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ABSTRACT 
 

Keywords: Cadastral surveying, computer vision, machine learning, LandXML 

Although new cadastral surveys can readily be produced in the industry standard LandXML 

format, there is a vast amount of pre-existing information which is only stored as image files. 

Automating the back-capture of this information would improve a process which is labour 

intensive and prone to human error. This project proposes a workflow to automate this 

process, in relation to Victorian cadastral survey information. Specific algorithms and 

outcomes are examined using a simplified sample cadastral plan. 

The literature review reveals that similar documentation processes have been undertaken in 

other fields, such as music (Calvo-Zaragoza et al., 2018). In the cadastral context only true to 

scale cadastral maps have been digitised but not surveyors’ sketches or field records (Ignjatić 

et al., 2018) 

A simple plan was created containing a closed parcel and two instrument points for creation 

and testing of the workflow. An analysis of the tasks required to extract the information needed 

for the LandXML files was undertaken. A pipeline was designed to perform the data extraction 

in a machine learning environment, which has been dubbed Double Filter Capture. It consists 

of two main workflows that handle the graphical information and the text elements separately, 

by means of Computer Vision and Optical Character Recognition algorithms, respectively. An 

implementation of the actions in the pipeline was trialled and barriers encountered discussed. 

Several Machine Learning algorithms were used for the required tasks, such as line detection, 

corner detection, image rotation, text detection and text extraction. 

The project gives some idea of the possibilities and limitations that a larger scale automated 

back-capture would face, when dealing with records of significantly greater complexity. It also 

points the way to further research required to refine the extraction process outlined here, for 

example including elements omitted in this project, such as occupation and other auxiliary 

information and hand-written records.  

This project demonstrates automated accurate data extraction from an image file is possible, 

however an extensive investment would be required in the programming stage, given the 

complexity and inconsistencies of existing plans that require back-capture. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 
 
Vast amounts of historical survey information are stored in land registry repositories in the 

form of scanned documents. These provide essential records supporting the re-establishment 

and creation of cadastral boundaries. The current general move to automation in data 

management requires that these documents be converted into a machine-readable format, if 

they are to be preserved.  

Many jurisdictions around the world are implementing a land-specific extensible markup 

language, known as LandXML, as the standard format for recording and storing cadastral 

survey information (ICSM 2016). Although new surveys can readily be produced in this 

format, there is a vast amount of pre-existing information which is only stored as an image 

file. The back-capture of this information is usually done manually and is labour intensive and 

prone to human error. A compounding difficulty is the level of expertise required from the 

data entry operators to understand the relevance of the information. This project examines 

the viability of automating the back-capture process for Victorian cadastral survey 

information.  

 

1.2 The LandXML format 

Since the advent of the generalized use of the Internet and the ability to transfer data quickly 

and reliably between users, one goal that has been pursued is to agree on a standard format 

for the transfer of cadastral survey information. LandXML is a sharable data format that 

allows for manipulation, interrogation, visualisation or rendering of the data in a range of 

software allowing flexible use of the data.  The efforts of the Intergovernmental Committee of 

Survey and Mapping (ICSM) have resulted in LandXML being accepted as the standard, with 

the aim of enabling digital lodgement and transfer of intelligent cadastral survey data (ICSMA 

2010).  

The Victorian state government offers since 2013 the option of lodging plans of subdivision as 

ePlans. These plans are based on the LandXML format and some survey companies have 

participated in the development of this feature. The general uptake from the industry has been 

slow (Olfat et al. 2018) but a sufficient number of submissions exists for a preliminary analysis. 
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1.2.1 Back-capture project in Victoria 
 

The Victorian cadastre is based on monuments and measurements rather than on co-ordinates 

(Batchelor 2016). The graphical representation of the cadastre in Vicmap Property™ is co-

ordinated to a certain degree, but in the legal determination of cadastral boundaries the 

monuments take precedence. 

Survey information supporting cadastral boundary determinations is recorded in a repository 

of documents dating as far back as the first colonial surveys. Most of these historical 

documents have been digitised and are accessible as Portable Document Format (.pdf) files 

(see figure 1). Since the inception of the Surveying and Planning through Electronic 

Applications and Referrals (SPEAR) new surveys can be lodged electronically as .pdf files and 

hard copies are not kept on record. The latest development, ePlan, enables full electronic 

submission of “intelligent” data in LandXML format, although the uptake of this possibility by 

the industry has been slow (Olfat et al. 2018). 

To maximise the potential of the available information, it would be desirable to develop a state-

wide cadastral database which would include both parcel geometry and survey information, 

being co-ordinates of survey monuments and their connection to parcel corners by bearings 

and distances (Merz 2011). Ideally, this would include a continuous fabric free of gaps or 

overlaps that allows for new information to be included as it becomes available. This new 

information may be the result of new subdivisions or other types of land reconfiguration. 

This task is currently a focus of Surveyor-General Victoria, who has created a Digital Cadastre 

Modernisation Project (DCMP) work team for this purpose. A similar undertaking has been 

performed in other jurisdictions, notably New Zealand (Rowe 2003) and the Australian 

Capital Territory (Merz 2011) and overseas (Olfat et al. 2018).  

1.2.2 Back-capture of cadastral survey information 

The first stage in these projects entails back capturing the survey information that exists in the 

form of .pdf files. This forms a starting network to which new information can be added. To 

date this has been done manually by typing the relevant information into databases. In the 

Victorian DCMP this step is currently underway. The back-capture process involves marking 

up the plans by an expert who decides which information is relevant by following set rules 

(Fraser et al. 2018). A process of double entry follows, in which two operators independently 

type the information into a database. An automated matching routine flags any inconsistencies 

to ensure accuracy in the entry.  
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Figure 1: Sample Victorian .pdf scan of Abstract of Field Records of Survey. 
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1.3 Task statement 
 

This project aims to attempt application of Machine Learning (ML), or elements thereof, to 

the back-capture process. This involves “scanning” survey plans in order to automatically 

collect data and export this data into a LandXML database.  To undertake this project, research 

from other fields has been used for information regarding programming environments and 

procedures. Victorian Abstracts of Field Records (AFR) have been used as the source material. 

The project aims to document procedures used by the author, as these are expected to differ 

from both how data is collected manually and “learned” by humans, and from how traditional 

computer programming would approach input of this information. This process may have 

implications as to whether automated or manual processes are selected in future and may 

impact on accuracy and efficiency of this process.  

The ultimate goal, outside of the scope of this project, would be to a tool that would automate 

the back-capture of cadastral survey information from .pdf plans and convert it into intelligent 

data in LandXML format. Ideally this would enable faster and more reliable back-capture free 

from human error. Outside the DCMP context, this tool would be useful for surveyors needing 

intelligent data from previous surveys when preparing a new survey. Scoping the extent of 

research necessary to design such a tool is one of the objectives of this project. 

 

1.4 Research question 
 

This project aims to examine the use of ML and its sub-domains of Computer Vision (CV) and 

Optical Character Recognition (OCR) to determine their viability in completing elements of 

the back-capture processes. Given the broad scope of this area, this project has been limited 

to answering the following research question:  

Can ML be used to reliably extract survey pertinent data from scanned Victorian AFR? 

The above problem was addressed through the following objectives: 

1. Define the elements that are required to be detected in a cadastral survey plan.   

2. Propose the steps required for automated detection of cadastral information. This will 

include considering the order in which a machine would need to identify and process 

these elements.  

3. Gather information on methods of ML documented in the research literature from 

other fields of work (e.g. botanical labels, music scanning) in order to trial these 

methods in a surveying context. Attempt implementation of these methods to 

determine if any elements from AFRs can be detected automatically.   
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The project documents procedures trialled as an outcome of the project. It also documents 

barriers encountered and possible future approaches that may achieve more accurate, efficient 

or extensive outcomes.  

 

1.5 Limitations 

Computer generated plans were used to facilitate simple evaluation of outcomes. Issues 

encountered include incorrect and alternate use of symbols, omitted or inaccurate text, data 

entered further away from the element it is describing due to lack of space on the plan, high 

plan complexity, poor plan quality and plans written partially or completely by hand. Further 

issues considered include use of symbols or signs that are made up of lines (e.g. fence 

markings, symbols). It was therefore attempted to determine most commonly occurring 

features of plans, and ultimately the creation of a model AFR including only these elements, 

as described in section 3.1.1.2. 

Only one programming language, Python and two repositories of algorithms, Open CV and 

Tesseract were used. This decision was based on research information from other fields. It is 

possible that accessing further repositories, customised programming, and/or combining 

computer programming languages would lead to further positive outcomes. Also to note is the 

fact that the author is a novice computer programmer and had not previously worked within 

Python or in the field of ML. This demonstrates the accessibility of this technology and implies 

that far more efficient outcomes may be able to be achieved if working together with an expert 

in this area. 

The project was time limited by its nature as an academic project. Further time would be 

required to delve into the issues unearthed. 

The project did not aim to evaluate efficiency and accuracy by comparison with manual data 

entry, as is being used in the Victorian Government back-capture project which sparked the 

idea for this project. It does however attempt to demonstrate that investigation into this area 

is warranted particularly if large quantities of existing, or possibly newly created, files require 

back-capture.  
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CHAPTER 2: LITERATURE REVIEW 

 

Back-capturing survey plans involves converting visual images and text to a digital database 

of reference points.  The literature shows that the ML environment can address the processing 

of both images and text.  

 

2.1 Machine Learning 
 

The field of Artificial Intelligence (AI) and ML is as old as the first computers and the work of 

Alan Turing is recognised as pioneering in the field (Russell & Norvig 2003). The research 

interest in the field has ebbed and flowed with changes in technology and focus on the different 

issues involved and is currently experiencing unprecedented attention. This is due to the 

exponential increase in available data, such as data generated by users of mobile and wearable 

devices and also to the higher computational power enabled by parallel computing and the use 

of Graphic Processing Units for computations other than graphics (Alpaydin 2016). 

The traditional approach to programming has been to use algorithms to give the computer 

step by step instructions to solve a task. With ML the focus shifts to problems of which we do 

not know the steps involved but we have data to provide the required outcome. This way the 

computer can learn to derive the algorithm to arrive at the required outcome. The more data 

we can provide, the higher the success rate of the learning, i.e. the higher the probability that 

the prediction will match the desired outcome (Alpaydin 2016).  

A non-exhaustive overview of tasks for which ML has been and is being used can be compiled 

from several sources in the literature (Alpaydin 2016; Goodfellow et al. 2016; Zhang et al. 

2019)  

• Classification, with or without missing inputs. 

• Regression: prediction of a numerical value given some input (for example, predicting 

house prices given some variables). 

• Transcription, such as OCR: “In this type of task, the machine learning system is asked 

to observe a relatively unstructured representation of some kind of data and transcribe 

the information into discrete textual form” (Goodfellow et al. 2016, p. 99). 

• Machine translation. As is commonly applied to natural languages. 

• Structured output. Broad category including transcription and translation and in 

general any task that involves labelling data and finding relationships among the data, 

such as parsing or image captioning (for example labelling roads in an aerial 

photograph). 
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• Denoising (for example extracting background from images before OCR). 

• A series of other tasks mentioned do not appear to be relevant for this project. They 

include anomaly detection, synthesis and sampling, imputation of missing values and 

density estimation. 

These tasks have been applied in many different fields, among others medical diagnosis, face 

recognition, speech recognition and predicting share prices and shopping behaviours.  

2.2 Optical Character Recognition 
 

OCR is the ‘translation of handwritten or typewritten text into machine-editable form’ 

(Dharmana et al 2012, p. 23). Areas of application include automatic text entry, automatic 

reading of credit cards, post and licence plates, document data compression, and language 

processing amongst others (Dharmana et al 2012). The aim of this project is to research 

whether the use of OCR can improve the efficiency of back-capture processes, in terms of speed 

and accuracy. OCR has been used for over two decades in an array of fields and its development 

continues, with Deep Learning (DL) (Wei 2018). A limitation of existing OCR engines is their 

variety, with each engine designed to read a specific type of document. The accuracy of these 

engines is dependant on fonts, paper quality or deterioration and may not achieve 100% 

accuracy (Petrescu et al 2019, p. 23). 

In the Victorian cadastral surveying context, the use of OCR has been limited to the capture of 

back-capture of Primary Cadastral Marks and Permanent Marks from tables provided by 

surveyors. The provision of this table was required by the Survey co-ordination regulations 

2004 (Survey Co-ordination Regulations  2004) to help improve the integrity of the digital 

cadastre (Vicmap Property™) but the requirement was revoked in the 2014 regulations. 

