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Abstract 

With the advancement in technology, there have been new technologies that enables 

a more immersive gaming experience for the user. Even though these new 

technologies offer more immersive experiences, they are still not truly immersive as 

there is a disconnect between the environment that the user sees in the virtual 

reality headset and the environment that the user is feeling under their feet. This 

created the motivation of this project by trying to overcome this disconnect through 

replicating the feel of different ground types through the use of a pin and spring 

system and to be able to replicate the topography of the environment through the 

adaption of dynamic shape technology. 

Throughout this project different spring configurations were tested to investigate 

the viability of using springs to replicate the different ground feels. This was done 

through creating a test rig that displayed different spring configurations that 

included one spring and two spring configurations in different gauges in a single 

layer and three spring configurations in different gauges positioned in a dual layer. 

The test rig was then graded on a scale of one to five with one being the hardest 

feeling surface and five being the softest and was tested at different compression 

states (fully uncompressed, half compressed and fully compressed) to determine the 

feel of each compression stage. The topography test was to test the viability of the 

integration of the two systems through testing how well the system performed under 

force and no force at various speeds. 

The outcome of the tests concluded that the configurations that used three springs 

were the most stable but also the stiffest and hence was not viable. It was decided 

that for the scaled prototype, the best spring to be able to replicate different ground 

types was a 3/8” x 5/8” gauge spring in a single layer configuration that utilised only 

a single spring. The topography tests concluded that the motor chosen for the 

prototype was not able to withstand forces being placed on the system and hence 

different motor and actuation methods would need to be considered. It was 

determined that the viability of the two systems together was acceptable as they 

operated independently of each other and hence did not influence each other. 

Integration of these systems to virtual reality treadmills should be achievable if pin 

size and layout, motor size and power and computational needs are considered. 

Further investigations are required prior to a full scale model is achievable.  
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1 Introduction 

Current technology is always evolving with new or improved versions being released 

continuously. One field that is rapidly expanding is the entertainment industry, particularly 

the gaming industry. A particular area of interest in the gaming industry is virtual reality as it 

lets users experience gaming in a way that has never been experienced before. Although virtual 

reality is predominantly used within the gaming industry, it has been adopted in other fields 

including but not limited to, the medical field, engineering field and even sales fields. This 

technology has been able to reach as many fields as it has as it is an immersive technology which 

is designed to make the user believe that they are in another environment and are able to 

interact in ways that they would be unable to with conventional technology. They would be able 

to inspect a prototype more closely than what they would be able to on a computer, to be able to 

practice a surgical procedure without any risks and to be able to walk through a designed 

building prior to construction.  

Virtual reality is capable of tremendous things; however, it does have its restrictions. These 

restrictions are in the form of the user being limited to the space of a room or sometimes even 

the place where they stand or sit. These restrictions disrupt the authentic feel of virtual reality, 

but these have been rectified slightly with the development of virtual reality treadmills and its 

ability to allow the user to move around freely on a platform. Although virtual reality treadmills 

have overcome the movement restriction, they are unable to replicate the virtual terrain layout 

or the feel of the terrain displayed. It is due to this that the aim of this project is to adapt virtual 

reality treadmills to be able to adapt instantaneously to replicate the virtual terrain layout and 

terrain feel to allow users to have a more connected feeling to the virtual space they are 

exploring. 

1.1 Project Outline 

Due to the developments within the virtual reality industry there is a need to develop a more 

immersive experience for the user whilst using a virtual reality headset. This identified the 

need to allow the user of virtual reality headsets to feel like they were actually walking on the 

terrain that was displayed in the virtual reality headset including the feel or hardness of the 

ground that the user is walking on. How this will be achieved is outlined in section 1.2. 
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1.2 Aims & Research Objectives 

With virtual reality making strides towards being a fully immersive experience, there is a need 

for the ability to be able to replicate the look and feel of the virtual environment displayed on 

the surface that the user is physically walking on. The aim of this project is to be able to achieve 

this through the adaption of dynamic shape display technology and implementation of springs.  

To be able to achieve this, the objectives are as follows: 

• The determination of the configuration of springs the is most effective in resembling 

different terrain hardness. 

• The feasibility of implementing dynamic shape display technology with the system used 

to recreate ground hardness. 

1.3 Limitations 

Due to the nature and settings of this project and the COVID-19 pandemic of 2020, there are 

limitations to this project. These limitations are as follows: 

• Desktop prototype will not be optimised as best it could be due to time and material 

restrictions.   

