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Abstract

Collision avoidance in programmable machines can reduce programming and setup time,

and reduce the likelihood of needing to replace or repair parts during commissioning.

While collision avoidance can be accomplished manually by a thorough analysis of the 3D

model of the machine, and additional PLC code, this may protect the machine, but costs

additional time, and is susceptible to human error.

The proposed system includes a computer program to export the 3D model of the machine,

and a custom computer that is attached to the machine which manipulates the 3D model

in real-time to detect approaching collisions. This computer signals the machine to stop

when a collision is predicted. By performing interference detection on the 3D model of the

machine, it effectively eliminates the possibility of human error, and saves the additional

time that would otherwise be dedicated to the structural analysis and protection code

mentioned above.

This project used a Raspberry Pi 3 Model B+ connected to the machine via a fieldbus

link, to read axis positions and speeds from the machine PLC. It sends stop signals di-

rectly to servos when a collision is detected. From simulation testing it was determined

that model complexity has a large effect on performance, but using a more powerful com-

puter, and developing a better 3D model exporting algorithm could improve performance

significantly.

Physical testing demonstrated accuracy and reliability, with reasonable response times.

With limited optimization conducted for individual axes during testing, the performance

of the test system showed great promise for further development, including an auto-tuning

mode which will measure the dynamics of each axis to find the best response parameters

for each. Work will continue on this system until a commercial product is realized.
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Chapter 1

Introduction

As programmable machines grow in complexity and capability, so too do the possibilities

that they can damage themselves through self-collision. Mechanically timed machines

protect themselves by their very design. A mechanically timed machine may have multiple

axes which occupy the same space at various times, but through the use of gears and

cams, it is ensured that they cannot occupy the same space at the same time. Modern

programmable machines though, rely on programming to ensure that one axis cannot

collide with another, and the fact that it is programmable, means that the program

can be changed. This project was undertaken to create a fail-safe system which is able to

anticipate an imminent collision and stop the axes responsible before impact. It needed to

accomplish this without requiring any human analysis, either before, or during operation.

Programmable machines have advantages over mechanically timed machines in that they

are less complex to design, by not needing all axes to be linked to a central source of

motive force. They are more flexible, in that changing from one product to another may

only require changing a recipe, rather than a tooling change for some products. And they

are more tuneable, such that upon commissioning, a programmer can modify motion

profiles, timing or even add or remove entire movements by adjusting code, where in a

Mechanically timed machine, changing cam profiles or gearing to achieve even a little of

this flexibility would be time consuming and costly.
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1.1 The Problem

The advantages of programmable machines come at a cost. The machine will be designed

with as many axes as are required to deal with the range of products that the customer

specifies. These axes will have ranges of motion sufficient to accommodate all products,

and their speed and acceleration capabilities will be specified to satisfy the most demand-

ing case that the designer can anticipate. In most cases, this will produce several axes

that could collide with one another with enough momentum to cause damage to the ma-

chine. Furthermore, because the machine is built to be flexible, the programming is often

developed in an iterative way, rather than systematically with the mechanical design.

This, and the need to tune on commissioning leads to a lack of built-in protection against

collisions. As the responsibility to prevent collision is with the programmer, they must

analyse the capabilities of all axes and keep them in mind while generating the motion

profiles to be used. As complexity of machines increase, this task becomes more difficult.

Also, they must consider what will happen when the same program is run with products

of different dimensions, and characteristics.

There are 3 situations where collisions are likely, and they are:

• Initial testing when the program is run for the first time, and any programming

mistakes will be discovered

• In production tuning, or new product setup, where changes are made without con-

sidering all collision scenarios

• Manual jogging operations by maintenance staff.

The risk of the first 2 situations can be reduced by the programmer studying the 3D model

with the designer, to be aware of possible clashes. As the number of axes increases, it

becomes increasingly difficult to be aware of all potential collisions at once. The second

situation has the added disadvantage of occurring sometime after the machine has been

commissioned, and so the programmer may have forgotten some of the potential collisions,

or they may be new to the company, and have no prior knowledge of the machine. In the

case of manual jogging, one must assume that a person might jog an axis straight into

another axis without any consideration of the harm it may do.
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1.2 The Solution

As modern machines are designed in 3D modelling software before they are built, these

models can be used to determine when collisions will occur. In fact, interference detection

is a part of most main-stream 3D modelling packages already. These features are used

by designers to validate the capabilities of the machine during the design phase. If the

model of the machine could be communicated to the machine such that it could move

the various model axes as the machine axes move, then interference detection could be

conducted on the model to warn the machine when a collision is about to occur. The

advantage of this approach is that it eliminates the human factors that cause the 3 collision

situations identified above. Provided the machine is built as an exact copy of the model

that resides in the machine, then there should be no collisions at all. Even if the machine

is changed, e.g. a revised part or assembly made to improve functionality. Provided the

model in the machine is also updated, then the machine will still protect itself. This is

particularly important, as physical changes to the machine’s geometry may cause issues

with the original program that was running before the change.

1.3 Research Questions

Before progressing with development of a particular solution it was necessary to conduct

research to answer the following questions:

1. Are there any commercially available systems providing this type of protection, and

by what methods?

2. Can the 3D model be exported in such a way that it can be read and manipulated by

the machine? The model of the machine must be broken up into fixed and moving

parts, and each moving part must be associated with an axis in the real machine.

3. Is there a method of interference detection which is fast enough, accurate and can

ignore close proximities between parts that touch but do not collide, such as linear

rails and their bearings; or ball-screws and their nuts?

4. The size of the model helps determine the requirements of the system. Can the

model be loaded in the memory of the PLC controlling the machine? Or is separate
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hardware required? If the model resolution is reduced to reduce the memory con-

sumed, will the system still see collisions with enough precision to allow the machine

to function correctly?

5. Response time is a combination of the interference testing time, the communications

latency and the time it takes an axis to stop when instructed. What response time

is acceptable to keep the collision avoidance system unobtrusive?

6. If processing must be performed on separate hardware, then what method can be

found to pass the axis positions and speeds from the Programmable Logic Controller

(PLC), to the collision avoidance processor, and status information from processor

to PLC.

These questions will be answered in the following section with the view to creating a

system complying with the project objectives:

• Self-collisions eliminated at all times while servos are in known positions

• Operation is transparent to PLC program, provided the program does not cause a

collision

• Minimal human judgement required for setup and configuration, to avoid human

error issues

• Easily adapt to different machines, or design changes of existing machine

• Able to be developed into a commercial product



Chapter 2

Literature Review

2.1 Existing Products

The closest match found to the desired system commercially available is ModuleWorks’

software system called Collision Avoidance System (CAS) (ModuleWorks 2019). This

system has limited documentation online at: www.moduleworks.com, but provides an

interesting video introduction to the system. From the information available it appears

that their software provides collision avoidance to Computer Numerical Control (CNC)

machines by manipulation of 3D models of spindle adapters, tools, workpieces and fix-

tures. The software projects the moving parts 800 ms into the future of the CNC pro-

gram to predict collisions. When the machine is being jogged, it restricts the speed of

axes to ensure that collisions do not occur on the 800 ms projection. Communication

with the CNC machine controller is achieved through the OPC UA protocol, which is

a communication protocol for cross-platform communications in process control applica-

tions (Wikipedia 2019a).

2.2 Model Export

Siemens provides a Software Development Kit (SDK) which allows the user to write

software which interacts with the Solid Edge program, and 3D model directly (Siemens

2019). With the Solid Edge SDK and a suitable programming language, the assembly

model of the machine can be separated into moving, and fixed parts. The moving parts can
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be associated with specific axes controlled by the PLC and the model parts exported in a

suitable format for conducting interference detection. Solid Edge is capable of exporting

models in a number of different 3D formats (Siemens 2010). Some of these are open

standards which have their specifications freely available for download, while some are

proprietary, and so their specification is not freely available. Two of the open standards

are STEP, and STL. Both of these are easy to interpret and can be stored as plain text.

This makes reading them into a target program simple. While STEP uses an object

hierarchy which defines points on coordinates, then lines and vectors from points, then

polygons from lines, etc (ISO 1994). STL uses a flat approach which describes the entire

model as surface triangles (Wikipedia 2019b).

2.3 Interference Detection

Performing Collision Avoidance on 3D models requires finding suitable techniques for

defining interference between objects in an efficient manner. (Shen, Jia, Chen, Wang

& Sun 2015) detailed a set of vector algebraic formulas which can be used to detect

interference between spheres, cylinders and cuboids. They use vector dot product, and

normal vectors to object surfaces to determine if a part of one object is inside another.

(Huang, Tang, Lou & Xiao 2014) also uses vectors to determine which side of a surface,

a point lies on, but they take the determinant of a matrix constructed from 3 vectors

to make the determination. For reduced execution time, (Shen et al. 2015) generalized

the geometry of components into Oriented Bounding Boxes (OBB) with shapes of sphere,

cylinder and cuboid.

(Shen et al. 2015) used a hierarchical decision structure where a pair of collision candidate

objects are assessed to determine if the distance between their centre points is greater

than the sum of their geometric dimensions. If so, then a collision is not possible, and

analysis stops. Similarly, (Kwak & Park 2009) use the distance between centre points to

identify one of 3 states (no chance of contact, some chance of contact, or certain contact).

Neither of the 2 outer cases require further computation, but the middle case will require

the detection of surface triangle interference.

(Huang et al. 2014) reduce processing time by only considering object pairs where at least

one of the pair is currently moving. They also improved efficiency by employing a hier-
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archical Axially Aligned Bounding Box (AABB) space subdivision binary tree structure,

which benefits from the efficiency of AABB, but provides greater accuracy by recursive

space subdivision where each level of bounding box is sub divided into 2 smaller boxes,

which follow part geometry more closely. (Xing, Liu & Xu 2010) used sorted lists instead

of binary trees. They found that the temporal coherence of most physical environments

meant that taking lists of projections of AABBs onto each Cartesian axis and then ap-

plying a diminishing increment sort, meant that processing time was reduced by quickly

finding projections that overlap on all three axes. (Zhiliang & Desheng 2011) used a hash

function to map space grid cells to a hash table, and then perform tests when objects are

both mapped to the same index in the hash table.

The final analysis in (Huang et al. 2014) is to detect the intersection of triangles, as surface

elements of the 3D model. Where Huang et al (2014) positioned their space subdivision

plane along the longest axis of the AABB such that there were an equal number of triangle

centroids on either side of the plane, (Xing et al. 2010) chose the mid-point of the axis to

position the plane, and the mid-point of the base of the triangle to determine which side of

the plane it belonged to. (Kwak & Park 2009) divide geometry into small cuboid elements

to ensure the accuracy of their collision detection, but they also group the elements that

are rigidly connected to identify them as unable to collide, and so not assessed.

(Kwak & Park 2009) also performed cycle time analysis applying variations on their

techniques to determine what was cost effective. They found that excluding analysis

pairs that were both parts of a rigid assembly provided a small saving in cycle time, but

detecting guaranteed collisions, and eliminating impossible collisions by the use of centre

distances had a much more profound effect on cycle time.

An alternative to cuboid Bounding Boxes is to use spherical Bounding Boxes to greatly

simplify the calculations to determine interference (Ouyang & Zhang 2012). They used

these in combination with Octree structure which allows a cube to be recursively split

into 8 equal child cubes. Each of these are then bounded by inner and outer spheres

which are used for the interference detection.

