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Abstract 

 

The efficiency of air conditioning systems has improved but is fundamentally limited by the ambient 

conditions of the air outside the building (to which heat is dumped for cooling, or from which heat is 

extracted for heating). This research project investigated the feasibility of improving the efficiency of a 

reverse cycle air conditioning unit by using water from a solar hot water system and a residential pool as 

an additional source/sink of low-grade heat.  

 

Reverse cycle air conditioning use for cooling and heating is becoming ever more prevalent worldwide. 

This is driven by the growing population and need for comfortable environments in households and 

workplaces to ensure employees are performing at high standards. This project extends on existing 

knowledge in using water as a heat sink/source in air-conditioning systems and assesses the feasibility of 

using such a design.  

 

Baseline data was collected on a household reverse cycle ducted air conditioner (a/c), solar hot water 

system and residential pool by recording refrigerant temperatures, heat sink/source temperatures and 

power consumption over all seasons. This was used to ascertain a reasonable energy consumption without 

modifications throughout the year. Calculations were then made in MATLAB to extrapolate the energy 

consumption with the heat sink/source utilised on the system. Validation of the calculations made on the 

household system was performed by collecting the same data on a reverse cycle box a/c and performing 

similar MATLAB calculations with and without a water heat sink/source modification. The validation of 

the household a/c system’s MATLAB calculations was consistent with the results of the box a/c system 

and the design was feasible using two different flow rate water pumps for heating and cooling respectively.  

 

Results were a 2.74% reduction in power use for the household a/c system with a flowing water loop from 

a heat sink (residential pool) in heating mode and a 16.11% reduction in power use for the household a/c 

system with a flowing water loop from a heat source (solar hot water system) in cooling mode. These 

results used the highest performing water pump with a mass flow rate of 1.33kg/s, however, a 0.83kg/s 

water pump was feasible in cooling mode with a breakeven time of 1.5 years and a 0.42kg/s water pump 

was feasible in heating mode with a breakeven time of 4.1 years.  
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K kelvin - SI unit of thermodynamic temperature 

k thermal conductivity 

latent heat heat that, when supplied to or removed from a body or thermodynamic system, results 

in a change in moisture content; the temperature of the air is not changed 

ρ density 
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COPR Coefficient of Performance – efficiency of a refrigerator 

QL magnitude of the heat removed from the refrigerated space 
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TH temperature of the heat rejected to the warm environment (heat sink) 

Wnet,in net work input to the refrigerator 
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1. Introduction 

 

1.1 Background 

Air-conditioning use for both cooling and heating is becoming ever more prevalent in Australia and around 

the world. The growing population and need for comfortable environments in households and workplaces 

to ensure employees are performing at high standards have led to companies and residential households 

investing thousands in reverse-cycle air-conditioning systems. The last 10-15 years has seen an 

exponential growth in energy prices and with that several new designs and technologies created to increase 

system efficiencies and supplement these rising costs. Furthermore, most refrigerants used in these air-

conditioning systems contain dangerous hydrofluorocarbons (HFCs) that are toxic to the environment, 

therefore another goal with these new designs and technologies is to reduce the harmful effects to the 

environment. 

 

There are still several areas and designs that have not been appropriately assessed and researched to 

increase these efficiencies in air-conditioning systems and this project endeavours to perform further 

research in these areas and assess the feasibility of some of these designs.  

 

1.2 Idea Development 

The efficiency of air-conditioning systems has improved but is fundamentally limited by the ambient 

conditions of the air outside the building (to which heat is dumped for cooling, or from which heat is 

extracted for heating).  This project will investigate the feasibility of improving the efficiency of a reverse-

cycle air-conditioning unit.  The method/hypothesis is to increase the temperature difference between the 

refrigerant and the source/sink, thus increasing the heat transfer rate of the refrigerant, reducing the mass 

flow rate of the refrigerant and therefore reducing the amount of energy required to process the refrigerant 

inside the air-conditioning unit. 

 

This project will have to compare any improvements in efficiency within the air-conditioning system 

against any extra energy costs and capital costs of installing the additional heat-exchanger system(s). 
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1.3 Aim 

The aim of this research project is to carry out a feasibility study of improving the efficiency of reverse-

cycle air-conditioning systems using water from a solar hot-water system and a pool as a source/sink of 

low-grade heat. 

 

1.4 Objectives 

The objectives outlined below were the basis of reaching defined goals throughout the research and design 

process of the project. To ensure these objectives were carried out to a high standard and in a timely 

manner, a project plan utilising a Gantt Chart was formed to ensure the goals were met and that an outcome 

of value was produced. The objectives were designed to be specific, measurable, achievable and realistic 

in the given time frame and included added objectives to work towards if time permitted. Objectives for 

the research project of carrying out a feasibility study of improving the efficiency of reverse-cycle air-

conditioning systems using water from a solar hot-water system and a pool as a source/sink of low-grade 

heat are as follows: 

1. Review existing household reverse-cycle air-conditioning systems and evaluate any current use of 

heat sinks/sources in this area. 

 

2. Research existing heat exchanger systems relating to reverse cycle air-conditioning systems to 

evaluate the feasibility of integrating heat sinks/sources into existing systems. 

 

3. Perform data collection over all seasons on a pool, solar hot water system and reverse-cycle air-

conditioning system to assess how temperatures and refrigerant mass flow rate changes under a 

variety of environmental conditions. 

 

4. Design, build and test an air-conditioning system using pool water as a heat sink and solar hot 

water as a heat source. 

 

5. Compare improvements in efficiency between the designed and built air-conditioning system using 

a heat sink/source and a standard air-conditioning system. 
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6. Investigate any additional energy/capital costs associated with installing the designed heat-

exchanger system to an existing air-conditioning system. 

 

If time and resources permit:  

 

7. Field testing of the designed heat exchanger system on an existing reverse-cycle air-conditioning 

system. 

 

8. Compare and evaluate results from design testing with results from field testing. 

 

9. Make recommendations on refinement of current heat exchanger design for further efficiency 

gains.  
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2. Literature Review 

 

The following review of literature will detail several key subjects relevant to the project area. Information 

from previously published works and reputable sources will be researched and critically reviewed to 

identify and understand the project area thoroughly. As the project is based around air-conditioning 

efficiencies, it will be imperative to highlight thermodynamic and heat transfer processes and the relevant 

factors relating to performance and efficiency. The over-arching goal of this review will be to identify and 

analyse what studies and findings have occurred in the area and ensure that the proposed methodology is 

original and will not be a replication of a previous study. Finding the knowledge gap or design gap is of 

the upmost importance and will aid in future works if required. 

2.1 Heat Transfer Process 

The heat transfer process occurs in nature when heat is transferred from the high temperature medium to 

the low temperature media; therefore, for this to occur there must be a temperature difference between the 

two media. When discussing this process and how it relates to air-conditioning and refrigeration it is 

important to understand the first and second law of thermodynamics, as a heat transfer process cannot take 

place unless both laws have been satisfied. The first law of thermodynamics is ‘energy cannot be created 

or destroyed during a process, only change forms; and the second law of thermodynamics is processes 

occur in a certain direction and energy has quality as well as quantity’ (Cengel & Boles 2015, p. 275). 

There are several variations to the second law of thermodynamics, however, the Clausius Statement is 

more relevant to refrigeration and heat pumps. It states that ‘it is impossible to construct a device that 

operates on a cycle and produces no effect other than the transfer of heat from a lower temperature body 

to a higher temperature body’ (Cengel & Boles 2015, p. 288). 

 

These laws are based around the study of thermodynamics and are only concerned with the amount of heat 

transfer for a system undergoing a process. More specifically, thermodynamics deals with equilibrium 

states and changes from one form to another. Heat transfer deals with the determination of the rate of 

energy transfer, thus the laws of thermodynamics can be re-written considering this distinction as follows. 

Cengel & Ghajar (2015) describe how the first law requires the net rate of energy transfer into a system 

be equal to the rate of energy increase of that system and the second law requires that heat be transferred 

in the direction of decreasing temperature. The rate of energy transfer is subject to the magnitude of the 
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temperature difference; whereby the larger the difference in temperature of the two media, the higher the 

rate of heat transfer. 

 

2.2 Cooling in Air Conditioning Systems 

Although there are several types of systems and designs, the most common air-conditioners typically use 

the vapour-compression refrigeration cycle to cool the inside air to a comfortable level. In this cycle the 

refrigerant is vaporised and condensed alternately and is compressed when in a gaseous state (Cengel & 

Boles, 2015). In performing these functions, the a/c system removes heat from the target space (source) 

and transfers it to the outside air (sink). Referring to figure 1, the phase changes of the refrigerant are 

caused by the heat transfer process of the refrigerant and ensure the cycle can continue by removing the 

heat QL (the desired output) from the cold inside environment TL and transferring it to the warm outside 

environment TH. 

 

Figure 1. The objective of a refrigeration cycle (cooling): to remove QL 

 from the cooled space (Cengel & Boles, 2015) 

 

2.3 Heating in a Heat Pump 

The basic heat pump uses the same vapour-compression refrigeration cycle as an air conditioner. The 

objective is to heat the space (supply the heat) instead of cooling the space (removing the heat) like an air-

conditioner. To achieve this the flow of refrigerant is opposite when compared to an air conditioner, 

however, the flow direction does not change through the compressor as the compression of the refrigerant 
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is still required, as discussed later in Section 2.4.1. Therefore, the target space for the desired output of the 

heat pump has been reversed and the system removes heat from the outside cooler air (sink) and transfers 

it to the target space (source). The cycle for the refrigerant is identical to a cooling system. Figure 2 shows 

how heat QL is drawn in through the condenser from the cold environment outside TL and transferred to 

the warmer inside space TH (QH being the desired output). 

 

Figure 2. The objective of a heat pump: to supply heat QH 

 into the warmer space (Cengel & Boles, 2015) 
 

2.4 Components of an Air Conditioning/Heat Pump System 

The main components are a compressor, condenser, throttling device and an evaporator. Depending on 

whether the system is an air-conditioner or a heat pump will determine what role the condenser and 

evaporator heat exchanger plays. These systems operate using a working fluid called refrigerant, which is 

an essential part of the system for absorbing and transferring the heat to the required area. The purpose of 

these systems is to extract heat from the outside ambient air and transfer it into the building if set to the 

heating mode (heat pump). In cooling mode, the system extracts heat from the inside of the building and 

transfers it to the outside, leaving cooler air on the inside (air conditioner). As the outside air is a 

sufficiently large thermal energy reservoir, there is no notable change in the outside air ambient 

temperature (See Section 2.6). 
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2.4.1 Compressors 

The purpose of a compressor in an air conditioning system is to increase the pressure of the refrigerant 

saturated/superheated vapour by reducing its specific volume, thus compressing and changing the state of 

the refrigerant to a superheated vapour, which also has the effect of increasing the temperature of the 

refrigerant. As the refrigerant enters the compressor, the state of the refrigerant may not be possible to 

control so precisely, therefore by slightly superheating the vapour ensures the refrigerant is completely 

vaporised upon entry to the compressor. The compressor adds mechanical energy or work (Wnet,in) to the 

system, in addition to circulating the flow of refrigeration through the cycle. The compressor is positioned 

between the evaporator and the condenser in the system and supplies refrigerant to the condenser at high 

pressure and relatively high temperature ready for condensing (Cengel & Boles, 2015).   

 

Referring to figure 3, there are several types of refrigeration compressors including but not limited to 

reciprocating, screw, rotary, centrifugal and scroll type (Bright Hub Engineering, 2020). Reciprocating 

compressors are the most common type and have three sub-categories, being hermetically sealed, semi-

hermetically sealed and open. This form of compressor uses the reciprocating motion of a piston 

arrangement to compress the refrigerant inside a cylinder.  

 

Figure 3. Common types of compressors available  

(Dincer, 2017) 
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2.4.2 Condensers 

The condenser’s function is to lower the temperature of the superheated vapour refrigerant as it flows 

through the coils of the condenser at constant pressure, thereby undergoing a phase change from 

superheated vapour to saturated or sub-cooled liquid (Dincer, 2017).  The condenser is positioned between 

the compressor and the throttling device and comes in several types and configurations, each having a 

specific application.  

 

The three types of condensers used in industry as are water-cooled, air-cooled and evaporative (Dincer, 

2017). Sub-categories of the air- and water-cooled types include shell-and-tube, shell-and-coil and tube-

in-tube. Air-cooled condensers are primarily used for domestic and commercial air-conditioning systems 

as outside air is used as the cooling medium (cooling mode). In cooling mode, these condensers have a 

fan that draws air past the coil containing the refrigerant and in turn the latent heat of the refrigerant is 

removed as sensible heat by this air flow. In heating mode, an air-cooled condenser acts more like an 

evaporator, whereby heat is extracted from the outside cold ambient air and past over the coils, transferring 

the heat through the system to the inside heated space.  

 

2.4.3 Throttling Devices 

A throttling device is used in the refrigeration process to reduce the condensing pressure of the refrigerant 

to the required evaporator pressure and to control the flow of refrigerant to the evaporator depending on 

loading characteristics (Dincer, 2017). As the throttling device is located between the condenser and the 

evaporator in the cycle, the refrigerant enters the device at high pressure and the “throttling” effect or 

expansion drastically reduces the pressure of the refrigerant, also reducing the temperature. Depending on 

what type of throttling device is used will determine the rate at which refrigerant enters the evaporator and 

in turn the amount of heat that is transferred to the refrigerant.  

 

Some common types of throttling devices include capillary tubes, expansion valves and float valves, each 

of which are designed to be used for certain applications. There are sub-categories of each type, however 

the thermostatic expansion valve is the most common type, which controls the flow of liquid refrigerant 

to the evaporator based on system load and capacity by sensing the outlet temperature of the refrigerant 

vapour leaving the evaporator.  
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2.4.4 Evaporators 

The function of the evaporator is to absorb the heat from the refrigerated space, thus providing the required 

cooling effect (Dincer, 2017). The refrigerant enters the evaporator from the throttling device as a low-

temperature, low-pressure saturated liquid, however, this usually only occurs in an ideal cycle or if the 

system is carefully tuned. The actual cycle tends to have the refrigerant as a sub-cooled liquid as it enters 

the evaporator. During the heat transfer process in the evaporator, the liquid refrigerant evaporates as it is 

heated due to the refrigerant being at the saturation temperature for the given pressure, so any added energy 

(due to the heat transfer) will cause a phase change, resulting in a saturated vapour or slightly superheated 

vapour (Cengel and Boles, 2015). The vapour-compression cycle is then completed as the vapour 

refrigerant returns to the compressor to begin the process again. 

 

In a heat pump, the function of the evaporator is to absorb heat from the heat source. In the case of a heat 

pump for space heating, heat energy from the outside cold ambient air is absorbed through the evaporator 

coil (serving as a condenser in this mode) and to transfer this heat energy to the condenser coil (serving 

as an evaporator in this mode) on the inside and release it into the heated space by a fan and ducting 

(Goodman Manufacturing Company, 2020) (refer figure 5). 

 

Evaporators are divided into two main categories: direct cooler type and indirect cooler type. Direct cooler 

evaporators cool air, which in turn cools the required space and indirect cooler evaporators cool liquid, 

which in turn cools the required space (Dincer, 2017). These can further be divided up into liquid, air and 

gas coolers, which are each used for specific applications. Each of the components described above operate 

on a steady-state, steady-flow process and operate continuously during system operation. 

 

2.5 Reverse Cycle Air Conditioning Systems 

There are several types of reverse cycle air conditioning systems currently on the market, however all 

have the same basic principles. This being, the principles of the vapour-compression refrigeration cycle, 

which depending on the a/c setting will differ in its objectives. Refer to figures 4 and 5 for a schematic of 

the flow of refrigerant in a reverse cycle air conditioning system. As stated in Section 2.4, both air-

conditioners and heat pumps individually have the same mechanical components, however, a reverse cycle 

air conditioner has the addition of a reversing valve, which essentially enables one system to function as 
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a heat pump in winter and an air conditioner in summer by reversing the flow of refrigerant after the 

compressor.  

 

Figure 4. Reverse cycle a/c system operation –  

Cooling mode (Cengel & Boles, 2015) 

 

 

Figure 5. Reverse cycle a/c system operation –  

Heating mode (Cengel & Boles, 2015) 

 

2.6 Thermal Energy Reservoirs 

Cengel and Boles (2015, p. 277) describe a thermal energy reservoir as a ‘body with relatively large 

thermal energy capacity (mass × specific heat) that can supply or absorb finite amounts of heat without 

undergoing any change in temperature’. Examples of such bodies are oceans, lakes and the atmosphere as 

megajoules of industrial by-products are dumped into these reservoirs without causing any notable change 

in the temperature. Thermal energy reservoirs come in two forms, which are heat sources and heat sinks. 

A reservoir that supplies energy in the form of heat is a source and a reservoir that absorbs energy in the 

form of heat is a sink (Cengel & Boles, 2015). 
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Air-conditioning systems, including heat pumps use ambient air as a thermal energy reservoir. Air-

conditioners use outside ambient air at a higher temperature as a heat sink, whereby the system removes 

heat from the inside and transfers it to the warmer outside environment, maintaining a low temperature on 

the inside. Heat pumps conversely use the low temperature outside ambient air as a heat source by 

absorbing heat in the lower temperature environment and transferring it to the high temperature space on 

the inside of the building. 

 

2.7 Modifications and Developments in Air Conditioning Systems 

2.7.1 Cascade, Multistage and Gas Refrigeration Systems 

Over the past few decades there have been many new developments and modifications of existing air 

conditioning and reverse cycle systems to improve efficiencies and increase performance.  One example 

of these modifications is cascade refrigeration systems. These systems still use the vapour-compression 

cycle, however, they do so in two or more stages operating in series (Cengel & Boles, 2015) (refer to 

figure 6 showing a two-stage cascade system and the applicable T-s diagram). The stages of the system 

are connected through a heat exchanger which acts as a condenser for one stage and evaporator for the 

next stage. Each stage can use different refrigerants depending on the requirements of the system, as 

different refrigerants have different characteristics. The advantage of these systems is that it requires less 

compressor work and the amount of heat absorbed from the refrigerated space increases, thus increasing 

the coefficient of performance (COP). These systems are usually used in industrial applications where the 

temperature range and thus pressure range may be large, and efficiency is the main priority. 
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Figure 6. Two-stage cascade system and applicable T-s diagram  

(Cengel & Boles, 2015) 
 

Similar to the cascade refrigeration system, is the multistage compression refrigeration system referring 

to figure 7. If the same refrigerant can be used throughout multiple stages, instead of connecting the stages 

by a heat exchanger, a flash chamber can be used. The flash chamber is positioned between two expansion 

valves and the condenser and evaporator and has excellent heat transfer properties. A portion of the liquid 

refrigerant vaporises in the flash chamber forming a saturated vapour and is routed to and mixed with the 

superheated vapour from the low-pressure compressor. The mixture then enters the high-pressure 

compressor creating a regeneration process. 
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Figure 7. Two-stage compression refrigeration system 

with a flash chamber and applicable T-s diagram 

 

Gas refrigeration cycles or the reversed Brayton cycle is similar to the reversed Carnot cycle, however, 

due to the heat transfer process not being isothermal these processes differ (Cengel & Boles, 2015). 

Additionally, this cycle is not practical in industrial and household applications as the COP is relatively 

low due to the temperature variation during the heat transfer process and is only suitable for aircraft 

cooling, due to the lightweight, simple and regenerative design. 

 

2.7.2 Absorption Refrigeration and Solar Thermal Systems 

Absorption refrigeration systems are becoming increasingly utilised and developed as the systems use 

naturally occurring solar, gas, waste heat and geothermal as a source of energy (Cengel & Boles, 2015). 

These systems function by absorption of the refrigerant by a transport medium, usually water. The 

refrigerant can range in type depending on the application such as ammonia or water and transport 

mediums such as lithium bromide or lithium chloride. 

 

The most common absorption refrigeration systems have the same components as the vapour-compression 

cycle except the compressor is replaced by an absorption mechanism consisting of a generator, 

regenerator, rectifier, absorber, pump and expansion valve (refer figure 8 showing an ammonia (NH3) 

absorption refrigeration system with solar as the thermal energy source). The sole purpose of the 
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absorption mechanism is to raise the pressure of the refrigerant. The main difference and advantage of 

absorption systems over vapour-compression systems is that a liquid is compressed instead of a vapour. 

Also, the work input is very low as the heat transfer is from an external source, such as solar energy and 

a liquid is being compressed instead of a gas. These systems are very expensive, complex, require a large 

space and are less efficient (usually COP less than 1), however, if the cost of the thermal energy source is 

relatively low compared to electricity than the system could be considered for commercial and industrial 

applications. 

 

Figure 8. Ammonia (NH3) absorption refrigeration system with solar as  

the thermal energy source (Cengel & Boles, 2015) 

 

Referring to figure 9, the absorption cooling method via solar thermal technology is a process whereby 

the refrigerant (most commonly a LiBr/H20 or Ammonia- H20 solution) is evaporated in an evaporator, 

absorbed in the absorber and diluted (Siddiqui, M. U. and S. A. M. Said, 2015). This completes the 

pressurisation of the refrigerant by dissolving the refrigerant (H2O) in the absorbent (LiBr). From here, 

the diluted solution in pumped into the generator but must be cooled to optimise the absorption process. 

The refrigerant is then condensed in a condenser and is fed back into the evaporator via an expansion 

valve. 

The cooling effect from the system is then fed to either a chilling water flow or air flow, which passes 

through the evaporator (Solar Thermal Energy for Utilities and Industry, 2019). This is known as a closed 

continuous or intermittent operation system and the main benefit of the system is that the pressurisation 
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of the refrigerant requires very little electrical power. Solar thermal collectors are used to regenerate the 

refrigerant vapour in the generator and can produce several hundred kW of cooling capacity (Al-Zubaydi, 

2011). 

 

Figure 9. Basic solar thermal absorption cycle for cooling and refrigeration 

(Solar Thermal Energy for Utilities and Industry, 2019) 

 

2.7.3 Solar Thermal Adsorption Systems 

The adsorption process is similar to the absorption process, whereby it does not require a compressor 

(refer figure 10). While absorption is a chemical process which uses the attraction between a liquid and a 

surface, the adsorption cycle uses the attraction between a gas and a surface and uses an adsorption bed, a 

condenser and an evaporator and is usually a closed system but can be open. Referring figure 8, the process 

of adsorption involves the refrigerant solution boiling in the evaporator and the vapour produced during 

this phase is collected on the adsorption bed, which is made of Carbon (Kuri, et al., 2007). The refrigerant 

is depleted after a short time (usually occurring at the peak solar intensity when cooling is most required) 

at which point the adsorbent is heated by solar power and regenerated, thus removing the vapour, cooling 

the refrigerant and condensing it for the required purpose. Due to this regeneration cycle, the adsorption 

process is intermittent, which can be overcome with the use of multiple adsorption beds. The evaporation 

of the adsorbent occurs in the evaporator and the evaporator simultaneously absorbs the heat from ambient 

air, which causes the refrigeration process. This solar thermal cooling process is mainly used in 

refrigeration systems more so than air-conditioning systems and is usually not as efficient as absorption 

systems. 
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Figure 10. Basic schematic diagram of the solar adsorption  

cooling system (Hassan, H. Z. & A. A. Mohamad, 2012) 

 

2.7.4 Solar Thermal Ejector Systems 

Ejector systems in general are not a new technology, but with the integration of solar thermal energy to 

power and provide heat for the systems, the technology has seen interesting recent developments. 

