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Abstract

The University of Southern Queensland Hypersonic Testing Facility (TUSQ) is used for

experimentation involving supersonic and hypersonic aerodynamics. TUSQ has four avail-

able nozzles which are designed to produce different flow regimes, they are Mach 2, Mach

4.5, Mach 6, and Mach 7. The facility can produce almost constant stagnation condi-

tions at the nozzle inlet, with stagnation pressure and temperature ranging up to 7MPa

and 1100K respectively. As the most frequently used stagnation pressure is 1MPa, flows

produced by this stagnation condition are consequently well documented and very well

understood.

This project aims to perform CFD simulations of TUSQ using the compressible flow solver

Eilmer4 in order to improve the current understanding of the range of its capabilities.

A 2D axisymmetric CFD model of TUSQ’s Mach 6 nozzle and test section was created,

and simulated for the nominal stagnation condition of 1MPa at 575K. The results were

then compared to experimental and theoretical data documented by Birch (2019) and

Buttsworth (2010). The Mach 6 nozzle simulation was validated, and found to produce

results in the core flow that deviated by less than 1% compared to the experimental and

theoretical data.

Further simulations were run for different stagnation conditions for both the Mach 6

nozzle, and the Mach 7 nozzle. The stagnation conditions used for both nozzles included;

4MPa at 575K, and 7MPa at 575K, with 1MPa at 900K also run for the Mach 6 nozzle.

The results showed that increasing the stagnation pressure subsequently increased the

static pressure in the test section, as well as the pitot pressure, and Reynolds number. It

also produced a larger expansion at the nozzle exit. The 1MPa 900K simulation was found

to increase the size of the usable area adjacent to the nozzle exit. The usable area has

very little local variation in flow parameters and is suitable for use for experimentation.
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Chapter 1

Introduction

The University of Southern Queensland has a Hypersonic Testing Facility (called TUSQ)

which is located at the Toowoomba campus. The facility is used for experimentation

involving supersonic and hypersonic aerodynamics. The facility has three modes of op-

eration which allow it to produce a wide range of test flows. They are: atmospheric

blow-down, Ludwieg tube, and Ludwieg tube with free piston compression. Each of these

modes can produce different conditions at the nozzle inlet, which allows for a wide range

of possible flow conditions. There are several available flow regimes, they are Mach 2,

Mach 4.5, Mach 6, and Mach 7.

For both modes of operation where the Ludwieg tube is used, a diaphragm is placed

between the Ludwieg tube and the nozzle inlet. Initiation of a test flow is achieved

by rupturing this diaphragm, which occurs when the pressure inside the Ludwieg tube

reaches the burst pressure of the diaphragm. The burst pressure is dependent on both the

material and thickness of the diaphragm, which allows for burst pressures and thus test

flows to be reproduced repeatedly and accurately. When a test flow is initiated this way

the stagnation conditions produced at the nozzle inlet can be almost constant, allowing

for large periods of test flow with consistent parameters.

The facility is designed to utilise burst pressures of up to 7MPa. Despite this however, the

most frequently used burst pressure is 1MPa. Consequently, the flows produced by the

1MPa burst pressure are well documented and very well understood. The understanding

of flows produced by higher burst pressures is limited.
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1.1 Project Aims

The aim of this dissertation is to investigate the properties of flows produced by higher

stagnation pressures through the use of computational fluid dynamics. As there can be

difficulty in measuring certain flow properties experimentally, a CFD model will be able

to provide the expected flow properties with reasonable accuracy for a range of burst

pressures.

The project aim can be broken down into two key areas. The scope of the project is to:

1. Determine the variation in flow parameters and the range of possible flow conditions

achievable in TUSQ.

2. Determine the available core flow area for experimental testing.

1.2 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 provides background information on wind tunnels including TUSQ, as well

as compressible flow, nozzles, and CFD.

Chapter 3 discusses past works and reviews available literature concerning CFD, hy-

personics and TUSQ.

Chapter 4 discusses the setup of the Eilmer4 simulations and the reasoning for certain

design decisions.

Chapter 5 details the methodology, which includes the design and revision of the CFD

mesh.

Chapter 6 presents the results of the simulations. It also provides a brief discussion on

the validity of the simulations based on existing experimental and theoretical data.

Chapter 7 concludes the dissertation and suggests where further work may be required.



Chapter 2

Background Information

2.1 Chapter Overview

This Chapter provides background information on core topics such as wind tunnels, com-

pressible flow, nozzles, and CFD. It also provides information on TUSQ, including facility

hardware and an overview of it’s capabilities.

2.2 Wind Tunnels

Wind tunnels are used to perform experiments with fluid flows. These experiments gen-

erally involve a scale model and are often undertaken to obtain a greater understanding

of the behaviour of the fluid flow and how it interacts with the model (NASA 2015f). Full

scale testing is normally not performed due to safety issues and associated prototyping

costs. As such, full scale testing is generally not feasible (though there can be excep-

tions). When a scale model is tested, it must be ‘matched’ to the fluid flow so that the

obtained results are representative of the required conditions. This means that the flows

are made to be kinetically, dynamically, or geometrically similar to the design criteria

(NASA 2018b). The most common application of wind tunnel testing is the analysis of

aerodynamic drag and lift for aerospace and automotive applications. Experimentation

yields data that can be compared with theoretical data and calculations to assess the

suitability of the tested design.
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Wind tunnel testing can be used to acquire both quantitative and qualitative data about

the model under test. Quantitative data may include measurements such as force and

bending moment (which are used to calculate drag coefficient), as well as temperature and

pressure (NASA 2015b). Quantitative data can be compared numerically with theoretical

data. Qualitative data can also be acquired, some types include the path of flow stream-

lines (by using smoke or coloured gas in the flow), and eddy currents and deadzones on

aircraft parts such as control surfaces or wings (by coating the surface with a thin layer of

oil which the airflow can disturb) (Lewington 2005; Central Aerohydrodynamic Institute

2020). Shockwaves in supersonic flows can also be captured with Schlieren photogra-

phy, whereby the different densities present in the flow refract light in different directions

(Schmidt 2015; NASA 2015d). Though these types of data may be quantitative, with

continually improving machine vision and object detection and recognition systems it is

possible to analyse and reconstruct some of these types of data as computer models for

further analysis (Central Aerohydrodynamic Institute 2020).

2.2.1 Types of Wind Tunnel

Wind tunnels are commonly classified by their achievable flow regimes. These regimes

can be categorised as: subsonic, transonic, supersonic, and hypersonic (NASA 2015e).

Most subsonic and transonic tunnels are fan operated open or closed return types. While

most supersonic and hypersonic wind tunnels are not fan driven due to the high velocity

and pressure requirements, and are instead fed from a pressure vessel. The gas from the

pressure vessel is forced through a nozzle which dictates the flow regime inside the test

section. The mechanics and theory behind supersonic and hypersonic nozzles are covered

in Section 2.5.

Among the supersonic and hypersonic wind tunnels, several types exist including: recir-

culation, blowdown, and indraft. Recirculating wind tunnels operate with a fan forcing

the working fluid around a closed loop. Despite generally being limited to subsonic flows,

some are capable of low supersonic flows. Flow duration for this type of tunnel can be

up to ten minutes or more. Another type of subsonic and supersonic wind tunnel is the

indraft tunnel. This design is somewhat inefficient as it uses a vacuum to force the work-

ing fluid into the test chamber (Johl et al. 2004). This can be achieved with a vacuum

vessel or a fan placed downstream of the test section. The high pressure side is gener-
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ally atmospheric pressure, while the low pressure side is a partial vacuum. While these

two designs can achieve substantial flow durations, they are limited to subsonic and low

supersonic flow velocities.

A blowdown tunnel functions in the opposite fashion to an indraft tunnel. The work-

ing fluid is still forced through the test section by means of a large pressure difference.

However, the key difference with this design is that the low pressure side is at atmo-

spheric pressure (or less, depending on the design) and the high pressure side is an order

of magnitude (or more) higher than atmospheric pressure. The high pressure side of a

blowdown tunnel is fed from one or more pressure vessels, in which the pressure can range

into Megapascals (Robinson et al. 2015).

A blowdown tunnel consists of a pressure vessel, nozzle, test section, diffuser, and dump

tank. The flow velocity in the test section is generally supersonic or hypersonic. Because of

this, a diffuser is often used to decrease the flow velocity before it exits the system (either

into a dump tank or into atmosphere) so that shocks don’t form at the exit (NASA 2018a).

Blow-down tunnels are also limited to very short test times due to the capacity of the

pressure vessels. Test times are generally in the range of tens of milliseconds but some

can produce flows that last as long as a hundred milliseconds or more (Buttsworth 2009;

NASA 2015a).

2.3 TUSQ Facility

The University of Southern Queensland Hypersonic testing facility (TUSQ) is a low en-

thalpy Ludwieg tube with free piston compression heating, and is located at the USQ

Toowoomba campus (Buttsworth 2009). Other supersonic and hypersonic testing facilities

in operation in Australia include The University of Queensland’s Centre for Hypersonics,

and the University of New South Wales’ hypersonic testing facility (of Queensland 2018;

UNSW 2020). Despite being able to produce similar flow Mach numbers in some cases,

these facilities produce high enthalpy, short duration flows (of less than 10ms) compared

to TUSQ which is capable of producing low enthalpy, long duration flows of up to 200ms.

As such, these facilities are not directly comparable.
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(a) The arrangement of the facility in Ludwieg Tube mode.

(b) The arrangement of the facility in Atmospheric Blow-down mode.

Figure 2.1: Facility setup in both modes of operation. Adapted from Buttsworth (2009).

2.3.1 Hardware Overview and Operation

The facility has three modes of operation: atmospheric pressure blow-down, Ludwieg

tube, and Ludwieg tube with free piston compression heating. In atmospheric pressure

blow-down mode, a 1.5 m3 gas bag is mounted to a plenum chamber on the inlet side

of the nozzle (as seen in Figure 2.1b). This mode is used for low Mach number and

Reynolds number flows. In Ludwieg tube mode a 16m by 130mm diameter Ludwieg tube

is connected to the inlet side of the nozzle. High pressure air storage is connected to the

other end of the tube via two high flow rate valves (as seen in Figure 2.1a). This storage

is in the form of six standard air cylinders.

When operating with free piston compression, the Ludwieg tube and nozzle are separated

by a thin Mylar diaphragm (Buttsworth 2009). When the high flow rate valves are

opened, the piston (which resides at the opposite end of the tube to the diaphragm) is

driven down the tube by the inflow of gas. The gas is then compressed between the piston

and diaphragm. When the pressure in this section reaches the critical burst pressure of

the diaphragm it ruptures, accelerating the gas into the nozzle and test section. In this

mode of operation it is possible to achieve near constant stagnation conditions at the inlet

of the nozzle for the test duration.
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2.3.2 Capability Overview

The facility is equipped with five nozzles which each produce a specific flow velocity.

They are Mach 2 (CO2), Mach 2 (Air), Mach 4.5, Mach 6, and Mach 7. The Mach 2 CO2

nozzle is designed for use in atmospheric blow-down mode, while the Mach 4.5 nozzle

can only be used with both Ludwieg tube modes. The contoured Mach 6 nozzle (Shown

in Figure 2.2) requires the use of free piston compression to achieve the required inlet

stagnation conditions. The mode of operation also affects the maximum flow duration.

With the Mach 2 nozzle in atmospheric blow-down, flows lasting several seconds are

possible due to the (relatively) low pressures. The Mach 4.5 nozzle can produce flows

lasting up to 90ms and the Mach 6 nozzle can produce flows that last up to 200ms. The

test section measures 830mm in length by 600mm in diameter, and the Mach 4.5 and

Mach 6 nozzles have exit diameters of 215.9mm and 217.5mm respectively. As such,

experimentation involving reasonably sized models is possible.

Figure 2.2: Schematic of the Mach 6. Adapted from Buttsworth (2009).

2.4 Compressible Flow

For certain engineering applications, fluid flows can be considered to be incompressible.

Some examples include water in pipes, oils and lubricants, and air at low velocities. How-

ever, when dealing with very high velocity flows in fluids like air, compressibility becomes

an important factor. A flow is considered compressible when a pressure gradient (or

differential) can cause the density of the fluid to change. For low velocities, large pres-

sure changes are often not apparent. However, for sufficiently high velocities interesting

phenomena can occur. The dimensionless Mach number is used to characterise the flow

regimes. It represents the ratio of the fluid velocity and the speed of sound of the sur-

rounding medium, and is expressed as M = v
a where v is the flow velocity and a is the
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speed of sound (Anderson 2020).

For flow regimes close to Mach 0.3 and above (that is, 0.3 times the speed of sound),

relatively large pressure changes and density changes can occur. Flow velocities less than

this can be treated as incompressible, while flow velocities greater must be treated as

compressible (if the effects of pressure and density gradients are to be considered). When

the flow regime is between Mach 0.8 and Mach 1.2 the flow considered to be transonic

(NASA 2015e). At Mach 1, localised pressure gradients (or shocks) form. For Mach

numbers between 1.2 and 5 the flow is called supersonic, and greater than Mach 5 is

called hypersonic.

It has been well noted that compressible flows without discontinuities (such as shocks)

can be considered to be reversible and have constant entropy (Anderson 2020; Devenport

2001). Because of this, the properties of a supersonic flow can be described by the

isentropic flow equations. These equations use the stagnation properties of the flow,

which are defined as the properties of the flow if it was isentropically brought to rest.

These stagnation (or sometimes called total) properties are constant. The stagnation

temperature, pressure, and density are defined in relation to their actual values at some

point in the flow. The isentropic relations for temperature, pressure, and density are

shown in Equations 2.1, 2.2, and 2.3.

To
T

= 1 + γ − 1
2 M2 (2.1)

Po
P

=
(

1 + γ − 1
2 M2

) γ
γ−1

(2.2)

ρo
ρ

=
(

1 + γ − 1
2 M2

) 1
γ−1

(2.3)

Where M is the Mach number of the flow, and γ is the ratio of specific heats ( cpcv ) for

the ideal gas (Anderson 2020; NASA 2018a). Since these equations are based on the flow

being isentropic, they do not hold when applied to points either side of a discontinuity

such as a normal shock. A shock is not isentropic as it has been noted to be an irreversible

process that undergoes a change in entropy. The Rankine-Hugoniot relations are used to

describe the properties of points either side of a normal shock and are shown in Equations
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2.4, 2.5, and 2.6.

T2
T1

=

(
1 +M2

1
γ−1

2

) (
M2

1
2γ
γ−1 − 1

)
M2

1

(
2γ
γ−1 + γ−1

2

) (2.4)

P2
P1

= 2γM2
1 − γ + 1
γ + 1 (2.5)

ρ2
ρ1

= v2
v1

= M2
1 (γ + 1)

M2
1 (γ − 1) + 2 (2.6)

As noted by Freedman & Greene (n.d.).

2.5 Converging-Diverging Laval Nozzle

A De Laval nozzle consists of a converging section and a diverging section. As shown in

Figure 2.3 the converging section accepts the inflow from a chamber or pressure vessel,

while the diverging section vents either to atmosphere or to a dump tank. For subsonic

flows, the velocity in the converging section increases along its length (as it restricts the

area), to a maximum at the throat. The velocity in the diverging section then decreases

to a minimum at the nozzle exit. Decreasing the back-pressure (or ambient pressure) for

subsonic flows increases the velocity at all points in the nozzle. When the velocity at

the throat reaches Mach 1 it cannot be increased further by decreasing the back pressure

as it has reached a maximum. At this point the nozzle is considered to be ‘choked’

(Devenport 2001). Under these conditions the mass flow rate through the nozzle is at a

maximum where the pressure ratio is P ∗

Po
= 0.528 (for air). The quantities denoted by ‘∗’

are the properties associated with Mach 1, which in the case of a nozzle resides at the

throat for flows that are sonic or faster (Anderson 2020; Devenport 2001).

Figure 2.3: Sections of a converging-diverging nozzle. Adapted from Devenport (2001).
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By decreasing the back-pressure from a choked state, the supersonic flow in the diverging

section of the nozzle will accelerate with an increase in area (the opposite to subsonic

flow). Once supersonic conditions have been attained at any point in the diverging section

a normal shock will terminate the flow. Altering the back-pressure in this instance will

shift the location of the normal shock along the length of the nozzle. In the case where a

normal shock resides inside the diverging section of the nozzle, the flow is instantaneously

slowed to subsonic speeds as it crosses the shock and ejected in the subsonic core flow/jet.

Decreasing the back-pressure moves the shock towards the exit until a critical back-

pressure is reached. At this pressure the shock transitions from terminating the flow at

the exit plane of the nozzle, into an oblique shock outside the nozzle. The geometry of

this shock is dependent on the back-pressure.

As seen in Figure 2.4, for the ratio of nozzle pressure to stagnation pressure at a given

location, there are many different phenomena that can occur. Line a shows a completely

subsonic flow, where the velocity (and pressure) are at a maximum at the throat. Line

b shows a choked flow, where the pressure ratio never decreases to less than 0.528. As

Devenport (2001) suggested, this is the critical ratio for air and cannot occur until after

the throat of the nozzle. Line c represents a supersonic flow where a normal shock resides

inside the diverging portion - as denoted by the sudden increase in pressure ratio. Similar

to line c, line d indicates that there is a normal shock present at the exit plane of the

nozzle. It is at this critical pressure ratio that the shock can transition from the exit plane

to outside the nozzle. Lines e, f , and g are of special interest as the shock (or expansion

waves) in these cases reside outside the nozzle.