All of the preceding have used discrete time samples to detect collisions, but (Ping &

Guang-long 2011), (Zhang & Liu 2015a), (Zhang & Liu 2015b) used interval interpolation

to join discrete samples in order to detect collisions that may have occurred between

samples. Their methods share some mathematical similarities to the vector dot product
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method of (Shen et al. 2015), except that (Ping & Guang-long 2011), and (Zhang &

Liu 2015a) construct their vectors from functions of time. This results in a polynomial

in t, and the existence of a root in the examined time interval verifies that the 2 surfaces

have at some point made contact. Solving for the root will identify the exact time that

contact was (or will be,) made. To further improve efficiency (Zhang & Liu 2015a) used

Taylor models to approximate the range of the polynomial in t over the period being

assessed. This allows them to reduce the time taken to identify the existence of roots,

and therefore the occurrence of a collision. Sturm Theorem was also used in (Zhang &

Liu 2015b) as another method of detecting the presence of roots without having to solve a

cubic equation. (Ping & Guang-long 2011) also used bounding boxes to reduce processing

time, but after testing bounding boxes from the start and end of an interval, they then

define a path bounding box which is the normal bounding box elongated along the path

travelled during the detection period.

2.4 Memory Requirements

The original intent of this project was to have real-time analysis conducted within the

PLC, so the system required no dedicated hardware, except an SD card containing the

exported model. Early testing found a number of reasons why this would not be feasible.

The first was the lack of memory available in the PLC, figure 2.1 below show excepts

from the Performance specification sheets for Omron NJ501 PLC, which is the middle

of the range product, and the NX701 PLC which is the top of the range. Note that

while the NX701 provides 256 MB of variable storage for non-retained variables, the

NJ501 has only 4 MB (Omron 2019). During early model export testing, an existing

machine was exported as separate STL files for each axis, and one for the fixed parts

of the machine. The average size for the moving assemblies was 104,000 triangles when

exported with a 1mm resolution. As each triangle consists of 3 double precision floating

point numbers, this accounts for 1.24 MB. And the entire machine model consisted of

over 1.3x106 triangles, or approx. 14.9 MB, it can be seen that, while the NX701 could

have the entire machine loaded in memory, the NX501 would need to load, and unload

model parts dynamically during execution. This would greatly increase processing time,

and therefore reduce the effectiveness of the system. The next barrier to conducting

the interference detection in the PLC was the lack of any ability to dynamically allocate

memory during execution. Where in PC programming languages it is possible to allocate,
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and free up memory as required, the PLC has its memory allocated at build time. This is

a problem for the interference detection methods discussed above. Without the ability to

dynamically allocate memory, it would be necessary to invent a complex coding system

which allows a large chunk of memory to be allocated at build time, and then use a coding

system which parcels out smaller subsections of the memory chunk to dynamically created

objects within the analysis program. While this is possible, the work involved would be

too much as an addition to the current project.

Figure 2.1: Except from specifications for Omron PLCs (Omron 2019).



Chapter 3

Methodology

3.1 System Requirements

As this project was conceived as a sponsored development project, the systems used to

create a solution are those systems used by the sponsoring company (Mexx Engineering).

For machine design, Mexx uses Solid Edge from Siemens (ST8 throughout most of the

project). PLCs and Servo drives used by Mexx are from Omron, and Omron’s fieldbus

(Industrial communications network) of choice is EtherCAT. So, to be successful the

system must be able to read in a Solid Edge ST8 model and convert is to a suitable format.

It must run on an Omron PLC, or on a separate device that is able to communicate with

an Omron PLC over EtherCAT. It must be able to identify an imminent collision and

cause an Omron Servo drive to stop before the collision occurs. If parts of the machine

change in future, the system must be able to accommodate the changes by replacing the

previously exported model, with a new export of the model of the machine. No additional

user configuration should be required.

Having determined that external processing would be required for the interference detec-

tion, it became possible to use an existing 3D physics library to conduct the analysis. This

was not possible on the PLC, as the proprietary structured text programming language

of Omron PLCs cannot make use of libraries developed for PCs. It was then decided that

the external processor must be capable of using these libraries to reduce development

time. The device chosen to perform the analysis was a Raspberry Pi 3B+ (RPi) shown

in figure 3.1, which has a 1.4 GHz ARM processor and 1GB of RAM. The RPi runs a
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Linux variant operating system (OS) specific to the single board computer, known as

Raspberrian. This OS provides a Windows like interface, and many open source develop-

ment packages. The RPi also provides 40 physical IO pins, some of which were used to

interrupt the Servo drives directly.

Figure 3.1: Photo of Raspberry Pi 3 Model B+ used for development.

Communication between the PLC and the RPi was necessary both to pass axis positions

and speeds to the RPi for machine tracking, but also so the RPi can inform the PLC when

it has stopped an axis. For Omron PLCs, this communication would be via EthernetIP,

or EtherCAT. As the EtherCAT cycle-time on an NJ5 is 250 us, and the fastest Repeat

Packet Interval supported by the EthernetIP master is 1 ms, EtherCAT was chosen.

AB&T of Italy manufactures a product called EasyCAT Hat which is an EtherCAT

fieldbus adapter card (figure 3.2) designed to attach to the Raspberry Pi.

An alternative to using external hardware was considered during the early phase of the

project. This would involve developing a PC application which takes the exported model

and moves every axis through its full range of motion multiple times in a brute force

attempt to identify every possible collision scenario. This program would be run once,

and the data generated would be transferred to the PLC as a lookup table for collisions.

The simplest data structure considered consists of an n dimensional array of bit-strings of

at least n Bits, where n is the number of moving axes. The bounds of each array axis would
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Figure 3.2: Photo of EasyCAT Hat from AB&T, for Raspberry Pi.

be the range of motion of the corresponding motion axis divided by the desired resolution.

For example, a machine with 7 motion axes, with an average travel length of 500 mm,

and a desired resolution of 1 mm, would require 5007 x 1 Byte = approx. 7,105,427 TB

of memory. Clearly this is not a viable solution due to memory use. A variant of the idea

may yield a suitable solution. If axes that cannot collide with one another were excluded,

then the memory requirement goes down dramatically. This would require a separate

array for each axis, as one axis might collide with a different group of axes to another.

If for example, each of the 7 axes could only collide with 4 others, then the memory

requirement comes down to 198 TB. While still too large, it is possible to make other

rules and range specifiers which can reduce memory requirement further. The brute force

method would be very good in the PLC as this would only require a data lookup and so

the response time would be excellent. To reduce the data size though, requires increasing

processing complexity on the PLC side. With further work, a suitable compromise might

be found where response time and accuracy are both optimized, and no external hardware

is required, for the current project this path was abandoned as being unlikely to yield

suitable results in a reasonable time.

The other advantage of going to external hardware is in the portability of the system. As

it requires no programming in the PLC, only fieldbus configuration and the mapping of

process data, it could be easily adapted to other PLC brands. The only change required
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would be the use of a different fieldbus adapter attached to the RPi. Other fieldbus

protocols such as EtherNetIP (Rockwell Automation), ProfiNet (Siemens) use a standard

ethernet port which is included on the RPi, and would only require the protocol stack

in order to communicate with these fieldbuses. The ability to make the system cross-

platform was a reason for the decision to go with the external processor.

A small breakout board was built to gain access to the hardware IO pins which provide

the Immediate Stop signals to the Servo drives. While the RPi devices used for devel-

opment were run in a Windows environment for ease of use, the final version would run

in a Command Line Interface (CLI) only mode to free up more processing power and

memory. Also, for more complex machines with many axes, an industrial PC with faster

processor, and more memory could be employed in-place of the Raspberry Pi. The only

additional work required in the case the industrial PC case would be the requirement for

a separate device to provide the digital outputs to the servo drives. Depending on the

PC motherboard, this could either be a PCI expansion card, or a USB plugin device.

3.2 Model Export

To enable breaking up of the machine model into moving & fixed parts, it was necessary to

add some variable fields to the parts and subassemblies within the model. These variables

identify parts that move by specifying the axis number that will be used in the PLC, as

well as the direction that the PLC axis will move the model in, and the position of the

model part when the PLC axis is at zero. The model-exporting program was written in

Visual Basic and made use of the ST8 SDK. It first makes a copy of the main assembly file

and traverses the part tree looking for moving parts. When a moving part is identified, its

filename is pushed onto a stack and the instance is deleted out of the assembly copy. The

traverse is recursive down through the sub-assemblies until only fixed parts of the machine

are left in the copy of the assembly, and all moving parts have been pushed onto the stack.

The fixed part of the machine is then exported in STL format and some characteristics

are written to a configuration file. The moving axes are popped off the stack one at a

time and the process is repeated, where an assembly copy is taken and any moving parts

in the tree are pushed onto the stack then deleted from the assembly copy. This second

recursive function makes it possible to separate parts that are moved by other parts, so

that a true representation of the system is the result. Each time a moving part model is
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exported, its variables and its physical location within the parent model are written to

the configuration file. At the end of processing the assembly copies are deleted, leaving

the model exactly as it was before exporting began. The output is a configuration file

which is used by the external processor to load the model parts and specify where they

can move, and by which axis. And one STL file for each of the moving parts, plus one

for the fixed parts of the machine. The record for each axis in the configuration file also

identifies which other axis was the parent assembly from which this part was taken. This

allows a movement hierarchy to be followed when part locations are being updated before

interference detection. Appendix B contains a listing of the code used in the early phase

of the project to export the model. Subsequent model exports were done manually after

the company upgraded to Solid Edge 2019 which contains an SDK which is not backwards

compatible. Rewriting of the model exporting program will be left for a later date.

3.3 3D Physics Library

A number of 3D physics libraries were considered for use, but only one considered allowed

the definition of a complex shape through surface triangles and positions of objects to

be controlled externally between time steps. SOLID version 2 created by Gino van den

Bergen (van den Bergen 1999) provided this functionality and is open source. It also

makes use of the QHULL library (Barber 2019) for a single pass broad phase analysis,

in contrast to the Oriented Bounding Box, and Axially Aligned Bounding Box methods

discussed in chapter ??, this method essentially creates a wrap of the model to provide

the minimum size convex body that encompasses all surface triangles of the part. This

costs more in terms of processing time than OBB or AABB due to greater complexity, but

reduces the chances of a non-collision test progressing to the detail phase. SOLID version

2 proved reliable in controlled tests to verify that it correctly identified interference of

complex shapes and did not detect interference on interlacing complex shapes that did

not touch.

3.4 External Processor Program

The program running on the Raspberry Pi first opens the configuration file which provides

the instructions for importing the model parts. The model parts are imported as complex
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shapes made up of surface triangles. Importing is done once, and then the model parts

remain in memory. Then the program repeats the following sequence ad infinitum:

• Get current axis positions and speeds from PLC via fieldbus interface

• Update positions of complex shapes by loading transforms in SOLID 2 of the moving

part and any parent parts that are recursively identified from information in the

configuration file

• Run Interference test which performs callbacks if interference is detected

• Traverse motion hierarchy to identify all axes which may be responsible

• Set “Immediate Stop” bits of suspected axes

• Update status info to PLC via fieldbus interface

As 3D models of items such as ballscrews, and their nuts, would always be detected as

interfering (models of male threads are larger than models of matching female threads),

it was decided to exclude detection of interference between any part and its immediate

parent part. This means that the system will not detect a collision when a linear axis

runs into its own hard-stop. This type of collision though, is usually taken care of by use

of limit switches which stop the servo if the axis is about to hit a hard-stop. The purpose

of this project is to detect collisions that are too complex and dynamic to prevent by

conventional means, so excluding basic single axis collision maintains the purpose, while

mitigating the major obstacle of finding a way to allow penetration of certain parts but

not others.

