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Abstract

Shaving of a face can be difficult for many people. This task can be made even more

challenging for a person who encounters difficulty with either movement or vision. This

project investigated the use of smart mirror technology to produce a mirror that would

assist the user in the shaving process. The smart mirror was intended to intuitively

provide an enlarged image of the area of the user’s face that is being shaved. The selected

region would be determined by tracking the movement of the shaving device being used.

Based on the literature review, three tracking algorithms were produced and tested. Two

of these were based on the K-means algorithm. The first used the traditional method of

K-means clustering, while the second implemented two different optimisation techniques

discovered in the literature.

The first technique reused the cluster centres from the previous frame. This technique

lowered the number of iterations required to complete the clustering and therefore, the

computational time decreased. The second method checked if the Euclidean distance from

the pixel to the cluster had increased as a test to determine if the pixel needed to have

its cluster assignment recalculated. The combination of these two techniques resulted in

a time saving of over 60% when incremental differences were present in the frames.

The third tracking technique implemented was the cross-correlation algorithm. The cross-

correlation algorithm in its original form is very heavy computationally. However, through

the use of the integral image technique, the algorithm operated with high efficiency.

Implementing the software in a more efficient language, such as C++, has the potential

for completing a working smart mirror with the desired capabilities.
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Chapter 1

Introduction

Smart home technology has become more prevalent in today’s society. While many of

the functions and features offered by these devices are for convenience and entertainment

value, the technology can also be used to provide genuine assistance in the daily lives of

the users.

This dissertation documents the investigation into the utilisation of smart mirror tech-

nology to assist a person in the shaving of their face. To achieve the goals of this project,

both hardware and software options were assessed.

1.1 Motivation

Shaving one’s face can sometimes be a difficult process for some people. This task can

be made simpler by improving the ability for the person shaving to see their face. A

mirror with the ability to magnify an image of the region being shaved would assist in

this process.

The proposed design will be able to track any device used for shaving, whether it is an

electric razor or a traditional blade. The position of the shaving implement would be used

to determine the area of the face that the user is shaving and display an enlarged image

of that area. Once the user moved to another region of the face, the smart mirror would

detect this and refocus the image on the desired area.
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While this smart mirror will prove to be beneficial to any user, there will be added advan-

tages for those who have physical limitations that make shaving difficult. For example,

someone with impaired vision may be able to shave without the difficulty of wearing

glasses when using this mirror. The mirror will also prevent the user from needing to

lean in closer to check if their face has been adequately shaved, which would be useful for

those with mobility issues.

1.2 Context

The move towards smart homes accelerated significantly in 2014 when Google purchased

Nest LABS, a company focussed on designing smart devices (Xu, Wang, Wei, Song &

Mao 2016). This acquisition began a revolution that has seen smart devices becoming

common in the daily lives of many people.

One such smart device that has been created is the smart mirror, or commonly called

a magic mirror. The smart mirror consists of a screen placed behind a one-way glass

panel. When the screen is illuminated, the image being displayed is seen through the

glass when viewing the mirror. However, when the screen is not illuminated, the display

appears to be an ordinary mirror. Figure 1.1 shows the construction diagram of one such

smart mirror produced by Jin, Deng, Huang & Chen (2018). This design incorporated

an infrared frame that was used for the touch screen capability of the mirror.

Figure 1.1: A component diagram of a smart mirror (Jin et al. 2018).

As the popularity of smart devices has increased, so has the interest in smart mirrors.
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This interest has been demonstrated by the number of smart mirrors being produced,

whether it is for commercial purposes, research purposes or by hobbyists (Gold, Sollinger

& Indratmo 2016).

Most of these homemade smart mirrors possess the same basic functions. These include

the ability to watch online content, such as YouTube, listen to music, view the latest news

headlines, check the weather and traffic conditions and use social media platforms. Many

also provide internet search results using a speech recognition interface such as Amazon

Alexa or Google Assistant. While these are only a few of the functions these smart mirrors

can perform, they are generally no different from what can be achieved using a tablet or

a smartphone.

Academic literature on smart mirrors demonstrates the technology being used for more

advanced functions, additional to those mentioned above. One such use for a smart mirror

is to provide health tracking of the user. Colantonio, Coppini, Germanese, Giorgi, Magrini,

Marraccini, Martinelli, Morales, Pascali, Raccichini et al. (2015) presented a smart mirror

that assessed the users face over some time to determine their risk of cardio-metabolic

health problems. In response to this, advice and encouragement would be given to make

changes to their lifestyle to reduce the health risk.

Another smart mirror intended for assisting in maintaining the health of the user was

created by Rahman, Iyer, Meusburger, Dobrovoljski, Stoycheva, Turkulov, Begum &

Ahmed (2016). This mirror could determine the user’s heart rate, respiratory rate, inter-

breath-interval, blood pressure and drowsiness. From this assessment, information was

given that was intended to assist in providing the user with appropriate medical treatment.

The examples above are given as a brief introduction to the functions a smart mirror can

perform. A more in-depth analysis of the current state of smart mirror research has been

undertaken in the literature review section.

1.3 Research Objectives

The research required for this project will involve an investigation into multiple areas. A

thorough examination of the current state of smart mirror research has been included.

Research into tracking algorithms was conducted with the aim of determining the most
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appropriate algorithm for use in the project. The goal was to find an algorithm to be

implemented that worked while maintaining a low computational load and providing a

robust method of determining the location of the shaving device baing used.

A design for the construction of the smart mirror was developed. This design was com-

pleted to provide a method of mounting all components of the smart mirror. As this is

not a new design concept, existing smart mirror designs were closely followed. However,

there were some alterations made to these designs to accommodate the inclusion or the

Raspberry Pi camera.

1.4 Conclusion

While the uses of a smart mirror discussed previously are innovative and useful, they

fail to maximise the original use of a mirror. Traditionally, a mirror was a device used

to observe a reflection. While this can be done in these mirrors, it is not their primary

use and therefore the application of these other functions to a mirror is not utilising the

mirror for its initial and primary purpose. The smart mirror proposed in this document

is using this new technology to enhance the user’s ability to see a reflection in a mirror.

In this case, the mirror will display an enlarged image of the facial region the user is

currently shaving. The control of the mirror and zoom function will need to be intuitive

and have the ability to acquire the target region with little or no input from the user.

The smart mirror will determine the target area by tracking the position of the shaving

implement being used.

This smart mirror, while useful for anyone that wishes to use it, would hold a more

significant benefit for people with vision or mobility impairment. The magnified image

will allow those with limited vision to see the image being reflected more clearly. It would

also help those who find leaning close to the mirror challenging to get a closer look at

their face without needing to move.



Chapter 2

Literature Review

2.1 Smart Mirror History- Focused on Object Tracking

In 2000, Meine (2000) lodged a patent for what he referred to as an ‘inventive mirror’.

The proposed device was controlled using a touch screen, a mouse and a keyboard. The

user could use the System to view their schedule, read news articles and read and respond

to emails. By using the mirror for this purpose, the user could save time by performing

these tasks simultaneously with personal grooming.

Since this time, there has been a great deal of research into the use of smart mirrors

to assist the user in their daily activities and improving their physical and emotional

wellbeing. A variety of methods of control have been implemented in the mirrors. Modern

smart mirrors are no longer controlled using a keyboard and mouse. These have been

replaced by voice control, touch screen, hand gestures or a combination of these. One

mirror that has used all three of these control mechanisms is named ‘Eve’ (Bonnain 2018).

‘Eve’ operates on an android platform and has an app store built-in so the user can

download and run over 500 apps on the mirror. There are many applications ‘Eve’ can

be used for including games, social media, news headlines, watching online content, and

listening to music. These types of functionality are not unique and have been incorporated

into many such projects, including having the mirror integrated into the top of a coffee

table (Channu, Bheemashappa & Sudharshan 2019).

While projects such as ‘Eve’ demonstrate the versatility of smart mirrors, they do not
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provide any functionality that cannot be achieved just as easily using a tablet. Yu, You

& Tsai (2012) produced a smart mirror table that did not only have the standard smart

mirror applications but was also able to determine the emotional state of the user based on

facial expressions. Algorithms were used to examine an image of the user’s face captured

by a camera incorporated into the mirror. If the person was deemed to be in a negative

mood, the mirror would play pre-recorded encouraging messages in the voice of a close

friend or family member. The user’s favourite music would accompany these messages.

Bianco, Celona & Napoletano (2018) also produced a smart mirror that we able to detect

the emotions of the user. A Convolutional Neural Network algorithm was used to identify

68 facial landmarks was that are used for facial identification. A multitask learning

approach based on a convolutional neural network was then used to estimate the age,

gender and as many as 40 facial attributes. These attributes include sideburns, hair

colour, eyebrow shape, the presence of glasses and earrings that are being worn. The

mirror created a log of the user’s emotional stated and analysed them over time to give

a distribution of the emotions detected for each user.

Mirrors using facial recognition were common in the literature reviewed with many using

it to customise the mirror for the specific user (Ding, Huang, Lin, Yang & Wu 2007, Gold

et al. 2016, Jin et al. 2018). Hossain, Atrey & Saddik (2007) chose to use facial recognition

as a security feature for the mirror. As the mirror was able to control other smart devices

within the home, there was a need for access to these functions to be restricted to only

authorised people. Access was granted only once the user was identified by both facial

and voice recognition.

The ability to identify a human face in the image captured was also used by Darrell et al.

(1998). This mirror was designed to capture a picture of the person standing in front of

the mirror and return an augmented image of the person’s face, as shown in Figure 2.1. A

tracking system was implemented to enable the mirror to continue the facial augmentation

even when the subject was moving.

To track the face of the user, Darrell et al. (1998) implemented a threefold approach.

First, the census correspondence algorithm was implemented. This algorithm began by

converting the image to greyscale then performing a census transform. The transformed

images from two separate cameras were examined to give an accurate estimation of the

distance of different regions within the images. The closest region that is approximately
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Figure 2.1: Augmented imaged produced using the mirror (Darrell et al. 1998) .

the size of a human face was then identified and tracked until it was no longer in the

defined area.

Skin hue classification was then used to determine the regions of the identified object

that were likely to be bare skin. Values were calculated using the red blue and green

colour data from each pixel, and a Gaussian probability model was implemented to rate

the likelihood of the pixel being skin coloured. To reduce the time taken to calculate the

values, a lookup table was prepopulated with all possible combinations of the red, green

and blue values, and the rating is determined by examining this table.

Finally, face pattern discrimination was employed to distinguish users faces from other

skin-toned regions or arias misidentified as bare skin. The implementation of this was

through the use of the CMU Face Detector Library, developed by Rowley, Baluja &

Kanade (1998). This algorithm relied on pattern recognition and was trained using faces

as well as entering false positives back into the algorithm to prevent a repetition of the

error.

There are many instances where smart mirrors have been constructed with similar func-

tionality to the one proposed in this document. They have been designed for use when

applying makeup. One such mirror was designed and built by Iwabuchi, Nakagawa &

Siio (2009). However, it was not presented as a smart mirror. Instead, it was a screen

with cameras and proximity sensors attached. The mirror could zoom in on the users face

when a makeup tool was brought close to the user’s eyes. The location of the makeup tool

was tracked by following a green sticker that we placed on it. A dynamic zoom function

was also implemented that zoomed in as the user came closer to the mirror. An infra-red

range sensor determined the distance of the user. There was no technical information

provided regarding the development of the mirror or on the algorithms used for tracking

or detection of the user.
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Treepong, Mitake & Hasegawa (2018) also created a mirror intended to assist the user

in the application of makeup. Instead of showing the actual user’s face as makeup was

being applied, the mirror would display a computer-generated three-dimensional image.

The user would be able to see how different styles and method of makeup application

would look by using makeup tools linked to the mirror. Virtual makeup would be applied

to the image instead of the user and made it possible to try different makeup products

before purchasing them. A Microsoft Kinect camera and retro-reflective stickers attached

at each end of the tools were used for tracking the object. They also had a conductive

material on the tip, which was used to detect contact with the user’s face. The Kinetic

camera was also responsible for detecting the position and movement of the face.

The idea of applying virtual makeup to a three-dimensional computer-generated image

instead of the user was not unique to Treepong et al. (2018). Rahman, Tran, Hossain &

Saddik (2010) also produced a mirror with these capabilities. This mirror was similar

to the one made by Iwabuchi et al. (2009) since it did not represent a mirror but was a

screen displaying an image. However, instead of using the Kinetic system to perform the

tracking of the makeup tools, infra-red emitters were attached to them. The positioning

of the face was also determined using infra-red transmitters attached to earrings being

worn by the user. This mirror did not offer any magnification or zoom capability.

The literature mentioned above shows that a considerable amount of work has been

completed regarding tracking by smart mirrors. However, in each of these cases where

an object is being tracked, it is a marker or transmitter that the algorithm is trained

to follow, not the object. Using these methods limits the number of items that can be

tracked. Not all people use the same implement for shaving as there are many forms

that a razor can take. The ability of a mirror to track the users shaving implement,

regardless of their choice, and without needing markers or transmitters, would be highly

advantageous to this design.

