to 

complete the task. Ultimately however, a conclusion can be drawn from the collective literature and 

current completed work.  

 

When assessing the use case of AirSim and Unreal Engine 4 as a viable option for the execution of the 

project, it has more than served its purpose as a research tool. However, it does present cases of 

immaturity in the software. I would argue that it is not solely the fault of AirSim however for these issues. 

Looking at what AirSim offers, it can be boiled down very simply as being an interpretive plugin for 

Unreal Engine 4 in order to conduct complex realistic control of a drone or vehicle. To which I would say 

it is perfect at doing this and deserves far more recognition than what it receives. However, attempting to 

operate within the environment is where the shortcomings occur – but this is not a direct fault of AirSim.  

 

When looking at ORB-SLAM and CEKF-SLAM they are both provided in this project in the form of 

executable MATLAB files. However, AirSim fails to provide direct useability with MATLAB through its 

API. A layer needs to be built in order to interpret MATLAB commands and computation and relay this 

to the AirSim engine. This was largely under looked at the beginning of the project and ultimately served 

as the most difficult condition to resolve throughout the project. A solution was found in the form of a 

Python linking file for MATLAB however it was unable to get to an operational condition for the project. 

Looking at Chapter 6, an in-depth break down on the attempts to run both ORB-SLAM and CEKF-SLAM 

within the environment is given however a clear result was not able to be achieved. It appears as though 

AirSim is only able to ‘play nice’ with code written that is able to run directly as either a C++ or Python 

script. This makes sense when considering that the AirSim API is provided only with respect to a C++ or 

Python option. 
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8.3 Project Outcome Assessment 

Whilst the project is clearly deep into development and well on its way towards being able to provide 

feasible and useable data, it is not quite there yet with regards to being able to provide strong evidence for 

or against the hypothesis of the project in terms of data produced by the author. However, using the 

anecdotal evidence discovered throughout the project alongside the literature backing, projections on the 

results can be made. This can be found in the following chapter. Additionally, the project strongly aligns 

with the aim presented both in this document and in the Project Outline as found in Appendix A. however 

it was necessary to make alterations away from the initial Project Outline in terms of project execution. 

The initial Project Outline was somewhat immature, and the initial position compared to the current 

findings clearly established that this is an immature area of research which will benefit strongly from the 

steps and procedures outlined within this dissertation. Developing a clear method of utilising PyTorch 

with AirSim is limited in the literature as only TensorFlow and CNTK are apparent in the AirSim GIT 

Repository. Additionally, the supporting documentation surrounding running MATLAB and AirSim 

together is extremely lacking and this project has identified this clearly validating evidence. 

 

Considering that the aim was to establish consensus on the comparison of the two algorithm types in a 

simulated environment, a clear result can be drawn that under these conditions and utilising the same 

software, there is a clear benefit towards the use of CNNs to achieve the end goal. Attempting to utilise 

research proven SLAM algorithms projects faith in their reliability however it fails to take into account 

limitations of the environments within which they will be executed.  

 

Overall, this project has provided evidence for the case of CNNs over SLAM based algorithms however 

the findings are not conclusively strong enough to draw a defining decision on the process. A resulting 

finding has been a clear outlining of the limitations of the software utilised in this project and clear 

definition of methods to both develop viable simulated environments for testing, which is limited in the 

literature, and methods of executing simulations within simulated environments and as such holds 

research significance. 
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Chapter 9 - Conclusion and Future Work 

9.1 Project Conclusion  

The conclusion of the project presents inconclusive data but does present anecdotal data with a strong 

literature backing. The literature presents positive indications that CNN or similar algorithms will 

outperform SLAM based algorithms when considering an end to end implementation but the inability to 

conduct all experiments limited the ability to draw a conclusive decision. There are positive indications in 

the direction of Deep Learning (CNN) algorithms being the ‘better’ algorithm type for pure control in the 

literature, but these reference real world test cases. The paper ‘Deep Convolutional Neural Network-

Based Autonomous Drone Navigation’ presents a strong case for the performance of CNN’s directly 

within AirSim however it does not present the opposing case for a SLAM based algorithm. From a 

personal orientation, it has been found that building and using CNNs are far more accessible and ‘easy’ 

but this does not indicate whether the algorithm type outperforms SLAM based algorithms. To dot point 

the personal findings surrounding CNNs from this project: 

 

• It is easier to develop and implement CNN for control scenarios 

• It is less complex to bug test CNN algorithms 

• Data and training are the main difficulty with CNN 

 

The findings determined surrounding SLAM are rather limited. In this case it was determined the 

appropriate method with which they can be ran within AirSim and the Unreal Engine development 

environment. Their performance cases could not be clearly established however this project serves as a 

strong base for future research and clearly defines the processes and necessary steps required to build 

upon the project. Looking at the Convolutional Neural Network utilised for this project, its structure has 

been clearly defined and utilises strong literature-based evidence in the design of its architecture and 

serves as a strong base for future research in this area to be built on top of.  

 

It was found that a far larger time requirement was necessary and it realistically may not have been 

achievable within the window provided. The development of the simulated environments resulted in an 

estimate 300 hours spent building and resolving issues in Unreal Engine 4. It can be stated that a project 

such as this should only utilised prebuilt environments, and this is somewhat supported when reviewing 

the literature. The paper by Amer et. al. used prebuilt environments and can be considered a strong 
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recommendation for future work in this area. However, when taking into consideration the need to test 

specific scenarios this is not entirely feasible to use third party or pre-built environments.  

 

When taking into consideration the project, the initial proposed question could have been better oriented. 

Looking into a pure CNN vs SLAM is largely problematic due to the large number of variables that fall in 

line with one another with the only similarity being that they provide the ability for complex control. It is 

not as simple as asking ‘CNN or SLAM’ as they are fundamentally different in their architecture design, 

even though they are built upon for autonomous purposes. When looking at end to end CNN vs SLAM, 

one must consider what is gained and lost in each algorithm. SLAM produces a map and a 

knowledgeable, clearly defined path. CNN, in this implementation, produces response to input without 

much knowledge of how this movement impacts its path or mission execution. 

 

Ultimately, referring back to the aim we can see that the project has provided a significant amount of 

background information and significant findings in the literature that aim to assist the findings of the 

project towards the determination of whether or not a Deep Learning based algorithm or a SLAM based 

algorithm is the optimal control algorithm within simulated environments. The AirSim API appeared to 

‘overpromise’ on its capabilities – however it is likely that this is no fault of the developer. AirSim sits as 

a plugin on top of Unreal Engine and as such a lot of its limitations are extended to AirSim. Taking into 

consideration the listed aim of attempting to provide a clear understanding of each algorithms 

characteristics it can be determined that this paper provides strong evidence in both areas and does satisfy 

the aim of the project to a degree. 

 

The findings of this project have clearly established the methods necessary to conduct research in this 

area and serves as a strong point of reference for future work in this area. The methodology required to 

execute the algorithms, the necessary controls and methods to measure and validate findings have been 

outlined and are relevant findings in this area of literature. It has clearly established the necessary process 

required to develop and build a simulated environment that meet the necessary requirements of simulated 

experiments such as this and of clearly defined criteria within which future research can be conducted. It 

has also been clearly defined the limitations of this simulated environment and the ability to execute 

algorithms within the environment. The baseline performance values of simulated environments such as 

the ones present in this project have been clearly established and serves to present the system with which 

would be necessary to conduct the experimentations to a satisfactory degree if the same simulations 

engine is to be utilised. 
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Additionally, the impact that COVID-19 had on the outcome of the project was vast. Although this was a 

simulations based assignment, being unable to go on campus and conduct meetings with my supervisor 

did create disconnect however I feel as if I was able to create a good amount of communication when 

necessary and provided all necessary documentations for all submissions in the course even when they 

were not required. The impact that COVID-19 had on my personal situation severely hampered my ability 

in the initial stage of the project. During the complete lockdown with my income not guaranteed and 

uncertainty on my personal housing conditions it was difficult to direct focus in any other direction. I feel 

I have been robbed of the opportunity to truly display the capability of this project, however my heart 

goes out to those who have sadly lost their lives during the pandemic and it is truly grounding to have 

lived through a pandemic such as this.  

 

9.2 Future Work Identification 

Looking beyond the completion of this project there are a multitude of future tasks that can be defined in 

order to establish a clear definitive result. These future tasks are: 

 

• Further implementation of the navigational agent for the SLAM based MATLAB programs such 

that complete drone control and operability within AirSim is achieved 

• Further training of the CNN such that its control usability becomes more apparent with the 

completion of an agent to act of network outputs 

• Completion of the realistic environment such that it can be used to delineate between pure 

controlled scenario results and realistic scenario data 

This would present the completion and ability to provide conclusive evidence towards the performance 

execution characteristics of each algorithm type. Moving on from this, it would be a strong area to look 

into the variation in outcome between the simulated environment and a real-world application in a 

controlled scenario with CASA approval. 

 

The utilisation of SLAM and CNN, more appropriately, the combination of SLAM and Deep Learning is 

not a new field of research. There are a plethora of possibilities when assessing Deep Learning and 

SLAM against one another. It would be interesting to investigate the plausibility of a Deep Learning 

algorithm to approximate a SLAM algorithm such that it could reduce the compute complexity of current 

SLAM. This could also be utilised to replace the navigational agent of the SLAM algorithm, taking in the 

map data from the environment and make decisions based on a trained conditional agent. It is not silly to 
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assume that a Deep Learning algorithm could be taught to approximate the actions of a SLAM algorithm 

and be fed into another network which utilises the output data to act as a navigational agent. Evidently, in 

cases such as this utilising an RNN in some form has evidence in the literature of being beneficial for 

control. 

 

One thing that has been clearly established in this project is that AirSim, when combined with Unreal 

Engine 4, provides a strong research base to conduct complex simulation and experimentation that would 

ultimately be next to impossible to achieve in any other environment. Building on the further research 

capabilities that AirSim provides, its evidently clear that the team has intended AirSim to be focussed on 

running algorithms that are more ‘modern’. Looking at this, it would be interesting to determine the 

complex control capacities of AirSim. Is it able to be used for control learning such as development of 

PID controllers for university courses? Is it able to be used for emulation of tasks such as the Warman 

Challenge and allow students to test virtual versions of their models prior to the final test? The 

possibilities of AirSim and Unreal Engine are apparently evident however it would be beneficial for the 

industry to establish a clear understanding of what is and what is not completely possible when solely 

utilising AirSim. 
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Title:   Comparison of SLAM and Neural Networks for Autonomous Control  

Major:    Mechatronic Engineering 

Supervisor/s:  Dr. Tobias Low 

Confidentiality:  --  

Enrolment:   ENG4111 – ONC S1, 2020 

   ENG4112 – ONC S2, 2020 

Project Aim: The aim of the dissertation is to investigate the capabilities of Neural Network algorithms 

in a simulated environment and to compare their capabilities to that of SLAM based 

algorithms. 