Figure 2.4: Ratio of exit pressure to stagnation pressure for location along the length of a

nozzle. Behaviour of the flow changes as the back-pressure is altered. Adapted from Martinez

(2020).
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The nozzle flow shown by e is called over-expanded, as the oblique shocks formed at

the exit converge on the core flow. In this case the pressure in the diverging section of

the nozzle decreases to less than the ambient pressure, and the gas in this section ‘over-

expanded’. An oblique shock forms at the exit to compress the flow as it meets the higher

back-pressure. Line f is considered to be ‘adapted’ as the pressure in the nozzle reduces to

the back-pressure at the exit, here there is no (or at least a very small) pressure difference.

Line g represents an under-expanded nozzle, where (opposite to e) the pressure in the

diverging section of the nozzle is greater than the ambient pressure causing the flow to

expand as it exits the nozzle.

Over-expanded flows generally occur during low altitude testing of rocket engines. At

operating altitude the nozzles are designed to be adapted, but at lower altitude (sea

level for example) the ambient pressure is higher than the design pressure. Both under-

expanded and over-expanded flows can generate ‘shock diamonds’, where the sudden

expansion (or compression) of the flow generates a series of expansion and compression

fans.

2.6 Fundamentals of CFD

Computational Fluid Dynamics (CFD) is the branch of fluid mechanics concerned with

computer simulation of fluids. The capability of most modern CFD packages includes

static and dynamic fluid flows, and even thermodynamic simulations involving heat trans-

fer (Chung 2002). It is often used in conjunction with experimental wind tunnel tests as

a way of obtaining certain flow parameters that would otherwise be immeasurable such as

entropy, enthalpy, and internal energy. It is also frequently used as a standalone method

of determining the suitability of engineering designs where an experiment is not feasible.

2.6.1 Governing Equations

The three fundamental equations in fluid mechanics are: the energy equation, momentum

equation(s), and continuity equation (NASA 2015c). Called the Navier-Stokes equations

(NS Equations) after the physicists that created them, they are the basis for (almost) all

CFD problems. These equations have no known analytical solution for most problems,

but do have well defined solutions for some very specific and simplified problems. It is for
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this reason that there are four variations of the NS Equations. In order of decreasing com-

plexity they are: Navier-Stokes Equations, Euler equations, the full Potential Equations,

and the linearised potential equations (Jameson 1990; NASA 2015c).

Another variation of the NS Equations is called the Reynolds-Averaged Navier-Stokes

Equations (abbreviated to RANS Equations). The idea for this variation of the NS

Equations was proposed by Osborne Reynolds, and involves using what is called the

Reynolds Decomposition to time average the equations. The Reynolds Decomposition is a

technique where a value is separated into its average and fluctuating values (Nguyen 2005).

The RANS Equations are used to simulate turbulent flows, as Direct Numerical Simulation

(DNS) of the NS Equations is only possible for very small or geometrically simple domains

(or as mentioned before in very special or simplified cases).

Simplifying the NS equations by removing the viscous terms, produces the Euler equa-

tions. Simplifying again, by removing the vorticity terms yields the full potential equa-

tions. Linearising these equations then produces the linearised potential equations (Jameson

1990). In early CFD problems, most of the methods involved idealisations and simplifi-

cations. The linearised potential equations were adopted as the first governing equations

for CFD in the 1940’s, though the equations had been derived much earlier. The advance-

ment in computational power in subsequent decades saw the adoption of the full potential

equations, Euler equations, and finally the Navier-Stokes equations. Both the Euler equa-

tions and Navier-Stokes equations are used in modern CFD as the governing equations for

inviscid and viscous models respectively (Chung 2002). Both equations have a variation

for compressible and incompressible flow. Because of the nature of these equations, there

is normally no analytical solution for complex simulations (though there are exceptional

cases). For most CFD problems these equations must be solved numerically.

2.6.2 Meshing

Meshing is the process of dividing the flow domain into smaller discrete parts. Depending

on the number of simulation dimensions these parts can be lines (for simple 1 dimensional

analysis), areas (for 2 dimensional domains) or volumes (for 3 dimensional domains).

Starting with the simplest domain - a line of length L between two points. The line can

be subdivided into discrete sections of length L
n where n is the number of sections (or

number of nodes minus 1). For some governing equation(s) applied to this domain, the
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value(s) can be calculated at each of these nodes. The same basic principle applies to 2

and 3 dimensions - although it is more complicated. The surface or volume is divided

into smaller areas or volumes, with properties calculated at each.

This process may be trivial for small or simple geometries, but for large and/or intricate

geometries it is very complicated. Flow domains are rarely a uniform shape, and more

often comprised of compound curves, Bezier curves, and arcs which prevent consistent

element shapes or sizes. In these cases it is very easy for the generated elements to be

too large or small, have large aspect ratios, and/or be extremely skewed. Selection of

the appropriate size and shape of element (as well as distributing them appropriately) is

critical in producing reliable, high accuracy results. There are several mesh parameters

that can affect the accuracy of solutions, the most important being: cell aspect ratio, cell

skewness, and element size.

A cell’s aspect ratio is the ratio of the length of its longest and shortest sides. Bakker

(2006) noted that both the compute time of a solution, and the solution accuracy are

dependent on the size of the cells that the mesh is comprised of. In general, smaller

element or cell sizes produce more accurate solution at the cost of computation time.

An improvement in accuracy does not always occur for very small elements in all cases.

When the boundary layer is of interest, the size of elements very close to the wall can

be very small to capture the behaviour of the fluid in this region. Maintaining an aspect

ratio of close to 1 in this case would not be feasible as the width of the elements would

also be very small, leading to unreasonably large element counts.

Chan et al. (2011) mentioned that there is some uncertainty surrounding the appropriate

aspect ratio of cells in CFD simulations. In some cases involving viscous boundary layers,

element aspect ratios of up to 1000 are not unheard of. In cases such as this, the elements

would be aligned lengthwise with the wall, such that the longest dimension is parallel to

it. Large aspect ratios would allow for sufficient resolution perpendicular to the wall to

capture viscous effects, without increasing compute time significantly. Chan et al. (2011)

went on to note that even though aspect ratios may reach up to 1000, the upper limit was

roughly 600 before their simulation results became erroneous. Bakker (2006) also noted

that for cells in the bulk of the flow domain (excluding the boundary layer due to the

restrictions already mentioned) aspect ratios of close to 1 are ideal.

Cell skewness is determined by the optimal cell area (for triangles) or based on the relative
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difference of a right angle and the smallest or largest internal angle (for quadrilaterals)

(Bakker 2006). A skewness value of (or close to) 1 represents an element that is very

skewed and often appears as a sliver or line as opposed to a triangle or quadrilateral.

A skewness near 0 represents an element that is very close to triangular or rectangular.

According to Bakker (2006) very high skewness values should be avoided as they can cause

inaccurate results. To limit introduced error skewness for triangles should be limited to

no more than 0.85, and for rectangles to no more than 0.9.

Also of important note is the distribution of cells in a given direction. Sometimes an

area of smaller elements may be required at a point of interest. It would be inadvisable

to decrease the global element size for a localised increase in resolution/accuracy as this

would also increase the compute time considerably. In these cases it would be more

appropriate to redistribute the cells so that they decrease in size the closer they are to

the area of interest. This is called clustering (or inflation). In a default structured mesh

the number of elements are defined along the edges of the domain (either by specifying a

number or the maximum cell size), and are generated so that they are all equally spaced.

Clustering is a way of changing this spacing so that the bulk of the cells are distributed

closer to one side or edge. A direct result of this is that the cell size may change gradually

along an edge. This change in cell size is important as having small cells next to large

cells can introduce error. Bakker (2006) stated that the size of two adjacent cells should

not differ by more than 20%. This equates to a maximum inflation factor or growth rate

of 1.2.

2.6.3 Post-processing and Data Visualisation

Once a CFD simulation is complete, all of the cell data in the domain is exported.

Analysing the data allows useful information to be extracted from it and interpreted

by the user. Though it is dependent on the type of analysis (and purpose of the CFD

simulation), the extracted information can take different forms. In some cases a single

number or answer may be sufficient. In others, data at points of interest or values summed

over an area may be required. For instances where a detailed analysis is required, the

simulation data can be processed after the simulation is complete. This can be performed

by the CFD program by using an integral utility or function, or by a third party program.

Programs such as MATLAB can be used to process very large datasets. This processing
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can be done to fit curves or trend lines and perform large scale validation of results with

experimental data. While numerical values can serve to be very useful in calculation

they can sometimes be unintuitive when there is limited context. Simulation results can

also be processed by visualisation software such as ParaView or GNUPlot (MATLAB

also has the capability to produce visualisations of data, however the data often requires

pre-processing with ParaView or similar for this to be achieved). Because simulation

results often include fields such as coordinate system data, geometry data, and mesh

data, visualisation programs can transform the simulation data into easy to interpret

forms such as a graph or plot (Kitware n.d.). These visualisations can be very useful

for quick visual reference or to convey a large amount of information in a compact form.

Some types of data visualisation are however, unable to be easily manipulated to allow

for precise results, as colour gradients and lines can be difficult to interpret with repeated

accuracy.

Some post-processing programs allow the user to ‘probe’ points in the flow domain, which

can be used to determine the flow parameters in a given location. This can be a very

useful feature, however it can be time-consuming to manually select a large number of

points which in turn can limit the feature’s usefulness. For purposes such as this, many

data visualisation packages have the ability to export the data to a different file format

which can be read by other data analysis programs.



Chapter 3

Literature Review

The focus of this literature review will be Computational Fluid Dynamics applied in the

context of hypersonics. It will also briefly focus on Ludwieg Tubes and shock tunnels, as

well as previously conducted experiments and literature relating to TUSQ.

3.1 Hypersonic CFD

Hypersonic CFD is an increasingly important area of study and development over the last

30 years. With the advent of supersonic aircraft and spaceflight, the ability to model and

analyse the behaviour of supersonic and hypersonic flows has become a very important

advancement. Despite possessing the ability to produce a wide array of test conditions,

Supersonic and Hypersonic ground testing has technical limitations. Technical limitations

such as instrumentation measurement speed (and resolution), as well as power and per-

formance requirements exist which can restrict potential test conditions (Anderson 2020).

As such, CFD is often used in conjunction with ground testing facilities as a way to help

improve the understanding of flows produced in these facilities or as a way to accurately

model flows that may otherwise be unable to be produced due to technical limitations.

3.1.1 CFD simulation of Hypersonic Nozzles

Numerical simulation of hypersonic nozzles can be used to provide an in-depth spatial and

temporal analysis of flow parameters and can be instrumental in improving the under-
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standing of the produced flows. Sura (2017) used CFD to analyse the flow field of a CD

nozzle and determine the size of the core flow and the effective usable test volume. They

found that due to running the simulation as inviscid and with ‘ideal’ boundary conditions

the nozzle was over-expanded. The boundary conditions used were not realistic, with an

outlet pressure specified at 0Pa. As evidenced by their results, the boundary condition

had a significant effect on the nozzle flow. Improper boundary condition definitions can

lead to unexpected (and sometimes unphysical) flow characteristics as well as erroneous

results. As such, it is essential that boundary conditions be appropriately selected and

defined.

Jéger & Veress (2017) performed and documented axisymmetric simulations of a rocket

engine. They investigated the difference between a conical nozzle and a bell nozzle and

found that the bell nozzle produced more thrust. They also provided details on their

methodology, which included labelling of boundary conditions, comparison to experimen-

tal data, and a mesh and geometry independence study. Mesh and geometry (or domain)

independence studies are crucial in ensuring that the solution is both accurate and closely

representative of real world conditions. The geometry independence study performed by

Jéger & Veress (2017) was done to ensure that the flow domain past the nozzle exit did

not affect the flow upstream. Their simulation involved nozzle discharge to ambient air,

so if the domain was incorrectly sized (i.e. if it was too small) the discharge could affect

the flow upstream of the nozzle regardless of the boundary conditions imposed.

They found that the domain geometry did not cause any unwanted effects. A mesh

independence study was also performed and involved comparing the results of simulations

for each nozzle at cell counts of 300,000, 600,000, and 900,000. However they did not

mention which cell count produced mesh independent results.

3.1.2 Viscous Effects and Turbulence Models

There are several ways to accurately capture the effects of viscosity and turbulence in a

simulation. One option is to spatially resolve the boundary layer with a suitable number

of cells. A study conducted by Bono et al. (2008) into Mach 10.3 flow over a wedge on

a flat plate showed that cell sizes of less than 0.5mm were not unreasonable for their

simulations. Cell sizes in this order of magnitude can result in simulations that are very

accurate, and have very high fidelity results. The solve time however, is often considerably
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longer than that of a simulation that utilises larger cells. Because increasing the number

of cells also increases the computational load accordingly, methods have been devised to

both retain solution accuracy and decrease solve time.

Turbulence models were created to model the effects of boundary layers and turbulence

without significantly increasing compute time or requiring such a small cell resolution in

areas of interest. A turbulence model uses equations to approximate the behaviour of the

fluid in defined regions close to the boundary. These equations are called wall functions

and are dependent on the proximity of the fluid element to the wall or boundary. Because

wall functions are designed for specific regions in the boundary layer, the size of the

elements close to the wall can often be critical. The y+ value is a non-dimensional distance

of the first cell to the wall and is based on the fluid velocity and cell size. Each turbulence

model uses different wall functions, and so a certain cell size (and corresponding y+) may

not be suitable for all models.

Wandel (2020) said that the boundary layer can be split into sections defined by their

y+ values. The following regions make up the boundary layer: linear sublayer (y+ < 5),

buffer layer (5 < y+ < 30), log-law layer (30 < y+ < 500), and the outer layer (y+ > 500).

Each turbulence model is accurate in a certain range of y+. If the first cell size is outside

this range, the solution for these cells may be erroneous. The k-ω turbulence model for

example is accurate for a first element y+ in the range of 1 < y+ < 300. Chan et al.

(2011) analysed the suitability of the k-ω turbulence model for supersonic and hypersonic

flows. They found that despite the model’s inherent sensitivity to free stream turbulence,

it can be used to model turbulence for supersonic and hypersonic flows. They also noted

that for some of their cases, the cell aspect ratio at the boundary was required to be no

more than 600, and that a wall y+ of less than 1 was required to minimise error.

3.1.3 Mesh Quality

Depending on the scope and required accuracy of the simulation, the quality of the final

mesh can be crucial. Some solvers are based on different assumptions, and so the overall

mesh quality requirement may differ slightly between them. For example, Eilmer4 uses

the cell-centred finite volume method which operates based on the assumption that the

cells in its structured grids are orthogonal (Jacobs & Gollan 2018). This discretisation

method computes the fluxes at the centres of the cell boundaries and if the direction of the
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fluxes are sufficiently different, error can be introduced and the solution can fail or produce

erroneous results. In this case the critical mesh quality parameter is orthogonality, which

is defined as the difference in angle between the line connecting two cell centres and the

normal to the cell boundary between them and is illustrated in Figure 3.1. In other words,

if the cells are sufficiently deformed that a line perpendicular to the cell interface does

not cross through (or pass sufficiently close to) both cell centres, there is a possibility of

introducing error.

(a) Poor cell orthogonality. Adapted from CFD

Support (n.d.).

(b) Good cell orthogonality. Adapted from

Rhoads (2014).

Figure 3.1: Cell orthogonal quality. Poor quality is denoted by a high boundary normal to

cell centre angle.

3.1.4 Mesh Independence

Solution accuracy is normally dependent on cell size. In general, meshes with larger cells

tend to produce results that are less representative of real world conditions. Decreasing

the cell size can help to improve the overall solution accuracy at the expense of solve

time. There is a point at which decreasing the cell size produces minimal improvements

in accuracy. As such it is important to determine the smallest practical cell size that

produces results with the required accuracy.

Mousavi & Roohi (2014) performed 3D CFD analyses on a square convergent-divergent

nozzle. The aim of their analyses was to determine the location and number of shocks

that formed in the nozzle. To ensure a grid independent result, they performed a mesh

independence study by running simulations for 6 different mesh refinements. By recording

the Mach number, centreline pressure and Reynolds number and plotting them against the

number of cells, they determined that a minimum cell count of approximately 272×104 was

required. Increased cell counts were found to produce diminishing returns for simulation

accuracy. Their findings were more detailed compared to those of Jéger & Veress (2017)
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mentioned above as the final mesh resolution was noted.

Narayana & Reddy (2016) provided a much more detailed process regarding mesh re-

finement. During their analysis of a CD rocket nozzle they tested five separate meshes,

each with different combinations of horizontal and vertical cell counts. The boundary

conditions and simulation settings were also mentioned in detail. The simulation results

for each mesh were then compared for Mach number, Prandtl number, dynamic pres-

sure, static pressure, Reynolds number, Equi-angle Skew and orthogonal quality with

contour plots shown for each. Limited analysis and discussion of results was presented in

their article, and the final mesh resolution was not noted. The simulation settings and

geometry were presented in adequate detail that reproduction of their results would be

possible. Plots shown in their report indicated that the refinement and cell count affected

the nozzle flow. Larger cell sizes were shown to produce results that did not have shocks

formed in the nozzle throat. This indicated that the more coarse mesh did not sufficiently

resolve the flow domain. As the size of the cells was refined, the location and behaviour of

the shocks became more apparent and well defined. The mesh refinement study showed

that ensuring that the solution to a simulation is independent of the mesh is crucial for

hypersonic CFD.

