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Abstract 

Additional through lanes are quite often added at signalised intersections to increase their 

capacity, these are known as auxiliary through lanes (ATLs). The amount of traffic that uses 

these lanes relative to the adjacent continuous through lanes (the lane utilisation) is often quite 

low. This research project aimed to develop a model for predicting the utilisation of these 

lanes. 

The capacity of intersections is often the limiting factor in determining the capacity of a road.  

Being able to predict this capacity at the planning stage accurately is critical in determining 

the success or longevity of a potential project. At intersections with ATLs installed, the 

utilisation of the ATL is a crucial factor in determining the capacity of that intersection.  

Previous research has indicated that the length of these lanes may be used to assess their 

utilisation, but to date, determination of a relationship between these two values has not 

occurred. This project intended to build on this research to develop a relationship between 

ATL length and utilisation, as well as including other variables that may improve the model 

accuracy.  

This research selected 57 intersection approaches across Australia for inclusion as case study 

sites. The ATL utilisation for each site was determined, and critical variables were collected, 

including ATL length, degree of saturation and traffic signal timing parameters. Multiple 

variable correlation and linear regression methods were implemented to determine the 

relationship between different combinations of these variables.  The strongest of these were 

then used to compare the model to other methods of ATL prediction identified in the literature 

review. 

The study found that the relationship between single variables and the ATL utilisation were 

quite weak. However, the results show a moderately strong relationship when variables were 

combined using multiple regression analysis. The combination of variables that gave the most 

robust relationship were the number of lanes, cycle time, degree of saturation, ATL departure 

and approach lengths and the speed limit in that order of significance. 

The model developed by this study compares well against other ATL utilisation prediction 

models in the limited testing undertaken within this study.  
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Nomenclature 

 

c = Traffic signal cycle time (secs) 

D = Auxiliary lane total length (m) (d1  +  d2  +  d3) 

d1 = Auxiliary lane approach length (m) 

d2 = Auxiliary lane intersection length (m) 

d3 = Auxiliary lane departure length (m) 

dL = Auxiliary lane length downstream from stop line (m), i.e. d2  +  d3 

EHV = Heavy vehicle passenger car equivalent (veh) 

fet = Factor relating the proportion of turning vehicles to the ease of turning 

fa = Saturation flow adjustment factor for area type 

fbb = Saturation flow adjustment factor for bus blocking effect 

fg = Saturation flow adjustment factor for approach grade 

fHV = Saturation flow adjustment factor for heavy vehicle composition 

fLpb = Saturation flow adjustment factor for pedestrian/bicycle effects on left turns 

fLT = Saturation flow adjustment factor for left-turn vehicle presence 

fLU = Saturation flow adjustment factor for lane utilisation 

fp = Saturation flow adjustment factor for adjacent parking activity 

fRpb = Saturation flow adjustment factor for pedestrian/bicycle effect on right turns 

fRT = Saturation flow adjustment factor for right turn vehicle presence 

fw = Saturation flow adjustment factor for width 

G = Traffic signal displayed green time (secs) 

g = Traffic signal effective green time (secs) 

j = Average queue space taken up by a vehicle (m) 

dfull,a = Minimum approach auxiliary lane length for full utilisation (m) 

dfull,d = Minimum departure auxiliary lane length for full utilisation (m) 

dmin = Minimum downstream auxiliary lane length (m) 

N = Model calibration factor 

Ne = Number of exclusive lanes in the movement group 

dp = Proportion of d1 to dfull,a 

PHV = Proportion of heavy vehicles in the traffic stream 

p = Lane utilisation ratio 
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Q = Theoretical lane capacity (veh/hr) 

q = Demand vehicle flow rate (veh/hr) 

qTL = Left through lane demand flow rate (veh/hr) 

qTR = Right through lane demand flow rate (veh/hr) 

qTC = Centre through lane demand flow rate (veh/hr) 

qATL = demand flow rate for auxiliary through lane (veh/hr) 

pu = Lane utilisation ratio (upstream) (%) 

pd,min = Minimum lane utilisation ratio (downstream) (%) 

s = Adjusted saturation flow rate (veh/hr) 

s0 = Base saturation flow rate (veh/hr) 

qg = Demand flow rate for the movement group (veh/hr) 

qc = Demand flow rate for critical lane (veh/hr) 

qT = Through movement demand flow rate (veh/hr) 