• Limited motors were able to be obtained due to shipping delays cause by COVID-19. 

• The technical knowledge will limit the ability to fully integrate the proposed design into 

a virtual reality technology and hence this aspect will be placed out of scope. The focus 

will remain on the feasibility of the proposed subsystem.  

1.4 Conclusions 

Upon the completion of this project it is anticipated that the following outcomes will be achieved: 

• A preliminary design for a system that will allow the feel of different terrain types to be 

replicated and for the walking surface to replicate the typography of the virtual 

landscape automatically will be developed.  

• The feasibility of combining the surface hardness and dynamic shape display 

technologies will be explored.  

• The feasibility of implementing the investigated technology into a virtual reality 

treadmill will be investigated.  

• To create a basis for further research into exploring dynamically adjusting virtual reality 

treadmills for the ability to create a truly immersive virtual reality experience.   
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walking platform and slidemills which utilise a concave, low friction surface. Both types of 

treadmills are explored below.  

2.2.1 Omnidirectional Treadmills 

Omnidirectional treadmills are similar to conventional treadmills except that their walking 

surface is able to move in four directions (forward, backward, right and left) instead of just one 

(forward). The reason why an omnidirectional treadmill can move in these directions is due to 

the aim of trying to keep the user in the centre of the walking platform. Although the concept 

to do this seems simple, the user must be recentred with as little inertia acting on the body as 

possible. It is essential that the user does not feel the inertia as the user must remain unaware 

that they are in motion after they have stopped moving in a direction as this can cause a 

disconnect between the virtual space as well as creating the potential of motion sickness. There 

are two sub-categories of omnidirectional treadmills: belt-driven and roller-driven designs. 

An omnidirectional treadmill that has a belt-driven design has one large “belt” that moves in 

what would be perceived as the forward and backward directions and a smaller belt wrapped in 

a way that looks like many small belts that move in the perpendicular direction to the main belt 

allowing for sideways movement. The ability to move in any direction is achieved by a 

combination of both the large and small belts moving together to create diagonal movements 

and in turn if the user only wants to move forward only the large belt needs to operate. As a 

machine can never predict human nature and in turn never predict when the user will stop, the 

machine is never able to keep the user exactly centred and hence the need to constantly adjust 

the users position back to the centre point. Although there is research underway using the users 

point of centre of gravity, there is a way to go before this system will become truly immersive 

for virtual reality technology. An example of this type of system is displayed in Figure 2.3.  
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A roller-driven omnidirectional treadmill utilises rollers as the moving surface. These rollers 

are made into triangular sections with the roller length decreasing as it gets closer to the centre 

of the platform. The triangular sections are then positioned in a way that makes a quasi-circle 

with the apex of the triangles meeting in the centre of the platform. All the rollers are controlled 

by a single motor as they all must rotate at the same speed otherwise harm may come to the 

user. Like the belt-driven treadmill, the roller-driven design’s goal is to keep the user as close 

to the centre of the platform as possible which means it also suffers the same pitfalls as the belt-

driven treadmill as the user must not feel themselves being recentred. This type of 

omnidirectional treadmill is shown in Figure 2.2.   

Figure 2.3: The Infinadeck omnidirectional treadmill with a belt-driven design walking platform (Lodola, 

2018). 

Figure 2.2: The Omnideck - a roller-driven design omnidirectional treadmill (Lodola, 

2018). 
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Although the actuation methods used within the Feelex projects, each type has their advantages 

and disadvantages. The screw mechanism and DC motor used for Feelex 1 is fitted with a self-

locking mechanism which hallows the pins to be locked into place when the motor is not running 

however using this form of actuation is at the expense of speed which is an important aspect for 

the project at hand. Feelex 2 was a small-scale design and hence the use of servo motors and a 

crank shaft design, although this allowed for fast actuation, the servo motor is underpower and 

would not be able to take much input. For the purpose of Feelex 2, this was acceptable as it was 

designed to help teach doctors to identify tumours under the skin with their fingertips and hence 

not much force would be rendered. Goulthorpe et al (2001), created a large-scale dynamic shape 

display that was eight meters long and 7 meters tall which required some power to move its 576 

pins. The actuation method of choice for this large system was pneumatics due to their accuracy 

and speed. The difference in actuation seen from Iwata et al. (2001) and Goulthorpe et al (2001), 

reiterates that there is no correct actuation method to use for dynamic shape displays as it 

depends on the requirements of the project as well as sizing. Leithinger et al. (2015) reiterates 

this problem with their 30x30 pin display being much smaller that the footprint needed to house 

the actuation methods and necessary hardware as shown in Figure 3.4. 