An attempt was also made to utilise OCR for the extraction of metadata from plans, however 

this project was abandoned (Olfat 2019, pers. comm. 28 March). Both these uses were limited 

to “traditional” OCR extracting only text from documents consisting mainly of text. As we will 

see, this project differs in that it attempts to extract text from AFRs, which is a far more 

complex undertaking. 

2.3 Computer Vision 

A subfield of ML with a recent interest spike and which proved useful in this project is CV. A 

vast amount of research is being done in CV for its use in self-driving vehicles and in scene 

recognition (Liu et al. 2019). These advances have also lessened the need to rely on the 

existence of labelled data, as techniques are developed that can worked in an unsupervised 

fashion, such as Deep Belief Networks, Deep Boltzmann Machines and Stacked Autoencoders 
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(Voulodimos et al. 2018). Also, techniques such as bootstrapping can minimise reliance on 

labelled data, as described in (Heidorn & Wei 2008). 

 

This project looks at the potential of CV to detect features in the imaged plan that can guide 

the interpretation of the text elements extracted with OCR. The line work in the AFR provides 

a topological diagram representating the spatial relationship between points and using this as 

a manner of road map has become one of two main pillars for this project, the second pillar 

being the OCR text recognition. 

 

To quote Ignjatić et al.(2018, p. 3), 

“As we are moving towards more complete computer vision, full historic map understanding 

becomes achievable, as the crucial steps in this process are visual object and pattern 

recognition, which is becoming more precise and detailed”.  

2.4 Similar research in other areas 
 

Two areas found in the literature with many commonalities to this project are Optical Music 

Recognition (OMR) (Bainbridge & Bell 2001; Calvo-Zaragoza et al. 2018) (see figure 2) and 

botanic and museum specimen labelling (Heidorn & Wei 2008; Kirchhoff et al. 2018) (see 

figure 3). 

 

 

Figure 2: Typical sub-tasks for processing musical documents, from (Calvo-Zaragoza et al. 2018) 
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Figure 3: Information on botanic specimen labels, from (Kirchhoff et al. 2018) 

 

In both cases the problem consists of extracting information from hand written or typeset 

documents with a variety of styles, formats, codes and layouts. In the case of OMR, the music 

notation can have many levels of complexity, with symbols connected and overlaid with other 

notations. This is also the case in this project, where handwritten notations from the plan 

examiner may cross Computer-aided Design (CAD) produced lines or text with relevant 

information. Although the Surveying Practice Handbook contains guidelines for the drafting 

of plans and abstracts of field records, these are not statutory legislation and therefore are only 

loosely followed by surveyors and transmitted in an expert and apprentice fashion (Victoria 

1997). The variability of drafting styles and conventions poses difficulties for automating the 

recognition and understanding of the information.  

More specifically, there are two main similarities between OMR and the extraction of cadastral 

information: 

• Symbols do not convey meaning by themselves but gain meaning from their position 

relative to lines (staff in music). It is not sufficient to capture the symbols in the order 

that they appear, as it would be with ordinary text-based OCR. The human reader 

interprets the output of OCR in the form a text document (Bainbridge & Bell 2001). In 
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OMR and cadastral information, this interpretation needs to happen before the output, 

and this represents the single major challenge of the process. 

• In music, a measure contains a stipulated number of notes that are not necessarily 

distributed proportionally in the visual space. OMR software is generally programmed 

so that it checks the contents of each measure against the position of bar lines. (Padilla 

et al. 2014). This is the equivalent of closed shapes in AFRs, where the lines are not 

drawn to scale. The dimensions shown as text on the lines are the actual information 

of interest and the lines can be used for validation. 

The steps identified by the authors of (Bainbridge & Bell 2001) for the OMR workflow can 

therefore be used as a guide for the retrieval of cadastral information: 

• Staff line identification (equivalent to detection of lines and line styles in the AFR). 

• Musical object location (equivalent to detection of symbols and line intersections). 

• Musical feature classification (equivalent detection of text and allocation of this text to 

lines). 

• Musical semantics (equivalent to validation of dimensions against line work and 

allocation of co-ordinates). 

As in OMR, the last two steps require specialised knowledge and may not be fully automatable. 

Heidorn & Wei (2008, p. 58) describe similar challenges faced when extracting metadata from 

museum specimen labels, mainly “the volume and heterogeneity of the data” which makes it 

“expensive for humans to type in and extract critical information by hand.” 

Once extracted, this information needs to be transformed into smart data than can be searched 

and manipulated. Issues around deciding which information to capture, how to eliminate not 

relevant information safely and how to structure the output are common with this project. The 

rationale for the interest in a ML approach in all these fields stems from the expense of utilising 

highly qualified personnel for the menial tasks of labelling, be it specimens, music notation or 

in this case dimensions in an Abstract of Field Records (AFR). 

 

The use of ML in cartography in general and in cadastral maps in particular has been limited 

(Ignjatić et al. 2018). Although many countries have digitised their map bases since the 1980s, 

this has been done by vectorisation of image files by traditional algorithm-based 

programming, and DL techniques such as neural networks have only been used in the text 

recognition stage (Katona & Hudra 1999). 
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2.5 Contribution to existing research 
 

The existing research documents use of OCR and ML techniques in other fields attempting to 

import graphical data and convert it into digital data, however no research documentation has 

been found by the author to date specifically examining the extraction of cadastral information 

from scanned survey plans.  

 

This project attempts to contribute to the existing knowledge by applying ML Techniques to 

cadastral survey information in the Victorian context. This may in future lead to further 

research attempting to fully-automate Victorian back-capture, attempts in other locations 

with surveys following different presentation guidelines, and possibly inform further ML or 

DL research is other fields. 
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CHAPTER 3: METHODOLOGY 

In order to undertake the process of automatically extracting cadastral survey information, 

the following single case study research design was devised: 

1. Determine the required Inputs from a set of AFR plans. The set provided by the DCMP 

Team was analysed to identify the most common features that could be included and less 

common features to be excluded from a model AFR. From this information, Research 

Outcome 1 will be devised, namely, an Information Extraction Model (Model AFR). This 

is a simplified AFR containing only key elements to test programming modules.  

2. Determine required outputs based on available LandXML examples. Create a proposed 

workflow of anticipated steps and their corresponding CV algorithms to detect items from 

the plan. This completes Research Outcome 2.  

3. Implementation. Existing algorithms will be tested within the proposed workflow and 

their outcomes evaluated. The evaluation of this pilot project into automated data capture 

of AFR plans completes Research Outcome 3. 

The development of each of these processes will be outlined in detail below. 

 

3.1 Input Source: Abstracts of Field Records 

In Victoria, any land transaction that involves creating new cadastral boundaries or modifying 

existing cadastral boundaries is required by law to be supported by a survey performed by a 

Licensed Surveyor.  This includes transactions such as subdivisions and consolidations of 

land, and boundary realignments to agree with occupation. The supporting survey is to be 

documented in the form of an AFR and a Licensed Surveyor’s report, outlining among other 

particulars the “relationship with other relevant cadastral surveys and the manner in which 

the boundaries of the subject land have been determined” (Surveying (Cadastral Surveys) 

Regulations 2015 – Regulation 15). In the case of subdivisions and consolidations, a new plan 

is generated and the Land Registrar issues new titles for the new parcels. This plan is drawn 

to scale and depicts the boundaries and their dimensions and a connection to a road 

intersection or a Crown boundary. Additionally, easements and other secondary interests are 

recorded in the plan. 

The AFR is a schematic representation of the fieldwork undertaken by a surveyor. It contains 

information about the parcel boundaries, their connection to existing and newly established 

reference marks and any relevant evidence of occupation along the boundaries. Importantly 

for this project, this representation is not drawn to scale, and the information required is 

contained in the text elements rather than the drawing elements. However, the line work can 

still be used as a skeleton to indicate how the points are connected. The AFR provides the link 
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between cadastral boundaries and the network of co-ordinated reference marks and as such 

contains vital information for a robust cadastre.  

3.1.1 Analysis of a set of Abstracts of Field Records 

A batch of Plans of Subdivision provided by the DCMP team was analysed in order to gain an 

understanding of the type of information typically recorded and of which information should 

be captured or could be excluded. 

The documents reviewed include plans from the Whittlesea local government area that have a 

Plan of Subdivision (PS) number greater than PS600000. This ensured that most plans were 

computer drafted, as these are the most recent plans lodged with Land Registry. The 

Whittlesea City Council covers a peri-urban area to the north of Melbourne which has recently 

experienced a notable growth. As such, this batch includes some 2500 plans, with the oldest 

plan being only 10 years old. 

The data provided consists of a complex array of documents. For each output of one LandXML 

file there are as a minimum two .pdf documents from which information is extracted. One 

document typically contains the boundary dimensions of the parent parcel and the newly 

created internal boundaries plus all the relevant administrative information. This is the actual 

PS. The other document is a bundle collated from different sources and can include reports 

from the surveyor, the examiner and the AFR documenting the field measurements and the 

connections from the boundaries to the survey and to previous surveys. The information that 

this project aims to capture is contained in the AFR.  

3.1.1.1 AFR file format 

The files were provided as raster .pdf files. While most of the submissions are vector .pdf files 

generated from CAD software, some are scans of print outs or hand drafted plans. 

Additionally, these documents undergo an examination by a registration officer who adds 

hand written notations and subsequently scans them converting them to Tagged Image File 

Format (.tiff). SPEAR in turn prints these files to .pdf. For consistency, all documents, 

including accompanying reports and other documents that mostly contain text, are kept as 

raster .pdf files. The file size can vary considerably, and the files provided by the DCMP team 

ranged from 29KM to 359KB (215KB and 1.03MB respectively when converted to .tiff at 96dpi, 

the image size being 1654 x 2339pixels). 

3.1.1.2 Project scope limitation 

As a starting point, the most recent 183 plans were selected, with PS numbers higher than 

PS800000. A further sample reduction was undertaken, with the following criteria, developed 

on inspection of the plans: 
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• 40 plans did not contain an AFR. This could be due to a few reasons. Some are staged 

subdivisions that only contain a plan linking diagram to link the plan to the parent 

subdivision. Some subdivisions were not based on survey. These plans were discarded. 

• 26 plans contained Abstracts of Field Records over multiple sheets. These were also 

discarded to simplify the one to one relationship between input and output. 

• 41 plans contained arcs as boundary lines. The information shown for the dimensions 

of arcs (chord length, arc length, radius, chord bearing) would add much complexity 

to this task and these plans were also discarded. 

• 2 plans were handwritten, and it was estimated that OCR would not be accurate enough 

to recognise the text. Hand-written text is notoriously more difficult to process for OCR 

engines (Ouwayed & Belaïd 2012). 

In total, 100 plans were discarded (note that some plans contained more than one of the issues 

described above). 

The remaining 83 plans were considered suitable in first instance. From those: 

• 52 include splay corners. In most cases the intersection point is shown as well as the 

approaching distance to it from each line. The truncation distance is generally short, 

very commonly in the order of 3.05m (10ft) and can be represented in a variety of ways 

in different plans, namely as a point to point distance or in a chainage/offset style, or 

a combination of both. Figure 4 shows examples of these cases. 

 

Figure 4: Splay distance shown as  

a) running chainage in (PS813845K) 

b) point to point distance, in brackets as a boundary dimension (PS814185W) 

c) both running chainage and point to point distance (PS815019K) 
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• 69 include running chainages additionally to the point to point distances displayed as 

dimensions on boundary lines. Running chainages are often accompanied by offsets 

shown in the same text orientation. Other times the offsets are shown as running 

chainages perpendicular to the traverse or boundary lines. This is a prime example of 

human understanding required to discern to which category these figures belong.  

It is noteworthy that the chainage/offset situation applies mostly to the way occupation is 

shown in field records, as it conveys in a much clearer way the relevant information, being the 

offset from the occupation to the boundary line. The chainage/offset style depicts the 

traditional method of measuring occupation, that is laying a chain along the traverse line and 

measuring offsets with the offset tape. Modern surveyors prefer to radiate occupation from an 

instrument point and independently check the measurement by way of sighting to an offset 

tape along the traverse line. Showing these radiations in the field records would be a truer 

depiction of the field work but in most cases would result in a plan that is visually very busy 

and hard to read. Chainage and offset is therefore the preferred method to show the 

relationship between occupation and boundary in field records. The DCMP in its current phase 

is not capturing any occupation and focussing on survey monuments and boundary 

dimensions. “Traversing that does not connect parcel corners to control marks and/or 

reference marks, but fences only, should not be captured” (Fraser et al. 2018). 

