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Abstract

This project seeks to provide a theoretical and experimental foundation for the develop-

ment of a low-cost sensor system that can be easily deployed in a variety of situations

to indicate when conditions are conducive to the development of thunderstorm asthma

epidemics.

Thunderstorm asthma epidemics are a relatively rare phenomenon that occurs when a

thunderstorm deposits large amounts of pollen on a city or other densely populated area.

Events of this type usually result in numerous people suffering from acute onset asthmatic

symptoms, with many requiring subsequent medical treatment.

To determine the most viable option for the design of the sensor system an extensive

literature review was conducted, and the findings evaluated. From this research, it was

established that the most suitable approach was to use fluorescent spectroscopy techniques

targeting the intrinsic fluorophores present within the pollen grains. The aromatic amino

acids tryptophan and tyrosine are of interest due to strong emissions with absorption

maxima within the wavelength achievable with UV LED technology and emission maxima

within the spectral sensitivity range of silicon photomultipliers. To this end, the project

aims to demonstrate the viability of using protein fluorescence for pollen detection.

A prototype sensor was constructed using readily available materials and tested using

multiple pollen grains (20-30) with satisfactory results. Additional experimental tests to

establish the single-particle sensing characteristics of the sensor was successful with the

detection of a single hibiscus pollen grain (20µm) noted.

The results of the experiments showed that ultraviolet light-induced fluorescence targeting

tryptophan is a viable means of detecting pollen and could be a suitable technique to use

for the development of the pollen sensing system.
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Chapter 1

Introduction

1.1 Overview

This dissertation aims to provide a theoretical and experimental framework to enable the

development of an easily deployable real-time pollen sensing system that can be used to

provide a continuous count of airborne pollen particles to enable advanced warning of

potential thunderstorm asthma epidemics.

1.2 Background

Thunderstorm induced asthma is a potentially life-threatening condition that can not

only affect people susceptible to allergic rhinitis but can also affect people who would

normally be asymptomatic or mildly symptomatic to airborne pollen. Epidemic levels of

thunderstorm asthma occur when a thunderstorm deposits substantial amounts of pollen

onto a large population centre and has the potential to overwhelm emergency services and

hospitals with large numbers of people presenting with asthma like symptoms. Moreover,

thunderstorm induced asthma epidemics have been reported worldwide (Losappio, Heffler,

Contento, Falco, Cannito & Rolla 2012).
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1.3 Melbourne Thunderstorm Asthma Epidemic

An epidemic thunderstorm asthma event of unprecedented scale and severity struck Mel-

bourne Australia on November 21, 2016 as a storm front moved across the city between

1700h and 1830h AEDT and deposited a large amount of rye grass pollen on the densely

populated urban areas. Over the next 2 days around 3500 patients inundated local hos-

pital emergency departments exhibiting asthma like symptoms. From the 3500 presen-

tations 35 admissions to intensive care were made with 9 subsequent deaths (Lee, Kron-

borg, O’Hehir & Hew 2017). Interestingly, a substantial number of the people who were

affected reported being outdoors between 1700h and 2000h after the thunderstorm had

passed (Lee et al. 2017). It was also noted that that many of the people presenting to

emergency departments had never experienced asthma symptoms before (Guest 2017).

Subsequent studies and analysis of the thunderstorm asthma epidemic revealed that rye

grass pollen was a major causal factor in the epidemic with pollen traps recording over

100 grains/m3on the 21st of November.

1.4 Problem Statement

Problem Statement Pollen measurement and forecasting technologies and techniques avail-

able at the time of the Melbourne thunderstorm asthma epidemic failed to predict the

occurrence and severity of the event. Moreover, the pollen counting stations that were

operational around Melbourne were not able to provide real-time pollen counts to alert

emergency services and susceptible people of the impending risks.

1.5 Ideation

Considering the events of the 2016 Melbourne thunderstorm asthma epidemic it is evi-

dent that a need exists for a reliable network of real-time pollen monitoring sensors that

can provide a timely warning of conditions which are conducive to thunderstorm asthma

epidemics. If a sensor network could be deployed around population centres real-time

pollen counts and meteorological data could be combined to provide warnings and im-
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prove forecasting techniques. This information could be used to alert emergency services

of a possible thunderstorm asthma epidemic event occurring and to prepare accordingly.

Additionally, susceptible people could also use this information to seek shelter and min-

imise exposure to the allergens. While there are several sensor systems and techniques

that can be employed to detect airborne particle like pollen, generally these systems are

expensive, complex, and require a time consuming laboratory analysis. These factors

make such systems not readily able to be adapted for continuous sampling of allergens in

metrological stations. What is required is a cost-effective sensor system that is reliable,

low maintenance, with high availability that can reliably detect single grains of pollen

continuously in all weather conditions.

1.6 Project Aim

The goal of this work is to provide an initial investigation into the practicality of develop-

ing a low cost easily deployable automatic pollen sensing system that utilises commercially

available materials and equipment.

1.7 Project Objectives

1. Conduct a literature review to aid in the understanding of thunderstorm induced

asthma, the physical and chemical composition of pollen, and to research various

sensing techniques that could be employed for real-time pollen detection in outdoor

metrological stations.

2. Determine the most practical sensing techniques to use for the sensing system con-

sidering limited resources.

3. Design and build a prototype sensor.

4. Collect pollen samples and test the sensor with real pollen (static sample).

5. Determine the sensor’s optimal operational parameters with the goal of single par-

ticle detection.

6. Redesign the sensor system with the information collected from objective 5.
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7. Using the collected pollen samples test the sensitivity of the sensor to determine if

single particle detection is feasible.

1.8 Project Limitations

This project is intended to investigate and deliver the foundational knowledge and experi-

mental observations necessary to determine the feasibility of the chosen sensing technique

and does not intend to deliver a fully functional calibrated instrument ready for use.

1.9 Project Consequences

In considering the events of the Melbourne thunderstorm asthma epidemic it is reasonable

to assume that had a timely warning been raised alerting the people of Melbourne and

surrounding areas to the high pollen counts that many people could have taken precautions

to avoid unnecessary exposure to the airborne allergens. This could have resulted in

fewer people needing to seek assistance from emergency services and hospitals for severe

acute asthmatic symptoms. It is hoped that this project may provide the impetus for the

development of a low-cost sensor network that could be deployed widely around population

centres. Given the scale of the Melbourne epidemic, the burden of disease (thunderstorm

asthma) to the community should not be underestimated. A system that could provide

advanced warning of abnormal conditions could have significant public health benefits.
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1.10 Dissertation Overview

This dissertation is organized as follows:

Chapter 1 Introduction to the topic, background information na project ideation.

Chapter 2 Literature review to examine pollen and bio-aerosol sensing techniques with

an emphasis on methods that could be used to develop miniaturised sensor systems

with commercially available components.

Chapter 3 Examination, and evaluation of sensing methods and practices to deliver a

functional prototype.

Chapter 4 System design considerations and experimental verification of concepts and

sensor performance.

Chapter 5 Conclusion and Further Work.





Chapter 2

Literature Review

2.1 Chapter Overview

The purpose of this literature review is to provide the necessary theoretical knowledge to

identify the most suitable sensing technique that could be employed in the development of

the pollen sensing system. This chapter aims to provide an overview of the current state

of research into thunderstorm induced asthma, pollen, and techniques for the detection

of bio-aerosol particles.

2.2 Thunderstorm Asthma

Thunderstorm asthma epidemics are events that describe the occurrence when numerous

people (in a localised or widespread geographic area) experience sudden onset asthmatic

symptoms during or shortly after a thunderstorm has passed through the area. Typically,

symptoms can vary from mild to severe and can affect people that would not normally

be predisposed to asthma. It has also been noted that people that are outside during or

shortly after the thunderstorm has passed are more likely to experience symptoms (Lee

et al. 2017). Furthermore, thunderstorm asthma events have the potential to overwhelm

emergency services and hospitals with a sudden influx of people experiencing mild to

severe asthmatic symptoms (Lee et al. 2017).
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2.2.1 Causes

The causal mechanism for thunderstorm induced asthma is not well understood, but it is

believed to be produced by the generation of allergenic aerosol particles by thunderstorms

which can result in 2 ways (D’Amato, Liccardi & Frenguelli 2007). When a thunderstorm

is forming over an area of land that has numerous flowering plants the thunderstorm up-

draughts can pick up a significant amount of pollen and suspend this material within the

storm cloud. As the pollen enters the cloud, hydration occurs and the pollen grains rup-

ture by osmotic shock causing the inner material of the pollen to exude through the pollen

wall and release allergenic cytoplasmic starch granules which are typically 0.9–1.7µm in

size (D’Amato et al. 2007). These allergenic particles remain in the thunderstorm until

brought to the ground by downdraughts (Beggs 2017).

Figure 2.1: Pollen grain ruptured by osmotic shock (D’Amato et al. 2007).

An extension of this effect is the nucleation of small water droplets around the bio-aerosols

of the ruptured pollen grains. These small water drops coalesce to form raindrops within

the thunderstorm (Beggs 2017). As the rain starts to fall the allergenic nucleus of the

raindrop are carried to the ground where the formation of the allergenic aerosol occurs.
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When the raindrop hits a solid object, the drop dissipates and subsequently releases the

piece of ruptured pollen as an aerosol particle.

Figure 2.2: Proposed mechanism for thunderstorm asthma (Guest 2017).

