
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Condition Monitoring for Predictive Maintenance Purposes

A dissertation submitted by

M. Fisher

in fulfilment of the requirements of

ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Electrical & Electronic Engineering

Submitted: October, 2019

Abstract

Currently, a large amount of time and resources are invested in preventative and reactive

maintenance, independent of industry. In the Aerospace sector we have seen large strides

towards Health and Usage Monitoring (HUMS) and its associated predictive maintenance,

which results in a large amount of labor and cost savings.

This research investigates whether an embedded device with peripheral sensors and mod-

ules can capture, store and transmit a number of physical variables leading to the suc-

cessful prediction of a fault condition in a road vehicle. This would allow predictive

maintenance to be carried out, reducing cost and down-time associated with preventa-

tive and reactive maintenance. Additionally, faults incurred in normal operations that

spread damage beyond the faulty component may be prevented with the use of predictive

practices.

Using a small but powerful micro-controller, suitable sensor arrays such as the MAX9814

microphone and LIS3DH Accelerometer were integrated to monitor engine audio and

vibration. An OBD2 hardware/ software package was used to monitor real-time conditions

during test phases. Additionally, an external GPS patch antenna was manufactured to

mount on the skin of the vehicle and used in conjunction with a GPS module to log

location data. Lastly, a Wi-Fi module was developed to communicate wirelessly when the

vehicle/ module returned to a geo-located home-base.

Once the data had been successfully logged and sent back to the client computer at

home-base, it was processed using a number of techniques to determine a fault or healthy

condition. FFT and spectrogram plots were created to visualize the signal content of

faulty and healthy data. Linear Predictive Coding was used in conjunction with a Ma-

halanobis Distance measure to test unknown audio samples against known fault/ healthy

conditions.

ii

The LPC/ Mahalanobis Distance techniques were able to detect a known condition (fault

or healthy) with a high level of probability when tested against unknown audio samples

of the same condition on the same vehicle. It is unknown if the algorithm would be able

to detect similar conditions when tested against vehicles of the same make, model and

year. It was not able to detect similar faults on vehicles of a different make, model or

year.

It is the hope of this research that using the detection algorithms will lead to development

of predictive maintenance models, where the Mahalanobis Distance measure will give

indications of approaching faults.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

M. Fisher

Acknowledgments

These works would not have occurred without the support of my wife Britta-Rose and

my two children, Calvin and Kaylee. I will be eternally grateful for the chance to go back

to school at such a tender age.

I would also like to show my appreciation for my supervisor, Mark Phythian, who spent

a large amount of time with me whether he was busy or not, and was always on hand to

help out.

M. Fisher

Contents

Abstract i

Acknowledgments v

List of Figures xiv

List of Tables xix

Chapter 1 Introduction 1

1.1 Chapter Overview . 1

1.2 Prologue . 2

1.3 Background . 2

1.3.1 Health Monitoring in Aviation . 3

1.3.2 Fault Finding for the Automobile 4

1.3.3 Data Logging in Agriculture . 5

1.3.4 Maintenance Practices in Industry 5

1.3.5 Data Logging in Healthcare . 6

1.4 Project Outline . 6

CONTENTS vii

1.5 Research Objectives . 7

1.6 Methodology Summary . 8

1.7 Consequences of Applied Research . 8

1.8 Risk Assessment . 9

1.9 Project Timeline . 10

1.10 Resource Requirements . 12

1.11 Dissertation Overview . 13

1.11.1 Chapter 1: Introduction . 13

1.11.2 Chapter 2: Literature review . 13

1.11.3 Chapter 3: Methodology . 13

1.11.4 Chapter 4: Design . 13

1.11.5 Chapter 5: Results and Discussion 14

1.11.6 Chapter 6: Conclusions and Further Work 14

Chapter 2 Literature Review 15

2.1 Chapter Overview . 15

2.2 Introduction . 16

2.3 Significance of Condition Monitoring . 16

2.4 Sensor Packages . 17

2.4.1 Vibration . 17

2.4.2 Audio . 21

2.4.3 Location and Distance . 24

CONTENTS viii

2.4.4 CAN Bus and OBD2 . 32

2.5 Micro-controllers . 35

2.6 Data storage . 37

2.7 Data Transmission . 37

2.8 Data Analysis Software . 39

2.8.1 MATLAB . 39

2.8.2 Audacity . 40

2.8.3 Google Earth . 40

2.8.4 OBD2 scan tools . 40

2.9 Data Analysis . 41

2.9.1 Fast Fourier Transform . 41

2.9.2 Linear Predictive Coding . 42

2.9.3 Mahalanobis Distance . 43

2.10 Chapter Summary . 45

Chapter 3 Methodology 46

3.1 Chapter Overview . 46

3.2 Introduction . 47

3.3 Research Documentation . 47

3.4 Methods of Analysis . 48

3.5 Quality Assurance Plan . 50

3.6 Project Breakdown . 51

CONTENTS ix

3.7 Hardware . 51

3.7.1 Teensy 3.6 and IDE . 52

3.7.2 LIS3DH accelerometer . 53

3.7.3 MAX9814 microphone . 54

3.7.4 GPS . 54

3.7.5 ATWINC1500 Wi-Fi . 56

3.7.6 OBD2 UART and FTDI Breakout 56

3.8 Software . 57

3.8.1 MATLAB . 57

3.8.2 Teensyduino IDE . 57

3.8.3 Audacity . 58

3.8.4 Google Earth . 58

3.8.5 OBD2 scan tool . 58

3.9 Data Analysis . 58

3.10 Chapter Summary . 59

Chapter 4 Design 60

4.1 Chapter Overview . 60

4.2 Audio . 61

4.2.1 Hardware . 61

4.2.2 Software . 62

4.3 Vibration . 63

CONTENTS x

4.3.1 Hardware . 63

4.3.2 Software . 64

4.4 Test Leads . 65

4.5 GPS . 66

4.5.1 GPS Receiver Hardware . 66

4.5.2 Software . 66

4.5.3 GPS antenna . 68

4.5.4 LNA and connections . 72

4.6 OBD2 . 74

4.6.1 Hardware . 74

4.6.2 Software . 74

4.7 Wi-Fi . 75

4.7.1 Hardware . 75

4.7.2 Software . 76

4.8 Data Analysis . 78

4.8.1 FFT/ Spectrogram Software . 78

4.8.2 LPC/ Mahalanobis Software . 80

4.9 System architecture . 83

4.10 An Integrated System . 83

4.11 Chapter Summary . 84

Chapter 5 Results and Discussion 85

CONTENTS xi

5.1 Chapter Overview . 85

5.2 Preliminary Component Testing . 86

5.2.1 LIS3DH Accelerometer . 86

5.2.2 MAX9814 Microphone . 87

5.2.3 Data Storage and file formats . 88

5.2.4 GPS sub-system . 88

5.2.5 Wi-Fi and Access Point server . 89

5.2.6 Final Configuration . 90

5.3 Trial Summaries . 92

5.4 GPS Results . 93

5.4.1 Trial #1 Subaru Forester . 93

5.4.2 Geo-location . 94

5.5 OBD2 Results . 95

5.5.1 Trial #1 Subaru Forester . 95

5.6 Wi-Fi and Server results . 96

5.7 Vibration Results . 98

5.7.1 FFT and Spectrogram Analysis . 98

5.8 Audio Results . 101

5.8.1 FFT and Spectrogram Analysis . 101

5.8.2 LPC and Mahalanobis Distance . 105

5.9 Further research - Engine Database recordings 108

CONTENTS xii

5.9.1 FFT analysis . 108

5.9.2 LPC and Mahalanobis Distance . 109

5.10 Cross platform analysis . 110

5.11 Discussion of results . 113

5.11.1 Preliminary Component Testing 113

5.11.2 Data Collection . 113

5.11.3 FFT and Spectrogram Analysis . 115

5.11.4 LPC and Mahalanobis Distance . 116

5.12 Cost Benefit Analysis . 117

5.13 Chapter Summary . 121

Chapter 6 Conclusions and Further Work 122

6.1 Chapter Overview . 122

6.2 Hardware and Software Conclusions . 123

6.3 Analysis Conclusions . 124

6.4 Project Objectives . 125

6.5 Overall relevance . 126

6.6 Further Work . 126

6.7 Chapter Summary . 128

REFERENCES 129

Appendix A Project Specification 136

CONTENTS xiii

Appendix B Risk Assessment 139

Appendix C Project Timeline 144

Appendix D Resource Requirements 146

Appendix E Mahalanobis Distance Raw Data 148

Appendix F Embedded C: Teensy 3.6 Source code 151

Appendix G MATLAB: Audio FFT and Spectrogram analysis 166

Appendix H MATLAB: Vibration FFT and Spectrogram analysis 169

Appendix I MATLAB: Create LPC Baselines 172

Appendix J MATLAB: Mahalanobis Distance 174

List of Figures

2.1 DFT of cylinder head accelerometer . 18

2.2 DFT of cylinder head accelerometer close up 19

2.3 LIS3DH sensor package . 20

2.4 LIS3DH sensor schematic . 20

2.5 Engine Fault Frequencies . 22

2.6 Electret Microphone circuit diagram . 22

2.7 Microphone polar patterns . 23

2.8 Adafruit MAX9814 block diagram . 24

2.9 Active versus Passive Antennas . 25

2.10 GPS Antenna placement . 26

2.11 Microstrip Patch Theory 1 . 26

2.12 Microstrip Patch Theory 2 . 27

2.13 Patch Antenna Directivity . 28

2.14 Microstrip Patch Theory 3 . 28

2.15 Antenna mounting positions on the vehicle 29

LIST OF FIGURES xv

2.16 Typical Low Noise Amplifier connection 30

2.17 ALM-1612 Suggested board layout . 30

2.18 Adafruit Ultimate GPS breakout schematic 32

2.19 CAN Bus explained . 32

2.20 CAN bus message breakdown . 33

2.21 ELM327 Block Diagram . 34

2.22 ATWINC1500 WiFi Breakout . 39

2.23 Fast Fourier Transform - Basic . 41

2.24 Mahalanobis Distance Graphic . 44

2.25 Mahalanobis Distance in Practice . 45

3.1 Proposed system architecture . 52

3.2 Teensy 3.6 . 52

3.3 LIS3DH accelerometer . 53

3.4 MAX9814 Microphone with AGC . 54

3.5 GPS Antenna - External Active Antenna 55

3.6 Nooelec Premium SAW filter and LNA 55

3.7 Adafruit Ultimate GPS Breakout . 56

3.8 Sparkfun OBD2 UART . 57

4.1 MAX9814 Microphone Design . 61

4.2 Teensy Audio GUI: Flow based programming 62

LIST OF FIGURES xvi

4.3 LIS3DH accelerometer setup . 64

4.4 Test lead manufacture . 65

4.5 Adafruit Ultimate GPS setup . 66

4.6 HFSS Design environment . 69

4.7 GPS Patch antenna results . 70

4.8 GPS Patch antenna manufacture . 70

4.9 GPS Patch antenna measurement results after manufacture 71

4.10 GPS Patch antenna manufacture results 71

4.11 ALM-1612 GPS LNA . 72

4.12 GPS LNA Build results . 72

4.13 GPS Nooelec SAW Filter and LNA . 73

4.14 OBD2 connection hardware . 74

4.15 OBD Auto Doctor . 75

4.16 ATWINC1500 WiFi Setup . 76

4.17 HTML script example . 77

4.18 FFT code snippet from MATLAB . 79

4.19 FFT code snippet from MATLAB . 80

4.20 LPC code snippet from MATLAB . 81

4.21 Mahalanobis code snippet from MATLAB 82

4.22 System Architecture . 83

5.1 Phone Vibration testing . 86

LIST OF FIGURES xvii

5.2 1 kHz test recording . 87

5.3 1 kHz test recording . 87

5.4 GPS test results . 89

5.5 Preliminary Wi-Fi results . 90

5.6 Final configuration . 91

5.7 GPS plot from Trial #1 . 93

5.8 GPS plot from Trial #1 . 94

5.9 30m Geo-located fence . 95

5.10 OBD2 plot from Trial #1 . 96

5.11 Condition Monitoring Web page . 97

5.12 WiFi communications . 97

5.13 Time analysis in MATLAB using Vibration data 98

5.14 Spectrogram analysis in MATLAB using Vibration data 99

5.15 FFT analysis in MATLAB using Vibration data 100

5.16 Vibration overlay for fault data on Hyundai Getz 100

5.17 FFT overlay for fault data on Hyundai Getz 101

5.18 Time domain plot of Forester audio recording 102

5.19 Frequency domain plot of Forester audio recording 103

5.20 Spectrogram plot of Forester audio recording 103

5.21 Audio overlay plot of Hyundai Getz recording 104

5.22 FFT overlay plot of Hyundai Getz audio recording 105

LIST OF FIGURES xviii

5.23 Mahalanobis Distance Results . 107

5.24 BMW audio overlay . 108

5.25 BMW FFT overlay . 109

5.26 BMW Mahalanobis Distance Results . 110

5.27 Known Samples: Mahalanobis Distance 111

5.28 Unknown Samples: Mahalanobis Distance 112

5.29 Example of HUMS Cost benefit tool . 118

5.30 Example of EXAKT decision analysis . 119

List of Tables

1.1 Project Timeline . 11

2.1 Micro-controller breakdown 1 . 35

2.2 Micro-controller breakdown 2 . 36

Chapter 1

Introduction

1.1 Chapter Overview

This chapter provides an introduction and background for the field of data logging. It

will describe the project outline and research objectives which help to define the end goals

being sought. Finally, it shall describe the necessary resources and timeline required to

achieve the research objectives, as well as including a risk assessment for the activities

undertaken in the course of the project.

1.2 Prologue 2

1.2 Prologue

Since the beginning, man has fought a battle with machines. When the wheel was in-

vented, man knew it wasn’t perfect and he sought to make it so. Unfortunately, we

haven’t reached this point quite yet. While maintenance costs are decreasing due to an

increase in vehicle quality (Antich 2014), there is still a significant amount of cost associ-

ated with operating a vehicle. A portion of this cost is preventative maintenance, things

like periodic servicing, tire changes and cleaning. The remainder of this cost is reactive

maintenance, maintenance that is incurred when a vehicle breaks unexpectedly.

Currently, a large amount of time and resources is invested in preventative maintenance,

regardless of industry. As it is time-based, it can regularly inflate the cost involved,

especially if the maintenance is done prematurely. Additionally, more spare parts are re-

quired, as it requires regular replacement of serviceable parts. Lastly, it is labor intensive,

requiring trained maintainers for every service (Mehta 2018).

Common to aviation, heavy industry and the high performance racing industry is the

practice of condition monitoring, the concept of continually monitoring a parameter, or

parameters, in machinery in order to identify a significant change in operating conditions.

This can lead to the diagnosis of faults and the prevention of costly and catastrophic

failure (Freeman 2018). Condition monitoring is a component of Predictive Maintenance,

where the maintenance relies on the condition of a machine rather than a set interval.

1.3 Background

The concepts and technology related to condition monitoring are not new. However, the

application of this technology to road vehicles is a recently developing one. Due to the

nature of aircraft, it became a safety mandated issue early on in their timeline to be

able to prevent a fault occurring in flight. Alternatively, it was considered a minimum

requirement of the monitoring system to be able to determine what had caused the aircraft

to become faulty whilst in the air, for future prevention.

Road vehicles and plant do not suffer faults that lead to such catastrophic outcomes and

loss of life. As such, the technology has been developed along different timelines. Only in

1.3 Background 3

the last decade or so are we seeing advances in data logging applications for vehicles and

plant.

Generally, only mechanics and auto-electricians have access to the software and hardware

required to diagnose faults in a vehicle. Additionally, this information is very limited in

scope and will usually only show faults after the fact.

The main driver for this research in vehicles is an economic one. If commercial or private

owners are able to use a data logging system to aid in diagnosing faults, this will lead to

an ability to schedule preventative maintenance to reduce costs and down time. There are

a number of additional benefits as well, such as the ability to track by GPS in delivery

services, view trend monitoring data for optimal routing and engine performance with

different fuels or additives, and even to be able to review driver trends.

Upon an initial research foray into the field in the precursor subject, ENG4110 Engineering

Research Methodology, it was determined that there was some scope for the development

of a data logging system to help diagnose faults in private and public vehicles before

catastrophic failure. There are a wide number of papers in the field of maintenance

prevention, most of which describe some very specific applications of sensors in vehicles

and the resulting analysis of the data in diagnosing faults. This does not cross over

to long term data logging applications for the individual user however. It appears that

the majority of data logging systems available to the public are limited in scope, do not

provide fault diagnosis, or are sold at an exhaustive cost.

1.3.1 Health Monitoring in Aviation

An example of the condition monitoring systems in use today in aviation is that of the

HUMS (Health and Usage Monitoring) system used on the new Australian Defence Force

helicopter, the MRH-90 Taipan. The internally equipped system is able to provide infor-

mation on the performance of the aircraft to aircrew, maintainers and fleet managers in

order to aid in fault diagnosis and short term rectification of issues. It also collects trend

data which is useful in long term structural monitoring (Fay 2009).

While the MRH-90 is one of the newest to enter service in the ADF, the concept of health

monitoring is not new. Aircraft have employed ’black boxes’, or flight recorders, since

1.3 Background 4

the early 1960’s in order to determine why aircraft would fail. Interestingly, the flight

recorder was invented by an Australian scientist named David Warren working for the

Aeronautical Research Laboratory in Melbourne, which was one of the precursors to DST

(Defence Science and Technology), (DST 2018).

1.3.2 Fault Finding for the Automobile

Eventually, some of the monitoring applications in other industries lent themselves to

the public transport industry. This was seen in the OnBoard Diagnostic (OBD) system,

developed by the California Air Resources Board (ARB) in 1982 (Hanna 2017). Early on

in OBD history, different adapters were required for different vehicles as well as having

a different set of codes. This led on to the development of OBD2, which had a universal

set of fault codes and adapters. ODB2 installation has been mandatory in Australian

vehicles since 2005.

OBD2 systems conduct real-time system monitoring of the working condition of commer-

cial vehicles. In addition to this, the OBD system has the ability to detect a malfunction

within its monitoring scope and log a standardized Diagnostic Trouble Code (DTC) in

memory. OBD scan tools can then access the DTC from the Engine Control Unit (ECU),

leading to a reduction in troubleshooting time (Allam & Elhady 2018).

Until recently, the OBD diagnostics equipment was only found in local mechanical and

auto-electrician workshops. This made access to the OBD data restricted and was often

thought of as ”specialist” knowledge. Nowadays, the process is as simple as plugging

in the appropriate hardware modules and following along with the associated computer

programs, or apps in the case of mobile phone versions. This opens up a new pathway

for home enthusiasts to monitor the performance of their car in real-time.

Unfortunately, finding a fault in real-time is often too late. The ability to integrate OBD

systems with a data logging capability would provide drivers with vehicle and tracking

information that could prove invaluable in preventative maintenance and performance

logging.

One area where data logging has been developed extensively is in the high performance

racing industry, and more specifically, McLaren Applied Technologies. In 2007, the FIA

1.3 Background 5

(Federation Internationale de l’Automobile), which is the regulatory body for most auto

racing events, chose McLaren to be the sole supplier of ECUs in F1 vehicles. With the

help of over 300 sensors, McLaren’s F1 ECU deals with over 1000 input parameters and

transmits more than 1.5 GB of live data during an average 300 km race. This is roughly

750 million data points over 2 hours (McLaren Applied Technologies 2016).

Similar systems with reduced capabilities are available to the public racing domains. They

provide data from GPS modules, accelerometers, electrical sensors and the CAN bus to

name a few. They prove high level processing and approximately 24 hours of logging

time (Race-Technologies 2019). Unfortunately, they are designed more towards recording

race conditions and split times rather than fault conditions.

1.3.3 Data Logging in Agriculture

Something which has found a niche in data logging is the agriculture industry. Farming

equipment is commonly installed with systems similar to OBD2, where a large swath of

data is available to the user. Development is accelerating in data logging applications

which could be used to record sensor readings such as RPM, acres covered and mainte-

nance data (Wehrspann 2016).

On the ground, agriculture business owners are installing data loggers to the CAN buses

of the farming equipment to log and store data on the day to day operations. This gives

the farmer a huge advantage, enabling them to understand hybrid performance by field,

soil zone and population, with views to previous yield data.

Currently, data loggers in agriculture are limited by the array of sensors installed on the

given plant/ equipment at manufacture. Given more development, additional sensors

could be placed on planters to measure soil moisture, or on a disk to measure ground

hardness, making the data collection of necessary farming data more automatic. This

would lead to farmers making more informed operating decisions.

1.3.4 Maintenance Practices in Industry

Data loggers in manufacturing, mining, defence and other associated industries perform a

wide variety of tasks, from monitoring accelerations on a train, to smoke and pressure de-

1.4 Project Outline 6

tection on a decommissioned warship in the throes of explosively sinking (ThermoFisher

Scientific 2010). They are expected to be rugged and provide reliable collection of appro-

priate data.

Currently, preventative maintenance is the widely adopted strategy for conducting main-

tenance in industry. It means scheduling maintenance at regular intervals of time, based

on the manufacturers recommendations. For the newly emerging technological industries,

this is not cost effective. Each sector could benefit from looking towards predictive main-

tenance schedules based on condition monitoring systems (Mehta 2018). Transition to

predictive maintenance schedules will provide a large opportunity to increase reliability

and efficiency in production and operations.

1.3.5 Data Logging in Healthcare

Health care at first glance seems a surprising addition to a topical background of data

logging and predictive maintenance applications. Interestingly, a heart rate monitor was

one of the first data loggers invented for health monitoring, and had the ability to study

heart rate in real time or record for later study. Since its invention in 1977 by Polar

Electro for the Finnish National Cross Country Ski team, the heart rate monitor has

pervaded fitness cultures around the world (Kite-Powell 2019).

Data loggers in the health care industry also provide functions such as autoclave valida-

tion (a device to log temperature and sterilize an environment), Vaccine monitoring and

transportation, clean room monitoring, and pharmaceutical storage (MadgeTech 2018).

1.4 Project Outline

This research aims to determine whether an embedded device comprised of commercially

available components can successfully predict fault conditions in a vehicle, which would

allow predictive maintenance to be carried out, reducing costs, time and damages associ-

ated with preventative and reactive maintenance.

Testing and evaluation phases will determine a suitable configuration of the sensor array,

controlling software, and data logging capabilities. The evaluated system will be used to

1.5 Research Objectives 7

monitor a vehicle with a fault condition and the resulting data will be analyzed to confirm

the diagnosis.

1.5 Research Objectives

The research objectives of this dissertation are derived from the project specification

shown in Appendix A.

• Research the background information related to data logging micro-controllers that

are used to monitor a similar variety of conditions in vehicles.

• Design and build an implementation of a real-time, condition monitoring micro-

controller to monitor a set of specific conditions.

• Design and build an external antenna for integration with GPS receiver module,

including any GPS signal filtering and amplifying.

• Perform sensor signal analysis and classify normal and abnormal behavior.

• Incorporate a Wi-Fi implementation for autonomous data transfer from the vehicle

upon return to a geo-located base-station.

• Demonstrate the effective use of the condition monitoring module by diagnosing a

vehicle fault.

If the capability exists for an extension of the project then the following will be considered:

• Design and build a Printed Circuit Board (PCB) and a mounting case to incorporate

all of the modules in a neat, re-producible and install-able package.

• Incorporate additional sensors into the micro-controller to monitor alternative con-

ditions and fault areas.

1.6 Methodology Summary 8

1.6 Methodology Summary

A methodology following the classical engineering approach was utilized in the undertak-

ing of this project. The approach investigates a potential system and uses an iterative

process to refine and achieve stated objectives. This approach establishes objectives,

synthesis, analysis, construction, testing, and evaluation.

Research documentation, methods of analysis, quality assurance plans and a project

breakdown are a prelude to the described hardware, software, and methods of data anal-

ysis which are used to achieve the project objectives.

1.7 Consequences of Applied Research

Historically, access to car diagnostic equipment has been in the domain of the mechanical

workshops and tradesmen that operate them. This means that the individual car or

vehicle owner had no low cost ”plug and play” method of taking a look at the inner

workings of their vehicle, if they would be so interested.

With the advent of our current technological age, it is now possible for the DIY operator

to purchase electronic interfacing equipment to read DTC’s directly out of the vehicle

ECU and take a look at the real time operation of their vehicle. This project seeks to

add to that capability by introducing a data logging and monitoring system, capable

of recording more specific parameters of the vehicles operation. This data could then

be transmitted, automatically via wireless or by manual methods, to a home terminal

capable of analyzing and breaking down the vehicle usage over a set period.

Some of the impacts of this data collection method on condition monitoring trends are as

follows (Plant Services 2016):

• Bench marking of performance across vehicles: Generally speaking, humans are

interested in how their equipment compares to the neighbor or family member.

• Transparency for vehicle businesses: Giving the vehicle owner the ability to confirm

vehicle specifications and run cost estimations from the manufacturer would be a

huge boost to companies in the global market.

1.8 Risk Assessment 9

• Collaboration with enthusiasts: With a cloud based system, the DIY tradesman

with the available technology would be able to consult with practitioners around

the world. Sharing the collected information over the internet and/ or cloud would

be a great way to troubleshoot.

1.8 Risk Assessment

In order to ensure that each task of this project was undertaken with an appropriate

level of consideration for safety, a risk assessment was carried out to manage and identify

hazards. Appendix B shows the respective assessment form.

Of the hazards that were identified in the risk assessment, there were a number of elements

that warranted further investigation. This was felt to be a necessary step in order to better

inform the project participants. These are described below:

Hazardous Substances - Solder (University Of Cambridge 2019):

• Solder contains lead, which can give rise to serious chronic health effect. Exposure

is primarily through ingestion, whether this be skin or mouth/ nose. If it is deemed

necessary, Personal Protective Equipment (PPE) is to be worn to mitigate exposure

to lead ingestion.

• Rosin (colophony, ersin) is a resin contained in solder flux. Flux is what generates

the visible fumes when soldering. Repeated exposure to solder flux can lead to eye,

throat and lung irritations. Exposure to fumes should be managed in accordance

with safe soldering guidelines, by soldering in a well ventilated place and utilizing

fume extraction apparatus.

Shocks and Burns - Electrical connections, soldering and equipment mounting:

• Before using soldering irons, they must be inspected for any obvious damage to

the body, cable or plug, and whether they have had an electrical safety test within

the last 12 months. This also applies to any equipment used to manufacture the

project equipment such as heat guns or laptop cables. Electrical connections within

1.9 Project Timeline 10

the vehicle under test should also be considered, as the engine bay will contain

electrical components that should not be bridged or touched.

• When the soldering iron is in use, case must be taken not to touch the shaft or tip

of the iron, as it is kept at a constant high temperature.

