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Abstract

Distraction while driving currently makes up 14% of crashes and 10% of fatalities on

roads in NSW, Australia on average every year (Transport for NSW 2020a). Through

the increase in reliance on mobile devices, these numbers are sure to increase. There

are currently methods involved in the reduction of this issue, however there is currently

nothing in place for detection while driving.

This research works to prove the hypothesis that using a fixed camera installed in a car,

and with some image pre-processing and machine learning algorithms applied, a machine

can detect the act of reaching for a phone. To prove this hypothesis, the research required

a database to be created, and algorithms used in order to determine the accuracy of

detection.

With the analysis of previous literature, this research was able to identify some key

methods required for classification of pre-emptive mobile phone usage. These techniques

were tested against a database created with varying vehicle types and driver behaviour.

The results of the trained models were then tested against a previously ”unseen” data

set, to verify the accuracy of the machine.

The results of this project showed promise, with three different machine learning tech-

niques applied against unseen data. Each reviewed 240 samples of reaching events as well

as a varied length of driving videos. The bagged tree method detecting 27.92% with a

false positive rate of 3.45 per minute, the cosine KNN method detecting 29.17% with a

false positive rate of 4.74 per minute and the cubic SVM method detecting 29.17% with

a false positive rate of 6.13 per minute.

This research was limited by hardware capabilities, as well as data limitations. With an

increased database across multiple vehicle types and drivers, the results would show more



ii

significance. Further research in this area would also be required to limit the time of which

the pre-processing algorithms required, as 1 second of data is still currently requiring 2.8

seconds in processing time.

Suggestions were made that additional research with a more varied database should be

conducted to ensure validity across different vehicle types and driving styles. With more

significant training conducted, a machine could then be developed in order to make these

calculations real time and test them against a driver in a vehicle. This technique would

show significant importance in detecting the shortfalls of the machine training and iden-

tifying different areas for potential improvement. Additional trials on pre-processing

techniques were identified and some ideas around the training to identify more than just

three categories to help in determining areas of which data is lacking.



University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences



Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Andrew Hopkins



Acknowledgments

I would like to thank Tobias Low for offering guidance and assistance as my supervisor over

the length of this project. Notably for the level of feedback at different stages throughout

the works, which led to both my presentation and project success.

I would also like to thank my partner Emma Moore, for the assistance in recording, as

well as allowing me to use her vehicle for recording. As well as Emma’s sisters Georgia

Moore and Laura Moore for allowing me to use their vehicles.

Andrew Hopkins





Contents

Abstract i

Acknowledgments v

List of Figures xiii

List of Tables xv

Chapter 1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Dangers of Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.2 Methods of Protection . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outcomes and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature Review 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



CONTENTS viii

2.2 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 K-Nearest Neighbor Classifiers . . . . . . . . . . . . . . . . . . . . 11

2.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Motion Energy Images . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Motion History Images . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Optical Flow Energy Images . . . . . . . . . . . . . . . . . . . . . 14

2.4 Machine Learning Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 Methodology 16

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Outline of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Project Legalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Project Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.2 Project Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.3 Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



CONTENTS ix

Chapter 4 Stage 1 - Initial Design 31

4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Horn-Schunk Algorithm for Optical Flow Outputs . . . . . . . . . 33

4.2.3 Data Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Video Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Misclassification Cost . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Advanced Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . 45

4.5.4 Post Training Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5 Stage 2 - Database Optimization 46

5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



CONTENTS x

5.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . 51

5.3.4 Post Training Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 6 Stage 3 - Pre-processing Optimization 52

6.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Database Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.2 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . 57

Chapter 7 Stage 4 - Verification on Unseen Data 58

7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Breakdown By Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.2 Breakdown By Reaching Type . . . . . . . . . . . . . . . . . . . . 62

7.2.3 Breakdown of False Positive Detections . . . . . . . . . . . . . . . 63

7.2.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.5 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.6 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS xi

7.2.7 Post Training Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 8 Conclusion and Further Work 66

8.1 Project Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.2 Data Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.2.3 Data Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.4 Data pre-processing Optimization . . . . . . . . . . . . . . . . . . 72

8.2.5 MATLAB Out-Of-Memory . . . . . . . . . . . . . . . . . . . . . . 73

References 74

Appendix A Project Specification 76

Appendix B Project Timeline 78

Appendix C Risk Assessment 80

Appendix D Stage 1, 2 and 3 Result Tables 87

Appendix E Validation Result Tables 94

Appendix F Frame Calculating Function 102

Appendix G Classification Array Function 104

Appendix H Footage Cropper/Trimming Function 106



CONTENTS xii

Appendix I Optical Flow and Averaging Function 108

Appendix J Optical Flow History Function 111

Appendix K Bagged Tree Machine Learning Function 112

Appendix L Cosine KNN Machine Learning Function 116

Appendix M Cubic SVM Machine Learning Function 120



List of Figures

1.1 Evolution of population and road fatalities in Australia from 1925 to 2005 3

1.2 Hierarchy of Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The hierarchical decision tree for sign languauge recognition . . . . . . . . 9

2.2 SVM displayed in 2-D and 3-D data plot . . . . . . . . . . . . . . . . . . . 9

2.3 Linear Discimination Analysis of Two Classifiers . . . . . . . . . . . . . . 11

2.4 Classification by 15-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . 12

2.5 Example of a Motion Energy Image . . . . . . . . . . . . . . . . . . . . . 13

2.6 Optical Flow Output Layed Over Current Frame . . . . . . . . . . . . . . 14

3.1 Image outlining camera positioning and resulting image . . . . . . . . . . 18

3.2 Risk matrix used to calculate risk levels . . . . . . . . . . . . . . . . . . . 29

4.1 Misclassification cost use in Stage 1 . . . . . . . . . . . . . . . . . . . . . . 36

4.2 MATLAB Machine Learning Output Matrix 1 . . . . . . . . . . . . . . . . 37

4.3 MATLAB Machine Learning Output Matrix 2 . . . . . . . . . . . . . . . . 38

4.4 MATLAB Machine Learning Output Data3 . . . . . . . . . . . . . . . . . 39



LIST OF FIGURES xiv

4.5 Overall Accuracy of Stage 1 Machine Learning Techniques . . . . . . . . . 40

4.6 Approximate Prediction Speed of Stage 1 Machine Learning Techniques . 41

5.1 Overall Accuracy of Stage 2 Machine Learning Techniques . . . . . . . . . 48

5.2 Approximate Prediction Speed of Stage 2 Machine Learning Techniques . 49

6.1 Overall Accuracy of Stage 3 Machine Learning Techniques . . . . . . . . . 54

6.2 Approximate Prediction Speed of Stage 3 Machine Learning Techniques . 55

6.3 Clipped Approximate Prediction Speed of Stage 3 Machine Learning Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Overall Results of Stage 4 Validation Tests . . . . . . . . . . . . . . . . . 59

7.2 Results Broken Down by Vehicle . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Results Broken Down by Reaching Type . . . . . . . . . . . . . . . . . . . 63

7.4 Results Broken Down by False Positive Detection . . . . . . . . . . . . . . 64

8.1 Different Averaging Approach Using Single Row/Column . . . . . . . . . 72

8.2 Different Averaging Approach Using Double Row/Column . . . . . . . . . 72

B.1 Project Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Tables

3.1 Requirements for project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Project Phases 1 - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Project Phases 3 - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Project Phases 5 - 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.1 Phase 1 - Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.2 Phase 2 - Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.3 Phase 3 - Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.4 Phase 4 - Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.5 Phase 5 - Project Risk Assessment . . . . . . . . . . . . . . . . . . . . . . 84

C.6 Phase 6 - Project Risk Assessment . . . . . . . . . . . . . . . . . . . . . . 85

C.7 Phase 7 - Project Risk Assessment . . . . . . . . . . . . . . . . . . . . . . 86

D.1 Stage 1 Machine Learning Results 1 of 2 . . . . . . . . . . . . . . . . . . . 88

D.2 Stage 1 Machine Learning Results 2 of 2 . . . . . . . . . . . . . . . . . . . 89

D.3 Stage 2 Machine Learning Results 1 of 2 . . . . . . . . . . . . . . . . . . . 90

D.4 Stage 2 Machine Learning Results 2 of 2 . . . . . . . . . . . . . . . . . . . 91



LIST OF TABLES xvi

D.5 Stage 3 Machine Learning Results 1 of 2 . . . . . . . . . . . . . . . . . . . 92

D.6 Stage 3 Machine Learning Results 2 of 2 . . . . . . . . . . . . . . . . . . . 93

E.1 Ute True Positive Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

E.2 Sedan True Positive Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 95

E.3 Wagon True Positive Counts . . . . . . . . . . . . . . . . . . . . . . . . . 95

E.4 Hatchback True Positive Counts . . . . . . . . . . . . . . . . . . . . . . . 96

E.5 All Vehicle True Positive Counts . . . . . . . . . . . . . . . . . . . . . . . 96

E.6 Ute False Positive Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

E.7 Sedan False Positive Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 98

E.8 Wagon False Positive Counts . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.9 Hatchback False Positive Counts . . . . . . . . . . . . . . . . . . . . . . . 100

E.10 All Vehicle False Positive Counts . . . . . . . . . . . . . . . . . . . . . . . 101



Chapter 1

Introduction

1.1 Overview

This chapter outlines the background information that the project is built around. This

includes the dangers of driving, some current methods of protection and the identified

problem with the current scenario. This is followed by the aims and objectives of the

project and concluded with some of the expected benefits and outcomes that are to come

from the completion of the project. This project aims to determine if the pre-emptive

detection of mobile phone usage is feasible using image pre-processing techniques and

machine learning algorithms.

1.2 Background

1.2.1 Dangers of Driving

Driving poses risks for many reasons, with the leading causes of road accidents including

speeding, driving under the influence of drugs/alcohol and distractions. It has been found

that a 1% increase in speed results in a 4% increase in crash fatality risk. In a car-to-car

side impact, there is a fatality rate of 85% for cars travelling at 65km/h. Driving under

the influence of alcohol varies significantly depending on the user and their reaction to

the substance. Results have shown a factor of five times more likely to be involved in a

crash when under the influence of amphetamines.
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Libya is a great example for the danger of driving, where road rules are often no followed

and standards are lower and less strict for what passes as a road worthy vehicle. Infroma-

tion gathered by the World Health Organization shows Libya leading the most road traffic

deaths in 2015, with approximately 73 deaths per 100,000 population estimated, double

that of any other country. These numbers help to show the requirements of enforcement

and strict road rules. It should be noted that at the time, the law did not prohibit the

use of a mobile phone while driving in Libya. As of 2015, there were 138 countries that

had banned the use of hand-held mobile phone use while driving. This has increased to

150 countries as found in the report released in 2018 (World Health Organization 2018).

Distraction while driving is a growing issue, with mobile phone usage a large concern.

The World Health Organization have found that using a mobile phone makes a driver

four times more likely to be in a crash than drivers not using a mobile phone (World

Health Organization 2020). This is due to a slowing down of reaction time and difficulty

staying in the correct lane. More concern comes from statistics released in 2018 by U.S.

department of Transportation of which a report from the National Highway Traffic Safety

Administration shows that 10% of all fatal crashes caused by distraction were from drivers

between the age of 15 to 19 years (US Department of Transportation 2018). A value of

10% of the population over a four year range, one of which is under the supervision of a

licensed driver, shows overwhelming statistics of the effect of distraction while driving.

1.2.2 Methods of Protection

The below figure shows the importance of road protection. It shows a significant decay

in road crash fatalities since the enforcement of seatbelts, random breath testing (RBT)

and speed limits. This was also resolved with the introduction of speed cameras in 1991,

and a graduated licensing scheme in 2000 (Transport for NSW 2020b). Without these

methods the fatality rate would have only climbed, especially with the requirement for

work self-transport increasing.

Other methods of protection include the overall protective framing of the cars, with new

and improved devices such as shatter resistance glass, anti-lock braking systems, stability

control and airbags. These features continue to grow year by year, with the prospect of

driverless cars seeming more feasible. NSW has recently introduced the use of traffic light

cameras that can detect people using their mobile phones.
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Figure 1.1: Evolution of population and road fatalities in Australia from 1925 to 2005 (Larue

& Gregoire 2010)

Many methods aim to protect the people in the vehicle if it were to come into a situation

that may result in an accident, while many others protect the people in the vehicle after

an accident has occurred. However, the most critical methods of protection seem to be the

deterrent ones, such as RBT and speed camera, that reduce the number of accidents on

the road, not the severity. For the safety of drivers and pedestrians, it is more important

to work on the safety features that prevent an accident from occurring, rather than a soft

control such as the ones mentioned above. While commonly related to the work industry,

the hierarchy of control is a good tool to show the importance of elimination. It shows

the level of importance, where elimination (removing the possibility to use a phone while

driving) would be rated at much higher effectiveness than engineering controls (shatter

resistance glass and airbags) that are used to minimise the effect after an accident has

occurred.

1.3 Problem

While there are methods of deterrent currently in place for speeding and driving under

the influence of drugs and alcohol, the detection of mobile usage while driving is rather

minimal. Drivers know the difficulty in being caught using a phone in any area other
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Figure 1.2: Hierarchy of Controls (Road Safety at Work n.d.)

than traffic lights (due to the install of NSW new detection cameras). Due to this, drivers

are still comfortable using their phones while driving, putting themselves and the people

around them at risk.

Without the development for a method to detect the use of mobile phones at all times

while driving, it is unlikely that the situation will get better, especially with a younger

generation coming through that have always grown up with mobile phones. The numbers

of road crashes, injuries and deaths will be likely to increase per 100,000 population with

younger drivers coming onto the roads in the years to come.

With advancing technology and the exposure that the current generation of children

get to different devices, it is becoming identified as ”acceptable” to use a mobile phone

while driving. The risk increases significantly with this generation coming through, with

previous data from U.S. Department of Transportation showing that the age group of 15

to 19 years old are accountable for 10% of all road accidents caused by distraction.

1.4 Aim and Objectives

The aim of this project is to determine if machine learning and image processing tech-

niques will allow for the rapid detection of pre-emptive mobile phone usage while driving.

That is, the algorithms will be working to detect a driver reaching for their phone, instead

of detection after it has already been used, or while in use. The requirement for this to



1.4 Aim and Objectives 5

be high speed is due to it only taking seconds to reach for a phone.

The hypothesis is that the pre-emptive detection of mobile phone usage can be achieved,

although it will be rather difficult to get the algorithms and techniques down to an output

speed at which the results are calculated before the phone has been picked up. A likely

result is that over-detection will occur, and the driver will be ”suspected” to be reaching

for their phone when they change gears or scratch their leg for example.

It is expected that a rather large database will be required in order to make the detection

affective across all different vehicle types and drivers. While this is not achievable, the

hypothesis is that the pre-emptive detection can work in a hand full of different vehicles

with one driver. Once completing this a larger scale of the project would be required to

cover other actions, driving behaviours and vehicle types etc, although this work is out

of the scope of this project.

For the system to be feasible, the time taken to process an image for categorization needs

to be less than 0.5 second from the event occurring. This is to ensure that enough images

can be detected as ”reaching for phone” in order to improve the confidence of the output.

Without this time period being met, proof of the method and training is possible, but

more work would need to be done in the area of optimization to achieve the goal. While

pre-processing may take longer than this in the early stages of the project, work will be

conducted to reduce this processing time, after all it is more important to prove that it

can be done first, before optimizing the system and processes taken to make it possible.

Below are a list of the major objectives of the project:

1. Obtain legal footage of road users using their mobile phones as well as just driving

normally.

2. Review and categorize footage.

3. Use MATLAB deep-learning tool to set a benchmark on video with minimal pro-

cessing.

4. Find shortfalls in deep-learning tool and areas for optimization.

5. Apply multiple levels of processing on images, to compare to the benchmark ap-

proach.
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6. Use MATLAB deep-learning tool to see improvements.

7. Test finalized methods on previously ”unseen” data

1.5 Outcomes and Benefits

This project intent is to help to determine the effectiveness of using machine learning

algorithms and image processing techniques to detect the use of mobile phones in-vehicle.

It will help highlight that the technology is there, and there could be a method of pro-

tection to be introduced into the car industry in the near future. It will show that the

detection of mobile phone usage, like speeding and driving under the influence, can have

a deterrent of similar strength. If it is successful it could be further developed to stop the

use of mobile phones while driving, before the phone is even touched.

The outcomes of the project will be:

1. Increased understanding of the ability to further detect mobile phone usage while

driving.

2. Increased understanding of the ability to perform pre-emptive detection with ma-

chine learning.

3. Encourage further development and research in the area of in-vehicle mobile phone

detection.

If successful, the development of this research could stretch further than just the car

industry. With concerned parents potentially given the ability to install a small unit for

the detection while their children are driving. This will not only ease the minds of parents

but also encourage the upcoming generation to stamp out the bad habit.

Any advancement that this work could make to the implementation of in-vehicle detec-

tion of mobile phone usage would have a significant impact on the safety of road users,

including drivers, pedestrians and cyclists. Further study in this area past my initial

project could result in life saving installations for new or old vehicles.



Chapter 2

Literature Review

2.1 Overview

To ensure the feasibility of this project, a literature review has been conducted. This is to

investigate and understand the benefits of a range of different machine learning algorithms,

image processing techniques, and some methods to optimize speed and accuracy in both

areas.

These research areas are quite broad. Due to the early stages of the project requiring

an overview and comparison of all techniques, before narrowing this down to the more

suitable ones for this project. These areas have been grouped into their main areas,

leaving four categories of different machine learning algorithms.

Similarly, image processing techniques have been reviewed rather broadly, with intent

to focus this more into the areas of importance as the project advances. Research into

both main areas are rather limited in terms of both mobile detection and pre-emptive

detection, showing a real gap in the area. While this is the case, there is still significant

research in the areas of machine learning and image processing techniques that will allow

this project to remain feasible.