3.2 Eilmer Compressible flow Solver

Eilmer is a CFD program designed to solve the compressible NS Equations for both 2D

and 3D transient simulations utilising the finite volume method. The basis of Eilmer is

the Compressible Navier Stokes solver (abbreviated as cns4u) (Jacobs et al. 2012). This

code originally served to simulate single-block problems such as shock and expansion

tubes, and evolved into the Multiple-Block Compressible Navier Stokes solver (MBCNS2).

From here development at the University of Queensland saw the creation of Elmer (and

its renaming to Eilmer). Validation of Eilmer has been performed by Jacobs & Gollan

(2013). Their process involved simulating supersonic flow interacting with a sphere in a

range of gases. The results of their simulations were in agreement with experimental data

from three separate studies (Jacobs & Gollan 2013).

The program has a number of simulation capabilities which include (but may not be

limited to), 2D and 3D compressible flow, inviscid, laminar, and turbulent flows, and finite
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rate chemistry (Jacobs & Gollan 2020a). Both the 2D and 3D flow simulations utilise the

NS Equations in their integral form, with the main difference being that the 2D equations

omit some components. Eilmer uses the cell-centred finite volume method, whereby

the fluxes are computed at the midpoints of the cell boundaries (Jacobs et al. 2019).

For 3D simulations these cells (volumes) are hexahedral and can have planar or non-

planar surfaces. 2D cells are quadrilateral and are composed of only straight lines. The

boundaries of a 2D cell are labelled as North, East, South, and West. The naming

convention for blocks (groups of cells) is identical (Jacobs et al. 2019). Eilmer does not

have a Graphical User Interface (GUI) and instead simulations are defined using an input

script. These scripts are written in the Lua programming language and contain definitions

for the geometry, mesh, flow states, and configuration variables as well as other simulation

information (Jacobs & Gollan 2020c).

3.3 Shock Tunnels and Ludwieg Tubes

A shock tunnel is a type of wind tunnel designed to generate supersonic and hypersonic

flow regimes. It consists of five discrete sections: a high pressure gas reservoir, compression

tube, shock tube, nozzle, and test section and dump tank(s) (shown in Figure 3.2). The

shock tube is separated from the compression tube and nozzle by a diaphragm at each end.

The apparatus operates by using the high pressure gas reservoir to drive a piston along

the compression tube. Once the piston compresses the driver gas to the burst pressure of

the first diaphragm, it ruptures and a shock wave propagates along the shock tube. The

shock wave is then reflected off of the secondary diaphragm allowing the test gas in the

shock tube to stagnate. The secondary diaphragm then ruptures, allowing the test gas

to flow through the nozzle and into the test section (The University of Queensland 2016;

Robinson et al. 2015).
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Figure 3.2: The layout of the University of Queensland T4 - Free-piston driven shock tunnel.

Adapted from Doherty (2014).

Shock tunnels are used to generate flow regimes of between Mach 4 and Mach 10 (with

some even reaching Mach 25 or higher), and can produce flows that last up to 10 mil-

liseconds or more (The University of Queensland 2016). The stagnation pressures used to

produce these flows can range up to 44MPa or more resulting in high enthalpy and high

temperature flows (Robinson et al. 2015).

A Ludwieg tube operates in a similar fashion to a shock tube, with the main difference

being that a Ludwieg tube uses only one diaphragm which separates the driver tube

and nozzle. A Ludwieg tube consists of four discrete components: a high pressure gas

reservoir, compression/driver tube, nozzle, and test section and dump tank(s). To operate

the Ludwieg tube, the high pressure gas reservoir is vented into an evacuated driver tube.

A shock wave propagates along the tube and is reflected off of the diaphragm allowing the

gas to stagnate. The pressure increases and eventually causes the diaphragm to burst,

allowing the gas to flow through then nozzle and into the test section.

Similar to a shock tube, a Ludwieg tube can produce supersonic and hypersonic flow

regimes. However, due to the smaller compression ratio (from the reservoir to the nozzle)

the produced flows have a lower enthalpy and lower temperature than those of a shock

tube. The flow duration can also last up to 200ms or more (Buttsworth & Smart 2010;

Buttsworth 2009). Ludwieg tubes can also be operated with ‘free piston compression’

where the reservoir gas drives a piston along the Ludweig (driver) tube. The piston

compresses the driver gas which then ruptures the diaphragm. Free piston compression

is used to produce higher stagnation temperatures and thus hotter test flows.
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3.4 TUSQ

Previous work has been done involving hypersonic flows in the TUSQ facility. Buttsworth

& Smart (2010) performed experiments involving scramjet inlet starting. The TUSQ

facility was operated as a Ludwieg tube with free piston compression and utilised the Mach

6 nozzle. During their experiments, the high pressure air reservoir was initially pressurised

to 4MPa, which produced a Mach 6 flow which lasted 217ms. The flow stagnation pressure

(at the inlet of the nozzle) was measured to be 840kPa and the initial fluid pressure

inside the nozzle and test section was measured to be 94.4kPa. They determined that

if the Ludwieg tunnel was assumed to be perfectly isentropic that the fluid temperature

at the inlet to the nozzle would be 570K once it was compressed by the piston. Actual

experimental measurement proved that this was not the case with a measured temperature

of 440K. They commented that the Ludwieg tunnel was not operating such a way that

the flows could be considered isentropic, and that the performance of the facility was to

be determined with temperature measurements and not isentropic relations.

Buttsworth (2009) provided an overview of the tunnel as well as the expected achievable

flow conditions. The overview consisted of an explanation of the operating principles,

dimensions and important measurements of the facility, the available nozzles, and both

experimental and target flow parameters in its various modes of operation. They noted

that the achievable stagnation conditions for the operational modes were 70kPa for the

blowdown, and 7MPa for Ludwieg tunnel and free piston modes. The nominal stagna-

tion temperature was also listed for Ludwieg and free piston modes as 283K and 500K

respectively.

Birch et al. (n.d.) investigated pressure fluctuations in the wind tunnel due to free piston

compression. They noted that the nominal flow conditions for a stagnation pressure of

1MPa included a Mach number of 5.9, pitot pressure of 32.9kPa, and a free stream flow

velocity of 1013m/s.

The parameters listed by Buttsworth & Smart (2010), Buttsworth (2009), and Birch et al.

(n.d.) are somewhat similar to one another. An important point to note is that most (if

not all) of these parameters are theoretical conditions. The conditions presented by Birch

et al. (n.d.) are all theoretical and based on the assumption of isentropic flow. Similarly,

the conditions presented by Buttsworth (2009) are all achievable or nominal conditions.
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Birch (2019) also noted the nominal conditions of the Mach 6 nozzle, with most of the

parameters being theoretical and based on the assumption of isentropic flow. They did

however, present some measured experimental data, of note were their time averaged plots

of pitot pressure and Mach number.

3.5 Chapter Summary

A literature review was conducted on hypersonic CFD. It was found that there were several

crucial factors in creating a CFD simulation of hypersonic flows with the CFD mesh being

the most important. Several sources found that certain cell sizing and boundary condition

assumptions lead to erroneous results. They also highlighted the importance of conducting

a mesh refinement study to ensure that the results were independent of the CFD mesh.

Information regarding TUSQ and simulation of hypersonic nozzles was also reviewed.

There are a number of existing studies detailing the TUSQ free stream, however these

studies focus on specialised areas. It was determined that there was a gap in the cur-

rent knowledge surrounding characterisation of the TUSQ free stream, in particular, the

general flow characteristics in the test section.



Chapter 4

Simulation Setup

4.1 Chapter Overview

This chapter details the setup requirements for a simulation using the compressible flow

solver Eilmer4 and also includes a brief overview of the structure of an input script.

4.2 Script Structure

Because many of the components of a simulation input script are dependent on other

stages, the order in which certain elements are defined is important. Each script must

follow a similar structure. In general the structure is:

1. Set configuration settings such as; title, dimensions, viscosity and turbulence, etc.

2. Create (or import) the geometry.

3. Using the geometry, create quadrilaterals that comprise the flow domain.

4. Create grids by specifying the number of divisions along each axis of the previously

defined quadrilaterals.

5. Create fluid blocks (or fluid block arrays, see Section 4.6) and define the boundary

conditions.
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Depending on the complexity of the simulation the structure of the script my change. For

example, it is possible to omit parts 2 to 4 by instead importing an existing grid.

4.3 Configuration Settings

Eilmer4 has a wide range of available configuration settings. The settings that are of

interest for the TUSQ nozzle simulations are shown below, with the appropriate lines of

code also listed with each:

• Simulation dimensions can be to set to either 2D or 3D as Eilmer4 has capabilities

for both. A second component to a 2D simulation is the axisymmetric setting.

This serves to change the simulation so that the 2D geometry represents a slice of a

revolved shape and sets the x axis as the axis of revolution (Jacobs & Gollan 2020c).

Doing so can reduce the computation time and complexity for revolved shapes.

config.dimensions = 2

config.axisymmetric = true

• Viscosity and turbulence can be included. The only available turbulence model is

the Wilcox 2006 k-ω turbulence model.

config.viscous = true

config.turbulence_model = "k_omega"

• The solver will terminate at the maximum simulation time, with the maximum

number of steps being the limit to the number of iterations that the solver will

perform. In general the number of steps is set very high so that the solver does not

terminate before the maximum simulation time is reached. The initial dt (∆t) can

be set to ensure a stable start to a simulation as in some cases the automatically

calculated time step can be too large and cause the simulation to fail. This time step

is dynamically calculated using the CFL (Courant–Friedrichs–Lewy) value during

each iteration. Smaller values may be required for simulations that have very sudden

flow field changes (Jacobs & Gollan 2020b).

config.max_time = 10.0e-3

config.max_step = 12000000

config.dt_init = 1.0e-9
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4.5 Boundary Conditions

The boundary conditions for each simulation were specified as shown in Table 4.1. For

the Mach 6 nozzle an additional simulation was run using P = 1MPa and T = 900K at

the inlet.

Table 4.1: Boundary conditions for each stagnation condition.

Inlet Outlet Axis Walls Initial

1MPa
P = 1MPa

T = 575K

Specified back-pressure

P∞ = 500 Pa
Symmetry

Non-slip,

Adiabatic

P = 500 Pa

T = 320 K

vx = 300 m/s

4MPa
P = 4MPa

T = 575K

Specified back-pressure

P∞ = 500 Pa
Symmetry

Non-slip,

Adiabatic

P = 500 Pa

T = 320 K

vx = 300 m/s

7MPa
P = 7MPa

T = 575K

Specified back-pressure

P∞ = 500 Pa
Symmetry

Non-slip,

Adiabatic

P = 500 Pa

T = 320 K

vx = 300 m/s

Inlet

There are a range of possible inflow boundary conditions available in Eilmer4. As the

Ludwieg tunnel produces nearly constant stagnation conditions at the nozzle inlet, this

boundary condition was set to inflow from stagnation. This was implemented in the input

script with InFlowBC_FromStagnation:new{stagnationState}. Where the stagnation

state was defined with respect to the stagnation pressure and temperature, as well as the

turbulent kinetic energy and specific dissipation. This boundary condition operates on

the assumption of isentropic conditions at the boundary.

Walls

The wall boundary condition was set as ‘no-slip’ and with a fixed temperature (as the heat

transfer to/from the wall would be negligible). Coupled with the viscous configuration

setting, no-slip wall condition allows the viscous boundary layer close to the wall to be

captured (cell size notwithstanding). This is of interest as the boundary layer affects

the effective core flow exit diameter, and thus the nozzle area ratio. A larger boundary

layer decreases the area ratio, ε = A∗
Ae

, which thus affects the core flow velocity. An



4.6 Blocks 29

inviscid (and laminar) simulation with a ‘slip wall’ boundary condition would not produce

realistic results close to the wall due to the non-existent boundary layer. Wall functions

were also enabled for the turbulence model to reduce both computation time and cell size

requirements close to the wall. This was only true for later stages of the simulations that

had sufficient spatial resolution close to the wall.

Axis

As the lower edge of the geometry lies on the x axis, it is automatically set as the axis of

symmetry by Eilmer due to the axisymmetric configuration setting. The solver computes

the mass flux across the axis in this case, and if it is not sufficiently small terminates the

simulation.

Outlet

The test section and dump tanks are under a partial vacuum during a run. By specifying

the back-pressure at the outlet boundary, the partial vacuum can be accounted for during

a simulation. This is boundary condition is only suitable for short simulation times, as the

back-pressure changes over time due to the mass accumulation in the dump tanks. ‘Short’

in this case means 60ms or less, as at that point the back-pressure in the test section begins

to change. The boundary condition is set with OutFlowBC_FixedP:new{p}, where p is

the back-pressure in Pa.

Initial Domain Properties

The initial conditions are set as P = 500Pa, and T = 320K for the first run of each

simulation. vx = 300m/s was set as the flow in the simulations incorrectly initiated with

vx = 0m/s. Unphysical areas of recirculation occurred in the nozzle inlet for vx = 0m/s, so

specifying a non-zero velocity was done to mitigate against this. For multi-stage runs, the

initial conditions are set to the resultant conditions of the previous run (See Section 4.7).

4.6 Blocks

Fluid blocks are a grouping of cells and are defined in the input script by specifying a grid

and any applicable boundary conditions. Grids are defined by a reference quadrilateral

and row and column indices for the number of cells. The purpose of a block is to divide

the flow domain into discrete areas (or volumes for 3D simulations). For a 2D simulation,

each block can have a maximum of four sides (i.e it must be a quadrilateral) and is used
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to produce a grid (or mesh). The properties of the mesh can be controlled on a per-block

basis, and as such allow for quite complex flow domains and meshes to be created.

4.6.1 Fluid Block Arrays

A fluid block array is a variation of the standard block that further divides the flow do-

main into smaller ‘sub-blocks’. The number of sub-blocks are defined by indices for x and

y divisions. For jobs run on conventional consumer grade computers, fluid block arrays

provide little additional benefit. Jobs run on clusters (such as the USQ HPC) have the

ability to assign multiple processor cores to a block, and thus more cores to a job/simula-

tion. Using multiple processors can drastically reduce compute time. For instances where

numerous processor cores are assigned to the same job (i.e. it utilises Parallel computing),

it requires that the computational load is balanced across all the processor cores in use.

To do so, the following line of code is required at the end of the input script mpiTasks =

mpiDistributeBlocks{ntasks= nTasks , dist="load-balance"}.

4.7 Multi-Stage Simulations

Singular, high resolution simulations can be very computationally intensive. A way of

reducing the overall compute time is to run a series of simulations with progressively finer

meshes. Each subsequent job will utilise the solution data from the previous job as it’s

initial state. In other words, each simulation ‘picks up’ where the last one finished. Doing

so can reduce the compute time even further as the simulation is already initialised with

the expected (or at least estimated) flow field. This was implemented for all simulations

in the scope of this project and was defined in the input script by creating a flow solution

object ‘FlowSolution:new{}’ based on the previous run. This was then used to create a

flow state with the ‘makeFlowStateFn()’ function and specified as the initial state of the

flow domain.
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4.8 Chapter Summary

The nozzle simulations were set as 2D axisymmetric, with viscosity and the k-ω turbulence

model enabled. Each simulation was designed so that is was comprised of several stages

so that the solve time could be minimised where possible. For each consecutive stage,

the cell size was decreased until the required spatial resolution was achieved. The input

scripts and thus the simulations are otherwise identical. Wall functions were also enabled

for later stages. The boundary conditions were defined as :

Wall - Non-slip with a specified surface temperature, viscous effects, and k-ω turbu-

lence enabled. For later (highly resolved) stages of the multistage simulations wall

functions were enabled.

Axis - Nozzle centreline was set as the axis of symmetry. Set with the axisymmetry

option in Eilmer4.

Inlet - Inflow from stagnation conditions.

Outlet - Outflow with a specified back-pressure, P = 500 Pa.



Chapter 5

Methodology

5.1 Chapter Overview

This chapter details the approach taken to design and refine the mesh used in the simu-

lations.

5.2 Initial Mesh Revisions

The first mesh consisted of the nozzle and inlet and was made up of five blocks. As seen

in Figure 5.1a, the quality of the cells in this mesh was very poor. There were areas

of high skewness and poor orthogonal quality. This was due to the size and shape of

the blocks. The second mesh included the test section, and consisted of ten blocks. In

order to improve mesh quality near the inlet and at the throat the shape of each block was

modified. The initial mesh featured a single point that was the intersection of five separate

blocks which led to many cells in this area having high skewness and poor orthogonality.

The boundary layer block also terminated at the top of the cylinder at the end of the

Ludwieg tube which presented issues in the input script. Assigning the number of vertices

to each block was made difficult as some shared their x index with the y index of others.

The boundary layer block in the second revision was modified to join to an intermediate

block in the inlet which terminated at the inlet face. The top of the cylinder was assigned

it’s own block, which did not have any effect on the downstream blocks like with the first

mesh.
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For the purpose of illustrating the variations between each mesh revision, the following

figures only show the inlet and throat as these areas are the most geometrically complex

parts of the domain.

(a) Revision 1 - Initial mesh and geometry.

(b) Revision 2 - Mesh improved with modified blocks.

(c) Revision 3 - Mesh improved with clustering and modified blocks.