Figure 5 shows examples of offsets oriented parallel and perpendicular to the boundary line. 

 

Figure 5: Offsets shown as  

a) running chainages perpendicular to traverse line (PS825585S)  

b) in the same orientation as chainages (PS802358J) 
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In the example shown in figure 6 the different orientation of the offsets conveys a different 

meaning: offsets to boundary is shown in brackets and perpendicular to the traverse, offsets 

to occupation with no brackets and parallel to the traverse. 

 

Figure 6: Adopt offsets shown in same orientation as chainages, offsets to occupation shown as 

chainages perpendicular to traverse (PS823143N) 

Figure 7 shows an example in which many of the issues discussed occur, compounding the 

density of text in the plan and potentially increasing the challenge of an automated capture. 

 

Figure 7: Complexity can rise rapidly... (PS816244W) 

• 18 plans contain inserts where the traverse line is broken and continued in a different 

area of the sheet. These will likely be excluded from the study to prevent one possible 

source of error. 

An interest case is that of plans PS804841U and PS804842S. These are subdivisions of 

contiguous lots in a previous subdivision (PS726122N). The same surveyor performed the 

required field work for both lots and produced an AFR that covers both lots. This same abstract 

was submitted twice as the supporting documentation for each of the subdivisions. 
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Consequently, the abstract was examined twice by two different examiners at Land Registry 

and the registered versions show two different sets of hand-written annotations.  

 

3.1.2 Creation of a custom AFR for input 

From this discussion it can be seen that the diversity of formats, information and styles 

contained in AFRs is far from uniform. The idea of using a set of AFRs with their 

corresponding LandXML files in a ML or DL environment to progressively train and predict a 

LandXML output may seem attractive. However, given this complexity and variety, great 

amount of manipulation would be required to obtain a workable data set from these sources. 

The preferred approach was to create a custom made, clean and simplified model AFR with 

the minimum required information. This model AFR was specifically designed to test different 

algorithms for the necessary steps until a satisfactory result has been achieved. 

 

To illustrate the information required for this model, a simple AFR can be reviewed. Figure 8 

shows a typical AFR for a PS. The relevant text information that needs to be captured has been 

highlighted in yellow. The points circled in red are the survey marks connected to. The arrowed 

nodes represent boundary corners and connections to road intersections.  
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Figure 8: Abstract of Field Records for a Plan of Subdivision. The information to be captured has 
been highlighted: text in yellow, nodes with arrows and symbols circled in red. 
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The relevant required information is in the form of written text in the original document. This 

text can be one of the following: 

• Bearings (directions) in the form (DD)DMM(SS), such as 96°45’  

• Distances in the form xx.xx, such as 20.19, be it as point to point or as running distance. 

• Other text elements such as road names, descriptions and identifiers of survey marks, 

and descriptions of occupation. 

This text is associated to a network of lines that represent a visual skeleton to connect the 

points linked by the dimensions. Importantly, this line work is not drawn to scale and cannot 

be relied on for the position of the different elements in the plan. Only the position relative to 

each other can be used as an indicative guide.  

Three different line styles are traditionally used, as depicted in figure 9 (Victoria 1997): 

• Solid boundary lines, thick for the subject lot and thin for abutting boundaries. 

• Dashed radiations. 

• “Chain” style for traverse lines. 

 

 

Figure 9: Recommended line styles for survey plans in Victoria. Extract from “Survey Practice 
Handbook Victoria” 
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3.1.2.1 Elements included and excluded from the Model AFR 

Given all the challenges and barriers discussed above, a model AFR was created that includes: 

• A simple quadrilateral parcel. Three boundaries are at right angles while the eastern 

boundary intersects the northern and southern boundaries at oblique angles. 

• The connection from the parcel to the nearest road intersection. 

• The three different line styles for boundary (solid line style, thick for the subject land, 

thing for the abuttals), traverse (“chain” style) and radiation (dashed style). 

• Conventional triangular symbol for two instrument stations. 

• Two road names. 

• Bearings and distances for all relevant line segments. One segment only shows a 

distance and two segments do not show bearing or distance. Some interpretation is 

required here as will be seen in the discussion of results (4.2.3) 

The following elements are commonly found in AFRs and have been omitted deliberately to 

obtain results as unequivocal as possible: 

• Offsets and running distances. All distances are shown as point to point. 

• Occupation along boundaries shown diagrammatically. 

• North arrow, containing both lines and text, usually the denomination of the bearing 

datum used. 

• Descriptions of survey marks. 

• Legal description of subject parcel and abuttals and surface area. 

• Additional instrument stations and other survey marks connected to by radiation. 

• Other miscellaneous text elements, for example computations and annotations from 

the examiner are frequently found in registered AFRs. These are almost always 

handwritten and would also need to be removed in pre-processing.  

3.1.2.2 Model AFR 

The plan depicted in figure 10 was created as a Model AFR following the criteria discussed 

above. A matching LandXML file will also be created as a guide for the required outcome and 

is contained in Appendix B. The Model AFR is the first research outcome. 
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Figure 10: Model AFR 

 

3.2 Output to a LandXML file 

Some plans of subdivision and their accompanying survey information have already been 

submitted as ePlans in LandXML format. The accompanying AFR for these plans has been 

recorded in the traditional .pdf format. At this stage, the LandXML data provided by the 

surveyor who created the plan is not being made available and the LandXML data provided by 

LASSI – SPEAR only contains approximate co-ordinates of property corners as plotted in 

Vicmap Property™. These co-ordinates are not necessarily survey accurate and are not based 

on the information provided by the surveyor (Olfat 2019, pers. comm. 28 March). This data 

has been used for learning purposes. 

 

3.2.1 File format 

A typical LandXML file for an ePlan submission has the following structure (See figure 11). 

The example is taken from an existing registered ePlan in Victoria: 
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Figure 11: Structure of a LandXML file for an ePlan 

3.2.2 Required data items 

Of interest for the back-capture of relevant information are the following headers: 

• <Parcels> includes the geometry of all the parcels represented in the plan. As a 

minimum, this would typically mean one closed polygon for the parcel being re-

established and two road “parcels” to which intersection the main parcel is connected. 

In the case of plans of subdivision, the number of parcels would increase to include 

newly created lots and common properties inside of the parent lot. This information 

should be readily available in the plan being back-captured in the form of text elements 

showing the boundary dimensions. 

• <CgPoints> includes the co-ordinates of all the nodes within the plan. These are 

both monuments such as survey marks, be it traverse stations or side shots, and 

boundary corners. Generally, the co-ordinates must be calculated from the information 

provided in the plan, so this is a step that happens after the back-capture has been 

completed. 

• <Survey> includes three elements: 

• The <SurveyHeader> contains administrative information such as the name 

of the plan, jurisdiction, local government area details, etc. This information is 
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usually given in the plan under the “location of land” field and could be readily 

captured by means of traditional text-based OCR. This information is also 

available directly from LASSI – SPEAR.  

• <InstrumentSetup> follows and correlates each instrument station to a 

point identifier. This requires interpreting the plan to identify the instrument 

stations, which can be represented as symbols or merely as the intersection of 

multiple lines or both. One of two main pillars of this project is attempting to 

automate the identification of these points using CV techniques. 

• <ObservationGroup> lists reduced observations, that is bearings and 

distances, from each instrument setup. This information should be readily 

available in the plan being captured in the form of text elements showing 

bearings and distances between instrument points. 

• <Monuments> gives descriptions of the survey marks visited and correlates them with 

point identifiers. These descriptions could also be an element to be back-captured from 

the plan. 

A LandXML file following this structure and requirements was created to match the Model 

AFR as a guide for the be the desired end result of the capture and conversion and is contained 

in Appendix B. Co-ordinates were computed starting on an arbitrary point at 5000, 1000 on 

CGPNT-1. The remaining sections of the code were completed as per the above description, 

including correlating station setups with points, observations between stations and 

monument descriptions. 

 In Figure 12, the Model AFR has been annotated to show the labels allocated to the different 

elements in the code contained in Appendix B. It contains point IDs allocated to parcel corners 

and survey marks. Point IDs have also been given to points at the centre of the road names, 

for visualisation purposes. 
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Figure 12: Model AFR annotated 

 

3.3 Creation of a workflow for the information detection 
procedure 

As described above, some of the elements required for the LandXML file are readily available 

as text elements in the input .pdf: 

• Bearings/distances, of three types: boundary, traverse and side shot. 

• Monument descriptions.  

• Road names.  

The following elements need to be derived before been incorporated into the LandXML file. 

They require the interpretation of the graphical content in the plan: 

• Point IDs: First, the points of interest need to be identified. All nodes in the image are 

points of interest. Nodes represent a point with co-ordinates and refer to edges starting 

at that point. Edges are areas of high contrast, which, in the case of this project are 

coincident with lines. Following the terminology used in (Katona & Hudra 1999), nodes 

can be endpoints (one edge, such as survey marks measured by radiation), breakpoints 

(two edges, such as bends in an alignment or marks radiated from two different 

instrument points) or junction points (multiple edges, such as most boundary corners, 

where at least two boundary lines and one radiation line will meet). An algorithm could 

read the image from left to right and generate successive point IDs to each node 

encountered. 

• Co-ordinates: generally, there will be at least one Permanent Mark in the plan with 

known Map Grid of Australia (MGA) co-ordinates, available through SMES. This could 
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be used as the origin of the co-ordinates of the remaining points. For this purpose, 

though, to maintain the simplicity of this initial stage, arbitrary co-ordinates were 

allocated to an initial point and local co-ordinates calculated. This removes the need to 

reach for one additional external source of information. 

• The purpose of each dimension (boundary, traverse or side shot) can be identified 

through the different line styles. 

The project proceeded under the assumption that text elements would be captured by means 

of OCR whereas graphic elements would be captured with CV feature detection algorithms. 

This dual approach yields a series of outputs that are at times redundant. Redundancy 

provides validation and helps eliminating false positives, as will be discussed in the results 

section (4.2.3) 

There is a series of steps involved in the capture and conversion to LandXML using CV which 

have been identified in other areas in the literature. Some of these steps are: 

1. Background/foreground separation (Roy et al. 2012; Westphal et al. 2018) This will 

not be necessary for the first attempts with a clean plan specifically generated for the 

purpose of creating a model, but it will become relevant once real-world examples are 

being captured. 

2. Text/non text separation (Bhowmik et al. 2018). AFR documents fall clearly within 

Class-2 of Bhowmik’s taxonomy of “general offline document images”. They contain 

text scattered over the page in multiple sizes and orientations. They also contain many 

non-text elements such as lines and symbols. Finally, they may contain “a significant 

amount of noise similar to the content”, such as added annotations. 

3. Line/symbol separation. Once the background and the text have been removed, all that 

remains are often overlapping lines and symbols. Separating these classes is one of the 

main challenges in OMR (Calvo-Zaragoza et al. 2018).  

4. The CV field has brought improvements in the detection and recognition of skewed 

and multi-oriented text (Ouwayed & Belaïd 2012; Liu et al. 2019). In the case of this 

project, relevant text is always aligned or perpendicular to a line. This may simplify the 

task of detecting relevant text as it can be restricted to a set of given orientations (see 

steps 6- 7). 

Open source repositories of CV algorithms are publicly available for implementation of CV 

projects. For each step of the proposed workflow, a pre-programmed algorithm was sought 

and tested to determine whether any usable results could be acquired for export to the 

LandXML file.  
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Each step will be discussed individually in Chapter 4. Some algorithms allow for manipulation 

of variables to improve output. Chapter 4 includes detailed discussions of the algorithms used 

and their adequacy as well as barriers encountered during implementation.  

3.4 Development environment 

The experiments were conducted on a general-purpose computer with an Intel® CoreTM i5-

4210U CPU @ 1.70GHz 2.40 GHz processor, 4.ooGB RAM and 64-bit Windows 7 Professional 

operating system. 

The Model AFR was drafted using AutoCAD, printed as a vector .pdf and converted to .tiff with 

Adobe Acrobat XI Pro. 