 

Program: Version 2, 1st April 2020 

 

1. Complete review of literature surrounding Neural Network based control theory and neural network 

architecture design.  

2. Setup a local GIT environment on a local home server for version control and back up purposes. 

3. Develop the test environment in Unreal Engine and build the AirSim package add-on. 

4. Develop a model of a monocular, 4-rotor drone with visual input in the test environment.  

5. Review and investigate optimal frame rates for visual input for estimate compute times required between 

frames along with the appropriate input resolution. 

6. Identify the appropriate structure to develop the Neural Network on. 

7. Develop a Neural Network for testing and utilise 2 pre-written OpenSLAM algorithms for comparison. 

Convert code and install plug-ins as necessary for operation in Unreal Engine using Visual Studio plug-in 

for live code update and builds. 

8. Error test the SLAM algorithms using the generic ‘blocks’ environment provided with AirSim for 

debugging purposes. 

9. Train the Neural Network using image data (sourced) and in-engine environment exposure/training 

available via AirSim.   

10. Design and build 3 main courses for experimentation in each area of interest: 

a. Area 1: focusses on issue of Image and Illumination. The area will involve difficulties such as 

reflections and darkened environments. Image feature recognition will be tested on surfaces with 

varying colours, mirrored/translucent objects and shading/lighting variations. 
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b. Area 2: focusses on dynamic environments. This includes objects that move linearly and non-

linearly within the world. This will also include tests on environment feature density and texture 

density of surfaces. 

c. Area 3: focusses on the ‘kidnap’ problem. This is the issue of understanding position change in 

space when non-recorded movement has occurred. The repercussions will be tested by moving 

without visual input for an underdetermined amount of time and identifying system reliability 

afterwards. 

11. Design and build 4 new areas to mimic reasonable real-world scenarios. Navigation through a cavernous 

tunnel (lighting varied), Dense forestry (Rainforest), Dense city environment and the interior of a building. 

All assets are provided by Unreal and AirSim. Environments will contain aspects of the 3 aforementioned 

focus areas. 

12. Throughout the aforementioned experiments. The system compute load will be recorded and analysed.  

*Note: The Neural Network and SLAM algorithms will be bug tested and improved throughout all experiments. A 

final revision will be determined and experimental data from all runs will be compared.  

If time and resources permit: 

13. Develop a genetic training system for continuous self-improvement of the neural network – survival of the 

fittest, top 10% – 15% of the highest performing weightings repopulate the next generation 

14. Real world tests of simulator trained networks. Emulate (without a high level of accuracy) a desired 

location. After receiving CASA approval to run an unmanned test flight there will be a comparison of flight 

capabilities between simulated and real-world environments. A remote control will be used with a kill 

switch to disable the battery in the event that it is necessary. 

*Note: step 14 relies on the approval of CASA. This is a ‘nice’ additional step and not a necessary step required to 

compare algorithm types. This is a comparison of algorithm performance between simulated and real-world 

environments and falls slightly out of the main focus of the research. 

 

 

Contact Frequency: Weekly meetings varying between face to face and Zoom based meetings to display code and 

simulations progress. The day to day actions and meeting minutes will be tracked in a shared google docs document 

and ‘to-do’ tasks will be outlined in a shared Trello task board. 
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Appendix B 
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Appendix C: CNN Code for Training and Development 

import torch 

import torch.nn as nn 
import torch.optim as optim 

import torch.utils.data 

import torch.nn.functional as F 
import torchvision 

from torchvision import transforms 

from PIL import Image, ImageFile 
 

class cnnNet(nn.Module): 
    def __init__(self, num_classes=6): 

        super(cnnNet, self).__init__() 

        self.features = nn.Sequential( 
                nn.Conv2d(3, 32, kernel_size=10, stride=10, padding=0),  

                nn.BatchNorm2d(32), 

                nn.ReLU(), 
                #nn.MaxPool2d(kernel_size=3, stride=2), 

                 

                nn.Conv2d(32, 32, kernel_size=3, padding=0),  
                nn.BatchNorm2d(32), 

                nn.ReLU(), 

                #nn.MaxPool2d(kernel_size=3, stride=2), 
                 

                nn.Conv2d(32, 32, kernel_size=3, padding=0), 

                nn.BatchNorm2d(32), 
                nn.ReLU(), 

                nn.MaxPool2d(kernel_size=3, stride=2),   

                 
                nn.Conv2d(32, 64, kernel_size=3, padding=0),  

                nn.BatchNorm2d(64), 

                nn.ReLU(), 
                 

                nn.Conv2d(64, 128, kernel_size=3, padding=0),  

                nn.BatchNorm2d(128), 
                nn.ReLU(), 

                 

                nn.Conv2d(128, 128, kernel_size=3, padding=0),  
                nn.BatchNorm2d(128), 

                nn.ReLU(), 

                nn.MaxPool2d(kernel_size=3, stride=2),) 
         

        self.avgpool = nn.AdaptiveAvgPool2d((6,6)) 

         
        self.classifier = nn.Sequential( 

                nn.Dropout(p=0.2), #randomly zero out 20% of data points 

                nn.Linear(128*6*6, 1152), # Fully connected 
                nn.ReLU(), 

                nn.Dropout(p=0.2), #randomly zero out 20% of data points 

                nn.Linear(1152, 1152),   # Fully connected 
                nn.ReLU(), 

                nn.Linear(1152, num_classes)) # Fully connected 

         

        def forward(self, x): 

            x = self.features(x) 

            x = self.avgpool(x) 
            x = torch.flatten(x, 1) 

            x = self.classifier(x) 

            return x      
         

        def train(model, optimizer, loss_fn, train_loader, val_loader, epochs=250, device="cuda"): 

            for epoch in range(epochs): 
                training_loss = 0.0 

                valid_loss = 0.0 
                model.train() 

                for batch in train_loader: 

                    optimizer.zero_grad() 
                    inputs, targets = batch 
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                    inputs = inputs.to(device) 
                    targets = targets.to(device) 

                    output = model(inputs) 

                    loss = loss_fn(output, targets) 
                    loss.backward() 

                    optimizer.Adam() 

                    training_loss += loss.data.item() * inputs.size(0) 
                training_loss /= len(train_loader.dataset) 

                 

                model.eval() 
                num_correct = 0  

                num_examples = 0 

                for batch in val_loader: 
                    inputs, targets = batch 

                    inputs = inputs.to(device) 

                    output = model(inputs) 
                    targets = targets.to(device) 

                    loss = loss_fn(output,targets)  

                    valid_loss += loss.data.item() * inputs.size(0) 

                    correct = torch.eq(torch.max(F.softmax(output), dim=1)[1], targets).view(-1) 

                    num_correct += torch.sum(correct).item() 

                    num_examples += correct.shape[0] 
                valid_loss /= len(val_loader.dataset) 

         

                print('Epoch: {}, Training Loss: {:.2f}, Validation Loss: {:.2f}, accuracy = {:.2f}'.format(epoch, training_loss, 
                valid_loss, num_correct / num_examples)) 

                 
        def check_image(path): 

            try: 

                im = Image.open(path) 
                return True 

            except: 

                return False 
             

        img_transforms = transforms.Compose([ 

            transforms.Resize((480,480)),     
            transforms.ToTensor(), 

            transforms.Normalize(mean=[0.485, 0.456, 0.406], 

                            std=[0.229, 0.224, 0 225] ) 
      ]) 

             

        train_data_path = "./train/" 
        train_data = torchvision.datasets.ImageFolder(root=train_data_path,transform=img_transforms, is_valid_file=check_image) 

        val_data_path = "./val/" 

        val_data = torchvision.datasets.ImageFolder(root=val_data_path,transform=img_transforms, is_valid_file=check_image) 
        batch_size=64 

        train_data_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,shuffle=True) 

        val_data_loader  = torch.utils.data.DataLoader(val_data, batch_size=batch_size, shuffle=True) 
             

        if torch.cuda.is_available(): 

            device = torch.device("cuda")  
        else: 

            device = torch.device("cpu") 

 

 

 

Credit for the inspiration of this code must be given to Ian Pointer as parts are exerts from the book, 

‘Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications’ 

published in 2019. 
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Appendix D: ORB-SLAM in MATLAB 

% Set random seed for reproducibility 
rng(0); 
 
% Create a cameraIntrinsics object to store the camera intrinsic parameters. 
% The intrinsics for the dataset can be found at the following page: 
% https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats 
% Note that the images in the dataset are already undistorted, hence there 
% is no need to specify the distortion coefficients. 
focalLength    = [535.4, 539.2];    % in units of pixels 
principalPoint = [320.1, 247.6];    % in units of pixels 
imageSize      = size(currI,[1 2]);  % in units of pixels 
intrinsics     = cameraIntrinsics(focalLength, principalPoint, imageSize); 
 
% Detect and extract ORB features 
scaleFactor = 1.2; 
numLevels   = 8; 
[preFeatures, prePoints] = helperDetectAndExtractFeatures(currI, scaleFactor, numLevels);  
 
currFrameIdx = currFrameIdx + 1; 
firstI       = currI; % Preserve the first frame  
 
isMapInitialized  = false; 
 
% Map initialization loop 
while ~isMapInitialized && currFrameIdx < numel(imds.Files) 
    currI = readimage(imds, currFrameIdx); 
 
    [currFeatures, currPoints] = helperDetectAndExtractFeatures(currI, scaleFactor, numLevels);  
     
    currFrameIdx = currFrameIdx + 1; 
     
    % Find putative feature matches 
    indexPairs = matchFeatures(preFeatures, currFeatures, 'Unique', true, ... 
        'MaxRatio', 0.9, 'MatchThreshold', 40); 
     
    preMatchedPoints  = prePoints(indexPairs(:,1),:); 
    currMatchedPoints = currPoints(indexPairs(:,2),:); 
 