Figure 5.1: Mesh revisions one to three.
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5.3 Clustering

Clustering was implemented to control the distribution of cells in certain blocks. By

default, Eilmer4 automatically distributes the cells along each edge of the blocks while

attempting to maintain orthogonality between the cells. In cases where the geometry is

already orthogonal (the test section for example) it produces close to perfectly orthogonal

cells with minimal skewness. In other cases where block faces are not straight lines, cells

can be produced that are problematic. High skewness and poor orthogonality can often

be encountered in blocks with sides defined by arcs, splines, or Bezier curves. Clustering

can be used to improve mesh quality in these areas by constraining the cells so that they

are biased to one side of the block. Clustering can also be used to create areas of high cell

density or to reduce severity of the change in cell size between blocks. This is especially

useful to allow for the required spatial resolution to capture the effects of the viscous

boundary layer without increasing the cell count considerably. An example of clustering

can be seen in Figure 5.2.

(a) Un-clustered mesh. The intersection between

blocks is visible.
(b) Clustered mesh. Change in cell size between

blocks is now gradual.

Figure 5.2: Clustered and un-clustered variations of the mesh at the corner of the nozzle and

test section.
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Table 5.1: Number of cells (for a refine factor of 1) and sub-blocks in x and y each block.

Totals are also included for each block.

Block Cells x Cells y Sub-Blocks x Sub-Blocks y Sub-Blocks Cells

1 125 40 4 2 8 5000

2 125 20 4 1 4 2500

3 125 55 4 1 4 6875

4 60 40 2 2 4 2400

5 60 20 2 1 2 1200

6 120 40 3 2 6 4800

7 120 20 3 1 3 2400

8 900 40 12 2 24 36000

9 900 20 12 1 12 18000

10 830 40 12 2 24 33200

11 830 20 12 1 12 16600

12 830 120 12 3 36 99600

Total 139 228575

The throat and inlet of the final mesh is shown in Figure 5.4. Clustering was included

in this area to create a gradual change in cell size between blocks. In comparison to

Figure 5.1c, the final mesh has a more gradual change in cell size and a more consistent

cell size in the inlet section.

Figure 5.4: Cylinder end and nozzle throat.
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5.4.1 Mesh Quality

For this application, mesh quality is a crucial parameter. Figure 5.5 and Figure 5.6

show the cell skewness and edge length ratios for the most geometrically complex area

of the domain - the nozzle throat. Due to the nozzle contour and size reduction at the

throat, poor quality cells can easily be created. Clustering and appropriate positioning

and sizing of blocks has allowed for the creation of cells that are within reasonable mesh

quality tolerances.

The largest skewness value occurs in the nozzle inlet in the corners of blocks 3 and 5

where the skewness reaches a maximum of 0.59. Bakker (2006) and ANSYS Inc. (2010)

categorised cell skewness into six quality ranges as shown in Table 5.2. As the cell skewness

for the final mesh does not exceed 0.6, even the poorest cell skewness is still within

the acceptable range. Across the majority of the domain, the cell skewness would be

considered to be ‘good’ as values are less than 0.5. Cell aspect ratio is also no larger

than 13, with the highest edge length ratio occurring at the nozzle throat. This is much

smaller than the limit found by Chan et al. (2011) of 600. As such the mesh is of suitable

quality, and has no exceptionally poor quality cells.

Table 5.2: Cell Skewness ranges. Adapted from Bakker (2006) and ANSYS Inc. (2010).

Skewness 0-0.25 0.25-0.5 0.5-0.8 0.8-0.95 0.95-0.99 0.99-1

Cell Quality Excellent Good Acceptable Poor Sliver Degenerate

Figure 5.5: ParaView plot of skewness of the nozzle throat and inlet using the ‘Mesh Quality’

filter with the ‘Skew’ quadrilateral property. High skewness can be observed at the south east

corner of block 3 and the north west corner of block 5.
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Figure 5.6: ParaView plot of cell edge length ratio of the nozzle throat and inlet using the

‘Mesh Quality’ filter with the ‘Edge Ratio’ quadrilateral property. A maximum edge ratio of

12 occurs in the throat close to the wall. Values across the rest of the domain range between

1 and 5.

5.5 Non-Dimensional Distance to the Wall

As the model utilises the k-ω turbulence model as well as wall functions, the non-

dimensional distance to the wall (y+) is crucial in obtaining accurate results. As noted by

Nichols & Nelson (2004), a y+ of less than 100 allows the wall functions to produce rea-

sonable results. Very small y+ values were also found to be suitable for the k-ω turbulence

model by Chan et al. (2011) for supersonic flows. As such y+ < 100 would be suitable

for the simulations of the Mach 6 and Mach 7 nozzles. The flow data was analysed using

MATLAB and the wall y+ value for the nozzle contour was calculated using the equations

noted by White (2003).

The wall spacing (size of the first cell close to the wall) was estimated as the distance

between cell centres of the two rows of cells closest to the wall. This was used with the

centreline velocity, density, and viscosity to calculate the wall y+ for each cell along the

length of the diverging section of the nozzle. Shown in Figure 5.7 is the y+ value as a

function of x distance along the nozzle. As seen in the figure, the y+ value varies between

20 and 60. As the y+ value does not exceed 100 (shown by the wall spacing subplot in

Figure 5.7), the cell size close to the wall is small enough to provide the required spatial

resolution for the turbulence model and wall functions.
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Table 5.3: Properties of the core flow at the nozzle exit for each mesh. Number of cells in

each mesh is also included.

Cells δ (mm) vx (m/s) M P pitot (kPa) P (kPa) T (K)

Mesh 1 14188 50.1 995.4 5.69 225.1 5.561 76.83

Mesh 2 56934 36.6 1014.6 6.41 143.2 2.690 62.32

Mesh 3 2051800 15.2 1024.9 7.11 100.3 1.530 51.70

Mesh 4 3292000 15.1 1025.1 7.12 99.8 1.519 51.58

5.7 Chapter Summary

The mesh used in the simulations went through multiple revisions before it was suitable

for use. The final mesh included clustering to improve the uniformity of the cells and

utilised sub-blocks to allow for the simulations to be run efficiently using the USQ HPC.

The mesh quality was checked using ParaView and the cell skewness and edge length

ratio were found to be within acceptable ranges. Finally, a mesh independence study was

performed on the Mach 7 mesh and the optimum cell count was found to be 2.1×106.

Due to the similarity between the Mach 7 and Mach 6 meshes it was reasoned that the

Mach 6 mesh would also be of acceptable quality.



Chapter 6

Results

6.1 Chapter Overview

This chapter presents the results of the simulations for both nozzles and provides an

analysis on the effects of varying the stagnation condition. It also provides validation of

the Mach 6 simulation by comparing the results to historical experimental and theoretical

data.

6.2 Mach 6 Nozzle

The Mach 6 nozzle was run using four different stagnation conditions. These were 1MPa

575K, 1MPa 900K, 4MPa 575K, and 7MPa 575K. The plots shown below were produced

with MATLAB, all plots use the ‘Jet’ colour map. For extra information and code relating

to the analysis of the flow data, see Appendix D.

Shown in Figure 6.1 is the contour plot for Mach number for each stagnation pressure.

It can be noted from this figure that increasing the stagnation pressure also increases the

size of the expansion in the test section, and thus the Mach number closer to the outer

radius of the test section. This expansion is due to the different nozzle pressure ratios.

Nominal stagnation conditions of 1MPa at 575K coupled with a test section back-pressure

of 500Pa, produce a pressure ratio (PTP ) of 2000. The nozzle was designed to produce an

adapted flow, so assuming the path from inlet to outlet is isentropic (and γ = 1.4 for air),
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the ideal pressure ratio could be found as:

Po
P

=
(

1 + γ − 1
2 M2

) γ
γ−1

=
(

1 + 1.4 − 1
2 62

) 1.4
1.4−1

= 1578.9

For pressure ratios higher than this the nozzle outflow would be under-expanded. This

is noted to be the case for each stagnation pressure result to varying degrees. The nom-

inal condition of 1MPa produces a slightly under-expanded nozzle outflow, with a Mach

reflection forming just past the nozzle exit and converging on the nozzle centreline approx-

imately 600mm downstream. Expansion of the flow can be seen to occur at approximately

1.4m. With the 900K result, the expansion is shifted away from the nozzle exit by approx-

imately 200mm to x = 1.6m. The 4MPa stagnation pressure produces a pressure ratio

of 8000, which causes an even greater expansion than the nominal conditions. Expansion

begins at the nozzle exit and which causes the nozzle outflow to increase in diameter

significantly. The Mach reflection at the nozzle exit for this condition formed closer to

the exit plane than for the nominal condition. The 7MPa stagnation pressure produced

a similar Mach number distribution to the 4MPa stagnation pressure.
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Figure 6.1: Local Mach number contour plots for the test section under the four stagnation

pressures.

The nominal core flow regime for each stagnation condition is very similar at approxi-

mately Mach 6. The main difference, however is the size of the usable part of the core

flow which is shown in Figure 6.2. Locations where the Mach number was greater than

6.1 were replaced with white space. The nominal flow regime is Mach 5.9, so ±3% gives a

maximum of approximately Mach 6.1. This area (white space) is not suitable for exper-

imental purposes as the Mach number differs significantly from the required value. The

area adjacent to the nozzle exit (shown in red in each case) is the usable volume of the

core flow. For the 1MPa result it can be seen that the usable volume has a relatively

consistent radius immediately following the nozzle exit, which transitions to a triangular

area at x = 1.3m. The 4MPa and 7MPa results also show a decrease in radius at this

point and are somewhat similar in this regard. The exception to this is the 1MPa 900K

result, which has by far the largest usable volume, with the reduction in radius beginning

at x = 1.5m.
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Figure 6.2: Contour plots showing the area of usable core flow where the Mach number does

not exceed 6.1.
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6.2.1 Model Validation

The simulation results for the Mach 6 nozzle produced with the 1MPa 575K stagnation

condition was analysed using MATLAB. The results of the analysis included the average

core flow parameters at the nozzle exit plane. These results are shown in Table 6.1.

Table 6.1: Average core flow parameters at the nozzle exit for the viscous Mach 6 nozzle

simulation.

Property Unit Eilmer4 (Viscous)

M∞ - 5.874

P∞ Pa 708.66

T∞ K 72.54

ρ∞ g/m3 31.812

Ux,∞ m/s 1002.9

Ur,∞ m/s -1.568

Re ×106m−1 6.943

Birch (2019) presented results in their study for the Mach 6 nozzle for the same stagnation

conditions. They presented the expected nominal flow conditions as well as the results

of an inviscid Eilmer4 simulation. The nominal conditions were calculated based on

the assumption of isentropic flow for an outlet Mach number of M = 5.9. As such, the

properties listed under ‘nominal conditions’ were not measured experimental quantities,

but were instead theoretical estimates based on the expected Mach number. They also

presented plots of time averaged pitot pressure and Mach number over the duration

of a test run. Average values (for t < 50 ms) were interpolated from the plots (thus

introducing uncertainty) and are shown below. Flow conditions presented by Birch (2019)

are summarised in Table 6.2.
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Table 6.2: Flow parameters presented by Birch (2019).

Property Unit Nominal Conditions Time Averaged Eilmer4 (Inviscid)

M∞ - 5.9 5.925 5.98

Ppitot kPa 31.8 30.2 -

P∞ Pa 702 - 648

T∞ K 72 - 70.6

Ux m/s 1006 - 1007

Re ×106 m−1 6.94 - -

The average core flow parameters were found to be within 1% of the nominal flow con-

ditions. Percentage difference between the nominal conditions and the average core flow

values from the simulation results are shown in Table 6.3. The pitot pressure and Mach

number differed by 0.18% and 0.66% respectively compared to the time-averaged experi-

mental values. Flow parameters in the usable area in the test section are sufficiently close

to the time averaged values noted by Birch (2019), as well as the nominal flow conditions.

Thus the 1MPa simulation is a reasonably accurate representation of the flows produced

by TUSQ.

Table 6.3: Comparison to results obtained by Birch (2019)

Property Unit Nominal (Birch 2019) Viscous Eilmer4 Difference

M - 5.9 5.886 0.238%

P Pa 702 708.7 0.954%

Ppitot kPa 31.8 31.942 0.447%

T K 72 72.42 0.577%

Ux m/s 1006 1004.2 0.180%

Re ×106m−1 6.94 6.974 0.492%
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6.3 Mach 7 Nozzle

The Mach 7 nozzle was run using three different stagnation conditions. These were 1MPa

575K, 4MPa 575K, and 7MPa 575K. Like with the Mach 6 nozzle results, the plots shown

in this section were produced with MATLAB and utilise the ‘Jet’ colour map.

Using the isentropic flow relations again, the ideal pressure ratio for the Mach 7 nozzle is
Po
P = 4139.8. For the nominal stagnation pressure of 1MPa and back-pressure of 500Pa,

the pressure ratio is 2000. Shown in Figure 6.7 is the Mach number distribution in the

nozzle and test section. The 1MPa stagnation condition produced an over-expanded flow

(due to the lower pressure ratio), with the outflow decreasing in diameter until x ≈ 1.8m.

An oblique shock formed inside the diverging section of the nozzle, approximately 30mm

from the exit.

The 4MPa and 7MPa results appear to be under-expanded, and undergo a significant

expansion in the test section. The 7MPa result also shows some artifacting at the outer

wall of the test section at x = 1.5m. As these plots are produced from an average of three

time-steps, if any one time-step is significantly different to another the averaging process

will allow for areas with high Mach numbers appear in the final plot. The artifacting in

this figure is a direct result of this, meaning that the simulation would require to be run

for a longer flow time to prevent this from occurring. However, this does not affect the

results near the area of interest (i.e. the nozzle exit), and so the results were suitably

temporally resolved for the scope of the project.
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Figure 6.7: Local Mach number contour plots for the test section under the three stagnation

pressures. The 7MPa plot shows remnants of previous time-step data near the top of the test

section due to the averaging conducted as part of the post processing.

Figure 6.8 shows the usable core flow area (in red), where the Mach number does not

exceed Mach 7.2 (nominal flow regime is Mach 7, so ±3% gives a maximum of Mach 7.2).

The 1MPa result has the smallest usable area of the three stagnation conditions due to

the oblique shock, at approximately 500mm in length (x = 1.1m to x = 1.6m). The 4MPa

result produced the second largest usable area at 700mm in length. The 7MPa result had

areas of high and low Mach number towards the end of the usable core flow, again this

was caused because the solution was not sufficiently temporally resolved, however based

on the behaviour of the core flow area for the Mach 6 nozzle it is expected that the usable

area is somewhat similar to that of the 4MPa result.
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Figure 6.8: Contour plots showing the area of usable core flow where the Mach number does

not exceed 7.2.
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6.4 Flow Conditions

Table 6.4 and Table 6.5 show the average core flow conditions produced by each stagnation

condition for the Mach 6 and Mach 7 nozzles respectively. As Reynolds number is often

used as a scaling factor for experimental models, it can be of importance in determining the

size of the model. The Reynolds number ranges for the Mach 6 and Mach 7 nozzles based

on the current range of simulated stagnation conditions are 3.51×106 < ReM6 < 48.2×106

and 4.59 × 106 < ReM7 < 31.52 × 106 respectively.

Table 6.4: Mean core flow parameters at the nozzle exit for each stagnation condition for the

Mach 6 nozzle.

Po = 1MPa Po = 1MPa Po = 4MPa Po = 7MPa

Property Unit To = 575K To = 900K To = 575K To = 575K

M - 5.89 5.88 5.91 5.92

Ppitot kPa 31.94 32.12 126.16 218.84

P Pa 708.73 713.78 2778.84 4798.69

T K 72.42 113.32 72.00 71.72

Re ×106 m−1 6.97 3.51 27.70 48.24

Table 6.5: Mean core flow parameters at the nozzle exit for each stagnation condition for the

Mach 7 nozzle.

Po = 1MPa Po = 4MPa Po = 7MPa

Property Unit To = 575K To = 575K To = 575K

M - 7.06 7.10 7.12

Ppitot kPa 14.74 57.54 99.51

P Pa 227.87 879.16 1513.34

T K 52.28 51.70 51.54

Re ×106 m−1 4.59 18.17 31.52
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6.5 Chapter Summary

Validation of the Mach 6 nozzle simulation was performed and it was found that the flow

parameters at the nozzle exit differ by less than 1% compared to the nominal conditions

presented by Birch (2019). It was found that changing both the stagnation pressure and

temperature directly affected the flow parameters in the nozzle core flow. By increasing

the stagnation pressure and thus the pressure ratio, the flow became under-expanded.

The Reynolds number, pitot pressure and static pressure increased in proportion to the

stagnation pressure. Increasing the stagnation temperature had the opposite effect, with

the Reynolds number, pitot pressure, and static pressure decreasing in proportion to the

change in stagnation temperature. Increasing the stagnation temperature also increased

the size of the usable area at the nozzle exit by shifting the location of the beginning of

the Mach reflection further into the test section.

The simulation results showed that there was a direct correlation between stagnation

pressure and temperature and the flow parameters in the test section. The flow Reynolds

number (which is often used for scaling) can be increased or decreased by changing the

stagnation pressure and temperature without affecting the flow Mach number.



Chapter 7

Conclusions and Further Work

7.1 Conclusions

Several 2D axisymmetric simulations of the University of Southern Queensland Hyper-

sonic Testing Facility (TUSQ) were produced. These simulations were run using the

compressible flow solver Eilmer4 and have been validated against historical experimental

and theoretical data. The purpose of running multiple simulations was to determine the

variation of the flow parameters in TUSQ and how they were affected by changing the

nozzle stagnation conditions.