• When conducting test and evaluation stages, care must be taken in the engine bay.

While it may be cool initially, sections will heat up after periods of operation. If

relocating components, ensure that heated engine parts are not touched, or project

components rested upon them.

Road Safety - Test and Evaluation:

• After the initial design has been carried out, and throughout the project, there will

be phases of testing on the vehicle. This will involve static and dynamic testing,

where the vehicle may be tested in the garage or on the road to confirm the hardware

is operational. Care must be taken when on the road, to ensure that the equipment

is mounted securely and does not inhibit the ability of the driver to operate the

vehicle and obey road safety laws.

1.9 Project Timeline

In order to manage the requirements of the project, a timeline is proposed in Appendix

C. This is to ensure that goals are being met in accordance with a realistic time frame.

Table 1.1 below summarizes the timeline in Appendix C, indicating proposed dates and

the amount of time allocated to each task.

1.9 Project Timeline 11

Table 1.1: Project Timeline

Task Start Date Time (Days) End Date

1.1 - Financial viability 01 January 2019 58 28 February 2019

1.2 - Research 01 January 2019 94 19 April 2019

1.3 - Parts suitability 01 January 2019 58 28 February 2019

2.1 - Supervisor Communications 25 February 2019 Tuesdays 08 November 2019

2.2 - Resource allocation 25 February 2019 21 28 February 2019

3.1 - Design schematics 25 February 2019 25 22 March 2019

3.2 - Simulation 18 March 2019 12 29 March 2019

4.1 - Sensor build and test 18 March 2019 31 19 April 2019

4.2 - Combine Sensors 01 April 2019 39 10 May 2019

4.3 - Data Logging 01 April 2019 39 10 May 2019

5.1 - Design GPS antenna 01 January 2019 58 28 February 2019

5.2 - Build GPS antenna 01 January 2019 58 28 February 2019

6.1 - Analysis of results 06 May 2019 98 12 August 2019

7.1 - Geo-location 15 July 2019 21 05 August 2019

7.2 - Integrate WiFi 15 July 2019 21 05 August 2019

8.1 - Confirm a fault diagnosis 19 August 2019 22 11 September 2019

9.1 - Project Specification 25 February 2019 31 19 April 2019

9.2 - Progress Report 29 April 2019 35 21 June 2019

9.3 - Draft Submission 22 June 2019 50 11 September 2019

9.4 - Final Submission 11 September 2019 36 17 October 2019

9.5 - ENG4903 PP2 25 February 2019 Sem 1 21 June 2019

1.10 Resource Requirements 12

1.10 Resource Requirements

A number of technical resources were required in the creation of this project, and can be

seen below:

• Electronics Hardware

– Sensor packages: LIS3DH Accelerometer, MPU-9250 IMU, MAX9814 micro-

phone.

– Microprocessor: Teensy 3.6

– GPS receiver: Adafruit Ultimate GPS Breakout

– GPS antenna 2x: A locally manufactured Passive antenna and one purchased

GPS active antenna

– GPS amplifier and connections: Nooelec SAW filter/ amplifier, uFL to SMA

connector, coaxial cable w/ SMA

– Wi-Fi: ATWINC1500 Wi-Fi Breakout

– OBD2: OBD-II UART and FTDI breakout

• Software

– Arduino IDE

– MATLAB r2018

– Audacity

– TeXworks

– MicroCap

– OBD Auto Doctor

• Other

– SD card, USB cables.

– Laptop: i7, 2.9GHz, 8GB RAM, 64-bit, Windows 10.

The complete breakdown of the resource requirements can be seen in Appendix D.

1.11 Dissertation Overview 13

1.11 Dissertation Overview

An overview of each subsequent chapter of the dissertation is provided below.

1.11.1 Chapter 1: Introduction

This chapter provides an introduction to the project, giving some contextual background

in the field of data logging and condition monitoring. It outlines the project goals, the

methodology used to achieve those goals, and gives some scope to the project resources,

risk management outcomes, and desired time frames.

1.11.2 Chapter 2: Literature review

Chapter 2 provides an intensive literature review of related research in the field of data

logging and condition monitoring. A comprehensive look at appropriate sensors and

microprocessors will be undertaken, as well as the hardware/ software used to process,

store and transmit this data.

1.11.3 Chapter 3: Methodology

This chapter introduces the methodology used to determine the suitability of the condition

monitoring system as a fault diagnosis tool. This includes the design, test and subsequent

analysis methodologies.

1.11.4 Chapter 4: Design

Chapter 4 delves into the design decisions that were made during the development of the

project. It is broken down into the design of each separate sensor or breakout module, and

then discusses the total system architecture and integration of the individual packages.

1.11 Dissertation Overview 14

1.11.5 Chapter 5: Results and Discussion

Chapter 5 provides a selection of results from the testing phases, and discusses the impli-

cations of the data collected. Sensor data is managed appropriately, and analysis of the

data is carried out and discussed.

1.11.6 Chapter 6: Conclusions and Further Work

Chapter 6 is a summary of the work carried out in the scope of this project and carries

a number of conclusions made about the work done. Further work is a summary of

limitations in the report that would require more work, as well as areas that could follow

on from the project in the future.

Chapter 2

Literature Review

2.1 Chapter Overview

This chapter provides a comprehensive review of literature in the field of data logging.

Related research in the field will be presented in a logical and clear manner to better

illustrate the current challenges and progress thus far. The chapter will also show some

typical sensor packages and micro-controllers used to achieve some of the related research

objectives.

2.2 Introduction 16

2.2 Introduction

In order to undertake any significant or further research in a particular field, namely data

logging and its applications on vehicles, it is necessary to conduct a review of literature

and research on related topics. This allows us to see if a space exists for our research to

be completed and gives an idea of its significance in the field.

2.3 Significance of Condition Monitoring

Condition monitoring and maintenance management is a process based upon systems

engineering. It encompasses economics, engineering and scientific disciplines, Information

Technology, maintenance management, fault detection, diagnostics and even legal issues.

The benefits of such a system are many.

“It has been clearly demonstrated that the use of appropriate condition monitoring and

maintenance management techniques can give industries significant improvements in effi-

ciency and directly enhance profitability” (Rao 1996).

Condition Monitoring Systems (CMS) or Health Monitoring Systems (HMS) play a hugely

important role in establishing condition-based maintenance and repair schedule, which is

more beneficial to the company than preventative maintenance (Hameed, Hong, Cho,

Ahn & Song 2009).

The main point that all papers agree on is that the implementation of a condition moni-

toring system will significantly decrease the maintenance costs and down time. Another

significant point to mention is the ability of the trend monitoring data to be able to pro-

long component life. If, for example, an engine was mandated by the manufacturer to

be replaced at 10,000 running hours, and from the trend monitoring we deduced that we

could extend this to 15,000 hours, we would have utilized our mechanical resources much

more efficiently. From these arguments, we can begin to see that the implementation of

such a system in commercial fleets will be of significant importance.

2.4 Sensor Packages 17

2.4 Sensor Packages

A wide range of sensor packages are available for measuring just about anything a project

could require. Due to the large amount of data available, the following sections will focus

on some very specific applications of sensor packages, related to the research objectives

of this project.

2.4.1 Vibration

Vibration analysis tools have been around since the 1970’s and are commonly used across

many disciplines. Civil engineers use vibration sensors such as accelerometers and strain

gauges to monitor bridge, building and road integrity (Carden & Fanning 2004). Mechan-

ical and electrical engineers use vibration and wear debris analysis for gearbox machinery

and electrical plant condition monitoring (Peng, Kessissoglou & Cox 2005). Monitoring

of machine conditions has long been accepted as one of the most cost efficient approaches

to avoid calamitous failure. Applying the technology to commercial vehicles will be a

simple transfer of method, utilizing similar sensors to measure the vibration.

Studies have been developed in the field of less expensive accelerometers, called MEMS

(Micro-Electro Mechanical Systems), which can be used in lieu of conventional, more

expensive versions. The tests described in the text were carried out on a real CNC machine

in a typical industrial workshop (Albarbar, Mekid, Starr & Pietruszkiewicz 2008).

MEMS accelerometers are manufactured using microelectronic fabrication techniques, and

create microscopic sensing structures made of silicon. When they are integrated with elec-

tronic circuits, they can be used to measure a physical parameter like acceleration. An

interesting characteristic of MEMS accelerometers is that they can be used to measure

frequencies down to 0 Hz. Some examples of MEMS accelerometers are variable capaci-

tive and piezoresistive, where capacitive accelerometers are typically used for structural

monitoring and constant acceleration measurements because of their lower range, and

piezoresistive accelerometers are used for shock and blast applications due to their higher

range (PCB Piezotronics 2019).

In a study by Barelli, Bidini, Buratti & Mariani (2009), they proved that there is a

correlation between vibration measurements acquired by an accelerometer placed on the

2.4 Sensor Packages 18

cylinder head, and fundamental parameters of the engine. In their study, they used a

series of very specialized and expensive accelerometers purchased from PCB piezotronics,

mounted unobtrusively and externally. These accelerometers were placed at four different

points on the surface of the engine block near the cylinder heads. Concluding their

research on vibration on the engine block, they were able to show using a Discrete Fourier

Transform (DFT) that at three different load settings, most of the signal energy is in the

frequency range within 2000 Hz. This confirms that most of the force transmitted at the

cylinder head occurs at low frequencies and can be seen in Figure 2.1.

Figure 2.1: DFT of cylinder head accelerometer and corresponding frequency range (Barelli

et al. 2009)

Figure 2.2 shows a closer view of the same graph. It should be noted that the graph shows

a fundamental frequency of 12.5 Hz, which corresponds to the combustion frequency of

the engine under test (with one cylinder). The rotational velocity of the engine under

test was 1500 rpm. The fundamental frequency is calculated using Equation 2.1 where n

is the order of the particular frequency. Mostly, we will be concerned with the first order

frequency, where n = 1.

FundamentalFrequency =
RPM

120
·NumberofCylinders · n (2.1)

The y axis in Figure 2.2, Vrms, also shows the magnitude of the signal. For the same

engine, it can be seen that for different loads, the magnitude increases as we would expect.

2.4 Sensor Packages 19

Figure 2.2: DFT of cylinder head accelerometer and corresponding frequency range (Barelli

et al. 2009)

A range of economically viable accelerometers exist that could be used in the scope of this

project, and all have similar technical characteristics. These include but are not limited

to: Analog Devices ADXL343, Adafruit LIS3DH and Adafruit MMA8451. These are all

packages manufactured by Adafruit and Analog Devices to breakout the MEMS chipsets

for use in microcontroller applications.

The Adafruit MMA8451 has a maximum range of ±8g @ 14 bit, whereas the LIS3DH and

ADXL343 both have a range of ± 16g @ 14 bit. Between the LIS3DH and the ADXL343,

the LIS3DH, seen below in Figure 2.3, is capable of a higher sampling rate at 5 kHz (albeit

only @ 8 bit) which is more than the Nyquist frequency for the engine frequency range

stated above. The Nyquist frequency is defined as the minimum rate at which a signal

can be sampled without introducing errors, which is twice the highest frequency present

in the signal (Oxford Dictionary 2019).

2.4 Sensor Packages 20

Figure 2.3: LIS3DH sensor package (Adafruit 2019c)

The chip block diagram can be seen below in Figure 2.4. When an acceleration is applied

to the sensor, the mass displaces from its original position which causes an imbalance

in the capacitive bridge. This imbalance is then measured and applied to the charge

amplifier, converted to a digital value and transmitted via the chosen protocol.

Figure 2.4: LIS3DH sensor schematic (Adafruit 2019c)

2.4 Sensor Packages 21

2.4.2 Audio

In concert with vibration data, audio signals are extremely important in measuring and

analyzing mechanical systems to aid in fault diagnosis. A change in sound is usually the

first symptom of a fault that could later lead to a breakdown. Because most of the sounds

of a car come from its engine, recording the engine sound becomes paramount in fault

diagnosis.

It has been reported that 99% of mechanical failures are preceded by noticeable indi-

cators. We saw in the previous section that vibration analysis is very prevalent. More

recently, acoustic signals are preferred over other types of signals because of their airborne

properties. Most commonly, a microphone is used to record acoustic signals and converts

sound waves into electrical signals (Yadav, Tyagi, Shah & Kalra 2011).

The main disadvantage to acoustic signals is its non-localization property. This means

that while it may be possible to detect a fault or different operating sounds, we have no

way of identifying specific components or events. It does however have an advantage over

vibration sensor data in being able to pick up changes faster, where using vibration data

can result in the remaining operational life of the component being degraded more.

In a study by Yadav et al. (2011), audio data was collected using PCB 130D20 piezoelectric

microphones. Similar to the study we saw in Section 2.4.1, these sensors are expensive

and high range, much more than required in the scope of this project. The maximum

frequency for the engine state used in the study is 12 kHz, and a Nyquist criterion for the

sampling frequency was chosen to be 50 kHz. The audio data collected was then filtered

by a band pass filter in the range of 800 to 12500 Hz and down sampled to reduce the

data load.

The frequency bands for specific faults in the study are listed below in Figure 2.5, where

CCN is Cam Chain Noise, CHN is Cylinder Head Noise, MRN is Magneto Rotor Noise

and PGD is Primary Gear Damage. It is important to note that these are not the only

faults that can occur in an engine, and were simply the ones chosen to identify in the

study.

2.4 Sensor Packages 22

Figure 2.5: Engine Fault Frequencies (Yadav et al. 2011)

A number of electrical microphone breakouts are commercially available, and are mostly

based on the electret microphone which is a type of electrostatic capacitor microphone.

The name comes a combination of electrostatic and magnet, and draws its name from

how magnetic fields are aligned. Electrets are made by melting a dielectric and allowing

it to re-solidify in a powerful electrostatic field. As we can see below in Figure 2.6, a

typical electret pre-amp circuit uses a FET (Field Effect Transistor) in a common source

configuration. The FET is powered externally by the supply voltage and the resistor sets

the gain and output impedance.

Figure 2.6: Electret Microphone circuit diagram (?)

The microphone polar pattern is very relevant when embarking to record engine sounds.

Typically, microphones come in 3 different polar patterns and can make a large difference

to the audio being taken. The three patterns can be seen below in Figure 2.7. The

omni-directional pattern is equally sensitive to sound in all directions, the bi-directional

is sensitive at the front and the back, and the cardioid is least sensitive at the back.

2.4 Sensor Packages 23

Figure 2.7: Microphone polar patterns (E-Home Recording Studio 2019)

Additionally, the microphone placement will play a large part in what kind of audio is cap-

tured. Depending on the microphone sensor package, gain can be automatic, adjustable,

or fixed. Placing a microphone with large fixed gain right next to a large signal source

will result in nothing but static and clipping of the recorded signal. Ideally, a microphone

with an automatic gain feature should be used. Since the proposed project performs data

logging on a moving vehicle, microphone placement should take into consideration the

potential environmental sounds that would be encountered in a typical trip, as well as

the requirement to be far enough away from the engine to reduce clipping.

An example of an audio sensor package is the Adafruit Electret Microphone amplifier,

MAX9814 (Adafruit 2019a). This package contains Automatic Gain Control (AGC),

which allows the loud sounds to be quietened and the soft sounds to be amplified. Un-

fortunately the microphone is omni-directional, and care will have to be taken when

recording in an environment with external noises.

A simplified block diagram for the Adafruit MAX9814 microphone can be seen below in

Figure 2.8. The LNA (Low Noise Amplifier) block has a fixed gain of 12 dB, while the

VGA (Variable Gain Amplifier) is able to automatically adjust the gain from 20 dB to 0

dB. Finally, the output amplifier offers selectable gains to the user or 8dB, 18 dB and 29

dB.

2.4 Sensor Packages 24

Figure 2.8: Adafruit MAX9814 block diagram (Adafruit 2019a)

2.4.3 Location and Distance

A tracking system employing GPS (Global Positioning Satellites) provides an accurate

measure of position, velocity and time information for any system operating within a

mobile communications system. Common systems employ a sensor, communications link,

workstation, and a GPS reference receiver (Brown & Sturza 1993). The sensor is able to

be operated autonomously following its initialization, and then continues to make time

and frequency difference measurements. The raw data is then provided to the workstation

via the communications link, and provides corrections in order to determine position and

velocity.

In any condition monitoring system, velocity and operating time are going to be critical

variables in trend monitoring. This data can also be used simultaneously for a delivery

company who wishes the customer to be able to determine where their package is.

For optimal performance of a GPS system, there are a number of requirements for the

antenna and supporting hardware and can be seen below (u-blox 2009):

• A low level of directivity.

• Good antenna visibility to the sky.

• Good matching between antenna and cable impedance.

• High Gain

• Filter

2.4 Sensor Packages 25

GPS antenna

In order to implement location and distance tracking, it is necessary to include an antenna.

Since most GPS receivers and external antennas in the micro-controller world use small

but blocky ceramic antennas, it became a goal of the project to design and implement an

external patch antenna with a different physical profile to supplement the GPS receiver,

which could be mounted on the vehicle skin.

Generally speaking, there are two types of antenna, Active and Passive. Passive antennas

contain only the radiating element and can occasionally contain a matching network to

match the connection to a desired impedance. Active antennas contain a Low Noise

Amplifier (LNA), which is helpful in a number of ways. The losses in the cable after the

LNA will not affect the noise figure of the GPS receiver, and the LNA will help to reduce

the overall noise figure in the system, resulting a better sensitivity (u-blox 2009).

Figure 2.9 below helps break down the major differences between an active and passive

antenna which will be useful in deciding which path to take in design. Since the GPS

antenna will be placed externally to the microprocessor, an active antenna must be used.

Figure 2.9: Active versus Passive Antennas (u-blox 2009)

Antenna placement on the vehicle is also very important and can be seen below in Fig-

ure 2.10.

2.4 Sensor Packages 26

Figure 2.10: GPS Antenna placement (u-blox 2009)

Micro strip patch antennas are among the most common antenna types in use today,

particularly in the frequency range 1 to 6 GHz. Its flat profile and reduced weight as

compared to other parabolic antennas make it more attractive to airborne and space

applications in their initial development, and then by extension to handsets, GPS receivers

and other wireless applications (Banu, Prabhu & Sasikala 2015). They are also extremely

versatile because of their ability to be printed on a circuit board.

In Figure 2.11 below we can see a microstrip antenna fed by a transmission line.

Figure 2.11: Microstrip Patch Theory 1 (Antenna-Theory.com 2011)

The patch, transmission line and ground plane are made from a high conductivity metal

such as copper and the frequency of operation is determined by the following mathematical

relationship seen in Equation 2.2, where L and ε can be seen in Figure 2.11 and c is the

speed of light in a vacuum, 2999, 792, 458 m/s. The value W, or width, has an effect on

the input impedance and for this type of feed method, the input impedance is typically

2.4 Sensor Packages 27

high. The thickness of the ground plane is not critical, but should be more than 1/40th

of a wavelength.

fc =
c

2 L
√
εr

(2.2)

Next, seen in Figure 2.12, we can begin to see why the antenna radiates. The antenna

has an open circuit end, which means that the current will be zero at the end, maximum

in the middle of the patch, and ideally, zero at the start of the patch.

Since the antenna is an open circuit transmission line, the voltage reflection coefficient (Γ)

will be 1. This also implies that the voltage and current will be out of phase. Therefore, at

the end of the patch, current will be zero and voltage will be maximum. At the beginning

of the patch, current will be zero again and voltage will be a minimum. This produces

the fringing fields we can see in the figure. The fringing E-fields on the edges will now

add up in phase and produce the radiation of the microstrip antenna.

Figure 2.12: Microstrip Patch Theory 2 (Antenna-Theory.com 2011)

The directivity of the patch antennas is approximately 5-7 dB. The fields, as seen in

Figure 2.13, are linearly polarized when viewed in the horizontal direction, which is ideal

for a GPS antenna that is placed facing the sky.

2.4 Sensor Packages 28

Figure 2.13: Patch Antenna Directivity (Antenna-Theory.com 2011)

It is also important to note at this point that patch antennas are very limited in bandwidth

and will exhibit narrow band characteristics. Typically, the bandwidth of a rectangular

microstrip antenna is 3% (Antenna-Theory.com 2011).

The previous feed method has a fixed high impedance, as seen in Figure 2.11. We would

like to modify the feed and change the input impedance. We know from the previous

discussion that the current is low at either end of the patch and increases in magnitude

towards the middle. Therefore, we could reduce the input impedance if we simply moved

the feed closer to the middle. This can be seen below in Figure 2.14.

Figure 2.14: Microstrip Patch Theory 3 (Antenna-Theory.com 2011)

Using Equation 2.3 below we could theoretically calculate and manipulate the inset feed

to produce the desired input impedance. Zin is the input impedance if the patch was fed

2.4 Sensor Packages 29

from the end, and R is the distance into the patch as seen in Figure 2.14.

Zin(R) = cos2(
πR

L
)Zin(0) (2.3)

A study by Yegin (2007) researched the on-vehicle gain patterns for GPS antennas. While

GPS is commonly used for vehicle operations, little is known on how the gain patterns

change due to different mounting positions and elevations. The study investigated a

number of elevation angles for the antenna to be mounted at, from 10◦ to 90◦, and a

number of different mounting positions on the vehicle chassis as seen below in Figure 2.15.

Each position and elevation angle were then compared to each other.

Figure 2.15: Antenna mounting positions on the vehicle (Yegin 2007)

In the study, it was determined that the roof center position was the optimum spot for any

elevation angle above 60◦, although the roof rear position was a very good compromise

for any elevation angle. The trunk corner position was found to exhibit moderate gain at

higher elevation angles, but deep nulls at lower angles.

Low Noise Amplifier

In order to design an active antenna, a LNA must be included. Figure 2.16 below shows

a typical GPS receiver setup with an active antenna. As we can see in the figure, a LNA

is included directly after the antenna stage in order to achieve the best results.

2.4 Sensor Packages 30

Figure 2.16: Typical Low Noise Amplifier connection (u-blox 2009)

A range of LNAs exist, from single chips such as the ALM-1612 GPS LNA-Filter Front-

End module to the advanced Nooelec SAWbird iO Barebones, which combines all the

necessary electronics on a PCB with SMA connectors for immediate connection. Both

would be suitable to amplify a GPS patch antenna signal, but the ALM-1612 chip would

require board manufacture, component soldering and test phases before connection. A

suggested PCB Layout board for the ALM-1612 from Avago Technologies can be seen

below in Figure 2.17. The data-sheet also contains links to all of the relevant Gerber files

that would be required for PCB manufacture.

Figure 2.17: ALM-1612 Suggested board layout (Avago Technologies 2012)

2.4 Sensor Packages 31

GPS receiver

GPS satellites circle the earth twice a day in a very precise orbit. Every GPS satellite

transmits a signal and orbital parameters that allow GPS devices to determine the position

of the satellite (Sharma 2017). GPS receivers then use this information to determine the

users exact location. Basically, the GPS receiver measures the distance to each satellite

it can see by the length of time it takes to receive the signal. A 2-D position (Longitude

and Latitude) will require at least 3 satellites and a 3-D position (altitude) will require

4. After the position has been determined, a GPS unit is capable of calculating Speed,

Bearing, Track, Trip Distance and Distance to destination.

The signals that the GPS satellites transmit are very low power but can travel in line

of sight. This means they can pass through transparent objects but not solid ones. The

signals contain 3 types of information (Sharma 2017):

• Pseudo-random code: an ID code to identify the satellite.

• Ephemeris data: determines the satellites position, current health and date/ time.

• Almanac data: tells the GPS receiver where each GPS satellite should be in the

sky, and in relation to other satellites.

Micro-controller based GPS receivers are commonly in use today, and used widely across

location-based research for testing and proof of concepts in similar projects. One such

project was carried out by Ramani & Valarmathy (2013), which investigated a vehicle

tracking and locking system based on GPS. The micro-controller used the project was

based on the Atmel AT89C52, which is fairly basic in terms of memory and processing

speeds, and utilized a commonly available GPS receiver. While the applications of the

technology in this project are different to those being proposed currently, the operation

and interactions between the GPS receiver and micro-controller are the same.

For the home user, there are a number of GPS receivers available for integration into a

micro-controller based project. An example and standout receiver is the Adafruit Ultimate

GPS Breakout. It has 66 channels with 10 Hz updates. It contains a passive ceramic patch

antenna in the breakout board, but also has an external µ.Fl connection for including

external antennas.

2.4 Sensor Packages 32

We can see the schematic for the Adafruit Ultimate GPS breakout below in Figure 2.18.

The receiver is able to detect the presence of an active antenna (provided this signal is

greater than 4 mA), and provides an input path through a SPDT (Single Pole Double

Throw) switch and SAW (Surface Acoustic Wave) filter.

Figure 2.18: Adafruit Ultimate GPS breakout schematic (Adafruit 2019b)

2.4.4 CAN Bus and OBD2

The CAN (Controller Area Network) bus is used in automobile and aerospace industries

to allow communication between ECUs (Electronic Control Units) and their sensor net-

works. It allows components to communicate on a single or dual wire network bus up to 1

Mbps. This eliminates the need for complex, dedicated wiring in between each ECU (CSS

Electronics 2019). A simplified example of a CAN bus can be seen below in Figure 2.19.

Figure 2.19: CAN Bus explained (CSS Electronics 2019)

2.4 Sensor Packages 33

The data sent over the CAN bus is broken down in Figure 2.20. This is an example

of CAN 2.0B, the format used in J1939 protocols for heavy vehicles, and contains a 29

bit identifier. Smaller vehicles use an 11 bit identifier for OBD2 protocols, but this is

the primary difference between the formats. OBD2 is a self-diagnostic and reporting

capability that was discussed in Section 1.3.2.

Figure 2.20: CAN bus message breakdown (CSS Electronics 2019)

In order to extract the data from the CAN bus via OBD2 protocols, there are a wide

range of available products and can be broken down into two main categories: OBD2

scan tools and OBD2 code readers. Scan tools are more expensive, but provide the ability

to read manufacturer specific codes, see live data and record it, and provide advanced

troubleshooting support. Code readers can read and clear generic codes, but this is limited

in scope (Collins 2019).

One example of an OBD2 scanner commonly used for micro-controller projects is the

OBD-II UART manufactured by sparkfun. Is is a development board that combines

three different chips to extract OBD2 data from the vehicle CAN bus. These are the

ELM327 OBD to RS232 interpreter, the MCP2551 High-speed CAN transceiver and the

STN1110 multi-protocol OBD to UART interpreter. This allows great flexibility in design

and connection options. A simple FTDI (Future Technology Devices International) Basic

breakout allows serial communications to a Personal Computer.

A block diagram for the ELM327 chip can be seen below in Figure 2.21. The OBD inter-

faces directly with the vehicle, interprets the data and outputs via the RS232 interface.