A optional command-line interface mode was also included in the program for conduct-

ing experiments when a real machine is not available to provide axis information. The

command-line mode allows the user to specify the position of each moving part via the

keyboard, then performs the interference detection tests, and reports the results, and

processing time. Figure 3.3 shows an example a command-line session.
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Figure 3.3: Screen shot of loading Collision Avoidance program in command-line mode

3.5 Test Cases

One of the fundamental measures of success for this project is the maximum permissible

speed vm (mm/s) that an axis can be allowed for a specified minimum clearance between

axes sc (mm). If the total response time of the system was tr (ms), then the minimum

clearance that the axis can be allowed is calculated by:

sc = vm(
tr

1000
+
vm
2de

− vm
2do

) (3.1)

where do is operational deceleration, and de is emergency deceleration in mm/s2.

For axes that must work in close proximity, the response time must be minimized. In some

cases, even a zero-response time would not meet this requirement, and in these cases, this

system could not be used in this form. For a system where the operational deceleration

is equal to the maximum deceleration rate, the required clearance is calculated by:

sc =
vm.tr
1000

(3.2)

In order to test model loading time and testing time with varying complexities of machine,

a simple analogy for a machine was created. This involved the creation of 3 parts, one
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rectangle with rounded edges as a fixed machine part, then a sphere, and a toroid as

moving parts, see figure 3.4. The variable complexity comes curtesy of changing the

resolution of the export from ST8 to STL format. The model parts were exported with

resolutions of 10 mm down to 0.001 mm. This effectively takes the model complexity from

536 triangles up to 3,588,512 triangles, while allowing the same series of axis positions to

be applied for directly comparable results. The program in the RPi was then modified to

allow the user to specify either axis position input from the command line, or fieldbus, and

to choose the resolution of the model to be imported. The program was also extended to

report the time to load each model, as well as how many triangles were imported. During

testing it was also made to report which axes collide, and how long test processing took.

The results table is shown and discussed in the Results section (chapter 4). Later the

program and fieldbus interface specification were changed to allow the PLC to select the

model resolution for testing. When the resolution selected by the PLC changes, the RPi

turns on a Loading status bit in the fieldbus interface and unloads the existing model. It

then loads the model for the new resolution and turns off the Loading bit. This feature

was not necessary, as the resolution would not normally be changed during operation, but

it did allow testing of the feedback part of the fieldbus interface, and could be used by

the PLC program to avoid moving axes until the external processor has finished loading

the model at startup.

Figure 3.4: Simple model for testing functionally identical models with varying complexity

The next test case was to export the model of a simple real machine. Figure 3.5 shows

the model that was exported for testing. This is a 3 axis machining head which was being

prototyped at the time when this project was being conducted. The exported model

consisted of 1 fixed model, and 3 moving models such that the Z axis moves on the fixed

model, the X axis moves on the Z and the Y axis moves on the X. The complete model
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consisted of 326,814 surface triangles and took 33 seconds to load on the RPi 3. Tests

were run in command-line mode, where simulated axis positions are typed in to be tested

and the results are displayed on a screen to be tabulated. Model exporting and position

transformations were fine-tuned by moving the model parts in Solid Edge to the same

positions as those entered on the command-line, and results were compared between the

Solid Edge and the Raspberry Pi. This step not only ensured the accuracy of motion and

geometry reproduction, but also served to validate the accuracy of the physics library’s

interference detection algorithm.

The RPi 3 was then connected to the physical machine in figure 3.6, where it communicates

with the controlling PLC over the fieldbus, and the servos via digital outputs. Real-time

operations were then conducted where the axis positions, and speeds are read from the

PLC as the axes move, and collisions cause Immediate Stop signals to be sent to the

relevant servos. To perform the real-time tests without the chance of damaging the

machine, there were 2 versions of the Fixed part of the machine exported. One of the

Fixed part models was just the real machine housing, and the other was the machine

housing with a virtual obstacle around the spindle. By performing the same motion

routine in the PLC with the different model configurations, it was possible to test the

effectiveness of the motion interrupting function. Figure 3.7 shows the virtual obstacle

(in red) which was placed in the path of the spindle. Table 4.3 lists the stopping distances

from different directions and at different speeds during these tests.

In real-time operation, current Axis positions can be monitored in the PLC support soft-

ware (Sysmac Studio). From the virtual obstacle version of the model, the actual axis

positions where a collision will occur were measured in Solid Edge. A move command was

then executed on the PLC which would drive the machining spindle into the virtual obsta-

cle at speed. Once the Collision Avoidance system detects the collision, it commands the

servos to stop, and the stopped position was then read from Sysmac Studio. By running

PLC motion profiles which approach the virtual obstacle from different directions and

speeds, the servo travel from the point of collision, here referred to as overshoot, could be

measured. A set of parameters could then be determined to set maximum allowed speeds

for each axis. The maximum speed will be a function of minimum required clearance

between axes, the response time of the collision detection system and the stopping time

of the servo. Experiments were conducted with the virtual obstacle attached to the front

of the machining centre model. The motion tests consist of approaching the obstacle
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Figure 3.5: Simplified view of a real-world model exported for testing

from positive and negative in both X and Y directions. As the Y direction is vertical

in this case, approaching in both positive and negative will show the influence of gravity

on the response of the system. The X axis is horizontal and symmetrical, so it is not

necessary to test from both directions, but in this case, it was done to verify consistency

of results. These tests are reactive only, in that they require the axis to make contact

with the obstacle before causing the servo to stop. In the real system, the collision must

be predicted, and the servo stopped before the collision can take place.

3.6 Determine Response Time

Each scan cycle through the external processor, the positions of the model parts are

updated, and the collision tests are performed. Once the response time of the system

is known, the current speed can be accommodated by updating parts with a predicted

position (P ′), as in equation 3.3, rather than just the current position. This will mean

that the tests are being performed for where the axes are expected to be at the end of

the test, instead of where they were at the beginning of the test.
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Figure 3.6: 3 Axis machining head prototype used for physical testing of Collision Avoidance

system

P ′ = P + V.
tr

1000
(3.3)

where P is the current actual position and V is the actual velocity of the axis

For a commercial version of this system the experimentation being performed here cannot

be required. An automated method for determining system limitations must be developed.

A PC program would be written to communicate with the Collision Detector command

line interface over a Secure Shell (SSH) connection. Over this interface the machine

model can be loaded, then a phantom object mode could add virtual objects to clear

areas of motion to test the responsiveness of the system. The machine programmer would

specify minimum required clearance between axes and then run each axis at a number of

different speeds into the phantom objects so the system could measure its response time.

The program would then list the recommended maximum speeds for each axis before

switching back to normal operation mode.
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Figure 3.7: Virtual obstacle added to real-world model

3.7 Which Axis to Stop

In the real machine that was used for testing, collisions are usually encountered on the

machining spindle, which is part of the Y axis, but is also moved by the X axis, which is

in turn moved by the Z axis. In the configuration file for the model, each axis has an axis

number, direction of travel and a parent axis. The parent is the part that this part is

attached to. So, in the case of the machining centre tested, X is the parent of Y, Z is the

parent of X, and the fixed part is the parent of Z. At the beginning of each cycle, when

the positions are updated, each part is shifted in its direction of travel, to its own axis’

current position. It is also moved by each of its ancestors, in their direction of travel.

The Collision Detector program was only detecting collisions between parts, but not the

direction from which the collision occurred. Not knowing the direction means that it is

not possible to determine which servo axis is responsible for the collision. Not only the

axis that collides but all of its moving ancestors will be stopped. A feature of SOLID v2

which has not yet been tested, is the ability to generate a normal vector to the plane on

which the collision occurs. With this vector, it should be possible to selectively stop only

axes which have a direction of travel which is not perpendicular to the collision normal

vector.



Chapter 4

Results

4.1 Model Complexity Tests

Early tests centred around model size and processing time. Using surface triangles to

describe an object works well, but the model data size grows very fast with curved surfaces

and fine details in the model. This is because the surface triangles approximate the surface

where the triangle must at all points be within a certain threshold distance (resolution)

of the real model surface. For flat polygonal surfaces, the number of triangles required to

describe it is at most one triangle for each edge, regardless of size. For a curved surface

the size of the triangles is dictated by the radius of the curve, such that:

Et = 2 ×
√

(d+ 2)2 − r2 (4.1)

where Et is edge length of triangle, d is the allowable deviation from surface and r is the

radius of the curve.

This formula can be used for surfaces with relatively large radius vs deviation. For cases

with small radius, there is a maximum difference between the tangential angle at the

curved surface, and the plane of the triangle. The default values when exporting from

solid Edge are d = 0.05 mm, and θ = 30 degrees. The number of triangles then increases

with the occurrence of curves and with the number of faces in the model. Tests were

conducted with a simple simulated model shown in figure 3.4, where the curved rectangle
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Table 4.1: Load and processing times of RPi 3 for different model resolutions, with a range

of axis positions

Raspberry Pi 3 Model B+ (1GB RAM)

Resolution (mm) 10 1 0.1 0.01 0.005 0.001

Size on disk (kB) 147 842 7,917 77,102 153,552 977,712

# triangles 536 3,084 29,060 282,986 563,600 3,588,512

Load time (s) 0.103 0.335 2.73 27.4 56.1 368

Process time [0,0] (µs) 5,802 5,961 5,211 6,012 38,584 78,377

Process time [50,0] (µs) 2,192 3,340 1,740 2,860 37,655 77,661

Process time [150,0] (µs) 2,572 5,415 3,465 3,362 45,928 81.125

Process time [0,25] (µs) 3,780 5,426 3,059 4,426 37,082 75,352

Process time [0,100] (µs) 2,540 3,793 2,081 2,358 53,401 93,633

Process time [0,500] (µs) 603 1,642 513 674 11,430 17,465

Process time [850,0] (µs) 748 1,762 1,229 563 23,190 55,096

Process time [850,500] (µs) 83 828 349 81 87 86

Max Process time (ms) 5.80 5.96 5.21 6.01 53.40 93.63

was the fixed part, the sphere and the toroid were the first and second moving parts

respectively. Table 4.1 contains the results of tests using varying resolutions to export

the same models. This test the size of the models and loading times at the differing

resolutions, as well as processing time for various combinations of axis positions.

Table 4.1 shows that as model complexity increase, load time increases linearly throughout

the range. Process time stays flat until the model complexity gets above 283,000 triangles,

and then it increases steeply. This was thought to be a result of the Raspberry Pi 3 running

out of memory. During the development of this project the Raspberry Pi 4 came onto the

market and was available with 2GB of RAM as compared to the RPi 3 which has 1 GB

of RAM. The same set of tests were conducted with the RPi 4 and the results are shown

in table 4.2. Figure 4.1 gives a graphical representation of the processing time difference

between the 2 versions. In the graph the RPi 4 is consistently faster, but it still starts to

increase at approximately the same data size. If it was simply a case of memory capacity,

then the upturn should occur later in the graph. One possible reason for the similar result

might be that the operating system restricts the total memory size available to a process

regardless of the computer’s memory capacity. Further investigation is required on this
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Table 4.2: Load and processing times of RPi 4 for different model resolutions, with a range

of axis positions

Raspberry Pi 4 (2GB RAM)

Resolution (mm) 10 1 0.1 0.01 0.005 0.001

Size on disk (kB) 147 842 7,917 77,102 153,552 977,712

# triangles 536 3,084 29,060 282,986 563,600 3,588,512

Load time (s) 0.059 0.202 1.54 14.8 30.5 199

Process time [0,0] (µs) 2,955 3,221 2,774 3,063 20,502 41,578

Process time [50,0] (µs) 1,356 1,747 941 1,412 19,216 39743

Process time [150,0] (µs) 1,372 2,805 1,868 1,875 22,510 42,786

Process time [0,25] (µs) 2,064 2,815 1,657 2,200 19,120 39,112

Process time [0,100] (µs) 1,555 1,997 1,273 1,304 22,797 48,933

Process time [0,500] (µs) 337 746 304 403 5,768 9,125

Process time [850,0] (µs) 396 923 662 374 11,711 28,565

Process time [850,500] (µs) 46 409 407 50 50 50

Max Process time (ms) 2.96 3.22 2.77 3.06 22.8 48.9

issue.