 

 

 

Feelex 1 Actuation Feelex 2 Actuation 

Figure 3.3: Feelex 1 and Feelex 2 actuation methods (Iwata et al., 2001). 
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The actuation method can also provide the ability to adjust the feel of the pins and make a 

surface feel soft or hard. Iwata et al. (2001) was able to do this in the Feelex 1 project with their 

screw mechanism and DC motor. To be able to achieve this, force sensors, in the form of strain 

gauges, were placed on the end of each pin. These sensors were used to measure the force that 

a user was exerting on the pins and adjust the power output of the motor to ensure the pin did 

not move if a hard surface was desired or retract the pin slowly with the force is a soft surface 

was desired. This type of setup can be implemented into other shape displays to achieve the 

same idea and in instances like Feelex 2 where the surface area of the pin is small, instead of 

using sensors on the pins, the current change within the motor was measured instead to 

determine the force.  

The ability to recognise shapes in the pins is heavily influenced by the resolution of the pins. 

The resolution is directly related to the sizing and spacing of the pins which is influenced by the 

motor and/or actuation method used as discussed previously. This concept can be thought of 

much the same as the resolution of a picture, the higher the resolution the smaller the pixels 

and higher detail the picture is and the lower the resolution, the larger the pixels and less detail 

is shown as can be seen in Figure 3.5. 

 

 

Figure 3.4: InForm displaying the actuation setup for a 900-pin array and the footprint needed for 

the actuation method and all necessary hardware (Leithinger et al., 2015) 
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4 Methodology 

To be able accurately examine the feasibility of the proposed devices, different tests must be 

undertaken. These tests are designed to test individual components and a final test of all the 

systems designed implemented together to test the overall feasibility of the system. For the ease 

of testing and with limited resources available due to COVID-19, the final feasibility test will 

only include one pin and its included system.  

4.1 Experimental Setup 

The first experimental setup is the ground feel replication test and then the topography 

replication. Each test is outlined below. 

4.1.1 Ground Feel Replication 

To be able to replicate the feel of different ground types, springs will be utilised. Motors would 

also be able to be utilised to do the same function however due to the scale of the final design, a 

more mechanical version was favoured. There are two different configurations of springs that 

were tested, a single layer and a dual layer system. The concept design of the experimental 

setup is shown in Figure 4.1. However, this design has be redesigned for ease of comparison and 

restriction of available materials due to COVID-19.  

Figure 4.1: Concept design of spring configuration for testing.  
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The actuation for the topography replication system will be a rack and pinion system attached 

to the outer right side of the casing. The motor will be a servo motor, the same used for the 

ground feel actuation.  

4.2 Data Acquisition  

To be able to evaluate the experiments described in Section 4.1, a marking scheme must be 

constructed.  

4.2.1 Ground Feel Test 

To undertake the test the pin is set to one of three positions: full up, midway, or full down. The 

pin positioning is described as follows: 

• Full up: the spring fully uncompressed i.e. in the dormant position. 

• Mid: the spring is halfway between fully decompressed and fully compressed i.e. the 

spring is compressed to half its uncompressed size. 

• Full down: the spring is fully compressed i.e. the spring cannot compress any further 

and is in its smallest state.  

The marking scheme used for the ground feel test is displayed in Table 4.3 with the test 

undertaken 3 times. 

Figure 4.6: Ground feel replication encased for the topography replication system 

construction (left). Final version without actuation (left). 
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only be implemented under the zeroed walking surface as to not obstruct the ability of the pin 

to become flush with the zeroed walking surface. This is also true for the shorter, wider springs 

being more stable. This could be due to the shorter springs also being of a higher gauge, so they 

were more resistant to buckling motion and had less length to buckle over.  