2.2 Tracking Algorithms

To determine the most appropriate method of tracking for the mirror, the tracking al-

gorithms that are currently being used were examined. The algorithms mentioned in

this section do not provide an exhaustive list as the number of tracking algorithms avail-



2.2 Tracking Algorithms 9

able is too significant to be covered in sufficient detail within this document. However,

the algorithms discussed here are those that appear to be best suited for the desired

application.

The first two algorithms discussed are both clustering algorithms. A clustering algorithm,

when used for tracking or image analyses, is an algorithm that groups, or clusters, regions

of an image according to a specific property. Clustering algorithms can be classified into

two categories (Oliver, Munoz, Batlle, Pacheco & Freixenet 2006). These are hierarchical

and partitional algorithms.

An example is shown in Figure 2.2 below. In this figure, an image that has been analysed

with a mean shift clustering algorithm is presented (Comaniciu et al. 2003). The original

image is displayed on the left while the clustered image is displayed on the right. Each

cluster is distinguished with a white outline.

Figure 2.2: Mean shift clustered image (Comaniciu et al. 2003) .

2.2.1 K-means Algorithm

K-means clustering was first developed as a data clustering system in 1967 (Na, Xumin

& Yong 2010). Since then, it has been applied to image clustering in literature numerous

times. The K in the name refers to the number of clusters that are designated to be

created within the image. This can create a challenge as this number must be determined

before the clustering algorithm is begun. Therefore, it is beneficial if specific properties
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are known about the image before the process is started.

The K-means algorithm aims to reduce the total mean square error between the cluster

centroids and the mean of the pixel values within the respective clusters(Na et al. 2010).

This process is represented as:

E =

k∑
i=1

∑
x∈Ci

|x− xi|2 (2.1)

where E is the mean square error, k is the number of clusters being used, x is the values

of the pixel assigned the cluster, and xi is the centre value of the cluster. These values

take the form of a one by three vector due to the image data being stored in the red,

green and blue values for each pixel.

To achieve the minimisation of the mean square error, there are a series of steps that are

repeated until the cluster centres are found (Tatiraju & Mehta 2008). First, the desired

number of clusters is determined. For each cluster, a seed is created by generating a

vector of three random values.

Once this is completed, each pixel is assigned to the cluster with the lowest Euclidean

distance between the pixel value and the seed (Steinley 2006). The Euclidean distance

is calculated by treating the two sets of values as position vectors and determining the

distance between them, as shown below:

d (x,xi) =

√√√√ 3∑
n=1

(xn − xin)2 (2.2)

The pixels are then assigned to the nearest cluster. The mean values for the red, green

and blue of the are then calculated for each pixel assigned to the cluster. The result then

replaces the seads as the cluster centre. The process starts again by reassigning the pixels

to the new cluster centres in the same way as before. This process is repeated until the

mean of the clusters remains the same.

Ray & Turi (1999) identify one of the most significant weaknesses of the K-means algo-

rithm as being the need to predetermine the number of clusters to be created. In their

research, they presented a method of automatically calculating the number of clusters
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that would give the best result. Their approach was to produce multiple clustered im-

ages with varying numbers of clusters using the K-means algorithm. They would then

calculate the total mean square error, as shown above, and then divide it by the smallest

distance between the cluster centres. The best selection of cluster numbers was the one

that gave the lowest number from this process.

This method was mostly successful in determining the best possible number of clusters

to be used in the clustering process. If this method were implemented as part of the

tracking algorithm, it would create too high a computational load and therefore slow the

algorithm more than would be acceptable. There would be a possibility of implementing

this method into the initial acquisition of the shaving device. Since the smart mirror is to

be used for shaving, it will generally be used in a bathroom or at least in the privacy of

one’s house. It is unlikely that the background of the images captured when the mirror

is in use would change at a great extent. The changes in the foreground will be the

movement of the user as they are shaving. For this reason, there will be little changes

from one image to the next. This will allow for the number of clusters used to be set at

the beginning and remain the same throughout the process.

The computational load of an algorithm is not critical when used for analyses of still

images. However, when the algorithm is implemented for visual tracking, it needs to run

repeatedly in a limited timeframe. Fahim, Salem, Torkey & Ramadan (2006) created a

K-means based algorithm that enabled the number of calculations required to be reduced.

They called it the enhanced K-means algorithm, and it reduces the computational com-

plexity from O (nkl) to approximately O (nk) where n is the number of pixels in the space

being examined, k is the number of clusters, and l is the number of iterations required to

complete the clustering.

Their algorithm worked by calculating the Euclidean distance between each pixel and the

cluster centre to which is already assigned. This calculation is completed after the update

of the cluster centre using the mean of the pixel values. If the distance is equal to or less

than the distance to the old cluster centre, the cluster remains assigned to that cluster.

If the cluster has moved further away from the pixel being examined, the distance to the

other centres is then calculated, and the pixel is reassigned to the cluster to which it is

now closest.

The results of this modification of the algorithm were considered successful. The process-
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ing time for the algorithm was reduced by up to 80% without compromising on accuracy

or reliability.

Heisele, Kressel & Ritter (1997) also worked on improving the efficiency of a k-means

tracking algorithm. Their research was used for following multiple objects in a series of

images captured by a moving camera on a vehicle. The new method they proposed worked

on the assumption that each picture in a video stream will only have an incremental

difference from the previous image. Due to this, the cluster centres found for one frame

can therefore be transferred as the seed points for the following image. The number of

iterations required to reach the final clusters was significantly reduced as a result. Higher

accuracy in the tracking of an object is also possible as varying the starting seed positions

usually results in different final cluster positions. Using the cluster centres from the

previous image ensures that the clusters are as similar as possible for each frame.

The results of testing of the proposed algorithm were successful with the tracking of

pedestrians and vehicles proving to be robust and efficient. It proved that this method

was successful in tracking non-rigid objects and handling occlusions.

2.2.2 Mean Shift Algorithm

The mean shift algorithm was first developed in 1975 by Fukunaga & Hostetler (1975).

It is a non-parametric method of determining the modes of a probability density function

(PDF). Using a selected similarity measure, the PDF shows the likelihood of a region of

pixels containing specific properties (Fisher, Breckon, Dawson-Howe, Fitzgibbon, Robert-

son, Trucco & Williams 2014). This function can be used for clustering regions of similar

pixels, and by examining the local maxima, it can be determined if that group of similar

pixels represent the position of the tracked object in the image.

The mean shift differs from other mode finding algorithms, in that the PDF is not cal-

culated but instead estimated (Szeliski 2010). Instead of creating a PDF for the whole

image and then finding the mode, the mean shift function predicts the gradient of the

PDF at a given point and then employs a hill-climbing technique to find the modes. This

method means that when an area of an image, also known as a kernel, is examined, the

mean shift algorithm returns the gradient of the PDF at the centre of the kernel. The

gradient is determined by calculating the location of the mean of the values within the
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kernel. The centre of the kernel is then set to be the mean of the pixels contained within

the kernel. The kernels are merged with adjacent kernels that exhibit mean values that

are close to each other, and the mean of the new kernel is recalculated. At this point, the

local mode of the PDF has been found.

The equation for the mean shift algorithm generally takes the form:

m (x) =

∑
s∈S

K (s− x) s∑
s∈S

K (s− x)
(2.3)

where K is the kernel function, S is the kernel, x is the centre value of the kernel and s

is each of the pixels within the kernel (Cheng 1995).

As previously stated, the kernel is the area of the image being examined. The ker-

nel function applies a weighting to each of the values within the kernel with respect to

their distance from the centre of the kernel. The selection of the kernel function to be

used affects the performance of the mean shift algorithm. Szeliski (2010) compared the

Epanechnikov kernel function with the Gaussian kernel function. The Gaussian kernel

produces a smoother result but at the expense of speed when compared Epanechnikov

kernel. These are only two of many kernel functions that are used when implementing a

means shift algorithm. Figure 2.3 below shows a graphical representation of the weighting

of a flat and a Gaussian kernel.

Figure 2.3: Graphical representation of (a) a flat and (b) a Gaussian kernel (Cheng 1995).

The flat kernel in the image above is truncated around the centre at a distance equal to

the bandwidth (λ). The equations for these kernel functions (K (x)) are displayed below.
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Equation 2.4 represents the flat kernel while Equation 2.5 is used for a Gaussian kernel:

K (x) =

1 if ‖x‖ ≤ λ

0 if ‖x‖ > λ
(2.4)

K (x) = e−β‖x‖
2

(2.5)

where β represents the bandwidth of the Gaussian curve.

Mean shift clustering has been used extensively for tracking applications due to its robust

nature, ability to be used for non-rigid objects and ease of implementation (Leichter,

Lindenbaum & Rivlin 2010). However, the main disadvantage of this method is the

large number of calculations required. The computational load created by this has made

it impractical for use in real-time tracking without the inclusion of large amounts of

computing power. As a result, there has been a great deal of research completed into

methods of reducing the computational load of the algorithm.

Greengard & Strain (1991) manipulated the Hermite and Taylor series to create what they

called the Fast Gauss Transform (FGT). Their work enabled the number of calculations

required for each iteration of the Gaussian kernel to be reduced from O
(
N2
)

to O (2N)

where N represents the number of pixels in the kernel. Elgammal et al. (2003) successfully

took this method and applied it to improve the processing time required for the mean

shift algorithm. In 2003, when their research was published, the FGT was a relatively

new mathematical method, and they considered it to be revolutionary in the way that it

was changing the way that numerical analysis was being undertaken.

The graph in Figure 2.4 demonstrates the savings in the time required to complete the

evaluation using the mean shift. The results that were given state that once the number

of points to be assessed reaches between 60 and 80 points, it becomes more efficient to

use the FGT than directly applying the Gaussian kernel and assessing the image. This

value depends on the degree of accuracy desired, which is determined by the number of

terms retained during the series transforms.
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Figure 2.4: Processing time using FGT (Elgammal et al. 2003) .

2.2.3 Cross Correlation

Correlation-based tracking works by taking a sample image of the object to be tracked,

called a template, and comparing it with the picture in which it is to be found. Szeliski

(2010) notes that using correlation for tracking requires image edges or changes in pixel

properties within the template to be effective as opposed to clustering algorithms which

require relative uniformity within sections of the target object.

Cross correlation is performed by calculating the correlation between the template and a

region of the image using correlation (Hii et al. 2006). The area that exhibits the highest

correlation value is considered to be the position of the object. The template needs to

be tested at each possible position within the image. At each location, the correlation

is calculated (Sebastian & Yap Vooi Voon 2007). The following formula describes this

calculation for finding a Nx by Ny template within a Mx by My image:

c (u, v) = f (x, y) t (x− u, y − v) (2.6)

where t (x, y) is the template, f (x, y) is the image being examined, u ∈ {0, 1, 2, ...,Mx −Nx},

v ∈ {0, 1, 2, ...,My −Ny} and are used to indicate the position of the template within the

image.
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The most commonly implemented variant of correlation tracking is Normalised Cross

Correlation (NCC). By normalising the light intensities in the image, the tracking algo-

rithm becomes more robust as it is able withstand variations in lumination and shadows.

Normalisation also provides a higher resilience to noise within the image.

When implementing the NCC algorithm for a template with the dimensions Nx by Ny

within an image with the dimensions Mx by My, a normalised cross correlation matrix is

calculated using the following formula (Hii et al. 2006):

γ (u, v) =

∑
x,y

[
f (x, y)− fu,v

] [
t (x− u, y − v)− t

]√∑
x,y

[
f (x, y)− fu,v

]2∑
x,y

[
t (x− u, y − v)− t

]2 (2.7)

where t is the mean of the template and fu,v is the mean of the region of the image being

examined.

While the NCC algorithm is considered a reliable, robust method of tracking, it does come

with challenges. The computational load makes it impractical for real-time tracking pur-

poses. The number of calculations required is in the order of NxNy (Mx −Nx) (My −Ny).

Tracking of a non-rigid object also poses a challenge for NCC as rotations or variations

in the shape or size of the object reduces the similarity to the template.

One commonly used method for reducing the computational load of the NCC algorithm

is by implementing a Fast Fourier Transform (FFT) for both the image and the template.

The numerator used in Equation 2.7 can be calculated more efficiently in the frequency

domain. Since correlation in the spatial domain is equivalent to multiplication in the

frequency domain, the process can be expressed as:

r (u, v) =
∑

x,y
f (x, y) t (x− u, y − v)

⇓

R (u, v) = F (u, v)T (u, v)

⇓

r (u, v) = =−1 (R (u, v))

(2.8)

As a result of this, the number of calculations is reduced to the order ofMxMy log (MxMy).

The process is demonstrated in Figure 2.5.
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Figure 2.5: Flow chart of correlation using the Fast Fourier Transform method (Hii et al. 2006).

