

University of Southern Queensland

Faculty of Health, Engineering and Sciences

Low-cost compact Modbus TCP based device

configuration/interrogation tool

A dissertation submitted by

Ethan Picking

in fulfilment of the requirements of

ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic)

Submitted October, 2020

i

Abstract

Modbus TCP is a common communications protocol used by many industrial devices and control

systems. Many modern devices that include Modbus TCP capability contain a significant number of

configuration parameters and feedback data points that may be accessed using this capability. Often

these devices are installed as replacements for much simpler redundant equipment, in locations that

lack the control systems or network infrastructure to utilise the Modbus TCP capability. Additionally,

the large number of configuration parameters used by these newer devices makes them much more

difficult and time consuming to configure/commission than the simpler devices they replace.

This dissertation documents the development and design of a Configuration and Interrogation tool

that operates over the Modbus TCP protocol. The final hardware design of this tool is based upon the

Raspberry PI Model 3B+ platform, and utilises software modules developed in the Python 3

programming language. The final outcome of this project is an operational prototype that has been

tested against a selected Modbus TCP device and meets the following primary objectives. This final

prototype meets the primary objectives of this project in its ability to perform the required

configuration and interrogation functions, while remaining portable and low-cost.

ii

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences,

and the staff of the University of Southern Queensland, do not accept any responsibility for the truth,

accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council

of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or the staff of

the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise.

The sole purpose of the course pair entitled “Research Project” is to contribute to the overall

education within the student’s chosen degree program. This document, the associated hardware,

software, drawings, and other material set out in the associated appendices should not be used for

any other purpose: if they are so used, it is entirely at the risk of the user.

iii

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in

this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any

other course or institution, except where specifically stated.

E. Picking

iv

Acknowledgements

I would like to thank all the USQ staff that have given freely of their knowledge and assistance over

the course of my studies.

Specifically, thanks to my supervisor for this project, Mr Mark Phythian, for his guidance and other

assistance throughout its execution.

Lastly, thanks to Ron and Julie, for supporting me along this path.

v

Contents
Abstract ... i

Acknowledgements .. iv

List of figures ...ix

List of tables ..xi

Nomenclature .. xii

1 Introduction .. 1

1.1 Project Objectives .. 2

1.2 Project Structure .. 3

2 Literature Review .. 4

2.1 Modbus Background .. 4

2.2 Modbus Application Protocol Overview ... 6

2.3 Modbus TCP/IP Ethernet Specifics .. 9

2.4 Modbus Error Handling .. 11

2.5 Existing Modbus Communications Options ... 12

2.6 SEL-710 Motor Protection Relay ... 13

3 Analysis of Hardware and Software Requirements ... 15

3.1 Consideration of Consequential Effects .. 15

3.2 SEL-710 Hardware Considerations .. 16

3.3 Hardware Requirements .. 17

3.4 Available Hardware .. 18

3.4.1 Arduino Uno ... 19

3.4.2 Raspberry Pi 3B+ .. 20

3.4.3 BeagleBone Black ... 21

3.5 Hardware Platform Selection ... 22

3.6 SEL-710 Software Considerations ... 23

3.7 Required Modbus Function Codes .. 23

3.8 Software Requirements .. 24

4 Hardware Design ... 27

4.1 SEL-710 Test Unit Design .. 27

4.2 Configuration Tool Functional Design ... 28

4.3 Raspberry Pi 3B+ .. 29

4.4 HDMI Touch Display ... 30

4.5 Battery Power Supply ... 31

4.6 Enclosure ... 32

vi

4.7 Bill of Materials .. 32

5 Software Design ... 34

5.1 Overall Structure .. 34

5.2 Device Configuration File Format ... 38

5.3 Parameter Settings File Format .. 39

5.4 Interrogation Log File Format ... 40

5.5 File Input/Output ... 40

5.5.1 Import Device Configuration (Read_Config) .. 40

5.5.2 Import Parameter Settings (Read_Settings) .. 41

5.5.3 Export Log File (Write_Log) ... 41

5.6 Modbus Address Encoding/Decoding ... 41

5.6.1 Addr_Settings ... 41

5.6.2 Addr_Lookup .. 42

5.7 Modbus Format ... 42

5.7.1 __init__ .. 43

5.7.2 __repr__ .. 43

5.7.3 __bytes__ ... 43

5.7.4 set_PKT .. 43

5.7.5 set_TX_ID ... 43

5.7.6 set_PRTCL... 44

5.7.7 set_UN_ID .. 44

5.7.8 set_FN_CD.. 44

5.7.9 set_DATA ... 44

5.8 TCP Communications ... 45

5.8.1 Comm .. 45

5.8.2 Gen_Requests .. 45

5.9 Modbus Error Handling .. 46

5.9.1 Modbus_Error .. 46

5.10 Modbus Read request/response handling .. 48

5.10.1 Gen_Read_Discrete_Output_Coil_PDUS (Function Code 0h01)................................. 48

5.10.2 Gen_Read_Discrete_Output_Coil_Reply (Function Code 0h01)................................. 49

5.10.3 Gen_Read_Discrete_Input_Status_PDUS (Function Code 0h02)................................ 50

5.10.4 Gen_Read_Discrete_Input_Status_Reply (Function Code 0h02)................................ 50

5.10.5 Gen_Read_Holding_Registers_PDUS (Function Code 0h03) 50

5.10.6 Gen_Read_Holding_Registers_Reply (Function Code 0h03) 51

5.10.7 Gen_Read_Input_Registers_PDUS (Function Code 0h04) .. 52

vii

5.10.8 Gen_Read_Input_Registers_Reply (Function Code 0h04) .. 52

5.11 Modbus Write request/response handling ... 53

5.11.1 Gen_Single_Coil_Force_PDU (Function Code 0h05) .. 53

5.11.2 Gen_Single_Coil_Force_Reply (Function Code 0h05) .. 54

5.11.3 Gen_Preset_Single_Register_PDU (Function Code 0h06) .. 54

5.11.4 Gen_Preset_Single_Register_Reply (Function Code 0h06) .. 55

5.11.5 Gen_Preset_Multiple_Registers_PDUS (Function Code 0h10) 55

5.11.6 Gen_Preset_Multiple_Registers_Reply (Function Code 0h10) 56

5.12 Device configuration .. 57

5.12.1 Modbus_Configure ... 57

5.12.2 User_Config_Input ... 58

5.13 Device Interrogation .. 58

5.13.1 Modbus_Interrogate .. 59

5.13.2 User_Interrogate_Input .. 59

5.14 Raspberry Pi Initial Network Configuration ... 60

6 Testing ... 61

6.1 Configuration Tests .. 62

6.1.1 Phase One .. 62

6.1.2 Phase Two .. 63

6.2 Interrogation Tests ... 64

6.3 Battery Tests .. 66

7 Conclusions and Further Work ... 68

7.1 Further Work ... 69

8 References ... 70

Appendix A, Project Specification .. 72

Appendix B, Device Code ... 73

B.1 File Input/Output Module Code ... 73

B.2 Modbus Address Encoding/Decoding Module Code ... 75

B.3 Modbus Format Module Code ... 78

B.4 TCP Communications Module Code ... 83

B.5 Modbus Error Handling .. 86

B.6 Modbus Read request/response handling Module Code .. 87

B.7 Modbus Write request/response handling ... 100

B.8 Device configuration .. 109

B.9 Device Interrogation .. 112

Appendix C, Risk Assessment ... 119

viii

Appendix D, Example Typical Use Parameter Set ... 120

Appendix E, Example Log File Excerpt .. 121

Appendix F, User Instructions .. 122

ix

List of figures

Figure 2.1 Modbus communication stack (Modbus Organisation 2012) ... 4

Figure 2.2 Example of MODBUS Network Architecture (Modbus Organisation 2012) 5

Figure 2.3 Standard Successful Modbus Transaction (Modbus Organisation 2012)............................. 6

Figure 2.4 Standard Unsuccessful Modbus Transaction (Modbus Organisation 2012) 7

Figure 2.5 General Modbus Frame (Modbus Organisation 2012) ... 7

Figure 2.6 Standard Modbus Function Codes (Modbus Organisation 2012).. 8

Figure 2.7 Example Modbus TCP/IP Network Layout (Modbus Organisation 2006) 9

Figure 2.8 Modbus TCP/IP request/response format (Modbus Organisation 2006) 10

Figure 2.9 Standard Modbus transaction (Modbus Organisation 2012) .. 11

Figure 2.10 The SEL-710 Motor Protection Relay (Schweitzer Engineering Laboratories 2015) 13

Figure 3.1 SEL-710 ELV Model power supply requirements (Schweitzer Engineering Laboratories 2015)

.. 16

Figure 3.2 SEL-710 Terminal arrangement and assignment (Schweitzer Engineering Laboratories 2015)

.. 17

Figure 3.3 Arduino Uno (Arduino AG 2020) .. 19

Figure 3.4 Raspberry Pi 3B+ (Raspberry Pi Foundation 2020) ... 20

Figure 3.5 BeagleBone Black (BeagleBoard.org Foundation 2019) .. 21

Figure 3.6 SEL-710 Accepted Modbus Function Codes (Schweitzer Engineering Laboratories 2015) . 23

Figure 3.7 Modbus Client Activity Diagram (Modbus Organisation 2006) ... 25

Figure 4.1 SEL-710 Test unit schematic .. 27

Figure 4.2 Modbus Configuration Device Schematic .. 28

Figure 4.3 Assembled Prototype Hardware .. 29

Figure 4.4 Raspberry Pi Model 3B .. 29

Figure 4.5 Waveshare 5-Inch Touchscreen Display ... 30

Figure 4.6 Battery Power Supply Module ... 31

Figure 4.7 Takachi MXA Series Enclosure (Takachi Electronics Enclosure Co. Ltd. 2020) 32

Figure 5.1 Configuration Function Flowchart ... 36

Figure 5.2 Interrogation Function Flowchart .. 37

Figure 5.3 Standard Configuration File Entry .. 38

Figure 5.4 Bit Descriptor Configuration File Entry... 39

Figure 5.5 Settings File Entries ... 39

Figure 5.6 Log File Entries .. 40

Figure 5.7 Modbus Function Code 0h01 Request Format (Modbus Organisation 2012) 49

x

Figure 5.8 Modbus Function Code 0h01 Response Format (Modbus Organisation 2012) 49

Figure 5.9 Modbus Error Response Format (Modbus Organisation 2012) ... 49

Figure 5.10 Modbus Function Code 0h02 Request Format (Modbus Organisation 2012) 50

Figure 5.11 Modbus Function Code 0h02 Response Format (Modbus Organisation 2012) 50

Figure 5.12 Modbus Function Code 0h03 Request Format (Modbus Organisation 2012) 51

Figure 5.13 Modbus Function Code 0h03 Response Format (Modbus Organisation 2012) 52

Figure 5.14 Modbus Function Code 0h04 Request Format (Modbus Organisation 2012) 52

Figure 5.15 Modbus Function Code 0h04 Response Format (Modbus Organisation 2012) 53

Figure 5.16 Modbus Function Code 0h05 Request Format (Modbus Organisation 2012) 54

Figure 5.17 Modbus Function Code 0h05 Response Format (Modbus Organisation 2012) 54

Figure 5.18 Modbus Function Code 0h06 Request Format (Modbus Organisation 2012) 55

Figure 5.19 Modbus Function Code 0h06 Response Format (Modbus Organisation 2012) 55

Figure 5.20 Modbus Function Code 0h10 Request Format (Modbus Organisation 2012) 56

Figure 5.21 Modbus Function Code 0h10 Response Format (Modbus Organisation 2012) 57

Figure 5.22 Raspberry Pi Network Configuration.. 60

Figure 6.1 Testing Hardware Connections .. 61

Figure 6.2 Prototype tool under test .. 62

Figure 6.3 Prototype tool during Interrogation testing ... 66

xi

List of tables

Table 3.1 Requirement Priorities ... 18

Table 3.2 Comparison of Hardware Platforms .. 22

Table 5.1 Configuration File Entry Fields .. 38

Table 5.2 Modbus Exception Codes (Modbus Organisation 2012) .. 47

Table 6.1 Configuration Routine Phase One Testing Results ... 63

Table 6.2 Manual Configuration vs Tool Configuration Routine Phase Two Testing Results 64

Table 6.3 Interrogation Routine Test Results ... 65

Table 6.4 Battery Life Test Results ... 67

 Table C.1 Consequence vs. Likelihood Risk Matrix………………………………………………………………………….119

Table C.2 Project Risk Assessment………………………………………………………………………………………………….119

Table D.1 Typical Use Parameter Set………………………………………………………………………………………………120

Table E.1 Interrogation Routine Log File Excerpt…………………………………………………………………………….121

xii

Nomenclature

ADU Application Data Unit

CSV Comma Separated-Values File Format

IP Internet Protocol

MBAP Modbus Application Protocol

MPR Motor Protection Relay

PDU Protocol Data Unit

SEL Schweitzer Engineering Laboratories

TCP Transmission Control Protocol

YAML YAML Ain’t Markup Language File Format

1

1 Introduction

The purpose of this project is to develop and document a low-cost Modbus TCP device configuration

and interrogation tool. It is intended that this device will be compact, and constructed from a readily

available hardware platform such as a Raspberry Pi, or Arduino, and operate as a self-contained

portable unit with integral power supply and user interface. The purpose of this device will be to

interface with Modbus TCP capable equipment that is installed in locations where a Modbus control

network is not present. This in turn will enable the inbuilt Modbus TCP functionality to be leveraged

for ease of configuration, commissioning, parameter verification, and fault diagnosis. By enabling use

of these functions via a simplified user interface, preferably graphical in nature, that provides

sufficient guidance to allow use by an individual that is not familiar with the specifics, operation, or

technical detail of the Modbus protocol. Specifically, this device will be targeted for use with

protection relays, but allowance will be made to allow its configuration for use with other Modbus

TCP equipment, using standard Modbus functions.

The origin of this project is sourced in the author’s previous experience installing, commissioning, and

diagnosing modern motor protection relays used as replacements for older electro-mechanical or

early model electronic relays. In these situations, the modern relays almost universally support

Modbus TCP, but due to the lack of control infrastructure capable of utilising this capability it often

goes underutilised. Thus, for the purposes of this project a Modbus TCP capable motor protection

relay will be used as the test case, specifically a Schweitzer Engineering Laboratories Model SEL-710.

The wider range of protection features in modern protection relays has resulted in large configuration

parameter sets with hundreds of elements (Schweitzer Engineering Laboratories 2015). The most

efficient method available to set these parameters is often via a laptop computer and vendor specific

software. This provides the required functions, but the software is generally targeted at engineering

level personnel, and does not provide a simple interface option that would be accessible to personnel

without more advanced training or experience. This necessitates that these tasks be performed

generally by technical engineering personnel, who may not be readily available, for example in the

instance of a fault occurring outside of regular working hours. The use of a laptop computer to

perform this function can also prove sub optimal, by virtue of their weight and size, as well as their

cost and sensitivity to physical shock and damage in an industrial setting.

2

Relays may also offer a manual user interface option to configure parameters without use of external

equipment, which is performed via a local display and selection of push buttons, thought this method

may not allow access to the full parameter set. This method is often more accessible to maintenance

personnel but due to the limitations of the interface, which may only consist of basic scrolling

character display, and directional arrow/enter keys. As a result, this method can become extremely

time consuming and error prone due to inadvertent key strokes, which in turn necessitates further

time be spent to confirm the correct settings have been entered. This method also provides minimal

to no assistance with fault diagnosis, consisting perhaps of only a list of recent trip causes and perhaps

some accompanying snapshot data of key measurements.

It follows that a compact low-cost device capable of performing configuration and diagnostic

functions, whilst remaining accessible to electrical maintenance personnel without higher engineering

training, would be of significant advantage in a wide range of situations.

1.1 Project Objectives

Specifically, the developed tool must satisfy the following objectives in order to be considered

successful:

• Compact and portable in nature

• Capable of direct hardware connection to a Modbus TCP device, necessitating an RJ-45 port

be included

• Hardware to be low cost

• Hardware to be readily available

• Have the capability to configure a Modbus TCP device, given a user supplied

settings/parameter file

• Have the capability to interrogate/monitor specific Modbus TCP device data, given a user

supplied query

• Capable of being configured for use with a wide range of Modbus TCP devices

3

1.2 Project Structure

In order to achieve these objectives, the project has been ordered into the following three phases:

Phase 1. Research and Review

• Review available literature Modbus TCP specifications, principle of operation, and standard

methods of implementation.

• Obtain and review relevant documentation specific to the chosen Modbus TCP capable

device; a Schweitzer Engineering Laboratories model SEL-710 motor protection relay.

Phase 2. Conceptual Design and Hardware Selection

• Determine standard functions that would be required to be implemented over Modbus TCP

for the purpose of programming, commissioning, and fault diagnosis.

• Obtain the selected SEL-710 MPR test unit and assemble with a suitable enclosure and

power supply into a suitable test platform.

• Determine the hardware and software requirements of a device to interface with the

selected Modbus TCP device.

• Select, obtain, and assemble suitable hardware that meets the determined hardware

requirements, is resilient to physical damage, and integrates a portable power supply with

provision for a simple method of recharge.

Phase 3 Software Development and Testing

• Develop an effective software platform capable of performing the required Modbus TCP

functionality to suit the assembled hardware platform for the performance of programming,

commissioning, and interrogation operations.

• Perform functional testing of the developed device utilising the test device assembly.

