

AUSTRALIA

Faculty of Health, Engineering and Sciences

INVESTIGATION ON MECHANICAL AND DURABILITY PROPERTIES OF RECYCLED CONCRETE

A dissertation submitted by

Milasari Brady

In fulfilment of the requirements of

ENG4111 and ENG4112 Research Project

Towards the degree of

Bachelor of Engineering (Honours) (Civil)

Submitted: October 2020

Abstract

Population growth and the increasing infrastructure and construction development has led to significant demand for natural aggregates resources. As the primary consumer of natural resources, construction industry has contributed to the deterioration of the environment, by depleting natural aggregates resources and generating a large amount of construction and demolition waste (C&D). These wastes are ineffectively disposed of in the landfills at significant cost and over the years, could lead to a depletion of landfill spaces (OZbakkaloglu et al. 2017). Thus, the broader use of recycled aggregate needs to be explored to promote more sustainable practice in the construction industry.

This research provides thorough theoretical investigation on the mechanical and durability properties of recycled concrete, which is based on the previous published experimental data reports. A total of 28 experimental data reports were collected and summarised into Microsoft Excel spreadsheet for further analysis. Data which were presented in figures or non-tabular form, were extracted by using an online application tool, i.e. WebPlotDigitizer. This software was found to be significantly faster, reducing time for data extraction process and provided better accuracy and higher reliability than manual estimation.

The strength characteristics of recycled concrete such as compressive strength, slump, tensile strength, flexural strength, modulus of elasticity and water absorption was analysed by incorporating two main parameters such as water/cement ratio and recycled aggregate percentage replacement. This analysis was performed by using Matlab and the results were presented in contour plots to show the relationship between the three variables. This method was shown to improve understanding on how much the strength characteristics of concrete decrease when these parameters' proportions increase in a concrete structure.

Correlation between mechanical properties of recycled concrete were also evaluated and compared with the conventional concrete's properties by using Microsoft Excel. The proposed relationship equation of the experimental data was developed by using statistical linear regression line method. Additionally, the 95% confidence and prediction interval were also calculated and plotted together for each linear regression lines. The result of this analysis was used to validate the relationship between the published experimental data reports with the majority of the conventional concrete design codes and standards. It is anticipated that this research will present a significant knowledge of recycled concrete's properties and can be used as a fundamental resource in designing higher strength characteristics for recycled concrete.

University of Southern Queensland Faculty of Health, Engineering & Sciences

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own efforts, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Milasari Brady

Acknowledgement

I would like to express my sincere appreciation to my supervisors, Dr Weena Lokuge for her continuous support and invaluable guidance in carrying out this research project.

Secondly, I would like to express my sincere gratitude to my husband and my family who provided endless support during this research and throughout my long journey of studying to complete my degree. Thank you.

Table of Contents

Abstract	2
Limitations of Use	3
Certification of Dissertation	4
Acknowledgement	5
LIST OF FIGURES	8
LIST OF TABLES	
Chapter 1	11
Introduction	11
1.1 Introduction	11
1.2 Background/problem statement	11
1.3 Project aims and objectives	12
Chapter 2	13
Literature review	13
2.1 Recycled concrete aggregate general background	13
2.2 Mechanical properties of recycled concrete	14
2.2.1 Slump	14
2.2.2 Compressive strength	15
2.2.3 The tensile strength	17
2.2.4 The Flexural Strength	19
2.2.5 Modulus of elasticity	20
`2.3 Durability properties of recycled concrete	22
2.3.1 Shrinkage	22
2.3.2 Creep	23
2.3.3 Water absorption	24
2.3.4 Alkali silica reaction	24
2.4 Data extraction tool	25
2.5 Techniques for improving RAC properties	26
Chapter 3	29
Methodology	29
3.1 Collection of data	29
3.1.1 Data extraction	
3.1.2 Data collection highlighted on recycled concrete's properties	

Chapter 4	
Data Analysis and Results	
4.1 Data collection summaries	
4.2 Relationship between mechanical properties of RC Vs CC data analysis	
4.3 Data plotting with Matlab program	43
4.4 Analysis of results and data interpretation	
4.4.1 Compressive strength	
4.4.3 Tensile strength	45
4.4.4 Flexural strength	46
4.4.5 Modulus of elasticity	
4.4.6 Shrinkage	49
4.4.7 Creep	50
4.4.8 Alkali-silica reaction	50
4.4.9 Water absorption	51
4.4.2 Slump	
Chapter 5	53
Conclusion and Recommendation	53
5.1 Conclusion	53
5.2 Project outcomes	54
5.3 Recommendation	55
References	56
Appendix A	62
Project Specification	62
Appendix B	64
Consequential Effects and Ethical Responsibility	64
Appendix C	65
Project Risk Assessment	65
Appendix D	67
Microsoft Excel Experimental Data Spreadsheet	67

LIST OF FIGURES

Figure 2.1 Benefits of using RCA (Behera et.al 2014)1	3
Figure 2.2 Process of RCA recycling technique (Behera et.al 2014)1	3
Figure 2.3 Fresh properties of recycled concrete with w/c 0.55 (Lavado et al. 2020)1	4
Figure 2.4 Mixing procedures (a) NMA; (b) TSMA (Tam et.al 2005)19	5
Figure 2.5 Physical characteristics of recycled aggregates (Behera et al. 2014)	6
Figure 2.6 RC's compressive strength Vs CC's compressive strength (González-Fonteboa et.al 2018)10	6
Figure 2.7 compressive strength Vs w/c ratio with variation of RCA content (Xiao et al. 2012)1	6
Figure 2.8. The recycled concrete interfacial transition zones (ITZ) (González-Taboada et.al 2016)1	8
Figure 2.9 Flexural strength of concrete at 28 days of curing (Ozbakkaloglu et.al 2017)	9
Figure 2.10 Shrinkage of recycled concrete Vs Shrinkage of control concrete (González-Fonteboa et.al 2018)2	2
Figure 2.11 Shrinkage rate of recycled concrete Vs Time (Bai et.al 2020)	2
Figure 2.12. Water absorption test of recycled concrete aggregate (Sasanipour and Aslani 2020), (Maruthupandian et.al 2014)2	.4
Figure 2.13 WebPlotDigitizer data extraction tool (WebPlotDigitizer.com)	5
Figure 3.1 WebPlotDigitizer data extraction process	0
Figure 3.2 Compressive strength test result (Berredjem et al. 2020)	2
Figure 3.2a Compressive strength data extraction (WebPlotDigitizer.com)	2
Figure 3.3 Tensile strength test result (Berredjem et al. 2020)	3
Figure 3.3a Tensile strength data extraction (WebPlotDigitizer.com)	3
Figure 3.4 Water absorption test result (Berredjem et al. 2020)	4
Figure 3.4a Water absorption data extraction (WebPlotDigitizer.com)	4
Figure 3.5 Shrinkage test data (Manzi et al. 2013)34	4
Figure 3.5a Shrinkage data extraction (WebPlotDigitizer.com)	4
Figure 3.6 Creep test data (Kou and Poon 2012)36	6
Figure 3.6a Creep test data extraction (WebPlotDigitizer.com)	6
Figure 3.7 Shrinkage test data (Kou and Poon 2012)37	7
Figure 3.7a Shrinkage test data extraction (WebPlotDigitizer.com)	7

Figure 3.8 Water absorption test data (Kou and Poon 2012)	
Figure 3.8a Water absorption data extraction (WebPlotDigitizer.com)	37
Figure 4.1 Matlab function for contour plot	43
Figure 4.2 Compressive strength of RC Vs %RCA, w/c	
Figure 4.3 Effect of Flay ash addition in RC	44
Figure 4.4 Slump (mm) value of Recycled Concrete	44
Figure 4.5 Tensile strength of Recycled Concrete	45
Figure 4.6 Relationship between tensile strength and compressive strength	45
Figure 4.7 Flexural strength of Recycled Concrete	46
Figure 4.8 Relationship between flexural strength and compressive strength	46
Figure 4.9 Modulus of elasticity (GPa) of Recycled Concrete	47
Figure 4.10 Relationship between Modulus of elasticity and compressive strength	47
Figure 4.11 Shrinkage of RC Vs Days of exposure	48
Figure 4.12 Shrinkage of RC Vs % RCA Replacement	48
Figure 4.13 Creep (mm/m) of Recycled Concrete	48
Figure 4.14 Creep (mm/m) Vs %RCA Replacement	48
Figure 4.15 Alkali-silica expansion of Recycled Concrete	
Figure 4.16 Alkali-silica expansion VS RCA Replacement	49
Figure 4.17 Water absorption (%) of Recycled Concrete	50

LIST OF TABLES

Table 2.1 Mix properties of concrete (González-Fonteboa et.al 2018)	14
Table 2.2 Author's equation – Tensile strength (f_{sp}) (González-Taboada et al. 2016)	17
Table 2.3. Mechanical properties of cube test specimen at 28 days of curing (Exteberria et.al 2007)	18
Table 2.4 Tensile strength design equation for conventional concrete	18
Table 2.5 Flexural strength design equation for conventional concrete	20
Table 2.6 Axial Compression Tests results (Ozbakkaloglu et al. 2017)	20
Table 2.7 Modulus of elasticity design equation for conventional concrete	21
Table 2.8 Author's equation – Modulus of elasticity (Ec) (González-Fonteboa et.al 2018)	21
Table 2.9 Recycled concrete increment of creep (%) (González-Fonteboa et.al 2018)	23
Table 2.10 Expansion average of finer RCA (Adams et al. 2013)	25
Table 2.11 Proposed Methodology to improve RC properties (Behera et.al 2014)	26
Table 3.1 The schematic procedures of project's methodology and data analysis	29
Table 3.2 Mix Proportions of recycled crushed rock concrete (RCRC) (Zhou et al. 2017)	31
Table 3.3 Mix Proportions of recycled pebble concrete (RPC) (Zhou et al. 2017)	31
Table 3.4 Mechanical properties test result (Zhou et al. 2017)	32
Table 3.5 Concrete mix proportions (Berredjem et al. 2020)	33
Table 3.6 Mechanical properties of test data (Manzi et al. 2013)	34
Table 3.7 Workability of concrete mix (Yang et al. 2011)	35
Table 3.8 Tensile strength test data (Yang et al. 2011)	35
Table 3.9 Compressive strength test data (Yang et al. 2011)	35
Table 3.10 Flexural strength test data (Yang et al. 2011)	35
Table 3.11 Compressive strength test data (Kou and Poon 2012)	36
Table 4.1 Schematic plan of data analysis phases	38
Table 4.2 Mechanical and Durability Properties of Recycled Concrete Data Summary	39
Table 4.3 Microsoft Excel functions for 95% prediction and confidence data intervals	42

Chapter 1

Introduction

1.1 Introduction

Construction and demolition (C&D) waste, which is largely disposed of in landfills each year, has become a major concern due to environmental issues. Concrete as the main waste materials generated from C&D, contributes to the largest portion of the total debris in the landfill spaces (Kou et al. 2012). Thus, recycling this waste as coarse and fine aggregates will not only reduce the accumulated waste in landfills but also minimise the depletion of natural resources in concrete production. Many researchers have already recognised the importance of employing recycled concrete as a substitution for natural aggregate. They investigated the strength characteristics of recycled concrete aggregate (RCA) through various experimental studies. However, the use of RCA for new concrete structures still requires thorough research, so that a standard guideline for recycled concrete production can be developed and accepted by the international code and design standards.

1.2 Background/problem statement

The use of recycled concrete as coarse aggregates has been well researched to pursue a sustainable future in civil engineering. As the main consumer in natural resources, construction industries, particularly building sectors, are responsible for about 49 per cent of raw materials used, 25 per cent of virgin wood and 16 per cent of water consumed (Dixit et al. 2010). The increasing infrastructure and construction development lead to significant demand for natural aggregates which will inevitably cause serious damage to the ecological environment.

Meanwhile, the increasing rate of the demolition of old structures has generated a significant amount of construction and demolition (C&D) waste. According to the National Waste Report 2010, around 166, 000,000 tonnes from C&D waste stream was generated in Australia in 2006-2007. Recent studies by Tangchirapat et al. (2009) and Ho et al. (2013) also show that C&D waste as the mainstream of solid waste was ineffectively disposed of in landfills at a substantial cost and resulted in depletion of landfill spaces. Thus, the wider use of recycled aggregate needs to be explored to promote more sustainable construction practices in the construction industry.

This research project provides collective summaries of a total 28 published international experimental data that deal with recycled concrete as coarse aggregate. The study will be emphasising the mechanical and durability properties of recycled concrete by incorporating parameters such as water/cement ratio (w/c) and recycled coarse aggregate substitutions (RA%). The mechanical properties relationship of RCA such as compressive strength, tensile strength, flexural strength and modulus of elasticity will also be compared to the conventional concrete (CC) design standards, such as the Australian Standard (AS 3600: 2009), the American Concrete Institute (ACI 318: 2011) and Eurocode (BSI 2004). The methodology will be carried out mainly by using the Microsoft Excel and Matlab program to analyse the behaviour of

recycled concrete structure. An online application tool such as WebPlotDigitizer will also be used to extract the data from the research papers, particularly the data which are presented in graphs or in non-tabular forms.

1.3 Project aims and objectives

This project aims to investigate the mechanical and durability properties of recycled concrete (RC) and comparing these properties with that of conventional concrete. The project will help to validate the relationship between the published experimental data reports with the majority of the conventional concrete design codes and standards. It also intends to provide a better understanding and good estimation on the recycled concrete properties, which can be used as a guideline in designing recycled concrete mix.

To ensure these aims are achieved, the following objectives are programmed for this project:

- Literature review of the general properties of recycled concrete as coarse aggregates.
- To collect the experimental data of RC and establish a comprehensive data summary according to the designated range parameters.
- To compare the mechanical and durability properties of recycled concrete with the conventional concrete properties.
- To develop a mathematical relationship between recycled concrete's properties and conventional concrete.
- To undertake analysis results and recommendation for further research area.

The scope of this project is limited to recycled concrete properties as coarse aggregates. It is intended that the mechanical properties such as slump, compressive strength, flexural strength, modulus of elasticity, tensile strength and the durability properties such as shrinkage, creep, water absorption and Alkali silica reaction will be investigated as part of this project. The result of this study can also be employed to predict the mechanical properties of RC properties, such as tensile strength, flexural strength and modulus of elasticity as a function of its compressive strength based on the statistical trend lines given from the data sets.

Chapter 2

Literature review

2.1 Recycled concrete aggregate general background

Previous research works have indicated that recycled aggregate from concrete waste (RCA) could be used as a replacement of natural aggregates for construction materials, meeting performance requirements of normal concrete structure (Behera et.al 2014). Nowadays, RCA is commonly being used for both structural and non-structural applications such as road's sub-base or surface materials, backfill materials, hydraulically bound materials and for new concrete production (De Brito et al. 2013). The process and benefits of recycling concrete from construction and demolition waste is shown schematically in figure 2.1 and figure 2.2 below.

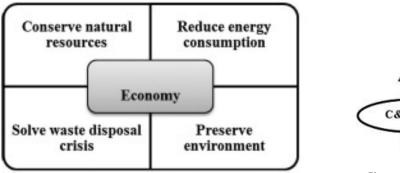
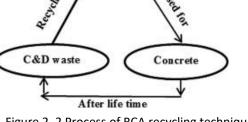



Figure 2. 1 Benefits of using RCA (Behera et.al 2014)

Aggregate

Figure 2. 2 Process of RCA recycling technique (Behera et.al 2014)

RCAs are extracted through the processing of the demolition debris, which are crushed by several different types of crushers. Moreover, each type of crusher has a different effectiveness of the crushing process and produces different outcomes on the physical and mechanical properties of RCAs (Matias et al.2013). Studies show that Impact type crushers produce a better recycled aggregate quality with less adhered mortar content (Etxeberria et al. 2007).

Guoliang et al. (2020) evaluated that the presence of adhering old mortar, water absorption and recycled concrete's shape and size are the key parameters that control the recycled aggregate's quality. Duan et al (2014) reported that the higher presence of adhering mortar results in the higher water absorption, crushing index, and Los Angeles abrasion value (LA) which resulted in the weaker performance of recycled concrete (RC) compared to that of natural concrete (NC). Furthermore, Gómez-Soberón (2002) investigated that this high-water absorbency of RA is due to the pore structure of mortar bonded. It showed that porosity increases when recycled concrete aggregate are used in the concrete mix design. The increase in porosity leads to the reduction of RAC workability, and adversely affects the mechanical strength and durability properties of recycled concrete.

2.2 Mechanical properties of recycled concrete

2.2.1 Slump

Slump test is commonly used to evaluate the workability of the fresh concrete batch. Generally, the slump of RCA decreases as recycled aggregate replacement ratio increases. Ozbakkaloglue et al. (2017) studied the effect of recycled concrete as coarse aggregates to the mechanical and durability properties of the concrete. The slump tests of their experimental results are shown on the table 2.1 The letter N is labelled for Normal strength concrete mixes and H is for High strength concrete mixes. Based on this data, the higher ratio of RCAs replacement leads to the decrease in effective water binder ratio, resulting in lower slumps of these concrete mixes.

Table 2. 1 Mix properties of concrete (González-Fonteboa et.al 2018)

Normal-strength concrete						High-strength concrete								
Proportions	NC-0-T	NC-25-T	NC-50-T	NC-100-T	NC-100-N	NF-0-T	NF-50-T	NF-100-T	NF-100-N	HC-0-T	HC-25-T	HC-50-T	HC-100-T	HC-100-N
RCA%	0%	25%	50%	100%	100%	0%	50%	100%	100%	0%	25%	50%	100%	100%
Cement (kg/m ³)	380	380	380	380	380	380	380	380	380	506	506	506	506	506
Silica fume (kg/m ³)	0	0	0	0	0	0	0	0	0	44	44	44	44	44
Sand (kg/m ³)	710	710	710	710	710	710	710	710	710	710	710	710	710	710
Natural aggregate (kg/m3)	1,065	799	533	0	0	1,012	506	0	0	1,065	799	533	0	0
Recycled aggregate (kg/m3)	0	204	408	816	816	0	394	787	787	0	204	408	816	816
Water-effective (kg/m3)	209	201	194	179	179	201	186	171	171	167	159	152	137	137
Water-total (kg/m3)	237	236	236	235	235	227	218	209	209	195	194	193	193	193
Superplasticizer (kg/m3)	0	0	0	0	0	0	0	0	0	7	7	7	10	10
Effective w/b ratio ^a	0.55	0.53	0.51	0.47	0.47	0.53	0.49	0.45	0.45	0.31	0.30	0.29	0.26	0.26
Total w/b ratio ⁿ	0.62	0.62	0.62	0.62	0.62	0.60	0.57	0.55	0.55	0.36	0.36	0.36	0.36	0.36
Slump (mm)	220	180	125	115	105	235	155	125	110	180	170	130	100	85
Hardened density (kg/m ³)	2,347	2,289	2,236	2,199	2,138	2,287	2,174	2,147	2,115	2,518	2,486	2,425	2,403	2,378

Including the water coming from the superplasticizer (i.e., 70% water by weight).

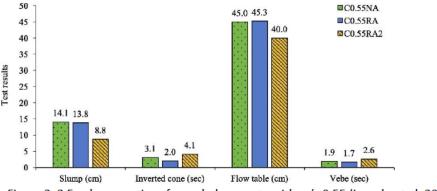


Figure 2. 3 Fresh properties of recycled concrete with w/c 0.55 (Lavado et al. 2020)

Figure 2.3 above shows the fresh state behaviour of different types of aggregates with the same water/cement ratio. Lavado et al. (2020) reported that slump in natural aggregate (NA) was slightly higher than in recycled aggregates (RA), which has 3.3% lower fresh density than NA. Additionally, it was found that the slump in RA with more irregular shape and rougher texture was 38% lower than that of natural aggregate concrete.

Sami et al. (2009) also investigated that recycled aggregates from concrete waste require more water than natural concrete to maintain the same without additional admixtures. Tam and Tam (2007) founded that this is due to the high-water absorption from the old cement mortar attached to the RA. To compensate

this issue, the authors developed the Two-Stage Mixing Approach (TSMA) for improving the strength characteristics of RCA.

The procedures of TSM methods shows in the figure 2.4 below.

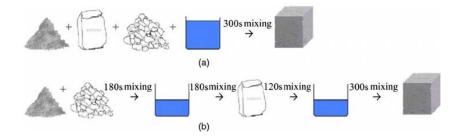


Figure 2.4 Mixing procedures (a) NMA; (b) TSMA (Tam et.al 2005)

It was shown from their experimental result that the slump values prepared by using TSMA approaches were higher than the Normal Mixing Approach (NMA). The TSMA mixing method also improve the concrete strength for up to 21.19% for 20% RA replacements. Ozbakkaloglu et al. (2017) in their study also confirms a similar result and concluded that TSMA mixing methods provides more free water to interact with the binder. This method can lower the water absorption of recycled aggregate by filling up the old cracks and pores on the recycled aggregates.

A few alternative methods have also been proposed by many researchers to improve the slump of recycled concrete. Zhang et al. (2007) investigated that pre-soaking the RCAs for a fixed time can reduce the high-water absorption in RC. The workability of the RC also can be controlled by using a significant amount of superplasticizer without adding extra water in the concrete mixes (A. Katz 2004, Sami et al. 2009).

2.2.2 Compressive strength

It has been established in the previous studies that recycled concrete's compressive strength is lower than the conventional concrete made with natural aggregate. The compressive strength decreases as the replacement of RC and water-cement ratio increases (Belén et al. 2011; A.Khan 1984). The degree of this decrease mainly depends on the recycled aggregate's content such as type, size, origin (A. Khan 1984) and the concrete production method (Silva et al. 2015). In addition, the increase of water absorption rate and the poor quality of the interfacial transition zone (ITZ) generated on the recycled aggregate could lead to higher of the strength loss (M. Etxeberria et al. 2007; J.S. Ryu 2002).

González-Fonteboa et al. (2018) reviewed the relationship of recycled concrete's compressive strength (fc, RC) vs conventional concrete's compressive strength (fc, CC) based on the previous studies' report. The experimental data are collected from the coarse recycled concrete aggregates (RCA) ratio with 229 mixes of 100% RCA replacements, 80 mixes of 50% RCA replacements and 75 mixes of 20% RCA replacements and the result is present in figure 2.6.