Referring to figure 11, this process functions by a high-pressure vapour being produced in a generator, 

which is the primary fluid. The liquid refrigerant is evaporated by the heat source at state 5 and the primary 

fluid moves to the ejector at state 1, where it increases velocity and reduces pressure, in turn inducing the 

vapour in the evaporator (secondary fluid). Both the primary and the secondary fluids then mix in the 

mixing chamber creating the refrigerant fluid where it flows into the diffuser. Here the fluid’s velocity is 

reduced, and pressure increases once again. As the fluid enters the condenser at state 2, it rejects the heat 

and part of the liquid in the condenser is routed to the generator during state 3 and state 6 and the other 

half of the liquid is expanded through the expansion device during state 4 and enters the evaporator as a 

mixture of vapour and liquid. This mixture is then completely evaporated in the evaporator, which creates 

the cooling effect fluid (Al-Zubaydi, 2011). Solar thermal ejector systems generally have a low coefficient 

of performance depending on the temperature of the generator and condenser when compared with 

absorption and adsorption systems. 
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Figure 11. Schematic diagram of solar thermal 

ejector cooling system (Ersoy, H. K., et al., 2007) 

 

2.7.5 Solar Thermal Desiccant Systems 

Desiccant cooling systems are not a new technology much the same as ejector systems, however with the 

addition of solar power to run the system, these systems can be very effective under certain conditions. 

There are two types of desiccant systems, solid and liquid and each of these systems have several 

configurations. Al-Zubaydi, (2011) stated that this system “consists of a combination of drying process 

by absorption of water vapour in the air and evaporative cooling of water in the air to be treated. The 

drying is done on the surface of an adsorbent material such as Silica gel, activated Alumina, Zeolite, 

Lithium Chloride and Lithium Bromide”.  

Referring to figure 12 for the solid desiccant system, two revolving wheels including a dehumidification 

wheel and a heat exchange wheel make up the first stage of the system. Initially the warm ambient air 

from the environment passes through the dehumidification wheel, whereby the wheel rotates and absorbs 

the moisture in the air. The air is then heated as it passes through the heat exchange wheel, which is then 

pre-cooled. From that point, depending on the temperature and humidity requirements of the system, the 

air then passes through a humidifier and is supplied to the application. The return air is humidified until it 

reaches the saturation point to ensure maximum cooling potential and makes sure the heat exchanger 

operates efficiently. On this return cycle the air then passes through the heat exchange wheel, whereby the 

humid air is heated by a heating coil that is fed from the solar heated water or air. For solid solar thermal 

desiccant systems low temperature solar thermal collectors result in higher efficiencies and the high 
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ventilation rates associated with these systems provides comfortable indoor conditions with respect to 

temperature and humidity. 

 

Figure 12. Schematic diagram of a solid desiccant cooling 

system with a solar collector (Al-Zubaydi, 2011) 

 

Liquid desiccant cooling systems are a recent development in the industry and very similar to solid 

desiccant systems, although the desiccant is in liquid form, usually a lithium chloride solution. Referring 

to figure 13, the desiccant solution is circulated between the absorber and the regenerator and is sprayed 

over the cooling coil in the opposite direction to the return air (Al-Zubaydi, 2011). The desiccant air 

absorbs the moisture from the air and is cooler after passing the cooling coil. If further cooling is required 

at this point, an aftercooler is used to achieve the lower temperatures. The desiccant solution is sprayed 

over the heating coil against the flow of the ambient air, which rejects the water from the solution and 

reconcentrates it for the cooling cycle. The solar collectors are used here to heat the heating coil via air 

flow or water flow. Liquid desiccant solar thermal systems offer a higher level of dehumidification at the 

same temperatures when compared to the solid desiccant systems and have been most effective in hot, 

humid environmental conditions. 
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Figure 13. Basic schematic diagram of a liquid desiccant cooling system 

with a solar collector (Al-Zubaydi, 2011) 

 

2.7.6 Energy Recovery Ventilators (ERV) 

Energy Recovery Ventilators (ERV’s) are devices engineered to transfer energy between the exhaust air 

of a commercial or residential building and the outdoor air supply to reduce energy consumption of the 

system by recycling/pre-conditioning the air, reducing load requirements and therefore requiring lower 

capacity a/c systems (Yang, et al., 2015). These devices recover otherwise wasted energy during the 

ventilation process in vapour-compression systems by removing humidity from the incoming outdoor air 

and transferring it to the exhaust air in summer and by removing humidity from the exhaust air and 

transferring it to the incoming outdoor ventilation air in winter (Hoger, 2009). It is important to note that 

an ERV can recover both sensible and latent heat energy and a Heat Recovery Ventilator (HRV) can 

recover sensible heat only. Latent heat energy is the energy absorbed or released from a substance during 

a phase change from gas to solid or liquid and vice versa and sensible heat energy is the energy required 

to change the temperature of a substance without a phase change (Latent and Sensible Heat, n.d.). ERV’s 

are usually the preferred device due to the added benefit of humidity control and reducing indoor air 

pollution, which can enhance the quality of air of the conditioned space and improve work/living 

conditions. 

 

There are several types of ERV’s of which are selected on location and size of the a/c or HVAC system 

and the climate conditions in the region. Rotary (wheel) heat exchanger ERV’s are the most popular type 

due to size, low cost, ease of maintenance and effectiveness. The device uses either a plastic or metal 

wheel that rotates between an exhaust and outdoor incoming air stream, transferring the heat from one air 
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stream to the other (Hoger, 2009). The plastic wheels are usually made with an impregnated desiccant that 

can absorb and release moisture or latent energy, while the metal wheels can only transfer heat or sensible 

energy.  

 

Plate (fixed core) heat exchanger ERV’s utilise a larger footprint but have no moving parts. This type of 

ERV directs air though a series of channels, which heat or cool the fixed plate material and transfer the 

heat energy to the other air stream (Hoger, 2009). As with rotary ERV’s, the metal core type can only 

transfer sensible energy, however, the plastic and paper types can transfer sensible and latent heat energy. 

 

Heat-pipe heat exchangers are HRV’s as only sensible heat can be transferred due to copper pipes being 

used containing refrigerant. These tubes are routed between the exhaust and outside incoming air streams, 

where one air stream heats the refrigerant, causing evaporation which is then routed to the other air stream 

which cools the pipe, condensing the refrigerant and warming the cooler air stream (Hoger, 2009). The 

system then routes the condensed refrigerant back to the warmer air stream to start the cycle again. 

 

Run around Coils are also HRV’s as only sensible heat can be transferred due to the water coil being 

unable to transfer latent heat. These systems have one water coil in the exhaust air stream and one water 

coil in the incoming outdoor air stream. The two coils are plumbed together and use either a water and/or 

glycol mixture. Like the heat-pipe, heat is absorbed in one air stream and transferred to the other (Hoger, 

2009). These systems are usually used in large systems where the exhaust and outdoor incoming air 

streams are large distances apart. 

 

Energy Recovery Ventilators offer a great energy benefit for several climates/environmental conditions 

and can further increase the efficiency of systems with large differences between indoor and outdoor air 

temperatures. These devices can be used in heating and cooling mode and could be used in conjunction 

with a system using water as a sink/source to increase the temperature differential of the refrigerant and 

sink/source and therefore further reduce energy consumption. 
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2.8 Performance Comparison of Solar Thermal Cooling/Heating Systems 

The coefficient of performance (COP) of all the solar thermal technologies are relatively low when 

compared with current vapour-compression refrigeration systems on the market (Al-Zubaydi, 2011). The 

COP’s are approximately 0.2-0.33 for ejector systems, 0.6 for adsorption systems, 0.86 for absorption 

systems and 1.2 for double stage absorption systems. Desiccant cooling and adsorption systems are 

currently quite expensive as well, which poses significant restrictions on wider commercialisation for 

these technologies. At this stage, absorption solar thermal systems seem to be the most efficient, effective 

and likely to penetrate the market of a wider scale, but significant progress and developments must be 

made to surpass the average COP of innovative vapour-compression systems of approximately 3.5. 

 

2.9 Use of Water as a Sink in Air Conditioning Systems 

Air conditioning systems that utilise water to increase the temperature difference between the refrigerant 

and the source and sink is a relatively new area of research, however, these designs have been used in 

some small applications since 2009, but not widely adopted. This is mainly due to the lack of research, 

documentation and standardisation of the systems. The main reason for using water as the sink or source 

is because the standard reverse cycle vapour-compression a/c system uses ambient air as a sink or source 

depending on whether cooling or heating mode is selected. Water storage devices such as a water tank or 

pool are generally at a lower temperature than the ambient temperature at any one time. From this, the 

work required to transfer the heat in a vapour-compression a/c system increases as the temperature 

difference between the cooler heat source and the warmer heat sink increases (Woolley, et al., 2010). 

Therefore, by using a water storage device to reduce this temperature difference could ultimately increase 

cooling/heating efficiencies and reduce the overall energy consumption. 

 

2.9.1 Air Conditioning System Innovative Systems  

Ma, et al. (2017) utilised an efficient water-cooled a/c using a heat pipe and bus-type water loop. In 

designing this system, low grade energy was used as the heat source or sink depending on the a/c setting 

by circulating water through the system in a bus-type setup to recover or recycle the internal heat otherwise 

lost to the atmosphere. The system combined a vapour-compression system with a separate heat pipe and 

provided a COP of 3.58 in heating mode and 3.65 in cooling mode, providing efficient and reliable 

performance. Other articles provided similar findings with using heat pipes to cool air prior to reaching 

the condenser with slight increases in COP and reductions in energy consumption. 
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Liu, et al. (2013) carried out a performance analysis on a multi-functional heat pump in cooling mode 

whereby four combinations of heat sink were studied. These combinations were using an air sink only, a 

water sink only, both air and water sink in parallel, and an air sink and water sink in series. The 

experiments were carried out at various ambient temperatures and found varying levels of cooling capacity 

and COP depending on the combination. The water sink used was a grey water tank and a hot water tank 

used to supply/supplement hot water to the household. The study found that the performance of the air 

sink and water sink in series was superior, however, the performance of all combinations reduced as 

ambient air temperature increased. This study was worth noting due to the findings of how performance 

of the system changed considerably depending on the temperatures of the water sink and air sink. For the 

proposed design, it may not be feasible to see efficiency gains in all seasons and environmental conditions. 

 

2.9.2 Air Conditioners and Heat Pumps with Integrated Water Heaters 

Ji, et al. (2003) published an article on the use of a water heater design in an air conditioner. This was 

achieved by immersing the condensing coils of the heat pump or air conditioner in a water tank, thereby 

the rejected heat from the system would heat up the water surrounding the condenser coils and supply hot 

water to the household, albeit supplementing primary hot water supply depending on demands. Due to the 

increased temperatures of the refrigerant in the condenser coils as the water temperature in the tank 

increases, the performance of the system was reduced. This was alleviated by connecting another air-

cooled condenser in series after the immersed condenser coils. There have been several studies that 

investigate the incorporation of water heaters with air conditioning systems and all show that as water 

temperature in the tank increases, the performance and hot water making potential of the system decreases. 

A pool or water tank as the media for heat sink in a similar system to this via a pump and flowing water 

through an immersed tank surrounding the condenser coils could see further performance increases.  

 

2.9.3 Swimming Pools as Heat Sinks for Air Conditioning Systems 

Harrington, C & Modera, M (2013) suggest that using swimming pools as a sink for waste heat from air 

conditioning systems can reduce electricity consumption of the appliance by as much as 35% during peak 

demand. The paper also shows by using a swimming pool as a heat source for heating could increase the 

electricity saving for the appliance to 45%. These findings and energy savings are dependent on pool 

temperatures experienced throughout the year as well as the climate and location of the system, however, 

the use of a solar hot water system as a heat source for a heat pump during heating could be feasible to 
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incorporate into this type of system. Harrington, C & Modera, M (2013) also found that by using a pool 

as a heat sink for air conditioners, the rate of evaporation of the pool water increased. The results found 

that for every degree Celsius increase in maximum hourly pool temperature there was a 2% increase in 

the rate of evaporation, therefore increasing water usage by at least 0.4 m3 over the cooling season. 

However, once again this figure depended on climate, size of pool and whether the pool was located 

indoors or outdoors. Woolley, et al. (2010) also described this method of heat rejection from household 

cooling systems as a way to reduce or completely displace the requirement of direct pool heating, further 

reducing energy costs. This study validated a design model through experimentation on the thermal 

behaviour of pools as heat sinks, which included how several variables such as conductive heat exchange 

with the ground, radiative heat exchange with the sky, convective heat exchange with the air and pool 

shading would have an impact on the overall performance of the system.  

 

2.9.4 Geothermal Heat Sinks in Air Conditioning Systems 

The use of large bodies of water or the ground as a heat sink has been occurring for many years. Several 

powerplants around the world use lakes and oceans as a heat sink due to the lower than ambient 

temperatures experienced to reduce energy consumption and increase system efficiencies. Little research 

has been conducted into the efficiency comparisons between using ground coupled heat exchangers or 

geothermal heat pumps and conventional vapour-compression systems, however, these systems have been 

utilised increasingly in Europe and the US since the 1990’s. Khedari, et al. (2001) performed experiments 

and provided comparison between a normal a/c system and a modified condenser a/c system. The modified 

condenser system consisted of a copper pipe of length 67m buried in a shaded area at a depth of 1.5m near 

a water reservoir to maintain moist soil. This required much more refrigerant but still reduced the energy 

consumption of the system due to the relatively constant temperature of the ground at that depth year-

round. The COP calculated in this experiment was very high when compared to the normal a/c system, 

however, several considerations were raised in the conclusion of the article, which led to a less than 

specific outcome. 

 

A more recent study by Speerforck, A & Schmitz, G (2016) used an open cycle desiccant assisted air 

conditioning system with three double U-tube borehole heat exchangers (BHX) at a depth of 80m to 

generate the cool water for the system. This study has caveats regarding the climate and soil conditions 

but finds the performance of the system is dramatically increased with the combination of a heat pump in 
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the winter months, however, further economic evaluation would be necessary. The findings from these 

articles indicate using large thermal reservoirs such as water storage devices and the ground as heat sinks 

in a/c systems can produce large efficiency gains under the appropriate environmental conditions. Further 

research is required to isolate what these environmental conditions are and if the associated economic 

implications of using such a system in a residential household is feasible. 
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3. Methodology  

 

3.1 Description of Works 

The project was designed with six phases of work throughout the year. Each phase had defined tasks and 

goals to achieve within the given timeframe as per the project schedule and a phase review that included 

consultation/feedback from the project supervisor and any further work to complete the phase 

requirements. Phase 1 involved collecting data from the start of semester 1 on ambient air temperatures, 

pool temperatures, hot water system temperatures and household a/c refrigerant temperatures, which 

continued on a daily basis throughout the project year. Phase 2 was the design stage whereby a way to test 

the use of the heat sinks and sources to check for efficiency gains was researched and implemented. Phase 

3 was testing the chosen design and collecting data for calculations and comparison to see where in the 

system would see power reductions depending on whether hot packs or cold packs were used and at what 

location these were applied. Phase 4 was focused around performing calculations utilising MATLAB to 

iterate and find refrigerant temperatures, mass flow rates and heat transfer at the required points in the 

household and box a/c system. Phase 5 was the comparison stage at which the results of the calculations 

on the household system were compared to the findings and calculations on the box a/c system. Phase 6 

was the final stage where the findings from the testing, calculations and comparison were assessed for 

feasibility in application for residential use and determining if additional energy/capital costs were 

associated with incorporating such a design on a residential scale. 

3.1.1 Phase One – Data Collection 

Phase One of the project involved taking temperature and power measurements of a household reverse 

cycle ducted air-conditioner to ascertain a baseline for refrigerant temperatures, heat sink (residential pool) 

and heat source (solar hot water system) temperatures and power consumption of a standard household 

air-conditioner. The household air-conditioner was a 20kW Ducted Inverter Reverse Cycle a/c model 

numbers: Outdoor unit - RZQ200LY1 and Indoor unit - FDYQN200LBV1, utilising 8.3kg of R410A 

refrigerant. The rated capacity for this unit was 20kW in cooling and 22.4kW in heating.  

 

The temperature measurements were taken at the compressor inlet and outlet on the unit with an infrared 

thermometer that was accurate to ±0.2°C (refer figure 14). The power measurements were taken using a 

residential smart meter (refer figure 15 - EDMI Atlas Series Mk10D meter) on the house and performing 

the appropriate calculations for power (refer table 3 for excerpt of power readings and Appendix C). The 
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household utilised 3-phase power, so the appropriate 3-phase formula for power was used: P = I ×31/2 × 

PF × V, where I = current in amps, PF = power factor and V = volts. These measurements could be used 

to find mass flow rate and temperature of the refrigerant for the system and be used later in the project to 

compare efficiencies to the designed system utilising the heat sink/source and extrapolated data for the 

household a/c system. The heat sink for the project was a residential pool as a water tank was not available 

and the heat source was a residential solar hot water system (although on cooler and overcast days, the 

electric booster was required to supplement the solar heating). 

  

Figure 14. Infrared thermometer used for temperature measurements (eBay, 2020) 

 

 

Figure 15. EDMI Atlas Series Mk10D meter (EDMI Limited, 2010) 

 

3.1.2 Phase Two – Design Options 

Phase two involved designing an air conditioning system that utilised the pool and hot water system as a 

heat sink/source to increase the temperature difference between the refrigerant in the air conditioning 

copper lines and the source/sink. The hypothesis and knowledge gap to be proven was that by applying 

the heat sink/source temperature to the refrigerant lines in a precise location of the vapour-compression 

cycle, the temperature difference between the refrigerant and the source/sink would increase, thus 

increasing the heat transfer rate, reducing the mass flow rate, and therefore reducing the overall power 

consumption of the compressor. The general goal of the experiment being to reduce the amount of heat 
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energy required from the compressor and thus a reduction in the power consumption for the air conditioner 

to operate effectively and efficiently.  

 

There were two options for the design during phase two of the project and these were investigated for 

feasibility before going ahead with the building/testing. The first option was using a car air conditioning 

system as the basis of the design. The system was to be either removed from a vehicle or parts procured 

from a wreckers to build the system separate from the vehicle. Using a water pump and insulated thin 

flexible lines routed around the refrigerant lines of the a/c system to the heat sink and source, the goal was 

to actively transfer heat either from the refrigerant lines to the heat sink for cooling mode or transfer heat 

from the heat source in the flexible lines to the refrigerant in the lines for heating mode. Being a 12V 

system, a 240V electric motor would had to have been acquired to drive the compressor of the system via 

a belt to create the flow of refrigerant through the system and a 12V battery used to control the thermostat 

or temperature of the system and change the mode from heating to cooling.   

 

The second design option was to use a reverse cycle wall/box air conditioner (a/c) to perform the same 

procedure using a water pump and insulated thin flexible lines around the a/c refrigerant lines. The design 

would be simplified through one 240V power source and one compact system, using a standard power 

meter to measure the power consumption of the unit with and without the heat sink/source applied. As 

with the original measurements for the household air conditioner, the temperature of the refrigerant lines 

would need to be measured at the required locations in the system as well as a mass flow rate and 

temperature of the refrigerant calculated. After testing in a variety of environmental conditions and 

seasons, a comparison could be made between the designed systems efficiency with the heat sink/source 

and the household system with calculations made to extrapolate the energy consumption and mass flow 

rate with the heat sink/source temperature utilised on the system.   

 

3.1.3 Design Option Constraints and Selection  

The feasibility assessment of the designs was time consuming and challenging, requiring thorough 

research and information from subject matter experts. The vehicle air conditioning system design was 

troublesome in a variety of ways. The accessibility to a wreckers that would allow this sort of removal 

was an initial concern, which included the time-consuming nature of the removal. A car air conditioning 

system is routed throughout the engine bay with rigid and flexible lines and travels through the firewall 
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of the engine to the cabin area where the evaporator and thermostat are located. Concern laid with the 

serviceability of the system prior to removal; being at a wreckers for an unknown length of time and with 

the possibility of releasing or disturbing the refrigerant in the lines inadvertently, causing HFCs to be 

released into the atmosphere and a possible WHS risk associated with a pressurised gas. Further issues 

surrounded the power source of the car system as to effectively compare the design and the household 

system; both would need to be on a 240V system. As discussed briefly in Section 3.1.2, this could be 

possible, but may cause issue with other components in the car a/c system, being originally designed for 

12V power. 

Design option two was troublesome initially as acquiring a reverse cycle box air conditioner in the modern 

day was quite difficult. One was eventually sourced; however, it did not operate. Tests were performed 

using a multimeter to find the source of damage/failure, which showed an issue with the main printed 

circuit board (PCB). Another a/c was eventually procured, which operated well in both cooling and heating 

mode. The item was a Fujitsu Reverse Cycle a/c model number AKT9RGS-W and operated using 680 

grams of R22 refrigerant. It had a rated capacity of 2.5kW in cooling and 2.8kW in heating. This design 

option implemented the use heat packs and cold packs at an appropriate temperature to simulate the heat 

sink and source temperature around the refrigerant lines of the designed system followed by performing 

the applicable measurements and calculations. The hot/cold packs did not flow as such, so the temperature 

of the packs changed quite rapidly, however, served a similar purpose to the use of a water pump routed 

to the heat sink (residential pool) and source (solar hot water system). 

Due to the problems with design option one highlighted above, the safest, most ethical and practical design 

option chosen was design option two utilising the reverse cycle wall/box air conditioner. Furthermore, 

utilisation of the hot and cold packs to simulate the heat sink/source temperature was chosen with this 

design for testing and data collection. 

3.1.4 Phase Three – Testing Design/Data Collection 

Phase three involved testing the reverse cycle box air conditioner utilising the hot and cold packs to 

simulate the temperature of the heat source/sink. The initial testing involved a trial and error approach to 

find at which points throughout the vapour-compression cycle of the box air-conditioner would see power 

reductions depending on whether hot or cold packs were used and in what mode the a/c was operated. The 

packs were directly applied to the external surface of the refrigerant copper pipe in various locations with 

the aim of seeing an instantaneous power reduction reading on the power meter. Once an appropriate 
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location was found for both heating and cooling mode using either the hot or cold pack, measurements 

were taken for refrigerant pipe temperatures, sink/source temperatures, ambient air temperatures, and 

power consumption before and after applying the sink/source. These measurements and data collection 

were conducted each day after the design was setup to provide a reasonable dataset to ensure effective and 

viable results. Further information on the measurements and data collection can be found in Section 3.2. 