4

2 Literature Review

This chapter provides a review of the relevant available literature for the following concepts:

1. Modbus Background

2. Modbus Application Protocol Overview

3. Modbus TCP/IP Ethernet Specifics

4. Modbus Error Handling

5. Existing Modbus Communication Options

6. SEL-710 Motor Protection Relay

2.1 Modbus Background

Modbus was originally developed by Gould Modicon as a transmission protocol for process control

systems (Park et al. 2004). Reynders et al. (2004) describes Modbus as ‘an application layer (OSI layer

7) messaging protocol that provides client/server communication between devices’. Despite being

released in 1979 the protocol has remained popular across multiple device types and vendors, due in

large part to the fact that it is publicly published, providing a protocol that vendors can easily

standardise too. As the protocol is not restricted to a specific physical interface it has been adapted

to several, providing great flexibility, ranging from EIA-232 Serial to TCP (Transmission Control

Protocol) over Ethernet (Reynders et al. 2004).

Figure 2.1 Modbus communication stack (Modbus Organisation 2012)

5

This flexibility, as well as the simplicity of maintaining the same protocol across a range of physical

interfaces, has ensured the ongoing success of the Modbus protocol. Essentially customers seek

Modbus capable devices to ensure compatibility of devices from different vendors across the same

control system. This is coupled with vendors seeking to provide Modbus capability in their products

to meet the demands of their customers, which in turn also leads to strong market competition and

the associated cost benefits for customers. These two factors reinforce each other and have led to

Modbus being considered the ‘de facto standard in multi-vendor integration’ (Park et al. 2004).

Due to its nature as a transmission protocol only, Modbus can additionally be converted across

multiple physical network types, architectures, and media.

Figure 2.2 Example of MODBUS Network Architecture (Modbus Organisation 2012)

As demonstrated in Figure 2.2 Modbus transmissions over TCP/IP may not only provide direct

communication between a client and server, but rather be converted via appropriate equipment to

other physical methods such as serial communications, as part of the same greater network. Inbuilt

6

addressing included in each Modbus transmission designates the destination device. Whilst this

functionality will not be directly required for the implementation of this project, the provisions made

for it in the Modbus protocol must still be understood and considered. Correct handling of this

inbuilt functionality will still be necessary to correctly generate properly formatted Modbus

requests, as outlined in Section 2.3 of this chapter.

2.2 Modbus Application Protocol Overview

The Modbus Application Protocol is freely available, and its specification is maintained by the Modbus

Organisation. This is fortunate as it allows the operation and requirements of this protocol to be easily

assessed and implemented. The primary specifying document in this regard is the Modbus Application

Protocol Specification V1.1b3 (2012).

All Modbus transactions consist of a Client device issuing a request to a Server device. The server

evaluates the request made and, assuming the request is valid, performs the desired action and sends

the required response to the client, as depicted in Figure 2.3 below.

Figure 2.3 Standard Successful Modbus Transaction (Modbus Organisation 2012)

Should the client request prove invalid the server will perform no action and respond to the server

with a relevant exception code as shown in Figure 2.4, which allows the client to take further action

as required or submit further requests. This process and its specifics are covered further in Section

2.4 of this chapter.

7

Figure 2.4 Standard Unsuccessful Modbus Transaction (Modbus Organisation 2012)

At its core a Modbus Application Protocol request or response consists of a simple Protocol Data Unit,

or PDU, that is independent of whatever the underlying communication layer may be (Modbus

Organisation 2015).

Figure 2.5 General Modbus Frame (Modbus Organisation 2012)

The use of the Modbus protocol on various networks or communication buses may necessitate the

addition of additional data preceding or following the Protocol Data Unit in a single transmission. For

example, the use of the Modbus application protocol over a serial bus with multiple attached devices

would require the addition of a preceding device address, in addition to a following error check value.

These additional data fields, in addition to the Protocol Data Unit itself, make up a Modbus Application

Data Unit, or ADU, as shown in Figure 2.5 General Modbus Frame (Modbus Organisation 2012).

The format of the Application Data Unit is specific to the particular communication method used, and

is specified by relevant secondary documents maintained by the Modbus Organisation. For the

purpose of this project only the Modbus TCP/IP format is of relevance, and will be covered in

additional detail in Section 2.3 of this chapter.

8

The Protocol Data Unit consists of Function Code, which specifies the action required, as well as

additional data as required by the specified function. The Modbus documentation specifies a set of

standard function codes, as shown in Figure 2.6 below, and also makes allowance for the development

of user, or vendor, defined function codes. For the purposes of this project, specifically that the

constructed interface device be capable of configuration for use with a broad range of devices, the

focus will be placed on the use of standard function codes to ensure cross compatibility.

Figure 2.6 Standard Modbus Function Codes (Modbus Organisation 2012)

Individual function codes required to be implemented for this project, and their specific data formats,

will be covered in additional detail in Section 3.7 in Chapter 3.

9

2.3 Modbus TCP/IP Ethernet Specifics

Implementing Modbus over TCP/IP introduces several additional elements to the standard Modbus

serial implementation, including the possibility of the TCP/IP transmissions being converted onto serial

communication buses with multiple attached devices. The nature of TCP/IP communications required

that additional care is taken to ensure the correct pairing of requests and their respective responses,

as well as ensuring the entire message has been received where it may have been sent is separate

packets.

Figure 2.7 Example Modbus TCP/IP Network Layout (Modbus Organisation 2006)

Figure 2.7 illustrates an example of a possible Modbus TCP/IP network. Note that this includes

gateway devices intended to convert Modbus requests and responses from TCP/IP to Serial buses and

vice versa. For this project the device will be intended to operate solely as a client device

communicating with a single server device via direct connection with no additional message routing

required.

It should be noted that Modbus TCP connections are directed at TCP Port 502 by default (Modbus

Organisation 2006). However other Ports may be used, with more advanced devices often featuring

this as a configurable setting. Thus, consideration should be given in the final device code to allow

user modification of the Port number to be used, in the event that this is required.

10

Figure 2.8 Modbus TCP/IP request/response format (Modbus Organisation 2006)

As can be seen in Figure 2.8 a Modbus request or response sent over TCP/IP consists of the Protocol

Data Unit, preceded by a Modbus Application Protocol header, or MBAP. Whilst the Protocol Data

Unit follows the same format as laid out in the Modbus Application Protocol Specification, the MBAP

header is specific to Modbus implemented over TCP/IP and is stated by the Modbus Organisation

(2006) to contain the following information:

• Transaction Identifier (2 bytes); A value set by the client when sending the request that is

copied directly into the response by the server, to allow positive matching of received

responses with their respective requests

• Protocol Identifier (2 bytes); Used for multi-protocol systems, a default value of 0 is used to

denote the use of standard Modbus Protocol

• Length (2 bytes); Denotes the total byte count of the request/response following the final

byte of the Length value itself, including the Unit Identifier and the entire PDU. Used to

ensure the entire request/response has been received in instances where the Application

Data Unit may have been separated into separate packets for transmission over TCP/IP

• Unit Identifier (1 byte); Used to specify the sub address of the intended device in the event

the request is intended to be converted to a serial bus with multiple attached devices

As the device to be constructed intends to operate solely on a single client, single server basis, with

no conversion to or from serial line communications, the unit identifier can be effectively set to a zero

value and removed from consideration. Similarly, as no cross-protocol operation is required, the

Protocol Identifier can also be fixed at a zero value. Transaction Identifier values should be

automatically managed by the final device software and require no direct user input or consideration.

Likewise, generation of the length field should be processed automatically, and response length fields

used to automatically manage the segregation of individual responses received.

11

2.4 Modbus Error Handling

A standard Modbus request is processed by the receiving server as laid out in Figure 2.9.

Figure 2.9 Standard Modbus transaction (Modbus Organisation 2012)

As can be seen the server will evaluate the Function Code, Data Address, and Data value in turn and

raise an exception code of 1, 2, or 3 respectively if any are found to be invalid values. Assuming all

three segments are valid the server will proceed to execute the requested function or may return an

exception code 4 to indicate that the server device has failed. In the event that the server anticipates

the request will take a long time to process it may return exception code 5, to acknowledge that the

server is processing the request but anticipates a delay before returning a response. This allows the

client to refrain from considering the request timed out, and await the eventual response. Should a

server receive a request whilst already process a long duration request it will issue an exception code

6 to indicate that it is presently busy and unable to process further requests.

12

In the event that any exception code is raised, a response is sent to the client with the Function Code

set to the sum of the initial request function code and 0h80, and the data segment set to the exception

code raised. The configuration device to be constructed will be required to accept these exception

responses and interpret them to determine the correct action to be taken.

2.5 Existing Modbus Communications Options

As part of this project a review was performed of presently available hardware or software aimed at

performing similar functions. Several software packages were identified that provide functionality to

manually issue Modbus requests and interpret responses from a standard laptop or other computer.

However, these software packages provided only individual request/response functionality, with no

mechanism for the automatic generation and execution of multiple requests/responses to perform a

desired task, such as full configuration of a Modbus device. Additionally, the requirement of standard

laptop or computer hardware is incompatible with one of the primary intentions of this project,

namely to be a low cost and highly portable unit. For these reasons it has been concluded that the

intended purpose of this project is sufficiently novel that no significant commercial effort has been

expended towards the production of a tool to fulfil it. This necessitates that this project proceeds

based upon the base Modbus TCP specification and guiding documentation in order to fulfil its stated

goals.

13

2.6 SEL-710 Motor Protection Relay

Figure 2.10 The SEL-710 Motor Protection Relay (Schweitzer Engineering Laboratories 2015)

The SEL-710 is a Motor Protection Relay, or MPR, designed and marketed by Schweitzer Engineering

Laboratories. Many different configurations of the relay are available, allowing the customer to pick

specific additional functions for particular installations. However, the base model still consists of a full

range of features, including Overload, Locked Rotor, Phase current imbalance, Short Circuit, and other

protection functions as well as motor monitoring functions (Schweitzer Engineering Laboratories

2015).

Due to the high number of configuration options and protective functions relays such as the SEL-710

are often selected for use with large high cost motors or for critical systems which warrant the added

expense. In these instances, downtime due to initial commissioning delays at install or during fault

diagnosis situations, can incur significant financial penalties. Additionally, these processes often

require personnel with significant experience to complete quickly and with minimal disruption.

This particular model of relay provides the option of configuration via either manufacturer specific

proprietary software or manually using the basic user interface. The manual user interface consists

of a 2 by 16-character display, enter, escape, and basic directional keys. This significantly restricts the

14

speed at which parameters can be configured, especially in the case of numerical values where each

digit must be incrementally selected and entered. The possibility of a setting being entered

incorrectly, and the potentially high consequences of such an error, necessitates manual checking of

each entered value for positive confirmation, further increasing the task duration.

The relay includes basic fault diagnosis functions, including recording of recent trip causes with a

limited snapshot of data for each function. However more advanced logging functions are not

available via the user interface for more advanced diagnosis of intermittent faults, and no capability

exist for logging of specific values over a short to medium duration, or at any significant frequency.

Individual configurable relay parameters, as well as read only status values are mapped to

predetermined Modbus addresses. This necessitates that the configuration tool software must

possess the ability to correctly cross reference given parameter names to their relevant Modbus

addresses.

15

3 Analysis of Hardware and Software Requirements

3.1 Consideration of Consequential Effects

The most significant potential consequential effects of this Modbus TCP configuration tool would be

the potential to expose unqualified individuals to live Low voltage electrical circuits. Whilst the test

unit is an extra low voltage powered relay, there is the potential that this device could be used in

situations where Low Voltage supplies are present on the Modbus device to be interfaced with. In

this instance the work should only be performed by suitably qualified individuals who are aware of

the potential hazards and how to remove or mitigate them before interacting with the device. This is

beyond the ability of the configuration tool to control; however, it is pertinent that a suitable warning

be included in the user instruction or program prompts, and perhaps the device casing itself. This

warning should state that the configuration device should only be used by suitably qualified personnel,

and the dangers of exposure to live Low Voltage circuits should always be considered when working

on electrical equipment of any sort.

A secondary potential consequence is that a failure of the device to correctly configure a Modbus

device could cause incorrect operation of said equipment. For this reason, a prompt will be included

in the user instructions, and possibly code prompts, to advise the user to only user the device on

offline equipment, and to manually confirm all key parameters are set correctly before returning the

equipment to service.

Consideration was given to the use of others intellectual property throughout this project. Due to the

nature of the project heavy use of the Modbus standard and guiding documentation has been

necessary. This use is permitted by the Modbus Organisation (Modbus Organisation 2020), along with

limited reproduction of materials for the purposes of study and research. Additionally, several third-

party software packages were utilized, and in these instances the relevant licensing documentation

was reviewed to confirm that its use for the purpose of this project was permitted.

It is further noted that the configuration tool to be constructed for this project will be a prototype for

the purposes of research, and is not intended to be immediately used in real world environments in

such a state. Significant additional work, and a much broader range of considerations, would be

required for a device required to be used as a finished commercial product.

17

Consideration must also be given to protection of the electrical supply for instances of overload or

short circuit

Figure 3.2 designates terminals A01 and A02 as the positive and negative supply terminals

respectively, as well as showing the location of these terminals and Modbus TCP/IP Port 1.

Figure 3.2 SEL-710 Terminal arrangement and assignment (Schweitzer Engineering Laboratories 2015)

3.3 Hardware Requirements

In line with the stated objective of this project, and the literature review that has been completed, the

following hardware requirements have been identified.

Low cost; directly addressing the project objective for the end design to be accepted for use in field

situations where it could be exposed to damage, without significant financial burden.

Compact; in order to keep the device at a physical size and weight that allows its ergonomic use as a

handheld device for prolonged periods.

Processor and RAM; sufficient to perform constructing and interpreting the required Modbus

requests and responses, as well as basic graphical and user interface functions.

An inbuilt RJ45 Ethernet port and associated hardware/support; to allow direct connection to

Modbus TCP equipment without the added cost of added adaption equipment.

18

Availability of TCP/IP level software libraries; to allow ease of use of these functions by the Modbus

application level software to be developed.

Ability to access external memory storage; such as an SD card or USB flash drive, in order to access

user configuration and data files, or store output files.

Support for graphical user interface and touch input; in order to allow the final device to leverage

the availability of small low-cost HDMI/USB touch displays to create a more intuitive user interface.

This would require a single USB port and HDMI output port for ease of connection, with native

software support.

These determined requirements are assigned priorities as shown in Table 3.1 below.

Requirement Priority

Cost 2 (Med)

Dimensions 2 (Med)

Processor Speed 2 (Med)

RAM 2 (Med)

RJ45 Ethernet Port 3 (High)

TCP/IP Support 3 (High)

External Memory Support 3 (High)

Graphical User Interface Capability 1 (Low)

Touch Input Capability 1 (Low)

Table 3.1 Requirement Priorities

3.4 Available Hardware

As one of the primary objectives of this project is to create a low-cost device from readily available

hardware platforms the following product options were considered:

• Arduino Uno Microcontroller Platform

• Raspberry Pi Model 3B+ Single Board Computer

• BeagleBone Black Single Board Computer

19

3.4.1 Arduino Uno

Figure 3.3 Arduino Uno (Arduino AG 2020)

The Arduino Uno is a Microcontroller based prototyping platform based on an Atmel ATmega328P

(Arduino AG 2020). This option was rapidly discarded due to its lack of native graphics support or on-

board RJ45 Ethernet Port. An additional hardware module, the Arduino Ethernet Shield, exists to

provide the required hardware to enable Ethernet communications. The requirement of this

additional hardware renders this option significantly less cost effective when compared to the other

options considered, for no discernible gain. Additionally, when considering this projects’ optional goal

of producing a graphical user interface for the final configuration tool, it was found that the options

are significantly more limited for this platform when compared with the other options considered.

20

3.4.2 Raspberry Pi 3B+

Figure 3.4 Raspberry Pi 3B+ (Raspberry Pi Foundation 2020)

The Raspberry Pi Model 3B+ is a single board computer produced by the Raspberry Pi Foundation. It

is based on a System-on-Chip (“SoC”) produced by Broadcom, that contains most of the components

found in a standard computer within a single integrated circuit (Raspberry Pi Foundation 2020). This

allows the Raspberry Pi to be produced as an exceptionally compact unit, and for low cost, whilst still

maintaining the ability to perform the functions of an ordinary computer. Additionally, the 3B+ model

includes integrated hardware for USB and RJ-45 Ethernet connectivity. Various compatible operating

systems are available, with the default “Raspbian” operating system being produced and supplied by

the Raspberry Pi Foundation. Many commercial products are available to add compact graphical

touch interfaces to this board, with the Raspbian operating system providing native touch interface

support. No integrated memory storage is present, and must be provided by an additional SD card.

21

3.4.3 BeagleBone Black

Figure 3.5 BeagleBone Black (BeagleBoard.org Foundation 2019)

The BeagleBone Black is a single board prototyping platform based on an ARM Cortex-A8 processor

(BeagleBoard.org Foundation 2019). It integrates several more advanced features than the Raspberry

Pi, such as on-board flash memory, additional low-level input/output pins, and specific processor and

graphics capabilities. None of these features were determined to add a discernible advantage for the

purposes of this project. Integrated USB and RJ-45 Ethernet hardware are provided. Multiple c

compatible operating system options exist, with the most popular options being Linux based

(BeagleBoard.org Foundation 2019).

22

3.5 Hardware Platform Selection

The following comparison of the Raspberry Pi 3B+ and BeagleBone Black was performed as shown in

Table 3.2. This was collated using information from the Raspberry Pi Foundation (2020),

BeagleBoard.org Foundation (2019), and Element14 (2020).