2.4 Sensor Packages 34

Figure 2.21: ELM327 Block Diagram (ELM Electronics 2019)

A wide variety of projects and research has been carried out in the field of vehicle health

monitoring based on extraction of OBD2 data. These will be used to inform the project

and its capabilities in the field of OBD2 recording. A study by Amarasinghe, Kottegoda,

Arachchi, Muramudalige, Bandara & Azeez (2015) investigated a cloud-based vehicular

data acquisition and analytic system for real-time driver behavior monitoring, trip analysis

and vehicle diagnostics. The system consisted of an OBD2 port using Bluetooth to

transmit data, a mobile app, and a cloud based back-end. The system was able to

alert the driver via a smart phone about any anomalies in the engine operation such as

coolant temperature, fuel leaks and impending sensor failures. This project is a good

representation of the research in the field, and shows the depth of investigation and

prediction available by utilizing OBD2 data.

2.5 Micro-controllers 35

2.5 Micro-controllers

Development boards are becoming increasingly popular with the maker communities, and

each year brings more innovative solutions to the market. In order to breakdown the list,

a comprehensive review was carried out and the suitability of each was compared to

applicable criteria as follows:

• Physical Size

• Processor speed and type

• Memory size and flexibility

• GPIO (General Purpose Input Output)

• IDE (Integrated Development Environment)

• Cost

This does not list every development board that is available at the time of writing, and

simply illustrates the most popular boards that could fit in the scope of the project.

Table 2.1: Micro-controller breakdown 1

Name Processor Memory GPIO

1. Teensy 3.6 ARM Cortex-M4 180

MHz

1M Flash, 256KB RAM,

4K EEPROM

62

2. BeagleBone Black AM3358 1GHz 4GB Flash, 512MB

SDRAM

94

3. Raspberry Pi 3 Cortex-A53 1.4GHz 1GB LPDDR2 SDRAM 40

4. Thunderboard Sense 2 ARM Cortex-M4

38.4MHz

1MB Flash, 256KB

RAM

20

5. Arduino Uno R3 ATMega328P 16 MHz 32KB Flash, 2KB

SRAM, 1KB EEPROM

20

6. Particle Photon ARM Cortex-M3 120

MHz

1MB Flash, 128KB

RAM

18

7. Udoo Neo ARM Cortex-A9 1GHz 512MB DDR3 36

2.5 Micro-controllers 36

Table 2.2: Micro-controller breakdown 2

Name IDE Cost Operating

Voltage

Physical Size

1. Teensy 3.6 Various C Com-

pilers or Arduino

Software (Teensy-

duino)

$56.32 3.3V 2.4×0.7 inches

2. BeagleBone Black N/A: Debian

Linux OS

$130.61 3.3V 3.5×2.15 inches

3. Raspberry Pi 3 N/A: Any suit-

able OS

$54.96 3.3V 3.34×2.2 inches

4. Thunderboard Sense 2 Simplicity Studio US$36 3.3V 1.77×1.18 inches

5. Arduino Uno R3 Arduino Software $44.50 5V 2.7×2.1 inches

6. Particle Photon Particle.io/ cloud-

based IDE

$34.95 3.3V 1.4×0.78 inches

7. Udoo Neo N/A: Android

Lollipop and

UDOObuntu 2

$100.72 3.3V + 5V 3.5×2.32 inches

There are a few key standouts from Table 2.1 and Table 2.2. Since we will be processing

audio, handling multiple sensor inputs, and writing this data to storage, processing speed

will be important. For this reason, the Arduino Uno R3 and Thunderboard Sense 2 may

struggle.

The BeagleBone Black, Raspberry Pi 3 and Udoo Neo all have high processing speeds,

but this is because they are designed as standalone Operating Systems (using Linux or

Android OS). For these to be used as data loggers, Python language is typically used to

program sensor data collection.

Of notable mention are the Teensy 3.6 and Particle Photon. Both systems have reasonable

processing speeds, memory, prices and size. Unfortunately, the Particle Photon falls down

in the GPIO region, with only 18 I/O ports. Its cloud based IDE looks interesting however,

and support for a local IDE is also provided. The Particle Photon is designed more as

an IoT device and has an inbuilt Wi-Fi chip to enable a connection to the internet. The

2.6 Data storage 37

Teensy 3.6 also has an SD (Secure Digital) card slot and supporting libraries which may

make it very invaluable as a standalone data logger used in a vehicle.

2.6 Data storage

Most data loggers use a memory card or flash stick to save data. More advanced models

have the potential to send the data automatically over an Ethernet connection or through

a wireless network (Bluetooth, Wi-Fi, LoRa etc). The final application of the data loggers

is the determining factor in deciding how to store data (CAS DataLoggers 2019).

For this project, Wi-Fi or Ethernet connections will not be available in the vehicle’s

transit period. This means that some form of local memory storage must be used until

the module returns to base. MicroSD card breakouts are common in the micro-controller

world, and provide a useful storage location for data logging projects.

In a similar research project developed by Baker (2014), an SD card and FAT32 file

storage system is used to perform sensor measurements and historical data storage. The

data is then sent to a larger, cloud-based website for further dissemination via an Ethernet

connection.

When interacting with SD cards there are a number of common pitfalls in micro-controller

design. SD cards are strictly 3.3V devices and the power draw is quite high compared

to most of the other breakouts in the market (100 mA or more). The logic interfacing

with the pins must be 3.3V, and must be very ’square’. Level shifters may be required

in cases where the interfacing wires travel over a significant distance. Lastly, SD cards

employ ’raw’ storage, and have no set structure. In order to interface the card with an

OS, FAT16 or FAT32 should be used (Adafruit 2019d).

2.7 Data Transmission

For a vehicle based data logging system to be autonomous, some form of data transmission

should occur at end of a trip/s. This has a number of reasons: To ensure the data is not

being overwritten, to remove the need for a manual transfer of data, and to provide a

timely analysis of the data before any faults can compound.

2.7 Data Transmission 38

A number of wireless transmission methods are available. They are generally divided into

four broad categories and can be seen below (TechTarget 2007):

• WPAN (Wireless Personal Area Network): These are made to reach short dis-

tances, no greater than 10m. IrDA (Infrared Data Association) and Bluetooth and

common WPAN examples. Zigbee and UWB (Ultra-Wide Band) are also emerging

technologies in this area.

• WLAN (Wireless Local Area Network): The most widely deployed example,

WLAN incorporates Wi-Fi and is the most popular protocol in this category. It can

deliver up to 200 Mbps at distances up to 100m.

• WMAN (Wireless Metropolitan Area Network): This technology offers up

to 75 Mbps over links that can reach a few kilometers, and is generally used for

providing mobile broadband access across cities.

• WWAN (Wireless Wide Area Network): WWAN differs from WLAN technol-

ogy by using mobile networks such as LTE (Long Term Evolution) or CDMA2000

to transfer data.

Of these, there are only few suitable technologies for this project. LoRa and LoRaWAN is

becoming increasingly popular in maker community, and features low energy transmissions

with greater noise immunity at distances up to 40 km. Unfortunately, gateways are

expensive and data rates are low, in the order of 27 kbps . Bluetooth is a standard that

millions of devices use to communicate with each other, and is found in mobile phones,

computers, microcontrollers and more. Bluetooth modules are commercially available and

at a reasonable cost. Wi-Fi is another very common method of connecting wirelessly, and

is similar in price to Bluetooth modules. Wi-Fi has the added benefit of being able to

connect to the internet via gateways found in most homes and workplaces. Lastly, Zigbee

deserves a mention. Xbee modules use wireless communications using Zigbee protocols

to create communications networks and have a large range (Core Electronics 2019).

One such system was developed by Choque, Davila, da Silva & da Rocha (2017). The

goals of the project were to construct a Wireless Local Area Network (WLAN) multi-

Data Acquisition System (DAS). This is very similar in scope to the proposed project

idea, although it utilizes different sensors. In this case, three sensors monitoring light

intensity, temperature and voltage in the form of an analogue signal were collected and

2.8 Data Analysis Software 39

converted into digital data using code on the Arduino microprocessor. Following this, the

data was then broadcast to the internet by use of the WLAN technology supported by

an add-on to the Arduino board.

Many other systems exist in the form of ‘Smart Homes’, which monitor house condi-

tions and provide optimal responses, as well as inter-connectivity through smart devices

(Adriansyah & Dani 2014).

We can see an example of a Wi-Fi breakout below in Figure 2.22. This is a 802.11bgn

capable module, and used for networking between devices. It uses SPI (Serial Peripheral

Interface) to communicate with the micro-controller, and provides reliable packet stream-

ing at up to 12 MHz.

Figure 2.22: ATWINC1500 WiFi Breakout (Core Electronics 2019)

2.8 Data Analysis Software

A number of software packages are required to analyze and present the data arriving from

the sensors/ micro-controller and will be discussed in the following sections.

2.8.1 MATLAB

MATLAB (Mathworks 2018a) is the industry standard for signal processing and analy-

sis. It includes signal processing packages, techniques, and support in order to analyze

time-series data. It also provides a way to implement DSP (Digital Signal Processing) al-

gorithms on a PC and can acquire, measure, transform, filter and visualize signals without

being an expert in the theory of signal processing (Mathworks 2019).

2.8 Data Analysis Software 40

2.8.2 Audacity

Audacity was developed by a group of volunteers and is an open source program for

Windows, Mac OS X and GNU/ Linux. It features a multi-track audio editor and recorder

and is able to import Import/ Export many different types of sound files including RAW.

It also has a spectrum window mode in order to perform detailed frequency analysis

(Audacity 2019).

2.8.3 Google Earth

Google Earth is a program that creates a 3D image of Earth that is based mainly on

satellite imagery. The program works by superimposing satellite and GIS data onto a

globe. Users are able to explore by address, coordinates or by keyboard and mouse. The

feature of google maps that makes it most relevant in this project is its ability to allow

users to upload their own data and overlay this data on the maps. The data may be in the

form of KML (Keyhole Markup Language), or can simply be a CSV (Comma Separated

Value) file (Wikipedia 2019).

2.8.4 OBD2 scan tools

As alluded to in Section 2.4.4, OBD2 scan tools are useful in providing a larger amount

of data on the vehicle under test, when compared to OBD2 code scanners. A number of

OBD2 programs are available for purchase online, and can be used with the majority of

OBD2 hardware. OBD Doctor is a leading car diagnostic software and has the ability

to turn a computer into a highly capable automotive scanner (OBD Doctor 2019). This

software, and many like it provide the ability to view engine data in real time, in both

numerical and graphical formats.

2.9 Data Analysis 41

2.9 Data Analysis

Utilizing the software mentioned above in Section 2.8, the raw data extracted from the

sensor packages can be analyzed to extract meaningful information about the engine’s

operation. This will give us an indication of trending or changing operating conditions in

the vehicle.

2.9.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is a speedier version of the Discrete Fourier Transform

(DFT), and produces the same results but in a faster time frame. The DFT takes a

discrete signal in the time domain and transforms it into a discrete frequency domain

representation. This gives us the ability to examine the spectrum of a signal (University

of Rhode Island 2019). The image in the Figure 2.23 below gives a good representation

of how the basic FFT works.

Figure 2.23: Fast Fourier Transform - Basic (NTI Audio 2019)

The defining FFT equation can be seen below in Equation 2.4, which transforms N time

samples x(n) into N frequency samples X(k).

X(k) =

N−1∑
n=0

x(n)e−jnωk

ωk =
2πk

N

(2.4)

2.9 Data Analysis 42

In a study by Sujono (2014), a method for detecting detonation (knocks) with microphone

sensors and an active filter was investigated. After the raw data was collected, analysis

and classification utilized FFT algorithms and Euclidean Distance measures to determine

fault data. The FFT algorithm was used to show the difference in frequency bins between

a healthy sample and a fault sample. It showed a clear difference, where the fault data

FFT indicated the presence of high frequency components and the healthy data FFT did

not.

The study develops the identification process further by measuring the Euclidean Distance

between the regression pattern for a signal with a fault and that of the reference signal.

The regression signal in this study can be defined as an approximation of the original

signal, after being filtered with an active type Sallen-Key filter (which is a second order

High Pass Filter (HPF)). This gives a determination of whether the input signal is a

normal engine, or suffers from a knock fault.

While this study is limited to detonation faults, it shows that FFT analysis of a signal is

still extremely relevant to engine faults and leaves much to be elaborated upon.

2.9.2 Linear Predictive Coding

Linear Predictive Coding (LPC) uses the concept that a linear, discrete-time system can

be modeled by predicting the next sample in a time series as a product of past samples

in that series, weighted according to position delay. The general concept is to sample the

audio, process frames in a small window, and derive the parameters that best represent

that data in the frequency domain (Leis 2018). Using this concept it becomes possible to

represent a large number of discrete points with a smaller number of coefficients that is

able to approximate the data and can be seen in Equation 2.5, where the prediction for

each sample x̂(n) is formed as a weighted sum. The true sample x(n) is the prediction

plus an error term as seen in Equation 2.6.

x̂(n) =
P∑

k=1

akx(n− k) (2.5)

x(n) = x̂+ e(n) (2.6)

2.9 Data Analysis 43

LPC is a very powerful tool used in speaker recognition, based upon a linear model of

speech production, and can provide an accurate estimation of speech parameters. To

develop this concept further, a study by Monica Chamay, Se-do Oh and Young-Jin Kim

(2013) was carried out to build a diagnostic system using LPC/ Cepstrum analysis in

machine vibration. We know from this study that a lot of research on detection of faults

using vibration data had been done, but it had not been possible to find an appropriate

method of detecting faults in specific cases where frequency analysis falls short. The

study showed that it was possible to apply LPC to extract an exact pattern based on the

principal characteristics of the data being represented. This statement also introduces a

possibility that LPC could be used in the context of this project, and apply to both audio

and vibration data profiles.

On its own however, LPC does not classify data. It will simply represent the data in a

more efficient manner, ready to be classified. In order to determine fault data, we must

use some order of statistical measure between the healthy data and the fault data. This

is explained in the following section.

2.9.3 Mahalanobis Distance

Mahalanobis Distance (MD) is the distance between two points in multivariate space

(Statistics How To 2017). In a regular Euclidean space, variables are represented by axis

at right angles where the distance between points can be measured with a ruler. For

uncorrelated variables, Euclidean Distance is the same as Mahalanobis Distance. If the

values are correlated, axes are not at right angles anymore and it become impossible to

measure. MD solves this conundrum, and can measure distances between points, even

for correlated values. It is a measure from the centroid, where the means of variables

intersect, and can be seen in Figure 2.24. A larger MD means further away from the

centroid.

2.9 Data Analysis 44

Figure 2.24: Mahalanobis Distance Graphic (Chul-Woo Kim 2013)

Following on from Section 2.9.2, the study by Monica Chamay, Se-do Oh and Young-Jin

Kim (2013) showed that it was possible to classify engine vibration data with LPC coding.

Further to this, they showed that in order to classify fault data they had to use some sort

of statistical measure. This was in the form of MD. Euclidean Distance was discussed and

discarded for two reasons: Euclidean Distance is extremely sensitive to scale of variables

involved, and the Euclidean distance is blind to correlated values. The problems of scale

and correlation are not an issue when using MD. Additionally, MD is more sensitive to

small differences between variables and is useful in the detection of outliers.

They were able to extract behavior patterns from the healthy and fault data and compare

them using Mahalanobis Distance. These comparisons showed a marked difference, and

were used to successfully identify system failures with 100 percent accuracy as seen in

Figure 2.25.

2.10 Chapter Summary 45

Figure 2.25: Mahalanobis Distance in Practice (Monica Chamay, Se-do Oh and Young-Jin

Kim 2013)

2.10 Chapter Summary

This chapter provided an in-depth look into the literature surrounding vibration and

audio research on diagnosing a fault in a combustion engine. It also discussed the current

market availability and technology of hardware/ software that could be used to bring this

project to fruition.

Chapter 3

Methodology

3.1 Chapter Overview

This chapter presents the methodology used to determine the viability of a low cost condi-

tion monitoring system that could be used for predictive maintenance. The methodology

is further broken down into research, design and verification methods that were used to

come to appropriate conclusions.

3.2 Introduction 47

3.2 Introduction

A design methodology based upon the classical engineering approach was utilized in the

undertaking of this research. The following quote explains the classical engineering pro-

cess:

“The process of devising a system, component or process to meet desired needs, it is a

decision making process (often iterative) in which the basic sciences, mathematics, and

engineering sciences are applied to convert resources optimally to meet a stated objective.

Among the fundamental elements of the design process are the establishment of objectives

and criteria, synthesis, analysis, construction, testing and evaluation.” (Accreditation

Board for Engineering and Technology 1987).

The method used in this report is very similar and involved background research, an im-

plementation method, and testing and realignment to ensure project goals were met ap-

propriately. The primary objective of the project, previously identified within the project

specification, was to implement a micro-controller based system capable of recording ap-

plicable data in a vehicles run-time, and perform analysis of this data to successfully

predict a fault condition.

Existing research on data logging and fault diagnosis in vehicles involves the use of expen-

sive sensor arrays, as shown previously in Section 2.4.1 and Section 2.4.2. Large companies

use this technology to monitor their equipment and collect data on its usage in the field,

as introduced in Chapter 1. It was identified in the course of this research that a suitable

gap exists in the field of research for a small, micro-controller based system usable by

an individual or small fleet owner. This system would not require large amounts of me-

chanical knowledge, and be available for a much smaller cost than the systems currently

available.

3.3 Research Documentation

Due to the large scope of this project, it is extremely important to monitor and record

relevant results for the reporting stages at the end of the project. This will include,

but is not limited to: constant note taking in an appropriate medium, schematic draw-

3.4 Methods of Analysis 48

ings, screenshots of software development, photos of circuit operation, data transmission

reports, and reporting of the signal processing and trend monitoring elements. It was

proposed that all reporting data be stored on a personal computer, with regular backups

made to a cloud drive in order to preserve the information in the case of an accidental

loss.

• Notes are made on paper during each design, build or test phase, with regular

uploads and condensed versions added to Word documents.

• Schematics are made in MicroCap or a similar hardware design/ simulation package

and updated at regular intervals after any configuration changes.

• Software development is conducted in an appropriate IDE (Integrated Development

Environment) package. Screenshots can be taken of operational parameters, code

added into word document as an appendices, and version control is enacted regularly.

• Circuit hardware and operation in testing phases showing configurations will be

photographed in a neat manner and uploaded as appropriate.

• Data transmission is monitored and reported upon, for storage upload.

• Data analysis is carried out in MATLAB, Audacity, OBD2 scan tools and any other

appropriate medium, and recorded appropriately.

3.4 Methods of Analysis

The ability of any good research project to produce and display its findings lie in the

quality of the analysis.

“Monitoring and evaluation plans, needs assessments, baseline surveys and situational

analyses are all located within a project cycle and require high-quality data to inform

evidence-based decision-making and programmatic learning.” (The Open University 2017)

In order to realize this, we must investigate the differences between quantitative and

qualitative data, and their benefits and limitations. Being able to identify appropriate

research questions, and utilizing the best methodologies will also be extremely useful.

3.4 Methods of Analysis 49

When investigating the nature of the research data, we must define two types of data,

qualitative and quantitative. Generally, quantitative data is in numerical form, and quali-

tative is not. The former is data collected through measuring things, and analyzed through

numerical comparisons, whereas the latter is usually collected through observations and

analyzed by theme (Mcleod 2017)

Obviously, due to the nature of this project, a quantitative approach to the data analysis

will be most beneficial. However, if the interests of the consumer are to be observed

as well, then additional economic data might be collected and analyzed in a qualitative

manner in order to determine personal preferences on what sensor data they would like

to monitor.

Previously, we developed research objectives, which is a key step in the planning process.

We have identified knowledge gaps in the field in order to inform our research project.

Within the objectives, we developed a set of ‘research questions’ which will help us focus

on the endgame of the project.

At the end of this lies the analysis of the data, interpreting the findings and making some

conclusions. In order to do this, we must determine if our methodology and data supports

answering the aims of the project by answering a series of questions:

• Did we answer the aims appropriately?

• Are there different, contradictory findings from the research?

• What kind of limitations was the project operating under?

• Are there areas of the project that require additional work or research?

In order to analyze our data appropriately, our method of analysis must turn the reporting

data into useful information to help with decision making and future development. We

should be able to summarize the findings of the project into what was useful, irrelevant,

or needing further development. Descriptive summaries will also provide useful data

collection points.

In presenting the analysis, the report must provide complete transparency. Stepping

through from an introduction, to the methodology, to the findings and discussion should

3.5 Quality Assurance Plan 50

be a seamless process designed to provide an accurate representation of the work under-

taken and how the project objectives were met. If we were to try and misrepresent the

data, then the project would become irrelevant at best, and illegal at worst.

3.5 Quality Assurance Plan

In order to maintain the project relevancy, timelines and integrity (i.e. meeting the aims),

a series of checks are in place to touch base with USQ supervisors and assessing staff.

• Regular weekly meetings will be held with the project supervisor to discuss current

progress, developing scope, and difficulties.

• Project specifications, progress reports and draft submissions are set up by ENG4111

and ENG4112 subjects in order to formally report on the status of the project.

Additionally, there are internal procedures in place to keep the project on track and of

appropriate quality. These will include the following:

• Component assessment and integration into the project will provide a measure of

assurance that the project is running smoothly, giving an indication at crucial stages

that the circuitry is capable of operating and can provide the required information.

• Determining signal processing requirements and being able to convert the data in a

manner showing appropriate trends will provide the beginning of an answer to the

viability of the project.

• Reporting and analyzing the work undertaken shall be ruthless, ensuring a minimum

of missed opportunity for the discussion and conclusion.

• Attempting to follow the project schedule as closely as possible, while maintaining

an eye on the aims and scope of the project will be useful in staying on track and

within time-frames.

3.6 Project Breakdown 51

3.6 Project Breakdown

This project was separated into phases that were completed at key times throughout the

year in the course of completing the final year project.

• Phase 1: Additional research and determination of viable components, development

boards, software and compilers to be used in the scope of the project.

• Phase 2: Collection and determination of available resources with which to begin

work, as well as write up of the project specification to satisfy ENG4111 Research

Project Part 1 requirements.

• Phase 3: Preliminary design.

• Phase 4: Build and test the sensors, microprocessor and data storage, with the end

goal to have a working development model that could be installed in a vehicle.

• Phase 5: Design and manufacture a GPS patch antenna.

• Phase 6: Analysis of results, additional design and re-visitation of build and test if

appropriate.

• Phase 7: Integrate WiFi and Geo-located downloads.

• Phase 8: Demonstration of results in successfully diagnosing a fault condition.

• Phase 9: Dissertation report, discussion and conclusions.

3.7 Hardware

A list of suitable components was developed based upon the requirements identified in

the literature review. In essence, the two sensors (audio and vibration) would have to be

capable of measuring the engine parameters without losing too much fidelity of the data.

The micro-controller had to be capable of processing and storing the amount of data

that would be flowing in from the sensors, which also included a GPS input and OBD2

breakout in addition to the vibration and audio sensors. A proposed system architecture

was developed early in the proceedings and can be seen below in Figure 3.1.

3.7 Hardware 52

Figure 3.1: Proposed system architecture

3.7.1 Teensy 3.6 and IDE

The literature review identified a number of micro-controllers that may have been suitable

for the project and its requirements. In the end, the Teensy 3.6 was decided upon. Its

unique support by developer Paul Stoffregen has made it a stand out in the field. Due

to its increased RAM and processing power, the Teensy 3.6 is capable of providing very

flexible audio processing, and is still able to complete all other tasks required of the

processor. It also holds a micro-SD slot, which is extremely important in a data logging

project. The Teensy 3.6 can be seen below in Figure 3.2.

Figure 3.2: Teensy 3.6 (Core Electronics 2019)

3.7 Hardware 53

An unfortunate drawback to the Teensy 3.6 is that it only has a 3.3V pin capability. Some

other development boards in the field, such as the Arduino models, provide support for

5V protection which allows much greater flexibility in design. When compared to the

Proton development board seen in the literature review, the Teensy 3.6 does not have a

wireless capability. This is something that would have to be integrated into the project

externally.

The Teensy models can be programmed using a bootloader and any C editor such as

Visual Studio, but the most popular method is using the Arduino IDE. This has the

benefit of providing support for any cross-compatible Arduino libraries that could be

used in the scope of the project.

3.7.2 LIS3DH accelerometer

The LIS3DH was chosen as the vibration sensor for the project and can be seen below in

Figure 3.3. The range of cheap MEMS accelerometers are fairly similar across the board,

although this model does provide some additional benefits. Most accelerometers in the

commercial range are used for low frequency applications and typical sampling rates are

not much higher than 1-2 kHz. The LIS3DH model provides sampling at up to 5 kHz,

albeit at a lower bit range. As we saw in the literature review, the accelerometer must be

chosen with sample rates and the Nyquist frequency in mind. While accelerometers with

higher sample rates are available, these are too expensive for the purposes of this project.

Figure 3.3: LIS3DH accelerometer (Core Electronics 2019)

3.7 Hardware 54

3.7.3 MAX9814 microphone

The MAX9814 microphone with AGC can be seen in Figure 3.4. This microphone was

chosen for its ability to control the gain. Engine sounds are often loud and will change in

pitch regularly. In addition to the AGC the microphone provides, hardware and wiring

solutions exist to further reduce or increase the gain in response to the engine. This

microphone breakout also has support within the Teensy community, and a number of

hardware and software designs exist to complement this microphone’s abilities.

Figure 3.4: MAX9814 Microphone with AGC (Core Electronics 2019)

3.7.4 GPS

A number of GPS components were investigated for suitability in the project, and two

pathways were selected for both the antenna and the LNA (Low Noise Amplifier). It

was decided to first pursue manufacturing an antenna and LNA PCB. For comparison

purposes, an additional antenna and LNA were purchased to support flexible testing

arrangements.

Antenna

Figure 3.5 below shows an example of an active GPS external antenna. This was purchased

as a secondary component to support the testing of a manufactured GPS antenna and

associated LNA. Additionally, it would provide a method of testing the data logging

system in transit, as the manufactured antenna and LNA would initially have no way

of being attached to the external frame of the vehicle. This antenna, being an active

antenna, has its LNA included in the package already and was a plug and play solution

3.7 Hardware 55

to the GPS antenna problem.

Figure 3.5: GPS Antenna - External Active Antenna (Core Electronics 2019)

LNA

In order to support a manufactured GPS antenna, a LNA had to be either purchased or

manufactured. Initially, a PCB solution to the LNA problem was proposed and investi-

gated. Unfortunately, the manufacture proved too difficult with the available tools and a

LNA was purchased instead. Figure 3.6 shows the amplifier that was decided upon, the

Nooelec Premium SAW filter and LNA. This is a specialty item, designed for use with

Nooelec components that support Software Defined Radio (SDR), but could be easily

adapted to amplify signals from the manufactured GPS antenna.