The second notable outcome of these test is the confirmation that the SOLID 2 library is

performing a broad-phase cull before processing detailed models. This can be seen by the

differences in the processing time depending on the positions of the 2 moving parts in each

test. In the image in figure 3.4, both moving parts are at their zero positions. The SOLID

2 library is first using a simplified version of the model parts, such as a bounding box, to

determine if it is possible for 2 objects to collide. If the bounding boxes do not collide,

then the detailed models cannot collide, and so no further testing is required for that pair

of objects. If the bounding boxes do collide, then the detailed model must be tested. From

the test results in both computers, and at all resolutions, the last test case is similar, and

very short. This seems to verify that the only test being performed is on bounding boxes

whose complexity is independent of the detailed model complexity. Another observation

from the tabulated results is the limiting axis positions case for different resolutions. In

each of the first 4 resolution trials, the first set of positions [0, 0] requires the longest

processing time, but in the 2 most complex model tests, it is the [0,100] position case that

requires the most time. This seems to demonstrate the principle that once a collision is
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Figure 4.1: Comparison of processing times between models 3 & 4 of Raspberry Pi

confirmed, no more processing is required. Both moving objects definitely collide with

the fixed part, so once confirmed, processing is done, but the sphere and toroid do not

collide, even though their bounding boxes suggest that they might. Every pair of triangles

between the 2 objects must be checked to find if there is a collision, but because there

is not, the processing takes the maximum time. As the model complexity increases, the

sphere and toroid have many more triangles and so the processing time increases with the

product of the number of triangles of each part.

4.2 Real Model Tests

From the previous tests, it was believed that a complete model consisting of around

300,000 triangles would achieve a processing time of less than 10ms on the RPi 3. This was

thought to be marginal for dynamic systems, but acceptable. The 3D representation of a

real machine being built at the time, was exported for real-world testing. The exported

model consisted of 3 moving axes, and one fixed machine frame, totalling 326,814 triangles.

The expectation from the previous tests was that it would take approx. 30 seconds to

load, and between 7 – 10 ms to process each time step. The reality though was surprising,

while loading was as expected, at 33.04 seconds, process each time step took approx. 70

ms on the RPi 3. This processing time was similar to a model with 10 times the triangles

from the previous test cases. Simulation of axis positions such that all bounding boxes

would be clear of each other, still yielded comparable processing times to the previous
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tests, so a non-testing related delay could be eliminated. One factor affecting testing of

real assemblies is that when one axis is carried by another, they will usually be joined by

some form of bearing, for support, and a drive mechanism, such as a ballscrew or belt and

pulleys. These interfaces will most likely be detected as collisions during testing and will

definitely register as potential collisions in the broad-phase analysis. The model in the

real model tests consisted of a fixed part carrying a Z Axis, then the Z Axis carrying the X

Axis, and the X Axis carrying the Y Axis. The Fixed part and Z Axis are always touching,

Z and X Axes are always touching, and X and Y Axes are always touching. Furthermore,

if the broad phase uses simple rectangular bounding boxes, then Axes X and Y would

also always be candidates for collision with the fixed part of the machine. The SOLID 2

documentation states that it is possible to specify certain pairs of objects as candidates

for collision and ignore the proximity of others. In the current machine there are a total of

6 possible pairs for collision analysis, and 5 of these will always proceed beyond the broad

phase. If the pairs of axes that are attached to one another were excluded, the number

of total pairs would be reduced to 3, and only 2 of these would always pass beyond the

broad phase. Assuming processing time is similar for each pair, this should reduce total

processing time from 70 ms to approx. 35 ms. Upon changing the Collision Detector

program to only consider certain object pairs, the processing time was reduced by more

than anticipated. The time to perform a test ranged from 5 ms to 18 ms, depending on

axis positions.

4.3 Total System Response

The next tests required the addition of a virtual obstacle in the model of the real machine.

In these tests the Collision Detector is placed in real-time mode where the PLC is sending

current positions and velocities for each axis every 1.25 ms (1 ms PLC scan time & 250

µs EtherCAT comms cycle). The Collision Detector moves the loaded model parts to the

current positions as reported, and then tests for interference. When a collision is detected,

a group of digital outputs which are connected to Immediate Stop inputs on the servo

drives, signal that the servos must stop. This puts the servos into an Emergency Stop

state, and the actual stopped position of the servo is read from the PLC support software.

For the tests listed in table 4.3, a series of runs were made at the virtual obstacle in each

of 4 directions. For each direction 6 runs were made at speeds ranging from 10 mm/s to

100 mm/s.
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Table 4.3: Overshoot results in reactive collision tests

Overshoot (mm)

Direction Speed (mm/s)

10 20 40 60 80 100

X+ 0.25 0.47 0.80 1.39 1.97 2.16

X- 0.12 0.27 0.46 0.91 1.61 2.16

Y+ (up) 0.18 0.35 0.53 1.09 1.32 1.90

Y- (down) 0.34 0.41 0.92 1.70 2.5 2.74

Avg (mm) 0.22 0.38 0.68 1.27 1.85 2.24

Max (mm) 0.34 0.47 0.92 1.70 2.50 2.74

Overshoot in table 4.3 above is the difference in position at which the collision occurs,

verses the position at which the servo comes to a standstill. The overshoot test results

demonstrate a predictable increase in collision overshoot as travel speed increases. There

are 2 independent components to the overshoot distance, the first is made up of the

following factors:

• the PLC Scan time required to read current positions, and velocities from the Servos,

and write it to the Collision Detector Process Data Objects,

• EtherCAT communications cycle,

• Collision Detector communication exchange with the fieldbus adapter,

• Collision Detector interference test time

• Collision Detector communication exchange with device hardware outputs,

• Switching time for level shift from 3.3v logic to 24v logic,

• And any other non-testing code being executed in the Collision Detector such as

writing monitoring information to the console.

Due to the fact that tests are performed on discrete positions each time, it is possible

that a collision occurs immediately after a test cycle has started and so it is missed in

the current cycle, and will not be actioned until it is detected in the next cycle. For

this reason, this first component can be anywhere from one to two scan times and this
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time is all passed at the commanded axis velocity. The second component is the servo

stopping time. For the machine being tested, the maximum operational deceleration rate

is 10,000 mm/s2. From 10 mm/s it will take 1 ms to stop and from 100 mm/s it will take

10 ms to stop. Both of these components of the overshoot should be considered in the

compensation section. Figure 4.2 shows the overshoot curve for the reactive tests.

Figure 4.2: Overshoot curve for reactive collision detection tests

4.4 Avoiding Collisions

The next step in the implementing the system is to have it stop servos before they collide,

rather than once they have collided. By moving the model parts to positions they are

expected to occupy in the future, instead of where they are now, a future collision can

be detected. Knowing how far ahead to look was the purpose of the analysis of the

previous tests. By adding the distance that the axis would move in the time it takes to

perform a test, to the current position, the calculation can be based on the positions of

the axes as they are when the test is finished, and the stop signal can be sent immediately.

With this method it is expected that a small amount of overshoot could still occur, as

it would be equivalent to projecting the axes forward by the distance that they would

travel in the testing time. By adding 2 x the distance travelled in the test time, should

prevent most collisions, and adding an additional buffer for the servo stopping distance

should guarantee no collisions occur. The problem with this predictive model is that

it may result in false fails. These could occur when an axis is programmed to move

quickly to a position, very close, but not touching, to another object. During the move,



4.5 Velocity Compensation Tests 29

the Collision Detector will be projecting the moving axis along its travel path, and if

the speed and deceleration are high, the Collision Detector may see a collision as being

imminent and stop the servo. The shorter the testing time, the less an axis needs to

be projected ahead to avoid collisions, and so the more dynamic, the machine can be.

The difference between the max operational deceleration rate, versus the emergency stop

deceleration rate, and the minimum clearance between axes, are the 2 parameters which

need to be balanced to avoid false collision detections. If false triggering occurs, either

the operational deceleration rate must be reduced, or the minimum clearance must be

increased, as illustrated in eq 3.1.

Another problem with this system is that the axis is being projected assuming the velocity

is constant. If an axis which is approaching another is accelerating, the projection may

not indicate the collision until it is too late. Likewise, if an axis is moving away from

the path of another, and decelerating, it may not be out of the way when the other axis

arrives. One option to deal with these problems is to perform the collision tests twice

each scan, once with current actual positions, and once with projected positions. This

doubles the execution time and could only be considered if significant improvements can

be made in testing times by other means. Another option which could have a similar

result is to elongate the surface triangles in the model loaded in memory. Applying a

scaler transformation to all of the triangles making up a model part, where the direction

of travel is stretched by the distance that the part would move in one or two test times

at the current speed. If the transformation could be applied quickly enough, this may be

faster than running the test twice, and if the transform only needs to occur on occasions

where the velocity changes, then it would have even less impact on test time.

4.5 Velocity Compensation Tests

A number of trials were conducted implementing equation XX with various response

time values. As predicted, setting response time at or below the exact testing scan time

resulted in mostly missed collisions, but still the occasional hit. A value of 40ms yielded

the results in table 4.4, and figure 4.3.

Undershoot in figure 4.3 is found by the same means as overshoot in the previous figure.

Here however the negative value shows the clear distance between the axis and obstacle
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Table 4.4: Undershoot results in predictive collision tests

Overshoot (mm)

Direction Speed (mm/s)

10 20 40 60 80 100

X+ -0.02 -0.33 -0.41 -0.98 -0.64 -0.75

X- -0.26 -0.50 -0.63 -0.83 -1.40 -1.17

Y+ (up) -0.23 -0.48 -0.84 -1.36 -1.6 -2.01

Y- (down) -0.10 -0.20 -0.49 -0.38 -1.22 -1.37

Avg (mm) -0.15 -0.38 -0.59 -0.89 -1.22 -1.33

Max (mm) -0.26 -0.50 -0.84 -1.36 -1.60 -2.01

Figure 4.3: Undershoot curve for collision avoidance tests with tr = 40 ms

after the axis comes to a standstill. While these figures confirmed that collisions can

be avoided, the undershoot values may require further tuning for some machines. From

analysis of the data in table 4.4, and knowledge of the mechanical characteristics of the

machine being tested, it can be seen that when an axis has faster emergency deceleration

rate, it produced greater undershoot values. For each run at speeds of 40 mm/s, or more,

the +Y direction sees the greatest undershoot by a significant margin. This may be

explained by the fact that gravity assists to decelerate the axis, and so the emergency

stop performance is greater than the other directions, yielding a larger undershoot. More

thorough tuning of velocity compensations for various axes may produce more consistent

results.

The worst case in the results above is for the highest speed. With a 40 ms response

time compensation, at 100 mm/s the axis is being projected 4mm into the future. If the
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PLC program was sending the axis to a position 1mm from collision at 100mm/s, with

a deceleration of 10,000mm/s, the motion controller would keep the servo at full speed

until it was 1.5mm from the collision, and then decelerate to stop at 1mm. The Collision

Detector would intervene when it detects an imminent collision at 4mm, and the axis

comes to a stop at 2mm, errored in the Emergency Stop state. This example is extreme,

and seems unlikely, but in larger, faster machines, axes can move many times faster than

the one tested. A 40ms velocity compensation time applied to an axis traveling at 2.5m/s

would be projecting the axis 100mm ahead of its current position. In most cases, very

high acceleration rates would not be used with multiple axes in close proximity, but for a

system like this to gain mainstream acceptance, it must account for these situations.