When all the configurations, regardless of spring size or gauge, were fully compressed, they 

were all gauged as 1, with 1 being gauged as the hardest feeling surface such as concrete. This 

is expected as the spring is fully compressed and hence would not be able to provide any give 

which is what gives the replication of softer ground feels. It should be noted that the highest 

grade spring being S3, S7 and D3 gauged at 3/8” x 3/4" was difficult to fully compress with it 

being almost impossible to fully compress it when there were multiple spring in S3 and D3 

designs. This would mean that a high-power motor or actuation device would need to be used to 

be able to force the spring to be fully compressed. This would not be ideal as higher-powered 

devices usually require more power and are generally bulkier than their lower powered 

counterparts. This point is a crucial point that will be discussed in Section 5.4. 

From Figure 5.2 and Figure 5.1 it can be seen that there is a direct correlation with the gauge 

of springs and the harder the replicated ground would feel. This is also true for the increased 

number of springs. This was intuitive due to the higher gauge spring resulting in a stiffer spring 

and hence the harder the ground feel would be replicated. Although a higher gauge refers to the 

thickness of the wire used for the spring and doesn’t necessarily relate directly to the stiffness 

of the spring, in more cases it is the case. In configurations where a stiffer/higher gauge spring 

is used in a parallel setup as for the dual spring configurations and the dual layer configurations 

(top layer), the stiffness of the springs follows the stiffness equations such that: 

𝐾𝑒𝑞 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑘1 + 𝑘2  

𝑊ℎ𝑒𝑟𝑒 𝑘𝑥 = 𝑠𝑡𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑠𝑝𝑟𝑖𝑛𝑔 

1

𝐾𝑒𝑞 𝑠𝑒𝑟𝑖𝑒𝑠
=

1

𝑘1
+

1

𝑘2
   

As it can be seen from equations (1) and (2), springs stiffness in parallel setups will always 

contribute each spring’s full stiffness to the overall stiffness unlike when series configuration.  

From Figure 5.1 the hardest/stiffest configurations are S7, D2 and D3 which correspond to: 

•  S7 - one 3/8” x 5/8” spring 

• D2 – three 3/8” x 5/8” springs 

• D3 – three 3/8” to 5/8” springs 

(1) 

(2) 
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This implies that have the dual layer of springs increases the felt stiffness to the point of being 

too hard and would be unable to replicate softer surfaces such as sand or plush carpet. One 

single layer spring, S7, is one of the stiffest springs as it is the highest gauge spring with a wire 

size of 3/8” which attributes to it’s stiffness. It is noted that although the dual layer of springs 

is generally stiffer than the single layer ones, but the dual layer offers more stability than in 

the other configurations. The dual-layer configuration  varies from the original concept design 

as the spring was designed to be positioned around the pin instead of smaller springs 

implemented either side of the spring but it is assumed that the stability would still be increased 

from this configuration compared to a single layered design.  

There are some discrepancies within the results displayed in Figure 5.1 as for S2 and S3 it can 

be seen that the feel of the ground is graded as a three when it is half compressed compared to 

being graded as a two when fully uncompressed. This indicates that it these configurations feel 

softer when half compressed compared to when fully uncompressed which is a discrepancy. The 

source of the discrepancy can be accounted for as the methodology for the testing required a 

person to make judgment calls on the surface hardness. With the test only being undertaken 

three times, and being done by a single person, an adequate variety of data was not obtained 

and hence there is a lot of bias towards the results. The bias is created by the person 

undertaking the tests being the person who fully understands the outcomes and knows the 

wanted outcomes and hence this could skew the results. Ideally the experiment would have 

been done a number of times by multiple people to ensure a good range of data was obtained 

however due to this methodology being taken up late in the project there was inadequate time 

to undertake and ethical review as required by the University of Southern Queensland. 

5.2 Topography Replication 

5.2.1 Results 

Similar to the ground replication test the topography replication tests were conducted three 

times to ensure consistency. The results obtained from the topography replication test are 

displayed in Table 5.3.  
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of the motor must be considered in the final design of the system as there are space restrictions 

and power supply restrictions which will be discussed in Section 5.3. 

To be able to accurately replicate different landscapes and environments that could be displayed 

in the virtual reality environment, it is necessary for topography system to have large stroke 

lengths. This is due to if there was a rock, the pin system would need to be able to increase in 

height more than just a few centimetres and would instead require something in the range of 

20 centimetres to be able to accurately replicate it. This will require the pins to be able to move 

sufficiently fast to be able to almost cover the full stroke length instantaneously without causing 

damage to the system. Figure 5.3 shows that with a speed of 20 RPM the system was able to 

cover approximately 30mm in the span of one second. Considering that this was tested on a 

smaller scale system than what would be constructed for a full-scale device, the stroke length 

would have to be increased ten times to achieve the desired stroke length. Ideally a slightly 

faster speed would be used to produce a bigger stroke length which given that the system was 

already graded poorly when a load was applied to the fastest speed, is not a viable option with 

the current setup and would only be able to be considered if the motor were to be replaced with 

a more powerful one.  