Due to the small size of the aerosol particle, they can be inhaled into the airways much

deeper than a full grain of pollen. Typically, as pollen grains are greater than 10µm

in diameter, the grains generally do not enter the bronchial region of the airways and

are confined to the upper respiratory tract (D’Amato et al. 2007). Conversely, as the

cytoplasmic particles of ruptured pollen grains of the order of 2.5µm in diameter, these

particles can enter the bronchial regions of the lower respiratory tract and induce asthma

like symptoms (D’Amato et al. 2007).
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Figure 2.3: Simplified model of the human respiratory tract (Fröhlich-Nowoisky et al. 2016).

2.2.2 Prevalence

Thunderstorm asthma epidemics have been noted worldwide with events having been

recorded in Europe, North America, the Middle East, and Australia. Table 2.1 lists all

reported occurrence worldwide (excluding Australia) and Table 2.2 lists the reported

Australian events (Harun, Lachapelle & Douglass 2019).
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Table 2.1: Worldwide thunderstorm asthma events (excluding Australia)

Location Date Presentation to ED Preposed allergen trigger

UK, Birmingham 1983, July 106 Fungal Spores

UK, Nottingham 1984, June 19 Fungal Spores

UK, Leicester 1989, July 32 Fungal Spores

UK, London 1994, June 640 Grass Pollen

Canada, Calgary 2000, July 157 Fungal Spores, Pollen

UK, Cambridge 2002, July 57 Fungal Spores

Saudi Arabia, Al-Khobar 2002, November NS NS

Italy, Naples 2004, June 7 Pollen

UK, South-East England 2005, June 0 (none to ED) NS

Italy, Puglia 2010, May 20 Olive Pollen

UK, London 2013, July 40 NS

Iran, Ahvas 2013, November >2000 NS

Abbreviations: ED, Emergency Department; NS, Not Specified

Table 2.2: Australian thunderstorm asthma events

Location Date Presentation to ED Preposed allergen trigger

Melbourne 1984, November 85 NS

Melbourne 1987, November 154 NS

Melbourne 1989, November 277 Grass Pollen

Tamworth 1990, November 110 Grass Pollen

Wagga Wagga 1997, October 215 Grass Pollen

Newcastle 1998, October 6 Grass Pollen

Melbourne 2003, November 70 Grass Pollen

Melbourne 2010, November 36 Grass Pollen

Melbourne 2011, November 30 Grass Pollen

Canberra 2014, October 15 Grass Pollen

Melbourne 2016, November >3400 Grass Pollen

Abbreviations: ED, Emergency Department; NS, Not Specified

While the tables list major events of thunderstorm asthma, it is likely that many smaller

scale events are under-reported. Studies of asthma related emergency room visits following

thunderstorms have been conducted in both the US and Canada with the US study show-



12 Literature Review

ing a 3% increase in emergency room presentations post-thunderstorm with the Canadian

study showing a 35% increase in emergency room presentations post thunderstorm during

summer months (Harun et al. 2019).

2.2.3 Pollen Counting

Currently pollen counting and forecasting relies heavily on the use of particle traps and

optical microscopy. Particle traps generally employ an adhesive substance on a rod, drum,

or slide which is rotated or moved periodically to expose a new area of the adhesive

material to allow for the concentration at a given time to be established. The Hirst

particle trap is a typical device of this type that is deployed at pollen counting stations

to collect airborne pollen sample for identification and counting (Blank, Vinayaka, Tahir,

Vellekoop & Lang 2015).

In the Hirst trap figure 2.4 air is draw in at (2) and the particle adhere (1) to the recording

drum (3). An air pump (5)creates a continuous flow of air across the recording drum.

Figure 2.4: Hirst volumetric particle trap (Fröhlich-Nowoisky et al. 2016).
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Figure 2.5: Microscopy image of samples taken from a pollen trap in Melbourne at 6:30pm

on the 21 November 2016. Double arrows shows ruptured pollen grains with single arrow for

intact pollen grains (Guest 2017).

2.3 Pollen

Pollen is a fine-grained organic material produced by flowers and is used in the plants

reproductive cycle. The pollen is produced in the flower’s stamen by the anther where the

pollen sac is located (Eyde 2020). The purpose of the pollen is to transfer the flowers male

gametes (sperm cells) to a flowers stigma where the pollen will germinate and fertilise the

flower possibly resulting in seed or fruit generation (Eyde 2020).

Figure 2.6: Anatomy of a flower (brgfx 2020).
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2.3.1 Structure

Pollen generally, has a double-wall structure that encapsulates the pollen’s cytoplasm

where the semen is present (Quilichini, Grienenberger & Douglas 2015). The outer wall is

made of the outer exine and inner intine layers which protects the semen from solar radia-

tion and other environmental factors (Halbritter, Ulrich, Gŕımsson, Weber, Zetter, Hesse,

Buchner, Svojtka & Frosch-Radivo 2018). The exine is comprised mainly of the biopoly-

mer sporopollenin with the intine being comprised of cellulose and pectin (Halbritter

et al. 2018). The inner cytoplasm and semen are composed of lipids, proteins, and car-

bohydrates (Jensen 1968).

2.3.2 Size

Generally, the size of pollen grains is in the range of less than 10µm (Myosotis) to over

200µm (Cucurbita) and is dependant on the plant species, hydration levels, and natural

variation (Halbritter et al. 2018). Grass pollen (a primary allergenic pollen) normally

produces pollen in the size range of 20–25µm (Sporomex 2020). A sample of different

pollen and associated sizes is shown in figure 2.7 and table 2.3 (Sporomex 2020).
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Figure 2.7: Pollen grain size comparison (Halbritter et al. 2018).
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Table 2.3: Pollen size guide

Plant Species Size Range

Myosotis 2.4–5µm

Penicillium 3–5µm

Aspergillus niger 4µm

Cantharellus minor 4–6µm

Ganomerma 5–6.5µm

Chlorella Vulgaris 8–10µm

Oilseed rape 10–12µm

Agrocybe 10–14µm

Urtica dioica 10–12µm

Periconia 16–18µm

Epicoccum 20µm

Helianthus annuus 20µm

Ryegrass 21µm

Timothy grass 22µm

Rye 22µm

Wheat 23µm

Hemp 24µm

Lycopodium clavatum 25µm

Rape hemp 25µm

Lycopodium powder 40µm

Rye grass 40µm

Pine 50µm

Maize 80µm

Abies 125µm

Cucurbitapapo 200µm

Cuburbita 250µm

2.3.3 Composition

As an organic material pollen is not comprised of one unique substance, but is a combina-

tion of many different organic molecules. Pollen contains water, carbohydrates, proteins,

minerals, vitamins, unsaturated fats, and saturated fats (LILEK, GONZALES, BOŽIČ,

BOROVŠAK & BERTONCELJ 2015). Pollen also contains the essential amino acids

valine, methionine, histidine, lysine, threonine, isoleucine, leucine, arginine, and the aro-
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matic amino acids phenylalanine, tyrosine, and tryptophan which are all present in pollen

(Somerville 2001). Additionally, most of the amino acids in pollen are contained in the

outer exine layer of the shell (LILEK et al. 2015). This project will be concerned with

the aromatic amino acid tryptophan which is reported to have levels in pollen of between

0.028 g/kg to 0.197 g/kg (LILEK et al. 2015). Furthermore, the composition of pollen is

highly variable with season, region, country, and species all contributing to variations of

chemical composition (LILEK et al. 2015).

2.3.4 Physical Properties

Pollen is an extremely stable organic material that is resistant to many acid/alkaline

environments and can withstand temperatures of more than 200°C. Pollens are also very

elastic and can endure tonnes of pressure without damage (Sporomex 2020).

2.4 Bio-aerosol Detection Methods

The detection and classification of bio-aerosol particles has been a subject of research for

over 30 years especially from a military bio-weapons perspective. Broadly, techniques for

the detection and classification of bio-aerosol can be divided into two categories optical

and no-optical techniques.

2.4.1 Definition

Bio-aerosols are atmospheric particles that are produced by a biological organism and can

include fungal spores, plant pollen, algae, bacteria, proteins, viruses, and plant debris.

Particle sizes range from 1 nm (proteins) to 100µm(pollen) (Fröhlich-Nowoisky et al.

2016). Thee upper size limit for aerosol particle is defined by the particles ability to

remain suspended in the air for an extended period.
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2.4.2 Optical

Optical systems pertain to those techniques that utilise light from ultraviolet (UV), visible,

and infrared (IR) as the main sensing method.

Optical Microscopy

Optical microscopy involves schemes that capture the bio-aerosol particles on a filter or

adhesive media and where a trained operator uses a light microscopy to physically look at

the particles for identification and counting (Blank). While this technique produces excel-

lent results for pollen identification, the process is slow as filters or adhesive media are only

checked at given interval e.g. daily (Blank et al. 2015). Attempts are being made to au-

tomate the process using image classification techniques (machine learning) but currently

are achieving approximately 80% accuracy in identification (Kadaikar, Guinot, Trocan,

Amiel, Conde-Cespedes, Oliver, Thibaudon, Sarda-Estève & Baisnée 2019). Furthermore,

schemes for the continuous sampling of particles using robotic microscopy assemblies like

in figure 2.8. Are under development and could potentially provide near real-time pollen

counts (Blank et al. 2015).

Figure 2.8: Diagram of a proposed automatic optical particle sensor (Blank et al. 2015).

Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FTIR) spectroscopy is a technique that utilises infrared light

to obtain the infrared emission and absorption spectra of a given sample either solid, liquid

or gas. These spectra can be used to identify the substances present in the sample (Smith

n.d.). FTIR spectrometers utilise a polychromatic light source, Michelson interferometer,
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pyrolytic sensor, and computer system to process the interferogram into the frequency

domain to obtain the spectra.

Figure 2.9: FTIR Spectrometer major components (Panowicz et al. 2011).

The FTIR spectrometer works on the principle of scanning through the polychromatic

light using the interferometer to continuously select the desired wavelength (within the

resolution of the interferometer) of light which is then applied to the sample before going

to the detector. The desired wavelength of light is produced by the interference of light

(phase difference) caused by the difference in length between the stationary and delay

arms of the interferometer and is related to the position of the movable mirror in the

delay arm (Smith n.d.). The position of the movable mirror and the intensity information

from the detector is used to produce the interferogram. This is then processed back into

frequency domain by using an Fast Fourier Transform (FFT) algorithm to produce the

desired absorption and emission spectra.

FT-IR spectroscopy can be used to identify the composition of bio-aerosol particles and

can also discriminate between different species of plant pollen (Pappas, Tarantilis, Hariza-

nis & Polissiou 2003).

Laser Scattering

The use of laser scattering for particle detection is a well-established technique and can

be used to count, size, and identify particles. The process works by irradiating a sample

with laser light and measuring the forward, side, and backward scattered light (Shimadzu

2020). This information can be used to measure the particles size, surface, and light

absorption characteristics.
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Figure 2.10: Laser scattering (Shimadzu 2020).

The forward scattered light creates a diffraction pattern that is related to the size of

the particles being irradiated. Additionally, the intensity of the light measured by the

forward detector indicates the light absorption characteristic of the particles. The side

and backward scattered light can provide information about the surface reflectivity char-

acteristics of the particle. By combining these measurements, the size and composi-

tion of the detected particles and be determined (Kawashima, Clot, Fujita, Takahashi &

Nakamura 2007).

Fluorescent Spectroscopy

Fluorescent spectroscopy utilizes the principle of luminescent fluorescence for the detec-

tion and measurement of fluorophores (molecules that luminesce fluorescently). Fluores-

cent luminescence occurs when an atom absorbs a photon which moves an electron in an

excited singlet state (the excited electron is paired to an electron in the ground state by

opposite spin) and then emits a photon returning the paired electron to the ground state

spin (Lakowicz 2007). The wavelength of the emitted photon is generally longer and has

lower energy (Stokes shift) than the absorbed photon (Lakowicz 2007). The efficiency of

the process (is the ratio of the number of photons absorbed to the number of photons

emitted) is called the quantum yield (Lakowicz 2007).
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Figure 2.11: Fluorescent Spectrometer major components

(Panowicz et al. 2011).

Figure 2.12: Fluorescent spectra: excitation (left) emission (right) (Hooijschuur 2020).

Fluorescent spectrometers are relatively simple and work by irradiating the desired sam-

ple with monochromatic light followed by the detection of the resulting emissions from the

sample. The light source can be either polychromatic and employ a monochromator (fil-

ter) or can be intrinsically monochromatic. The detector usually employs a monochroma-

tor (of a wavelength appropriate to the emissions for the desired molecule) as detectors are
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normally sensitive to a wide spectral range (Lakowicz 2007). Fluorescent spectrometers

can be constructed to detect only one type of molecule or can employ multiple channels to

reliably identify more complex compounds like pollen (Kaliszewski, W lodarski, M lyńczak,

Leśkiewicz, Bombalska, Mularczyk-Oliwa, Kwaśny, Buliński & Kopczyński 2016).

2.4.3 Non-optical

Capacitive Sensing

Capacitive based sensor systems use highly sensitive capacitance measuring techniques

to detect particles moving through the sensor. These systems rely on the difference in

dielectric properties of particulate matter and air. Generally, the relative permittivity

of the particle will be greater than the relative permittivity of air and such will interact

with the electric field between the sensors electrodes resulting in an increase of capacitance

(Carminati, Pedalà, Bianchi, Nason, Dubini, Cortelezzi, Ferrari & Sampietro 2014).

Figure 2.13: Capacitive sensor architecture (Carminati et al. 2014).

A significant advantage of capacitive sensors is the scope for miniaturisation with the

possibility of being able to embed sensors of this type into personal portable devices like

smart watches (Carminati et al. 2014).

Time of Flight Mass Spectroscopy

Time of flight mass spectrometry is a mass spectroscopy technique that uses time of flight

measurements to determine the mass to charge ratio of a particle. As particles are drawn

into the spectrometer the particles are accelerated by a partial vacuum before being sized
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and velocity measured by scattering lasers. The particles are then desorbed and ionised

before entering the ion chamber (Tobias, Schafer, Pitesky, Fergenson, Horn, Frank &

Gard 2005). In the ion chambers the ions are subject to a constant electrostatic field

which interacts with the ions. The amount of interaction is dependent on the ions charge

with ions having a lower mass to charge ratio accelerating more than ions with higher

mass to charge ratio (Tobias et al. 2005). Using the information about the initial velocity

of the particles and the interactions the particle had with the electrostatic field in the ion

chambers, the mass to charge ratio can be determine and hence the chemical composition

of the particle.

Figure 2.14: Time of Flight Mass Spectrometer major components (Tobias et al. 2005).
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2.5 Chapter Summary

A review of the available literature has provided insight into potential sensing techniques

that could potentially be exploited for the purpose of detecting airborne pollen parti-

cles. These techniques range from automated optical microscopy and laser scattering

that can detect the size and shape of particles to analytical chemical techniques like flu-

orescent spectroscopy, Fourier transform infrared spectroscopy, and time of flight mass

spectroscopy that can provide information at the molecular level. Additionally, the chem-

ical and physical characteristics of pollen have also been investigated and will provide a

means by which to evaluate the suitability of the sensing techniques for the purpose of

this design and provide a direction for the design process.



Chapter 3

Methodology

3.1 Chapter Overview

The purpose of this chapter is to analyse and select an appropriate detection method

for the development of the pollen sensing system with the aim of developing a prototype

using cost effective commercially available components and materials.

3.2 Literature Review Analysis

The literature review has provided direction for the design process and revealed several

important considerations for the sensor system. To initiate the design process an under-

standing of the chemical and physical composition of pollen is required and will facilitate

the evaluation of the suitability of the proposed detection methods established by the

literature review.

3.2.1 Pollen

Pollen is a complex organic material that contains many molecules that could be targeted

for detection purposes. Carbohydrates, proteins, amino acids, vitamins, and minerals are

all present in pollen and can provide a means to discriminate pollen from other airborne

particles like carbon or dust. Physically, pollen grain sizes range from approximately
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2–200µm and are found with a variety of surface characteristics and shapes figure 2.3.

Furthermore, particles of ruptured pollen are irregular in shape and size with samples of

¡1µm in size being noted (Beggs 2017).

3.2.2 Pollen Detection Criteria

Analysis of the literature review has provided the following pollen detection criteria which

are intended as a guide to evaluate the proposed sensing techniques.

� Carbohydrates, proteins, and amino acids could be targeted as a detection means

to discriminate between organic and inorganic particles.

� Single particle detection of pollen grains >2µm on a continuous basis.

� Detection of submicron ruptured pollen is highly desirable.

3.2.3 Detection Techniques Analysis

Evaluation of the selected detection techniques from the literature review against the

pollen detection criteria provides insight into the most suitable processes.

Optical Microscopy

Optical microscopy techniques are the current standard detection method and provide

high levels of information regarding airborne particles. Automation of this process is

being investigated by research organisations and should be able to provide near real-

time detection. Optical microscopy techniques and equipment have the following general

characteristics.

� Proven technology.

� Good discrimination of particle types.

� Identification of different pollen species possible.

� Requires consumables e.g. adhesive media
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� Automated implementation requires precision moving parts e.g. focus mechanisms,

tape drives, and optics.

� Slow compared to other techniques.

Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy is a proven analytical technique that can iden-

tify and discriminate between organic and inorganic molecules. The process can achieve

single particle detection and can provide additional information about the composition

of inorganic particles for air quality monitory purposes. IR spectroscopy equipment and

techniques have the following characteristics.

� Excellent information about particles.

� Identification of different pollen species possible.

� Scan time approximately 1 sec per sample.

� Numerous moving parts and precision optics required.

� Would require some mechanism to capture particles for analysis (adhesive tape,

electrostatics).

Laser Scattering

Laser scattering techniques are widely deployed for both particle detection and sizing in

gases and liquids. Commercially available instruments of this type are readily available as

both sensors and full systems. Back scattering and forward absorption measurements can

be made by laser scattering sensor systems which can yield information about the particles

composition and help determine if the particle is organic or inorganic. Laser scattering

techniques and equipment have the following characteristics Proven established technique

for particle detection.

� Fast response.

� Capable of yielding particle size information.

� Detection of surface characteristics by forward absorption, and back scattering
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� Potential for the discrimination of biological and non-biological particles.

� Many commercially available particle detectors use this technique.

Fluorescent Spectroscopy

Fluorescent spectroscopy is an established technique for the detection of fluorescent

molecules in organic and inorganic materials. Highly sensitive detectors and precision

optical filters can achieve single particle detection. Fluorescence spectrometry equipment

and techniques have the following characteristics.

� Well established technique for the detection of amino acids.