Chapter 5

Further Work

5.1 Tuning The Undershoot

From the undershoot curve in figure 4.3, it appears that the undershoot distance is linearly

related to the axis speed. Further trials might be useful to create a more dynamic velocity

response time, than a fixed value. If a function of velocity and max processing time can

be found to minimize undershoot, while guaranteeing collision avoidance, then the system

will become more universally acceptable.

5.2 Model Velocity Elongation

In the current program, each model part is simply moved to the position that it is expected

to occupy at the end of the current test. This means that another axis passing behind

this one may collide because it thinks this one has already moved out of the way. An

alternative is to stretch the model parts in the direction of travel, by the distance they

are expected to travel during the test. SOLID v2 has a Scale function which can scale

all vertices in any cartesian direction. Trials will need to be performed to determine the

effect these scaling functions will have on the position of the model, and the processing

time required. Also work will need to be done on determining the effect that this has on

axes when their parent axes are moving also.
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5.3 Support Software

Setup, tuning and configuration software will need to be created such that they do not

require intimate knowledge of the system for the operator to use. Automatic tuning func-

tions could be performed in a PC connected to the system, with a graphical representation

of the machine. The operator could place virtual obstacles in the 3D representation for

response time tuning, where the program handles all of the calculation and setting pa-

rameters. Alternatively, the program could add virtual obstacles itself, and request the

programmer to perform servo motions towards the virtual obstacle. Parameters which

are currently hard coded would be shifted to a parameter file which is loaded at startup.

5.4 Physics Library Improvements

A certain proportion of the total response time is due to the interference detection testing.

The methods used in the current setup may not be the optimal for this application. Some

further investigation would determine the proportion of time due to the testing, and if it

is considered high, then other methods might be trialled. Using a multi-step broad phase

may be effective in reducing test time for machines with complex parts whose bounding

boxes will overlap most of the time. Limiting the pairs to be tested on each scan to only

those pairs with at least one member currently in motion could be another way to reduce

the processing time. Plus eliminating pairs based on them never being able to collide

would also help for very large complex machines. The current model exporting program

does not identify axis limits, so the collision detection algorithm currently considers each

axis to have an infinite range. While only broad phase tests would be performed on pairs

that can not possibly collide, each of these tests may account for microseconds, and as

the number of axes increases, this could become significant.

5.5 Rotational Axes

The current system only deals with linear motion axes, but rotational axes are also reg-

ularly found on machines. Particularly universal robots typically consist of 6 rotational

axes in series with one another. Presently the variables contained in the model parts, the
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exporting program and the collision avoidance program only consider linear motion, but

rotational motion would need to be added for the system to be commercially successful.

Changes required to the model exporting program include describing the axis of rotation

with respect to the machine coordinate system as a quaternion. The current physics li-

brary supports model rotation by quaternion, so model translation can be achieved by

forward kinematic means. One limitation is in the planed elongation of model parts in the

direction of travel with respect to velocity. While for linear axes, this can be achieved by

scaling the model in the direction of travel, it is not simple to do the same for a rotating

axis.

5.6 Dynamic Product or Workpiece

Once the rotational axes are implemented, the system becomes more useful for applica-

tions such as robotic cells, like painting and welding, or pick and place of various products.

If the product, or workpiece was also included in the model, and identified as a transient

part that did not always exist, then a transient identifier field could be added to the field-

bus which specified the current product or workpiece in the cell. This would allow collision

avoidance in all situations, even when a new welding gig, or fixture was added. Before the

robot programmer teaches the new welding job (for instance) they would update the 3D

model to include the new fixture and parts, with their transient identifier being the job

number. During the programming and production phase the collision avoidance system

will be watching everything else, while the programmer is focused on the welding torch.



Chapter 6

Financial Considerations

The cost of the project in terms of hardware was quite low, with purchase of Raspberry

Pi, EasyCAT Hat and sundry electronic components totalling less than $250. For an

experimental solution this is cost effective, but a commercial version would have differ-

ent requirements. Professional electronics, and an industrial PC with custom enclosure

would cost thousands of dollars. For a commercial venture, development time would be

amortized over the expected number of sales, but a profit margin would also be expected.

A conceivable price range might be $2,000 – $10,000 depending on the number of axes

needing to be monitored.



Chapter 7

Conclusions

This project has successfully achieved the goal of providing ”Collision Avoidance in

Motion-Control Systems by Real-Time Predictive Interference Detection of 3D Assem-

bly Models”. It has shown that with minimal human input it is possible to have the

machine protect itself, and that this protection can be maintained even in the face of

changes to the machine, provided the 3D model from which the machine was built, has

also been updated. As an experiment is it successful, but as a commercial proposition its

future is uncertain. While no official data on the cost to a business from machine self-

collision has been found, from my personal experience of commissioning and supporting

26 machines over a 6 year period, I estimate that repairs due to collisions that this system

could have prevented, would total no more than $5000. This averages out to less than

$200 per machine, which is far less than the commercial version of the system would be

expected to cost.

The main beneficiary of a system like this is the programmer while creating or modifying

the program that operates the machine. With all of this taken into consideration, it seems

that another option exists. If the company building machines invests in one Collision

Avoidance unit able to monitor the largest machine that they expect to make, then this

one unit could be reused over and over on machine after machine, where it is connected

to the machine for initial programming and testing, and then removed when the machine

is handed over to the customer. The same unit then stays with the manufacturer to be

used again when the next machine is being built, at which time the previous loaded model

is replaced with the model of the next machine. An added benefit to this approach is
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that if the customer sees the value in the system and wishes to buy it, then it could be

left on a machine after handover, and the manufacturer then buys a new unit for future

projects. If the customer does not choose to buy the system, but at some time in the

future, they ask for changes to the machine, program, or commissioning of a new product;

then the programmer reloads the machine model, reattaches the device to the machine

and performs the changes. Once the changes are successfully tested, they can remove

the device again. The likelihood of the machine manufacturer agreeing to purchase one

unit that they can use to protect all machines that they make is far greater than that of

selling a unit with each machine. This however reduces the expected sales numbers and so

increases the amortized development cost per unit expected to be sold. Fortunately, the

development cost in this case is labour being donated by the programmer, so development

cost is not expected to prevent the project from advancing.

With the performance improvements identified in chapter 5, and transferring the system

to a higher performance hardware platform, I expect that this system could be made

effective for the majority of programable machines designed, and built by oem machine

manufacturers.
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ENG 4111/2 (or ENG8002) Research Project

Project Specification

For: Rob Brooker

Topic: Collision Avoidance in Motion Control Systems by Real-Time Predictive Interference Dete

Supervisors: Dr Tobias Low

Sponsorship: Mexx Engineering

Project Aim: To create a method for machines to protect themselves from

self-collision by making them aware of their own physical

structure, and that of their moving parts.

Program:

1. Develop 3D model with at least 3 moving sub-assemblies that can collide with other

moving parts, and fixed parts

2. Build PLC program which would control a machine made from the model (1)

3. Manually define collision rules by examining 3D model (1)

4. Add a background task to PLC program (2) to use rule from (3) to prevent collisions

5. Export 3D model (1) to SD card in STL format for dynamic collision avoidance on

PLC

6. Iterative experimentation and further research on collision detection methods to

find most cycle time efficient method

7. Write selected real-time collision avoidance technique into 2nd background task on

PLC (2)

8. Run simulations of PLC program (2) with each of the background tasks (4,7) enabled

to compare response times

9. Determine safety margin between parts considering response times, max speeds and

max acceleration/deceleration

If time permits and real-time methods prove too slow:
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10. Write PC program to perform a run once, exhaustive analysis of the 3D model (1)

using selected collision detection method (6) to generate a rule set

11. Add a third background task containing the automatically generated rule set (10)

12. Run simulations again with all three background tasks (4,7,11)

Agreed:

Student Name: Rob Brooker

Date: 13 March 2019

Supervisor Name: Dr Tobias Low

Date: 9 April 2019
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Model Export Program Listing



...odelExporter\ModelExporter\ModelExporter\SEAssy_Export.vb 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

32
33
34
35
36
37
38
39
40
41
42
43
44
45

Imports SolidEdgeFramework
Imports System.Runtime.InteropServices
Imports Excel = Microsoft.Office.Interop.Excel
Imports Microsoft.Office
Imports System.IO

Public Class SEAssy_Export
    Private mParent As String
    Private mName As String
    Private mPath As String
    Private mItemNum As Integer
    Private mChildren As Collection
    Private mMoveAxis As Integer
    Private mMoveXScale As Double
    Private mMoveXOffset As Double
    Private mMoveYScale As Double
    Private mMoveYOffset As Double
    Private mMoveZScale As Double
    Private mMoveZOffset As Double
    Private mOriginX As Double
    Private mOriginY As Double
    Private mOriginZ As Double
    Private mAngleX As Double
    Private mAngleY As Double
    Private mAngleZ As Double

    Public Sub New(ParentFile As String, FileName As String, Folder As String, 
ItemNum As Integer, MoveAxis As Integer,

                   Optional MoveXScale As Double = 0, Optional MoveXOffset As 
Double = 0,

                   Optional MoveYScale As Double = 0, Optional MoveYOffset As 
Double = 0,

                   Optional MoveZScale As Double = 0, Optional MoveZOffset As 
Double = 0)

        mParent = ParentFile
        mName = FileName
        mPath = Folder
        mItemNum = ItemNum
        mMoveAxis = MoveAxis
        mMoveXScale = MoveXScale
        mMoveXOffset = MoveXOffset
        mMoveYScale = MoveYScale
        mMoveYOffset = MoveYOffset
        mMoveZScale = MoveZScale
        mMoveZOffset = MoveZOffset
        mChildren = New Collection()
        'Traverse()
    End Sub



...odelExporter\ModelExporter\ModelExporter\SEAssy_Export.vb 2
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    Public Property Parent As String
        Get
            Return mParent
        End Get
        Set(value As String)
            mParent = value
        End Set
    End Property

    Public Property Name As String
        Get
            Return mName
        End Get
        Set(value As String)
            mName = value
        End Set
    End Property

    Public Property Path As String
        Get
            Return mPath
        End Get
        Set(value As String)
            mPath = value
        End Set
    End Property

    Public Property ItemNum As Integer
        Get
            Return mItemNum
        End Get
        Set(value As Integer)
            mItemNum = value
        End Set
    End Property

    Public ReadOnly Property FullName As String
        Get
            Return mPath + "\\" + mName
        End Get
    End Property

    Public Property MoveAxis As Integer
        Get
            Return mMoveAxis
        End Get
        Set(value As Integer)
            mMoveAxis = value



...odelExporter\ModelExporter\ModelExporter\SEAssy_Export.vb 3
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        End Set
    End Property

    Public Property MoveXScale As Double
        Get
            Return mMoveXScale
        End Get
        Set(value As Double)
            mMoveXScale = value
        End Set
    End Property

    Public Property MoveXOffset As Double
        Get
            Return mMoveXOffset
        End Get
        Set(value As Double)
            mMoveXOffset = value
        End Set
    End Property

    Public Property MoveYScale As Double
        Get
            Return mMoveYScale
        End Get
        Set(value As Double)
            mMoveYScale = value
        End Set
    End Property

    Public Property MoveYOffset As Double
        Get
            Return mMoveYOffset
        End Get
        Set(value As Double)
            mMoveYOffset = value
        End Set
    End Property

    Public Property MoveZScale As Double
        Get
            Return mMoveZScale
        End Get
        Set(value As Double)
            mMoveZScale = value
        End Set
    End Property