2.2 Machine Learning Algorithms 8

2.2 Machine Learning Algorithms

Machine learning is an application of artificial intelligence (AI), which began development

in the 1950’s. This was able to grow over time as machines became more powerful and

the cost of computing became cheaper. The first found implication of machine learning

on road safety came from a paper about determining the road suitability for the trans-

portation of dangerous substances by J.M. Mat́ıas and J. Taboada and C. Ordóñez and

P.G. Nieto (Mat́ıas, Taboada, Ordóñez & Nieto 2007). Machine learning for vehicle safety

has only continued to grow, with papers predicting motor vehicle crashes, correlation of

driver distraction and intentions, pedestrian collision avoidance and many more. With

the need to travel to work and the dangers of driving as traffic and road speeds increase,

and the increasing population density, the need for machine learning for road safety is

growing.

Below is a broad review of the different categories of supervised machine learning algo-

rithms for classification. This review has included a large range of information to ensure

the categories are understood before proceeding with the project, and ruling algorithms

out. By correctly understanding all algorithms and the methods to optimize them, the

final output of the project is likely to result in higher accuracy rates with faster classifi-

cation speeds. The main algorithm classes that have been researched are; decision trees,

support vector machines, discriminant analysis and nearest neighbour classifiers.

2.2.1 Decision Trees

While reviewing a paper by Fang, Gao and Zhao, the significance of decision trees was

examined. The results of this experiment showed an 83.7% accuracy while using a combi-

nation of decision trees and other machine learning techniques. The paper also displayed

the ability to combine decision trees with other methods when the outlying factors be-

come more significant. This is an area that will be taken into heavy consideration, as the

first step of recognition may be much faster with decision trees. This paper on sign lan-

guage recognition was useful in determining some different methods to detect video-based

classifiers. (Fang, Gao & Zhao 2003). Figure 2.1 displays the way in which a decision

tree can be broken down into multiple categories, at which point it can be taken over by

different machine learning techniques to categorize from that point.
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Figure 2.1: The hierarchical decision tree for sign languauge recognition (Fang et al. 2003)

2.2.2 Support Vector Machines

Support vector machines (SVM) can be used for classification by determining a parallel

slab on a plane to separate two classes (Xu, Li, Fang & Zhang 2018). Due to this, and the

fact that this project separates data into three classes, the SVM algorithm will require

a two-step process to work correctly. This information is critical in early phases as it is

important to recognise which classifications will be ”grouped” at the first stage. Figure 2.2

displays how an SVM detects the optimal plane, by separating the two classifications by

with the larges slab, in multiple dimensions.

Figure 2.2: SVM displayed in 2-D and 3-D data plot (Xu et al. 2018)

It can be seen in both planes, that the SVM algorithms detects the largest field between

the classifiers separated by parallel slabs or lines. As stated earlier, this can only apply

to two classifications, so in order to make this algorithm work, it will be important
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to determine the largest separator between all three classification, while grouping two

together. After separating the most significant classifier, the final two can be again tested

to determine the best separator.

It is important to note that while the SVM may require multiple layers in order to be

successful, it showed an accuracy of 93.5% on Honghua’s work on recognition of human

movement. This paper included 9 different classifiers and required significant learning

time.

Significance is seen in this approach as for potential classification of a low movement frame

may be easily detected by an SVM. It may be found to be a useful classifier for the early

stages, as a significant separation may be detected between classifiers like driving with

minimal image movement, and a largely moving image flow such as ”reaching for phone”

or possibly abnormal driving events. These minimal movement frames can potentially be

ruled out at a much earlier stage with the help of SVM’s, significantly speeding up the

speed of classification.

2.2.3 Discriminant Analysis

A paper on the linear discriminant analysis of human movement showed a great insight

to the effectiveness of the method. It is a closely related method to regression analysis, as

it attempts to create an expression where one variable is a linear combination of others,

where in this case the dependant variable is the classifier. That is, it is trying to create

a linear relationship between a classifier and the dependant variables input. One paper

showed an effective insight into this by gaining an accuracy of 83.47%, while also com-

paring the outputs of multiple different methods of discrimination. This paper has found

extremely useful as it displays some significant methods of not only machine analysis, but

also image processing methods and frame scanning techniques. It should be noted that

this analysis method and SVM show similar techniques, the main difference is that SVM

assumes that all groups are totally separable, where discriminant analysis assumes data

is normally distributed (Clemmensen, Hastie, Witten & Ersbøll 2011). Figure 2.3 shows

how linear discrimination is used to find the best separation of two classifiers, note the

significant differences from SVM. Showing that the second image is the favourable linear

relationship as it has significantly less overlap between the two classifiers.
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Figure 2.3: Linear Discimination Analysis of Two Classifiers

((https://stats.stackexchange.com/users/177677/renel chesak) 2019)

Discriminant analysis may find useful in similar ways to SVM’s. If the case arises that

seperation cannot be detected by an SVM, disciminant analysis can be used in its place.

It should be noted that if there is an overlap of information, it is known that accuracy

will be effected. The aim is to keep the effect to a minimum and ensure a fast algorithms.

This information of the operation of a discriminant analysis will be useful in determining

what stages it will be effective and when it should be avoided at further stages in the

project.

2.2.4 K-Nearest Neighbor Classifiers

In a book by Hastie, Tibshirani and Friedman, they discuss the elements of statistical

learning. Insight has been found into the method of nearest neighbour classifications.

Due to the nature of these classifications, it has been found that the method, while it

has its other benefits, will be rather slow in comparison to others (Hastie, Tibshirani &

Friedman 2009). The figure below shows how the technique works as a 2D plot. A line

separates the classifications based on k-nearest neighbours (KNN). The issue being that

the plotted line cannot be defined, and for every variable, it is required to use all other

data points to find the closest value and classify itself. Given the time constraints of this

project, for live detection, the output result of this classifier will be too slow. As more

work goes into building a database to train, this approach will become slower and slower

as a method for classification.

As seen the Figure 2.4 the test value is classified by the 15th nearest neighbours, and
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Figure 2.4: Classification by 15-Nearest Neighbors (Hastie et al. 2009)

given the complexity and large dataset, it is impossible to give a value to the line. For

each new set of values to be classified, it must compare its distance between all other

data values to determine its classification, resulting in a lengthy output time. Due to

a large data set to be required for the learning of this complex idea, it is unlikely that

the KNN algorithm will be quick enough to output a response, however, without any

testing completed, ruling it out too soon would be unnecessary. It may be found a useful

tool after using a significant amount of pre-processing. Due to its potential to test all

classifiers in one algorithm, it may also be found to be quicker that SVM and decision

trees, due to their multi-step process.

2.3 Image Processing

Image processing is an important step in ensuring the data that is received by the machine

is simplified and can hold some significance. This enables the machine learning algorithm

to work more efficiently. For example, feeding the machine image data, as opposed to flow

data would be extremely difficult to comprehend, and likely result in very low accuracies.
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Just as you wouldn’t feed a machine classifying plant types, flow data of the video as

opposed to image data. Image processing takes many steps, as simple as cropping of data

which will not be covered, to more in-depth techniques such as motion energy images,

motion history images and optical flow energy images.

2.3.1 Motion Energy Images

A motion energy image simplifies an image in a significantly important way for this

project. It finds the change from frame to frame, and outputs a binary image (Bobick &

Davis 2001). This is very simple output data that becomes rather useful as the aim of

the project is to detect the reaching for a phone. Figure 2.5 that explains the use of this

technique. This technique may be difficult to implement based on the vehicle movement,

any slight movement of the camera would result in all ones in the motion energy image.

Figure 2.5: Example of a Motion Energy Image (Bobick & Davis 2001)

2.3.2 Motion History Images

Motion History Images hold a similar technique as the energy images. Whereas they

output a grayscale image based on movement over multiple frames. These are grayscale

as the intensity is an indication of how recently the movement occurred. If the movement

occurred in the most recent frame, it would be white. The last frame within the buffer
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size would be indicated by a dark grey. This method may also prove useful and is simply

an extension of the motion energy image.

This method can have as many or as few previous frames displayed in the history image,

which is usually determined by the speed at which movement is generally measured at for

the application that it is being used under. For this project, 30 frames would be too large

of a history image as this is the time it takes to reac the phone, so potentially somewhere

around the 10-15 mark would work well.

2.3.3 Optical Flow Energy Images

Optical flow energy images are a representation of moving framesusing a matrix of vectors.

The matrix contains the standard layout of the image, while the vectors inside it determine

the direction and magnitude of the movement from the previous frame. This method

involves an insolvable equation, and hence creates the need for ”restrictions” to be set,

allowing the equation to be solved (Bobick & Davis 2001). This has resulted in multiple

different solutions or methods, one of which exists in MATLAB as an image processing

tool already. Figure 2.6 below shows the tool used in MATLAB, laid back over the top

of the last scanned frame.

Figure 2.6: Optical Flow Output Layed Over Current Frame (MathWorks 2020)
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2.4 Machine Learning Pre-Processing

Data pre-processing is an important step in order to ensure the data passed to the machine

learning algorithms has removed any useless data and outputs remaining data in a simple

form. This enables the machine to train and identify the classification at a faster rate,

and in some cases at the cost of some accuracy. Below are some different methods of

pre-processing that may prove useful for the project.

2.4.1 Feature Selection

Feature selection is the process of identifying and removing as much irrelevant and redun-

dant features as possible(Kotsiantis, Kanellopoulos & Pintelas 2006). These features are

generally categorized in three ways; Relevant - Significant influence on the output Irrele-

vant - No influence on the output, data seems to be random for each example Redundant

- Feature can take the role of another (doubling up on the same data)

Some filtering can take place with the use of categorization as defined by Blum and

Langley(Blum & Langley 1997); Distance - Feature A is preferred over feature B if A

creates a greater distance between two classes Information - Feature A is preferred over

feature B if the information gain from A is greater (not so useful for this project) De-

pendence - Uses correlation between a classifier and the feature, higher correlation is

preferred. Consistency - Two samples are in conflict if they share values but disagree in

the class that they represent (random data)



Chapter 3

Methodology

3.1 Overview

This chapter outlines the aims and objective with more detail, this is an important step

in the methodology to ensure the correct methods are followed to achieve the objectives.

After the completion of the aims and objectives, it is important to outline the limita-

tions to ensure the project can be adequately complete in the timeframe with minimal

interference.

Certain objectives for this project are critical, such as data acquisition. Without this

step achieved in a timely manner, it becomes very difficult to set a benchmark and detect

areas of which image processing and machine learning algorithms can be adjusted for

optimization of the results.

Other areas such as trialling different image processing techniques will be done along the

length of the project, and if time permits, more effort will be put into this area when

finalizing the project.

This chapter ensures that project is set out with all aspects planned while using different

tracking and safety tools, such as a timeline and a risk assessment.
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3.2 Outline of Objectives

These were covered in the Introduction, although a more detailed explanation of the

objectives are as below:

1. Obtain legal footage of road users using reaching for their mobile phones as well as

just driving normally.

� Data must be evenly distributed, to ensure that over classification is not caused

by having a dominant sample.

� This data will require simulation to ensure no road rules are broken. Data

will be collected by myself with the use of a fixed camera to ensure all data is

similar.

� The data will be recorded on a Samsung S8, with a frame rate of 30 fps.

� More data may be recorded through the length of the project, as data is opti-

mized or results show lacking samples.

� Data will be varied by the following:

– Time of day

– Vehicle used

– Clothing

– Position of seat

– Passenger in vehicle

– Variety of driving techniques

– Variety of phone positions

� Figure 3.1 below is a representation of the cropped image to be used. Important

features are as below:

– Steering wheel

– Lap area of driver

– Leaving out window, as this results in false data due to simulation
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Figure 3.1: Image outlining camera positioning and resulting image

2. Review and categorize footage

� Videos will be reviewed frame by frame to detect the moment at which the

classification changes.

� Videos will end after the phone is reached for, as it is overcomplicating the

machine to train it to see phones as well.

� Data is to be categorized into three separate categorizations, these are ”Driv-

ing”, ”Reaching” and ”Abnormal”.

� Driving includes only normal driving, such as turning corners, three-point turns

and indicating.

� Abnormal is for driving that looks more like reaching for the phone, these

include:

– Reaching for stereo

– Reaching for gear stick

– Applying hand/park brake

– Scratching leg

� Reaching includes a variety of techniques of reaching for a phone including:

– Between legs
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– In either pocket

– Positioned somewhere on dashboard

– Positioned in or around the glove box

– Positioned on the passenger’s seat

3. Use MATLAB deep-learning tool to set a benchmark on video with minimal pro-

cessing.

� There is a possibility that data will require cropping and data averaging or

quantization to allow for the first stage of testing.

� The requirement for this cropping will be determined in the trial phase of

machine learning.

� This benchmark will be achieved using the Horn-Shunck method, which is a

solution for the estimation of optical flow between two image frames. This is

a build-in function that already exists in MATLAB.

� Multiple different machine learning techniques will be implemented and carried

through the length of the project for consistency.

4. Find shortfalls in deep-learning tool and areas for optimization.

� As suggested, this will be based around data averaging or quantization and

results of the earlier objective.

� Such areas might detemine that one category did not have enough samples, or

one had many more than others.

� Reviewing data frame by frame might identify areas where further cropping

can occur.

� Further cropping will allow for less averaging or quantization, getting more

value out of the left over data. This stage may take multiple steps to identify

the significant pixels in each sample.

� With significant optimization occuring, more data such as a motion history

image, or the original image itself may also be included in the training.

5. Apply multiple levels of processing on images, to compare to the benchmark ap-

proach.

� Cropping will occur before the first stage of training, with further potentially

applied after initial training is complete, pending feature selectiong success.
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� The first stage is through the use of optical flow energy images, other techniques

will be applied and compared, such as motion history and motion energy.

� This objective will be applied multiple times, as the results will determine the

next step.

6. Use MATLAB deep-learning tool to see improvements.

� Using more in-depth optimizations of the machine learning techniques.

� If frame data size can be minimized, more technical options may become avail-

able with the memory freeing up.

7. Test finalized methods on previously ”unseen” data

� This data will be recorded in correspondence with the rest, ensuring it is still

of the same standard.

� Data used at this stage will not have been seen by any machine learning through

the entire project.

� This method will eliminate any machine or human bias of data categorization.

3.3 Limitations

A significant limitation in this process is the retrieval of a database. While there are

databases in existence for the detection of fatigue, there is a requirement for the images

used in this project to look at hand movement more than facial expression. Due to

this there is a requirement to develop a database. Growing onto this limitation is the

development of COVID-19, and the impact it is having on the ability to get data of driving

while following the order, as well as the access to other vehicle types. Data collection will

be time consuming, as will the categorization stage. For this reason, it is important to

ensure that only necessary data is recorded and categorized, by collecting it at an ”as

required” basis.

The second most significant limitation is hardware resources. Limitation to the hardware

are based around the current computer in possession, due to there being no financial

support, and the task being conducted externally to the university. These limitations in

hardware will simply slow down the operating time of the processing of data and machine

learning, and potentially result in some machine learning techniques not to be able to
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handle the large data size. It may result in earlier stages of training requiring cropping

and/or quantization, which will be determined through some trial training of built in

databases.

3.4 Data Collection

Data collection is a significant area in this project, as there is a requirement for successful

machine learning to learn from multiple differemt driving techniques, in different vehicles,

with other variables changing, such as clothing and time of day. This data collection will

likely occur over the length of the project as the more varied the data that is collected

the more effective and realistic the results of the final machine will be.

It is important to ensure that all data collected is similar enough for a simple layer of

image processing to eliminate unwanted data. This will require the use of a mounting

devide to ensure that all images captured display similar frame positioning. This data

will then be reviewed, and any video that does not meet the requirements will need to

be removed from the database. Data collection will be done as widespread as achievable,

across the length of the project to ensure a good variety of information is received.

While collecting this data, it is also important to note that for legal reasons, the data will

not be ”real” data of people driving and reaching for their phones. This data will have

to be staged, in which real driving will occur, with a passenger in the vehicle starting

and stopping the recording, and reaching events will be simulated while the vehicle is

stationary.

It is also a significant requirement to ensure that there is an even amount of data samples

across the three categories. The abnormal samples are important as they include similar

features to that of reaching for a phone. It is important to ensure that not every situation

that a hand is moving away from the steering wheel is categorized as ”Reaching”.

As mentioned in the objectives, the same camera will be used throughout the length of

the project, and positioning in the vehicles will be similar to ensure that the project can

be further expanded to different varieties of vehicles in the future. The frame rate is 30fps,

and important features of data include the lap area of the driver, the steering wheel and

the absence of the window.
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3.5 Project Legalities

The current legal issues that this project will run into are highly affected by these two

areas; road rules and the current COVID-19 pandemic. The information below outlines

how these areas are being addressed to ensure that no rules are broken through the

collection of data.

In terms of data collection around the COVID-19 pandemic and its current changes to

the laws. These new laws have required residence of NSW to stay at home unless going

to; work, school or an educational institution, shopping for food or essentials, getting

medical supplies/care or exercising (NSW Government 2020). Local law enforcement has

been contacted regarding the matter to ensure the correct steps were taken, and laws were

correctly understood. Under these new rules, and due to the classification of this project

as mandatory study, I have been granted to drive around for the collection of this data.

Similarly, there are many factors of data collection that become an issue when considering

the road rules. It is important to ensure that no recording device is used in vehicle without

a passenger, who is in control of starting and stopping the device. These information

regarding the use of mobile phones while driving was provided by transport NSW, all

recording required is to only be conducted in NSW to ensure compliance (Transport for

NSW 2020c).