It was found that increasing the stagnation pressure produced under-expanded flow for

both the Mach 6 and Mach 7 nozzles, but did not greatly affect the usable area in the test

section. The Reynolds number, pitot pressure, and static pressure were found to increase

proportionally to the stagnation pressure. Increasing the stagnation temperature was

found to increase the size of the usable area in the test section, as well as decrease the

Reynolds Number and pitot pressure proportionally.

For the Mach 6 nozzle, the nominal stagnation conditions (of Po = 1MPa and To = 575 K)

produced a slightly under-expanded Mach 5.89 flow with a Reynolds number of 6.94×106

m−1 and pitot pressure of 31.8 kPa. The flow Mach number remained almost unchanged

for the other stagnation conditions. Stagnation conditions of 4MPa at 575K, and 7MPa

at 575K subsequently increased the Reynolds number and pitot pressure in proportion to

the increase in stagnation pressure. The remaining stagnation condition of 1MPa at 900K
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was found to decrease the Reynolds number and pitot pressure, with the change being

inversely proportional to the increase in temperature. This condition was also found to

increase the size of the usable area in the test section. The achievable range of Reynolds

number was 3.5×106 m−1 to 48.2×106 m−1 and the range of pitot pressure was 32.1 kPa

to 218.8 kPa.

For the Mach 7 nozzle, the nominal conditions produced an over-expanded Mach 7.05

outflow with an oblique shock formed at the nozzle exit. Like with the Mach 6 nozzle,

the Mach number remained unchanged for the other stagnation conditions. The range of

Reynolds number was 4.6×106 m−1 to 31.5×106 m−1 and the range of pitot pressure was

14.7 kPa to 99.5 kPa. The flow became under-expanded at higher stagnation pressures,

with size of the usable area remaining largely the same.

7.2 Further Work

Future work on characterisation of the TUSQ freestream may follow on from this study.

Possible areas of interest have been identified as:

• Characterisation of TUSQ’s Mach 4.5 nozzle

• Transient analyses of TUSQ
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B.1 Purpose and Function

This script is used to define and run the simulations in Eilmer4. It sets all required

configuration variables and defines the flow conditions, as well as the geometry and mesh.

This script was used as the basis for the Mach 7 nozzle simulations, with only the contour

and a few nozzle specific definitions being changed.

B.2 Script

-- Alister Webb

-- 10/04/2020

-- Eilmer4 input script for the TUSQ Mach 6 nozzle. Nozzle contour is

-- read from an external file.

-- Requires :

-- -- M6cont.dat

-- -- ideal -air -gas - model.lua

-- ######################################################################

-- Initialisation and Housekeeping

-- ######################################################################

-- For multi -stage simulations , the old flow solution is read in here:

--[[

fsolEnd = FlowSolution :new{ jobName =" Mach -6", dir ="../ STAGE_2 ", tindx =10,

nBlocks =139}

initial = makeFlowStateFn ( fsolEnd )

--]]

-- Now the standards

config.title = "TUSQ Mach 6 Nozzle , Turbulence and Viscous effects. "

print( config.title )

config.dimensions = 2

config.axisymmetric = true

config.viscous = true

config.turbulence_model = " k_omega "

-- Gas model

nsp , nmodes , gm = setGasModel ('ideal -air -gas - model.lua ')

print (" GasModel set to ideal air. Number of species =", nsp ,

" Number of modes =", nmodes )

stagCond = FlowState :new{p=1.0e6 , T=575.0 , velx =0.0 , tke =0.5 , omega =5}

-- ######################################################################

-- Geometry

-- ######################################################################
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-- Import Geometry from Space Separated .dat file

importFileName = " M6cont.dat "

contour = Spline2 :new{ filename = importFileName }

-- ----------------------------------------------------------------------

-- Translate contour into x+ and Create Required Geometry

-- ----------------------------------------------------------------------

cylinderLength = 0.13 -- Offset the nozzle contour into x+

cylinderDiameter = 0.065

shift = Vector3 :new{x = ( cylinderLength - contour (0) .x), y = 0} -- This is

-- the translation distance (in positive x) to move the entire contour

-- ( cylinder included ) into x+

contour = ArcLengthParameterizedPath :new{ underlying_path = contour }

-- Re - distribute the points so they 're now evenly spaced

contour = TranslatedPath :new{ original_path = contour , shift = shift}

-- Translate the path to the right into positive coordinates.

print ('Contour import and alignment... Done. ')

-- ----------------------------------------------------------------------

-- Diagram. Blocks and Nodes

-- ----------------------------------------------------------------------

-- number = node , * = wall , - = | =\ = block boundary

--

-- 19******************23

-- 4*********9 * |

-- | Block 3 * * Block 12 |

-- 3 - - - - - - - - -7********12********15********18 - - - - - - - - - - - - - - - - - - -22

-- | Block 2 | Block 5 | Block 7 | Block 9 | Block 11 |

-- 2---------6--------11--------14--------17-------------------21

-- | Block 1 | Block 4 | Block 6 | Block 8 | Block 10 |

-- 1---------5--------10--------13--------16-------------------20

--

-- | Driver | Throat | Diverging Section | Test Section |

--

-- For a more detailed drawing of the flow domain , see

-- Section 4.4 - Flow domain and Geometry

-- More detailed inlet section. Point 8 is located between points 7 and 9

-- and is the beginning of the nozzle contour :

--

-- 4********************************9

-- | *

-- | *

-- | Block 3 *

-- | 8 Contour Start

-- | *
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-- 3---------------------------------7***** *

-- | Block 2 / **12*****

-- | | Block 5 |

-- 2--------------------------------6---------11------

-- | Block 1 | Block 4 |

-- 1--------------------------------5---------10------

--

-- Blocks 1, 2, and 3 make up the cylinder / driver section.

-- Blocks 4 and 5 are the throat blocks.

-- Blocks 6, 7, 8, and 9 are the nozzle blocks

-- Blocks 10, 11, and 12 are the test section blocks.

-- Blocks 5, 7, and 9 are the in the boundary layer (and so are 2 and 11).

-- ----------------------------------------------------------------------

-- Finder function for a required x coordinate - for the path 'contour '

-- ----------------------------------------------------------------------

function findContourX (x)

-- Will return the value of t (where 0<t <1) for a given x coordinate

-- of a path object.

-- Set some local variables

local error = 1e -7

local iteration_Max = 100

local counter = 0

local min = 0

local max = 1

local mean = (min+max)/2

-- While loop to calculate the value of t

while math.abs ((x- contour (mean).x)/x)>error do

counter = counter +1 -- A counter to prevent an infinite while loop

if counter >= iteration_Max then

print ('Maximum iteration reached ')

break -- Error message

elseif x> contour (1) .x then

print (

'X coordinate not present in path object. Defaulted to t=0.5 ')

break -- Error message

elseif x< contour (0) .x then

print (

'X coordinate not present in path object. Defaulted to t=0.5 ')

break -- Error message

elseif contour (mean).x >x then -- Set upper range to the mean value

max = mean

elseif contour (mean).x <x then -- Set lower range to the mean value

min = mean
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end

mean = (min+max)/2 -- Recalculate the mean value for the next loop

end

return (mean) -- return a single numerical value.

end

-- Sub -range the contour into two parts either side of the narrowest point

-- of the throat and a small section to be used as part of the cylinder

-- wall and also parameterize each.

throatCenter = 0.1967 -- This distance (mm) is different for each contour :

-- M6 = 0.1967m , M7 = 0 .1755m

throatCentreLength = findContourX ( throatCenter ) -- t value

leftSplitLength = findContourX (0 .132) -- t value

-- 132 mm is past the cylinder wall and creates an intersection point that

-- minimises skewness.

contourLeft = ArcLengthParameterizedPath :new{ underlying_path =

ReversedPath :new{ underlying_path = SubRangedPath :new{ underlying_path =

contour , t0 = 0, t1 = leftSplitLength }}}

throatContour = ArcLengthParameterizedPath :new{ underlying_path =

SubRangedPath :new{ underlying_path = contour , t0 = leftSplitLength ,

t1 = throatCentreLength }}

divergingContour = ArcLengthParameterizedPath :new{ underlying_path =

SubRangedPath :new{ underlying_path = contour , t0 = throatCentreLength ,

t1 = 1}}

-- ----------------------------------------------------------------------

-- Diverging section Boundary layer path function

-- ----------------------------------------------------------------------

L0 = 0.0035 -- Throat area b.l. thickness

L1 = 0.02 -- Nozzle exit b.l. thickness

function BLContour (t)

F = divergingContour (t) -- Duplicate the nozzle contour

dt = 0.001 -- set the increment

if t < dt then

-- use the forward difference

left = t; right = t+dt

elseif t > 1 - dt then

-- use the backward difference

left = t-dt; right = t

else

-- otherwise use a point before and after the specified value

left = t-dt; right = t+dt

end

-- Calculate the value at each point and find the gradient
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rightPoint = divergingContour (right )

leftPoint = divergingContour (left)

dx = rightPoint.x - leftPoint.x

dy = rightPoint.y - leftPoint.y

-- calculate the normal by swapping the components. The new path will

-- be offset in negative y (down from the original ) hence '-dy '. May

-- not work with all geometry.

X = -dy; Y = dx

-- Calculate the magnitude of the normal and divide the x and y

-- components to create a unit vector.

-- Alternatively create a vector and use ': normalise () ' after calling

-- it.

X = X / (dx^2 + dy ^2) ^0 .5; Y = Y / (dx^2 + dy ^2) ^0.5;

-- Calculate the boundary layer thickness based on the two values

-- specified above.

L = L0 + t*(L1 -L0)

-- Find the coordinates of the point on the offset boundary layer path

-- and return those as the outputs in a table

xval = F.x - X*L

yval = F.y - Y*L

return {x=xval , y=yval}

end

offsetBLContour = ArcLengthParameterizedPath :new{ underlying_path =

LuaFnPath :new{ luaFnName =" BLContour "}}

-- ----------------------------------------------------------------------

-- Finder function for a required x coordinate - for the path 'BLContour '

-- ----------------------------------------------------------------------

function findBLContourX (x)

-- Same as above (save for the path object ), see comments there.

local error = 1e-7

local iteration_Max = 100

local counter = 0

local min = 0

local max = 1

local mean = (min+max)/2

while math.abs ((x- BLContour (mean).x)/x)>error do

counter = counter +1

if counter >= iteration_Max then

print ('Maximum iteration reached ')

break

elseif x> BLContour (1) .x then

print (

'X coordinate not present in path object. Defaulted to t=0.5 ')
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break

elseif x< BLContour (0) .x then

print (

'X coordinate not present in path object. Defaulted to t=0.5 ')

break

elseif BLContour (mean).x >x then

max = mean

elseif BLContour (mean).x <x then

min = mean

end

mean = (min+max)/2

end

return (mean)

end

-- ----------------------------------------------------------------------

-- Throat Boundary layer path function

-- ----------------------------------------------------------------------

L2 = 0.008 -- Inlet side area b.l. thickness -- M6 = 8mm , M7 = 5.5mm

L3 = L0 -- Throat b.l. thickness - Same as L0 above

-- Same as offset path function above

function smallBLContour (t)

F = throatContour (t)

dt = 0.001

if t < dt then

left = t; right = t+dt

elseif t > 1 - dt then

left = t-dt; right = t

else

left = t-dt; right = t+dt

end

rightPoint = throatContour ( right)

leftPoint = throatContour (left)

dx = rightPoint.x - leftPoint.x

dy = rightPoint.y - leftPoint.y

X = -dy; Y = dx

X = X / (dx^2 + dy ^2) ^0 .5; Y = Y / (dx^2 + dy ^2) ^0.5;

L = L2 + t*(L3 -L2)

xval = F.x - X*L

yval = F.y - Y*L

return {x=xval , y=yval}

end

throatBLContour = ArcLengthParameterizedPath :new{ underlying_path =

LuaFnPath :new{ luaFnName =" smallBLContour "}}
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-- Sub -range the path so that the curve does not end perpendicular to a

-- block boundary

throatBLContour = SubRangedPath :new{ underlying_path =

throatBLContour , t0 = 0.07 , t1 = 1}

-- ----------------------------------------------------------------------

-- Lines and points for the boundaries

-- ----------------------------------------------------------------------

-- Parameters

NozzleBLSplit = findBLContourX (0 .30) -- Corresponds with x=400mm ,

-- the separation point for the blocks in the diverging section.

NozzleContSplit = findContourX (0 .30) -- Also x=400 mm

-- -- Coordinates for the BL separation point , also the end of the nozzle

contourSplitLeft = contourLeft (0)

nozEnd = contour (1)

blEnd = offsetBLContour (1)

-- -- Measurements

testSectionL = 830/1000 -- test section length

testSectionR = 300/1000 -- test section radius

-- -- Corner points / nodes for each block , listed from bottom to top and

-- left to right as seen in the ASCII drawing above.

p1 = Vector3 :new{x = 0, y = 0}

p2 = Vector3 :new{x = 0, y = throatBLContour (0) .y}

p3 = Vector3 :new{x = 0, y = contourSplitLeft.y }

p4 = Vector3 :new{x = 0, y = cylinderDiameter }

p5 = Vector3 :new{x = 0.128 , y = 0} -- originally 127 mm

p6 = throatBLContour (0) --Vector3 :new{x = 0.128 , y = .y}

p7 = contourSplitLeft

p8 = Vector3 :new{x = cylinderLength , y = contour (0) .y}

p9 = Vector3 :new{x = cylinderLength , y = cylinderDiameter }

p10 = Vector3 :new{x = BLContour (0).x , y = 0}

p11 = offsetBLContour (0)

p12 = divergingContour (0)

p13 = Vector3 :new{x = 0.30 , y=0}

p14 = offsetBLContour ( NozzleBLSplit )

p15 = contour ( NozzleContSplit )

p16 = Vector3 :new{x = nozEnd.x , y = 0}

p17 = blEnd

p18 = nozEnd

p19 = Vector3 :new{x = nozEnd.x , y = testSectionR }

p20 = Vector3 :new{x = ( nozEnd.x + testSectionL ), y = 0}

p21 = Vector3 :new{x = ( nozEnd.x + testSectionL ), y = blEnd.y }

p22 = Vector3 :new{x = ( nozEnd.x + testSectionL ), y = nozEnd.y }

p23 = Vector3 :new{x = ( nozEnd.x + testSectionL ), y = testSectionR }
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-- Lines for block boundaries and interfaces - Naming convention for

-- interfaces is 'bxbyInter ', where x is the first block and y is the

-- second block. x and y are always consecutive e.g. 'b1b2Inter ' being

-- block 1 and 2 interface , not 'b2b1Inter ' or similar.

-- -- Inlet faces

inletBottom = Line:new{p0 = p1 , p1 = p2}

inletMid = Line:new{p0 = p2 , p1 = p3}

inletTop = Line:new{p0 = p3 , p1 = p4}

-- -- Horizontal lines for blocks 1-3 - includes interfaces

axisLeft = Line:new{p0 = p1 , p1 = p5}

b1b2Inter = Line:new{p0 = p2 , p1 = p6}

b2b3Inter = Line:new{p0 = p3 , p1 = p7}

cylinderTop = Line:new{p0 = p4 , p1 = p9}

-- -- Vertical cylinder and nozzle separation

b1b4Inter = Line:new{p0 = p5 , p1 = p6}

b2b5Inter = Line:new{p0 = p6 , p1 = p7}

cylinderRight = Polyline :new{ segments =

{ contourLeft , Line:new{p0 = p8 , p1 = p9 }}}

-- This is a composite path due to the end of the contour being part of

-- the cylinder end.