� No moving parts or precision mechanisms.

� Monochromatic light source required.

� Does not require any consumables.

Capacitive Sensing

Capacitive sensing of airborne particles is possible using either parallel plate or coplanar

architectures which could be used to develop compact sensors. Discrimination between

organic and inorganic particles maybe achievable. Capacitive sensors have the following

characteristics.

� Low cost.

� No moving parts.

� High sensitivity electronic measurement circuitry required.

� Sensor does need periodic cleaning.

� Susceptible to environmental conditions.

� Unknown if this sensor can discriminate effectively between organic and inorganic

particles in all environmental conditions.



3.3 Conceptual System Design 29

Capacitive Sensing

Mass spectroscopy is a powerful analytical technique for molecular analysis and could

provide high levels of information about airborne particles. Discrimination between or-

ganic and inorganic molecules is achievable and pollen species identification could also be

realised. Mass spectroscopy equipment and techniques have the following characteristics.

� Excellent ability to gather information about particle composition.

� Complex with many precision parts.

� Trained operator required.

3.3 Conceptual System Design

To create a conceptual system design, several requirements for the sensor system were

developed and will provide a means to evaluate the researched detection techniques and

are as follows.

� No moving parts except a fan (if possible).

� No precision mechanical/optical mechanisms.

� No consumables.

� Minimum number of optical filters and detectors (1 ideally).

� Low cost components that are commercially available from major electronic supply

companies.

� Low maintenance, high availability of service.

3.3.1 Evaluation of the Sensing Techniques

Evaluation of the techniques against the conceptual design criteria was done using the

following scheme. If the technique meets the criteria than a score of one is registered.

Alternatively, if the technique does not meet the criteria than a score of zero is registered.
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The technique with the highest overall score is assumed to be the most suitable for further

evaluation. Capacitive and mass spectroscopy techniques were not considered viable for

further evaluation due to complexity and issues with building a prototype given limited

resources and time.

Table 3.1: Sensing techniques evaluation matrix

Evaluation Matrix
Sensing Techniques

Optical FTIR Laser Fluor

C
ri

te
ri

a

Moving parts 0 0 1 1

Precision components 0 0 1 1

Detectors 1 1 0 1

Maintenance 1 0 1 1

Consumables 0 0 1 1

Cost 1 0 1 1

Score 3 2 5 6

Selection

Evaluation of the detection methods identified in the literature review suggest that fluo-

rescent spectroscopy is the most viable candidate for the development of a sensor system

capable of single particle detection of pollen.

3.4 Fluorescent Spectroscopy

Fluorescent spectroscopy utilizes the principle of luminescent fluorescence for the detec-

tion and measurement of fluorophores (molecules that luminesce fluorescently). Fluores-

cent luminescence occurs when an atom absorbs a photon which moves an electron in an

excited singlet state (the excited electron is paired to an electron in the ground state by

opposite spin) and then emits a photon returning the paired electron to the ground state

spin (Lakowicz 2007). The wavelength of the emitted photon is generally longer and has

lower energy (Stokes shift) then the absorbed photon (Lakowicz 2007)). The efficiency

of the process (the ratio of the number of photons absorbed to the number of photons

emitted) is called the Quantum Yield (Lakowicz 2007).
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3.4.1 Intrinsic Protein Fluorescence

Intrinsic protein fluorescence results from the essential aromatic amino acids tryptophan

(trr), tyrosine (tyr) and phenylalanine (phe) which are present in proteins. Tryptophan is

the dominant source of UV emission and absorption in proteins and is the primary target

of the investigation (Lakowicz 2007). The 3 aromatic amino acids chemical structure is

shown in figure 3.1.

Figure 3.1: Intrinsic biochemical fluorophores (Lakowicz 2007).
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Figure 3.2: Absorption and emission spectra of the fluorescent amino acids in water of pH

7.0 (Lakowicz 2007).

From the absorption and emission spectra in figure 2.11 it can be seen that tryptophan

has an absorption peak around 280 nm and emission peak around 350 nm. Additionally,

tyrosine also has an absorption peak around 280 nm and an emission peak around 300 nm.

Furthermore, these values are only valid for tryptophan dissolved in water as tryptophan

is highly sensitive to its local environment with emission shifting resulting from several
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phenomena, such as protein unfolding and ligand binding (Lakowicz 2007).

While tryptophan is the primary target molecule, tyrosine could also be detected if a

wavelength of 340nm is selected for the detector. This would yield approximately 20%

emission intensity for tyrosine and a 50% emission intensity for tryptophan. From this

information a sensor system can be tailored to exploit this relationship with an excitation

UV light source at 280 nm and a UV sensitive sensor at 340nm.

3.4.2 Fluorescent Spectrometer

At its simplest form, a fluorescent spectrometer is comprised of a monochromatic light

source, a monochromator (filter) and a detector which is sensitive to the fluorescent

emission wavelength of interest. A simple fluorescent spectrometer is shown in figure 3.3.

Figure 3.3: Conceptual fluorescent spectrometer (Hooijschuur 2020).

Component Analysis

The selection of individual components will be of critical importance to the performance of

the final sensor design. Given the aim of developing a low-cost sensor system performance

and cost are the most important metrics to consider when selecting components.

UV Light Source

UV light sources available for this design include UV light emitting diodes (LED), UV
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quartz flash lamps, and Excimer lamps. UV flash lamps are Xenon flash lamps with fused

quartz envelopes which are transparent to UV light. These lamps have a wide spectral

output and would need filtering to be of use in this design (XenonFlashTubes.com 2020).

UV Excimer lamps are a discharge lamp and are available in several different configura-

tions with spectral maximums ranging from vacuum ultraviolet (VUV) to ultraviolet A

(UVA) (Kogelschatz 2003). As Excimer lamps are monochromatic no additional filtering

is necessary resulting in lower construction costs. UV LED’s are available in numerous

narrow peak spectral wavelengths and power outputs from ultraviolet A (UVA) to ultra-

violet C (UVC) and are relatively compact and robust. As the LED’s are available with

narrow spectral outputs there is no additional need to filter the UV light from the light

source resulting in lower design costs. Additionally, it is possible to change the driving

current to adjust the light intensity. The advantage of this is that the LED’s current draw

can be minimised to lower power consumption and reduce heating of the LED prolonging

the life of the light source The selection of a suitable light source was based on ease of use,

price, and availability. UV flash and Excimer lamps require ballasts and driving circuitry

to operate and are intended for either flash or continuous operation. Alternatively, UV

LED’s require only a constant current source (for best operation) and can be used either

in continuous wave or strobe output. Additionally, UV LED’s are easier to acquire with

most major electronics supply companies stocking numerous examples. UV flash and Ex-

cimer lamps are more specialised and are not as readily available. Based on these metrics

UV LED’s were selected for the design.

Photodetector

With the primary aim of the research being to perform single particle detection of sub-

micron pieces of ruptured pollen a high gain photodetector will be required. The most

suitable commercially available detectors are photomultiplier tubes (PMT) and silicone

photomultipliers (SiPM). Photomultiplier tubes consist of a glass (or similar transparent

material) envelope, a photocathode, and a series of dynodes. Photomultiplier tubes op-

erate when an incident photon/s hit the photocathode resulting in an emitted electron/s

that are accelerated and amplified by the dynodes which can result in gains exceeding 106

(Hamamamtsu 2007). Photomultiplier tubes require a high voltage supply (> 1000V ) to

drive the dynodes and are susceptible to damage from intense light sources when ener-

gised.

Silicone photomultipliers are semiconductor devices that consist of an array of single pho-
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ton avalanche photodiodes. SiPM operate where the reverse bias voltage across the p-n

junction exceeds the breakdown voltage of the junction resulting in a very high electric

field across the device (SensL 2018). When a photon strikes the device an avalanche

of electrons are displaced causing a sharp rise in current. When this occurs the inte-

grated quenching resistor, lowers the reverse bias voltage across the junction quenching

the avalanche and resetting the diode (SensL 2018). Depending on the reverse bias volt-

age, gain can approach 106. Silicon photomultipliers operate with low reverse bias voltages

(< 30V ) and are not damaged by high intensity incidental light.

For this design, the SiPM has been chosen as the detector because of low biasing voltages

and not being susceptible to damage by high intensity incidental lighting.

Optics The primary optical component of the prototype sensor is the bandpass filter for

the detector. A filter with a centre wavelength of 340 nm ± 10 nm is the preferred option

to limit interference from unwanted sources.
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3.5 Chapter Summary

Critical evaluation of the literature review has indicated that ultraviolet light induced

protein fluorescence should be the most suitable detection technique for the development

of the sensor system. Analysis of the chemical and physical characteristics of pollen sug-

gests that targeting the fluorescent amino acids tryptophan and tyrosine should provide a

suitable means to detect airborne biological particles. This approach could also aid in the

discrimination between organic and inorganic particles as inorganic particles would not

contain amino acids. For the prototype design the sensor system will utilise an 280 nm

UV LED for the light source, a 340 nm ± 10 nm UV bandpass filter, and a SiPM as the

photodetector.



Chapter 4

System Design and Experimental

Verification of Concepts

4.1 Chapter Overview

The purpose of this chapter is to outline the development process for the pollen sensing

system. This section will deal primarily with the theoretical design, practical implemen-

tation, and experimental verification of the validity of using intrinsic protein fluorescence

for the detection of pollen particles.