X = Degree of saturation 

XT = Through movement degree of saturation 

y = ratio of demand flow rate (q) to adjusted saturation flow rate (s) 

R2 = R-square, Coefficient of determination 
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Glossary of Terms 

 

CTL = Continuous Through Lane 

ATL = Auxiliary Through Lane 
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1. Introduction 

 

1.1 Background 

The concept of lane underutilisation refers to the phenomenon where drivers choose to use 

traffic lanes disproportionately, such that a lane has a smaller share of its capacity used than 

adjacent lanes. For example, one can observe this where a lane is frequently used by turning 

vehicles; through vehicles tend to avoid using the lane to reduce the chances of having to slow 

or stop. There are many other causes of lane underutilisation; these are discussed later in the 

literature review, along with many of the concepts presented here.  

Signalised intersections, as an unfortunate side effect of their operation, restrict the capacity 

of a road by limiting the amount of time each traffic movement is permitted to flow. Road 

designers quite often place an additional lane locally at the intersection to increase the capacity 

during the green period that flow is allowed to counteract this side effect, such lanes are termed 

auxiliary through lanes. 

Ordinarily, drivers underutilise auxiliary through lanes at traffic signals due to drivers disliking 

the need to diverge and merge upstream and downstream of the traffic signals respectively. 

Drivers perceive this act of merging as a challenge, so the benefits of using the auxiliary 

through lane must be seen to outweigh this cost. There has been research and efforts put into 

the design of auxiliary through lanes to try to reduce these effects by making the use of the 

lane more attractive and making the merging process easier. 

The field has known methods to measure the lane utilisation at existing intersections for some 

time; these can be used to demonstrate the different utilisation rates of lanes and identify if 

underutilisation is occurring. The development of methods to estimate the utilisation of 

auxiliary through lanes has also occurred, though most of these are not based on any empirical 

data and do not perform well when tested against real-world observations 

Previous models use auxiliary through lane length as a variable in determining utilisation, but 

these models do not seem to be based on any data or make assumptions with no apparent 

justification. These models tend to reflect actual utilisation poorly. However, research does 

indicate that there appears to be a positive relationship between the length of auxiliary through 

lanes and their utilisation. 

Over the years, research into many other variables that have a good relationship with auxiliary 

through lane utilisation has occurred. Analysed individually, some of these variables 
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(particularly degree of saturation) have produced strong relationships. It is possible that 

combining some of these variables with the length variable will deliver even stronger results.  

The ability to accurately estimate the capacity of an intersection is critical. If the traffic 

modelling overestimates lane utilisation of auxiliary through lanes or even neglects the effects 

of lane underutilisation altogether, the designer can inadvertently exaggerate the capacity of 

the intersection. In such cases, there is a risk that new intersections will be under-designed, 

potentially leading to network performance issues, or expensive future retrofit works to enable 

the network to handle the required flow rates. 

It follows then that the ability to accurately forecast the utilisation of an auxiliary through lane 

at the design stage is a vital component of the overall traffic model. 

 

1.2 Project aim 

The overarching aim of this research was to improve the accuracy of analytical & 

microsimulation models to determine the capacity of signalised intersections with auxiliary 

through lanes. The project aimed to confirm previous research that a relationship exists 

between the utilisation of auxiliary through lanes and their length and develop a model for 

predicting utilisation based on this variable. The project also considered other variables that 

may explain variations in lane utilisation for inclusion in the model. 

 

1.3 Project objectives 

The objectives of this project were to: 

1. Examine current methods of determining lane utilisation for existing signalised 

intersections and the prediction models currently available. 

2. Undertake case studies to determine the utilisation of auxiliary through lanes at 

existing intersections. 

3. Determine the key variables contributing to the utilisation of auxiliary through lanes 

at signalised intersections. 

4. Analyse the relationship between the key variables identified. 

5. Develop a mathematical relationship between the selected variables and the 

utilisation of auxiliary through lanes. 

6. Estimate lane utilisation of auxiliary through lanes using the developed model and 

compare the results with other prediction models and case study results. 
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1.4 Project outcomes & consequential effects 

The success of this research will provide traffic engineers and modellers with an accurate 

method of predicting the utilisation of auxiliary through lanes where they are proposed at new 

or upgraded signalised intersections, allowing a more realistic calculation of the intersection’s 

capacity and subsequent determination of its design life. 

Such improvements in capacity estimation could reduce the likelihood of road authorities 

designing under capacity intersections, saving funds that might be needed to rectify the issue 

or upgrade the intersection sooner, due to a design life that was shorter than expected. 