A further reduction in the processing load of the correlation algorithm was achieved

by Viola et al. (2001). Their work made it possible to produce polynomials for each

pixel that provided an approximation of the correlation coefficient at that point. The

polynomials are found by implementing the integral image of the picture in which the

object is to be found. The integral image is of a u by v image is expressed as:

I (u, v) =

u∫
x=0

v∫
y=0

f (x, y) dxdy (2.9)

where f (x, y) is an integrable function of the image values.

The discrete representation of this is:

I (x, y) =
x∑

x′=0

y∑
y′=0

f
(
x′, y′

)
(2.10)

The following formula is used to implement this in practical terms:

s (x, y) = s (x, y − 1) + f (x, y) , I (x, y) = I (x− 1, y) + s (x, y) (2.11)

where s (x, y) is the cumulative column sum. The resulting integral image at any point

(x, y) gives the sum of the pixels above and to the left of that point.

To find the position of the template within an image, the integral image is first calculated

for both the template and image being examined. The value of the integral image of the

template is compared to the image to determine where the closest fit is. In Figure 2.6

below, it is shown how the correlation is determined when the integral image of the
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template is compared to the integral image of the picture. The formula is:

Dcorrelation = 4 + 1− (2 + 3) (2.12)

where the numbers represent the integral image values as shown in Figure 2.6. The region

marked as D is the location of at which the template is being tested.

Figure 2.6: Calculation of the correlation using an integral image (Viola et al. 2001) .

As can be seen, once the integral image has been calculated for both the template and the

picture, the calculations required for each template comparison is significantly reduced.

Some accuracy is lost in the comparison as this method only provides an approxima-

tion of the correlation. However, the results of initial testing were positive. When this

method was used for detection of faces, there was close to 100% detection rate and was

approximately 15 times faster than other algorithms to which it was compared.



Chapter 3

Methodology- Software

Developement

The completion of this project required the work to be divided into two categories- soft-

ware and hardware. By organising the project in this manner, it was easier to track the

progress of tasks and ensure that other workstreams were not delayed by other incomplete

work. Tasks required for the project often overlapped in their execution, or needed to

be completed before other tasks could be started. They are addressed separately with

this and the following two chapters. This chapter is dedicated to the development of the

software. The next chapter covers the tracking algorithms and the chapter following that

details the hardware component.

In the initial stages of the project, it became apparent that the software development

would heavily depend on the selection and implementation of a tracking algorithm. This

process was achieved by the examination of previous academic work to discover how

tracking algorithms had been integrated into smart mirrors. A substantial volume of

research relevant to this was found and is summarised in the literature review section. As

is also stated there, none of the literature found contained details of a mirror using pure

visual tracking from a single camera. All other designs required more complex hardware

options. It was decided that for simplicity and cost-effectiveness, a tracking algorithm

would be implemented that only needed a feed from a single video stream.

Due to a lack of knowledge or previous experience with tracking algorithms, a review of

the literature covering this topic was undertaken. The amount of research completed and
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the number of algorithms in existence was found to be far too numerous for an in-depth

investigation of them all. For this reason, many algorithms were viewed briefly. However,

only those that appeared on the first investigation to be appropriate were considered and

researched more thoroughly.

It was decided that existing smart mirror software would be selected to serve as a platform

on which this mirror was to be built. This decision was made for two reasons. The first is

that this is not a new concept, and the required software had already been produced. The

second factor influencing the decision was the time restraints of the project. To create a

smart mirror program would require an extensive amount of work and therefore limit the

working time to be sent on other aspects of the project.

Multiple viable options were found that met the required criteria. The software needed to

be opensource and modular in design. Being opensource would make the software readily

available and remove copyright concerns when implementing changes to the program for

use in the project. Modular software was also advantageous as it would simplify the

process of adding the required module and facilitate in removing unwanted features.

Before any other aspect of the program could be implemented, a method of controlling

the camera was required. There are many different packages and libraries available to

facilitate the control of the camera. However, many of these were found to be ineffective

as problems were encountered in both installation and operation.

3.1 Smart Mirror Platform

Finding opensource smart mirror platforms that were available online was not a difficult

task. A search on GitHub.com for ”smart mirror” returned over 2500 results (GitHub

search results- smart mirror 2020). Many of these platforms provided the same basic

functionalities and even presented a very similar appearance. After considering many

different platforms and reading reviews, it was decided that the MagicMirror2 platform

was the most appropriate.

This software was developed by Michael Teeuw, who is credited as being the first to create

an opensource smart mirror software which was called MagicMirrror (Teeuw n.d.). The

original MagicMirror platform has been superseded by MagicMirror2. This application
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was by far the most utilised of those found on GitHub. Github uses a star system to

allow people to both follow a project listed on the site and show appreciation for the work

of the programmer. MagicMirror2 had over 12,700 stars attributed to it while the next

closest smart mirror platform, smart-mirror by Even Cohen, had less than 20% of that

number. It has also been voted the best Raspberry Pi project by the MagPI, the official

Raspberry Pi magazine (The MagPi- Issue 50 2020).

Out of the smart mirror platforms examined, MagicMirror2 was the only program that

was genuinely modular in its design. The selected modules for the software are placed in a

folder and then referenced within the configuration file. The range of modules available for

the platform is extensive and is not rivalled by any other of the available programs. There

are over 1000 modules available for MagicMirror2 and these account for a considerable

proportion of the over 2500 smart mirror search results found on GitHub. This high

number of modules is due to the approach that Mr Teeuw has taken with the project. He

has not only made the software available on GitHub but also set up a separate webpage

containing a great deal of information on the platform. This website includes detailed

instructions on the installation of the software and installation and configuration of the

different modules. A list of modules is also found on the website with a description for

each. Within this list, there is a template and instructions included to assist developers

in creating new modules. All of the features mentioned above made the selection of

MagicMirror2 the logical choice to be used as a platform for this project (Teeuw 2016).

MagicMirror2 was able to be installed and run on a Raspberry Pi during the project.

However, many of the additional modules did not. With many of the modules being as

old as six years, some relied upon superseded libraries and outdated dependencies and

therefore required updating before they were functional.

3.2 Camera Interface

Most smart mirror software utilises existing web browsers to display the image on the

screen (Gold et al. 2016). This method leads to the projects being written in JavaScript

as the browsers can execute the code directly. Mr Teeuw (2016) used JavaScript to

produce MagicMirror2. It was therefore desirable to implement the camera capture and

display using JavaScript.
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Research into methods of accessing the video stream to perform the tracking revealed

that there were multiple JavaScript libraries created to control the camera. However, few

of those examined provided a method of accessing the data stream in which the tracking

algorithm could be used. Most were written to take the input from the camera either

save it to the Raspberry Pi or stream it to a website or a remote computer. Others

only supported still image capture. Attempts were made to install multiple of these

libraries that promised to fulfil the requirements; however, none were successful. Each

module that was installed either failed in the installation process or received errors during

implementation.

After unsuccessfully trying to interface with the camera using JavaScript, a decision was

made to achieve this using Python. Despite the MagicMirror2 platform being written in

JavaScript, many of the available modules produced to run on the platform contained

Python scripts. These scripts were called by the modules written in JavaScript. An

example of this is the MMM- Selfie module (de Tena Rojas 2017). The configuration of

the module and all user interfaces are implemented using JavaScript, but whenever the

camera is accessed, a Python script is called to achieve this. As a result, it was decided

to implement the camera access and tracking algorithm using Python.

Picamera offers a python interface for connecting with the Raspberry Pi camera that is

widely implemented within the programming community. All modules that were examined

relied on Picamera for access to the raspberry pi camera. The Raspberry Pi official website

lists the Picamera as the library to be used for programming with the camera (Raspberry

Pi Foundation n.d.a). The full documentation of the library can be found online, including

programming examples (Jones 2016).

Picamera offers an extensive list of functions for capturing both still images and video

from the Raspberry Pi camera module. While many of these were not used within the

project, some were. Picamera allows for multiple configurations of the camera capture

to be set using the splitter function. This function enabled the capture of two images

with dissimilar properties to be taken in close succession. These images could be used

for different purposes. The advantage of this was seen when a low-resolution image in

the YUV colour format was required for tracking at the same time as a high-resolution

image in RGB colour format was needed for display. More detail of the application of

these functions will be provided in the section detailing the development of the tracking

algorithms.
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3.3 Shaving Software

While the implementation of the shaving module for the MagicMirror2 platform has not

been completed, the basic functionality of the shaving software has been designed. There

are three main functions of the software that must be considered when writing the pro-

gram. These are:

� The method of acquiring the object to trace

� Determining the region of the face to be magnified

� The method of selecting the degree of magnification.

The intent was for the smart mirror to be able to track any object the user decided to

use as a shaving implement. It was decided that the simplest way to achieve this was

to have a timer that ran each time the shaving module began. This timer would count

down for a period of 5 seconds at the end of which, the image captured would be used for

acquisition.

Depending on the tracking method used, the mirror would display an identifying mark

in the centre of the captured image, demonstrating where the shaving utensil was to be

held for acquisition. For the K-means method, crosshairs would be displayed indicating

the user was to position the shaving tool in the centre. The clustering algorithm would

then be run when the timer finished. Once the clusters were found, as described in the

next chapter, the cluster containing the pixel in the centre of the crosshairs would be

identified as the target cluster. For each frame after this, the geographical centre of the

target cluster would be regarded as the central location of the object.

The pixel values for each image were stored as a three-dimensional array in the program.

In Python, the order of the indices are rows, columns and layer. By finding the mean of

the first and second indices for each pixel within the target cluster, the location of the

cluster centre would be determined.

In a similar manner, when using the cross correlation algorithm with the integral image,

a box would be displayed in the image indicating the location from where the template

would be taken. On completion of the timer, the integral image of the template would be

calculated and stored for use in subsequent frames.
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Moving the area of the face that the program is magnifying with each frame would make

it difficult for the user to gain a clear view of progress when shaving. For this reason, the

smart mirror needs to select a region of the image that is to be magnified for display until

the user is ready to proceed to another part of the face. The simplest method of achieving

this would be for the user to hold the shaving implement stationary in the position they

are about to shave. When the program detects that there has been little or no movement

for a predetermined time, the centre of focus would be shifted. The mean of the positions

that the shaving instrument has been held during this period would be calculated, and

this would become the new centre of the magnified display.



Chapter 4

Tracking Algorithm Developement

Within this chapter, the development of the tracking algorithms will be discussed. The

three algorithms that were developed are addressed separately in the order in which they

were written. The basic K-means algorithm was written first and used as a platform for

the development of the other algorithms. As a result, the communication with the camera

and display of the image, along with other features, utilised the same string of commands

in all three algorithms.

4.1 Basic K-means Algorithm

After an initial understanding of the MagicMirror2 software was acquired, it was decided

that implementing the tracking algorithm was the next logical task to complete. The

algorithm was written and tested as a standalone program as proof of its effectiveness.

Due to having never used Python before, code for a simple program to receive data from

the camera and display it on the screen was found online and used as a framework on

which the program was to be based. The code used was written by Adrian Rosebrock

(2015) and demonstrated the correct methods for setting the parameters to be used by

the camera. The code also utilised the OpenCV library to display the image captured by

the camera. In the MagicMirror2 platform, all display features are handled by JavaScript

code. Therefore, OpenCV will not be used in the final implementation of the mirror as

it is a Python library. It was, however, utilised in the standalone tracking programs for
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display and development purposes.

The YUV colour format was selected for use in the tracking algorithms. This format

gives the captured pixel data in luminance, represented by Y, and chrominance values,

represented by the U and V. This colour format provides two advantages when used for

tracking applications. Johnston, Bailey & Gribbon (2005) discusses the ability to remove

the reliance on the brightness by only using the U and V components of the pixel values.

The result is an algorithm that demonstrates a higher level of robustness when used in

changing light conditions or where shadows may pass over an object being tracked.

The second advantage of using only the chrominance values is that each calculation of

the Euclidean distance becomes a two-dimensional vector operation instead of a three-

dimensional calculation. As a result, the computational load of the algorithm is reduced.

However, the use of the YUV format posed separate issues that would not have been

present had RGB format been selected. OpenCV is unable to correctly output the image

when the image data is in YUV format. The luminance values were treated as the

red values, and the two chrominance values were treated as the green and blue values,

respectively. OpenCV contains commands that translate the YUV values into RGB for

display. The numerical method for converting the YUV values to RGB is given as (Jones

2016):

R = 1.164Y + 0.000U + 1.596V

G = 1.164Y − 0.3192U − 0.813V

B = 1.164Y + 2.017U + 0.000V

(4.1)

Performing this calculation for each pixel or using the inbuilt function to do so created

another point of delay in the tracking algorithm and was therefore not viable.

The solution to this was found by implementing the splitter function within the picamera

library. This command enables multiple camera configurations to be established and

called when required. Two image formats were used for the tracking algorithms. The

first configuration was used to capture the images for display. The images were taken in

the RGB format with a resolution of 368 by 640 pixels. The second configuration captured

images in the YUV format and was only 94 by 160 pixels in size. This time the captured
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frames were used for tracking. The difference in image size was an attempt to reduce the

computational load of the tracking while maintaining higher image quality for displaying

on the mirror.