While it is not currently a legal requirement in NSW, a mask will be worn when conducting

recording in other people’s vehicles. The steering wheel will also be sterilized before and

after recording take place. This is to ensure that the most care is taken to prevent the

spread of COVID-19, if it were to pick up again in the region. The vehicles used will be

family members that we stay in close contact with as another level of preventative with

spreading of COVID-19.

3.6 Project Planning

Project planning is an essential step in ensuring that key objectives of the project are

kept on track. This section includes resources required for the completion of the project,

a project schedule and a risk assessment.
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3.6.1 Resources

A list of resources is required to ensure the objectives of this project are successful and

feasible. Many of the required resources are already in possession, while some, such

as MATLAB extensions, which through the USQ licensing, I have access for. Another

significant resource for this project is time, in which a minimum of 500 hours is expected

to meet the requirements. This will be evenly spread between 10-15 hours per week where

possible, with the intent to slowly retrieve and add data to the system and importantly

complete further review into research areas of significance as the project advances. Time

will continually be used to develop the dissertation, keep in contact with Tobias Low

regarding progress, developing processing techniques to enhance the classification time of

the machine learning techniques and analysing these different machine learning techniques

to determine the most successful for this application.

A significant resource is the data, before starting, it is difficult to know how much data

will be required to see good results. In terms of data for machine learning, the more that

can be resourced, the more success the machine will have in optimizing its algorithms and

gaining a high percent success rate.

A list of resources are detailed in Table 3.1
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Table 3.1: Requirements for project

Item Quantity Source Cost Reason

Laptop 1 Student In possession Word processing and

running MATLAB

Recording Device 1 Student In possession For recording data/

videos

MikTex 1 Student In possession Used to produce document

for submission

Microsoft Powerpoint 1 Student In possession Used to create

presentation

Microsoft Excel 1 Student In possession Potentially required for

data analysis and storage

MATLAB 1 Student In possesson Main programming tool for

project

MATLAB Machine 8 Student In possession Required for machine

Learning/Image learning applications

Processing Add-ons and image processing

algorithms

Video of driving As many Student Nil Required for machine

as possible learning from multiple

different sources
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From preliminary testing, the speed of my performance of the current laptop have been

powerful enough to perform the required algorithms such as image processing and machine

learning. If it is found at a later date that this is not keeping up, there may be requirements

to purchase or borrow a more powerful device to ensure the completion of this project.

There is currently no total cost for this proect and if there were later requirements for a

new laptop, this will be used outside of the project and still determined as a zero cost to

the project.

3.6.2 Project Schedule

Completion of this project will occur in the academic year of 2020. This will include the

completion of ENG4111(Research Project Part 1), ENG4112(Research Project Part 2)

and ENG4903(Professional Practice 2). To be successful in completion of this project, it

is important to break the project down into milestones. Monitoring progress is critical to

ensure the project is kept on track for completion. For this reason, the research has been

broken down into the following steps:

� Phase 1 - Preparation

� Phase 2 - Data Collection

� Phase 3 - Initial Testing

� Phase 4 - Image Processing Optimization

� Phase 5 - Machine learning Optimization

� Phase 6 - Analyse Performance

� Phase 7 - Documentation and Presentation



3.6 Project Planning 26

Table 3.2: Project Phases 1 - 2

Phase 1 - Preparation

1A Project commencement approval - Obtaining official approval from USQ to commence

project.

1B Resource acquisition - Obtain and/or purchase all software and hardware required

to complete the project. Ensure licensing is available or purchased for the use of

MATLAB applications.

1C Literature - Perform literature review. Notably identifying pre-processing algorithms

and machine learning techniques of benefit.

Phase 2 - Data Collection

2A Data Requirement - Gather information regarding legalities of road rules, and currently

COVID-19. Determine what features are important and how these will be captured in the

most affective way.

2B Database - Collect variety of different information from received data. This will be

determined and re-visited over length of project. Requirements may change as

optimization occurs. Importance in variety of vehicle and seat position needs to

be taken into consideration.

2C Categorize data - All data will be reviewed and categorize to allow for supervised

machine learning and verification steps. To minimize algorithm complexity, the

categories will be; driving, reaching for phone and abnormal driving events(this

includes gear change, touching face, scratching leg etc.).
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Table 3.3: Project Phases 3 - 4

Phase 3 - Initial Testing

3A MATLAB Overview - Test on small database. This step will help to determine how

many data inputs the machine learning algorithms can handle, and will give a

benchmark for improvement

3B Documentation -These results set the benchmark for improvement and optimization.

It is important to record and refer to these after improvement/changes are made to

the image processing and machine learning algorithms.

3C Experimentation - Adjusting some values in the MATLAB tool to investigate just

how they operate. Different layers may help to determine the state of some

images quickly. It is important to correctly understand how all the algorithms work.

3D Review - Initial testing sets the benchmark. It allows determination of what will and

will not work. It can help determine how many inputs are allowed, the speed of the

process, and which algorithms return the highest accuracy in the shortest time.

Phase 4 - Image Processing Optimization

4A Image Cropping - Due to the data being varied by vehicle and driver, images will

need to be cropped. Cropping will occur around the steering wheel and lap area

as the face and window will represent ”false” data as the driver will be stationary.

4B Data Matrices - Images will be converted to greyscale data values to be input into

the database. Due to these being videos, an algorithm for comparing images will also

be used to output a magnitude and angle of movement matrix.

4C Trial Algorithms - While working through different techniques, new data will be added

and unnecessary data removed. This will be ongoing to determine what works best

for the machine.

4D Finalize - After reviewing, the optimal image processing techniques will be picked. This

will be based around a speed to accuracy ratio. This phase goes hand-in-hand with

phase 5 and phase 6.
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Table 3.4: Project Phases 5 - 7

Phase 5 - Machine Learning Optimization

5A Trial Algorithms - While working through different techniques, layer and algorithms.

This will help to determine what aspects of the machine data are ”useless” and what

data can be taken advantage of. An image that doesn’t move significantly from frame to

frame likely does not need to go past the first layer/branch of the process.

5B Finalize - After reviewing, the optimal machine learning algorithm will be picked. This

will be based around a speed to accuracy ratio. This phase goes hand-in-hand with

phase 4 and phase 6.

Phase 6 - Analyse Performance

6A Analyse - Each step and change in processing and machine learning will be closely

reviewed. This is in a goal to minimize the required data and time to process and

categorize the images

6B Record - An in-depth record will be taken of every change. This will include what did and

did not work. What the results and speeds were for each different algorithm, and exactly

what data was passed to the machine after processing. This will help in combining working

features and removing unwanted data.

6C Finalize - After determining the final processing and machine learning techniques, the final

”unseen” data set will be put through the finalized machine to determine the accuracy and

processing speed. Results will be recorded for documentation and presentation. This

phase goes hand-in-hand with phase 4 and phase 5.

Phase 7 - Documentation and Presentation

7A Progress Report - Preparation, discussion with supervisor and submission of progress

report.

7B Draft Dissertation - Prepare draft dissertation for submission to supervisor.

7C Final Documentation - Submit final dissertation after receiving feedback from supervisor

and making necessary adjustments.
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Many of these phases operate over the length of the project and overlap with other phases

at times. It was broken down in this way to ensure it is trackable and easy to follow. To

ensure this remains manageable, a schedule was created and can be seen in Appendix B.

Figure B.1 of Appendix B displays what phases require completion before others can

commence. It also displays the importance for phase 4, 5 and 6 to be completed in

correspondence with each other. This schedule will be referred to regularly through the

project to ensure things are kept on track.

3.6.3 Risk Assessment

A risk assessment was adopted using the risk matrix found in research paper; Good risk

assessment practice in hospitals (Kaya 2018). Figure 3.2 displays how risk levels are

categorized based on the consequences and likelihood of the risk ocurring.

Figure 3.2: Risk matrix used to calculate risk levels (Kaya 2018)

The risk assessment is located at Table C.1 - C.7 of Appendix C. This risk assessment

was used to identify all potential risks involved with this project. Every step of every

phase was risk assessed, and these assessments will be reviewed upon commencement of
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these tasks. Due to the outbreak of COVID-19, the risk assessment in certain areas of this

project may need to be reviewed to ensure it is up to date with the current legislations.

Due to the potential hazards involved with this project, the risk assessment has displayed

a rather large number of high-risk tasks. Although due to the controls put in place, many

of these issues have been categorized down to a low potential risk.

Some risks were established late into Semester 2, as two of the Residential school subjects

I was enrolled in were converted into online subject, due to COVID-19, requiring time

balancing adjustments. As this risk was added at a later date and addressed as it was

made aware, it has not been added to the initial project risk assessment. These subjects

to data have neem successfully attended and completed as required for the completion of

the degree.



Chapter 4

Stage 1 - Initial Design

Initial testing involved the data collection, a minimal amount of image processing, and ma-

chine learning, in which all machine learning methods available were attempted. Results

were collected and observations made on the success of techniques. These observations

were used to determine the changes that would be implemented for stage 2 of testing.

4.1 Data Collection

Initial data collection was aimed around achieving some results for Phase 3 - Initial

Testing. For this reason, data collection at this early stage involved only one vehicle, on

one day, resulting in approximately a 15-minute video. This video was then broken down

into multiple shorter videos. It is important in the data collection stage to ensure that a

video ends with reaching, otherwise there is more training involved that is not essential

for the outcome of this project.

Data collection for phase 3 of this project included only 3 minutes of usable footage, which

results in 5030 samples, due to a recording rate of 30 fps. Once the data was collected,

each frame is watched step by step to find the frame in which the driver begins to reach

for the phone. See Appendix F for the MATLAB code that was used to determine the

correct details for each sample. This code was used after reviewing the data in full speed

to jump to and pinpoint the correct frame for categorization. Results after categorizing

each value are as follow:
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� 672 abnormal samples

� 2087 driving samples

� 2541 reaching samples

The data above can be seen to have been skewed significantly away from the abnormal

samples. While this is not ideal, it was helpful in indicating that a better method is

required for ensuring a more even spread of data. Initial data collection was used mostly

for the initial training, although clips were simple to reuse at a later point as data was

still valid. Using the information found above some important notes were taken to ensure

that data collection after this point was spread out in a more even manner, and that video

samples taken in different vehicles had some method of consistency.

The collection stage involved reviewing of the data as mentioned above, which was then

stored into a classification array. This was done with manual entry with a small level

of calculation based around the video trimming, a small sample of the code for this

application is shown in Appendix G. This code displays how the values were entered

manually as well as how they were compiled for testing. This method ensured accuracy

as every array had to be the correct length in order to align with the predictor array. This

function also did a quick search of different values to see how many samples of each type

are stored. As specified the arrays will not line up with each other as a significant amount

of data was removed to allow for an understanding of how it worked without reproducing

all the used code.

4.2 Data Pre-processing

It is important in early stages of testing to keep the pre-processing to a minimum, although

there were restrictions in hardware capabilities that required some level of pre-processing

to occur. The initial training stage was more of a verification of approach, and this

enabled some data pre-processing techniques to be tested and validated. Initial pre-

processing techniques were found to be adequate and allow for rather accurate results

in the first stage of testing. A significant amount of work was done in the first stage

to make the data gathering and pre-processing techniques easier, however some methods

were left at a manual input state to allow ease of change at later stages and make it easier
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to verify/debug in the case that the processed data did not line up correctly with the

categorized arrays.

After retrieving data and attempting to run it through a machine for learning, it was

determined that too much information was being processed. It is also important to ensure

that the movement is being detected, for these reasons the preprocessing techniques that

were used in early stage training were cropping, optical flow algorithms (using the Horn-

Schunk method) followed by data averaging. Video trimming was also involved to ensure

that only the data that was valid was fed into the machine. These methods have been

detailed below.

4.2.1 Cropping

Cropping in the initial stage involved a 1080x1081 box, due to the method of which this

was conducted it was not identified until later that the dimensions were out by one pixel.

While it makes for 1080 more points, for the purpose of initial training, the extra row of

pixels did not cause any issues. This cropping was performed due to RAM limitations on

the computer used to run MATLAB. Cropping was performed on videos to ensure that

the lap area of the driver and the steering wheel could be seen and that the window area

was removed, for reasons as specified previously. 1080 pixels were simply used as this

kept the full width of the image, and only height adjustments were required to be made

between different vehicle types. The cropping technique can be detected in Appendix

H and was used in conjunction with the trimming of video to avoid double handling of

MATLAB function running.

4.2.2 Horn-Schunk Algorithm for Optical Flow Outputs

A method of optical flow detection was required in order to detect the reaching act. This

eliminates issues involved in training around car interior colour, clothes worn by driver

and other issues that come with reading just the still image. The Horn-Schunk method

was used simply due to its accessibility through MATLAB. This is a built-in function in

MATLAB’s image processing add-on. These methods are as explained in ”Determining

Optical Flow” by Berthold K.P. Horn and Brian G. Schunck (Horn & Schunck 1981), in

which the derivation of the method, and some applications are outlined.
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This method was found to take approximately 0.09 seconds per frame using the tic-toc

recording method in MATLAB. That is 2.7 seconds of calculation for every second of

data.

4.2.3 Data Averaging

As mentioned above, Motion Energy Outputs result in a significant amount of data due

to the floating-point value for both the x and y direction of movement. For this reason,

a significant amount of averaging was required. As stated previosuly, data was collected

1080x1081 and after some trial and error, it was found that averaging this into blocks of

15x15 pixels was a good solution. This level of averaging allowed for the machine to be

fed approximately 15 minutes of video for training, with the other current methods of pre-

processing. This averaging of data simply involved averaging the results from the Motion

Energy Output in the x direction and in the y direction. This made the current data 225

times smaller than original, which allowed for a significant increase in the samples able to

be fed into the machine. Initial testing showed good results which validated the method.

The MATLAB code for both the averaging of data and the Horn-Schunk method are both

included in the same file. This code can be seen in Appendix I

4.2.4 Video Trimming

As specified previously, this was conducted at the same time as cropping. A lot of manual

work went into this process, this included watching the recording which was one large file

and breaking it down into multiple short videos for ease of trimming. The next step was

to watch each video frame by frame and note the frames at it which the video needed to

be trimmed to. This was also conducted alongside categorization of the videos, similarly,

to avoid double handling of data review. Every video was watched, the starting frame

recorded, any frame where a change of categorization was detected was recorded as well

as the final frame, to ensure array sizes added up. This ensured that all videos were of the

correct length and categorization, which was verified during the training as the file sizes

were required to be of the same length in order to compare variables to the classification

determined.
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4.3 Machine Learning Algorithms

MATLAB’s classification learning app was used with default settings in the first stage to

keep all algorithms consistent with each other. There was an attempt to try all algorithms,

some of which failed due to memory issues. With a majority completing successfully it

was determined that the data size was still reasonable and that more cropping of data

at this stage would only result in worse outcomes. The setting used for these algorithms,

that are consistent across all machine learning applications are listed below.

4.3.1 Data Validation

5-Fold Cross validation was used at this stage, this was due to a smaller dataset with no

other data to compare results to and test outputs. This method separates the data into

5 different sections, it then looks at 4 of the 5 folds and trains a model based on them,

after which it validates these results with the remaining section. That is 5 machines are

trained and validated against a small section of the data. This is seen as a good technique

as it gives a good estimate of the accuracy. This is the recommended technique through

MATLAB with a small dataset.

Later stages of testing may still use some form of k-fold validation, where k is an input

variable. Larger values of k result in slower training times, although the results prove

more accurate as the number of folds increase. Hold out validation may also be tested at

a later stage, though this may depend on the data set size, as hold out validation is only

recommended for large data sets. This method will be described in more depth if used.

4.3.2 Misclassification Cost

Misclassification cost is a disciplinary result of incorrectly classifying a value. The mis-

classification cost was left as seen in the figure below and can be described with the

following explanation. Diagonals must be left as 0 as seen in the figure, this is due to the

result being correct, in Figure 4.1 below any incorrect classification will result in 1 point.

The goal of the machine learning is to minimize the points while still attempting to keep

the accuracy high. If the top right hand was a 5 instead of a 1, the misclassification of

reaching when the true value was abnormal would result in 5 points. Due to 5 points
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being significant in comparison to 1, the machine learning algorithm would attempt to

minimize the amount of reaching outputs, when similar to abnormal events.

Figure 4.1: Misclassification cost use in Stage 1

After completing the initial training, some adjustments were made in the misclassification

cost to attempt to minimize the amount of times the machine predicted reaching when

the true classification was abnormal. Due to the data set used this resulted in one of two

outcomes:

� A low miscalculation value made almost no change, as there was only a small number

of misclassification

� A large misclassification value resulted in very inaccurate results, as it skewed all

reaching classifications more towards abnormal classifications

While this proved unsuccessful for the first stage of training, with a more even spread of

data in the second stage it is likely to have a better result. This method may be used

again in the second stage to see if it has more beneficial outcomes.

4.3.3 Advanced Settings

Advanced settings are dependent on the type of training, for example, maximum number

of splits for a tree or number of neighbours for the KNN method. These settings were

not adjusted as this first stage was simply used to get an idea of the effective methods

with minimal adjustments made. These settings may be adjusted at a later stage in the

machine learning optimization phase of the project.
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4.4 Results

See Tables D.1 and D.2 in Appendix D displaying the output accuracy percentages from

the training. Time to train and approximate predictions per second were also recorded.

This data was recorded for each training method that was successful, an an example

of how this was output by the machine learning MATLAB tool can be seen below in

Figures 4.2 - 4.4. This example used the linear discriminant results that were measured

in this stage of training. These values were then converted into an table to allow for the

graphs as seen in this section.