The programming language used was Python 3.0 through its Anaconda distribution. A Jupyter 

lab was setup to run the code. 

OpenCV was the library of choice for the feature extraction and image processing functions 

required. 

OCR was performed with Tesseract, through the Tesserocr wrapper.  

Adobe Acrobat DC was used to trial text detection within a commercial application. 

A note about pixel geometry: most computations performed by the program are nothing other 

than co-ordinate geometry on the image pixels. Due to the nature of the computer processor 

reading files from left to right and top to bottom, the conventional origin of co-ordinates is the 

top left corner of the image, with the y co-ordinate increasing downward. 
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CHAPTER 4: IMPLEMENTATION AND RESULTS 
 

4.1 Workflow: Double Filter Capture 

As discussed, a characteristic of AFRs is that they contain information coded in two parallel 

ways: text on the one hand and graphics, being lines or symbols, on the other. The drawing is 

not to scale and as such, the lines provide a guide for the topology of the points of interest but 

do not convey any dimensional information. This project takes advantage of this characteristic 

and captures the information in two parallel streams. The redundancies obtained by this dual 

approach provide validation and help eliminate false positives. 

The workflow depicted in figure 13 was progressively created as a guide for a program that 

would:  

a. extract the relevant information from an imaged AFR of a cadastral survey (labelled 

“Image”); and 

b. output point IDs and the bearings and distances connecting them. These would be 

presented in a suitable format to be incorporated in a LandXML file. These outputs are 

labelled “LandXML” in the workflow. 

The multiple steps contained in this workflow are connected and interdependent, however a 

visual representation of the required sequence was deemed useful to assist both the reader in 

understanding the processes undertaken and the author in testing algorithms on plans.  The 

process was separated into two phases. In the first phase, steps relating to the capture of 

graphic related items, labelled “Geometry Filter”. In the second phase, steps relating to text, 

using OCR, labelled as “Text Filter” are completed. 

These two filters can occur simultaneously and independently of each other. A third phase 

follows, in which the results from the Geometry and Text filters are validated through the 

redundancies obtained. Due to this dual filtering of information, this process has been labelled 

“Double Filter Capture” (DFC). 

Reading the first left column downwards, within the “Geometry Filter”, the first sequence of 

transformations to be performed on the image can be found, numbered from 1 to 4. These 

processes yield three sets of data that are to be stored in arrays, shown in the second column. 

These are: 

• text boxes with their location, in pixel co-ordinates, 

• lines and their orientation, in radians, and 

• points with their position, in pixel co-ordinates. 
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After this first block, steps 5 to 7 (the “Text Filter”) follow. Steps 5 and 6 occur multiple times, 

as they require that the original image (where the text has not been removed) is rotated to each 

of the orientations stored as a result of step 3 and OCR performed on each of those rotated 

images. Text data is obtained in step 7 which is stored in an array including their location and 

a flag about their content: bearing or distance. 

Steps 8 and 9 cross reference the results from the phases one and two to identify and eliminate 

false positives and to ensure that every pair of detected points can be reliably allocated two 

text elements representing the bearing and distance between the points (steps 10 and 11). 

 

Figure 13: Double Filter Capture 

 

4.2 Implementation 
 

In order to implement the DFC process, algorithms were selected from the OpenCV repository. 

For this initial case study, the aim was to determine at least one algorithm that could at least 

partially complete each step of the DFC. It is acknowledged that further algorithms may exist 

which complete the tasks more accurately, however the aim of this study was not to complete 

a full review of the available repositories, but rather to evaluate whether further refinement 

and expansion of this model using CV was warranted.  

Each step in the phase is outlined below, with results indicated for each individual step. 
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4.2.1 Phase one: Geometry Filter 
 

4.2.1.1 Remove text 

Aim  

The aim of the first series of transformation is to extract the topology of the required elements. 

It is necessary to identify which points and which lines connecting them are of interest. To 

facilitate this task and to remove the risk of an unmanageable number of false positives, the 

image needs to be “cleaned up” and reduced to a skeleton of lines.  

A text detection algorithm could be used to remove all text fields and at the same time extract 

the location and orientation of the bounding boxes of those text elements. The required output 

is a 4-column array with as many rows as text elements found. The fields for each column 

would be: 

• x: horizontal distance from the left edge of the box to the co-ordinate origin, being the 

left edge of the image. 

• y: vertical distance from the top edge of the box to the co-ordinate origin, the top of the 

image. 

• w: width of the bounding box in pixels. 

• h: height of the bounding box in pixels. 

Result 

Text removal can be partially achieved by the method GetComponentImages of the Tesseract 

library. This method also extracts the text and provides a confidence level of the text 

recognition. The orientation of the box is not recorded, and all boxes are rectangular and 

oriented parallel to the co-ordinate grid. 

Text was removed with GetComponentImages. The five available page iteration levels 

(RIL) were tested: 

• RIL.SYMBOL returned 123 text elements (see figure 14) 

• RIL.WORD returned 18 text elements (see figure 15) 

• RIL.BLOCK returned 14 text elements (see figure 16) 

• RIL.TEXTLINE returned 15 text elements (see figure 16) 

• RIL.PARA returned 14 text elements (see figure 16) 
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Figure 14: Text removed with RIL.SYMBOL  

 

Figure 15: Text removed with RIL.WORD 

 

Figure 16: Text removed with RIL.BLOCK, RIL.PARA and RIL.TEXTLINE 

 

Two main difficulties were encountered when using this approach: 

• Only text that is oriented horizontally or vertically or near horizontally or vertically is 

detected. The remaining text elements pose obstacles to the following line detection 

tasks. 
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• Removing the detected text also removes lines that fall within the bounding box. This 

creates additional line ends that would be false positives in the line detection process. 

Given the limitations detected in this step, an existing commercial software option was 

trialled. Adobe Acrobat Pro DC (Adobe, 2019) was used to automatically detect text and 

convert to editable format. Detection of presence of text, including on non-horizontal and non-

vertical orientations was highly accurate. At this point the same barriers were encountered as 

using tesseract algorithms, namely, partial or full deletion of lines (see figure 17).  Text located 

further away from lines was able to be rapidly removed with a “click and delete” approach, 

however further text required manual deletion in a graphic program or order to allow further 

stages of this project to be tested and implemented. 

This step would require testing or programming from a more skilled computer programmer 

or for creation of a new algorithm for this purpose and trained using a true ML approach which 

is beyond the scope of this project. 

 

Figure 17: Text removed automatically using Adobe Acrobat Pro DC. 

 

An alternative approach, namely to detect lines and keep them rather than identifying text for 

removal has been considered, as will be used later to work with lines of the file (see section 

4.2.1.3). This approach was trialled using the HoughLinesP (probabilistic Hough transform) 

algorithm. While lines are successfully deleted, additional false positive lines are created from 

text which is falsely identified due to multiple ‘0’ value pixels in the same orientation. See 

figure 18. 
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Figure 18: Detection of lines using HoughLinesP as method of text removal. 

 

For the purpose of further stages of this project, the text elements were removed manually (see 

Figure 19). 

 

 

Figure 19: Text removed manually using graphics software. 

 

4.2.1.2 Simplify lines 

Aim 

In the mentioned examples from the literature, initial steps involve pre-processing the images 

to reduce noise (such as dirt speckles in scans, through bleed from the reverse etc) and to 

adjust contrast levels and simplify colours (Calvo-Zaragoza et al. 2018; Ignjatić et al. 2018).  
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As the Model AFR was specifically prepared for this purpose, no issues arising from scanning 

quality are present, however, some pre-processing is still required. The corner detection 

algorithm that will be used later to detect the line intersections requires that the input image 

is binary rather than greyscale. The Model AFR image is black and white, and most pixels have 

the values of either 0 (black) or 255 (white), but there are grey values along the edges of lines 

and symbols. In “real world” AFRs, these greyscale values can be a by-product of the scanning 

process or of the .pdf to .tiff conversion. To ensure that all the relevant shapes are recognised 

by the line detection algorithm, these values need to be simplified. This pre-processing step 

also has the added benefit of a reduction of the file size, which in turn increases computation 

efficiency. 

Algorithm: Thresholding 
 

An easy way to achieve this is to apply a threshold that converts all pixel values higher than a 

given threshold to 255 (white). This in turn reduces the size of the image, as most pixels are 

“turned off” into a 0 value (black). In figure 20 the median value 128 has been applied as the 

threshold. The thresh_binary_inv function of the OpenCV library was used for this step. 

Note that in this case the inverse function was used as the vast majority of pixels are 

“background”. 

Result 

The threshold gives a clean image free of grey shades, yet the results in the steps that follow 

yield numerous false positives. These can be traced back to the line thicknesses and can be 

avoided in this step by instead using an algorithm that detects edges, the Canny algorithm. 

 

Figure 20: Threshold 128 applied 

 



 

34 
 

Algorithm: Canny 

The Canny86 algorithm is applied to detect edges in the image. The multi-step algorithm is 

described in Canny (1986) and detects regions of sharp contrast in brightness. In summary, 

the image is blurred at first, then the intensity gradient in each direction is calculated for each 

pixel and non-maximum values supressed, thus eliminating weak edges. Then a double 

threshold is applied to eliminate false positives caused by noise or colour variation. The 

algorithm was designed to detect the edge of solid objects in front of a background, however it 

is effective for lines in this case as no other solid objects are present. 

Result 

As a result of this process, all lines are seemingly duplicated (figure 21), as either side of each 

line is detected as an edge. The symbols also seem to have been made more complex with 

additional lines. This is in fact an advantage as will be seen in the next step. It could appear 

that accuracy might be lost as the actual point of intersection between lines has disappeared. 

Here it is worthwhile to remember that the plan being processed is a sketch of the surveyor’s 

field work and is not drawn to scale. An approximate location indicative of the relationship 

between point is all that is required, and a displacement of a few pixels will still give a good 

result. 

The Canny function allows for manipulation of three parameters: 

• Minimum threshold. 

• Maximum threshold. Canny recommends this to be triple the minimum threshold. 

• Aperture size of the Sobel operator (the edge detection operator). 

The Model AFR is a greyscale image of a black and white document (note that Canny is used 

as a replacement for thresholding). As such the amount of filtering required is minimal and 

the output image only contains the values 0 (black) and 255 (white). Different thresholds were 

tested and if was found that a maximum threshold higher than 1300 resulted in information 

loss. A minimum threshold higher than 800 also led to information loss. The final thresholds 

used were 50 and 150. 

The aperture of the Sobel operator must be 3, 5 or 7. This is the size of a pixel matrix used to 

detect edges. The number of white pixels in the output indicates the range of sensitivity of this 

parameter (see table 1): 
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Value \ Aperture 3 5 7 

0 (black) 714435 714321 714299 

255(white) 7309 7423 7445 

Table 1: Values obtained with different apertures of the Sobel operator 

Although it does not seem significant, the number of false corners detected in step 4 increases 

if aperture 7 is applied here. Corner detection results did not change between values 3 and 5. 

 

Figure 21: Canny algorithm applied 

 

4.2.1.3 Detect lines 

Aim 

It is necessary to identify nodes (line intersections) as a guide for the text objects. As discussed 

above, these lines are usually drawn in one of at least three different types of line styles. Dashed 

and “chain” style lines are made up of line segments that could be detected as a line end by an 

algorithm detecting corners. To avoid this and ensure that only the relevant nodes are detected 

an intermediate step is required that converts broken lines into solid lines. 

Algorithm: HoughLinesP (probabilistic Hough transform) 

 Hough transform is used to detect simple shapes that can be expressed by only a few 

parameters, such as a line, which can be represented by two parameters: slope and intercept 

(Duda & Hart 1972). This algorithm is also useful when detecting incomplete shapes, as is the 

case in the broken line styles. The output of a regular Hough transformation is a two-element 

vector (ρ,θ) (see figure 22) whereby ρ is the normal distance from the co-ordinate origin (top 

left corner of the image) and θ is the angle (orientation) of the line in radians. 
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Figure 22: Hough transformation output. Image taken from 
https://nabinsharma.wordpress.com/2012/12/26/linear-hough-transform-using-python/ 

 The location of the nodes (line intersections) is the required information, therefore the 

probabilistic Hough Transformation was used (see figure 23). This algorithm outputs a four-

element vector with x and y co-ordinates of both ends of each line.  