Figure 3.6: Nooelec Premium SAW filter and LNA (Nooelec 2019)

Receiver

Aw with the accelerometers discussed above, the range of GPS receivers in the maker

space are very similar in specification. This made it an easy decision to purchase the

Adafruit Ultimate GPS breakout with 10 Hz updates as seen below in Figure 3.7. The

3.7 Hardware 56

Adafruit libraries are well supported and provide a simpler method of processing and

displaying GPS data.

Figure 3.7: Adafruit Ultimate GPS Breakout (Core Electronics 2019)

3.7.5 ATWINC1500 Wi-Fi

The ATWINC1500 Wi-Fi breakout was briefly discussed in the Literature review, and can

be seen previously in Figure 2.22. This module was chosen to achieve the project wireless

objectives and features SPI communication with the micro-controller. The module is

802.11bgn capable and comes with level shifting on the input pins, meaning 3V or 5V

logic may be used.

3.7.6 OBD2 UART and FTDI Breakout

Last of the hardware is the OBD2 UART module and associated FTDI breakout. The

OBD2 UART module can be see in Figure 3.8. It was decided to purchase a serial

communication module, rather than a Bluetooth or Wi-Fi kit, as the goals of the project

align better with a module that can communicate directly with the micro-controller. The

Bluetooth and Wi-Fi kits are relatively cheap compared to this module, but do not provide

much flexibility in choosing scan tool software. In addition to the OBD2 UART module,

a FTDI breakout was purchased. This allows serial communication from the vehicle to

USB using RS-232 protocols.

3.8 Software 57

Figure 3.8: Sparkfun OBD2 UART (Core Electronics 2019)

3.8 Software

In order to program the hardware listed above and process the data it collected, it was

necessary to outline a list of suitable software that could produce results in accordance

with the literature review. The basic premise was to find an IDE (Integrated Development

Environment) to program the hardware and collect data, then and a suite of tools to delve

into and interpret the raw data.

3.8.1 MATLAB

The majority of the analysis of the raw data (audio and vibration) was carried out in

MATLAB, written in MATLAB scripts. Most functions were derived from the basic

package of MATLAB, without the use of tool packages in order to better understand

what the functions are doing. These varied from audio processing functions such as the

short Fourier Transform to specialized ones for Mahalanobis Distance and covariance.

3.8.2 Teensyduino IDE

The micro-controller code was written using the Arduino IDE for Teensy, Teensyduino,

and in the embedded C language. A selection of libraries were used, available from

a variety of sources, to develop the software necessary to operate the data logger and

connected sensors. This included software to process and record the audio in a RAW

format, vibration and GPS data in TXT files, SD card recording, Wi-Fi operations, and

including the various setup routines and run-time operation of the system.

3.9 Data Analysis 58

3.8.3 Audacity

Audio data was edited using Audacity, which provided an open source method of import-

ing RAW audio data, and exporting WAV files to be processed within MATLAB. Audacity

also provides a spectral analysis tool which was useful in quickly analyzing audio data

before beginning the MATLAB process.

3.8.4 Google Earth

Raw GPS data was stored in the original TXT format from the Teensy module, and

could be easily imported into Google Earth to show location data from the operation of

the vehicle.

3.8.5 OBD2 scan tool

OBD Auto Doctor was used to process data from the vehicle CAN bus. This was an

invaluable scan tool which provided in depth data from the Electronic Control Units in

the vehicle.

3.9 Data Analysis

In order to properly analyze the raw data it becomes important to select the most efficient

and accurate methods to supplement the software chosen above. The first stage is to break

down the signal for further analysis. This should be done in accordance with the following

steps.

• Create a method of viewing the signal as it operates over time.

• Break down the signal content into the frequency domain, to view significant fre-

quencies.

• Conduct a spectrogram analysis to view how the frequency content changes over

time, and its resonant frequencies.

3.10 Chapter Summary 59

Additionally, it would be useful to have a method for classifying faults. While we may be

able to view the frequency content of a signal, in magnitude and over time, this does not

tell us if a fault is present. The time, FFT and spectrogram plots will not be an automatic

process, and neither can they be compared across faults to provide us with a ”simple”

answer. We have no baseline of operation. In order to achieve this classification stage,

Linear Predictive Coding was deemed to be a logical jump, and has been used to classify

engine faults as we saw in the literature review, Section 2.9.2. The steps are broken down

as follows:

• Break down the audio recordings into LPC coefficients and average said coefficients.

Use the first 75% of the audio file to create a baseline for the faulty/ healthy data.

• Compare the LPC coefficients from the previous step with the LPC coefficients of

the entire audio file broken up into 25% segments. Use a Mahalanobis Distance

algorithm to show the comparison closeness in a single figure.

3.10 Chapter Summary

This chapter has outlined the decisions and methodology that are required to achieve

the project objectives described in Section 1.5. It has outlined the hardware, software

and Data Analysis procedures that were used to validate the information presented in

the literature review and provide a path towards the next chapter, 4 - Design. The

Design chapter is based upon the methodology described here and the results from this

are presented in Chapter 5, Results.

Chapter 4

Design

4.1 Chapter Overview

This chapter presents the hardware and software design considerations that were used to

develop a working system model for the location based data logger. It shows an overall

system architecture which identifies key components of the model, and delves into the

work carried out on each module of the system.

4.2 Audio 61

4.2 Audio

The audio design section encompasses the MAX9814 microphone, Teensy 3.6, SD card

and reader, and various passive devices used to interface the microphone with the micro-

controller.

4.2.1 Hardware

The following explains the hardware design and connection paths for the MAX9814 mi-

crophone. Unfortunately, the MAX9814 module has a 1.25V offset when recording audio

data, which is not compatible with the Teensy Audio library, which uses a 0.6V offset (0

- 1.2V range). In order to use the microphone module with the Teensy micro-controller,

a hardware design solution was required to couple the input to the Teensy.

The circuit seen below in Figure 4.1 is able to effectively AC couple the input to the

Teensy, and provides a method of setting the bias to 0.6V so that the recordings are

properly offset. Additionally, the capacitors provide filtering from any fluctuations in the

ground and power sources.

Figure 4.1: MAX9814 Microphone Design

4.2 Audio 62

4.2.2 Software

The software for the MAX9814 was developed using a number of libraries, such as “Au-

dio.h”, “SD.h” and “Wire.h” within the Teensduino IDE. Additionally, there is Teensy

GUI (Graphical User Interface) available online to automatically generate setup code.

This is similar to the Node-RED flow based programming tool for the Internet of Things

and can be seen below in Figure 4.2

Figure 4.2: Teensy Audio GUI: Flow based programming

Because of the large size of audio data, it was prudent to develop the SD card software

in this stage also. Development in the Arduino IDE is described by the following pseudo-

code:

• Library #includes, GUItool automatically generated code and pin #definitions

• Variable declarations for modes (i.e. stopped, recording), and various variables, and

File names for SD card recordings.

• Setup an appropriate amount of Audio Memory, input pin and start the timer the

recorder is based upon.

• Create a filename function, where the old files will not be overwritten and new ones

will be created upon Teensy startup.

• Start recording: Open file on the SD card and begin stacking the buffer with audio

data.

4.3 Vibration 63

• Continue Recording: Fetch 2 blocks from the audio library and place into 512 byte

buffer. Use internal memory to copy out buffer values then write all 512 bytes to

the SD card.

• Stop recording: Pause recording for a very short interval in order for other processes

to operate. Finish writing any data left from the audio library into the buffer/ SD

card then close the file on the SD card.

4.3 Vibration

The vibration design section encompasses the LIS3DH accelerometer, Teensy 3.6 and SD

card reader.

4.3.1 Hardware

The hardware setup for the LIS3DH accelerometer can be seen below in Figure 4.3.

The LIS3DH is capable of communicating in either I2C (Inter-Integrated Circuit) or SPI

(Serial Peripheral Interface) modes. I2C requires less wiring, but is generally slower than

SPI rates and for this reason it was decided to use SPI communications between the

accelerometer and the micro-controller.

The SPI bus uses four logic signals which are as follows: SCLK (Serial Clock), MOSI

(Master Output Slave Input - data output from master), MISO (Master Input Slave

Output - data output from slave) and SS (Slave Select - often active low when only one

slave module). In our design, Pin 14 is used as our SCLK, Pin 10 is the MOSI, Pin 11 is

the MISO and Pin 12 is the SS (held low in this case).

4.3 Vibration 64

Figure 4.3: LIS3DH accelerometer setup

4.3.2 Software

A number of libraries are available to support the LIS3DH accelerometer, such as “Adafruit

LIS3DH.h” and “Adafruit Sensor.h”. These libraries provide a layer of code that allows

more efficient development time and functionality.

The LIS3DH sensor module provides accelerometer values in a raw value format, and will

not provide a “meters per second per second” value. Fortunately, the library “Adafruit

Sensor.h” provides a way of normalizing the values. It is able to do this by providing

a sensor event to snapshot the data. Data is then able to be extracted from the sensor

event by using object-based extraction from the event.

Development of the accelerometer software is described in the following pseudo-code:

• Library #includes and pin #definitions.

• Variable declarations for File names for SD card recordings.

• Set up software SPI communication definitions (CS, MOSI, MISO, CLK).

4.4 Test Leads 65

• Begin setup function calls: Disallow the Teensy to run if accelerometer not found,

set up the range (2, 4, 8 or 16G), set up the data rates (5kHz, 1.6kHz, 400 Hz, etc).

• Begin main loop: Call SD writing function every iteration of main loop. Simply

records current accelerometer values into TXT file on SD card.

4.4 Test Leads

A set of leads had to be manufactured in order to ensure that the results from the sensors

within the engine bay could transmit data to the main body of the car and did not

suffer from any distortion due to being un-shielded or having multiple connection points.

In order to achieve this, lengths of shielded 6-core cable was modified with appropriate

breadboard connections on either end as seen in Figure 4.4. Connection points on the

sensor package were protected with PTFE tape for protection against moisture and dirt

ingress, and electrical tape for structural protection.

Figure 4.4: Test lead manufacture

4.5 GPS 66

4.5 GPS

The GPS design section encompasses the GPS receiver, Teensy 3.6, GPS patch antenna

and Low Noise amplifier (LNA).

4.5.1 GPS Receiver Hardware

The connection hardware for the Adafruit Ultimate GPS receiver can be seen below in

Figure 4.5. Connection is rather simple, and only requires four wires: Transmit (TX),

receive (RX), Power In (Vin) and Ground.

Figure 4.5: Adafruit Ultimate GPS setup

4.5.2 Software

This section contains two parts of software which were developed at different times. The

general operation GPS code was written to utilize the GPS sensor data during data col-

lection modes. The Geo-location code was written later and provides a geo-located fence

around a designated home base in order to allocate when to begin WiFi operations. It is

based upon the current GPS position, and incorporates a number of advanced functions

to calculate the distance to the home base.

4.5 GPS 67

General GPS operations

As with the other sensor modules, there are a number of libraries available to support GPS

modules. In this case, “Adafruit GPS.h” was instrumental in developing the software.

Additionally, one of the Teensy support libraries “TimeLib.h” was helpful in converting

the GPS NMEA sequences into Australian relevant GMT times.

Development of the GPS software is described in the following pseudo-code:

• Library #includes and pin #definitions.

• Declare variables and filenames to be used for recording purposes.

• Begin setup functions: define NMEA output style and update rates, ask RX to send

antenna status, ask for firmware version, start GPS timer

• Create filename convention, new file for each time recording is started, do not over-

write.

• Parse the GPS data appropriately, updating the NMEA receive flag to false if new

sequence not received.

• Set the local clock on the micro-controller based on the GPS clock when there is a

fix.

• Record the relevant GPS data on the SD card, TXT file format with separating

commas.

Geo-location

In addition to capturing the GPS data, it was also necessary to incorporate a geo-located

fence. This allowed the WiFi to have a range of operation, where sensor data would

stop recording and the Access Point server would begin to set up. This was achieved by

utilizing the previously developed GPS code and manipulating the sensor data. This is

best seen in the following psuedo-code:

• Declare variables, including degrees to radian conversion, earth’s radius, GPS string

(lat/ long) of home-base, and specified range from target.

4.5 GPS 68

• If the GPS has a fix of appropriate quality, begin the calculations to determine

current position and range to home-base:

– Convert current GPS position to string format and print to serial monitor.

– Utilize haversine formula function to determine the distance between current

position and home-base. The haversine formula determines the great circle

distance between two points on a sphere given their longitudes and latitudes.

– If the range to target is less than a specified amount, the module has reached

home base.

• Once home-base has been reached, enter WiFi operations and set up the Access

Point.

4.5.3 GPS antenna

Design of the GPS patch antenna was carried out in HFSS (High Frequency Structure

Simulator), developed by ANSYS (Analysis Systems). The goal was to design then man-

ufacture a GPS patch antenna with a feed gap as described in the Literature Review.

Using Equation 2.2, we can roughly design for a center frequency of 1.575 GHz, which

is the L1 band for GPS signals. A key feature of the HFSS software is its ability to

implement antenna optimizations by manipulating variable properties, so we only have

to approximate the variable lengths within the design environment.

The design environment and variable lengths can be seen in Figure 4.6. The software

works by simulating environmental and radiation properties of the antenna and immediate

surroundings to generate an approximation of how the antenna will behave in real-time

after manufacture.

4.5 GPS 69

Figure 4.6: HFSS Design environment

The following steps were taken to build the simulation model within HFSS:

• Build substrate of the antenna, using FR4 epoxy 1.6mm

• Design the patch measurements out of the top copper layer, setting the physical

measurements as variables so that they are able to be manipulated by the optimiza-

tion profile function later on.

• Define input port as a lumped port boundary.

• Create air field environment, or radiation to cover the antenna. This has to be

larger than 1/4 of a wavelength.

• Run optimization function, and analyze results. Repeat steps above as necessary to

reach an optimal antenna.

4.5 GPS 70

As we can see below in Figure 4.7, the GPS patch antenna should have the following

characteristics after manufacture if all of the design restraints we programmed are the

same as in real life. Our smith chart on the left hand side of Figure 4.7 indicates that

the impedance matching should be close to ideal at the GPS L1 band frequency. Our S

parameter plot on the right hand side of Figure 4.7 shows the reflection coefficient of our

antenna, and indicates that it will radiate best at 1.5758 GHz.

Figure 4.7: GPS Patch antenna results

The next step in the design process is to manufacture the antenna, to provide proof that

our conceptual model from HFSS will work. This is done in two stages: To output the

HFSS model using a DXF file format, and translate this into a gerber file format for the

PCB milling machine to understand. This can be seen below in Figure 4.7. The output

from HFSS plots the antenna model into XY coordinates, which are then used by the

PCB milling machine to convert into drill sequences and removes the appropriate amount

of copper from the top layer of substrate.

Figure 4.8: GPS Patch antenna manufacture

4.5 GPS 71

Following the manufacture of the antenna, the following results were obtained from the

VNA (Vector Network Analyzer), as seen in Figure 4.9. The VNA provides an ability to

save “.s1p” type files for further analysis, and the results seen in Figure 4.9 were viewed

using an online viewer platform. As we can see, the manufactured antenna radiates best

at 1.570 GHz, which is slightly off our desired value of 1.575 GHz but still falls within our

range of 3% bandwidth. On the lighter side however, we can see from out smith chart

that our antenna impedance is almost perfectly matched.

Figure 4.9: GPS Patch antenna measurement results after manufacture

The physical results can be seen below in Figure 4.10. A SMA (SubMiniature version A)

connector has been soldered on to facilitate the previous measurement results from the

VNA.

Figure 4.10: GPS Patch antenna manufacture results

4.5 GPS 72

4.5.4 LNA and connections

In order to incorporate an external passive antenna into the project, as designed above, it

was necessary to build an LNA, effectively making the passive antenna active. The ALM-

1612 GPS LNA-Filter Front-End Module was sourced as the most appropriate chipset to

complete this requirement, and the circuit layout can be seen below in Figure 4.11. The

ALM-1612 chipset current requirements were appropriate for the Adafruit GPS receiver,

and could be powered through the coaxial cable via an appropriate RF choke.

Figure 4.11: ALM-1612 GPS LNA

It was the original intent to manufacture an appropriate PCB board for the ALM-1612

chipset and solder on the appropriate components. The build results can be seen below

in Figure 4.12.

Figure 4.12: GPS LNA Build results

Unfortunately, the manufactured chip did not perform under test and had to be discarded

after a period of fault-finding. This led to the development of another line of thinking,

utilizing an out of the box solution in the form of the Nooelec Premium SAW filter and

LNA that we saw in the Literature Review. This would require additional components

such as an external power supply and RF block however, as the Nooelec LNA current

4.5 GPS 73

requirements were too high for the Adafruit Ultimate GPS receive and could not be

powered through the coaxial cable.

In order to compensate for the inability of the GPS receiver to provide enough current to

the Nooelec LNA, a new circuit was developed as seen in Figure 4.13. The Nooelec LNA

could be powered externally by either 3-5V worth of battery, or via USB. This provided

the LNA with enough current. We also had to trick the GPS receiver into thinking that

there was an external antenna attached. This was provided by the resistor and inductor

(RF Choke) between the coaxial center line and ground. The resistor was designed to

sink enough current (more than 4 mA) from the GPS receiver, and had a value of 470

Ohms. The RF choke was designed to block the high frequency GPS signal, and was

in the order of 10 mH. Additionally, now that the GPS receiver had been successfully

tricked into thinking there was an external antenna, we had to block the DC output from

the GPS receiver onto the central line of the coaxial cable that is usually used to power

the GPS LNA. This was achieved using a DC blocking capacitor of value 15 pF, targeted

directly at the GPS L1 band 1.575 GHz.

Figure 4.13: GPS Nooelec SAW Filter and LNA

4.6 OBD2 74

4.6 OBD2

The OBD2 design section encompasses the OBD2 UART module, FTDI basic breakout

and the scan tools used to monitor and extract vehicle data.

4.6.1 Hardware

Connection to the vehicle CAN bus through the OBD2 protocol is a straightforward

matter as seen below in Figure 4.14. The OBD2 UART module uses a serial RS232 plug

to interface with the OBD2 port located on the vehicle, in the drivers foot well. This data

is then processed using the chips discussed in Section 2.4.4. Further to this, the FTDI

basic breakout chip is used to convert the serial data to USB for communications with

the micro-controller or computer. This allows communications in both directions, where

OBD2 codes and data is available from the vehicle, and fault codes can be reset from the

micro-controller/ computer.

Figure 4.14: OBD2 connection hardware

4.6.2 Software

Some of the functionality of the OBD2 scan tool, OBD Auto Doctor, can be seen below

in Figure 4.15. It provides an in depth view into the operation of the vehicle under test.

Being such a complex analysis tool, it was prudent to develop a list of specific conditions

to monitor in conjunction with the audio and vibration sensors in order to effectively

fault-find.

4.7 Wi-Fi 75

Figure 4.15: OBD Auto Doctor

4.7 Wi-Fi

The Wi-Fi section encompasses the ATWINC1500 Adafruit Wi-Fi module and its hard-

ware connections, as well as the software development of the Teensy Access Point server

and associated web pages.

4.7.1 Hardware

Hardware connection to the Teensy module utilizes SPI communications as alluded to in

Figure 4.16 by the MOSI/ MISO pins. SPI mode was described previously in the LIS3DH

hardware design section. The ATWINC1500 Wi-Fi module also features an enable pin

(tied to High), IRQ (used for interrupt features) and RST (Module reset).

4.7 Wi-Fi 76

Figure 4.16: ATWINC1500 WiFi Setup

4.7.2 Software

The ATWINC1500 module from Adafruit utilizes a library called ”WiFi101.h”. It is

supported by Arduino and is compatible with a number of different WiFi modules and

platforms such as the Teensy 3.6 micro-controller.

The software was built in two sections: A server script, and a number of HTML scripts.

The server script was written to set up and run the Access Point server and handle WiFi

communications via the Teensy and ATWINC1500 module, and was developed in the

Arduino IDE.

HTML

The web page scripts were developed in notepad and are in HTML format. They were

saved on the Teensy SD card for later upload upon request by the client computer. The

HTML scripts generate three different web pages to allow a client computer local access

to download the data files stored from the Teensy SD card to their respective computer

via WiFi communications. The web pages also provide a simple interface for the user to

interact with complex data files.

An excerpt from the HTML index script can be seen below in Figure 4.17

4.7 Wi-Fi 77

Figure 4.17: HTML script example

Wi-Fi/ Server

The Wi-Fi and server software was developed in the Teensduino IDE for operation on the

Teensy micro-controller. Development of the Wi-Fi/ Server software can be seen in the

following pseudo-code:

• Library #includes and #Defines.

• Declare variables, buffer sizes, server ports and Boolean values to be used for Wi-Fi

Access Point.

• Wait until the GPS Geo-locate has determined the vehicle/ module is within perime-

ter of home base, then set up WiFi conditions:

– Set Wi-Fi pins.

– Query WiFi module and determine correct hardware connections.

– Create the open network and listen for incoming client requests.

– Host the server and display the current Wi-Fi status.

• Once the setup has completed, commence run-time operations:

– If a client connects, display MAC address of client.

– Handle client requests using if/ else statements and display the appropriate

web pages or upload requested data files.

4.8 Data Analysis 78

– Close the connection once the request is complete and display that the client

is disconnected.

• Re-enter the listening phase and await further client instruction.

4.8 Data Analysis

Data analysis was primarily undertaken in MATLAB, making use of its signal processing

capabilities. Vibration and audio data was entered into the MATLAB programming

environment, and analyzed using in-built functions such as the Fast Fourier Transform

(FFT) and self-coded functions to perform the Short Fourier Transform, Mahalanobis

Distance and Covariance values.

Data analysis was undertaken in two stages. The initial stage, using the FFT function,

some windowing and spectrogram analysis, was to extract the frequency components from

the data to better understand what kind of effects the faults in an engine will have on

the frequency profile of the data. This was performed on both the vibration and audio

data collections. Unfortunately, this had some limitations in terms of fault classification,

which will be discussed later.

The second stage was to develop the Linear Predictive Coding (LPC) coefficients, then

use a statistical measure such as the Mahalanobis Distance to classify different faults.

4.8.1 FFT/ Spectrogram Software

MATLAB was the weapon of choice for analyzing the vibration and audio data. In order

to extract meaningful information from the data, a number of steps were taken and can

be seen in the following pseudo-code:

FFT:

• Input the CSV (vibration) or WAV (audio) file and use MATLAB functions to

extract vector-based data.

• Determine the size of the data in terms of vector length and time.

4.8 Data Analysis 79

• Determine sampling frequency: For WAV file this can be achieved with audioread()

function and for CSV can be calculated based on the time step between the first

two samples.

• Plot the data over time to get an idea of the waveform, using the actual data and

an RMS plot for vibration data.

• Determine the FFT (Fast Fourier Transform) of the data and plot to show frequency

analysis of the data.

The following code snippet from MATLAB, seen in Figure 4.18 is useful to visualize this

pseudo-code.

Figure 4.18: FFT code snippet from MATLAB

Additionally, a spectrogram analysis was developed in order to have a visual representa-

tion of the frequency over time. This is seen in the following pseudo-code below and in

Figure 4.19

Spectrogram:

• Define window length, step size and the number of FFT points to use

• Apply the Hamming window to the length of the window

• Calculate the Short Fourier Transform values of Magnitude, Frequency and Time

using original vector values and calculations from FFT function above.

4.8 Data Analysis 80

• Amplify and scale the values of Magnitude.

• Use a surf plot to visualize the data.

Figure 4.19: FFT code snippet from MATLAB

4.8.2 LPC/ Mahalanobis Software

Two scripts were written to develop the LPC coefficients, one to define fault/ normal

operation baselines then write to a text file, and the second to input the baselines and

compare to an unknown sample using the Mahalanobis function. Given some functional

restraints, only the audio data was used for this analysis. The LPC baseline code is

explained in the following pseudo-code:

Create LPC Baseline profiles:

• Using Audacity, create a WAV file which is the first 75% of the total sample file.

This will become the baseline sample. This is done for each type of fault

• Input the WAV (audio) file and use MATLAB functions to extract vector-based

data.

• Determine the size of the data in terms of vector length and time, and define frame

sizes, order of LPC coefficients.

• In steps of the frame size (for loop), calculate LPC coefficients that approximate

each frame. Loop the entire data set to determine a series of LPC coefficients for

each frame.

4.8 Data Analysis 81

• Take the average of the LPC coefficients to create a baseline over the whole sample.

• Remove NaN entries and write LPC coefficients to an external TXT file. This is

now the baseline.

A section of the MATLAB code from the Baseline profiles script can be seen below in

Figure 4.20. This is useful to visualize how the LPC coefficients are calculated frame by

frame.

Figure 4.20: LPC code snippet from MATLAB

The Mahalanobis Distance Pseudo-code can be seen below:

Mahalanobis Distance:

• Using Audacity, create WAV files which are the last 25% of the original sample

file, as well as other samples from different recordings of the same fault. These will

become the test samples.

• Input baseline LPC baseline files and place in vector variables within MATLAB.

• Input the unknown test WAV (audio) file and use MATLAB functions to extract

vector-based data from the samples.

• Determine the size of the sample in terms of vector length and time, and define

frame sizes, order of LPC coefficients.

• In steps of the frame size (for loop), calculate LPC coefficients for the unknown

sample that approximate each frame. Loop the entire data set to determine a series

4.8 Data Analysis 82

of LPC coefficients for each frame. Remove NaN entries.

• Using the Mahalanobis function, compare the baseline LPC coefficients (average)

with the unknown sample LPC coefficients (for each frame). The Mahalanobis

function also uses a covariance function internally in order to arrive at a single

value of Mahalanobis Distance. This reflects how far away the unknown sample is

from the baseline data. Smaller values indicate that the unknown sample is closer

to the baseline.

A section of the MATLAB code from the Mahalanobis script can be seen below in Fig-

ure 4.21. This is useful to visualize how the Mahalanobis Distance is calculated, where

the inputs are the baseline and the unknown data.

Figure 4.21: Mahalanobis code snippet from MATLAB

4.9 System architecture 83

4.9 System architecture

The total architecture can be seen below in Figure 4.22. This is an approximation of how

the system works together and shows some of the various attributes of each module as

well as the communication protocols each module uses to communicate with the micro-

controller.

Figure 4.22: System Architecture

4.10 An Integrated System

In order to integrate a number of different sensor and breakout modules together, it was

necessary to map out the connections to the Teensy board. For example, there were a

number of sensors that communicate using SPI protocols, and the Teensy GPIO pins are

not all compatible. Additionally, the GPS receiver had to have separate Ground and

PWR connections, as the module drew too much power.

Once all the connections had been made, it was necessary to amalgamate the software.