Figure 4.2: MATLAB Machine Learning Output Matrix 1
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Figure 4.3: MATLAB Machine Learning Output Matrix 2



4.4 Results 39

Figure 4.4: MATLAB Machine Learning Output Data 3
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It is important to note that time to train is only relevant for project time constraints,

a large time to train will not have any negative affect on the ability of the algorithm to

operate. These larger training methods were often left to run overnight, and the recording

at this stage was to allow for the same process to be followed for later stages, knowing

which methods could be done with ease and which ones to leave for training at night.

Prediction speed is of high importance, as a prediction speed of 30 obs/sec leaves no room

for processing time.

A handful of algorithms failed due to memory related issues, and these will not be followed

through to the later stages of training. See Figures 4.5 and 4.6 below displaying some of

the key finding of the first stage of testing. These display both the overall accuracy and

the machine learning prediction speed.

Figure 4.5: Overall Accuracy of Stage 1 Machine Learning Techniques
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This first stage of testing was to validate that there was a relationship that could be

identified between the reaching movements and a reaching event, that was separable from

other methods with machine learning. Although these results are not showing a clear indi-

cation, the high rate of success shows some promise that there will be a method to detect

the reaching events, potentially after the implementation of some more pre-processing

techniques. Any method above showing a zero-result failed on memory constraints.

Figure 4.6: Approximate Prediction Speed of Stage 1 Machine Learning Techniques

With a frame rate of 30 frames per second, anything floating around the 30-50 obs/sec

is rather slow. The higher this number, the more time that can be applied to the pre-

processing techniques. There are a handful of techniques here that show high prediction

speeds, and some that sit around the mark of 30-50 obs/sec. This data can be seen in

Tables D.1 and D.2 in Appendix D.
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With the speed becoming more relevant at later stages in the project, there may be a

requirement to view the relationship to speed around the lower end of the scale, however

there is currently no need to graph a view that shows more closely the values around

that 30-50 obs/sec region. Currently the Tree methods look the best for high prediction

speed and the KNN method, as expected due to its approach of comparing to all other

values fed into the machine, is rather slow, and would be expected to get worse with

an increasing data-set. Similarly to above, any methods showing a zero-result failed on

memory constraints.

All methods that successfully trained will still be followed through with the next stage of

training. With optimization on these training methods to be reviewed once more relevant

results are achieved. RUSBoosted tree was determined as the most successful result, not

for its overall accuracy, but for the even spread of accuracy across all three categories.

A high accuracy can be achieved by miss-categorization of Abnormal results such as the

SVM Medium Gaussian approach has displayed. This is due to a smaller sample size of

Abnormal results as compared to other. This sample size issue also results in a significant

affect to that of the KNN type training methods. Many results are expected to look more

like the RUSBoosted tree method after the second stage of data retrieval.

Ideally keeping the time to train minimal helps in making small adjustments to the pre-

processing techniques, as well as an approximate prediction rate greater than 30 obs/s.

This is due to the frame rate, a much large number similar to that of the tree methods is

desirable.

4.5 Observations

This section outlines the observations made about the above techniques used in the first

stage. It also outlines what methods will be taken moving forward into stage 2 of testing.

These observations involved training the same data against what was determined as the

most successful result (RUSBoosted), and comparing what the predicted class was against

the true class.
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4.5.1 Data Collection

After initial testing was complete the data collection extended to four different vehicles,

to get a better understanding of the affect that different vehicles had on the machine

learning, and the ability to successfully determine the actions with a wider variety of

data. The four different vehicles are listed below:

� 2015 Honda HRV (Wagon)

� 2011 Mitsubitshi Triton (Utility)

� 2019 Suzuki Swift (Hatchback)

� 2014 Subaru WRX RS-40 (Sedan)

In each different vehicle it is important that positioning of the steering wheel and seat

are adjusted, between different recordings. This will be made possible with the use of the

following steps; it is important that these steps are ran through multiple times to ensure a

valid recording is made for each type. It was also noticed through the first data collection

analysis that some videos were rejected as they did not include enough time before the

reaching began to allow for a motion history algorithm to be applied. For each vehicle

the data below is to be collected:

� Repositioning visor x 5 (Can be done while driving)

� Touching face with left hand x 5 (Can be done while driving)

� Touching face with right hand x 5 (Can be done while driving)

� Touching leg with left hand x 5 (Can be done while driving)

� Touching leg with right hand x 5 (Can be done while driving)

� Pointing or waving x 10 (Can be done while driving)

� Some hand gestures while driving x 5 (Can be done while driving)

� Window up/down x 2 (Can be done while driving)

� Applying brake x 10 (To be done while stationary)

� Changing Gears (To be done while driving in Triton and WRX)
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� Changing Radio Channel x 5 (Can be done while driving but will be done while

stationary as still seen as distracting)

� Reaching for phone left pocket x 10 (To be done while stationary)

� Reaching for phone right pocket x 10 (To be done while stationary)

� Reaching for phone dashboard x 10 (To be done while stationary)

� Reaching for phone between legs x 10 (To be done while stationary)

� Reaching for phone from passenger x 10 (To be done while stationary)

� Reaching for phone centre console x 10 (To be done while stationary)

It should be noted that there is a large amount of data being recorded above for each

vehicle although it will not all be used. All data will be analysed and only relevant data

is to be used, while it is important to also keep a good variety. Some data will be simple

removed or added to ensure that there is an even spread of different types, to ensure that

the training does not focus too heavily on certain classifications. These samples will not

be taken one after another to ensure that they are different. Ideally they will be taken

on different days, and in each case, some adjustments will be made to the steering wheel

positioning and seat positioning to include some variety.

Camera positioning for all recording was placed to ensure that the lap area of the driver

could be seen, as well as the hands positioned on the steering wheel. It was also important

to ensure that the window could not be seen in the recordings, as mentioned previously.

This is a measure to prevent the machine learning algorithms to detect movement outside

the window as driving, as any use of phone will be done while stationary. At this stage it

has been tested on the favourable method of RUSBoosted tree that 10 minutes of data,

at the current size can be used.

The first sample size only included 1.4 minutes of data, meaning the accuracy and validity

of results will vary significantly. It is likely that with a large variety in the data-set

and with no changes made to the pre-processing techniques, that the machine learning

algorithms will output a lower accuracy.
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4.5.2 Data Preprocessing

Following into stage 2 of training the data pre-processing techniques will remain un-

changed. While it is still important to get the time requirements of pre-processing down,

it is more significant to review all the current methods of preprocessing and machine

learning under a more value and evenly spread data-set. Time requirements for these ar-

eas require a more valid dataset to determine areas where more pixels can be minimized

and less quantization is required to occur. There is also the issue based around hardware

capabilities that may be slowing down these results. Without first gathering more accu-

rate results, removing more data from these machine learning algorithms is likely to only

have a negative impact on the outcomes of the testing.

4.5.3 Machine Learning Algorithms

Similarly to the pre-processing observations, machine learning algorithms will remain

unchanged, this is due to the positive results achieved from the first stage of training. It

is likely that some methods will fail the training with the increased size of data, and the

methods that previously failed will be removed in stage 2. After the completion of this

stage some other methods may be incorporated such as misclassification cost, but this

will be determined after the completion and observing of stage 2 results.

4.5.4 Post Training Filtering

Some interesting data was found by comparing the trained data back to the real results.

It was determined that in a majority of videos, if the last 10 samples were predicted as

reaching, or the last 14/15, then the real result was reaching. This technique is planned to

be used further in stage 2, as there are cases where reaching is predicted when abnormal

is true, and the post filtering stage will rule this out. It is just as important to ensure

that the end result does not incorrectly determine reaching, as it becomes just as invalid

as if it were not detecting it at all.
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Stage 2 - Database Optimization

The only target area of Stage 2 was data optimization, for this purpose all other techniques

were continued as applied in Stage 1, with a focus on more distribution and a variety of

vehicle type. The data for this stage returned a slight decrease in validation accuracy, due

to the increase in the variety of data, while no changes were made to any other methods.

5.1 Data Collection

The focus of the second stage of testing was around database optimization. This involved

the collection of a larger database in a variety of vehicles, to extend the study. It was

important at this stage of the testing to ensure that the data collected and categorized

has a better distribution than that of Stage 1. Data collection that was used for Stage

2 included approximately 20 minutes of footage that was broken down and categorized.

Only 4 minutes and 40 seconds of footage was used as some a lot of data is lost to hands

returning to the steering wheel after reaching.

As specified in Section 4.5.1 this data collection involved the use of 4 different vehicle

types, being a wagon, sedan, ute and hatchback. However, it was decided before imple-

menting the testing that the Sedan results would be best to be held out and used at a

later stage of validation, to be used as a previously unseen vehicle. This will ensure that

the methods used are applicable to other types of vehicles with slightly different body

shapes.
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Results after categorizing each value are as follow:

� 2279 abnormal samples

� 3561 driving samples

� 2541 reaching samples

This data shows a much better distribution of samples. Driving has quite a few more

samples, which is inherent due to the actions before every reaching and every abnormal

sample including driving. It is important to ensure that a good variety of driving is

involved as this includes a lot of samples that may otherwise end up categorized as

reaching.

5.2 Results

Stage 2 results were found to be slightly less accurate across the board. More notably

when reviewing the validation results, it was noticed that many reaching samples were

being incorrectly detected as abnormal samples. It was clear after this stage of training

that there is a need for more pre-processing to allow for the machine to correctly categorize

its data. Tables D.3 and D.4 in Appendix D shows the outcomes of the machine learning

in Stage 2. See Figures 5.1 and 5.2 below displaying some of the key finding of the second

stage of testing.
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Figure 5.1: Overall Accuracy of Stage 2 Machine Learning Techniques
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Figure 5.2: Approximate Prediction Speed of Stage 2 Machine Learning Techniques
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There is no significance on the most effective method at this stage, as there will be sig-

nificant changes made to the data that is fed into the machines for further stage training.

Although across both stage 1 and 2, it has been noted that the bagged tree method is

coming across as a beneficial method due to both its rapid training speed and prediction

speed. In both cases this method has resulted in one of the highest overall accuracies.

5.3 Observations

This section outlines the observations made on the techniques that were used in the

seconds stage. It also outlines what methods will be taken moving forward into stage 3

of testing. These observations involved training the data and testing its results against

some previously unseen data to determine where some possible shortfalls are.

5.3.1 Data Collection

Data collection was the focus for stage 2 and for that reason there were not too many

observations made in this area. It was determined that the data collection was significant

enough in variety to allow for more pre-processing techniques to be trialled. Data collec-

tion may be reviewed again at later stages if it is seen as the area that requires the most

improvement in order to develop this project into the correct direction.

5.3.2 Data Pre-processing

Data pre-processing was observed to be one of the downfalls of this stage of testing. While

the results are still significantly promising, when these machines are tested against unseen

data, it results in the reaching samples getting detected as a variety of different categories.

Without some consistency in the outputs, these results are useless in the detection stage.

It was determined that this is due to the current data only being a snip of what had

changed from the current frame to the previous frame, with no history as to what had

happened before that.

To overcome this, an algorithm like that of what would be used for Motion History Images

will be implemented in Stage 3. That is, the most recent result as well as the previous



5.3 Observations 51

9 result, are combined, to detail a more ”historical” view of what the movements were.

This algorithm was simply applied to previous data already collected and stored in a new

array. This results in slightly less data due to the first 9 samples of every video needing

to be removed, as it could not have the full history applied and would therefore result in

invalid data for the machine.

5.3.3 Machine Learning Algorithms

As previously mentioned, it was difficult to comment on the success of the machine learn-

ing algorithms based on the requirement for some more pre-processing techniques. How-

ever, it has been noticed that the success of the bagged tree method, in both training

speed and prediction speed, along as its high accuracy. If this continues into further stages

of testing, it may be the most successful algorithm for this study.

5.3.4 Post Training Filtering

A method of post training filtering was applied at this stage and did return results which

indicate a potential need for it. This included a true result being 10 out of the last

10 samples to have resulted as reaching or 14 out of the last 15. With a better pre-

processing implementation this is expected to return some useful results. This method

will be implemented and explained in more depth when the results are validated.
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Stage 3 - Pre-processing

Optimization

The focus for Stage 3 of the project was pre-processing optimization. It was determined

in Stage 2 that the data being delivered to the machine learning algorithms was not

sufficient enough in allowing for classification, and when one these trained systems were

implemented on unseen data, the results were poor. By optimizing the data going into

the machines it is expected to have a higher validation percentage and therefore a better

outcome.

6.1 Data Pre-processing

As specified in Section 5.3.2, a method for improving the data going into the machines

was required. Due to the storage of previous data, it was ideal to reuse what already

existed and simply apply another layer of processing to that data. This was achieved

by accessing the information stored from Stage 2 and manipulating it as required. The

MATLAB code that was used for this stage can be seen in Appendix J. It is the application

of the following equation 6.1 on the averaged data that was stored from Stage 2 of testing,

a very similar technique to the Motion History Image application that was researched in

Section 2.3.2, however the magnitude is not a fixed value of 1, it is the magnitude based

around the speed of movement of the previous frame.
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R = n + 0.9(n− 1) + 0.8(n− 2) + 0.7(n− 3) + 0.6(n− 4) + 0.5(n− 5)

+0.4(n− 6) + 0.3(n− 7) + 0.2(n− 8) + 0.1(n− 9) (6.1)

Where R is the result and n is the current frame.

6.2 Database Adjustments

Due to the pre-processing method that was implemented, some consideration had to be

taken for the currently categorized data. These arrays needed adjustment, in which the

first 9 frames of every videos array had to be removed, as this information lacked the

historical requirements that all other data had, making it invalid in this application. Due

to the manual method that was used to store this original data, each array could be

accessed individually, making it very simple to removing the first 9 elements.

6.3 Results

Stage 3 results improved significantly, with validation tests showing methods as high as

98%. Notably the bagged tree method stood out above all others. This method achieved

the second highest overall accuracy of 96.2%, while maintaining the fastest training time

of 244 seconds. It also has one of the highest prediction speeds of 560 observations per

second. While the results of the fine KNN method showed a higher percentage, it has

an approximate prediction speed of 30 obs/sec. Due to the framerate being the same as

this, it leaves no room for pre-processing or post filtering of the data. All the time is

consumed in the prediction. With a prediction speed of 560 obs/sec it only consumes

approximately 5.4% of the time allowable for processing and prediction of the data in

order to achieve 30 obs/sec from processing right through to filtering.Tables D.5 and D.6

in Appendix D shows the outcomes of the machine learning in Stage 3. See Figures 6.1

and 6.2 below displaying some of the key finding of the second stage of testing. Figure 6.3

is also displayed, in which it is also the approximation speed, but caps the y-axis at 60,

to determine if any under this range are also suitable.
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Figure 6.1: Overall Accuracy of Stage 3 Machine Learning Techniques
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Figure 6.2: Approximate Prediction Speed of Stage 3 Machine Learning Techniques
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Figure 6.3: Clipped Approximate Prediction Speed of Stage 3 Machine Learning Techniques

Values are capped to 60 as this plot was only used as a tool to compare the values that

were on the less acceptable end of the speed scale. Cosine and Medium KNN as well as

Cubic and Quadratic SVM can be seen to have speeds that are slightly higher than 30

obs/sec, making them acceptable with the requirement of much quicker pre-processing

speeds.

6.4 Observations

This sections outlines the observations made on the techniques that were used in the

third stage. It also outlines what methods will be taken moving forward into stage 4 of

testing. These observations involved training the data and testing its results against some
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previously unseen data to determine where some possible shortfalls are.

6.4.1 Data Pre-processing

The focus of this stage was data pre-processing, and the results proved very effective.

The pre-processing applied increased the accuracy by a significant amount. The areas

that showed the incorrect results in this application seem to be based around the starting

of movement events. Due to minimal movement in the first few frames of a reaching or

abnormal event, these were often still just classified as driving.

These observations are not of concern as they have simply applied a 10-frame maximum

lag on the output result. Given the high accuracy and success of these outputs, a small lag

at the beginning of the movement will be overcome by the accuracy and less requirement

for post train filtering.

6.4.2 Machine Learning Algorithms

Similar to Section 5.3.3 the bagged tree method was seen as a well-rounded solution to

apply to a stage of validation. Due to its rapid training speed and high prediction rate,

it meets the criteria for the training method required. It has also returned the second

highest accuracy of 96.2%. Two other methods have also been selected, the Cosine KNN

and Cubic SVM. The MATLAB code developed by the classification learner for these

three techniques can be seen in Appendix K, L and M. Stage 4 of testing, due to the

success of the machine learning and pre-processing techniques, will be a validation stage.

There is minimal room for improvement with the current information that can be found

without testing this algorithm on a previously unseen source.

Prior to reviewing the results against unseen data, the bagged tree method is preferred

due to its combination of high accuracy and high speed. Both the KNN and SVM meth-

ods were chosen as compared to others in their category, they had high accuracy and a

prediction speed slightly above 30 obs/sec.

While these results have high accuracy, it is still a small data set, and minimal changes

in camera positioning and movements may result in inaccuracy. It is important to verify

these techniques to detect where the shortfalls are and determine areas for improvement.
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Stage 4 - Verification on Unseen

Data

This stage uses previously unseen data ran through what was determined as the three

most successful machine learning algorithms (based on prediction speed and accuracy)

and analysed the results after applying the post-processing algorithm that was determined

in Section 4.5.4. This data has been broken down into many different aspects including

percentage by vehicle, reaching type and machine learning algorithm, as well as false

detection causes.

7.1 Results

Analysis took place across the 4 different vehicle types, each of which included 10 samples

of the following reaching types, as well as a variety of abnormal and regular driving

activity.