Before a K-means algorithm can be implemented, the number of clusters must be deter-

mined. A considerable amount of research has been completed into this topic. Kodinariya

& Makwana (2013) performed an investigation into different methods of determining the

optimum number of clusters to be used when implementing the K-means algorithm. Many

of the techniques covered in the paper required repeating the clustering process using dif-

ferent numbers of clusters. Each time the algorithm was run, key factors were recorded

and compared to find the most appropriate number of clusters. Using a method that

involves multiple iterations of the algorithm is not possible in this case as there would be

a further increase in the delay in the tracking of the shaving implement.

One suggested method of determining the number of clusters to be used was the imple-

mentation of a “rule of thumb”. The formula for this is given as:

k ≈
√
n/2 (4.2)

where n is the number of data points or pixels. With the size of the low-resolution image

used for tracking was 94 by 160 pixels, and this gives a result of approximately 87 clusters.

This number is far too high for use in image tracking. From the observations made during

testing, it could be seen that a compromise must be reached when selecting the number

of clusters to be used. A higher number of clusters will more accurately group items

separately without accidentally adding other similarly coloured objects to the cluster.

However, increasing the number of clusters significantly increases the processing time for

the algorithm. It was observed that using cluster numbers below 20 caused the clustering

to be often incorrect, and the object was lost. Subsequently, the number of clusters used

for testing of the tracking was set at 25.

As mentioned in Chapter 2, in the original K-means algorithm, the initial cluster centres

were randomly assigned. To create these clusters, a function was written to generate

random values in an array. These values ranged from 0 to 255 as the values for the

pixels are each stored in an eight-bit format. When this function was implemented, it

was observed that as many as 75% of the clusters failed to have any pixels assigned to
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them. While this did sometimes improve after subsequent iterations of the algorithm,

there appeared to be a disproportionate number of pixels in a small number of clusters.

Further investigation revealed that the U and V values within the image tended to closely

follow a Gaussian distribution. To achieve a more even distribution of the pixels between

the clusters, the random cluster centres were also made to have a Gaussian distribution.

This was done by using a random number generation function that returned values with a

predetermined mean and standard deviation. After experimenting with different values,

it was decided that a mean of 128 and a standard deviation of 10 was most effective.

The code detected any values that fell outside the 0 to 255 range and replaced them with

another random number, this time with a standard deviation of 30.

Before the clustering began, the program ran for five seconds displaying the images cap-

tured by the camera. During this time, only the images for display were taken, and no

tracking data was collected. A set of green crosshairs were displayed in the middle of the

image by changing the red, green and blue values of the desired pixels in the image to

be displayed to 0, 255, 0, respectively. The images were then displayed on the screen.

On completion of the five seconds, the tracking would commence, and the second camera

configuration for tracking would also be used.

The basic K-means algorithm was structured in a loop. On each iteration of the loop,

the cluster function was called. This function was provided with a three-dimensional

array containing the YUV values for the current image. The cluster function began by

setting the required variables and calling another function that returned the randomised

initial cluster centres. To assign the pixels to the closest cluster, a temporary variable was

created with the value of positive infinity stored in it. The Euclidean distance between

the first pixel being examined and each of the cluster centres was calculated in turn. After

each of these calculations, if the calculated distance was less than what was stored in the

variable, it would replace it. Every time a lower Euclidean distance between the pixel

and cluster was found, the cluster number was also stored in a temporary variable. Once

the calculation of the distances between the pixel and clusters was complete, the closest

cluster number was stored in a two-dimensional array in the position corresponding with

the pixel location in the image. Nested loops were implemented to cycle through the

pixels enabling the closest cluster to be determined for each pixel.

At the same time as the cluster allocations were stored, an array to be used for calculation

of the new cluster centres was populated. In the row corresponding to the cluster number
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that the pixel was assigned to, the pixels U and V values were summed with the second

and third values, and the first value was incremented by one to provide a count of pixels

assigned to the cluster. Once all pixels had been assigned to clusters, the new cluster

centres were calculated by dividing the summed U and V values by the tally. These

results were regarded as the new cluster centres. By comparing these new cluster centres

with the previous cluster centres, it could be determined if the algorithm had reached

equilibrium. If the two cluster sets were not identical, the process would restart, this

time using the cluster centres that had been calculated in the previous iteration. Once

the clustering had been completed, the function would return the cluster values and the

array containing the cluster assignment information for the pixels.

On the first iteration of the cluster function, the cluster that contained the pixel at the

centre of the crosshairs was considered the target cluster. In each iteration after this, the

cluster returned that had the lowest Euclidean distance to the original target cluster was

labelled the new target cluster.

The position of the centre of the target cluster was found by calculating the mean location

of all pixels assigned to that cluster. The crosshairs were relocated to the cluster centre

in the output image to show the position. Displaying the crosshairs will not be used

when the tracking algorithm is implemented into the mirror program and is only used for

indicating the effectiveness of the algorithm.

When programming the algorithm, there were often multiple methods that could be used

for executing a calculation or a command. One example of this is the calculation of the

Euclidean distance. As this calculation is effectively finding the magnitude of a vector,

the standard formula used is:

∣∣Ā∣∣ =
√
a12 + a22...+ an2 (4.3)

where a1, a2...an ∈ Ā.

This calculation could be achieved using the math.sqrt and pow (for power) functions built

into the math library in Python. The same result could be found using the linalg.norm

function found in the Numpy library. The latter of the two options mentioned was selected

for the programs as testing revealed a slight improvement in computational time between
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the two.

Numpy is a library of functions written to address the limitations encountered when

using arrays in Python. The Python language does not support arrays. Instead, there is

a data type called lists. While lists can provide similar functionality to an array, they are

only intended for one-dimensional implementation. Multidimensional lists can be created

when an item in the list is itself a list. However, the indexing of a single item within

this arrangement is very onerous. The use of the Numpy library simplifies the use of

arrays as is required for image processing. It also provides multiple functions to interact

with arrays, some of which were used in the algorithms. Two of these functions were the

linalg.norm and the array equal functions. The use of the former is described above. The

array equal function tests two arrays, element by element, to determine if they are the

same. This was used to assess if there had been any change in the cluster centres after

each iteration of the clustering process.

The full Python script for the K-means test program is included in Appendix B.

4.2 K-means with Modifications

In the literature review, two methods of improving the speed of the algorithm by reducing

the number of calculations required to complete the clustering were discussed. The first

was developed by Fahim et al. (2006). The reduction in computational load was achieved

by testing the Euclidean distance between each pixel and the cluster that they were

assigned to in the previous iteration. If the distance had not increased, the pixel remained

assigned to the same cluster.

The second optimisation method covered in the literature was the work of Heisele et al.

(1997). Their work demonstrated that tracking of an object in a video stream could be

made more efficient by reusing the cluster centres found by the algorithm in the next

frame. The theory behind this method was that only an incremental change occurred

from one image in the video to the next, and therefore, the clusters would be similar if

not the same from one frame to the next.

By combining these two methods, it was believed that an even more significant reduction

in the computational load could be achieved. The cluster centres form one frame would
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be used as the initial cluster values, sometimes called seeds, in the proceeding frame. The

incremental changes in the image from one frame to the next would also mean that areas

of the image that had little or no change could often be reassigned to the same clusters

as before. This could be tested by assessing if the Euclidean distance between the pixels

and the cluster centre to which they were previously assigned has increased. If it has not,

it can be assumed that the pixel remains assigned to the same cluster. This method is

the same as is used for subsequent iterations of the algorithm on an image.

The optimised K-means algorithm was programmed by modifying the basic K-means

implementation that was described above. All functions remained the same except for the

cluster function. One significant difference between this function in the two algorithms

was the variables that were passed to and from the function. In the basic K-means

algorithm, this function only requires the image data to be provided. However, for the

optimised version, the additional variables needed by the function are:

� an array containing the previous cluster centres

� an array the same dimension as the pixel count of the image containing the previous

cluster allocations

� the distances from each pixel to the assigned cluster.

The function was written to only call for the generation of random cluster centres on the

initial iteration. Each time it is run after this, the previous cluster centres were used, and

if the Euclidean distance had not increased, the distances to the other clusters would not

be assessed.

The changes described above were made possible by returning additional variables from

the function. In the basic K-means algorithm, only the list of cluster centres and an array

showing which of these the pixels were assigned were returned. In addition to this, the

modified K-means algorithm required the Euclidean distances also to be returned.

The complete listing of the program is included in Appendix C.
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4.3 Cross-Correlation using an Integral Image

The implementation of the cross-correlation algorithm required more changes than was

needed for the second K-means algorithm. The first change made was to replace the code

that produced the crosshairs with a box indicating the outline of the template location.

In the same manner as the K-means algorithm operated, the cross-correlation program

also waited for five seconds before starting the tracking. When the time was completed,

the group of pixels in the centre of the tracking image were taken as the template.

The integral image of the template did not need to be calculated. Instead, the sums

of the pixel values were calculated for the region of the image. When using the YUV

format, only the U and V values were summed. Initially, the calculations were completed

using nested loops that cycled through each of the pixels in the image. Another Numpy

function, numpy.sum, was discovered that was able to find the sum of the items stored in

an array. The two methods were tested and the numpy.sum function was selected as it

returned the result in a shorter time.

The function that was written to perform the cross-correlation receives the image data

and the sum of the template values previously calculated. The integral image is calculated

first. There were multiple methods tested for calculating this. One method was to run

the numpy.sum function for each point in the image. The function would be given a

rectangular area or the image from the top-left pixel to the pixel being examined. The

code required for this method was concise and required less programming than any other

option. However, this method was not used. Other options that were tested proved

to be more efficient. It was believed that the slower computation was due to repeated

calculations that were not required in other methods.

Another method that was tested used the previously calculated integral image values to

reduce the number of values to be added. The value of the integral image at the top left

of the image is equal to the pixel value or:

II (1, 1) = i (1, 1) (4.4)

where II (x, y) is the integral image at the position (x, y) and i (x, y) is the pixel value at
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the position (x, y).

The first row and first column were calculated using the formulas 4.5 and 4.6, respectively:

II (x, 1) = II (x− 1, 1) + a (x, 1) (4.5)

II (1, y) = II (1, y − 1) + a (1, y) (4.6)

For a N by M pixel image, x = 2, 3, 4...N and y = 2, 3, 4...M .

Once these values have been found, the remaining integral image values are found using

the formula below:

II (x, y) = II (x− 1, y) + II (x, y − 1)− II (x− 1, y − 1) + i (x, y) (4.7)

As in equations 4.5 and 4.6, x = 2, 3, 4...N and y = 2, 3, 4...M .

This equation means that a maximum of four numbers needs to be added or subtracted

for each integral image value. When using the numpy.sum method, the number of values

needing to be used for each calculation is equivalent to the number of pixels above and

to the left of the one being examined.

Once the integral image had been formed, Equation 2.12 was used to assess the correlation

between the template and each location in the image.

The initial cross-correlation program was written using images for tracking in the YUV

colour format. As explained earlier, the motivation for this was to reduce the computa-

tional load and provide better immunity to variations in light. Unfortunately, the use of

this colour format was ineffective. The cross-correlation became highly inaccurate when

using this format with the tracking repeatedly giving incorrect results. As a result, the

code was changed to use all three pixel colour values and the images were captured in the

RGB format. Testing proved that the accuracy of the algorithm outweighed the additional

computational expense.

Appendix D contains the code produced for this algorithm.



Chapter 5

Hardware Development

Due to time constraints and limitations encountered as a result of COVID 19, a working

prototype of the smart mirror has not been constructed. Some thought and research

have been completed into the design, and many of the components have been acquired.

There are numerous websites dedicated to the construction of a smart mirror that can be

achieved with only minimal tools required. As previously stated, the basic makeup of a

smart mirror is an LCD monitor behind one way or unidirectional glass. This is usually

held together with a custom made frame that can support all components when mounted

on a wall.

5.1 Required Components

The monitor chosen for the design was a Lenovo 24 inch backlit LCD monitor. This was

chosen as it was available at a low cost and would be suitable for the task required. The

selected monitor is not of great importance as this will not create any noticeable difference

in the final result. The only significant difference this selection made to the design was

the way that the frame mounted to the monitor.

A computer to run the smart mirror software on was also required. The computer was

required to be small enough to be mounted within the frame holding the mirror together.

There are multiple single-board computers currently available on the market. After read-

ing reviews and looking at previous smart mirror builds, it was decided to purchase a
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Raspberry Pi 4 Model B board. The 8Gb version was selected as this computer was the

fastest available at the time the project was undertaken. There were many reasons for

choosing the Raspberry Pi over other available systems.

The Raspberry Pi is very popular for both hobby and commercial applications. Due to

this, there is an extensive range of online resources to assist in using the system. Multiple

forums can be found with discussions of different applications of both hardware and

software compatible with the system. This popularity has also lead to the vast majority

of smart mirror programs available on the internet being intended for use on a Raspberry

Pi. Discussions regarding this can be found in Chapter 3 and formed a considerable part

of the decision to use a Raspberry Pi.