    % If not enough matches are found, check the next frame 
    minMatches = 100; 
    if size(indexPairs, 1) < minMatches 
        continue 
    end 
     
    preMatchedPoints  = prePoints(indexPairs(:,1),:); 
    currMatchedPoints = currPoints(indexPairs(:,2),:); 
     
    % Compute homography and evaluate reconstruction 
    [tformH, scoreH, inliersIdxH] = helperComputeHomography(preMatchedPoints, currMatchedPoints); 
 
    % Compute fundamental matrix and evaluate reconstruction 
    [tformF, scoreF, inliersIdxF] = helperComputeFundamentalMatrix(preMatchedPoints, currMatchedPoints); 
     
    % Select the model based on a heuristic 
    ratio = scoreH/(scoreH + scoreF); 
    ratioThreshold = 0.45; 
    if ratio > ratioThreshold 
        inlierTformIdx = inliersIdxH; 
        tform          = tformH; 
    else 
        inlierTformIdx = inliersIdxF; 
        tform          = tformF; 
    end 
 
    % Computes the camera location up to scale. Use half of the  
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    % points to reduce computation 
    inlierPrePoints  = preMatchedPoints(inlierTformIdx); 
    inlierCurrPoints = currMatchedPoints(inlierTformIdx); 
    [relOrient, relLoc, validFraction] = relativeCameraPose(tform, intrinsics, ... 
        inlierPrePoints(1:2:end), inlierCurrPoints(1:2:end)); 
     
    % If not enough inliers are found, move to the next frame 
    if validFraction < 0.9 || numel(size(relOrient))==3 
        continue 
    end 
     
    % Triangulate two views to obtain 3-D map points 
    relPose = rigid3d(relOrient, relLoc); 
    minParallax = 3; % In degrees 
    [isValid, xyzWorldPoints, inlierTriangulationIdx] = helperTriangulateTwoFrames(... 
        rigid3d, relPose, inlierPrePoints, inlierCurrPoints, intrinsics, minParallax); 
     
    if ~isValid 
        continue 
    end 
     
    % Get the original index of features in the two key frames 
    indexPairs = indexPairs(inlierTformIdx(inlierTriangulationIdx),:); 
     
    isMapInitialized = true; 
     
    disp(['Map initialized with frame 1 and frame ', num2str(currFrameIdx-1)]) 
end % End of map initialization loop 
 
if isMapInitialized 
    close(himage.Parent.Parent); % Close the previous figure 
    % Show matched features 
    hfeature = showMatchedFeatures(firstI, currI, prePoints(indexPairs(:,1)), ... 
        currPoints(indexPairs(:, 2)), 'Montage'); 
else 
    error('Unable to initialize map.') 
end 
 
% Create an empty imageviewset object to store key frames 
vSetKeyFrames = imageviewset; 
 
% Create an empty worldpointset object to store 3-D map points 
mapPointSet   = worldpointset; 
 
% Create a helperViewDirectionAndDepth object to store view direction and depth  
directionAndDepth = helperViewDirectionAndDepth(size(xyzWorldPoints, 1)); 
 
% Add the first key frame. Place the camera associated with the first  
% key frame at the origin, oriented along the Z-axis 
preViewId     = 1; 
vSetKeyFrames = addView(vSetKeyFrames, preViewId, rigid3d, 'Points', prePoints,... 
    'Features', preFeatures.Features); 
 
% Add the second key frame 
currViewId    = 2; 
vSetKeyFrames = addView(vSetKeyFrames, currViewId, relPose, 'Points', currPoints,... 
    'Features', currFeatures.Features); 
 
% Add connection between the first and the second key frame 
vSetKeyFrames = addConnection(vSetKeyFrames, preViewId, currViewId, relPose, 'Matches', indexPairs); 
 
% Add 3-D map points 
[mapPointSet, newPointIdx] = addWorldPoints(mapPointSet, xyzWorldPoints); 
 
% Add observations of the map points 
preLocations   = prePoints.Location; 
currLocations  = currPoints.Location; 
preScales      = prePoints.Scale; 
currScales     = currPoints.Scale; 
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% Add image points corresponding to the map points in the first key frame 
mapPointSet   = addCorrespondences(mapPointSet, preViewId, newPointIdx, indexPairs(:,1)); 
 
% Add image points corresponding to the map points in the second key frame 
mapPointSet   = addCorrespondences(mapPointSet, currViewId, newPointIdx, indexPairs(:,2)); 
 
% Run full bundle adjustment on the first two key frames 
tracks       = findTracks(vSetKeyFrames); 
cameraPoses  = poses(vSetKeyFrames); 
 
[refinedPoints, refinedAbsPoses] = bundleAdjustment(xyzWorldPoints, tracks, ... 
    cameraPoses, intrinsics, 'FixedViewIDs', 1, ... 
    'PointsUndistorted', true, 'AbsoluteTolerance', 1e-7,... 
    'RelativeTolerance', 1e-15, 'MaxIteration', 50); 
 
% Scale the map and the camera pose using the median depth of map points 
medianDepth   = median(vecnorm(refinedPoints.')); 
refinedPoints = refinedPoints / medianDepth; 
 
refinedAbsPoses.AbsolutePose(currViewId).Translation = ... 
    refinedAbsPoses.AbsolutePose(currViewId).Translation / medianDepth; 
relPose.Translation = relPose.Translation/medianDepth; 
 
% Update key frames with the refined poses 
vSetKeyFrames = updateView(vSetKeyFrames, refinedAbsPoses); 
vSetKeyFrames = updateConnection(vSetKeyFrames, preViewId, currViewId, relPose); 
 
% Update map points with the refined positions 
mapPointSet   = updateWorldPoints(mapPointSet, newPointIdx, refinedPoints); 
 
% Update view direction and depth  
directionAndDepth = update(directionAndDepth, mapPointSet, vSetKeyFrames.Views, newPointIdx, true); 
 
% Visualize matched features in the current frame 
close(hfeature.Parent.Parent); 
featurePlot   = helperVisualizeMatchedFeatures(currI, currPoints(indexPairs(:,2))); 
 
% Visualize initial map points and camera trajectory 
mapPlot       = helperVisualizeMotionAndStructure(vSetKeyFrames, mapPointSet); 
 
% Show legend 
showLegend(mapPlot); 
 
% ViewId of the current key frame 
currKeyFrameId    = currViewId; 
 
% ViewId of the last key frame 
lastKeyFrameId    = currViewId; 
 
% ViewId of the reference key frame that has the most co-visible  
% map points with the current key frame 
refKeyFrameId     = currViewId; 
 
% Index of the last key frame in the input image sequence 
lastKeyFrameIdx   = currFrameIdx - 1;  
 
% Indices of all the key frames in the input image sequence 
addedFramesIdx    = [1; lastKeyFrameIdx]; 
 
isLoopClosed      = false; 
 
% Main loop 
while ~isLoopClosed && currFrameIdx < numel(imds.Files)   
    currI = readimage(imds, currFrameIdx); 
 
    [currFeatures, currPoints] = helperDetectAndExtractFeatures(currI, scaleFactor, numLevels); 
 
    % Track the last key frame 
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    % mapPointsIdx:   Indices of the map points observed in the current frame 
    % featureIdx:     Indices of the corresponding feature points in the  
    %                 current frame 
    [currPose, mapPointsIdx, featureIdx] = helperTrackLastKeyFrame(mapPointSet, ... 
        vSetKeyFrames.Views, currFeatures, currPoints, lastKeyFrameId, intrinsics, scaleFactor); 
     
    % Track the local map 
    % refKeyFrameId:      ViewId of the reference key frame that has the most  
    %                     co-visible map points with the current frame 
    % localKeyFrameIds:   ViewId of the connected key frames of the current frame 
    [refKeyFrameId, localKeyFrameIds, currPose, mapPointsIdx, featureIdx] = ... 
        helperTrackLocalMap(mapPointSet, directionAndDepth, vSetKeyFrames, mapPointsIdx, ... 
        featureIdx, currPose, currFeatures, currPoints, intrinsics, scaleFactor, numLevels); 
     
    % Check if the current frame is a key frame.  
    % A frame is a key frame if both of the following conditions are satisfied: 
    % 
    % 1. At least 20 frames have passed since the last key frame or the  
    %    current frame tracks fewer than 80 map points 
    % 2. The map points tracked by the current frame are fewer than 90% of  
    %    points tracked by the reference key frame 
    isKeyFrame = helperIsKeyFrame(mapPointSet, refKeyFrameId, lastKeyFrameIdx, ... 
        currFrameIdx, mapPointsIdx); 
     
    % Visualize matched features 
    updatePlot(featurePlot, currI, currPoints(featureIdx)); 
     
    if ~isKeyFrame 
        currFrameIdx = currFrameIdx + 1; 
        continue 
    end 
     
    % Update current key frame ID 
    currKeyFrameId  = currKeyFrameId + 1; 
 
% Add the new key frame  
    [mapPointSet, vSetKeyFrames] = helperAddNewKeyFrame(mapPointSet, vSetKeyFrames, ... 
        currPose, currFeatures, currPoints, mapPointsIdx, featureIdx, localKeyFrameIds); 
     
    % Remove outlier map points that are observed in fewer than 3 key frames 
    [mapPointSet, directionAndDepth, mapPointsIdx] = helperCullRecentMapPoints(mapPointSet, 
directionAndDepth, mapPointsIdx, newPointIdx); 
     
    % Create new map points by triangulation 
    minNumMatches = 20; 
    minParallax = 3; 
    [mapPointSet, vSetKeyFrames, newPointIdx] = helperCreateNewMapPoints(mapPointSet, vSetKeyFrames, ... 
        currKeyFrameId, intrinsics, scaleFactor, minNumMatches, minParallax); 
     
    % Update view direction and depth 
    directionAndDepth = update(directionAndDepth, mapPointSet, vSetKeyFrames.Views, [mapPointsIdx; 
newPointIdx], true); 
     
    % Local bundle adjustment 
    [mapPointSet, directionAndDepth, vSetKeyFrames, newPointIdx] = 
helperLocalBundleAdjustment(mapPointSet, directionAndDepth, vSetKeyFrames, ... 
        currKeyFrameId, intrinsics, newPointIdx);  
     
    % Visualize 3D world points and camera trajectory 
    updatePlot(mapPlot, vSetKeyFrames, mapPointSet); 
 