This came hand in hand with the hardware connections and transferring the pin allo-

cations was a simple matter. The difficult part of this process was timing. The audio

4.11 Chapter Summary 84

recording component takes up a large part of the processing space. The challenge was to

leave out enough time for every other sensor to perform a reading, record to the SD card,

and bounce back to the audio with enough time left for the gap not to be noticed. This

was partly solved by the large processing capability of the Teensy micro-controller, where

the micro-controller could remain recording and buffer audio, leaving only small gaps in

the order of micro-seconds where the additional sensor recordings from the accelerometer

and GPS to the SD card could take place.

Integrating the Wi-Fi module was a complex hardware matter, as the new module also

required SPI communications. The Teensy 3.6 board does provide three SPI connections.

Since two SPI connection sets were already used in the previous construction, the third

one was investigated. After some pad soldering and software tests it was found that the

”WiFi101.h” library was not compatible with the third set of SPI pins. This led to the

disconnection of the accelerometer sensor, and connection of the Wi-Fi module to the

SPI0 set. The Wi-Fi/ server software was mostly run after sensor data collection and did

not affect the operation of the previously developed code.

It may be possible to integrate the accelerometer using the pad mounts for SPI2, or

alternatively edit the ”WiFi101.h” library for use with SPI2, but this was not investigated

due to time constraints.

The system was able to be fully integrated with the exception of the accelerometer sensor,

and operated as advertised. It was able to collect sensor data without any significant

lapses, then provide the data to a client via Wi-Fi communications upon return to a

geo-located home base.

4.11 Chapter Summary

This chapter has provided the design components and overall architecture of the system

that was developed from the methodology in Chapter 3. An in-depth description of how

each component was designed and integrated into the system was formulated, along with

any stumbles along the way.

Chapter 5

Results and Discussion

5.1 Chapter Overview

This chapter presents and discusses the results of the testing phases. Results are presented

in a chronological manner as the work progressed. Components were tested individually

to ensure they would meet the needs of the project, then amalgamated and used in a

series of trials on two different vehicles. Additionally, a number of recordings of engine

faults were sourced from a database online for use in the MATLAB analysis stages.

5.2 Preliminary Component Testing 86

5.2 Preliminary Component Testing

A range of individual tests were carried out to verify the operation of each component,

and its suitability in the project. This would help determine overall project compliance

when each component could be seen to satisfy individual objectives.

5.2.1 LIS3DH Accelerometer

To validate the work carried out in the literature review, the accelerometer had to be

tested using some local vibration source that could simulate an approximate frequency.

To do this, it was decided to mount the accelerometer to a mobile phone with a vibration

application installed, where the vibration profile could be edited. We know that the

vibration frequency of the average mobile phone is approximately 150 Hz (Yim, Myung

& Lee 2017), so all we had to do was measure this to prove that the accelerometer could

pick up vibrations and could be used in testing on the engine profile. We also know that

the fundamental frequency of the engine, using Equation 2.1, will be less than 75 Hz. As

we can see in Figure 5.1, the accelerometer under test was able to successfully record the

150 Hz vibration coming from the mobile phone.

Figure 5.1: Phone Vibration testing

5.2 Preliminary Component Testing 87

5.2.2 MAX9814 Microphone

A similar test was conducted on the microphone, using a 1 kHz test tone from a mobile

phone. This test was conducted to ensure that the microphone was capable of picking

up the sound without clipping, and with appropriate gain. The recording can be seen

below in Figure 5.2, which was imported as a RAW file and edited with headers and

informational data to become a WAV file.

Figure 5.2: 1 kHz test recording

Figure 5.3 below shows the results of the audio analysis in Audacity, clearly showing a 1

kHz tone being picked up by the microphone.

Figure 5.3: 1 kHz test recording

5.2 Preliminary Component Testing 88

5.2.3 Data Storage and file formats

The sensor data has a need to be stored temporarily on the data logger until it can be

transferred on return to home base for further processing and analysis. The local storage

on the Teensy 3.6 module is insufficient for the masses of data being recorded, and the

SD card was utilized. This was tested in conjunction with the audio and vibration tests

carried out in the preceding sections.

In order to record to the SD card, an SD library was utilized under the auspices of the

Arduino IDE. This library allowed recording of audio, vibration and GPS data to two

different types of files, RAW and TXT, in the FAT32 file format. These files provided a

low memory option of recording data and could then be quickly removed from the data

logger for processing.

5.2.4 GPS sub-system

GPS testing was carried out in a number of steps, ensuring compliance of each component

before proceeding. Initially, the manufactured antenna had to be tested for resonance at

the correct frequency. This was carried out using the simulation software HFSS (High-

Frequency Structure Simulator) created by ANSYS (Analysis System), for a proof of

concept on the measurements, and then on a Vector Network Analyzer once manufacture

was completed. From the design section, we had seen that the reflected power at the

desired frequency was approximately -15dB in the HFSS simulation environment. The

manufactured antenna was then tested using a Vector Network Analyzer to ensure this

figure was reflected in the physical world.

Once the GPS antenna had been manufactured, the next process was to amplify the signal

and successfully record a GPS reading to the SD card, through the GPS receiver. Using

the purchased Nooelec SAW filter and LNA (Low Noise Amplifier) module, the GPS

receiver, some coaxial cabling, various SMA connectors, a USB power supply, a locally

manufactured DC block/ current sink and a u.FL to SMA connector, the GPS signal was

successfully received through the external antenna and data was stored on the SD card.

The testing setup yielded the results that can be seen below in Figure 5.4.

5.2 Preliminary Component Testing 89

Figure 5.4: GPS test results

5.2.5 Wi-Fi and Access Point server

The output of the serial monitor connected to the micro-controller is shown below in

Figure 5.5. This represents some of the stages of the Wi-Fi and server test setup. The

GPS sub-system is polled until a suitable fix is made. The distance to home base is then

calculated based upon an embedded location and the current location of the module.

When the module is located inside range of home base, it finishes recording data from the

sensor array and begins to setup the server. The server contains a label (which is seen

from the Wi-Fi tab on most computers), an address to the web page, and the strength of

the signal. Finally, the serial monitor shows when an external device is connected, namely

the PC used to download the data.

5.2 Preliminary Component Testing 90

Figure 5.5: Preliminary Wi-Fi results

5.2.6 Final Configuration

The final setup can be seen below in Figure 5.6. The testing leads were omitted for the

photograph, and the OBD2 connector is not shown connected to a vehicle. In practice,

the accelerometer and microphone would be connected to ends of the test leads rather

than on the breadboard as seen in the figure. Additionally, the GPS antenna would be

mounted to the top of the vehicle. This does however approximate the configuration that

was used to assess the suitability of the module in recording data and transferring it to

the home computer.

5.2 Preliminary Component Testing 91

Figure 5.6: Final configuration

5.3 Trial Summaries 92

5.3 Trial Summaries

The results in the following sections were garnered during a series of trials on two different

vehicles. There were three main trials in which results were gathered. In addition to the

trials, further research was carried out on engine recordings taken from an online database.

It should be noted at this point that not all results are presented as the amount of content

would overwhelm the reader. It is the intent of the following structure that the most

relevant results be presented. The trials can be summarized as follows:

• Trial #1 Subaru Forester 21/03/2019: This trial was a proof of operation test

for the GPS and OBD2 data predominantly. It also incorporated an initial test

on the accelerometer and microphone to ensure correct setup and position. It was

discovered after this initial test that the accelerometer settings within the code were

quite incorrect, and the placement of the microphone (in addition to gain settings)

was leading to some significant clipping.

• Trial #2 Subaru Forester 22/04/2019: This trial was to confirm the correct

operation of the accelerometer and microphone, including placement. OBD2 and

GPS data was gathered again also.

• Trial #3 Hyundai Getz 20/05/2019: Trial #3 was the first trial with introduced

faults. After correct operation was confirmed in the preceding trials, a baseline

recording of operation was conducted on the Getz, and then two different faults were

introduced into the Getz and recordings taken for each. The first fault introduced

was a disconnected ignition plug, and the second ”fault” was to change the fuel

from normal unleaded to premium. It must be noted here that these tests were

conducted with the engine at a constant idle speed, as opposed to the previous tests

which show driving speeds and up to 2000 RPM.

• Trial #4 Online database: This was not a trial as such. It gathered a series

of engine recordings from an online database with and without faults (both on the

same engines) and attempted to conduct an accurate analysis using the MATLAB

tools.

5.4 GPS Results 93

5.4 GPS Results

After the individual GPS system was tested, as described in the preceding section, it was

necessary to ensure operation and accuracy on a moving vehicle.

5.4.1 Trial #1 Subaru Forester

As can be seen in Figure 5.7 below, the manufactured antenna was able to track and log

the vehicle position accurately for the duration of the trial. The raw GPS data was stored

in a TXT file, and contained latitude, longitude and time/ date information. This raw

data was then imported into Google Earth using a simple import tool and displayed as

below.

Figure 5.7: GPS plot from Trial #1

As we saw earlier in the individual test section, the GPS is also capable of recording many

other conditions such as altitude, velocity, angle of direction, number of satellites used

in the fix, and the quality of the signal received. Additionally, these conditions can be

overlaid onto the GPS dot points if further trip information is required.

Another area that was investigated was the ability of the accelerometer to record driver

conditions, rather than engine vibration. This used a much lower sampling rate and the

results can be seen below in Figure 5.8. Each individual point on the map can contain

5.4 GPS Results 94

a plethora of information for the user. The figure below is showing accelerometer values

(X,Y,Z), the time this point was recorded, and the latitude/ longitude at this point.

Figure 5.8: GPS plot from Trial #1

5.4.2 Geo-location

The geo-located home base can be seen below in Figure 5.9. The coordinates of home base

and a fixed range value are embedded in the Teensy code. The location of the module is

then compared to the location of home base and a distance to target calculated. If the

distance to target is less than the range value, the module has entered the ”fence” and

server set up is commenced.

A minor issue for the GPS fence was the accuracy of the module. The tests were carried

out in the same location as the embedded coordinates. A 30m fence around the home

base worked every time for a stationary position of the module, but not so for 20m and

10m, showing that the module is more than 20m inaccurate occasionally.

5.5 OBD2 Results 95

Figure 5.9: 30m Geo-located fence

5.5 OBD2 Results

The ODB2 system saw its first test in the trial, as it was unable to be tested individually

without the vehicle.

5.5.1 Trial #1 Subaru Forester

The OBD2 results from Trial #1 can be seen below in Figure 5.10. This information was

extracted from the CAN bus on the vehicle by the OBD2 protocol and the connection

hardware. A scan tool software called OBD Auto Doctor then takes this information

and displays the chosen aspects of the car operation on screen. We can see from the

figure below that the drive was approximately 60 seconds, intake air and engine coolant

temperatures were fairly regular, and the vehicle speed and RPM correspond to each

other as we would expect. There is much more information available through the OBD2

protocol, this is simply an example to prove the operation of the hardware.

5.6 Wi-Fi and Server results 96

Figure 5.10: OBD2 plot from Trial #1

5.6 Wi-Fi and Server results

One of the web pages hosted by the micro-controller can be seen in Figure 5.11. This

shows the index or home page for the site. Two other pages are also linked, which provide

a list of files available for download from the Teensy SD card. These files will be either

GPS, Audio or accelerometer data in a raw format. Once the files are downloaded by

the client computer they are able to be processed using Audacity and then MATLAB to

diagnose a fault.

The speed at which the client computer was able to access the data was quite slow

unfortunately. The image that can be seen in the figure below had a size of approximately

40 kB, but would load in the ”dial-up” fashion of the 90’s internet. Audio and GPS files

of a few seconds length were able to be downloaded with no significant delay, but this

would increase with file sizes.

5.6 Wi-Fi and Server results 97

Figure 5.11: Condition Monitoring Web page

An example of a client request can be seen below in Figure 5.12. In this case, the client

has requested the most recent audio file for download which is indicated at the top of

the figure by ”GET /Audio1 HTTP/1.1”. The host IP address is also shown, as well as

a swathe of HTTP information in the form of requests and communication information.

User-Agent for example is a request string that allows peers to identify application type,

operation system and software version.

The range of the Wi-Fi was not tested effectively, and tests were limited to the length

of the laboratory room. There were no issues with connectivity in the scope of the tests

that were undertaken.

Figure 5.12: Wi-Fi communications

5.7 Vibration Results 98

5.7 Vibration Results

This section presents the vibration data that was collected from the accelerometer for the

duration of the Trials. The raw data has been manipulated for presentation and proof

of the data collection operation. It is in the form of vibration profiles in the time and

frequency domains.

5.7.1 FFT and Spectrogram Analysis

FFT and spectrogram plots were developed in this section to better analyze and visualize

the raw data from the engine vibration profile. These were conducted on a healthy engine

(Trial #2) and on an engine with two known faults introduced (Trial #3).

Trial #2 Subaru Forester

This trial involved a stationary test, increasing the RPM of the engine from idle to

approximately 2000 RPM and measuring with an accelerometer sampling at 5 kHz. This

can be seen in Figure 5.13. The graph shows the data being plotted over time, and

clearly shows the starting of the engine, the idle period, and the increased vibration from

RPM increase. Due to the sampling frequency used in by the accelerometer (5 kHz), the

resolution of the measurements is quite rough.

Figure 5.13: Time analysis in MATLAB using Vibration data

5.7 Vibration Results 99

It was also useful to calculate a spectrogram analysis using a hamming window and

short Fourier Transform Functions, then see this on a plot as shown in Figure 5.14.

The spectrogram plot provides us with a visual representation of how the spectrum of

frequencies of a signal vary over time. This also gives us an idea of where the resonant

frequencies are located. Again, we can see the engine start period, and where the RPM

was increased, including where the resonance from these events lies. This should be

compared to the time plot above in Figure 5.15 and similarities noted.

Figure 5.14: Spectrogram analysis in MATLAB using Vibration data

Lastly, we can extract frequency information from the FFT plot in Figure 5.15. There is

a clear spike at approximately 32 Hz, which corresponds with the frequency of the engine

as calculated from Equation 2.1, and to the large amount of time the engine spent at

an idle RPM of 1000. The time spent at 2000 RPM is not as clearly identifiable (which

would be approximately double the frequency - 64 Hz).

5.7 Vibration Results 100

Figure 5.15: FFT analysis in MATLAB using Vibration data

Trial #3 Hyundai Getz

The results seen in Figure 5.16 below show an overlay of the baseline/ healthy data with

the fault data. It can be clearly seen that the magnitude of the fault data is much larger.

This test was run at idling, and the ignition and the peaks at beginning/ end are the

ignition/ turn-off points. The particular fault introduced in the Hyundai Getz, and seen

in the figure, was a disconnected ignition plug as described in Section 5.3.

Figure 5.16: Vibration overlay for fault data on Hyundai Getz

5.8 Audio Results 101

In addition to knowing the magnitude of the response in the vibration profile, it is also

useful to see the magnitude of particular frequencies. Although hard to see in Figure 5.17

when compared to the fault data, the baseline has a maximum at around 32-34 Hz, which

is the frequency of the engine at idle. At approximately 16-17 Hz (and surrounding

resonant frequencies), we can see a huge spike in the fault data. It should be noted at

this stage that 17 Hz is one half of the maximum seen at the baseline data.

Figure 5.17: FFT domain overlay for fault data on Hyundai Getz

5.8 Audio Results

This section presents the audio data that was collected from the microphone for the

duration of the Trials. The raw data has been manipulated for presentation and proof

of the data collection operation. It is in the form of audio profiles in time and frequency

domains.

5.8.1 FFT and Spectrogram Analysis

FFT and spectrogram plots were developed in this section to better analyze and visualize

the raw data from the engine audio profile. These were conducted on a healthy engine

(Trial #2) and on an engine with two known faults introduced (Trial #3).

5.8 Audio Results 102

Trial #2 Subaru Forester

As alluded to in Section 5.7.1, this trial involved increasing the revolutions of the engine

and recording its condition. This part of the trial was conducted concurrently to the

accelerometer recording and was done with a microphone sampling at 44.1 kHz. Below

in Figure 5.18 we can see a similar profile emerging, where the ignition or engine start

is observed, and increasing revolutions noted. As compared to the time profile from the

accelerometer graph, the audio data has a much higher resolution.

Figure 5.18: Time domain plot of Forester audio recording

Further to this, we can see the frequency content of the signal in Figure 5.19. When

compared to the content in the vibration FFT seen previously in Figure 5.15, the specific

engine states (1000 and 2000 RPM) are not as obvious. What we can see however is a

strong indication that the engine was operating approximately between 35 Hz and 70 Hz,

corresponding to 1050 and 2100 RPM. From this, it could be inferred that in order to

better diagnose fault frequencies it will be necessary to record at one speed of the engine

only.

5.8 Audio Results 103

Figure 5.19: Frequency domain plot of Forester audio recording

Lastly, in Figure 5.20, we can see a visual representation of the frequency content over

time. Again, it is important to note how we can see resonant frequency content over time

and in relation to the original event. This should be compared to Figure 5.18, as with

the vibration content above for similarities in the signature.

Figure 5.20: Spectrogram plot of Forester audio recording

5.8 Audio Results 104

Trial #3 Hyundai Getz

This part of the trial was conducted concurrently to the vibration test seen in Figure 5.16.

We can see that the results are somewhat similar, but the audio recording seen below in

Figure 5.21 does not show as much of an increase in magnitude between the fault and

baseline data when compared to the vibration data.

Figure 5.21: Audio overlay plot of Hyundai Getz recording

Interestingly, we can see some of the same spikes at 16-17 Hz and 32-34 Hz below in

Figure 5.22, when compared to the FFT plot of the vibration data in Figure 5.17. What

the vibration FFT does not show us however, is the resonances that appear at higher

frequencies as a result of the fault introduced. These occur at multiples of the 17 Hz, and

can be seen at 187 Hz, 378 Hz and 565 Hz.

5.8 Audio Results 105

Figure 5.22: FFT overlay plot of Hyundai Getz audio recording

5.8.2 LPC and Mahalanobis Distance

We have seen from the time and frequency domain plots that the faults are evident.

Unfortunately, there was no simple way to automatically identify the fault from that

representation of the data. This led to the application of LPC coefficients and the Maha-

lanobis Distance measure.

Using the LPC technique, it became efficient to store a small number of float values in a

text file as a baseline that represented particular faults and healthy engines.

Within a MATLAB script, LPC coefficients were calculated for a frame size of 3000

samples then averaged over the input sample time size. These averaged float values

represented Nth degree polynomial coefficients, where N = 15 for the following results

presented. The polynomial was taken over 75 percent of the audio data file, and repre-

sented approximately 15 - 20 seconds of normal or faulty engine run-time, sampling at

44.1 kHz. The separate float values, or 15th dimensional vector points, were then rounded

off after the 8th decimal place.

The saved LPC coefficients could then be imported into a separate MATLAB script

as a 15th dimensional vector. Within the separate script, we would then have a 15th

dimensional vector for the first 25 percent of each recording (healthy and fault condtions)

which represented our baseline data to use in future comparisons.

5.8 Audio Results 106

Similar to the process of creating baseline LPC coefficients described above, an analysis of

an unknown audio sample was carried out. This resulted in a collection of Nth dimensional

vectors, that clustered about a centroid specific to the unknown signal under test. It is

this measure of how the LPC coefficients cluster about particular centroids that allows

us to compare two different signals. The unknown audio LPC vectors (for each frame of

3000 samples) are compared to each baseline fault vector to show their “closeness” to the

unknown data LPC centroids using the Mahalanobis Distance measure as described in

Section 2.9.3.

Audio data

For the LPC and Mahalanobis analysis, only the raw audio data was used (as opposed to

the raw accelerometer data), as it showed greater depth of frequency as discussed above

in the FFT analysis of audio and vibration data. Audio data was also easier to procure

for cross platform analysis. Additionally, there were time constraints on the development

of vibration analysis code using the LPC/ Mahalanobis classification method. It was

decided to pursue audio analysis only from this point in the research.

Test conditions

The baseline LPC parameters that are used to define the fault/ healthy condition were

derived from an average of the first 75% of the audio files. This 75% block was taken

out of the original file using tools in the editing software, Audacity. LPC coefficients

were derived for each frame of 3000 samples within the 75% block, and then an average

was taken using MATLAB functionality, resulting in a 15th dimensional vector (16 float

values) for the entire 75% block of audio.

LPC parameters for each frame of the remaining 25% of the original audio file was then

derived and compared to the LPC baseline data using the Mahalanobis function. Addi-

tional data to test the baseline was derived from other recordings of the same fault, but

at a different time within the trial.

5.8 Audio Results 107

Trial #3 Hyundai Getz

By being able to induce a fault in the Hyundai Getz, and having baseline data of its

healthy operation as well, we were able to collect suitable audio samples in order to assess

the LPC/ Mahalanobis classification method. The results seen below in Figure 5.23 are

amongst the most significant findings presented in this report.

Figure 5.23: Mahalanobis Distance Results

In 15 out of 16 cases, or 93.75 % of the time, the LPC coefficients and the Mahalanobis

Distance Algorithm were able to detect the correct condition, using an unknown input

sample.

This can be seen in Figure 5.23 above, using the legend below the graph. For all of the

first four “unknown” inputs on the left hand side of the figure, the algorithm is able to

compare them with the stored baseline LPC vectors and determine that all four unknown

input samples are fuel fault recordings, indicated by the lowest Mahalanobis Distance

value. The samples are not actually unknown, they are just seen as such to the algorithm

under test. This helps us accurately assess the effectiveness of the Mahalanobis Distance

algorithm.

The Y value, or Mahalanobis Distance value, gives us a singular value for just how close

the unknown audio LPC coefficients are to the baseline fuel fault LPC centroids (one for

each vector value).

5.9 Further research - Engine Database recordings 108

The trend follows across to the four timing fault recordings, and to the majority of the

last eight normal engine operation recordings with one exception (the 16th test), where

the lowest Mahalanobis Distance on the graph indicates which fault or normal condition

is closest to the baseline LPC data.

5.9 Further research - Engine Database recordings

It was also prudent to investigate different fault conditions on a variety of car models.

This was achieved by downloading a number of audio files from an online database which

contained before and after (faulty and healthy) recordings of engine faults. These were

then compared using similar methods of analysis as the sections above.

5.9.1 FFT analysis

As we can see below in Figure 5.24, this vehicle presented a magnitude difference with

similar characteristics to the ignition plug fault in the the Hyundai Getz. The vehicle

is question was stated as a BMW N47 from the database, and the fault was given as

“timing”. Listening to the sample also indicates that the microphone position was changed

during the recording, which is different to the Getz, where the microphone was fixed.

This shows in the figure as the magnitude of the fault and baseline samples increasing

and decreasing.

Figure 5.24: BMW audio overlay

5.9 Further research - Engine Database recordings 109

With the Hyundai Getz fault in trial #3 we saw peaks at certain frequencies which we

can see again in Figure 5.25. These frequencies differ, as the engine under test is different.

The BMW engine is a four cylinder, like the Hyundai, but is a common rail diesel, which

operates very differently to the Hyundai Getz.

Unfortunately, we have less information this time and cannot extrapolate on the RPM of

the engine, and its resonant frequencies, as we do not know the particular idle RPM of the

engine under test. We can see however, that the fault data exhibits larger peaks at higher

frequencies, and is quite significant at 83 Hz, as compared to the baseline magnitude at

the same frequency.

Figure 5.25: BMW FFT overlay

5.9.2 LPC and Mahalanobis Distance

The next stage was to try and use the classification method on actually unknown data

(where before we knew the fault condition present). This can be seen below in Fig-

ure 5.26. The algorithm was able to detect when the engine has a timing fault (no further

description), and when the engine is operating normally, with the exception of one test

(7/8 tests or 87.5% accurate). Classification of the fault is indicated on the graph by the

lowest Mahalanobis Distance value on the Y axis.

Upon further investigation, it appears that the last 25% of the recording (used as an

unknown sample to test the baseline) had the microphone moved significantly further

5.10 Cross platform analysis 110

away. The timing fault can be heard faintly, but is overshadowed by environmental noises

and may explain why the algorithm was unable to capture the condition.

Figure 5.26: BMW Mahalanobis Distance Results

This does not give us a description of the fault however, only that a fault exists. What

we do have however, is a baseline recording of a fault that could be used later on if the

fault is diagnosed.

5.10 Cross platform analysis

So far, all tests have been conducted only on the models themselves. This means that

recordings were taken and tested on their respective platforms only. This investigation

would be remiss if it did not attempt to classify similar faults or healthy behavior across

a variety of models. From the previous test phases there are a number of baseline files

which could be used to try and find similar faults in unknown data on different models

of car. These baselines were tested to see if the Mahalanobis Distance algorithm could

detect any similarities in different models. The baseline files mentioned are as follows:

• Hyundai Getz Ignition Plug disconnected

5.10 Cross platform analysis 111

• Hyundai Getz Premium Fuel

• Hyundai Getz Normal operation

• BMW N47 Unknown Timing Fault

• BMW N47 Normal operation

• Subaru Forester Normal operation

The baselines listed above were derived from the first 75% of the recording, and the

remaining 25% was used to test against the baselines in seen in Figure 5.27. As we can

see, the most significant result is that each sample has the most in common with itself,

as we would expect.

Further to this however, it appears from Figure 5.27 that common faults and common

healthy engine recordings do not have any correlation (i.e. we could not use a timing fault

on the BMW N47 to diagnose a timing fault on a Hyundai Getz, or a healthy recording

of any vehicle to ensure correct operation on another).

Lastly, there does appear to be a relationship between faulty and healthy engines of the

same model. This can be seen where the BMW N47 healthy and faulty columns exhibit

the lowest Mahalanobis Distance respectively. The Hyundai Getz also shows the same for

its 3 conditions (timing, fuel and healthy).

Figure 5.27: Known Samples: Mahalanobis Distance

5.10 Cross platform analysis 112

In the last series of tests, a number of unknown and unrelated samples were tested against

the baselines listed above. This was to further investigate whether there was any signif-

icant relationship between model conditions. The unknown samples introduced were a

series of different knocking faults, a small number of singular faults such as a fan clutch

ball-bearing, camshaft displacement, and engines pre-service, and a number of typical

healthy engines from different models. The results can be seen below in Figure 5.28.

There does not appear to be any significant correlation between the input samples and

the baselines. None of the healthy engine input samples have a low Mahalanobis Distance

when compared to healthy engine baselines, or even a lower MD value than other baseline

conditions. The BMW N47 recordings (faulty and healthy) seem to have the most in

common with every unknown recording, which is not useful from a fault finding stand-

point. Additionally, the Subaru Forester commonly has the largest MD distance when

compared to most input samples.

Figure 5.28: Unknown Samples: Mahalanobis Distance

5.11 Discussion of results 113

5.11 Discussion of results

This section attempts to disseminate and discuss the results in the preceding sections.