Another advantage of the Raspberry Pi over many other similar platforms is the wide

range of accessories and auxiliary components that are compatible. Both the Raspberry

Pi Foundation and third party manufacturers offer accessories that enhance and expand

the capabilities of the Raspberry Pi. One such accessory used in this project was the

Raspberry Pi Camera Board V2. There are multiple camera boards available for the

Raspberry Pi. The V2 that was chosen is approximately the middle of the range and is

capable of capturing 1080p30 video.

The Raspberry Pi does lack the ability to drive speakers directly from the board. There

is an inbuilt 3.5mm audio jack located on the device. However, the power output is insuf-

ficient to drive anything other than a set of headphones. There are multiple options for

connection of speakers to the device. One is to feed from the audio jack to an amplifier

which in turn provides the required power to the speakers. PiAustralia, the official Rasp-

berry Pi website in Australia, has modules available to perform this function (Raspberry

Pi Foundation n.d.b). These modules also receive their power supply from the IO pins on

the Raspberry Pi. While this reduces the hardware requirements, there are disadvantages

to this configuration. The speakers will be limited in the volume they can achieve as

the power supply for the Raspberry Pi is limited to 15W. Using the Raspberry Pi for

power will also increase the heating of the unit and the power supply due to the increased

current drawn. An externally powered amplifier feeding more powerful speakers would be

desirable to enable the use of audible response from the mirror and streaming of videos

and music.

Another option available for audio connection within the smart mirror would be to use
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a Bluetooth connection between the Raspberry Pi and the speaker. The Raspberry Pi 4

has Bluetooth 5.0 capability built into the unit, giving it the ability to send audio to two

different devices simultaneously.

The final option for the audio output would be to select a monitor with inbuilt speak-

ers. The connection between the Raspberry Pi and the monitor is through one of two

onboard microHDMI ports. These ports can send both visual and audio information

simultaneously to a monitor.

While the Raspberry Pi is a single-board computer system, it does not possess a hard

drive. There is a microSD card slot for inserting a card to be used as a hard drive.

The most common method of installing an operating system is to insert a microSD card

containing the NOOBS (New Out Of the Box Software) operating system installation

software. These can be purchased from many different suppliers, or any microSD card

can be loaded with NOOBS by following the guide found on the Raspberry Pi Foundation

website (Raspberry Pi Foundation n.d.b).

Interaction with the smart mirror was intended to be achieved using voice control. This

requires a microphone to detect the user’s speech. The Raspberry Pi does not have a

microphone input port. One of the four available USB ports would be used for this

purpose. Further work would need to be completed to determine the type of microphone

that would be most appropriate for this application.

The final component to be considered in the design of the smart mirror was the power

supplies. When all other components are connected and running, there will be three sepa-

rate power outlets required. These are for the Raspberry Pi, the monitor and the selected

speaker system. To reduce the number of cables needed for the unit, a power board would

be installed on the inside of the frame. Four outlet power boards are inexpensive and

readily available.

5.2 Arrangement of Components

The selection of the monitor will mainly determine the layout of the mirror. The frame

holding the mirror together would be required to attach to the monitor securely as well

as supporting the other components.
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The position of the camera has an effect on the image captured. As the image is intended

for assisting in shaving, it would be beneficial for the camera to be below the display rather

than above. This will enable the user to gain a view under his chin while minimising the

need to lift his head. If the camera were located above the screen, it would be more

difficult to achieve this view.

Another consideration when planning the positioning of the components is the length

of the connections between parts. The camera board is supplied with a ribbon cable of

approximately 120mm in length. This limits the distance that the camera can be located

from the Raspberry Pi. The Picamera library contains functions for rotating and flipping

the images as desired without increasing the computational load.

Care must be taken during design and construction to prevent light coming through the

rear of the mirror and hitting the back of the unidirectional mirror. Any light that does

protrude through will stop the mirror from reflecting, and the outline of the components

behind the glass will be visible. Some examples of smart mirrors that were encountered

during research for this project used a fully enclosed back on the frame for this purpose.

This is not the most desirable method as the airflow will be restricted and may cause

heating issues for the equipment inside the frame.

The monitor has a series of four threaded holes in the rear. These holes are intended

for use with a wall bracket or on a monitor stand and would form a secure method of

attaching the monitor to the frame if a plate was placed directly across the rear of the

frame.

A basic diagram has been included in Figure 5.1 of the front elevation of the proposed

smart mirror design. This illustration shows the camera mounted below the monitor.

When observing the mirror, this would not be visible due to the unidirectional glass.

The rear elevation shown in Figure 5.2 demonstrates a proposed mounting location for the

main components. While they are not shown in the diagram, speakers would be housed

in each side of the frame, and a microphone would be mounted in the bottom. The depth

of the structure would partially be dependent on the size of the speakers selected. The

timber used would need to be sufficiently wide to allow for a hole to be cut, allowing the

speakers to be recessed into the wood.

The metal plate used in the frame will provide much of the structural support for the
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Figure 5.1: Basic representation of the front view of the assembled smart mirror.

Figure 5.2: Rear elevation of proposed smart mirror design.

mirror. It will provide sufficient strength to support the monitor as well as the frame.

This frame will, in turn, support all the other components. Holes will be able to be cut

into the plate to allow for hanging of the mirror on a wall. The proposed holes should be

made in a keyhole shape, as shown in Figure 5.3 to allow a screw head to fit through the

larger bottom of the hole and slide into the slot to prevent the mirror falling. A series of

these holes could be created to allow for different mounting situations and various support

spacings.

Figure 5.3: Keyhole shape for mounting holes.

As previously mentioned, a power board is to be mounted in the bottom of the frame, and

all other components will receive their power from this. The direction and orientation of
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the powerboard will need to be decided upon to fit the required power plugs and adaptors

for the selected equipment.



Chapter 6

Results

This chapter will discuss some of the final results found while completing the project.

Many of the discoveries made during the implementation and testing of the tracking

algorithms are included in Chapter 4. The reason for this was that the information found

had a strong influence on the ongoing development of the tracking programs.

The two algorithms that were implemented and tested were the K-means and the cross-

correlation algorithms. The K-means was tested in the original form as well as with

modifications applied to improve the computational efficiency. The techniques tested to

improve the speed were:

� reusing cluster centre values from one frame to the next and

� testing if the Euclidean distance to the previously assigned cluster had increased

before testing the distance to other cluster centres.

The traditional cross-correlation technique requires an extremely high number of calcu-

lations. For a Nx by Ny image using a Mx by My template, the calculation of a single

correlation value in one position the uses Equation 2.6. For the more robust normalised

cross-correlation, the formula is displayed in Equation 2.7. This equation results in a con-

siderable increase in the complexity and computational load of each calculation. For this

reason, the cross-correlation algorithm was only implemented using the integral image, as

previously discussed.

Both variations of the K-means algorithms produced and the cross-correlation tracking
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algorithms were successful in tracking an object during testing. Various pens were selected

as test specimens for the tracking. This provided a wide range of colours and patterns

within the targets needing to be required. Successful tracking of different targets was

needed as the smart mirror is intended to acquire any shaving implement the user chooses.

The efficiency of the K-means algorithm was improved by using the YUV colour format

rather than the RGB format. Conversely, the cross-correlation algorithm was unable

to accurately track the object using the YUV format but demonstrated a much higher

accuracy using RGB formatted images.

The greatest challenge when implementing the algorithms was reducing the time taken

for the object to be acquired within the following frames. The times taken for performing

the tracking in a single frame are demonstrated in Table 6.1. These times are given as

average values. For all but the modified K-means algorithm, the observed tracking times

were consistent from one frame to the next. The variation in the time taken for the

modified K-means can be attributed to the degree of change from one frame to the next.

When there was very little change in the image, the tracking was completed in a much

faster time than when large differences were observed.

Table 6.1: Tracking Algorithm Testing Results.

Basic K-means Modified K-means Cross-correlation

Initial

Acquisition
22s 24s 0.74s

Proceeding

Frames
22s 9.2s - 24.5s 0.74s

It was also noted that the modified K-means algorithm required a longer time to per-

form the initial acquisition process. While this was not expected, it can be explained.

The modifications to the algorithm do successfully reduce the number of computations

required; however, there is an increase in the number of variables used and stored. In the

basic K-means algorithm, only the cluster centres and a record of which cluster each pixel

was assigned to was stored. With the modifications, the distances to the closest cluster

for each pixel was also stored and returned.

Checking the distance to the assigned cluster before checking the distance to other clusters

also slowed the algorithm down. In the code used, with 25 clusters, this would mean that
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the pixel distance would need to be calculated for 26 clusters instead of 25. However, once

the initial clustering was complete, these additional processing tasks were outweighed by

the reduction in computational load as previously discussed.

One disadvantage of the cross-correlation algorithm discussed in the literature was a

weakness when tracking non-rigid objects. During the testing of this algorithm, the pen

being tracked was rotated in all directions at different times. The algorithm did not have

an issue with continuing the tracking even when this occurred. It is believed that there

are two contributing factors influencing this unexpected outcome. First, the use of the

integral image means that instead of seeking the exact template, on approximation is

used. This approximation only tests for the sum of the pixel values instead of the exact

correlation of each pixel. While this can cause a reduction in the accuracy when tracking

an object, it has the benefit of removing the reliance on the orientation of the template.

The second influencing factor that may have increased the resilience to non-rigidity is the

use of a square template. Had a rectangular template been used instead of a square one,

the rotation of the object would have hade a greater influence on the pixels selected in

the template. This was not deliberately implemented in the algorithm, but on reflection,

may have been beneficial for the algorithm.

The cross-correlation algorithm also proved resilient to occlusions and displayed the ability

to reacquire the object once it had left the view of the camera and returned. As the

algorithm was set to continue seeking the same template, once the camera was able to

gain a clear view of the object again, the tracking would continue. This would prove

beneficial if a traditional razor was being used that required rinsing the hair from the

blade. The K-means algorithm did not display the same ability as once the clustering

was performed without the object in the frame, the cluster centres had moven from the

desired values and therefore acquired the wrong pixels.

The testing of the algorithms demonstrated that significant savings could be made in the

time required by selecting and implementing the correct algorithms. Using additional

optimisation techniques can also produce savings in the computational load. From the

algorithms chosen and implemented, the cross-correlation algorithm was by far the more

efficient algorithm.



Chapter 7

Conclusions and Further Work

7.1 Conclusion

There were two main research objectives to be achieved within this project. The first

was the development of a tracking algorithm to be used by the mirror. As can be seen

from the previous chapters, both of the K-means and the cross-correlation algorithms

were successful in the tracking of a representative sample. However, the time taken for

the location of the object within the image is beyond what is considered acceptable in

the current form. The results of the cross-correlation algorithm proved promising with an

acquisition time that was much lower than that of the K-means variations. In the future

work proposed below, suggested actions are provided to achieve an acceptable outcome

concerning the tracking.

Construction of a working smart mirror was not achieved during this project. In Chap-

ter 5, required components and an outline of the design were discussed. Many of the

factors that need to be considered during the construction were also addressed. Not hav-

ing a completed mirror did not hinder the ability to continue with the development of the

tracking algorithms as the essential components had been acquired and were able to be

used and tested arranged on a desk.

One additional finding that came as a result of the testing result is the limitations that

exist within the Python language. While there are a vast variety of functions available,

making the language versatile, not everything desired was achievable. One reason for
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the unexpected slow tracking speed was found to be the way that the Python uses the

processor cores. When running HTOP, a performance analyses tool, on the Raspberry Pi,

it was noted that only one of the four cores available were being used for the calculations.

Python does support multiprocessing; however, when trying to implement this, it was

found that it is not supported within a loop for repeated calls. The process would work

on the first iteration of the loop but would stop and return an error on the second. The

error stated that a process could only be called once, thereby meaning it could not be

implemented within a loop. As the camera acquisition is performed within a loop, due

to the indefinite duration of the capture period, this made the use of multiprocessing

unachievable. Figure 7.1 demonstrates a screen capture from the Raspberry Pi display-

ing the processor and memory used during the running of the basic K-means tracking

algorithm.

Figure 7.1: Screen capture of FTOP system analyses tool.

7.2 Future Work

From the previous discussion, it can be seen that a working mirror was not able to be

produced during this project. The steps required to achieve this will be discussed as

suggested work to be completed in the future.
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Further development of the tracking algorithms is required for the successful completion of

the smart mirror. The K-means algorithm was proven to be more efficient when using the

modifications. However, the time taken for each iteration was far too long. Two methods

of reducing the computational load that have not yet been tested were formulated. In

the first method, the calculation of the Euclidean distance to the assigned cluster would

not be calculated. Instead, a record of the cluster centres that had moved in the previous

iteration would be kept. If a cluster centre had not moved, the pixels assigned to that

cluster would not be recalculated. This has the advantage of requiring less Euclidean

distance calculations to be made. If the cluster centre was found to have moved, the

process would continue for each pixel assigned to that cluster in the same way as it is

currently executed.