� Reaching between legs

� Reaching right pocket

� Reaching left pocket

� Reaching to Passenger

� Reaching to Console
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� Reaching to Dash

As mentioned in 6.4, the three techniques listed below were applied in the validation trial.

These methods have been named based on their category for the purpose of these sections;

� Cosine KNN (KNN)

� Cubic SVM (SVM)

� Bagged Tree (Tree)

All methods used for pre-processing were taken from Stage 3, with the addition of a post-

processing filter applied to only indicate a reaching event if 10/10 of the last samples were

reaching or 14/15 of the last samples were reaching.

Figure 7.1: Overall Results of Stage 4 Validation Tests

Figure 7.1 displays the overall results of all testing in the four different vehicle types.

These results show an accuracy of 27.92% for the Tree method and 29.17% for both

the SVM and KNN methods. These results also indicate the error coming with the

different techniques, with Tree having 3.45 false positive per minute, SVM having 6.13

false positives per minute and KNN having 4.74 false positives per minute.
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These results are very promising, it is clearly showing the potential to detect reaching

events while driving, however a significant amount of work may still be required to get

these values to an acceptable minimum. Further results are broken down and displayed

in 7.2 as they are showing information at lower levels that may be observed to have had

a significant impact on the outcomes.

Results tables of all data collected for the validation stage can be seen in Appendix E.

7.2 Observations

7.2.1 Breakdown By Vehicle

Figure 7.2 display the accuracy percentage broken down by vehicle. It also displays the

rate of false positives/minute of data.

There are two significant observations that came as a result of this breakdown;

� Wagon had a significantly higher percentage than other vehicles on average across

all three methods of detection.

� Sedan results do not look ”out of place” even though no training was done with this

vehicles data.

� False positive rate very low by comparison in Hatchback.

The wagons results were much higher than other vehicles, with still a relatively low false

detection rate. The false positive rate is similar for the ute and sedan for the Tree and SVM

method, however it did have a significantly higher KNN false positive result. Evidence

by breakdown shows that the likely issue in this case was the mounting method of the

phone. As the wagon was the original test vehicle, recordings were conducted by wedging

the phone into the window frame, resulting in a very fixed phone. All other vehicles had

the phone positioned in a mounting device, which, through review and categorization of

false positives, accounted for movement of the camera.

It is likely that this small movement in the camera was enough to shift it out of the

range that original data was captured, making it ”unrecognisable” to the machine. It
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Figure 7.2: Results Broken Down by Vehicle

also potentially causes the original data that was used to train the machine to be slightly

inconsistent for the different vehicle types, resulting in a slightly less accurate training as

compared to that of the wagon. Overall, it can be determined from this observation that

a more secure mounting method is required, as well as a verification test to ensure that

all data reviewed is to the same condition (positioning of the camera).

As stated, the Sedan’s results looked similar and, in some cases, better than other vehicle

types. This shows that there is enough of a relationship between some vehicle types,

shapes and designs to allow for the recording in fewer vehicles. This is an important

finding as it means a machine can be trained across multiple vehicles, like this project has

approached the issue, and potentially apply to hundreds of different models with close to

the same features. The method can be reapplied across other vehicle types with a larger

data set and likely return good accuracy against several different vehicle shapes.
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The false positive rate in the hatchback was significantly lower to those of the other

vehicles, however the detection rate was still very similar besides the SVM results. These

results may be slightly inaccurate based on availability and access to the vehicle. Based

on the results, this vehicle had 2000 frames less than the next closest vehicle meaning by

average there was less normal and abnormal driving events recorded.

This issue can be detected across all methods, where the Sedan had the highest false

positive detection rate on average along with the largest data set. This observation is

significant in the way it shows a need for a larger data set for validation, especially for

ordinary and abnormal driving events, and a need for more even distribution of testing.

These results did help to show that an increase in driving events compared to reaching

shows a noticeable increase in error rate. This clearly outlines a need to implement a

larger data set, with more variety in driving behaviour, in order to bring down the error

rate under normal situations.

7.2.2 Breakdown By Reaching Type

Figure 7.3 display the accuracy percentage broken down by reaching type. This is still

broken down by machine learning technique used.

Observations that were found by breakdown of reaching type determined a significantly

higher result in reaching right pocket as a comparison to other types. This observation

shows again, a significant need for a larger data set, in which seat positioning and driver

styles etc are adjusted. This result is higher since the right pocket is relatively fixed to

the same location, whereas there are multiple locations a phone can sit on the dash, in

the console and on the passenger seat. This indicates that multiple different angles and

speeds will be detected for other reaching events as a comparison to the right pocket

events and shows a need for larger datasets to cover a more varied driving behaviour.

This doesn’t seem to be indicative in the left pocket scenario, which under the logic

applied above should show similar results. Analysis has pointed this to the direction of

the gearstick issue. The detection of left pocket is often masked due to its similarity of

using the gearstick. More data is required to allow for a higher separation between the

use of a gearstick and reaching for the left pocket. By increasing the confidence of the

machine based on a larger data set, there could be some reduction in the application of
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Figure 7.3: Results Broken Down by Reaching Type

post-processing, allowing in reaching events to require less than 10 in a row or 14/15 to be

detected. Of course if this is done too soon it will simply result in an increase of accuracy

and false positives at the same time.

7.2.3 Breakdown of False Positive Detections

Figure 7.4 display a breakdown of the false positive detections by individual count.

The above breakdown has some interesting outcomes, as it shows the larger issues causing

the false positive detection. Interestingly is the hand returning to steering wheel after

reaching, which is likely high because it was never used as training data. This graph helps

to show areas that do require improvement, such as adjustments to radio/air conditioner,
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Figure 7.4: Results Broken Down by False Positive Detection

turning corners and camera shifting. Most importantly, it highlights a potential need for

further breakdown in the categorization, which could potentially provide more meaningful

data in the areas of few training samples. It also, similar to how it has in this instance,

can return a percentage of accuracy for specific events, helping to understand exactly

what needs more work, or what has hit an acceptable accuracy.

7.2.4 Data Collection

Observations of these results are clear in showing that a much larger, more varied data set

is required in order to reach acceptable accuracies. These results are just too inaccurate

and while mounting methods also need adjusting, the leading cause was limited data.

This can be seen by the number of false positives broken into categories such as turning

corner, using gearstick and adjusting air conditioner.
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7.2.5 Data Pre-processing

I believe the data pre-processing techniques are acceptable, as they did result in a high ac-

curacy when going through the machine learning algorithms. If anything were to change,

there is the possibility of feeding in the true image data as well, although this significantly

impacts the amount of footage the algorithms can handle. While this process was affec-

tive, there are some other methods that may be worth exploring. Simply increasing the

averaging function block size allows for more data into the algorithm while also allowing

for some variance in seat and steering wheel positioning. It is difficult to know without

trying what affect this will have.

7.2.6 Machine Learning Algorithms

The three machine learning algorithms were all affective and showed similar results when

tested. The preferred method is Bagged Tree, based on its higher prediction speed.

This method did show a slightly lower accuracy than the other two but also displayed a

significantly lower error rate. Interestingly Figure 7.3 shows the SVM method to be much

more affective in the detection of reaching the left pocket. I see no reason to rule out

methods at this point based on these results, as other methods may have better outcomes

under certain circumstances it would be unfortunate to rule them out now and miss those

observations.

7.2.7 Post Training Filtering

Post training filtering was an essential requirement at this early stage of design, as without

it there would have been thousands of false positives, as well as a much higher accuracy

rate. The idea of this filtering was to increase the confidence of the reaching events which

it did have success in doing. Ideally as this area of research develops there would be

potentially to decrease or remove the need for post training filtering however there may

still require a 5 frame filtering as it is very difficult to determine where a hand is going

in those early movements off the steering wheel.
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Conclusion and Further Work

This research project had a hypothesis that stated, ”through the use of a fixed camera

installed in a car and with some image pre-processing and machine learning algorithms

applied, a machine can detect the act of reaching for a phone.”, which has been validated

with the results showing approximately a 29% accuracy in detection. While these numbers

are low, they do show a significant potential for improvement, and using observations,

areas of further work have been identified in order to increase this percentage. Based on

this accuracy and identification of areas of issue, it can be stated that a fixed camera in

a car, with image pre-processing and machine learning algorithms, can detect the act of

reaching for a phone.

This research stepped through the different stages of training, identifying what worked

well and what required more attention. It has highlighted areas of fault that became

obvious after the final stage of validation and effectively compared multiple different

methods of machine learning algorithms. These areas included the need for a securely

fixed mounting device, a validation method for image positioning, a larger and more

diverse data set and some other areas for pre-processing application in order to lower the

required detection time.

With further research in this area, in vehicle detection of pre-emptive mobile phone usage

will become feasible. This detection could help to eliminate the use of mobile phones on

the road, significantly decreasing the risk of injury or death to those driving with the

phone or drivers/pedestrians in their immediate area. By implementing a device that

allows for this detection, similarly to a no seatbelt buzzer, the deterrence of a noise is
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often enough to stop people from doing the wrong thing.

8.1 Project Achievements

The achievements of this project will be reflected by comparing results and outcomes

to the major objectives outlined in Section 3.2. These objectives have been listed and

discussed below.

(i) Obtain legal footage of road users using their mobile phones as well as

just driving normally.

Chapter 4 displays the database collection for initial testing, in which there were

some requirements around consistency of data gathering and image positioning. In

the first instance of collection, as a stage just to verify that the methods were feasible,

the data collection was valid. This data was all collected legally, with me as the only

driver, and no phone use while driving. This objective was successfully met, allowing

for the review and categorization, as well as benchmark setting for the project.

(ii) Review and categorize footage.

The method of review and categorization was outlines in Section 4.1 in which the

number of samples were identified. While this number was low and skewed it did

allow for initial testing. The review and categorize phase was followed through the

length of the project with success, this can be seen through the results at every

stage of testing, in which the machine outputs the accuracy based on the review

values compared to the calculated values. This phase was extremely time consuming

although necessary to ensure the accuracy of results. This objective was met with

every frame used for training reviewed and categorized as either reaching, driving

or an abnormal event.

(iii) Use MATLAB deep-learning tool to set a benchmark on video with min-

imal processing.

This area was the focus of Chapter 4, in which data was collected, categorized and

put into a machine for training with as minimal processing as possible. This stage

required more processing then initially intended due to memory related issues. Pre-

processing at this stage required trimming and an optical flow algorithm, both of

which were always a requirement to make the data valid and usable. However, it did
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also require cropping and data averaging to make the size of each sample smaller in

order to feed an appropriate amount of data into the machines for training. While it

did use more processing then initially intended, it did meet the requirements of the

objective as this was the minimal amount of processing required to set a benchmark

(could not be trained without this processing).

(iv) Find shortfalls in deep-learning tool and areas for optimization.

The observations of Stage 1, 2 and 3 were the locations in which optimization tech-

niques were identified after finding shortfalls in the deep-learning tool. This objective

included the identification of uneven spread of data across the different categories,

the requirement for a Motion History Image approach in data, issues in the mount-

ing and refocussing of the camera. While these optimizations were not all applied

due to time constraints, this objective did successfully identify multiple areas of is-

sue that were able to improve the accuracy of the machine learning algorithms, and

have identified some areas for future works if someone were to continue this research

path.

(v) Apply multiple levels of processing on images, to compare to the bench-

mark approach.

This objective included the implementation of a motion history image, as well as

some post processing requirements to validate the data. The motion history image

approach improved the accuracy approximately 20% from the previous stage. There

were initial plans to trial more pre-processing techniques however with the high

success of this one and the 98% accuracy it seemed more important to apply the

validation stage. This was also capped due to time constraints, although the pre-

processing techniques applied of trimming, cropping, optical flow, data averaging

and motion history image were successful in improving the results when compared

to the benchmark approach.

(vi) Use MATLAB deep-learning tool to see improvements.

This stage was conducted at the completion of Stage 2 and Stage 3 in which the

data was compared to the benchmark approach. Stage 2 results showed a decrease

in accuracy, which was expected due to the increasing data-set size and spread of

data. Stage 3 showed a significant increase in accuracy, showing the effect that both

database optimization and motion history image applications had on the accuracy

of the machines output. This objective was effectively used to see improvements and

identify other possible areas for improvement. IT was also successful in identifying
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approaches that were not as successful or methods that were no longer followed

through the length of the project, such as different training methods and the use of

feature selection.

(vii) Test finalized methods on previously ”unseen” data.

This was captured in Stage 4 of the project, in which the 3 most effective machine

learning algorithms were trained and used to categorize previously unseen data. This

included the use of a vehicle which had not been seen before. The results of this

data were approximately 29%. While a higher percentage would have been ideal,

the results showed that the application can successfully identify reaching events,

and with some more optimization, it is expected that these accuracy percentages

can become much greater. This objective was also successful in removing human bias

as it was fed all data and review in a two-stage process to ensure no manipulation

occurred. This objective was successfully met and showed the percent of accuracy

of three of the more successful methods.

8.2 Further Work

This section gives recommendations for further work that can be applied in order to

continue this research. It has been broken down into categories and detailed information

has been given in each.

8.2.1 Data Acquisition

Data acquisition has been identified as an area needing attention. Below is a list of

recommendations to ensure that the further development of this research gets off to the

right start from the data acquisition stage of the project.

� A method of correctly mounting and ensuring all images have the same features in

the same location every time it is recorded.

� Using up the full memory when training on the more successful machine learning

methods.

� A more structured method based around vehicle type, such as separating hatchback
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and ute into different machines, or researching a specific type alone.

� Removal of refocussing on the camera/device used for recording

These were the issues identified in the data acquisition phase of the project. Fixing up

some of these areas will result in a higher accuracy from the machine, as well as allowing

for more data to be fed into certain machine learning algorithms. These areas will make

the later stages of training much easier to identify issues in recording, as every image will

be correctly lined up to the trained data. I believe this will also remove the issue with

false positives that could not be determined, as well as significantly reducing the false

positive detection all together, based around camera refocussing and camera movement.

8.2.2 Data Categorization

Categorizing data into more sub sections may be beneficial in indicating exactly which

areas are causing false positive. This approach will require higher values of data for those

events but allows for both false positive detection and false negative detection to have

more value. By only using the category, abnormal event, manual viewing needs to occur

multiple times to find the source of a false negative. If training and there is a clear

indication of events for example, using the gearstick, that result in false positives, it will

be much easier to identify a lack of information in that area that needs addressing. Some

categories that would have value in breaking down from the observations of Stage 4 are

as follows.

� Reaching between legs

� Reaching right pocket

� Reaching left pocket

� Reaching to passenger

� Reaching to dash

� Reaching to console

� Road bumps

� Touching face
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� Hand repositioning on wheel

� Turning corners (possibly left and right)

� Visor adjustment

� Hand returning after reaching

� Adjusting air conditioner/radio

� Gearstick movements

� Passenger movement

� Winding window down

More categories will likely increase the complexity of the machine learning algorithms and

potentially increase the time to detect, although it will have much larger impact on the

observations made after training, it is something that can always be refined down at the

latest stage before implementation anyway, but it will help substantially in identifying

further shortfalls in the detection methods and some areas for improvement or increased

data acquisition.

8.2.3 Data Averaging

Some methods to improve or trial different amounts of averaging could be attempted in

order to do two things. It will increase the amount of data that can be fed into the

machine learning algorithms if data is increase and allows for different movements in

similar locations by widening the pixel size. This method may have an adverse effect in

which the average results in a value too near 0 that it becomes useless, but it will need

to be trialled to see.

Another potential method is as seen below if Figures 8.1 and 8.2. In which a method of

averaging down the columns and across the rows is applied. This method with no further

averaging as seen in Figure 8.2 would result in a per sample reduction size from 10,268

down to 4320, and even further with an average across two rows and two columns to

1080. While it may not give an exact location of movement, the values can be crossed in

many applications to determine approximate areas of movement. This averaging method

would significantly increase the amount of data that can be fed into the machine, meaning
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the small loss in data may be outweighed by the large increase in information received.

Some values have been randomly placed to show the effect in output in both a single

row/column average compared to a double row/column average.

Figure 8.1: Different Averaging Approach Using Single Row/Column

Figure 8.2: Different Averaging Approach Using Double Row/Column

8.2.4 Data pre-processing Optimization

While the method of applying an optical flow estimation and motion history image like

algorithm showed high percentage of returns, the time in which was required for processing

was still far too large to be acceptable. This resulted in approximately 3 seconds required

for every 1 second of data being processed. Some trialling of other methods, or use of

Horne-Schunk parameter adjustment, it is important to try get this time down as much
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as possible. Other factors that would impact this are the processing speeds of the device

being used, so it is important to minimize this as much as possible to make it a feasible

solution for an in vehicle install.

8.2.5 MATLAB Out-Of-Memory

This really only applies to the training of the machine but can simply be enhanced with

hardware upgrades. The RAM is the leading impact on how much data can be fed into a

machine based on memory implications, however there could be some other changes made

around rounding of floats to minimize the data of each sample as well. This memory issue

can be linked to the data averaging and many other methods can be applied, some of

which will result in the loss of valued data. Some investigation could be conducted into

best methods to get the most out of the data for lowest cost, and a simple increase in

RAM size is always an option that comes with a once of monetary cost as well.
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https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries


Appendix A

Project Specification

This appendix displays the project specification that was developed in April of 2020.

For: Andrew Hopkins

Title:Pre-emptive detection of mobile phone usage in-vehicle

Major: Electrical and Electronic Engineering

Supervisor: Dr. Tobias Low

Enrolment:

ENG4111 – EXT S1, 2020

ENG4112 – EXT S2, 2020

Project Aim:

To investigate the use of machine learning to pre-emptively detect the usage of mobile

phones while driving.