5.11.1 Preliminary Component Testing

The individual component testing was a necessary step in confirming the correct operation

of the sensor packages, and saved a large amount of time that would have otherwise been

spent in the field. By delving into the operation of the sensors, it was possible to ”see” into

what was to be recorded and make some initial assumptions about the engine recordings

phases, and tweak the sensor setup and code to suit.

Both the microphone and the accelerometer module selections proved to be suitable for

purpose. In addition to this, the Teensy micro-controller platform was more than suitable

for processing the large amounts of audio data present.

The GPS sub-system proved to be a challenge after the design phase, as the self-manufactured

Low Noise Amplifier failed in the test phase, leading to the purchase of an out of the box

solution. The manufactured PCB LNA was intended to be powered through the coaxial

line from the GPS receiver and when the original plan failed, a bulky battery solution

had to be added into the circuit to power the LNA externally. The manufactured patch

antenna worked well however, and had appropriate gain considering the dielectric it was

manufactured from (FR4).

The preliminary Wi-Fi tests showed the connection of a client computer to the micro-

controller server over WiFi communications and proved the successful operation of the

ATWINC1500 module.

5.11.2 Data Collection

A number of vehicle trials were conducted in order to assess the accurate usage of the

sensor packages and data collection methods. During the trials, a number of significant

issues were resolved and required mention as follows:

Vibration: After Trial #2, the accelerometer settings came into doubt. During the

5.11 Discussion of results 114

preliminary testing and Trial #1 it was assumed that the sampling rate (400 Hz) would

be sufficient to pick up relevant engine vibrations. After some initial data analysis and

research, higher sampling rates were investigated (up to 5kHz - maximum sampling rate of

the accelerometer package) in order to maximize the spread of data being collected from

the engine. An unfortunate side effect of sampling at 5 kHz was that the data became

quite granular, as the resolution at 5 kHz is reduced and enters a low power mode.

Audio: It was discovered during Trial #1 the placement and gain settings for the mi-

crophone were incorrect. The microphone was originally mounted in the engine bay with

the bonnet closed, but this proved too much for the microphone and resulted in a large

amount of clipping evident in the audio plots. Additionally, gain setting were reduced

physically (using wire connections to the micro-controller and sensor package) to work

in conjunction with the automatic gain levels. This proved to work well and a resulting

audio plot can be seen in Trial #2, Figure 5.18.

Data Storage: A large issue that arose after Trial #2 was combining the data from the

sensors onto the memory card of the micro-controller. Only one information source could

write to the memory at a time, and led to latency issues and missing data until the issue

was discovered. The audio recording was the most affected, as the it was being held while

the accelerometer and GPS modules wrote to the card. This was fixed through software,

where the audio was allowed to continue recording to a buffer in the background while

the shorter processes wrote to the memory.

GPS: The manufacture and use of a patch antenna in the scope of this project was

intended to show the suitability of an antenna which could be mounted to the skin or

window of the vehicle. While the bulky battery and LNA solution was not ideal, the

trials showed that a patch antenna could be mounted to the upper skin of the vehicle

and provide accurate GPS readings for the duration of the trip. A variety of information

is able to be added to the map depending on the requirements of the user. This could

include any sensor measurement taken at the point of GPS location capture.

OBD2: The use of the OBD2 hardware and software was limited in the scope of this

project, and was shown mainly as a supplemental aid to the sensor information being

collected. The OBD2 trials showed that the vehicle under test was capable of producing

a large amount of accurate information on the vehicles operation. This was limited to

real-time information only however, or in the form of graphical plots over time rather

5.11 Discussion of results 115

than the raw data itself.

Wi-Fi: The Wi-Fi and server application showed successful data transfers between the

micro-controller and the client computer via WiFi communications, and upon return to

a geo-located home base. GPS accuracy was a minor issue, and further investigation into

Wi-Fi clocking speeds and bandwidth is warranted to transfer large data files.

5.11.3 FFT and Spectrogram Analysis

The time and frequency domain plots gave us the first glance at the informational content

in the raw data. This was immensely useful in fault finding the sensor settings, as well as

showing how the signal was behaving in time and its frequency content.

Time: Both the accelerometer and the microphone showed very similar profiles in the

time domain, and it was clear to see engine start times, periods of acceleration and stop

times. Additionally, the magnitude of the fault signals were clear to see. This was useful

in beginning to understand how a fault may behave, where fault signals exhibit a larger

magnitude.

Frequency: When we used the FFT function and moved into the frequency domain, we

were able to see the magnitude of various frequencies present in the accelerometer and

microphone data. This is where the content of the signal we were shown began to differ.

Vibration FFT plots showed clear spikes at the lower ranges, between 0 and 100 Hz but

did not show much response above that even when sampling rates were increased.The

audio recordings on the other hand were able to pick up content between approximately

10 Hz and up to 20 kHz.

The frequency domain also showed us the first significant glance at the specific differences

between faulty and healthy data. The first fault that was introduced on the Hyundai

Getz, seen in Figure 5.22, was an ignition plug disconnected. This showed up very clearly

on the FFT plot, where the fundamental frequency of the engine can be seen at 32-34

Hz and the fault frequency at half of this, 16-17 Hz. As half of the cylinders stopped

firing when the plug was disconnected, this is evidence that the FFT reflects the engines

frequency. Additionally, resonances were seen in the FFT plot as a result of the fault.

Further to this, we saw again in Figure 5.25, which was an unknown timing fault on a

5.11 Discussion of results 116

BMW N47, that the FFT plot showed a significant relationship between the baseline data

and fault data for the fundamental frequencies of an operating engine.

Spectrogram: The spectrogram plot gave us a visual representation of the frequencies

as they varied with time, and incorporated a heat map to indicate the intensity of the

content. This was used mostly to better understand the information in the signal to

inform later investigations. The spectrogram plots showed a clearer picture of resonant

frequencies, intensity, and the operation of the engine over time.

5.11.4 LPC and Mahalanobis Distance

LPC: Linear Predictive Coding provided a way to classify the large vectors of raw data

with a much smaller number of polynomial coefficients that accurately represented the

data in question. In many typical speech applications, an LPC10 coder is used (containing

10 coefficients) and a frame size of 10-20 ms is used. Based upon the study by Monica

Chamay, Se-do Oh and Young-Jin Kim (2013) on LPC use for engine vibration analysis,

which was elaborated upon in the literature review, a particular number of coefficients

was used (15) and a frame size of 3000 samples was used (for sampling rate of 44.1 kHz),

which is roughly 73 ms. Engine data is very different to speech patterns, and for this

reason the frame size and number of coefficients used in this report is based heavily on the

aforementioned study. Smaller frames sizes and less coefficients were briefly investigated,

but the results are not presented in this report as they proved inconclusive and warranted

further study. The LPC coefficients created in a separate script to the analysis script,

then added to a TXT file through MATLAB. This provided an effective way of storing

the baseline data for later analysis and comparison to the test samples.

Mahalanobis Distance:

The Mahalanobis Distance measure proved to be a strong method for comparing the LPC

coefficients. It was able to show the similarities between different recordings of the same

condition (i.e. 2 healthy recordings of the same vehicle). We were able to use its algorithm

to successfully predict a fault or healthy condition, if we held the baseline data for that

fault or healthy condition.

Extrapolating from this, it may also be possible to predict when a different car of the

5.12 Cost Benefit Analysis 117

same model and year presents with the same fault or healthy condition but this was not

tested in the scope of this report.

The cross platform analysis did not prove anything conclusively, except for the indication

that using Mahalanobis Distance measure and LPC coefficients to diagnose unknown

vehicle faults would not be possible. In order to diagnose successfully, it is necessary that

baseline data for that particular fault and model of vehicle is present in the database.

LPC coefficients and Mahalanobis Distance are not able to distinguish or separate specific

faults from the surrounding noise of the vehicle and/ or environment. Age and model of

the vehicle, where the vehicle has spent its operating life, and method of recording the

vehicle sound are a number of factors that will inhibit the algorithms from accurately

classifying a fault or healthy condition.

5.12 Cost Benefit Analysis

At the forefront of Health and Usage Monitoring Systems (HUMS) research is the Defence

Science and Technology Organization (DSTO). Vehicle research carried out by the Land

Division of DSTO describes some appropriate models and tools for the Cost Benefit Anal-

ysis (CBA) of Condition based maintenance (Gallasch 2016). Two of the more relevant

tools to this project work will be described in the following sections:

Qualitative - KT Box HUMS Cost Benefit Tool: The HUMS cost benefit tool

examines the relationship between the benefits of fitting HUMS to a vehicle fleet, and

the added cost of doing so. The tool attempts to capture a wide range of considerations

including the life-cycle of the equipment, spares and personnel. An example of the output

from the HUMS cost benefit tool can be seen below in Figure 5.29. This gives us a

qualitative view with no specific values, is very overstated when compared the research

carried out in this project, and it would give us no clear picture on the value of this

project. It does however strongly indicate the potential benefits of an installation of

HUMS or related Condition Monitoring systems on a vehicle fleet.

5.12 Cost Benefit Analysis 118

Figure 5.29: Example of HUMS Cost benefit tool

Quantitative - EXAKT: EXAKT is a decision support tool used for optimizing predic-

tive maintenance. It is not a cost benefit tool in itself but supports cost benefit calculations

if maintenance and condition data is available. EXAKT can predict equipment failure,

estimate remaining life and define a mix of preventative replacement and run-to-failure in

order to optimize costs and achieve a balance. The tool requires component parameters,

records of failure and preventative replacements, and a history of condition data. Using

this data, it can produce survivability models (based on the Weibull distributions) to

characterize the probability of failure as seen below in Figure 5.30. The EXAKT tool

relies heavily on historical data of inspections, maintenance costs, failures and operation.

For this reason, it would be well suited to an established fleet of vehicles fitted with a

condition monitoring system.

5.12 Cost Benefit Analysis 119

Figure 5.30: Example of EXAKT decision analysis

Cost Benefit Analysis approximation

In an attempt to quantify the possible benefits or outcomes from this project work, a

Cost Benefit Analysis based on the research above was carried out in this section and can

be summarized as follows:

• Cost baseline: This estimate covers the approximate costs of operating a vehi-

cle, including initial outlay, support costs, and disposal without using condition

monitoring. The RACQ (RACQ 2019) has recently published a series of studies

on the various operating costs for private vehicles and are current as of the 19th

of March, 2019. The cost, over a 5 year period and including outlay, ranges from

$29,738.26 for the Mitsubishi Mirage hatch to $127,519.33 for the Tesla Model X

(electric vehicle).

• Econometric considerations: The study by the RACQ above takes into account

the current conditions of the market. In addition to this, we must attempt to predict

inflation rates, purchase discounts, fuel prices, and labor rates. This is beyond the

scope of this report.

• Operating Scenarios: Vehicle fleets will be operated very differently to private

vehicles and as such, should be analyzed separately if required. The RACQ study

above uses an average distance traveled of 15,000 km every year to calculate fuel

5.12 Cost Benefit Analysis 120

costs and maintenance.

• Condition Monitoring implementation costs: The approximate cost of the

hardware used in this project is $600, in addition to time invested (nominally free).

In order to implement this hardware commercially however, there would have to

be significant investments in time and resources to bring the product to market.

It exists currently only as a proof of concept and is not able to be mounted or

installed permanently. A PCB package and mounting case, antenna fixtures, and

re-producible analysis software are among these requirements.

• Ongoing costs: Ongoing costs of operating the condition monitoring software/

hardware are difficult to estimate at this point in time. The hardware used may

suffer from early failure as it is not built to withstand the rough engine conditions

over an extended period. This may result in expensive sensor purchases in the future

of the project.

• Cost benefits: Again, it is difficult to estimate the cost savings of operating the

condition monitoring software/ hardware. In similar systems used in aircraft, HUMS

was installed and resulted in savings in parts cost and operation in the field of $2.1

million for a fleet of AH-64 helicopters over 8 years(Honeywell Aerospace 2015).

These savings were primarily attributed to a reduction in maintenance.

• Non-monetary benefits: In addition to saving money, there are a number of

non-monetary benefits. These include an increase in vehicle data awareness for fleet

management, operator safety and contributions to vehicle availability.

• Relative importance of costs and benefits: This section would require an

assessment of the relative importance of the cost factors against the non-monetary

benefits. If the system is not justified by cost savings alone, it may be further

advantaged by discussing non-monetary benefits.

• Re-assessment of value over time: After the condition monitoring program has

be running for a period of time it becomes necessary to re-visit and re-assess the

viability of the system to ensure its continued worthiness.

While it is hard to place a numerical value on the benefits of a condition monitoring

system in the scope of this project, it has been shown that the practice in other sectors

5.13 Chapter Summary 121

has been very beneficial in terms of maintenance hours spent, cost savings, and non-

monetary benefits. It would extend that a condition monitoring system in vehicle fleets

will follow this trend. It is also the hope that discussing these additional factors will

strengthen the interest in condition monitoring research and analysis in vehicles.

5.13 Chapter Summary

This chapter has provided a selection of results from the testing phases, and discussed the

implications of this data. It has been shown that the sensor data was collected and stored

in a manner that was appropriate. Additionally, this data was successfully analyzed using

MATLAB to show that LPC coefficients and Mahalanobis Distance measure could predict

a fault or healthy condition of a vehicle given the baseline data was present. Finally, a

Cost Benefit Analysis was roughly discussed and its implications on the project.

Chapter 6

Conclusions and Further Work

6.1 Chapter Overview

This chapter presents a number of conclusions that were made based upon the results

and design work outlined in the preceding chapters. These conclusions are separated into

sections to better disseminate the content and inform the reader succinctly.

6.2 Hardware and Software Conclusions 123

6.2 Hardware and Software Conclusions

With some small exceptions, the majority of the hardware used in the course of this

project was adapted to help achieve the objectives stated in the project specification

document and is summarized as follows:

• Microphone: The MAX9814 microphone module was able to record the engine

audio faithfully at 44.1 kHz, with some initial gain adjustment. The automatic gain

feature of this module is an important reason for the success of this component.

• Accelerometer: The LIS3DH accelerometer was suitable to measure the vibration

of the engine in testing, but the project could have benefited from an accelerometer

with higher resolution at higher sampling frequencies.

• GPS system: The manufactured GPS antenna and supporting LNA and Adafruit

GPS module worked without fault at critical periods, and was able to faithfully

provide the GPS data to the micro-controller. Size of the LNA power source is an

issue for future projects that require a mountable antenna.

• OBD2: The OBD2 interfacing hardware was not utilized much in the scope of this

project. It was simple to set up and operate in order to view the CAN bus data

via the OBD scan doctor software. This was useful to view actual RPM speeds and

compare to audio/ vibration spikes in the FFT.

• Wi-Fi: The ATWINC1500 Wi-Fi module worked well to communicate informa-

tion from the micro-controller to the client computer. The supporting library also

provided well built functions for developing an Access Point server for local access

only. One drawback to the library however is its inflexibility, and was not suited to

micro-controllers not based on the Arduino model.

• Teensy 3.6: The Teensy 3.6 was the standout of the project. It provided high

clocking speeds, large program storage, external memory in the form of micro SD.

Most important of all was the support of the designer and associated libraries. The

Teensy was able to process and store a high amount of audio, vibration and GPS

data without fault.

6.3 Analysis Conclusions 124

6.3 Analysis Conclusions

Two main methods of analysis were investigated in the course of the project, FFT analysis

and LPC/ Mahalanobis Distance analysis. The conclusions are summarized below:

• FFT: FFT (and spectrogram plots) were useful in the sense that it gave a visual

representation of how the signal content changed when fault data was compared to

healthy data. Large faults such as the missing ignition plug on the Hyundai Getz

were immediately apparent. In addition to this, the time plots also provided an

insight in the fault conditions, as the fault data was commonly larger in magnitude.

Both audio and vibration data was able to be processed in MATLAB to show some

basic correlation between the two types of data being collected.

One drawback to the FFT analysis was the storage of data, where entire raw data

sets for individual faults would have to be stored for later comparison to the un-

known data. Another drawback of the FFT was the inability to classify just how

different the two inputs were. We could see that there was indeed a visual difference

in frequency content of the two input data sets, but this had no overall significance

in being able to diagnose a specific fault on its own, and without prior knowledge

of the fault.

• LPC/ Mahalanobis: In order to overcome some of the drawbacks to the FFT

analysis methods stated above, Linear Predictive Coding and Mahalanobis Distance

were investigated. LPC provided an efficient way for fault data to be stored, where

raw fault data in the form of hundreds of thousands of values could be characterized

with just a few polynomial coefficients. LPC coefficients were taken over a frame

size of 3000 samples, and then averaged over the entire data set to reduce the raw

data to just 15 values (based on a 15th order LPC).

A Mahalanobis Distance function was then used to compare the “difference” between

LPC coefficients of the unknown input data (for each frame) and the stored fault

data coefficients. This resulted in a single value that represented how far away the

unknown samples were from the stored data.

In the scope of this project, the Mahalanobis Distance function was able to detect

a known condition (fault or healthy) with a high level of probability when tested

against a different audio samples of the same fault or healthy condition on the same

vehicle.

6.4 Project Objectives 125

It was not able to detect similar cross platform faults, where the vehicle was of a

different make, model or year. As it stands from the results of this analysis, the

algorithm requires the LPC coefficients for the appropriate condition on the same

vehicle.

It may be possible to diagnose a condition across a vehicle with the same make,

model and year, but this was not investigated. Operating conditions of the vehicle

may also affect the diagnosis, but was also not investigated.

If vehicles of the same make, model and year that presented with common faults

were able to be diagnosed using the Mahalanobis functions, it would be possible

to build a database of LPC coefficients to compare recordings with. This database

would be wide in scope, but since the LPC coefficients are not large, it would not be

significant in storage space (it would also be much smaller than an FFT database).

6.4 Project Objectives

This project has evolved to meet a series of stated objectives that began with the project

specification document. It is important to state when these were achieved and can be

seen below:

1. The background information relating to data logging micro-controllers used to mon-

itor vehicle conditions was thoroughly researched as seen in the Literature Review,

Chapter 2.

2. An implementation of a real-time, condition monitoring micro-controller that would

be used to monitor a set of specific conditions was designed in Chapter 4.The results

can be seen in Chapter 5. The micro-controller package utilized an SD card to store

the input data.

3. The design of hardware and software that developed audio and vibration sensor

packages can also be seen in Chapter 4.

4. An external GPS patch antenna, with supporting hardware and amplification was

designed and built in Chapter 4. This was integrated with the receiver module and

logged data to the micro-controller accurately. Results can be seen in Chapter 5.

6.5 Overall relevance 126

5. Sensor signal analysis in order to classify normal and abnormal behavior can be

seen in Chapter 4 and 5. FFT analysis as a visual reference and LPC coefficients as

a numerical application were used to classify the behavior for different conditions

present in the test vehicles.

6. WiFi was used as a communications medium to transfer recorded data between the

micro-controller and the client computer. Design and results can be seen in Chapter

4 and 5.

7. Built upon the LPC coefficients, the mahalanobis distance measure was used to

calculate a difference figure that represented the diagnosis of a vehicle fault based

upon audio recordings. Design of the algorithm and results from testing can be seen

in Chapter 4 and 5 respectively.

6.5 Overall relevance

The hardware, software and analysis research gave an insight into the size and breadth of

the capabilities of condition monitoring. A Cost Benefit Analysis was also briefly visited to

better inform the reader of the potential and benefits of using Predictive Maintenance and

Condition Monitoring practices. It is the hope of this research that using low cost sensor

modules and the detection algorithms will lead to development of predictive maintenance

models, where the Mahalanobis Distance measure will give indications of approaching

faults.

6.6 Further Work

This research attempted to answer a number of questions, generally raised from the project

objectives. Unfortunately, while it has answered the project objectives for the most part,

it has raised more questions than it has answered.

There was a lack of time to investigate the following, and any and all are appropriate for

future work.

• Amplitude normalization for the audio signals was not carried out prior to compar-

6.6 Further Work 127

ing them using the LPC coefficients and Mahalnobis Distance measure. Doing this

in future would allow the comparisons to eliminate any effects that the amplitude

might have on the signal (i.e. placement of the microphone). Placing the micro-

phone in the same location would not completely mitigate amplitude variations.

• The design and implementation of a suitable Printed Circuit Board (PCB) and

mounting package would be a large step to commercializing this product. This would

allow the package to be re-produced easily, travel well, and be stored appropriately.

• Adding further sensor arrays to the project would increase the importance and

relevance of the project. These could include but are by no means limited to: Oil

quality (acoustic or light sensors) or a more sensitive accelerometer.

• The external GPS antenna, while suited to mounting on the skin of vehicle, does not

have supporting hardware that allows this. The LNA and its power source require

a design that allows the LNA to be powered from the GPS module itself, via the

coaxial cable.

• The OBD2 module and support software was not investigated sufficiently. It is

possible to integrate the OBD2 module with the micro-controller and store/ process

real time data on the SD card rather than via a computer. This could be an

invaluable tool when comparing fault markers.

• The Wi-Fi transfer speeds on the ATWINC1500 module were quite slow, and in-

creasing the bandwidth and/ or clocking speed of the module would be a logical

step for transferring large data files.

• Only the raw audio data was used in LPC and Mahalanobis Distance comparisons.

LPC is used most commonly on speech parameters and audio files. It may be useful

to investigate processing the accelerometer data with the same algorithms.

• Investigate the effects of different frame size and number of LPC coefficients on the

accuracy of the results.

• Investigate using the Mahalanobis Distance algorithms with Linear Predictive Cep-

stral Coefficients (LPCCs) rather than the LPC parameters, and its effects on ac-

curacy of diagnosis in engine faults.

• Research the spectrum envelope of the LPC parameters as opposed to the FFT

function, to prove that the LPC coefficients are a good representation of the FFT

6.7 Chapter Summary 128

and the content of the raw signal.

• Building a confidence model based upon further tests and recordings would be a

simple mechanism to increase the relevance of this research. It would show that the

conclusions made above are accurate.

6.7 Chapter Summary

This chapter has made a number of conclusions based upon the results presented in the

preceding chapters. Suitability of hardware and analysis methods were summarized, and

project objectives were re-visited to ensure compliance. Lastly, possible areas of future

work were identified.

REFERENCES

Accreditation Board for Engineering and Technology (1987), ‘”Criteria for accrediting pro-

grams in engineering in the United States’, https://www.tandfonline.com/

doi/pdf/10.1080/10408347308003631. [Online; accessed 20 September 2018].

Adafruit (2019a), ‘Electret microphone amplifier - max9814 with

auto gain control’, https://core-electronics.com.au/

electret-microphone-amplifier-max9814-with-auto-gain-control.

html. [Online; accessed 23 April 2019].

Adafruit (2019b), ‘Fgpmmopa6h gps standalone module data

sheet’, https://cdn-shop.adafruit.com/datasheets/

GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf. [Online; accessed 24 April

2019].

Adafruit (2019c), ‘Mems digital output motion sensor ultra low-power high per-

formance 3-axes “nano” accelerometer’, https://cdn-shop.adafruit.com/

datasheets/LIS3DH.pdf. [Online; accessed 22 April 2019].

Adafruit (2019d), ‘Micro sd card breakout board’, https://learn.adafruit.com/

adafruit-micro-sd-breakout-board-card-tutorial/look-out. [On-

line; accessed 24 April 2019].

Adriansyah, A. & Dani, A. (2014), ‘Design of small smart home system based on arduino’,

Controls and Informatics Seminar (EECCIS) pp. 121–5.

Albarbar, A., Mekid, S., Starr, A. & Pietruszkiewicz, R. (2008), ‘Suitability of mems

accelerometers for condition monitoring: An experimental study’, Sensors 8(2), 784–

99.

REFERENCES 130

Allam, S. & Elhady, U. (2018), ‘On the development and implementation of the obd ii

vehicle diagnosis system’, International Journal of Engineering Inventions 7(4), 19–

27.

Amarasinghe, M., Kottegoda, S., Arachchi, A. L., Muramudalige, S., Bandara, H. M.

N. D. & Azeez, A. (2015), Cloud-based driver monitoring and vehicle diagnostic

with obd2 telematics, in ‘2015 Fifteenth International Conference on Advances in

ICT for Emerging Regions (ICTer)’, pp. 243–249.

Antenna-Theory.com (2011), ‘Microstrip (patch) antennas’, http://www.

antenna-theory.com/antennas/patches/antenna.php. [Online; ac-

cessed 23 April 2019].

Antich, M. (2014), ‘Commercial fleet maintenance costs remain flat

in cy-2014’, https://www.automotive-fleet.com/155742/

commercial-fleet-maintenance-costs-remain-flat-in-cy-2014.

[Online; accessed 14 September 2018].

Audacity (2019), ‘Audacity’, https://manual.audacityteam.org/man/

audacity_tour_guide.html. [Online; accessed 25 April 2019].

Avago Technologies (2012), ‘Alm-1612gps lna-filter front-end module’, https://

datasheetspdf.com/pdf-file/657882/Avago/ALM-1612/1. [Online; ac-

cessed 24 April 2019].

Baker, E. (2014), ‘Open source data logger for low-cost environmental monitoring’, Bio-

diversity data journal 2, e1059.

Banu, N. M. S., Prabhu, M. R. & Sasikala, U. (2015), ‘Design a square microstrip patch

antenna for s-band application’, IOSR Journal of Electronics and Communication

Engineering 10(2), 24–30.

Barelli, L., Bidini, G., Buratti, C. & Mariani, R. (2009), ‘Diagnosis of internal combustion

engine through vibration and acoustic pressure non-intrusive measurements’, Applied

Thermal Engineering 29(8-9), 1707–1713.

Brown, A. & Sturza, M. (1993), Vehicle tracking system employing global positioning

system (gps) satellites, Google Patents, Google Patents.

Carden, E. & Fanning, P. (2004), ‘Vibration based condition monitoring: a review’,

Structural health monitoring 3(4), 355–377.

REFERENCES 131

CAS DataLoggers (2019), ‘What is a data logger?’, https://www.azom.com/

article.aspx?ArticleID=16599. [Online; accessed 24 April 2019].

Choque, N., Davila, L., da Silva, W. & da Rocha, A. (2017), ‘How construct a wlan multi-

data acquisition system based on the integration of arduino and ni-labview platforms

for educational applications’, DESAFIOS 4(4), 117–25.

Chul-Woo Kim (2013), ‘Structural fault detection of bridges based on linear sys-

tem parameter and MTS method’, https://www.researchgate.net/figure/

Concept-of-Mahalanobis-distance-MD_fig7_275701517. [Online; ac-

cessed 22 July 2019].

Collins, D. (2019), ‘The best obd2 scanners (review and buying guide) in 2019’, https://

www.carbibles.com/best-obd2-bluetooth-scanners-reviewed/. [On-

line; accessed 24 April 2019].