3.1.5 Phase Four – Calculations/Extrapolation 

With the data collected from both the household air-conditioner baseline measurements and the box air-

conditioner design measurements using the hot/cold packs to simulate the heat source/sink, several 

calculations were required to find refrigerant temperatures, mass flow rates and the heat transfer at the 

required points in the systems. Phase Four of the project utilised Microsoft Excel initially for these 

calculations, but it was soon established that due to the large datasets, the calculations needed to be 

performed in MATLAB using a program to iterate the solutions for the results to be acquired in a 

reasonable timeframe. Refer to Section 3.4 for further information on the calculations. 

3.1.6 Phase Five – Comparisons 

Comparing the results of the calculations of the household a/c system to the findings and calculations on 

the box a/c system was the basis of Phase Five. After the household a/c system calculations were 

extrapolated using MATLAB with the heat sink and source temperatures included, a comparison with the 

extrapolated data/results from the household a/c system and the results from the box a/c system was 

performed. These comparisons would be graphed and analysed in detail to see how close the extrapolated 

measurements/calculations on the household a/c system were to the measurements taken by directly using 

the heat sink/source on the box a/c system. The hypothesis was that if the calculations were similar to the 

measurements, it would show a good indication that the extrapolation is valid. If the calculations differed 

substantially from the measurements, the extrapolation may not be valid, however, the trends of the 

behaviour of the system (by changing a controlling parameter) would have been established. Results of 

the calculations and comparisons can be found in Section 4. 

3.1.7 Phase Six – Feasibility Assessment 

Assessing the feasibility of using such a design on a household system and determining any additional 

energy or capital costs with the design was the purpose of Phase Six. Based off the outcome of the Phase 

Five results and comparisons, a feasibility assessment was carried out to determine if the chosen design 
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would be viable for residential use. Further work will be discussed in Sections 4 and 5 to ascertain if using 

alternate methods or wider ranging testing conditions could increase efficiencies of such a design and 

provide maximum energy and capital savings in the future. 

3.2 Data Analysis and Measurements 

3.2.1 Baseline Data Collection – Household a/c, Hot Water System, Pool Temperature  

During the initial phase, the data collection and measurements taken were the most important part of the 

project. Ensuring accuracy and consistency with these measurements was paramount. The household solar 

hot water system and air-conditioner model was researched thoroughly to ensure the data captured could 

be used effectively (refer table 1 showing household air-conditioner specifications). Furthermore, the 

smart meter on the house was researched as accessing the appropriate menu to find instantaneous voltage, 

amps, power factor and net usage was not known initially. The smart meter was an EDMI Atlas Series 

Mk10D as discussed in 4.1 and the user manual was consulted on how to access the menu to cycle through 

the required data. 

 

 

 

3.2.2 Baseline System Measurements – Household Air Conditioner 

Measurements were taken systematically from the 27th of January 2020. These measurements included 

pool water temperature, maximum local ambient air temperature, minimum local ambient air temperature, 

hot water system outlet temperature (out of hot water system and into house), hot water system inlet 

20Kw Standard Ducted Inverter Reverse Cycle Air Conditioner cooling heating

Model: outdoor unit - RZQ200LY1 power input (rated) 6.44kW 7.00kW

Model: indoor unit - FDYQN200LBV1

R410A

3 Phase, 415v, 50Hz high press side 4.0MPa

Mass of refrigerant (outdoor unit) low press side 2.7MPa

8.3kg E.E.R/C.O.P 3.11/3.20

Airflow Rate (Rated) 1200

Compressor Type

Piping sizes Refer to link

Rated Capacity Piping length 50m

Cool - 20.0 kW  

Heat - 22.4 kW

Capacity Range

Cool - 12.0-20.0 kW

Heat - 13.4-22.4 kW

The Rated Capacity, Power Input and Running Current are measured in accordance with AS/NZS 3823.1.2

Improved Energy Efficiency

Hermetically Sealed Scroll Type

Achieved through the use of a DC Fan motor, cross-pass heat exchanger and increased outdoor coil passes.

Table 1: Household Daikin ducted air-conditioner specifications from where data is being collected 
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temperature, air-conditioning refrigerant exit temperature (external temperature of copper pipe after 

compressor), air-conditioning refrigerant inlet temperature (external temperature of copper pipe before 

compressor) and power consumption (calculated from Mk10D meter data). Power consumption data 

collection was delayed until the 6th of March due to challenges surrounding the Mk10D interface and 3-

phase power as discussed in 5.1.1. This was tracked on two spreadsheets with the power measurements 

spreadsheet utilising the applicable formulas to convert and calculate the correct power for a 3-phase 

system. See tables 2 and 3 for a small excerpt of these measurements (refer to 7.4 Appendix C – System 

Measurements). 

 

 

 

 

 

 

 

 

 

 

Measurements were not taken during the shoulder seasons: 19/05/20 – 14/06/20 and 26/08/20 – 30/09/20 

as the efficiency of the a/c system was naturally high as the system did not have to do much to reach the 

set temperature. For example, the target conditioned temperature (inside the house) was no more than a 

Table 2: Excerpt of the baseline temperature measurements taken 

Table 3: Excerpt of the baseline power measurements taken 
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few degrees different to the sink/source temperature (outside the house), depending on heating or cooling 

mode.  Therefore, the proposed modifications of the designed air conditioning system are likely to 

consume more power than they will save if implemented on a residential household system during the 

shoulder seasons. The measurements resumed on the 15th of June when the household reverse cycle air 

conditioner was set to heating mode, however, did not resume after the 26th of August due to time 

constraints with residential schools, full-time work and other unit course work. 

 

3.2.3 Box Air-Conditioner Data Collection 

During the design and testing phase of the project the reverse cycle box a/c was researched to ascertain 

the specifications of the unit required for testing and further calculations (refer table 4 showing Fujitsu 

box a/c specifications). The temperature of the heat source (solar hot water system) and heat sink (pool) 

on the day was used for the hot pack and cold pack temperature respectively by heating the pack up in the 

microwave or cooling it down in the fridge to the required sink temperature (refer figure 16 showing the 

hot/cold packs).  

Table 4: Fujitsu box air-conditioner specifications 
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Figure 16. Hot/cold pack used to simulate the water source/sink temperature (eBay, 2020) 

 

The power consumption data was collected prior to applying the heat sink or source and 30-60 seconds 

after applying the heat sink/source to the required refrigerant pipe. The power consumption of the reverse 

cycle box air-conditioner was measured using a 240V power meter (refer figure 17 displaying the power 

meter used). 

 

 

Figure 17. Power meter used to measure the  power consumption 

on the box air-conditioner 

 

3.2.4 Box Air-Conditioner System Measurements  

Measurements were taken on the box air-conditioning system from the 12th of August on several of the 

refrigerant lines within the unit, as well as the temperature of the sink or source, the maximum and 
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minimum ambient air temperatures of the day and the power use of the unit before and after application 

of the hot or cold pack, simulating the sink or source temperature. One spreadsheet with two sheets was 

used for tracking this data, one for the heating mode of the reverse-cycle air-conditioner and one for the 

cooling mode of the reverse-cycle air-conditioner (refer table 5 and 6 for an excerpt of the temperature 

and power data collected for both cooling and heating mode). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Once again, measurements were not taken during the shoulder season of: 26/08/20 – 14/09/20 as the 

efficiency of the a/c system was naturally high. As measurements were performed in both heating and 

cooling mode during the winter August period in Ipswich, QLD, the results could be vastly different if 

performed in the warmer months of the year or in a different location. This limitation with the testing is 

discussed further in Section 3.3. 

 

Table 5: Excerpt of the box a/c temperature and power measurements in cooling mode 

Table 6: Excerpt of the box a/c temperature and power measurements in heating mode 
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3.2.5 Errors/Assumptions – Data Collection and Measurements 

The measurements had several assumptions made to account for small errors in the data collected. The 

main error laid with the power measurements. For this to be accurate, all other power sources in the 

household would need to be off prior to taking the measurements. The was not practical, as during the 

data collection period, full-time work was being conducted from home using lights, fans and computers. 

In addition, the household utilised one large kitchen fridge and a small bar fridge, which could not be 

turned off during the measurements. Therefore, a baseline power load was identified. To ensure the 

measurements were as accurate as possible, a data set for the power was taken before turning the air-

conditioner on, with minimum household power on and then another data set taken 5 minutes after the air 

conditioner was turned on. The baseline power load was then subtracted from the power load with the a/c 

on, which provided an instantaneous power consumption for the air conditioner. The measurements were 

also taken at the same time each day for continuity at approximately 4pm (refer table 3). 

 

Further issue with the power measurements was the instantaneous nature of the readings. These readings 

were constantly fluctuating, although minor in most cases. It was noted that during start-up the a/c would 

draw much more power and be constantly increasing/fluctuating as opposed to 5 minutes into operation 

when the readings had stabilised. Thus, this was chosen as an appropriate time to perform the 

measurements. A similar issue was found when taking temperature measurements of the refrigerant lines. 

If a delay of approximately 5 minutes was adhered to, the refrigerant temperatures had almost stabilised 

to achieve an accurate reading to ±0.2°C. The hot water system temperature measurements were erratic 

due to the solar aspect. The solar irradiance on the day, meant this temperature reading could fluctuate 

significantly and if it dropped below a certain temperature, the electric booster was required to supplement 

the solar energy source and provide sufficient hot water for the household.  

 

3.3 Limitations/Constraints with Testing the Design 

It was known from the start of the design testing that there were going to be limitations and constraints 

with the chosen design, which could be alleviated given more time, money and resources. However, due 

to the undergraduate nature of the project, the limitations and constraints were known and accounted for 

as well as possible.  
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The hot/cold packs used to simulate the solar hot water system water temperature and residential pool 

water temperature were approximately 270mm in length by 125mm in width. This proved to be a problem 

when applying the packs to the refrigerant copper pipe of the box air-conditioning system as the full length 

of the copper pipe could not be covered with the pack and therefore the heat transfer would not be as 

effective.  

 

The packs had a slightly varied temperature at different points on the pack. This may have been due to the 

chemical properties of the fluid inside the pack, the pack exterior material or simply due to the size of the 

pack not heating and cooling with an even distribution of temperature. This was significantly more 

noticeable when heating the packs up. During this activity every effort was made to move the fluid around 

to evenly distribute the heat within the pack. Related to this limitation on the packs was that the packs 

would rapidly change temperature once applied to the copper pipe and therefore the effectiveness and 

validity of using the heat sink or source temperature was reduced very fast. Due to this constraint, 

measurements were taken for power consumption within 30-60 seconds of applying the pack. 

 

Using a box air-conditioner presented some further difficulties in that the unit was small and compact. 

Approximate size in length by width by height was 530mm x 420mm x 340mm. The access area to the 

refrigerant pipes was even smaller and the condenser fan rotating at high rpm in the middle of the unit 

increased the difficulty of the task. The location of box a/c was outside on the patio and the unit was not 

fitted in a wall or window due to access issues for taking measurements, applying the hot/cold packs and 

nowhere in the premises to fit the unit. This was a substantial issue because the heating and cooling of the 

unit would not be as effective as the indoor coil space was the same as the outdoor coil space. Finally, 

environmental issues included only being able to perform the measurements in heating and cooling mode 

between July and September in the winter months, where significantly different results could occur in the 

hotter and/or more humid months of the year. 

 

3.4 Mass Flow Rate of Refrigerant and Temperature Losses through Pipes 

3.4.1 Mass Flow Rate 

As defined by Cengel & Ghajar (2015, p. 12) mass flow rate is ‘the amount of mass flowing through a 

cross section of a flow device per unit time and is denoted by ṁ’. For mass flow rate of  a fluid through a 

pipe in a controlled volume such as an air conditioning system, the system is said to be steady state. This 
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meaning that the total change in energy for the control volume is equal to zero, or the energy entering the 

control volume is equal to the energy leaving the system. Furthermore, the flow of fluid in a pipe is 

approximated to be one-dimensional, as all properties vary in one direction only; this being the flow 

direction. Therefore, at any cross section normal to the flow direction, these properties are uniform. From 

this information, it can be said that the mass flow rate of a fluid in a pipe is proportional to the density of 

the fluid, the average velocity of the fluid and the cross-sectional area of the pipe (ṁ = ρVAc) in kg/s.  

 

It is also worth noting that the rate of net heat transfer into or out of the controlled volume is proportional 

to the mass flow rate, the specific heat and the change in temperature of the fluid ( 𝑄̇  = ṁcpΔT). 

Determining the mass flow rate of the system will ultimately assist in finding the net heat transfer of the 

reverse cycle air conditioning system and the coefficient of performance for both air conditioning mode 

and heat pump mode (COPR = 
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡
 = 

𝑄𝐿

𝑊𝑛𝑒𝑡,𝑖𝑛
 or COPHP = 

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡
 = 

𝑄𝐻

𝑊𝑛𝑒𝑡,𝑖𝑛
 ) if required. 

 

3.4.2 Temperature Losses through Pipes 

In an a/c system, heat is always lost through the wall of the pipe. This was important to account for as 

temperature measurements for the experiment had been taken using an infrared thermometer directed at 

the outside of the copper pipe. The temperature loss needs to be found in order to find the temperature of 

the refrigerant inside the copper pipe. This heat loss/heat transfer through the pipe wall is said to be steady 

state and one dimensional as stated in Section 3.4.1. In addition to the heat transfer being steady and one 

dimensional, other assumptions during these calculations are that the thermal conductivity remains 

constant and there is no heat generation. Therefore, as the heat transfer occurs in the normal direction or 

radial direction to the pipe only, the wall thickness of the pipe must be accounted for by calculating the 

thermal resistance of the cylindrical layer against heat conduction (refer to Rcyl below). Furthermore, in 

calculating the thermal resistance of the entire system, both forced and natural convection must also be 

considered as shown below. 

 

The following information was used on calculating pipe losses shown below from Cengel & Ghajar 

(2015): 

 

- Qcond, cyl = Qconv,1 = Qcyl = Qconv,2 
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Where: 

- Qcond, cyl = 
𝑇∞1− 𝑇∞2

𝑅𝑡𝑜𝑡𝑎𝑙
  

- Qconv,1 = 
𝑇∞1− 𝑇1

𝑅𝑐𝑜𝑛𝑣,1
  

- Qcyl = 
𝑇1− 𝑇2

𝑅𝑐𝑦𝑙
  

- Qconv,2 = 
𝑇2− 𝑇∞2

𝑅𝑐𝑜𝑛𝑣,2
 

Rtotal = Rconv, 1 + Rcyl + Rconv, 2 = 
1

(2πr1L)ℎ1
 +  

(ln (𝑟2/𝑟1)

2πLk
 + 

1

(2πr2L)ℎ2
 ; and, 

Rcyl = 
ln (𝑟2/𝑟1)

2πLk
 ; r2 = outer radius ; r1 = inner radius ; k = thermal conductivity ; L = length ;  

area = A = 2πrL [where there is a specified inner and outer surface temp] 

- Therefore, change in pipe temperature from the inside to the outside of the pipe is:  ΔTpipe = QRcyl 

 

In practice, the natural convection heat loss needs to be accounted for with the pipes of an air conditioning 

system. This form of heat loss to the surroundings is equal to the conductive heat loss through the pipe, 

which is equal to the forced convection heat loss from the refrigerant to the inner surface of the 

pipe.  Having the measurement of the pipe outer temperature and the ambient temperature will enable a 

calculation of the pipe inner temperature, and following this, iteration through MATLAB will be required 

to find refrigerant fluid temperature, mass flow rate and final heat transfer.  

 

For these calculations, further research was conducted on natural and internal forced convection, once 

again utilising Heat and Mass Transfer: Fundamentals and Applications (Cengel & Ghajar, 2015), 

Chapters 8 and 9. For natural convection calculations, in addition to the above formulae, the following 

was used: 

 

- Properties of air (table A-15) were interpolated to find thermal conductivity (k), kinematic 

viscosity (v) and the Prandtl number (Pr).  

- The Rayleigh number could then be calculated using 𝑅𝑎 = 
𝑔𝛽(𝑇𝑠−𝑇∞)𝐷

3

𝑣2
 𝑃𝑟; followed by, 
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-  The Nusselt number using 𝑁𝑢 =  

{
 
 

 
 

0.825 + 
0.387𝑅𝑎𝐿

1
6

[ 1+(
0.492

𝑃𝑟
)

9
16]

8
27

}
 
 

 
 
2

  

- The heat transfer coefficient using: ℎ =  
𝑘

𝐷
 𝑁𝑢 

- Using the above formulas for thermal resistance and natural convection for: Rconv, 2, Qconv,2, Rcyl, 

Qcyl and T1 (temp of inside wall of pipe). 

 

For calculations relating to the internal refrigerant temperature and heat transfer, internal forced 

convection formulae were required from chapter 8 as follows: 

- The Reynolds number using 𝑅𝑒 =  
𝑉𝑎𝑣𝑔 𝐷

𝐷
 = 

𝜌 𝑉𝑎𝑣𝑔 𝐷

𝜇
 = 

𝜌𝐷

𝜇
 (

ṁ

[𝜌 𝜋 𝐷2]

4

) = 
4ṁ

𝜇 𝜋 𝐷
   

- Determination of Laminar or Turbulent flow based of Reynolds number 

- Using the applicable Nusselt number formula and finding h, Rconv, 1 and Qconv,1. 

 

For calculations with copper pipes, the following information was sourced from Heat and Mass Transfer: 

Fundamentals and Applications: 5th edition in SI Units, (Cengel & Ghajar, 2015)(refer table 7 for details 

on the pure copper properties). 

 

Copper [Pure] Pipe Properties (Table A-3) - @ 300K (27°C) 

 ρ (kg/m3) cp (J/kg.K) k (W/m.K) α x106 (m2/s) ε 

Copper (Cu) 

Pure 

8933 385 401 117 0.02 – highly 

polished 

 

Upon further investigation, a more accurate source of copper properties was found for household air-

conditioning, refrigerant and hot water system copper pipes. The source was The Plumbers Handbook, 

ninth edition, produced by the Australian Copper Tube Industry (Copper, T. A. and T. Industry, 2016). 

This included copper chemical, mechanical and physical properties and was primarily used to establish 

copper tube sizing such as outside diameter, wall thickness and inside diameter for use in the calculations. 

Copper tube for air conditioning, refrigeration and mechanical services complies with Australian and New 

Zealand Standard AS/NZS 1571 and is an alloy of phosphorus deoxidised copper high residual phosphorus 

Table 7: Pure Copper properties from Heat and Mass Transfer textbook 
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called Alloy C12200, with a chemical composition of 99.90% minimum copper and 0.015%-0.040% 

phosphorus. From the information within this document (Copper, T. A. and T. Industry, 2016), the 

following properties were used in calculation in lieu of the above properties from Cengel & Ghajar (2015) 

(refer table 8 for Copper Alloy properties from The Plumbers Handbook). 

 

Alloy C12200 properties @ 293K (20°C) – Page 10 - (Copper, T. A. and T. Industry, 2016): 

 ρ x 103 (kg/m3) cp (J/kg.K) k (W/m.K) α x106 (m2/s) ε 

Copper (Cu) 

Pure 

8.94 385 355 117 0.02 – highly 

polished 

 

3.5 Calculations from Data 

As the project continued, further research was required to calculate the temperature losses of the 

refrigerant through the copper lines and thus the temperature of the refrigerant. In addition, the mass flow 

rate of the refrigerant and overall heat transfer for the system needed to be established in order to make 

accurate comparisons between the extrapolated data and results from the household a/c system and the 

results from the box a/c system, utilising the heat sink/source.  

 

For natural convection calculations, the following process was used: 

 

1. Properties of air (table A-15 - Cengel & Ghajar, 2015) at the film temperature were interpolated 

to find thermal conductivity (k), kinematic viscosity (v) and the Prandtl number (Pr); 

2. The Rayleigh number could then be calculated using 𝑅𝑎 = 
𝑔𝛽(𝑇𝑠−𝑇∞)𝐷

3

𝑣2
 𝑃𝑟;  

3. The Nusselt number calculated using 𝑁𝑢 =  

{
 
 

 
 

0.825 + 
0.387𝑅𝑎𝐿

1
6

[ 1+(
0.492

𝑃𝑟
)

9
16]

8
27

}
 
 

 
 
2

; 

4. The heat transfer coefficient calculated using ℎ =  
𝑘

𝐷
 𝑁𝑢 ; 

5. Using the formulas for thermal resistance as discussed in Section 3.4.2 and finding the natural 

convection heat transfer and T1: Rconv, 2, Qconv,2, Rcyl, Qcyl and T1 (temp of inside wall of pipe). 

 

Table 8: Copper Alloy properties from The Plumbers Handbook 
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For calculations relating to the internal refrigerant temperature and heat transfer, internal forced 

convection formulae were required from chapter 8 (Cengel & Ghajar, 2015) and the process was as 

follows: 

 

1. The Reynolds number using 𝑅𝑒 =  
𝑉𝑎𝑣𝑔 𝐷

𝐷
 = 

𝜌 𝑉𝑎𝑣𝑔 𝐷

𝜇
 = 

𝜌𝐷

𝜇
 (

ṁ

[𝜌 𝜋 𝐷2]

4

) = 
4ṁ

𝜇 𝜋 𝐷
  ; 

2. Determination of Laminar or Turbulent flow based of Reynolds number ; 

3. Using the applicable Nusselt number formula and finding h, Rconv, 1 and Qconv,1. 

 

Due to the large amount of data collected over the year and certain key values not being available, a 

MATLAB program with nested while loops had to be created to perform two levels of iteration. The first 

being the value of mass flow rate, which was used to calculate the Reynolds number on the refrigerant. 

The second was the value of refrigerant temperature, used in calculating conductivity.  

 

This proved challenging, however, the general methodology for this process in creating the 

MATLAB program was as follows:  

 

1. Guess a value of mass flow rate 

a. Calculate Reynolds number 

2. Guess a value of refrigerant temperature 

a. Calculate conductivity 

b. Use the forced convection heat transfer formula to calculate refrigerant temperature.  If 

it differs to the value used in 2., adjust the refrigerant temperature value and repeat 

steps (a) and (b) 

c. Use the power consumption data collected to calculate mass flow rate.  If it differs to 

the value used in 1., adjust the value of mass flow rate and repeat all steps. 

 

For the extrapolation calculations of the household a/c, the heat sink and source temperatures were used 

for Tinf,2 and therefore forced convection formulae was used for both internal and external pipe 

calculations. In addition, the mass flow rate is the same in the unmodified and modified system so this 

value did not require iteration (refer Section 4.3). Only refrigerant temperature from the forced convection 
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inside and outside the pipe required iteration and from there enthalpy 1 or 2 (either side of the compressor) 

depending on whether performing calculations for heating or cooling mode could be found, followed by 

power use/consumption of the household a/c system with the flowing water loop.  

 

3.6 Quality Assurance Plan 

Quality assurance is a crucial factor in determining the success of the research, both in the initial phases 

and towards the final stages of the project. As part of this process a series of reviews and supervisor 

meetings was conducted to ensure compliance with any relevant standards and regulations and to ensure 

the aim and objectives of the research project were being adequately met in a safe and effective manner. 