% Initialize the loop closure database 
    if currKeyFrameId == 3 
        % Load the bag of features data created offline 
        bofData         = load('bagOfFeaturesData.mat'); 
        loopDatabase    = invertedImageIndex(bofData.bof); 
        loopCandidates  = [1; 2]; 
         
    % Check loop closure after some key frames have been created     
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    elseif currKeyFrameId > 20 
         
        % Minimum number of feature matches of loop edges 
        loopEdgeNumMatches = 50; 
         
        % Detect possible loop closure key frame candidates 
        [isDetected, validLoopCandidates] = helperCheckLoopClosure(vSetKeyFrames, currKeyFrameId, ... 
            loopDatabase, currI, loopCandidates, loopEdgeNumMatches); 
         
        if isDetected  
            % Add loop closure connections 
            [isLoopClosed, mapPointSet, vSetKeyFrames] = helperAddLoopConnections(... 
                mapPointSet, vSetKeyFrames, validLoopCandidates, currKeyFrameId, ... 
                currFeatures, currPoints, intrinsics, scaleFactor, loopEdgeNumMatches); 
        end 
    end 
     
    % If no loop closure is detected, add the image into the database 
    if ~isLoopClosed 
        currds = imageDatastore(imds.Files{currFrameIdx}); 
        addImages(loopDatabase, currds, 'Verbose', false); 
        loopCandidates= [loopCandidates; currKeyFrameId]; %#ok<AGROW> 
    end 
     
    % Update IDs and indices 
    lastKeyFrameId  = currKeyFrameId; 
    lastKeyFrameIdx = currFrameIdx; 
    addedFramesIdx  = [addedFramesIdx; currFrameIdx]; %#ok<AGROW> 
    currFrameIdx  = currFrameIdx + 1; 
end % End of main loop 
% Optimize the poses 
vSetKeyFramesOptim = optimizePoses(vSetKeyFrames, minNumMatches, 'Tolerance', 1e-16, 'Verbose', true); 
 
% Update map points after optimizing the poses 
mapPointSet = helperUpdateGlobalMap(mapPointSet, directionAndDepth, ... 
    vSetKeyFrames, vSetKeyFramesOptim); 
 
updatePlot(mapPlot, vSetKeyFrames, mapPointSet); 
 
% Plot the optimized camera trajectory 
optimizedPoses  = poses(vSetKeyFramesOptim); 
plotOptimizedTrajectory(mapPlot, optimizedPoses) 
 
% Update legend 
showLegend(mapPlot); 
 
% Load ground truth  
gTruthData = load('orbslamGroundTruth.mat'); 
gTruth     = gTruthData.gTruth; 
 
% Plot the actual camera trajectory  
plotActualTrajectory(mapPlot, gTruth(addedFramesIdx), optimizedPoses); 
 
% Show legend 
showLegend(mapPlot); 
 
% Evaluate tracking accuracy 
helperEstimateTrajectoryError(gTruth(addedFramesIdx), optimizedPoses); 
 
function [features, validPoints] = helperDetectAndExtractFeatures(Irgb, ... 
    scaleFactor, numLevels, varargin) 
 
numPoints   = 1000; 
 
% In this example, the images are already undistorted. In a general 
% workflow, uncomment the following code to undistort the images. 
% 
% if nargin > 3 
%     intrinsics = varargin{1}; 
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% end 
% Irgb  = undistortImage(Irgb, intrinsics); 
 
% Detect ORB features 
Igray  = rgb2gray(Irgb); 
 
points = detectORBFeatures(Igray, 'ScaleFactor', scaleFactor, 'NumLevels', numLevels); 
 
% Select a subset of features, uniformly distributed throughout the image 
points = selectUniform(points, numPoints, size(Igray, 1:2)); 
 
% Extract features 
[features, validPoints] = extractFeatures(Igray, points); 
end 
 
function [H, score, inliersIndex] = helperComputeHomography(matchedPoints1, matchedPoints2) 
 
[H, inliersLogicalIndex] = estimateGeometricTransform2D( ... 
    matchedPoints1, matchedPoints2, 'projective', ... 
    'MaxNumTrials', 1e3, 'MaxDistance', 4, 'Confidence', 90); 
 
inlierPoints1 = matchedPoints1(inliersLogicalIndex); 
inlierPoints2 = matchedPoints2(inliersLogicalIndex); 
 
inliersIndex  = find(inliersLogicalIndex); 
 
locations1 = inlierPoints1.Location; 
locations2 = inlierPoints2.Location; 
xy1In2     = transformPointsForward(H, locations1); 
xy2In1     = transformPointsInverse(H, locations2); 
error1in2  = sum((locations2 - xy1In2).^2, 2); 
error2in1  = sum((locations1 - xy2In1).^2, 2); 
 
outlierThreshold = 6; 
 
score = sum(max(outlierThreshold-error1in2, 0)) + ... 
    sum(max(outlierThreshold-error2in1, 0)); 
end 
 
function [F, score, inliersIndex] = helperComputeFundamentalMatrix(matchedPoints1, matchedPoints2) 
 
[F, inliersLogicalIndex]   = estimateFundamentalMatrix( ... 
    matchedPoints1, matchedPoints2, 'Method','RANSAC',... 
    'NumTrials', 1e3, 'DistanceThreshold', 0.01); 
 
inlierPoints1 = matchedPoints1(inliersLogicalIndex); 
inlierPoints2 = matchedPoints2(inliersLogicalIndex); 
 
inliersIndex  = find(inliersLogicalIndex); 
 
locations1    = inlierPoints1.Location; 
locations2    = inlierPoints2.Location; 
 
% Distance from points to epipolar line 
lineIn1   = epipolarLine(F', locations2); 
error2in1 = (sum([locations1, ones(size(locations1, 1),1)].* lineIn1, 2)).^2 ... 
    ./ sum(lineIn1(:,1:2).^2, 2); 
lineIn2   = epipolarLine(F, locations1); 
error1in2 = (sum([locations2, ones(size(locations2, 1),1)].* lineIn2, 2)).^2 ... 
    ./ sum(lineIn2(:,1:2).^2, 2); 
 
outlierThreshold = 4; 
 
score = sum(max(outlierThreshold-error1in2, 0)) + ... 
    sum(max(outlierThreshold-error2in1, 0)); 
 
end 
 
function [isValid, xyzPoints, inlierIdx] = helperTriangulateTwoFrames(... 
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    pose1, pose2, matchedPoints1, matchedPoints2, intrinsics, minParallax) 
 
[R1, t1]   = cameraPoseToExtrinsics(pose1.Rotation, pose1.Translation); 
camMatrix1 = cameraMatrix(intrinsics, R1, t1); 
 
[R2, t2]   = cameraPoseToExtrinsics(pose2.Rotation, pose2.Translation); 
camMatrix2 = cameraMatrix(intrinsics, R2, t2); 
 
[xyzPoints, reprojectionErrors, isInFront] = triangulate(matchedPoints1, ... 
    matchedPoints2, camMatrix1, camMatrix2); 
 
% Filter points by view direction and reprojection error 
minReprojError = 1; 
inlierIdx  = isInFront & reprojectionErrors < minReprojError; 
xyzPoints  = xyzPoints(inlierIdx ,:); 
 
% A good two-view with significant parallax 
ray1       = xyzPoints - pose1.Translation; 
ray2       = xyzPoints - pose2.Translation; 
cosAngle   = sum(ray1 .* ray2, 2) ./ (vecnorm(ray1, 2, 2) .* vecnorm(ray2, 2, 2)); 
 
% Check parallax 
isValid = all(cosAngle < cosd(minParallax) & cosAngle>0); 
end 
 
function isKeyFrame = helperIsKeyFrame(mapPoints, ... 
    refKeyFrameId, lastKeyFrameIndex, currFrameIndex, mapPointsIndices) 
 
numPointsRefKeyFrame = numel(findWorldPointsInView(mapPoints, refKeyFrameId)); 
 
% More than 20 frames have passed from last key frame insertion 
tooManyNonKeyFrames = currFrameIndex >= lastKeyFrameIndex + 20; 
 
% Track less than 90 map points 
tooFewMapPoints     = numel(mapPointsIndices) < 90; 
 
% Tracked map points are fewer than 90% of points tracked by 
% the reference key frame 
tooFewTrackedPoints = numel(mapPointsIndices) < 0.9 * numPointsRefKeyFrame; 
 
isKeyFrame = (tooManyNonKeyFrames || tooFewMapPoints) && tooFewTrackedPoints; 
end 
 
function [mapPointSet, directionAndDepth, mapPointsIdx] = helperCullRecentMapPoints(mapPointSet, 
directionAndDepth, mapPointsIdx, newPointIdx) 
outlierIdx    = setdiff(newPointIdx, mapPointsIdx); 
if ~isempty(outlierIdx) 
    mapPointSet   = removeWorldPoints(mapPointSet, outlierIdx); 
    directionAndDepth = remove(directionAndDepth, outlierIdx); 
    mapPointsIdx  = mapPointsIdx - arrayfun(@(x) nnz(x>outlierIdx), mapPointsIdx); 
end 
end 
 
function rmse = helperEstimateTrajectoryError(gTruth, cameraPoses) 
locations       = vertcat(cameraPoses.AbsolutePose.Translation); 
gLocations      = vertcat(gTruth.Translation); 
scale           = median(vecnorm(gLocations, 2, 2))/ median(vecnorm(locations, 2, 2)); 
scaledLocations = locations * scale; 
 
rmse = sqrt(mean( sum((scaledLocations - gLocations).^2, 2) )); 
disp(['Absolute RMSE for key frame trajectory (m): ', num2str(rmse)]); 
end 
 
function [mapPointSet, directionAndDepth] = helperUpdateGlobalMap(... 
    mapPointSet, directionAndDepth, vSetKeyFrames, vSetKeyFramesOptim) 
%helperUpdateGlobalMap update map points after pose graph optimization 
posesOld     = vSetKeyFrames.Views.AbsolutePose; 
posesNew     = vSetKeyFramesOptim.Views.AbsolutePose; 
positionsOld = mapPointSet.WorldPoints; 
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positionsNew = positionsOld; 
indices = 1:mapPointSet.Count; 
 
% Update world location of each map point based on the new absolute pose of  
% the corresponding major view 
for i = 1: mapPointSet.Count 
    majorViewIds = directionAndDepth.MajorViewId(i); 
    tform = posesOld(majorViewIds).T \ posesNew(majorViewIds).T ; 
    positionsNew(i, :) = positionsOld(i, :) * tform(1:3,1:3) + tform(4, 1:3); 
end 
mapPointSet = updateWorldPoints(mapPointSet, indices, positionsNew); 
end 
 

 

Full acknowledgement must be given to MathWorks for the conversion of ORB-SLAM into MATLAB. 