Several parameters can be manipulated for this task: 

• resolution of the parameter ρ in pixels 

• resolution of the parameter θ in radians 

• threshold  

• minimum line length, ensuring that short line segments such as in the symbols are 

discarded. 

• minimum line gap, ensuring that only genuine broken line styles are detected. 

 

Figure 23: Probabilistic Hough Transform applied 



 

37 
 

Result 
 

The expected number of lines was 22, considering the doubling caused by the Canny 

algorithm. The closest number of lines detected higher than 22 is 24, with the values ρ = 2 and 

θ = 30. Given variables are set based on line thicknesses rather than details, it can be assumed 

that these variables would be adequate for other AFRs with a similar level of complexity. This 

is an area for further investigation and is beyond the scope of this project. A number lower 

than 22 would be missing information, higher would mean redundancy, which is preferred. It 

should be noted, values do not need to be identical but rather be so close as to indicate that 

they pertain to the same line, or segments of the same line, which has been duplicated in the 

previous step. These values also yield the correct number of corners (7) as will be seen in the 

next step (see table 2). 

 

ρ 1 2 3 4 5 6 

θ 15' 15' 15' 15' 15' 15' 

corners 6 7 8 8 7 9 

lines 20 29 25 43 38 39 

       

ρ 1 2 3 4 5 6 

θ 30' 30' 30' 30' 30' 30' 

corners 7 7 7 8 8 9 

lines 17 24 34 33 36 38 

       

ρ 1 2 3 4 5 6 

θ 1° 1° 1° 1° 1° 1° 

corners 10 7 9 8 9 10 

lines 18 21 29 31 38 35 

       

ρ 1 2 3 4 5 6 

θ 2° 2° 2° 2° 2° 2° 

corners 9 9 8 8 10 10 

lines 21 25 32 31 35 38 

       

ρ 1 2 3 4 5 6 

θ 3° 3° 3° 3° 3° 3° 

corners 11 8 9 8 8 6 

lines 17 26 29 27.5 32 37 

Table 2: Number of corners and lines detected by the probabilistic Hough transform with different 
ρ and θ  values. 
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The lines detected by the probabilistic Hough transform algorithm with the values ρ = 2 and 

θ = 30 are listed in table 3. Line IDs have been allocated for convenience. Inspection of the co-

ordinates on the table reveals: 

• There are seven pairs of lines with neighbouring start and end points, consistent with 

the duplication in step 2. These pairs of lines are 3 – 5, 6 - 10, 7 – 11, 8 – 9, 13 – 14, 16 

– 19, 18 - 24. 

• There are eight possible false positives, which appear to be segments of other lines.  

These multiple lines will be valuable in the validation process as discussed in section 4.2.3.2. 

Index x y x y 
duplicate 

of 
segment 

of 

0 27 548 1514 548     

1 25 552 363 552  0 

2 910 680 1658 693  4 

3 1511 552 1511 51     

4 742 674 1656 690     

5 1514 555 1514 49 3  
6 368 553 368 131 10  
7 366 131 794 131 11  
8 795 132 836 553     

9 791 137 831 555 8  
10 363 547 363 134     

11 370 136 790 136     

12 1218 552 1332 552  0 

13 370 554 690 683     

14 378 554 687 676 13  
15 661 675 751 675  4 

16 1520 560 1656 705     

17 1333 552 1517 552  0 

18 659 687 834 553     

19 1515 550 1662 705 16  
20 668 672 1272 683  4 

21 737 676 927 680  3 

22 364 553 835 553     

23 1048 552 1162 552  0 

24 656 685 812 568 18  
 

Table 3: Multiple lines detected by probabilistic Hough transform 
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4.2.1.4 Detect corners 

Aim 

In the Model AFR, all points of interest are intersections of lines. This will not always be the 

case in a ground truth scenario, as some line intersections do not represent points of interest. 

This would ideally be detected and rectified in the cross-checking phase (steps 8 – 9). 

Algorithm: Harris Corner Detector 

The corner detection algorithm described in Harris & Stephens (1988) returns points where 

two edges intersect. As the direction of those edges changes, the gradient of the image varies 

in both directions. This fact is used to detect the edge. A neighbourhood window size is 

required, and the image is broken down in squares of that size that are evaluated as containing 

a corner or not.  

Result 

The Harris corner detector was found to be too sensitive and it gave too many false positives 

in lines other than at 0° or 90° (see figure 24).  

 

Figure 24: Corners detected by the Harris algorithm in red 

 

Algorithm: Shi/Tomasi Corner Detector  

Shi-Tomasi corner detector (Shi & Tomasi 1994) refines the Harris algorithm by grading the 

results according to the quality of the corners detected. The parameters that can be 

manipulated are: 

• A maximum number of corners can be specified. If the number of detected corners 

exceeds the maximum, only the strongest are returned. 

• Quality threshold, which is a factor of the quality of the best corner detected.  
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• minDistance is the minimum possible Euclidean distance in pixels between returned 

corners. It is important to note that high accuracy is not necessarily required for this 

step. As the plan is not drawn to scale and is only an indicative diagram, the positions 

of the points are approximate. It is sufficient to detect the general area of a node. 

Limiting the minimum distance between nodes ensures that duplications are avoided.  

Result 

The corner detection parameters were set as follows: 

• maxCorners has been set to 25. This is only an empirical value obtained by observation. 

In this case we know that 7 corners are required to be returned. 

• qualityLevel. If set too low, it was found that corners were returned along lines other 

than lines in cardinal directions, due to the low resolution of the picture. If too high, 

some relevant corners were not detected (see table 4). 

• minDistance between returned corners. Setting this value too low would return double 

corners at the symbol points. A minimum of 20 was required to obtain good results. 

Higher than 150 would cause loss of corners. The distance between the two nearest 

corners in this plan is approximately 150 pixels. An intermediate value of 85 was used. 

q level 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 

corners 2 2 5 5 5 5 6 7 7 7 7 7 7 11 16 16 17 17 

 

Table 4: Corners detected with different quality thresholds. 

Applying this algorithm to the previously obtained image successfully yields 7 corners (see 

figure 25). The co-ordinates of the identified nodes are listed below. These nodes can be stored 

in an array that will be validated in step 8 (see 4.2.3.3) against the detected text boxes. After 

validation, these nodes can be allocated ID numbers as required for the LandXML file. 

Index x y 
0 1512 548 
1 368 548 
2 830 548 
3 370 133 
4 789 138 
5 670 676 
6 1648 695 

 

Table 5: Table of co-ordinates for the detected corners 
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Figure 25: Shi/Tomasi algorithm applied 

 

4.2.2 Phase two: Text Filter 

For the following steps the original image with text is used again. This image will be subject to 

a series of rotations and text extractions and these outputs will then be validated against the 

data obtained in the first phase. 

4.2.2.1 Image rotation 

Aim 

In order to facilitate the function of the OCR engine it must be ensured that the text to be 

captured appears horizontal on the screen. As seen previously, the relevant text contains the 

bearing and distance of each line, and these text elements are written along the corresponding 

line. The original image will be rotated to the orientation of each of lines detected previously. 

The transformations undertaken here are affine transformations which preserve the distance 

ratios and the collinearity of points. OpenCV includes a function called warpAffine for this 

purpose. 

As the text elements are aligned to the corresponding lines, the co-ordinates obtained in 

section 4.2.1.3 can be used to compute the orientation of those lines, and then rotate the image 

to those orientations to obtain the text. This can be achieved by means of co-ordinate 

geometry. The rotation angle α must be given as a positive number for counter clockwise 

rotation and negative for clockwise rotation. The formula to apply is: 

α= -tan-1 (Δy/Δx) 

This formula takes the fact into account that the origin of the y axis is the top edge of the image. 

As such, a line sloping “south” will have a positive Δy. 
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As the rotation occurs about the centre point, the image must be translated to the centre point 

of the destination window. The magnitude of this shift is the coordinate difference between 

both centres: 

Xshift = dst_rows/2 – rows/2 

Yshift = dst_cols/2 – cols/2 

Now the rotation can be performed. A rotation matrix is calculated using the function 

getRotationMatrix2D and applied to the translated image with warpAffine. 

Result 

In Figures 26 and 27 the image has undergone the described transformations and been rotated 

by 22° so the text reading “232°05’   33.40AD” appears horizontal. 

 

Figure 26: The destination window has been resized and the imaged shifted to the window's centre 

 

Figure 27: The image has been rotated by 22° 
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4.2.2.2 Text detection 
 

Aim 

Initially, the position of a box wrapping each text element is required, rather than each 

individual character. This can be achieved by the function GetComponentImages.  

Result 

Position of boxes wrapping each individual character was obtained (see figure 28). The test 

detected 15 text boxes. 8 boxes were correctly detected, 1 box extends further than the 

desired width and 3 text elements with skewed text are not detected. 

 

Figure 28: Text boxes detected by Tesseract 

 

4.2.2.3 Text recognition  

Aim 

The text elements detected must be classified into bearings, distances and other.  

A bearing will have the format (nn)n°nn’(nn”) where all characters are numeric and those 

in brackets may or may not be present. 

A distance will have the format (nnn)n.nn* where all characters are numeric, those in 

brackets may or may not be present and there may be additional characters to the right than 

can be safely ignored, such as “AD” in the Model AFR. 

A text element may contain both bearing and distance. The format will be (nn)n°nn’(nn”) 

(nnn)n.nn* where all characters are numeric, those in brackets may or may not be present 

and there may be additional characters to the right than can be safely ignored, such as “AD” 

in the Model AFR. 
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The array of text elements will have the format [x,y,w,h,text,type]where 

• x: horizontal distance from the left edge of the box to the co-ordinate origin, being the 

left edge of the image. 

• y: vertical distance from the top edge of the box to the co-ordinate origin, the top of the 

image. 

• w: width of the bounding box in pixels. 

• h: height of the bounding box in pixels. 

• text: the detected text. 

• type: bearing, distance or other (in this case, road names) 

Result 

Text detection was performed by means of Tesseract OCR, an open-source project started by 

Hewlett-Packard and further developed by Google. The tesserocr Python wrapper was 

used.  

13 different page segmentation modes (PSM) are available in Tesseract.  This is from the 

Tesseract documentation (Smith 2019) 

“Page segmentation modes: 

  0    Orientation and script detection (OSD) only. 

  1    Automatic page segmentation with OSD. 

  2    Automatic page segmentation, but no OSD, or OCR. 

  3    Fully automatic page segmentation, but no OSD. (Default) 

  4    Assume a single column of text of variable sizes. 

  5    Assume a single uniform block of vertically aligned text. 

  6    Assume a single uniform block of text. 

  7    Treat the image as a single text line. 

  8    Treat the image as a single word. 

  9    Treat the image as a single word in a circle. 

 10    Treat the image as a single character. 

 11    Sparse text. Find as much text as possible in no particular order. 

 12    Sparse text with OSD. 
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 13    Raw line. Treat the image as a single text line, bypassing hacks that are Tesseract-specific.” 

The image was processed through each of these PSMs and the best result was obtained with 

the default setting. 

The following table shows the text recognised in the first instance by the text location 

algorithm (see table 6). The second column shows that text recognition improves considerably 

after rotation of the relevant text box. 

 

Text box OCR original OCR rotated rotation 

0 328°24'15" 328°24'15" -90 

1 58°24'15" 58°24'15" 0 

2 37:01:00 37-01 0 

3 30-82 30-82 -90 

4 40-08 40-08 0 

5 WDEELT 14204330 90 

6 86-0t 30-98 90 

7 168-78 168-78 0 

8 \%\ BEWE o8 238°24'15" 0 

9 )5~   0 

10 RIVERSDALE RIVERSDALE 0 

11 ROAD ROAD 0 

12 s 59°37°20" 0 

13 179-41 179-41 0 

14 MAROONDAH HIGHWAY MAROONDAH HIGHWAY -90 
 

Table 6: Comparison of text detection before and after rotation 

However, rotations other than 90° do not provide good results. This is due to distortions 

introduced by rotations that do not line up with the pixel grid. 

This example has been rotated by 84° to bring the text to horizontal (see figure 29). The OCR 

result is  ’172*’:.3'30" 

 

Figure 29: Text rotated to be horizontal. OCR result is ’172*’:.3'30" 

The same text rotated by 90° is not horizontal however yields a better result (14204330) yet 

still does not recognise the symbols for degree, minutes and seconds (see figure 30):  
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Figure 30: Text rotated by 90°. OCR result is 14204330 

 

4.2.3 Cross-checks and removal of false positives 

As has been discussed, several of the steps undertaken are likely to produce false positives. To 

ensure that false positives are eliminated the obtained data must undergo a series of 

validations:  

• The number of lines from step 3 (4.2.1.3) should be greater than number of rotation 

angles for step 5 (4.2.2.1). 