C
o

st

D
im

en
si

o
n

s
(m

m
)

P
ro

ce
ss

o
r

Sp
ee

d

(G
H

z)

R
A

M

R
J4

5
Et

h
er

n
et

 P
o

rt

TC
P

/I
P

 S
u

p
p

o
rt

Ex
te

rn
al

 M
em

o
ry

Su
p

p
o

rt

G
ra

p
h

ic
al

 U
se

r

In
te

rf
ac

e
C

ap
ab

ili
ty

To
u

ch
 In

p
u

t

C
ap

ab
ili

ty

P
yt

h
o

n
 C

ap
ab

le

To
ta

l S
co

re

Raspberry Pi
3B+ (RPI)

$56.63 85x56 1.4 1GB YES YES YES YES YES YES

BeagleBone
Black (BBB)

$86.34 87x54 1 512MB YES YES YES YES YES YES

Preference RPI BBB RPI RPI TIE TIE TIE TIE TIE TIE

Weight 2
(Med)

2
(Med)

2
(Med)

2
(Med)

3
(High)

3
(High)

3
(High)

1
(Low)

1
(Low)

2
(Med)

RPI Score 2 0 2 2 3 3 3 1 1 2 19

BBB Score 0 2 0 0 3 3 3 1 1 2 15

Table 3.2 Comparison of Hardware Platforms

Based on this comparison the Raspberry Pi 3B+ was selected as the chosen hardware platform.

23

3.6 SEL-710 Software Considerations

Figure 3.6 lists the Modbus Function codes supported by the SEL-710 relay, for consideration when

selecting the Function codes to be supported by this configuration device.

Figure 3.6 SEL-710 Accepted Modbus Function Codes (Schweitzer Engineering Laboratories 2015)

3.7 Required Modbus Function Codes

The following Modbus standard Function Codes have been selected for implementation in this project.

This selection enables various modification and monitoring methods for the parameters and I/O of

the device to be configured. All of these Function Codes are additionally supported by the selected

SEL-710 test device. Not all of these functions will be directly required to perform the stated

configuration and interrogation functions. However, their implementation at this stage will increase

the versatility of software package and its ability to be adapted perform additional tasks as may be

desired by users.

• 0h01: Read Discrete Output Coil (Bit) Status

• 0h02: Read Discrete Input Status

• 0h03: Read Holding Registers

• 0h04: Read Input Registers

• 0h05: Force Single Coil (Bit)

• 0h06: Preset Single Register

• 0h10: Preset Multiple Registers

24

These function codes are fully defined in the Modbus specification, allowing them to be implemented

in the configuration device code with confidence.

3.8 Software Requirements

With the selection of the Raspberry Pi 3B+, the corresponding Raspbian Operating system was

selected for this project. This decision was based upon the ready availability of this option, its native

support of graphical touch interface hardware, and the abundance of available documentation and

support.

The core of the configuration device operation required production of client software that is capable

of initiating a TCP connection with the test unit server, forming and sending a correct Modbus request,

receiving and interpreting the response, and maintaining or closing the TCP connection as required.

Additionally, exception code handling, parameter data input/output into external files, and a method

of being configured for use with different Modbus devices was required.

To this end Python 3.6 was selected as the programming language the software is to be developed in,

due its inclusion of several libraries capable of handing the low-level functions required such as TCP

connections, and file I/O (Python Software Foundation 2020). Additionally, there are several options

available for graphical user interfaces that are supported by Python, which provided further benefit

for this projects’ optional goal.

Initial code was developed to manually “proof of concept” test each of the selected Function Code.

Once this core code was developed it was tested and verified using the SEL-710 local keypad and

screen interface. Additionally, testing was performed on the final code using guidance set out in the

Modbus Conformance Test Specification for Modbus TCP (Modbus Organisation 2009), with the

process suitably modified for a client type device rather than a server type.

The operation of the core software capability to be developed for this project is essentially that of a

Modbus TCP Client device. Guidance on the operation of such devices is given in the supporting

Modbus documentation as shown in Figure 3.7. Execution of such operation requires several

25

constituent software functions to be developed. Specifically, these must include TCP management

functions, Modbus Request generation, Modbus Response processing, and Error

handling/interpretation.

Figure 3.7 Modbus Client Activity Diagram (Modbus Organisation 2006)

With the core Modbus TCP client code and its constituent functions successfully developed,

appropriate application code is required to utilise this core software to perform the desired Read and

Write operations. There are two primary automated functions intended to be performed by this tool.

First is a “Configuration” function, which would write values to multiple registers as specified by a

parameter settings file input by the user. Second is an “Interrogation” function, which perform either

a single read of a small set of registers, or multiple reads at a given frequency for a set duration, the

data obtained from which would be written to a log file for diagnostics and fault-finding purposes.

Further additional desired features require several auxiliary code functions to allow efficient user

input and output. Firstly, file operations to import and parse data from a device “Configuration” file

would be required. The intent of this file is to provide information to the software package pertaining

26

to the Modbus addresses specific to the device to be configured that correspond with individual

parameter names. Additional data for each parameter should also be provided by this file, including

its scaling, format, units, read/write status, minimum setting, maximum setting, and default setting.

Additionally, for parameter that use an enumeration or bit enumeration format, details of the

individual enumeration settings should be included. As these files will need to be generated for each

model of Modbus device intended to be interfaced with, both YAML and XML Markup languages were

considered for use. Both of these languages were determined to be capable of the required task,

namely that a set of individual properties could be set for each individual parameter entry.

Additionally, both languages are both human and machine readable, and Python software packages

exist that allow ease of import and export. YAML was ultimately selected due to its more compact

and simplified structure and symbol set, with the intent that this will simplify the generation of

additional configuration files when needed. The arrangement of data within this file is detailed in

Chapter 5, specifically Section 5.2.

Further file operations for the importation of register settings from the user provided parameter

settings file during a configuration operation, and for the export of obtained data to a log file during

and interrogation operation. Comma Separated Value files will be utilised for both the parameter

settings and log files, due to their suitability for the information to be contained. Additionally, this

format is readily compatible with many commercial spreadsheet programs, allow ease of production

and interpretation of the data held therein by the end user. The arrangement of data within this file

is detailed in Chapter 5, specifically Section 5.3 and Section 5.4 respectively.

Upon completion and successful testing of these individual code modules they were then integrated

together into a cohesive whole under a unified user interface, presented as individual scripts for each

of the primary functions, Configuration and Interrogation.

Finally, with the code completed the configuration tool was assembled, the final code loaded, and put

through full testing of all of its functions from the end user standpoint. Additionally, testing was

performed on the final code using guidance set out in the Modbus Conformance Test Specification for

Modbus TCP (Modbus Organisation 2009), with the process suitably modified for a client type device

rather than a server type.

27

4 Hardware Design

4.1 SEL-710 Test Unit Design

For use in the development of this software a test unit has been constructed as per Figure 6.1 to allow

safe and easy interaction with the SEL-710. A generic 24 VDC “Plug Pack” Power supply with a rating

of 1.25A and integral overload and short circuit protection was selected and obtained for the purposes

of powering this test unit.

Figure 4.1 SEL-710 Test unit schematic

28

4.2 Configuration Tool Functional Design

The configuration device prototype assembly was designed as per the schematic shown in Figure 6.2.

During software development the Raspberry Pi was directly connected to the SEL-710 test unit, with

direct power supply omitting the battery power module. The intent is that the tool is able to import

and export parameter and configuration data files from and external USB flash drive via the included

external USB port. Likewise, the external RJ-45 and Micro USB ports enable connection to a Modbus

device or power supply without any disassembly of the unit itself. The final assembled prototype is

shown in Figure 4.3.

Figure 4.2 Modbus Configuration Device Schematic

29

Figure 4.3 Assembled Prototype Hardware

4.3 Raspberry Pi 3B+

Figure 4.4 Raspberry Pi Model 3B

The process that led to the selection of the Raspberry Pi Model 3B+ as the primary prototyping

component for this project is detailed in Chapter 3, specifically Section 3.5. In addition to the base

Raspberry Pi Board, a 32 GB Class 10 SD card was obtained to serve as the primary memory device for

this platform. This decision was based upon the manufacturer’s recommendations for optimal

performance (Raspberry Pi Foundation 2020). This SD card was subsequently loaded with the

Raspbian desktop operating system as provided by the Raspberry Pi Foundation.

30

4.4 HDMI Touch Display

Figure 4.5 Waveshare 5-Inch Touchscreen Display

The criteria selected for the user interface display were determined based upon the following logic.

• Compatibility with HDMI video input; Due to the Raspberry Pi 3B+ native hardware support

for HDMI video output, this was deemed the optimal option to meet the low-cost goal of the

configuration tool. Simultaneously the reduction of unnecessary additional components

potentially removed additional points of failure, thus improving the overall robustness of the

final design.

• USB compatible power supply; Due to the USB power supply already present for the

Raspberry Pi, conformance with this requirement removes the need for additional power

supply components specific to the display.

• 5-inch display size; This physical dimension was found experimentally to be large enough for

convenient use, whilst remaining compact enough in size to be readily integrated into a

portable device.

• USB compatible touch interface; the availability of multiple USB ports on the Raspberry Pi

board made this the optimal interface for use by the touch input interface.

A large number of commercially available options were found to meet these requirements, with only

minimal distinguishing features to aid in selection of an individual unit. The decision was made to

select the Waveshare 5 Inch HDMI LCD Capacitive touch display as shown in Figure 4.5. This was

primarily due to its availability at time of purchase, comparably low cost, build quality, and native

support for its touch interface by the Raspbian operating system.

31

4.5 Battery Power Supply

Figure 4.6 Battery Power Supply Module

 A wide variety of battery power supplies compatible with the Raspberry Pi board are commercially

available. However, at the time of construction, disruptions to global supply chains significantly

limited the availability of these modules. Due to the auxiliary nature of this component to the overall

project, and the uncertain lead times of any ordered units, the primary criteria for the selection of this

component became availability. This consideration, in conjunction with the requirement that the unit

be capable of supplying both the Raspberry Pi 3B+ and the user interface display simultaneously

limited the options to a single generic unit available locally and in stock, as shown in Figure 4.6. The

board features USB power outputs, a micro USB input for charging, and an integrated power switch.

The power switch may be manually removed and replaced with soldered leads to allow attachment of

the external power button of the prototype configuration tool. The integrated battery is a 3.7 V 3800

mAh lithium ion cell. Battery life testing of the assemble unit was performed to determine the

practicality of this battery capacity during use, with the target being in excess of one hour of operation.

32

4.6 Enclosure

Figure 4.7 Takachi MXA Series Enclosure (Takachi Electronics Enclosure Co. Ltd. 2020)

The Takachi MXA4-13-20SSP enclosure was selected to house the configuration tool hardware. This

decision was based upon its robust aluminium construction, ready availability at the time of sourcing,

and low cost. These factors were deemed to make it suitable for meeting the goals of the final

configuration tool. Additionally, the modular and easy to disassemble design simplifies the process of

machining external entry points for the user interface and hardware ports. This factor proved

advantageous for the prototype nature of the design.

4.7 Bill of Materials

The following lists detail the hardware resources determined to be required for this project. Other

minor components were utilised at stages, but these were not critical to project progression, being

mostly consumables and for convenience purposes.

SEL-710 Test Unit:

• SEL-710 Motor Protection Relay, PN: 071002BBB9X0X831211

• 24VDC, 1 Amp, Plug pack power supply with integrated overload and short circuit protection

• Enclosure to suit SEL-710

• 2.5mm DC power connection port, panel mount, with wire tails for connection

• Ethernet connection port, panel mount, with internal cable tail for connection

• 3m Cat 5 Ethernet patch cable

33

Configuration Tool Unit:

• Raspberry Pi, Model 3B+

• Raspberry Pi Plug pack power supply, Micro USB B output

• Micro SD card, 32GB, Class 10

• External power switch, with internal wire tails for connection, dust resistant

• Micro USB B connection port, panel mount, with internal cable tail for connection, dust

resistant

• Ethernet connection port, panel mount, with internal cable tail for connection, dust resistant

• Waveshare 5” HDMI Monitor, with USB touch interface

• Enclosure to suit Raspberry Pi, touch panel, and associated equipment

• HDMI flexible ribbon style cable, with 2x HDMI connectors

• USB 2.0 flexible ribbon style cable, with 2x Micro USB 2.0 connectors

• Rechargeable USB power supply, 3.7V 3800mAh battery

34

5 Software Design

5.1 Overall Structure

As determined in Chapter 3, the software package developed is written in the Python 3 programming

language, specifically Python version 3.6, and run on the Raspbian desktop operating system. It is

important to note that Python is an interpreted programming language as opposed to compiled

language such as C. This effectively means that the produced Python code is directly “interpreted” by

the Python “interpreter” software during execution, as opposed to compiled language where the

written code is first compiled into an executable file before execution (Python Software Foundation

2020).

Python code can be separated into separate files, or modules, and subsequently imported for use

during execution of other Python files (Python Software Foundation 2020). This allows the code to be

conveniently separated into separate files, with individually defined functions imported into the

executed files, thus keeping individual code segments concise and easier to interpret.

For the purposes of this this project the following modules included with the standard Python

interpreter:

• “socket”, software library for managing and automation of TCP communications

• “select”, software library used for determining state and timeout of TCP connection

• “yaml”, software library for the import and export of YAML formatted files

• “csv”, software library for the import and export of CSV formatted files

• “time”, software library for basic timekeeping functions

The required formats of the individual input and output files are defined in Section 5.2 through to

Section 5.4 of this Chapter. The final software package is separated into individual modules as defined

in Section 5.5 through to Section 5.13 of this Chapter. The sequence of operation for overall

Configuration and Interrogation operations are shown by Figure 5.1 and Figure 5.2 below,

respectively. It should be noted that whilst the downloading of a parameter set from a Modbus TCP

device is completely possible given the software modules developed, no automated routine was

created for this function. This was due to the intended purpose of the configuration element of this

device, which was intended to be used in an industrial setting. In such a setting the preferred source

35

of configuration data should always be obtained through approved master data sources, not extracted

from field devices which may or may not have been modified by third parties, unknown to the user.

For this reason such functionality was not provided in an automated routine, but could be performed

manually by use of the software functions defined in this chapter, specifically those aimed at read

operations on multiple holding registers.

These software modules, specifically those concerning TCP communications, were designed to default

to a target device IP address of 192.168.1.2/24. Allowance is made in the user interface to modify this

address, but will additionally require modification of the Raspberry Pi’s network configuration. Details

on the initial setting of this configuration, as required for correct operation of these modules, are

detailed in Section 5.14 of this chapter.

A set of user instructions for the final prototype are provided in Appendix F.

36

Figure 5.1 Configuration Function Flowchart

37

Figure 5.2 Interrogation Function Flowchart

41

5.5.2 Import Parameter Settings (Read_Settings)

This function accepts a string variable, provided by the user, which specifies the directory and name

of the specified Parameter settings file. It then utilizes the inbuilt Python open() function to open the

specified file in a read-only mode. The CSV format data held therein is then parsed using the

csv.reader() function provided by the imported “csv” module and then returned as a single level

dictionary data type matching the parameter names with their desired values. Finally, the inbuilt

close() function is automatically invoked to close the open file.

5.5.3 Export Log File (Write_Log)

This function accepts a string variable, input by the user, which specifies the desired directory and

name of the Log File to be output containing the data contained within a two-level nested list variable

passed to the function. In this instance each entry is intended to contain a list of values, with the first

element specifying sample timestamps, and each additional element corresponding with a device

register value that was read. This function utilizes the inbuilt Python open() function to open the

specified file in a create/write/overwrite mode. The provided dictionary variable is then parsed using

the csv.writer() function form the imported “csv” module and subsequently written to the open log

file. This format allows the data obtained via the output comma separated variable file for review in

any compatible software, including many commercially available spreadsheet programs. Finally, the

inbuilt close() function is automatically invoked to close the open file.

5.6 Modbus Address Encoding/Decoding

This module performs the functions required to cross reference parameter names with their

respective entries in the device configuration file. Two function are provided, namely “Addr_Settings”

and “Addr_Lookup”, to perform functions as defined below. This module consists of file

“MDB_Addr.py”, included in Appendix B.2.

5.6.1 Addr_Settings

This function accepts two input arguments. The first input is the desired settings data dictionary

variable, as returned by the “Read_Settings” function from the given settings file. The second input is

the configuration data dictionary variable, as returned by the “Read_Config” function from the device

42

configuration file. From the configuration data the function generates a cross reference dictionary

that allows the parameter Modbus address to be immediately determined when given the parameter

name. The function then processes each variable in the given settings data into an output dictionary

variable in turn. During processing the parameters read/write status is checked, if the parameter is

found to be read-only an error is raised and program execution ended. This will only occur if the given

settings file contained an erroneous entry to write a value to a read-only parameter. The desired

setting for the parameter is then tested to ensure it is between the minimum and maximum allowable

values for that parameter. If so, an error is again raised and program execution cancelled. Again, this

should only occur if an error in the given settings file results in the specification of an incorrect value

for the parameter. If the value is within the acceptable range, it is scaled according to its specified

scaling factor, converted into a binary bytes format, and stored in the output dictionary variable entry

that corresponds to its parameter address. This output dictionary variable is then returned by the

function upon completion.

5.6.2 Addr_Lookup

This function accepts the configuration data dictionary variable as returned by the “Read_Config”

function from the device configuration file as its sole input argument. From this data it generates a

cross reference dictionary with an entry for each parameter name. Each entry in this dictionary

consists of a list containing the parameter address, and a Boolean value that corresponds with the

parameters read-only status. Thus, the second element of a read-only parameter entry will be “True”.