This limited erroneous results as the project continued, ensured correct and accurate data was captured 

and the appropriate task planning conducted. Furthermore, the process ensured the completion of the 

project in a timely manner and the viability and suitability of the information captured. 

 

The following is a basic list of parameters and measures utilised as the project progressed to endeavour to 

maintain quality assurance: 

 

▪ Any experimental design information is vetted by the supervisor during the review stage to ensure 

viability of parameters, assumptions, variables and definitions. 

▪ Documentation and tracking of all data and research conducted in the excel worksheet created and 

stored in Microsoft OneDrive.  

▪ Any safety or ethical related tasks involving companies, organisations and site visits will be 

assessed with high importance and discussed with the supervisors and/or other USQ representative 

with expertise on such matters.  

▪  Methodology specifics such as quantitative or qualitative values, such as torques, pressures, 

clearances, power settings, parameters, assumptions, variables, definitions, statistical analysis, 

interviews and observations will be stated and baselined for various tasks. This will enable 

comparison against existing baselines, if required. 

▪ Calibration of any testing equipment is carried out at the necessary interval and to the required 

level and level of accuracy defined. 

▪ Fortnightly updates with the supervisor via email to address progress and any issues identified that 

require feedback or guidance. 
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Science Direct Nil USQ N/A N/A 

Up-to-date Standards 

and Regulations 
Nil USQ Multiple N/A 

Household Pool 
$$$ - offset by solar 

power 
Student 1 

Heater starts to run towards 

winter – further costs 

Household Solar Hot 

Water system 
$$ Student 1 

On cloudy/rainy days 

electric booster must be 

turned on – cost 

supplemented by solar 

system 

Household Air-

Conditioning System 
$$$ Student 1 

Must be run in all seasons – 

even when not required to 

get measurements – Very 

costly when not required 

and only turned on for 

project. 

Air-Conditioning parts 

for design build 
$100-$200 

Various - 

Student / 

USQ 

assistance 

Multiple 
Unsure currently on costing 

of this 

Temperature 

measurement device 
$15.00 Student 1 N/A 

Tools - various 

Nil – unless 

specialist tooling 

requires 

Student Multiple Tools to build design 

Vehicle  Fuel costs Student 1 

Transport to locations to 

pick up parts or USQ 

Springfield/Toowoomba 

Sundry items (pens, 

pencils, printing, paper, 
Approx. $60.00 Student 

As 

Required 
N/A 
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staples, rulers, 

calculator etc.) 

 

3.8 Risk Assessment/Management Plans 

In designing the air-conditioning system utilising water storage sources such as the residential pool and 

hot water system to increase energy efficiencies there was several hazards that will require risk assessment 

and a risk management plan using the hierarchy of control measures (refer figure 18) to ensure health and 

safety, financial and environmental impacts  are minimised for the variety of tasks throughout the project. 

As part of identifying these risks, it was important to understand and comply with Australian Standard 

(AS) ISO 31000:2018 – Risk Management – Guidelines (ISO, 2018), which identifies the principles, 

framework and risk management process to adhere to when performing any project. Australian Standard 

(AS/NZS) IEC 31010:2020 – Risk Management – Risk Assessment Techniques (IEC, 2020) was an 

important document to view as it provided guidance on selection and application of a variety of risk 

assessment techniques that may be used depending on the context of the task.  

 

For the purposes of this research and design task, the Consequences/Likelihood Matrix (Risk Matrix) was 

used to identify, evaluate and control a variety of hazards that could occur throughout the duration of the 

project and specifically with the box a/c design testing (refer figure 19). The Risk Matrix was crucial in 

assessing the level of risk by using a likelihood versus consequences matrix, which identified if the current 

control measure was adequate to continue with the task or if further control measures or engineering 

approval was required. A variety of factors may be assessed here, including but not limited to health and 

safety, financial and environmental/community implications. 

 



Michael Osgood ENG4111/ENG4112 Research Project 1 & 2  

Page 59 of 172 

 

 

Figure 18. Hierarchy of control measures utilised for any risks identified 

 during the research project (Australia, SW, 2020). 

 

 

Figure 19. Risk matrix utilised when assessing risks for the research project (HSEMA, 2020). 

 

Utilisation of both the Hierarchy of Control Measures and the Risk Matrix for hazards and risks identified 

for the project will appropriately risk manage and reduce the risk to As Low As Reasonably Practicable 

(ALARP).  
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4. Results and Discussion 

 

4.1 Interpretation and Analysis of Results  

In achieved the outcomes of the project to an appropriate standard, the way in which the data and results 

were utilised was of the utmost importance. Using a variety of approaches throughout the research and 

documenting it consistently, correctly and concisely ensured the information could be found easily and 

adapted for each phase of the project. Microsoft Excel, Microsoft OneDrive and MATLAB R2018b were 

the main software for tracking this data for easy collation and managing of tasks and results. The project 

supervisor had further advice that has assisted in other methods of recording and tracking information, 

however, throughout the duration of the project these were the primary tools used for this purpose. For 

smaller day-to-day monitoring of tasks within the project, a diary was used in collaboration with the 

project plan/Gannt chart, especially when carrying out field tasks that required information to be taken 

down on the job. Using a OneDrive folder for the project ensured the information was kept in online 

storage in case of PC or Laptop data corruption and backed up on an external hard drive as often as 

possible. The OneDrive folder included sub folders dedicated to each phase of the research and was setup 

in an easy to use format.  

 

Objective 4 of the project: design, build and test an air-conditioning system using pool water as a heat sink 

and solar hot water as a heat source required defining parameters, assumptions and variables for the design 

to ensure the task was performed as accurately as possible within the limitations, constraints and 

assumptions stated and to ensure the information gained would be viable and effective for further studies 

if required.  

 

Evaluating all research findings and results was be kept consistent and accurate over the course of the 

project to ensure that replication of the data and findings could be carried out to further any research and 

studies in the area. The project supervisor assisted with regular reviews to ensure the objectives were 

accurate/on-track and maintaining viable and accurate results. 
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Figure 21. Power use of the box a/c before the hot pack was applied - Cooling Mode 

 

 

Figure 22. Power use of the box a/c after the hot pack was applied - Cooling Mode 
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Due to time constraints for the project, data for the box a/c was only collected for 14 consecutive days, 

however, a noticeable trend and reduction in power consumption was evident (refer table 12 for results of 

power consumption before and after heat source application to the compressor inlet pipe of the box a/c 

system). The findings show a power consumption average of 0.851929kW prior to the hot pack being 

applied to the compressor inlet pipe and an average power consumption of 0.812kW after application of 

the hot pack. This is a 4.687% reduction in power consumption for the box a/c system in cooling mode 

using a low-grade heat source applied to the compressor inlet copper pipe. 

 

Table 12: Power consumption before and after heat source application to the compressor inlet pipe  

of the box a/c system in Cooling Mode. 
 

Date Power use before adding source (kW) Power use after adding source (kW) 

12-Aug 20 0.834 0.811 

13-Aug 20 0.878 0.845 

14-Aug 20 0.942 0.906 

15-Aug 20 0.815 0.791 

16-Aug 20 0.782 0.763 

17-Aug 20 0.815 0.768 

18-Aug 20 0.864 0.802 

19-Aug 20 0.887 0.832 

20-Aug 20 0.827 0.796 

21-Aug 20 0.81 0.793 

22-Aug 20 0.831 0.798 

23-Aug 20 0.845 0.809 

24-Aug 20 0.852 0.805 

25-Aug 20 0.945 0.849 

Average 0.851929 0.812 

% Power 

Reduction 

 

4.687% 
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Figure 24. Power use of the box a/c before the cold pack was applied - Heating Mode 

 

 

Figure 25. Power use of the box a/c after the cold pack was applied - Heating Mode 
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As with cooling mode, the data collected was for a 14-day period in August with results showing a slightly 

less reduction in power consumption for heating than for cooling, however, a trend and definite reduction 

was evident (refer table 13 for results of power consumption before and after heat source application to 

the compressor inlet pipe of the box a/c system). The findings show a power consumption average of 

1.646929kW prior to the cold pack being applied to the compressor outlet pipe and an average power 

consumption of 1.584071kW after application of the cold pack. This is a 3.817% reduction in power 

consumption for the box a/c system in heating mode using a low-grade heat sink applied to the compressor 

outlet copper pipe. 

 

Table 13: Power consumption before and after heat sink application to the compressor outlet pipe  

of the box a/c system in Heating Mode. 
 

Date Power Use before adding sink (kW) Power Use after adding sink (kW) 

12-Aug 20 1.601 1.561 

13-Aug 20 1.716 1.682 

14-Aug 20 1.81 1.714 

15-Aug 20 1.674 1.606 

16-Aug 20 1.439 1.415 

17-Aug 20 1.61 1.514 

18-Aug 20 1.703 1.645 

19-Aug 20 1.597 1.581 

20-Aug 20 1.622 1.574 

21-Aug 20 1.789 1.644 

22-Aug 20 1.602 1.514 

23-Aug 20 1.541 1.44 

24-Aug 20 1.751 1.718 

25-Aug 20 1.602 1.569 

Average 1.646929 1.584071 

% Power 

Reduction 

 

3.817% 
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The results displayed above were using the temperature of the outside of the copper pipe as the refrigerant 

temperature using an infrared thermometer, however, it was found through calculation using MATLAB 

that the temperature of the refrigerant inside the copper pipe was only 0.065°C higher on average for 

heating mode and 0.014°C higher on average for cooling mode. The refrigerant temperatures, heat transfer 

rates, and mass flow rates of the refrigerant were determined for each day in MATLAB for this dataset 

with refrigerant temperature (Tinf,1) and mass flow rate being iterated through several loops until the 

correct temperature and mass flow rate was found to within 1x10-6 error tolerance (refer Section 3.4.2 and 

3.5 for the methodology followed to find these values). The average mass flow rate for heating mode of 

the box a/c system was 0.042kg/s and for cooling mode was 0.026kg/s, with an overall mass of R22 

refrigerant in the system of 0.68kg.  

 

For the complete workings and MATLAB calculations performed for the box a/c system refer to Appendix 

J for the Box Air-Conditioning System MATLAB Calculations before the heat pack was applied in 

Cooling Mode; refer Appendix K for the Box Air-Conditioning System MATLAB Calculations after the 

heat pack was applied in Cooling Mode; refer Appendix L for the Box Air-Conditioning System 

MATLAB Calculations before the cold pack was applied in Heating Mode; refer Appendix M for the Box 

Air-Conditioning System MATLAB Calculations after the cold pack was applied in Heating Mode). 
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4.3 Household Air-Conditioning System 

The data collected over the duration of the project year on the household a/c system was used as a baseline 

for ascertaining a reasonable energy consumption of the system without modification. The baseline data 

was used in MATLAB calculations similar to the box a/c calculations to find temperature of the refrigerant 

(Tinf,1), heat transfer rate, mass flow rate and enthalpy 1 and 2 (before and after the compressor 

respectively) on each day of the dataset (refer Section 3.4.2 and 3.5 for the methodology followed to find 

these values). The extrapolation of the data using MATLAB determined through calculation what the 

energy consumption would be if a heat sink or source flowing water loop was utilised on the a/c system. 

 

The data that was crucial to this extrapolation included: 

• Heat sink/source temperatures and associated properties 

• Refrigerant pipe temperatures on either side of the compressor 

• Refrigerant properties (R410A) 

• Mass flow rate of the system prior to applying the sink/source 

• Enthalpy 1 (before compressor), as this remained unchanged for heating mode when applying the 

cold water sink flowing water loop to the compressor outlet refrigerant pipe section but required 

calculation for cooling mode. 

• Enthalpy 2 (after compressor), as this remained unchanged for cooling mode when applying the 

hot water source flowing water loop to the compressor inlet refrigerant pipe but once again required 

calculation for heating mode.  

• Power consumption after heat sink/source application. 

 

As applying the flowing water loop to the a/c system is essentially adding a heat exchanger to the required 

pipes, the modification was occurring on the outside of the system and the operating conditions of the 

system are therefore maintained on the inside of the building. Therefore, it was assumed that the mass 

flow rate was the same in the system before and after the modification and similarly the enthalpy was the 

same at the start and finish of the inside coil. From this information, in heating mode enthalpy 1 

(compressor inlet) stayed the same before and after the modification and therefore used in the MATLAB 

calculations for the extrapolation, as the heat sink flowing water loop would be applied to the compressor 

outlet, changing enthalpy 2 only. For cooling mode, enthalpy 2 (compressor outlet) would remain the same 

before and after the modification and therefore used in the MATLAB calculations for the extrapolation, 
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as the heat source flowing water loop would be applied to the compressor inlet, changing enthalpy 1. (refer 

Appendix F for the Household Air-Conditioning System MATLAB Calculations before extrapolation 

using flowing water loop design in Cooling Mode with a H20 Mass Flow Rate of 1.33kg/s; refer Appendix 

G for the Household Air-Conditioning System MATLAB Calculations after extrapolation using flowing 

water loop design in Cooling Mode with a H20 Mass Flow Rate of 1.33kg/s; refer Appendix H for the 

Household Air-Conditioning System MATLAB Calculations before extrapolation using flowing water 

loop design in Heating Mode with a H20 Mass Flow Rate of 1.33kg/s; refer Appendix I for the Household 

Air-Conditioning System MATLAB Calculations after extrapolation using flowing water loop design in 

Heating Mode with a H20 Mass Flow Rate of 1.33kg/s). 

 

Three different pumps were chosen to create flow for the water loop, each with a different flow rate, to 

assess which pump would be most beneficial/effective at reducing power consumption for the design. The 

chosen pumps were two small jet pumps and a pond pump with flow rates 80LPM (1.33kg/s), 50LPM 

(0.83kg/s) and 25LPM (0.42kg/s) respectively. Through interchanging the water mass flow rate values in 

the MATLAB calculations, it was found that the highest mass flow rate pump (1.33kg/s) had the most 

effective heat transfer rate and greatest power reduction in the household a/c system for both heating and 

cooling mode (refer table 14 showing an excerpt comparing the refrigerant temperature and power 

consumption before and after modification with the 1.33kg/s water pump, 0.83kg/s water pump and 

0.42kg/s water pump for the heat source flowing water loop applied to the compressor inlet in cooling 

mode and refer table 15 showing an excerpt of the comparison of refrigerant temperature and power 

consumption before and after modification with the 1.33kg/s water pump, in heating mode (refer Appendix 

O for the complete table showing this comparision of data between the three pumps for heating mode and 

Appendix N for the complete table showing this comparision of data between the three pumps for cooling 

mode). This could be trialled/tested quite easily with other pumps of larger or smaller mass flow rates or 

different diameter tubing to ascertain an optimal pump/flow rate selection.  
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Table 14: Excerpt comparing the power use/consumption and refrigerant temperature before modification and after 

modification with the 1.33kg/s water pump, 0.83kg/s water pump and 0.42kg/s water pump for the  

heat source flowing water loop applied to the compressor inlet – Cooling Mode.  
 

 

 

Table 15: Excerpt comparing the power use/consumption and refrigerant temperature before modification and after 

modification with the 1.33kg/s water pump, 0.83kg/s water pump and 0.42kg/s water pump for the  

heat sink flowing water loop applied to the compressor outlet – Heating Mode.  
 

 

 

Figure 26 shows the power consumption of the household a/c system prior to the heat source flowing 

water loop being applied to the compressor inlet pipe in cooling mode. Figure 27 shows the power 

consumption of the household a/c system after the heat source flowing water loop was applied to the 

compressor inlet pipe in cooling mode. Figure 28 shows the power consumption of the household a/c 

system prior to the heat sink flowing water loop being applied to the compressor outlet pipe in heating 

mode. Figure 29 shows the power consumption of the household a/c system after to the heat sink flowing 

water loop was applied to the compressor outlet pipe in heating mode. 
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Figure 26. Power consumption of household a/c system before applying the heat source flowing water loop modification to 

the compressor inlet - Cooling Mode 
 

 

Figure 27. Power consumption of household a/c system after applying the heat source flowing water loop modification 

(water pump of mass flow rate 1.33kg/s) to the compressor inlet - Cooling Mode 
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Figure 28. Power consumption of household a/c system before applying the heat sink flowing water loop modification to the 

compressor outlet - Heating Mode 

 

 

Figure 29. Power consumption of household a/c system after applying the heat sink flowing water loop modification to the 

compressor outlet - Heating Mode 
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From table 14 and figures 26 and 27, it is evident that the results after the modification with the 1.33kg/s 

water pump in cooling mode have shown an average increase in refrigerant temperature at the compressor 

inlet of 4.67°C and an average decrease in power consumption of 0.797kW per hour. This is a 16.11% 

reduction in power use for the household a/c system with a flowing water loop from a heat source (solar 

hot water system) in cooling mode using extrapolated data from MATLAB, which is a significant power 

saving for the unit. Figure 30 below shows the power consumption before modification and the power 

consumption after modification versus the refrigerant temperature at the compressor inlet using the heat 

source in cooling mode. The figure shows that before modification, as refrigerant temperature increases, 

power consumption increases. However, after the heat source is applied to the compressor inlet, as 

refrigerant temperature increases, power consumption decreases. This is due to the compressor performing 

work to increase the pressure and temperature of the refrigerant to the required level, but as the heat source 

increases the temperature of the refrigerant prior to entering the compressor, the compressor does less 

work to get the refrigerant temperature/pressure to the required level. 

 

Figure 30. Power Consumption Before Modification & Power Consumption After Modification Vs. Refrigerant Temperature 

- Compressor Inlet - Heat Source - Cooling Mode 
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From table 15 and figures 28 and 29, it is evident that the results after the modification with the 1.33kg/s 

water pump in heating mode have shown an average decrease in refrigerant temperature at the compressor 

outlet of 0.3°C and an average decrease in power consumption of 0.179kW per hour. This is a 2.74% 

reduction in power use for the household a/c system with a flowing water loop from a heat sink (residential 

pool) in heating mode using extrapolated data from MATLAB, which does not represent a great power 

saving but could be substantial over the entire winter period. Figure 31 below shows the power 

consumption before modification and the power consumption after modification versus the refrigerant 

temperature at the compressor outlet using a heat sink in heating mode. The figure shows that as the 

refrigerant temperature at the compressor outlet increases, the power consumption increases, as the 

compressor has a higher work input to increase the pressure and temperature of the refrigerant to the 

required level. By applying the heat sink at this point in the cycle, the power reduction is slightly reduced 

by reducing the refrigerant temperature, effecting the cycle/system upstream and therefore reducing the 

amount of work input from the compressor. 

 

Figure 31. Power Consumption Before Modification & Power Consumption After Modification Vs. Refrigerant Temperature 

- Compressor Outlet - Heat Sink -Heating Mode 
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Figures 32 and 33 below show the power consumption with modification versus the power consumption 

without modification for both cooling and heating mode. These graphs show a very linear fit indicating 

the formula for this straight line could be used to model the outcome of this design. This does not account 

for flowing water loop pump power consumption (refer Feasibility Assessment - Section 4.5.1). 

 

Figure 32. Power Consumption with Modification Vs. Power Consumption without Modification - Heat Source - Cooling 

Mode 
 

 

Figure 33. Power Consumption with Modification Vs. Power Consumption without Modification - Heat Sink - Heating Mode 
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4.4 Validation of Household a/c Extrapolation with Box a/c results 

To appropriately validate the household a/c extrapolation results from MATLAB with the box a/c results, 

the boundary conditions must be stated. For the box a/c, the boundary condition is a fixed temperature 

(the hot and cold packs), but for the household a/c system, the boundary condition is a fixed heat transfer 

rate. Therefore, to validate these results effectively the change in refrigerant temperatures of the box a/c 

results before and after the hot/cold pack application must be compared with the change in refrigerant 

temperature of the household a/c system before and after the flowing water loop modification. If the 

change is refrigerant temperature is similar, it will give a good indication that the extrapolation is valid. 

For the purposes of this validation, the household a/c system flowing water loop refrigerant temperatures 

used were from the 1.33kg/s water pump, as this resulted in the greatest heat transfer and power reduction. 

Also, an assumed water temperature change of 0.01K through the flowing water loop was used. 

 

4.4.1 Heating Mode Validation 

For heating mode, the box a/c system had an average sink temperature of 19.214°C before the cold pack 

was applied and after the cold pack was applied to the compressor outlet pipe, the refrigerant temperature 

was 19.210°C. This is a difference of 0.004°C before and after the cold pack is applied. For the household 

a/c system, the average refrigerant temperature before the flowing water loop modification was 49.7°C 

and after the modification was 49.4°C. This is a difference of 0.3°C before and after modification. 

Therefore, the difference between the refrigerant temperatures of the two systems in heating mode was 

0.296°C, which was consistent based off the assumptions made. The extrapolation of the household a/c 

system is therefore validated with the box a/c system results in heating mode. 

 

4.4.2 Cooling Mode Validation 

For cooling mode, the box a/c system had an average source temperature of 45.70°C before the hot pack 

was applied and after the hot pack was applied to the compressor inlet pipe, the refrigerant temperature 

was 45.749°C. This is a difference of 0.049°C before and after the hot pack is applied. For the household 

a/c system, the average refrigerant temperature before the flowing water loop modification was 27.892°C 

and after the modification was 28.359°C. This is a difference of 0.467°C before and after modification. 

Therefore, the difference between the refrigerant temperatures of the two systems in cooling mode was 

0.418°C, which was once again consistent based off the assumptions made. The extrapolation of the 

household a/c system is therefore validated with the box a/c system results in cooling mode.  
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4.5 Feasibility Assessment 

The feasibility of this design was primarily assessed from a cost/benefit perspective with capital and 

energy costs being presented and summed to produce an overall cost and breakeven time. As the research 

project was performed using hot and cold packs to simulate the heat sink/source, the feasibility assessment 

was carried out based off the household air conditioning system including a flowing water loop from each 

source/sink to the applicable refrigerant pipes. Further to this, any assumptions, limitations and issues with 

the proposed design was identified in this assessment. 

 

4.5.1 Flowing Water Loop Design 

Various options are possible for installing a flowing water loop to an existing household reverse cycle a/c 

system from a heat source (solar hot water system) and heat sink (residential pool or water tank). As the 

most effective power reduction in the results from the extrapolated data in both heating and cooling mode 

was using the 1.33kg/s (80LPM) water pump, this pump use will be assessed below. Furthermore, one 

pump could be used for both heating and cooling mode or two separate pumps, one for cooling and one 

for heating mode. This would increase the initial capital costs of the design but reduce the overall power 

consumption of the device and be more cost effective over time. Assumptions were made on labour prices 

and time to install the system; however, Australian retail prices were used for the pump, insulated copper 

piping and electricity rates. 