The second method devised takes into account that the magnitude of distance will always

be greater than or equal to the x or y components of the same distance. Because of

this, the Euclidean distances will be calculated only for the cluster centres that exhibit

a x and y component less than or equal to the previous Euclidean distance. This will

result in many of the calculations required being a less onerous addition instead of the

usual Euclidian calculations that require both squaring of components and the square

root function.

While these two suggested methods have the potential to reduce the load created by the

algorithm, it is not expected to achieve a sufficient reduction in time to make the algo-

rithms practical for real-time tracking in this situation. Therefore, the cross-correlation

algorithm appears to be the most viable of the options explored.

Another language could be used to achieve an algorithm that is capable of running with

sufficient speed on a Raspberry Pi. Briggs (2006) performed research to analyse the ef-

ficiency of performing mathematical calculations in Python, C and C++. The results

demonstrated a vast difference in the speed at which the calculations were completed.

C++ was found to provide a significantly more efficient method of completing calcula-

tions. Additional computational savings could be made by implementing the code in C++.

C++ offers more comprehensive and robust multiprocessing libraries than Python.This

would enable the use of all four of the Raspberry Pi cores. While this has not been tested,

there is the potential for a reduction in computational time by more than 75%.

Access to the camera in the C++ language would be able to be achieved using a library
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such as raspicam‘(Aplications of Artificial Vision n.d.). This library offers full control of

the camera for both still and video functions.

There are other methods that may be considered when trying to implement the tracking

of the shaving device. The tracking algorithm could be run as a separate program or

process. By doing this, the main process would be able to continue providing the image

to the screen while the secondary process performs the tracking. As the focal point of

the image will not be changed with each frame, the program can continue supplying a

video stream trained on a stationary point until the tracking process gives the command

to change the focal point. Given that this focal point will not need to relocate frequently,

the tracking algorithm can be set to operate at a lower frequency than that of the video

display. The standard frame rates for a video is either 30 or 60 frames per second. This

method would allow the image to be displayed on the screen at 30 frames per second,

while the tracking algorithm runs only three times per second. This would require the

tracking to be complete in 333ms, which may be achievable given what has been previously

discussed.



References

Akshaya, R., Raj, N. N. & Gowri, S. (2018), Smart mirror- digital magazine for univer-

sity implemented using raspberry pi, in ‘2018 International Conference on Emerging

Trends and Innovations In Engineering And Technological Research (ICETIETR)’,

pp. 1–4.

Ali, A., Jalil, A., Niu, J., Zhao, X., Rathore, S., Ahmed, J. & Iftikhar, M. A. (2016), ‘Vi-

sual object tracking—classical and contemporary approaches’, Frontiers of Computer

Science 10(1), 167–188.

Aplications of Artificial Vision (n.d.), ‘Raspicam’, http://www.uco.es/investiga/

grupos/ava/node/40. [Online; accessed October-2020].

Bianco, S., Celona, L. & Napoletano, P. (2018), Visual-based sentiment logging in magic

smart mirrors, in ‘2018 IEEE 8th International Conference on Consumer Electronics

- Berlin (ICCE-Berlin)’, pp. 1–4.

Bonnain, S. (2018), ‘Interactive mirror with an app

store’, https://www.kickstarter.com/projects/743717037/

eve-smart-mirror-interactive-smart-mirror-with-an/description. [Online;

accessed April-2020].

Briggs, K. (2006), ‘Implementing exact real arithmetic in python, c++ and c’, Theoretical

Computer Science 351(1), 74 – 81. Real Numbers and Computers.

URL: http://www.sciencedirect.com/science/article/pii/S0304397505006080

Channu, M. H., Bheemashappa, N. S. & Sudharshan, K. (2019), ‘Smart mirror table’,

International Journal of Scientific Research and Review 7(3), 2533–2537.

Cheng, Y. (1995), ‘Mean shift, mode seeking, and clustering’, IEEE transactions on

pattern analysis and machine intelligence 17(8), 790–799.



REFERENCES 48

Colantonio, S., Coppini, G., Germanese, D., Giorgi, D., Magrini, M., Marraccini, P.,

Martinelli, M., Morales, M. A., Pascali, M. A., Raccichini, G. et al. (2015), ‘A smart

mirror to promote a healthy lifestyle’, Biosystems Engineering 138, 33–43.

Collins, R. T. (2003), Mean-shift blob tracking through scale space, in ‘2003 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, 2003. Pro-

ceedings.’, Vol. 2, IEEE, pp. II–234.

Comaniciu, D., Ramesh, V. & Meer, P. (2003), ‘Kernel-based object tracking’, IEEE

Transactions on pattern analysis and machine intelligence 25(5), 564–577.

Darrell, T., Gordon, G., Woodfill, J. & Harville, M. (1998), A virtual mirror interface

using real-time robust face tracking, in ‘Proceedings Third IEEE International Con-

ference on Automatic Face and Gesture Recognition’, pp. 616–621.

Davies, E. R. (2012), Computer and machine vision: theory, algorithms, practicalities,

Elsevier Science & Technology.

de Tena Rojas, A. (2017), ‘Mmm- selfie’, https://github.com/Txukie/MMM-Selfie.

[Online; accessed July-2020].

Ding, J.-R., Huang, C.-L., Lin, J.-K., Yang, J.-F. & Wu, C.-H. (2007), Magic mirror, in

‘Ninth IEEE International Symposium on Multimedia (ISM 2007)’, IEEE, pp. 176–

185.

Elgammal, A., Duraiswami, R. & Davis, L. S. (2003), ‘Efficient kernel density estimation

using the fast gauss transform with applications to color modeling and tracking’,

IEEE transactions on pattern analysis and machine intelligence 25(11), 1499–1504.

Evens, P. (2020), ‘Build a Magic Mirror’, https://magpi.raspberrypi.org/articles/

build-a-magic-mirror. [Online; accessed May-2020].

Fahim, A., Salem, A., Torkey, F. A. & Ramadan, M. (2006), ‘An efficient enhanced k-

means clustering algorithm’, Journal of Zhejiang University-Science A 7(10), 1626–

1633.

Fisher, R. B., Breckon, T. P., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., Trucco,

E. & Williams, C. K. I. (2014), Dictionary of Computer Vision and Image Processing,

John Wiley & Sons, Incorporated, Somerset.



REFERENCES 49

Fukunaga, K. & Hostetler, L. (1975), ‘The estimation of the gradient of a density function,

with applications in pattern recognition’, IEEE Transactions on information theory

21(1), 32–40.

GitHub search results- smart mirror (2020), https://github.com/search?q=smart+

mirror. [Online; accessed August-2020].

Gold, D., Sollinger, D. & Indratmo (2016), Smartreflect: A modular smart mirror appli-

cation platform, in ‘2016 IEEE 7th Annual Information Technology, Electronics and

Mobile Communication Conference (IEMCON)’, pp. 1–7.

Greengard, L. & Strain, J. (1991), ‘The fast gauss transform’, SIAM Journal on Scientific

and Statistical Computing 12(1), 79–94.

Heisele, B., Kressel, U. & Ritter, W. (1997), Tracking non-rigid, moving objects based

on color cluster flow, in ‘Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition’, IEEE, pp. 257–260.

Hii, A., Hann, C., Chase, J. & Van Houten, E. (2006), ‘Fast normalized cross correla-

tion for motion tracking using basis functions’, Computer methods and programs in

biomedicine 82(2), 144–156.

Hossain, M. A., Atrey, P. & Saddik, A. E. (2007), ‘Smart mirror for ambient home

environment’, IET Conference Proceedings pp. 589–596(7).

Iwabuchi, E., Nakagawa, M. & Siio, I. (2009), Smart makeup mirror: Computer-

augmented mirror to aid makeup application, in J. A. Jacko, ed., ‘Human-Computer

Interaction. Interacting in Various Application Domains’, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 495–503.

Jin, K., Deng, X., Huang, Z. & Chen, S. (2018), Design of the smart mirror based on

raspberry pi, in ‘2018 2nd IEEE Advanced Information Management, Communicates,

Electronic and Automation Control Conference (IMCEC)’, IEEE, pp. 1919–1923.

Johnston, C., Bailey, D. & Gribbon, K. (2005), Optimisation of a colour segmentation

and tracking algorithm for real-time fpga implementation, in ‘Proceedings of Image

and Vision Computing New Zealand’, pp. 422–427.

Jones, D. (2016), ‘Picamera documentation’, https://www.picamera.readthedocs.io/

release-1.12/index.html. [Online; accessed August-2020].



REFERENCES 50

Kim, Y., Park, H. & Paik, J. (2018), Deep tracking using convolutional features and

adaptive frame update, in ‘2018 IEEE 8th International Conference on Consumer

Electronics - Berlin (ICCE-Berlin)’, pp. 1–3.

Kodinariya, T. M. & Makwana, P. R. (2013), ‘Review on determining number of cluster

in k-means clustering’, International Journal 1(6), 90–95.

Leichter, I., Lindenbaum, M. & Rivlin, E. (2010), ‘Mean shift tracking with multiple

reference color histograms’, Computer Vision and Image Understanding 114(3), 400–

408.

Meine, R. K. (2000), ‘System and method for displaying information on a mirror’. US

Patent 6,560,027.

Miotto, R., Danieletto, M., Scelza, J. R., Kidd, B. A. & Dudley, J. T. (2018), ‘Reflecting

health: smart mirrors for personalized medicine’, NPJ digital medicine 1(1), 1–7.

Na, S., Xumin, L. & Yong, G. (2010), Research on k-means clustering algorithm: An

improved k-means clustering algorithm, in ‘2010 Third International Symposium on

Intelligent Information Technology and Security Informatics’, pp. 63–67.

Oliver, A., Munoz, X., Batlle, J., Pacheco, L. & Freixenet, J. (2006), Improving clus-

tering algorithms for image segmentation using contour and region information, in

‘2006 IEEE International Conference on Automation, Quality and Testing, Robotics’,

Vol. 2, pp. 315–320.

Parzen, E. (1962), ‘On estimation of a probability density function and mode’, The Annals

of Mathematical Statistics 33(3), 1065–1076.

URL: http://www.jstor.org/stable/2237880

Rahman, A. S. M. M., Tran, T. T., Hossain, S. A. & Saddik, A. E. (2010), Augmented ren-

dering of makeup features in a smart interactive mirror system for decision support

in cosmetic products selection, in ‘2010 IEEE/ACM 14th International Symposium

on Distributed Simulation and Real Time Applications’, pp. 203–206.

Rahman, H., Iyer, S., Meusburger, C., Dobrovoljski, K., Stoycheva, M., Turkulov, V.,

Begum, S. & Ahmed, M. U. (2016), Smartmirror: an embedded non-contact system

for health monitoring at home, in ‘International Conference on IoT Technologies for

HealthCare’, Springer, pp. 133–137.



REFERENCES 51

Raspberry Pi Foundation (n.d.a), ‘Getting started with the cam-

era module’, https://www.projects.raspberrypi.org/en/projects/

getting-started-with-picamera/4. [Online; accessed July-2020].

Raspberry Pi Foundation (n.d.b), ‘Raspberry pi home page’, https://www.raspberrypi.

org. [Online; accessed July-2020].

Ray, S. & Turi, R. H. (1999), Determination of number of clusters in k-means clustering

and application in colour image segmentation, in ‘Proceedings of the 4th international

conference on advances in pattern recognition and digital techniques’, Calcutta, In-

dia, pp. 137–143.

Rosebrock, A. (2015), ‘Access the raspberry pi camera with opencv

and python’, https://www.pyimagesearch.com/2015/03/03/

accessing-the-raspberry-pi-camera-with-opencv-and-python/. [Online;

accessed July-2020].

Rowley, H. A., Baluja, S. & Kanade, T. (1998), ‘Neural network-based face detection’,

IEEE Transactions on pattern analysis and machine intelligence 20(1), 23–38.

Sebastian, P. & Yap Vooi Voon (2007), Tracking using normalized cross correlation and

color space, in ‘2007 International Conference on Intelligent and Advanced Systems’,

IEEE, pp. 770–774.

sklearn.cluster.MeanShift (2019), https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.

[Online; accessed May-2020].

Steinley, D. (2006), ‘K-means clustering: a half-century synthesis’, British Journal of

Mathematical and Statistical Psychology 59(1), 1–34.

Szeliski, R. (2010), Computer vision: algorithms and applications, Springer Science &

Business Media.

Tatiraju, S. & Mehta, A. (2008), ‘Image segmentation using k-means clustering, em and

normalized cuts’, Department of EECS 1, 1–7.

Teeuw, M. (2016), ‘MagicMirror2’, https://magicmirror.builders/. [Online; accessed

May-2020].

Teeuw, M. (n.d.), ‘Magic mirror’, https://michaelteeuw.nl/tagged/magicmirror.

[Online; accessed August-2020].



REFERENCES 52

The MagPi- Issue 50 (2020), https://magpi.raspberrypi.org/issues/50. [Online;

accessed August-2020].