 

1.5 Scope and limitations 

• The project did not look to determine the causes of lane underutilisation at 

intersections, only to determine the effect that a selection of key variables has on 

utilisation. 

• The project only measured lane utilisation during the morning and afternoon peak hour 

for each intersection. 
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2. Literature Review 

2.1 Overview 

The concept of uneven lane utilisation at traffic signals, and indeed other facilities, has been 

known for some time. As presented below, previous research has developed clear definitions 

of lane utilisation and determined methods of quantifying it at existing facilities. The literature 

also identifies apparent relationships between key variables and the utilisation of auxiliary 

through lanes (ATLs). However, attempts to produce a method of estimating lane utilisation 

ratios for new or modified signalised intersections have been inaccurate thus far. 

 

2.2 Fundamentals of traffic signal operations 

Traffic signals control the flow of traffic through an intersection by allowing movements to 

flow for a certain period in sequence while prohibiting other (usually conflicting) movements 

from coinciding. 

Ogden and Taylor (1999) present that a phase is a predetermined setting within the traffic 

signal controller that gives a green signal to some movements and displays a red signal to 

others, and that a cycle is the complete set of phases run in sequence. 

Ogden and Taylor (1999) go on to say that, in principle, a traffic signal site will continuously 

loop through cycle’s indefinitely, going through each phase in sequence every cycle. However, 

modern traffic signal controllers use vehicle detection to determine if a phase should be run or 

not depending on vehicle demand. These systems calculate the demand for a particular 

movement and modify the phase time to ensure it allocates a sufficient length of time to service 

that movement. The sum of the lengths of all phase times is the cycle time (c). 

Ogden and Taylor (1999) define the period of a phase that displays a green signal as the green 

time (G). However, the paper explains that not all of this time is useable for full traffic flow 

as drivers must react to the signal and vehicles do not accelerate instantaneously, terming this 

as start loss. Conversely, the flow does not stop the instant the green signal disappears, so there 

is time gained at the end of the phase known as end gain.  Ogden and Taylor (1999) and 

Mannering et al. (2009) introduce the term effective green time (g), which is equal to the actual 

time that full vehicle flow occurs. Calculating this: 

g    =    G  –  start loss  +  end gain                (2.1) 
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Figure 2-1 Signal phase transition (Akcelik 1981) 

Transportation Research Board of the National Academies (2010) gives that without further 

data, the value of the start loss can be assumed to be equal to the end gain, Akcelik (1981) 

supports this notion. Assuming this equality results in the effective green time being equal in 

magnitude to the displayed green time. 

The explanation of these traffic signal fundamentals presented by Ogden and Taylor (1999) 

align with the concepts discussed by Austroads (2013), Austroads (2016) and Akcelik (1981), 

with the text being a reputable source of information quite frequently referenced in Australian 

guidelines. The concepts presented are considered credible and are adopted for this report. 

Traffic signals can operate as pre-timed, semi-actuated or fully actuated systems. As described 

by Mannering et al. (2009), a pre-timed system has cycle and phase length settings inbuilt; 

while the ability to set multiple plans for different times of the day and different days of the 

week exists, they cannot respond to the prevailing traffic conditions. The current traffic 

conditions entirely influence a fully actuated system, while the system receives some initial 

settings, the control is free to manipulate these as required within constraints. A semi-actuated 

system has approaches operating on both systems. 
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2.3 The capacity of traffic signals 

Austroads (2015) defines the concept of saturation flow (s) as the maximum flow rate of 

vehicles past a point; Ogden and Taylor (1999) support this. Transportation Research Board 

of the National Academies (2010) calculates flow rate as: 

q    =    3,600 /  h                 (2.2) 

Where headway (h) is the time in seconds between successive vehicles as they pass a point, 

measured from the same point on the vehicles. Accordingly, the calculation of the saturation 

flow (s0) is then: 

S0    =    3,600  /  h                  (2.3) 

Headway in this instance refers to time headway, which is the time between the front of one 

vehicle passing a point on the road, and the front of the immediately trailing vehicle passing 

the same point (Garber & Hoel 2010). Mannering et al. (2009) described this term and the 

calculation of the saturation flow rate similarly. Garber and Hoel (2010) define flow as the 

equivalent hourly rate at which vehicles pass a point on the road during a unit of time. 