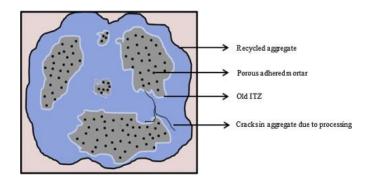


Figure 2.5 Physical characteristics of recycled aggregates (Behera et al. 2014)

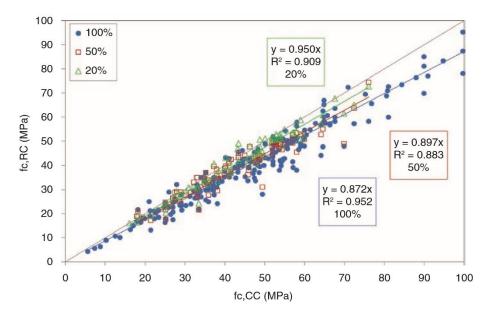


Figure 2.6 RC's compressive strength Vs CC's compressive strength (González-Fonteboa et.al 2018)

The figure confirms that the higher recycled aggregate replacements ratio is, the higher compressive strength loss will be. The square of coefficient determination (R²) value is between 0.9 and 1 which means that there is a very strong correlation in the data. Based on the figure, the average reductions for 20%, 50% and 100% recycled aggregates replacement were 5%, 10% and 13% respectively.

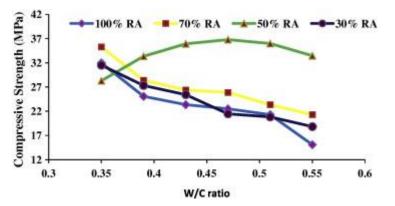


Figure 2.7 compressive strength Vs w/c ratio with variation of RCA content (Xiao et al. 2012)

Behera et al. (2014) reported that the compressive strength also decreased as w/c ratio increase despite of variation in RCA replacement level. However non-linearity between the strength and w/c ratio can be seen in figure 2.7 for concrete with 50% RA replacement. This is possibly due to new approaches tried by the researcher during concrete production, which lead to higher value of compressive strength test results.

Many researchers have investigated how to improve the compressive strength of recycled concrete. Khan (1984) investigated that to achieve the similar compressive strength to NAC, the water-cement ratio of RC should be 0.05-0.1 less than NA. Furthermore, Laserna et al. (2016) concluded that when rounded or crushed natural aggregates are used to produce RC, the compressive strength of recycled concrete could be increase for up to 15%.

The concrete production method also has an important role in the quality of RC. Brown et. al (2001) found that the recycled concrete aggregates which process commercially, produces smoother round particles than those produced in the laboratory, thus improving RC workability. In conclusion, it has been observed in various studies that by reducing the water-cement ratio, increasing the maximum of recycled concrete aggregates (RCA) size, using smooth, round or spherical RCA shapes, considering the higher quality of parent concrete strength, and the use of minerals and chemicals including the use of silica fume and plasticizer, can improve compressive strength to a great extent (Padmini et al. 2009, Bui et al. 2017).

2.2.3 The tensile strength

Many researchers agree that recycled concrete generally also has lower tensile strength than natural aggregates concrete when RCA replacements ratio increases (Exteberria et al. 2007, Kou et al. 2012, Fonseca et al. 2011, Ozbakkaloglu et al. 2017, Bairagi et al. 1993). This observation is due to the reduced bond strength of the interfacial transition zone (ITZ) and the reduction of particle interlocking between the old and new mortar content (Kumar and Dhinakaran 2011). Furthermore, the tensile strength also is influenced by the coarse aggregates' sizes and water cement ratio used in the concrete mixes. Ozbakkaloglu et al. (2017) reported that the smaller coarse aggregates exhibited a slightly higher tensile strength than larger coarse aggregates due to the lower mortar strength in larger RC aggregates. In addition, Berredjem et al. 2020 cited that a high-water cement ratio induces higher porosity in RCA which may result in lower matrix strength and poor ITZ which subsequently reduced tensile strength of the RC.

Due to these strength characteristic differences, many researchers (Xiao et al. 2006, Li 2008 and Katz 2003) suggested that the equations proposed by codes and standards for natural aggregate concrete are not suitable to predict splitting tensile strength for recycled concrete properties. Based on their extensive research and experimental investigations, they have adjusted the equation and proposed expression to estimate the splitting tensile strength as function of compressive (Table 2.2).

Reference	Equation
Li et al. (2008) (46)	$f_t = (0.24 - 0.06 \cdot r) \cdot f_{cu}^{\frac{2}{3}}$
Xiao et al. (2006) (44)	$f_{sp} = 0.24 \cdot f_{cu}^{0.65}$
Katz (2003) (45)	$f_{sp} = 0.59 \cdot \sqrt{f_c}$

Table 2.2: Author's equation – Tensile strength (fsp) (González-Taboada et al. 2016)

In contrast, many literatures show that RCA has the same or even higher tensile strength than the conventional concrete (Fonseca et al. 2011, Dilbas et al. 2014, Exteberria et al. 2007). Table 2.3 below is the mechanical properties data of cubic test specimens at 28 days of curing extracted from Exteberria et al. 2007.

	Density (kg/dm ³)	Compressive strength (MPa)	Tensile strength (MPa)	Modulus of elasticity (MPa)
CC	2.42	29	2.49	32,561.7
RC25	2.40	28	2.97	31,300.4
RC50	2.39	29	2.70	28,591.7
RC100	2.34	28	2.72	27,764.0

Table 2.3. Mechanical properties of cube test specimen at 28 days of curing (Exteberria et.al 2007)

As shown on the data above, the tensile strength of RC is higher than conventional concrete when the replacement ratio of RA as high as 25%. Salem et al. (1998) and Sague-Crentsil et al. (2001) investigated that this is due to the water absorption capacity of the adhered mortar and the effectiveness of the new ITZ of the RC. The tensile strength of RC has a good bond characteristic between aggregate and the mortar matrix which lead to the higher tensile strength than using natural aggregate.

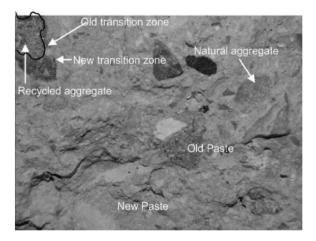


Figure 2.8. The recycled concrete interfacial transition zones (ITZ) (González-Taboada et.al 2016)

Regarding the equation to predict the tensile strength of conventional concrete, the Australian Standard AS 3600 (AS 2009) and American Concrete Institute code ACI 363 R (ACI 1992) provide models to describe the relationship between the splitting tensile as a function of its compressive strength

Table 2.4 Tensile strength for conventional concrete

Reference	Equation
AS 3600 Section 3.1.1.3 (AS 2009)	$f'_{ct.sp} = 0.4 \sqrt{f'_c} MPa$
ACI 318 Section 8.5.2.3 (ACI 2008)	$f'_{sp} = 0.59 \sqrt{f'_c} MPa$
Eurocode2 (BSI 2004)	$f_{ctk} = 0.7 \times f_{cm} (5\% fractile)$ $f_{ctk} = 1.3 \times f_{cm} (95\% fractile)$

Where; $f'_{ct.sp}$, f_{ctk} and f'_{sp} is tensile strength

 f'_{c} and f_{cm} is the characteristic compressive strength

2.2.4 The Flexural Strength

Some researchers reported the flexural strength of RC has similar behaviour to its compressive strength and tensile strength property. Several past investigations showed that the flexural strength of RC also decreases with increase in the proportion of recycled aggregate replacement and water binder ratio (Katz 2003, Padmini et al. 2009). This reaction was due to low bonding quality between the attached old mortar and the new cement paste (Bai et al. 2020).

The relationship between the replacement ratio of RCA and relative flexural strength is shown in the figure 2.9 below.

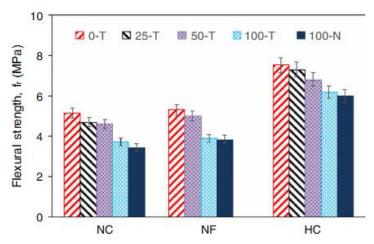


Figure 2.9 Flexural strength of concrete at 28 days of curing (Ozbakkaloglu et.al 2017)

Ozbakkaloglu et al. (2017) summarised that for both normal grade concrete (NC) with 40MPa and highgrade concrete (HC) with 80MPa, their flexural strength decreases with the increase in recycled concrete aggregate replacement. Figure 2.9 also shows that concrete mixes with finer aggregates better perform than coarse aggregates due to higher effective water binder ratio in larger RC aggregate's size. Additionally, Bairagi et al. (1993) reported that RC has similar behavior as conventional concrete properties in terms of its flexural strength. This strength characteristics gradually decreases as water/cement ratio increase.

However, Ravindrajah et al. (1985) suggested that there was no substantial difference between flexural strength of RC and conventional concrete. The flexural strength or deflection of conventional concrete can be estimated by using equation from the codes and standards (Australia and America) in the table below.

Table 2.5 Flexural strength for conventional concrete

Reference	Equation
AS 3600 Section 3.1.1.3 (AS 2009)	$f'_{ct.f} = 0.6\sqrt{f'_c} MPa$
ACI 318 Section 8.5.2.3 (ACI 2008)	$f'_r = 0.62\sqrt{f'_c} MPa$

Where; $f'_{ct.f}$ and f'_r is flexural strength

 f'_c is the characteristic compressive strength

2.2.5 Modulus of elasticity

Modulus of elasticity is related to the aggregates and the rigidity of the cement paste (González-Taboada et al. 2016). As shown on the previous studies, the Modulus of elasticity of recycled concrete is also lower than the conventional concrete. González-Taboada et al. (2016) cited that the old adhered mortar present in the recycled aggregates caused the weakness of the new interfacial transition zone (ITZ) which can lead to cracking and affecting the concrete deformability.

Ozbakkaloglu et al. (2017) investigated that modulus of elasticity of RC decreases with an increase in RCAs replacement level as shown on table 2.7. They concluded that the behaviour of modulus elasticity of RC is highly correlated with its compressive strength. Table 2.7 also explained that fine coarse aggregate attributed to a slight decrease in RC's modulus of elasticity. Xiao et al. (2013) concluded that fine RCA increases the overall surface area of its concrete mixes, thus leading to an increased volume fraction of ITZ which has adversely affected its modulus of elasticity.

The Australian Standard (AS 3600), American Concrete Institute Code (ACI 318) and the British standard, Eurocode2 (BSI 2004) provide equations for estimating normal concrete's modulus of elasticity as a function of its compressive strength and these equations are presented in table 2.6.

Reference	Equation
AS 3600 Section 3.1.1.3 (AS 2009)	$E_{c} = 0.043p^{1.5}\sqrt{f_{cmi}} \text{ when } f_{cmi} \le 40MPa$ $E_{c} = p^{1.5} (0.024\sqrt{f_{cmi}} + 0.12) \text{ when } f_{cmi} \ge 40MPa$
ACI 318 Section 8.5.2.3 (ACI 2008)	$E_c = 4,733\sqrt{f'_c} MPa$
Eurocode2 (BSI 2004)	$E_c = 22,000 \left(\frac{f_c}{10}\right)^{0.3}$

Table 2.6 Modulus of elasticity for conventional concrete

Where; E_c is Modulus of elasticity

 f_{cmi} and f_c is the compressive strength p is the density of concrete

Concrete series	f_{cm} (7-day) (MPa)	f_{cm} (28-day) (MPa)	E_c (28-day) (GPa)
N-C-0-T	29.4 (0.06)	40.9 (0.10)	29.3 (0.28)
N-C-25-T	29.9 (0.15)	41.0 (0.25)	29.0 (0.24)
N-C-50-T	29.0 (0.15)	40.5 (0.25)	28.2 (0.22)
N-C-100-T	29.3 (0.30)	40.3 (0.30)	27.2 (0.21)
N-C-100-N	26.7 (0.22)	38.0 (0.19)	26.7 (0.16)
N-F-0-T	28.8 (0.15)	40.1 (0.20)	28.1 (0.22)
N-F-50-T	29.8 (0.18)	41.2 (0.30)	27.9 (0.25)
N-F-100-T	30.2 (0.13)	40.8 (0.21)	25.7 (0.22)
N-F-100-N	28.3 (0.24)	39.2 (0.23)	25.1 (0.24)
H-C-0-T	69.0 (0.18)	82.6 (0.30)	36.5 (0.28)
H-C-25-T	68.6 (0.19)	83.5 (0.29)	34.8 (0.27)
H-C-50-T	68.7 (0.16)	84.1 (0.19)	32.7 (0.21)
H-C-100-T	67.9 (0.20)	82.4 (0.12)	31.3 (0.16)
H-C-100-N	68.5 (0.24)	79.3 (0.19)	30.8 (0.23)

Table 2.7 Axial Compression Tests results (Ozbakkaloglu et al. 2017)

However, based on the experimental results, RC generally has lower modulus of elasticity than conventional concrete, therefore, these expressions are also not suitable when RCAs are used in the concrete production. To achieve better estimation, many authors have proposed different equations according to their investigation results. Their experimental data was also compared with another researchers' data report and their results' analysis are presented in table 2.8 below.

Table 2.8: Modulus of elasticity equation (Ec) (González-Fonteboa et.al 2018)

Reference	Equation
Bairagi et al. (1993) (51)	$E_c = (5780 - 1340 \cdot r) \cdot f^{0.5}$
KaziKazi et al. (1988) (61)	$E_{\rm e} = 1.9 \ 10^3 \left[\left(\frac{\rho}{2300} \right)^{1/5} \cdot \left(\frac{f}{2000} \right)^{0.5} \right]$
Ravindrarajah et al. (1987) (62)	$E_{\rm e} = 3480 \cdot f^{0.5} + 13050$
Ravindrarajah and Tam (1985) (63) a	$E_c = 7770 f_c^{0.33}$
Ravindrarajah and Tam (1985) (63) b	$E_{\rm c} = 4630 f_{\rm c}^{0.5}$
Dillman (1998) (64)	$E_c = 634.43 \cdot f_c + 3057.6$
González-Fonteboa et al. (2011) (43)	$E_{\rm c} = (1 - 0.0020 \ r) \cdot 22000 \left(\frac{f_m}{10} \right)^{0.3}$
Corinaldesi (2010) (56) a	$E_{\rm e} = 18800 \cdot \sqrt[3]{\frac{0.83 \cdot f_{cu}}{10}}$
Katz (2003) (45)	$E_c = 0.043 \cdot \rho^{1.5} \cdot f_c^{0.5}$
Zilch and Roos (2001) (58)	$E_{\rm c} = 9100 \cdot \left(f_{\rm c} + 8 \right)^{f_{\rm c}} \left(\frac{\rho}{2400} \right)^2$
Dhir et al. (1999) (59)	$E_{\rm c} = 370 \cdot f_{\rm c} + 13100$
Mellmann (1999) (60)	$E_c = 378 \cdot f_c + 8242$

Note: $E_e = Modulus of elasticity (MPa); f_e or f_{cu} Compressitive strength (MPa) \rho = Density (kg/m³); r = Replacement ratio (<math>0 \le r \le 1$); WA = water absorption (%)

2.3 Durability properties of recycled concrete

2.3.1 Shrinkage

Shrinkage deformation is caused by the reduction of concrete volume due to its loss of internal moisture (Bai et al. 2020). It has been well investigated by many researchers that the shrinkage deformation of RC increases with the increase in replacement ratio of RCA. This was mainly due to its higher water absorption and its lower stiffness than natural aggregates (González-Fonteboa et al. 2018, Ozbakkaloglu et al. 2017, Gómez-Soberón 2002, Tam and Tam 2007). González-Fonteboa et al. (2018) collected data from 10 different authors and analysed the relationship between the recycled concrete's shrinkage with 20% to 100% RA replacements with the conventional concrete (100% natural aggregate concrete). The study result is shown in figure 2.10 below.

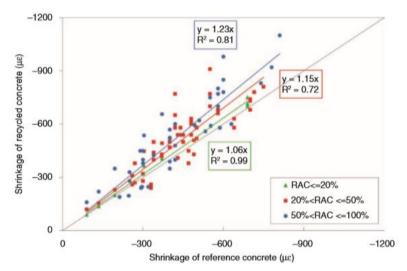


Figure 2.10 Shrinkage of recycled concrete Vs Shrinkage of control concrete (González-Fonteboa et.al 2018)

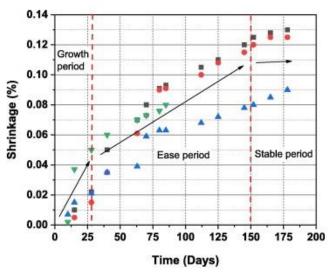


Figure 2.11 Shrinkage rate of recycled concrete Vs Time (Bai et.al 2020)

It is obvious that the RCA replacement ratio has substantial effect in the shrinkage deformation properties. A few studies also found that the concrete deformity is highly related to the water/cement ratio used in the concrete mixtures. Unlike conventional concrete, lower w/c ratio tends to weaken RC durability properties, due to higher water absorption caused by the attached old adhered mortar in RCA.

However, Eckert and Oliveira (2017) investigated that concrete shrinkage can be reduced using different mixing approaches such as internal curing, two-stage mixing approach (Tam and Tam 2007) and adding admixture to RCA (Kou and Poon 2012). Generally, the variation of shrinkage deformation of RC (for up to 20% replacement ratio) has a similar pattern to the natural concrete with respect to time (refer to figure 2.11). According to Bai et al. (2020) and González-Fonteboa et al. (2018), the concrete deformation mainly occurs during the first year and tends to stabilize over time.

2.3.2 Creep

Creep coefficient is an essential parameter to determine the long-term deformations of concrete under sustained load. Many researchers investigated that concrete creep is influenced by the RCAs replacements and water/cement ratio. As expected, the old adhered mortar present in the RCA generates higher water absorption which weakens ITZ, thus leading to the higher creep strain deformability of RC (Xiao et al. 2014, Tam et al. 2015). Table 2.9 is obtained from González-Fonteboa et al. (2018) data which is done by reviewing the creep increments relationship between the recycled concrete and conventional concrete based on the various research papers.

Author	w/c	Absorption (%)	Recycled aggregate (%)	Increment of creep (%)
Seara et al. (2016) (2)	0.5	5.4	20	18
	0.5		50	19
	0.5		100	84
	0.65		20	9
	0.65		50	20
	0.65		100	51
Manzi et al. (2013) (6)	0.48	7	27	-17 (specific)
		9	63.5	17 (specific)
Fathifazl et al. (2011) (69)	0.45	5.4	100	32
Domingo et al. (2009) (78)	0.5	5.19	20	35
			50	42
			100	51
Yang et al. (2008) (95)	0.55		50	23
Masato et al. (2006) (94)	0.40	4.8	100	44 (specific)
	0.60	5.4		31 (specific)
	0.40			56 (specific)
	0.60			25 (specific)
Ajdukiewicz et al. (2002) (49)	0.41		100	-20
Gómez Soberon. (2002) (90)			15	5
			30	16
			60	32
			100	45
Limbachiya et al. (2000) (96)			30	2
			50	22
			100	65
Nishibayashi and Yamura (1988) (93)			100	$30 (c=250 \text{ kg/m}^3)$
				$50 (c=350-450 \text{ kg/m}^3)$

Table 2.9 Recycled concrete increment of creep (%) (González-Fonteboa et.al 2018)

It can be observed that the creep increment of recycled concrete with a 100% substitution percentage was found to be 51% higher than that of the RC with 20% substitution percentage. This lower performance also significantly related to the lower modulus of elasticity of the RC which results in the increase of its creep deformation (González-Fonteboa et al. 2018).

2.3.3 Water absorption

Generally, water absorption of recycled concrete increases with the increasing in proportion of recycled concrete aggregates (Grdic et al. 2010, Ozbakkaloglu et al. 2018). As expected, from the previous discussion, this increasing water absorption is due to the attached old mortar in the RCA which leads to the higher porosity in the RCA. According to Sasanipour and Aslani (2020) from their experimental results as shown on figure 2.12, the water absorption increased by 6.4% when substitution of RCA was 25% and the amount of water absorb increase as the replacement ratio increase. It also can be seen that the concrete containing finer size RCA also has higher water absorption than concrete with coarse RCA. Santos et al. (2018) investigated that this is due to the specific surface area of fine RCAs being higher than the coarse RCA, thus eventually increasing the water absorption in the RC.

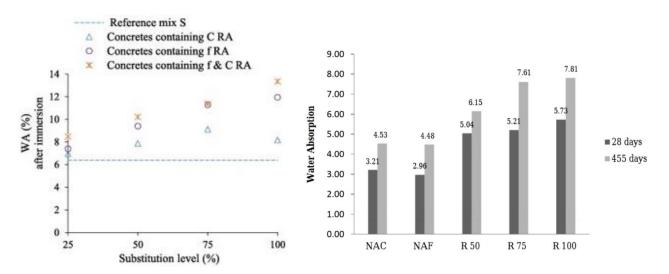


Figure 2.12. Water absorption test of recycled concrete aggregate (Sasanipour and Aslani 2020), (Maruthupandian et.al 2014)

2.3.4 Alkali silica reaction

Alkali-silica reactions are a leading cause of concrete deterioration due to excessive expansion which occurs between an alkali and silica minerals in concrete (Adams et al. 2013, González-Fonteboa et al. 2018). In recycled concrete, the main source of alkalinity in the concrete mixture comes from the cement and the adhered mortar from the parent concrete, where the reactive silica presents in the aggregates themselves.

Few authors suggested that recycled concrete has very small risks attributed to the Alkali-silica reaction. According to the experimental tests, the expansions values in the specimens containing different types of

coarse RCA was under 0.1% and had not reached limit values for expansion to exert a tensile force capacity which can cause cracking in RC, (Dhir et al. 2005, Desmyter and Blockmans 2000). Additionally, Adams et al. (2003) observed that the general trend expansions of the mortar bars increase as their RCA replacement levels increase (from 20 to 100%). This possible Alkali-silica reactivity of RCA was most likely due to the higher residual mortar contents in the coarse aggregates and the silica sand present in the old adhered mortar during initial crushing of the old concrete (Etxeberria et al. 2007).

RCA		·		Precisio n Boundary Limits (43% A bove or Belo w Mean Expansion)				
Replacement Level and Aggregate Type	Number of Samples(Bars)	Average Expansion (%)	Coefficient of Variation (%)	Lower Expansion Boundar y (%)	Upper Expansion Boundar y (%)	Number of Outliers		
25% Alberta	24	0.20	11.5	0.12	0.29	0		
50% Alberta	24	0.28	11.5	0.16	0.40	0		
100% Alberta	12	0.31	5.8	0.18	0.45	0		
25% Bernier	12	0.08	22.8	0.04	0.11	0		
50% Bernier	24	0.09	8.5	0.05	0.13	0		
100% Bernier	12	0.11	17.5	0.06	0.16	0		
25% Potsd am	12	0.05	27.5	0.03	0.07	0		
50% Potsd am	12	0.06	7.3	0.04	0.09	0		
100% Potsd am	12	0.07	10.4	0.04	0.10	0		
25% Spring hill	12	0.20	16.5	0.11	0.28	0		
50% Spring hill	12	0.29	7.9	0.16	0.41	0		
100% Springh ill	36	0.32	20.2	0.18	0.46	0		

Table 2.10 Expansion average of finer RCA (Adams et al. 2013)

2.4 Data extraction tool

Data extraction is a crucial task in completing project research, particularly in analytical approach-based projects where numerous data are required for analysis or investigation. Some researchers present their experimental data in their publications as images or graphs, which make data collection processes become more challenging and time consuming. In this project, WebPlotDigitizer online tool is used to extract the data which presented only in graphs or non-tabular forms. It is a free web-based tool, easy to use and it provides higher data estimation accuracy or reliability. According to Kadic et al. (2016), using software for data extraction was significantly faster compare to manual estimation. It can reduce time for extraction for up to 47%.