Treepong, B., Mitake, H. & Hasegawa, S. (2018), ‘Makeup creativity enhancement with

an augmented reality face makeup system’, Computers in Entertainment (CIE)

16(4), 1–17.

Viola, P., Jones, M. et al. (2001), ‘Robust real-time object detection’, International jour-

nal of computer vision 4(34-47), 4.

Wren, C. R., Azarbayejani, A., Darrell, T. & Pentland, A. P. (1997), ‘Pfinder: real-time

tracking of the human body’, IEEE Transactions on Pattern Analysis and Machine

Intelligence 19(7), 780–785.

Xu, K., Wang, X., Wei, W., Song, H. & Mao, B. (2016), ‘Toward software defined smart

home’, IEEE Communications Magazine 54(5), 116–122.

Yang, C., Duraiswami, R. & Davis, L. (2005), Efficient mean-shift tracking via a new

similarity measure, in ‘2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05)’, Vol. 1, IEEE, pp. 176–183.

Yu, Y., You, S. D. & Tsai, D. (2012), ‘Magic mirror table for social-emotion alleviation

in the smart home’, IEEE Transactions on Consumer Electronics 58(1), 126–131.

Yuan, X.-T., Hu, B.-G. & He, R. (2010), ‘Agglomerative mean-shift clustering’, IEEE

Transactions on Knowledge and Data Engineering 24(2), 209–219.

Zabih, R. & Woodfill, J. (1994), Non-parametric local transforms for computing visual

correspondence, in J.-O. Eklundh, ed., ‘Computer Vision — ECCV ’94’, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 151–158.



Appendix A

Project Specification



ENG 4111/2 Research Project

Project Specification

For: Peter Pitt

Title: Smart Shaving Mirror

Major: Electrical and Electronics Engineering

Supervisor: Jason Brown

Enrollment: ENG4111 - EXT S1, 2020
ENG4112 - EXT S2, 2020

Project Aim: To develop, construct and test a smart mirror to assist people
while shaving. The mirror will be based on an existing smart mir-
ror platform, running on a raspberry pi. It will use a video camera
to provide an enlarged image focusing on the face of the user in
the area they are shaving. This mirror will be beneficial for any-
one who uses it while shaving weather they are vision impaired
or not.

Program: Version 2, 8th April 2020

1. Research the background and current use of smart mirrors.

2. Research current methods of object tracking used in computer vision.

3. Decide on the most appropriate tracking algorithm. Modifications may need to be made to make the
algorithm more suitable for the project.

4. Implement the algorithm to smoothly track a razor.

5. Construct and test the smart mirror.

As time and resources permit:

1. Improve the functionality by adding another camera to allow the user to view their face from another
angle or making the position and angle of the existing camera adjustable.

2. Improve functionality by adding dynamic zoom dependent of the section of the face that is being
shaved.

Agreed:

Student Name: Peter Pitt
Date:

Supervisor Name: Jason Brown
Date:



Appendix B

Basic K-means Tracking

Algorithm



B.1 Python Code for K-means Tracking 56

The code included below was produced to perform the K-means tracking in Python.

B.1 Python Code for K-means Tracking

Listing B.1: A basic Windows program.

# import the necessary packages
from picamera . array import PiRGBArray
from picamera . array import PiYUVArray
from picamera import PiCamera
import time
import cv2
import numpy as np
import math
import random

# s i z e o f image arrays
s i zeTrack = np . array ( [ 9 4 , 160 , 3 ] )
s i z e D i s p l a y = np . array ( [ 3 6 8 , 640 , 3 ] )
acqComplete = False

# V a r i a b l e s f o r t r a c k i n g
k = 25
startTime = time . time ( )

#Create i n i t i a l c r o s s h a i r s
def s e tCros sHa i r s ( image , c en t r e ) :

x p o s i t i o n = [ int ( c en t r e [ 0 ] = s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [0 ]+ s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [0 ] =1) , int ( c en t r e [ 0 ] + 1 ) ]

y p o s i t i o n = [ int ( c en t r e [1]= s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [1 ]+ s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [1 ] =1) , int ( c en t r e [ 1 ] + 1 ) ]

#l i n e acc ros s
image [ x p o s i t i o n [ 0 ] : x p o s i t i o n [ 1 ] , y p o s i t i o n [ 2 ] : y p o s i t i o n [ 3 ] , : ]
= [ 0 , 255 , 0 ]
#l i n e down
image [ x p o s i t i o n [ 2 ] : x p o s i t i o n [ 3 ] , y p o s i t i o n [ 0 ] : y p o s i t i o n [ 1 ] , : ]
= [ 0 , 255 , 0 ]
return image

#c r e a t e i n i t i a l random c l u s t e r c e n t r e s
def randomClusters ( ) :

c l u s t e r s = np . z e ro s ( [ 2 , k ] )
for y in range ( 2 ) :

for x in range ( k ) :
c l u s t e r s [ y , x ] = int ( random . gauss (128 , 10) )
while c l u s t e r s [ y , x]>=255 and c l u s t e r s [ y , x]<=0:

c l u s t e r s [ y , x ] = int ( random . gauss (128 , 30) )
return c l u s t e r s



B.1 Python Code for K-means Tracking 57

# Pertform b a s i c k=means c l u s t e r i n g
def c l u s t e r ( image ) :

steady = False
grouped = np . z e ro s ( [ s i z eTrack [ 0 ] , s i z eTrack [ 1 ] ] )
tempClusters = np . z e ro s ( [ 2 , k ] )
tempClusters . astype ( int )
c l u s t e r s = randomClusters ( )
c l u s t e r s . astype ( int )
while steady == False :

c l u s t e r C a l c s = np . z e ro s ( [ 3 , k ] )
for x in range ( s i z eTrack [ 0 ] ) :

for y in range ( s i z eTrack [ 1 ] ) :
tempMinDist = f loat ( ’ i n f ’ )
tempMinCluster = 0
for z in range ( k ) :

tempDist = np . l i n a l g . norm( image [ x , y , 1 ]
= c l u s t e r s [ 0 , z ] ,
image [ x , y , 2 ]
= c l u s t e r s [ 1 , z ] )

i f tempDist < tempMinDist :
tempMinDist = tempDist
tempMinCluster = z

grouped [ x , y ] = tempMinCluster
c l u s t e r C a l c s [ 0 , tempMinCluster ] += 1
c l u s t e r C a l c s [ 1 : 3 , tempMinCluster ] += image [ x , y , 1 : 3 ]

for x in range ( k ) :
i f c l u s t e r C a l c s [ 0 , x ] ! = 0 :

tempClusters [ 0 , x ] = int ( c l u s t e r C a l c s [ 1 , x ]
/ c l u s t e r C a l c s [ 0 , x ] )

tempClusters [ 1 , x ] = int ( c l u s t e r C a l c s [ 2 , x ]
/ c l u s t e r C a l c s [ 0 , x ] )

else :
tempClusters [ : , x ] = c l u s t e r s [ : , x ]

steady = np . a r ray equa l ( c l u s t e r s , tempClusters )
c l u s t e r s = tempClusters

return tempClusters , grouped

def c l u s t e r C e n t r e ( c l u s t e r ed , t a r g e t ) :
x pos = 0
y pos = 0
count = 0
for x in range ( s i z eTrack [ 0 ] ) :

for y in range ( s i z eTrack [ 1 ] ) :
i f c l u s t e r e d [ x , y ] == t a r g e t :

x pos += x
y pos += y
count += 1

cent r e = [ ( s i z e D i s p l a y [ 0 ] * x pos )/ ( s i z eTrack [ 0 ] * count ) ,
( s i z e D i s p l a y [ 1 ] * y pos )/ ( s i z eTrack [ 1 ] * count ) ]

return cent r e
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def s e l e c t C l u s t e r ( c l u s t e r s , t a r g e t ) :
d i s t = 255
for x in range (0 , k ) :

tempDist = np . l i n a l g . norm( c l u s t e r s [ 0 , x ] = t a r g e t [ 0 ] ,
c l u s t e r s [ 1 , x ] = t a r g e t [ 1 ] )

i f d i s t > tempDist :
d i s t = tempDist
c l u s t e r = x

return c l u s t e r

# i n i t i a l i z e the camera and grab a r e f e r e n c e to the raw camera capture
camera = PiCamera ( )
camera . r e s o l u t i o n = ( s i z e D i s p l a y [ 1 ] , s i z e D i s p l a y [ 0 ] )
camera . f ramerate = 20
camera . h f l i p = True
captureDisp lay = PiRGBArray( camera , s i z e =( s i z e D i s p l a y [ 1 ] ,

s i z e D i s p l a y [ 0 ] ) )
captureTrack = PiYUVArray( camera , s i z e =( s i zeTrack [ 1 ] ,

s i z eTrack [ 0 ] ) )

# a l l o w the camera to warmup
time . s l e e p ( 0 . 1 )

# capture frames from the camera
for frame in camera . capture cont inuous ( captureDisplay , format=”bgr” ,

u s e v i d e o p o r t=True ,
r e s i z e =(640 , 368) ,
s p l i t t e r p o r t =1):

i f startTime>time . time ()=5:
c en t r e = [ s i z e D i s p l a y [ 0 ] / 2 , s i z e D i s p l a y [ 1 ] / 2 ]

else :
camera . capture ( captureTrack , format=”yuv” , u s e v i d e o p o r t=True ,

r e s i z e =(160 , 96) , s p l i t t e r p o r t =2)
c l u s t e r s , c l u s t e r e d = c l u s t e r (np . array ( captureTrack . array ) )
i f acqComplete == False :

t a r g e t C l u s t e r = c l u s t e r e d [ s i zeTrack [ 0 ] / 2 , s i z eTrack [ 1 ] / 2 ]
targetValue = c l u s t e r s [ : , int ( t a r g e t C l u s t e r ) ]
acqComplete = True

else :
t a r g e t C l u s t e r = s e l e c t C l u s t e r ( c l u s t e r s , targetValue )
c en t r e = c l u s t e r C e n t r e ( c l u s t e r ed , t a r g e t C l u s t e r )

# Disp lay image
image = se tCros sHa i r s (np . array ( captureDisp lay . array ) , c en t r e )
cv2 . imshow ( ”Frame” , image )
# Clear b e f o r e next frame
captureDisp lay . t runcate (0 )
captureTrack . t runcate (0 )
key = cv2 . waitKey (1 ) & 0 x f f
i f key == ord ( ”q” ) :

break



Appendix C

Modified K-means Tracking

Algorithm



C.1 Python Code for modified K-means Tracking 60

The code included below was produced to perform the K-means tracking with the modi-

fications discussed in Python.

C.1 Python Code for modified K-means Tracking

Listing C.1: A basic Windows program.

# import the necessary packages
from picamera . array import PiRGBArray
from picamera . array import PiYUVArray
from picamera import PiCamera
import time
import cv2
import numpy as np
import math
import random

# s i z e o f image arrays
s i zeTrack = np . array ( [ 9 4 , 160 , 3 ] )
s i z e D i s p l a y = np . array ( [ 3 6 8 , 640 , 3 ] )
acqComplete = False
groupedImage = np . z e ro s ( s i z eTrack [ 0 : 2 ] )
eDis t = np . z e ro s ( s i z eTrack [ 0 : 2 ] )

# V a r i a b l e s f o r t r a c k i n g
k = 25
startTime = time . time ( )

#Create i n i t i a l c r o s s h a i r s
def s e tCros sHa i r s ( image , c en t r e ) :

x p o s i t i o n = [ int ( c en t r e [0]= s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [0 ]+ s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [0 ] =1) , int ( c en t r e [ 0 ] + 1 ) ]

y p o s i t i o n = [ int ( c en t r e [1]= s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [1 ]+ s i z e D i s p l a y [ 0 ] / 1 0 ) ,
int ( c en t r e [1 ] =1) , int ( c en t r e [ 1 ] + 1 ) ]

#l i n e acc ros s
image [ x p o s i t i o n [ 0 ] : x p o s i t i o n [ 1 ] , y p o s i t i o n [ 2 ] : y p o s i t i o n [ 3 ] , : ]
= [ 0 , 255 , 0 ]
#l i n e down
image [ x p o s i t i o n [ 2 ] : x p o s i t i o n [ 3 ] , y p o s i t i o n [ 0 ] : y p o s i t i o n [ 1 ] , : ]
= [ 0 , 255 , 0 ]
return image

#c r e a t e i n i t i a l random c l u s t e r c e n t r e s
def randomClusters ( ) :

c l u s t e r s = np . z e ro s ( [ 2 , k ] )
c l u s t e r s . astype ( int )
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for y in range ( 2 ) :
for x in range ( k ) :

c l u s t e r s [ y , x ] = int ( random . gauss (128 , 10) )
while c l u s t e r s [ y , x]>=255 and c l u s t e r s [ y , x]<=0:

c l u s t e r s [ y , x ] = int ( random . gauss (128 , 30) )
return c l u s t e r s