It is suggested by Transportation Research Board of the National Academies (2010) that an 

assumed base saturation flow rate of 1,750 veh/hr/lane is appropriate in the absence of more 

detailed information, subject to local road factors, while Mannering et al. (2009) assumes 1900 

veh/hr/lane.  Austroads (2017) suggests that a base saturation flow rate of 1,800 veh/hr for 

single-lane flow and 2,400 veh/hr/lane for multi-lane flow; this is equivalent to headways of 

2.0 seconds and 1.5 seconds respectively. 

As discussed in section 2.2, traffic signals operate by allocating an amount of time to each 

movement, with the effective green time equating to that time that vehicles flow. It is logical 

then that the capacity (Q) of the traffic signals to service a given movement per unit of time is 

a function of the effective green time allocated to that movement and the saturation flow rate 

for that movement; this is supported by Mannering et al. (2009) and Ogden and Taylor (1999), 

with their texts calculating the capacity of a lane as: 

Q    =    s g  /  c                  (2.4) 

Where s is the adjusted saturation headway. This equation is supported by the Transportation 

Research Board of the National Academies (2010), with their text then multiplying this value 

by the number of lanes to find the total capacity where multiple lanes are present.  

  



University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

7 

 

Akcelik (1981) defines the ratio of the arrival flow rate (q) to the saturation flow (s) as the 

flow ratio (y): 

y    =    q  /  s                  (2.5) 

and the ratio of arrival flow rate (q) to the capacity (Q) as the degree of saturation (X): 

X    =    q  /  Q    =    q c  /  s g                (2.6) 

Transportation Research Board of the National Academies (2010) describes a similar equation, 

but terms it the ‘volume-to-capacity ratio’. 

It follows that for a movement to be fully serviced: 

 Q    >    q                  (2.7) 

i.e. s g    >    q c                  (2.8) 

and 

  X    <    1                  (2.9) 

Akcelik (1981) and Ogden and Taylor (1999) both contend that failing to meet the above 

criteria vehicle queues will continue to grow. Transportation Research Board of the National 

Academies (2010) contends that a volume-to-capacity ratio (or degree of saturation) greater 

than 0.95 can result in flow breakdown, given the inherent variability in traffic flow. 

The Australian Road Research Board commissioned the Akcelik (1981) and is considered a 

reliable source; the concepts and equations it presents also pass the logic test when considered 

from first principles. This research adopts these concepts, as well as those offered by Ogden 

and Taylor (1999) and deems them reliable. 

Transportation Research Board of the National Academies (2010) and Austroads (2015) are 

both reference material used internationally and domestically by road authorities; as such, the 

information is considered highly credible. 

 

2.4 Reasons for installing auxiliary through lanes 

Transportation Research Board of the National Academies (2011) contends that signalised 

intersections form capacity ‘choke points’ on a road, as by their very nature they limit the 

amount of time available for traffic along a road to flow. The report adds that auxiliary through 

lanes can be added to increase the stop line capacity of a signalised intersection by increasing 

the number of lanes available for flow to occur. The report suggests that they are added in 
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place of continuous through lanes when it is not feasible to install a continuous lane or the 

auxiliary lane is enough in terms of capacity. 

2.5 Current methods of estimating traffic flow and capacities 

For a multitude of reasons, it is important to be able to accurately estimate the capacity of 

traffic signals to service each movement. As discussed, capacity is a function of the saturation 

flow and the effective green time. It is simple enough to calculate the effective green time, and 

there is a consensus on the method explained in section 2.2 to do this. There is also general 

agreement on how to calculate the theoretical saturation flow for a single lane of traffic. 

Akcelik (1981) presents the method as taking the maximum theoretical flow rate and reducing 

it based on factors such as lane widths, gradient, heavy vehicle composition and operating 

environment (i.e. side friction from driveways and parking). Transportation Research Board 

of the National Academies (2010) presents a similar method. It suggests that, without further 

detailed information, an assumed base saturation flow rate (s0) of 1,900 applies for 

metropolitan areas greater than 250,000 in population, otherwise 1,750 pcu/hr/lane. The 

adjusted saturation flow rate is then calculated using a series of factors according to the 

following equation: 

s    =    s0 fw fHV fg fp fbb fa fLU fLT fRT fLpb fRpb             (2.10) 

where: 