-- -- Horizontal lines for throat

axisThroat = Line:new{p0 = p5 , p1 = p10}

--b4b5Inter = throatBLContour --Line:new{p0 = p6 , p1 = p11}

b4b5Inter = ArcLengthParameterizedPath :new{ underlying_path =

Bezier :new{ points =

{p6 , Vector3 :new{x = (0 .95 *( p11.x +p6.x)/2) , y = p11.y}, p11 }}}

-- wallThroat = throatContour

-- -- Mid nozzle separation

b4b6Inter = Line:new{p0 = p10 , p1 = p11}

b5b7Inter = Line:new{p0 = p11 , p1 = p12}

-- -- Diverging section horizontal lines

axisDivergingL = Line:new{p0 = p10 , p1 = p13}

b6b7Inter = ArcLengthParameterizedPath :new{ underlying_path =

SubRangedPath :new{ underlying_path = offsetBLContour , t0 = 0,

t1 = NozzleBLSplit }}

b8b9Inter = ArcLengthParameterizedPath :new{ underlying_path =

SubRangedPath :new{ underlying_path = offsetBLContour , t0 = NozzleBLSplit ,

t1 = 1}}

b7Cont = ArcLengthParameterizedPath :new{ underlying_path =

SubRangedPath :new{ underlying_path = contour , t0 = throatCentreLength ,

t1 = NozzleContSplit }}

b9Cont = ArcLengthParameterizedPath :new{ underlying_path =

SubRangedPath :new{ underlying_path = contour , t0 = NozzleContSplit ,
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t1 = 1}}

axisDivergingR = Line:new{p0 = p13 , p1 = p16}

b6b8Inter = Line:new{p0 = p13 , p1 = p14}

b7b9Inter = Line:new{p0 = p14 , p1 = p15}

-- -- Test section and nozzle interfaces

b8b10Inter = Line:new{p0 = p16 , p1 = p17}

b9b11Inter = Line:new{p0 = p17 , p1 = p18}

testSectionLeft = Line:new{p0 = p18 , p1 = p19}

-- -- Horizontal test section interfaces

axisTestSec = Line:new{p0 = p16 , p1 = p20}

b10b11Inter = Line:new{p0 = p17 , p1 = p21}

b11b12Inter = Line:new{p0 = p18 , p1 = p22}

testSectionTop = Line:new{p0 = p19 , p1 = p23}

-- -- Outlets

outletBottom = Line:new{p0 = p20 , p1 = p21}

outletMid = Line:new{p0 = p21 , p1 = p22}

outletTop = Line:new{p0 = p22 , p1 = p23}

--

print('Points and lines... Done. ')

-- ----------------------------------------------------------------------

-- Quads - numbered according to blocks in diagram - Starts at 1

-- ----------------------------------------------------------------------

quad1 = makePatch { north = b1b2Inter , east = b1b4Inter , south = axisLeft ,

west = inletBottom }

quad2 = makePatch { north = b2b3Inter , east = b2b5Inter , south = b1b2Inter ,

west = inletMid }

quad3 = makePatch { north = cylinderTop , east = cylinderRight ,

south = b2b3Inter , west = inletTop }

quad4 = makePatch { north = b4b5Inter , east = b4b6Inter , south = axisThroat ,

west = b1b4Inter }

quad5 = makePatch { north = throatContour , east = b5b7Inter ,

south = b4b5Inter , west = b2b5Inter }

quad6 = makePatch { north = b6b7Inter , east = b6b8Inter ,

south = axisDivergingL , west = b4b6Inter }

quad7 = makePatch { north = b7Cont , east = b7b9Inter , south = b6b7Inter ,

west = b5b7Inter }

quad8 = makePatch { north = b8b9Inter , east = b8b10Inter ,

south = axisDivergingR , west = b6b8Inter }

quad9 = makePatch { north = b9Cont , east = b9b11Inter , south = b8b9Inter ,

west = b7b9Inter }

quad10 = makePatch {north = b10b11Inter , east = outletBottom ,

south = axisTestSec , west = b8b10Inter }

quad11 = makePatch {north = b11b12Inter , east = outletMid ,
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south = b10b11Inter , west = b9b11Inter }

quad12 = makePatch {north = testSectionTop , east = outletTop ,

south = b11b12Inter , west = testSectionLeft }

print('Quads... Done. ')

-- ----------------------------------------------------------------------

-- Grids and Meshing

-- ----------------------------------------------------------------------

-- Mesh size and refine val

refine = 3.0

-- Number of cells in each section , starting at ~1 cell/mm , Floor function

-- allows non - integer refine factors by 'rounding ' down to the lowest

-- integer.

--block1

nx1 = math.floor (125* refine ); ny1 = math.floor (40* refine ) -- core region

--block2

nx2 = nx1; ny2 = math.floor (20* refine ) -- boundary layer

--block3

nx3 = nx1; ny3 = math.floor (55* refine )

--block4

nx4 = math.floor (60* refine ); ny4 = ny1

--block5

nx5 = nx4; ny5 = ny2

--block6

nx6 = math.floor (120* refine ); ny6 = ny1

--block7

nx7 = nx6; ny7 = ny5

--block 8

nx8 = math.floor (900* refine ); ny8 = ny1

--block9

nx9 = nx8; ny9 = ny2

--block10

nx10 = math.floor (830* refine ); ny10 = ny1

--block11

nx11 = nx10; ny11 = ny2

--block12

nx12 = nx10; ny12 = math.floor (120* refine ) -- test section

-- Calculate the cells in each block

ncells1 = nx1*ny1

ncells2 = nx2*ny2

ncells3 = nx3*ny3

ncells4 = nx4*ny4

ncells5 = nx5*ny5

ncells6 = nx6*ny6
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ncells7 = nx7*ny7

ncells8 = nx8*ny8

ncells9 = nx9*ny9

ncells10 = nx10*ny10

ncells11 = nx11*ny11

ncells12 = nx12*ny12

-- Calculate and print the total number of cells.

ncells = ncells1 + ncells2 + ncells3 + ncells4 + ncells5 + ncells6 + ncells7 + ncells8 +

ncells9 + ncells10 + ncells11 + ncells12

print("Cell sizes defined. Total number of cells =", ncells )

-- ----------------------------------------------------------------------

-- Clustering Functions

-- ----------------------------------------------------------------------

-- -- Boundary layer

BLCluster = RobertsFunction :new{end0 = false , end1 = true , beta = 1.25}

-- -- Core flow

coreClustL = RobertsFunction :new{end0 = true , end1 = false , beta = 1.3}

coreClustMid = RobertsFunction :new{end0 = false , end1 = true , beta = 1.15}

coreClustR = RobertsFunction :new{end0 = false , end1 = true , beta = 1.35}

-- -- Cylinder , M6 = 1.25 , M7 = 1.1

topCylClust = RobertsFunction :new{end0 = true , end1 = false , beta = 1.25}

lowerCylClust = RobertsFunction :new{end0 = true , end1 = false , beta = 1.2}

-- Test Section Upper

testSecClust = RobertsFunction :new{end0 = true , end1 = false , beta = 1.15}

-- ----------------------------------------------------------------------

-- Grids

-- ----------------------------------------------------------------------

grid1 = StructuredGrid :new{ psurface = quad1 , niv = nx1 +1, njv = ny1 +1}

grid2 = StructuredGrid :new{ psurface = quad2 , niv = nx2 +1, njv = ny2 +1}

grid3 = StructuredGrid :new{ psurface = quad3 , niv = nx3 +1, njv = ny3 +1,

cfList = {west = topCylClust , east = topCylClust }}

grid4 = StructuredGrid :new{ psurface = quad4 , niv = nx4 +1, njv = ny4 +1,

cfList = {east = coreClustL }}

grid5 = StructuredGrid :new{ psurface = quad5 , niv = nx5 +1, njv = ny5 +1,

cfList = {east = BLCluster }}

grid6 = StructuredGrid :new{ psurface = quad6 , niv = nx6 +1, njv = ny6 +1,

cfList = {east = coreClustMid , west = coreClustL }}

grid7 = StructuredGrid :new{ psurface = quad7 , niv = nx7 +1, njv = ny7 +1,

cfList = {west = BLCluster , east = BLCluster }}

grid8 = StructuredGrid :new{ psurface = quad8 , niv = nx8 +1, njv = ny8 +1,

cfList = {east = coreClustR , west = coreClustMid }}

grid9 = StructuredGrid :new{ psurface = quad9 , niv = nx9 +1, njv = ny9 +1,

cfList = {west = BLCluster , east = BLCluster }}
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grid10 = StructuredGrid :new{ psurface = quad10 , niv = nx10 +1, njv = ny10 +1,

cfList = {west = coreClustR , east = coreClustR }}

grid11 = StructuredGrid :new{ psurface = quad11 , niv = nx11 +1, njv = ny11 +1,

cfList = {west = BLCluster , east = BLCluster }}

grid12 = StructuredGrid :new{ psurface = quad12 , niv = nx12 +1, njv = ny12 +1,

cfList = {west = testSecClust , east = testSecClust }}

print('Grid... Done. ')

-- ----------------------------------------------------------------------

-- Blocks and sub - blocks

-- ----------------------------------------------------------------------

-- Define the number of sub - blocks.

nib1 = 4; njb1 = 2 -- inlet block - bottom of cylinder

nib2 = nib1; njb2 = 1 -- inlet block - middle of cylinder

nib3 = nib1; njb3 = 1 -- upper inlet block

nib4 = 2; njb4 = njb1 -- core flow block in throat

nib5 = nib4; njb5 = njb2 -- bl block in throat

nib6 = 3; njb6 = njb1 -- leftmost core block in diverging section

nib7 = nib6; njb7 = njb2 -- leftmost BL block in diverging section

nib8 = 12; njb8 = njb1 -- rightmost core block in diverging section

nib9 = nib8; njb9 = njb2 -- rightmost bl block in diverging section

nib10 = 12; njb10 = njb1 -- core flow block in test section

nib11 = nib10; njb11 = njb2 -- bl block in test section - middle one

nib12 = nib10; njb12 = 3 -- upper test section block

--

blk1 = FluidBlockArray {grid = grid1 , initialState = initial , nib = nib1 ,

njb = njb1 , bcList = {west =

InFlowBC_FromStagnation :new{ stagnationState = stagCond }}}

blk2 = FluidBlockArray {grid = grid2 , initialState = initial , nib = nib2 ,

njb = njb2 , bcList = {west =

InFlowBC_FromStagnation :new{ stagnationState = stagCond }}}

blk3 = FluidBlockArray {grid = grid3 , initialState = initial , nib = nib2 ,

njb = njb2 , bcList = {north = WallBC_NoSlip_FixedT :new{Twall =300} ,

east = WallBC_NoSlip_FixedT :new{ Twall =300} ,

west = InFlowBC_FromStagnation :new{ stagnationState = stagCond }}}

blk4 = FluidBlockArray {grid = grid4 , initialState = initial , nib = nib4 ,

njb = njb4}

blk5 = FluidBlockArray {grid = grid5 , initialState = initial , nib = nib5 ,

njb = njb5 ,

bcList = { north = WallBC_NoSlip_FixedT :new{ Twall =300 ,

wall_function =true , group='loads '}}}

blk6 = FluidBlockArray {grid = grid6 , initialState = initial , nib = nib6 ,

njb = njb6}

blk7 = FluidBlockArray {grid = grid7 , initialState = initial , nib = nib7 ,
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njb = njb7 ,

bcList = {north = WallBC_NoSlip_FixedT :new{Twall =300 ,

wall_function =true , group='loads '}}}

blk8 = FluidBlockArray {grid = grid8 , initialState = initial , nib = nib8 ,

njb = njb8}

blk9 = FluidBlockArray {grid = grid9 , initialState = initial , nib = nib9 ,

njb = njb9 ,

bcList = { north = WallBC_NoSlip_FixedT :new{ Twall =300 ,

wall_function =true , group='loads '}}}

blk10 = FluidBlockArray {grid = grid10 , initialState = initial ,

nib = nib10 , njb = njb10 ,

bcList = {east = OutFlowBC_FixedP :new{ p_outside = 500}}}

blk11 = FluidBlockArray {grid = grid11 , initialState = initial ,

nib = nib11 , njb = njb11 ,

bcList = {east = OutFlowBC_FixedP :new{ p_outside = 500}}}

blk12 = FluidBlockArray {grid = grid12 , initialState = initial ,

nib = nib12 , njb = njb12 ,

bcList = { north = WallBC_NoSlip_FixedT :new{ Twall =300} ,

east = OutFlowBC_FixedP :new{ p_outside = 500} ,

west = WallBC_NoSlip_FixedT :new{ Twall =300}}}

print ('Fluid Block Arrays... Done. ')

-- ----------------------------------------------------------------------

-- Boundary Conditions and config

-- ----------------------------------------------------------------------

--

identifyBlockConnections ()

-- configuration settings

config.max_time = 3.0e -3 -- Max flow sim time (sec)

config.max_step = 12000000 -- Max num steps

config.dt_init = 1.0e -9 -- Initial time step

config.cfl_value = 0.5 --

config.dt_plot = 1.0e -4 -- Write snaps of the flow using this interval

config.dt_history = 10.0e -5 -- Write history points using this

--

config.adjust_invalid_cell_data = true

config.max_invalid_cells = 20

--

-- Distribute the blocks - For cluster operation

mpiTasks = mpiDistributeBlocks { ntasks =100 , dist="load - balance "}
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C.1 Purpose and Function

The code in this appendix was used to read text files exported from Eilmer4 via a post-

processing operation. These .txt files contained the flow data of the cells at the nozzle

exit plane, as well as the vertical line of cells 50mm downstream of the exit. The script

then compares the flow properties at these locations for each mesh, and produces the

plots shown in Section 5.6.

C.2 Script

%% m7MeshRef .m

% Alister Webb

% 5/10/2020

% Used to read and compare data from files created via Eilmer4 post

% processing operations .

%% Housekeeping

clc ,clear , close all

% Number of cells in each mesh

nCells = [14188 , 56934 , 2051775 , 3291959];

%% Enable or disable sections , change to true or false

plotVals = 0;

%% Directory and File Management

% This allows files in subfolders to be used without explicitly specifying

% an absolute path. Also works if the parent folder is moved.

S1 = pwd + "\" + [" m7meshRefS1Ex .txt "," m7meshRefS1Ex50 .txt "];

S2 = pwd + "\" + [" m7meshRefS2Ex .txt "," m7meshRefS2Ex50 .txt "];

S3 = pwd + "\" + [" m7meshRefS3Ex .txt "," m7meshRefS3Ex50 .txt "];

S4 = pwd + "\" + [" m7meshRefS4Ex .txt "," m7meshRefS4Ex50 .txt "];

%% Output file column headings for reference

% These are the headings present in the output files by default :

% 1: pos.x 2: pos.y 3: pos.z 4: volume 5: rho 6: vel.x 7: vel.y 8: vel.z 9:p 10:a

% 11: mu 12:k 13: mu_t 14: k_t 15:S 16: tke 17: omega 18: massf [0]- air 19:u 20:T

% 21: M_local 22: pitot_p 23: total_p 24: total_h

%% Read data

% Importing the data this way yields a warning message about variable

% names. Warnings are turned off for the import sections :

warning ('off ');

% Now import the data as a table.

stage1 = struct ;

stage2 = struct ;
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stage3 = struct ;

stage4 = struct ;

pos = ["ex"," ex50 "];

% variable names also have to be set as the original ones can 't be

% imported into MATLAB properly because they contain special characters .

varNames = {'x', 'y', 'z', 'volume ', 'rho ', 'vx', 'vy', 'vz ', 'p', 'a',...

'mu ', 'k', 'mu_t ', 'k_t ', 'S', 'tke ', 'omega ', 'massofair ', 'u',...

'T', 'mach ', 'pitot_p ', 'total_p ', 'total_h '};

for j=1:2

stage1 .( pos(j)) = readtable (S1(j));

stage1 .( pos(j)). Properties . VariableNames = varNames ;

stage2 .( pos(j)) = readtable (S2(j));

stage2 .( pos(j)). Properties . VariableNames = varNames ;

stage3 .( pos(j)) = readtable (S3(j));

stage3 .( pos(j)). Properties . VariableNames = varNames ;

stage4 .( pos(j)) = readtable (S4(j));

stage4 .( pos(j)). Properties . VariableNames = varNames ;

end

% Turn warnings back on

warning ('on ');

%% Average core flow V, M, P_pit , and T for each mesh

% Estimate core flow radius

BL = [ findBLThickness ([ stage1 .ex.y, stage1 .ex.vx]);...

findBLThickness ([ stage2 .ex.y, stage2 .ex.vx]);...

findBLThickness ([ stage3 .ex.y, stage3 .ex.vx]);...

findBLThickness ([ stage4 .ex.y, stage4 .ex.vx])];

coreS1 = 0.108 - BL (1);

coreS2 = 0.108 - BL (2);

coreS3 = 0.108 - BL (3);

coreS4 = 0.108 - BL (4);

% Values in the core flow region are:

s1 = array2table ( table2array ( stage1 .ex(( stage1 .ex.y< coreS1 ) ,:)),...

'variablenames ',varNames );

s2 = array2table ( table2array ( stage2 .ex(( stage2 .ex.y< coreS2 ) ,:)),...

'variablenames ',varNames );

s3 = array2table ( table2array ( stage3 .ex(( stage3 .ex.y< coreS3 ) ,:)),...

'variablenames ',varNames );

s4 = array2table ( table2array ( stage4 .ex(( stage4 .ex.y< coreS4 ) ,:)),...

'variablenames ',varNames );

% And the averages are

s1Av = array2table (mean( table2array (s1)), 'variablenames ',varNames );

s2Av = array2table (mean( table2array (s2)), 'variablenames ',varNames );

s3Av = array2table (mean( table2array (s3)), 'variablenames ',varNames );
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s4Av = (mean( table2array (s3)));

% All in one table (rows are stage number )

averages = array2table ([ mean( table2array (s1));mean( table2array (s2));...

mean( table2array (s3));mean( table2array (s4))],'variablenames ',...

varNames );

% And reynolds number is

Re = averages .rho .* averages .vx ./ averages .mu;

averages = addvars (averages , Re);

% Boundary layer thickness for reference

averages = addvars (averages , BL);

% Then percentage differences are

percDiff = array2table (100* abs(diff( table2array ( averages )))./...

table2array ( averages (1: end -1 ,:)), 'variablenames ',...

averages . Properties . VariableNames );

%% Plot the mean core flow parameters fo each mesh

% Can be toggled on or off

if plotVals == true

figure (2)

subplot (2 ,1 ,1)

title ('Average core flow parameters produced by each mesh ')

yyaxis left

plot ([1 ,2 ,3 ,4] , averages .mach)

ylabel ('Mach number ','interpreter ','latex ')

axis ([-inf ,inf ,5.5 ,7.5])

grid on

grid minor

yyaxis right

plot ([1 ,2 ,3 ,4] , averages . pitot_p ./1000)

ylabel ('Pitot Pressure (kPa)','interpreter ','latex ')

xticks ([1 ,2 ,3 ,4])

xticklabels ({ 'Mesh 1', 'Mesh 2', 'Mesh 3', 'Mesh 4'})

subplot (2 ,1 ,2)

yyaxis left

plot ([1 ,2 ,3 ,4] , averages .T)

ylabel ('Temperature (K)','interpreter ','latex ')

grid on

grid minor

yyaxis right

plot ([1 ,2 ,3 ,4] , averages .Re ./1 e6)

ylabel ('Reynolds Number ($\ times10 ^6$m$^{ -1}$) ','interpreter ','latex ')

xticks ([1 ,2 ,3 ,4])

xticklabels ({ 'Mesh 1', 'Mesh 2', 'Mesh 3', 'Mesh 4'})

set(gcf , 'PaperUnits ', 'centimeters ');
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set(gcf , 'PaperPosition ', [0 0 22 15]);

print('m7properties .eps ','-depsc ' ,['-r' num2str ( resolution )]);

end

%% Percentage differences between meshes

% Can be toggled on or off

if plotVals == true

vals = [ percDiff .mach , percDiff .pitot_p , percDiff .T, percDiff .Re ,...

percDiff .BL];

figure (3)

ax = axes;

ax. ColorOrder = [1 0 0; 0 0 1;0 1 0; 0 0 0;1 0 1];

hold on

for i=1:4

plot(vals (:,i))

end

hold off

ylabel ('\% difference ','interpreter ','latex ')

xticks ([1 ,2 ,3])

xticklabels ({ 'Mesh 1 to Mesh 2', 'Mesh 2 to Mesh 3',...