This cross-reference dictionary is then returned by the function upon completion.

5.7 Modbus Format

This module does not contain any standalone function, but rather a single python “class” named

“MBusPkt”. The class is essentially a data type with functions inbuilt, allowing the value/format it

returns to be strictly specified. The inbuilt functions can also be invoked externally, causing the class

to take the given input and perform the function internally. In this instance the purpose of the class

is to contain a single Modbus TCP Application Data Unit, which in turn contains an MBAP header and

Protocol Data Unit. The operation of the class and its internal functions are individually specified

below. This module consists of file “MDB_Format.py”, included in Appendix B.3.

43

5.7.1 __init__

This internal function is automatically invoked when a variable of the “MBusPkt” type is created.

When created the class may be given a single input argument consisting of a Modbus TCP ADU in

binary bytes format.

 If this input is given, this function checks that the input is in binary bytes format, and if so that it is at

least eight bytes in length. The “Length” data is then extracted from the packet, and checked to be

consistent with the length of the relevant packet segment. If any of these conditions are not met an

error message is raised and program execution is ended, as the packet is not a valid ADU. If the packet

meets these requirements it is separated into its component fields which are stored internally along

with the fully composed ADU.

If no input is given, this function sets its internal PDU fields as blank, and MBAP header fields from set

default values, with the length field automatically calculated.

5.7.2 __repr__

This function simply determines how the class represents itself in string format if called. In this

instance it returns the value of its internal ADU packet variable in hexadecimal format.

5.7.3 __bytes__

This function simply determines how the class represents itself in binary bytes format if called. In this

instance it returns the value of its internal ADU packet, which is already stored as binary bytes

internally.

5.7.4 set_PKT

This function performs the same as the “__init__” function if it received an initial input ADU. This is

to allow setting of the full ADU for a variable of this class after it has been initialised.

5.7.5 set_TX_ID

This function accepts a transaction identifier value in integer format as its sole input argument. It

checks the given input is the correct format, raising an error and ending program execution if it is not.

It then converts the given value to binary bytes format of the correct two-byte length and stores it in

44

its internal transaction identifier field. It then updates its internal length field, and recomposes its

internal ADU packet with the updated component fields.

5.7.6 set_PRTCL

This function accepts a Protocol Identifier value in integer format as its sole input argument. It checks

the given input is the correct format, raising an error and ending program execution if it is not. It then

converts the given value to binary bytes format of the correct two-byte length and stores it in its

internal Protocol Identifier field. It then updates its internal length field, and recomposes its internal

ADU packet with the updated component fields.

5.7.7 set_UN_ID

This function accepts a Unit Identifier value in integer format as its sole input argument. It checks the

given input is the correct format, raising an error and ending program execution if it is not. It then

converts the given value to binary bytes format of the correct one-byte length and stores it in its

internal Unit Identifier field. It then updates its internal length field, and recomposes its internal ADU

packet with the updated component fields.

5.7.8 set_FN_CD

This function accepts a Modbus Function Code in integer format as its sole input argument. It checks

the given input is the correct format, raising an error and ending program execution if it is not. It then

converts the given value to binary bytes format of the correct length and stores it in its internal

Function Code field. It then updates its internal length field, and recomposes its internal ADU packet

with the updated component fields.

5.7.9 set_DATA

This function accepts the data segment of a Modbus TCP transaction, formatted as a series of binary

bytes, as its sole input argument. It checks the given input is the correct format, raising an error and

ending program execution if it is not. It stores the given input in its internal Data field, updates its

internal length field, and recomposes its internal ADU packet with the updated component fields.

45

5.8 TCP Communications

This module primarily provides a function that performs the transmission of a list of Modbus TCP

Application Data Units over a TCP connection to a Modbus TCP device as requests, and receives the

responses given. An additional function handles the generation of a list of ADU requests to be sent

from a given list of Protocol Data Units. The exact operation of the two functions, “Comm” and

“Gen_Requests”, is explained further below. This module consists of file “MDB_Comms.py”, included

in Appendix B.4.

5.8.1 Comm

This function requires a list of formatted ADU requests as its sole mandatory input argument. Two

additional optional input arguments can be accepted to specify the device IP address and TCP port

number. If these either of these optional arguments is not given its default value is used in its stead,

namely 192.168.1.2 and 502 for the IP address and TCP port respectively. The function opens a TCP

connected to the Modbus TCP device using the connection parameters specified then processes each

request in turn. Processing the request consists of sending the request ADU to the device, and waiting

for a response to be received. If the response is not received within one second the request is

considered to have timed out, in which case the connection is closed, an error raised, and program

execution ended. Once received the response is read through to the length field of its MBAP header,

and then the remaining number of bytes specified by the length field are read. The response is then

stored as an entry in a responses dictionary variable corresponding to its transaction identifier, as a

“MBusPkt” class variable. Once all requests are processed, the TCP connection is closed. Upon

completion the responses dictionary is returned by this function.

5.8.2 Gen_Requests

This function accepts a list of PDU’s as its sole input argument. Each element of this input list consists

itself of list of two values, with the first element being the PDU Function Code in integer format, and

the second element being the PDU data payload formatted as a series of binary bytes. For each PDU

in the input list a “MBusPkt” class variable is created with its Function Code and Data fields set to

those specified. The Transaction Identifier is also set for each variable, with a value of zero for the

first PDU, and increasing by one for each subsequent PDU. These request variables are stored in order

in a requests list variable, which is returned by the function upon completion.

46

5.9 Modbus Error Handling

This module provides a single function to interpret the error code contained within the data field of a

Modbus TCP transaction that resulted in an error. A dictionary of error response messages

corresponding to the error codes is also included, based upon the Modbus specified exception codes

shown in Table 5.2. Two additional exception codes specific to Modbus Gateways were excluded as

they are not relevant to the function of this tool. The exact operation of the function,

“Modbus_Error”, is explained below. This module consists of file “MDB_Error.py”, included in

Appendix B.5.

5.9.1 Modbus_Error

This relatively simple function accepts a single Modbus response ADU as its sole input argument. From

this ADU it extracts the data field containing the error code. This code is then used in conjunction with

the included error message dictionary to select the error message specific to that code. The selected

error message text string is then returned by the function upon completion.

47

Table 5.2 Modbus Exception Codes (Modbus Organisation 2012)

48

5.10 Modbus Read request/response handling

This module provides an array of functions that perform the generation of request Protocol Data Unit

details, and handling of response Protocol Data Units for the following Function Codes:

• 0h01: Read Discrete Output Coil (Bit) Status

• 0h02: Read Discrete Input Status

• 0h03: Read Holding Registers

• 0h04: Read Input Registers

The operation of the included functions, is explained further below. This module consists of file

“MDB_Read.py”, included in Appendix B.6.

5.10.1 Gen_Read_Discrete_Output_Coil_PDUS (Function Code 0h01)

The purpose of this function is to generate the PDU/s for the execution of Modbus Function Code

0h01 requests, as specified in Figure 5.7. The function accepts a list of Modbus coil addresses,

formatted as integers, as its sole input argument. Initially this input argument is checked to be of a

list format, with an error code raised and code execution ended if it is not. A sorted list variable is

then generated from the given input, in order from lowest address value to the highest. The individual

addresses in the sorted list variable are then processed in order. Whilst being processed each address

is checked to be of the correct integer format, and within the allowable range for this Modbus

function, namely between 0h0000 and 0hFFFF. If either of these conditions is not met an error is

raised and program execution is ended. The addresses are then separated into sets that meet the

requirement of this Modbus function that each set does not span a range of greater than 2000

subsequent coil addresses. These address sets are each formatted as list variables, and are stored in

order as elements of and Address Index list variable. The starting address and number of subsequent

coils required to be read to encompass all the addresses in each address set are then calculated. These

two values are then converted to a PDU data binary bytes variable, of four bytes total length, with

each value occupying two bytes. A PDU list variable is then generated with the first element consisting

of the Modbus function code as an integer, and the second element being the PDU data variable.

These PDU variables are then stored sequentially as elements of an overall PDU’s list variable. The

function then returns the PDU’s list variable and Address Index list variable upon completion.

49

Figure 5.7 Modbus Function Code 0h01 Request Format (Modbus Organisation 2012)

5.10.2 Gen_Read_Discrete_Output_Coil_Reply (Function Code 0h01)

This function is intended to interpret Modbus responses for 0h01 Function Code requests, formatted

as shown in Figure 5.8 if the request was successful, or as shown in Figure 5.9 if unsuccessful. The

function accepts a list of Modbus responses in “MBusPkt” format as its first input argument, and the

associated Address Index list generated with the corresponding Modbus request PDU’s as its second

input argument. Each response is processed in turn as follows. First the function code of the response

is checked for an error value of 0h81, a correct value of 0h01, or an invalid value. If the function code

is invalid, an error is raised and code execution ended. If an error value is found, the response is

passed to the “MDB_Error” function to retrieve the relevant error message. If the function code is

correct, the individual bits within the response data field that correspond with the specific addresses

specified within the relevant Address Index element are extracted. Once all responses have been

processed a Reply Data dictionary variable is generated with an entry for each coil address. Each entry

within this variable consists of a two-element list, with the first element being a Boolean value that is

true if the response indicated success as opposed to error. The second element is a Boolean

representation of the coil state if the response was successful, or error message text if it returned an

error. The function returns the Reply Data variable upon completion.

Figure 5.8 Modbus Function Code 0h01 Response Format (Modbus Organisation 2012)

Figure 5.9 Modbus Error Response Format (Modbus Organisation 2012)

50

5.10.3 Gen_Read_Discrete_Input_Status_PDUS (Function Code 0h02)

The purpose of this function is to generate the PDU/s for the execution of Modbus Function Code

0h02 requests, as specified in Figure 5.10. Its operation is essentially the same as

“Gen_Read_Discrete_Output_Coil_PDUS”, as defined in Section 5.10.1, with slight modifications for

the setting of inputs.

Figure 5.10 Modbus Function Code 0h02 Request Format (Modbus Organisation 2012)

5.10.4 Gen_Read_Discrete_Input_Status_Reply (Function Code 0h02)

This function is intended to interpret Modbus responses for 0h02 Function Code requests, formatted

as shown in Figure 5.11, if the request was successful, or as shown in Figure 5.9 if unsuccessful. Its

operation is essentially the same as “Gen_Read_Discrete_Output_Coil_Reply”, as defined in Section

5.10.2, with slight modifications for the setting of inputs.

Figure 5.11 Modbus Function Code 0h02 Response Format (Modbus Organisation 2012)

5.10.5 Gen_Read_Holding_Registers_PDUS (Function Code 0h03)

The purpose of this function is to generate the PDU/s for the execution of Modbus Function Code

0h03 requests, as specified in Figure 5.12. The function accepts a list of Modbus register addresses,

formatted as integers, as its sole input argument. Initially this input argument is checked to be of a

51

list format, with an error code raised and code execution ended if it is not. A sorted list variable is

then generated from the given input, in order from lowest address value to the highest. The individual

addresses in the sorted list variable are then processed in order. Whilst being processed each address

is checked to be of the correct integer format, and within the allowable range for this Modbus

function, namely between 0h0000 and 0hFFFF. If either of these conditions is not met an error is

raised and program execution is ended. The addresses are then separated into sets that meet the

requirement of this Modbus function that each set does not span a range of greater than 125

subsequent register addresses. These address sets are each formatted as list variables, and are stored

in order as elements of and Address Index list variable. The starting address and number of

subsequent registers required to be read to encompass all the addresses in each address set are then

calculated. These two values are then converted to a PDU data binary bytes variable, of four bytes

total length, with each value occupying two bytes. A PDU list variable is then generated with the first

element consisting of the Modbus function code as an integer, and the second element being the PDU

data variable. These PDU variables are then stored sequentially as elements of an overall PDU’s list

variable. The function then returns the PDU’s list variable and Address Index list variable upon

completion.

Figure 5.12 Modbus Function Code 0h03 Request Format (Modbus Organisation 2012)

5.10.6 Gen_Read_Holding_Registers_Reply (Function Code 0h03)

This function is intended to interpret Modbus responses for 0h03 Function Code requests, formatted

as shown in Figure 5.13 if the request was successful, or as shown in Figure 5.9 if unsuccessful. The

function accepts a list of Modbus responses in “MBusPkt” format as its first input argument, and the

associated Address Index list generated with the corresponding Modbus request PDU’s as its second

input argument. A third input argument is also required, containing the configuration data variable

generated by the “Read_Config” function from the device specific configuration file. Each response if

processed in turn. First the function code of the response is checked for an error value of 0h83, a

correct value of 0h03, or an invalid value. If the function code is invalid, an error is raised and code

execution ended. If an error value is found, the response is passed to the “MDB_Error” function to

retrieve the relevant error message. If the function code is correct, the individual two-byte long values

52

within the response data field that correspond with the specific addresses specified within the

relevant Address Index element are extracted. These values are then converted to either signed or

unsigned integers, and scaled according to their relevant scale factor, if any, using the parameter data

contained within the configuration data variable. Once all responses have been processed a Reply

Data dictionary variable is generated with an entry for each register address. Each entry within this

variable consists of a two-element list, with the first element being a Boolean value that is true if the

response indicated success as opposed to error. The second element is the converted and scaled

register value, if the response was successful, or error message text if it returned an error. The

function returns the Reply Data variable upon completion.

Figure 5.13 Modbus Function Code 0h03 Response Format (Modbus Organisation 2012)

5.10.7 Gen_Read_Input_Registers_PDUS (Function Code 0h04)

The purpose of this function is to generate the PDU/s for the execution of Modbus Function Code

0h04 requests, as specified in Figure 5.14. Its operation is essentially the same as

“Gen_Read_Holding_Registers_PDUS”, as defined in Section 5.10.5, with slight modifications for the

setting of input registers.

Figure 5.14 Modbus Function Code 0h04 Request Format (Modbus Organisation 2012)

5.10.8 Gen_Read_Input_Registers_Reply (Function Code 0h04)

This function is intended to interpret Modbus responses for 0h04 Function Code requests, formatted

as shown in Figure 5.15, if the request was successful, or as shown in Figure 5.9 if unsuccessful. Its

operation is essentially the same as “Gen_Read_Holding_Registers_Reply”, as defined in Section

5.10.6, with slight modifications for the setting of inputs.

53

Figure 5.15 Modbus Function Code 0h04 Response Format (Modbus Organisation 2012)

5.11 Modbus Write request/response handling

This module provides an array of functions that perform the generation of request Protocol Data Unit

details, and handling of response Protocol Data Units for the following Function Codes:

• 0h05: Force Single Coil (Bit)

• 0h06: Preset Single Register

• 0h10: Preset Multiple Registers

The operation of the included functions, is explained further below. This module consists of file

“MDB_Write.py”, included in Appendix B.7.

5.11.1 Gen_Single_Coil_Force_PDU (Function Code 0h05)

The purpose of this function is to generate a PDU for the execution of Modbus Function Code 0h05

request, as specified in Figure 5.16. The function accepts a single of Modbus output coil address

formatted as an integer as its first input argument, and a Boolean value representing the desired force

state of the output coil as its second argument. Initially this input arguments are checked to be of

integer and Boolean formats respectively, with an error code raised and code execution ended if it is

not. The coil address and desired force state are then formatted into a PDU data binary bytes variable,

of four bytes total length, with each value occupying two bytes. A value of 0h0000 and 0hFF00 are

used to represent false and true force states respectively. A PDU list variable is then generated with

the first element consisting of the Modbus function code as an integer, and the second element being

the PDU data variable. The function then returns the PDU list variable and the output coil address

upon completion.

54

Figure 5.16 Modbus Function Code 0h05 Request Format (Modbus Organisation 2012)

5.11.2 Gen_Single_Coil_Force_Reply (Function Code 0h05)

This function is intended to interpret Modbus responses for 0h05 Function Code requests, formatted

as shown in Figure 5.17 if the request was successful, or as shown in Figure 5.9 if unsuccessful. The

function accepts a Modbus response in “MBusPkt” format as its first input argument, and the

associated output coil address as its second input argument. First the function code of the response

is checked for an error value of 0h85, a correct value of 0h05, or an invalid value. If the function code

is invalid, an error is raised and code execution ended. If an error value is found, the response is

passed to the “MDB_Error” function to retrieve the relevant error message. If the function code is

correct, the individual two-byte long values within the response data field that correspond with the

specific output coil address and output coil state are extracted. The value corresponding to the output

coil address is converted to an integer and compare with the input argument output coil address. If

the two addresses do not match an error is raised and code execution ended. Otherwise the output

coil state field is checked for a value of 0x0000 or 0xFFFF, which correspond with false and true states

respectively. A Reply Data variable it then created, which consists of a two-element list with the first

element being a Boolean value that is true if the response indicated success as opposed to error. The

second element is a Boolean value representing the output coils state, if the response was successful,

or error message text if it returned an error. The function returns the Reply Data variable upon

completion.

Figure 5.17 Modbus Function Code 0h05 Response Format (Modbus Organisation 2012)

5.11.3 Gen_Preset_Single_Register_PDU (Function Code 0h06)

The purpose of this function is to generate the PDU/s for the execution of Modbus Function Code

0h06 requests, as specified in Figure 5.18. Its operation is essentially the same as

55

“Gen_Single_Coil_Force_PDU”, as defined in Section 5.11.1, with slight modifications for the setting

of a single register as opposed to a single output coil.