• The number of points from step 4 (4.2.1.4) should be lesser than the number of line 

ends in step 3 (4.2.1.3). 

• Maximum number of text boxes from step 6 (4.2.2.2) must be double the number 

of lines from step 3 (4.2.1.3), as each line will have as a maximum one text element 

for its bearing and one for its distance. Some lines may have bearing and distance 

within one same text element. Some lines might only have a bearing or a distance. 

Different rules must be applied for these cases. If only a distance is given (such as 

168.78 in the Model AFR example), the bearing of an adjacent text element in the 

same orientation that is assigned a line in the same orientation can be given. If only 

a bearing is given (such as 328°24’15” in the Model AFR), a nominal distance to be 

decided can be given. 

4.2.3.1 Output summary 
 

Throughout the process of Double Feature Capture, the following data has been stored in 

variables: 

• An array of lines, with four elements each, being the x and y co-ordinates of the start 

and end of each line. This was the outcome of section 4.2.1.3 (see table 7). 
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 Start End 

Index x y x y 

0 27 548 1514 548 

1 25 552 363 552 

2 910 680 1658 693 

3 1511 552 1511 51 

4 742 674 1656 690 

5 1514 555 1514 49 

6 368 553 368 131 

7 366 131 794 131 

8 795 132 836 553 

9 791 137 831 555 

10 363 547 363 134 

11 370 136 790 136 

12 1218 552 1332 552 

13 370 554 690 683 

14 378 554 687 676 

15 661 675 751 675 

16 1520 560 1656 705 

17 1333 552 1517 552 

18 659 687 834 553 

19 1515 550 1662 705 

20 668 672 1272 683 

21 737 676 927 680 

22 364 553 835 553 

23 1048 552 1162 552 

24 656 685 812 568 
 

Table 7: Lines identified in section 4.2.1.3 

  

• An array of points. These were the corners detected in section 4.2.1.4 and are stored in 

a 2-column array with their co-ordinates (see table 8): 

Index x y 

0 1512 548 

1 368 548 

2 830 548 

3 370 133 

4 789 138 

5 670 676 

6 1648 695 
 

Table 8: Corners identified in section 4.2.1.4 
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• Text boxes, as output of either section 4.2.1.1 or section 4.2.2.2: a 5-column array with 

x and y back-capture of the top left corner, width and height in pixels and the detected 

text. For this test, as the OCR results were incomplete, this table has been completed 

manually. The position of text boxes 15 – 20 was measured on screen with the help of 

the “Online pixel ruler” at www.rapidtables.com. See table 9. 

Index x y w h Output 

0 322 260 31 138 328°24'15" 

1 494 96 122 31 58°24'15" 

2 518 145 63 28 37.01 

3 374 299 29 67 30.82 

4 553 511 70 28 40.08 

5 767 261 41 139 142°43'30" 

6 821 282 34 68 30.98 

7 1152 512 78 28 168.78 

8 396 562 417 65 238°24'15" 

10 391 778 228 40 RIVERSDALE 

11 800 778 100 40 ROAD 

12 1043 644 134 41 59°37'20" 

13 1052 693 66 26 179.41 

14 1740 130 40 430 MAROONDAH HIGHWAY 

15 430 590 80 60 232°05' 

16 520 640 100 70 33.40 AD 

17 710 600 70 50 86°30' 

18 740 600 75 65 7.80 AD 

19 1560 570 60 60 240°43' 

20 1530 590 65 65 3.73 AD 
 

Table 9: Text boxes 

4.2.3.2 Line validation 

As seen in 4.2.1.3, there were some false positives in the output of the line detection algorithm, 

in the form of duplications and line segments. These can be eliminated to simplify the array of 

lines by means of co-ordinated geometry. 

Calculating the slope and y-intercept of each line helped discern nine distinct lines. Of those, 

seven were duplicate lines, consistent with the expected output of the Canny algorithm in 

4.2.1.2. Comparing the back-capture of the start and end points of each of these line pairs 

shows that they all lie within a safe buffer, with the largest distance being 26.63 pixels. 

The remaining two were the longest lines in the plan and they have been segmented several 

times through text elements and other lines intersecting them. These lines appear as clusters 

of line segments in table 10 below, which has been sorted by slope and y-intercept to help 

http://www.rapidtables.com/
http://www.rapidtables.com/
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visualise similar lines. These include overlapping lines, gaps and lines of different distance but 

with one coincident end point and same orientation. An indicative example is shown in figure 

31. These two clusters will be referred to as A and B in the forthcoming sections. The shading 

in table 10 clarifies line pairs and clusters. 

 

Figure 31: Segment cluster, y axis exaggerated for clarity 

 

Index slope y-intercept same as segment of Δ start Δ end 

24 -0.75 1177.00 18   3.61 26.63 

18 -0.77 1191.61         

7 0.00 131.00 11  6.40 6.40 

11 0.00 136.00     

0 0.00 548.00   A      

1 0.00 552.00   A     

12 0.00 552.00   A     

17 0.00 552.00   A     

23 0.00 552.00   A     

22 0.00 553.00   A     

15 0.00 675.00  B   

2 0.02 664.18  B   

4 0.02 661.01  B   

20 0.02 659.83  B   

21 0.02 660.48  B   

14 0.39 404.76 13   8.00 7.62 

13 0.40 404.84         

19 1.05 -1047.45 16  11.18 6.00 

16 1.07 -1060.59     

8 10.27 -8031.29         

9 10.45 -8128.95 8   6.40 5.39 

10 363.00 -131222.00     

6 368.00 -134871.00 10  7.81 5.83 

3 1511.00 -2282569.00         

5 1514.00 -2291641.00 3   4.24 3.61 
 

Table 10: Line validation 
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4.2.3.3 Corner validation 

The next check consists of comparing the corners identified in 4.2.1.4 and matching them to 

beginnings and ends of lines in 4.2.1.3. To achieve this, the distance between each corner and 

each line start or end was calculated.  This step effectively validates the identified corners in 

4.2.1.4 as valid line intersections that need to be captured. 

Most points fall within the 30-pixel buffer of a line start or end. The exceptions are in red in 

table 11 below and explained as follows: 

• For each of the two clusters of line segments, there are two identified corners contained 

in the line. This is a further check on the validation of these points. As this computation 

compares each line end to the nearest identified corner, most distances obtained 

exceed the reasonable buffer. These are the segmentation points that are not validated 

by other lines or the corner detection and are not points of interest. 

• Line 3 has been duplicated as 5 as a result of the Canny algorithm in step 2 and as such 

it has successfully identified as a line. However, only one end can be matched to an 

identified corner. This issue will need to be handled at a later stage, as an assessment 

will be made about the need of unidentified corners to allocate text elements. 

• Line 22 has both extremes clearly matched with identified points, however has not 

been duplicated. This is due to it being a segment of a longer line. 
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  from To 
 

Cluster 
Line 

Index 
Nearest point 

index Distance 
Nearest 

point index  
 24 5 16.64 2 26.91 
 18 5 15.56 2 6.40 
 7 3 4.47 4 8.60 
 11 3 3.00 4 2.24 

A 0 1 341.00 0 2.00 
A 1 1 343.02 1 6.40 
A 12 0 294.03 0 180.04 
A 17 0 179.04 0 6.40 
A 23 0 464.02 0 350.02 
A 22 1 6.40 2 7.07 
B 15 5 9.06 5 81.01 
B 2 5 240.03 6 10.20 
B 4 5 72.03 6 9.43 
B 20 5 4.47 6 376.19 
B 21 5 67.00 5 257.03 
 14 1 11.66 5 17.00 
 13 1 6.32 5 21.19 
 19 0 3.61 6 17.20 
 16 0 14.42 6 12.81 
 8 4 8.49 2 7.81 
 9 4 2.24 2 7.07 
 10 1 5.10 3 7.07 
 6 1 5.00 3 2.83 
 3 0 4.12 0 497.00 
 5 0 7.28 0 499.00 

 

Table 11: Corner validation. Shading clarifies duplicate lines and segment clusters. 

4.2.3.4 Text boxes 

The position of the text boxes can now be compared with the validated lines. As the text is 

oriented along the corresponding line and approximately centred, the distance between the 

centre point of each box and the centre point of each line can be calculated and the text can be 

allocated to the closest line. Details can be seen in table 12 below. 

Most text boxes are allocated correctly, with four exceptions: 

• Box 7 is too far (156 pixels) from the closest line, number 4, to be allocated with 

confidence. In reality, this text element relates to a line connecting points 0 and 2 

which has not been detected. This issue will need to be handled separately and could 

be an opportunity for a “human intervention required” flag. 
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• Boxes 10, 11 and 14 are too far from any line to be reliably allocated, the shortest 

distance being 253 pixels. These text elements are road names and will have to be 

handled separately, as discussed in the following section on LandXML elements 

(4.2.3.5). 

Each line has been allocated two text boxes, consistent with the two pieces of information 

required for each line: bearing and distance. This confirms the success of the process of 

validation between the outputs of the two pillars within the DFC. 

Text Box 
Index 

Nearest 
line Index dist from to text type 

0 10 27.97 1 3 328°24'15" bearing 

1 11 35.00 3 4 58°24'15" bearing 

2 11 38.20 3 4 37.01 dist 

3 10 26.73 1 3 30.82 dist 

4 22 30.27 1 2 40.08 dist 

5 8 30.46 4 2 142°43'30" bearing 

6 8 34.76 4 2 30.98 dist 

7 4 156.20 5 6 168.78 dist 

8 22 41.80 1 2 238°24'15" bearing 

10 22 262.59 1 2 RIVERSDALE road 

11 18 350.39 5 2 ROAD road 

12 4 90.70 5 6 59°37'20" bearing 

13 4 116.50 5 6 179.41 dist 

14 3 252.77 0   MAROONDAH HIGHWAY road 

15 13 60.02 1 5 232°05' bearing 

16 13 69.23 1 5 33.40 AD dist 

17 18 5.22 5 2 86°30' bearing 

18 18 33.43 5 2 7.80 AD dist 

19 16 32.56 0 6 240°43' bearing 

20 16 27.39 0 6 3.73 AD dist 
 

Table 12: Allocation of text boxes to lines 
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4.2.3.5 LandXML elements 

The elements required for the LandXML file have been discussed in section 3.2. With the 

output validated as per the previous section, it is possible to allocate each object to the different 

elements required. As all the identified corners have been validated, they can be readily 

allocated <CgPoint> and <InstrumentSetup> numbers (see table 13). This constitutes 

step 10 of the DFC. 

Pt Index   

0 CGPNT-1 IS-1 

1 CGPNT-2 IS-2 

2 CGPNT-3 IS-3 

3 CGPNT-4 IS-4 

4 CGPNT-5 IS-5 

5 CGPNT-6 IS-6 

6 CGPNT-7 IS-7 
 

Table 13: Allocation of point identifiers 

These points can also be joined via the validated lines to form the elements of the 

<ObservationGroup>. Table 14 below combines data from tables 12 and 13, with the corner 

indices translated into instrument setups. This constitutes step 11 of the DFC. 

Line index from  to  bearing  distance 

8 IS-5 IS-3 OBS-1 142°43'30" 30.98 

10 IS-2 IS-4 OBS-2 328°24'15" 30.82 

11 IS-4 IS-5 OBS-3 58°24'15" 37.01 

13 IS-2 IS-6 OBS-4 232°05' 33.40 AD 

16 IS-1 IS-7 OBS-5 240°43' 3.73 AD 

18 IS-6 IS-3 OBS-6 86°30' 7.80 AD 

22 IS-2 IS-3 OBS-7 238°24'15" 40.08 
 

Table 14: Initial allocation of observations 

The remaining text elements, yet to be allocated, are shown in table 15 below and explained 

following: 

Text Box ID Line ID dist from to text type 

7 4 156.20 5 6 168.78 dist 

10 22 262.59 1 2 RIVERSDALE road 

11 18 350.39 5 2 ROAD road 

12 4 90.70 5 6 59°37'20" bearing 

13 4 116.50 5 6 179.41 dist 

14 3 252.77 0  MAROONDAH HIGHWAY road 
 

Table 15: Unallocated text elements 
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Text boxes 12 and 13 are related to line 4, which is part the clusters of line segments referred 

to as cluster B. All line segments within this cluster have point 5 or point 6 as either their 

beginning or end. As such, it can be safely concluded that all the line segments in cluster B 

belong to an undetected line that joins points 5 and 6. This line will be called OBS-8 and be 

allocated the bearing and distance contained in boxes 12 and 13. 