fw    =    adjustment factor for width 

fHV =    adjustment factor for heavy vehicle composition 

fg =    adjustment factor for approach grade 

fp =    adjustment factor for adjacent parking activity 

fbb =    adjustment factor for bus blocking effect 

fa =    adjustment factor for area type 

fLU =    adjustment factor for lane utilisation 

fLT =    adjustment factor for left-turn vehicle presence (note: right drive rule) 

fRT =    adjustment factor for right turn vehicle presence (note right drive rule) 

fLpb =    adjustment factor for pedestrian/bicycle effects for left turn groups 

fRpb =    adjustment factor for pedestrian/bicycle effects for right turn groups 
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The maximum theoretical flow rate is presented in Austroads (2015) as time divided by vehicle 

headway, a concept widely accepted in the traffic engineering field. Austroads (2017) takes 

the HCM method defined by the Transportation Research Board of the National Academies 

(2010) and simplifies it to use the key variables: 

Q    =    2400 fw fHV               (2.11) 

where: 

Q     =    capacity (pcu/hr) 

fw     =    adjustment factor for width (Table 2-1) 

fHV     =    adjustment factor for heavy vehicles 

 =    1  /  [ 1  +  PHV  ( EHV  -  1 )]              (2.12) 

PHV     =    proportion of heavy vehicles in the traffic stream 

EHV     =    average passenger car equivalents for heavy vehicles (Table 2-2) 

 

Table 2-1 Width factors (Austroads 2017) 

Lateral Clearance 

Each Side (m) 

Lane Width (m) 

3.7 3.2 2.7 

2 1.00 0.90 0.70 

1 0.90 0.80 0.63 

0 0.65 0.60 0.50 

 

Table 2-2 Heavy vehicle passenger car equivalents (Austroads 2017) 

Grade Passenger Car Equivalents 

Level 2.0 

Moderate 4.0 

Long Sustained 8.0 
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When it comes to multiple lane approaches to traffic signals there are a few different methods 

used in practice to predict the spread of flow rates across the approach lanes, and thus the total 

flow capacity for that group of lanes. Akcelik (1989a) describes the following three methods: 

• The ‘Equal Degree of Saturation’ method assumes that each lane has the same degree 

of saturation. In this method, if lane capacities differ, then the flows will be unequal 

due to the requirement to maintain equal degrees of saturation. This method assumes 

that drivers will choose the lane with the least congestion (lowest degree of saturation) 

to clear the intersection in the minimum number of cycles, and thus the degree of 

saturation across lanes will equalise. The popular microsimulation software package 

SIDRA (Akcelik & Associates Pty Ltd 2019) adopts this method. 

• The ‘Equal Average Delay’ method assumes that drivers will choose the lane that has 

the least delay, regardless of congestion or queue length.  

• The ‘Equal Queue Length’ method assumes that drivers will choose the lane with the 

shortest queue regardless of delay and congestion. In practice, the Equal Degree of 

Saturation method produces results somewhere in between the other two methods 

mentioned. 

Chen et al. (2012) also cites the Equal Degree of Saturation method and discusses the 

following two methods as well: 

• The ‘Equal Flow Ratio’ method is a similar method to the Equal Degree of Saturation 

Method but disregards any differences in effective green times present across lanes. 

• The ‘Equal Lane Volume’ principle assumes that all lanes within a group will have 

equal volumes. 

Akcelik (1989a) introduces the term lane utilisation ratio (pi), describing it as the ratio of the 

degree of saturation of the subject lane (Xi) to that of the critical (largest) degree of saturation 

lane on the approach (X): 

pi    =    Xi  /  X                (2.13) 

Akcelik (1989a) explains that for the equal degree of saturation method:  

X1 = X2 = … = Xn  

therefore:  

p1 = p2 = … = pn = 1  

where n is the number of lanes. 
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2.6 Auxiliary through lane flows 

The lane flow distribution methods discussed in section 2.5 may be appropriate for continuous 

through lanes (CTLs) at an intersection, however, when one observes an intersection with an 

auxiliary through lane (ATL), they will soon notice that the flow volume in the ATL is much 

less than in CTLs. These observations have been documented in many studies, including those 

by  Bugg et al. (2013), Karma et al. (2010) and Royce et al. (2006); this is a specific example 

of lane underutilisation, Akcelik (1989a) terming this phenomenon the ‘short lane effect’. 

Lane underutilisation can occur for many reasons, with some of them discussed in section 2.7. 