 

Pump: 80LPM (1.33kg/s) Water Pump – Cooling Mode – Heat Source (Solar hot water system) 

 

Capital Costs: 

 

- Davey SJ60-08PC Silver Series Jet Pump - $399.00 (Davey SJ60-08PC Silver Series Jet Pump 

(Flow 80 LPM), 2020) 

 

- Insulated piping (10m) - $93.18 (5M Air Conditioner Pair Coil Tube 1/4” 3/8” Insulated Copper 

Pipes R32/R410A, 2020) 

 

- Labour: $73.00 per hour = 3 hours work = $219.00 
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Energy Saving: 

 

 $43.10 - $60.38 = -$17.28 per 8hr period (1 day) - Without use of Solar Hot Water 

$43.10 - $41.98 = $1.12 per 8hr period (1 day) - With use of Solar Hot Water 

 

This is not an energy saving if no solar hot water is used with the 0.83kg/s water pump, however, it 

would save $1.12 per day if solar hot water is used. 

 

Based off the total capital costs, it would take: $622.18 / $1.12 = 555.5 days (1.52 years) to breakeven 

and start saving money using the design with the 0.83kg/s Water Pump using solar hot water (best 

case – minimum time) in cooling mode. These calculations have not considered the household having 

solar panels on the roof of the property. The additional cost of the water pump energy consumption 

could essentially be disregarded if this design was used throughout the daylight hours, further 

reducing overall costs and time to breakeven. 

 

One of the main concerns with using the solar hot water system in a flowing water loop is the volume of 

the hot water system versus the flow rate of the water pump used. The current household hot water system 

is 300 litres; using an 80 litre per minute jet pump will cycle the entire contents of the hot water system 

through the loop in 3.75 minutes and 6 minutes for the 50 litre per minute jet pump. If the lower flow rate 

pump was used (25LPM), the entire contents of the hot water system would cycle through the loop in 12 

minutes. This would not allow the hot water system to reach its required temperature to maintain the power 

reduction required for the flowing water loop. As well as not enough hot water for general household use. 

Other options could include using a dedicated solar hot water system of larger volume for the flowing 

water loop and/or having a closed loop system entailing an increase in solar collectors or using an 

evacuated tube solar hot water system. However, this would drastically increase the capital cost of the 

system by up to $5000.00 and increase the breakeven time under optimal solar conditions to 5020 days 

(13.75 years). Depending on location and climate conditions of the region where the unit is located, using 

such a design on the hot water system (particularly for cooling mode) may not be feasible, especially with 

the large initial capital costs. It may be most beneficial to have this design solely on the heating side of 

the a/c system. 
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Energy Saving: 

 

 $55.74 - $55.50 = $0.24 per 8hr period (1 day)  

 

This is a very small energy saving using the 0.42kg/s water pump, with a total of $0.24 saved per 

day. Based off the total capital costs, it would take: $359.18 / $0.24 = 1497 days (4.1 years) to 

breakeven and start saving money using the design with the 0.42kg/s Water Pump in heating mode. 

 

These calculations have not considered the household having solar panels on the roof of the property. The 

additional cost of the water pump energy consumption could essentially be disregarded if this design was 

used throughout the daylight hours, further reducing overall costs and time to breakeven by 599 days (1.7 

years). 

 

In heating mode, cycling water through a residential pool or large water tank would see a much more 

effective result for the design as these heat sinks are much larger thermal reservoirs (pool - 30,000L or 

water tank - 10,000L) that can supply or absorb finite amounts of heat without undergoing any change in 

temperature. Over an 8-hour day using the flowing water loop, the pool would change in temperature only 

a very small amount, maintaining the efficiency and energy savings of the design. 

 

Overall, the 50LPM (0.83kg/s) water pump in cooling mode using the heat source (solar hot water system) 

saw the most savings financially, with $1.12 saved per day if solar hot water is used and 555.5 days (1.52 

years) to breakeven and start saving money using the design. The 25LPM (0.42kg/s) water pump in heating 

mode using the heat sink (residential pool) saw the most savings financially (although small), with $0.24 

saved per day and 1497 days (4.1 years) to breakeven and start saving money using the design. These two 

options could be used individually on the household a/c system or together depending on household 

requirements and the climate where the system in located.   



Michael Osgood ENG4111/ENG4112 Research Project 1 & 2  

Page 90 of 172 

 

5. Conclusions 

 

5.1 Findings/Outcomes of Project 

The aims and objectives of this research project were formed using an achievable project plan with defined 

goals and results to be attained. The design and methodology throughout the project year endeavoured to 

produce quality results that would have tangible outcomes for the dissertation and university. A review 

was performed of the current energy market in Australia relating to existing household reverse cycle air 

conditioning systems and the use of water as a source or sink of low-grade heat. It was found that several 

small-scale designs relating to these systems had been previously implemented, mostly overseas. A design 

was produced to simulate heat sink and source temperatures from water sources. 

 

Using a solar hot water system as a source of low-grade heat and a residential pool as a sink of low-grade 

heat, these temperatures were simulated to improve the efficiency/energy consumption of a box air 

conditioning system. By applying the sink temperature to the compressor outlet refrigerant pipe in heating 

mode on the box air conditioner using a cold pack, a 3.8% power reduction was realised. By applying the 

source temperature to the compressor inlet refrigerant pipe in cooling mode on the box air conditioner, a 

4.7% power reduction was realised. Through MATLAB calculations, the refrigerant temperature, mass 

flow rate and heat transfer rate were determined for the system in the required location (compressor inlet 

or outlet for cooling and heating respectively).  

 

The data collected over the course of the project year was used in several MATLAB calculations to 

extrapolate the results to calculate what the refrigerant temperature and power consumption would be if 

the flowing water loop was used on the household system. The power consumption, mass flow rate, 

refrigerant temperature and heat transfer was established before and after the modification. The results 

were a 2.74% reduction in power use for the household a/c system with a flowing water loop from a heat 

sink (residential pool) in heating mode and a 16.11% reduction in power use for the household a/c system 

with a flowing water loop from a heat source (solar hot water system) in cooling mode. These results are 

from the highest performing water pump for the flowing water loop with a mass flow rate of 1.33kg/s. 

Unfortunately, this pump was not feasible for use on the current household setup but may be suitable on 

other systems. 
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The feasibility assessment included a broad overview of capital and energy costs for the design to be 

retrofitted to an existing household reverse cycle air conditioning system in cooling and heating mode 

with some assumptions made due to not physically installing the design. A cost saving and breakeven time 

was established and determined that for cooling mode using the solar hot water system as a source of low-

grade heat with a 50LPM (0.83kg/s) water pump for the flowing water loop saved $1.12 per day with 8 

hours use. This equated to a breakeven time of 555.5 days (1.52 years) to start saving money using the 

design. For heating mode, using the 25LPM (0.42kg/s) water pump for the flowing water loop to a 

residential pool as a sink of low-grade heat saw the most savings financially (although small), with $0.24 

saved per day and 1497 days (4.1 years) to breakeven and start saving money using the design. These two 

options for heating and cooling could be used individually on the household air conditioning system or 

together depending on household requirements and the climate where the system is located.  

 

The validation of the household air conditioning system’s extrapolated data from MATLAB was found to 

be consistent with that of the box air conditioning system’s results. In heating mode, there was a difference 

between the refrigerant temperatures of the two systems of 0.296°C, based off the assumptions presented. 

In cooling mode, there was a difference between the refrigerant temperatures of the two systems of 

0.418°C, based off the assumptions presented. The extrapolation of the household air conditioning system 

was therefore validated and deemed consistent with the box air conditioning system’s results in both 

heating and cooling mode. 

 

The primary objectives of the research project were achieved in line with the project specification with 

the secondary objectives unable to be accomplished in the required time. The overall aim to conduct a 

feasibility study of improving the efficiency of reverse-cycle air-conditioning systems using water from a 

solar hot-water system and a residential pool as a source/sink of low-grade heat was met successfully with 

further work to continue the research if desired. This study could see benefits in the future on a residential 

and possibly commercial scale, as retrofitting existing household and HVAC systems with this design 

could see improved energy performance and large cost savings. With a breakeven time for the design of 

1.5 years for cooling mode and 4.1 years for heating mode, it is highly recommended that research in this 

area continues and specifically the topic of using water as a low-grade heat sink/source to improve the 

efficiency of reverse cycle air conditioning systems. 
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5.2 Further Work and Recommendations 

Following this dissertation, further research or projects could be undertaken to assess the feasibility of 

such a design more precisely. The project identified certain limitations and assumptions throughout the 

design and testing phase that were accounted for if possible. These limitations reduced the overall accuracy 

of the results due to time, resource and financial constraints. The following options could be designed and 

tested to further the current research and provide a higher level of accuracy and viability for application 

and implementation to an existing household system on a residential scale. 

 

The current research utilised hot and cold packs to simulate the heat sink and source temperature on the 

box air conditioner and this sink or source temperature was used in extrapolation calculations for the 

household air conditioning system. To move the research to the next phase would entail using a flowing 

water loop from the heat sink and source to the appropriate refrigerant lines in the air conditioning system. 

This would require a small pump to create flow for the loop with insulation wrapping the tubing from the 

source/sink location to the a/c unit (as discussed in Section 4.4 and 4.5). The tubing would then be 

wound/coiled around the refrigerant pipe in the required locations to provide maximum heat transfer. The 

locations being the length of the compressor inlet pipe for the hot water source (solar hot water system) in 

cooling mode and the length of the compressor outlet pipe for the cold-water sink (pool) in heating mode. 

By maximising the length of pipe covered by the tubing, the heat transfer between the refrigerant and 

source/sink would be increased further. The small pump would create a certain amount of power 

consumption (refer Section 4.5); however, it is hypothesised from the extrapolated results and feasibility 

assessment in the project that there would still be energy savings and much larger efficiency increases in 

the system. 

 

Due to the time frames of the design testing and project completion, no data was able to be captured 

outside of the July, August and September period. It is recommended to conduct further testing over the 

course of a year using the above flowing water loop or similar. This will assess the use of the design in 

varying seasons, temperatures and environmental conditions. This could be further expanded to conduct 

the testing in different locations of the state/country under varying humidity’s, barometric pressures and 

temperatures differentials. On wider scale implementation, this would be essential to assess whether the 

design would be suitable in different parts of the year and at what times of the year. As discussed in 
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previous sections, the design may not be feasible in the shoulder seasons when inside ambient air 

temperatures are similar to outside ambient air temperatures.  

 

The options for ways forward to ensure precise and effective results are presented above as only some of 

the possibilities available to one looking to further this research. The prospects of this innovation could 

have large impacts on air conditioning systems and energy markets in the future. Through further studies 

and feasibility assessments it is hoped that the suggested research could be performed over a longer 

duration and with greater resource allocation and financial support to assist in accuracy of the results. The 

future of innovative air conditioning technologies is bright and will see efficient and creative designs and 

systems like this brought to market on both a residential and commercial scale. It is hoped that the 

presented research and findings in this dissertation will form part of the body of information that will assist 

in creating a more sustainable and energy efficient air conditioning market in the Asia-Pacific region. 
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7. Appendix A – Project Specification 

 

For:   Michael Osgood 
 

Title: Feasibility assessment of using water storage sources to improve the efficiency of 

air-conditioning systems. 
 

Major: Mechanical Engineering 
 

Supervisor: Andrew Wandel 
 

Enrolment: ENG4111 – ONL S1, 2020 

 ENG4112 – ONL S2, 2020 
 

Project Aim: Feasibility study of improving the efficiency of reverse-cycle air-conditioning 

systems using water from a solar hot-water system and a pool as a source/sink of 

low-grade heat. 
 

Programme: Version 1, 18th March 2020 
 

1. Review existing household reverse-cycle air-conditioning systems and evaluate any current use of 

heat sinks/sources in this area. 

 

2. Research existing heat exchanger systems relating to reverse cycle air-conditioning systems to 

evaluate the feasibility of integrating heat sinks/sources into existing systems. 

 

3. Perform data collection over all seasons on a pool, solar hot water system and reverse-cycle air-

conditioning system to assess how temperatures and refrigerant mass flow rate changes under a 

variety of environmental conditions. 

 

4. Design, build and test an air-conditioning system using pool water as a heat sink and solar hot 

water as a heat source. 

 

5. Compare improvements in efficiency between the designed and built air-conditioning system using 

a heat sink/source and a standard air-conditioning system. 

 

6. Investigate any additional energy/capital costs associated with installing the designed heat-

exchanger system to an existing air-conditioning system. 
 

If time and resources permit:  
 

7. Field testing of the designed heat exchanger system on an existing reverse-cycle air-conditioning 

system. 

 

8. Compare and evaluate results from design testing with results from field testing. 

 

9. Make recommendations on refinement of current heat exchanger design for further efficiency 

gains.   
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8. Appendix B – Timeline/Gantt Chart and Plan 

 

8.1 Timeline/Gant Chart and Key Tasks 

Creating a timeline and identifying key tasks within the project were vital to the success of the project. As 

such, a Gantt chart and Plan was created and is located on the following pages, displaying the timeline to 

achieve key tasks within the project. This was an important factor for this study as a body of knowledge 

must be ascertained and understood before moving to the next phase and maintaining a timeline ensured 

the project was completed by the due date.  

See below for a list of key tasks identified for the project duration:  

• Project reviewed on a regular basis to ensure the goals and objectives are being met as required. 

Occurred every 6 weeks as part of moving to the next phase of the project.  

• A series of meetings/emails occurred with the project supervisor throughout the duration of the 

project. Meetings occurred approximately once or twice every 6 weeks, to coincide with the project 

review and phase change. These were in the form of email updates/guidance or zoom sessions as 

stated above.  

• Phase changes occur every 6 weeks of the semester and with this, analysis and documentation of 

tasks undertaken occurred and were used in the next phase of the project.  

• ENG4903 was used to highlight  and ensure adequate preparation of the presentation and 

dissertation.  

• Draft dissertation due date (09/09/2020) 

• Final dissertation due date (15/10/2020) 

 

8.2 Project Plan 

Project planning was crucial to the success of the project and went hand in hand with the Gantt Chart and 

key tasks described above. A weekly plan was established to maintain the schedule and to ensure all tasks 

were completed by the due date and an outcome was achieved (refer Appendix B – 8.2). The project was 

scheduled over the duration of the year 2020, semesters 1 and 2, however, due to COVID-19 restrictions 

throughout the first semester and lack of face-to-face interaction with the project supervisor some delays 

did occur. These delays were able to be caught up during the recess periods of the semester and prior to 

semester 2.  
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 Period Highlight: 37

Recess

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

1A 1 2 1 3 100%

1B 1 28 1 28 100%

1C 2 2 2 2 100%

1D 3 2 3 5 100%

1E 4 7 4 11 100%

1F 4 1 4 1 100%

1G 5 2 5 2 100%

1H 6 1 6 1 100%

2A 7 3 7 3 100%

2B 8 3 8 3 100%

2C 8 5 8 5 100%

2D 10 3 12 5 100%

2E 12 2 12 3 100%

3A 14 1 14 1 100%

3B 15 2 18 4 100%

3C 16 5 17 4 100%

3D 17 1 17 1 100%

4A 21 6 21 8 100%

4B 21 9 21 9 100%

4C 23 6 23 7 100%

4D 24 5 24 6 100%

4E 25 2 25 2 100%

4F 26 1 26 1 100%

5A 27 3 27 3 100%

5B 27 4 27 4 100%

5C 29 1 29 1 100%

5D 31 1 31 1 100%

5E 32 1 32 1 100%

6A 33 2 33 2 100%

6B 33 2 33 2 100%

6C 33 2 33 2 100%

6D 34 1 34 1 100%

6E 35 3 35 3 100%

100%

Phase 6

Overall Completion

ACTIVITY

PLAN 

START 

(week)

PLAN 

DURATION 

(week)

ACTUAL 

START 

(week)

ACTUAL 

DURATION 

(week)

Project Plan - Michael Osgood - ENG4111/ENG4112 - Research Report 
Actual (beyond plan)% Complete

Project Duration and Phase - Year 2020

PERCENT 

COMPLETE

% Complete (beyond plan)Actual StartPlan Duration

Semester 1 - ENG4111 (24 Feb 2020 - 19 Jun 2020) Semester 2 - ENG4112 (13 Jul 2020 - 06 Nov 2020)Recess

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
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9. Appendix C – Household a/c System Measurements 
 

Temperature Measurements of Pool, Air, Hot Water System and Air-Conditioning System 

Date 
Water 

Temp 

Max 

Air 

Temp 

Min 

Air 

Temp 

HW 

out 

HW 

in 

AC 

out 

AC 

in Power Use (kW) Comments 

27-Jan-20 31.5 32 21           All performed with a/c set to 24°c 

28-Jan-20 31 31 21           All performed with Pool Heater auto on at 27°c 

29-Jan-20 32 35 22             

30-Jan-20 31.5 34 21             

31-Jan-20 31.5 34 22             

01-Feb-20 31.5 34 20             

02-Feb-20 30 34 20             

03-Feb-20 32.5 39 23             

04-Feb-20 30 30 20             

05-Feb-20 28 26 19             

06-Feb-20 27 25 20             

07-Feb-20 28.5 28 21             

08-Feb-20 29 30 22             

09-Feb-20 28.5 29 22             

10-Feb-20 29 29 22             

11-Feb-20 29 30 22             

12-Feb-20 29 29 22             

13-Feb-20 28 28 21             

14-Feb-20 29 31 21             

15-Feb-20 30 33 22             

16-Feb-20 31.5 33 22             

17-Feb-20 32 32 22             

18-Feb-20 32 33 23             

19-Feb-20 32.5 36 22             

20-Feb-20 32 35 21             
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21-Feb-20 31.5 31 21             

22-Feb-20 30 29 20             

23-Feb-20 28.5 26 20             

24-Feb-20 28 27 19             

25-Feb-20 29 30 20             

26-Feb-20 29 32 21             

27-Feb-20 30 30 21             

28-Feb-20 30 32 21             

29-Feb-20 29 30 19             

01-Mar-20 31 32 20             

02-Mar-20 31 34 20             

03-Mar-20 31.5 33 22             

04-Mar-20 29 31 21             

05-Mar-20 30.5 30 22             

06-Mar-20 30 30 22 40 32 33 7 5.03   

07-Mar-20 29 30 20 40 32 32 6 3.99 elec. HW on (manual)  

08-Mar-20 29.5 28 19 38 28 30.5 8 6.06   

09-Mar-20 27 24 17 30 20 28 10 5.59 elec. HW on (manual)  

10-Mar-20 27.5 26 17 38 24.5 26.5 9 6.35   

11-Mar-20 28 28 17 40 27 28 6 3.88 elec. HW on (manual)  

12-Mar-20 27.5 27 17 43 21 29.5 8 4.46   

13-Mar-20 27 27 17 48 32 28 17 5.78 elec. HW on (manual)  

14-Mar-20 28 28 17 43 32 27 5 3.91   

15-Mar-20 28 28 17 43 29 32.5 6 3.7   

16-Mar-20 28 27 16 47 33.5 32 4.5 4.94   

17-Mar-20 27.5 27 16 44 30 32 6.5 5.7   

18-Mar-20 28 28 15 50 36 33 5 5.56   

19-Mar-20 28.5 28 15 45 29.5 32 4.5 6.1   

20-Mar-20 29 31 17 49 34 33 4 4.4   

21-Mar-20 29 34 20 58 39 38.5 6 3.67   

22-Mar-20 28.5 32 20 48 38.5 34 5 1.35   

23-Mar-20 29 28 19 47 31 32 4 8.46   
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24-Mar-20 27.5 27 17 38 26.5 27 11.5 4.08   

25-Mar-20 28 27 17 55 27 32 7 4.46 elec. HW on (manual)  

26-Mar-20 28.5 28 18 55.5 34 34 6 6.06   

27-Mar-20 27.5 27 16 50.5 31 27 4 5.59   

28-Mar-20 28 27 17 42 29.5 28 4.5 6.35 elec. HW on (manual) 

29-Mar-20 28 28 17 56 30 27.5 9 3.88   

30-Mar-20 28.5 29 18 48.5 33 29 5 4.46   

31-Mar-20 29 31 19 49 29 31.5 5 5.78   

01-Apr-20 28.5 29 17 46 30 29 4.5 3.91   

02-Apr-20 28.5 29 18 51 32 27 20 3.7   

03-Apr-20 29 31 20 48 32 32 6 3.84   

04-Apr-20 29 31 18 42.5 28.5 27.5 6.5 3.75   

05-Apr-20 29 29 15 48.5 32.5 32 7 4.46   

06-Apr-20 28.5 29 16 50.5 34 31 6.5 5.21   

07-Apr-20 28.5 28 16 49.5 34 31 6 6.21   

08-Apr-20 27.5 27 16 42 26 26 7.5 3.2   

09-Apr-20 27.5 27 17 45 27.5 27 6.5 5.03   

10-Apr-20 27.5 27 17 42 27 27 6 3.99   

11-Apr-20 28.5 31 14 46 31 29 6.5 6.06   

12-Apr-20 28 27 12 50.5 29.5 28 6.5 5.59   

13-Apr-20 27.5 27 14 49 29 27.5 6 6.35   

14-Apr-20 27 28 14 55 32 29 5 5.61   

15-Apr-20 27 28 13 52 30.5 29.5 5.5 4.46   

16-Apr-20 27.5 31 16 53 32.5 31 5 5.78   

17-Apr-20 28 33 18 52 34 35 6.5 5.84   

18-Apr-20 27 30 15 50 24.5 28.5 5 6.48   

19-Apr-20 27 28 11 50 27.5 24.5 19 6.06 elec. HW on (manual)  

20-Apr-20 27.5 28 13 52 28 28.5 3.5 5.59   

21-Apr-20 27.5 29 15 47.5 29.5 28.5 4 6.35   

22-Apr-20 29.5 31 14 52.5 35.5 35 7.5 6.89   

23-Apr-20 27.5 28 13 46.5 28 26.5 4 4.94   

24-Apr-20 27 29 13 47.5 28.5 29.5 6 5.7   
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27-Jun-20 16 24 6 45 25 26 44 6.21   

28-Jun-20 17 21 6 41 20 25 50 8.56   

29-Jun-20 17.5 22 6 53 27 24 47 5.54   

30-Jun-20 18 22 5 31 22.5 26 47.5 7.36   

01-Jul-20 17 22 6 53.5 23 25.5 46 6.35   

02-Jul-20 18 23 6 43 27.5 26 42 6.53   

03-Jul-20 18.5 25 7 42.5 30.5 28 45 6.21   

04-Jul-20 18 20 1 42.5 19.5 30 49 6.47   

05-Jul-20 17.5 20 3 40.5 20 30 65 6.83   

06-Jul-20 16.5 22 4 59.5 28 29 46.5 5.72   

07-Jul-20 17 22 6 41.5 22 20 48 6.08   

08-Jul-20 17 22 8 45.5 27 27 43.5 6.81   

09-Jul-20 17.5 19 8 50 19.5 32 61 8.31   

10-Jul-20 18 22 6 46 22.5 28 55 8.22   

11-Jul-20 17.5 24 8 52 24.5 29 51.5 7.45   

12-Jul-20 18 25 6 41 25 30 60.5 6.74   

13-Jul-20 18.5 21 4 49 25 22 45 5.69   

14-Jul-20 17.5 19 5 39.5 17.5 24 53.5 7.06   

15-Jul-20 17 22.5 2.5 41.5 26.5 29.5 56 6.63   

16-Jul-20 16.5 22 2 48 24 30.5 57.5 7.38   

17-Jul-20 17 23 3 46.5 25.5 31 50.5 7.89   

18-Jul-20 17 23 3 44 27 28 49 7.15   

19-Jul-20 17.5 24 3 41 24.5 26 61.5 8.09   

20-Jul-20 17.5 25 6 43.5 27.5 28.5 54 7.68   

21-Jul-20 17 21 7 46 24 29 56 7.94   

22-Jul-20 16.5 18 7 55 20 32 55 7.39   

23-Jul-20 16.5 18 8 41 19 24 66.5 14   

24-Jul-20 17 19 10 51.5 22 23.5 50.5 7.08   

25-Jul-20 17.5 21 10 44 21 26.5 54.5 7.87   

26-Jul-20 17.5 24 8 41 22.5 28 51.5 7.46   

27-Jul-20 18 20 6 34 18.5 24 51 6.26   

28-Jul-20 18.5 21 5 42 20.5 22 44.5 5.23   
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10. Appendix D – Household a/c System Power Measurements 

 

 

 

 

 

 

 

 

 

 

  

Voltage (V) Current (I) Power Factor (PF)
Instantaneous Net 

Usage (kWh)

Power per Phase 

(W)

Total Power - (kW) 

(sum of phases)

L1 239 1.18 112.35

L2 240 0.49 46.85

L3 238 0.91 86.28

Voltage (V) Current (I) Power Factor (PF)
Instantaneous Net 

Usage (kWh)

Power per Phase 

(W)

Total Power - (kW) 

(sum of phases)

L1 238 2.74 892.31

L2 239 2.84 928.76

L3 237 2.73 885.32

AC Power (kW)

2.46

Difference between Total Power PRIOR to turning AC ON and Total Power WHILE AC is ON = AC Power 

Draw/Usage/Consumption

0.23 0.14 0.25

Prior to turning a/c ON - No other household items ON (except in standby) - NOT including 1 x fridge, 1 x bar fridge 

and computers x 2.