    Public Property MoveZOffset As Double



...odelExporter\ModelExporter\ModelExporter\SEAssy_Export.vb 4
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        Get
            Return mMoveZOffset
        End Get
        Set(value As Double)
            mMoveZOffset = value
        End Set
    End Property

    Public Property OriginX As Double
        Get
            Return mOriginX
        End Get
        Set(value As Double)
            mOriginX = value
        End Set
    End Property

    Public Property OriginY As Double
        Get
            Return mOriginY
        End Get
        Set(value As Double)
            mOriginY = value
        End Set
    End Property

    Public Property OriginZ As Double
        Get
            Return mOriginZ
        End Get
        Set(value As Double)
            mOriginZ = value
        End Set
    End Property

    Public Property AngleX As Double
        Get
            Return mAngleX
        End Get
        Set(value As Double)
            mAngleX = value
        End Set
    End Property

    Public Property AngleY As Double
        Get
            Return mAngleY
        End Get
        Set(value As Double)



...odelExporter\ModelExporter\ModelExporter\SEAssy_Export.vb 5
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238
239
240

            mAngleY = value
        End Set
    End Property

    Public Property AngleZ As Double
        Get
            Return mAngleZ
        End Get
        Set(value As Double)
            mAngleZ = value
        End Set
    End Property

    Public Sub Traverse()
        Dim objApp As SolidEdgeFramework.Application = Nothing
        Dim objDocs As SolidEdgeFramework.Documents = Nothing
        Dim objDoc As SolidEdgeFramework.SolidEdgeDocument = Nothing
        Dim objPart As SolidEdgePart.PartDocument = Nothing
        Dim objAssy As SolidEdgeAssembly.AssemblyDocument = Nothing
        Dim objAssySub As SolidEdgeAssembly.AssemblyDocument = Nothing
        Dim objOccurances As SolidEdgeAssembly.Occurrences = Nothing
        Dim objOccurance As SolidEdgeAssembly.Occurrence = Nothing
        Dim objSubOccurance As SolidEdgeAssembly.SubOccurrence = Nothing
        Dim objSelectSet As SolidEdgeFramework.SelectSet = Nothing
        Dim objRef As SolidEdgeFramework.Reference = Nothing
        Dim objVars As SolidEdgeFramework.Variables = Nothing
        Dim objVar As SolidEdgeFramework.variable = Nothing
        Dim tmpAssyExp As SEAssy_Export = Nothing
        Dim strIndex As String = Nothing
        Dim strName As String = Nothing
        Dim strPath As String = Nothing
        Dim strType As String = Nothing
        Dim strExpPath As String = Nothing
        Dim strExpName As String = Nothing
        Dim mOriginX, mOriginY, mOriginZ, mAngleX, mAngleY, mAngleZ As Double
        Dim mMatrix(16) As Double
        Dim lMatrix(16) As Double
        Dim tMatrix(16) As Double
        Dim iItemNum As Integer

        Dim i, j As Integer
        mChildren = New Collection

        Try
            strExpName = Name.Substring(0, Name.Length - 4) + "~" + 

ItemNum.ToString() + ".STL"
            'Open tmpAssembly in current instance of Solid Edge
            objApp = Marshal.GetActiveObject("SolidEdge.Application")
            objDoc = objApp.Documents.Open(mPath + "\\" + mName)
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241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272

273
274
275
276
277
278
279

280
281
282
283
284
285
286

            objDoc.Activate()
            'Check if open document is an Assembly
            If (objDoc.Type = DocumentTypeConstants.igAssemblyDocument) Then
                objAssy = objDoc
                objOccurances = objAssy.Occurrences
                'Go through parts, or sub-assemblies looking for Moving parts
                i = 1
                While i <= objOccurances.Count
                    tmpAssyExp = Nothing
                    objOccurance = objOccurances.Item(i)
                    'MsgBox("Occurance = " + objOccurance.Name)
                    If objOccurance.Type = ObjectType.igPart Then
                        objPart = objOccurance.PartDocument
                        objVars = objPart.Variables
                        strName = objPart.Name
                        strPath = objPart.Path
                        strType = "Part"
                    ElseIf objOccurance.Type = ObjectType.igSubAssembly Then
                        objAssySub = objOccurance.OccurrenceDocument
                        objVars = objAssySub.Variables
                        strName = objAssySub.Name
                        strPath = objAssySub.Path
                        strType = "SubAssembly"
                    End If
                    For j = 1 To objVars.Count
                        objVar = objVars.Item(j)
                        If objVar.Expose > 0 Then
                            If objVar.ExposeName = "MoveAxis" Then
                                'MsgBox("Axis = " + objVar.Value.ToString())
                                If CInt(objVar.Value) >= 0 Then
                                    iItemNum = CInt(objOccurance.Name.Substring

(objOccurance.Name.IndexOf(":") + 1))
                                    tmpAssyExp = New SEAssy_Export(strExpName, 

strName, strPath, iItemNum, CInt(objVar.Value))
                                End If
                                Exit For
                            End If
                        End If
                    Next
                    If tmpAssyExp IsNot Nothing Then
                        objOccurance.GetTransform(mOriginX, mOriginY, mOriginZ,

 mAngleX, mAngleY, mAngleZ)
                        tmpAssyExp.OriginX = Math.Round(mOriginX * 1000)
                        tmpAssyExp.OriginY = Math.Round(mOriginY * 1000)
                        tmpAssyExp.OriginZ = Math.Round(mOriginZ * 1000)
                        tmpAssyExp.AngleX = Math.Round(180 * mAngleX / Math.PI)
                        tmpAssyExp.AngleY = Math.Round(180 * mAngleY / Math.PI)
                        tmpAssyExp.AngleZ = Math.Round(180 * mAngleZ / Math.PI)
                        For j = 1 To objVars.Count
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287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

                            objVar = objVars.Item(j)
                            If objVar.Expose > 0 Then
                                If objVar.ExposeName = "MoveXScale" Then
                                    tmpAssyExp.MoveXScale = CDbl(objVar.Value)
                                ElseIf objVar.ExposeName = "MoveXOffset" Then
                                    tmpAssyExp.MoveXOffset = CDbl(objVar.Value)
                                ElseIf objVar.ExposeName = "MoveYScale" Then
                                    tmpAssyExp.MoveYScale = CDbl(objVar.Value)
                                ElseIf objVar.ExposeName = "MoveYOffset" Then
                                    tmpAssyExp.MoveYOffset = CDbl(objVar.Value)
                                ElseIf objVar.ExposeName = "MoveZScale" Then
                                    tmpAssyExp.MoveZScale = CDbl(objVar.Value)
                                ElseIf objVar.ExposeName = "MoveZOffset" Then
                                    tmpAssyExp.MoveZOffset = CDbl(objVar.Value)
                                End If
                            End If
                        Next
                        objOccurance.Delete()
                        i -= 1
                        mChildren.Add(tmpAssyExp, tmpAssyExp.Name)
                        'MsgBox(strType + ": " + tmpAssyExp.Name + " Deleted.")
                    Else
                        'MsgBox(strType + ": " + objOccurance.Name + " Remains 

as fixed Part.")
                    End If
                    i += 1
                End While
            End If
            'MsgBox(mChildren.Count.ToString() + " Occurances Deleted.")
            strExpPath = Path + "\STL_Exports"
            If Not Directory.Exists(strExpPath) Then
                Directory.CreateDirectory(strExpPath)
            End If
            objAssy.SaveAs(strExpPath + "\" + strExpName)
            MsgBox(strExpName + " Saved")

        Catch ex As Exception
            MsgBox(ex.Message)
        Finally
            'Dispose SelectSet object
            If Not (objSelectSet Is Nothing) Then
                Marshal.ReleaseComObject(objSelectSet)
                objSelectSet = Nothing
            End If
            'Dispose SubOccurance object
            If Not (objRef Is Nothing) Then
                Marshal.ReleaseComObject(objRef)
                objRef = Nothing
            End If
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335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

            'Dispose Occurance object
            If Not (objOccurance Is Nothing) Then
                Marshal.ReleaseComObject(objOccurance)
                objOccurance = Nothing
            End If
            'Dispose Occurances collection
            If Not (objOccurances Is Nothing) Then
                Marshal.ReleaseComObject(objOccurances)
                objOccurances = Nothing
            End If
            'Dispose Assembly object
            If Not (objAssy Is Nothing) Then
                Marshal.ReleaseComObject(objAssy)
                objAssy = Nothing
            End If
            'Dispose Part object
            If Not (objPart Is Nothing) Then
                Marshal.ReleaseComObject(objPart)
                objPart = Nothing
            End If
            'Dispose Document object
            If Not (objDoc Is Nothing) Then
                Marshal.ReleaseComObject(objDoc)
                objDoc = Nothing
            End If
            'Dispose Documents collection object
            If Not (objDocs Is Nothing) Then
                Marshal.ReleaseComObject(objDocs)
                objDocs = Nothing
            End If
            'Dispose Solid Edge Application object
            If Not (objApp Is Nothing) Then
                Marshal.ReleaseComObject(objApp)
                objApp = Nothing
            End If
        End Try
    End Sub

End Class



Appendix C

Collision Detection Program

Listing
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14
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17
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20
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23
24
25
26
27
28
29
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43
44
45
46
47
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50
51
52

// CART.cpp : This file contains the 'main' function. Program execution 
begins and ends there.

//

#include <iostream>
#include <fstream>
#include <stdio.h>
#include <string>
#include <vector>
#include <algorithm> 
#include <functional> 
#include <cctype>
#include <locale>
#include <sstream>
#include <wiringPi.h>
#include <chrono>
typedef std::chrono::high_resolution_clock Clock;

//Setup for SOLID physics library
#include "include/SOLID/solid.h"
#include "include/3D/Point.h"
#include "include/3D/Quaternion.h"
#include "ModelPart.h"

//Setup for EasyCAT fieldbus adaptor
#include <bcm2835.h>
#include <unistd.h>
#define CUSTOM
#include "EasyCAT.h"

using namespace std;

#define LOBYTE(x) ((unsigned char) ((x) & 0xff))
#define HIBYTE(x) ((unsigned char) ((x) >> 8 & 0xff))

typedef struct MyObject {
 int id;
} MyObject;

typedef struct
 {
  float       Axis0_Pos;
  float       Axis0_Vel;
  float       Axis1_Pos;
  float       Axis1_Vel;
  float       Axis2_Pos;
  float       Axis2_Vel;
  float       Axis3_Pos;
  float       Axis3_Vel;
  uint8_t     Axis0_Status;
  uint8_t     Axis2_Status;
  uint8_t     PLC_Status;
  uint8_t     Resolution;
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

  uint8_t     Axis3_Status;
  uint8_t     Axis1_Status;
  uint8_t     AxisGroup;
 }ECAT_Rcv;

typedef struct
 {
  uint32_t    DigitalOutputs;
  uint8_t     Resolution;
  uint8_t     Device_Status;
  uint8_t     AxisGroup;
  uint8_t     Axis0_Status;
  uint8_t     Axis1_Status;
  uint8_t     Axis2_Status;
  uint8_t     Axis3_Status;
 }ECAT_Snd;

//Define Device Status Bits
const uint8_t DS_LOADING = 0b0000'0001; //Bit0 Loading Model
const uint8_t DS_TESTING = 0b0000'0010; //Bit1 Testing for Collisions
const uint8_t DS_FAULT   = 0b0000'0100; //Bit2 Fault state
const uint8_t DS_READY   = 0b0000'1000; //Bit3 Operating normally
const uint8_t DS_Bit4    = 0b0001'0000; //Bit4 Reserved
const uint8_t DS_Bit5    = 0b0010'0000; //Bit5 Reserved
const uint8_t DS_Bit6    = 0b0100'0000; //Bit6 Reserved
const uint8_t DS_Bit7    = 0b1000'0000; //Bit7 Reserved