Core Electronics (2019), ‘Wireless’, https://core-electronics.com.au/

wireless.html. [Online; accessed 25 April 2019].

CSS Electronics (2019), ‘Can bus explained - a simple intro (2019)’, https://

www.csselectronics.com/screen/page/simple-intro-to-can-bus/

language/en. [Online; accessed 24 April 2019].

DST (2018), ‘David warren - inventor of the black box flight recorder’, https://

www.dst.defence.gov.au/innovation/black-box-flight-recorder/

david-warren-inventor-black-box-flight-recorder. [Online; accessed

14 September 2018].

E-Home Recording Studio (2019), ‘A beginner’s introduction to micro-

phone polar patterns’, https://ehomerecordingstudio.com/

microphone-polar-patterns/. [Online; accessed 23 April 2019].

ELM Electronics (2019), ‘Elm327 obd to rs232 interpreter’, https://cdn.sparkfun.

com/assets/learn_tutorials/8/3/ELM327DS.pdf. [Online; accessed 24

April 2019].

Fay, J. (2009), ‘Thirteenth australian aeronautical conference’.

Freeman, T. (2018), ‘Condition monitoring (cm)’, https://www.corrosionpedia.

com/definition/314/condition-monitoring-cm. [Online; accessed 14

September 2018].

REFERENCES 132

Gallasch, G. (2016), ‘Ninth dsto international conference on health & usage monitoring’.

Hameed, Z., Hong, Y., Cho, Y., Ahn, S. & Song, C. (2009), ‘Condition monitoring and

fault detection of wind turbines and related algorithms: A review’, Renewable and

Sustainable Energy Reviews 13(7), 1–39.

Hanna (2017), ‘Get to know the obd2: A brief history and explanation’, https://

engieapp.com/obd2-explained/. [Online; accessed 04 April 2019].

Honeywell Aerospace (2015), ‘STUDY DOCUMENTS ECONOMIC BENEFITS OF

HUMS’, https://aerospace.honeywell.com/en/news-listing/2015/

march/study-documents-economic-benefits-of-hums. [Online; accessed

30 July 2019].

Kite-Powell, J. (2019), ‘Polar: The Original Fitness Tracker And Heart Rate Mon-

itor’, https://www.forbes.com/sites/jenniferhicks/2016/02/28/

polar-the-original-fitness-tracker-and-heart-rate-monitor/.

[Online; accessed 04 April 2019].

Learning about Electronics (2019), ‘What is an Electret Microphone?’, http://www.

learningaboutelectronics.com/Articles/Electret-microphones.

[Online; accessed 22 April 2019].

Leis, J. (2018), ‘Communication Systems Principles Using MATLAB’, JohnWiley & Sons,

Inc.

MadgeTech (2018), ‘Data loggers in healthcare — what are the top 5

uses?’, https://www.news-medical.net/whitepaper/20181016/

Data-Loggers-in-Healthcaree28094What-are-the-Top-5-Uses.

aspx. [Online; accessed 04 April 2019].

Mathworks (2019), ‘Digital signal processing (dsp)’, https://au.mathworks.com/

solutions/dsp.html. [Online; accessed 25 April 2019].

McLaren Applied Technologies (2016), ‘The brain of an f1 car’,

lhttps://www.mclaren.com/appliedtechnologies/lab/

brain-of-an-f1-car-mclaren-ecu/. [Online; accessed 04 April 2019].

Mcleod, S. (2017), ‘Qualitative vs. Quantitative Research’, https://www.

simplypsychology.org/qualitative-quantitative.html. [Online; ac-

cessed 20 September 2018].

REFERENCES 133

Mehta, Y. (2018), ‘Condition monitoring crucial to industry 4.0’, https://readwrite.

com/2018/06/08/condition-monitoring-crucial-to-industry-4-0/.

[Online; accessed 04 April 2019].

Monica Chamay, Se-do Oh and Young-Jin Kim (2013), ‘Development of a diagnostic

system using lpc/cepstrum analysis in machine vibration’, Journal of Mechanical

Science and Technology 27(9).

Nooelec (2019), ‘Nooelec SAWbird+ iO Barebones - Premium SAW Filter & Cas-

caded Ultra-Low Noise LNA Module for L-Band (Inmarsat AERO/STD-C) Ap-

plications. 1542MHz Center Frequency’, https://www.nooelec.com/store/

sawbird-plus-io.html. [Online; accessed 03 May 2019].

NTI Audio (2019), ‘Fast Fourier Transformation FFT - Basics’, https://www.

nti-audio.com/en/support/know-how/fast-fourier-transform-fft.

[Online; accessed 22 July 2019].

OBD Doctor (2019), ‘Get to know your car better with OBD2 Diagnostic Software for

PC, Mac and Mobile’, https://www.obdautodoctor.com/. [Online; accessed

22 April 2019].

Oxford Dictionary (2019), ‘Nyquist frequency’, https://en.oxforddictionaries.

com/definition/us/Nyquist_frequency. [Online; accessed 22 April 2019].

PCB Piezotronics (2019), ‘Introduction to mems accelerometers’, http://www.pcb.

com/Resources/Technical-Information/mems-accelerometers. [On-

line; accessed 22 April 2019].

Peng, Z., Kessissoglou, N. & Cox, M. (2005), ‘Study of the effect of contaminant particles

in lubricants using wear debris and vibration condition monitoring techniques’, Wear

258(11), 1651–62.

Phythian, M. (1998), ‘Speaker Identification for Forensic Applications’, https://

eprints.qut.edu.au/36079/3/__qut.edu.au_Documents_StaffHome_

StaffGroupR24_rogersjm_Desktop_36079_Digitised20Thesis.pdf.

[Online; accessed 15 July 2019].

Plant Services (2016), ‘Top 5 impacts of big data on condition mon-

itoring’, https://www.plantservices.com/articles/2016/

REFERENCES 134

pd-bd-ta-5-impacts-of-big-data-condition-monitoring/. [On-

line; accessed 05 April 2019].

Race-Technologies (2019), ‘Data loggers’, http://www.race-technology.com/au/

racing/products/data-loggers. [Online; accessed 04 April 2019].

RACQ (2019), ‘Car running costs’, https://www.racq.com.au/

cars-and-driving/cars/owning-and-maintaining-a-car/

car-running-costs. [Online; accessed 30 July 2019].

Ramani, R. & Valarmathy, S. (2013), ‘Vehicle tracking and locking system based on gsm

and gps’, I.J. Intelligent Systems and Applications 9, 86–93.

Rao, B. (1996), ‘Handbook of condition monitoring’, Elsevier.

Sharma, R. (2017), ‘How to interface gps module (neo-6m) with ar-

duino’, https://create.arduino.cc/projecthub/ruchir1674/

how-to-interface-gps-module-neo-6m-with-arduino-8f90ad. [On-

line; accessed 24 April 2019].

Statistics How To (2017), ‘Mahalanobis Distance: Simple Definition, Exam-

ples’, https://www.statisticshowto.datasciencecentral.com/

mahalanobis-distance/. [Online; accessed 15 July 2019].

Sujono, A. (2014), ‘Utilization of microphone sensors and an active filter for the detection

and identification of detonation (knock) in a petrol engine’, Modern Applied Science

8(6).

TechTarget (2007), ‘Wireless protocols learning guide’, https://searchnetworking.

techtarget.com/tutorial/Wireless-protocols-learning-guide.

[Online; accessed 24 April 2019].

The Open University (2017), ‘Methods of data collection and analysis’, www.open.edu/

openlearncreate/mod/resource/view.php?id=52658. [Online; accessed

20 September 2018].

ThermoFisher Scientific (2010), ‘Case study: Decommission-

ing a destroyer escort’, http://www.thermofisher.

com.au/Uploads/file/Environmental-Industrial/

Process-Monitoring-Industrial-Instruments/

REFERENCES 135

Data-Acquisition/Data-Loggers/DataTaker/

CS-0021-B0-Decommissioning-of-a-Destroyer-Escort.pdf. [On-

line; accessed 04 April 2019].

u-blox (2009), ‘Gps antennas rf design considerations for u-blox gps re-

ceivers’, https://www.u-blox.com/sites/default/files/products/

documents/GPS-Antenna_AppNote_%28GPS-X-08014%29.pdf. [Online;

accessed 24 April 2019].

University Of Cambridge (2019), ‘Soldering safety’, https://safety.eng.cam.ac.

uk/safe-working/copy_of_soldering-safety. [Online; accessed 05 April

2019].

University of Rhode Island (2019), ‘FFT Tutorial’, http://www.phys.nsu.ru/

cherk/fft.pdf. [Online; accessed 15 July 2019].

Wehrspann, J. (2016), ‘New tool logs field data’, https://www.farmprogress.com/

farm-recordkeeping/new-tool-logs-field-data/. [Online; accessed 04

April 2019].

Wikipedia (2019), ‘Google Earth’, https://en.wikipedia.org/wiki/Google_

Earth. [Online; accessed 22 April 2019].

Yadav, S. K., Tyagi, K., Shah, B. & Kalra, P. K. (2011), ‘Audio signature-based condition

monitoring of internal combustion engine using fft and correlation approach’, IEEE

Transactions on Instrumentation and Measurement 60(4), 1217–1226.

Yegin, K. (2007), ‘On-vehicle gps antenna measurements’, IEEE Antennas and Wireless

Propagation Letters 6, 488–491.

Yim, J., Myung, R. & Lee, B. (2017), ‘The mobile phone’s optimal vibration frequency

in mobile environments’, Lecture Notes Computer Science 4559, 136–785.

Appendix A

Project Specification

ENG 4111/2

Project Specification

For: Matthew Fisher

Title: Real Time Condition Monitoring for Preventative Maintenance Purposes

Major: Electrical and Electronic Engineering

Supervisors: Mark Phythian

Enrolment: ENG4111 - ONC S1, 2019
ENG4112 - ONC S2, 2019

Project Aim: To investigate whether an embedded device comprised of commercially available
components can successfully predict fault conditions in a vehicle, which would al-
low preventative maintenance to be carried out, reducing costs, time and damages
associated with reactive maintenance.

Programme: Version 1, 27th February 2019

1. Research the background information related to data logging microcontrollers that are used to moni-
tor a similar variety of conditions in vehicles.

2. Design an implementation of a real-time, condition monitoring microcontroller to monitor a set of
specific conditions.

3. Build hardware and software to develop sensor packages that are used in monitoring and recording
vehicle conditions.

4. Design and build an external antenna for integration with GPS reciever module, including any GPS
signal filtering and amplifying.

5. Perform sensor signal analysis and classify normal and abnormal behaviour.

6. Incorporate a Wi-Fi implementation for autonomous data transfer from the vehicle upon return to a
geo-located base-station.

7. Demonstrate the effective use of the condition monitoring module by diagnosing a vehicle fault.

As time and resources permit:

1. Design and build a Printed Circuit Board (PCB) and a mounting case to incorporate all of the modules
in a neat, re-producible and installable package.

2. Incorporate additional sensors into the microcontroller to monitor alternative conditions and fault
areas.

Agreed:

Student Name: Matthew J.M. Fisher
Date:

Supervisor Name: Mark Phythian
Date:

Appendix B

Risk Assessment

Th
is

 d
o

cu
m

en
t

is
 u

n
co

n
tr

o
lle

d
 o

n
ce

 p
ri

n
te

d
 a

n
d

 m
ay

 n
o

t
b

e
 t

h
e

la
te

st
 v

er
si

o
n

. A
cc

es
s

th
e

o
n

lin
e

SR
M

S
fo

r
th

e
la

te
st

 v
e

rs
io

n
. S

af
et

y
R

is
k

M
an

ag
em

en
t

P
la

n
 V

1
.1

Appendix C

Project Timeline

Appendix D

Resource Requirements

Appendix E

Mahalanobis Distance Raw Data

BMW N47

System
status

Distance Measure

Normal Timing Result

Timing

8.8724 1.3478 Timing

8.1028 2.4843 Timing

6.8835 1.0713 Timing

8.4852 18.6259 Normal

Normal 1

4.1871 6.89 Normal

1.58 8.87 Normal

4.61 11.55 Normal

3.08 5.08 Normal

Hyundai Getz 2006

System
status

Distance Measure

Normal Timing Fuel Result

Fuel

5.6424 9.4815 1.772 Fuel

10.7187 13.1969 1.7851 Fuel

8.9133 8.3374 2.635 Fuel

12.3422 10.921 3.7192 Fuel

Timing

3.9068 1.117 12.8334 Timing

7.05 1.5202 15.1393 Timing

9.6929 2.0164 17.5071 Timing

6.7932 1.6766 12.5828 Timing

Normal
1

1.3818 3.6061 11.4271 Normal

1.8068 9.6449 25.7465 Normal

1.8633 9.9587 17.8725 Normal

1.6852 4.0482 7.0273 Normal

Normal
2

3.536 5.0997 9.7329 Normal

11.6426 15.4747 17.6234 Normal

10.9801 12.7278 14.5752 Normal

8.0233 6.5527 12.7185 Timing

All Baseline Data Tests

System status

Distance Measure

BMW
Healthy

BMW
Timing

GETZ
FUEL

GETZ
Normal

GETZ
Timing

Subaru
Healthy

BMW Healthy 0.74 2.94 14.51 13.62 14.31 19.93

BMW Timing 4.65 0.61 25.99 32.67 22.69 60.2

GETZ Fuel 136.23 189.2 0.72 3.01 3.76 10.17

Getz Normal 153.58 213.85 3.67 0.92 2.54 10.99

Getz Timing 130.59 177.66 3.81 2.62 0.96 8.76

Subaru Healthy 123.06 178.02 10.14 11.63 11.65 0.5

unknown Knocking (1) 21.88 24.86 35.36 36.78 40.28 31.02

unknown Knocking (2) 127.24 75.66 124.45 131.79 100.98 200.95

unknown Knocking (3) 68.14 71.14 169.13 140.1 105.2 182.95

unknown Knocking (4) 698.26 368.73 216.91 158.86 127.62 284.47

unknown Knocking (5) 7.48 10.79 58.26 44.81 32.26 56.82

unknown Knocking (6) 2.69 5.37 15.88 14.07 12.44 28.51

unknown Knocking (7) 83.53 69.26 237.65 212.8 337.69 171.48

unknown Knocking (8) 17.95 14.46 72.6 50.63 52.08 86.43

Audi before a service 46.99 50.81 117.48 107.6 92.2 142.23

Audi after a service 67.76 42.22 97.16 84.73 69.23 139.5

E39 Camshaft fault 10.96 17.61 24.43 27.86 32.76 37.53

E39 Healthy engine 16.27 27.31 31.28 33.74 39.12 37.86

Ford Focus before oil chg 21.11 16.13 47.77 50.31 45.42 60.81

Ford Focus after oil chg 25.67 20.55 51.6 53.9 51.82 59.75

Nissan Frontier Fan clutch 26.93 38.28 134.54 160.18 125.67 283.72

Nissan Frontier Healthy 62.13 101.41 218.05 231.39 173.92 360.72

before SWEDOL additive 9.6 11.07 35.8 32.6 27.57 22.69

after SWEDOL additive 3.91 5.87 27.53 24.63 20.4 17.53

Appendix F

Embedded C: Teensy 3.6 Source

code

/* Project: Condition Monitoring for Predictive Maintenance
Purposes

* Program Name: Teensy 3.6 Arduino Code
* Author: Matthew J.M. Fisher
* Date Created: 02 Feb 2019
* Revision: 15
* Purpose: To embed code in the Teensy 3.6 micro-controller and
* control a variety of sensor arrays.
* Acknowledgements : Teensy Audio/ SD (open source) - Paul

Stoffregen
* : Reverse Geo-Locate (open source) - Kenton

Harris
* : WiFi (open source) - Starting Electronics
*/

//-----GPS includes and defines
--

#include <Adafruit_GPS.h>
#include <math.h>
#define mySerial Serial1
IntervalTimer GPSTimer;
Adafruit_GPS GPS(&mySerial);

// GPS echo should be true to listen to raw NMEA sequences
#define GPSECHO true

//use time library in conjunction with GPS to set system clock
#include <TimeLib.h>
const int offset = +10; // Brisbane time

const float degree2radian = 0.01745329251994;
const float radiusEarth = 6371000.0;
float dist_to_target = 3000;
String me;

//set GPS coordinates for the home base (USQ, Toowoomba)
String you = "S27 36.058, E151 55.905";
//specify the range from home base to begin to setup WiFi -

circular range
float outerRange = 30;

152

//-----Audio / SD includes and defines

#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>

// GUItool: begin automatically generated code
AudioInputAnalog adc1;
AudioRecordQueue queue1;
AudioConnection patchCord1(adc1, queue1);
// GUItool: end automatically generated code

// Use these with the Teensy 3.5 & 3.6 SD card
#define SD_CS BUILTIN_SDCARD
#define SD_MOSI 11
#define SD_SCK 13

unsigned long currentMillis;
unsigned long startMillis;
const unsigned long period = 1000;
int count = 0;

// Remember which mode we are in
int mode = 0; // 0 = stopped, 1 = recording, 2 = playing

//-----Accelerometer includes and defines

//#include <Adafruit_LIS3DH.h>
//#include <Adafruit_Sensor.h>
//
//IntervalTimer ACCTimer;
//
//// Used for software SPI
//#define LIS_CLK 14
//#define LIS_MISO 12
//#define LIS_MOSI 11
//// Used for hardware & software SPI
//#define LIS_CS 10
//
////SPI
//Adafruit_LIS3DH lis = Adafruit_LIS3DH(LIS_CS, LIS_MOSI,
// LIS_MISO, LIS_CLK);

//---------Filename includes and defines

// Create the files where data is recorded
File frec;
//File accel;
File gps;
File WIFIFile;
//char filename[] = "ACCELE00.TXT";
char audioFile[] = "AUDIOS00.RAW";
char gpsFile[] = "GPSDAT00.TXT";

//int accelerometerXBuffer[1000];
//int accelerometerYBuffer[1000];
//int accelerometerZBuffer[1000];
//int i = 0;
//int j = 0;

//-----WiFi includes and defines

#include <WiFi101.h>
#include "arduino_secrets.h"

153

#define buffer_size 20

char name_id[] = SECRET_NAME_ID;
char password[] = SECRET_PASSWORD;

int status = WL_IDLE_STATUS;
WiFiServer server(80);

boolean runalready = false;
boolean wifiValue = false;

char req_HTTP[buffer_size] = {0};
char req_index = 0;

//------------Function prototypes

//void readACC();
void readGPS();

void startRecording();
void continueRecording();
void stopRecording();
//void startAccRecording();
void recordGPS();

void digitalClockDisplay();

String gps2text (String lat_1, float lat_2,
String lon_1, float lon_2);

float haversine_formula (float lat_1, float lon_1,
float lat_2, float lon_2);

float text2long (String inString);
float text2lat (String inString);
String integer2FW (int in, int length_n);

void macAddress_1(byte mac_byte[]);
void WiFiStatus();
void clearString(char *stringptr, char length_1);
char stringContain(char *stringptr, char *sfind);

//-----------------SETUP function

void setup()
{

//-----------------------Accelerometer setup

// #ifndef ESP8266
// // will pause Teensy until serial console opens -

accelerometer DEFINE
// while (!Serial);
// #endif
//
// Serial.begin(115200);
// //Test sequence for Serial Monitor
// Serial.println("Hello world!");
//
// if (! lis.begin(0x18))
// {
// Serial.println("LIS3DH Couldnt start");
// //get stuck on purpose when the teensy cant find the

accelerometer
// while (1);
// }
// Serial.println("Accelerometer found!");
//
// lis.setRange(LIS3DH_RANGE_16_G);
// // 2, 4, 8 or 16 G
//
// lis.setDataRate(LIS3DH_DATARATE_LOWPOWER_5KHZ);

154

// //LIS3DH_DATARATE_400_HZ //LIS3DH_DATARATE_LOWPOWER_1K6HZ
//
// Serial.print("Range: "); Serial.print(2 << lis.getRange());
// Serial.println("G");
// Serial.print("Data rate = "); Serial.println(lis.getDataRate

());

//----------------GPS Setup

GPS.begin(9600);

GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA);
GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ);
// 1 Hz update rate
GPS.sendCommand(PGCMD_ANTENNA);

GPSTimer.begin(readGPS, 1000);
//timer interrupt value in microseconds

delay(100);
Serial.print("GPS Firmware Version: ");
// Ask for firmware version
Serial.println(PMTK_Q_RELEASE);
Serial.println("GPS Setup complete ");

//----------------------AUDIO SETUP

// The record queue uses this memory to buffer incoming audio.
AudioMemory(120);

pinMode(A2, INPUT);
delay(1000);
startMillis = millis();

//-----------------------SD Card setup

// Initialize the SD card
SPI.setMOSI(SD_MOSI);
SPI.setSCK(SD_SCK);

if (!(SD.begin(SD_CS)))
{

Serial.println("Unable to access the SD card");
while (1);

}
Serial.println("SD Card Setup complete ");

//-------------------Filename setup

// create a new file for the Accelerometer
// for (uint8_t i = 0; i < 100; i++)
// {
// filename[6] = i/10 + ’0’;
// filename[7] = i%10 + ’0’;
// if (! SD.exists(filename))
// {
// // only open a new file if it doesn’t exist
// accel = SD.open(filename, FILE_WRITE);
// break; // leave the loop!
// }
// }

// create a new file for the Audio
for (uint8_t i = 0; i < 100; i++)
{

audioFile[6] = i/10 + ’0’;
audioFile[7] = i%10 + ’0’;
if (! SD.exists(audioFile))

155

{
// only open a new file if it doesn’t exist
frec = SD.open(audioFile, FILE_WRITE);
break; // leave the loop!

}
}

// create a new file for the GPS
for (uint8_t i = 0; i < 100; i++)
{

gpsFile[6] = i/10 + ’0’;
gpsFile[7] = i%10 + ’0’;
if (! SD.exists(gpsFile))
{

// only open a new file if it doesn’t exist
gps = SD.open(gpsFile, FILE_WRITE);
break; // leave the loop!

}
}

// if (! accel)
// {
// //if it cant find the accelerometer file
// Serial.println("couldnt create accelerometer file");
// }
if (! frec)
{

//if it cant find the audio file
Serial.println("couldnt create audio file");

}
if (! gps)

{
//if it cant find the GPS file

Serial.println("couldnt create gps file");
}

// Serial.print("Logging to: ");
// Serial.println(filename);

Serial.print("Logging to: ");
Serial.println(audioFile);

Serial.print("Logging to: ");
Serial.println(gpsFile);

}

//-------------------MAIN LOOP
--

//put the current time in the timer variable.
uint32_t timer = millis();

// run over and over again
void loop()
{

if(wifiValue == false)
{

// if a sentence is received, we can process it
if (GPS.newNMEAreceived())
{

// this also sets the newNMEAreceived() flag to false
if (!GPS.parse(GPS.lastNMEA()))
return;

}

if(mode==0)
{

//call the start audio recording function

156

startRecording();
}

if(mode==1)
{

//if the mode is set properly, continue audio recording
continueRecording();
//start the accelerometer recording using function call
//startAccRecording();

//if the accelerometer buffer contains 500 values
// if(i > 499)
// {
//stop audio for a small portion, close SD card file
stopRecording();
//start audio buffering (doesnt use SD card)
startRecording();
//write the Accelerometer values to SD
//startAccSDWrite();
//write the GPS values to SD
recordGPS();

// }
}

// reset timer if it wraps around
if (timer > millis())
{
Serial.println("Timer reset");
timer = millis();

}

// approximately every 1 second or so,
// print out the current stats (debug)
if (millis() - timer > 1000)
{

timer = millis();

Serial.println();
Serial.print("Fix: ");
Serial.print((int)GPS.fix);
Serial.print(" quality: ");
Serial.println((int)GPS.fixquality);

setTime(GPS.hour, GPS.minute, GPS.seconds,
GPS.day, GPS.month, GPS.year);

adjustTime(offset * SECS_PER_HOUR);
digitalClockDisplay();

if (GPS.fix)
{

me = gps2text((String)GPS.lat, GPS.latitude,
(String)GPS.lon, GPS.longitude);

Serial.print("Current GPS Location: ");
Serial.println(me);
dist_to_target = haversine_formula(text2lat(me),

text2long(me), text2lat(you), text2long(
you));

Serial.print("Distance to target: ");
Serial.println(dist_to_target);
Serial.println();

if(dist_to_target < outerRange)
{

wifiValue = true;
}

}
}

157

}

if(wifiValue == true)
{

if (runalready == false)
{

//-----------------------WiFi setup

WiFi.setPins(8,7,4);

Serial.begin(9600);
Serial.println("Condition Monitoring Access Point Server")

;

//ensure WiFI chip is connected
if (WiFi.status() == WL_NO_SHIELD)
{
Serial.println("WiFi shield not present");
while (true); //stop here

}

// default local IP address is 192.168.1.1
// Change with - WiFi.config(IPAddress(10, 0, 0, 1));

//Serial.print("Creating AP Server named: ");
//Serial.println(name_id);

// Create the open network.
status = WiFi.beginAP(name_id);
//If not listening
if (status != WL_AP_LISTENING)
{

Serial.println("Creating access point failed");
while (true);

}

// delay of 10 seconds for connection
delay(10000);

server.begin();
WiFiStatus();
runalready = true;

//setup is complete - boolean runAlready to true
}
//----------------------- Server and WiFi UPLOAD

if (status != WiFi.status())
{
//update status if neccessary
status = WiFi.status();

//if the status is connected
if (status == WL_AP_CONNECTED)

{
byte address_AP[6];
Serial.print("Device connected - Its MAC address is: ");
WiFi.APClientMacAddress(address_AP);
macAddress_1(address_AP);

}
else

{
//now disconnected, in listening mode
Serial.println("Device disconnected from AP");

}
}

//listen for incoming

158

WiFiClient client = server.available();

//if there is a client
if (client)
{
boolean currentLine = true;
Serial.println("You have a client!!");
Serial.println();
//create variable to hold incoming data
//String currentLineIN = "";

while (client.connected())
{

if (client.available())
{

char read_char = client.read();

if (req_index < (buffer_size - 1))
{

req_HTTP[req_index] = read_char;
req_index++;

}

//debugging - show char read
Serial.write(read_char);

if (read_char == ’\n’ && currentLine)
{

//Open the index page first!
if (stringContain(req_HTTP, "GET / ")

|| stringContain(req_HTTP, "GET /
index.htm"))

{
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connnection: close");
client.println();
WIFIFile = SD.open("index.htm");

}
//Open audio page if requested
else if (stringContain(req_HTTP, "GET /audpage.

htm"))
{

client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connnection: close");
client.println();
WIFIFile = SD.open("audpage.htm");

}
//Open GPS page if requested
else if (stringContain(req_HTTP, "GET /gpspage.

htm"))
{

client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connnection: close");
client.println();
WIFIFile = SD.open("gpspage.htm");