Daily Power Measurement and Calculations

AC ON - 5mins into operation - No other household items ON (except in standby) - NOT including 1 x fridge, 1 x bar 

fridge and computers x 2.

0.79 1.46 2.71

Power per phase calculated using 3-phase 

power formula - P = I x (sqrt(3) x PF x V)

L = Phase

AC = air-conditioning

PF = Power Factor

I = Current

V = Voltage

W = Watts

kW = Kilowatts
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11. Appendix E – Box a/c System Measurements 
 

 

 

  

Date Temp of Sink Max Air Temp Min Air Temp
Comp out 

temp

Comp in 

temp

Condenser 

(outdoor coil) 

in temp

Condenser 

(outdoor coil) 

out temp

evaporator 

(indoor coil) 

in temp

evaporator 

(indoor coil) 

out temp
Power Use before 

adding sink (kW)

Power Use after 

adding sink (kW) Comments

12-Aug-20 43 24 8 46 40 26 1.5 9.5 0.834 0.811 Heat pack applied to compressor in

13-Aug-20 18.5 27 8 51 38.5 26.5 3 8 0.878 0.845 Cold pack applied to expander (throttling valve) outlet

14-Aug-20 18.5 27 12 58 36 28 4.5 9 0.942 0.906 Cold pack applied to expander (throttling valve) outlet

15-Aug-20 20.5 23 8 44 31.5 25.5 24 2 0.815 0.791 Cold pack applied to expander (throttling valve) outlet

16-Aug-20 20.5 23 4 37 27 23 21.5 -1 0.782 0.763 Cold pack applied to expander (throttling valve) outlet

17-Aug-20 45 23 5 46 16 45 23 33 2 0.815 0.768 Heat pack applied to compressor in

18-Aug-20 46 25 10 45 14 37 24.5 28 2.5 0.864 0.802 Heat pack applied to compressor in

19-Aug-20 52 27 8 46 11.5 34 25.5 25 3.5 0.887 0.832 Heat pack applied to compressor in

20-Aug-20 44 23 7 44.5 14 32.5 24 21.5 1.5 0.827 0.796 Heat pack applied to compressor in

21-Aug-20 46 23 8 45 16 29 22 20 -1 0.81 0.793 Heat pack applied to compressor in

22-Aug-20 51 22 5 46 15 27 23 32 8.5 0.831 0.798 Heat pack applied to compressor in

23-Aug-20 46 21 5 46.5 17.5 26 21.5 29 10 0.845 0.809 Heat pack applied to compressor in

24-Aug-20 43 22 3 48 20 25 19.5 27 11.5 0.852 0.805 Heat pack applied to compressor in

25-Aug-20 41 22 4 56 11 43 29 32 8.5 0.945 0.849 Heat pack applied to compressor in

Temperature and Power Measurements Box Air-Conditioning System using Heat Source - Cooling Mode

Date Temp of Sink Max Air Temp Min Air Temp
Comp out 

temp

Indoor Coil in 

temp 

(condenser)

Indoor Coil 

out temp 

(condenser)

Outdoor Coil 

in temp 

(evaporator)

Outdoor Coil 

out temp 

(evaporator)

Power Use before 

adding sink (kW)

Power Use after 

adding sink (kW) Comments

12-Aug-20 18.5 24 8 61.5 37 50 16.5 4 1.601 1.561 Cold pack applied to compressor outlet

13-Aug-20 19.5 27 8 65 35 58 18 6.5 1.716 1.682 Cold pack applied to compressor outlet

14-Aug-20 19 27 12 63 32.5 62 22 13.5 1.81 1.714 Cold pack applied to compressor outlet

15-Aug-20 20.5 23 8 62 35 63.5 24 14.5 1.674 1.606 Cold pack applied to compressor outlet

16-Aug-20 20.5 23 4 63 37 61 25 16 1.439 1.415 Cold pack applied to outdoor coil inlet

17-Aug-20 19.5 23 5 63 33 55.5 33 16 1.61 1.514 Cold pack applied to compressor outlet

18-Aug-20 20 25 10 71 36 61 32 18 1.703 1.645 Cold pack applied to compressor outlet

19-Aug-20 19.5 27 8 89 42 74 31 21 1.597 1.581 Cold pack applied to compressor outlet

20-Aug-20 19.5 23 7 86 38 68 29 16 1.622 1.574 Cold pack applied to compressor outlet

21-Aug-20 20.5 23 8 85 40 70 28.5 17.5 1.789 1.644 Cold pack applied to compressor outlet

22-Aug-20 17 22 5 87 39.5 71 30 16.5 1.602 1.514 Cold pack applied to compressor outlet

23-Aug-20 17 21 5 86.5 42 68.5 29 17 1.541 1.44 Cold pack applied to compressor outlet

24-Aug-20 17.5 22 3 86.5 32.5 42.5 53 25.5 1.751 1.718 Cold pack applied to compressor outlet

25-Aug-20 20.5 22 4 90 42 70 69 21.5 1.602 1.569 Cold pack applied to compressor outlet

Temperature and Power Measurements Box Air-Conditioning System using Heat Sink - Heating Mode
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12. Appendix F – Household a/c System MATLAB Calculations – Before Extrapolation Using 

Flowing Water Loop Design - Cooling Mode  

 

% Load the data 

data = readtable('Household ac Temperature Measurements - Research Project - Michael Osgood - COOLING.xlsx', 'Range','A:J'); 

% This is the temperature before the compressor 

T2 = data.ACOut; 

Tinf2 = data.MaxAirTemp; 

poweruse = data.PowerUse_kW_; 

  

% temperature after compressor for calculation of enthalpy 2 (assumed pipe 

% temp is refrigerant temp 

T_h2 = data.ACIn; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

T_h2 = T_h2 + CtoK; 

  

% Total number of days 

ndays = length(T2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Mass flow rate 

MFR_refrig = nan(ndays,1); 

% Temperature of the refrigerant (K) 

T_refrig = MFR_refrig; 

% enthalpy 2 of the refrigerant 

enthalpy2_refrig = T_refrig; 
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% Setup vectors for interpolation of properties 

% Data for properties of air 

T_air = [0 5 10 15 20 25 30 35] + CtoK; 

k_air = [0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625]; 

v_air = [1.338e-5 1.382e-5 1.426e-5 1.47e-5 1.516e-5 1.562e-5 1.608e-5 1.655e-5]; 

Pr_air = [0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268]; 

Tf = ((T2+Tinf2)/2); 

  

% Data for thermal conductivity of R410a 

T_k_R410A = [255.04 260.32 274.02 294.26 314.17 331.97 346.17]; 

k_R410A = [9.98 10.43 11.43 12.92 14.40 15.73 16.85] * 1e-3; 

  

% Data for Prandtl Number of R410a from https://irc.wisc.edu/properties/ 

Pr_R410A = [0.832 0.829 0.822 0.814 0.807 0.799 0.793]; 

  

% Data for dynamic viscosity of R410a 

T_R410A = [253.13 263.28 272.14 282.83 293.39 303.02 314.29 323.44 331.95]; 

u_R410A = [10.75 11.41 11.86 12.53 13.32 14.11 15.40 16.91 19.03] * 1e-6; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  &&  ~isnan(poweruse(day)) 

        % Natural convection calculations for outside the pipe 

        % Thermal conductivity of the air 

        k = spline(T_air,k_air,Tinf22); 

        % Kinematic viscosity of the air 

        v = spline(T_air,v_air,Tinf22); 

        % Prandtl number of the air 

        Pr = spline(T_air,Pr_air,Tinf22); 

         

        % Heat transfer rate 
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        % Data for Rayleigh number 

        g = 9.81; 

        B = 1./Tf(day); 

        %Area of outer pipe (L = 1) in m^2 

        r2 = 0.009525; 

        r1 = 0.008385; 

        A_r2 = 2*pi*r2; 

        A_r1 = 2*pi*r1; 

        D = 2*r2; 

        D1 = 2*r1; 

         

        %Rayleigh number calculation 

        Ra = (((g).*(B).*abs(T22-Tinf22).*(D).^3)/(v).^2).*Pr; 

         

        %Nusselt number calculation 

        Nu =(0.825+((0.387*(Ra).^(1/6))/((1+(0.492/Pr).^(9/16)).^(8/27)))).^2; 

         

        %Natural Convection heat transfer coefficient (W.m^2.K) 

        h = (k/D)*Nu; 

         

        %Thermal resistance of outer pipe (Rconv,2) 

        Rconv2 = 1/(h.*A_r2); 

         

        %Heat transfer rate (Qconv,2) in Watts (W) 

        Qconv2 = (T22-Tinf22)./Rconv2; 

         

        %Qcyl = Qconv,2 therefore: 

        %Thermal conductivity of copper pipe (W/(m.K) 

        k_cop = 355; 

         

        %Thermal resistance of pipe (Rcyl) 

        Rcyl = (log(r2/r1))/(2*pi*k_cop); 

         

        % Calculate the inner pipe temperature (T1) 

        T1 = (Qconv2.*Rcyl)+T22; 
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        % Initial guess for mass flow rate 

        if day == 1  ||  isnan(MFR_refrig(day-1)) 

            MFR=0.02; 

        else 

            MFR = MFR_refrig(day-1); 

        end 

        MFR_refrig(day) = MFR; 

        % Initial error for mass flow rate 

        MFR_err = 1e6*reltol*(MFR+1); 

        MFR_count = 0; 

        % Iterate guess of mass flow rate 

        while abs(MFR_err) > reltol*MFR  &&  MFR_count < 100 

            % Initial guess of refrigerant temperature 

            if day == 1  ||  isnan(T_refrig(day-1)) 

                T = 273; 

            else 

                T = T_refrig(day-1); 

            end 

            T_refrig(day) = T; 

            % Initial error for temperature 

            T_err = 1e6*reltol*(T+1); 

            T_count = 0; 

             

            % Iterate guess of temperature 

            while abs(T_err) > reltol*T  &&  T_count < 100 

                % Calculation of Reynolds number (using current guess of 

                % mass flow rate and temperature) 

                Re = 4*MFR / (pi*spline(T_R410A,u_R410A,T)*D1); 

                % Calculation of convective heat transfer coefficient 

                if Re < 2300 

                    % Laminar pipe flow Nusselt number  

                    % Circular tube, laminar (Ts = constant):  

                    % Nu = hD/k = 3.66 

                    Nu_R410A = 3.66; 

                else 

                    % Surface roughness: Drawn Tubing (table 8.1 - Fox and 
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                    % McDonalds - Fluid Mechanics 

                    e = 0.0015;                     

                    % Friction factor: Haaland formula, after Eq. (8.37) 

                    f = (1/(-1.8*log10(((e/D1)/3.7).^1.11+(6.9/Re)))).^2; 

                   

                    % Turbulent pipe flow Nusselt number: Eq. (8-71) 

                    Pr_Nu = spline(T_k_R410A,Pr_R410A,T); 

                     

                    Nu_R410A = ((f/8)*(Re-1000)*(Pr_Nu)) / (1+(((12.7*(f/8)).^0.5)*(((Pr_Nu).^(2/3))-1))); 

                end 

                                

                % Forced Convective heat transfer coefficient 

                k_h = spline(T_k_R410A,k_R410A,T); 

                 

                h_R410A = ((k_h)/D1)*Nu_R410A; 

                 

                % Thermal resistance of inner pipe (Rconv,1) 

                Rconv1 = 1/(h_R410A.*A_r1); 

                 

                %Heat transfer rate (Qconv,1) in Watts (W) 

                Qconv1 = Qconv2; 

         

                % Calculate new refrigerant 

                T = (Qconv1*Rconv1)+T1; 

                                

                % Recalculate error 

                T_err = abs(T - T_refrig(day)); 

                % Latest guess for this day 

                T_refrig(day) = T; 

                T_count = T_count + 1; 

            end 

             

            % Calculate new value of MFR 

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 
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            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (1200kPa) for R410A from DuPont: 

            h1_T = [15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

            h1 = [427.6 433.8 439.7 445.4 451.0 456.5 461.8 467.1 472.4 477.6 482.7 487.8 492.9 498.0 503.1 508.1 513.2 518.2]; 

             

            enthalpy1 = spline(h1_T,h1,T); 

             

            % Entropy after compressor assumes isentropic flow through 

            % compressor: entropy is the same after compressor 

             

            % Entropy before compressor (low pressure): 

            % Using Superheated table (1200kPa) for R410A from DuPont: 

            s1_T = [15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

s1 = [1.7948 1.8159 1.8359 1.8550 1.8733 1.8909 1.9079 1.9245 1.9406 1.9563 1.9716 1.9866 2.0014 2.0159 2.0301 2.0441 

2.0580 2.0716] ; 

             

            entropy2 = spline(s1_T,s1,T); 

              

            % Enthalpy after compressor (high pressure) 

            % From superheated table at high pressure (3400kPa) for R410A from DuPont: 

            h2 = [423.1 434.1 443.7 452.2 460.2 467.6 474.8 481.6 488.2 494.7 501.0 507.1 513.2 519.2 525.1 531.0 536.8 542.6]; 

s2 = [1.6987 1.7321 1.7604 1.7856 1.8086 1.8299 1.8499 1.8688 1.8869 1.9043 1.9211 1.9373 1.9531 1.9684 1.9834 1.9981 

2.0124 2.0265]; 

             

            enthalpy2 = spline(s2,h2,entropy2); 

             

            % Mass flow rate 

            MFR = poweruse(day)/(enthalpy2-enthalpy1); 

                        

            % Recalculate error 

            MFR_err = abs(MFR - MFR_refrig(day)); 

            % Latest guess for this day 

            MFR_refrig(day) = MFR; 

            MFR_count = MFR_count + 1; 

            enthalpy2_refrig(day) = enthalpy2; 

        end 
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        disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(T-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C']) 

    end 

end 

  

% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

data.enthalpy2 = enthalpy2_refrig; 

writetable(data,'Household ac Temperature Calculations - Research Project - Michael Osgood - COOLING.xlsx'); 
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13. Appendix G – Household a/c System MATLAB Calculations – After Extrapolation Using 

Flowing Water Loop Design - Cooling Mode  

 

(H20 Mass Flow Rate = 1.33kg/s) 

% Load the data 

data = readtable('Household ac Temperature Calculations - Research Project - Michael Osgood - COOLING.xlsx'); 

% This is the temperature before the compressor 

Tinf2 = data.HWOut; 

T2 = Tinf2 - 0.1; 

MFR_refrig = data.MFR; 

enthalpy2_refrig = data.enthalpy2; 

T_refrig_ord = data.T_refrig; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

T_refrig_ord = T_refrig_ord + CtoK; 

  

% Total number of days 

ndays = length(Tinf2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Temperature of the refrigerant (K) 

T_refrig = nan(ndays,1); 

% poweruse of the system (kw) 

poweruse_refrig = nan(ndays,1); 

  

% https://justwaterpumps.com.au/pond-pumps/ 
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% 80 LPM = 1.33 kg/s - Davey SJ60-08PC Silver Series Jet Pump 

MFR_H20_1 = 1.33; 

  

% Setup vectors for interpolation of properties 

% Data for properties of water - Table A-9 - Heat and Mass Transfer 

T_H20 = [10 15 20 25 30 35 40 45 50 55 60] + CtoK; 

k_H20 = [0.580 0.589 0.598 0.607 0.615 0.623 0.631 0.637 0.644 0.649 0.654]; 

u_H20 = [1.307e-3 1.138e-3 1.002e-3 0.891e-3 0.798e-3 0.720e-3 0.653e-3 0.596e-3 0.547e-3 0.504e-3 0.467e-3]; 

Pr_H20 = [9.45 8.09 7.01 6.14 5.42 4.83 4.32 3.91 3.55 3.25 2.99]; 

Cp_H20 = [4194 4185 4182 4180 4178 4178 4179 4180 4181 4183 4185]; 

  

% Data for thermal conductivity of R410a 

T_k_R410A = [255.04 260.32 274.02 294.26 314.17 331.97 346.17]; 

k_R410A = [9.98 10.43 11.43 12.92 14.40 15.73 16.85] * 1e-3; 

  

% Data for Prandtl Number of R410a from https://irc.wisc.edu/properties/ 

Pr_R410A = [0.832 0.829 0.822 0.814 0.807 0.799 0.793]; 

  

% Data for dynamic viscosity of R410a 

T_R410A = [253.13 263.28 272.14 282.83 293.39 303.02 314.29 323.44 331.95]; 

u_R410A = [10.75 11.41 11.86 12.53 13.32 14.11 15.40 16.91 19.03] * 1e-6; 

  

% Formula for specific heat of R410a (J/kg.K) (Temperature in K)         

cp_R410A = @(T) 2.676084e2 + 2.115353*T - 9.848184e-4*T.^2 + 6.493781e-8*T.^3; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  

        %Heat transfer rate (Qconv,2) in Watts (W) 

        % Q = MFR*Cp*Delta T 

        % Specific Heat of the water 

        Cp = spline(T_H20,Cp_H20,Tinf22); 
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        Qconv2 = MFR_H20_1*Cp*0.1; 

         

         % This day's mass flow rate 

            MFR = MFR_refrig(day); 

         

        % Refrigerant temperature in ordinary operation 

        T1 = T_refrig_ord(day); 

        % Calculate new refrigerant temperature (based on reduction due to 

        % specific heat) 

        Qconv1 = Qconv2; 

        Tinf1 = (Qconv1/(MFR*cp_R410A(T1))) + T1; 

                        

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 

             

            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (1200kPa) for R410A from DuPont: 

            h1_T = [15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273; 

            h1 = [427.6 433.8 439.7 445.4 451.0 456.5 461.8 467.1 472.4 477.6 482.7 487.8 492.9 498.0 503.1 508.1 513.2 518.2]; 

             

            enthalpy1 = spline(h1_T,h1,Tinf1); 

                       

            % Value is same as from household normal calculations 

            enthalpy2 = enthalpy2_refrig(day); 

                                            

            % Power use 

            poweruse = MFR*(enthalpy2-enthalpy1); 

             

            % Store this value 

            poweruse_refrig(day) = poweruse; 

            T_refrig(day) = Tinf1;                         

    end 

       disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(Tinf1-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C.',' The power use with heat source application = ',num2str(poweruse),'kW']) 

end      
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% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

  

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

data.poweruse = poweruse_refrig; 

writetable(data,'Household ac Temperature Calculations - Research Project - Michael Osgood - COOLING - Extrapolation - MFR - 

1.33.xlsx'); 
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14. Appendix H – Household a/c System MATLAB Calculations – Before Extrapolation Using 

Flowing Water Loop Design - Heating Mode  

 

% Load the data 

data = readtable('Household ac Temperature Measurements - Research Project - Michael Osgood - HEATING.xlsx', 'Range','A:J'); 

% This is the temperature after the compressor 

T2 = data.ACIn; 

Tinf2 = data.MaxAirTemp; 

poweruse = data.PowerUse_kW_; 

  

% temperature before compressor for calculation of enthalpy 1 (assumed pipe 

% temp is refrigerant temp 

T_h1 = data.ACOut; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

T_h1 = T_h1 + CtoK; 

  

% Total number of days 

ndays = length(T2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Mass flow rate 

MFR_refrig = nan(ndays,1); 

% Temperature of the refrigerant (K) 

T_refrig = MFR_refrig; 

% enthalpy 1 of the refrigerant 

enthalpy1_refrig = T_refrig; 
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% Setup vectors for interpolation of properties 

% Data for properties of air 

T_air = [0 5 10 15 20 25 30 35] + CtoK; 

k_air = [0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625]; 

v_air = [1.338e-5 1.382e-5 1.426e-5 1.47e-5 1.516e-5 1.562e-5 1.608e-5 1.655e-5]; 

Pr_air = [0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268]; 

Tf = ((T2+Tinf2)/2); 

  

% Data for thermal conductivity of R410a 

T_k_R410A = [255.04 260.32 274.02 294.26 314.17 331.97 346.17]; 

k_R410A = [9.98 10.43 11.43 12.92 14.40 15.73 16.85] * 1e-3; 

  

% Data for Prandtl Number of R410a from https://irc.wisc.edu/properties/ 

Pr_R410A = [0.832 0.829 0.822 0.814 0.807 0.799 0.793]; 

  

% Data for dynamic viscosity of R410a 

T_R410A = [253.13 263.28 272.14 282.83 293.39 303.02 314.29 323.44 331.95]; 

u_R410A = [10.75 11.41 11.86 12.53 13.32 14.11 15.40 16.91 19.03] * 1e-6; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  &&  ~isnan(poweruse(day)) 

        % Natural convection calculations for outside the pipe 

        % Thermal conductivity of the air 

        k = spline(T_air,k_air,Tinf22); 

        % Kinematic viscosity of the air 

        v = spline(T_air,v_air,Tinf22); 