//Define PLC Status Bits
const uint8_t PS_RUN     = 0b0000'0001; //Bit0 Run tests continuously
const uint8_t PS_FAULT   = 0b0000'0010; //Bit1 Fault state
const uint8_t PS_READY   = 0b0000'0100; //Bit2 Operating normally
const uint8_t PS_Bit3    = 0b0000'1000; //Bit3 Reserved
const uint8_t PS_Bit4    = 0b0001'0000; //Bit4 Reserved
const uint8_t PS_Bit5    = 0b0010'0000; //Bit5 Reserved
const uint8_t PS_Bit6    = 0b0100'0000; //Bit6 Reserved
const uint8_t PS_Bit7    = 0b1000'0000; //Bit7 Reserved

/* ARGSUSED */
void collide1(void* client_data, DtObjectRef obj1, DtObjectRef obj2,
 const DtCollData* coll_data) {
}

#ifdef STATISTICS
extern int num_box_tests;
#endif

//Prototypes
int LoadSTL(ModelPart mPart);

int LoadConfig();
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109
110
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114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

void CreateParts();

void MoveParts();

void WriteOutputs();

void ClearOutputs();

void CleanupSOLID();

void ParentMove(int, DT_Scalar&, DT_Scalar&, DT_Scalar&);

int ReadIntAfter(string& strIn, int iFrom);

double ReadDblAfter(string& strIn, int iFrom);

void EtherCAT_Exchange();

// trim from start
static inline std::string& ltrim(std::string& s) {
 s.erase(s.begin(), std::find_if(s.begin(), s.end(),
  std::not1(std::ptr_fun<int, int>(std::isspace))));
 return s;
}

// trim from end
static inline std::string& rtrim(std::string& s) {
 s.erase(std::find_if(s.rbegin(), s.rend(),
  std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
 return s;
}

// trim from both ends
static inline std::string& trim(std::string& s) {
 return ltrim(rtrim(s));
}

//Global Variables
string path = "../../";
string arg;
vector<MyObject> vObjects;
vector<DtShapeRef> vShapes;
vector<ModelPart> vParts;
vector<DT_Scalar> vCurPos;
vector<DT_Scalar> vCurVel;
string resStrings[6] = {"10", "1", "01", "001", "0005", "0001"};
EasyCAT EASYCAT;                // EtherCAT slave istantiation
ECAT_Rcv rcvDat;  // Data received from EtherCAT slave
ECAT_Snd sndDat;  // Data for EtherCAT slave to send out
int iNumParts;   // Number of Model Parts in memory
int useCmd = 1;   // Allow position entry from command line instead of
 EtherCAT
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159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196

197
198

199
200

201
202
203
204
205
206

string strRes = "";  // Choose model resolution to be loaded 
int oldRes;   // for checking if PLC has requested a resolution change

/* ARGSUSED */
void collide2(void* client_data, DtObjectRef obj1, DtObjectRef obj2,
 const DtCollData* coll_data) {
 FILE* stream = (FILE*)client_data;
 fprintf(stream, "Object %d interferes with object %d\n",
  (*(MyObject*)obj1).id, (*(MyObject*)obj2).id);
 vParts[(*(MyObject*)obj1).id].Status |= AS_COLLISION;
 vParts[(*(MyObject*)obj2).id].Status |= AS_COLLISION;
}

int main(int argc, char *argv[])
{
 //define local variables
 bool bContinue = true, bCollision;
 string strCmd;
 int col_count = 0;
 Quaternion q;
 
 //Handle command line arguments
 for (int i = 0; i < argc; i++)
 {
  arg = argv[i];
  if (arg.find("-cmd") == 0) useCmd = 1;
  if (arg.find("-ECAT") == 0) useCmd = 0;
  if (arg.find("-res=") == 0) strRes = arg.substr(5);
 }

 //Start Digital IO interface
 wiringPiSetup();
 for (int i = 0; i < 8; i++) pinMode(i, OUTPUT);
 
 //Start EtherCAT slave if it is being used
 if (useCmd == 0)
 {
  if (EASYCAT.Init() == true)      // EasyCAT Hat 

initialization
        cout << "EtherCAT slave Initialized." << std::endl; // 

succesfully completed
       else        // initialization failed   
        cout << "EtherCAT slave inizialization failed." << endl;// 

the EasyCAT board was not recognized

  sndDat.Device_Status &= 0; //Clear all status bits being sent to 
the PLC

 }
      
 sndDat.Device_Status |= DS_LOADING; //Set LOADING Status Bit
 LoadConfig(); //Load descriptions of ModelParts to be imported
 CreateParts(); //Create ModelParts by importing STL files into SOLID
 sndDat.Device_Status &= ~DS_LOADING; //Reset LOADING Status Bit
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208
209
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211
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213
214
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216
217
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219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

 

 while (bContinue)
 {
  //Update current positions of loaded objects
  if (useCmd == 0)//Axis positions comming from EtherCAT fieldbus 
  {
   EASYCAT.MainTask();  // execute the EasyCAT task
   EtherCAT_Exchange();  // perform data exchange with 

EtherCAT slave
  }
  
  MoveParts(); //Update positions of ModelParts to match real 

machine
  
  //Test for collision
  sndDat.Device_Status &= ~DS_READY;
  sndDat.Device_Status |= DS_TESTING;
  ClearOutputs();
  auto t1 = Clock::now();
  bCollision = dtTest();

  auto t2 = Clock::now();
  WriteOutputs();
  std::cout << "Process time = " << 

std::chrono::duration_cast<std::chrono::microseconds>(t2 - 
t1).count()

  << " microseconds" << std::endl;
  sndDat.Device_Status &= ~DS_TESTING;
  sndDat.Device_Status |= DS_READY;
  
  //Prompt Operator to Continue or Quit if using command line
  if (useCmd == 1)
  {
   bContinue = false;
   std::cout << "Type 'c' to continue, or 'q' to Quit: ";
   std::cin >> strCmd;
   if (strCmd != "q") bContinue = true;
  }
  else
  {
   if (oldRes != rcvDat.Resolution)
   {
    sndDat.Device_Status &= ~DS_READY;
    sndDat.Device_Status |= DS_LOADING;
    CleanupSOLID();
    LoadConfig();
    CreateParts();
    oldRes = rcvDat.Resolution;
    sndDat.Device_Status &= ~DS_LOADING;
   }
  } 
 }
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261
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266
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270
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274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

298
299
300
301
302
303
304
305
306
307

 
 std::cout << "Number of collisions: " << col_count << endl;
#ifdef STATISTICS
 cout << "Number of sep_axis calls: " << num_box_tests << endl;
#endif
 //Cleanup on SOLID Library objects
 CleanupSOLID();
 
 return 0;
}

int LoadConfig()
// LoadConfig proceedure opens Config.txt and reads names and attributes
// of ModelParts to be tested for collision
// Requires global variables: vParts, iNumParts.
{
 iNumParts = 0;

 //Determine Model Resolution to use
 if ((strRes.length() == 0) & (useCmd == 1))
 {
  strRes = "1";
 }
 else
 {
  if (useCmd == 0)
  {
   EASYCAT.MainTask(); // execute the EasyCAT task
   EtherCAT_Exchange();// perform data exchange with EtherCAT slave
   strRes = resStrings[rcvDat.Resolution];
   sndDat.Resolution = rcvDat.Resolution;
  }
 }
 
 //Load Config file
 string inStr, strMachine, configFile;
 string res;
 ifstream infile;
 
 //std::cout << "Enter Config file resolution (10, 1, 01, 001, 0001, 

etc): ";
 //std::cin >> res;
 configFile = path + "Config_" + strRes + ".txt";
 infile.open(configFile);
 cout << "Attempting to Open: " << configFile << "\n";
 if (!infile.fail())
 {
  std::cout << "Config file is Open.\n";
  while (getline(infile, inStr))
  {
   if (inStr.find("ONFIG: ") == 1)
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310

311
312
313
314
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318
319
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326
327
328
329
330

331
332
333
334
335
336
337

338
339
340

341
342
343
344
345
346
347
348
349
350
351
352
353

   {
    strMachine = inStr.substr(8);
    std::cout << "Beginning configuration for: " << strMachine 

<< "\n";
    getline(infile, inStr);
    if (inStr.find("PARTS: ") == 1)
    {
     inStr = inStr.substr(8);
     istringstream os(inStr);
     os >> iNumParts;
     std::cout << "Setting up for " << iNumParts << " parts.

\n";
     vParts.resize(iNumParts);
     getline(infile, inStr); getline(infile, inStr);
     if (inStr.find("IXED: ") == 1)
     {
      inStr = inStr.substr(12);
      vParts[0].Filename = inStr.substr(0, inStr.size

()-1);
      vParts[0].Axis = -1;
      std::cout << "Fixed Part called: " << inStr << "\n";
      for (int i = 2; i <= iNumParts; i++)
      {
       getline(infile, inStr);
       inStr = inStr.substr(12);
       vParts[i - 1].Filename = inStr.substr(0, 

inStr.size()-1);
       getline(infile, inStr);
       vParts[i - 1].Axis = ReadIntAfter(inStr, 12);
       getline(infile, inStr);
       vParts[i - 1].Parent = ReadIntAfter(inStr, 12);
       getline(infile, inStr);
       istringstream os(inStr.substr(12));
       os >> vParts[i - 1].q1 >> vParts[i - 1].q2 >> 

vParts[i - 1].q3 >> vParts[i - 1].q4;
       getline(infile, inStr);
       istringstream os1(inStr.substr(12));
       os1 >> vParts[i - 1].XTrans >> vParts[i - 

1].YTrans >> vParts[i - 1].ZTrans;
       getline(infile, inStr);
       vParts[i - 1].XOffset = ReadDblAfter(inStr, 12);
       getline(infile, inStr);
       vParts[i - 1].YOffset = ReadDblAfter(inStr, 12);
       getline(infile, inStr);
       vParts[i - 1].ZOffset = ReadDblAfter(inStr, 12);
       getline(infile, inStr);
       vParts[i - 1].XScale = ReadDblAfter(inStr, 12);
       getline(infile, inStr);
       vParts[i - 1].YScale = ReadDblAfter(inStr, 12);
       getline(infile, inStr);
       vParts[i - 1].ZScale = ReadDblAfter(inStr, 12);
       std::cout << "Motion Part called: " << vParts[i 

- 1].Filename << "\n";



...iversity\ENG4111\RPi_Transfer\CA_Sim\CART\CART\CART.cpp 8
354
355
356
357
358

359
360
361
362
363

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

398
399

400
401
402

      }
     }
     else
     {
      std::cout << "Error: Did not find name of Fixed 

Part.\n";
     }
    }
    else
    {
     std::cout << "Error: Did not find the number of Parts to

 load.\n";
    }
   }   
  }
  infile.close();
  std::cout << "Config file closed.\n";
  return 1;
 }
 return 0;
}

void CreateParts()
{
 int iCount = 0;

 //Resize variables to hold the parts to be created
 vObjects.resize(iNumParts);
 vShapes.resize(iNumParts);
 vCurPos.resize(iNumParts);
 vCurVel.resize(iNumParts);
 std::cout << "Loading " << iNumParts << " parts.\n";
 