# Pertform b a s i c k=means c l u s t e r i n g
def c l u s t e r ( image , c l u s t e r s , grouped , d i s t a n c e s ) :

steady = False
i f acqComplete == False :

grouped = np . z e ro s ( [ s i z eTrack [ 0 ] , s i z eTrack [ 1 ] ] )
grouped . astype ( int )
d i s t a n c e s = np . z e ro s ( [ s i z eTrack [ 0 ] , s i z eTrack [ 1 ] ] )

tempClusters = np . z e ro s ( [ 2 , k ] )
tempClusters . astype ( int )
while steady == False :

c l u s t e r C a l c s = np . z e ro s ( [ 3 , k ] )
print ( ’ loop ’ )
for x in range ( s i z eTrack [ 0 ] ) :

for y in range ( s i z eTrack [ 1 ] ) :
tempMinDist
= np . l i n a l g . norm ( [ image [ x , y , 1 ]

= c l u s t e r s [ 0 , int ( grouped [ x , y ] ) ] ,
image [ x , y , 2 ]
= c l u s t e r s [ 1 , int ( grouped [ x , y ] ) ] ] )

tempMinCluster = grouped [ x , y ]
i f tempMinDist > d i s t a n c e s [ x , y ] :

for z in range ( k ) :
tempDist = np . l i n a l g . norm ( [ image [ x , y , 1 ]

= c l u s t e r s [ 0 , z ] ,
image [ x , y , 2 ]
= c l u s t e r s [ 1 , z ] ] )

i f tempDist < tempMinDist :
tempMinDist = tempDist
tempMinCluster = z

grouped [ x , y ] = tempMinCluster
c l u s t e r C a l c s [ 0 , int ( tempMinCluster ) ] += 1
c l u s t e r C a l c s [ 1 : 3 , int ( tempMinCluster ) ]
+= image [ x , y , 1 : 3 ]
d i s t a n c e s [ x , y ] = tempMinDist

for x in range ( k ) :
i f c l u s t e r C a l c s [ 0 , x ] != 0 :

tempClusters [ 0 , x ] = int ( c l u s t e r C a l c s [ 1 , x ]
/ c l u s t e r C a l c s [ 0 , x ] )

tempClusters [ 1 , x ] = int ( c l u s t e r C a l c s [ 2 , x ]
/ c l u s t e r C a l c s [ 0 , x ] )

else :
tempClusters [ : , x ] = c l u s t e r s [ : , x ]

equal = np . a r ray equa l ( c l u s t e r s , tempClusters )
c l u s t e r s = tempClusters
i f equal :
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steady = True
return c l u s t e r s , grouped , d i s t a n c e s

def c l u s t e r C e n t r e ( c l u s t e r ed , t a r g e t ) :
x pos = 0
y pos = 0
count = 0
for x in range ( s i z eTrack [ 0 ] ) :

for y in range ( s i z eTrack [ 1 ] ) :
i f c l u s t e r e d [ x , y ] == t a r g e t :

x pos += x
y pos += y
count += 1

cent r e = [ ( s i z e D i s p l a y [ 0 ] * x pos )/ ( s i z eTrack [ 0 ] * count ) ,
( s i z e D i s p l a y [ 1 ] * y pos )/ ( s i z eTrack [ 1 ] * count ) ]

return cent r e

# i n i t i a l i z e the camera and grab a r e f e r e n c e to the raw camera capture
camera = PiCamera ( )
camera . r e s o l u t i o n = ( s i z e D i s p l a y [ 1 ] , s i z e D i s p l a y [ 0 ] )
camera . f ramerate = 20
camera . h f l i p = True
captureDisp lay = PiRGBArray( camera , s i z e =( s i z e D i s p l a y [ 1 ] ,

s i z e D i s p l a y [ 0 ] ) )
captureTrack = PiYUVArray( camera , s i z e =( s i zeTrack [ 1 ] , s i z eTrack [ 0 ] ) )

# a l l o w the camera to warmup
time . s l e e p ( 0 . 1 )

# capture frames from the camera
for frame in camera . capture cont inuous ( captureDisplay , format=”bgr” ,

u s e v i d e o p o r t=True ,
r e s i z e =(640 , 368 ) ,
s p l i t t e r p o r t =1):

i f startTime>time . time ()=5:
c en t r e = [ s i z e D i s p l a y [ 0 ] / 2 , s i z e D i s p l a y [ 1 ] / 2 ]

else :
i f acqComplete == False :

c l u s t e r s = randomClusters ( )
camera . capture ( captureTrack , format=”yuv” ,

u s e v i d e o p o r t=True , r e s i z e =(160 , 96) ,
s p l i t t e r p o r t =2)

t = time . time ( )
c l u s t e r s , groupedImage , eDis t
= c l u s t e r (np . array ( captureTrack . array ) ,

c l u s t e r s , groupedImage , eDis t )

i f acqComplete == False :
t a r g e t C l u s t e r = groupedImage [ s i z eTrack [ 0 ] / 2 ,

s i z eTrack [ 1 ] / 2 ]
acqComplete = True

else :
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cent r e = c l u s t e r C e n t r e ( groupedImage , t a r g e t C l u s t e r )
print ( time . time ()= t )

# Disp lay image
image = se tCros sHa i r s (np . array ( captureDisp lay . array ) , c en t r e )
cv2 . imshow ( ”Frame” , image )
# Clear b e f o r e next frame
captureDisp lay . t runcate (0 )
captureTrack . t runcate (0 )
key = cv2 . waitKey (1 ) & 0 x f f
i f key == ord ( ”q” ) :

break



Appendix D

Cross-correlation Tracking

Algorithm



D.1 Python Code for Cross-correlation with Integral Image 65

The code included below was produced to perform cross-correlation using the integral

image technique in Python.

D.1 Python Code for Cross-correlation with Integral Image

Listing D.1: A basic Windows program.

# import the necessary packages
from picamera . array import PiRGBArray
from picamera . array import PiYUVArray
from picamera import PiCamera
import time
import cv2
import numpy as np
import math
import random
import thread ing

# s i z e o f image arrays
s i zeTrack = np . array ( [ 9 4 , 160 , 3 ] )
s i z e D i s p l a y = np . array ( [ 3 6 8 , 640 , 3 ] )
acqComplete = False
f i r s tRun = True
trackCentre = [ s i zeTrack [ 0 ] / 2 , s i z eTrack [ 1 ] / 2 ]

#t1 = t h r e a d i n g . Thread (

#s e t temp la te s i z e h a l f s i z e used
t S i z e = int ( s i z eTrack [ 0 ] / 2 0 ) * 2
d i sp layCentre = [ s i z e D i s p l a y [ 0 ] / 2 , s i z e D i s p l a y [ 1 ] / 2 ]

#Create i n i t i a l t epmla te o u t l i n e
def s e tCros sHa i r s ( image , c en t r e ) :

c en t r e [ 0 ] = cent r e [ 0 ] * s i z e D i s p l a y [ 0 ] / s i zeTrack [ 0 ]
c en t r e [ 1 ] = cent r e [ 1 ] * s i z e D i s p l a y [ 1 ] / s i zeTrack [ 1 ]
x p o s i t i o n = [ int ( c en t r e [0]= s i z e D i s p l a y [ 0 ] / 2 0 ) ,

int ( c en t r e [0 ]+ s i z e D i s p l a y [ 0 ] / 2 0 ) ]
y p o s i t i o n = [ int ( c en t r e [1]= s i z e D i s p l a y [ 0 ] / 2 0 ) ,

int ( c en t r e [1 ]+ s i z e D i s p l a y [ 0 ] / 2 0 ) ]
#top l i n e
image [ x p o s i t i o n [ 0 ] : x p o s i t i o n [ 1 ] , y p o s i t i o n [1 ] =2 : y p o s i t i o n [ 1 ] , : ]
= [ 0 , 255 , 0 ]
#bottom down
image [ x p o s i t i o n [ 0 ] : x p o s i t i o n [ 1 ] , y p o s i t i o n [ 0 ] : y p o s i t i o n [0 ]+2 , : ]
= [ 0 , 255 , 0 ]
#l h s l i n e
image [ x p o s i t i o n [ 0 ] : x p o s i t i o n [0 ]+2 , y p o s i t i o n [ 0 ] : y p o s i t i o n [ 1 ] , : ]
= [ 0 , 255 , 0 ]
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#rhs l i n e
image [ x p o s i t i o n [1 ] =2 : x p o s i t i o n [ 1 ] , y p o s i t i o n [ 0 ] : y p o s i t i o n [ 1 ] , : ]
= [ 0 , 255 , 0 ]
return image

def setTemplate ( template ) :
s = template . shape
t = time . time ( )
templateSum = np . z e ro s ( [ 3 ] )
templateSum [ 0 ] = np .sum( template [ : , : , 0 ] )
templateSum [ 1 ] = np .sum( template [ : , : , 1 ] )
templateSum [ 2 ] = np .sum( template [ : , : , 2 ] )
for z in range ( s [ 2 ] ) :

temp = 0
for x in range ( s [ 0 ] ) :

for y in range ( s [ 1 ] ) :
temp += template [ x , y , z ]

templateSum [ z ] = temp
print ( templateSum , time . time ()= t )
return templateSum

def runCC( image , center , template ) :
#c r e a t e I I
I I = np . z e r o s ( image . shape )
I I . astype ( int )
I I [ 0 , 0 , : ] = image [ 0 , 0 , : ]

#t = time . time ()
for x in range (1 , s i z eTrack [ 0 ] ) :

I I [ x , 0 , : ] = I I [ x=1, 0 , : ] + image [ x , 0 , : ]
for y in range (1 , s i z eTrack [ 1 ] ) :

I I [ 0 , y , : ] = I I [ 0 , y=1, : ] + image [ 0 , y , : ]
for x in range (1 , s i z eTrack [ 0 ] ) :

for y in range (1 , s i z eTrack [ 1 ] ) :
I I [ x , y , : ]= I I [ x , y=1, : ] + I I [ x=1, y , : ] = I I [ x=1, y=1, : ]
+ image [ x , y , : ]

min dis = f loat ( ’ i n f ’ )
#CC[ 0 , 0 , : ] = I I [ t S i z e , t S i z e ] = t emp la te
for x in range ( s i z eTrack [ 0 ] = t S i z e ) :

for y in range ( s i z eTrack [ 1 ] = t S i z e ) :
CC = I I [ x , y , : ] + I I [ x+tS i ze , y+tS ize , : ] = I I [ x+tS i ze , y , : ]
= I I [ x , y+tS ize , : ] = template
CC dis = np . l i n a l g . norm(CC)
i f CC dis < min dis :

min dis = CC dis
templateCentre = [ x , y ]

templateCentre [ 0 ] += t S i z e /2
templateCentre [ 1 ] += t S i z e /2
return templateCentre

# i n i t i a l i z e the camera and grab a r e f e r e n c e to the raw camera capture
camera = PiCamera ( )
camera . r e s o l u t i o n = ( s i z e D i s p l a y [ 1 ] , s i z e D i s p l a y [ 0 ] )
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camera . f ramerate = 20
camera . h f l i p = True
captureDisp lay = PiRGBArray( camera , s i z e =( s i z e D i s p l a y [ 1 ] , s i z e D i s p l a y [ 0 ] ) )
captureTrack = PiRGBArray( camera , s i z e =( s i zeTrack [ 1 ] , s i z eTrack [ 0 ] ) )

# a l l o w the camera to warmup
time . s l e e p ( 0 . 1 )
startTime = time . time ( )

# capture frames from the camera
for frame in camera . capture cont inuous ( captureDisplay , format=”bgr” ,

u s e v i d e o p o r t=True ,
r e s i z e =(640 , 368 ) ,
s p l i t t e r p o r t =1):

i f startTime>time . time ()=5:
trackCentre = [ s i zeTrack [ 0 ] / 2 , s i z eTrack [ 1 ] / 2 ]

else :
camera . capture ( captureTrack , format=”bgr” , u s e v i d e o p o r t=True ,

r e s i z e =(160 , 96) , s p l i t t e r p o r t =2)
trackImage = np . array ( captureTrack . array )
#a q u i r e temp la te
t = time . time ( )
i f acqComplete == False :

t rackCentre = [ s i zeTrack [ 0 ] / 2 , s i z eTrack [ 1 ] / 2 ]
template = trackImage [ int ( trackCentre [0]= t S i z e / 2 ) :

int ( trackCentre [0 ]+ t S i z e /2) ,
int ( trackCentre [1]= t S i z e / 2 ) :
int ( trackCentre [1 ]+ t S i z e /2) , : ]

templateVal = setTemplate ( template )
acqComplete = True

else :
t rackCentre = runCC( trackImage , trackCentre , templateVal )

print ( time . time ()= t )
# Disp lay image
image = se tCros sHa i r s (np . array ( captureDisp lay . array ) , t rackCentre )
cv2 . imshow ( ”Frame” , image )
# Clear b e f o r e next frame
captureDisp lay . t runcate (0 )
captureTrack . t runcate (0 )
key = cv2 . waitKey (1 ) & 0 x f f
i f key == ord ( ”q” ) :

break