The case of text box 7 is similar, however the line allocation is less simple. The calculation has 

erroneously detected line 4 as the closest, but the distance to its centre is 156 pixels. This 

misallocation is a result of the line connecting points 0 and 2 not being detected. This line is 

again part of a cluster of segments, cluster A. Line 22, connecting points 1 and 2, was already 

detected as part of this cluster. The corner most successfully detected within cluster A was 

point 0, identified 3 times within 6.4 pixels of a segment end. If points 2 and 0 are joined as a 

new line and its midpoint calculated, it can be seen that its distance to the centre of box 7 is 

only 29.7 pixels. This line can safely be called OBS-9 and allocated the text in box 7. 

A bearing is still needed for this line. As discussed, previously identified line 22 was also part 

of cluster A and hence has the same orientation. As such, the same bearing can safely be 

allocated to OBS-9. 

The remaining unallocated text elements are road names. Road names require a co-ordinated 

location in the plan for plotting purposes and must be associated with a line for orientation. 

In this case, and commonly in AFRs, the ends of the lines along which road names are oriented 

have not been measured and are shown in the diagram for reference only without a dimension. 

For this reason, the corner detection algorithm has not identified them as points of interest, 

as there are no other intersecting lines at those points. Nevertheless, their co-ordinates have 

been captured twice in 4.2.1.3, in both cases as extremes of duplicate lines 0/1 and 3/5. 

Therefore, these points can be given the names CGPOINT-8 and CGPOINT-9. The line joining 

CGPOINT-8 and CGPOINT-1 is the closest to text boxes 10 and 11. Note that although lines 

22 and 18 were returned as the closest to text boxes 10 and 11, these lines are in a different 

orientation, so this information was discarded.  

Similarly, the line joining CGPOINT-1 and CGPOINT-9 is the closest to text box 14, in this 

case correctly returned as line 3.  

At this point and with only two exceptions, all text elements have been allocated to lines and 

every line has been allocated a bearing and a distance. There are two exceptions, being the new 

lines created in the immediately previous step. The line joining CGPOINT-8 and CGPOINT-

1 can be safely allocated the same bearing as OBS-7 as it is part of the same segment cluster. 

The required distance can be calculated from the pixel co-ordinates. The line joining 



 

55 
 

CGPOINT-1 and CGPOINT-9 requires both bearing and distances, which can also be 

calculated from the pixel co-ordinates. Note that these are pixel distances and are only needed 

for visualisation purposes.  

One element that has not been implemented due to time constraints is the allocation of 

observation purposes in the LandXML file. The different line types in the original AFR carry 

the information of the purpose of each observation. This is required information in the 

LandXML file, and the values can be “normal” (boundary line, solid line type), “sideshot” 

(radiation, dashed line type) or “traverse” (measurement between instrument stations, “chain” 

line types). As the different line types were lost in the Hough Transform, this information has 

not been carried over to the LandXML file. An identification of line types needs to be 

undertaken prior to that step, however this has not been undertaken due to time constrains. 

This omission has a flow on effect on the computation of the parcels. The parcel subject to 

survey should be the only closed parcel in the plan bounded by solid lines. Again, as all lines 

have been converted to solid with the Hough Transform algorithm, there are two additional 

possible parcels that need to be discarded.  

4.3 Summary of results 

This project has used ML to extract some cadastral survey information from a model AFR.  

The Model AFR was created upon analysis of existing AFRs lodged in Victoria to include only 

the minimal information required as a starting point for the design of this method of back-

capture. The Model AFR fulfils objective 1 of this project, as stated in 1.4. 

The DFC method described provides a roadmap for an automation process for the retrieval of 

information from AFRs. The relevant information is contained in text form and is captured by 

means of OCR. The graphical information that supports the text can be captured by means of 

CV and used to check and validate the information in the text elements and to aid with 

allocation of bearings and distances to points. The DFC is the outcome of objective 2 (see 1.4). 

A selection of algorithms informed by the literature review was trialled to undertake each of 

the tasks required for the back-capture. Successes and challenges were discussed in chapter 4, 

fulfilling objective 3 (see 1.4). 

The method described shows that a degree of automation is possible, and the double filter 

provides checks and balances to ensure accurate capture of relevant information and to flag 

instances where human intervention may be required. This project has documented an initial 

case study providing evidence that further investigation and development in this area is 

warranted. 
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CHAPTER 5: FURTHER RESEARCH AND CONCLUSION 
 

5.1 Further research 

This study has mapped out the steps that would be required to extract point identification and 

dimension information from an image file for storage in a searchable LandXML file. It has also 

outlined one possible implementation of those steps, the Double Filter Capture, from a simple 

AFR created for this purpose.  

This project has documented an initial case study demonstrating that some degree of 

automation is possible. The significant constraints and limitations to the scope of this first trial 

that have been outlined throughout this document could provide the first steps for further 

research in this area.  

In the present study the DFC was only tested using a model AFR developed after analysis of a 

set of AFRs of great similarity. The study should be independently replicated and the DFC 

should undergo further validation by testing other model AFRs of similar complexity. Then 

research could be furthered by introducing successive levels of complexity. These could 

include: 

• Splay corners. 

• Arcs. 

• Multiple pages. 

• Hand writing. 

• Capturing occupation shown in the AFR. The DCMP is not capturing occupation as it 

is too resource expensive, although the information would be very valuable if captured. 

Automating this part of the capture would be of a great benefit and this is a field worth 

exploring further. 

• Chainage / offset measurements, with text perpendicular to the corresponding line. 

This would require investigating how to interpret different pieces of text in the same 

orientation but with different meaning. 

• Allocation of observation purposes in the LandXML file. This is the information carried 

the different line styles and should be captured before the Hough Transform converts 

all lines to a solid line style. 

The validations that link the outcomes of the DFC’s two phases were undertaken manually, 

however the processes outlined can be a guideline for an automated checking mechanism. 

 



 

57 
 

A further validation that could be built in would be the detection of closed figures by means of 

CV and then computation of the closures with the corresponding dimensions extracted by 

OCR. This would validate not only the capture but also the information itself. 

While investigating the links with OMR can prove fruitful, one essential difference between 

sheet music and the capture of cadastral information needs to be considered. Whereas in sheet 

music the information is laid out in a consistent pattern from left to right and with added 

“depth” on the y axis, each cadastral plan represents a potentially brand new layout and myriad 

configurations of patterns are possible. This increases the difficulty in automating pattern 

detection. 

Further research could include expansion of this model by a surveyor to include all steps 

required to identify and extract all relevant survey information.  

Given this project has demonstrated that a level automatic extraction is indeed possible, a 

further step would be refining the documented algorithms to include more accurate use of 

inbuilt variables, customisation of the algorithms used and programming so that the data 

output is automatically entered into the LandXML database.  One example of this could be 

investigating the use of the “stable paths” method (Dos Santos Cardoso et al. 2009) for the 

removal of lines.  

An additional direction of research may be comparing accuracy of scanning vector .pdf files 

compared with scanned raster images of CAD generated plans. The latter form the majority of 

plans existing in the cadastre. This is so despite the fact that most surveyors submit vector .pdf 

files which are imaged into the system. Vector .pdf files should yield a better result when 

processed through OCR. While comparing these processes was outside of the scope of this 

project, it could be the object of further research. 

For implementation of this research into practical usage or a commercial product, this project 

has shown that these tasks may be better approached in a multidisciplinary manner by 

computer scientists together with surveyors. 

This research demonstrates that there is value in attempting automated data extraction, 

however it remains unclear as to what volume of data is required for this method to become 

more time and resource efficient when compared with manual entry. It would be of interest 

for the abovementioned expansions of this project to be developed in a formal research 

context, also measuring resource cost (time, salaries and so on) to determine efficiency and 

productivity measures of developing such software compared with the current procedure in 

place using double entry, completed by data entry experts rather than surveyors. This may 

inform how similar projects are undertaken in other fields.  
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In the case of the Victorian cadastre, a large amount of survey information has been captured 

manually by the DCMP. These data could be used to train DL neural networks to learn to 

recognise each of the elements discussed in this project.  Ultimately, this could lead to a 

systemic approach where newly captured plans are incorporated into training sets and the 

capture becomes progressively more automated. 

5.2 Conclusion 

This project provides a single case study, demonstrating that automated data extraction from 

an image file of a simple cadastral file is possible. The steps required to extract point 

identifications have been mapped in a pipeline workflow and successfully implemented within 

the limitations of using pre-existing ML algorithms by a novice computer programmer. The 

steps required to extract dimensions from plans have also been outlined and initial trials 

undertaken, which require further development. 

It has also shown that the expertise of a surveyor enables the steps required for data extraction 

to be conceptualised, modified, and implemented. It also clarifies that greater expertise or a 

multidisciplinary approach involving also experts from the field of ML in computer would 

most likely make expansion and implementation of the project more efficient and potentially 

more accurate and extensive. Given the complexity and inconsistencies of existing plans 

requiring back-capture it also highlights that an extensive investment will be required in 

programming, refining and testing authentic survey plans.  

It is hoped that this research project will facilitate development of tools for the automatic data 

extraction of survey plans and further afield by informing application of rapidly developing 

ML technology to other areas. 

To quote Broussard (2018, pp. 176-7), “Automation will handle a lot of the mundane work; it 

won’t handle the edge cases (…) You need to build in human effort for the edge cases”. The 

capture of cadastral survey information is one such “edge case”. A “human-in-the-loop” 

system could be a solution where expert input is required to overcome the limitations of ML 

algorithms. Complete automation remains an aspirational goal, however interested 

organisations may be encouraged by this project to undertake further research.  
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APPENDIX A – PROJECT SPECIFICATION 
 

 

University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

ENG4111/4112 Research Project 
PROJECT SPECIFICATION 

FOR: Oscar GARRIDO DE LA ROSA 

TOPIC: Conversion of cadastral survey information into LandXML files using 
Machine Learning 

SUPERVISOR:  Dr Glenn Campbell 

PROJECT AIM: To investigate and assess the suitability of Machine Learning in the 
automation process of the back capture of cadastral survey plans for their 
conversion into LandXML files. 

 

PROGRAMME: Revision B, 7 October 2019 

1. Perform literature review covering the following areas: 

a. Benefits of digitising survey information 

b. LandXML and ePlan 

c. OCR, Machine Learning and Neural Networks 

 
2. Conduct research to determine available open source Machine Learning repositories. 

 
3. Review survey information from the Victorian cadastre, identify relevant elements 

suitable to automation and draft model plan for testing. 

 
4. Determine required steps to retrieve survey information through Machine Learning 

algorithms. 