The system was able to perform well under no forces as can be seen in Table 5.4 with all tests 

being graded as good. This can be accounted for due to the overall pin system being light and 

hence the weight being applied on the motor to move the system up was negligible. This however 

is not a realistic expectation of the final design as the pin system would be made of studier 

materials due to the everyday forces that it will have to overcome. These forces include btu are 

not limited to a person running, jumping, stomping, etc. on the surfaces of the pin systems.  

5.3 Final Design 

The final design of the system must have a fast reaction time to be able to adapt to different 

landscapes quickly. It is also required that the system be stable and sturdy to be able to 

withstand the user running or walking on the surface. Using the results obtained from Sections 

5.1 and 5.2, the best design for the scaled prototype will be suggested as well as details that 

have to be considered for a full size design.  

The most important part of the final design is the ground feel replication system. It was 

determined that the main influencing factor within this system is the gauge of the spring. The 

lowest gauge spring is also the smallest spring and the easiest to compress. This mean that 

there is not much resistance when the spring is compressed and hence it is unable to produce 
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different ground feels. This means that this type of spring is not ideal for this application and 

hence is not recommended for the final design.  

With the dual layer designs being the most stable which is ideal for the system, they are however 

also the stiffest of the configurations as discussed previously. Although the stability of the 

system is desirable, the final design for a dual layer system would include only two springs with 

the spring above the zeroed walking surface being wrapped around the spring (if the spring size 

allowed). This should still allow for the stability of the design, however, the stiffness of the 

design will be reduced and hence may make the dual layer design viable for the final design. 

Without further testing on the spring system and their configurations, particularly using a 

combination of different springs or including the spring being around the pin, the final design 

cannot be recommended without further work.  

If disregarding looking into further work, and only looking at the configurations tested 

throughout this study it is recommended that the spring configuration used for the final design 

would be the S6 spring which includes a single spring of 3/8” x 5/8” gauge and length. Although 

using a single spring configuration forfeits stability, the ability of spring to be able to replicate 

multiple ground types as evident in Figure 5.1 as each compression step reaches the target 

except for the fully uncompressed step which was graded a 4 instead of a 5. This difference is 

acceptable as when walking on a soft surface, the difference between grades 4 and 5 may not be 

noticeable through the users feet whereas it can be more noticeable when the user presses on 

the pin with their hand. To be overcome the lack of stability, care will have to be taken during 

construction to ensure that the spring is perfectly centred and a guide track should be 

implemented to help keep the pin straight however, this guide needs to be under the zeroed 

walking surface as to not interfere with the actual walking surface. 

The design for the topography system needs to be able to adapt quickly to the changing virtual 

reality landscape. The system is also required to be able withstand forces that may be caused 

by the user running, jumping, walking, or stomping on the walking surface without failing. 

Through testing it was found that the motor used was not sufficient to be able to withstand 

forces on the system. It is due to this the no recommended speed or motor will be advised as 

further testing needs to be done with alternative motor choices. It was found through testing 

that the ground feel replication system and the topography replication systems were compatible 

in functioning together as there was no jittering through the tests. The two systems essentially 

functioned separately without interfering with each other however, this could potentially 

change depending on the final design configuration and motor choices although it is unlikely. 
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5.4 Virtual Reality Treadmill Integration 

The final step in the project is to look at potential integration of the developed systems with 

that of virtual reality treadmills and to assess the viability of the two technologies coming 

together.  

Seeing as there are two types of virtual reality treadmills, omnidirectional and slidemill, the 

focus will be on slidemills as they do not involve a moving walking surface which would create 

a number of problems which would be hard to overcome. Slidemills do not have a moving surface 

and use gravity to reposition the user’s foot to the centre. To be able to integrate the slidemill 

system with the topography and ground feel replication systems, further work will have to be 

done to determine how this concept will be able to function with the new systems integrated to 

it.  