To develop the sensor system an understanding of the signal level obtained from the irra-

diated pollen is essential to be able to design the necessary amplifiers and data acquisition

circuitry. To acquire this knowledge several graded experiments were undertaken using

tryptophan and pollen.

4.2 System Design

4.2.1 Component Selection

The selection of components for the project was based on performance, cost, and avail-

ability of the necessary materials from major electronic suppliers. Due to the impact of

COVID-19 and the shutting of borders in early 2020 the components that were selected
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for this design were adequate (not necessarily optimal) and available for a reasonable

price.

Ultraviolet Light Emitting Diode The UV LED that was selected for this design

was the RayVio RVXD-280-SB-071005. The LED has a 280 nm nominal wavelength with

4 mW of radiant power in a star board package and costs $28 AUD. The spectra of the

LED’s output is shown in figure 4.1 and should be suitable for the design.

Figure 4.1: Spectrum of the RVXD-280-SB-071005 (RayVio 2020).

Silicon Photomultiplier The silicon photomultiplier chosen for the design was the SensL

MICROFC-SMTPA-60035-GEVBOS-ND. The SiPM is a 6 mm2 sensor with 35µm mi-

crocells packages on a development board for ease of prototyping and costs $158 AUD.

The spectral range of the SiPM is 300 nm to 950 nm with a photon detection efficiency of

approximately 22% at 340 nm as shown if figure 4.2.
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Figure 4.2: SiPM PDE versus Wavelength (Lakowicz 2007).

Optical Filter The optical bandpass filter for the design was sourced from Thorlabs and

is the FB340-10 with a 24.5 mm external diameter and a centre wavelength of 340 nm ±

2 nm with a full width at half maximum of 10 nm ± 2 nm as shown by figure 4.3. The

Thorlabs filter was chosen for this design based on availability and cost approximately

$200 AUD.

Figure 4.3: Optical Bandpass Filter Transmission (ThorLabs 2020).
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4.3 Initial Testing of the Silicon Photomultiplier

To determine operational requirement and the intrinsic characteristics of the SiPM a series

of preliminary experiments were conducted to verify the operation of the circuitry. The

first test was to confirm that the SiPM was functioning correctly by measuring the flicker

of fluorescent lighting with the second test to measure the dark current of the sensor to

compare against the values stated in the data sheet.

Test Circuit Initial testing of the SiPM was conducted using the recommended circuit

from the datasheet which utilises a current sensing resistor to measure the current draw of

the SiPM. The sensor was positively biased at 27 V with the power supply rails being fil-

tered using the recommended generic filter arrangement. The test circuit was constructed

on a solderless breadboard.

Figure 4.4: SiPM test circuit showing filter and current sensing resistor.

4.3.1 Fluorescent Light Flicker

The goal of this test was to verify the correct operation of the SiPM and associated

circuitry. This was done by using the SiPM to measure the 100 Hz flicker present in fluo-

rescent lighting. The SiPM was biased with 27 V and the output of the sensor connected

to an oscilloscope for measurement.
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Figure 4.5: Fluorescent light flicker trace.

Analysis of the trace in figure 4.5 shows that the frequency of the flicker is approximately

100 Hz. This is consistent with a 50 Hz mains supply as the fluorescent lighting emits

photons at the peaks and troughs of the alternating current (AC) mains cycle. This

indicates that the SiPM and associated circuitry was working as expected.

4.3.2 Dark Current Measurement

The dark current of the SiPM is the noise generated by the device when there is no

incidental light falling on the photosensitive area of the SiPM. The dark current was

measured from the SiPM to verify correct operation as per the datasheet and to provide

a starting point for experimentations. For this experiment the SiPM was biased with 27 V

and was conducted in the dark box to exclude the influence of incidental light.
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Figure 4.6: Dark Box.

The measured dark current for the SiPM had an average of approximately 600 nA which

is below the datasheet specification of 618 nA typical.

4.4 Verification of Tryptophan Fluorescence

With verification that the SiPM and associated circuitry is functioning within specified

parameters the next experiment to be perform is to confirm the fluorescent properties of

tryptophan. For this experiment tryptophan was acquired as a dietary supplement from

SuperiorLabs. The supplement is supplied in capsule form with each capsule containing

500 mg of L-Tryptophan and organic rice concentrate. Weight measurement of a cap-

sules contents reveals that 160 mg of organic rice concentrate is present in each capsule

representing approximately 24% of the contents.

To establish that UV fluorescence of tryptophan is a viable detection method for proteins

(using limited resources) a simple proof of concept experiment was devised. The aim was
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to determine if the photomultiplier and bandpass filter assembly could be used to detect

the fluorescence of tryptophan from a UV LED. The assembly was built onto a solderless

breadboard and with the SiPM biased with 27 V and the UV LED driven with 30 mA.

With the apparatus set up the photomultiplier was powered on and a background reading

was established figure 4.7. Next a glass slide with tryptophan was placed near the sensor

and illuminated with UV light from the LED to fluoresce figure 4.8. The reading on the

connected multimeter went from 0.173 mV to 1.521 mV indicating a positive detection.

A blank slide (without tryptophan) was place in the same position with the reading only

increasing to 0.25 mV.

Figure 4.7: SiPM ambient light reading.
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Figure 4.8: Tryptophan fluorescence.

4.5 Pollen

The pollen used for this series of experiments was obtained primarily from a hibiscus

plant figure 4.9. This choice was made due to the high availability of samples (consistent

flowering of the plant) and the size of the hibiscus pollen grains 20–80µm (measured)

which made preparing samples easier figure 4.10.
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Figure 4.9: Hibiscus flower.

Figure 4.10: Hibiscus pollen.
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4.6 Phase 1: Fluorescence of Multiple Pollen Grains

The first phase of testing with pollen is to determine if it is possible to detect the fluo-

rescence of the pollen grains with multiple grains being irradiated simultaneously. The

reasoning is that with an increased amount of pollen present the fluorescent emissions

will be greater and easier to detect. This experiment should provide information about

the sensitivity of the system.

Test Circuit The test circuit was constructed onto stripboard and utilises the generic

power supply filter as per the datasheet with the addition of a 1 MΩ current sensing

resistor. The prototype circuit board was assembled into a 3D printed enclosure with the

optical bandpass filter installed. The SiPM is biased at 27 V with the UV LED driven

with 30 mA at approximately 1 mW radiant output.

Experimental Setup The experiment test jig was assembled and placed into the dark

box to minimize stray light interference to obtain more consistent results. The sensor was

mounted directly above the sample slide with the UV LED at right angles to the sample

slide to minimise reflection of the UV light into the sensor viewing window figure 4.11.

Figure 4.11: Setup of sample holder.

Samples Two pollen samples were prepared and placed onto two clean blank slides fig-

ure 4.12. The prepared slides were then stored in the dark box (clean and dust free

environment) ready for use.



4.6 Phase 1: Fluorescence of Multiple Pollen Grains 47

Figure 4.12: Hibiscus pollen sample.

Experimental Procedure The experiment will test the two prepared pollen samples

and use two blank slides as controls to test for the detection of fluorescence. The first

run involved taking a reading from a blank slide (1) and noting the average reading after

10 seconds of exposure. Then a slide with a pollen sample (1) was place in the holder and

irradiated for 10 seconds with the average reading taken. This procedure was repeated

for the other pollen sample (2) and blank slide (2). When the first run was completed 3

more subsequent runs were undertaken with the result recorded in table 4.1.

Table 4.1: Voltage readings from irradiated pollen for each run.

Run/Sample Blank 1 Sample 1 Blank 2 Sample 2

Run 1 1010 mV 1018 mV 980 mV 988 mV

Run 2 995 mV 1001 mV 992 mV 995 mV

Run 3 989 mV 988 mV 985 mV 990 mV

Run 4 990 mV 982 mV 978 mV 989 mV

Analysis The purpose of retesting the samples multiple times was to verify that the

results were correct and not caused by random noise and other influencing factors. From
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the initial series of results, it would seem that the first run did indeed indicate that

fluorescence was occurring, and that detection was established. Interestingly, subsequence

runs did not show the same results a run 1. Further testing using the same procedure

produced similar results to the first series of trials and suggests that intrinsic protein

fluorescence is not a suitable sensing method for pollen.

Explanation After considering the results and doing more experimentation and research

a possible explanation was discovered. Photobleaching may be occurring which is result-

ing in the pollen grains fading. The UV light source causes photon-induced damage to

the fluorophore molecules. When the molecules are in an excited state the molecules can

interact with surrounding chemical compounds which causes irreversible covalent modifi-

cation resulting in the molecule no longer fluorescing (Nikon 2020) . This problem may

have been compounded by storing the test samples in the dark box while the UV LED

was energised.

4.7 Phase 2: Verification of Photobleaching

This experiment was designed to ascertain if photobleaching of the fluorophores in the

pollen samples was resulting in unstable readings.

Test Circuit The test circuit was constructed onto stripboard and utilises the generic

power supply filter as per the datasheet with the current draw of the sensor being directly

measured by a multimeter. The prototype circuit board was assembled into a 3D printed

enclosure with the optical bandpass filter installed. The SiPM is biased at 27 V with the

UV LED driven with 30 mA at approximately 1 mW radiant output.

Experimental Setup The experiments were conducted in a ‘dark box’ to minimise stray

light interference, dust and to prevent exposure to UV light. The sensor is positioned

directly above the sample to be tested with the light source being approximately 90° to

the sensor to minimise reflections. The sample sits on the sample holder and positions the

slide under the sensor as shown in figure 4.11. The measuring device and power supply

are outside of the dark box.