'Mesh 3 to Mesh 4'})

grid on

grid minor

title ('Percentage difference between subsequent mesh revisions ')

legend ('Mach number ', ' Pitot Pressure ', 'Temperature ',...

'Reynolds Number ')

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 22 10]);

print ('m7perc .eps ','-depsc ',['-r' num2str ( resolution )]);

end

%% Boundary layer thickness

function out = findBLThickness (input )

% Calculates the y coord at which the velocity is less than 99% of the

% average core flow. To start find the values that are within 85% of the

% maximum velocity to find the velocities that are in the core flow.

velAv = mean(input (0.850* max(input (: ,2))<input (: ,2) ,2));

% find the values that are within 1% of the average

coreflow = input (0.990* velAv <input (: ,2) ,:);

% The boundary layer thickness is then estimated as the difference between

% the last y value and the y value that corresponds to the slowest core

% flow velocity

out = max(input (: ,1))-coreflow (end ,1);

end
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D.1 Overview

The code in this appendix serves to post process the Eilmer4 results into a format usable

in MATLAB, and then perform analysis of the results using MATLAB. There are four

stages to the post processing operation:

• Process results with Eilmer4. This involves exporting the results to vtk-xml format

for ParaView.

• Process results with ParaView. The output of this stage is several .csv files for

MATLAB.

• Process results with MATLAB. This is an intermediate step for MATLAB. It serves

to read and average the flow data from the .csv files and store them in .mat format.

This is to reduce the load time for the MATLAB flow data.

• Create meaningful interpretations of the results using MATLAB.

D.2 Paraview Export

This script is run using ParaView’s Python shell, and reads the vtk-xml format files

produced by the Eilmer4 post processing operation. This operation produces one .csv

file for each timestep.

# trace generated using paraview version 5.8.0

# Modified by Alister Webb for import from vtk -xml and export to .csv

# 1/10/2020

#

import os

# Set the regime and stagnation condition . These set the output folder

regime = 'M6 '

cond = '1mpa '

# Set the filepath of the plot files ( Eilmer4 post processed )

# First is the parent directory

infilePath = ''

outfilePath = ''

# Second is the destination directory

intermediate = regime + '/' + cond + '/final /plot/'

#Set the output file name and path
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outputName = cond + '.csv '

out = outfilePath + regime + '/' + cond + '/' + outputName

# Get a list of all the files in the plot directory

fileList = os. listdir ( infilePath + intermediate )

# returns an array of filenames . Only the .pvtu files will be used , so:

# Preallocate

SplitNames = []

List = []

inputFNames = []

files = []

# For each filename

for x in fileList :

SplitNames = x.split('.') # Split it by '.' to get the file extension

if SplitNames [ -1] == 'pvtu ':

List. append ( SplitNames )

# 'List ' is a list of all the .pvtu files in the directory

# Now re - combine the name and extension

for a in List:

inputFNames . append (a[0] + '.' + a[1])

# Then add in the absolute filepath

for c in inputFNames :

files . append ( infilePath + intermediate + c)

# Finally pick the last three files (if there are more than three)

if len(files ) >=3:

files = [files [-3], files [-2], files [ -1]]

print (files)

# Remaining code was generated by ParaView using the 'trace ' functionality

####

#### import the simple module from the paraview

from paraview . simple import *

#### disable automatic camera reset on 'Show '

paraview . simple . _DisableFirstRenderCameraReset ()

# create a new 'XML Partitioned Unstructured Grid Reader '

Data = XMLPartitionedUnstructuredGridReader ( FileName =files)

Data. CellArrayStatus = ['pos.x', 'pos.y', 'pos.z', 'volume ', 'rho ', 'vel.x

', 'vel.y', 'vel.z', 'p', 'a', 'mu', 'k', 'mu_t ', 'k_t ', 'S', 'tke ', '

omega ', 'massf [0]- air ', 'u', 'T', 'M_local ', 'pitot_p ', 'total_p ', '

total_h ', 'vel. vector ']
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# get active view

renderView1 = GetActiveViewOrCreate ('RenderView ')

# uncomment following to set a specific view size

# renderView1 . ViewSize = [1611 , 593]

# get layout

layout1 = GetLayout ()

# show data in view

DataDisplay = Show(Data , renderView1 , 'UnstructuredGridRepresentation ')

# trace defaults for the display properties .

DataDisplay . Representation = 'Surface '

DataDisplay . ColorArrayName = [None , '']

DataDisplay . OSPRayScaleFunction = 'PiecewiseFunction '

DataDisplay . SelectOrientationVectors = 'None '

DataDisplay . ScaleFactor = 0.20168249607086183

DataDisplay . SelectScaleArray = 'None '

DataDisplay . GlyphType = 'Arrow '

DataDisplay . GlyphTableIndexArray = 'None '

DataDisplay . GaussianRadius = 0.010084124803543091

DataDisplay . SetScaleArray = [None , '']

DataDisplay . ScaleTransferFunction = 'PiecewiseFunction '

DataDisplay . OpacityArray = [None , '']

DataDisplay . OpacityTransferFunction = 'PiecewiseFunction '

DataDisplay . DataAxesGrid = 'GridAxesRepresentation '

DataDisplay . PolarAxes = 'PolarAxesRepresentation '

DataDisplay . ScalarOpacityUnitDistance = 0.016032332614375748

# reset view to fit data

renderView1 . ResetCamera ()

# changing interaction mode based on data extents

renderView1 . InteractionMode = '2D'

renderView1 . CameraPosition = [1.008412480354309 , 0.15000000596046448 ,

10000.0]

renderView1 . CameraFocalPoint = [1.008412480354309 , 0.15000000596046448 ,

0.0]

# get the material library

materialLibrary1 = GetMaterialLibrary ()

# update the view to ensure updated data information
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renderView1 . Update ()

# save data

SaveData (out , proxy=Data , WriteTimeSteps =1,

Filenamesuffix ='_%d',

ChooseArraysToWrite =0,

PointDataArrays =[],

CellDataArrays =[ 'M_local ', 'S', 'T', 'a', 'k', 'k_t ', 'massf [0] - air ',

'mu ', 'mu_t ', 'omega ', 'p', 'pitot_p ', 'pos.x', 'pos.y', 'pos.z', '

rho ', 'tke ', 'total_h ', 'total_p ', 'u', 'vel. vector ', 'vel.x', 'vel

.y', 'vel.z', 'volume '],

FieldDataArrays =[],

VertexDataArrays =[],

EdgeDataArrays =[],

RowDataArrays =[],

Precision =5,

UseScientificNotation =0,

FieldAssociation ='Cell Data ',

AddMetaData =0,

AddTime =0)

# destroy Data

Delete (Data)

del Data

ResetSession ()
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D.3 Flow Data Import

D.3.1 Cell and Block Information Lua Script

This script is used to read an Eilmer4 flow solution and return the information for each

cell and each sub-block in separate text files. Cell information includes location (in x and

y), block number, sub-block number, and number of cells in the sub-block in x and y.

Block information includes; cells in x and y, and parent block number. These files are

used in the MATLAB import function getFlowData.m and are specific to each mesh.

-- get -cell - data.lua

-- Invoke with the command line:

-- $ e4shared --custom -post --script -file=get -cell - data.lua

-- Alister Webb 8/9/2020

print("Read flow solution ")

-- Specify the number of blocks (sub - blocks because of FluidBlockArrays )

-- in the flow solution and read the flow solution

nsb = 139

fsol = FlowSolution :new{ jobName ="Mach -6", dir="1mpa/final", tindx =last ,

nBlocks =nsb}

print ("Flow solution read","\n", "fsol=", fsol)

-- Create a text file for the output

fName = "cell - data.txt "

-- Find the number of sub - blocks in each block using the indices from the

-- input script.

topCylY = 1; blY = 1; coreY = 2; topTestY = 3

cylX = 4; thrX = 2; intermX = 3; nozX = 12; testX = 12

-- And tabulate them (the row now corresponds to the parent block number )

subBlockDiv = {

{nib = cylX , njb = coreY}, -- Bottom of the cylinder

{nib = cylX , njb = blY}, -- Middle of the cylinder

{nib = cylX , njb = topCylY }, -- Top of the cylinder

{nib = thrX , njb = coreY}, -- Throat core flow block

{nib = thrX , njb = blY}, -- Throat boundary layer block

{nib = intermX , njb = coreY}, -- Intermediate Nozzle core flow block

{nib = intermX , njb = blY}, -- Intermediate Nozzle BL block

{nib = nozX , njb = coreY}, -- Nozzle core flow block

{nib = nozX , njb = blY}, -- Nozzle boundary layer block

{nib = testX , njb = coreY}, -- Lower test section block

{nib = testX , njb = blY}, -- Middle test section block

{nib = testX , njb = topTestY } -- Upper test section block
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}

-- Then the cumulative number of sub - blocks in each block tabulated

Cnb = {0} -- We need a zero point to work out ranges below

for b = 1, # subBlockDiv do

Cnb[b+1] = Cnb[b] + subBlockDiv [b].nib* subBlockDiv [b].njb

end

-- Open the file and write the comma separated header row

f = assert ( io.open (fName , "w"))

f:write("nic", ",", "njc", ",", " subBlock ", ",", "nib", ",", "njb", "," ,

"block", ",", "x", ",", "y", "\n")

-- Print a file creation message

print ("File " ..fName.. " Created ")

-- For each sub -block , find the number of cells in x and y

for ind = 0, nsb -1 do

nj = fsol: get_njc (ind)

ni = fsol: get_nic (ind)

-- Then look through the table of cumulative sub -block numbers and

-- find which indices the sub - block number is between

for k = 1, #Cnb -1 do

if (ind +1) >= (Cnb[k]+1) and (ind +1) <= Cnb[k+1] then

nb = k-- Then set the block number to that index

end

end

-- For each row of cells in y

for j = 0, nj -1 do

-- and then for each cell in x

for i = 0, ni -1 do

-- Load the cell data for this cell

cellData = fsol: get_cell_data {ib=ind , i=i, j=j}

-- Write the number of cells in x and y for that sub -block ,

-- the sub - block number , the parent block number , and the x

-- and y coordinates for this cell

f:write(ni , ",", nj , ",", ind +1, ",", subBlockDiv [nb].nib ,

",", subBlockDiv [nb].njb , ",", nb ,

",", cellData ["pos.x"], ",", cellData ["pos.y"], "\n")

end

end

end

-- Close the file and display a message upon completion

f:close ()

print (" Indices and block numbers for all cells written to " ..fName )

--

fName = "sub -block - data.txt "
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-- Create a new file to write the sub -block information to. Open it and

-- write the comma separated header row

f = assert ( io.open (fName , "w"))

f:write("nic", ",", "njc", ",", " subBlock ", ",", "nib", ",", "njb", "," ,

"block", "\n")

-- Print a file creation message

print ("File " ..fName.. " Created ")

-- For each sub -block , find the number of cells in x and y

for ind = 0, nsb -1 do

nj = fsol: get_njc (ind)

ni = fsol: get_nic (ind)

-- Then look through the table of cumulative sub -block numbers and

-- find which indices the sub - block number is between

for k = 1, #Cnb -1 do

if (ind +1) >= (Cnb[k]+1) and (ind +1) <= Cnb[k+1] then

nb = k-- Then set the block number to that index

end

end

-- Write the number of cells in x and y for that sub -block , the

-- sub -block number , and the parent block number

f:write(ni , ",", nj , ",", ind +1, ",", subBlockDiv [nb].nib , ",",

subBlockDiv [nb].njb , ",", nb , "\n")

end

-- Close the file and display a message upon completion

f:close ()

print (" Indices and block numbers for all sub - blocks written to " ..fName )
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D.3.2 MATLAB Flow Data Import Function

The data exported from ParaView is a comma separated list containing the cell data.

Each cell and it’s data occupies a row. The list can be subdivided into groups of cells for

each row in each sub-block. The import script reads all the data, then uses the cell and

block information obtained with get-cell-data.lua to determine where these groups of

cells occur in the .csv file. It then arranges the data for each cell into a table containing

an array for each property. The output arrays(inside the table) are m × n where m is

the number of cells in the tallest part of the domain and n is the number of cells in the

length of the domain. Areas where there no cells are replaced with NaN. This function is

called in ‘dataProcessor.m’.

%% getFlowData .m

% Alister Webb

% 16/09/2020

% Reads the flow data from a .csv file based on the cell and block

% information in two text files.

% Based on the block arrangement below

%

% _________ @---------@--------------------@

% @---------@---------@ | | |

% | Block 3 | *NaN* | *NaN* | *NaN* | Block 12 |

% @---------@---------@---------@---------@--------------------@

% | Block 2 | Block 5 | Block 7 | Block 9 | Block 11 |

% @---------@---------@---------@---------@--------------------@

% | Block 1 | Block 4 | Block 6 | Block 8 | Block 10 |

% @---------@---------@---------@---------@--------------------@

%

% | Driver | Throat | Diverging Section | Test Section |

%

% For a more detailed drawing of the flow domain , see

% Section 4.4 - Flow domain and Geometry

%

% Sections shown as *NaN* are filled with NaN later in the script so that

% the entire flow domain can be represented in an array (with x columns

% and y rows)

%% Full flow domain cell data import function

function outTable = getFlowData (datafName , cellDatafName ,...

blockDatafName )

% Read the list of cells . Warnings are turned off for this as MATLAB has

% to change the variablenames due to them having special characters
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warning ('off ')

data = readtable ( datafName );

warning ('on')

% Read cell and sub - block information ( Generated by get -block -data.lua)

cellinfo = readtable ( cellDatafName );

subBlockInfo = readtable ( blockDatafName );

% Put the cell data into an array to use in the loops

dataArray = table2array (data);

% Set the number of blocks and sub - blocks

nblocks = cellinfo .block (end);

nsubblocks = cellinfo . subBlock (end);

% Preallocate the cell array that will contain the cell data that is

% sorted by sub -block

subBlocks = cell(nsubblocks , 1);

% Then the number of variables of interest

numVars = size(data ,2) -4;

for j = 1: nsubblocks

% Create a temporary data array containing the cell data of all the

% cells in block j

temp = dataArray ( cellinfo . subBlock ==j ,:);

% Preallocate the initial result matrix

Z = zeros( subBlockInfo .njc(j), subBlockInfo .nic(j), numVars );

% Calculate the number of rows of cells in this block

numRows = subBlockInfo .njc(j);

for k = 1: numVars

% Reset the initial row offset for each variable

row0 = 1;

for m = 1: numRows

% Find the rows of the data array that need to be used

rows = row0 :( row0+ subBlockInfo .nic(j) -1);

% Find the row offset for each group of cells

row0 = rows (:, end)+1;

% Allocate the cells to their respective rows

Z(m, :, k) = temp(rows ,k) ';

end

% Allocate the collection of cell data to the index of subBlocks

% that corresponds to the sub -block number

subBlocks {j} = Z;

end

end

% Preallocate a cell array for the block data

output = cell(nblocks ,1);

% Set the initial row offset
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row0 = 0;

for k = 1: nblocks

% Find the block definitions ( contains the information for all the

% sub - blocks in the block)

blockDefs = subBlockInfo ( subBlockInfo .block ==k ,:);

blockRows = max( blockDefs .njb (: ,:));

blockCols = max( blockDefs .nib (: ,:));

% Find the number of sub - blocks in this block , as well as the rows to

% include in the temporary array

numSubBlocks = blockRows * blockCols ;

inRows = (1: numSubBlocks )+row0;

row0 = inRows (end);

temp = subBlocks (inRows ,:);

% Preallocate the second loop output array Z2

increment = 1: max( blockDefs .njb):size(blockDefs ,1);

columns = sum( blockDefs .nic( increment ));

increment2 = 1: max( blockDefs .nib):size(blockDefs ,1);

rows = sum( blockDefs .njc( increment2 ));

Z2 = nan(rows , columns , numVars );

output0 = 0;

for m = 1: max( blockDefs .njb (: ,:))

% Another temporary variable

outRows = (1:( max( blockDefs .njb (: ,:))): numSubBlocks )+(m -1);

intermediate = temp(outRows ,:);

% Find the number of cells in x

xTot = 0;

for x = 1: length ( intermediate )

xTot = xTot+size( intermediate {x},2);

end

% And in y

yTot = size( intermediate {x} ,1);

% Preallocate

Z = nan(yTot , xTot , numVars );

col0 = 1;

colOffset = 0;

for n = 1: length ( intermediate )

% Put the sub -block data in it 's respective columns in the

% block data array

col = (col0:max(size( intermediate {n} ,2)))+ colOffset ;

colOffset = col(end);

Z(:, col , :) = intermediate {n};

end

% Then for instances where there are multiple rows of sub -blocks ,
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% put each row in it 's place in the output

outputrows = (1: max( blockDefs .njc))+ output0 ;

output0 = outputrows (end);

Z2(outputrows , : ,:) = Z;

end

% Place each block 's data in a cell in the output cell array

output {k} = Z2;

end

% Combine the blocks into the separate sections in x (i.e. blocks 1, 2,

% and 3 are section 1, and are all stacked on top of each other ...

sections = {};

sections {1} = [ output {1}; output {2}; output {3}];

sections {2} = [ output {4}; output {5}];

sections {3} = [ output {6}; output {7}];

sections {4} = [ output {8}; output {9}];

sections {5} = [ output {10}; output {11}; output {12}];

yMax = size( sections {5} ,1);

% Then add in NaN values to pad out the unused y values so there is

% whitespace in any contour plots that may be made

for p = 1: length ( sections )

sections {p} = [ sections {p}; nan(yMax -( size( sections {p},1)),...

size( sections {p},2), numVars )];

end

fullDomain = [ sections {1} , sections {2}, sections {3} , sections {4} ,...

sections {5}];

% Preallocate the final output table

outTable = table (zeros(size(fullDomain ,1) ,0));

for q = 1: size( fullDomain ,3)

outTable = addvars (outTable , fullDomain (:,:,q));

end

% Clip the first empty column and give the table variable names

outTable (: ,1) = [];

varNames = {'x', 'y', 'z', 'volume ', 'rho ', 'vx', 'vy', 'vz ', 'p', 'a',...