The code can be found at: 

https://au.mathworks.com/help/vision/ug/monocular-visual-simultaneous-localization-and-mapping.html 

 

Full acknowledgement must also be given to the original authors of ORB-SLAM, Raul Mur-Artal, J. M. 

M. Montiel & Juan D. Tardos. 
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Appendix E: CEKF-SLAM 

function data= cekfslam(lm, wp) 

%function data= cekfslam(lm, wp) 
% 

% INPUTS:  

%   lm - set of landmarks 
%   wp - set of waypoints 

% 

% OUTPUTS: 
%   data - a data structure containing: 

%       data.i            : number of states  
%       data.true        : the vehicle 'true'-path (ie, where the vehicle *actually* went) 

%       data.path       : the vehicle path estimate (ie, where SLAM estimates the vehicle went) 

%       data.state(k).x: the SLAM state vector at time k 
%       data.state(k).P: the diagonals of the SLAM covariance matrix at time k 

%       data.finalx      : the estimated states when a simulation is done 

%       data.finalcov   : the estimated states covariance when a simulation is done 
%       data.finalcorr  : the estimated states correlations when a simulation is done 

% 

%To run this simulator: 
%   1. load loop902.mat to the workspace 

%   2. run "data = cekfslam(lm,wp)" in the command window 

% 
% NOTES: 

%   This program is a compressed extended Kalman filter(CEKF) based SLAM simulator.  

%   To use, create a set of landmarks and vehicle waypoints (ie, waypoints for the desired vehicle path).  
%   The program 'frontend.m' may be used to create this simulated environment - type 

%   'help frontend' for more information. 

%       The configuration of the simulator is managed by the script file 
%   'configfile.m'. To alter the parameters of the vehicle, sensors, etc 

%   adjust this file. There are also several switches that control certain 

%   filter options. 
% 

% Thanks to Tim Bailey and Juan Nieto 2004.Version 1.0 

% 
% Zhang Haiqiang 2007-11-22 

% 

% ALGORITHM USED: 
%   This program adopts Compressed Extended Kalman Filter to SLAM, and 

%   when SWITCH_BATCH_UPDATE = 0, I used the sparsity of Observation 

%   Jacobian Matrix to reduce computation complexity. 
% 

% MODELS: 

%   The motion model is setup to be like a Pioneer3-AT robot(skid-steering), 
%   The observation mode are setup to be like a LMS200. 

% 

% NOTES: 
%   It is VERY important that the data association should always be 

%   correct, if wrong data association occurs, the whole state will 

%   probably diverge. 
% 

% Zhang Haiqiang 2007-11-20 

% Zhang Haiqiang 2007-5-11 

% 

 

format compact 
configfile; 

 

% setup plots 
if SWITCH_ANIMATION_ON == 1 

    scrsz= get(0,'ScreenSize')*0.75; 

    fig=figure('Position',[0 0 scrsz(3) scrsz(4)]); 
    plot(lm(1,:),lm(2,:),'b*') 

    hold on, axis equal, grid on 
    %plot(wp(1,:),wp(2,:), 'g', wp(1,:),wp(2,:),'g.') 

    MAXX = max([max(lm(1,:)) max(wp(1,:))]); 

    MINX = min([min(lm(1,:)) min(wp(1,:))]); 
    MAXY = max([max(lm(2,:)) max(wp(2,:))]); 
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    MINY = min([min(lm(2,:)) min(wp(2,:))]); 
    axis([MINX-10 MAXX+10 MINY-10 MAXY+10]) 

    xlabel('metres'), ylabel('metres') 

    set(fig, 'name', ' Compressed EKF-SLAM via Pioneer3-AT & LMS200') 
    h= setup_animations; 

    veh= 0.5*[1 1 -1 -1; 1 -1 1 -1]; % vehicle animation 

    %plines=[]; % for laser line animation 
    pcount=0;   

end 

     
% 

% zhq: 'stem' the diag of the state covariance matrix 

% 
if SWITCH_VISULIZE_THE_EVOLUTION_OF_COVARIANCE_DIAG == 1 

    fig_DiagOfStateCovMatrix = figure; 

    set( fig_DiagOfStateCovMatrix, 'Name', 'diag of the state covariance matrix'); 
    axes_DiagOfStateCovMatrix = axes; 

end 

%%% 

 

% initialise states 

global vtrue XA PA XB PB PAB 
vtrue= zeros(3,1);% true pose of the vehicle 

XA = zeros(3,1); % part A of SLAM state 

PA = zeros(3);    % 
XB = zeros(1);    % part B of SLAM state 

PB = zeros(1);    % 
PAB =zeros(1);   % cross covariance of part A and B 

 

% CEKF auxiliary parameters 
global PsiXB OmegaPB PhiPAB 

PsiXB = zeros(1); 

OmegaPB = zeros(1); 
PhiPAB = zeros(1); 

% CEKF  

global g_current_ala_center g_current_ala_center_cov 
g_current_ala_center = zeros(2,1); 

g_current_ala_center_cov = zeros(2); 

 
% CEKF predict auxiliary parameter 

global JXA  

JXA= zeros(1); 
 

% 

global GDATA 
 

% initialise other variables and constants 

dt= DT_CONTROLS; % change in time between predicts 
dtsum= 0; % change in time since last observation 

iwp= 1; % index to first waypoint  

W = 0; % initial rotation speed 
 

% time lapsed since the vehicle started 

g_sim_time = 0; 
 

if SWITCH_OFFLINE_DATA_ON == 1  || SWITCH_ANIMATION_ON == 1 

    initialise_store(); % stored data for off-line 
end 

 

QE= Q; RE= R;  
if SWITCH_INFLATE_NOISE, QE= 2*Q; RE= 8*R; end % inflate estimated noises (ie, add stabilising noise) 

if SWITCH_SEED_RANDOM, randn('state',SWITCH_SEED_RANDOM), end 

 
% 

if SWITCH_PROFILE, profile on -detail mmex, end 

 
% main loop  

counter = 0; 

frame_counter= 0; 
while iwp ~= 0 
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     g_sim_time= g_sim_time + dt; 
     counter = counter+1; 

     

    % zhq: visulize the diag of the state covariance matrix 
    if SWITCH_VISULIZE_THE_EVOLUTION_OF_COVARIANCE_DIAG == 1 

        dP = diag(PA); 

        stem( axes_DiagOfStateCovMatrix, 1:length(dP), dP ); 
        set( axes_DiagOfStateCovMatrix, 'XLim', [1  length(dP)], 'XTick', 1: length(dP), 'YLim', [ 0 ceil(max(dP)+1e-9)],  'YTick', 0: 

ceil(max(dP)+1e-9)/10: ceil(max(dP)+1e-9) ); 

        if SWITCH_ANIMATION_ON == 0, drawnow, end 
    end 

    %%% 

     
    % compute true data 

    [W,iwp] = compute_rotationspeed(wp, iwp, AT_WAYPOINT, W, MAXW, dt); 

    if iwp==0 && NUMBER_LOOPS > 1  
        iwp=1;  

        NUMBER_LOOPS= NUMBER_LOOPS-1;  

    end % perform loops: if final waypoint reached, go back to first 

     

    vtrue = vehicle_model(vtrue, V, W,dt); 

    [Vn, Wn] = add_control_noise (V,W,Q,SWITCH_CONTROL_NOISE); 
     

    % CEKF predict step 

    predict(Vn,Wn,QE, dt); 
 

    % CEKF update step 
    dtsum= dtsum + dt; 

    %if dtsum >= DT_OBSERVE %zhq: dtsum >= DT_OBSERVE - 1e-6 is better 

    if dtsum >= DT_OBSERVE - 1e-6 || iwp == 0 
        dtsum= 0; 

        [z]= get_observations(vtrue, lm, MAX_RANGE); 

        z= add_observation_noise(z,R, SWITCH_SENSOR_NOISE); 
     

        % try your best to make sure the data associate works correctly! 

        [zf,idf, zn]= data_associate(XA,PA,z,RE, GATE_REJECT, GATE_AUGMENT);  
        check_data_association(idf);         

         

        if size(zf,1) > 0 
            update(zf,RE,idf,SWITCH_BATCH_UPDATE);  

        else 

            if size(PAB,1) ~= 1 
                if size(PhiPAB,1) ~= 1 

                    PhiPAB=JXA*PhiPAB; 

                else 
                    PAB=JXA*PAB; 

                end 

                JXA=zeros(1); 
            end 

        end 

         
        if size(zn,1) >0, augment(zn,RE); end 

         

        if switch_active_local_area(RESTRICING_ALA_R) ~= 0 
            full_states_update(); 

            reassign_states(ENVIRONING_ALA_R); 

        end         
    end 

     

    % simulation is almost finished 
    if  iwp == 0, full_states_update(); end 

     

    % offline data store 
    if SWITCH_OFFLINE_DATA_ON == 1, store_data(); end 

     

    % plots 
    if SWITCH_ANIMATION_ON == 1 

        xt= TransformToGlobal(veh,vtrue); 

        xv= TransformToGlobal(veh,XA(1:3)); 
        set(h.xt, 'xdata', xt(1,:), 'ydata', xt(2,:)) 
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        set(h.xv, 'xdata', xv(1,:), 'ydata', xv(2,:)) 
        set(h.xfa, 'xdata', XA(4:2:end), 'ydata', XA(5:2:end)) 

        if size(XB,1) ~= 1, set(h.xfb, 'xdata', XB(1:2:end), 'ydata', XB(2:2:end)), end 

         
        ptmp= make_covariance_ellipses(XA(1:3),PA(1:3,1:3)); 

        pcova(:,1:size(ptmp,2))= ptmp; 

        if dtsum==0 
            set(h.cova, 'xdata', pcova(1,:), 'ydata', pcova(2,:))              

            pcount= pcount+1; 

            if pcount == 15  
                set(h.pth, 'xdata', GDATA.path(1,1:GDATA.i), 'ydata', GDATA.path(2,1:GDATA.i))     

                set(h.pthtrue, 'xdata', GDATA.true(1,1:GDATA.i), 'ydata', GDATA.true(2,1:GDATA.i))    

                pcount=0; 
            end 

            if ~isempty(z) 

                plines= make_laser_lines (z,XA(1:3)); 
                set(h.obs, 'xdata', plines(1,:), 'ydata', plines(2,:)) 

                pcova= make_covariance_ellipses(XA,PA); 

            end 

             