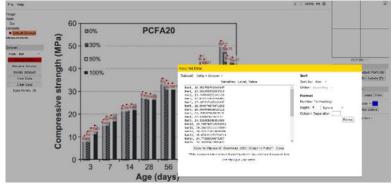


Figure 2.13 WebPlotDigitizer data extraction tool (WebPlotDigitizer.com)

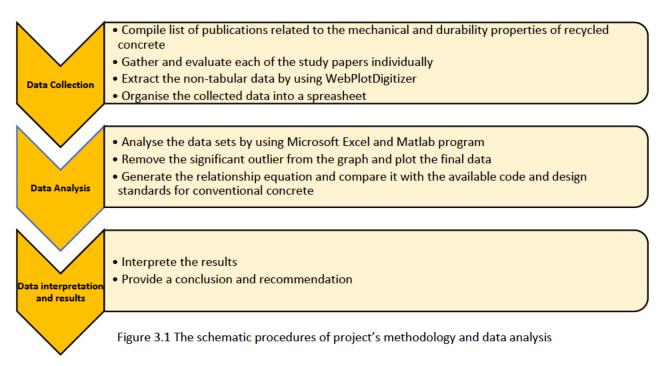
2.5 Techniques for improving RAC properties

Many researchers have been exploring various techniques to improve the strength characteristics of RC. They aimed to eliminate the negative effects of RCA substitution by trying different ingredients and modifying the mix proportions in the concrete production. Behera et al. (2014) reviewed numbers of proposed methodology by various researchers and their investigation results are summarised in the table 2.11

Authors	Proposed methodology	Significance
Otsuki et al. 2003	Double mixing method	 Compressive strength increased up to 12.6% than normal mixing Chloride penetration depth reduced to 22.7% Carbonation depth was up to 12.3%
Tam et al. 2005	Two stage mixing approach	 28-Days Compressive strength increased up to 21.19% at different percentage replacement Developed a stronger ITZ by filling the cracks and pores in RA
Corinaldesi et al. 2009	Additions of fly ash or silica fume into concrete to replace fine aggregate	 Improvement of pore structure by reducing the volume of pores As a result mechanical performance such as compressive strength, tensile and bond strength could be improved
Limbachiya et al. 2012	10% silica fume was used as a partial replacement of Portland cement	 Enhanced compressive strength and compactness Target strength could be achieved with 100% RA Showed less resistance towards carbonation. Causes pore refinement, as a result lower chloride ion ingression

Kou et al.	Incorporation of 25-35% class F	•	Strength gain was more in between 28–90 days
2012	fly ash as well as partial replacement of cement		Increase in strength was up to 19.4%, 36.1% and 47.6% from 28 to 90 days for concrete containing 0, 25, 35% fly ash respectively for 100% RA
		•	Drying shrinkage, creep and chloride ion penetration reduced to a certain extent
		•	Replacement of cement caused reduction in strength
Elhakam et al. 2012	Self-healing of RA,Modified two stage mixing method Addition of	•	Unhydrated cement particles on RA got hydrated by self healing method thus enhanced its properties
	10% silica fume as cement	•	Two stage mixing approach showed better split tensile strength, bond strength and enhanced porosity of RAC
		•	Addition of silica fume improved the porosity of RAC
Kong et al. 2010	Surface coating of RA by pozzolanic substances. A novel triple mixing method	•	A thin layer of pozzolanic particles formed around the aggregate which helped in improving the ITZ through filler effect and pozzolanic reactive effect
		•	Improved compressive strength and chloride ion penetration resistance
Katz 2004	Pre-treating of RA with silica fume solution (10 wt%)		Compressive strength increased up to 30% and 15% at ages of 7 days and 28 days respectively
		•	ITZ between RA and matrix could be improved
Ann et al. 2011	Use of 35% pulverized fuel ash (PFA) and 65% ground granulated blast furnace slag (GGBS)	•	Showed equivalent performance with conventional concrete for long term compressive strength (180 days), ion penetrability in terms of chloride ion and corrosion resistance (corrosion free life)

Kou et al. 2013	Incorporated different mineral admixtures such as fly ash (FA) (35%), silica fume (10%), meta kaolin (15%), GGBS (55%)		Silica fume and GGBS contributes to both short term and long term properties FA and GGBS showed their beneficial effect on long term properties Contributions of mineral admixtures to the performance improvement of RAC are higher than that to natural aggregate concrete
Zhihui et al. 2013	Pre coating of RA surface with thin cement paste		28 days compressive strength of concrete increased up to 16% With the use of pre coated recycled fine aggregate with sulpho aluminate cement, the compressive strength of mortar increased by 34.8% and with sodium silicate increased by 32.4%
Somna et al. 2012	Ground fly ash was used by 20, 35 and 50% by weight of cement to replace cement and to improve properties of RAC	•	Result showed that it slightly improved the compressive strength only at 20% use of fly ash in RAC than concrete without fly ash For all replacement% of fly ash compressive strength was less than conventional concrete Did not show any effect on modulus of elasticity at all% replacement


 Ground fly ash had significant influence on reducing the water permeability coefficient

Chapter 3

Methodology

As widely discussed in chapter 1, this research project focuses on investigating the mechanical and durability properties of recycled concrete (RC). It aims to give a better understanding on the performance of RC structure when recycled concrete aggregates are used in the concrete mix design, by incorporating water/cement ratio (w/c) and RCA substitution.

To achieve the project's aims and objectives, a database has been developed from various international experimental data research, which related to recycled concrete aggregate as natural coarse aggregate replacement. With this database and using MATLAB and Microsoft Excel program, the results of the analysis can be used to define the strength characteristics of recycled concrete and its relationship to the conventional concrete's code and design standard.

3.1 Collection of data

Data collection is a major aspect of this research study. This phase involves selecting and gathering experimental data and compiling it into a spreadsheet. As largely described in section 2, the strength characteristics of RC are highly variable. It depends on various parameters such as recycled concrete's shape and size, the moisture state of RA, the crushing process and original grade of demolished concrete, concrete mixing approach, water/cement ratio and RCA% replacement used during RC production (Guoliang et al. 2020, Tam and Tam 2007, C. Zhou et al.2017). Data extraction is one of the main key activities in the data collection process. This activity is further described in the following section.

3.1.1 Data extraction

As mentioned earlier in section 2.4, an online application tool such as WebPlotDigitizer is used to extract the data from figures or images in this research project. According to Kadic et al. (2016), data extraction by using software is significantly faster, providing higher reliability and reducing time for extraction by 47%.

The data extraction process for this research project is outlined in the following procedures;

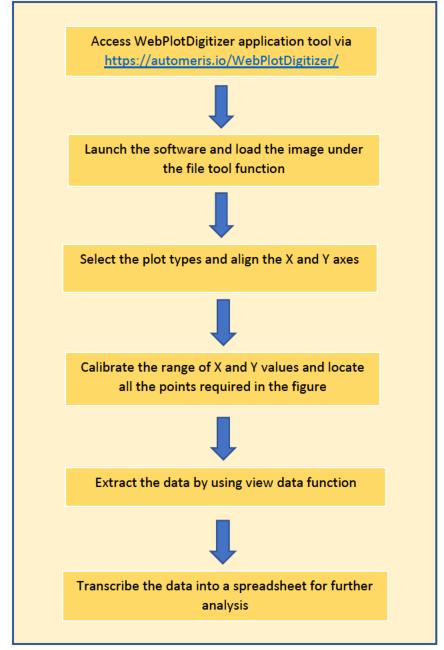


Figure 3.1 WebPlotDigitizer data extraction process

3.1.2 Data collection highlighted on recycled concrete's properties

Several interesting studies on RC's properties are highlighted and discussed in the section below.

Zhou et al. (2017) conducted an experimental study on the mechanical properties of RC with two different types of coarse recycled aggregates, i.e. crushed rock aggregate (CRA) and pebbles aggregate (PA). Unlike many other studies, the results show that the compressive strength and flexural strength of RC are similar or even higher than the conventional concrete's properties. They concluded that higher water absorption of RC improves bonding strength between recycled aggregate and cement paste in the compaction process. RC containing recycled pebble aggregate also presents a higher relative strength and elastic modulus than that containing crushed rock aggregate.

Mix	RP (%)	Water-cement ratio	Cement	Water	Sand	CRA	RCRA
RCRC-0	0	0.49	398	195.0	614	1193	0
RCRC-10	10	0.49	398	196.6	614	1074	119
RCRC-20	20	0.49	398	198.2	614	954	239
RCRC-30	30	0.49	398	199.8	614	835	358
RCRC-40	40	0.49	398	201.4	614	716	477
RCRC-50	50	0.49	398	203.0	614	597	597
RCRC-60	60	0.49	398	204.6	614	477	716
RCRC-70	70	0.49	398	206.2	614	358	835
RCRC-80	80	0.49	398	207.8	614	239	954
RCRC-90	90	0.49	398	209.4	614	119	1074
RCRC-100	100	0.49	398	211.0	614	0	1193

Table 3.2 Mix Proportions of recycled crushed rock concrete (RCRC) (Zhou et al. 2017)

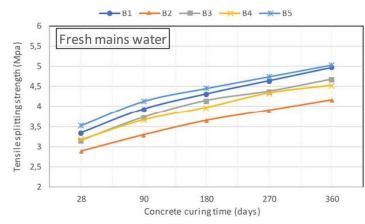
Table 3.3 Mix Proportions of	recycled pebble concrete	(RPC) (Zhou et al. 2017)

Mix	ix RP (%) Water-cement ratio		Cement	Water	Sand	PA	RPA	
RPC-0	0	0.47	404	208.4	614	1228	0	
RPC-10	10	0.47	404	208.9	614	1105	123	
RPC-20	20	0.47	404	209.3	614	982	245	
RPC-30	30	0.47	404	209.7	614	860	368	
RPC-40	40	0.47	404	210.1	614	737	491	
RPC-50	50	0.47	404	210.6	614	614	614	
RPC-60	60	0.47	404	211.0	614	491	737	
RPC-70	70	0.47	404	211.4	614	368	860	
RPC-80	80	0.47	404	211.8	614	245	982	
RPC-90	90	0.47	404	212.3	614	123	1105	
RPC-100	100	0.47	404	212.7	614	0	1228	

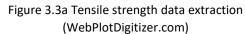
RP (%) f _{cu} (MPa)		$f_{\rm c}$ (MPa)		$f_{\rm r}$ (MPa)		Elastic modulus (GPa)		Poisson's ratio		
	RCRC	RPC	RCRC	RPC	RCRC	RPC	RCRC	RPC	RCRC	RPC
0	41.71	29.88	37.01	26.82	4.30	5.20	46.40	44.39	0.21	0.22
10	37.50	27.95	29.66	25.80	4.31	4.87	44.66	39.33	0.21	0.22
20	43.48	29.72	39.54	28.86	4.20	5.52	39.74	39.36	0.21	0.22
30	42.03	34.86	38.33	28.59	3.96	5.80	38.53	39.59	0.22	0.23
40	44.01	32.60	33.82	27.08	4.80	5.85	38.29	36.50	0.21	0.22
50	42.40	29.84	42.20	29.09	5.11	5.48	39.50	41.00	0.21	0.22
60	42.33	32.39	42.33	30.68	4.31	5.54	40.87	35.77	0.21	0.22
70	43.94	37.02	40.70	32.67	5.19	6.29	40.43	36.46	0.21	0.22
80	50.50	40.11	44.31	35.22	6.28	6.39	40.78	38.24	0.21	0.22
90	43.73	31.85	42.32	26.00	4.27	5.11	41.27	34.18	0.22	0.23
100	44.26	41.16	43.57	35.27	5.07	6.30	40.80	36.33	0.21	0.22

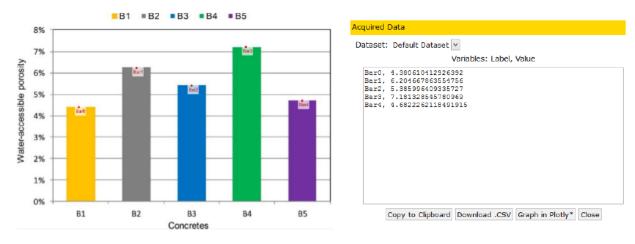
Table 3.4 Mechanical properties test result (Zhou et al. 2017)

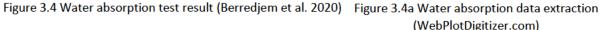
Note: f_{cu} is cube compressive strength; f_c is axial compressive strength; f_r is flexural compressive strength.


Berredjem et al. (2020) also investigated the influence of different sizes compositions (recycled coarse and fine aggregate) on the mechanical and durability properties of RC. The recycled aggregate materials for RC were prepared in saturated-surface-dry (SSD) condition, while natural aggregates were maintained in normal dry state. The specimens were then conserved in different types of water baths, i.e. fresh tap water, deionized water, and saltwater for 360 days of curing. The report shows that, in general, conventional concrete has a higher strength characteristic than RC. The study also shows that there was not much improvement in terms of durability properties of RC despite conserving different types of baths before testing. The experimental data from this research paper are extracted for concrete which conserved in the <u>fresh mains water</u> bath for 28 days of curing.

(Berredjem et al. 2020)


		Proportions (kg/m ³)				
		B1	B2	B3	B4	B5
Cement		400	400	400	400	400
CLS		578		578		578
RFA			571		571	
NCA 3/8 mm		185	168			139
NCA 8/16 mm		928	928			696
RCA 3/8 mm				176	160	44
RCA 8/16 mm				874	874	219
Mixing water (in liters)	Effective water	187	187	187	194	187
	Added water	0	51	39	71	21
	Total added water	187	238	226	265	208
Water/Cement ratio (W/C)		0.47	0.59	0.56	0.66	0.52
Slump (cm)		6.50	7.50	7.00	7.50	6.50
Fresh density (kg/m ³)	real	2321	2296	2277	2207	2300
	calculated	2278	2305	2254	2270	2284


Table 3.5 Concrete mix proportions (Berredjem et al. 2020)



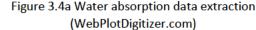
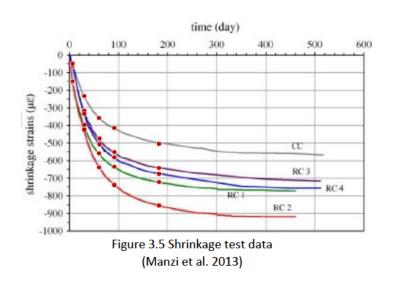

ataset	: Default Dataset 🗸
	Variables: X, Y
	9999999999993, 3.607594936708862
	9999999999993, 3.2341772151898747
	5923076923076, 3.4429771178188915
	5923076923076, 3.4872809152872457 99999999999993, 3.7594936708860773

Figure 3.3 Tensile strength test result (Berredjem et al. 2020)



Manzi et al. (2013) investigated the effects of both fine and coarse recycled aggregates on the mechanical and durability properties of new concrete structure. They concluded that concrete workability is significantly influenced by the shape, texture and grain size distribution of the recycled aggregate itself rather than by their total amount in the concrete mixture. The use of RCA negatively affected the concrete shrinkage strain, whereas the creep results showed that recycled concrete with 27% coarse RA replacement has even better performance than the natural concrete.

Table 3.6 Mechanical properties of test data (Manzi et al. 2013)

Physical and mechanical properties of the investigated concrete mixes (D = bulk density; wa = water absorption; fcm@28d = compressive strength at 7 and 28 days of curing; E = secant elastic modulus; f_{et} = tensile splitting strength; f_{ef} = three-point flexural strength).

Mix	$D (g/cm^3)$	w _a (%)	<i>f_{cm}@</i> 7d (MPa)	<i>f_{cm}@</i> 28d (MPa)	E (GPa)	f_{ct} (MPa)	f_{cf} (MPa)
cc	2.38	6.1	36.7	41.3	31.4	3.8	6.4
RC1	2.32	6.2	44.9	51.4	30.3	3.2	5.8
RC2	2.20	9.3	39.5	45.6	24.9	3.0	4.9
RC3	2.27	9.0	34.5	44.7	26.9	4.1	4.8
RC4	2.30	7.8	36.1	41.9	30.6	3.3	5.7

	efault Dataset 🔻
	Variables: X, Y
.0262333	3165311475, 56.549562778057805
0.458699	51127571, 236.15902167481215
9.882969	16434723, 359.0019505139277
0.578360	25334765, 415.157027329111
80.40281	139998685, 503.6599531000022
. 8903548	318207712, 159.88516075302988
80.243923	82037739, 399.49593460299377
59.619978	35224309, 559.0063336912929
0.289070	5472397, 635.1618488242128
80.11790	747112582, 720.3313682088146
.8991211	72938251, 153,21834798045103
0.208858	401455203, 426.1631856933092
	2265664365, 639.0080869622391
0.153192	204891628, 738,4974467991849
79.94258	803765149, 853.6676236603915
	84435338, 66.54978193692608
	07714391, 319,4941813320476
	84518618, 475.6514497359136
	9813715, 551.8266891669772
	372789235, 640.3296149378685
	93896417, 53.21615639176838
	19031756, 336.1612132634948
	071533454, 508.98551359880787
	38508405, 581.827346643582
180.17927	195423965, 673.6636788007627

Figure 3.5a Shrinkage data extraction (WebPlotDigitizer.com)

Yang et al. (2011) investigated the mechanical properties of recycled concrete with high levels of RCA and crushed clay bricks (CCB) replacement in the concrete mix production. The results showed that the aggregate absorptivity increases with increase in CCB content. A good quality concrete still can be produced with addition of RA and CCB for up to 50%.

Specimen	Substitution ratio (%)	Water/cement ratio	Slump (mm)
NA-100	RCA 0%	0.47	33
RCB-80	CCB 20%/RCA 80%	0.47	20
RCB-50	CCB 50%/RCA 50%	0.47	10
RC-100	RCA 100%	0.47	24

Table 3.7 Workability of concrete mix (Yang et al. 2011)

Table 3.8 Tensile strength test data (Yang et al. 2011)

Mixtures	Specimen age (day)	Tensile splittin	Relative strengt		
		Cylinder 1	Cylinder2	Average	reduction (%)
NA-100 (control)	7	3.07	3.29	3.18	0
	28	4.29	4.09	4.19	0
RCB-80	7	3.09	2.66	2.87	9.8
	28	2.67	3.13	2.9	30.8
RCB-50	7	2.64	2.83	2.73	14.2
	28	2.67	2.86	2.77	33.9
RC-100	7	3.28	2.61	2.94	7.5
	28	3.44	3.79	3.61	13.8

Table 3.9 Compressive strength test data (Yang et al. 2011)

Mixtures	Specimen age (day)	Compressive strength (N/mm ²)			Relative strength reduction (%	
		Cube 1	Cube 2	Average		
NA-100 (control)	7	41.9	41.2	41.55	0	
	28	54.7	54.6	54.65	0	
RCB-80	7	38.1	38.3	38.2	8.1	
	28	49.3	48.3	48.8	10.7	
RCB-50	7	35.5	35.8	35.65	14.2	
	28	44.3	43.4	43.85	19.8	
RC-100	7	38.8	38.7	38.75	6.7	
	28	51.2	51.9	51.55	5.7	

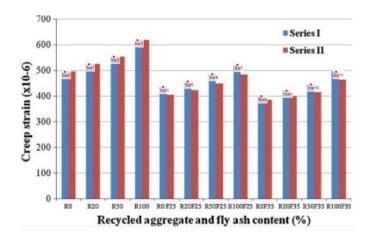
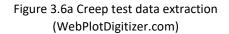
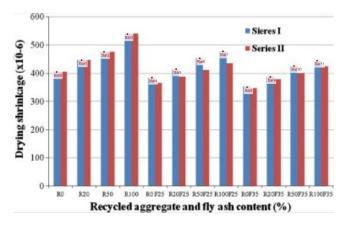
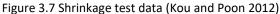
Table 3.10 Flexural strength test data (Yang et al. 2011)

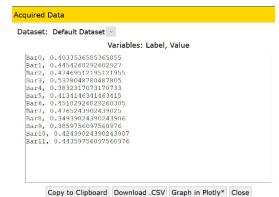
Mixtures	Specimen age (day)	Modulus of	rupture (N/mr	n ²)	Relative strength reduction (%)
		Prism 1	Prism 2	Average	10
NA-100 (control)	7	3.18	3.6	3.39	0
	28	4.14	4.06	4.10	0
RCB-80	7	3.95	3.61	3.78	-11.5
	28	3.94	4.30	4.12	-0.4
RCB-50	7	3.13	3.44	3.28	4.1
	28	3.7	4.02	3.86	5.9
RC-100	7	3.42	3.08	3.25	3.2
	28	3.45	3.99	3.72	9.3

Kou and Poon (2012) studied the effects of fly ash addition in the concrete mix design to compensate the lower quality of recycled concrete aggregates. The report concluded that the durability properties of RC can be improved by using 25%-35% of fly ash as a partial replacement or as an addition to cement.