Experimental Procedure To test this hypothesis a series of tests were performed using

the sensor with and without fluorophores present in the test chamber for a nominal period
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of 180 seconds. The first test is to measure to dark current and establish a baseline for the

sensors noise levels. The second test was to measure the photobleaching of a sample of

tryptophan and track the decrease in brightness over time to establish if photobleaching

was indeed evident. The third test was divided into 3 groups with group 1 measuring the

fluorescent intensity of freshly prepared samples of pollen (new), group 2 measuring the

fluorescent intensity of previously irradiated pollen samples (old), and group 3 measuring

the system performance without pollen samples present (blank slides) to determine if the

decrease measured fluorescent intensity is due to other system factors, such as a decreasing

output or a frequency shift from the UV LED as the die temperature increases during

use. The intensity of the emitted light is determined by measuring the current draw of

the SiPM using a logging multimeter.

Results The logged current values for all the experiments are shown in the following

figures. Figure 4.13 shows the measured quiescent current draw of the SiPM under no

light conditions and is within specification as stated in the datasheet with a variation

of about 30 nA. Figure 4.14 was the test involving the tryptophan sample and clearly

shows a decrease in intensity of the fluorescent emissions as the sample is irradiated over

time and suggests photobleaching maybe occurring. The next series of results figure 4.15

displays the test results of the sensor system when blank slides were placed in the holder

and does show a decrease of measured intensity over the course of the experiment. This

could be caused by fluorophores present in the test chamber, surface contamination of the

blank slides or reduction of light intensity from the UV light source as it heats up. Figure

4.16 displays the results of the measurements of the intensity of the fluorescent emissions

of the pollen sample both new and previously irradiated. The samples that have been

irradiated in past experiments exhibited characteristics like the blank slides. The new

samples of pollen display strong initial emissions but quickly degrade over the course of

the tests. This is consistent with the results obtained by the tryptophan and suggest the

photobleaching is occurring with the pollen samples.
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Figure 4.13: Dark current measurements.

Figure 4.14: Intensity of tryptophan sample with continuous irradiation.
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Figure 4.15: Continuous irradiation of blank slides.

Figure 4.16: Photobleaching of pollen samples.

Analysis The photobleaching of the samples provides strong evidence that the measured

emissions are from fluorescence and not reflections. As the new samples of pollen have a

strong initial response to the light source and have a clear decrease in fluorescent inten-

sity the longer the samples are irradiated suggests photobleaching. The old samples that

have been exposed to the UV light source before do not demonstrate the same strong ini-
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tial response or the decrease in emissions suggesting the fluorophores have already been

photobleached. If the measured emissions from the samples were due to reflection or

scattering, then the measured intensity would not decrease over time and would remain

reasonably constant. The results from this experiment provide insight into the intrica-

cies of the sensor system and demonstrates that intrinsic protein fluorescence is a viable

method of detecting pollen.

4.8 Phase 3: Fluorescence of a Single Pollen Grain

The purpose of this experiment is to verify if a single grain of pollen can be detected via

fluorescence emissions using the SiPM based sensor system.

Test Circuit Remains the same as the previous set of experiments with the SiPM being

biased at 27 V and the UV LED driven with 80 mA at approximately 3.2 mW radiant

output.

Experimental Setup The experiments were conducted in a ‘dark box’ to minimise stray

light interference, dust and to prevent exposure to UV light. The sensor is positioned

directly above the sample to be tested with the light source being approximately 90° to

the sensor to minimise reflections. The sample sits on the sample holder which positions

the slides under the sensor figure 4.11. The measuring device and power supply are outside

of the dark box.

Experimental Procedure For this experiment the detection of fluorescence will rely

upon measuring the effect of photobleaching on the pollen sample. To mitigate any possi-

ble effect that heating of the LED may have on changing the output intensity of the LED

an aluminium heatsink (thermal mass) was added to the system. The LED was temper-

ature stabilise for 5hrs before any experiments were undertaken. With the temperature

stabilisation complete a blank slide was placed in the holder and measurements taken

over a 180 seconds period. Next the pollen sample was placed in the holder and irradiated

for 180 seconds with measurements taken. Finally, another blank slide was exposed for

180 seconds with readings taken.
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Figure 4.17: Trace showing photobleaching of a single pollen grain.

Analysis of the results in figure 4.17 show the characteristic decay of intensity consistent

with photobleaching. This is a strong indicator that measurement of the fluorescence

of a single pollen grain has been achieved. This result confirms that UV light induced

fluorescence is a viable method for single particle detection of airborne pollen.
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4.9 Chapter Summary

A series of graded experiments were undertaken to verify the correct operation of the

silicon photomultiplier, associated circuitry, and to determine if protein fluorescence was a

viable method for the detection of pollen. With the correct operation of the SiPM verified,

several experiments were performed to measure the fluorescent emissions of multiple pollen

grains (20-30) with the results clearly showing a distinctive decrease in brightness from

the sample under continuous irradiation. This decrease in brightness was also measured

from a sample using a single grain of hibiscus pollen. This suggests that photobleaching of

the fluorophores is occurring indicating the emissions being measured are from ultraviolet

light induced fluorescence of the pollen amino acids.
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Conclusions and Further Work

5.1 Conclusions

The purpose of this study was to provide the foundation knowledge and design elements

to develop a deployable cost-effective real-time pollen detection system. The primary

goal of this project was to develop the sensor using cost-effective materials and compo-

nents that are readily available from major electronics supply companies. The system

is intended to provide real-time bioaerosol particle counts and provide a timely warn-

ing of abnormal situation that could precede a thunderstorm asthma epidemic as was

experience by Melbourne on the 21st of November 2016. To achieve this goal, a litera-

ture review was undertaken to determine the current state of development of bioaerosol

sensing techniques and systems and to establish the physical and chemical properties of

pollen. Evaluation of the chemical and physical characteristics of pollen suggests that

targeting the fluorescent aromatic amino acids tryptophan and tyrosine should provide

a suitable means to detect airborne biological particles. From these findings fluorescent

spectroscopy was ascertained to be the best candidate for development of the sensor. A

prototype fluorescent sensor was built using a 280 nm UV LED for the light source, a

340 nm ± 10 nm UV bandpass filter, and a blue sensitive silicon photomultiplier as the

photodetector. With a working prototype a series of experiments were conducted to test

the validity of using ultraviolet light induced fluorescence to detect pollen. Fluorescent

emissions from irradiated pollen were measured from samples containing multiple pollen

grains (20-30) and a single pollen grain. These detections were verified by measuring the

photobleaching of the fluorophores which produced a measurable exponential decrease in
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intensity over a 180 second period of constant illumination with 280 nm ultraviolet light.

This project has successfully demonstrated that intrinsic protein fluorescence is a viable

method for the detection of airborne pollen particles and could be used as the basis for

the develop of a deployable real-time pollen detection system. If this system could be re-

alised, then it is reasonable to assume that advanced warning of potential thunderstorm

asthma epidemics could be achieved resulting in a positive benefit to public health which

could potentially save lives.

5.2 Further Work

With the proof of concept confirmed and detection of single particle verified, the next

step in the design phase is to test the sensitivity of the system to a moving pollen particle

similar to what would occur if pollen was drawn through the sensor by a fan assembly.

A test assembly will need to be constructed and a means of introducing a single pollen

grain into an airstream will need to be realised. To improve the response time of the

SiPM a transimpedance amplifier circuit will need to be implemented with the proposed

design in appendix C. If this testing proves to be successful than it should be possible to

construct a functioning prototype of the sensor system that could be field tested alongside

a working pollen trap to verify correct operation in a real-world situation.



References

Beggs, P. J. (2017), ‘Allergen aerosol from pollen-nucleated precipitation: A novel thun-

derstorm asthma trigger’, Atmospheric Environment 152, 455–457.

Blank, R., Vinayaka, P. P., Tahir, M. W., Vellekoop, M. J. & Lang, W. (2015), Optical

sensor system for the detection of mold: Concept for a fully automated sensor system

for the detection of airborne fungal spores, in ‘2015 IEEE Sensors’, pp. 1–4.

brgfx (2020), ‘Common Flower Parts’. viewed 30 September, https://www.freepik.

com/free-vector/common-flower-parts_2938224.htm.
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B.1 Introduction

A comprehensive safety analysis of the major tasks associated with the project was un-

dertaken using the risk assessment matrix in table B.1. The results of this risk assessment

with the analysis of the risk, with and without control measures implemented is shown in

table B.4.