            %set(h.timeelapsed, 'String', num2str(g_sim_time)) 

             
            if size(XB,1) ~= 1 && size(OmegaPB,1) == 1 

                pcovb = make_covariance_ellipses_xb(XB,PB); 

                set(h.covb, 'xdata', pcovb(1,:), 'ydata', pcovb(2,:)) 
            end 

        end   
         

        [strict_circle, environ_circle] = make_range_circles(RESTRICING_ALA_R, ENVIRONING_ALA_R); 

        set(h.restrict, 'xdata', strict_circle(1,:), 'ydata', strict_circle(2,:)) 
        set(h.environ, 'xdata', environ_circle(1,:), 'ydata', environ_circle(2,:)) 

         

        drawnow 
        if SWITCH_RECORD_THE_PROCESS==1 && mod(counter,30) == 1, 

            frame_counter= frame_counter+1; 

            FRAMES(:,frame_counter)=getframe; 
        end 

    end    

end %end of while 
 

if SWITCH_OFFLINE_DATA_ON == 1, finalise_data(); end 

 
if SWITCH_ANIMATION_ON == 1 

    set(h.pth, 'xdata', GDATA.path(1,:), 'ydata', GDATA.path(2,:))     

    set(h.pthtrue, 'xdata', GDATA.true(1,:), 'ydata', GDATA.true(2,:))  % zhq-draw true path 
    set(h.timeelapsed, 'String', num2str(g_sim_time)) 

    drawnow 

    if SWITCH_RECORD_THE_PROCESS == 1 
        frame_counter= frame_counter+1; 

        FRAMES(:,frame_counter)=getframe; 

        movie2avi(FRAMES,'a.avi','quality',100); 
    end 

end 

 
 

if SWITCH_PROFILE, profile report, end 

 
GDATA.finalx = [XA; XB]; 

GDATA.finalcov = [PA PAB; PAB' PB]; 

vari = diag(GDATA.finalcov).^(1/2); 
GDATA.finalcorr = GDATA.finalcov./ (vari*vari'); 

 

data= GDATA; 
clear global vtrue XA PA XB PB PAB PsiXB OmegaPB PhiPAB  

clear global g_current_ala_center g_current_ala_center_cov 

clear global JXA GDATA 
 

% 

% 
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function h= setup_animations() 
h.xt= patch(0,0,'b','erasemode','xor'); % vehicle true 

h.xv= patch(0,0,'r','erasemode','xor'); % vehicle estimate 

h.pth= plot(0,0,'r.','markersize',2,'erasemode','background'); % vehicle path estimate 
h.pthtrue= plot(0,0,'b.','markersize',2,'erasemode','background'); % vehicle path true 

h.obs= plot(0,0,'k','erasemode','xor'); % observations 

h.timeelapsed = annotation('textbox',[0.89 0.9 0.1 0.05]); 
h.xfa= plot(0,0,'r+','erasemode','xor'); % estimated features of part A 

h.cova= plot(0,0,'r','erasemode','xor'); % covariance ellipses 

h.xfb= plot(0,0,'k+','erasemode','xor'); % estimated features of part B 
h.covb= plot(0,0,'k','erasemode','xor'); % covariance ellipses 

h.restrict= plot(0,0,'k','erasemode','xor', 'LineWidth',1, 'LineStyle','-'); 

h.environ= plot(0,0,'k','erasemode','xor', 'LineWidth',2, 'LineStyle','-'); 
% 

% 

 
function p= make_laser_lines (rb,xv) 

% compute set of line segments for laser range-bearing measurements 

if isempty(rb), p=[]; return, end 

len= size(rb,2); 

lnes(1,:)= zeros(1,len)+ xv(1); 

lnes(2,:)= zeros(1,len)+ xv(2); 
lnes(3:4,:)= TransformToGlobal([rb(1,:).*cos(rb(2,:)); rb(1,:).*sin(rb(2,:))], xv); 

p= line_plot_conversion (lnes); 

 
% 

% 
 

function p= make_covariance_ellipses(x,P) 

% compute ellipses for plotting state covariances 
N= 10; 

inc= 2*pi/N; 

phi= 0:inc:2*pi; 
 

lenx= length(x); 

lenf= (lenx-3)/2; 
p= zeros (2,(lenf+1)*(N+2)); 

 

ii=1:N+2; 
p(:,ii)= make_ellipse(x(1:2), P(1:2,1:2), 2, phi); 

 

ctr= N+3; 
for i=1:lenf 

    ii= ctr:(ctr+N+1); 

    jj= 2+2*i; jj= jj:jj+1; 
     

    p(:,ii)= make_ellipse(x(jj), P(jj,jj), 2, phi); 

    ctr= ctr+N+2; 
end 

 

% 
% 

 

function p= make_ellipse(x,P,s, phi) 
% make a single 2-D ellipse of s-sigmas over phi angle intervals  

s=2.448; %corresponding cdf is 0.95 

r= sqrtm(P); 
a= s*r*[cos(phi); sin(phi)]; 

p(2,:)= [a(2,:)+x(2) NaN]; 

p(1,:)= [a(1,:)+x(1) NaN]; 
 

% % Use the following codes for a naive and visually better ellipse 

% cdf=0.95; 
% k=sqrt( -2*log(1-cdf) ); 

% px=P(1,1);py=P(2,2);pxy=P(1,2); 

% if px==py,theta=pi/4; else theta=1/2*atan(2*pxy/(px-py));end 
% r1=px*cos(theta)^2 + py*sin(theta)^2 + pxy*sin(2*theta); 

% r2=px*sin(theta)^2 + py*cos(theta)^2 - pxy*sin(2*theta); 

% T=[cos(theta) -sin(theta); sin(theta) cos(theta) ]; 
% pts=k*T*[sqrt(r1) 0; 0 sqrt(r2)]*[cos(phi); sin(phi)]; 
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% p(1,:)=[pts(1,:)+x(1) NaN]; 
% p(2,:)=[pts(2,:)+x(2) NaN]; 

 

% 
% 

 

function p= make_covariance_ellipses_xb(x,P) 
% compute ellipses for plotting state part B covariances 

N= 10; 

inc= 2*pi/N; 
phi= 0:inc:2*pi; 

 

lenx= length(x); 
lenf= lenx/2; 

p= zeros (2,(lenf)*(N+2)); 

 
ctr= 1; 

for i=1:lenf 

    ii= ctr:(ctr+N+1); 

    jj= 2*i-1; jj= jj:jj+1; 

     

    p(:,ii)= make_ellipse(x(jj), P(jj,jj), 2, phi); 
    ctr= ctr+N+2; 

end 

 
 

% 
% 

 

function [circle1, circle2] = make_range_circles(r1, r2) 
% 

global g_current_ala_center 

phi = 0:2*pi/50:2*pi; 
aa = [cos(phi); sin(phi)]; 

circle1(1,:) = [r1*aa(1,:) + g_current_ala_center(1) NaN]; 

circle1(2,:) = [r1*aa(2,:) + g_current_ala_center(2) NaN]; 
circle2(1,:) = [r2*aa(1,:) + g_current_ala_center(1) NaN]; 

circle2(2,:) = [r2*aa(2,:) + g_current_ala_center(2) NaN]; 

 
% 

% 

 
function initialise_store() 

% offline storage initialisation 

global GDATA XA PA vtrue 
GDATA.i=1; 

GDATA.path= XA; 

GDATA.true= vtrue; 
GDATA.state(1).x= XA; 

GDATA.state(1).P= diag(PA); 

 
% 

% 

 
function store_data() 

% add current data to offline storage 

global GDATA XA XB PA PB vtrue 
CHUNK= 5000; 

if GDATA.i == size(GDATA.path,2) % grow array in chunks to amortise reallocation 

    GDATA.path= [GDATA.path zeros(3,CHUNK)]; 
    GDATA.true= [GDATA.true zeros(3,CHUNK)]; 

end 

i= GDATA.i + 1; 
GDATA.i= i; 

GDATA.path(:,i)= XA(1:3); 

GDATA.true(:,i)= vtrue; 
if size(XB,1) > 1 

    GDATA.state(i).x= [XA; XB]; 

    GDATA.state(i).P= [diag(PA); diag(PB)];  
else 
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    GDATA.state(i).x = XA; 
    GDATA.state(i).P= diag(PA);  

end 

 
 

% 

% 
 

function finalise_data() 

% offline storage finalisation 
global GDATA 

GDATA.path= GDATA.path(:,1:GDATA.i); 

GDATA.true= GDATA.true(:,1:GDATA.i); 
 

function check_data_association(list) 

% 
a= sort(list); 

if length(a) > 1 

    for i = 1:1:length(a)-1, 

        if (a(i+1)-a(i) < 0 5) 

            list 

            error('data association error!') 
        end 

    end 

end 

 

 

Due to the large size of CEKF-SLAM, all parts cannot be reproduced in the Appendix. The main file, 

cekfslam.m is reproduced without supporting files; add_control_noise, add_observation_noise, augment, 

compute_rotationspeed, data_associate, frontend, full_states_update, get_observations, 

line_plot_conversions, loop902, observe_model, pi_to_pi, plot_feature_loci, predict, reassign_states, 

swtich_active_local_area, TransformToGlobal, update & vehicle_model. 