Notation	Fly ash (%)	Recycled aggregate (%)	Comp	ressive st	rength (M	Pa)	
			1 day	4 days	7 days	28 days	90 days
R0	0	0	12.8	23.3	30.2	48.6	52.7
R20	0	20	11.9	22.4	29.1	45.3	50.8
R50	0	50	11.6	21.8	27.6	42.5	49.5
R100	0	100	10.2	18.6	24.4	38.1	45.5
r-R0F25	25	0	12.1	22.8	28.6	43.6	57.9
r-R20F25	25	20	11.5	24.3	32.8	42.8	57.3
r-R50F25	25	50	11.1	22.9	30.4	41.7	53.4
r-R100F25	25	100	9.4	19.1	25.1	36.8	50.1
r-R0F35	35	0	7.7	16.6	22.5	40.7	47.8
r-R20F35	35	20	6.6	14.6	20.9	41.0	46.6
r-R50F35	35	50	5.9	15.2	20.4	37.1	43.2
r-R100F35	35	100	4.8	14.6	19.4	25.2	37.4

Table 3.11 Compressive strength test data (Kou and Poon 2012)


Figure 3.6 Creep test data (Kou and Poon 2012)

	Variables: Label, Value
	0.4943683409436834
	0.5242009132420091
Bar2,	0.5540334855403349
Bar3,	0.6179604261796042
Bar4,	0.4357686453576865
Bar5,	0.4570776255707763
Bar6,	0.48584474885844753
Bar7,	0.5220700152207002
Bar8,	0.3995433789954338
Bar9,	0.4208523592085236
Bar10	, 0.4453576864535769
Bar11	, 0.4943683409436834
	 Table And instance and an an

Figure 3.7a Shrinkage test data extraction (WebPlotDigitizer.com)

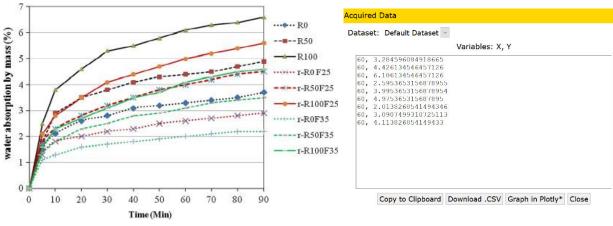


Figure 3.8 Water absorption test data (Kou and Poon 2012)

Figure 3.8a Water absorption data extraction (WebPlotDigitizer.com)

Chapter 4

Data Analysis and Results

The data analysis of this research project is carried out in the following phases:

Phase 1	Organise the data into a spreadsheet and find the significant outliers in the data series. Note: This stage is essential to achieve a good coefficient determination (r2) value between the data sets so that the generated equation from the graph can deliver more accurate function that fits the observed data
Phase 2	Remove the outlier from the data and create a new data set
Phase 3	Import the new data into Matlab and graph it into contour plots w.r.t x, y, z values. Note: The graph will show the relationship between the strength characteristics of RC ('z' as target) as a function of RA% content (as input 'x') and w/c ratio (as input 'y')
Phase 4	Generate the linear model regression equation from the graph and determine the 95% confidence and prediction interval for each regression lines.
Phase 5	Interpret the results and compare the recycled concrete properties to the available conventional concrete's code and design standards.

4.1 Data collection summaries

The scope of this project is focused on the behaviour of RC strength characteristics by incorporating %RA replacement and water/cement ratio in the concrete mix design. Based on the collected experimental data researches, recycled concrete as coarse aggregates are very variable to its mechanical and durability properties. To achieve a good estimation from data analysis between RC and normal concrete, a range of parameters is developed to remove data irregularities and produce better data uniformity. A database has been established based on the following parameters:

- a. The mechanical properties' data such as compressive strength, tensile strength, flexural strength and modulus of elasticity is collected and analysed for their mean value at 28 days of curing
- b. Data are collected by focusing on the recycled concrete as coarse aggregates and manufactured with ordinary concrete mixing methods preferably without pre-treatments, special curing and using special admixture such as superplasticizer.
- c. All recycled aggregates are generated from the real construction or demolition waste i.e. not produced from the laboratory
- d. The durability properties of RC such as shrinkage and creep are analysed in mm/m, thus, all the specifics values (specific creep and shrinkage) data are converted into these units by dividing it with the applied load for each individual specimen.

						MECHANICAL PRO	OPERTIES OF F	RECYCLED CONCE	RETE										ITY PROPERTIES O	F RECYCLED CONCRETE				
	Authors	RCA Used	Fly ash	RCA content		ontent	%RCA placeme	w/c ratio	w/c	Compressive 1		Flexural	Modulus of Slump (mm)) Sh	ırinkage (mm/m	(Davs of expo	sure) a	Water bsorption		Creep (mm/m)		,	Alkali-S lica Reacti	tion
No			(%)	Fine (Kg) Coarse (Kg		Coarse (Kg) %	water	r (Kg) cement (Kg	g)	Strength (Mpa)	(Mpa)	Strength (Mpa)	Elasticity (Gpa)	7	30	60 9	0 180	(%)	28		n/	/d		
1 Corini	aldesi 2010	RCA	0	0	0 553	556 549	0	140 35 153 34	0 0.4	58.6 r 56.1	n/d	n/d	37.3 n/d 36.9	0.09	0.26	0.34 0.4 0.37 0.4	4 0.44 n, 4 0.48	'd n	/d					
			0	0	0 541		0	65 33	0.5	51.2			35.6	0.19	0.27	0.43 0.45	5 0.5							
			0	0	0 535	537	0	176 32 86 31		47.1			33.9	0.18		0.47 0.49								_
			0	519	0 0	556		140 35	6 0.0	43.3			28.6	0.05		0.4 0.5								
			0	512	0 0	549	30	153 34		39.6			28.6	0.06		0.42 0.4								
			0	507 502	0 0	543 537	30	65 33 176 32	0.55	38.1 34.5			27.2 26.7	0.05	0.27	0.41 0.5	5 0.52 1 0.58							_
			0	497	0 0	533	30	86 31	0.6	31.6			26.4	0.19	0.44	0.63 0.68	8 0.73							
			0	0 52		0		140 35 153 34		46.1			32.7	0.11		0.5 0.9								_
			0	0 51		0	30	65 33		39.9			27.7	0.12		0.54 0.5								-
			0	0 50				176 32		36.3			24	0.17		0.38 0.4								
			0	0 50	531	0	30	86 31	0.6	34.7			22.9	0.18	0.4 Days of	0.62 0.6	6 0.68	Water n	/d		n/	/d		
														7	14	28 5	6 70 a	bsorption	-			-		
2 T. Ozt	akkaloglu et al. 2017	RCA	0	0 20	0 0	1065	0	237 38	0.6236842	40.9	3.7		29.3 22 29 18	0.217	0.261 0	357 0.42 382 0.48		5.8						
			0	0 20		533			0.6210526	41	3.4			0.224		382 0.48 414 0.46		6.104						-
			0	0 81	16 0	0		235 38	0.6184211 0.5973684	40.3	2.84			0.263		441 0.5		6.104						
			0	0 394	0 0	1012 506		227 38 218 38	0.5973684 0.5736842	40.1 41.2	3.82 3.43		28.1 23 27.9 15			244 0. 268 0.32		4.91 5.03		+ +	+ +			_
			0	787	0 0	0	100	209 38	0.55	40.8	3.11	3.89	25.7 12	0.177	0.235 0	278 0.34	5 0.3805	4.72						
3 C. Zho	u et al. 2017	RCRA (crushed rock)	0	0 11	0 0	1193 1074	0	195 39	0.4899497 0.4939698	43.57 r 42.32	n/d	5.07	46.4 n/d 44.66	n/d			n,	'd n	/d		n/	/d		
		(ci usrieu FOCK)	0	0 11 0 23		1074			0.4939698	42.32		4.27	44.66				+ +			+ +	+ +			
			0	0 35	8 0	835	30 1	199 8 39	0.5020101	40.7		5.19	38.53											
			0	0 47		716			0.5060302 0.5100503	42.33 42.2		4.31 5.11	38.29 39.5				+ +			+ +	+ +			_
			0	0 71	.6 0	477	60 2	204.6 39	0.5140704	33.82		4.8	40.87											
			0	0 83	15 0	358	70 2	206.2 39	0.5180905	38.33		3.96	40.43											
			0	0 95	4 0	239 119	80 2 90 2	207 8 39 209.4 39	0.5221106 0.5261307	39.54 29.66		4.2	40.78 41.27				+ +			+ +	+ +	-		
	ļ		0	0 119		0	100	211 39	0.5301508	37.01		4.3	40.8											
	ŀ	RPC Pebble	0	0 12	0 0	1228			04 0.5158416 04 0.5170792	35.27 r 26	n/d	6.3 5.11	44.39 n/d 39.33	n/d			n,	′d n,	/d	+ +	n/	/d		_
			0	0 24	15 0	982	20 2	209.3 40	0.5180693	35.22		6.39	39.36											
			0	0 36	68 0	860	30 2	209.7 40	04 0.5190594 04 0.5200495	32.67		6.29	39.59							+ $ -$				
			0	0 49	4 0	737	40 2 50 2	210.1 40 210.6 40	0.5200495	30.68 29.09		5.54	36.5											
			0	0 73	57 0	491	60	211 40	0.5222772	27.08		5.85	35.77											
			0	0 86		368	70 2		0.5232673	28.59 28.86		5.8	36.46 38.24			_								_
			0	0 110		123		212.3 40	0.525495	25.8		4.87	34.18											
			0	0 122		0			0.5264851	26.82		5.2	36.33						0					_
4 L. Ber	redjem et al.2020	RCA	0	0	0 185	928 928	0	87 40 238 40	0 0.4675	34.7 31.8	3.35 2.87	n/a	n/a 6	65 n/d 75				4.39 n 6.23	'a		n/	/a		
			0	176 87	4 0	0	100	226 40	0.565	32.5	3.13			70				5.38						
			0	160 87 44 21		696		265 40		30.6 33.4	3.17		7	75				7.18						_
5 Góme	z-Soberón 2002	RCA	0	0	0 710	304		207 6 40	0.519	39	3.7		29.7 n/d	,5		374		4.05	0.16		n/	/d		
			0	69 8 134 16		259 209		207 6 40		38.1 37	3.7		29.1 27.8		0.3				0.135					_
			0	258 31	468		60 2	2076 40	0.519	37	3.0		26.6		0.4	104			0.158					
		RCA	0	406 49		0	100 2	2076 40	0.519	34.5	3.3	n/d	26.7		0.4				0.158					
6 C.S Pc	ion 2004	RCA Oven dry state	0	67 13		720		221 35	0.6260623 0.6515581	43.3 r 39.7	n/d	n/d	n/d 14	15 n/d 30			n,	'd n,	/d					
			0	164 33		349		247 35	3 0.6997167	43.2			12											
7 M Et	eberria et al. 2007	RCA	0	317 64	0 627.8	0 579.2	100	271 35 65 30	3 0.7677054 0 0.55	40.2 38.26	2.84	n/d	32.129 n/d	.2 n/d		_	n	(d	/d		n/	(d		_
7 101. 20	eberria et al. 2007	NCA .	0	137.4 128.	.3 470.8	434.4	25	65 30	0 0.55	39.42	3.01		32.84	iiyu				u n,			117	u		
			0	279 8 256	.6 319.5	289.4	50 100	65 31	8 0.5188679	38.79	3.36		32.5				+			+ $-$	+			
8 G. An	dreu et al 2014	RCA	0	732 2 391. 0	2 0 0 302.1	0 784.5		62 32 135.4 38	0.4984615 0.3563158	35.53 102.09	2.79 5.13	6.47	28.635 50.41 n/d	n/d			n,	'd	n/d	+ +	n/	/d		
		RCA 60MPa	0	0 19				138 2 38	0.3636842	102.48	6.32		47.79											
			0	0 487.		392.2			0.3942105 0.4484211	103.1 100.78	5.1 5.88	6.8	44.28 40.09	+ +			+ +			+ + -	+ $+$			
	l	RCA 40 Mpa	0	0 187.	.8 241		20 1	139.7 38	0.3676316	104.28	5.31	6.7	48.29											
			0	0 469.		392.3		153.1 38 175.3 38	0.4028947 0.4613158	96.84 91.23	6.21	6.83 6.53	43.04 37.15			_	+			+ +	+			_
			0	938.	~ 0	0	100				4.2				Shrinkage at 9	L days of curin	g					Expan	nsion at 91 days of	of curings
9 Limba		RCA PC20	0	0 37	0 0	1260 882	0		0.6545455	25.56 r	/d	3.9		0 0.29				n/d	n/d			0.125		
	ł	PC20	0	0 37		882	30 50		5 0.6545455 0.6101695	25.04 25.56		3.8		0 0.32						+ +		0.11		
	l		0	0 124		0	100	80 31	0.5806452	24.71		2.86	11.46 4	0.65								0.06		
		PCFA20	90	0 39	0 0	1311 918	0	60 21 60 21	5 0.744186 5 0.744186	29.85 29.45		4.28	16.43 4 16.97 2	0 0.19 0 0.26			+					0.145 0.19		
			100	0 65	7 0	918 657	50	60 23	0.6956522	28.66		3.98	14.44 5	0.25						+ +		0.19		
	ļ	0.000	105	0 128	0 0	0	100	60 24	15 0.6530612	28.76		4.28	13.37 3	0.45								0.22		
	ł	PC30	0	0 37	U 0 3 0	1245 872	0 30		0.5454545	31.19 33		4.49		20 0.34 30 0.34			+ $+$			+ +		0.1 0.12		_
			0	0 62	13 0	623	50	80 35	0.5070423	34.3		4.09	14.53 6	0 0.52								0.08		
	ļ	PCFA30	0	0 125	52 0	0 1285	100	80 37	2 0.483871 0 0.6153846	27.2 37.5		4.22 5.32	11.92 7 21.89 3	70 0.63 80 0.215			+					0.08		
	ł	rcr/60	110	0 38	6 0	900	30		0 0.6153846 0 0.6153846	37.5		4.11	21.89 3	0.215			+ +			+ +	+ +	0.09		
			120	0 64	1 0	641	50	60 28	0.5714286	34.88		5.93	15.39 6	50 0.43								0.11		
			126	0 126	0 0	0 1245	100		0.5423729 0.5070423	37.06 37.53		4.81		0 0.55			+ +			+ +		0.135 0.12		_
		PC35		0 37	3 0	872	30	80 35	5 0.5070423	31.76		5.12	14.24 2	0.32								0.13		
		PC35	0						0.4675325	40		4.58	14.9 3	0.425								0.13		
		PC35	0	0 61		613	50		0.0.0				10											_
			000000000000000000000000000000000000000			0	50 100 0	80 40	09 0.4400978	44.7 38.63		4.9		0 0.81 0 0.195								0.14		
		PC55 PCFA35	0 0 120 120	0 61 0 122 0 0 38	26 0 0 0 84 0	0 1282 898	100 0 30	80 40 60 28 60 28	0.5714286 0.5714286	38.63 42.84		4.708	20.57 1 19.99 3	0.195								0.14 0.14 0.14		
			120 130	0 61 0 122 0 0 38 0 63	26 0 0 0 84 0 81 0	0 1282	100	80 40 60 28 60 28 60 30	0.5714286 0.5714286 0.5333333	38.63 42.84 39.43		4.708 5.181 4.7	20.57 1 19.99 3 16.51 2	0.195 0.25 0.425								0.14 0.14 0.14 0.065		
			120	0 61 0 122 0 0 38	26 0 0 0 84 0 81 0	0 1282 898	100 0 30 50	80 40 60 28 60 28 60 30	0.5714286 0.5714286	38.63 42.84		4.708	20.57 1 19.99 3 16.51 2	0.195								0.14 0.14 0.14		

																-		_				
				+		⊢ →								Shrinkage		Water		1				Ļ
10 W. H Kwan et al.2012 R	RCA	0 0	0	0 0	1048.3 0	190	328 0.5792683	40.6 n/d	n/d	n/d	n/d	7	14 0.2267	28 0.375	56 0.719	absorption 1.79				n/d		<u> </u>
		0 0	157.2		891.1 15		328 0.5792683	38.5				0.078	238	0.375	0.719	2.85		1		1		1
		0 0	314.5		733.8 30	190	328 0.5792683	37.06				0.1		0.504	0 859	2.86						
		0 0	629		419.3 60	190	328 0.5792683	28.12				0.111		0.6636	1 078	3.49						
	[0 0	838.6	0	209.7 80	190	328 0.5792683	26.015				0.1288	0.437	0.82	1.1956	3.95						\vdash
				+									20	Shrinkage			0			4.		<u> </u>
11 S. Manzi et al. 2013 R	RCA	0 0			1800 0	168	350 0.48	41.3 3	6.4	31.	100	0.056	30	60 0.359	90 18 0.415 0.50		n/d		<u>↓ </u>	n/d		└ ──
11 3. Walizi et al. 2013	NCA .	0 0	419	0	1331 31.48009	168	350 0.48	51.4 3		30.		0.159		0.559	0.635 0.7							-
		0 0	1024	0	675 100	168	350 0.48	45.6	4.9	24.	200	0.153	0.426	0.639	0.738 0.85							
	[0 0	604		1154 52.33969	168	350 0.48	44.7 4.		26.			0.319	0.475	0.551 0.6							
_		0 0	604	0	1144 52.7972	168	350 0.48	41.9 3.	5.7	30.	5 130	0.053	0.336		0.581 0.67							L
12 Kou and Poon 2012 R			0		1048 0		410 0.5487805	48.6 n/d		<i>(</i>)	n/d			nkage at 112 (days	water absor		eep at 120 c	lays	n/d		<u> </u>
	RCA series I	0 0	204		840 20	225 225	410 0.5487805	48.6 n/d 45.3	n/d	n/d	n/a	0.404				3.27	0.525			n/a		-
5		0 0	506		524 50	225	410 0.5487805	42.5			1	0.475				4.41						-
		0 0	1017		0 100	225	410 0.5487805	38.1				0.539				6.06						
	[25 0	0	0	1048 0	225	410 0.5487805	43.6				0.383				2.62	0.435					
		25 0	204		840 20	225	410 0.5487805	42.8				0.414					0.455					L
		25 0	506		524 50 0 100	225	410 0.5487805	41.7				0.451				4.02						L
		25 0 35 0	1017		1048 0	225	410 0.5487805 410 0.5487805	36.8			-	0.477				2.02	0.522					<u> </u>
		35 0	204		840 20	225	410 0.5487805	40.7				0.386				2.02	0.42					-
		35 0	506		524 50	225	410 0.5487805	37.1				0.423				3.09						
		35 0	1017	0	0 100	225	410 0.5487805	25.2				0.44				4.08	0.496					
5	Series II	0 0	0		1048 0	225	410 0.5487805	48.6				0.404				3.27						L
		0 0	204		840 20	225	410 0.5487805	45.3				0.446					0.525		↓ ↓ ↓			—
		0 0	506		524 50 0 100	225 225	410 0.5487805 410 0.5487805	42.5 38.1			+	0.475				4.41 6.06		+	<u>↓ </u>	-		<u>+</u>
		25 0	1017		992 0	225	410 0.5487805 512.5 0.4390244	38.1 52.9	-		1	0.539				6.06		1		-		<u> </u>
		25 0	193		794 20	225	512.5 0.4390244	50.1	1		1	0.386					0.403	1	<u> </u>	1		1
		25 0	482	2 0	496 50	225	512.5 0.4390244	48.1				0.41				2.92						
	[25 0	963	8 0	0 100	225	512.5 0.4390244	45.3	1	-	1	0.434				3.99						1
		35 0	0	-	1048 0	225	553.5 0.4065041	68.9				0.346				1.48				L		<u> </u>
		35 0 35 0	204		840 20 524 50	225	553.5 0.4065041 553.5 0.4065041	63 58.5			+	0.376				2.38	0.399	+	<u> </u>			—
		35 0	506		524 50 0 100		553.5 0.4065041 553.5 0.4065041	58.5	l		1	0.398					0.415	+	I − I − −			<u> </u>
13 J. Xiao et al. 2004 R	RCA	0 0	0 1017		1295 0	185	430 0.4302326	54.5 35.9 n/d	n/d	27.	5 42	0.423 2 n/d					0.465 n/d	1		n/d		1
		0 0	374	0	872 30	185	430 0.4302326	34.1			33	3			1							
		0 0	609	0 0	609 50	185	430 0.4302326	29.6	L		41	L										
	[0 0	832		357 70	185	430 0.4302326	30.3			40		μĪ					I				<u> </u>
14 Topsu and Same 2002	RCA	0 0	1149		0 100	185	430 0.4302326	26.7	2.00	n/d	44		┝			n/d	n/d	+	<u>↓ </u>	n/d		—
14 Topçu and Sengel 2003 R	RCA C16	0 0	510		914 0 743 30	209	327 0 6391437	17.6 n/d 13.3	2 63	nya	110) n/d				n/d	n/d		<u> </u>	n/d		_
F F		0 0	860		564 50	197	316 0 6392405 310 0 6354839	13.3	2.75		100					1		1		I		<u> </u>
		0 0	1205		188 70	197	307 0 6384365	13.1	2.53		85	5				1		1	1 1	1		1
		0 0	1764		0 100	184	289 0 6366782	11.8	2 29		90)										
<u>(</u>	C20	0 0	0	0	898 0	209	366 0.5710383	18.5	2.19		95											1
		0 0	501				354 0.5706215	15.5	2 02		90		⊢ T					<u> </u>				<u> </u>
		0 0	844		553 50 185 70	197 196	346 0.5693642 343 0.5714286	14.5	1 82		70		├			+		+	<u>↓ </u>			—
		0 0	1185		185 70	196	343 0.5714286 323 0.5696594	14.4	1 81		90					1		1	<u>↓ </u>	l	├ - -	<u> </u>
15 Adessina et al. 2019 R	RCA	0 0	1/38			159.6	380 0.42	66.38 n/d	n/d	43.4) n/d				n/d	n/d	1		n/d		1
		0 77.02	99.63	345.6	448.96 20	159.6	380 0.42	64.57		41.2	4 215	ō				Ľ.				Ľ_		
		0 154.03	199.26				380 0.42	59.25		40.1												
		0 231.05					380 0.42	57.17		38.						-	_		↓ ↓ ↓	I		—
		0 308.52					380 0.42	58.6	l	35.7						+		+	<u> </u>	I		—
16 Kou and Poon 2013 R	RCA	0 385.08	498.14		0 100	159.6 225	380 0.42 410 0.5487805	55.88 46.7 3 2	n/d	34.7	9 185) n/d				n/d	n/d	<u> </u>	<u>↓ </u>	n/d		<u> </u>
	******	0 0	506		524 50	225	410 0.5487805	41.3 30		29.								1		.45		1
		0 0	1017	0	0 100	225	410 0.5487805	36.5 2.9		21.	5 195	5										
		25 0	0	0 0	1048 0	225	307.5 0.7317073	42.3 3.1		28.	5 165	ō										
	[25 0	506		524 50		307.5 0.7317073	39.8 3.0		27.												L
		25 0	1017		0 100	225	307.5 0.7317073 266.5 0.8442777	35.2 2.9 38.9 2.8	1	23.	1 210		⊢ − +						├	I		
		35 0	506		1048 0 524 50	225	266.5 0 8442777 266.5 0 8442777	38.9 2.8 35.9 2.7		27.			+ +			1		+	<u> </u>	l		t
		35 0	1017		0 100	225	266.5 0 8442777	29.7 2.4		20.						1		1		1		1
		55 0	0	0 0	1048 0	225	184.5 1 2195122	34.9 2.5		25.	4 190)										
		55 0	506				184.5 1 2195122	29.9 2.3		21.	3 230											1
120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		55 0	1017		0 100	225	184.5 1 2195122	25.6 2.1		19. 38.7	5 255	5				0		-				—
17 Barbudo et al. 2013 R	RCA				n/a 0 n/a 20	189 189	350 0.54 350 0.54	49.78 10 8 50.8 8.		38.7) n/d				n/d	n/d	-	<u> </u>	n/d		—
					n/a 50	189	350 0.54	48.2 7		36.5						1		1		1		1
		0 n/a	n/a	n/a n	n/a 100	189	350 0.54	45.4 9.5		31.6	7 124	1										
18 H. Mefteh et al. 2013 R	RCA	0 n/a	n/a		n/a 0		0.54 0.54			n/d	90) n/d				n/d	n/d			n/d		
					n/a 20		0.54 0.54	36.25 3.3			70.15											\vdash
					n/a 40 n/a 60	┌──┼	0.54 0.54 0.54	34.95 2.9 26.15 2.5			59.2 29.8		┝					+	<u>↓ </u>			—
					n/a 60 n/a 80	+	0.54 0.54	26.15 2.5			29.8					1		+	<u>↓ </u>	l		<u> </u>
		0 n/a			n/a 100		0.54 0.54	27.96 2.6			15					1		1		1		1
				<u> </u>		-+					15		hrinkage (m	nm/m) (Days	of exposure)	Water	Creep (m	m/m) days o	of exposure	L_		
												7	30	60	90 18	0 absorption	7 30	0 60	90			
19 Pedro et.al 2017 R	RCA	0 0	0	859	1027 0	150.5	350 0.43	72.6 4.5	n/d	44.	5 135	0.115	0.174	0.224	0 261 -	12		0.375				<u> </u>
		0 206					350 0.4474286	68.9 3.7		37.			0.286	0.396	0.418 -	14.37						—
		0 413	490	427	511 50	158.1 180.2	350 0.4517143 350 0.5148571	63.8 3.4 61 2.8		35.	136	0.144	0.289	0.404	0.429 -	15.64	0.483 0.57					<u>+</u>
++		021	3/3	+	- 100	100.2	330 0.31403/1	20		31.	. 130	0.145	0.340	0.4/1	5.555	20.38		m/m) days o				t
						-+											50 100	150	200 250			
20 Gayarre et al. 2019 R	RBA	0 0	0	0	810 0	142	400 0.355	59.8 n/d	n/d	4			0.108	0.159	0.189	n/d	0.448 0.553	3 0.634	0.675 0.71			
	recycled brick	0 271	37		648 20	176	400 0.44	55.6		3		0.056		0.219	0 266		0.457 0.585					<u> </u>
	aggregate	0 474					400 0.505 400 0.57	52.8 54.1	l	3			0.184		0.322		0.507 0.626					
		0 677			405 50 243 70	228 263	400 0.57 400 0.6575	54.1 46.8		28.			0.214 0.263	0.31	0.38	+	0.451 0.583					<u> </u>
		0 947			0 100		400 0.6575	45.8	+	16.			0.263		0.483	1	0.522 0.688			1		<u> </u>
		- 1334	1.04	<u> </u>						10.	1			nm/m) (Days		Water			of exposure			1
L						-+						7	28	90	180 36	5 absorption	50 100	150	200 250			
<u> </u>	RCA	0	0			190	380 0.5	60.7 n/d	n/d	36.		0.065		0.172	0 23 0.29	4 1.38			0.424 0.417			
21 Seara et al. 2016 R		0	173.07	246.34		190	380 0.5	53.5		32.	170	0.047	0.1	0.185	0 268 0.3							—
21 Seara et al. 2016 F	ŀ	0	432.68 865.36		332.72 50 0 100	190 190	380 0.5 380 0.5	51.8 42.9	l	31.		0.061	0.109	0.234	0.328 0.42							──
21 Seara et al. 2016 F		0				, 190	380 0.5		1			y 0.1	U.147	0.274	0.428 0.50		0.436 0.489			1		—
21 Seara et al. 2016 f		0				178 75	275 0.45	46.9		20	20	0 0 0 8 5	0 1 1 1	0.10	0.258 0.20	7 262	0.321 0.624	0 504	0.709 0.793			1
21 Seara et al. 2016 f		0	0	457.65	486.19 0		275 0.65 275 0.65	46.9 46.7		35.	5 100	0.044	0.111 0.071	0.231	0 258 0.30							<u> </u>
21 Seara et al. 2016 f		0 0 0	0 168.84	457.65	486.19 0 388.95 20	178.75	275 0.65 275 0.65 275 0.65	46.9 46.7 42.2		35. 32. 27.	5 100	0.044	0.111 0.071 0.086	0.231	0 258 0.30 0 245 0.36 0.35 0.4	4 2.95		0.573	0.586 0.549			E
	RC	0 0 0 0	0 168.84	457.65 366.12 228.83	486.19 0 388.95 20 243.1 50 0 100	178.75 178.75	275 0.65	46.7	/d	32.	5 100 4 120	0 0.044 0 0.052 0 0.072	0.071 0.086 0.083	0.231 0.294	0.245 0.36	4 2.95 2 2.83	0.3016 0.492	2 0.573 5 0.481	0.586 0.549	1		