 //Get Load start-time
 auto t1 = Clock::now();
 for (int i = 0; i < iNumParts; i++)
 {
  //Import each STL file into a ComplexShape
  vObjects[i].id = vParts[i].Axis;
  vShapes[i] = dtNewComplexShape();
  iCount = LoadSTL(vParts[i]);
  dtEndComplexShape();
  dtCreateObject(&vObjects[i], vShapes[i]);
  if (iCount > 0)
   std::cout << vParts[i].Filename << " loaded with " << iCount << 

" triangles.\n";
  else
   std::cout << vParts[i].Filename << " failed to find any 

triangles.\n";
 }
 
 dtDisableCaching();
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404
405
406
407

408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435

436

437
438
439
440
441
442
443
444
445
446
447
448
449
450

 dtSetDefaultResponse(collide2, DT_SMART_RESPONSE, stdout);

 //get Load end-time
 auto t2 = Clock::now();
 std::cout << "Load time = " << 

std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count()
  << " milliseconds" << std::endl;
}

int LoadSTL(ModelPart mPart)
// LoadSTL procedure opens an STL file specified in Config file, and 
generates 

// a DT_ShapeRef to be used for Colision Detection
{
 string inStr, xStr, yStr, zStr;
 DT_Scalar inX, inY, inZ, outX, outY, outZ;
 DT_Scalar q1, q2, q3, q4;
 DT_Scalar minX = 0, maxX = 0, minY = 0, maxY = 0, minZ = 0, maxZ = 0;
 DT_Scalar shiftX, shiftY, shiftZ;
 int iCount = 0;
 ifstream infile1;
 string filename;
 filename = path + mPart.Filename;

 infile1.open(filename);
 cout << "Attempting to Open: [" << filename << "]\n";
 if (!infile1.fail())
 {
  cout << mPart.Filename << " Opened successfully.\n";
  //Prepare Orientation
  q1 = mPart.q1; q2 = mPart.q2; q3 = mPart.q3; q4 = mPart.q4;
  //Prepare shift values
  if(mPart.XScale == 0) shiftX = mPart.XTrans; else shiftX = 

mPart.XOffset;
  if(mPart.YScale == 0) shiftY = mPart.YTrans; else shiftY = 

mPart.YOffset;
  if(mPart.ZScale == 0) shiftZ = mPart.ZTrans; else shiftZ = 

mPart.ZOffset;
  while (getline(infile1, inStr))
  {
   inStr = inStr.substr(0, inStr.size()-1);
   //cout << inStr << " [" << inStr.length() << "]\n";
   if (inStr == "    outer loop")
   {
    //cout << "Start of Triangle.";
    dtBegin(DT_SIMPLEX);
    for (size_t i = 0; i < 3; i++)
    {
     //Reduce inStr to the 3 components of the Vertex
     getline(infile1, inStr);
     inStr = ltrim(inStr);
     inStr = inStr.substr(6);
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452
453
454
455
456
457
458
459
460
461
462

463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

485
486
487
488
489
490
491
492
493
494
495
496

     inStr = ltrim(inStr);
     //Separate the string into X, Y, Z values as strings
     istringstream os(inStr);
     os >> inX >> inY >> inZ;
     //Check if rotation is required
     if ((q1 == 1) && (q2 == 0) && (q3 == 0) && (q4 == 0))
     {
      outX = inX; outY = inY; outZ = inZ;
     }
     else
     {
      outX = (q1*q1*inX)   + (2*q3*q1*inZ) - (2*q4*q1*inY)

 + (q2*q2*inX)   + (2*q3*q2*inY) + (2*q4*q2*inZ) - 
(q4*q4*inX)   - (q3*q3*inX);

      outY = (2*q2*q3*inX) + (q3*q3*inY)   + (2*q4*q3*inZ)
 + (2*q1*q4*inX) - (q4*q4*inY)   + (q1*q1*inY)   - 
(2*q2*q1*inZ) - (q2*q2*inY);

      outZ = (2*q2*q4*inX) + (2*q3*q4*inY) + (q4*q4*inZ)  
 - (2*q1*q3*inX) - (q3*q3*inZ)   + (2*q1*q2*inY) - 
(q2*q2*inZ)   + (q1*q1*inZ);

     }
     //Add the Vertex to the complex shape
     outX = shiftX + outX;
     outY = shiftY + outY;
     outZ = shiftZ + outZ;
     dtVertex(outX, outY, outZ);
     if((outX < minX) | (iCount == 0)) minX = outX;
     if((outX > maxX) | (iCount == 0)) maxX = outX;
     if((outY < minY) | (iCount == 0)) minY = outY;
     if((outY > maxY) | (iCount == 0)) maxY = outY;
     if((outZ < minZ) | (iCount == 0)) minZ = outZ;
     if((outZ > maxZ) | (iCount == 0)) maxZ = outZ; 
    }
    dtEnd();
    //cout << " End of Triangle.\n";
    iCount++;
   }
  }
  infile1.close();
  cout << "Bounds: ([" << minX << "," << maxX << "], [" << minY << ","

 << maxY;
  cout << "], [" << minZ << "," << maxZ << "])\n";
 }
 else cout << "Failed to Open: " << mPart.Filename << "\n";
 return iCount;
}

void MoveParts()
{
 DT_Scalar curAxisVal;
 DT_Scalar moveX, moveY, moveZ; 
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497
498
499

500
501

502
503

504
505
506
507
508

509
510
511
512
513

514

515
516
517
518
519
520
521
522

523
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525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

 for (int i = 0; i < iNumParts; i++)
 {
  if (vParts[i].Axis >= 0) //Check if current Part can be moved by an 

Axis
  {
   if (useCmd == 1) //Get axis position from command line if not 

using EtherCAT
   {
    std::cout << "Enter position for " << vParts[i].Filename << 

": ";
    std::cin >> curAxisVal;
    vCurPos[i] = curAxisVal;
   }
   dtSelectObject(&vObjects[i]); //Select Part
   dtLoadIdentity();  //Load Identity matrix for the current 

Part
   //Apply Axis position to the Part according to the Config file
   moveX = vParts[i].XOffset + vParts[i].XScale * vCurPos[i];
   moveY = vParts[i].YOffset + vParts[i].YScale * vCurPos[i];
   moveZ = vParts[i].ZOffset + vParts[i].ZScale * vCurPos[i];
   if (vParts[i].Parent > -1) //Check if there is a moving parent 

Axis
    //Call recursive procedure to update position from all 

parents
    ParentMove(vParts[i].Parent, moveX, moveY, moveZ);
   dtTranslate(moveX, moveY, moveZ);
  }
 }
}

void ParentMove(int parent, DT_Scalar& deltaX, DT_Scalar& deltaY, DT_Scalar&
 deltaZ)

{
 int grandParent = -1; 

 for (int j = 0; j < iNumParts; j++)
 {
  if (vParts[j].Axis == parent)
  {
   deltaX += vParts[j].XScale * vCurPos[j];
   deltaY += vParts[j].YScale * vCurPos[j];
   deltaZ += vParts[j].ZScale * vCurPos[j];
   grandParent = vParts[j].Parent;
   break;
  }
 }
 if (grandParent > -1) ParentMove(grandParent, deltaX, deltaY, deltaZ);
} 

void EtherCAT_Exchange()
{
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544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
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574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

 int numInGrp = 0;

 // Read data from PLC via EtherCAT slave
 rcvDat.Axis0_Pos    = EASYCAT.BufferOut.Cust.P2D_Axis0_Pos;
 rcvDat.Axis0_Vel    = EASYCAT.BufferOut.Cust.P2D_Axis0_Vel;
 rcvDat.Axis1_Pos    = EASYCAT.BufferOut.Cust.P2D_Axis1_Pos;
 rcvDat.Axis1_Vel    = EASYCAT.BufferOut.Cust.P2D_Axis1_Vel;
 rcvDat.Axis2_Pos    = EASYCAT.BufferOut.Cust.P2D_Axis2_Pos;
 rcvDat.Axis2_Vel    = EASYCAT.BufferOut.Cust.P2D_Axis2_Vel;
 rcvDat.Axis3_Pos    = EASYCAT.BufferOut.Cust.P2D_Axis3_Pos;
 rcvDat.Axis3_Vel    = EASYCAT.BufferOut.Cust.P2D_Axis3_Vel;
 rcvDat.Axis0_Status = EASYCAT.BufferOut.Cust.P2D_Axis0_Status;
 rcvDat.Axis2_Status = EASYCAT.BufferOut.Cust.P2D_Axis2_Status;
 rcvDat.PLC_Status   = EASYCAT.BufferOut.Cust.PLC_Status;
 rcvDat.Resolution   = EASYCAT.BufferOut.Cust.Resolution;
 rcvDat.Axis3_Status = EASYCAT.BufferOut.Cust.P2D_Axis3_Status;
 rcvDat.Axis1_Status = EASYCAT.BufferOut.Cust.P2D_Axis1_Status;
 rcvDat.AxisGroup    = EASYCAT.BufferOut.Cust.P2D_AxisGroup;
 
 // Write data to PLC via EtherCAT slave
 EASYCAT.BufferIn.Cust.DigitalOutputs   = sndDat.DigitalOutputs;
 EASYCAT.BufferIn.Cust.Resolution       = sndDat.Resolution;
 EASYCAT.BufferIn.Cust.Device_Status    = sndDat.Device_Status;
 EASYCAT.BufferIn.Cust.D2P_AxisGroup    = sndDat.AxisGroup;
 EASYCAT.BufferIn.Cust.D2P_Axis0_Status = sndDat.Axis0_Status;
 EASYCAT.BufferIn.Cust.D2P_Axis1_Status = sndDat.Axis1_Status;
 EASYCAT.BufferIn.Cust.D2P_Axis2_Status = sndDat.Axis2_Status;
 EASYCAT.BufferIn.Cust.D2P_Axis3_Status = sndDat.Axis3_Status;

 for (int i = 0; i < iNumParts; i++)
 {
  if ((vParts[i].Axis >= rcvDat.AxisGroup*4) && (vParts[i].Axis < 

(rcvDat.AxisGroup + 1)*4))
  {
   numInGrp = vParts[i].Axis - rcvDat.AxisGroup*4;
   switch (numInGrp) {
    case 0: vCurPos[i] = rcvDat.Axis0_Pos;
     vCurVel[i] = rcvDat.Axis0_Vel;
     break;
    case 1: vCurPos[i] = rcvDat.Axis1_Pos;
     vCurVel[i] = rcvDat.Axis1_Vel; 
     break;
    case 2: vCurPos[i] = rcvDat.Axis2_Pos;
     vCurVel[i] = rcvDat.Axis2_Vel;
     break;
    case 3: vCurPos[i] = rcvDat.Axis3_Pos;
     vCurVel[i] = rcvDat.Axis3_Vel;
     break;
    default:
     break;
   }
  }
 }
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}

void WriteOutputs()
{
 for (int i = 0; i < iNumParts; i++)
 {
  if (vParts[i].Status & AS_COLLISION) 
   digitalWrite(vParts[i].Axis, HIGH);
  else 
   digitalWrite(vParts[i].Axis, LOW);
 }
}

void ClearOutputs()
{
 for (int i = 0; i < iNumParts; i++)
  vParts[i].Status &= ~AS_COLLISION;
}

void CleanupSOLID()
{
 for (int i = 0; i < iNumParts; i++)
 {
  dtDeleteObject(&vObjects[i]);
  dtDeleteShape(vShapes[i]);
 }
}

int ReadIntAfter(string& strIn, int iFrom)
{
 int iResult = 0;
 istringstream os(strIn.substr(iFrom));
 os >> iResult;
 return iResult;
}

double ReadDblAfter(string& strIn, int iFrom)
{
 double dblResult = 0;
 istringstream os(strIn.substr(iFrom));
 os >> dblResult;
 return dblResult;
}