Figure 5.18 Modbus Function Code 0h06 Request Format (Modbus Organisation 2012)

5.11.4 Gen_Preset_Single_Register_Reply (Function Code 0h06)

This function is intended to interpret Modbus responses for 0h06 Function Code requests, formatted

as shown in Figure 5.19, if the request was successful, or as shown in Figure 5.9 if unsuccessful. Its

operation is essentially the same as “Gen_Single_Coil_Force_Reply”, as defined in Section 5.11.2, with

slight modifications for the setting of a single register as opposed to a single output coil.

Figure 5.19 Modbus Function Code 0h06 Response Format (Modbus Organisation 2012)

5.11.5 Gen_Preset_Multiple_Registers_PDUS (Function Code 0h10)

The purpose of this function is to generate the PDU/s for the execution of Modbus Function Code

0h10 requests, as specified in Figure 5.20. The function accepts a dictionary variable, with an entry

for each Modbus register address, formatted as integers, as its sole input argument. Each entry

contains the desired register value in binary bytes format. Initially this input argument is checked to

be of a dictionary format, with an error code raised and code execution ended if it is not. A sorted list

variable of register addresses is then generated from the given dictionary, in order from lowest

address value to the highest. The individual addresses in the sorted list variable are then processed

in order. Whilst being processed each address is checked to be of the correct integer format, and

within the allowable range for this Modbus function, namely between 0h0000 and 0hFFFF. If either

of these conditions is not met an error is raised and program execution is ended. The addresses are

then separated into sets that meet the requirement of this Modbus function that each set does not

span a range of greater than 123 subsequent register addresses, and additionally that all addresses in

56

a set must be subsequent. These address sets are each formatted as list variables, and are stored in

order as elements of and Address Index list variable. The corresponding values for each register

address are then extracted, and checked for correct format and length. If either of these conditions

are not met an error is raised and code execution is ended. The starting address and number of

subsequent registers required to be written to encompass all the addresses in each address set are

then calculated. These two values are then converted to a PDU data binary bytes variable, with each

value occupying two bytes, followed by a single byte representing the total number of register value

bytes to be written, and finished with a sequence of bytes representing the values to written for each

register in order. A PDU list variable is then generated with the first element consisting of the Modbus

function code as an integer, and the second element being the PDU data variable. These PDU variables

are then stored sequentially as elements of an overall PDU’s list variable. The function then returns

the PDU’s list variable and Address Index list variable upon completion.

Figure 5.20 Modbus Function Code 0h10 Request Format (Modbus Organisation 2012)

5.11.6 Gen_Preset_Multiple_Registers_Reply (Function Code 0h10)

This function is intended to interpret Modbus responses for 0h10 Function Code requests, formatted

as shown in Figure 5.21Figure 5.13 if the request was successful, or as shown in Figure 5.9 if

unsuccessful. The function accepts a list of Modbus responses in “MBusPkt” format as its first input

argument, and the associated Address Index list generated with the corresponding Modbus request

PDU’s as its second input argument. The responses are processed in order. First the function code of

the response is checked for an error value of 0h90, a correct value of 0h10, or an invalid value. If the

function code is invalid, an error is raised and code execution ended. If an error value is found, the

response is passed to the “MDB_Error” function to retrieve the relevant error message. If the function

code is correct, the individual two-byte long value within the response data field that correspond with

the starting address of the response is extracted and compared with the corresponding Address Index

element starting address. If these two addresses do not match an error is raised and program

57

execution is ended. The remaining two bytes within the data field, representing the quantity of

registers written are then extracted and compared with the quantity of register addresses with the

corresponding Address Index element. Once all responses have been processed a Reply Data

dictionary variable is generated with an entry for each register address. Each entry within this variable

consists of a two-element list, with the first element being a Boolean value that is true if the response

indicated success as opposed to error. The second element is a Boolean value that is true if the

response register count matched the Address Index element count, if the response was successful, or

error message text if it returned an error. The function returns the Reply Data variable upon

completion.

Figure 5.21 Modbus Function Code 0h10 Response Format (Modbus Organisation 2012)

5.12 Device configuration

This module primarily details a function that utilises functions from other relevant code modules to

enact the Device Configuration operation as specified in Figure 5.1. An additional function is provided

to prompt the user for the required input values to perform this operation. The exact operation of

the two functions, “Modbus_Configure” and “User_Config_Input”, is explained further below. This

module consists of file “MDB_Configure.py”, included in Appendix B.8. This module can be executed

in its own right, in which case the “User_Config_Input” function is executed first, and its return values

passed to the “Modbus_Configure” function as input arguments for its subsequent execution.

5.12.1 Modbus_Configure

This function requires the following input arguments:

1. Settings File Path

2. Device Configuration File Path

3. User input IP address

4. User input TCP port

58

The function periodically prints statement upon completion of each step in its execution to provide

the user an indication of progress. First the “Read_Settings” and “Read_Config” functions are

executed with their respective file paths as input arguments. The “Addr_Settings” function is then

executed with the return values of the file read functions as input arguments.

“Gen_Preset_Multiple_Registers_PDUS” is then executed with the address settings values given as

input. The returned list of PDU’s is then passed to the “Gen_Requests” function, and the requests list

returned transmitted using the “Comm” function. The “Gen_Preset_Multiple_Registers_Reply”

function is then executed on the received responses, with the Address Index variable given as its

second input argument. The reply data for each parameter is then printed in order for the users

review.

5.12.2 User_Config_Input

This function simply prompts the user for the required input data. Firstly, the user is asked if they

wish to specify a device IP address or TCP port that differ from the default values. If so, they are

prompted to input these values, if not the values are set to “None” which will prompt the “Comm”

function to use the default values. The function then prompts the user for the Settings File path,

followed by the Device Configuration File path. All four values are then returned upon completion.

5.13 Device Interrogation

This module primarily details a function that utilises functions from other relevant code modules to

enact the Device Interrogation operation as specified in Figure 5.2. An additional function is provided

to prompt the user for the required input values to perform this operation. The exact operation of

the two functions, “Modbus_Interrogate” and “User_Interrogate_Input”, is explained further below.

This module consists of file “MDB_Interrogate.py”, included in Appendix B.9. This module can be

executed in its own right, in which case the “User_Interrogate_Input” function is executed first, and

its return values passed to the “Modbus_Interrogate” function as input arguments for its subsequent

execution.

59

5.13.1 Modbus_Interrogate

This function requires the following input arguments:

1. Log File Path

2. Device Configuration File Path

3. Sampling Frequency (1-10 sec)

4. Sampling Duration (1-60 min)

5. Sampling Parameters (10 Max)

6. User input IP address

7. User input TCP port

The function periodically prints statement upon completion of each step in its execution to provide

the user an indication of progress. First the “Read_Config” function is executed with its respective file

path as an input argument. The “Addr_Lookup” function is then executed with the return values of

the file read function as its input argument. The returned lookup data is then used to determine the

Modbus addresses for each of the parameters to be read, along with their read-only status. Separate

address lists are then generated for read-only and non-read-only parameters.

“Gen_Read_Input_Registers_PDUS”, and “Gen_Read_Holding_Registers_PDUS” are then executed on

these two-address list respectively. The returned lists of PDU’s is then passed to the “Gen_Requests”

function independently, and the requests lists returned transmitted using the “Comm” function. The

“Gen_Read_Input_Registers_Reply”, and “Gen_Read_Holding_Registers_Reply” functions are then

executed on their respective received responses lists. The relevant Address Index variables are given

as their second input arguments, the configuration data extracted by “Read_Config” given as the third.

The reply data for each parameter is then printed in order for the users review, before prompting the

user if they wish to commence with the sampling routine or cancel. If the user chooses to continue,

the generated Modbus requests are periodically transmitted and the specified sampling rate for the

specified sampling duration. Upon conclusion of the sampling duration, the collected data set is

written to the specified log file.

5.13.2 User_Interrogate_Input

This function simply prompts the user for the required input data. Firstly, the user is asked if they

wish to specify a device IP address or TCP port that differ from the default values. If so, they are

prompted to input these values, if not the values are set to “None” which will prompt the “Comm”

function to use the default values. The function then prompts the user for the Log File path, followed

by the Device Configuration File path. The user is then prompted for a sampling frequency between

61

6 Testing

The final Modbus TCP Configuration/Interrogation Tool was put through several stages of testing.

Each individual code module was individually tested for performing its intended normal operation and

error behaviours by manually generating and applying inputs that would elicit such operation and

response. For example, register read and write routines were testing by successively writing all

possible values of a single selected register, and confirming each write with a matching register read

operation. Upon successful verification of the individual modules the two master routines were

evaluated for performance. Finally, tests were performed to determine the hardware battery life

duration in a variety of operating scenarios. The Configuration/Interrogation Tool was connected to

the test device enclosure as shown in Figure 6.1 below. The prototype tool connected for testing is

shown in Figure 6.2.

Figure 6.1 Testing Hardware Connections

62

Figure 6.2 Prototype tool under test

6.1 Configuration Tests

The testing of the configuration routine consisted of two phases as detailed below. A selection of

written settings were manually verified on the test device after each write to confirm successful

routine operation.

6.1.1 Phase One

For the first phase of testing three Settings Files were generated, with each containing all the non-

read-only parameters specified in the Device Configuration File. The parameter settings in the first

two files were the minimum and maximum permitted values for each parameter, respectively. The

third file contained the initial parameter settings of the test device. These three files were individually

input to the device configuration routine by a short python script, which also calculated the execution

time of each. The results of these tests can be found in Table 6.1 below.

63

Test Duration (sec)

Configure Default Values 13.3

Configure Minimum Values 13.6

Configure Maximum Values 13.3

Table 6.1 Configuration Routine Phase One Testing Results

As can be seen from the results the required duration did not differ appreciable between tests, as

expected. It should be noted that some of the individual requests transmitted during the minimum

and maximum tests returned invalid data value errors. This was determined to be due to some

combinations of parameters set at the values stated for these tests violated the internal logic of the

test device, and were thus rejected. It was determined upon analysis the extraction of configuration

data from the Device Configuration File contributed the majority of the routine execution time.

6.1.2 Phase Two

For the second phase of testing a single settings file was generated based upon the “Nameplate”

setting option as specified in the SEL-710 Installation (Schweitzer Engineering Laboratories 2015). This

was done to provide a baseline “typical use” setting scenario, and the settings list of 16 parameters,

provided in Appendix D, Example Typical Use Parameter Set. The settings were then applied to the

device using the Configuration Routine of the developed tool, with execution timed. The settings were

then entered in a scenario demonstrating the typical intended use of the Configuration Tool, including

time taken to power on and connect the tool, as well as give the required user input. For comparison,

the same settings were entered into the test device using the manual interface. This manual entry

was performed once by a user with previous experience entering settings into a device of this type,

and an unexperienced user who reviewed the relevant device documentation prior to commencing.

The documentation review time prior to commencement was not included in the final completion

time, but access to the documentation was allowed post commencement if required. The device

settings were reset to their initial values prior to commencement of each test, with the results as

shown in Table 6.2 below. Sampled settings were manually verified on the test device at several points

during each test to confirm successful routine operation.

64

Test Duration (mm:ss.s)

Manual: Inexperienced User 11:27.0

Manual: Experienced User 04:48.0

Automated: Configuration Tool 02:21.0

Automated: Routine Execution Time 00:13.5

Table 6.2 Manual Configuration vs Tool Configuration Routine Phase Two Testing Results

As can be seen from the results the Configuration Routine significantly reduces the time required to

apply the desired settings to the device. The configuration tool performed the configuration function

in less than half the time taken for an experienced user to perform the same task manually. It should

be noted that the actual execution is consistent with those found during the Phase One tests. This

shows that the Configuration Routine execution time remains consistent between setting a small

quantity of parameters through to large quantities. Comparatively, manual configuration requires

approximately the same time per setting, in this case approximately 18 seconds for an experienced

user. Thus, as the quantity of parameters to be set increases, so too does the advantage of the

Configuration Tool. For example, a not unrealistic parameter set of 32 settings could be achieved by

the Configuration Tool in a quarter of the time of an experienced user.

6.2 Interrogation Tests

The Interrogation routine was subjected to a set of eight tests to determine execution duration. Four

tests each were performed with sampling frequencies of once a second and once every ten seconds.

The tests at each frequency were performed for the following durations:

• One minute

• Ten minutes

• Thirty minutes

• One hour

As the test device is not physically installed on an energised motor circuit during testing, for safety

reasons, most of the parameter values were expected to not vary during these tests. For this reason,

the following parameters were selected:

65

• STOPPED TIME-mm

• NUM MSG RCVD

• SET SEC

• SET MIN

• SET HOUR

• IA CURRENT

• IB CURRENT

• IC CURRENT

• IG CURRENT

Whilst the current parameters were expected to stay at zero values for the duration of each test, the

remaining parameters were based on live device time values and number of Modbus messages

received, which were all expected to vary during each test. The time results of the tests are shown in

Table 6.3. An excerpt of the Log file generated during the one second interval, one minute duration

test is provided in Appendix E.

Test Duration (mm:ss)

One per second frequency, 1-minute duration 01:15

One per second frequency, 10-minute duration 10:16

One per second frequency, 30-minute duration 30:17

One per second frequency, 60-minute duration 60:18

One per ten second frequency, 1-minute duration 01:24

One per ten second frequency, 10-minute duration 10:25

One per ten second frequency, 30-minute duration 30:26

One per ten second frequency, 60-minute duration 60:27

Table 6.3 Interrogation Routine Test Results

As can be seen from the results the time taken for execution is consistently the sum of the sampling

duration, one additional sampling interval, and an additional 14 to 17 seconds. It was determined

upon further analysis the vast majority of the 14 to 17 second overhead time contributed by the

extraction of configuration data from the Device Configuration File. Thus, when the interrogation

routine is first executed, approximately 14 to 17 seconds pass while the configuration data is loaded.

66

This is followed by a single sampling interval to test the configuration, and if accepted sampling

continues at the sampling interval specified by the user until the sampling duration elapses. It was

determined that each individual sample operation is completed in well less than 100 milliseconds,

with the program waiting the remainder of the sampling interval before executing the next sample.

Figure 6.3 shows the prototype tool during Interrogation testing.

Figure 6.3 Prototype tool during Interrogation testing

6.3 Battery Tests

Battery tests were performed using a short python script which recorded the time elapsed since

execution to two files every second. By recording the values to two files separated the script ensured

that even if one file was being written when the battery completely drained, the other file would

contain the uncorrupted value. This script was executed upon start-up with a fully charged battery, in

three separate scenarios:

• Raspberry Pi Idle, display not powered

• Raspberry Pi Idle, display powered

• Raspberry Pi continually sampling, display powered

67

The results of these tests are show in Table 6.4 below.

Test Duration (h:mm:ss)

Idle, No display 5:17:14

Idle, Full display 1:56:50

Active, Full Display 1:43:28

Table 6.4 Battery Life Test Results

As can be seen the device is capable of approximately two hours of continuous idle operation, or over

one and a half hours of continuous active operation, without requiring recharge.

68

7 Conclusions and Further Work

The objective of this project was to design and develop a hardware and software solution with the

goal of provided a Low-cost compact Modbus TCP based device configuration/interrogation tool. This

objective has been achieved and verified by the final outcome.

A literature review of the relevant Modbus TCP theory, including technical specifications and principle

of operation, was invaluable to this outcome. Combined with thorough review of the selected

Modbus TCP test device, the SEL-710 Motor Protection Relay, this allowed the precise specification of

the hardware and software required to perform the desired functions. Additionally, these reviews

allowed the design of a suitable test assembly for the SEL-710, allowing ease of use throughout the

development and testing of the Configuration/Interrogation Tool.

The developed hardware prototype has been designed to not only meet the primary objective of

performing the required Modbus TCP functions, but also to meet several additional objectives. First

amongst these is that the device be portable in nature. This objective has been met with the final

prototype dimensions being 200 mm wide, 130 mm high, and 35 mm deep, rendering it sufficiently

compact. The prototype also weighs less than 800 grams, allowing it to be easily held in one hand,

and incorporates a rechargeable battery power supply for operation away from a power supply.

Furthermore, the extruded aluminium enclosure and protective bezel around the touch display serve

to impart sufficient mechanical strength and resilience to the prototype to allow its use in field

situations. Finally, the final cost of less than $250 for the completed unit meets the stated project aim

of producing a low-cost device.

The developed software modules are capable of performing the selected Modbus TCP function codes,

as well as automated routines to perform the stated Configuration and Interrogation functions. The

modular nature of the code produced also allows great versatility in its ability to be adapted to other

non-standard tasks with minimal additional software. All software functions were found to operate

correctly, including the automated Interrogation and Configuration routines. The Interrogation

routine provides great benefit in its ability to perform a logging task that would not be possible to

achieve via manual interface with the test device. The Configuration routine also provides significant

benefit by halving the required time required to configure the test device, using a minimum number

of parameters, when compared to manual configuration by an experienced operator. This benefit

scales as larger numbers of parameters are required to be set, for example a set of 32 parameters

could be configured by the tool in one quarter of the time taken by an experienced manual interface

user, and a set of 64 parameters could be configured in one eight of the time taken by the experienced

manual interface user.

69

In summary, the developed tool is easily hand held, of sturdy aluminium enclosed design, and of low

cost. It has been tested and proven to perform the required Configuration and Interrogation functions

successfully, and significantly reduce the time taken when compared to manually performing these

functions. Overall, this project has answered the underlying question of the feasibility of the Modbus

TCP device configuration/interrogation tool in the affirmative.

7.1 Further Work

Additional further work to complete a Graphical User Interface would greatly improve the usability of

the Configuration/Interrogation Tool. This interface could also allow ease of use for not only the

Configuration and Interrogation routines, but manual use of the individual Function Codes for which

code functions were developed.