 

Please see the following location to view the full CEKF-SLAM code: 

 

https://openslam-org.github.io/cekfslam.html      
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Appendix F: Linking Code for MATLAB to AirSim 

%% 初期化 

%初期化 
clc 
clear 
 

%パス追加 windows起動ごとにリセットされるっぽいのでここでチェックして、必要に応じて加える 
if count(py.sys.path,'C:\Users\) == 0 
    insert(py.sys.path,int32(0),'C:\Users\); 
end 
 

%画像配列の確保 
img h=288; 
img_w=512; 
img_px=img_h*img_w; 

resimg=zeros(img_w,img_h,3,'uint8'); %y*xのサイズになるらしい 

resimg2=zeros(img_h,img_w,3,'uint8'); %転置先の配列 
 

%figureの確保 
f_vel=figure; 
hold on; 
f xy=figure; 
hold on; 
f cam=figure; 
 

%キー入力受付用figure 
%hf=figure('position',[0 0 eps eps],'menubar','none'); 
 
 

%% 接続 
%connect to the AirSim simulator 

client=py.AirSimClient.CarClient; %クライアントの宣言 
client.confirmConnection(); 

client.enableApiControl(true); %接続とAPIの有効化 

car controls = py.AirSimClient.CarControls; %コントローラーの宣言 
 
 

%% 制御ループ 
client.simPause(logical(true)) 
while(1) 

%状態更新 

client.simContinueForTime(0.01) %10ms間隔で更新 
 

%車両状態の取得と表示 
car_state = client.getCarState(); 
state t=car state.timestamp; 
state_vel = car_state.speed; 
state xp = car state.kinematics true.position.x val; 
state yp = car state.kinematics true.position.y val; 
state_zp = car_state.kinematics_true.position.z_val; 
 
 

%カラー画像の取得 
response = cell(client.simGetImages(py.list({    py.AirSimClient.ImageRequest(int8(0), int8(0), 
logical(false), logical(false))    }))); 
imgdata=uint8(response{1,1}.image data uint8); 
u=1; 
for t = 1:img_h*img_w 
    resimg(t)=          imgdata(u); 
    resimg(t+img_px)=   imgdata(u+1); 
    resimg(t+img_px*2)= imgdata(u+2); 
    u=u+4; 
end 
resimg2=permute(resimg,[2 1 3]); 
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%車両状態の指定 
car_controls.throttle = 0.30; 
car controls.steering = 1.0; 
 

%入力の適用 
client.setCarControls(car controls); 
 

%グラフ表示 
figure(f xy); 
plot (state_xp,-state_yp,'o-'); 
daspect([1 1 1]); 
figure(f vel); 
plot (state_t,state_vel,'o-'); 
figure(f cam); 
image(resimg2) 
daspect([1 1 1]); 
 
%pause(0.0001) %py.time.sleep(20) 
 
 
end 
 
client.simPause(logical(false)) 
 
 

%% 終了 
client.reset() 
client.enableApiControl(false) 

 

Full acknowledgements must be given to user Hashikemu who is the author of this linking code as can be 

found at: 

https://github.com/microsoft/AirSim/issues/1035  
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Appendix G: Pretrained Occupancy Grid for Monocular Input 

% Download the pretrained network. 
pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat'; 
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet'); 
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat'); 
if ~exist(pretrainedFolder,'dir') 
    mkdir(pretrainedFolder); 
    disp('Downloading pretrained SegNet (107 MB)...'); 
    websave(pretrainedSegNet,pretrainedURL); 
    disp('Download complete.'); 
end 
 
% Load the network. 
data = load(pretrainedSegNet); 
net = data.net; 
 
% Read the image. 
I = imread('seq05vd_snap_shot.jpg'); 
 
% Segment the image. 
[C,scores,allScores] = semanticseg(I,net); 
 
% Overlay free space onto the image. 
B = labeloverlay(I,C,'IncludedLabels',"Road"); 
 
% Display free space and image. 
figure 
imshow(B) 
 
% Use the network's output score for Road as the free space confidence. 
roadClassIdx = 4; 
freeSpaceConfidence = allScores(:,:,roadClassIdx); 
     
% Display the free space confidence. 
figure 
imagesc(freeSpaceConfidence) 
title('Free Space Confidence Scores') 
colorbar 
 
% Create monoCamera for CamVid data. 
sensor = camvidMonoCameraSensor(); 
 
% Define bird's-eye-view transformation parameters. 
distAheadOfSensor = 20; % in meters, as previously specified in monoCamera height input 
spaceToOneSide    = 3;  % look 3 meters to the right and left 
bottomOffset      = 0;   
outView = [bottomOffset, distAheadOfSensor, -spaceToOneSide, spaceToOneSide]; 
 
outImageSize = [NaN, 256]; % output image width in pixels; height is chosen automatically to preserve 
units per pixel ratio 
 
birdsEyeConfig = birdsEyeView(sensor,outView,outImageSize); 
 
% Resize image and free space estimate to size of CamVid sensor.  
imageSize = sensor.Intrinsics.ImageSize; 
I = imresize(I,imageSize); 
freeSpaceConfidence = imresize(freeSpaceConfidence,imageSize); 
 
% Transform image and free space confidence scores into bird's-eye view. 
imageBEV = transformImage(birdsEyeConfig,I); 
freeSpaceBEV = transformImage(birdsEyeConfig,freeSpaceConfidence);  
 
% Display image frame in bird's-eye view. 
figure 
imshow(imageBEV) 
 
% Define dimensions and resolution of the occupancy grid. 
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gridX = distAheadOfSensor; 
gridY = 2 * spaceToOneSide; 
cellSize = 0.25; % in meters to match units used by CamVid sensor 
 
% Create the occupancy grid from the free space estimate. 
occupancyGrid = createOccupancyGridFromFreeSpaceEstimate(... 
    freeSpaceBEV, birdsEyeConfig, gridX, gridY, cellSize); 
 
% Create bird's-eye plot. 
bep = birdsEyePlot('XLimits',[0 distAheadOfSensor],'YLimits', [-5 5]); 
 
% Add occupancy grid to bird's-eye plot. 
hold on 
[numCellsY,numCellsX] = size(occupancyGrid); 
X = linspace(0, gridX, numCellsX); 
Y = linspace(-gridY/2, gridY/2, numCellsY); 
h = pcolor(X,Y,occupancyGrid); 
title('Occupancy Grid (probability)') 
colorbar 
delete(legend) 
 
% Make the occupancy grid visualization transparent and remove grid lines. 
h.FaceAlpha = 0.5; 
h.LineStyle = 'none'; 
 
% Add coverage area to plot. 
caPlotter = coverageAreaPlotter(bep, 'DisplayName', 'Coverage Area'); 
 
% Update it with a field of view of 35 degrees and a range of 60 meters 
mountPosition = [0 0]; 
range = 15; 
orientation = 0; 
fieldOfView = 35; 
plotCoverageArea(caPlotter, mountPosition, range, orientation, fieldOfView); 
hold off 
 
% Create the costmap. 
costmap = vehicleCostmap(flipud(occupancyGrid), ... 
    'CellSize',cellSize, ... 
    'MapLocation',[0,-spaceToOneSide]); 
costmap.CollisionChecker.InflationRadius = 0; 
 
% Display the costmap. 
figure 
plot(costmap,'Inflation','off') 
colormap(parula) 
colorbar 
title('Vehicle Costmap') 
 
% Orient the costmap so that it lines up with the vehicle coordinate 
% system, where the X-axis points in front of the ego vehicle and the 
% Y-axis points to the left. 
view(gca,-90,90) 
 
% Create a set of locations in vehicle coordinates. 
candidateLocations = [ 
    8 0.375 
    10 0.375 
    12 2 
    14 0.375    
    ]; 
 
% Check if locations are occupied. 
isOccupied = checkOccupied(costmap,candidateLocations); 
 
% Partition locations into free and occupied for visualization purposes. 
occupiedLocations = candidateLocations(isOccupied,:); 
freeLocations = candidateLocations(~isOccupied,:); 
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% Display free and occupied points on top of costmap. 
hold on 
markerSize = 100; 
scatter(freeLocations(:,1),freeLocations(:,2),markerSize,'g','filled') 
scatter(occupiedLocations(:,1),occupiedLocations(:,2),markerSize,'r','filled'); 
legend(["Free" "Occupied"]) 
hold off 
 
function sensor = camvidMonoCameraSensor() 
% Return a monoCamera camera configuration based on data from the CamVid  
% data set[1]. 
% 
% The cameraCalibrator app was used to calibrate the camera using the 
% calibration images provided in CamVid: 
% 
% http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/CalibrationSeq_and_Files_0010YU.zip 
% 
% Calibration pattern grid size is 28 mm.  
% 
% Camera pitch is computed from camera pose matrices [R t] stored here: 
% 
% http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/EgoBoost_trax_matFiles.zip 
 
% References 
% ---------- 
% [1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object  
% Classes in Video: A high-definition ground truth database." _Pattern Recognition  
% Letters_. Vol. 30, Issue 2, 2009, pp. 88-97. 
 
calibrationData = load('camera_params_camvid.mat'); 
 
% Describe camera configuration. 
focalLength    = calibrationData.cameraParams.FocalLength; 
principalPoint = calibrationData.cameraParams.PrincipalPoint; 
imageSize      = calibrationData.cameraParams.ImageSize; 
 
% Camera height estimated based on camera setup pictured in [1]. 
height = 0.5;  % height in meters from the ground 
 
% Camera pitch was computed using camera extrinsics provided in data set. 
pitch = 0;  % pitch of the camera, towards the ground, in degrees 
 
camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize); 
sensor = monoCamera(camIntrinsics,height,'Pitch',pitch); 
end 
function occupancyGrid = createOccupancyGridFromFreeSpaceEstimate(... 
    freeSpaceBEV,birdsEyeConfig,gridX,gridY,cellSize) 
% Return an occupancy grid that contains the occupancy probability over 
% a uniform 2-D grid. 
 
% Number of cells in occupancy grid. 
numCellsX = ceil(gridX / cellSize); 
numCellsY = ceil(gridY / cellSize); 
 
% Generate a set of (X,Y) points for each grid cell. These points are in 
% the vehicle's coordinate system. Start by defining the edges of each grid 
% cell. 
 
% Define the edges of each grid cell in vehicle coordinates. 
XEdges = linspace(0,gridX,numCellsX); 
YEdges = linspace(-gridY/2,gridY/2,numCellsY); 
 
% Next, specify the number of sample points to generate along each 
% dimension within a grid cell. Use these to compute the step size in the 
% X and Y direction. The step size will be used to shift the edge values of 
% each grid to produce points that cover the entire area of a grid cell at 
% the desired resolution. 
 
% Sample 20 points from each grid cell. Sampling more points may produce 
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% smoother estimates at the cost of additional computation. 
numSamplePoints = 20; 
 
% Step size needed to sample number of desired points. 
XStep = (XEdges(2)-XEdges(1)) / (numSamplePoints-1); 
YStep = (YEdges(2)-YEdges(1)) / (numSamplePoints-1); 
 
% Finally, slide the set of points across both dimensions of the grid 
% cells. Sample the occupancy probability along the way using 
% griddedInterpolant. 
 