2	Cabo et al. 2009	RCA	0		0	121.59	882.2	0	190	380	0.5	54.8 n/d	n/d	33.308	170 0.	0416	0.096	0.157	0.161	0.199 n/d		0.216	0.258	0.36	0.3944	0.429		
		Mixture A	0		189.24	91.69	665.28	20	190	380	0.5	47.3		32.36	250 0.	0416	0.0923	0.157	0.165	0.209		0.04	0.363	0.488	0.533	0.582		
			0		471.12	57.07	414.06	50	190	380	0.5	47.4		33.516	50 0	0.061	0.1144	0.1818	0.1976	0.234		0.06	0.371	0.515	0.563	0 618		
			0		874.04	0	0	100	190	380	0.5	45.25		30.337	190 0.	0492	0.1504	0.2324	0.272	0.339		0.67	0.445	0.576	0.61	0 669		(
		Mixture B	0		0	121.59	882.2	0	190	380	0.5	54.1		36.223	170													(
			0		189.24	91.69	665.28	20	190	380	0.5	50.2		32.36	150													(
			0		471.12	57.07	414.06	50	190	380	0.5	47.7		34.072	50													(
			0		874.04	0	0	100	190	380	0.5	45.85		30.995	180													
																Shri	nkage(m	nm/m) (Days	of exposu	re) W	ater	Cr	eep (mm/	/m) Days of	exposure			(
																15	28	70	140	180 abso	orption	15	28	70	140	180		(
2	He et al.2020	RCA	0	0	0	755	1085	0	160	340	0.4705882	48.91 n/d	n/d	32.2 n/d	0	0.141	0.195	0.277	0.296	0.302	1.06	0.279	0.375	0.544	0.5733	0.586		(
		RCA30	0	755	085	0	0	100	160	340	0.4705882	34.25		23.58	0).221	0.293	0.435	0.457	0.457	6.43	0.408	0.55	0.806	0.877	0 881		
		RCA80	0	755	085	0	0	100	160	340	0.4705882	42.33		29.49	0). 66	0.226	0.325	0.341	0.347	4.75	0.331	0.445	0.639	0.669	0.68		

				Alka i-silica	reaction (day:	s of expans
	Author	RCA used	%RCA	14	28	56
24	Johnson et al. 2016	RCA Alberta aggre	0	0.36		
			25	0.234		
			50	0.312		
			100	0.338		
		RCA Bermier Aggre	0			
				0.17		
			50	0.082		
			100	0.132		
		RCA Postdam Agg	0	0.09		
		NCH TOMUMPAG	25	0.065		
			50	0.066		
			100	0.000		
		DCA Caslashill Ass	100	0.073		
		RCA Springhill Age	25	0.46		
			50	0.22		
			100	0.366		
		RCA Quebec demo	100	0.241		
25		RCA AI-R	25	0.198		
	Outdoor exposure block ma	mixed mineralogy	50	0.281		
			100	0.309		
1		RCA Be-R	25	0.082		
1		Argillaceous limest	50	0.091		
1			100	0.11		
1		RCA Po-R	25	0.051		
1		sandstone	50	0.061		
1			100	0.071		
1		RCA Sp-R	25	0.203		
1		greywacke	50	0.291		
1			100	0.321		
	Consisted of silicious river g	RCA- Ca-R	20	0.281		
			50	0.441		
			100	0.502		
	Concrete with alkali aggreg	RCA St-R	20	0.079		
	concrete with unuit upprep	inch St in	50	0.071		
			100	0.064		
		000 0- 0	20	0.075		
		RCA Op-R	20	0.075		
			100	0.056		
		Waste Used	RCA conte		ali-s lica reacti	
20	Carettee Dellaw et al. 2004				a of summersis	
26	Grattan-Bellew et al. 2004			Day	s of expansio	ns
26	Grattan-Bellew et al. 2004			Day 14	28	ns 56
26	Grattan-Bellew et al. 2004	RCA- Bernier	0	Day 14 0.048	28 0 085	ns 56 0.154
26	Grattan-Bellew et al. 2004		0	Day 14 0.048 0.038	28 0 085 0 069	ns 56 0.154 0.1338
26	Grattan-Bellew et al. 2004	RCA- Bernier RCA- Postdam	0100	Day 14 0.048 0.038 0.063	28 0 085 0 069 0.118	ns 56 0.154 0.1338 0.213
26	Grattan-Bellew et al. 2004	RCA- Postdam	0 100 0 100	Day 14 0.048 0.038 0.063 0.054	28 0 085 0 069 0.118 0.107	ns 56 0.154 0.1338 0.213 0.189
26	Grattan-Bellew et al. 2004		0 100 0 100	Day 14 0.048 0.038 0.063 0.054 0.054	28 0 085 0 069 0.118 0.107 0.142	ns 56 0.154 0.1338 0.213 0.189 0.236
26	Grattan-Bellew et al. 2004	RCA- Postdam	0 100 0 100	Day 14 0.048 0.038 0.063 0.054	28 0 085 0 069 0.118 0.107	ns 56 0.154 0.1338 0.213 0.189
26	Grattan-Bellew et al. 2004	RCA- Postdam	0 100 0 100	Day 14 0.048 0.038 0.063 0.054 0.08 0.06	28 0 085 0 069 0.118 0.107 0.142 0.107	ns 56 0.154 0.1338 0.213 0.189 0.236
		RCA- Postdam RCA - Springhill	0 100 0 100	Day 14 0.048 0.038 0.063 0.054 0.054	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT	ns 56 0.154 0.1338 0.213 0.189 0.236
26		RCA- Postdam	0 100 0 100	Day 14 0.048 0.038 0.063 0.054 0.08 0.06	28 0 085 0 069 0.118 0.107 0.142 0.107	ns 56 0.154 0.1338 0.213 0.189 0.236
		RCA- Postdam RCA - Springhill	0 100 0 100	Day 14 0.048 0.038 0.063 0.054 0.08 0.06 CPT	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005	RCA- Postdam RCA - Springhill Natural Agg	0 100 0 100 0 100	Day 14 0.048 0.038 0.063 0.054 0.08 0.06 CPT 1 year	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT 14 days	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada	RCA- Postdam RCA - Springhill Natural Agg PH	0 100 0 100 100	Day 14 0.048 0.038 0.063 0.054 0.08 0.06 0.06 CPT 1 year 0.027	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia	RCA- Postdam RCA - Springhill Natural Agg PH RG	0 100 0 100 0 100 0 100 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.063 0.054 0.08 0.06 0.06 CPT 1 year 0.027 0.035	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056 0.31	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartite USA Greywacke Australia	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ	0 100 0 100 0 100 0 100 0 0 0 0 0 0 0 0	Day 14 0.048 0.063 0.054 0.054 0.08 0.06 CPT 1 year 0.027 0.035 0.094	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056 0.31 0 265	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartite USA Greywacke Australia Greywacke Australia	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ QL	0 100 100 0 100 0 100 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.063 0.063 0.064 0.08 0.066 CPT 1 year 0.027 0.035 0.094 0.12	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056 0.31 0 265 0.342	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Gierywacke Australia Quartzik Sandstone Quartzik Porway	RCA - Postdam RCA - Springhill Natural Agg PH RG MQ QL PQ	0 100 0 100 0 100 100 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.063 0.054 0.054 0.054 0.054 0.054 0.054 0.06 CPT 1 year 0.027 0.035 0.094 0.12 0.13	28 0 085 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056 0.31 0 265 0.342 0 093	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartite USA Quartitic Sandstone Quartitic Norway Greywacke USA	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ QL PQ NQ PEN PEN	0 100 0 100 0 100 100 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.063 0.054 0.054 0.054 0.054 0.054 0.027 0.035 0.027 0.035 0.094 0.12 0.13 0.15 0.167	28 0 085 0 069 0.118 0.107 0.142 0.107 14 days 0 056 0.31 0 265 0.342 0 093 0.185 0.357	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ QL PQ NQ PQ PQ PC CO	0 100 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.066 CPT 0.027 0.035 0.094 0.12 0.13 0.15 0.167 0.196	28 0 085 0 069 0.118 0.107 14 days 0 056 0.31 0 265 0.342 0 093 0.185 0.357 0.452	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Opartzite USA Greywacke LUSA Greywacke USA Greywacke Canada Reddish sandstone	RCA- Postdam RCA - Springhill Natural Agg PH RG QL QL QL PQ PQ NQ PEN CC CC NRS	0 100 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.053 0.053 0.054 0.083 0.054 0.054 0.065 0.027 0.035 0.027 0.035 0.094 0.12 0.133 0.157 0.167 0.196	28 0 069 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056 0.311 0 265 0.342 0.093 0.185 0.357 0.42 0.357	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ QL PQ PQ PQ PQ PQ PR CO CO NRS SPH	0 100 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.053 0.054 0.083 0.054 0.054 0.054 0.057 0.035 0.035 0.035 0.035 0.12 0.13 0.15 0.167 0.196 0.21 0.196	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Opartzite USA Greywacke LUSA Greywacke USA Greywacke Canada Reddish sandstone	RCA- Postdam RCA - Springhill Natural Agg PH RG QL QL QL PQ PQ NQ PEN CC CC NRS	0 100 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.053 0.053 0.054 0.083 0.054 0.054 0.065 0.027 0.035 0.027 0.035 0.094 0.12 0.133 0.157 0.167 0.196	28 0 069 0 069 0.118 0.107 0.142 0.107 AMBT 14 days 0 056 0.311 0 265 0.342 0.093 0.185 0.357 0.42 0.357	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ QL PQ PQ PQ PQ PQ PR CO CO NRS SPH	0 100 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.053 0.054 0.063 0.054 0.066 0.066 0.027 0.035 0.094 0.12 0.13 0.155 0.167 0.167 0.166 0.211 0.217 0.299	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada	RCA- Postdam RCA - Springhill Natural Agg PH RG MQ QL PQ PQ PQ PQ PQ PR CO CO NRS SPH	0 100 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.053 0.054 0.08 0.063 0.08 0.08 0.08 0.027 0.027 0.035 0.094 0.12 0.15 0.167 0.196 0.211 0.211 0.217 0.229 CPT	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA - Postdam RCA - Springhill Natural Agg PH RG QL PQ QL PQ PQ PQ PQ PQ PR CO NRS SPH RE	0 100 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.063 0.054 0.058 0.061 1 year 0.027 0.038 0.031 0.12 0.133 0.157 0.167 0.217 0.217 0.219 CPT 1 year	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada	RCA - Postdam RCA - Springhill Natural Agg PH RG MQ QL QL QL QL QL QL QL QL QL QL RG NQ NQ NQ NRS SPH RE Spratt	0 100 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.063 0.054 0.060 CPT 1 year 0.027 0.038 0.054 0.055 0.057 0.121 0.133 0.15 0.160 0.217 0.299 CPT 1 year 0.202	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA - Springhill RCA - Springhill RCA - Springhill Natural Agg PH RG QL PQ QL PQ PQ NQ PQ PN CQ SPH RE SPH S Sprint Sprint Sprint C		Day 14 0.048 0.038 0.063 0.054 0.053 0.054 0.055 0.057 1 year 0.027 0.038 0.054 0.055 0.157 0.167 0.167 0.167 0.299 CPT 1 year 0.202 0.203	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA- Postdam RCA- Springhill Natural Agg PH RG MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ	0 1000 0 0 1000 1000 0 0 0 0 0 0 0 0 0 0 0 0	Day 14 0.048 0.038 0.063 0.064 0.064 0.054 0.064 0.07 1 year 0.027 0.038 0.054 0.027 0.034 0.13 0.15 0.160 0.217 0.227 0.227 0.220 0.202 0.23 0.227 0.23 0.227	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA- Postdam RCA- Springhill RCA- Springhill Natural Agg PH RG MQ QL PQ NST PFN CO NNS SPH CO SPA Spratt Spratt RCA2	0 1000 0 1000 1000 0 0 0 0 0 0 0 0 0 0 0 0	Day 144 0.048 0.038 0.054 0.08 0.054 0.08 0.054 0.054 0.054 0.054 0.054 0.057 0.027 0.035 0.048 0.054 0.12 0.13 0.157 0.167 0.167 0.167 0.167 0.217 0.217 0.217 0.227 0.223 0.227 0.226	28 0 085 0 069 0.118 0.107 0.142 0.0107 14 days 0.030 0.31 0.265 0.342 0.033 0.185 0.357 0.422 0.337 0.42	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA- Postdam RCA- Springhill Natural Agg PH RG MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ MQ	0 1000 0 0 1000 1000 0 0 0 0 0 0 0 0 0 0 0 0	Day 144 0.048 0.038 0.054 0.08 0.054 0.08 0.054 0.08 0.054 0.08 0.054 0.054 0.054 0.054 0.057 0.107 0.110 0.117 0.120 0.131 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167 0.117 0.2020 0.233 0.227 0.226 0.119	28 0 0055 0 0151 0 107 0 1142 0 107 AMBT 14 days 0 031 0 265 0 0342 0 0357 0 442 0 0357 0 442 0 0357 0 442 0 0426	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA- Postdam RCA- Springhill RCA- Springhill Natural Agg PH RG MQ QL PQ NST PFN CO NNS SPH CO SPA Spratt Spratt RCA2	0 1000 0 1000 1000 0 0 0 0 0 0 0 0 0 0 0 0	Day 144 0.048 0.038 0.054 0.08 0.054 0.08 0.054 0.054 0.054 0.054 0.054 0.057 0.027 0.035 0.048 0.054 0.12 0.13 0.157 0.167 0.167 0.167 0.167 0.217 0.217 0.217 0.227 0.223 0.227 0.226	28 0 085 0 069 0.0118 0.107 0.142 0.0107 14 days 0.056 0.31 0.265 0.342 0.033 0.425 0.337 0.425 0.342	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA - Springhill RCA RCA RCA Sprint Sprint Sprint Sprint RCA1 RCA2 Washed RCA	0 1000 0 1000 0 0 0 0 0 0 0 0 0 0 0 0	Day 144 0.048 0.038 0.063 0.054 0.08 0.054 0.08 0.051 1 year 0.032 0.035 0.035 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.120 0.131 0.132 0.217 0.220 0.233 0.227 0.206 0.11 0.217 0.206 0.12 0.206 0.12 0.206 0.12 144	28 0 085 0 069 0.118 0.107 0.142 0.107 14 days 0.056 0.032 0.032 0.032 0.0357 0.327 0.327 0.337 0.426	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA- Postdam RCA- Springhull RCA- Springhull Natural Agg PH OL OL PQ PQ RCA-Springhull RE Stratt Spratt		Day 144 0.048 0.054 0.053 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.057 0.027 0.027 0.150 0.160 0.217 0.229 CPT 1 year 0.227 0.233 0.227 0.230 0.33 0.196 0.197 0.207 0.202 0.227 0.203 0.33 0.124 0.134 0.114	28 0 085 0 069 0.0118 0.107 0.142 0.031 0.056 0.31 0.265 0.342 0.033 0.425 0.337 0.463 0.426	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA - Springhill RCA RCA Sprint RCA Sprint Sprint Sprint Sprint Sprint Sprint RCA Sprint RCA RCA	0 1000 0 0 0 0 0 0 0 0 0 0 0 0	Daybay 114 0.048 0.038 0.053 0.054	28 0 085 0 069 0.118 0.107 0.142 0.107 0.14 0.956 0.11 0.265 0.342 0.357 0.342 0.357 0.342 0.357 0.453 0.453 0.453 0.453	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA- Postdam RCA- Springhull RCA- Springhull Natural Agg PH OL OL PQ PQ RCA-Springhull RE Stratt Spratt		Day 144 0.048 0.054 0.053 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.057 0.027 0.027 0.150 0.160 0.217 0.229 CPT 1 year 0.227 0.233 0.227 0.230 0.33 0.196 0.197 0.207 0.202 0.227 0.203 0.33 0.124 0.134 0.114	28 0 085 0 069 0.0118 0.107 0.142 0.031 0.056 0.31 0.265 0.342 0.033 0.425 0.337 0.463 0.426	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartzite USA Greywacke Australia Quartzite Norway Greywacke Canada Reddish sandstone Greywacke Canada Devitrified acidic tuff	RCA - Springhill RCA RCA Sprint RCA Sprint Sprint Sprint Sprint Sprint Sprint RCA Sprint RCA RCA	0 1000 0 0 0 0 0 0 0 0 0 0 0 0	Daybay 114 0.048 0.038 0.053 0.054	28 0 085 0 069 0.118 0.107 0.142 0.107 0.14 0.956 0.11 0.265 0.342 0.357 0.342 0.357 0.342 0.357 0.453 0.453 0.453 0.453	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartite USA Greywacke Australia Quartite Norway Greywacke LSA Greywacke Canada Reddanianditone Reddanianditone Bevitrified acdic tuff Shehata et.al 2010	RCA - Postdam RCA - Springhill RCA - Springhill RCA - Springhill RCA - Springhill RCA - Springhill RCA - Springhill Spratt 2 Spratt 2 Spratt 2 Spratt 2 Spratt - Spratt - Sp	0 1000 0 0 0 0 0 0 0 0 0 0 0 0	Dapa 141 0.0484 0.0383 0.0384 0.0384 0.054 0.056 CPT 1.0407 0.025 0.0384 0.0355 0.0494 0.0355 0.0494 0.0355 0.0494 0.135 0.1355 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.227 0.230 0.237 0.241 0.241 0.241 0.241 0.241 0.241 0.241 <td< td=""><td>28 0 085 0 069 0.118 0.107 0.142 0.107 0.14 0.956 0.11 0.265 0.342 0.357 0.342 0.357 0.342 0.357 0.453 0.453 0.453 0.453</td><td>ns 56 0.154 0.1338 0.213 0.189 0.236</td></td<>	28 0 085 0 069 0.118 0.107 0.142 0.107 0.14 0.956 0.11 0.265 0.342 0.357 0.342 0.357 0.342 0.357 0.453 0.453 0.453 0.453	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Opartzite USA Greywacke Australia Quartzite Norway Greywacke USA Greywacke Canada Reddish sandsone Greywacke Canada Devitrified acidic tuff Shehata et al 2010 Virgin aggregate	RCA - Springhill RCA RCA Sprint RCA Sprint Sprint Sprint Sprint Sprint Sprint RCA Sprint RCA RCA	0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0	Dapage 144 0.0484 0.053 0.0633 0.063 0.064 0.063 0.064 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.070 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.072 0.072 0.072 0.072	28 0 085 0 069 0.118 0.107 0.142 0.107 0.14 0.956 0.11 0.265 0.342 0.357 0.342 0.357 0.342 0.357 0.453 0.453 0.453 0.453	ns 56 0.154 0.1338 0.213 0.189 0.236
27	Lu et al. 2005 Phenolite Canada River Gravel Australia Quartite USA Greywacke Australia Quartite Norway Greywacke LSA Greywacke Canada Reddanianditone Reddanianditone Bevitrified acdic tuff Shehata et.al 2010	RCA- Postdam RCA- Springhill RCA- Springhill Natural Agg PH MG OL OL PO PO PO NQ PO NQ PO SP Sprint Re Sprint Sprint Sprint Sprint	0 1000 1000 0 0 0 0 0 0 0 0 0 0 0 0	Depaid 141 0.0545 0.0545 0.0547 0.0557 0.0547 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557	28 0 085 0 069 0.118 0.107 0.142 0.107 0.14 0.956 0.11 0.265 0.342 0.357 0.342 0.357 0.342 0.357 0.453 0.453 0.453 0.453	ns 56 0.154 0.1338 0.213 0.189 0.236

4.2 Relationship between mechanical properties of RC Vs CC data analysis

The mechanical properties' relationship of recycled concrete is analysed by using the statistical linear regression method. These properties are then compared with available conventional concrete's design code and standard's equations. Moreover, the 95% confidence and prediction interval were calculated and plotted together for each regression lines.