Programme: Version 1, 08 April 2020

1. Research the background information relating to the use of machine learning on

gestures and human movements. Different techniques for learning will be determined

and the most appropriate applied.

2. Assemble a camera recording arrangement in vehicle to ensure all angles of the lap

area of a driver can be detected.

3. Record a large dataset. This will require real drive time, as well as periods of phone

usage. Methods may involve driving on private property etc to abide by road rules.
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4. Reviewing of data. Supervised learning will require the data to be screened and

indicators set at the different times leading up to and during phone usage.

5. Training the machine to detect the phone usage.

6. Testing the machines potential on a data set that has not gone through the machine

yet.

7. Recording and analysing the results of the machines detection.

If time and resources permit:

9. Detection of areas of weakness in the system, and potential opportunities for im-

provement.



Appendix B

Project Timeline

This appendix displays the project timeline that was outlined in Section 3.6.2.
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Figure B.1: Project Timeline



Appendix C

Risk Assessment

This appendix displays the risk assessment conducted before beginning work. Section

3.6.3 discussed the procedures of conducting the risk assessment.

Table C.1: Phase 1 - Risk Assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

1A Approval not received from

USQ to begin project.

Extreme

15

Early discussions with super-

visor to generate a feasible

project. Ensure approvals are

obtained before beginning any

works.

Moderate

5

1B Resources not available for

commencement.

High

9

Determine camera require-

ments, programs needed and

hardware necessary to com-

plete the project. Obtain re-

quired equipment as soon as

project is approved.

Low

3
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Table C.2: Phase 2 - Risk Assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

2A No features can be captured

effectively with one camera

High

12

Trial multiple areas, consider

what features are significant

to ensure these are captured.

Stick to a plan once determin-

ing a position and ensure it is

followed correctly

Low

2

2B Loss of database, and any

progress made with refine-

ment/optimization.

High

10

Ensure all data is backed up

and stored on two seperate de-

vices. Original copies of all

videos will be stored, as well

as all data that has been ma-

nipulated for all different test-

ing procedures.

Moderate

5

2C Incorrect/Unstandardized

way of categorizing data

High

12

Parameters will need to be

created before categorization

can commence to ensure all is

done in the same way. In time

persists, all videos will be re-

viewed twice. To keep this as

simple as possible, videos will

be watched and categorized as

received to keep project flow-

ing.

Low

3
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Table C.3: Phase 3 - Risk Assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

3A MATLAB machine training

takes longer than expected.

Moderate

6

Practice training on some

known MATLAB databases

with their example programs.

This will give a good under-

standing of hardware capabili-

ties. If system is not handling,

discuss early with supervisor

if not appropriate, and deter-

mine other methods to make

the project feasible.

Moderate

4

3B Loss of documentation High

10

Similarly to above, it is im-

portant to back up the doc-

umentation on a spare device,

to ensure data cannot be lost.

Moderate

5

3D Initial testing not thorough

enough/needs revisiting.

High

9

Ensure literary review of ma-

chine learning is correctly

complete before commencing

past this initial testing. This

will ensure that the bench-

mark is correctly set and that

all algorithms are understood

and arranged correctly for ini-

tial values.

Low

3
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Table C.4: Phase 4 - Risk Assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

4A Image cropping results in the

loss of significant data

Extreme

16

Standard template must be

used for image cropping. Due

to the use of data from multi-

ple sources, this may need to

be done case by case. Discus-

sion with supervisor to ensure

method usage is appropriate.

Moderate

6

4B Large data storage may be

time consuming and hard to

process

Moderate

6

Complete as the data is re-

ceived to ensure no back log

of work. Ensure stored data

in the first instance is simply

the original file and its final-

ized forms of processing tech-

niques ie. greyscale.

Low

1

4C Unable to find any useful al-

gorithms

High

8

Continue literary review.

There are a significant

amount of research papers in

the area of machine learning

of video image. Discuss

alternatives with supervisor

Moderate

4

4D Finalizing done too early,

compromising results

High

8

Ensure all potential methods

have been reviewed within the

time constraints of complet-

ing the project. If time be-

comes an issue, all data should

be collected and tested by this

point. So it will be a matter

of just selecting the most ef-

fective method and continuing

at this point.

Low

2
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Table C.5: Phase 5 - Project risk assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

5A No algorithms found to work

successfully from the begin-

ning.

High

8

Resume literary review to de-

termine other methods for

machine learning of this con-

text. Discuss alternative op-

tions with supervisor

Moderate

4

5B Finalizing done too early,

compromising results.

High

8

Ensure all potential methods

have been reviewed within the

time constraints of complet-

ing the project. If time ba-

comes an issue, all data should

be collected and tested by this

point. So it will be a matter

of just selecting the most af-

fective method and continuing

at this point.

Low

2
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Table C.6: Phase 6 - Project risk assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

6A & B Lack of detail in analysis re-

sulting in loss of information.

High

12

Standard method for storing

this information will be taken

for each step. Significant data

such as training time, process-

ing time on test images and

accuracy will be tested for ev-

ery different method applied

and stored in the same fash-

ion for each.

Low

2

6C Final test has extremely poor

result.

High

12

By this point, all methods and

approaches have been taken

to ensure everything was done

correctly. Ensure that the fi-

nal test data was manipulated

to the same standard as all

other test data. Ensure data

set is large enough through-

out the entire project. Discuss

with supervisor and move on.

Time will be limited at this

point to be caught up on re-

sults.

Moderate

4
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Table C.7: Phase 7 - Project risk assessment

Phase

Num-

ber

Risk Outline Risk

Rating

Risk Controls Reviewed

Risk

Rating

7A Progress report not complete

on time

High

12

Start report as early as pos-

sible and make it the fo-

cus of the project until com-

plete. This is the baseline of

the project and needs to be

treated with high priority

Low

1

7B Not enough time given for su-

pervisor to provide feedback

on draft.

High

9

Dissertation should be com-

pleted alongside the project

weekly. This will ensure that

a significant amount of work is

not required in this area alone

at the end. Discuss with su-

pervisor the possibility of sub-

mitting updates of documen-

tation at more frequent inter-

vals for review of changes.

Low

1

7A Unable to attend Professional

Practice 2 on campus course

High

10

Apply for leave as soon as the

dates are known.

Low

1



Appendix D

Stage 1, 2 and 3 Result Tables

This appendix displays the results tables that were developed in Stages 1, 2 and 3 of

development.
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Table D.1: Stage 1 Machine Learning Results 1 of 2

Accuracy (%)

Classifier Time to Approx. Reaching Driving Abnormal Total

Type Train(s) Prediction

Rate(obs/s)

Discriminant

Linear 735 170 51.5 66.3 49 57

Quadratic Failed - - - - -

Subspace 8087 29 64.4 47.3 40.2 54.6

Coarse 970 28 0.1 100 0 39.4

Cosine 924 26 76 95.8 68.8 82.8

K-Nearest Cubic Failed - - - - -

Neighbour Fine 1040 22 74.7 89.1 61.6 78.7

Medium 898 25 19.2 74.9 67.5 64.3

Subspace Failed - - - - -

Weighted Failed - - - - -

Naive
Gaussian 221 470 67.9 95.8 60.9 75.7

Kernel Failed - - - - -
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Table D.2: Stage 1 Machine Learning Results 2 of 2

Accuracy (%)

Classifier Time to Approx. Reaching Driving Abnormal Total

Type Train(s) Prediction

Rate(obs/s)

Coarse
2278 20 99.8 4.7 0.3 49.8

Gaussian

Cubic 1752 24 74.5 96 46.9 79.5

Support Fine
2317 18 98.2 41.8 18 65.8

Vector Gaussian

Machines Linear 888 410 65.6 74.8 19.2 63.4

Medium
2135 21 85.8 86.2 28.7 78.6

Gaussian

Quadratic 2622 13 76.5 96.5 42.1 80

Trees

Bagged 255 490 91.3 88.9 59.2 86.3

Boosted 5748 490 90.2 77.5 31.8 77.8

Fine 1427 510 77.8 75.2 48.8 73.1

RUSBoosted 1139 490 75.2 83.1 76.8 78.5
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Table D.3: Stage 2 Machine Learning Results 1 of 2

Accuracy (%)

Classifier Time to Approx. Reaching Driving Abnormal Total

Type Train(s) Prediction

Rate(obs/s)

Discriminant

Linear Failed - - - - -

Quadratic Failed - - - - -

Subspace 2558 330 0 100 0 42.5

Coarse 1130 33 1.9 99.5 0 42.9

Cosine 1319 28 80.7 91 60.8 79

K-Nearest Cubic Failed - - - - -

Neighbour Fine 1430 25 68.5 86.3 66.8 75.6

Medium 1438 27 54.4 68.4 32.2 54.3

Subspace Failed - - - - -

Weighted Failed - - - - -

Naive
Gaussian 363 440 52.1 68.3 78 66

Kernel Failed - - - - -
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Table D.4: Stage 2 Machine Learning Results 2 of 2

Accuracy (%)

Classifier Time to Approx. Reaching Driving Abnormal Total

Type Train(s) Prediction

Rate(obs/s)

Coarse
5550 12 2.6 99.7 0.3 43.2

Gaussian

Cubic 5527 12 66.7 92.4 61.2 76.1

Support Fine
6043 11 13.3 100 4.6 47.8

Vector Gaussian

Machines Linear 3042 200 31.5 91.1 22.6 54.4

Medium
5502 11 63 92.4 57.7 74.1

Gaussian

Quadratic 5544 12 63.7 92 57.3 74

Trees

Bagged 371 390 67.1 90 75.9 79.2

Boosted 7224 350 51.5 83.5 48.3 64.3

Fine 416 510 53.8 75.2 46.7 61

RUSBoosted 5558 290 65.7 64.8 56.7 62.9
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Table D.5: Stage 3 Machine Learning Results 1 of 2

Accuracy (%)

Classifier Time to Approx. Reaching Driving Abnormal Total

Type Train(s) Prediction

Rate(obs/s)

Discriminant

Linear Failed - - - - -

Quadratic Failed - - - - -

Subspace 5284 270 49.8 94.3 53.4 68.8

Coarse 1015 31 1.6 99.8 2.9 41.7

Cosine 1012 35 90.1 96.2 96.1 94.2

K-Nearest Cubic Failed - - - - -

Neighbour Fine 1142 30 97.8 98.7 98.1 98.3

Medium 1030 35 59.8 99.1 66.6 77.5

Subspace Failed - - - - -

Weighted Failed - - - - -

Naive
Gaussian 313 490 50.2 71.2 81.9 67.4

Kernel Failed - - - - -
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Table D.6: Stage 3 Machine Learning Results 2 of 2

Accuracy (%)

Classifier Time to Approx. Reaching Driving Abnormal Total

Type Train(s) Prediction

Rate(obs/s)

Coarse
4533 13 37.9 99.5 20.2 57.9

Gaussian

Cubic 1943 34 97.2 99 95.5 97.5

Support Fine
5033 12 67.1 99.6 55.9 77.2

Vector Gaussian

Machines Linear 1566 450 82.8 97.5 83.4 89

Medium
3588 16 94.9 98.6 91.4 95.4

Gaussian

Quadratic 1913 36 89.7 98.7 93.2 94.3

Trees

Bagged 244 560 94.8 97.6 95.9 96.2

Boosted 4500 570 63.7 92.7 56.2 73.4

Fine 301 560 65.7 87.6 55.6 71.8

RUSBoosted 3818 580 76.9 77.5 57.2 71.7



Appendix E

Validation Result Tables

This appendix displays the results tables that were created in the validation stage of

development. The ute had approximately 7 minutes of recording, the Sedan approximately

6.5 minutes, the wagon approximately 8 minutes and the hatchback approximately 5.5

minutes. Each vehicle reviewed 10 samples of each reaching event, and some additional

regular driving.

Table E.1: Ute True Positive Counts

Tree SVM KNN

Between Legs 0 3 2

Left Pocket 1 2 4

Right Pocket 2 6 4

Passenger 3 2 2

Console 4 5 2

Dashboard 1 0 2

Accuracy(%) 18.33 30 26.67
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Table E.2: Sedan True Positive Counts

Tree SVM KNN

Between Legs 1 2 0

Left Pocket 4 6 3

Right Pocket 3 5 2

Passenger 2 1 0

Console 2 4 2

Dashboard 3 3 1

Accuracy(%) 25 35 13.33

Table E.3: Wagon True Positive Counts

Tree SVM KNN

Between Legs 5 4 5

Left Pocket 2 9 3

Right Pocket 6 6 4

Passenger 2 2 2

Console 5 2 4

Dashboard 4 2 5

Accuracy(%) 40 41.67 38.33
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Table E.4: Hatchback True Positive Counts

Tree SVM KNN

Between Legs 0 1 3

Left Pocket 1 0 2

Right Pocket 4 1 6

Passenger 7 2 6

Console 3 2 2

Dashboard 2 0 4

Accuracy(%) 28.33 10 38.33

Table E.5: All Vehicle True Positive Counts

Tree SVM KNN

Between Legs 6 10 10

Left Pocket 8 17 12

Right Pocket 15 18 16

Passenger 14 7 10

Console 14 13 10

Dashboard 10 5 12

Accuracy(%) 28.33 10 38.33
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Table E.6: Ute False Positive Counts

Tree SVM KNN

Roadbump 0 0 0

Touching Face 0 0 1

Hand Reposition on Steering Wheel 0 1 1

Could not Determine 2 9 4

Turning Corner 4 2 1

Visor Adjustment 0 2 0

Hand Returning After Reaching 8 20 14

Airconditioner/Radio 1 1 0

Camera Refocus 2 2 1

Camera Shift 6 6 1

Gearstick 2 10 2

Passenger in Frame 1 7 6

Winding Window Down 0 0 0

Errors per minute 3.65 8.41 4.35
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Table E.7: Sedan False Positive Counts

Tree SVM KNN

Roadbump 0 0 0

Touching Face 0 0 0

Hand Reposition on Steering Wheel 0 1 1

Could not Determine 5 3 3

Turning Corner 6 7 4

Visor Adjustment 1 0 2

Hand Returning After Reaching 4 21 7

Airconditioner/Radio 1 2 0

Camera Refocus 5 2 3

Camera Shift 4 12 4

Gearstick 0 2 3

Passenger in Frame 0 0 0

Winding Window Down 0 0 0

Errors per minute 4.03 7.76 4.19
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Table E.8: Wagon False Positive Counts

Tree SVM KNN

Roadbump 0 3 3

Touching Face 0 3 3

Hand Reposition on Steering Wheel 2 5 6

Could not Determine 0 8 7

Turning Corner 3 9 10

Visor Adjustment 1 2 1

Hand Returning After Reaching 28 26 22

Airconditioner/Radio 0 0 0

Camera Refocus 0 0 0

Camera Shift 1 2 6

Gearstick 0 0 0

Passenger in Frame 0 1 1

Winding Window Down 0 1 1

Errors per minute 4.27 7.32 7.32
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Table E.9: Hatchback False Positive Counts

Tree SVM KNN

Roadbump 0 0 0

Touching Face 0 0 0

Hand Reposition on Steering Wheel 1 0 0

Could not Determine 0 0 1

Turning Corner 3 1 2

Visor Adjustment 1 0 0

Hand Returning After Reaching 7 5 15

Airconditioner/Radio 0 1 0

Camera Refocus 1 1 2

Camera Shift 2 3 2

Gearstick 0 0 0

Passenger in Frame 0 0 0

Winding Window Down 0 0 0

Errors per minute 2.76 2.02 4.04
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Table E.10: All Vehicle False Positive Counts

Tree SVM KNN

Roadbump 0 3 3

Touching Face 0 3 3

Hand Reposition on Steering Wheel 3 6 8

Could not Determine 5 12 12

Turning Corner 14 26 20

Visor Adjustment 7 4 4

Hand Returning After Reaching 39 54 44

Airconditioner/Radio 9 23 14

Camera Refocus 7 4 5

Camera Shift 9 19 13

Gearstick 6 8 4

Passenger in Frame 2 11 3

Winding Window Down 1 8 7

Errors per minute 3.74 6.65 5.14



Appendix F

Frame Calculating Function

This function was used to determine at which frame movements began, to allow for the

detection of first frame of classiication change. It simply outputs the image of that frame,

and a frame number so that both can be seen and manually entered into classiciation

array. This is referenced in Section 4.1.
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Listing F.1: Frame Calculating Function.

% Used to determine e x a c t frame where c a t e g o r i e s change
% This i s done a f t e r watching f u l l speed and determining approx .

↪→ t ime
% Enter v ideo name and s t a r t time in l i n e s 7 & 8
% Press en t er to move to next frame , Command window o u t p u t s

↪→ curren t frame
% number

%c l c ;
%c l e a r ;
s t a r t = 30 ; %always use an i n t e g e r ( seconds i n t o

↪→ r e c o r d i n g )
vidReader = VideoReader ( ’ Sedan 2 . mp4 ’ , ’ CurrentTime ’ , s t a r t ) ;
frame = s t a r t *30 ;

% Components o f the o p t i c a l f l o w c a l c u l a t o r .m f i l e
h = f i g u r e ;
movegui (h) ;
hViewPanel = u ipane l (h , ’ Po s i t i on ’ , [ 0 0 1 1 ] , ’ T i t l e ’ , ’ Plot o f

↪→ Opt ica l Flow Vectors ’ ) ;
hPlot = axes ( hViewPanel ) ;

whi l e hasFrame ( vidReader )
frameRGB = readFrame ( vidReader ) ;
imshow (frameRGB)
hold on
frame = frame +1
input ( ’ ’ )

end



Appendix G

Classification Array Function

This appendix shows the manual entry method for classification arrays to ensure accurate

results. This is referenced in Section 4.1.