When integrating the designed system with slidemill technology it is important that the size of 

the pins and actuation used should be debated. The pin size should ideally be sufficiently small 

to allow a high-resolution replication of the topography but also not too small that the actuation 

method would not be able to withstand the forces. The pin size that should allow an accurate 

replication of the topography would be a size between three centimetres and one centimetres, 

however, this is subjective to the size of the motor and the actuation method used for the ground 

replication system. This is due to the ground replication system having to be encased in the 

topography system. The actuation system and motor of the topography replication would also 

determine the spacing of the pins as the motor must be positioned next to the encased system 

to allow it to actuate in the vertical direction. Some space can be saved by lining up the motors 

in such a way that adjacent pin structures’ motors could be positioned on top of each other 

however, this would lead to uneven spacing between the pin structure in certain places.  

The final aspect of integrating the different systems together is the power supply and 

computational power needed to run the systems as multiple pin systems would be in motion at 

a given time and sometimes all of the systems will be required to be in motion at the same time. 

The sheer number of pins that could be involved in the final project could require a mass of 

computational power which can require multiple processes. Each motor involved in the systems 

also must be powered by an external source which has to be taken into account to ensure that 

enough power can be obtained from a conventional wall socket. With a large amount of 

computational power and actual power involved in a system it is essential that the system be 

sufficiently cooled as well. All of this will need to be considered in further work and development 

of the project.   
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6 Conclusions 

The purpose of this project was to investigate different spring configurations that would allow 

the replication of different ground types, to investigate the feasibility of integrating dynamic 

shape technology with the ground feel replication technology and lastly, to investigate the 

feasibility of integrating both of these technologies with virtual reality technology. These points 

were investigated through the conduction of two different tests, one testing different spring 

configurations and the ability to replicate different ground feels and another test that would 

test the systems joined together for the purpose of testing the viability under force and no force 

loads.  

6.1 Recommendations 

The recommendations taken from the test results are as follows: 

• Spring configurations with only one spring were unstable if the spring was not centred 

properly or if the force was not directly perpendicular to the pin surface.  

• The dual layer configuration although offered more stability were generally a stiffer and 

were unable to replicate softer surfaces.  

• To be able to achieve all the required ground feel types, hard, medium and soft, it was 

recommended that for the prototype a spring of 3/8” x 5/8” gauge and length should be 

used as it offers the best variance in the grading criteria.  

• During the testing phase oof the ground feel replication, it is recommended that a survey 

of multiple people be undertaken to ensure a wide variety of results and to eliminate 

bias. 

• The ground replication system and the topography replication system are viable together 

and do not influence the individual systems involved. 

• The motor used for the ground replication system will need to be revised as it could not 

withstand forces being put on the system. 

6.2 Further Work 

To see this project to completion, it is recommended that the following further work be 

undertaken: 
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•  Investigations into different spring configurations including using different springs in a 

single configuration. 

• Investigation into viability of increasing the sizing of the springs to accommodate a full-

scale model. 

• Investigation into alternatives to springs for ground feel replication such as intelligent 

actuation or potentially a type of air system that inflates and deflates depending on the 

ground feel wanted.  

• Investigation into sizing of motors that are sufficiently strong to withstand the needed 

forces but small enough to not influence the spring sizing. 

• Full integration into virtual reality treadmills. 

• Integrating the technologies with virtual reality programs.  
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Appendices 

Appendix A – Project Specification 

For:   Cassandra Sandl 

Title:   Adaption of Dynamic Shape Display Technology for use with Virtual Reality 

Treadmills 

Major:  Mechanical Engineering 

Supervisor:  Tobias Low 

Enrolment:  ENG4111 - ONL Semester 1, 2020 / ENG4112 - ONL Semester 2, 2020 

Project Aim:  To adapt dynamic shape display technology for use with virtual reality 

treadmills. 

Programme: Version 3, 26th August 2020 

1. Research information about current dynamic shape display configurations particularly 

regarding actuation design.  

2. Determine a preliminary design for the system that can mimic ground feel/type as well 

as have an adapting surface. 

3. Testing of different configurations of springs (1 spring, 2 spring, under zeroed walking 

surface, above walking zero surface, etc.) 

a. Determine best configuration by qualitative analysis through the creation of a 

marking criteria. 

4. Use of a test scheme to analyse the best configuration. 

5. Determine the viability of such technology 

6. Determine the viability of incorporating dynamic shape display technology with the 

ground feel mimic technology. (Can it work). 

 