Brown (2001) provides a step-by step guidance to calculate both prediction and confidence interval by using Microsoft Excel spreadsheet. The two mathematical equations to determine these intervals are;

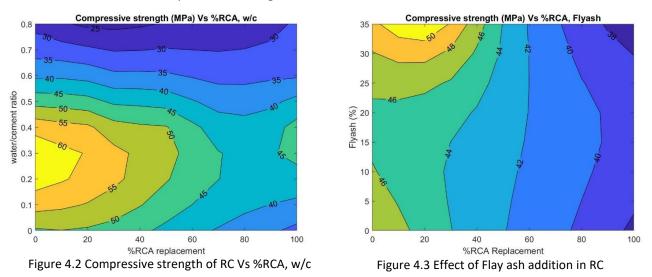
$$Y_{\text{pred.}} \pm t_{0.05} \sqrt{\frac{\sum (Y - Y_{\text{pred.}})^2}{n - 2}} \sqrt{\frac{1}{n} + \frac{(X - \bar{X})^2}{SS_x}} \quad \text{Eq. (1)} \quad Y_{\text{pred.}} \pm t_{0.05} \left[1 + \sqrt{\frac{\sum (Y - Y_{\text{pred.}})^2}{n - 2}} \right] \cdot \sqrt{1 + \frac{1}{n} + \frac{(X - \bar{X})^2}{SS_x}} \quad \text{Eq. (2)}$$

Where; Y_{pred} = prediction of Y values; n = number of data points; $T_{0.05}$ = t critical value for 95%; X = mean value of known X; SS_x = the sum of squares of the standard error of X values

The following excel functions are used to calculate the prediction and confidence interval bands in the Microsoft Excel spreadsheet:

No	Descriptions	Excel function
1	Prediction of Y values (Y _{pred})	= TREND (known Y, known X)
2	Statistics linear data points values, including;	= LINEST (known Y, known x, True, True)
	Slope, Intercept, Standard Error of slope, standard error of intercept, R square, standard error of y values, Variances, degree of freedom, unexplained variation and explained variation	Slope 0.427988 8.489803 Interc n 117 SEslope 0.028186 1.383156 SE intercep xm 46.06882 RSQ 0.667221 5.154553 SE y ssxx 33444.92 F 230.5746 115 d.f. t.95 1.980808 SSregr 6126.233 3055.483 SS res SE 5.154553
3	Number of cases (n)	= COUNT (known x)
4	Average x values (Xm)	= AVERAGE (known x)
5	Sum of squares of deviations (SSx)	= DEVSQ (known x)
6	Two-tailed inverse function (t _{0.05})	= T.INV.2T (probability, degree of freedom)
7	Standard error (SE)	= SQRT (SS _{res} /d.f)
8	95% confidence interval 95% Prediction interval	= Y± t _{0.05} *SE*SQRT(1/n+(X-Xm)^2/SSx) = Y± t _{0.05} *SE*SQRT(1+1/n+(X-Xm)^2/SSx)

Table 4.3 Microsoft Excel functions for 95% prediction and confidence data intervals

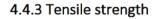

4.3 Data plotting with Matlab program

Data plotting is another crucial part in data analyses' processes for this research project. Graphs or plots are used to visually illustrate the relationship between variables in the data series. As mentioned in the previous discussion, the strength characteristics of RC are analysed together with their RA percentage replacement and water/cement ratio respectively. Thus, contour plot was selected to present the data w.r.t x, y and z variable. Matlab has a special function to easily graph the data into contour plots. Below is the Matlab function to create contour plots from the database in this project.

```
%inputs
%Recycled aggregate replacementlevel
x = RCA;
xnodes = min(RCA):10:max(RCA);
%water/cement ratio
y = wc;
ynodes = min(wc):0.1:max(wc);
%Outputs
z = targets;
응응
%w/c Vs RCA replacement level
%fit data to surface
Z2 = gridfit(x,y,z,xnodes,ynodes);
%plot the file
figure
[A,b] = contourf(xnodes, ynodes, z2);
clabel(A,b)
%title ('Compressive strength Vs w/c, %RCA')
xlabel ('% RCA replacement')
ylabel ('Water / cement ratio')
```

Figure 4.1 Matlab function for contour plot

4.4 Analysis of results and data interpretation



4.4.1 Compressive strength

The analysis results confirm that reduction in compressive strength of concrete structure depends on the percentage of recycled aggregate substitution (%RCA) and water/cement ratio in the concrete mix.

Figure 4.2 shows that as recycled aggregate replacement percentage increases, the compressive strength of RC decreases and vice versa. In addition, the compressive strength of RC gradually decreases with the increase in water/cement ratio. However, a standard compressive strength of 55MPa can be achieved, when recycled concrete contains less than 30% of RA replacement and 0.45 w/c ratio. A few studies also show that substituting recycled aggregate from concrete waste into a new concrete production does not affect the functionality requirements of the concrete structure.

Meanwhile, figure 4.3 illustrates that this lower compressive strength can be improved by adding fly ash into the concrete mixture. The highest compressive strength values can be seen when concrete structure has 0%-30% RCA replacement with 30% fly ash addition.

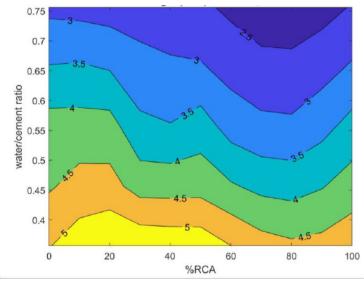


Figure 4.5 Tensile strength of Recycled Concrete

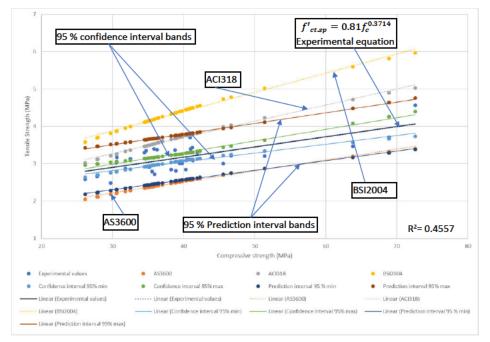


Figure 4.6 Relationship between tensile strength and compressive strength

Figure 4.5 shows a strong relationship between RCA percentage replacement and water/cement ratio. The tensile strength of RC decreases as the water/cement ratio and %RCA replacement increase. McNeil and Kang (2005) mentioned that the adhered old mortar in RCA acts as a weak point to fail under compressive load which results in lower split tensile strength. The high value

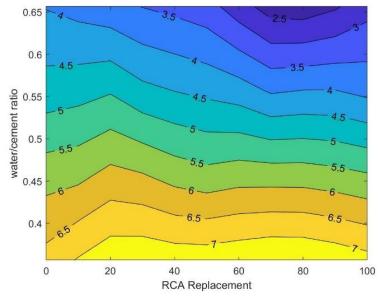

of tensile strength of 5 MPa can be maintained with RCA content for up to 60% substitution and w/c ratio of less than 0.4.

Figure 4.6 shows a scatter plot of the tensile strength versus the compressive strength. The proposed linear regression line for the experimental data between these two variables is represents as;

$$f'_{ct.sp} = 0.81 f_c^{0.3714}$$
 Eq. (3)

The Australian standard (AS3600), American Concrete Instituted Code (ACI318) and European code (BSI2004) provide design equation to describe the relationship between the tensile strength and compressive strength for conventional concrete.

As can be seen on figure 4.6, both AS3600 and ACI318 lies within the 95% prediction intervals, where BSI2004 lies above the upper prediction interval. Moreover, all design equations for conventional concrete fall outside the upper and lower confidence interval boundaries of Eq. (3). That is, the AS3600 underestimate the tensile strength value, while ACI318 and BSI2004 overestimate the tensile strength value. Therefore, the application of the current code and standard for CC to predict splitting tensile strength as a function of compressive strength is not suitable when RC is used. Further research and experimental data resources are required to generate a higher r2 value to provide a better equation for estimating the recycled concrete's properties.

4.4.4 Flexural strength

Figure 4.7 Flexural strength of Recycled Concrete

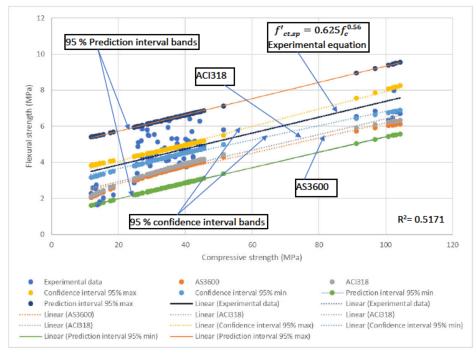


Figure 4.8 Relationship between flexural strength and compressive strength

Figure 4.7 shows that the flexural strength of RC has no significant difference to that of conventional concrete. However, the flexural strength gradually decreases as water/cement ratio increases. Bairagi et al. (1993) in their experimental studies also confirmed a significant difference in the RC's flexural strength at different w/c ratio than the conventional concrete.

Figure 4.8 illustrated the relationship between the flexural strength and compressive strength of RC against the design code and standard equation of flexural strength for ordinary concrete. As can be seen in the figure 4.8, when the compressive strength increases, the flexural strength increases too. Moreover, the ratio of flexural to compressive strength increases as the compressive strength increases. The proposed linear regression equation for the experimental data is represented as;

$$f'_{ct.f} = 0.625 f_c^{0.56}$$
 Eq. (4)

The 95% confidence and prediction intervals for experimental data were also calculated and plotted in figure 4.8. That means 95% probability of any design equation of CC's stands within the confidence intervals of Eq. (4). The results show that both AS 3600 and ACI318 equations fall below the lower confidence interval of Eq. (4), but still lies within the 95% prediction interval boundaries. That means, both design equations provided by both standards underestimate the flexural strength for recycled concrete. Hence, application of design equations of conventional concrete would provide a conservative design of recycled concrete structures in terms of flexural strength.

4.4.5 Modulus of elasticity

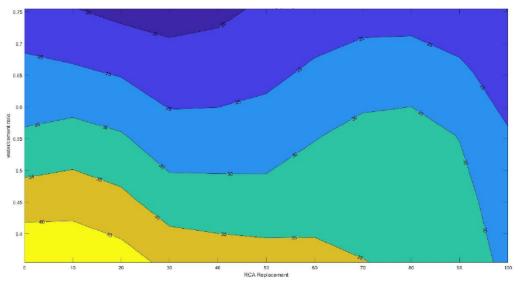


Figure 4.9 Modulus of elasticity (GPa) of Recycled Concrete

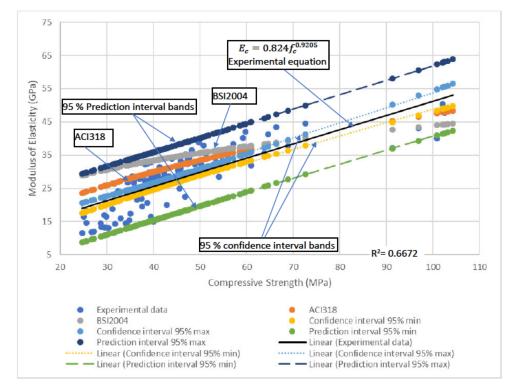
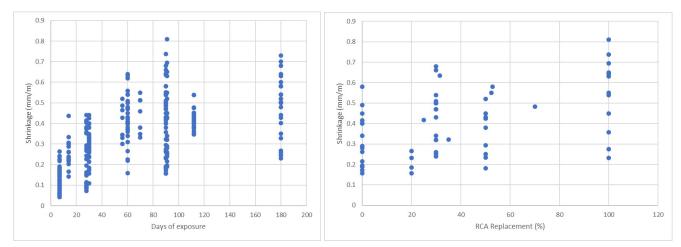


Figure 4.10 Relationship between Modulus of elasticity and compressive strength

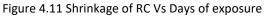
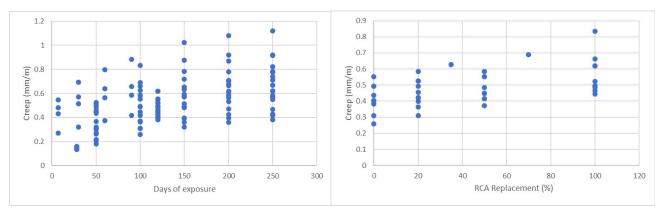

As depicted in figure 4.9, the modulus of elasticity is considerably affected by RCA percentage replacement and water/cement ratio. The combination of a higher recycled aggregate replacement and higher water/cement ratio yield a lower modulus of elasticity. The plot also shows that the modulus of

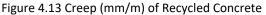
elasticity of RC with 100% recycled aggregate content is reduced by 25% compared to the natural aggregate concrete. Behera et al. (2014) reported that RC behaves in a more brittle manner than the conventional concrete due to the old adhered mortar attached to the surface of RA, thus leading to a lower modulus of elasticity.

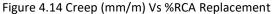
Figure 4.10 represents a linear regression model of the correlation between the elastic modulus and compressive strength of RC. As can be seen in figure 4.10, the ACI318 and BSI 2004 design equation lies within the 95% prediction interval. However, both equations stand above the upper limit of the confidence interval of the experimental data's trendline. That means the design equations provided by both standards for conventional concrete overestimate the flexural strength of recycled concrete.

Thus, the application of design standard equation of CC is not suitable to estimate the modulus of elasticity of recycled concrete. The proposed equation obtained from the regression analysis provides a better linear correlation between the two variables with R² value of 0.6672. The proposed equation is given as;

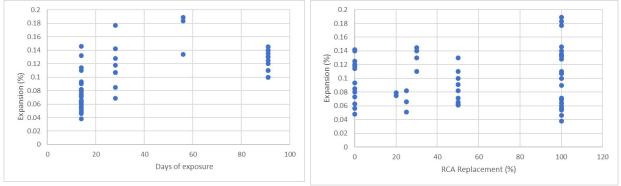
$$E_c = 0.824 f_c^{0.9205}$$
 Eq. (5)




Figure 4.12 shows that the incorporation of RA substitution into concrete exhibits more drying shrinkage than conventional concrete. The shrinkage in recycled concrete shows 15% higher than normal concrete with 30% RA substitution. Additionally, its deformation increases for up to 70% with 100% RA content after a period of 180 days. However, the shrinkage development of RC shows a similar behaviour to conventional concrete at lower substitution level (20%) and at early age of curing.

Meanwhile, Figure 4.11 indicated that shrinkage of RC increases nonlinearly over time, growing more significantly at the beginning and tending to stabilise over time. Many researchers concluded that this may be due to the lower modulus of elasticity in recycled concrete aggregate's properties, and so offers less resistance to the potential shrinkage of cement paste.



As can be seen in Figure 4.13 and Figure 4.14, the creep development of recycled concrete tends to have a similar reaction as its drying shrinkage property. The creep value of RC increases as recycled aggregate substitution percentage increases. This is due to the amount of old mortar attached on RA which results in considerably higher creep value (Behera et al. 2014).

Based on the figure 4.14, the creep deformation increases for up to 50% in recycled concrete with 100% recycled aggregate replacement. However, the creep development in RC tends to stabilise over time and recorded only 35% lower than conventional concrete after 250 days of exposure.

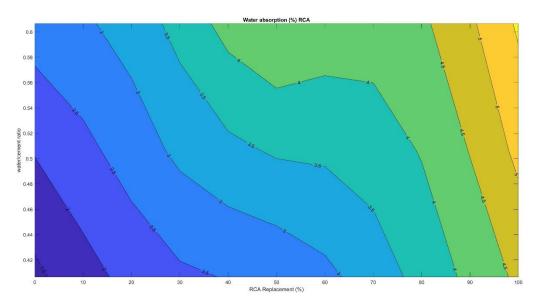

4.4.8 Alkali-silica reaction

Figure 4.15 Alkali-silica expansion of Recycled Concrete Figure 4.16 Alkali-silica expansion VS RCA Replacement

Figure 4.15 displays a small variance of recycled concrete's expansion due to its alkali-silica reaction over time. The analysis results show a higher expansion in early age and tend to stabilise (0.15%) at 90 days of exposure. This means, RCA substitution for new concrete production presents little reactivity and poses small risk of alkali-silica reaction (González-Fonteboa et al. 2018).

The high variation of expansion values for conventional concrete (0% RCA substitution) (figure4.16) mainly depends on the type of the natural aggregate used in the concrete production. While the high variability values of RC with 100% RA replacement mostly depend on the siliceous sand present in the old adhered mortar (Etxeberria et al. 2010).

Additionally, it can be inferred from figure 4.16 that the expansion value of RC increases as recycled aggregate substitution percentage increases. However, a replacement level of 20% does not affect a significant increase in alkali-silica reactivity. Santos et al. (2020) concluded that to mitigate Alkali silica reaction in RCA, a high amount of mineral additions such as fly ash and silica fume are recommended to achieve lower expansion level as natural aggregate concrete. Their investigation also revealed that recycled concrete composed with non-reactive natural aggregate and non-reactive adhered mortar, do not have significant expansion caused by alkali silica reaction. This expansion only increases when recycled concrete is entirely composed of high alkali reactive of natural aggregate.

4.4.9 Water absorption

Figure 4.17 Water absorption (%) of Recycled Concrete

Figure 4.17 confirms that RC has higher water absorption than natural aggregate concrete. Water absorptivity increases as RCA percentage replacement increase. The water absorption increases for up to 70% when 100% RA is used in the concrete mix design. As previously discussed in chapter 2, this is due to the old mortar attached on the recycled aggregate surface. Additionally, Berredjem et al. (2020) specified that concrete containing fine RCA required more water to maintain consistency of fresh concrete workability. Furthermore, Poon et al. (2004) explained, during the vibration process, the water absorbed by RCA tends to move toward the cement matrix, thus forming a high porosity region in recycled concrete structure.

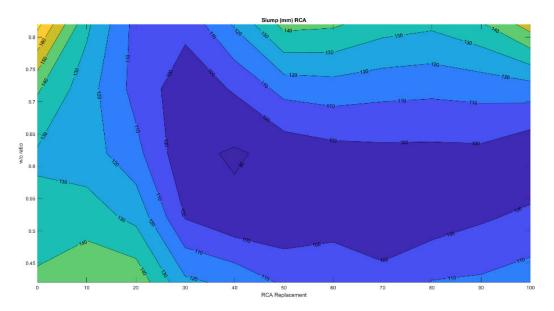


Figure 4.4 Slump (mm) value of Recycled Concrete

Figure 4.4 indicates that the slump values of recycled concrete gradually decrease as the recycled aggregate replacement increases. Many researchers stated that this is due to the higher water absorption in recycled aggregate compared to the conventional concrete. The figure also confirms that adding extra water into the concrete mix design leads to an increase in the workability of the fresh RC properties.

Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The increasing infrastructure and construction development have led to significant demand for natural aggregates which will inevitably cause serious damage to the ecological environment. Moreover, the increasing rate of the demolition of old structures has generated a significant amount of construction and demolition (C&D) wastes. Concrete as the mainstream of solid waste is ineffectively disposed of in landfills at a significant cost and results in depletion of landfill spaces. Thus, eliminating this waste and preserving natural resources have become two of the main sustainable challenges in construction industry.

Many researchers have already recognised the importance of employing recycled concrete as substitution for natural aggregate. They investigated the strength characteristics of recycled concrete (RC) through various experimental studies. Literature review reveals that mechanical and durability properties of RC are generally lower than conventional concrete. Studies show that this is mainly due to the higher presence of adhering old mortar in recycled concrete aggregate, which results in the higher water absorption in the concrete structure.

The purpose of this research project is to investigate the mechanical and durability properties of recycled concrete (RC) as replacements of natural aggregates and comparing these properties with that of conventional concrete. A database from 28 experimental data reports is developed to analyse the behaviour of new concrete structure by incorporating the water/cement ratio and recycled aggregate percentage replacement. Computer software such as Microsoft Excel and Matlab are used to analyse the data and the results of this data analysis confirm that;

- 1. The reduction in mechanical and durability properties of concrete structure depends on the percentage of recycled aggregate substitution (%RCA) and water/cement ratio in the concrete mix design.
- 2. The mechanical properties of recycled concrete such as compressive strength, tensile strength, and modulus of elasticity decrease as the recycled aggregate replacement percentage and water/cement ratio increase, and vice versa.
- 3. The flexural strength of RC has no significant difference to that of conventional concrete. However, its strength significantly decreases as water/ cement ratio increases.
- 4. Concrete manufactured with RCA for up to 30% substitution satisfies the standard concrete strength of 55 MPa and does not affect the functionality requirements of the concrete structure.
- 5. Design equation provided by AS 3600 for conventional concrete underestimate the tensile and flexural strength for recycled concrete. This means the application of this equation would provide a conservative design of RC in terms of these mechanical properties.
- 6. Design equations provided by both BSI2004 and ACI 318 standards lie above the upper 95% confidence interval. That means both design equations overestimate the modulus of elasticity of

RC. Thus, the application of design standard equation of CC is not suitable to estimate the modulus of elasticity of recycled concrete.