Listing G.1: Classification Array Function.

%Array creator , tak e down numbers b e f o r e trimming / cropping
% Stored at top
% eg . Video6 1 was trimmed between frame 20 to 101
% Up to frame 63 was d r i v i n g and reach ing a f t e n u n t i l end

% 1 = 29 P r e d i c t o r s s t o r e d in MATLAB Data OP6HS 1

%Video 6 1
% Trimmed to 20 = 101
ar ray6 1 ( 1 : 4 3 ) = ” Driv ing ” ;
ar ray6 1 ( 4 4 : 8 2 ) = ”Reaching ” ;

%Video 6 2
% notused

%Video 6 3
% Trimmed to 1 = 108
ar ray6 3 ( 1 : 1 4 ) = ” Driv ing ” ;
ar ray6 3 ( 1 5 : 5 3 ) = ”Abnormal ” ;
a r ray6 3 (54 : 108 ) = ”Reaching ” ;

%Video 6 4
% Trimmed to 23 = 99
ar ray6 4 ( 1 : 1 7 ) = ” Driv ing ” ;
ar ray6 4 ( 1 8 : 7 7 ) = ”Reaching ” ;

%Video 6 5
% Trimmed to 135 = 190
ar ray6 5 ( 1 : 5 6 ) = ”Reaching ” ;
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W1Console3 = array6 5 ( 1 0 : 5 6 ) ;

%Video 6 6
% Trimmed to 1 = 172
ar ray6 6 ( 1 : 4 0 ) = ” Driv ing ” ;
ar ray6 6 (41 : 110 ) = ”Abnormal ” ;
a r ray6 6 (111 : 172 ) = ”Reaching ” ;

%Video 6 7
% Trimmed to 1 = 90
ar ray6 7 ( 1 : 3 8 ) = ” Driv ing ” ;
ar ray6 7 ( 3 9 : 9 0 ) = ”Reaching ” ;

%Video 6 8
% Trimmed to 1 = 66

ar ray6 8 ( 1 : 6 6 ) = ”Reaching ” ;

%Video 6 82
% Trimmed to 1 = 90
array6 82 ( 1 : 5 9 ) = ”Abnormal ” ;
ar ray6 82 ( 6 0 : 9 0 ) = ”Reaching ” ;

%Video 6 83
% Trimmed to 1 = 85
array6 83 ( 1 : 4 4 ) = ”Abnormal ” ;
ar ray6 83 ( 4 5 : 8 5 ) = ”Reaching ” ;

%Video 6 84
% Trimmed to 1 = 120
array6 84 ( 1 : 7 9 ) = ”Abnormal ” ;
ar ray6 84 (8 0 : 12 0 ) = ”Reaching ” ;

a r r a y C l a s s i f i e r = [ ar ray6 1 ar ray6 3 ar ray6 4 ar ray6 5 ar ray6 6
↪→ ar ray6 7 ar ray6 8 ar ray6 9 array6 10 array6 11 array6 12
↪→ array6 13 array6 14 array6 15 array6 16 array6 17
↪→ array6 18 array6 19 array6 20 array6 21 array6 22
↪→ array6 23 array6 24 array6 25 array6 26 array6 27
↪→ array6 28 array6 29 ] ;

a r r a y C l a s s i f i e r = a r r a y C l a s s i f i e r ’ ;

ab1 = sum( a r r a y C l a s s i f i e r ( : ) == ”Abnormal ”) ;
dr1 = sum( a r r a y C l a s s i f i e r ( : ) == ” Driv ing ”) ;
re1 = sum( a r r a y C l a s s i f i e r ( : ) == ”Reaching ”) ;



Appendix H

Footage Cropper/Trimming

Function

This appendix displays the MATLAB code that was used for both cropping and trimming

of video. Parts of this code were sourced from the Mathworks open source forum, as

specified in the top line of commenting. This is referenced in Section 4.2.1.
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Listing H.1: Cropping Function.

%h t t p s :// au . mathworks . com/ m a t l a b c e n t r a l / f i l e e x c h a n g e /63421=
↪→ cropping=v ideo

%c l e a r a l l
%c l c

s t a r t = 1 ;
stop = 2 %10228;

vid1=VideoReader ( ’ Ute 1 . mp4 ’ ) ;
n=vid1 . NumberOfFrames ;
wr iterObj1 = VideoWriter ( ’ Ute 1 . av i ’ ) ;
open ( writerObj1 ) ;
i=s t a r t ;

whi l e i <= stop
im=read ( vid1 , i ) ;
imc=imcrop ( im , [ 0 700 1080 1080 ] ) ;% x1 y1 x2 y2 , 700 crops

↪→ out any window , 600 i n c l u d e s top o f s t e e r i n g wheel .
% img=rgb2gray ( im) ;
% [ a , b ]= s i z e ( img ) ;

%imc=i m r e s i z e ( imc , [ a , b ] ) ;
writeVideo ( writerObj1 , imc ) ;
% s u b p l o t (1 ,3 ,1)
% imshow (im)
% s u b p l o t (1 ,3 ,2)
% imshow ( imc )

i=i +1;
end
[ ” s t a r t ” ” stop ” ” count ” ]
[ s t a r t stop writerObj1 . FrameCount ]

c l o s e ( writerObj1 )



Appendix I

Optical Flow and Averaging

Function

This appendix displays the code used for both the optical flow calculation and the data

aeraging method. This is referenced in Section 4.2.3. The optical flow component of this

program was sourced from Mathworks, as referenced at the top of the commenting. Some

adjustments were made and additional commenting added, some sections were commented

out as they were used for debugging and calculating timing of pre-processing techniques.

Listing I.1: Optical Flow and Averaging Function.

%h t t p s :// au . mathworks . com/ h e l p / v i s i o n / r e f / o p t i c a l f l o w h s . html
% C a l c u l a t e s o p t i c a l f l o w and performs the q u a n t i z a t i o n
% Each scan o f data i s then spread acc ross one row in the array
% Video name to be i n s e r t e d in l i n e 7 and array name in second

↪→ l a s t l i n e

%c l c ;
vidReader = VideoReader ( ’ Ute 1 . av i ’ , ’ CurrentTime ’ , 0 ) ;
opt icFlow = opticalFlowHS ( ’ MaxIterat ion ’ ,10)
frame = 0 ;
i =1;
C = [ ] ;
D1 = ze ro s ( vidReader . NumFrames ,10368) ; % P r e a l l o c a t e d f o r speed

↪→ r e l a t e d i s s u e s

%DISPLAY====================
% h = f i g u r e ;
% movegui ( h ) ;
% hViewPanel = u i p a n e l (h , ’ Pos i t ion ’ , [ 0 0 1 1 ] , ’ T i t l e ’ , ’ P lo t o f

↪→ O p t i c a l Flow Vectors ’ ) ;
% hPlot = axes ( hViewPanel ) ;
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%============================

whi le hasFrame ( vidReader )

frameRGB = readFrame ( vidReader ) ;
frameGray = rgb2gray ( frameRGB) ;
frame = frame + 1 ;

i f ( frame == 1)
% t i c ; % Used to

↪→ d e t e c t time f o r f l o w c a l c u l a t i o n
frame = 0 ;
f low = estimateFlow ( opticFlow , frameGray ) ;
f l owrx = f low .Vx ; % Flow in x
f l owry = f low .Vy ; % Flow in y
t =1; s =1; % Array

↪→ r e s e t
% y = toc % Used to

↪→ d e t e c t time f o r f l o w c a l c u l a t i o n

%DISPLAY===================================
% f i g u r e (2) ;
% imshow (frameRGB) ;
% %hold on
% %p l o t ( f low , ’ DecimationFactor ’ , [ 5 5 ] , ’ Sca leFactor

↪→ ’ , 6 0 , ’ Parent ’ , hPlot ) ;
% f i g u r e (1) ;
% p l o t ( f lowrx , f l o w r y ) ;
% xl im ( [ 0 1 ] ) ;
% yl im ( [ 0 1 ] ) ;

%==========================
% t i c ; % Used to

↪→ d e t e c t time f o r q u a n t i z a t i o n
%Rolut ion adjustment , c u r r e n t l y s e t to 15 p i x e l s

whi le ( t<=72)
whi l e ( s<=72)

flowrxR ( t , s ) = mean(mean( f l owrx (15* t =14:15* t ,15* s
↪→ =14:15* s ) ) ) ;

f lowryR ( t , s ) = mean(mean( f l owry (15* t =14:15* t ,15* s
↪→ =14:15* s ) ) ) ;

s=s +1;
end
t = t +1;
s = 1 ;

end
%z = toc % Used to

↪→ d e t e c t time f o r q u a n t i z a t i o n
A2 = reshape ( flowrxR ’ , 1 , [ ] ) ; % Lays data

↪→ onto one array row
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B2 = reshape ( flowryR ’ , 1 , [ ] ) ; % Lays data
↪→ onto one array row

C = [C A2 B2 ] ; % Lays data
↪→ onto one array row

D1( i , : ) = C; % This s t e p
↪→ c u m u l a t i v e l y g e t s worse .

C = [ ] ; % Reset C to
↪→ zero to ensure no e x c e s s c a r r i e d over

i=i+1
end

%DISPLAY======================
% f i g u r e (3) ;
% p l o t ( f lowrxR , f lowryR ) ;
% xl im ( [ 0 1 ] ) ;
% yl im ( [ 0 1 ] ) ;
% pause (10ˆ=3)

%================================

end

Ute 1 = D1 ;
beep ; % output

↪→ noi se when complete



Appendix J

Optical Flow History Function

This appendix shows the optical flow history created for this project with MATLAB. It

uses a very similar approach to that of a Motion History Image, of which the method and

calculation can be seen in Section 6.1.

Listing J.1: Optical Flow History Function.

% Function used to add Motion His tory to the image f l o w data
% Simply input the v e c t o r t h a t i s the output o f Horne=Schunk

↪→ O p t i c a l Flow
% and re turn w i l l e q u a l the MHI

input = Wagon 2 ; % Input v e c t o r
↪→ here

MHI = ze ro s ( s i z e ( input , 1 ) =10, s i z e ( input , 2 ) ) ; % P r e a l l o c a t e
↪→ f o r speed reasons

f o r i =10: s i z e ( input , 1 )
f o r j =1: s i z e ( input , 2 )

MHI( i =9, j ) = input ( i , j ) + 0 .9* input ( i =1, j ) + 0 .8* input ( i
↪→ =2, j ) + 0 .7* input ( i =3, j ) + 0 .6* input ( i =4, j ) + 0 .5*
↪→ input ( i =5, j ) + 0 .4* input ( i =6, j ) + 0 .3* input ( i =7, j )
↪→ + 0.2* input ( i =8, j ) + 0 .1* input ( i =9, j ) ;

end
end

HMIOutput = MHI;



Appendix K

Bagged Tree Machine Learning

Function

This appendix shows the bagged tree machine learning function that was output from the

classification tool for this project with MATLAB. This is referenced in Section 6.4.2.

Listing K.1: Bagged Tree Machine Learning Function.

f unc t i on [ t r a i n e d C l a s s i f i e r , va l idat ionAccuracy ] =
↪→ t r a i n C l a s s i f i e r ( tra in ingData , responseData )

% [ t r a i n e d C l a s s i f i e r , v a l i d a t i o n A c c u r a c y ] = t r a i n C l a s s i f i e r (
↪→ t ra iningData ,

% responseData )
% Returns a t r a i n e d c l a s s i f i e r and i t s accuracy . This code

↪→ r e c r e a t e s the
% c l a s s i f i c a t i o n model t r a i n e d in C l a s s i f i c a t i o n Learner app .

↪→ Use the
% generated code to automate t r a i n i n g the same model wi th new

↪→ data , or to
% l e a r n how to programmat ica l ly t r a i n models .
%
% Input :
% tra in ingData : A matrix wi th the same number o f columns

↪→ and data type
% as the matrix imported i n t o the app .
%
% responseData : A v e c t o r wi th the same data type as the

↪→ v e c t o r
% imported i n t o the app . The l e n g t h o f responseData and

↪→ the number o f
% rows o f t ra in ingData must be e q u a l .
%
% Output :
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% t r a i n e d C l a s s i f i e r : A s t r u c t c o n t a i n i n g the t r a i n e d
↪→ c l a s s i f i e r . The

% s t r u c t con ta i ns v a r i o u s f i e l d s wi th in format ion about
↪→ the t r a i n e d

% c l a s s i f i e r .
%
% t r a i n e d C l a s s i f i e r . pred ic tFcn : A f u n c t i o n to make

↪→ p r e d i c t i o n s on new
% data .
%
% v a l i d a t i o n A c c u r a c y : A doub le c o n t a i n i n g the accuracy in

↪→ percent . In
% the app , the His tory l i s t d i s p l a y s t h i s o v e r a l l accuracy

↪→ score f o r
% each model .
%
% Use the code to t r a i n the model wi th new data . To r e t r a i n your
% c l a s s i f i e r , c a l l the f u n c t i o n from the command l i n e wi th your

↪→ o r i g i n a l
% data or new data as the input arguments t ra in ingData and

↪→ responseData .
%
% For example , to r e t r a i n a c l a s s i f i e r t r a i n e d wi th the o r i g i n a l

↪→ data s e t T
% and response Y, e n te r :
% [ t r a i n e d C l a s s i f i e r , v a l i d a t i o n A c c u r a c y ] = t r a i n C l a s s i f i e r (T,

↪→ Y)
%
% To make p r e d i c t i o n s wi th the re turned ’ t r a i n e d C l a s s i f i e r ’ on

↪→ new data T2 ,
% use
% y f i t = t r a i n e d C l a s s i f i e r . pred ic tFcn (T2)
%
% T2 must be a matrix c o n t a i n i n g only the p r e d i c t o r columns used

↪→ f o r
% t r a i n i n g . For d e t a i l s , en ter :
% t r a i n e d C l a s s i f i e r . HowToPredict

% Auto=generated by MATLAB on 31=Aug=2020 19 :42 :48

% Extrac t p r e d i c t o r s and response
% This code p r o c e s s e s the data i n t o the r i g h t shape f o r t r a i n i n g

↪→ the
% model .
% Convert input to t a b l e
inputTable = ar ray2 tab l e ( tra in ingData , ’ VariableNames ’ , { ’

↪→ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’ column 10368 ’ }) ;

predictorNames = { ’ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’
↪→ column 10368 ’ } ;

p r e d i c t o r s = inputTable ( : , predictorNames ) ;
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re sponse = responseData ( : ) ;
i s C a t e g o r i c a l P r e d i c t o r = [ f a l s e , f a l s e , f a l s e , f a l s e ] ;

% Train a c l a s s i f i e r
% This code s p e c i f i e s a l l the c l a s s i f i e r o p t i o n s and t r a i n s the

↪→ c l a s s i f i e r .
template = templateTree ( . . .

’ MaxNumSplits ’ , 7668) ;
c l a s s i f i c a t i o n E n s e m b l e = f i t c e n s e m b l e ( . . .

p r ed i c t o r s , . . .
response , . . .
’ Method ’ , ’Bag ’ , . . .
’ NumLearningCycles ’ , 30 , . . .
’ Learners ’ , template , . . .
’ ClassNames ’ , { ’ Abnormal ’ ; ’ Dr iv ing ’ ; ’ Reaching ’ }) ;

% Create the r e s u l t s t r u c t wi th p r e d i c t f u n c t i o n
pred i c to rExtrac t i onFcn = @( x ) a r ray2 tab l e (x , ’ VariableNames ’ ,

↪→ predictorNames ) ;
ensemblePredictFcn = @( x ) p r e d i c t ( c l a s s i f i c a t i o n E n s e m b l e , x ) ;
t r a i n e d C l a s s i f i e r . pred ictFcn = @( x ) ensemblePredictFcn (

↪→ pred i c to rExtrac t i onFcn ( x ) ) ;

% Add a d d i t i o n a l f i e l d s to the r e s u l t s t r u c t
t r a i n e d C l a s s i f i e r . C l a s s i f i c a t i o n E n s e m b l e =

↪→ c l a s s i f i c a t i o n E n s e m b l e ;
t r a i n e d C l a s s i f i e r . About = ’ This s t r u c t i s a t r a in ed model

↪→ exported from C l a s s i f i c a t i o n Learner R2020a . ’ ;
t r a i n e d C l a s s i f i e r . HowToPredict = s p r i n t f ( ’To make p r e d i c t i o n s on

↪→ a new p r e d i c t o r column matrix , X, use : \n y f i t = c .
↪→ pred ictFcn (X) \ nrep l a c ing ’ ’ c ’ ’ with the name o f the
↪→ v a r i a b l e that i s t h i s s t ruc t , e . g . ’ ’ tra inedModel ’ ’ . \n \
↪→ nX must conta in exac t l y 10368 columns because t h i s model
↪→ was t ra in ed us ing 10368 p r e d i c t o r s . \nX must conta in only
↪→ p r e d i c t o r columns in exac t l y the same order and format as
↪→ your t r a i n i n g \ndata . Do not in c lude the re sponse column
↪→ or any columns you did not import in to the app . \n \nFor
↪→ more in format ion , s ee <a h r e f=”matlab : helpview ( f u l l f i l e (
↪→ docroot , ’ ’ s t a t s ’ ’ , ’ ’ s t a t s . map ’ ’ ) , ’ ’
↪→ a p p c l a s s i f i c a t i o n e x p o r t m o d e l t o w o r k s p a c e ’ ’ )”>How to
↪→ p r e d i c t us ing an exported model</a>. ’ ) ;

% Extrac t p r e d i c t o r s and response
% This code p r o c e s s e s the data i n t o the r i g h t shape f o r t r a i n i n g

↪→ the
% model .
% Convert input to t a b l e
inputTable = ar ray2 tab l e ( tra in ingData , ’ VariableNames ’ , { ’

↪→ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’ column 10368 ’ }) ;

predictorNames = { ’ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’
↪→ column 10368 ’ } ;
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p r e d i c t o r s = inputTable ( : , predictorNames ) ;
r e sponse = responseData ( : ) ;
i s C a t e g o r i c a l P r e d i c t o r = [ f a l s e , f a l s e , f a l s e , f a l s e ] ;

% Perform cross=v a l i d a t i o n
part i t ionedMode l = c r o s s v a l ( t r a i n e d C l a s s i f i e r .