}
//Display Image on index page
else if (stringContain(req_HTTP, "GET /CONDMON.

jpg"))
{

WIFIFile = SD.open("CONDMON.jpg");
if (WIFIFile)
{

client.println("HTTP/1.1 200 OK");

159

client.println();
}

}
//Download the most recent audio file
else if (stringContain(req_HTTP, "GET /Audio1"))
{

client.println("HTTP/1.1 200 OK");
//use text-csv file format
client.println("Content-Type: text/csv");
client.println("Connnection: close");
client.println();

File recentAudio = SD.open(audioFile,
FILE_READ);

if (recentAudio)
{

byte cBuf[64];
int cCount = 0;

while(recentAudio.available())
{

cBuf[cCount] = recentAudio.read();
cCount++;

if(cCount > 63)
{

client.write(cBuf,64);
cCount = 0;

}
}
if(cCount > 0) client.write(cBuf, cCount

);
recentAudio.close();

}
}
//Download the most recent GPS file
else if (stringContain(req_HTTP, "GET /GPS1"))
{

client.println("HTTP/1.1 200 OK");
//use text-csv file format
client.println("Content-Type: text/csv");
client.println("Connnection: close");
client.println();

File recentGPS = SD.open(gpsFile, FILE_READ)
;

if (recentGPS)
{

byte cBuf[64];
int cCount = 0;

while(recentGPS.available())
{

cBuf[cCount] = recentGPS.read();
cCount++;

if(cCount > 63)
{

client.write(cBuf,64);
cCount = 0;

}
}
if(cCount > 0) client.write(cBuf, cCount);
recentGPS.close();

}
}

//if the WIFI file exists, send to client
if (WIFIFile)

160

{
while(WIFIFile.available())
{

client.write(WIFIFile.read());
}

WIFIFile.close();
}

//reset and clear the string value
req_index = 0;
clearString(req_HTTP, buffer_size);
break;

}

if (read_char == ’\n’)
{

currentLine = true;
}

else if (read_char != ’\r’)
{

currentLine = false;
}

}
}

// close connection after a short delay
delay(1);
client.stop();
Serial.println("Client disconnected :-(");

}
}

}

//------------------------------FUNCTIONS

void readGPS()
//function - Capture GPS values from Sensor
{

GPS.read();

/*Serial.print("Location: ");
Serial.print(GPS.latitude, 4); Serial.print(GPS.lat);
Serial.print(", ");
Serial.print(GPS.longitude, 4); Serial.println(GPS.lon);
Serial.print("Location in degrees: ");
Serial.print(GPS.latitudeDegrees, 4);
Serial.print(", ");
Serial.println(GPS.longitudeDegrees, 4);

Serial.print("Speed (knots): "); Serial.println(GPS.speed);
Serial.print("Angle: "); Serial.println(GPS.angle);
Serial.print("Altitude: "); Serial.println(GPS.altitude);
Serial.print("Satellites: "); Serial.println((int)GPS.

satellites);*/
}

//void startAccRecording()
//function - capture Accelerometer values from sensor
//{
// lis.read();
// sensors_event_t event;
// lis.getEvent(&event);
//
// accelerometerXBuffer[i] = event.acceleration.x;
// accelerometerYBuffer[i] = event.acceleration.y;

161

// accelerometerZBuffer[i] = event.acceleration.z;
// //Serial.println(accelerometerXBuffer[i]);
// i++;
//}

//void startAccSDWrite()
//function - write Accelerometer values to SD
//{
// accel = SD.open(filename, FILE_WRITE);
// if (accel)
// {
// // write to file
// Serial.println("writing to accelerometer txt file"); //

debugging
//
// for(int count = 0; count < i; count++)
// {
// accel.print(hour());
// accel.print(":");
// accel.print(minute());
// accel.print(":");
// accel.print(second());
// accel.print(",");
//
// accel.print(accelerometerXBuffer[count]);
// accel.print(";");
// accel.print(accelerometerYBuffer[count]);
// accel.print(";");
// accel.print(accelerometerZBuffer[count]);
// accel.println();
//
// if(count % 2 == 0)
// {
// startAccRecording();
// }
//
// }
//
// Serial.print("buffer value: ");
// Serial.println(i);
// Serial.println("Accel Done"); //debugging
//
// i = 0;
// //close the SD file
// accel.close();
//
//
// }
// else
// {
// // if the file didn’t open, print an error:
// Serial.println("error opening test.txt");
// }
//}

void recordGPS()
//function - record GPS values on SD
{
gps = SD.open(gpsFile, FILE_WRITE);

if (gps)
{

// write to file
//Serial.println("writing to GPS txt file"); //debugging

//lat and long
gps.print(GPS.latitudeDegrees, 4);

162

gps.print(",");
gps.print(GPS.longitudeDegrees, 4);
gps.print(’,’);

//Serial.print(",");
gps.print(day());
gps.print(":");
gps.print(month());
gps.print(":");
gps.print(year());
gps.println();

//Serial.println("GPS Done"); //debugging
gps.close();

}
}

void startRecording()
//function - prepare audio file and begin capturing audio
{

//Serial.println("startRecording");
frec = SD.open(audioFile, FILE_WRITE);

//begin capturing incoming audio in the buffer
queue1.begin();
mode = 1;

}

void continueRecording()
//function - keep buffering and recording audio to SD
{

if(!frec)
{

frec = SD.open(audioFile, FILE_WRITE);
}

if (queue1.available() >= 2)
{

byte buffer[512];
//copy two bytes into the buffer
memcpy(buffer, queue1.readBuffer(), 256);

//free the buffer, audio library GUI
queue1.freeBuffer();
memcpy(buffer+256, queue1.readBuffer(), 256);
queue1.freeBuffer();

//write to the SD card
frec.write(buffer, 512);

}
}

void stopRecording()
//function - free audio buffer and close audio file
{

//Serial.println("stopRecording");
queue1.end();

while (queue1.available() > 0)
{

//write everything in the buffer to the SD
frec.write((byte*)queue1.readBuffer(), 256);

//Free the buffer
queue1.freeBuffer();

}
//close the file!!
frec.close();

163

}

void digitalClockDisplay()
// digital clock fucntion - display of the time
{
Serial.print("System Clock Set to AEST: ");
Serial.print(hour());
Serial.print(":");
Serial.print(minute());
Serial.print(":");
Serial.print(second());
Serial.print(" -- ");

Serial.print(day());
Serial.print(",");
Serial.print(month());
Serial.print(",");
Serial.print(year());
Serial.println();

}

String integer2FW (int in, int length_n)
//function for defining fixed width
{

String out = (String) in;
while (out.length() < length_n)
{

out = "0" + out;
}
return out;

}

String gps2text (String lat_1, float lat_2, String lon_1, float
lon_2)

//function for converting lat/long values into a string
{

int degree = (int) lat_2 / 100;
int dec_minutes = (int) lat_2 % 100;
int dec_minutes_minutes = (int) round(1000 * (lat_2 - floor(

lat_2)));
String gps2latitude = lat_1 + integer2FW(degree, 2)

+ " " + integer2FW(dec_minutes, 2)
+ "." + integer2FW(dec_minutes_minutes, 3)

;

degree = (int) lon_2/100;
dec_minutes = (int) lon_2 % 100;
dec_minutes_minutes = (int) round(1000 * (lon_2 - floor(lon_2)

));
String gps2longitude = lon_1 + integer2FW(degree, 3)

+ " " + integer2FW(dec_minutes, 2)
+ "." + integer2FW(dec_minutes_minutes, 3)

;

String exitString = gps2latitude + ", " + gps2longitude;

return exitString;
};

float text2lat (String inString)
//function for converting latitude string into float values
{

float latitude = ((inString.charAt(1) - ’0’) * 10.00)
+ (inString.charAt(2) - ’0’) * 1.00
+ ((inString.charAt(4) - ’0’) / 6.00)
+ ((inString.charAt(5) - ’0’) / 60.00)
+ ((inString.charAt(7) - ’0’) / 600.00)

164

+ ((inString.charAt(8) - ’0’) / 6000.00)
+ ((inString.charAt(9) - ’0’) / 60000.00);

latitude *= degree2radian;

if (inString.charAt(0) == ’S’)
latitude *= -1;

return latitude;
};

float text2long (String inString)
//function for converting longitude string into float values
{

float longitude = ((inString.charAt(13) - ’0’) * 100.00)
+ ((inString.charAt(14) - ’0’) * 10.00)
+ (inString.charAt(15) - ’0’) * 1.00
+ ((inString.charAt(17) - ’0’) / 6.00)
+ ((inString.charAt(18) - ’0’) / 60.00)
+ ((inString.charAt(20) - ’0’) / 600.00)
+ ((inString.charAt(21) - ’0’) / 6000.00)
+ ((inString.charAt(22) - ’0’) / 60000.00);

longitude *= degree2radian;

if (inString.charAt(12) == ’W’)
longitude *= -1;

return longitude;
};

float haversine_formula (float lat_1, float lon_1, float lat_2,
float lon_2)

//haversine function - determines the great-circle distance
between

// two points on a sphere given their longitudes and latitudes
{

float calc_h = sq((sin((lat_1 - lat_2) / 2.00)))
+ (cos(lat_1) * cos(lat_2)
* sq((sin((lon_1 - lon_2) / 2.00))));

float calc_out = 2.00 * radiusEarth * asin(sqrt(calc_h));

return calc_out;
};

void WiFiStatus()
//function for printing WiFi status
{

Serial.print("Server ID is: ");
Serial.println(WiFi.SSID());

IPAddress ip_address = WiFi.localIP();
Serial.print("Server IP Address: ");
Serial.println(ip_address);

long strength = WiFi.RSSI();
Serial.print("Signal Strength (RSSI):");
Serial.print(strength);
Serial.println(" dBm");

Serial.print("Open a browser to http://");
Serial.println(ip_address);

}

void macAddress_1(byte mac_byte[])
//function for printing connected MAC address
{

165

for (int count = 5; count >= 0; count--)
{
if (mac_byte[count] < 16)
{

Serial.print("0");
}

Serial.print(mac_byte[count], HEX);
if (count > 0)
{

Serial.print(":");
}

}
Serial.println();

}

char stringContain(char *stringptr, char *findstring)
//function for searching string values
{

char foundMe = 0;
char index = 0;
char length_1;

length_1 = strlen(stringptr);

if (strlen(findstring) > length_1)
{

return 0;
}
while (index < length_1)
{

if (stringptr[index] == findstring[foundMe])
{

foundMe++;
if (strlen(findstring) == foundMe)
{

return 1;
}

}
else
{

foundMe = 0;
}
index++;

}

return 0;
}

void clearString(char *stringptr, char length_1)
//function for clearing the string values (WiFi)
{

for (int count = 0; count < length_1; count++)
{

stringptr[count] = 0;
}

}

Appendix G

MATLAB: Audio FFT and

Spectrogram analysis

Listing G.1: A MATLAB function for analyzing the frequency content of raw audio data.

%−−−

c l e a r a l l
c l c
c l o s e a l l
%−−−

[name , path] = u i g e t f i l e (’ . wav ’ , ’ S e l e c t WAV F i l e to Load ’) ;
addpath (path) ;

% load an audio f i l e
[Vec 0 , Fs 0] = audioread (name) ;
%f i r s t channel on ly i f a p p l i c a b l e (shou ld on ly be 1 channel anyway)
Vec 0 = Vec 0 (: , 1) ;

% Total number o f sound samples
NumOfSamples = length (Vec 0) ;

sampleDuration = NumOfSamples/ Fs 0 ;
t imeDuration = 0 : sampleDuration /(NumOfSamples−1): sampleDuration ;

%Ca lcu l a t e Basic FFT fo r separa t e p l o t comparisons
FFT 0 = f f t (Vec 0 / l ength (Vec 0)) ;
f r e q 0 = (0 : l ength (FFT 0)−1)∗ Fs 0 / length (FFT 0) ;
FFT 1 = FFT 0 ;

%remove second h a l f o f FFT c a l c u l a t i o n s (r e c t window) f o r complex va l u e s
FFT 1 ((l ength (FFT 1) / 2) : end) = 0 ;

167

%Compute spectrogram va lue s f o r p l o t
window length = 1024 ;
s t e p s i z e = window length / 4 ;
n o o f f f t p o i n t s = 4096 ;

%app ly the Hamming window func t i on
window = hamming window (window length) ;

%func t i on c a l l to do Short FT
[magnitude , f req , time] = . . .

short FT (Vec 0 , window , s t e p s i z e , n o o f f f t p o i n t s , Fs 0) ;

%Spectogram p l o t i s Time , Freq , Magnitude in su r f p l o t
%Begin wi th amp l i f i c a t i o n o f the window
Amplify wind = sum(window)/ window length ;
%sca l i n g the ampl i tude
magnitude = abs (magnitude) / window length / Amplify wind ;
%put magnitude in dB
magnitude = 20 ∗ l og10 (magnitude + 1e−6);

%Plot the samples
f i g u r e (1)
p l o t (Vec 0) ;
t i t l e (’Time Domain ’) ;
x l a b e l (’ Samples ’) ;
y l a b e l (’ Magnitude ’) ;

%p l o t the f r e q
f i g u r e (2)
p l o t (f r eq 0 , abs (FFT 1))
t i t l e (’ Frequency Domain ’)
x l a b e l (’ Frequency (Hz) ’) ;
y l a b e l (’ Magnitude ’) ;

%spectrogram p l o t
f i g u r e (3)
s u r f (time , f req , magnitude) ;
shading i n t e r p ;
a x i s t i g h t ;
view (0 , 9 0) ;
x l a b e l (’Time (s) ’) ;
y l a b e l (’ Frequency (Hz) ’) ;
t i t l e (’ Spectrogram ’) ;
hco l = co l o rba r ;
y l a b e l (hcol , ’ Magnitude , dB ’) ;

f unc t i on [m a t r i x r e s u l t s , f requency , time] = . . .
short FT (raw data , window , s t e p s i z e , n o o f f f t p o i n t s , Fs)

raw data = raw data (:) ;
%s i g n a l l e n g t h

168

data l ength = length (raw data) ;
%window l en g t h
window length = length (window) ;

un ique po in t s = c e i l ((1 + n o o f f f t p o i n t s) / 2) ;
%number o f frames
No of f rames = 1 + f i x ((data length−window length) / s t e p s i z e) ;

%pr e a l l o c a t e the matrix
m a t r i x r e s u l t s = ze ro s (un ique po ints , No of f rames) ;

f o r i = 0 : No of f rames − 1
%windowing func t i on
current window = . . .

raw data (1 + i ∗ s t e p s i z e : window length + i ∗ s t e p s i z e) . . .
.∗ window ;

%FFT func t i on
current FFT = f f t (current window , n o o f f f t p o i n t s) ;
%draw out the r e s u l t s
m a t r i x r e s u l t s (: , 1 + i) = current FFT (1 : un ique po in t s) ;

end

time = . . .
(window length / 2 : s t e p s i z e : . . .
window length / 2 + (No of frames −1) ∗ s t e p s i z e) / Fs ;

f requency = (0 : un ique po in t s − 1) ∗ Fs / n o o f f f t p o i n t s ;
end

func t i on output = hamming window (input)
%Hamming window func t i on − see v i b r a t i o n s c r i p t
l o c a t i o n s = pi / input ∗ ((1 − input) : 2 : 0) ’ ;
f i r s t w i n d = 0.54 + 0.46 ∗ cos (l o c a t i o n s) ;
output = [f i r s t w i n d ; f i r s t w i n d (f l o o r (input / 2) : −1 : 1)] ;

end

Appendix H

MATLAB: Vibration FFT and

Spectrogram analysis

Listing H.1: A MATLAB function for analyzing the frequency content of raw accelerometer
data.

%−−−
c l o s e a l l
c l e a r a l l
c l c
%−−−

[name , path] = u i g e t f i l e (’ . csv ’ , ’ S e l e c t CSV F i l e to Load ’) ;
va lue s = csvread ([path name]) ;

[rows , columns] = s i z e (va lue s) ;

%f i r s t column conta ins time va l u e s
time = va lues (: , 1) ;
%second column conta ins data va l u e s
data = va lue s (: , 2) ;
%sampling f requency
Fs 0 = 1/(time (2)− time (1)) ;

sampleDuration = time (end) ;

%Plot Data over time (samples)
f i g u r e (1)
p l o t (time , data)
x l a b e l (’Time (s) ’) ;
y l a b e l (’ Accel (g) ’) ;
t i t l e (’Time Domain ’) ;
g r i d on ;

%−−−

170

%Determine f r e q va l u e s
f r equency va lu e s = 0 : Fs 0 / l ength (data) : Fs 0 / 2 ;
%Find FFT va lue s
f f t v a l u e s = f f t (data) ;
%Normalize the FFT va lue s
f f t v a l u e s = 1 / length (data) .∗ f f t v a l u e s ;
f f t v a l u e s (2 : end−1) = 2 ∗ f f t v a l u e s (2 : end−1);

%Plot FFT va lue s
f i g u r e (2)
p l o t (f r equency va lue s , abs (f f t v a l u e s (1 : f l o o r (rows /2) + 1)))
x l a b e l (’ Frequency (Hz) ’) ;
y l a b e l (’ Accel (g) ’) ;
t i t l e (’ Freq Domain ’) ;
g r i d on ;

%−−−

%Spectrogram Plo t
[x , y , z] = spectrogram (values , Fs 0 , 4) ;

f i g u r e (3)
s u r f (x , y , l og (z) , ’ EdgeColor ’ , ’ none ’)
x l a b e l (’Time (s) ’) ;
y l a b e l (’ Frequency (Hz) ’) ;
z l a b e l (’ Amplitude ’) ;
t i t l e (’ Spectrogram Analys i s ’) ;
g r i d on
ylim ([0 2200])
view (2)

func t i on [x , y , z] = spectrogram (data , Fs , p e r s e c ond cu t s)

n o o f p o i n t s = length (data (: , 1)) ;
va lue s = data (: , 2) ;
p o i n t s p e r c u t = f l o o r (Fs / pe r s e c ond cu t s) ;

va lue s = . . .
reshape (va lue s ([1 : f l o o r (l ength (va lue s) / p o i n t s p e r c u t) . . .
∗ p o i n t s p e r c u t]) , p o i n t s p e r c u t , []) ;

[rows , columns] = s i z e (va lue s) ;

da ta va lue s = [0 : rows − 1] ;
s l i c e t i m e = data (rows , 1) − data (1 , 1) ;
s l i c e t i m e = s l i c e t i m e + (s l i c e t i m e / rows) ;
%normal ize the data va l u e s
data va lue s = data va lue s .∗ (1 / s l i c e t i m e) ;

%Apply a hamming window

171

hamming window = [1 : rows] ;
window values = . . .

(0 .53836 − 0.46164 ∗ cos ((2 ∗ pi ∗ hamming window (:)) . . .
. / (l ength (hamming window) − 1))) ;

%pr e a l l o c a t e the va l u e s
abs va lue s = va lues ;

f o r j = [1 : columns]
%FFT func t i on
va lue s (: , j) = f f t (va lue s (: , j) .∗ window values (:)) ;
%Abso lu te va l u e s
abs va lue s (: , j) = abs (va lue s (: , j)) / (0 . 5 ∗ l ength (va lue s (: , j))) ;
%remove DC va lue s
abs va lue s (1 , j) = 0 ;

end

p o i n t s t o p l o t = p o i n t s p e r c u t / 2 ;
s t a r t p o i n t = 1 ;
end po int = p o i n t s t o p l o t ;

x = [1 : columns] / pe r s e c ond cu t s ;
y = data va lue s ([s t a r t p o i n t + 1 : end po int + 1]) ;
z = abs va lue s ([s t a r t p o i n t + 1 : end po int + 1] , :) ;

end

Appendix I

MATLAB: Create LPC Baselines

Listing I.1: A MATLAB function used to create the baseline LPC coefficients for Mahalanobis
Distance comparison.

%−−−

c l e a r a l l ;
c l c ;
c l o s e a l l ;

%−−−

[input , path] = . . .
u i g e t f i l e (’ . wav ’ , ’ S e l e c t WAV F i l e to Load ’) ;

addpath (path) ;

%ex t r a c t the data from the WAV f i l e
[sampled data , sample rate] = audioread (input) ;

sampled data = sampled data (: , 1) ;
o r i g i n a l d a t a = sampled data (: , 1) ;

%Length o f the f i l e in seconds
l e n g t h t = length (sampled data) . / sample rate ;

%leng t h o f the f i l e in va l u e s
l e ng th input = length (sampled data) ;

f r a m e s i z e = 3000 ;
nth order = 15 ;
s a m p l e s i z e t = l e n g t h t /(l ength (sampled data)/ f r a m e s i z e) ;

%LPC BASELINE DATA
%−−−

173

% %de f i n e the matr ices b e f o r e execu t ion
p a r a m e t e r m a t r i x f u l l = [] ;

% take i t in s t e p s o f the frame s i z e
f o r N = 1 : f r a m e s i z e : l eng th input
% %break the loop i f we reach the end o f the input data

i f (l eng th input − N) < f r a m e s i z e
break ;

end
%Ca lcu l a t e LPC c o e f f i c e n t s f o r curren t frame
parameter matr ix = lpc (sampled data (N:N+frame s i z e −1) , nth order) ;
%Add c o e f f i c i e n t s to a matrix
p a r a m e t e r m a t r i x f u l l = [pa ramete r mat r i x fu l l , parameter matrix ’] ;

end

% for nan − columns
p a r a m e t e r m a t r i x f u l l = . . .

p a r a m e t e r m a t r i x f u l l (: , a l l (˜ i snan (p a r a m e t e r m a t r i x f u l l))) ;

%s to r e the c o e f f i c i e n t s in a TXT f i l e , average the r e s u l t s .
f i l e I D = fopen (’ Knocking . txt ’ , ’w ’) ;
f p r i n t f (f i l e I D , ’ %12.8 f \ r \n ’ , mean(pa ramete r mat r i x fu l l , 2)) ;
f c l o s e (f i l e I D) ;

Appendix J

MATLAB: Mahalanobis Distance

Listing J.1: A MATLAB function for computing the Mahalanobis Distance between baseline
and input data.

%−−−

c l e a r a l l ;
c l c ;
c l o s e a l l ;

%−−−

%input and de f i n e the b a s e l i n e data − c l o s e the f i l e s a f t e rwards !
f i leID FUEL = fopen (’BASELINE FUEL. txt ’ , ’ r ’) ;
fileID HEALTHY = fopen (’BASELINE HEALTHY. txt ’ , ’ r ’) ;
fileID TIMING = fopen (’BASELINE TIMING. txt ’ , ’ r ’) ;

formatSpec = ’%f ’ ;
parameter matr ix fu l l FUEL = f s c a n f (fileID FUEL , formatSpec) ;
parameter matrix full HEALTHY = f s c a n f (fileID HEALTHY , formatSpec) ;
parameter matrix ful l TIMING = f s c a n f (fileID TIMING , formatSpec) ;

f c l o s e (’ a l l ’) ;

%INPUT FAULT DATA
%−−−
f r a m e s i z e = 3000 ;
nth order = 15 ;

[input 1 , path 1] = . . .
u i g e t f i l e (’ . wav ’ , ’ S e l e c t WAV F i l e to Load ’) ;

addpath (path 1) ;

%ex t r a c t the data from the WAV f i l e

175

[sampled data 1 , samp le ra t e 1] = audioread (input 1) ;

sampled data 1 = sampled data 1 (: , 1) ;
o r i g i n a l d a t a 1 = sampled data 1 (: , 1) ;

%Length o f the f i l e in seconds
l e n g t h t 1 = length (sampled data 1) . / samp le ra t e 1 ;

%leng t h o f the f i l e in va l u e s
l e n g t h i n p u t 1 = length (sampled data 1) ;

s a m p l e s i z e t 1 = l e n g t h t 1 /(l ength (sampled data 1)/ f r a m e s i z e) ;

%LPC FAULT DATA
%−−−

% %de f i n e the matr ices b e f o r e execu t ion
p a r a m e t e r m a t r i x f u l l 1 = [] ;

%take i t in s t e p s o f the frame s i z e
f o r N = 1 : f r a m e s i z e : l e n g t h i n p u t 1
%break the loop i f we reach the end o f the input data

i f (l e n g t h i n p u t 1 − N) < f r a m e s i z e
break ;

end
parameter matr ix 1 = lpc (sampled data 1 (N:N+frame s i z e −1) , nth order) ;
p a r a m e t e r m a t r i x f u l l 1 = [pa ramet e r mat r i x fu l l 1 , parameter matr ix 1 ’] ;

end

%remove columns wi th NaN en t r i e s
p a r a m e t e r m a t r i x f u l l 1 = . . .

p a r a m e t e r m a t r i x f u l l 1 (: , a l l (˜ i snan (p a r a m e t e r m a t r i x f u l l 1))) ;

%Use mahalanobis f unc t i on to c a l c u l a t e Distance va lue between b a s e l i n e and
%input data
mahal distance tota l FUEL = . . .

MahalanobisDistance (pa ramet e r mat r i x fu l l 1 ’ , . . .
parameter matr ix ful l FUEL ’) ;

mahal distance total HEALTHY = . . .
MahalanobisDistance (pa ramet e r mat r i x fu l l 1 ’ , . . .
parameter matrix full HEALTHY ’) ;

mahal distance total TIMING = . . .
MahalanobisDistance (pa ramet e r mat r i x fu l l 1 ’ , . . .
parameter matrix ful l TIMING ’) ;

f unc t i on MahalDist = MahalanobisDistance (sample , Base l i n e)
%Determine row and column s i z e s

176

[rowX , columnX] = s i z e (sample) ;
[rowY , columnY] = s i z e (Base l i n e) ;

%sum the rows o f each t o g e t h e r
sumN = rowX + rowY ;

%Disc la imer f o r i n co r r e c t data input
i f (columnX ˜= columnY)

di sp (’ Columns in X must be same as in Y ’)
e l s e

x D i f f e r e n c e = mean(sample , 1) − mean(Base l ine , 1) ;

%Covariance o f the two input v e c t o r s
covarianceX = Covariance (sample) ;
covarianceY = Covariance (Base l i n e) ;

%Mahanobis Distance a l go r i t hms
calcCov = (rowX / sumN ∗ covarianceX + rowY / sumN ∗ covarianceY) ;
MahalDist = s q r t (x D i f f e r e n c e ∗ inv (calcCov) ∗ xDi f f e r ence ’) ;

end
end

func t i on covar ianceValue = Covariance (X)
[rows , ˜] = s i z e (X) ;

%reorgan i z e input data , s u b t r a c t from o r i g i n a l
shu f f l eCov = X − repmat (mean(X) , rows , 1) ;

%covar iance equat ion
covar ianceValue = shuf f l eCov ’ ∗ shu f f l eCov / rows ;

end