B.2 Risk Assessment

Table B.1: Risk Matrix

Risk Matrix
Consequences

Negligible 1 Minor 2 Moderate 3 Major 4 Catastrophic 5

L
ik

el
ih

o
o
d

Almost Certain 5 Moderate 5 High 10 Extreme 15 Extreme 20 Extreme 25

Likely 4 Moderate 4 High 8 High 12 Extreme 16 Extreme 20

Possible 3 Low 3 Moderate 6 High 9 High 12 Extreme 15

Unlikely 2 Low 2 Moderate 4 Moderate 6 High 8 High 10

Rare 1 Low 1 Low 2 Low 3 Moderate 4 Moderate 5

(Adapted from Kaya 2018)

Table B.2: Description of consequences

Score Name Description

1 Negligible Minimal injuries, no first aid required

2 Minor Minor injuries, first aid may be required

3 Moderate Moderate injuries, professional treatment will be required

4 Major Major injuries/disability, professional treatment required

5 Catastrophic Death or multiple permanent disabilities

(Adapted from Kaya 2018)
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Table B.3: Description of likelihoods

Score Name Description

1 Rare Will not occur for years

2 Unlikely May occur but not expected to

3 Possible Will occur but infrequently

4 Likely Will occur regularly

5 Almost Certain Will occur very soon

(Adapted from Kaya 2018)
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Appendix C

Schematic of Proposed

Transimpedance Amplifier
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1 Publication Order Number:

MICROC−SERIES/D

C-Series SiPM Sensors

Silicon Photomultipliers
(SiPM), Low-Noise,
Blue-Sensitive

The C−Series low-light sensors from ON Semiconductor feature an
industry-leading low dark-count rate combined with a high PDE. For
ultrafast timing applications, C-Series sensors have a fast output that
can have a rise time of 300 ps and a pulse width of 600 ps. The
C−Series is available in different sensor sizes (1 mm, 3 mm and 6 mm)
and packaged in a 4-side tileable surface mount (SMT) package that is
compatible with industry standard, lead-free, reflow soldering
processes.

The C−Series Silicon Photomultipliers (SiPM) form a range of high
gain, single-photon sensitive, UV-to-visible light sensors. They have
performance characteristics similar to a conventional PMT, while
benefiting from the practical advantages of solid-state technology: low
operating voltage, excellent temperature stability, robustness,
compactness, output uniformity, and low cost. For advice on the usage
of these sensors please refer to the Biasing and Readout Application
Note.

Table 1. PERFORMANCE PARAMETERS  

Sensor
Size Microcell Size Parameter (Note 1) Overvoltage Min. Typ. Max. Units

1 mm 10�, 20�, 35�  Breakdown Voltage (Vbr) (Note 3) 24.2 24.7 V

3 mm 20�, 35�, 50�

6 mm 35�

1 mm 10�, 20�, 35�  Recommended overvoltage Range 
 (Voltage above Vbr) (Note 2)

1.0 5.0 V

3 mm 20�, 35�, 50�

6 mm 35�

1 mm 10�, 20�, 35�  Spectral Range (Note 4) 300 950 nm

3 mm 20�, 35�, 50�

6 mm 35�

1 mm 10�, 20�, 35�  Peak Wavelength (�p) 420 nm

3 mm 20�, 35�, 50�

6 mm 35�

See detailed ordering and shipping information on page 15 of
this data sheet.

ORDERING INFORMATION

www.onsemi.com

Figure 1. C−Series Sensors
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Table 1. PERFORMANCE PARAMETERS (continued)

Sensor
Size UnitsMax.Typ.Min.OvervoltageParameter (Note 1)Microcell Size

1 mm 10�  PDE (Note 5) at �p Vbr + 2.5 V 14 %

20� 24 %

35� 31 %

1 mm 10� Vbr + 5.0 V 18 %

20� 31 %

35� 41 %

3 mm 20� Vbr + 2.5 V 24 %

35� 31 %

50� 35 %

3 mm 20� Vbr + 5.0 V 31 %

35� 41 %

50� 47 %

6 mm 35� Vbr + 2.5 V 31 %

6 mm 35� Vbr + 5.0 V 41 %

1 mm 10�  Gain
 (anode to cathode readout)

Vbr + 2.5 V 2 × 105

20� 1 × 106

35� 3 × 106

3 mm 20� 1 × 106

35� 3 × 106

50� 6 × 106

6 mm 35� 3 × 106

1 mm 10�  Dark Current (Note 6) Vbr + 2.5 V 1 3 nA

20� 5 16 nA

35� 15 49 nA

3 mm 20� 50 142 nA

35� 154 443 nA

50� 319 914 nA

6 mm 35� 618 1750 nA



C−Series SiPM Sensors

www.onsemi.com
3

Table 1. PERFORMANCE PARAMETERS (continued)

Sensor
Size UnitsMax.Typ.Min.OvervoltageParameter (Note 1)Microcell Size

1 mm 10�  Dark Count Rate Vbr + 2.5 V 30 96 kHz

20� 30 96 kHz

35� 30 96 kHz

3 mm 20� 300 860 kHz

35� 300 860 kHz

50� 300 860 kHz

6 mm 35� 1200 3400 kHz

1 mm 10�, 20�, 35�  Rise Time − Fast Output (Note 7) 0.3 ns

3 mm 20�, 35�, 50� 0.6 ns

6 mm 35� 1.0 ns

1 mm 10�, 20�, 35�  Signal Pulse Width − Fast Output (FWHM) 0.6 ns

3 mm 20�, 35�, 50� 1.5 ns

6 mm 35� 3.2 ns

1 mm 10�  Microcell recharge time constant (Note 8) 5 ns

20� 23 ns

35� 82 ns

3 mm 20� 23 ns

35� 82 ns

50� 159 ns

6 mm 35� 95 ns

1 mm 10�  Capacitance (Note 9)
 (anode−cathode)

Vbr + 2.5 V 50 pF

20� 90 pF

35� 100 pF

3 mm 20� 770 pF

35� 850 pF

50� 920 pF

6 mm 35� 3400 pF

1 mm 10�  Capacitance (Note 9)
 (fast terminal to cathode)

Vbr + 2.5 V 1 pF

20� 1 pF

35� 1 pF
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Table 1. PERFORMANCE PARAMETERS (continued)

Sensor
Size UnitsMax.Typ.Min.OvervoltageParameter (Note 1)Microcell Size

3 mm 20�  Capacitance (Note 9)
 (fast terminal to cathode)

Vbr + 2.5 V 20 pF

35� 12 pF

50� 7 pF

6 mm 35� 48 pF

1 mm 10�, 20�, 35� Temperature dependence of Vbr 21.5 mV/°C

3 mm 20�, 35�, 50�

6 mm 35�

1 mm 10�, 20�, 35� Temperature dependence of Gain (Note 10) −0.8 %/°C

3 mm 20�, 35�, 50�

6 mm 35�

1 mm 10�  Crosstalk Vbr + 2.5 V 0.6 %

20� 3 %

35� 7 %

3 mm 20� 3 %

35� 7 %

50� 10 %

6 mm 35� 7 %

1 mm 10�  Afterpulsing Vbr + 2.5 V 0.2 %

20� 0.2 %

35� 0.2 %

3 mm 20� 0.2 %

35� 0.2 %

50� 0.6 %

6 mm 35� 0.2 %

1. All measurements made at 2.5 V overvoltage and 21°C unless otherwise stated.
2. Please consult the maximum current levels on page 6 when selecting the overvoltage to apply.
3. The breakdown voltage (Vbr) is defined as the value of the voltage intercept of a straight line fit to a plot of √I vs V, where I is the current and

V is the bias voltage.
4. The range where PDE > 1% at Vbr + 5.0 V.
5. Note that the PDE does not contain contributions from afterpulsing or crosstalk.
6. Dark current derived from dark count data as DC × M × q × (1 + CT), where DC is dark count, M is gain, q is the charge of an electron, and

CT is cross talk.
7. Measured as time to go from 10% to 90% of the peak amplitude.
8. RC charging time constant of the microcell (�)
9. Internal capacitance of the sensor. Typically add 2−3 pF for sensor in package. Listed by unique microcell size for each part version.
10.Quoted as the percentage change per degree C from the measured value at 21°C.
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GENERAL PARAMETERS

Table 2. GENERAL PARAMETERS  

1 mm 3 mm 6 mm

10010, 10020, 10035 30020, 30035, 30050 60035

 Active area 1 × 1 mm2 3 × 3 mm2 6 × 6 mm2

 No. of microcells 10010: 2880
10020: 1296
10035: 504

30020: 10998
30035: 4774
30050: 2668

60035: 18980

 Microcell fill factor 10010: 28%
10020: 48%
10035: 64%

30020: 48%
30035: 64%
30050: 72%

60035: 64%

Table 3. PACKAGE PARAMETERS  

1 mm 3 mm 6 mm

10010, 10020, 10035 30020, 30035, 30050 60035

 Package dimensions 1.5 × 1.8 mm2 4 × 4 mm2 7 × 7 mm2

 Recommended operating
 temperature range

−40°C to +85°C

 Maximum storage temperature +105°C

 Soldering conditions Lead−free, reflow soldering process compatible
(MSL 3 for tape & reel quantities; MSL 4 for tape only qty.) 

See the SMT Handling Tech Note for more details.

 Encapsulant type Clear transfer molding compound

 Encapsulant refractive Index 1.59 @ 420 nm

Table 4. MAXIMUM CURRENT LEVELS FOR EACH SENSOR SIZE

1 mm 3 mm 6 mm

10010, 10020, 10035 30020, 30035, 30050 60035

6 mA 15 mA 20 mA
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CIRCUIT SCHEMATICS

An SiPM is formed of a large number (hundreds or
thousands) of microcells. Each microcell is an avalanche
photodiode with its own quench resistor and a capacitively
coupled fast output. These microcells are arranged in

a close-packed array with all of the like terminals (e.g. all of
the anodes) summed together. The array of microcells can
thus be considered as a single photodiode sensor with three
terminals: anode, cathode and fast output.

Figure 2. Circuit Schematic

Simplified circuit schematic of the SensL® SiPM showing
only a 12 microcell example. Typically, SiPM sensors have 

hundreds or thousands of microcells.