↪→ Clas s i f i c a t i onEnsemb l e , ’ KFold ’ , 5) ;

% Compute v a l i d a t i o n p r e d i c t i o n s
[ v a l i d a t i o n P r e d i c t i o n s , v a l i d a t i o n S c o r e s ] = k f o l d P r e d i c t (

↪→ part i t ionedMode l ) ;

% Compute v a l i d a t i o n accuracy
va l idat ionAccuracy = 1 = k fo ldLos s ( part i t ionedModel , ’ LossFun ’ ,

↪→ ’ C l a s s i f E r r o r ’ ) ;



Appendix L

Cosine KNN Machine Learning

Function

This appendix shows the Cosine KNN machine learning function that was output from

the classification tool for this project with MATLAB. This is referenced in Section 6.4.2.

Listing L.1: Bagged Tree Machine Learning Function.

f unc t i on [ t r a i n e d C l a s s i f i e r , va l idat ionAccuracy ] =
↪→ t r a i n C l a s s i f i e r ( tra in ingData , responseData )

% [ t r a i n e d C l a s s i f i e r , v a l i d a t i o n A c c u r a c y ] = t r a i n C l a s s i f i e r (
↪→ t ra iningData ,

% responseData )
% Returns a t r a i n e d c l a s s i f i e r and i t s accuracy . This code

↪→ r e c r e a t e s the
% c l a s s i f i c a t i o n model t r a i n e d in C l a s s i f i c a t i o n Learner app .

↪→ Use the
% generated code to automate t r a i n i n g the same model wi th new

↪→ data , or to
% l e a r n how to programmat ica l ly t r a i n models .
%
% Input :
% tra in ingData : A matrix wi th the same number o f columns

↪→ and data type
% as the matrix imported i n t o the app .
%
% responseData : A v e c t o r wi th the same data type as the

↪→ v e c t o r
% imported i n t o the app . The l e n g t h o f responseData and

↪→ the number o f
% rows o f t ra in ingData must be e q u a l .
%
% Output :
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% t r a i n e d C l a s s i f i e r : A s t r u c t c o n t a i n i n g the t r a i n e d
↪→ c l a s s i f i e r . The

% s t r u c t con ta i ns v a r i o u s f i e l d s wi th in format ion about
↪→ the t r a i n e d

% c l a s s i f i e r .
%
% t r a i n e d C l a s s i f i e r . pred ic tFcn : A f u n c t i o n to make

↪→ p r e d i c t i o n s on new
% data .
%
% v a l i d a t i o n A c c u r a c y : A doub le c o n t a i n i n g the accuracy in

↪→ percent . In
% the app , the His tory l i s t d i s p l a y s t h i s o v e r a l l accuracy

↪→ score f o r
% each model .
%
% Use the code to t r a i n the model wi th new data . To r e t r a i n your
% c l a s s i f i e r , c a l l the f u n c t i o n from the command l i n e wi th your

↪→ o r i g i n a l
% data or new data as the input arguments t ra in ingData and

↪→ responseData .
%
% For example , to r e t r a i n a c l a s s i f i e r t r a i n e d wi th the o r i g i n a l

↪→ data s e t T
% and response Y, e n te r :
% [ t r a i n e d C l a s s i f i e r , v a l i d a t i o n A c c u r a c y ] = t r a i n C l a s s i f i e r (T,

↪→ Y)
%
% To make p r e d i c t i o n s wi th the re turned ’ t r a i n e d C l a s s i f i e r ’ on

↪→ new data T2 ,
% use
% y f i t = t r a i n e d C l a s s i f i e r . pred ic tFcn (T2)
%
% T2 must be a matrix c o n t a i n i n g only the p r e d i c t o r columns used

↪→ f o r
% t r a i n i n g . For d e t a i l s , en ter :
% t r a i n e d C l a s s i f i e r . HowToPredict

% Auto=generated by MATLAB on 08=Sep=2020 15 :23 :26

% Extrac t p r e d i c t o r s and response
% This code p r o c e s s e s the data i n t o the r i g h t shape f o r t r a i n i n g

↪→ the
% model .
% Convert input to t a b l e
inputTable = ar ray2 tab l e ( tra in ingData , ’ VariableNames ’ , { ’

↪→ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’ column 10368 ’ }) ;

predictorNames = { ’ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’
↪→ column 10368 ’ } ;

p r e d i c t o r s = inputTable ( : , predictorNames ) ;
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re sponse = responseData ( : ) ;
i s C a t e g o r i c a l P r e d i c t o r = [ f a l s e , f a l s e , f a l s e , f a l s e ] ;

% Train a c l a s s i f i e r
% This code s p e c i f i e s a l l the c l a s s i f i e r o p t i o n s and t r a i n s the

↪→ c l a s s i f i e r .
c l a s s i f i c a t i onKNN = f i t c k n n ( . . .

p r ed i c t o r s , . . .
response , . . .
’ Distance ’ , ’ Cosine ’ , . . .
’ Exponent ’ , [ ] , . . .
’ NumNeighbors ’ , 10 , . . .
’ DistanceWeight ’ , ’ Equal ’ , . . .
’ Standard ize ’ , true , . . .
’ ClassNames ’ , { ’ Abnormal ’ ; ’ Dr iv ing ’ ; ’ Reaching ’ }) ;

% Create the r e s u l t s t r u c t wi th p r e d i c t f u n c t i o n
pred i c to rExtrac t i onFcn = @( x ) a r ray2 tab l e (x , ’ VariableNames ’ ,

↪→ predictorNames ) ;
knnPredictFcn = @( x ) p r e d i c t ( c la s s i f i ca t ionKNN , x ) ;
t r a i n e d C l a s s i f i e r . pred ictFcn = @( x ) knnPredictFcn (

↪→ pred i c to rExtrac t i onFcn ( x ) ) ;

% Add a d d i t i o n a l f i e l d s to the r e s u l t s t r u c t
t r a i n e d C l a s s i f i e r . Class i f i cat ionKNN = c la s s i f i c a t i onKNN ;
t r a i n e d C l a s s i f i e r . About = ’ This s t r u c t i s a t r a in ed model

↪→ exported from C l a s s i f i c a t i o n Learner R2020a . ’ ;
t r a i n e d C l a s s i f i e r . HowToPredict = s p r i n t f ( ’To make p r e d i c t i o n s on

↪→ a new p r e d i c t o r column matrix , X, use : \n y f i t = c .
↪→ pred ictFcn (X) \ nrep l a c ing ’ ’ c ’ ’ with the name o f the
↪→ v a r i a b l e that i s t h i s s t ruc t , e . g . ’ ’ tra inedModel ’ ’ . \n \
↪→ nX must conta in exac t l y 10368 columns because t h i s model
↪→ was t ra in ed us ing 10368 p r e d i c t o r s . \nX must conta in only
↪→ p r e d i c t o r columns in exac t l y the same order and format as
↪→ your t r a i n i n g \ndata . Do not in c lude the re sponse column
↪→ or any columns you did not import in to the app . \n \nFor
↪→ more in format ion , s ee <a h r e f=”matlab : helpview ( f u l l f i l e (
↪→ docroot , ’ ’ s t a t s ’ ’ , ’ ’ s t a t s . map ’ ’ ) , ’ ’
↪→ a p p c l a s s i f i c a t i o n e x p o r t m o d e l t o w o r k s p a c e ’ ’ )”>How to
↪→ p r e d i c t us ing an exported model</a>. ’ ) ;

% Extrac t p r e d i c t o r s and response
% This code p r o c e s s e s the data i n t o the r i g h t shape f o r t r a i n i n g

↪→ the
% model .
% Convert input to t a b l e
inputTable = ar ray2 tab l e ( tra in ingData , ’ VariableNames ’ , { ’

↪→ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’ column 10368 ’ }) ;

predictorNames = { ’ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’
↪→ column 10368 ’ } ;

p r e d i c t o r s = inputTable ( : , predictorNames ) ;
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re sponse = responseData ( : ) ;
i s C a t e g o r i c a l P r e d i c t o r = [ f a l s e , f a l s e , f a l s e , f a l s e ] ;

% Perform cross=v a l i d a t i o n
part i t ionedMode l = c r o s s v a l ( t r a i n e d C l a s s i f i e r . Class i f icat ionKNN ,

↪→ ’ KFold ’ , 5) ;

% Compute v a l i d a t i o n p r e d i c t i o n s
[ v a l i d a t i o n P r e d i c t i o n s , v a l i d a t i o n S c o r e s ] = k f o l d P r e d i c t (

↪→ part i t ionedMode l ) ;

% Compute v a l i d a t i o n accuracy
va l idat ionAccuracy = 1 = k fo ldLos s ( part i t ionedModel , ’ LossFun ’ ,

↪→ ’ C l a s s i f E r r o r ’ ) ;



Appendix M

Cubic SVM Machine Learning

Function

This appendix shows the Cubic SVM machine learning function that was output from

the classification tool for this project with MATLAB. This is referenced in Section 6.4.2.

Listing M.1: Bagged Tree Machine Learning Function.

f unc t i on [ t r a i n e d C l a s s i f i e r , va l idat ionAccuracy ] =
↪→ t r a i n C l a s s i f i e r ( tra in ingData , responseData )

% [ t r a i n e d C l a s s i f i e r , v a l i d a t i o n A c c u r a c y ] = t r a i n C l a s s i f i e r (
↪→ t ra iningData ,

% responseData )
% Returns a t r a i n e d c l a s s i f i e r and i t s accuracy . This code

↪→ r e c r e a t e s the
% c l a s s i f i c a t i o n model t r a i n e d in C l a s s i f i c a t i o n Learner app .

↪→ Use the
% generated code to automate t r a i n i n g the same model wi th new

↪→ data , or to
% l e a r n how to programmat ica l ly t r a i n models .
%
% Input :
% tra in ingData : A matrix wi th the same number o f columns

↪→ and data type
% as the matrix imported i n t o the app .
%
% responseData : A v e c t o r wi th the same data type as the

↪→ v e c t o r
% imported i n t o the app . The l e n g t h o f responseData and

↪→ the number o f
% rows o f t ra in ingData must be e q u a l .
%
% Output :
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% t r a i n e d C l a s s i f i e r : A s t r u c t c o n t a i n i n g the t r a i n e d
↪→ c l a s s i f i e r . The

% s t r u c t con ta i ns v a r i o u s f i e l d s wi th in format ion about
↪→ the t r a i n e d

% c l a s s i f i e r .
%
% t r a i n e d C l a s s i f i e r . pred ic tFcn : A f u n c t i o n to make

↪→ p r e d i c t i o n s on new
% data .
%
% v a l i d a t i o n A c c u r a c y : A doub le c o n t a i n i n g the accuracy in

↪→ percent . In
% the app , the His tory l i s t d i s p l a y s t h i s o v e r a l l accuracy

↪→ score f o r
% each model .
%
% Use the code to t r a i n the model wi th new data . To r e t r a i n your
% c l a s s i f i e r , c a l l the f u n c t i o n from the command l i n e wi th your

↪→ o r i g i n a l
% data or new data as the input arguments t ra in ingData and

↪→ responseData .
%
% For example , to r e t r a i n a c l a s s i f i e r t r a i n e d wi th the o r i g i n a l

↪→ data s e t T
% and response Y, e n te r :
% [ t r a i n e d C l a s s i f i e r , v a l i d a t i o n A c c u r a c y ] = t r a i n C l a s s i f i e r (T,

↪→ Y)
%
% To make p r e d i c t i o n s wi th the re turned ’ t r a i n e d C l a s s i f i e r ’ on

↪→ new data T2 ,
% use
% y f i t = t r a i n e d C l a s s i f i e r . pred ic tFcn (T2)
%
% T2 must be a matrix c o n t a i n i n g only the p r e d i c t o r columns used

↪→ f o r
% t r a i n i n g . For d e t a i l s , en ter :
% t r a i n e d C l a s s i f i e r . HowToPredict

% Auto=generated by MATLAB on 08=Sep=2020 15 :24 :13

% Extrac t p r e d i c t o r s and response
% This code p r o c e s s e s the data i n t o the r i g h t shape f o r t r a i n i n g

↪→ the
% model .
% Convert input to t a b l e
inputTable = ar ray2 tab l e ( tra in ingData , ’ VariableNames ’ , { ’

↪→ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’ column 10368 ’ }) ;

predictorNames = { ’ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’
↪→ column 10368 ’ } ;

p r e d i c t o r s = inputTable ( : , predictorNames ) ;
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re sponse = responseData ( : ) ;
i s C a t e g o r i c a l P r e d i c t o r = [ f a l s e , f a l s e , f a l s e , f a l s e ] ;

% Train a c l a s s i f i e r
% This code s p e c i f i e s a l l the c l a s s i f i e r o p t i o n s and t r a i n s the

↪→ c l a s s i f i e r .
template = templateSVM ( . . .

’ KernelFunction ’ , ’ polynomial ’ , . . .
’ PolynomialOrder ’ , 3 , . . .
’ Kerne lSca l e ’ , ’ auto ’ , . . .
’ BoxConstraint ’ , 1 , . . .
’ Standard ize ’ , t rue ) ;

c l a s s i f i c a t i onSVM = f i t c e c o c ( . . .
p r ed i c t o r s , . . .
response , . . .
’ Learners ’ , template , . . .
’ Coding ’ , ’ onevsone ’ , . . .
’ ClassNames ’ , { ’ Abnormal ’ ; ’ Dr iv ing ’ ; ’ Reaching ’ }) ;

% Create the r e s u l t s t r u c t wi th p r e d i c t f u n c t i o n
pred i c to rExtrac t i onFcn = @( x ) a r ray2 tab l e (x , ’ VariableNames ’ ,

↪→ predictorNames ) ;
svmPredictFcn = @( x ) p r e d i c t ( c l a s s i f i ca t i onSVM , x ) ;
t r a i n e d C l a s s i f i e r . pred ictFcn = @( x ) svmPredictFcn (

↪→ pred i c to rExtrac t i onFcn ( x ) ) ;

% Add a d d i t i o n a l f i e l d s to the r e s u l t s t r u c t
t r a i n e d C l a s s i f i e r . Class i f i cat ionSVM = c la s s i f i c a t i onSVM ;
t r a i n e d C l a s s i f i e r . About = ’ This s t r u c t i s a t r a in ed model

↪→ exported from C l a s s i f i c a t i o n Learner R2020a . ’ ;
t r a i n e d C l a s s i f i e r . HowToPredict = s p r i n t f ( ’To make p r e d i c t i o n s on

↪→ a new p r e d i c t o r column matrix , X, use : \n y f i t = c .
↪→ pred ictFcn (X) \ nrep l a c ing ’ ’ c ’ ’ with the name o f the
↪→ v a r i a b l e that i s t h i s s t ruc t , e . g . ’ ’ tra inedModel ’ ’ . \n \
↪→ nX must conta in exac t l y 10368 columns because t h i s model
↪→ was t ra in ed us ing 10368 p r e d i c t o r s . \nX must conta in only
↪→ p r e d i c t o r columns in exac t l y the same order and format as
↪→ your t r a i n i n g \ndata . Do not in c lude the re sponse column
↪→ or any columns you did not import in to the app . \n \nFor
↪→ more in format ion , s ee <a h r e f=”matlab : helpview ( f u l l f i l e (
↪→ docroot , ’ ’ s t a t s ’ ’ , ’ ’ s t a t s . map ’ ’ ) , ’ ’
↪→ a p p c l a s s i f i c a t i o n e x p o r t m o d e l t o w o r k s p a c e ’ ’ )”>How to
↪→ p r e d i c t us ing an exported model</a>. ’ ) ;

% Extrac t p r e d i c t o r s and response
% This code p r o c e s s e s the data i n t o the r i g h t shape f o r t r a i n i n g

↪→ the
% model .
% Convert input to t a b l e
inputTable = ar ray2 tab l e ( tra in ingData , ’ VariableNames ’ , { ’

↪→ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’ column 10368 ’ }) ;
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predictorNames = { ’ column 1 ’ , ’ column 2 ’ , ’ column 10367 ’ , ’
↪→ column 10368 ’ } ;

p r e d i c t o r s = inputTable ( : , predictorNames ) ;
r e sponse = responseData ( : ) ;
i s C a t e g o r i c a l P r e d i c t o r = [ f a l s e , f a l s e , f a l s e , f a l s e ] ;

% Perform cross=v a l i d a t i o n
part i t ionedMode l = c r o s s v a l ( t r a i n e d C l a s s i f i e r . Class i f i cat ionSVM ,

↪→ ’ KFold ’ , 5) ;

% Compute v a l i d a t i o n p r e d i c t i o n s
[ v a l i d a t i o n P r e d i c t i o n s , v a l i d a t i o n S c o r e s ] = k f o l d P r e d i c t (

↪→ part i t ionedMode l ) ;

% Compute v a l i d a t i o n accuracy
va l idat ionAccuracy = 1 = k fo ldLos s ( part i t ionedModel , ’ LossFun ’ ,

↪→ ’ C l a s s i f E r r o r ’ ) ;
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