        % Prandtl number of the air 

        Pr = spline(T_air,Pr_air,Tinf22); 

         

        % Heat transfer rate 
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        % Data for Rayleigh number 

        g = 9.81; 

        B = 1./Tf(day); 

        %Area of outer pipe (L = 1) in m^2 

        r2 = 0.009525; 

        r1 = 0.008385; 

        A_r2 = 2*pi*r2; 

        A_r1 = 2*pi*r1; 

        D = 2*r2; 

        D1 = 2*r1; 

         

        %Rayleigh number calculation 

        Ra = (((g).*(B).*abs(T22-Tinf22).*(D).^3)/(v).^2).*Pr; 

         

        %Nusselt number calculation 

        Nu =(0.825+((0.387*(Ra).^(1/6))/((1+(0.492/Pr).^(9/16)).^(8/27)))).^2; 

         

        %Natural Convection heat transfer coefficient (W.m^2.K) 

        h = (k/D)*Nu; 

         

        %Thermal resistance of outer pipe (Rconv,2) 

        Rconv2 = 1/(h.*A_r2); 

         

        %Heat transfer rate (Qconv,2) in Watts (W) 

        Qconv2 = (T22-Tinf22)./Rconv2; 

         

        %Qcyl = Qconv,2 therefore: 

        %Thermal conductivity of copper pipe (W/(m.K) 

        k_cop = 355; 

         

        %Thermal resistance of pipe (Rcyl) 

        Rcyl = (log(r2/r1))/(2*pi*k_cop); 

         

        % Calculate the inner pipe temperature (T1) 

        T1 = (Qconv2.*Rcyl)+T22; 
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        % Initial guess for mass flow rate 

        if day == 1  ||  isnan(MFR_refrig(day-1)) 

            MFR=0.002; 

        else 

            MFR = MFR_refrig(day-1); 

        end 

        MFR_refrig(day) = MFR; 

        % Initial error for mass flow rate 

        MFR_err = 1e6*reltol*(MFR+1); 

        MFR_count = 0; 

        % Iterate guess of mass flow rate 

        while abs(MFR_err) > reltol*MFR  &&  MFR_count < 100 

            % Initial guess of refrigerant temperature 

            if day == 1  ||  isnan(T_refrig(day-1)) 

                T = 273; 

            else 

                T = T_refrig(day-1); 

            end 

            T_refrig(day) = T; 

            % Initial error for temperature 

            T_err = 1e6*reltol*(T+1); 

            T_count = 0; 

             

            % Iterate guess of temperature 

            while abs(T_err) > reltol*T  &&  T_count < 100 

                % Calculation of Reynolds number (using current guess of 

                % mass flow rate and temperature) 

                Re = 4*MFR / (pi*spline(T_R410A,u_R410A,T)*D1); 

                % Calculation of convective heat transfer coefficient 

                if Re < 2300 

                    % Laminar pipe flow Nusselt number  

                    % Circular tube, laminar (Ts = constant):  

                    % Nu = hD/k = 3.66 

                    Nu_R410A = 3.66; 

                else 

                    % Surface roughness: Drawn Tubing (table 8.1 - Fox and 
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                    % McDonalds - Fluid Mechanics 

                    e = 0.0015;                     

                    % Friction factor: Haaland formula, after Eq. (8.37) 

                    f = (1/(-1.8*log10(((e/D1)/3.7).^1.11+(6.9/Re)))).^2; 

                   

                    % Turbulent pipe flow Nusselt number: Eq. (8-71) 

                    Pr_Nu = spline(T_k_R410A,Pr_R410A,T); 

                     

                    Nu_R410A = ((f/8)*(Re-1000)*(Pr_Nu)) / (1+(((12.7*(f/8)).^0.5)*(((Pr_Nu).^(2/3))-1))); 

                end 

                                

                % Forced Convective heat transfer coefficient 

                k_h = spline(T_k_R410A,k_R410A,T); 

                 

                h_R410A = ((k_h)/D1)*Nu_R410A; 

                 

                % Thermal resistance of outer pipe (Rconv,1) 

                Rconv1 = 1/(h_R410A.*A_r1); 

                 

                %Heat transfer rate (Qconv,1) in Watts (W) 

                Qconv1 = Qconv2; 

         

                % Calculate new refrigerant 

                T = (Qconv1*Rconv1)+T1; 

                                

                % Recalculate error 

                T_err = abs(T - T_refrig(day)); 

                % Latest guess for this day 

                T_refrig(day) = T; 

                T_count = T_count + 1; 

            end 

             

            % Calculate new value of MFR 

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 
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            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (1200kPa) for R410A from DuPont: 

            h1_T = [15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + CtoK; 

            h1 = [427.6 433.8 439.7 445.4 451.0 456.5 461.8 467.1 472.4 477.6 482.7 487.8 492.9 498.0 503.1 508.1 513.2 518.2]; 

             

            enthalpy1 = spline(h1_T,h1,T_h1(day)); 

                      

            % Enthalpy after compressor (high pressure) 

            % From superheated table at high pressure (3400kPa) for R410A from DuPont: 

            h2 = [423.1 434.1 443.7 452.2 460.2 467.6 474.8 481.6 488.2 494.7 501.0 507.1 513.2 519.2 525.1 531.0 536.8 542.6]; 

            h2_T = [55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140] + CtoK; 

s2 = [1.6987 1.7321 1.7604 1.7856 1.8086 1.8299 1.8499 1.8688 1.8869 1.9043 1.9211 1.9373 1.9531 1.9684 1.9834 1.9981 

2.0124 2.0265]; 

             

            enthalpy2 = spline(h2_T,h2,T); 

             

            entropy2 = spline(h2_T,s2,T); 

             

            % Enthalpy before compressor assuming isentropic compressor 

            % Using Superheated table (1200kPa) for R410A from DuPont: 

            h1 = [427.6 433.8 439.7 445.4 451.0 456.5 461.8 467.1 472.4 477.6 482.7 487.8 492.9 498.0 503.1 508.1 513.2 518.2]; 

            s1 = [1.7948 1.8159 1.8359 1.8550 1.8733 1.8909 1.9079 1.9245 1.9406 1.9563 1.9716 1.9866 2.0014 2.0159 2.0301 2.0441 

2.0580 2.0716]; 

  

            enthalpy1 = spline(s1,h1,entropy2); 

  

            % Mass flow rate 

            MFR = poweruse(day)/(enthalpy2-enthalpy1); 

             

            % Recalculate error 

            MFR_err = abs(MFR - MFR_refrig(day)); 

            % Latest guess for this day 

            MFR_refrig(day) = MFR; 

            MFR_count = MFR_count + 1; 

            enthalpy1_refrig(day) = enthalpy1; 

        end 
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        disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(T-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C']) 

    end 

end 

  

% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

data.enthalpy1 = enthalpy1_refrig; 

writetable(data,'Household ac Temperature Calculations - Research Project - Michael Osgood - HEATING.xlsx'); 
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15. Appendix I – Household a/c System MATLAB Calculations – After Extrapolation Using 

Flowing Water Loop Design - Heating Mode 

 

(H20 Mass Flow Rate = 1.33kg/s) 

% Load the data 

data = readtable('Household ac Temperature Calculations - Research Project - Michael Osgood - HEATING.xlsx'); 

% This is the temperature after the compressor 

Tinf2 = data.WaterTemp; 

T2 = Tinf2 - 0.1; 

MFR_refrig = data.MFR; 

enthalpy1_refrig = data.enthalpy1; 

T_refrig_ord = data.T_refrig; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

T_refrig_ord = T_refrig_ord + CtoK; 

  

% Total number of days 

ndays = length(Tinf2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Temperature of the refrigerant (K) 

T_refrig = nan(ndays,1); 

% poweruse of the system (kw) 

poweruse_refrig = nan(ndays,1); 

  

% https://justwaterpumps.com.au/pond-pumps/ 
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% 80 LPM = 1.33 kg/s - Davey SJ60-08PC Silver Series Jet Pump 

MFR_H20_1 = 1.33; 

  

% Setup vectors for interpolation of properties 

% Data for properties of water - Table A-9 - Heat and Mass Transfer 

T_H20 = [10 15 20 25 30 35 40 45 50 55 60] + CtoK; 

k_H20 = [0.580 0.589 0.598 0.607 0.615 0.623 0.631 0.637 0.644 0.649 0.654]; 

u_H20 = [1.307e-3 1.138e-3 1.002e-3 0.891e-3 0.798e-3 0.720e-3 0.653e-3 0.596e-3 0.547e-3 0.504e-3 0.467e-3]; 

Pr_H20 = [9.45 8.09 7.01 6.14 5.42 4.83 4.32 3.91 3.55 3.25 2.99]; 

Cp_H20 = [4194 4185 4182 4180 4178 4178 4179 4180 4181 4183 4185]; 

  

% Data for thermal conductivity of R410a 

T_k_R410A = [255.04 260.32 274.02 294.26 314.17 331.97 346.17]; 

k_R410A = [9.98 10.43 11.43 12.92 14.40 15.73 16.85] * 1e-3; 

  

% Data for Prandtl Number of R410a from https://irc.wisc.edu/properties/ 

Pr_R410A = [0.832 0.829 0.822 0.814 0.807 0.799 0.793]; 

  

% Data for dynamic viscosity of R410a 

T_R410A = [253.13 263.28 272.14 282.83 293.39 303.02 314.29 323.44 331.95]; 

u_R410A = [10.75 11.41 11.86 12.53 13.32 14.11 15.40 16.91 19.03] * 1e-6; 

  

% Formula for specific heat of R410a (J/kg.K) (Temperature in K)         

cp_R410A = @(T) 2.676084e2 + 2.115353*T - 9.848184e-4*T.^2 + 6.493781e-8*T.^3; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  

        %Heat transfer rate (Qconv,2) in Watts (W) 

        % Q = MFR*Cp*Delta T 

        % Specific Heat of the water 

        Cp = spline(T_H20,Cp_H20,Tinf22); 
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        Qconv2 = -MFR_H20_1*Cp*0.01; 

         

         % This day's mass flow rate 

            MFR = MFR_refrig(day); 

         

        % Refrigerant temperature in ordinary operation 

        T1 = T_refrig_ord(day); 

        % Calculate new refrigerant temperature (based on reduction due to 

        % specific heat) 

        Qconv1 = Qconv2; 

        Tinf1 = (Qconv1/(MFR*cp_R410A(T1))) + T1; 

       

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 

             

            % Value is same as from household normal calculations 

            enthalpy1 = enthalpy1_refrig(day); 

                        

            % Enthalpy after compressor (high pressure) is enthalpy from Tinf1 

            % From superheated table at high pressure (3400kPa) for R410A from DuPont: 

            h2 = [423.1 434.1 443.7 452.2 460.2 467.6 474.8 481.6 488.2 494.7 501.0 507.1 513.2 519.2 525.1 531.0 536.8 542.6]; 

            h2_T = [55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140] + CtoK; 

             

            enthalpy2 = spline(h2_T,h2,Tinf1); 

             

            % Power use 

            poweruse = MFR*(enthalpy2-enthalpy1); 

             

            % Store this value 

            poweruse_refrig(day) = poweruse; 

            T_refrig(day) = Tinf1;  

    end 

       disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(Tinf1-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C.',' The power use with heat sink application = ',num2str(poweruse),'kW']) 

end      
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% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

  

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

data.poweruse = poweruse_refrig; 

writetable(data,'Household ac Temperature Calculations - Project - HEATING - Extrapolation - MFR - 1.33.xlsx'); 
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16. Appendix J – Box a/c System MATLAB Calculations – Before Heat Pack - Cooling Mode 

 

% Load the data 

data = readtable('Box ac design - Temperature Measurements - Michael Osgood - COOLING.xlsx', 'Range','A:M'); 

% This is the temperature before the compressor 

T2 = data.Comp_in_temp; 

Tinf2 = data.Max_Air_Temp; 

poweruse_prior = data.Power_Use_before_adding_sink_kW; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

  

% Total number of days 

ndays = length(T2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Mass flow rate 

MFR_refrig = nan(ndays,1); 

% Temperature of the refrigerant (K) 

T_refrig = MFR_refrig; 

  

% Setup vectors for interpolation of properties 

% Data for properties of air 

T_air = [0 5 10 15 20 25 30 35] + CtoK; 

k_air = [0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625]; 

v_air = [1.338e-5 1.382e-5 1.426e-5 1.47e-5 1.516e-5 1.562e-5 1.608e-5 1.655e-5]; 

Pr_air = [0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268]; 

Tf = ((T2+Tinf2)/2); 
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% Data for thermal conductivity of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

T_k_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

k_R22 = [7.09 7.58 8.08 8.61 9.15 9.71 10.3 10.9 11.5 12.1 12.8 13.4 14.1 14.8 15.5] * 1e-3; 

  

% Data for Prandtl Number of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

Pr_R22 = [0.833 0.824 0.817 0.81 0.804 0.798 0.793 0.788 0.783 0.778 0.773 0.769 0.764 0.76 0.755]; 

  

% Data for dynamic viscosity of R22 from https://irc.wisc.edu/properties/ 

T_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

u_R22 = [9.73 10.2 10.6 11.1 11.5 12 12.4 12.8 13.3 13.7 14.1 14.6 15 15.4 15.8] * 1e-6; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  &&  ~isnan(poweruse_prior(day)) 

        % Natural convection calculations for outside the pipe 

        % Thermal conductivity of the air 

        k = spline(T_air,k_air,Tinf22); 

        % Kinematic viscosity of the air 

        v = spline(T_air,v_air,Tinf22); 

        % Prandtl number of the air 

        Pr = spline(T_air,Pr_air,Tinf22); 

         

        % Heat transfer rate 

        % Data for Rayleigh number 

        g = 9.81; 

        B = 1./Tf(day); 

        %Area of outer pipe (L = 1) in m^2 

        r2 = 0.00476; 

        r1 = 0.00405; 

        A_r2 = 2*pi*r2; 
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        A_r1 = 2*pi*r1; 

        D = 2*r2; 

        D1 = 2*r1; 

         

        %Rayleigh number calculation 

        Ra = (((g).*(B).*abs(T22-Tinf22).*(D).^3)/(v).^2).*Pr; 

         

        %Nusselt number calculation 

        Nu =(0.825+((0.387*(Ra).^(1/6))/((1+(0.492/Pr).^(9/16)).^(8/27)))).^2; 

         

        %Natural Convection heat transfer coefficient (W.m^2.K) 

        h = (k/D)*Nu; 

         

        %Thermal resistance of outer pipe (Rconv,2) 

        Rconv2 = 1/(h.*A_r2); 

         

        %Heat transfer rate (Qconv,2) in Watts (W) 

        Qconv2 = (T22-Tinf22)./Rconv2; 

         

        %Qcyl = Qconv,2 therefore: 

        %Thermal conductivity of copper pipe (W/(m.K) 

        k_cop = 355; 

         

        %Thermal resistance of pipe (Rcyl) 

        Rcyl = (log(r2/r1))/(2*pi*k_cop); 

         

        % Calculate the inner pipe temperature (T1) 

        T1 = (Qconv2.*Rcyl)+T22; 

         

        % Initial guess for mass flow rate 

        if day == 1  ||  isnan(MFR_refrig(day-1)) 

            MFR=0; 

        else 

            MFR = MFR_refrig(day-1); 

        end 

        MFR_refrig(day) = MFR; 
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        % Initial error for mass flow rate 

        MFR_err = 1e6*reltol*(MFR+1); 

        MFR_count = 0; 

        % Iterate guess of mass flow rate 

        while abs(MFR_err) > reltol*MFR  &&  MFR_count < 100 

            % Initial guess of refrigerant temperature 

            if day == 1  ||  isnan(T_refrig(day-1)) 

                T = 273; 

            else 

                T = T_refrig(day-1); 

            end 

            T_refrig(day) = T; 

            % Initial error for temperature 

            T_err = 1e6*reltol*(T+1); 

            T_count = 0; 

             

            % Iterate guess of temperature 

            while abs(T_err) > reltol*T  &&  T_count < 100 

                % Calculation of Reynolds number (using current guess of 

                % mass flow rate and temperature) 

                Re = 4*MFR / (pi*spline(T_R22,u_R22,T)*D1); 

                % Calculation of convective heat transfer coefficient 

                if Re < 2300 

                    % Laminar pipe flow Nusselt number  

                    % Circular tube, laminar (Ts = constant):  

                    % Nu = hD/k = 3.66 

                    Nu_R22 = 3.66; 

                else 

                    % Surface roughness: Drawn Tubing (table 8.1 - Fox and 

                    % McDonalds - Fluid Mechanics 

                    e = 0.0015;                     

                    % Friction factor: Haaland formula, after Eq. (8.37) 

                    f = (1/(-1.8*log10(((e/D1)/3.7).^1.11+(6.9/Re)))).^2; 

                   

                    % Turbulent pipe flow Nusselt number: Eq. (8-71) 

                    Pr_Nu = spline(T_k_R22,Pr_R22,T); 
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                    Nu_R22 = ((f/8)*(Re-1000)*(Pr_Nu)) / (1+(((12.7*(f/8)).^0.5)*(((Pr_Nu).^(2/3))-1))); 

                end 

                                

                % Forced Convective heat transfer coefficient 

                k_h = spline(T_k_R22,k_R22,T); 

                 

                h_R22 = ((k_h)/D1)*Nu_R22; 

                 

                % Thermal resistance of outer pipe (Rconv,1) 

                Rconv1 = 1/(h_R22.*A_r1); 

                 

                %Heat transfer rate (Qconv,1) in Watts (W) 

                Qconv1 = Qconv2; 

         

                % Calculate new refrigerant 

                T = (Qconv1*Rconv1)+T1; 

                

                % Recalculate error 

                T_err = abs(T - T_refrig(day)); 

                % Latest guess for this day 

                T_refrig(day) = T; 

                T_count = T_count + 1; 

            end 

             

            % Calculate new value of MFR 

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 

             

            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            h1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

h1 = [408.7 412.3 416.0 419.6 423.2 426.8 430.4 434.1 437.7 441.3 445.0 448.6 452.3 456.0 459.7 463.4 467.2 470.9 474.7 

478.5]; 

             

            enthalpy1 = spline(h1_T,h1,T); 
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            % Entropy after compressor assumes isentropic flow through 

            % compressor: entropy is the same after compressor 

             

            % Entropy before compressor (low pressure): 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            s1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

s1 = [1.764 1.777 1.789 1.802 1.814 1.826 1.838 1.849 1.861 1.872 1.884 1.895 1.906 1.916 1.927 1.938 1.948 1.959 1.969 

1.979]; 

             

            entropy2 = spline(s1_T,s1,T); 

              

            % Enthalpy after compressor (high pressure) 

            % From superheated table at high pressure (1700kPa) for R22 from DuPont: 

h2 = [417.6 422.6 427.5 432.2 436.8 441.2 445.7 450.0 454.4 458.7 463.0 467.2 471.5 475.7 479.9 484.1 488.3 492.6 496.8 

501.0]; 

s2 = [1.695 1.711 1.726 1.740 1.754 1.767 1.780 1.792 1.804 1.816 1.828 1.839 1.851 1.862 1.873 1.884 1.894 1.905 1.915 

1.925]; 

             

            enthalpy2 = spline(s2,h2,entropy2); 

             

            % Mass flow rate 

            MFR= poweruse_prior(day)/(enthalpy2-enthalpy1); 

             

            % Recalculate error 

            MFR_err = abs(MFR - MFR_refrig(day)); 

            % Latest guess for this day 

            MFR_refrig(day) = MFR; 

            MFR_count = MFR_count + 1; 

        end 

        disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(T-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C']) 

    end 

end 
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% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

writetable(data,'Box ac design - Temperature Calculations - Michael Osgood - COOLING.xlsx'); 
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17. Appendix K – Box a/c System MATLAB Calculations – After Heat Pack - Cooling Mode 

 

% Load the data 

data = readtable('Box ac design - Temperature Measurements - Michael Osgood - COOLING - HP Applied.xlsx', 'Range','A:M'); 

% This is the temperature before the compressor 

T2 = data.TempOfSink; 

Tinf2 = data.Max_Air_Temp; 

poweruse_after = data.Power_Use_after_adding_sink_kW; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

  

% Total number of days 

ndays = length(T2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Mass flow rate 

MFR_refrig = nan(ndays,1); 

% Temperature of the refrigerant (K) 

T_refrig = MFR_refrig; 

  

% Setup vectors for interpolation of properties 

% Data for properties of air 

T_air = [0 5 10 15 20 25 30 35] + CtoK; 

k_air = [0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625]; 

v_air = [1.338e-5 1.382e-5 1.426e-5 1.47e-5 1.516e-5 1.562e-5 1.608e-5 1.655e-5]; 

Pr_air = [0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268]; 

Tf = ((T2+Tinf2)/2); 
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% Data for thermal conductivity of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

T_k_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

k_R22 = [7.09 7.58 8.08 8.61 9.15 9.71 10.3 10.9 11.5 12.1 12.8 13.4 14.1 14.8 15.5] * 1e-3; 

  

% Data for Prandtl Number of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

Pr_R22 = [0.833 0.824 0.817 0.81 0.804 0.798 0.793 0.788 0.783 0.778 0.773 0.769 0.764 0.76 0.755]; 

  

% Data for dynamic viscosity of R22 from https://irc.wisc.edu/properties/ 

T_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

u_R22 = [9.73 10.2 10.6 11.1 11.5 12 12.4 12.8 13.3 13.7 14.1 14.6 15 15.4 15.8] * 1e-6; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  &&  ~isnan(poweruse_after(day)) 

        % Natural convection calculations for outside the pipe 

        % Thermal conductivity of the air 

        k = spline(T_air,k_air,Tinf22); 

        % Kinematic viscousity of the air 

        v = spline(T_air,v_air,Tinf22); 

        % Prandtl number of the air 

        Pr = spline(T_air,Pr_air,Tinf22); 

         

        % Heat transfer rate 

        % Data for Rayleigh number 

        g = 9.81; 

        B = 1./Tf(day); 

        %Area of outer pipe (L = 1) in m^2 

        r2 = 0.00476; 

        r1 = 0.00405; 

        A_r2 = 2*pi*r2; 
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        A_r1 = 2*pi*r1; 

        D = 2*r2; 

        D1 = 2*r1; 

         

        %Rayleigh number calculation 

        Ra = (((g).*(B).*abs(T22-Tinf22).*(D).^3)/(v).^2).*Pr; 

         

        %Nusselt number calculation 

        Nu =(0.825+((0.387*(Ra).^(1/6))/((1+(0.492/Pr).^(9/16)).^(8/27)))).^2; 

         

        %Natural Convection heat transfer coefficient (W.m^2.K) 

        h = (k/D)*Nu; 

         

        %Thermal resistance of outer pipe (Rconv,2) 

        Rconv2 = 1/(h.*A_r2); 

         

        %Heat transfer rate (Qconv,2) in Watts (W) 

        Qconv2 = (T22-Tinf22)./Rconv2; 

         

        %Qcyl = Qconv,2 therefore: 