- 7. The durability properties of RC such as shrinkage, creep and expansion from alkali-silica reaction increase as recycled aggregate substitution percentage increases. Additionally, these properties increase nonlinearly over time, growing more significantly at the beginning and tending to stabilise over time.
- 8. RCA present little reactivity and pose small risk of alkali-silica reaction despite high %RA substitution.
- 9. The strength characteristics of RC can be improved by reducing the w/c ratio, increasing the use of finer RA size, and the use of minerals and chemicals admixtures such as fly ash, silica fume and superplasticizer.

5.2 Project outcomes

This research project is primarily based on the theoretical approaches. To successfully achieve the project outcomes, a database is developed to analyse the behaviour of new concrete structure when recycled coarse aggregate concrete are used in the concrete mix design.

Outlined below is a summary of the project outcomes achieved;

• Literature review of the general properties of recycled concrete as coarse aggregates

Chapter 2 provides a comprehensive literature review of mechanical and durability properties of recycled concrete. It was found that, the strength characteristics of recycled concrete is generally lower than the conventional concrete. However, many researchers have been exploring various techniques in order to limit the negative effect of using RA in RAC.

• To collect the experimental data of RCA and establish a comprehensive data summary according to the designated range parameters

Chapter 3 and chapter 4 discuss the data collection process and data summary results. Data extraction tool such as WebPlotDigitizer was used to extract the experimental data which presented only in figures or graphs. It also shows how the data is evaluated from designed parameters and the results are summarised into a spreadsheet.

• To compare the mechanical and durability properties of recycled concrete with the conventional concrete properties

Chapter 4 contains data analysis results and discussion on the recycled concrete's properties and comparison to conventional concrete. The analysis results confirm that the reduction of strength characteristics of RC was highly affected by water/cement ratio and RA replacement in the concrete mix design. The 95% confidence and prediction intervals for experimental data were also calculated and plotted in the figures. This method provides better understanding of mechanical properties' relationship between recycled concrete and conventional concrete's design equation.

• To develop a mathematical relationship between recycled concrete's properties and conventional concrete

Chapter 4 also provides mathematical equation for recycled concrete's mechanical properties by using statistical linear regression analysis in Microsoft Excel. The general results show that the majority of design equation of conventional concrete is not suitable to estimate the mechanical properties of recycled concrete.

• To undertake analysis results and recommendation for further research area

As mentioned in the previous discussion, chapter 4 contains detailed of research analysis and interpretation of the results, while the conclusion and recommendation are further discussed in chapter 5. Due to limited time and resources, the practical part of this research project was unfulfilled. This part of project activity still needs to be done, so that more valid data results can be achieved.

5.3 Recommendation

This research demonstrates a process to theoretically analyse the mechanical and durability properties of recycled concrete based on the various published experimental data reports. As previously discussed in chapter 4, the strength characteristics of recycled concrete is very variable. That means the data report from one researcher is prominently different from other researcher's experimental results. This is largely due to different approaches proposed by each researcher during concrete production. Based on this reason, generating a good equation relationship between variables is very challenging, particularly when the data scatter randomly with low r² value. Therefore, it is highly recommended for future research projects to gather more experimental data related to recycled concrete's properties, so that better accuracy of the proposed equations can be achieved.

Literature reviews also reveal that recycled aggregate from concrete waste is still not widely used in largescale concrete production. This is mainly due to its inferior strength characteristics compared to natural aggregates. Further studies on improving mechanical and durability properties of recycled concrete are required, so that a design mix standard for recycled concrete can be developed. It is anticipated that the final recommendations from future project will provide a detailed design standard for high strength recycled concrete to promote a wider use of recycled aggregate for our sustainable future in construction industry.

References

A. Adessina, A. B. Fraj, JF. Barthelemy, C. Chateau, D. Garnier 2019, 'Experimental and micromechanical investigation on the mechanical and durability properties of recycled aggregtaes concrete', Cement and Concrete Research, Vol.126

A. Barbudo, J. D. Brito, L. Evangelista, M. Bravo, F. Agrela 2013, 'Influence of water-reducing admixtures on the mechanical performance of recycled concrete', Journal of Cleaner production, Vol.59, pp.93-98

A. J Kadic, K. Vucic, S. Dosenovic, D. Sapunar, L. Puljak 2016, 'Extraction data from figures with softwares was faster, with higher interrater reliability than manual extraction', Journal of Clinical Epidimiology, Vol.74, pp. 119-123

A. Katz 2003, 'Properties of concrete made with RA from partially hydrated old concrete', Cement and concrete Research, Vol.33(5), pp.703-711

A. Katz 2004, 'Treatments for improvement of recycled aggregate', Journal of Materials in Civil Engineering, Vol.16(6), pp.597-603

A. Khan 1984, 'Recycled concrete-a source for new aggregate', Cement, Concrete and Aggregate, Vol 6(1), pp.17-27

A. M Brown 2001, 'A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet', Computer Methods and Programs in Biomedicines, Vol. 65(3), pp. 191–200.

A.D Cabo, C. Lazaro, F.L Gayarre, M.A Serrano, P. Serna, J.O castano 2009, '20, Construction and Building Materials, Vol.23 (7) pp.2545-2553

A.K. Padmini, K. Ramamurthy, M.S. Mathews 2009, 'Influence of parent concrete on the properties of recycled aggregate concrete', Construction and Building material, Vol.23, pp.829-836

ACI (American Concrete Institute) 2011, 'Building code requirements for structural concrete and commentary, PCA notes on ACI 318-11: With design applications', ACI 318-11, Farmington Hills, MI

AS (Australian Standard) 2009, 'Australian standard for concrete structures', AS 3600, North Sydney, NSW, Australia

B. González-Fonteboa, S. Seara-Paz, J. de Brito, I. González-Taboada, F. Martínez-Abella, R. Vasco-Silva 2018, 'Recycled concrete with coarse recycled aggregate. An overview and analysis', Construction Materials, Vol.68, Issue. 330

B. Nagaraja, K.V Vinay, B.S.K Gowda, Karisiddappa 2017, 'A study on slump and compressive strength of recycled aggregates embedded concrete', Conference: Innovation and advances in civil engineering and earth scince, Karnataka, India

BSI (British Standards Institution) 2004, 'Design of Concrete Structures: Part 1-1: General rules and rules for buildings', Eurocode 2

C. Zhou, Z. Chen 2017, Construction and Building Material, Vol. 134, pp.497–506.

C.S. Poon, z.h. Shui, L. Lam, H. Fok, S.C. kou 2004, 'Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete', Cement and Concrete Research, Vol.34 pp.31-36

Cement Concrete & Aggregates Australia 2010, 'Sustainable Concrete Material', Briefing publications, Queensland,

<<u>https://www.ccaa.com.au/imis_prod/documents/Library%20Documents/CCAA%20Technical%20Public</u> ations/CCAA%20Briefings/Breifing%2011%20Materials_WEB.pdf>

D. Lu, B. Fournier, P.E Grattan-Bellew 2006, 'Evaluation of accelerated test methods for determining alkalisilica reactivity of concrete aggregates', Cement and concrete composites, vol.28, pp.546-554

D. Matias, J. de Brito, A. Rosa, D. Pedro 2013, 'Mechanical properties of concrete produced with recycled coarse aggregates: Influence of the use of superplasticizers', Construction and Building Materials, Vol. 44, pp.101-109

D. Pedro, J.De Brito, L. Evangelista 2017, 'Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties', Construction and Building Materials, Vol.154, pp.294-309

F.L Gayarre, J.S Gonzales, C.L Perez, M.A.S Lopez, P.S Ros, G.M Barrera 2019, 'Shrinkage and creep in structural concrete with recycled brick aggregates', Construction and Building Material, Vol.228

G. Andreu, M. Etxeberria 2014, 'Experimental analysis of properties of high performance recycled aggregate concrete', Construction and Building Materials, Vol.52, pp. 227-235

G. Bai, C. Zhu, C. Liu, B. Liu 2020, 'An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties' Construction and building materials, Vol.240

G. F Belén, M.A Fernando, C.L Diego, S.P Sindy, S. P. 2011, 'Stress-strain relationship in axial compression for concrete using recycled saturated coarse aggregate', Construction and Building Material, Vol.25(5), pp.2335-2342

H. Dilbas, M. Simsek, Ö. Çakır 2014, 'An investigation on mechanical and physical properties of RAC (RAC) with and without silica fume', Construction and Building Materials, vol.61, pp.50-59

H. Mefteh, O. Kebaili, H. Oucief, L. Berredjem, N. Arabi 2013, 'Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete', Journal of Cleaner production, Vol. 54, pp. 282-288

H. Sasanipour, F. Aslani 2020, 'Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled aggregates', Construction and Building Materials, Vol.236

I. González-Taboada, B. González-Fonteboa, F. MartínezAbella, J.L Pérez-Ordóñez 2013, 'Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming', Construction and Building Material, Vol.106, pp.480–499.

J. Desmyter, S. Blockmans, S 2000, 'Evaluation of different measures to reduce the risk of alkali silica reaction in recycled aggregate concrete', International Conference Alkali Aggregate Reaction Concrete Canada, pp. 603–612

J. Lavado, J. Bogas, J. de Brito, A. Hawreen 2020, 'Fresh properties of recycled aggregate concrete', Construction and Building Materials, Vol.233

J. Xiao, J. Li, Ch. Zhang 2004, 'Mechanical properties of recycled aggregate concrete under uniaxial loading', Cement and Concrete Research, vol. 35, pp.1187-1194

J. Xiao, Y. Fan, V.W.Y Tam 2015, 'On creep characteristics of cement paste, mortar and recycled aggregate concrete', European Journal of Environmental and Civil Engineering, Vol.19(10), pp.1234–1252

J. Yang, Q. Du, Y. Bao 2011, 'Concrete with recycled aggregate and crushed clay bricks' Construction and Building Materials, Vol.25 pp.1935-1945

J. Z Xiao, W.G Li, C.S Poon 2012, 'Recent studies on mechanical properties of recycled aggregate concrete in China: A review', Science China Technological Sciences, Vol. 55(6), pp.1463-1480

J.M.V. Gómez-Soberón 2002, 'poon', Cement and Concrete Research, Mexico, Vol.32, pp. 13011-1311

J.S Ryu 2002, 'An experimental study on the effect of RA on concrete properties', Magazine of Concrete Research, Vol.54(1), pp. 7-12

K.K. Sago-Crentsil, T. Brown, A.H. Taylor 2001, 'Performance of concrete made with commercially produced coarse recycled aggregate', Cement and concrete research, Vol.31, pp.707-712

I. B. Topcu, S. Sengel 2003, 'Properties of concretes produced with waste concrete aggregate', Cement and Concrete Research, Vol.34, pp.1307-1312

L. Berredjem, N. Arabi, L. Molez 2020, 'gon, Construction and Building Materials, vol.246, 118421

M, Eckert, M. Oliveira 2017, 'Mitigation of the negative effects of recycled aggregate water absorption in concrete technology', Construction and Building Material, Vol. 133, pp.416–424

M. B Santos, T.D Brito, A.S Silva 2020, 'A review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete', School of Technology and Management, Leiria, Portugal.M. Behera, S.K Bhattacharyya, A.K

Minocha, R. Deoliya, S. Maiti 2014, 'Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review', Construction and Building Material, Vol.68, pp.501-516

M. Etxeberria, E. Vazquez, A. Marí, M. Barra 2007, 'Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete', Cement and Concrete Research, Vol.37 (5), pp. 735-742

M. Limbachiya, M.S Meddah, Y. Oucagour 2011,' Use of recycled concrete aggregate in fly-ash concrete', Construction and Building Materials, vol.27, pp.439-449

M.H Shehata, C. Christidis, W. Mikhaiel, C. Rogers, M. Lachemi 2010, 'Reactivity of reclaimed concrete aggregate produced from concrete affected by alkali-silica reaction', Cement and concrete research, Vol.40, pp.575-582

M.J. Pelufo, A. Domingo, V.A. Ulloa, N.N. Vergara 2009, 'Analysis of moisture state of recycled coarse aggregate and its influence on compression strength of the concrete', Proceedings of the International Association for Shell and Spatial Structures (IASS), Valencia, Spain

M.P. Adams, A. Jones, S. Beauchemin, R. Johnson, B. Fournier, M. Shehata, 2013, 'Applicability of the accelerated mortar bar test for alkali-silica reactivity of recycled concrete aggregates', Advances in Civil Engineering Materials, Vol.2(1), pp. 78-96

N. Fonseca, J.De brito, L.Evangelista 2011, 'The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste', Cement and Concrete Composites, Vol.33 (6), pp.637-643

N.K. Bairagi, K. Ravande, V.K. Pareek 1993, 'Behaviour of concrete with different proportions of natural and recycled aggregates', Resources, Conservation and Recycling, Vol.9(1-2), pp.109-126

N.K. Bui, T. Satomi, H. Takahashi 2017, 'Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate', Construction and Building Materials, Vol.148, pp.376-385

P.S Kumar and G. Dhinakaran, G. 2011, 'Effect of admixed recycled aggregate concrete on properties of fresh and hardened concrete', Journal of Materials in Civil Engineering, vol.24(4)

R. Johnson, M.H Shehata 2016, 'The efficacy of accelerated test methods to evaluate Alkali Silica reactivity of recycled concrete aggregates', Construction and Building Materilas, Vol.112, pp.518-528

R.V Silva, J. De Brito, R.K Dhir 2015, 'The influence of the use of recycled aggregates on the compressive strength of concrete: A review', European Journal Environmental and Civil Engineering, Vol.19, pp. 825-849

R.V Silva, J. de Brito, R.K. Dhir 2015, 'Comparative analysis of existing prediction models on the creep behaviour of recycled aggregate concrete', Engineering Structure, Vol.100, pp.31-42

S. Hossein, A. Farhad 2020, 'Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates', Construction and Building Materials, Vol.236

S. Laserna, J. Montero 2016, 'Influence of natural aggregates typology on recycled concrete strength properties', Construction and Building Material, Vol.115, pp.78-86

S. Manzi, C. Mazzotti, M.C. Bignozzi 2013, 'Short and long-term behaviour of structural concrete with recycled concrete aggregate', Cement and Concrete Composites, Vol.37, pp. 312-318

S. Maruthupandian, V.V.L. Kanta Rao, L. Parameshwaran, 'Durability properties of recycled aggregate concrete containing Flyash', Conference: 2nd International Congress on durability of concrete 2014, New Delhi

S. Seara-Paz, B. G Fonteboa, F.M Abella, I. G. Taboada 2016, 'Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage', Construction and Building Materials, Vol.122, pp.95-109

S.C kou, C.S Poon 2012, 'Enhancing the durability properties of concrete prepared with coarse recycled aggregate', Construction and Building Materials, Vol.35, pp.69-76

S.C Kou, C.S Poon 2013, 'Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash', Cement and Concrete Composites, Vol.37, pp.12-19

S.M.S Kazmi, M.J Munir, W.F Wu, I. Patnaikuni, Y. Zhou, F. Xing 2020, 'Effect of recycled aggregate treatment techniques on the durability of concrete: A comparative evaluation', Construction and Building Materials, Vol.264

T. Ozbakkaloglu, A.A Gholampour, T. Xie 2017, 'Mechanical and Durability of Recycled Aggregate Concrete: Effect of Recycled Aggregate Properties and Content', Journal of Materials in Civil Engineering, Vol. 30(2)

T.R. Sonawane, S.S. Pimplikar 2013, 'Use of recycled aggregate in concrete', Journal of Mechanical and Civil Engineering, Vol.2(1), pp. 1-9

V. Corinaldesi 2010, 'Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates', Construction and Building Materials, Vol.24, pp.1616-1620

V. W. Y. Tam, X.F. Gao, C.M. Tam 2005, 'Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach', Cement and concrete research, Vol.35(6), pp.1195-1203

V.W Tam and C.M Tam 2007, 'Assessment of durability of recycled aggregate concrete produced by twostage mixing approach', Journal of Materials Science approach, Vol.42(10), pp.3592-3602

V.W.Y Tam, D. Kotrayothar, J. Xiao 2015, 'Long-term deformation behavior of recycled aggregate concrete', Construction and Building Material, Vol.100, pp. 262–272

W. H Kwan, M. Ramli, K.J Kam, M.Z Sulieman 2012,' Influence of the amount of recycled coarse aggregate in concrete design and durability properties', Construction and Building Materials, Vol.26, pp.565-573

W.T Sami, S.A Akmal 2009, 'Influence of recycled concrete aggregates on strength properties of concrete', Construction and building Materials, Vol.23(2), pp. 1163-1167

X. Li 2008, 'Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete', Resources, Conservation and Recycling, China, Vol.53, pp.36-44

X. Zhang, S. Deng, Y. Qin 2007, 'Additional adsorbed water in recycled concrete', Journal of Central South University of Technology, Vol.14, pp.449-453

Y. Geng, Y. Wang, J. Chen 2016, 'Creep behaviour of concrete using recycled coarse aggregates obtained from source concrete with different strengths', Construction and Building Materials, Vol.128, pp.199-213

Z. Peng, C. Shi, Z. Shi, B. Lu, S. Wan, Z. Zhang, J. Chang, T. Zhang, 'Alkali-aggregate reaction in recycled aggregate concrete', Journal of Cleaner Production, Vol.255

Z.H Duan, C.S. Poon 2014, 'Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars', Materials and Design, Hong Kong, Vol.58, pp.19-29

Z.H He, H.B Hu, I. Casanova, C.F Liang, S.G Du 2020, 'Effect of shrinkage reducing admixture on creep of recycled aggregate concrete' Construction and Building materials, Vol.254

Z.J. Grdic, G.A. Toplicic-Curcic, I.M. Despotovic, N.S. Ristic 2010, 'Properties of self-compacting concrete prepared with coarse recycled concrete aggregate', Construction and Building Material, Vol.24(7), pp. 1129-1133

Appendix A

Project Specification

ENG4111/4112 Research Project

PROJECT SPECIFICATION

For: Milasari Brady

Title: Investigation on mechanical and durability properties of sustainable concrete using recycled concrete aggregate

Major: Civil Engineering

- Supervisor: Dr Weena Lokuge
- Enrolment: ENG4111 EXT S1, 2020

ENG4112 – EXT S2, 2020

Project aim: This project aims to investigate the mechanical and durability properties of recycled concrete based on the previous experimental studies reports. The results are then to be compared with The Australian standard (AS 3600: 2009), The American Concrete Institute (ACI 318: 2011) and Eurocode (BSI 2004) of natural aggregate concrete. It also aims to provide guidelines as indicator to predict the effect of recycled concrete as natural coarse aggregates replacement in the concrete properties.

Programme: Issue V2, 13th April 2020

- 1. Literature review of the general properties of recycled concrete aggregates, emphasizing mechanical and durability properties.
- Gather various experimental project reports on recycled concrete aggregates and collect the data on the mechanical properties such as, slump, compressive strength, flexural strength, modulus of elasticity, tensile strength and the durability properties such as Shrinkage, creep, water absorption and Alkali silica reaction.
- 3. Evaluate the data and generate relationship and comparison of developmental theories based on the trend lines given from the various data researched.
- 4. Analyse and compare the results against the concrete design standards.
- 5. Complete and submit the final research project dissertation.

If time and resources permit:

1. Conduct the experimental part of the project by testing the concrete with the recycled concrete aggregates vs 100% natural aggregates concrete.

2. Further studies for improving the properties of recycled concrete aggregate and sustainability evaluation such as cost analysis and the environmental impact.

Appendix B

Consequential Effects and Ethical Responsibility

The ethical responsibility for this project has been adapted from the Engineers Australia Code of Ethics, which include;

1.Demonstrate integrity

- The selected project research's topic is within the area of study expertise, i.e. civil engineering major; hence, good background knowledge of the subject is essential in discerning and do what approach is right for the project's success
- Throughout the project, there will be regulars' reviews and feedbacks provided by the USQ supervisor after each critical project phase. These feedbacks will act appropriately and in a professional manner when something to be wrong
- Accept the feedback positively, as well as give, honest and fair criticism
- Be prepared to explain and present the work done during professional practice 2
- Ensure that the material presented in the report is own work and appropriately cite the material of other authors
- Treat others who are involve in the project with courtesy and without discrimination or harassment

2. Practise competently

- Continue to seek peer reviewto achieve high quality project results
- Maintain continuing professional development and continue to develop knowledge and skills

3. Exercise leadership

• Continue to have reasonable efforts to communicate honestly and effectively with the USQ supervisor on important issues such as risks, outcomes and any related project issues

4. Promote sustainability

If the time permit to conduct the experimental part of the project;

- Inform the supervisor or course examiner of the possible consequences of proposed activities on the community and the environment
- Promote health, safety and wellbeing of personal, community and the environment related to the experimental activities.

Appendix C

Project Risk Assessment

As this project is heavily based on the analytical approach, the risk assessment will be mainly related to personal safety and timely completion of the project. However, if the time permitted to conduct the experimental part of the project, the project's risk assessment will be adapted from USQ's Risk Assessment to identify and evaluate the risks associated with hazards and proposes control measures to either eliminate hazards or reduce the potential risks.

		Risk	Matrix		
			Consequence		
Probability	Insignificant 🕜 No Injury 0-\$5K	Minor 🕜 First Aid \$5K-\$50K	Moderate Med Treatment \$50K-\$100K	Major 🕜 Serious Injury \$100K-\$250K	Catastrophic 🕜 Death More than \$250K
Almost ? Certain 1 in 2	м	н	E	E	E
Likely 🕜 1 in 100	м	н	н	E	E
Possible 🕜 1 in 1,000	ι	м	н	н	н
Unlikely 🥑 1 in 10,000	L	L	м	м	м
Rare 1 in 1,000,000	L	L	L	L	L
		Recommer	ded Action Guide		
Extreme:		E= Extrem	e Risk – Task MUST No	OT proceed	
High:	H = High F	Risk – Special Procedu	ures Required (Contac	t USQSafe) Approval	by VC only
Medium:	M = Mediu	m Risk - A Risk Manag	gement Plan/Safe Wor	rk Method Statement	is required
Low:		L= Low Risk	- Manage by routine	procedures.	