Development of suitable software to present the Log File results of the Interrogation routine in a

variety of formats would be advantageous. The functionality to view the Log Data as a line graph for

instance could be immensely useful for rapid interpretation of the acquired data.

The development of software to perform additional Modbus functions would further broaden the

Tools capabilities.

70

8 References

Reynders, D, Mackay, S, & Wright, E 2004, Practical Industrial Data Communications: Best Practice

Techniques, Elsevier Science & Technology, Oxford.

Park, J, Reynders, D, Mackay, S & Wright, E 2004, Practical Industrial Data Networks: Design,

Installation and Troubleshooting, Elsevier Science & Technology, Oxford.

Modbus Organisation 2012, Modbus Application Protocol Specification V1.1b3, Modbus Organisation,

Hopkinton, Massachusetts.

Modbus Organisation 2006, Modbus Messaging on TCP/IP Implementation Guide V1.0b, Modbus

Organisation, Hopkinton, Massachusetts.

Modbus Organisation 2009, Conformance Test Specification for Modbus TCP Version 3.0, Modbus

Organisation, Hopkinton, Massachusetts.

Schweitzer Engineering Laboratories 2015, SEL-710 Motor Protection Relay Instruction Manual,

Schweitzer Engineering Laboratories, Pullman, Washington.

Raspberry Pi Foundation 2020, Raspberry Pi Foundation, Cambridge, United Kingdom, viewed 21 April

2020, <https://www.raspberrypi.org/>.

BeagleBoard.org Foundation 2019, BeagleBoard.org Foundation, Oakland Township, Michigan,

viewed 22 April 2020, < https://beagleboard.org/>.

Arduino AG 2020, Arduino AG, Mainz, Rheinland-Pfalz, Germany, viewed 22 April 2020,

<https://www.arduino.cc/>.

71

Element14 2020, Premier Farnell Limited, Leeds, England, viewed 22 April 2020,

<https://au.element14.com/>.

Python 3.6 Documentation 2020, Python Software Foundation, Beaverton, Oregon, USA, viewed 30

April 2020, <https://docs.python.org/3.6/>.

Takachi Electronics Enclosure Co. Ltd. 2020, Takachi Electronics Enclosure Co. Ltd., Kawaguchi-shi,

Saitama, Japan, viewed 25 June 2020, < http://www.takachi-enclosure.com/>

72

Appendix A, Project Specification

Project Specification

For: Ethan Picking

Title: Low-cost compact Modbus TCP based device configuration/interrogation tool

Major: Electrical & Electronic Engineering

Supervisor: Mark Phythian

Enrolment: ENG4111 - EXT S1, 2020

ENG4112 - EXT S2, 2020

Project Aim: To create a low-cost device capable of direct interface with Modbus TCP

able devices for the purposes of configuration, commissioning, parameter
verification, and fault finding.

Programme: Version 2, 7th March 2020

1. Complete a literature review on Modbus TCP specifications, principle of operation, and
standard methods of implementation.

2. Obtain and review relevant documentation specific to a chosen Modbus TCP capable device
of significant complexity, for example a motor protection relay, at this stage intended to be a
Schweitzer Engineering Laboratories model SEL-710.

3. Obtain a unit of the selected Modbus capable device and assemble with a suitable enclosure
and power supply into a suitable test platform.

4. Determine standard functions that would be required to be implemented over Modbus TCP
for the purpose of programming, commissioning, and fault diagnosis.

5. Determine the hardware and software requirements of a device to interface with the
selected Modbus TCP device.

6. Select, obtain, and assemble suitable hardware that meets the determined hardware
requirements, is resilient to physical damage, and integrates a portable power supply with
provision for a simple method of recharge.

7. Develop an effective software platform capable of performing the required Modbus TCP
functionality to suit the assembled hardware platform for the performance of programming,
commissioning, and interrogation operations.

8. Perform functional testing of the developed device utilising the test device assembly.

9. Optional, if time and resource permit: Develop a suitable graphical user interface to allow
simple user interface with the developed software.

73

Appendix B, Device Code

B.1 File Input/Output Module Code

'''

Module Name: MDB_File_IO.py

Author: Ethan Picking

Description:

This module provides functions to import data from Config and Settings files, and an export function

to output log files. Config Files use YAML (.yml) format, and both Setting and Log files use CSV (.csv)

format.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#Import required yaml and csv libraries

import yaml

import csv

#Function for importing Config Files

def Read_Config(filename):

 FileDir = filename

 #Opens given filename for reading

 with open(FileDir, 'r') as ConfigFile:

 #Loads file YAML contents to variable

 ConfigData = yaml.load(ConfigFile)

74

 #Returns dict variable containing config data

 return ConfigData

#Function for importing Settings Files

def Read_Settings(filename):

 FileDir = filename

 #Opens given filename for reading

 with open(FileDir, 'r', newline='') as SettingFile:

 #Creates reader object for csv data

 SettingReader = csv.reader(SettingFile, dialect='excel')

 #Initialises Settings dictionary variable

 SettingData = dict()

 #Reads individual settings pairs and formats into dictionary entries

 for row in SettingReader:

 SettingData[row[0]] = float(row[1])

 #Returns dict variable containing settings data

 return SettingData

#Function for exporting Log File data

def Write_Log(filename, LogData):

 FileDir = filename

 #Opens given filename for writing, overwrites if file is preexisting

 with open(FileDir, 'w', newline='') as LogFile:

 #Creates writer object for csv data

 LogWriter = csv.writer(LogFile, dialect='excel')

 #Writes individual list entries to file

 LogWriter.writerows(LogData)

 return

75

B.2 Modbus Address Encoding/Decoding Module Code

'''

Module Name: MDB_Addr.py

Author: Ethan Picking

Description:

This module provides a function to cross reference settings names from an input settings file, and

cross reference these names with specified configuration file data to provide their corresponding

device specific Modbus addresses. Data is returned as a dictionary variable matching Modbus address

with correctly scaled desired settings. An error is returned if settings are attempting to modify a read

only variable, or setting value exceeds the allowable range for that setting. An additional function is

provided for generating a basic lookup dict for cross referencing of device paramater names to their

respective address.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

def Addr_Settings(SettingData, ConfigData):

 #Initialise lookup dict variable

 CrossRef = dict()

 #Generate lookup dict from config data

 for Param in ConfigData:

 if ConfigData[Param]['NME'] != 'Reserved':

 CrossRef[ConfigData[Param]['NME']] = Param

 #Initialise address settings dict variable

 AddrSett = dict()

 #cycle through each parameter in the settings data

 for Param in SettingData:

 ParamAddr = CrossRef[Param]

76

 ParamSett = SettingData[Param]

 ParamRO = ConfigData[ParamAddr]['R/O']

 ParamType = ConfigData[ParamAddr]['TYP']

 ParamScl = ConfigData[ParamAddr]['SCL']

 ParamMin = ConfigData[ParamAddr]['MIN']

 ParamMax = ConfigData[ParamAddr]['MAX']

 #Raise error if parameter is found to be read only

 if ParamRO == True:

 print('Error: Settings File attempt to modify read-only parameter: ' + Param)

 raise SystemExit(0)

 #Raise error if Int parameter exceeds limits once scaled

 elif ParamType == 'INT':

 if ParamSett/ParamScl < ParamMin or ParamSett/ParamScl > ParamMax:

 print('Error: Parameter Setting outside limits: ' + Param)

 raise SystemExit(0)

 else:

 AddrSett[ParamAddr] = int(ParamSett/ParamScl).to_bytes(2,

byteorder = 'big', signed=True)

 #Raise error if Uint parameter exceeds limits once scaled

 elif ParamType == 'UINT':

 if ParamSett/ParamScl < ParamMin or ParamSett/ParamScl > ParamMax:

 print('Error: Parameter Setting outside limits: ' + Param)

 raise SystemExit(0)

 else:

 AddrSett[ParamAddr] = int(ParamSett/ParamScl).to_bytes(2,

byteorder = 'big')

 #Raise error if Enum or Bit Enum parameter exceeds limits

 elif ParamType == 'ENUM' or ParamType == 'BITE':

 if ParamSett < ParamMin or ParamSett > ParamMax:

 print('Error: Parameter Setting outside limits: ' + Param)

77

 raise SystemExit(0)

 else:

 AddrSett[ParamAddr] = int(ParamSett).to_bytes(2, byteorder = 'big')

 #Return address encoded paramter settings dict

 return AddrSett

def Addr_Lookup(ConfigData):

 #Initialise lookup dict variable

 CrossRef = dict()

 #Generate lookup dict from config data

 for Param in ConfigData:

 if ConfigData[Param]['NME'] != 'Reserved':

 CrossRef[ConfigData[Param]['NME']] = [Param, ConfigData[Param]['R/O']]

 #Return name/address dict

 return CrossRef

78

B.3 Modbus Format Module Code

'''

Module Name: MDB_Addr.py

Author: Ethan Picking

Description:

This module provides a class and asssociated functions for formatting of requests into the required

Modbus TCP format, and decoding of responses as required. Generation is automated as far as

possible, with errors raised if invalid data types or lengths are detected.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#Default MBAP Header Values

MBus_Default = {'TX_ID' : 0,

 'PRTCL' : 0,

 'LNGTH' : 1,

 'UN_ID' : 0}

#Modbus ADU class, accepts bytes format response arguement as direct input, otherwise uses default

values for empty packet, Length field is automatically calculated whenever a field is modified

class MBusPkt:

 def __init__(self, pkt=None):

 #If packet is given, checks for coreect format and valid length, then sets fields from

given data.

 if pkt != None:

 if isinstance(pkt, bytes) == False:

 print('Error: Packet not bytes format')

79

 raise SystemExit(0)

 elif len(pkt) < 8:

 print('Error: Packet too short')

 raise SystemExit(0)

 elif len(pkt[6:]) != int.from_bytes(pkt[4:6], byteorder='big'):

 print('Error: Packet length invalid')

 raise SystemExit(0)

 else:

 self.PKT = pkt

 self.TX_ID = pkt[0:2]

 self.PRTCL = pkt[2:4]

 self.LNGTH = pkt[4:6]

 self.UN_ID = pkt[6:7]

 self.FN_CD = pkt[7:8]

 self.DATA = pkt[8:]

 #If no input packet is given, sets to defined default values

 else:

 self.TX_ID = MBus_Default['TX_ID'].to_bytes(2, byteorder='big')

 self.PRTCL = MBus_Default['PRTCL'].to_bytes(2, byteorder='big')

 self.LNGTH = MBus_Default['LNGTH'].to_bytes(2, byteorder='big')

 self.UN_ID = MBus_Default['UN_ID'].to_bytes(1, byteorder='big')

 self.FN_CD = b''

 self.DATA = b''

 self.PKT = self.TX_ID + self.PRTCL + self.LNGTH + \

 self.UN_ID + self.FN_CD + self.DATA

 #Defines class response value when called

 def __repr__(self):

 return self.PKT.hex()

80

 #Defines class bytes response when called in this context

 def __bytes__(self):

 return self.PKT

 #Funcion for manually setting packet contents after initialisation, given as bytes

 def set_PKT(self, pkt):

 #Checks for coreect format and valid length, then sets fields from given data.

 if isinstance(pkt, bytes) == False:

 print('Error: Packet not bytes format')

 raise SystemExit(0)

 elif len(pkt) < 8:

 print('Error: Packet too short')

 raise SystemExit(0)

 elif len(pkt[6:]) != int.from_bytes(pkt[4:6], byteorder='big'):

 print('Error: Packet length invalid')

 raise SystemExit(0)

 else:

 self.PKT = pkt

 self.TX_ID = pkt[0:2]

 self.PRTCL = pkt[2:4]

 self.LNGTH = pkt[4:6]

 self.UN_ID = pkt[6:7]

 self.FN_CD = pkt[7:8]

 self.DATA = pkt[8:]

 #Fucntion for setting packet Transaction Identifier, given as an Int

 def set_TX_ID(self, tx_id):

 #Checks for correct format

 if isinstance(tx_id, int) == False:

 print('Error: Transaction Identifier not int format')

81

 raise SystemExit(0)

 #Updates field, length, and full packet

 else:

 self.TX_ID = tx_id.to_bytes(2, byteorder = 'big')

 self.LNGTH = (2 + len(self.DATA)).to_bytes(2, byteorder='big')

 self.PKT = self.TX_ID + self.PRTCL + self.LNGTH + \

 self.UN_ID + self.FN_CD + self.DATA

 #Fuction for setting packet Protocol Identifier, given as an Int

 def set_PRTCL(self, prtcl):

 #Checks for correct format

 if isinstance(prtcl, int) == False:

 print('Error: Protocol Identifier not int format')

 raise SystemExit(0)

 #Updates field, length, and full packet

 else:

 self.PRTCL = prtcl.to_bytes(2, byteorder = 'big')

 self.LNGTH = (2 + len(self.DATA)).to_bytes(2, byteorder='big')

 self.PKT = self.TX_ID + self.PRTCL + self.LNGTH + \

 self.UN_ID + self.FN_CD + self.DATA

 #Function for setting packet Unit Identifies, given as an Int

 def set_UN_ID(self, un_id):

 #Checks for correct format

 if isinstance(un_id, int) == False:

 print('Error: Unit Identifier not int format')

 raise SystemExit(0)

 #Updates field, length, and full packet

 else:

 self.UN_ID = un_id.to_bytes(1, byteorder = 'big')

82

 self.LNGTH = (2 + len(self.DATA)).to_bytes(2, byteorder='big')

 self.PKT = self.TX_ID + self.PRTCL + self.LNGTH + \

 self.UN_ID + self.FN_CD + self.DATA

 #Function for setting packet Function Code, given as an Int

 def set_FN_CD(self, fn_cd):

 #Checks for correct format

 if isinstance(fn_cd, int) == False:

 print('Error: Function Code not int format')

 raise SystemExit(0)

 #Updates field, length, and full packet

 else:

 self.FN_CD = fn_cd.to_bytes(1, byteorder = 'big')

 self.LNGTH = (2 + len(self.DATA)).to_bytes(2, byteorder='big')

 self.PKT = self.TX_ID + self.PRTCL + self.LNGTH + \

 self.UN_ID + self.FN_CD + self.DATA

 #Function for setting packet Data, given as Bytes

 def set_DATA(self, data):

 #Checks for correct format

 if isinstance(data, bytes) == False:

 print('Error: Data not bytes format')

 raise SystemExit(0)

 #Updates field, length, and full packet

 else:

 self.DATA = data

 self.LNGTH = (2 + len(self.DATA)).to_bytes(2, byteorder='big')

 self.PKT = self.TX_ID + self.PRTCL + self.LNGTH + \

 self.UN_ID + self.FN_CD + self.DATA

83

B.4 TCP Communications Module Code

'''

Module Name: MDB_Comms.py

Author: Ethan Picking

Description:

This module provides a function that uses the MDB_Format module correctly generate a list of

Modbus TCP Application Data Unit Requests from a given list of Protocol Data Units. Subsequently a

function is defined for transmitting these requests via a TCP connection to the device, and formatting

the received responses.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#import required socket library for TCP communications, and select library for awaiting socket

availability

import socket

import select

#import Modbus Format module

from MDB_Format import *

#Default values given for IP and Port

DEF_IP = '192.168.1.2'

DEF_PORT = 502

#Function for handling base TCP communication of given Protocol Data Units

def Comm(requests, IP=None, PORT=None):

 #Sets IP and PORT to default if not user specifid

 if IP == None:

84

 IP = DEF_IP

 if PORT == None:

 PORT = DEF_PORT

 #Initialise dict for respnses

 responses = dict()

 #Open TCP connection to device, using default IP and Port unless specified

 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as channel:

 channel.connect((IP, PORT))

 #Send each request and receive each response

 for request in requests:

 channel.sendall(bytes(request))

 #wait for return data to receive

 Recv_Ready = select.select([channel], [], [], 1)

 if Recv_Ready[0]:

 response = channel.recv(6)

 response += channel.recv(int.from_bytes(response[4:6],

byteorder='big'))

 response_TX_ID = int.from_bytes(response[0:2], byteorder='big')

 responses[response_TX_ID] = MBusPkt(response)

 else:

 channel.close()

 print('Error: Timeout waiting for device response')

 raise SystemExit(0)

 channel.close()

 #Return dict of responses

 return responses

def Gen_Requests(PDUs):

 #Initialise lists for requests

 requests = list()

85

 responses = list()

 #Initialise index for transaction identifiers

 tx_index = 0

 #Generation requests from given Protocol Data Units, incrementing transaction ID

 for PDU in PDUs:

 request = MBusPkt()

 request.set_TX_ID(tx_index)

 tx_index += 1

 request.set_FN_CD(PDU[0])

 request.set_DATA(PDU[1])

 requests.append(request)

 return requests

86

B.5 Modbus Error Handling

'''

Module Name: MDB_Error.py

Author: Ethan Picking

Description:

This module provides a dictionary and lookup function to automate Modbus error messaging.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#Dictionary of Error responses for Modbus defined Error Codes

Error_Codes = {b'\x01': 'Error from device: Invalid Function Code',

 b'\x02': 'Error from device: Invalid Data Addressing',

 b'\x03': 'Error from device: Invalid Data Value',

 b'\x04': 'Error from device: Device Failure',

 b'\x05': 'Error from device: Acknowledge Long Duration Request',

 b'\x06': 'Error from device: Device Busy, Please Retry',

 b'\x08': 'Error from device: Memory Parity Error'}

#Function for extracting error code from Modbus response data

def Modbus_Error(response):