        %Thermal conductivity of copper pipe (W/(m.K) 

        k_cop = 355; 

         

        %Thermal resistance of pipe (Rcyl) 

        Rcyl = (log(r2/r1))/(2*pi*k_cop); 

         

        % Calculate the inner pipe temperature (T1) 

        T1 = (Qconv2.*Rcyl)+T22; 

         

        % Initial guess for mass flow rate 

        if day == 1  ||  isnan(MFR_refrig(day-1)) 

            MFR=0; 

        else 

            MFR = MFR_refrig(day-1); 

        end 

        MFR_refrig(day) = MFR; 
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        % Initial error for mass flow rate 

        MFR_err = 1e6*reltol*(MFR+1); 

        MFR_count = 0; 

        % Iterate guess of mass flow rate 

        while abs(MFR_err) > reltol*MFR  &&  MFR_count < 100 

            % Initial guess of refrigerant temperature 

            if day == 1  ||  isnan(T_refrig(day-1)) 

                T = 273; 

            else 

                T = T_refrig(day-1); 

            end 

            T_refrig(day) = T; 

            % Initial error for temperature 

            T_err = 1e6*reltol*(T+1); 

            T_count = 0; 

             

            % Iterate guess of temperature 

            while abs(T_err) > reltol*T  &&  T_count < 100 

                % Calculation of Reynolds number (using current guess of 

                % mass flow rate and temperature) 

                Re = 4*MFR / (pi*spline(T_R22,u_R22,T)*D1); 

                % Calculation of convective heat transfer coefficient 

                if Re < 2300 

                    % Laminar pipe flow Nusselt number  

                    % Circular tube, laminar (Ts = constant):  

                    % Nu = hD/k = 3.66 

                    Nu_R22 = 3.66; 

                else 

                    % Surface roughness: Drawn Tubing (table 8.1 - Fox and 

                    % McDonalds - Fluid Mechanics 

                    e = 0.0015;                     

                    % Friction factor: Haaland formula, after Eq. (8.37) 

                    f = (1/(-1.8*log10(((e/D1)/3.7).^1.11+(6.9/Re)))).^2; 

                   

                    % Turbulent pipe flow Nusselt number: Eq. (8-71) 

                    Pr_Nu = spline(T_k_R22,Pr_R22,T); 
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                    Nu_R22 = ((f/8)*(Re-1000)*(Pr_Nu)) / (1+(((12.7*(f/8)).^0.5)*(((Pr_Nu).^(2/3))-1))); 

                end 

                                

                % Forced Convective heat transfer coefficient 

                k_h = spline(T_k_R22,k_R22,T); 

                 

                h_R22 = ((k_h)/D1)*Nu_R22; 

                 

                % Thermal resistance of outer pipe (Rconv,1) 

                Rconv1 = 1/(h_R22.*A_r1); 

                 

                %Heat transfer rate (Qconv,1) in Watts (W) 

                Qconv1 = Qconv2; 

         

                % Calculate new refrigerant 

                T = (Qconv1*Rconv1)+T1; 

                

                % Recalculate error 

                T_err = abs(T - T_refrig(day)); 

                % Latest guess for this day 

                T_refrig(day) = T; 

                T_count = T_count + 1; 

            end 

             

            % Calculate new value of MFR 

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 

             

            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            h1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

h1 = [408.7 412.3 416.0 419.6 423.2 426.8 430.4 434.1 437.7 441.3 445.0 448.6 452.3 456.0 459.7 463.4 467.2 470.9 474.7 

478.5]; 

             

            enthalpy1 = spline(h1_T,h1,T); 
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            % Entropy after compressor assumes isentropic flow through 

            % compressor: entropy is the same after compressor 

             

            % Entropy before compressor (low pressure): 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            s1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

s1 = [1.764 1.777 1.789 1.802 1.814 1.826 1.838 1.849 1.861 1.872 1.884 1.895 1.906 1.916 1.927 1.938 1.948 1.959 1.969 

1.979]; 

             

            entropy2 = spline(s1_T,s1,T); 

              

            % Enthalpy after compressor (high pressure) 

            % From superheated table at high pressure (1700kPa) for R22 from DuPont: 

h2 = [417.6 422.6 427.5 432.2 436.8 441.2 445.7 450.0 454.4 458.7 463.0 467.2 471.5 475.7 479.9 484.1 488.3 492.6 496.8 

501.0]; 

s2 = [1.695 1.711 1.726 1.740 1.754 1.767 1.780 1.792 1.804 1.816 1.828 1.839 1.851 1.862 1.873 1.884 1.894 1.905 1.915 

1.925]; 

             

            enthalpy2 = spline(s2,h2,entropy2); 

             

            % Mass flow rate 

            MFR= poweruse_after(day)/(enthalpy2-enthalpy1); 

             

            % Recalculate error 

            MFR_err = abs(MFR - MFR_refrig(day)); 

            % Latest guess for this day 

            MFR_refrig(day) = MFR; 

            MFR_count = MFR_count + 1; 

        end 

        disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(T-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C']) 

    end 

end 
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% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

writetable(data,'Box ac design - Temperature Calculations - Michael Osgood - COOLING - HP Applied.xlsx'); 
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18. Appendix L – Box a/c System MATLAB Calculations – Before Cold Pack - Heating Mode 

 

% Load the data 

data = readtable('Box ac design - Temperature Measurements - Michael Osgood - HEATING.xlsx', 'Range','A:L'); 

% This is the temperature before the compressor 

T2 = data.Comp_out_temp; 

Tinf2 = data.Max_Air_Temp; 

poweruse_prior = data.Power_Use_before_adding_sink_kW; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

  

% Total number of days 

ndays = length(T2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Mass flow rate 

MFR_refrig = nan(ndays,1); 

% Temperature of the refrigerant (K) 

T_refrig = MFR_refrig; 

  

% Setup vectors for interpolation of properties 

% Data for properties of air 

T_air = [0 5 10 15 20 25 30 35] + CtoK; 

k_air = [0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625]; 

v_air = [1.338e-5 1.382e-5 1.426e-5 1.47e-5 1.516e-5 1.562e-5 1.608e-5 1.655e-5]; 

Pr_air = [0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268]; 

Tf = ((T2+Tinf2)/2); 
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% Data for thermal conductivity of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

T_k_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

k_R22 = [7.09 7.58 8.08 8.61 9.15 9.71 10.3 10.9 11.5 12.1 12.8 13.4 14.1 14.8 15.5] * 1e-3; 

  

% Data for Prandtl Number of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

Pr_R22 = [0.833 0.824 0.817 0.81 0.804 0.798 0.793 0.788 0.783 0.778 0.773 0.769 0.764 0.76 0.755]; 

  

% Data for dynamic viscosity of R22 from https://irc.wisc.edu/properties/ 

T_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

u_R22 = [9.73 10.2 10.6 11.1 11.5 12 12.4 12.8 13.3 13.7 14.1 14.6 15 15.4 15.8] * 1e-6; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  &&  ~isnan(poweruse_prior(day)) 

        % Natural convection calculations for outside the pipe 

        % Thermal conductivity of the air 

        k = spline(T_air,k_air,Tinf22); 

        % Kinematic viscosity of the air 

        v = spline(T_air,v_air,Tinf22); 

        % Prandtl number of the air 

        Pr = spline(T_air,Pr_air,Tinf22); 

         

        % Heat transfer rate 

        % Data for Rayleigh number 

        g = 9.81; 

        B = 1./Tf(day); 

        %Area of outer pipe (L = 1) in m^2 

        r2 = 0.00476; 

        r1 = 0.00405; 

        A_r2 = 2*pi*r2; 
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        A_r1 = 2*pi*r1; 

        D = 2*r2; 

        D1 = 2*r1; 

         

        %Rayleigh number calculation 

        Ra = (((g).*(B).*abs(T22-Tinf22).*(D).^3)/(v).^2).*Pr; 

         

        %Nusselt number calculation 

        Nu =(0.825+((0.387*(Ra).^(1/6))/((1+(0.492/Pr).^(9/16)).^(8/27)))).^2; 

         

        %Natural Convection heat transfer coefficient (W.m^2.K) 

        h = (k/D)*Nu; 

         

        %Thermal resistance of outer pipe (Rconv,2) 

        Rconv2 = 1/(h.*A_r2); 

         

        %Heat transfer rate (Qconv,2) in Watts (W) 

        Qconv2 = (T22-Tinf22)./Rconv2; 

         

        %Qcyl = Qconv,2 therefore: 

        %Thermal conductivity of copper pipe (W/(m.K) 

        k_cop = 355; 

         

        %Thermal resistance of pipe (Rcyl) 

        Rcyl = (log(r2/r1))/(2*pi*k_cop); 

         

        % Calculate the inner pipe temperature (T1) 

        T1 = (Qconv2.*Rcyl)+T22; 

                 

        % Initial guess for mass flow rate 

        if day == 1  ||  isnan(MFR_refrig(day-1)) 

            MFR = 0.02; 

        else 

            MFR = MFR_refrig(day-1); 

        end 

        MFR_refrig(day) = MFR; 
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        % Initial error for mass flow rate 

        MFR_err = 1e6*reltol*(MFR+1); 

        MFR_count = 0; 

        % Iterate guess of mass flow rate 

        while abs(MFR_err) > reltol*MFR  &&  MFR_count < 100 

            % Initial guess of refrigerant temperature 

            if day == 1  ||  isnan(T_refrig(day-1)) 

                T = 273; 

            else 

                T = T_refrig(day-1); 

            end 

            T_refrig(day) = T; 

            % Initial error for temperature 

            T_err = 1e6*reltol*(T+1); 

            T_count = 0; 

             

            % Iterate guess of temperature 

            while abs(T_err) > reltol*T  &&  T_count < 100 

                % Calculation of Reynolds number (using current guess of 

                % mass flow rate and temperature) 

                Re = 4*MFR / (pi*spline(T_R22,u_R22,T)*D1); 

                % Calculation of convective heat transfer coefficient 

                if Re < 2300 

                    % Laminar pipe flow Nusselt number  

                    % Circular tube, laminar (Ts = constant):  

                    % Nu = hD/k = 3.66 

                    Nu_R22 = 3.66; 

                else 

                    % Surface roughness: Drawn Tubing (table 8.1 - Fox and 

                    % McDonalds - Fluid Mechanics 

                    e = 0.0015;                     

                    % Friction factor: Haaland formula, after Eq. (8.37) 

                    f = (1/(-1.8*log10(((e/D1)/3.7).^1.11+(6.9/Re)))).^2; 

                   

                    % Turbulent pipe flow Nusselt number: Eq. (8-71) 

                    Pr_Nu = spline(T_k_R22,Pr_R22,T); 
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                    Nu_R22 = ((f/8)*(Re-1000)*(Pr_Nu)) / (1+(((12.7*(f/8)).^0.5)*(((Pr_Nu).^(2/3))-1))); 

                end 

                                

                % Forced Convective heat transfer coefficient 

                k_h = spline(T_k_R22,k_R22,T); 

                 

                h_R22 = ((k_h)/D1)*Nu_R22; 

                 

                % Thermal resistance of inner pipe (Rconv,1) 

                Rconv1 = 1/(h_R22.*A_r1); 

                 

                %Heat transfer rate (Qconv,1) in Watts (W) 

                Qconv1 = Qconv2; 

         

                % Calculate new refrigerant 

                T = (Qconv1*Rconv1)+T1; 

                           

                % Recalculate error 

                T_err = abs(T - T_refrig(day)); 

                % Latest guess for this day 

                T_refrig(day) = T; 

                T_count = T_count + 1; 

            end 

             

            % Calculate new value of MFR 

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 

             

            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            h1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

h1 = [408.7 412.3 416.0 419.6 423.2 426.8 430.4 434.1 437.7 441.3 445.0 448.6 452.3 456.0 459.7 463.4 467.2 470.9 474.7 

478.5]; 

             

            enthalpy1 = spline(h1_T,h1,T); 
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            % Entropy after compressor assumes isentropic flow through 

            % compressor: entropy is the same after compressor 

             

            % Entropy before compressor (low pressure): 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            s1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

s1 = [1.764 1.777 1.789 1.802 1.814 1.826 1.838 1.849 1.861 1.872 1.884 1.895 1.906 1.916 1.927 1.938 1.948 1.959 1.969 

1.979]; 

             

            entropy2 = spline(s1_T,s1,T); 

              

            % Enthalpy after compressor (high pressure) 

            % From superheated table at high pressure (1700kPa) for R22 from DuPont: 

h2 = [417.6 422.6 427.5 432.2 436.8 441.2 445.7 450.0 454.4 458.7 463.0 467.2 471.5 475.7 479.9 484.1 488.3 492.6 496.8 

501.0]; 

s2 = [1.695 1.711 1.726 1.740 1.754 1.767 1.780 1.792 1.804 1.816 1.828 1.839 1.851 1.862 1.873 1.884 1.894 1.905 1.915 

1.925]; 

             

            enthalpy2 = spline(s2,h2,entropy2); 

             

            % Mass flow rate 

            MFR= poweruse_prior(day)/(enthalpy2-enthalpy1); 

             

            % Recalculate error 

            MFR_err = abs(MFR - MFR_refrig(day)); 

            % Latest guess for this day 

            MFR_refrig(day) = MFR; 

            MFR_count = MFR_count + 1; 

        end 

        disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(T-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C']) 

    end 

end 
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% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

writetable(data,'Box ac design - Temperature Calculations - Michael Osgood - HEATING.xlsx'); 
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19. Appendix M – Box a/c System MATLAB Calculations – After Cold Pack - Heating Mode 

 

% Load the data 

data = readtable('Box ac design - Temperature Measurements - Michael Osgood - HEATING - CP Applied.xlsx', 'Range','A:L'); 

% This is the temperature before the compressor 

T2 = data.TempOfSink; 

Tinf2 = data.Max_Air_Temp; 

poweruse_after = data.Power_Use_after_adding_sink_kW; 

  

% Convert to Kelvin 

CtoK = 273.15; 

Tinf2 = Tinf2 + CtoK; 

T2 = T2 + CtoK; 

  

% Total number of days 

ndays = length(T2); 

  

% Error tolerances for values 

reltol = 1e-6; 

  

% Initialise the arrays 

% Mass flow rate 

MFR_refrig = nan(ndays,1); 

% Temperature of the refrigerant (K) 

T_refrig = MFR_refrig; 

  

% Setup vectors for interpolation of properties 

% Data for properties of air 

T_air = [0 5 10 15 20 25 30 35] + CtoK; 

k_air = [0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625]; 

v_air = [1.338e-5 1.382e-5 1.426e-5 1.47e-5 1.516e-5 1.562e-5 1.608e-5 1.655e-5]; 

Pr_air = [0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268]; 

Tf = ((T2+Tinf2)/2); 
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% Data for thermal conductivity of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

T_k_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

k_R22 = [7.09 7.58 8.08 8.61 9.15 9.71 10.3 10.9 11.5 12.1 12.8 13.4 14.1 14.8 15.5] * 1e-3; 

  

% Data for Prandtl Number of R22 from https://irc.wisc.edu/properties/ 

% Data used at atmospheric pressure: 101kPa 

Pr_R22 = [0.833 0.824 0.817 0.81 0.804 0.798 0.793 0.788 0.783 0.778 0.773 0.769 0.764 0.76 0.755]; 

  

% Data for dynamic viscosity of R22 from https://irc.wisc.edu/properties/ 

T_R22 = [-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100] + CtoK; 

u_R22 = [9.73 10.2 10.6 11.1 11.5 12 12.4 12.8 13.3 13.7 14.1 14.6 15 15.4 15.8] * 1e-6; 

  

% Calculate for all the days 

for day = 1:ndays 

%for day = 1:ndays 

    T22 = T2(day); 

    Tinf22 = Tinf2(day); 

    % Only do analysis if there is data for that day! 

    if ~isnan(T22)  &&  ~isnan(Tinf22)  &&  ~isnan(poweruse_after(day)) 

        % Natural convection calculations for outside the pipe 

        % Thermal conductivity of the air 

        k = spline(T_air,k_air,Tinf22); 

        % Kinematic viscousity of the air 

        v = spline(T_air,v_air,Tinf22); 

        % Prandtl number of the air 

        Pr = spline(T_air,Pr_air,Tinf22); 

         

        % Heat transfer rate 

        % Data for Rayleigh number 

        g = 9.81; 

        B = 1./Tf(day); 

        %Area of outer pipe (L = 1) in m^2 

        r2 = 0.00476; 

        r1 = 0.00405; 

        A_r2 = 2*pi*r2; 
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        A_r1 = 2*pi*r1; 

        D = 2*r2; 

        D1 = 2*r1; 

         

        %Rayleigh number calculation 

        Ra = (((g).*(B).*abs(T22-Tinf22).*(D).^3)/(v).^2).*Pr; 

         

        %Nusselt number calculation 

        Nu =(0.825+((0.387*(Ra).^(1/6))/((1+(0.492/Pr).^(9/16)).^(8/27)))).^2; 

         

        %Natural Convection heat transfer coefficient (W.m^2.K) 

        h = (k/D)*Nu; 

         

        %Thermal resistance of outer pipe (Rconv,2) 

        Rconv2 = 1/(h.*A_r2); 

         

        %Heat transfer rate (Qconv,2) in Watts (W) 

        Qconv2 = (T22-Tinf22)./Rconv2; 

         

        %Qcyl = Qconv,2 therefore: 

        %Thermal conductivity of copper pipe (W/(m.K) 

        k_cop = 355; 

         

        %Thermal resistance of pipe (Rcyl) 

        Rcyl = (log(r2/r1))/(2*pi*k_cop); 

         

        % Calculate the inner pipe temperature (T1) 

        T1 = (Qconv2.*Rcyl)+T22; 

                 

        % Initial guess for mass flow rate 

        if day == 1  ||  isnan(MFR_refrig(day-1)) 

            MFR = 0.02; 

        else 

            MFR = MFR_refrig(day-1); 

        end 

        MFR_refrig(day) = MFR; 
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        % Initial error for mass flow rate 

        MFR_err = 1e6*reltol*(MFR+1); 

        MFR_count = 0; 

        % Iterate guess of mass flow rate 

        while abs(MFR_err) > reltol*MFR  &&  MFR_count < 100 

            % Initial guess of refrigerant temperature 

            if day == 1  ||  isnan(T_refrig(day-1)) 

                T = 273; 

            else 

                T = T_refrig(day-1); 

            end 

            T_refrig(day) = T; 

            % Initial error for temperature 

            T_err = 1e6*reltol*(T+1); 

            T_count = 0; 

             

            % Iterate guess of temperature 

            while abs(T_err) > reltol*T  &&  T_count < 100 

                % Calculation of Reynolds number (using current guess of 

                % mass flow rate and temperature) 

                Re = 4*MFR / (pi*spline(T_R22,u_R22,T)*D1); 

                % Calculation of convective heat transfer coefficient 

                if Re < 2300 

                    % Laminar pipe flow Nusselt number  

                    % Circular tube, laminar (Ts = constant):  

                    % Nu = hD/k = 3.66 

                    Nu_R22 = 3.66; 

                else 

                    % Surface roughness: Drawn Tubing (table 8.1 - Fox and 

                    % McDonalds - Fluid Mechanics 

                    e = 0.0015;                     

                    % Friction factor: Haaland formula, after Eq. (8.37) 

                    f = (1/(-1.8*log10(((e/D1)/3.7).^1.11+(6.9/Re)))).^2; 

                   

                    % Turbulent pipe flow Nusselt number: Eq. (8-71) 

                    Pr_Nu = spline(T_k_R22,Pr_R22,T); 
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                    Nu_R22 = ((f/8)*(Re-1000)*(Pr_Nu)) / (1+(((12.7*(f/8)).^0.5)*(((Pr_Nu).^(2/3))-1))); 

                end 

                                

                % Forced Convective heat transfer coefficient 

                k_h = spline(T_k_R22,k_R22,T); 

                 

                h_R22 = ((k_h)/D1)*Nu_R22; 

                 

                % Thermal resistance of inner pipe (Rconv,1) 

                Rconv1 = 1/(h_R22.*A_r1); 

                 

                %Heat transfer rate (Qconv,1) in Watts (W) 

                Qconv1 = Qconv2; 

         

                % Calculate new refrigerant 

                T = (Qconv1*Rconv1)+T1; 

                 

                % Recalculate error 

                T_err = abs(T - T_refrig(day)); 

                % Latest guess for this day 

                T_refrig(day) = T; 

                T_count = T_count + 1; 

            end 

             

            % Calculate new value of MFR 

            % MFR = electrical power consumption divided by the enthalpy 

            % change across the compressor 

             

            % Enthalpy before compressor is enthalpy from Tinf1 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            h1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

h1 = [408.7 412.3 416.0 419.6 423.2 426.8 430.4 434.1 437.7 441.3 445.0 448.6 452.3 456.0 459.7 463.4 467.2 470.9 474.7 

478.5]; 

             

            enthalpy1 = spline(h1_T,h1,T); 
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            % Entropy after compressor assumes isentropic flow through 

            % compressor: entropy is the same after compressor 

             

            % Entropy before compressor (low pressure): 

            % Using Superheated table (500kPa) for R22 from DuPont: 

            s1_T = [5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] + 273.15; 

s1 = [1.764 1.777 1.789 1.802 1.814 1.826 1.838 1.849 1.861 1.872 1.884 1.895 1.906 1.916 1.927 1.938 1.948 1.959 1.969 

1.979]; 

             

            entropy2 = spline(s1_T,s1,T); 

              

            % Enthalpy after compressor (high pressure) 

            % From superheated table at high pressure (1700kPa) for R22 from DuPont: 

h2 = [417.6 422.6 427.5 432.2 436.8 441.2 445.7 450.0 454.4 458.7 463.0 467.2 471.5 475.7 479.9 484.1 488.3 492.6 496.8 

501.0]; 

s2 = [1.695 1.711 1.726 1.740 1.754 1.767 1.780 1.792 1.804 1.816 1.828 1.839 1.851 1.862 1.873 1.884 1.894 1.905 1.915 

1.925]; 

             

            enthalpy2 = spline(s2,h2,entropy2); 

             

            % Mass flow rate 

            MFR= poweruse_after(day)/(enthalpy2-enthalpy1); 

             

            % Recalculate error 

            MFR_err = abs(MFR - MFR_refrig(day)); 

            % Latest guess for this day 

            MFR_refrig(day) = MFR; 

            MFR_count = MFR_count + 1; 

        end 

        disp(['For day ',num2str(day),  ... 

            ' the refrigerant temperature = ',num2str(T-CtoK),'C and mass flow rate = ',num2str(MFR),'kg/s.',  ... 

            ' The inner pipe temperature = ',num2str(T1-CtoK),'C']) 

    end 

end 
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% Convert back to Celsius 

T_refrig = T_refrig - CtoK; 

% Output data 

data.T_refrig = T_refrig; 

data.MFR = MFR_refrig; 

writetable(data,'Box ac design - Temperature Calculations - Michael Osgood - HEATING - CP Applied.xlsx'); 

 

  
