% Create griddedInterpolant for sampling occupancy probability. Use 1 
% minus the free space confidence to represent the probability of occupancy. 
occupancyProb = 1 - freeSpaceBEV; 
sz = size(occupancyProb); 
[y,x] = ndgrid(1:sz(1),1:sz(2)); 
F = griddedInterpolant(y,x,occupancyProb); 
 
% Initialize the occupancy grid to zero. 
occupancyGrid = zeros(numCellsY*numCellsX,1); 
 
% Slide the set of points XEdges and YEdges across both dimensions of the 
% grid cell.  
for j = 1:numSamplePoints 
     
    % Increment sample points in the X-direction 
    X = XEdges + (j-1)*XStep; 
    
    for i = 1:numSamplePoints 
         
        % Increment sample points in the Y-direction 
        Y = YEdges + (i-1)*YStep; 
         
        % Generate a grid of sample points in bird's-eye-view vehicle coordinates 
        [XGrid,YGrid] = meshgrid(X,Y); 
         
        % Transform grid of sample points to image coordinates 
        xy = vehicleToImage(birdsEyeConfig,[XGrid(:) YGrid(:)]); 
         
        % Clip sample points to lie within image boundaries 
        xy = max(xy,1); 
        xq = min(xy(:,1),sz(2));         
        yq = min(xy(:,2),sz(1)); 
         
        % Sample occupancy probabilities using griddedInterpolant and keep 
        % a running sum. 
        occupancyGrid = occupancyGrid + F(yq,xq);   
    end 
     
end 
 
% Determine mean occupancy probability. 
occupancyGrid = occupancyGrid / numSamplePoints^2; 
occupancyGrid = reshape(occupancyGrid,numCellsY,numCellsX); 
end 

 

Full credit must be given to MathWorks for the example code used for the project. The code can be 

accessed at: 

https://au.mathworks.com/help/driving/ug/create-occupancy-grid-using-monocular-camera-sensor.html  
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Appendix H: Failed CNN Code for Training 

# Std packages 

import numpy as np  
import pandas as pd 

import time  

import math 
 

import matplotlib.pyplot as plt 

 
# Torch and supporting. 

import torch 
import torch.nn as nn 

import torch.nn.functional as F  

from torch.nn import Conv2d 
from torch.nn import MaxPool2d 

from torch.nn import Linear 

from torch.nn import ReLU 
from torch.nn import Softmax 

from torch.nn import Module 

import torch.optim as optim 
from torch.utils.data import Dataset, DataLoader 

 

# Torchvision 
import torchvision 

from torchvision import transforms 

from torchvision.transforms import ToTensor 
 

epochs = 10 

lr = 0.001 
batch_size = 64 

 

""" 
Define the model - CNN with six output classes being one of the six axis of freedom 

""" 

class netCNN(nn.Module): 
    def __init__(self, lr, epochs, batch_size, num_classes=6): 

        super(netCNN, self).__init__() 

        # This section is used to initialise parameters for the CNN, allocation to GPU, etc. 
        self.epochs = epochs 

        self.lr = lr 

        self.batch_size = batch_size 
        self.num_classes = num_classes 

        self.loss_history = [] 

        self.acc_history = [] 
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

 

    # Convolutional layers - 6 layers with 2 pooling layers at 3 and 6 
        # First Convolution Layer with normalisation 

        self.conv1 = nn.Conv2d(3, 32, 3) 

        self.bn1 = nn.BatchNorm2d(32) 
        # Second Convolution Layer with normalisation 

        self.conv2 = nn.Conv2d(32,32,3) 

        self.bn2 = nn.BatchNorm2d(32) 

        # Third Convolution Layer with normalisation 

        self.conv3 = nn.Conv2d(32,32,3) 

        self.bn3 = nn.BatchNorm2d(32) 
        # First Pooling Layer 

        self.maxpool1 = nn.MaxPool2d(2) 

        # Fourth Convoluton Layer with normalisation 
        self.conv4 = nn.Conv2d(32,64,3) 

        self.bn4 = nn.BatchNorm2d(64) 

        # Fifth Convolution Layer with normalisation 
        self.conv5 = nn.Conv2d(64,128,3) 

        self.bn5 = nn.BatchNorm2d(128) 
        # Sixth Convolution Layer with normalisation 

        self.conv6 = nn.Conv2d(128,128,3) 

        self.bn6 = nn.BatchNorm2d(128) 
        # Second Pooling Layer 
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        self.maxpool2 = nn.MaxPool2d(2) 
         

        # Calculate dimension of final pooling layer for input to FC layer 

        input_dims = self.calc_input_dims() 
 

    # Fully Connected Layers  

        # First fully connected layer  
        self.fc1 = nn.Linear(input_dims, input_dims / 8) 

        # Second fully connected layer 

        self.fc2 = nn.Linear(input_dims / 8, input_dims / 32) 
        # Third & Final fully connected layer 

        self.fc3 = nn.Linear(input_dims / 32, self.num_classes) 

     
    # Define the method of optimisation - Adam generally considered to be the best for large networks as it is faster than SGD 

        self.optimizer = optim.Adam(self.parameters(), lr = self.lr) 

     
    # Define the loss method between classes - CrossEntropyLoss better for more than 2 classes 

        self.loss = nn.CrossEntropyLoss() 

        self.to(self.device) 

        self.get_data() 

 

    # Calculate the network size 
    def calc_input_dims(self): 

        batch_data = torch.zeros((1, 3, 480, 480)) 

 
        batch_data = self.conv1(batch_data) 

        batch_data = self.bn1(batch_data) 
 

        batch_data = self.conv2(batch_data) 

        batch_data = self.bn2(batch_data) 
 

        batch_data = self.conv3(batch_data) 

        batch_data = self.bn3(batch_data) 
 

        batch_data = self.maxpool1(batch_data) 

 
        batch_data = self.conv4(batch_data) 

        batch_data = self.bn4(batch_data) 

 
        batch_data = self.conv5(batch_data) 

        batch_data = self.bn5(batch_data) 

 
        batch_data = self.conv6(batch_data) 

        batch_data = self.bn6(batch_data) 

 
        batch_data = self.maxpool2(batch_data) 

 

        return int(np.prod(batch_data.size())) 
 

    # This is the forward pass for the network 

    def forward(self, batch_data): 
        batch_data = torch.tensor(batch_data).to(self.device) 

 

        batch_data = self.conv1(batch_data) 
        batch_data = self.bn1(batch_data) 

        batch_data = F.relu(batch_data) 

 
        batch_data = self.conv2(batch_data) 

        batch_data = self.bn2(batch_data) 

        batch_data = F.relu(batch_data) 
 

        batch_data = self.conv3(batch_data) 

        batch_data = self.maxpool1(batch_data) 
        batch_data = F.relu(batch_data) 

 

        batch_data = self.conv4(batch_data) 
        batch_data = self.bn4(batch_data) 

        batch_data = F.relu(batch_data) 

 
        batch_data = self.conv5(batch_data) 
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        batch_data = self.bn5(batch_data) 
        batch_data = F.relu(batch_data) 

 

        batch_data = self.conv6(batch_data) 
        batch_data = self.bn6(batch_data) 

        batch_data = F.relu(batch_data) 

 
        batch_data = self.maxpool2(batch_data) 

 

        batch_data = batch_data.view(batch_data.size()[0], -1) 
 

        classes = self.fc1(batch_data) 

 
        return classes 

 

    # routine to bring in data --> needs to be changed to bring in data from a local source  
    def get_data(self): 

        train_data = FLIGHTS('name', train=True, download=True, transfrom=ToTensor()) 

        self.train_data_loader = torch.utils.data.DataLoader(train_data, batch_size=self.batch_size, shuffle=True, num_workers=16) 

 

        test_data = FLIGHTS('name', train=False, download=True, transfrom=ToTensor()) 

        self.test_data_loader = torch.utils.data.DataLoader(test_data, batch_size=self.batch_size, shuffle=True, num_workers=16) 
 

    # training routine 

    def _train(self): 
        self.train() 

        for i in range(self.epochs): 
            ep_loss = 0 

            ep_acc = [] 

            for j, (input, label) in enumerate(self.train_data_loader): 
                self.optimizer.zero_grad() 

                label = label.to(self.device) 

                prediction = self.forward(input) 
                loss = self.loss(prediction, label) 

                prediction = F.softmax(prediction, dim=1) 

                classes = torch.argmax(prediction, dim=1) 
                no_wrong = torch.where(classes != label, torch.tensor([1.].to(self.device), torch.tensor([0.]).to(self.device))) 

                acc = 1 - torch.sum(no_wrong) / self.batch_size 

 
                ep_acc.append(acc.item()) 

                self.acc_history.append(acc.item()) 

                ep_loss += loss item() 
                loss.backward() 

                self.optimzer.step() 

             
            print('Finished epoch', i, 'total loss %.3f' % ep_loss, 'accuracy %.3f' % np.mean(ep_acc)) 

 

    # testing routine 
    def _test(self): 

        self.test() 

        for j, (input, label) in enumerate(self.test_data_loader): 
            self.optimizer.zero_grad() 

            label = label.to(self.device) 

            prediction = self.forward(input) 
            loss = self.loss(prediction, label) 

            prediction = F.softmax(prediction, dim=1) 

            classes = torch.argmax(prediction, dim=1) 
            no_wrong = torch.where(classes != label, torch.tensor([1.].to(self.device), torch.tensor([0.]).to(self.device))) 

            acc = 1 - torch.sum(no_wrong) / self.batch_size 

 
            ep_acc.append(acc.item()) 

            ep_loss += loss.item()     

                 
             

            print('Finished epoch', i, 'total loss %.3f' % ep_loss, 'accuracy %.3f' % np.mean(ep_acc)) 

 
# Runs the defined network on the selected dataset -> Initialise, train, test 

if __name__ == "__main__": 

    network = netCNN(lr=0.001, batch_size=128, epochs=25) 
    network._train() 
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    plt.plot(network.loss_history) 
    plt.show() 

    plt.plot(network.acc_history) 

    plt.show() 
    network._test() 

 

 

Full acknowledgement must be given to Sentdex & PythonProgramming.net as the code template 

provided by their tutorial served as the base code for this version of the CNN. The code can be found in 

the link found below: 

 

https://pythonprogramming.net/building-deep-learning-neural-network-pytorch/ 
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