 #Extracts response error code

 Error_Code = response.DATA

 #Cross references to determine error code message

 Error_Msg = Error_Codes[Error_Code]

 #Returns error message

 return Error_Msg

87

B.6 Modbus Read request/response handling Module Code

'''

Module Name: MDB_Read.py

Author: Ethan Picking

Description:

This module provides functions for the generation of Modbus Protocol Data Units (PDU's) for the

following Modbus function codes:

 - 0h01: Read Discrete Output Coil (Bit) Status

 - 0h02: Read Discrete Input Status

 - 0h03: Read Holding Registers

 - 0h04: Read Input Registers

Additional functions are provides to extract and format reply data from responses to the above

function codes.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#Import Module for Modbus Error Code Handling

from MDB_Error import *

'''

88

Functions for 0h01: Read Discrete Output Coil (Bit) Status

'''

#Function for the generation of PDU's for discrete output reads

def Gen_Read_Discrete_Output_Coil_PDUS(Coils):

 #Define Function Code

 PDU_FN = 0x01

 #Check input is in correct format: list

 if isinstance(Coils, list) == False:

 print('Error: Input to Read Discrete Output must be a list')

 raise SystemExit(0)

 #Sort given list of coil addresses

 else:

 Addresses = list(Coils)

 Addresses.sort()

 #Initialise variable for indexing individual addresses as grouped into PDU's

 Address_Index = list()

 for Address in Addresses:

 #Check address is in Integer format

 if isinstance(Address, int) == False:

 print('Error: Element of Input list to Read Discrete Output must be Int')

 raise SystemExit(0)

 #Check address is within acceptable range as defined by Modbus

 elif Address < 0 or Address > 0xFFFF:

 print('Error: Invalid address for Read Discrete Output')

 raise SystemExit(0)

 #Group Addresses into the minimum number of sets, within the PDU 2000 coil limit

 elif Address == Addresses[0]:

 Address_Index.append(list())

89

 Address_Index[-1].append(Address)

 elif Address < Address_Index[-1][0] + 2000:

 Address_Index[-1].append(Address)

 else:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 #Initialise variable PDU's

 PDUs = list()

 #Generate PDU's according to Function Code Format

 for Element in Address_Index:

 PDU_Address = Element[0].to_bytes(2, byteorder='big')

 PDU_Length = (1 + Element[-1] - Element[0]).to_bytes(2, byteorder='big')

 PDU_Data = PDU_Address + PDU_Length

 PDUs.append([PDU_FN, PDU_Data])

 #Return list of PDU's, and Address_Index for use in decoding responses

 return [PDUs, Address_Index]

#Function for the extraction of reply data from discrete output read responses

def Gen_Read_Discrete_Output_Coil_Reply(Responses, Address_Index):

 #Define Function Code

 PDU_FN = 0x01

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #Decode reply data using given Address Index

90

 for Index in range(0, len(Address_Index)):

 #If function code indicates error, pass to error handling module function to determine

correct error message, return data entry with false success flag, and error message text

 if int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN + 0x80:

 Error = Modbus_Error(Responses[Index])

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [False, Error]

 #Extract individual bits corresponding to requested addresses, return with True

success flag and output state

 elif int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN:

 Data = int.from_bytes(Responses[Index].DATA[1:], byteorder='little')

 for Element in Address_Index[Index]:

 Mask = 1 << (Element - Address_Index[Index][0])

 if Mask & Data == Mask:

 Reply_Data[Element] = [True, True]

 elif Mask & Data == 0:

 Reply_Data[Element] = [True, False]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

 #Return reply data dict

 return Reply_Data

'''

Functions for 0h02: Read Discrete Input Status

'''

91

#Function for the generation of PDU's for discrete input reads

def Gen_Read_Discrete_Input_Status_PDUS(Inputs):

 #Define Function Code

 PDU_FN = 0x02

 #Check input is in correct format: list

 if isinstance(Inputs, list) == False:

 print('Error: Input to Read Discrete Input must be a list')

 raise SystemExit(0)

 #Sort given list of input addresses

 else:

 Addresses = list(Inputs)

 Addresses.sort()

 #Initialise variable for indexing individual addresses as grouped into PDU's

 Address_Index = list()

 for Address in Addresses:

 #Check address is in Integer format

 if isinstance(Address, int) == False:

 print('Error: Element of Input list to Read Discrete Input must be Int')

 raise SystemExit(0)

 #Check address is within acceptable range as defined by Modbus

 elif Address < 0 or Address > 0xFFFF:

 print('Error: Invalid address for Read Discrete Input')

 raise SystemExit(0)

 #Group Addresses into the minimum number of sets, within the PDU 2000 input limit

 elif Address == Addresses[0]:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 elif Address < Address_Index[-1][0] + 2000:

92

 Address_Index[-1].append(Address)

 else:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 #Initialise variable PDU's

 PDUs = list()

 #Generate PDU's according to Function Code Format

 for Element in Address_Index:

 PDU_Address = Element[0].to_bytes(2, byteorder='big')

 PDU_Length = (1 + Element[-1] - Element[0]).to_bytes(2, byteorder='big')

 PDU_Data = PDU_Address + PDU_Length

 PDUs.append([PDU_FN, PDU_Data])

 #Return list of PDU's, and Address_Index for use in decoding responses

 return [PDUs, Address_Index]

#Function for the extraction of reply data from discrete input read responses

def Gen_Read_Discrete_Input_Status_Reply(Responses, Address_Index):

 #Define Function Code

 PDU_FN = 0x02

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #Decode reply data using given Address Index

 for Index in range(0, len(Address_Index)):

93

 #If function code indicates error, pass to error handling module function to determine

correct error message, return data entry with false success flag, and error message text

 if int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN + 0x80:

 Error = Modbus_Error(Responses[Index])

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [False, Error]

 #Extract individual bits corresponding to requested addresses, return with True

success flag and input state

 elif int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN:

 Data = int.from_bytes(Responses[Index].DATA[1:], byteorder='little')

 for Element in Address_Index[Index]:

 Mask = 1 << (Element - Address_Index[Index][0])

 if Mask & Data == Mask:

 Reply_Data[Element] = [True, True]

 elif Mask & Data == 0:

 Reply_Data[Element] = [True, False]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

 #Return reply data dict

 return Reply_Data

'''

Functions for 0h03: Read Holding Registers

'''

#Function for the generation of PDU's for Holding Register Reads

94

def Gen_Read_Holding_Registers_PDUS(Registers):

 #Define Function Code

 PDU_FN = 0x03

 #Check input is in correct format: list

 if isinstance(Registers, list) == False:

 print('Error: Input to Read Holding Registers must be a list')

 raise SystemExit(0)

 #Sort given list of register addresses

 else:

 Addresses = list(Registers)

 Addresses.sort()

 #Initialise variable for indexing individual addresses as grouped into PDU's

 Address_Index = list()

 for Address in Addresses:

 #Check address is in Integer format

 if isinstance(Address, int) == False:

 print('Error: Element of Input list to Read Holding Registers must be Int')

 raise SystemExit(0)

 #Check address is within acceptable range as defined by Modbus

 elif Address < 0 or Address > 0xFFFF:

 print('Error: Invalid address for Read Holding Register')

 raise SystemExit(0)

 #Group Addresses into the minimum number of sets, within the PDU 125 register limit

 elif Address == Addresses[0]:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 elif Address < Address_Index[-1][0] + 125:

 Address_Index[-1].append(Address)

95

 else:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 #Initialise variable PDU's

 PDUs = list()

 #Generate PDU's according to Function Code Format

 for Element in Address_Index:

 PDU_Address = Element[0].to_bytes(2, byteorder='big')

 PDU_Length = (1 + Element[-1] - Element[0]).to_bytes(2, byteorder='big')

 PDU_Data = PDU_Address + PDU_Length

 PDUs.append([PDU_FN, PDU_Data])

 #Return list of PDU's, and Address_Index for use in decoding responses

 return [PDUs, Address_Index]

#Function for the extraction of reply data from holding register read responses

def Gen_Read_Holding_Registers_Reply(Responses, Address_Index, Config_Data):

 #Define Function Code

 PDU_FN = 0x03

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #Decode reply data using given Address Index

 for Index in range(0, len(Address_Index)):

 #If function code indicates error, pass to error handling module function to determine

correct error message, return data entry with false success flag, and error message text

 if int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN + 0x80:

96

 Error = Modbus_Error(Responses[Index])

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [False, Error]

 #Extract individual registers corresponding to requested addresses, return with True

success flag and register value

 elif int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN:

 Data = Responses[Index].DATA[1:]

 for Element in Address_Index[Index]:

 Reg_Index = (Element - Address_Index[Index][0]) * 2

 #Determine if value is signed or not and convert

 if Config_Data[Element]['TYP'] == 'INT':

 Reg_Val = int.from_bytes(Data[Reg_Index:Reg_Index+2],

byteorder = 'big', signed=True) * Config_Data[Element]['SCL']

 elif Config_Data[Element]['TYP'] == 'UINT':

 Reg_Val = int.from_bytes(Data[Reg_Index:Reg_Index+2],

byteorder = 'big') * Config_Data[Element]['SCL']

 else:

 Reg_Val = int.from_bytes(Data[Reg_Index:Reg_Index+2],

byteorder = 'big')

 Reply_Data[Element] = [True, Reg_Val]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

 #Return reply data dict

 return Reply_Data

'''

97

Functions for 0h04: Read Input Registers

'''

#Function for the generation of PDU's for Input Register Reads

def Gen_Read_Input_Registers_PDUS(Registers):

 #Define Function Code

 PDU_FN = 0x04

 #Check input is in correct format: list

 if isinstance(Registers, list) == False:

 print('Error: Input to Read Input Registers must be a list')

 raise SystemExit(0)

 #Sort given list of register addresses

 else:

 Addresses = list(Registers)

 Addresses.sort()

 #Initialise variable for indexing individual addresses as grouped into PDU's

 Address_Index = list()

 for Address in Addresses:

 #Check address is in Integer format

 if isinstance(Address, int) == False:

 print('Error: Element of Input list to Read Input Registers must be Int')

 raise SystemExit(0)

 #Check address is within acceptable range as defined by Modbus

 elif Address < 0 or Address > 0xFFFF:

 print('Error: Invalid address for Read Input Register')

 raise SystemExit(0)

 #Group Addresses into the minimum number of sets, within the PDU 125 register limit

 elif Address == Addresses[0]:

 Address_Index.append(list())

98

 Address_Index[-1].append(Address)

 elif Address < Address_Index[-1][0] + 125:

 Address_Index[-1].append(Address)

 else:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 #Initialise variable PDU's

 PDUs = list()

 #Generate PDU's according to Function Code Format

 for Element in Address_Index:

 PDU_Address = Element[0].to_bytes(2, byteorder='big')

 PDU_Length = (1 + Element[-1] - Element[0]).to_bytes(2, byteorder='big')

 PDU_Data = PDU_Address + PDU_Length

 PDUs.append([PDU_FN, PDU_Data])

 #Return list of PDU's, and Address_Index for use in decoding responses

 return [PDUs, Address_Index]

#Function for the extraction of reply data from input register read responses

def Gen_Read_Input_Registers_Reply(Responses, Address_Index, Config_Data):

 #Define Function Code

 PDU_FN = 0x04

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #Decode reply data using given Address Index

99

 for Index in range(0, len(Address_Index)):

 #If function code indicates error, pass to error handling module function to determine

correct error message, return data entry with false success flag, and error message text

 if int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN + 0x80:

 Error = Modbus_Error(Responses[Index])

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [False, Error]

 #Extract individual registers corresponding to requested addresses, return with True

success flag and register value

 elif int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN:

 Data = Responses[Index].DATA[1:]

 for Element in Address_Index[Index]:

 Reg_Index = (Element - Address_Index[Index][0]) * 2

 #Determine if value is signed or not and convert, apply scaling factor

 if Config_Data[Element]['TYP'] == 'INT':

 Reg_Val = int.from_bytes(Data[Reg_Index:Reg_Index+2],

byteorder = 'big', signed=True) * Config_Data[Element]['SCL']

 elif Config_Data[Element]['TYP'] == 'UINT':

 Reg_Val = int.from_bytes(Data[Reg_Index:Reg_Index+2],

byteorder = 'big') * Config_Data[Element]['SCL']

 else:

 Reg_Val = int.from_bytes(Data[Reg_Index:Reg_Index+2],

byteorder = 'big')

 Reply_Data[Element] = [True, Reg_Val]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

 #Return reply data dict

 return Reply_Data

100

B.7 Modbus Write request/response handling

'''

Module Name: MDB_Write.py

Author: Ethan Picking

Description:

This module provides functions for the generation of Modbus Protocol Data Units (PDU's) for the

following Modbus function codes:

 - 0h05: Force Single Coil (Bit)

 - 0h06: Preset Single Register

 - 0h10: Preset Multiple Registers

Additional functions are provides to extract and format reply data from responses to the above

function codes.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#Import Module for Modbus Error Code Handling

from MDB_Error import *

'''

Functions for 0h05: Force Single Coil (Bit)

101

'''

#Function for the generation of PDU's for Single Coil Forces

def Gen_Single_Coil_Force_PDU(Coil, State):

 #Define Function Code

 PDU_FN = 0x05

 #Check input is in correct format: int

 if isinstance(Coil, int) == False:

 print('Error: Coil input to Single Coil Force must be int')

 raise SystemExit(0)

 #Check input is in correct format: bool

 elif isinstance(State, bool) == False:

 print('Error: State input to Single Coil Force must be bool')

 raise SystemExit(0)

 #Set Coil Address

 else:

 Address = Coil

 #Generate PDU according to Function Code Format

 PDU_Address = Address.to_bytes(2, byteorder='big')

 if State == True:

 PDU_State = 0xFF00.to_bytes(2, byteorder='big')

 else:

 PDU_State = 0x0000.to_bytes(2, byteorder='big')

 PDU_Data = PDU_Address + PDU_State

 PDU = [PDU_FN, PDU_Data]

 #Return PDU, and Address for use in decoding response

 return [PDU, Address]

102

#Function for the extraction of reply data from Single Coil Force responses

def Gen_Single_Coil_Force_Reply(Response, Address):

 #Define Function Code

 PDU_FN = 0x05

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #If function code indicates error, pass to error handling module function to determine correct

error message, return data entry with false success flag, and error message text

 if int.from_bytes(Response.FN_CD, byteorder='big') == PDU_FN + 0x80:

 Error = Modbus_Error(Response)

 Reply_Data[Address] = [False, Error]

 elif int.from_bytes(Response.FN_CD, byteorder='big') == PDU_FN:

 Data = Response.DATA

 #If response address does not match given address, raise error

 if int.from_bytes(Data[0:2], byteorder='big') != Address:

 print('Error: Invalid response address')

 raise SystemExit(0)

 #Extract output state feedback, return with True success flag and output state

 if int.from_bytes(Data[2:], byteorder='big') == 0xFF00:

 Reply_Data[Address] = [True, True]

 elif int.from_bytes(Data[2:], byteorder='big') == 0x0000:

 Reply_Data[Address] = [True, False]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

103

 #Return reply data dict

 return Reply_Data

'''

Functions for 0h06: Preset Single Register

'''

#Function for the generation of a PDU for Presetting a Single Register

def Gen_Preset_Single_Register_PDU(Register, Value):

 #Define Function Code

 PDU_FN = 0x06

 #Check register is in correct format: int

 if isinstance(Register, int) == False:

 print('Error: Register input to Preset Single Register must be int')

 raise SystemExit(0)

 #Check value is in correct format: bytes

 elif isinstance(Value, bytes) == False:

 print('Error: Value input to Preset Single Register must be bytes')

 raise SystemExit(0)

 #Check value is required length

 elif len(Value) != 2:

 print('Error: Value input to Preset Single Register must be 2 bytes long')

 raise SystemExit(0)

 #Set register address

 else:

 Address = Register

104

 #Generate PDU according to Function Code Format

 PDU_Address = Address.to_bytes(2, byteorder='big')

 PDU_Value = Value

 PDU_Data = PDU_Address + PDU_Value

 PDU = [PDU_FN, PDU_Data]

 #Return PDU, and Address for use in decoding response

 return [PDU, Address]

#Function for the extraction of reply data from Preset Single Register responses

def Gen_Preset_Single_Register_Reply(Response, Address):

 #Define Function Code

 PDU_FN = 0x06

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #If function code indicates error, pass to error handling module function to determine correct

error message, return data entry with false success flag, and error message text

 if int.from_bytes(Response.FN_CD, byteorder='big') == PDU_FN + 0x80:

 Error = Modbus_Error(Response)

 Reply_Data[Address] = [False, Error]

 elif int.from_bytes(Response.FN_CD, byteorder='big') == PDU_FN:

 Data = Response.DATA

 #If response address does not match given address, raise error

 if int.from_bytes(Data[0:2], byteorder='big') != Address:

 print('Error: Invalid response address')

105

 raise SystemExit(0)

 #Extract register value feedback, return with True success flag and register value

 Reply_Data[Address] = [True, Data[2:]]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

 #Return reply data dict

 return Reply_Data

'''

Functions for 0h10: Preset Multiple Registers

'''

#Function for the generation of PDU's for Presetting Multiple Registers

def Gen_Preset_Multiple_Registers_PDUS(Registers_Values):

 #Define Function Code

 PDU_FN = 0x10

 #Check input is in correct format: dict

 if isinstance(Registers_Values, dict) == False:

 print('Error: Input to Preset Multiple Registers must be a dict')

 raise SystemExit(0)

 #Sort given list of register address/value pairs

 else:

 Addresses = list(Registers_Values.keys())

 Addresses.sort()

 Addresses_Values = dict(Registers_Values)

106

 #Initialise variable for indexing individual addresses as grouped into PDU's

 Address_Index = list()

 for Address in Addresses:

 #Check address is in Integer format

 if isinstance(Address, int) == False:

 print('Error: Address keys input to Preset Multiple Registers must be Int')

 raise SystemExit(0)

 #Check address is within acceptable range as defined by Modbus

 elif Address < 0 or Address > 0xFFFF:

 print('Error: Invalid address for Preset Multiple Registers')

 raise SystemExit(0)

 #Group Addresses into the minimum number of sets, within the PDU 123 register limit

 elif Address == Addresses[0]:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 #ensure withing 123 register limit, and consecutive registers

 elif (Address < Address_Index[-1][0] + 123) and (Address - Address_Index[-1][-1] ==

1):

 Address_Index[-1].append(Address)

 else:

 Address_Index.append(list())

 Address_Index[-1].append(Address)

 #Initialise variable PDU's

 PDUs = list()

 #Generate PDU's according to Function Code Format

 for Element in Address_Index:

 Reg_Quantity = (1 + Element[-1] - Element[0])

 PDU_Address = Element[0].to_bytes(2, byteorder='big')

107

 PDU_Length = Reg_Quantity.to_bytes(2, byteorder='big')

 PDU_Count = (Reg_Quantity * 2).to_bytes(1, byteorder='big')

 PDU_Values = bytes()

 for Address in Element:

 Value = Addresses_Values[Address]

 #Check value is in Bytes format

 if isinstance(Value, bytes) == False:

 print('Error: Values input to Preset Multiple Registers must be in

Bytes')

 raise SystemExit(0)

 #Check Value is correct length

 elif len(Value) != 2:

 print('Error: Error: Value input to Preset Multiple Registers must be 2

bytes long')

 raise SystemExit(0)

 else:

 PDU_Values += Value

 PDU_Data = PDU_Address + PDU_Length + PDU_Count + PDU_Values

 PDUs.append([PDU_FN, PDU_Data])

 #Return list of PDU's, and Address_Index for use in decoding responses

 return [PDUs, Address_Index]

#Function for the extraction of reply data from Preset Multiple Registers responses

def Gen_Preset_Multiple_Registers_Reply(Responses, Address_Index):

 #Define Function Code

 PDU_FN = 0x10

108

 #Initialise dict variable for reply data

 Reply_Data = dict()

 #Decode reply data using given Address Index

 for Index in range(0, len(Address_Index)):

 #If function code indicates error, pass to error handling module function to determine

correct error message, return data entry with false success flag, and error message text

 if int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN + 0x80:

 Error = Modbus_Error(Responses[Index])

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [False, Error]

 #Check correct format of response data, return with True success flag and reply

correct format flag

 elif int.from_bytes(Responses[Index].FN_CD, byteorder='big') == PDU_FN:

 Data_Address = int.from_bytes(Responses[Index].DATA[0:2],

byteorder='big')

 Data_Length = int.from_bytes(Responses[Index].DATA[2:], byteorder='big')

 if Data_Address == Address_Index[Index][0] and Data_Length == (1 +

Address_Index[Index][-1] - Address_Index[Index][0]):

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [True, True]

 else:

 for Element in Address_Index[Index]:

 Reply_Data[Element] = [True, False]

 #Error if response function code is invalid

 else:

 print('Error: Invalid response function code')

 raise SystemExit(0)

 #Return reply data dict

 return Reply_Data

109

B.8 Device configuration

'''

Module Name: MDB_Configure.py

Author: Ethan Picking

Description:

This module provides a function for the automated configuring of a Modbus TCP device from user

defined settings and configuration files.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#import required modules

from MDB_File_IO import *

from MDB_Addr import *

from MDB_Write import *

from MDB_Comms import *

#Function for obtaining user inputs for IP, Port, Settings file, and Config File

def User_Config_Input():

 print('Type "y" to use different values than default IP address: 192.168.1.2 and Port: 502')

 if input() == 'y':

 print('Please enter device IP address (default: 192.168.1.2):')

 User_IP = input()

110

 print('Please enter device Port number (default: 502):')

 User_Port = input()

 else:

 User_IP = None

 User_Port = None

 print('Enter Settings file directory:')

 File_Sett = input()

 print('Enter Device Config file directory:')

 File_Config = input()

 return [File_Sett, File_Config, User_IP, User_Port]

#Function for configuring Modbus device

def Modbus_Configure(File_Sett, File_Config, User_IP, User_Port):

 print('Starting Configuration')

 #Uploads settings file

 Data_Sett = Read_Settings(File_Sett)

 print('Settings Uploaded')

 #Uploads device config file

 Data_Config = Read_Config(File_Config)

 print('Configuration Data Uploaded')

 #Generates settings list with modbus addresses

 Addr_Sett = Addr_Settings(Data_Sett, Data_Config)

 print('Settings Addresses Generated')

 #Generates PDU's

111

 [PDUs, Address_Index] = Gen_Preset_Multiple_Registers_PDUS(Addr_Sett)

 print('Protocol Data Units Generated')

 #Generated Modbus Requests

 Requests = Gen_Requests(PDUs)

 print('Modbus TCP Requests Generated')

 #Transmits requests, receives responses

 Responses = Comm(Requests, IP=User_IP, PORT=User_Port)

 print('Modbus TCP Responses Received')

 #Decodes Responses

 Reply = Gen_Preset_Multiple_Registers_Reply(Responses, Address_Index)

 print('Modbus TCP Responses Decoded:')

 #Displays operation status

 for Param in Reply:

 if Reply[Param][0] == True:

 print('Parameter ' + str(Param) + ': Successfull')

 else:

 print('Parameter ' + str(Param) + ': ' + Reply[Param][1])

 print('Configuration Concluded')

 return

#Exectues functions only if module is run, instead of imported

if __name__ == '__main__':

 [File_Sett, File_Config, User_IP, User_Port] = User_Config_Input()

 Modbus_Configure(File_Sett, File_Config, User_IP, User_Port)

112

B.9 Device Interrogation

'''

Module Name: MDB_Interrogate.py

Author: Ethan Picking

Description:

This module provides a function for the automated interrogation of a Modbus TCP device, given a set

of parameters, a sampling frequency, and sampling duration. Logged data is exported to a specified

log file.

Copyright © Ethan Picking 2020

Use of this software is not permitted without prior consent of the author.

The author accepts no responsibility for any outcomes that may occur through the use of this

software, which remain entirely at the risk of the user.

'''

#import time module for scheduling

import time

#import required modules

from MDB_File_IO import *

from MDB_Addr import *

from MDB_Read import *

from MDB_Comms import *

#Function for obtaining user inputs for IP, Port, Log file, Sampling Frequency, Sampling duration, and

parameters to be sampled

def User_Interrogate_Input():

 print('Type "y" to use different values than default IP address: 192.168.1.2 and Port: 502')

113

 if input() == 'y':

 print('Please enter device IP address (default: 192.168.1.2):')

 User_IP = input()

 print('Please enter device Port number (default: 502):')

 User_Port = input()

 else:

 User_IP = None

 User_Port = None

 print('Enter Log file directory:')

 File_Log = input()

 print('Enter Device Config file directory:')

 File_Config = input()

 print('Enter Sampling Frequency between 1 and 10 seconds:')

 Samp_Freq = int(input())

 if Samp_Freq < 0 or Samp_Freq > 10:

 print('Error: Sample Frequency out of range')

 raise SystemExit(0)

 print('Enter Sampling Duration between 1 and 60 minutes:')

 Samp_Dur = int(input())

 if Samp_Freq < 0 or Samp_Freq > 60:

 print('Error: Sample Duration out of range')

 raise SystemExit(0)

 print('Enter up to 10 parameters to sample, press Enter after each:')

 count = 0

 Samp_Params = list()

 while count < 10:

 Param = input()

 if Param == '':

 break

 count += 1

114

 Samp_Params.append(Param)

 return [File_Log, File_Config, Samp_Freq, Samp_Dur, Samp_Params, User_IP, User_Port]

#Function for interrogating Modbus device

def Modbus_Interrogate(File_Log, File_Config, Samp_Freq, Samp_Dur, Samp_Params, User_IP,

User_Port):

 print('Starting Interrogation')

 #Uploads device config file

 Data_Config = Read_Config(File_Config)

 print('Configuration Data Uploaded')

 #Generates address lookup dict

 Addr_Sett = Addr_Lookup(Data_Config)

 print('Address Dictionary Generated')

 #Generates address lists

 Addr_Input = list()

 Addr_Hold = list()

 for Param in Samp_Params:

 if Addr_Sett[Param][1] == True:

 Addr_Input.append(Addr_Sett[Param][0])

 else:

 Addr_Hold.append(Addr_Sett[Param][0])

 #Generates Holding regist PDU's

 [PDUs_Hold, Address_Index_Hold] = Gen_Read_Holding_Registers_PDUS(Addr_Hold)

 [PDUs_Input, Address_Index_Input] = Gen_Read_Input_Registers_PDUS(Addr_Input)

 print('Protocol Data Units Generated')

115

 print('Running Test Sample')

 #Generated Modbus Requests

 Requests_Hold = Gen_Requests(PDUs_Hold)

 Requests_Input = Gen_Requests(PDUs_Input)

 print('Modbus TCP Requests Generated')

 #Transmits requests, receives responses

 if len(Requests_Hold) > 0:

 Responses_Hold = Comm(Requests_Hold, IP=User_IP, PORT=User_Port)

 else:

 Responses_Hold = []

 if len(Requests_Input) > 0:

 Responses_Input = Comm(Requests_Input, IP=User_IP, PORT=User_Port)

 else:

 Responses_Input = []

 print('Modbus TCP Responses Received')

 #Decodes Responses

 Reply_Hold = Gen_Read_Holding_Registers_Reply(Responses_Hold, Address_Index_Hold,

Data_Config)

 Reply_Input = Gen_Read_Input_Registers_Reply(Responses_Input, Address_Index_Input,

Data_Config)

 Reply = dict()

 Reply.update(Reply_Hold)

 Reply.update(Reply_Input)

 print('Modbus TCP Responses Decoded:')

 #Displays operation status

116

 for Param in Reply:

 if Reply[Param][0] == True:

 print('Parameter ' + str(Param) + ': Successfull')

 else:

 print('Parameter ' + str(Param) + ': ' + Reply[Param][1])

 #Queries user to determine where to continue with interrogation post test

 print('Test Sample Completed, continue with interrogation? [y/n]')

 Continue_Flag = False

 while True:

 Entry = input()

 if Entry == 'y':

 Continue_Flag = True

 break

 elif Entry == 'n':

 Continue_Flag = False

 break

 else:

 print('Invalid entry. Enter "y" or "n":')

 #Interrogates if user selects continue

 if Continue_Flag == True:

 print('Proceeding with interrogation...')

 #initialise data log variable

 Data_Log = list()

 #Create data log heading values

 Data_Log.append(['TIME(s)'])

 Reply_keys = list(Reply.keys())

 Reply_keys.sort()

117

 for Param in Reply_keys:

 Data_Log[0].append(Data_Config[Param]['NME'])

 #Set sampling parameters

 Samp_Max = Samp_Dur * 60 / Samp_Freq

 Samp_Count = 0

 #perform sampling at desired frequency, for desired duration

 while Samp_Count <= Samp_Max:

 Time_Samp = time.time()

 if len(Requests_Hold) > 0:

 Responses_Hold = Comm(Requests_Hold, IP=User_IP,

PORT=User_Port)

 else:

 Responses_Hold = []

 if len(Requests_Input) > 0:

 Responses_Input = Comm(Requests_Input, IP=User_IP,

PORT=User_Port)

 else:

 Responses_Input = []

 Reply_Hold = Gen_Read_Holding_Registers_Reply(Responses_Hold,

Address_Index_Hold, Data_Config)

 Reply_Input = Gen_Read_Input_Registers_Reply(Responses_Input,

Address_Index_Input, Data_Config)

 Reply = dict()

 Reply.update(Reply_Hold)

 Reply.update(Reply_Input)

 Data_Log.append([Samp_Count * Samp_Freq])

 for Param in Reply_keys:

 if Reply[Param][0] == True:

 Data_Log[-1].append(Reply[Param][1])

118

 else:

 Data_Log[-1].append('ERROR')

 print('Sample ' + str(Samp_Count) + ' Complete, ' + str(int((Samp_Max-

Samp_Count)*Samp_Freq)) + ' Seconds remaining...')

 Samp_Count += 1

 while time.time() < Time_Samp + Samp_Freq:

 time.sleep(0.001)

 #write logged data to file

 print('Writing log file')

 Write_Log(File_Log, Data_Log)

 print('Interrogation Concluded')

 return

#Exectues functions only if module is run, instead of imported

if __name__ == '__main__':

 [File_Log, File_Config, Samp_Freq, Samp_Dur, Samp_Params, User_IP, User_Port] =

User_Interrogate_Input()

 Modbus_Interrogate(File_Log, File_Config, Samp_Freq, Samp_Dur, Samp_Params, User_IP,

User_Port)

120

Appendix D, Example Typical Use Parameter Set

The following settings were used as an example “Typical Use” parameter set during Phase Two testing

of the Configuration routine. This was intended to represent the bare minimum quantity of

parameters required to be set for the test device before operation.

Parameter Setting

APPLICATION 1

PHASE ROTATION 0

RATED FREQ. 0

DATE FORMAT 2

PHASE CT RATIO 100

MOTOR FLA 75

NEUTRAL CT RATIO 80

PHASE PT RATIO 35

SERVICE FACTOR 1.05

MOTOR LRA 6

LOCKD ROTOR TIME 10

NEUT OC TRIP LVL 10

NEU OC TRIP DLAY 0.5

RES OC TRIP LVL 0.5

RES OC TRIP DLAY 0.5

OUT103 FAIL-SAFE 1

Table D.1 Typical Use Parameter Set

121

Appendix E, Example Log File Excerpt

The following is an excerpt of a log file output by the Interrogation Routine, operating at one second

sampling intervals.

TIME
(s)

SET
SEC

SET
MIN

SET
HOUR

IA
CURR
ENT

IB
CURR
ENT

IC
CURR
ENT

IG
CURR
ENT

ELAPSED
TIME-mm

STOPPED
TIME-mm

NUM
MSG
RCVD

0 44 2 0 0 0 0 0 11 11 76

1 45 2 0 0 0 0 0 11 11 80

2 46 2 0 0 0 0 0 12 12 84

3 47 2 0 0 0 0 0 12 12 88

4 48 2 0 0 0 0 0 12 12 92

5 49 2 0 0 0 0 0 12 12 96

6 50 2 0 0 0 0 0 12 12 100

7 51 2 0 0 0 0 0 12 12 104

8 52 2 0 0 0 0 0 12 12 108

9 53 2 0 0 0 0 0 12 12 112

10 54 2 0 0 0 0 0 12 12 116

11 55 2 0 0 0 0 0 12 12 120

12 56 2 0 0 0 0 0 12 12 124

13 57 2 0 0 0 0 0 12 12 128

14 58 2 0 0 0 0 0 12 12 132

15 59 2 0 0 0 0 0 12 12 136

16 0 3 0 0 0 0 0 12 12 140

17 1 3 0 0 0 0 0 12 12 144

18 2 3 0 0 0 0 0 12 12 148

19 3 3 0 0 0 0 0 12 12 152

20 4 3 0 0 0 0 0 12 12 156

21 5 3 0 0 0 0 0 12 12 160

22 6 3 0 0 0 0 0 12 12 164

23 7 3 0 0 0 0 0 12 12 168

24 8 3 0 0 0 0 0 12 12 172

25 9 3 0 0 0 0 0 12 12 176

26 10 3 0 0 0 0 0 12 12 180

27 11 3 0 0 0 0 0 12 12 184

28 12 3 0 0 0 0 0 12 12 188

29 13 3 0 0 0 0 0 12 12 192

30 14 3 0 0 0 0 0 12 12 196

Table E.1 Interrogation Routine Log File Excerpt

123

Power On

Depress the power button momentarily, wait while device starts up until desktop is displayed as

shown above.

Transferring Files

Relevant Settings, Configuration, and Log Files may be transferred to and from the device using a USB

storage device connected to the external USB port, via the File Browser. Alternatively when using the

Configuration or Interrogation routines, files paths may be entered when prompted that specify files

located on a connected USB storage device.

Configure Modbus Device

Connect Tool to Modbus TCP device via the external RJ-45 port and an ethernet patch lead. Ensure

device is set to IP address 192.168.1.2 (unless specifying your own IP address), and is ready for Modbus

TCP communications. Select the “Configure Modbus Device” shortcut from the desktop, select

“Execute” when prompted. When prompted complete the required user input fields. Configuration

routine will now run, reporting status and completion notices. Once complete, press the enter key to

close the routine. Disconnect from the Modbus TCP device.

Interrogate Modbus Device

Connect Tool to Modbus TCP device via the external RJ-45 port and an ethernet patch lead. Ensure

device is set to IP address 192.168.1.2 (unless specifying your own IP address), and is ready for Modbus

TCP communications. Select the “Interrogate Modbus Device” shortcut from the desktop, select

“Execute” when prompted. When prompted complete the required user input fields. Interrogation

routine will now run, reporting status and completion notices. Once complete, press the enter key to

close the routine. Disconnect from the Modbus TCP device.

Power Off

Select Logout from the Raspberry Pi menu, choose Shutdown when prompted. Once Shutdown in

complete, double press the power button to turn off the internal power supply.