			Risk Registe	r and Analysis
		Risk As	sessment	
Risk Description	Consequence	Probability	Risk Level	Mitigation strategy
Project Preparation Phase				
Approval to commence project				Commence early discussions with potential USQ supervisor and ensure approval is
not given by USQ	Medium	Unlikely	Low	received prior to starting project.
				Start resource acquisition as soon as project is approved. If resources cannot be
Resources are not sufficient to				acquired, discuss with the supervisor and use alternative methods to continue with
commence project	Medium	Possible	Medium	the project
Modelling of data Phase				
Microsoft Excel and M. Word				Ensure secondary computer is available to access Microsoft office; save all the data
cannot be accessed	High	Rare	Low	frequently and have an external hard drive as a back-up
Incorrect data entered into				Ensure accurate data is input into the spreadsheet. Undertake full model review to
models or errors in modelling	Medium	Possible	Medium	check all data. Complete simple hand calculation to ensure results are reasonable
Data Collection Phase				
				Ensure data collection commences early to enable collection to be extended if
Insufficient data present in the				required. Collect data over a sufficient period of time to ensure at least 5 different
research papers	Medium	Unlikely	Low	study papers can be analyse
Data has high variance and low				Ensure the data is input correctly and undertake a quick review to compare the values
reliability	Low	Possible	Low	between the data set. Investigate the outlier
Data Analysis Phase				
Data interpretation and analysis				Ensure sufficient time has been set aside for data interpretation and analysis. Start
take longer than anticipated	Medium	Possible	Medium	data analysis early
Repetitive strain injury in				
completing analysis	Medium	Unlikely	Low	Take regular breaks during analysis. Set up work area ergonomically
Write up and Present Results				
Phase				
Insufficient time available to				Start writing draft dissertation at the beginning of the project before results are
adequately write up or present				obtained. Regularly commit time to writing dissertation. Seek review of draft
results	High	Unlikely	Rare	dissertation

Appendix D

Microsoft Excel Experimental Data Spreadsheet

Tensile strength Vs Compressive strength

	Compress															
Tensile	ive			BSI2004	BSI 2004											
strength	strength			(5%	95%fractil		Confidence	confidence	Predictio	predictio						
(Mpa)	(Mpa)	AS3600	ACI318	fractile)	e	Pred y	min	max	n min	n max						
3.7	40.9	2.558124	3.773233	4.476718	8 313904	3.201146	3.10541812	3 29687433	2 592684	3.809609	Slope	0.027228	2.087526	Interc	n	40
3.4	41	2.56125	3.777843	4.482187	8 324062	3.203869	3.10801637	3 29972166	2 595387	3.812351	SEslope	0.004828	0.197323	SE intercep	xm	39.701
3.11	40.5	2.545584	3.754737	4.454773	8 273149	3.190255	3.09492649	3 28558366	2 581855	3.798655	RSQ	0.455667	0.296822	SE y	SSXX	3780.341
2.84	40.3	2.539291	3.745455	4.44376	8 252697	3.184809	3.08962109	3 27999791	2 576432	3.793187	F	31.81019	38	d.f.	t.95	2.024394
3.43	41.2	2.567489	3.787046	4.493106	8 344339	3.209315	3.11318355	3 30544563	2.600789	3.81784	SSregr	2.802583	3.347927	SS res	SE	0.296822
3.11	40.8	2.554995	3.768618	4.471241	8 303734	3.198423	3.10281004	3 29403684	2 589979	3.806868						
3.35	34.7	2.356268	3.475496	4.123469	7.657872	3.032333	2.92549105	3.13917572	2.422024	3.642643						
2.87	31.8	2.25566	3.327098	3.947404	7 330894	2.953373	2.83094342	3.07580166	2 340142	3.566603						
3.13	32.5	2.280351	3.363518	3.990614	7.41114	2.972432	2.85419835	3.09066576	2 360025	3.584839						
3.17	30.6	2.212691	3.263719	3.872209	7.191245	2.920699	2.7905548	3.05084337	2 305882	3.535516						
3.7	39	2.497999	3.684549	4.371499	8.118497	3.149413	3.05415834	3 24466817	2 541025	3.757801						
3.6	37	2.433105	3.58883	4.257934	7 907591	3.094958	2.99635044	3.19356457	2.486036	3.703879						
3.4	35.8	2.393324	3.530153	4.188317	7.778303	3.062284	2.95991205	3.16465605	2.452741	3.671827	,					
3.3	34.5	2.349468	3.465465	4.111569	7.635771	3.026888	2.91913734	3.13463828	2.416419	3.637357						
2.84	38.26	2.474187	3.649425	4.329827	8.041107	3.129265	3.03321834	3 22531092	2 520752	3.737777	•					
3.01	39.42	2.511414	3.704336	4.394974	8.162095	3.160849	3.06580105	3 25589688	2 552493	3.769205						
3.36	38.79	2.491265	3.674615	4.359713	8.09661	3.143695	3.04827093	3 23911988	2 535281	3.75211						
2.79	35.53	2.384282	3.516816	4.172493			2.95154884			3.664646						
3.8	4			4.498555				3 30832219		3.820588						
3.2	51.4	2.867752	4.229934	5.018566	9 320193	3.487039	3.33838237	3.6356955	2.868039	4.106039						
3	45.6	2.701111	3.984139	4.726944	8.77861	3.329117	3.21798597	3.44024853	2.718042	3.940192						
3.3	41.9	2,589208	3.819082	4.531115			3.1309656			3.837103						
3.21	1							3.47613732								
3.09	1			4.498555				3 30832219		3.820588						
2.98				4.229066				3.18136958								
3.14	1							3 33761015								
3.01	-							3 26620872								
2.91								3.15064457		3.655885						
2.81				4.365891				3 24202066		3.75509						
2.72	4	2.396664						3.16701891								
2.48								3.03250076		3.512345						
3.03								3.04879044								
3.37	1	2.408319						3.17535345		3.68382						
2.92				4.138297				3.14488736								
2.52	1							2 96252318								
2.56		2.110166						2 99523112								
2.69	1			3.701405				2 99778998								
4.56	1			5.964394				4 39953385								
3.71	-							4 26428772								
3.46	1							4.07862419								

Flexural strength Vs Compressive strength

		Compress ive	Flexural														
		strength	strength				Confidence	confidence	Prediction	prediction							
%RCA	w/c	(Mpa)	(Mpa)	AS3600	ACI318	Pred y	min	max		max							
	0.00004	40.0	6.47	2 0274.00	2.005002	4 7776 43		4 0000 400	2 0010766	C (5 42404	C 1	0.042022	2 000025		_		75
	0.623684								2.9010766 2.9054588				2.980825	SE intercep	n	m	38.85069
	0.621053								2.8835425				0.93531			5XX	35427.92
	0.618421								2.8747723			78.16207	73	d.f.	t.	95	1.992997
	0.597368						4.5268982			6.6189958		68.37662	63.86082	SS res	SI	E	0.93531
	0.573684								2.9142217								
100	0.55	40.8 43.57							2.8966938 3.0179028								
10		43.37							2.9632553								
20	0.49799	44.31							3.0502157								
30	0.50201	40.7							2.8923106								
40		42.33							2.9636928								
50		42.2					4.6169699 4.2456698		2.9580048 2.5894865								
70									2.788274								
	0.522111								2.8414264								
	0.526131	29.66							2.4051844								
	0.530151								2.7302023								
	0.515842								2.6535141								
	0.517079	26	5.11	3.059412	3.161392	4.123057	3.8730025	4.3731108	2.2422886 2.6513081	6.0038246							
	0.518069								2.5386279								
	0.52005								2.4504574								
50	0.521287	29.09	5.48	3.236109	3.343979	4.258807	4.0228525	4.4947606	2.3798612	6.1377518							
	0.522277		5.85	3.122307	3.226384	4.170503	3.9257196	4.4152868	2.2904287	6.0505777							
	0.523267	28.59			3.315116				2.3576339								
	0.524257								2.3696383 2.2333672								
	0.526485								2.2788449								
	0.356316								5.4876282								
20	0.363684	102.48							5.5035354								
	0.394211						6.8384993			9.4916181							
	0.448421								5.4341463								
	0.367632	104.28 96.84			6.33129				5.5768661 5.2728262								
	0.461316								5.0419022								
	0.654545								2.2226587								
30	0.654545	25.04	3.8	3.002399	3.102479	4.080882	3.8258576	4.3359063	2.1994467	5.9623172							
	0.610169								2.2226587								
	0.580645								2.1847087								
	0.744186								2.4136217 2.3958568								
	0.695652								2.3607465								
	0.653061								2.3651927								
	0.545455		4.49	3.35088	3.462576	4.351064	4.12284	4.5792875	2.4730735	6.229054							
	0.545455								2.5532292								
	0.507042								2.610694								
	0.483871								2.2957738								
	0.615385								2.7517699 2.6416001								
	0.571429								2.6363037								
100	0.542373	37.06	4.81	3.652616	3.774369	4.608945	4.3929709	4.8249183	2.7324037	6.4854855							
0	0.507042	37.53	5.032	3.675704	3.798227	4.629593	4.4139512	4.8452341	2.7530899	6.5060953							
	0.507042		5.12	3.381361	3.494073	4.376105	4.1496952	4.6025148	2.4983343	6.2538756							
	0.467532 0.440098		4.58	3.794733 4.011484	3.921224	4./38105	4.5225595 4.7216818	4.9536498	2.861613	6.6145963 6.8219362							
	0.440098								2.8014594								
	0.571429		5.181	3.927136	4.058041	4.862872	4.6440313	5.0817118	2.9859986	6.7397446							
50	0.533333	39.43	4.7	3.767599	3.893185	4.713063	4.4977426	4.9283843	2.8365975	6.5895293							
	0.496894								2.6866769								
0	0.48	41.3							2.9186024								
31.48009 100	0.48								3.3583611 3.1064766								
52.33969	0.48			4.051666					3.1064766								
52.7972	0.48				4.013273				2.9448754								
0	0.639144	17.6	2.63	2.517141	2.601046	3.754028	3.4529926	4.055063	1.8658055	5.6422501							
	0.639241		2.75	2.18815	2.261088	3.56512	3.232915	3.8973255	1.6716785	5.4585619							
	0.635484		2.59	2.112818	2.183245	3.525581	3.1865378	3.864625	1.6309279	5.4202349							
	0.638436								1.6626264								
	0.636678								1.603738								
	0.570621	15.5							1.7711173								
	0.569364								1.7259485								
	0.571429		1.81	2.27684	2.352735	3.613445	3.2894612	3.9374297	1.7214288	5.5054621							
100	0.569659	13.7	1.63	2.220811	2.294838	3.582693	3.2534952	3.9118908	1.6897766	5.4756094							

Modulus of elasticity Vs Compressive strength

				_													
			Modulus	Compress ive													
Author	16RCA	w/c	elast c ty (Gpa)	strength (Mpa)	AC1318	BS 2004	Pred y	Confidence	confidence max	Pred ct on min	pred ct on max						
Co naldes 2010	0	0.45	37.3	58.6	36.23142	37 39314	33 5699	32.394971	34 744839	23.292348	43.847462	Slope	0.427988			n	45 0588
	0	0.45	36.9 35.6	56 1	35.45014	36 90724 35 90903	32.49993 30.40279	31.402368 29.4163482	33.597501 31.389238	22.230934 20.145075	42 768935 40 660512	SEslope RSQ	0.028186	5.154553	SE y	307	× 33444.9
	0	06	33.9 28.6	43 9	31.35947	34 28957	27.27848	26.3268143 26.065182	28.230146	17.024048	37 532912 37.27657	F	230.5746 6126.233	115	d.f.	£9	5 1 98080 5 15455
	30	0.45	28.6	396	29.78407	33 24538	25.43813	24.4274687	26.448794	15.178056	35 698207	SSIE	6126.233	3033.463	55 NB	SE	5 13433
	30	0.55	27.2	38 1	29.21454		24.79615	23.7526254 22.1116362	74 399148	12 981352	35 059514 33 529432						
	30	0.6	26.4	316	26.60603	31 06911	22.01423	20.7718341 27.276121	23.256619	11.728739 17.966336	32 299714 38 473771						
	30	0.45	32.7	45.9	32.13564 32.03091												
	30	0.55	33.3 27.7 24	39 9	29.89668	33 32073	25.56653	24.5617286 22.9356052	26.571327	15.307028	35 826028 34 293983						
	30	0.55	22.9	34 7	27.88054	31 95373	23.34099	22.203502	24.478477	13.067646	33 614334						
T. Ozbakkaloglu et al.		0.623684	29.3	40.0	30.26901	22 5601	25 00452	25.0074586	76 091572	15 726729	26 25 2 20 2						
	25	0.621053	29	41	30 30599	33 5937	26.03731	25.0518752	27 022754	15 779693	36 294937						
	50	0.621053	28.2	40 5	30.12063	22 4206	75 72772	24.8295049 24.7403577	76 735099	15.564891	25 006407						
	0	0.597368	28.1	40 1		33 37075	25.65213	24.6510985 25.1406212	26.653152 27.105203	15.392994	35 91 12 56						
	50	0.573684	27.9 25.7 29.7	40.8	30.37981 30.23198	33 54445	25.95172	24.9630131	26.940421	15.693781	36 209653						
Gómez-Sobe ón 2002	0	0 519	29.7	39	29.55758	33 09345	25.18134	24.1582271 23.7526254	26 20445	14.920029	35 442648						
	15	0 519	29.1	38 1	29.21454 28.78972 28.31901	32 86247 32 57491 32.2543	24.79615 24.32536 23.81178	23.7526254 23.2542139 22.7073812	25.396511 24.916172	14.532784 14.059152 13.542044	35 059514 34 591573 34 081509						
	60 100	0 519	26.6	35.8	28.31901	32.2543	23.81178	22.7073812 22.1116362	24.916172	13.542044	34 081509 33 529432						
M. Etxebe a et al. 200	100	0.55	32.129	38.26	29.27581	32 90381	24.86463	23.8248805	25.904374	14.601646	35 127609						
	25	0.55	32 84	39.42	29.71631	33,03000	35.00146	24.3467964	35.440453	15.100659	35 62 15 28						
	100	0.498462	28.635	35.53	28.21202	32 18113	23.69622	22.5839245 48.9161041	24.808515	13.425635	33 966805						
G. And eu et al 2014	0	0.356316	50 41 47 79	102.48	47.82204	44 16901 44 21956	52.18311 52.35007	48.9161041 49.0671687	55.450109 55.63787c	41.462984	62 90 32 29						
	50	0.394211	44 28	103 1	48.05802	44 29965	52.61537	49.0621683 49.2943486	55.637875 55.9364	41.878665	63 352084						
	100	0.448421 0.367632	40 09	104.28	48.33225	43 99821 44 45115	51.62244 53.1204	48.425388 49.7361604 46.9485731	54.819496 56 50464 52.923765	40.923429	63 876831						
	50	0.402895	43 04	96.84	46 57618	43 47495	49.93617	46.9485731	52.923765	39.297868	60 57447						
L mbach ya et al 2012	100	0.461316	37 15 18 29	91.23 25.56	45.20696 23.92858	42 70355 29 15352	47.53516 19.42918	44.8429037 17.9452475	50.227408 20 91311	36.975992 9.111729	58.09432 29 746628						
	30	0.654545	16 51 14 57	25.04	23.68392	28.9743	19.20662	17.7001796	20 71307	8.885913	29 527337					-	
	50	0.580645	11 46	24.71	23.52734	28 85921	19.06539	17 5445411	20 5862 37	8 7425649	29 388213						
	0	0.744186	16 43 16 97	29.85 29.45	25.85882	30.5426	21.26525	19.9572213 19.7704683	22.573274 22.417636	10.971626 10.798442	31 558869						
	50	0.695652	14 44	29.66	25.33813												
	100	0.653061	13 37 18.7	28.76	25 3823	30 20364	20.79874	19.4478728 20.5813556 21.420359	22.149608	10.499587	31 097894 32 126062						
	30	0.545455	16 01	33	27.18902	31 47581	22.61341	21.420359	23.806461	12.333766	32 893054						
	50	0.507042	14 53 11 92	343	27.71938	31 84278	23.16979	22.0196961 18.7165976	24.319893 21.545561	12.895047 9 8233891	33 444542 30 438769						
	0	0.615385	21 89	37 5	28.98359	32 70635	24.53936	23.481117	25.597596	14.274485	34 804228						
	30	0.615385 0.571429	17 42	35	28.00081 27.95276	32 03635	23.46939	22.3411589 22.2861168	74 549938	13.197064	33 690755						
	100	0.542373	14 11	37.06	28.81305	32 59075	24 35104	23 2814725	25,420611	14.084996	34 617087						
	30	0.507042	19 57 14 24	31.76	28.99518 26 6733	31 11622	24.5522 22.0827	20.8461016	23.319308	11.797915	34.81699 32 367495						
	50	0.467532	14.9	40	29.93412	33 34576	25.60933	24.6064273	26.612226	15.350013 14.760858	35.86864						
	30	0.571429	20 57 19 99 16 51	42.84	29.41703 30.97856	34 03906	26.82481	23.9917271 25.8638228	27.785803	16.569511	37 080115						
	50	0.533333	16 51 13 74		29.72007			24.3512804		15.104959							
S. Manz et al. 2013	0	0.48	31.4	41 3	30.41666	33 66725 35 95105	26.16571	25.1849503 29.4986454	27.146472	15.908538	36 422885						
	31.48009	0.48	30.3	514	33.93267 31.96089	35 95105	30.48839	29.4986454 27.0617658	31.478136	20.230354	40 746427 38 259811						
	52.33969	0.48	26.9	44 7	31.64392	34 47585	27.62087	26.6738508	28 56789	17.366868	37 874873						
J. X ao et al. 2004	52 7972	0.48	30.6	35.9	28.35853	33 81325 32.2813	26.4225	25.450302 22.7530679 21.927683	27.394706 24.956083	13.585153	34 12 39 98						
	30	0.430233	14 46	34 1	27.63845	31 78696	23.0842	21.927683	24.240711	12.808729	33 359665						
	50	0.430233	13.2 13.06	29 6 30 3	26.053	30 68001	21.45784	20.1670807	22.748604	10.863392 11.1664	31 749284						
Adess na et al. 2019	100	0.430233	11.8 43.47	26 7	24.45638 38.56161	29 53766	19.91709	18.4816927 35.4242184	21.352478	9 6065048	30 22 7665 47 21 5883		_				
Kou and Poon 2013	20	0.42	41 24	64.57	38.03224	38 49745	36.12499	34.7257316 32.6511994	37.524256	25.819381 23.568006	46 430606						
	40	0.42	40 17 38.4	59.25	36 4318 35.78661	37 51709	33.8481 32.95788	32.6511994 31.828664	35.044995	23.568006	44 128189 43 230313						
	80	0.42	35 71	58 6	36.23142	37 39314	33.5699	32.394971	34.744839	22 68545 23.292348	43 230313						
	100	0.42	34 79	55.88	35.38056	36 86376	32.40578	31.3144268									
	50	0 54878	29.5 25.8	41 3	30.41666	33 66725	26.16571	27.532258 25.1849503	27.146472	18.223069 15.908538	36 42 2885						
	100	0 54878	21.6	36 5	28.59453 30 7827	32 44222 33 90977	24.11137 26.5937	23.0267459 25.6266004 24.5170025	25.195991 27.560798	13.843743 16.337823	34 378993 36 849575						
	50 100	0.731707	27.1 23.1	39.8	29.85919	33 29566	25.52373	24.5170025 22.4328336	26.530455	15 26404	35 783418						
	0	0.844278	27.4	38 9	29.51966	33 06797	25.13854	24.1132618	26.163818	14.877014	35 400065						
	50 100	0.844278	23.9 20.7	35.9	28.35853	22 2012	22 00400	22 2520670	24 056092	12 595152	24122002						
	0	0.54	38 74	49.78	25.79376 33.39365	35 60731	29.79505	19.8872118 28.8286463	30.761454	19.539239	40 050861						
	20	0.54	37 93 36 52	50 8	33.73404 32.85943	35 82464 35 26442	30.2316 29.11883	29.2514054 28.1674281	31 21179 30 07023	19.974479 18.864421	40 488717 39 373237						
	100	0.54	31 67	45.4	31.89073	34 63693	27 92046	26 9757927	28 865132	17.666677	38 174248						
Ped o et al 2017	25	0.43	44.5 37.7	72 6	40.32783 39.28675	39 87527 39 25441	39.56174 37.97818	37.8053009 36.3920608	41.318175 39.564303	29.201584 27 64554	49 92 1892 48 31 08 24						
	50	0.451714	35.6		37.80479	38 35914	35.79544	34.4276075									
Gaya e et al. 2019	100	0.514857 0 355	31.9	59.8	36.96591 36.60051			33.3377471 32.8674719	35.856405 35.299509	24.309529 23.801155	44 884623 44 365826						
	20	0.44	36 31	55.6	35.29181 34.39169	36 80825	32.28594	31.2023518 30.0715851 30.5989456	33.369529 32.103563	22.018425	42 55 34 56						
	35	0.57	28.5	54.1	34 81249	36 50748	31.64396	30.5989456	32.688971	21 380442	41 907475						
Sea a et al. 2016	70	0.6575	22.5 36.3	46.8	32 3787 36 8749	34 95396	28.51965 34.46868	27.574832 33.2203745	29.464459 35.7169.95	18.265847 24.182476	38 773444 44 754883						
	20	05	32.9														
	50	05	31.6	518	34.06445	36 03476 34 05335	30.65959 26.85049	29.6628972 25.8901248	31.656275 27.810859	20.400877	40 918295 37 105736						
	0	0.65	35.2	46 9	32.41328	34 97635	28.56244	27.6173731 27.532258	29.507515	18.308622	38 816267					-	
	20	0.65	32.5	42.2	30.74629	33.8857	26.5509	25.5825716	27.519229	18.223069	38 730625 36 806893						
	100	0.65	24.1	32.4	26.94071	31 30302	22.35662	21.1427904	23.570444	12.074541	32 638693					-	
Cabo et al. 2009	20	05	33.308 32.36	473		35 06558		30.8811822 27.787209									
	50	0.5	33.516	47.4	32 5856 31.838	35.0878	28.77644	27.8295859 26.9112264	29.723291 28.801302	18.522452	39 030425 38 110083						
	100	05	30.337 36.223		34.81249	36 50748	31.64396	30.5989456	32.688971	21.380442	41 907475						
	20	0.5	32 36	50 2	33.53423	35 69717	29.9748	29.003104	30.946506	19.718494	40 231116						
	50	05	34.072 30.995	47 7 45.85	32.68855 32.04839	35 15428 34 73957	28.90483 28.11306	27.9565207 27.1690466 28.465534 21.9966997	29.853149 29.057067	18.650713 17.859332	39 158957 38 366782						
	100																
He et al 2020	100	0.470588	32.2 23 58	48.91	33.10056	35 41946	29.4227	28.465534	30.379867	19.16//56	39 677645						