 
5. Test algorithms, and document results and barriers encountered. 

 
6. Discuss validation methods. 

 
7. Write dissertation. 

  



 

64 
 

APPENDIX B – LANDXML CODE 
 

 

<?xml version="1.0" encoding="UTF-8"?> 

<LandXML xmlns="http://www.landxml.org/schema/LandXML-1.2" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.landxml.org/schema/LandXML-1.2 

http://www.landxml.org/schema/LandXML-1.2/LandXML-1.2.xsd" version="1.0" 

date="2019-03-23" time="00:00:00"> 

 <Units> 

  <Metric linearUnit="meter" temperatureUnit="celsius" 

volumeUnit="cubicMeter" areaUnit="squareMeter" pressureUnit="milliBars" 

angularUnit="decimal dd.mm.ss" directionUnit="decimal dd.mm.ss"/> 

 </Units> 

 <CoordinateSystem datum="Local" horizontalDatum="Local"/> 

 <Application name="Software name" version="1.0"/> 

 <FeatureDictionary name="xml-gov-au-vic-icsm-eplan-cif-protocol" 

version="1.8"/>  

 <Parcels> 

  <Parcel name="1\LP999999" class="Lot" state="existing" 

parcelType="Single" parcelFormat="Standard" area="1136"> 

   <Center pntRef="CGPNT-8"/> 

   <CoordGeom name="CG-8"> 

    <Line> 

     <Start pntRef="CGPNT-1"/> 

     <End pntRef="CGPNT-2"/> 

    </Line> 

    <Line> 

     <Start pntRef="CGPNT-2"/> 

     <End pntRef="CGPNT-4"/> 

    </Line> 

    <Line> 

     <Start pntRef="CGPNT-4"/> 

     <End pntRef="CGPNT-3"/> 

    </Line> 

    <Line> 

     <Start pntRef="CGPNT-3"/> 

     <End pntRef="CGPNT-1"/> 

    </Line> 

   </CoordGeom> 

  </Parcel> 

  <Parcel name="ROAD-1" class="Road" state="existing" 

parcelType="Single" parcelFormat="Standard" desc="RIVERSDALE ROAD"> 

   <Center pntRef="CGPNT-9"/> 

   <CoordGeom name="CG-9"> 

    <Line> 

     <Start pntRef="CGPNT-3"/> 

     <End pntRef="CGPNT-5"/> 

    </Line>  

   </CoordGeom> 

  </Parcel> 

  <Parcel name="ROAD-2" class="Road" state="existing" 

parcelType="Single" parcelFormat="Standard" desc="MAROONDAH HIGHWAY"> 

   <Center pntRef="CGPNT-10"/> 

   <CoordGeom name="CG-10"> 

    <Line> 

     <Start pntRef="CGPNT-5"/> 

     <End pntRef="CGPNT-11"/> 

    </Line>  
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   </CoordGeom> 

  </Parcel> 

 </Parcels> 

 <CgPoints> 

  <CgPoint state="existing" pntSurv="boundary" name="CGPNT-

1">5000.000 1000.000</CgPoint> 

  <CgPoint state="existing" pntSurv="boundary" name="CGPNT-

2">5019.390 1031.524</CgPoint> 

  <CgPoint state="existing" pntSurv="boundary" name="CGPNT-

3">4973.740 1016.148</CgPoint> 

  <CgPoint state="existing" pntSurv="boundary" name="CGPNT-

4">5019.390 1031.524</CgPoint> 

  <CgPoint state="existing" pntSurv="boundary" name="CGPNT-

5">5083.166 1194.047</CgPoint> 

  <CgPoint state="existing" pntSurv="traverse" name="CGPNT-

6">4994.263 1042.522</CgPoint> 

  <CgPoint state="existing" pntSurv="traverse" name="CGPNT-

7">5084.991 1197.301</CgPoint> 

  <CgPoint state="existing" pntSurv="reference" name="CGPNT-

8">4996.965 1024.490</CgPoint> 

  <CgPoint state="existing" pntSurv="reference" name="CGPNT-

9">4967.170 1043.717</CgPoint> 

  <CgPoint state="existing" pntSurv="reference" name="CGPNT-

10">5104.366 1177.900</CgPoint> 

 </CgPoints> 

 <Survey> 

  <InstrumentSetup id="IS-1" stationName="IS-1" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-1"/> 

  </InstrumentSetup> 

  <InstrumentSetup id="IS-2" stationName="IS-2" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-2"/> 

  </InstrumentSetup> 

   

  <InstrumentSetup id="IS-3" stationName="IS-4" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-4"/> 

  </InstrumentSetup> 

  <InstrumentSetup id="IS-4" stationName="IS-3" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-3"/> 

  </InstrumentSetup> 

  <InstrumentSetup id="IS-5" stationName="IS-5" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-5"/> 

  </InstrumentSetup> 

  <InstrumentSetup id="IS-6" stationName="IS-7" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-7"/> 

    

  </InstrumentSetup> 

  <InstrumentSetup id="IS-7" stationName="IS-6" 

instrumentHeight="0"> 

   <InstrumentPoint pntRef="CGPNT-6"/> 

  </InstrumentSetup> 

  <ObservationGroup id="OG-1"> 

   <ReducedObservation name="OBS-1" purpose="normal" 

setupID="IS-1" targetSetupID="IS-2" azimuth="58.2415" 

horizDistance="37.01"/> 

   <ReducedObservation name="OBS-2" purpose="normal" 
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setupID="IS-2" targetSetupID="IS-4" azimuth="142.4330" 

horizDistance="30.98"/> 

   <ReducedObservation name="OBS-3" purpose="normal" 

setupID="IS-4" targetSetupID="IS-3" azimuth="238.2415" 

horizDistance="40.08"/> 

   <ReducedObservation name="OBS-4" purpose="normal" 

setupID="IS-3" targetSetupID="IS-1" azimuth="328.2415" 

horizDistance="30.82"/> 

   <ReducedObservation name="OBS-5" purpose="sideshot" 

setupID="IS-6" targetSetupID="IS-3" azimuth="232.05" horizDistance="33.4"/> 

   <ReducedObservation name="OBS-6" purpose="sideshot" 

setupID="IS-6" targetSetupID="IS-4" azimuth="86.30" horizDistance="7.8"/> 

   <ReducedObservation name="OBS-7" purpose="traverse" 

setupID="IS-6" targetSetupID="IS-7" azimuth="59.3720" 

horizDistance="179.41"/> 

   <ReducedObservation name="OBS-8" purpose="sideshot" 

setupID="IS-7" targetSetupID="IS-5" azimuth="240.43" horizDistance="3.73"/> 

   <ReducedObservation name="OBS-9" purpose="normal" 

setupID="IS-5" targetSetupID="IS-4" azimuth="238.2415" horizDistance= 

   "168.78"/>    

  </ObservationGroup> 

 </Survey> 

 <Monuments> 

  <Monument name="MON-1" pntRef="CGPNT-6" type="Rivet" state="New" 

condition="Placed"/> 

  <Monument name="MON-2" pntRef="CGPNT-7" type="Permanent Mark" 

state="Existing" condition="OK"/> 

 </Monuments> 

</LandXML> 
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APPENDIX C – PYTHON CODE 
 

1. Removing text 
 

import numpy as np 

import cv2 

from matplotlib import pyplot as plt 

from tesserocr import PyTessBaseAPI, RIL 

 

cv_img = cv2.imread('AFR_model_1.bmp') 

 

with PyTessBaseAPI() as api: 

    api.SetImageFile('AFR_model_1.bmp') 

    boxes = api.GetComponentImages(RIL.PARA, True) 

    print('Found {} textline image components.'.format(len(boxes))) 

    for i, (im, box, _, _) in enumerate(boxes): 

        # im is a PIL image object 

        # box is a dict with x, y, w and h keys 

        api.SetRectangle(box['x'], box['y'], box['w'], box['h']) 

        ocrResult = api.GetUTF8Text() 

        conf = api.MeanTextConf() 

        print(u"Box[{0}]: x={x}, y={y}, w={w}, h={h}, " 

              "confidence: {1}, text: {2}".format(i, conf, ocrResult, 

**box)) 

        ## delete boxes 

    for (im,box,_,_) in boxes: 

        x,y,w,h = box['x'],box['y'],box['w'],box['h'] 

        cv_img[y:y+h,x:x+w] = 255 

        print(x,y,w,h) 
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2. Simplify lines 
 

Thresholding 
 

img = cv.imread(image,0) 

th, dst = cv.threshold( img, 128, 255, cv.THRESH_BINARY_INV) 

print(dst) 

print(dst.shape) 

#print(dst[500,497]) 

#pic = img 

pic = np.zeros(dst.shape)                     #creates blank window 

of same shape 

#edges = cv.Canny(dst,50,150,apertureSize = 3) #applies Canny to find 

edges 

Canny 
 

img = cv.imread(image,0) 

print(img) 

print(img.shape) 

print(img[500,495]) 

 

pic = np.zeros(img.shape)                     #creates blank window 

of same shape 

edges = cv.Canny(img,50,150,apertureSize = 3) #applies Canny to find 

edges 

cv.imwrite('Canny.jpg',edges) 

print('255 count = '+str(((edges == 255).sum()))) 

print('0 count = '+str(((edges == 0).sum()))) 
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3. Detect lines 
 

lines = 

cv.HoughLinesP(edges,2,0.5*np.pi/180,100,minLineLength=50,maxLineGap

=50) #HoughLinesP to convert broken lines to solid 

 

              #draw hough lines on blank window 

for line in lines: 

    x1,y1,x2,y2 = line[0] 

    cv.line(pic,(x1,y1),(x2,y2),(255,255,255),1) 

cv.imwrite('houghlines.jpg',pic) 

 

4. Detect corners 
 

corners = cv.goodFeaturesToTrack(img,25,0.4,85) 

corners = np.int0(corners) 

pic = np.zeros(img.shape) 

 

for i in corners: 

    x,y = i.ravel() 

    cv.circle(img,(x,y),10,255,2) 

cv.imwrite('corners.jpg',img) 

 

5. Image rotation 
 

img = cv2.imread('AFR_model_1.bmp',0) 

th, img = cv2.threshold( img, 128, 255, cv2.THRESH_BINARY) 

 

##scale picture for viewing 

scale_percent = 50 # percent of original size 

width = int(img.shape[1] * scale_percent / 100) 

height = int(img.shape[0] * scale_percent / 100) 

dim = (width, height) 
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## resize image 

img = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) 

 

rows,cols = img.shape 

print('Original image :' , img.shape) 

centre = (rows/2 , cols/2) 

angle = 45 

scale = 1 

 

#cv2.namedWindow('image',cv2.WINDOW_NORMAL) 

cv2.imwrite('image.bmp',img) 

cv2.imshow('image',img) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

rot_rows = np.int(np.around(np.sqrt(rows**2 + cols**2))+1) 

rot_cols = rot_rows 

rot_centre = (rot_rows/2 , rot_cols/2)  

 

#translation (resize window to target, shift centre to centre 

of target) 

Xshift = rot_centre[1] - centre[1] 

Yshift = rot_centre[0] - centre[0] 

M = np.float32([[1,0,Xshift],[0,1,Yshift]]) 

dst = cv2.warpAffine(img, M ,(rot_cols,rot_rows)) 

 

    #removing black frame around img 

x_lim = 1 + rot_centre[0] - cols/2 

y_lim = 1 + rot_centre[1] - rows/2 

 

dst[:int(y_lim)] = [255] 

dst[-int(y_lim):] = [255] 

dst[:,:int(x_lim)] = [255] 
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dst[:,-int(x_lim):] = [255] 

 

#cv2.namedWindow('image',cv2.WINDOW_NORMAL) 

cv2.imwrite('translated.bmp',dst) 

cv2.imshow('translated',dst) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

#rotation 

M = cv2.getRotationMatrix2D(rot_centre,angle,scale)  

dst = cv2.warpAffine(dst,M,(rot_cols,rot_rows)) 

print('Rotated : ', dst.shape) 

 

#cv2.namedWindow('image',cv2.WINDOW_NORMAL) 

cv2.imwrite('rotated.bmp',dst) 

cv2.imshow('rotated',dst) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

6. Text detection 
 

import numpy as np 

import cv2 

from matplotlib import pyplot as plt 

from tesserocr import PyTessBaseAPI, RIL 

 

cv_img = cv2.imread('AFR_model_1.bmp') 

 

with PyTessBaseAPI() as api: 

    api.SetImageFile('AFR_model_1.bmp') 

    boxes = api.GetComponentImages(RIL.PARA, True) 

    print('Found {} textline image components.'.format(len(boxes))) 

    for i, (im, box, _, _) in enumerate(boxes): 
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        # im is a PIL image object 

        # box is a dict with x, y, w and h keys 

        api.SetRectangle(box['x'], box['y'], box['w'], box['h']) 

        ocrResult = api.GetUTF8Text() 

        conf = api.MeanTextConf() 

        print(u"Box[{0}]: x={x}, y={y}, w={w}, h={h}, " 

              "confidence: {1}, text: {2}".format(i, conf, ocrResult, 

**box)) 

        

    ## draw boxes    

    for (im,box,_,_) in boxes: 

        x,y,w,h = box['x'],box['y'],box['w'],box['h'] 

        cv2.rectangle(cv_img, (x,y), (x+w,y+h), color=(0,0,255)) 

        print(x,y,w,h) 

 

7. Text recognition 
 

import numpy as np 

import cv2 

import tesserocr 

from matplotlib import pyplot as plt 

from tesserocr import PyTessBaseAPI, RIL, PSM 

 

with PyTessBaseAPI() as api: 

     

    api.SetImageFile('AFR_model_1.bmp') 

    print(api.GetUTF8Text()) 

 