'mu ', 'k', 'mu_t ', 'k_t ', 'S', 'tke ', 'omega ', 'mass_air ', 'u',...

'T', 'mach ', 'pitot_p ', 'total_p ', 'total_h '};

outTable . Properties . VariableNames = varNames ;

end
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D.3.3 MATLAB Processing and Export to .mat Format

This script uses the above function to read and average the flow data. Then it exports

the flow data as a .mat file to be loaded in the individual analysis scripts. There is one

output file for each nozzle: m6flowdata.mat and m7flowdata.mat.

%% DataProcessor .m

% Alister Webb

% 18/09/2020

% Read required flow data from csv and save them as .mat files for faster

% loading in data analysis scripts . Also time averages data where required

% Requires :

% - getFlowData .m

%{

% Referenced file structure :

Parent /

|-- DataProcessor .m

|-- MATLAB Analysis /

| -- flowdata .mat

|

|-- M6/

| |-- 1mpa/

| |-- 4mpa/

| -- 7mpa/

-- M7/

|-- 1mpa/

|-- 4mpa/

-- 7mpa/

%}

%% Housekeeping

clc ,clear , close all

%% Set file paths

cellfile = "cell -data.txt ";

blockfile = "sub -block -data.txt ";

parent = pwd;

child = ["\ M6 \" ,"\ M7 \"];

%% Preallocate variables :

% Preallocate output structure

fieldNames = {'m6stag1mpa ','m6stag4mpa ','m6stag7mpa ','m7stag1mpa ',...

'm7stag4mpa ','m7stag7mpa '};

% List the stagnation conditions ( subfolder names)

subfolder = {'1mpa\','4mpa\','7mpa\'};
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% Output field ( iterates during the loop)

field = 0;

% Output file prefix

noz = ["m6","m7 "];

%% Read each file and average the values over the number of files (steps)

% This is for both M6 and M7

for nRegs = 1:2

% Preallocate the output ( resets on each outer loop)

flowData = struct ;

% set the source directory to M6 or M7

destination = parent + child( nRegs );

% then for each subfolder :

cellInfo = destination + "cell -data.txt ";

blockInfo = destination + "sub -block -data.txt ";

for j = 1: length ( subfolder )

% File information

cd( destination + subfolder {j})

folderInfo = dir('*. csv ');

fNames = { folderInfo .name }; % List of .csv files in destination

% folder

cd( parent )

% Read the first flow data to 'preallocate ' the output . This is

% the easiest way to do it

filepath = destination + subfolder {j} + fNames {1};

initialData = getFlowData (filepath , cellInfo , blockInfo );

varNames = initialData . Properties . VariableNames ;

Z = nan(size( initialData .( varNames {1}))); % Set the size based on

% the first variable . Also preallocate the output cell array.

output = cell (0 ,0);

% Table variables are put into a cell array for ease of use.

for nVars = 1:( size( initialData ,2)) %i.e. number of flow variables

output {nVars } = initialData .( varNames {nVars });

end

% With the variables initialised in a cell array , the values from

% each timestep can be added to the initial one (If there 's only 1

% step this is skipped ):

if length ( fNames ) >=2

for numFiles = 2:( length ( fNames ))

filepath = ( destination + subfolder {j}+ fNames { numFiles });

tempData = getFlowData (filepath , cellInfo , blockInfo );

% sum the flow data into a numeric matrix

for nVars = 3:( size(tempData ,2))

%i.e. number of flow variables except the coordinates



D.3 Flow Data Import 102

output { nVars} = output {nVars} +...

tempData .( varNames {nVars });

end

end

end

% Find the average by dividing each matrix by the number of steps

data = tempData (: ,1:2);

for nVars = 3: length ( output )

%i.e. the number of flow variables except the coordinates

output {nVars} = output { nVars }./ length ( fNames );

data = addvars (data , output {nVars });

end

% Clip the first variable and set the variable names. Assign the

% flow data to a field inside a structure

field = field + 1;

data. Properties . VariableNames =...

initialData . Properties . VariableNames ;

flowData .( fieldNames {field }) = data;

end

% Then save the output variable as a .m file

fPath = 'MATLAB Analysis \' + noz(nRegs);

save( fPath + 'flowdata .mat ','-struct ','flowData ','-v7.3 ')

end
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D.4 MATLAB Analysis

This script is for the Mach 6 nozzle analysis and is very similar to the Mach 7 nozzle

analysis script (except for the comparison to historical data). The Mach 6 analysis file

compares the flow data to the data presented by Birch (2019). This script calls the

‘makeplots.m script which is a collection of plot functions, for this reason it is not included

here. makeplots.m was created to reduce clutter and make debugging easier.

%% M6_data_analysis .m

% Alister Webb

% 21/08/2020

% Used to read and compare data from files created via Eilmer4 post

% processing operations for the Mach 6 nozzle .

% Requires :

% -makeplots .m

% -m6flowData .mat

%% Housekeeping

clc ,clear , close all

%% Enable or disable sections , change to true or false

plotVals = 0;

% Figure number , increases after each figure

n = 1;

% Flow regime for output filenames

regime = 'M6_ ';

%% Data from Birch (2019)

% Experimental data and previous Eilmer4 data were tabulated on page 33 of

% Birch (2019) . Each row is for a specific Mach number , values can range

% between these. Columns are as follows :

% 1:Mach , 2: P_free , 3: T_free , 4:rho , 5: vel.x, 6: vel.r (vel.r =~= vel.y)

ExpData = [5.95 , 666 , 71.3 , 32.6e-3, 1007 , 0;...

5.85 , 740 , 73.4 , 35.1e-3, 1005 , 0];

EilmerData = [5.98 , 648 , 70.6 , 31.8 , 1007 , 0];

% Nominal test conditions were also listed as:

% 1:Mach , 2: P_free , 3: T_free , 4: vel.x, 5: pitot_p , 6: Re_x

refData = [5.9 , 702 , 72, 1006 , 31.8e3 , 6.94 e6];

%% Variable names for reference

% 'x', 'y', 'z', 'volume ', 'rho ', 'vx ', 'vy ', 'vz ', 'p', 'a', 'mu ', 'k',

% 'mu_t ', 'k_t ', 'S', 'tke ', 'omega ', 'mass_air ', 'u', 'T', 'mach ',

% 'pitot_p ', 'total_p ', 'total_h '

%% Read M6 data

% Import data from a a.mat file

loadedData = load('m6flowdata .mat '); % load puts the data into a structure
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% So the field needs to be referenced to extract the flow data:

stag1mpa = loadedData . m6stag1mpa ;

stag900k = loadedData . m6stag1mpa900k ;

stag4mpa = loadedData . m6stag4mpa ;

stag7mpa = loadedData . m6stag7mpa ;

% Extract the coordinate matrices to make future calculations easier

x = stag1mpa .x(1 ,:);

y = stag1mpa .y(:, end) ';

% Calculate and append Reynolds number to each stag cond

Re = stag1mpa .rho .* stag1mpa .vx ./ stag1mpa .mu;

stag1mpa = addvars (stag1mpa , Re);

Re = stag900k .rho .* stag900k .vx ./ stag900k .mu;

stag900k = addvars (stag900k , Re);

Re = stag4mpa .rho .* stag4mpa .vx ./ stag4mpa .mu;

stag4mpa = addvars (stag4mpa , Re);

Re = stag7mpa .rho .* stag7mpa .vx ./ stag7mpa .mu;

stag7mpa = addvars (stag7mpa , Re);

%% Extract Lines

% One at the exit plane and one 50mm downstream . The lines are

% (x1 ,y1 ,x2 ,y2):

exitPlane = [1.187 ,0 ,1.187 ,0.108];

testSec = [1.237 ,0 ,1.237 ,0.299];

% 1mpa

exit1mpa = extract (exitPlane ,x,y, stag1mpa );

test1mpa = extract (testSec ,x,y, stag1mpa );

% 1mpa @ 900k

exit900k = extract (exitPlane ,x,y, stag900k );

test900k = extract (testSec ,x,y, stag900k );

% 4mpa

exit4mpa = extract (exitPlane ,x,y, stag4mpa );

test4mpa = extract (testSec ,x,y, stag4mpa );

% 7mpa

exit7mpa = extract (exitPlane ,x,y, stag7mpa );

test7mpa = extract (testSec ,x,y, stag7mpa );

%% Estimate the boundary layer thickness at the exit plane

BL1mpa = findBLThickness ([ exit1mpa .y, exit1mpa .vx]);

BL900k = findBLThickness ([ exit900k .y, exit900k .vx]);

BL4mpa = findBLThickness ([ exit4mpa .y, exit4mpa .vx]);

BL7mpa = findBLThickness ([ exit7mpa .y, exit7mpa .vx]);

%% Average parameters for each stag cond. at the exit plane

totalVars = {'vx ','mach ','p','T'};

exit = struct ('s1mpa ',exit1mpa , 's900k ',exit900k , 's4mpa ',exit4mpa ,...

's7mpa ',exit7mpa );
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fields = fieldnames (exit);

cfDia = [0.108 ,0.108 ,0.108 ,0.108] - [BL1mpa ,BL900k ,BL4mpa , BL7mpa ];

for k = 1: length ( fields )

Z = table('size ' ,[0 ,0]);

cfD = cfDia (1,k);

for names = 1: length ( totalVars )

temp = exit .( fields {k}).( totalVars { names });

yvals = exit .( fields {k}).y;

temp = mean(temp (( yvals <cfD) ,:));

Z = addvars (Z,temp ,'NewVariableNames ',( totalVars {names }));

end

exitmeans .( fields {k}) = Z;

end

%% Average parameters for each stag cond. at 50 mm from the exit plane

test = struct ('s1mpa ',test1mpa , 's900k ',test900k , 's4mpa ',test4mpa ,...

's7mpa ',test7mpa );

fields = fieldnames (test);

cfDia = [0.108 ,0.108 ,0.108 ,0.108] - [BL1mpa ,BL900k ,BL4mpa , BL7mpa ];

for k = 1: length ( fields )

Z = table('size ' ,[0 ,0]);

cfD = cfDia (1,k);

for names = 1: length ( totalVars )

temp = test .( fields {k}).( totalVars { names });

yvals = test .( fields {k}).y;

temp = mean(temp (( yvals <cfD) ,:));

Z = addvars (Z,temp ,'NewVariableNames ',( totalVars {names }));

end

testmeans .( fields {k}) = Z;

end

%% Plot the test section parameters

% Requires makeplots .m

if plotVals == true

m6makeplots

end

%% Relative Difference to Pre - existing data

% The percentage difference will be found for the core flow at the exit

% plane:

% Assemble an array of data:

S1mpa = [ exit1mpa .mach , exit1mpa .p, exit1mpa .T, exit1mpa .vx ,...

exit1mpa .pitot_p , exit1mpa .Re];

% Find the values in the core flow ( outside the boundary layer) and averge

% them

coreFlow = mean(S1mpa( exit1mpa .y <0.09 ,:));
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% Then the percentage difference

PCD = percentDiff (refData , coreFlow );

% 1:Mach , 2: P_free , 3: T_free , 4:rho , 5: vel.x, 6: vel.r (vel.r =~= vel.y)

S1mpa = [ exit1mpa .mach , exit1mpa .p, exit1mpa .T, exit1mpa .rho ,...

exit1mpa .vx , exit1mpa .vy];

coreFlow = mean(S1mpa( exit1mpa .y <0.09 ,:));

PCD2 = maxDiff (ExpData , coreFlow );

%% Percentage difference function

% Requires two inputs of the same size

function out = percentDiff (dataset1 , dataset2 )

% percentage difference is the ratio of the difference to the average

out = 200* abs(dataset1 - dataset2 )./( dataset1 + dataset2 );

end

%% Boundary layer thickness

function out = findBLThickness (input )

% Takes a matrix of the values of y coordinate and x velocity [coord , vx]

% Calculates the y coord at which the velocity is less than 99% of the

% average core flow

% to start find the values that are within 85% of the maximum velocity to

% find the velocities that are in the core flow. Then find the average

% core flow velocity .

velAv = mean(input (0.850* max(input (: ,2))<input (: ,2) ,2));

% find the values that are within 1% of the average

coreflow = input (0.990* velAv <input (: ,2) ,:);

% The boundary layer thickness is then estimated as the difference between

% the last y value and the y value that corresponds to the slowest core

% flow velocity

out = max(input (: ,1))-coreflow (end ,1);

end

%% Line and Area extraction function

function dataRange = extract (corners , x, y, data)

% Used to extract a smaller area of a larger dataset based on the

% specified corner coordinates , x, y, and dataset . Corner coordinates

% should be diagonally opposed to extract an area. Corner points that lie

% on the same x or y value will be used to extract a line between the

% coordinates .

% Find the coordinates closest to each specified point:

% x values

[~, xlowerBound ] = min(abs( repmat ( corners (1) , 1, numel(x(1 ,:)))-x));

[~, xupperBound ] = min(abs( repmat ( corners (3) , 1, numel(x(1 ,:)))-x));

% Then the range of the indices of the x vlaue input

xRange = xlowerBound :1: xupperBound ;
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% Then the x values that correspond to each point

xVals = x( xRange );

% y values

[~, ylowerBound ] = min(abs( repmat ( corners (2) , 1, numel(y(1 ,:)))-y));

[~, yupperBound ] = min(abs( repmat ( corners (4) , 1, numel(y(1 ,:)))-y));

% Then the range of the indices of the y vlaue input

ybound = [ ylowerBound , yupperBound ];

yRange = min( ybound ):1: max( ybound );

% Then the y values that correspond to each point

yVals = y( yRange );

% Extract the smaller area from the complete dataset for all variables

if numel(yVals )==1 %is the line horizontal ?

dataRange = table(zeros (numel( xRange ) ,0));

for j=1: size(data ,2)

temp = table2array (data (:,j));

dataRange = addvars (dataRange ,temp(yRange , xRange ) ');

end

elseif numel (xVals)==1 % is the line vertical

dataRange = table(zeros (numel( yRange ) ,0));

for j=1: size(data ,2)

temp = table2array (data (:,j));

dataRange = addvars (dataRange ,temp(yRange , xRange ));

end

else % the coords corners of a rectangle if the line is not horizontal or

% vertical

dataRange = table(zeros (numel( yRange ) ,0));

for j=1: size(data ,2)

temp = table2array (data (:,j));

dataRange = addvars (dataRange ,temp(yRange , xRange ));

end

end

% Clip the first column of the table because it contains only zeros due to

% the 'addvars () ' function

dataRange (: ,1) = [];

% Set the variable names to the originals

dataRange . Properties . VariableNames = data. Properties . VariableNames ;

end

%% Percentage difference outside a range

function out = maxDiff (range , dataset )

%Range must be 2*n and dataset must be 1*n.

% Will produce a single value for each entry in the dataset showing the

% maximum deviation outside a range . This value is signed and shows

% whether the data value is above or below the range , or if it resides
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% inside it.

% Create an anonymous percentage difference function

pcD = @(x,y) 100* abs(x-y)./(x);

% Then the min and max values

minVals = min(range);

maxVals = max(range);

% Preallocate the output

out = zeros(size( dataset ));

% Find where the values sit in the range

belowRange = dataset < minVals ;

aboveRange = dataset > maxVals ;

insideRange = or (~ belowRange ,~ aboveRange );

% Then calculate the percentage difference accordingly

out( insideRange ) = 0;

out( belowRange ) = -pcD( minVals ( belowRange ),dataset ( belowRange ));

out( aboveRange ) = pcD( maxVals ( aboveRange ),dataset ( aboveRange ));

end