Circuit schematic of the SensL SiPM microcell, 
showing details of the Fast Output.

SensL SiPM component symbol.
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PERFORMANCE

Figure 3. PDE versus Wavelength 
(MicroFC−30035−SMT)

Figure 4. Responsivity versus Wavelength
(MicroFC−30035−SMT)
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Figure 5. PDE at 420 nm versus Voltage Figure 6. Dark Count Rate versus Overvoltage

Figure 7. Gain versus Overvoltage Figure 8. Dark Current versus Voltage 
and Temperature
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EVALUATION BOARD OPTIONS

SMA Biasing Board (MicroFC−SMA−XXXXX)
The MicroFC−SMA is a printed circuit board (PCB) that

can facilitate the evaluation of the C−Series SMT sensors.
The board has three female SMA connectors for connecting
the bias voltage, the standard output from the anode and the
fast output signal. The output signals can be connected
directly to a 50 �-terminated oscilloscope for viewing. The
biasing and output signal tracks are laid out in such a way as
to preserve the fast timing characteristics of the sensor.

The MicroFC−SMA is recommended for users who
require a plug-and-play set-up to quickly evaluate C−Series
SMT sensors with optimum timing performance. The board
also allows the standard output from the anode-cathode
readout to be observed at the same time as the fast output.
The outputs can be connected directly to the oscilloscope or
measurement device, but external preamplification may be
required to boost the signal. The table below lists the SMA
board connections. The SMA board electrical schematics
are available to download in AND9809/D.

Figure 9. SMA Biasing Board

MicroFC−SMA−XXXXX

Output Function

Vbias  Positive bias input (cathode)

Fout  Fast output

Sout  Standard output (anode)

Pin Adapter (MicroFC−SMTPA−XXXXX)
The SMT Pin Adapter board (SMTPA) is a small PCB

board that houses the SMT sensor and has through-hole pins
to allow for use with standard sockets or probe clips. This
product is useful for those needing a quick way to evaluate
the C−Series SMT sensors without the need for specialist
surface-mount soldering. While this is a ‘quick fix’ suitable
for many evaluations, it should be noted that the timing
performance from this board will not be optimized and if the
best possible timing performance is required, the
MicroFC−SMA−XXXXX is recommended. The pin-out

information is shown in the table below. The SMTPA board
electrical schematics are shown in Figure 12 and are
available to download in AND9809/D.

Figure 10. Pin Adapter

Figure 11. MicroFC−SMTPA−XXXXX

Figure 12. SMTPA Board Circuit Schematic

MicroFC−SMTPA−XXXXX

Pin No. Connection

1 Anode

2 Fast output

3 Cathode

4 Ground

5 No connect
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PACKAGE DIMENSIONS
(All Dimensions in mm)

MicroFC−60035−SMT

TOP VIEW BOTTOM VIEW

SIDE VIEW

Pin Assignments

Pin # MicroFC−60035−SMT

1 Anode

2 Fast Output

3 Cathode

4, 5  No Connect*

*The ‘No Connect’ pin 4 should be soldered to the PCB. This pin can be connected to ground but it can also be left floating without affecting
the dark noise. It is recommended that the Pin 5 paddle is NOT soldered to the PCB and is left floating to achieve optimal soldering on pins
1 to 4. Please note the full advice in the CAD file.

The complete MicroFC−60035−SMT CAD file, including solder footprint and tape and reel drawing, is available to
download here.
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PACKAGE DIMENSIONS
(All Dimensions in mm)

MicroFC−30035−SMT

*The ‘No Connect’ pin 4 should be soldered to the PCB. It can be connected to ground but it can also be left floating without affecting the dark
noise.

TOP VIEW BOTTOM VIEW

SIDE VIEW

Pin Assignments

Pin # MicroFC−300XX−SMT

1 Anode

2 Fast Output

3 Cathode

4  No Connect*

The complete MicroFC−30035−SMT CAD file, including solder footprint and tape and reel drawing, is available to
download here.
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PACKAGE DIMENSIONS
(All Dimensions in mm)

MicroFC−30020−SMT & MicroFC−30050−SMT

*The ‘No Connect’ pin 4 should be soldered to the PCB. It can be connected to ground but it can also be left floating without affecting the dark
noise.

TOP VIEW

BOTTOM VIEW

SIDE VIEW

Pin Assignments

Pin # MicroFC−300XX−SMT

1 Anode

2 Fast Output

3 Cathode

4  No Connect*

The complete MicroFC−300XX−SMT CAD and solder footprint file is available to download here.
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PACKAGE DIMENSIONS
(All Dimensions in mm)

MicroFC−10010−SMT, MicroFC−10020−SMT & MicroFC−10035−SMT

*The ‘No Connect’ pin 4 should be soldered to the PCB. It can be connected to ground but it can also be left floating without affecting the dark
noise.

TOP VIEW BOTTOM VIEW

SIDE VIEW

Pin Assignments

Pin # MicroFC−100XX−SMT

1 Anode

2 Fast Output

3 Cathode

4  No Connect*

The complete MicroFC−100XX−SMT CAD and solder footprint file is available to download here.
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PACKAGE DIMENSIONS
(All Dimensions in mm)

MicroFC−SMTPA Board

TOP VIEW

BOTTOM VIEW

SIDE VIEW

The complete SMTPA board CAD files are available to download:
1 mm − MicroFC−SMTPA−100XX
3 mm − MicroFC−SMTPA−300XX
6 mm − MicroFC−SMTPA−60035

The electrical schematics for the SMTPA board is available in AND9809/D.

MicroFC−SMA Board

TOP VIEWBOTTOM VIEW SIDE VIEW

The complete SMA board CAD files are available to download:
1 mm − MicroFC−SMA−100XX
3 mm − MicroFC−SMA−300XX
6 mm − MicroFC−SMA−60035

The electrical schematics for the SMA board is available in AND9809/D.
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USEFUL LINKS

• Introduction to Silicon Photomultipliers Application Note − If you are new to SiPM, this document explains their
operation and main performance parameters.

• Biasing and Readout Application Note − This document gives detailed information on how to bias the sensor for both
standard and fast configurations, and amplifying and reading out the signal.

• How to Evaluate and Compare Silicon Photomultipliers Application Note − Information on what to consider when
selecting an SiPM.

• Handling and Soldering Guide − This document gives information on safe handling of the sensors and soldering to PCB.

• ON Semiconductor Website − for more information on all of ON Semiconductor’s products as well as application
information.

• CAD file library − ON Semiconductor CAD files include solder footprints and tape and reel information.

ORDERING INFORMATION

Table 5. ORDERING INFORMATION  

Product Code
(Note 11)

Microcell Size
(Total Number)

Sensor
Active Area Package Type

Delivery
Options
(Note 12)

10000 Series

MICROFC−10010−SMT 10 �m
(2880 microcells)

1 mm × 1 mm 4-side tileable, surface mount package
(SMT)

TR1, TR

MICROFC−SMA−10010−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−10010−GEVB SMT sensor mounted onto a pin
adapter board.

PK

MICROFC−10020−SMT 20 �m
(1296 microcells)

4-side tileable, surface mount 
package (SMT)

TR1, TR

MICROFC−SMA−10020−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−10020−GEVB SMT sensor mounted onto a pin
adapter board.

PK

MICROFC−10035−SMT 35 �m
(576 microcells)

4-side tileable, surface mount 
package (SMT)

TR1, TR

MICROFC−SMA−10035−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−10035−GEVB SMT sensor mounted onto a pin
adapter board.

PK
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Table 5. ORDERING INFORMATION (continued)

Product Code
(Note 11)

Delivery
Options
(Note 12)Package Type

Sensor
Active Area

Microcell Size
(Total Number)

30000 Series

MICROFC−30020−SMT 20 �m
(10998 microcells)

3 mm × 3 mm 4-side tileable, surface mount package
(SMT)

TR1, TR

MICROFC−SMA−30020−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−30020−GEVB SMT sensor mounted onto a pin
adapter board

PK

MICROFC−30035−SMT 35 �m
(4774 microcells)

4-side tileable, surface mount package
(SMT)

TR1, TR

MICROFC−SMA−30035−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−30035−GEVB SMT sensor mounted onto a pin
adapter board

PK

MICROFC−30050−SMT 50 �m
(2668 microcells)

4-side tileable, surface mount package
(SMT)

TR1, TR

MICROFC−SMA−30050−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−30050−GEVB SMT sensor mounted onto a pin
adapter board

PK

60000 Series

MICROFC−60035−SMT 35 �m
(18980 microcells)

6mm × 6mm 4-side tileable, surface mount package
(SMT)

TR1, TR

MICROFC−SMA−60035−GEVB SMT sensor mounted onto a PCB with
SMA connectors for bias and output.

PK

MICROFC−SMTPA−60035−GEVB SMT sensor mounted onto a pin
adapter board

PK

11. All Devices are Pb-Free and are RoHS Compliant.
12.The two-letter delivery option code should be appended to the order number, e.g.) to receive MICROFC−60035−SMT on tape and reel, use

MICROFC−60035−SMT−TR. The codes are as follows:
PK = ESD Package
TR1 = Tape
TR = Tape and Reel

There is a minimum order quantity (MOQ) of 3000 for the tape and reel (TR) option. The TR option is only available in multiples of the MOQ.

ON Semiconductor and      are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www onsemi com/site/pdf/Patent−Marking pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
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