 

2.7 Causes of lane underutilisation 

For freeway segments, Lee and Park (2012) determined that drivers choose their lane based 

on their desired speed, vehicle performance, origin-destination of trips and the downstream 

traffic conditions. Okura and Somasundaraswaran (1996) concluded that the volume of traffic 

flow, heavy vehicle composition and average speed were significant contributors to lane 

selection. The research determined that upstream flow conditions affected lane selection, in 

addition to the downstream factors identified by Lee and Park (2012). 

For lanes at intersections, Royce et al. (2006) identified the following variables that effected 

lane choice, and thus lane utilisation: 

• Short approach lanes 

• Short adjacent left-turn lanes 

• High volumes of turning traffic in shared lanes 

• High volumes of pedestrians conflicting with turning traffic in a shared lane 

• Origin of motorists (they may be forced to enter a nearside lane upstream of signals) 

• Destination of motorists (they may select their lane based on their downstream 

destination) 

• Number of lanes at the intersection 

• Requirement and difficulty of merge downstream of signals 

• Length of phase green time 

• Congestion levels/ degree of saturation 

• A high percentage of heavy vehicles in the lane 

• Buses and bus stops upstream/ downstream of signals 

• Parking/ loading upstream/ downstream of signals 

Akcelik & Associates Pty Ltd (2019) reflects these conditions. 
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Karma et al. (2010) identified that from the various causes, the most significant contributors 

to lane utilisation are: 

• Short auxiliary lanes (upstream and downstream) 

• Shared Lanes 

• The occurrence of lane blockage 

• Side friction from driveway and parking. 

 

2.8 Reasons for auxiliary through lane underutilisation 

This report focusses on the short lane effect for auxiliary through lanes (ATLs), as termed by 

Akcelik (1989a) and discussed by Karma et al. (2010). 

Bugg et al. (2013) suggest that approaching drivers will naturally tend to select the lane that 

they believe will minimise their travel time through the intersection while upholding a certain 

level of comfort and courtesy to other drivers. Drivers will balance these two elements between 

the desire to use a short auxiliary through lane to save time, and the need to diverge and merge 

– causing a level of discomfort to the driver and discourtesy to other motorists. These 

behaviours were hypothesised based on the following observations: 

• Drivers that arrived during a red signal generally remained in the CTL, unless the 

queue in this lane became too long. 

• Drivers that arrived early during a green signal followed the same principle, probably 

perceiving that the green time would be sufficient for them to clear the intersection. 

• Drivers arriving late during the green signal typically only used the ATL to overtake 

a slow vehicle in the CTL, possibly perceiving that the green signal would soon end. 

• Occasionally, drivers that initially joined the CTL queue sometimes switched to the 

ATL after its queue had discharged, realising that they may not clear the intersection 

in the CTL. 

Akcelik (1981) made similar conclusions, stating that the ATL will experience equivalent 

saturation flow as other lanes for the length of time it takes to clear vehicles queued in this 

lane after a red signal. However, once traffic begins to flow, vehicles are unlikely to enter the 

ATL, and thus it will have a reduced flow rate. 

Bugg et al. (2013) concluded their analysis by suggesting that ATL use is a function of the 

arrival phase and the queue lengths in each lane. The research theorised that this intuitively 

aligns with the decision point of the driver; with drivers arriving on a red phase choosing their 

lane based on queue lengths and are twice as likely to join the queue in the CTL as the ATL. 
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When arriving in a green phase, drivers were found to tend to remain in the CTL if they 

perceived they could pass through the intersection before the end of the green phase; otherwise 

they may shift to the ATL if the queue is shorter. Tarawneh and Tarawneh (2002) expanded 

on this by stating that the upstream length of the ATL must be long enough to extend beyond 

the back of the CTL queue to allow vehicles to enter it. Mannering et al. (2009) calculated the 

number of vehicles in a queue by multiplying the arrival rate by the length of the red signal, 

the same method also proposed by Garber and Hoel (2010). Calculating this length is done by 

multiplying the number of vehicles by the length of the space that they occupy (including 

leading and trailing gaps), j. 

Aligning with Bugg et al. (2013)’s conclusion and observations, McCoy and Tobin (1982) 

found that a longer green time leads to lower utilisation of the ATL, due to the increased 

likelihood of arriving during the green phase. The report also found that ATL use increases 

with the total length of the lane, but taper length had negligible effect. 

Tarawneh and Tarawneh (2002) also found that the downstream length of ATLs and 

downstream turning volumes (either for driveways or side roads) significantly affected the 

utilisation of ATLs. The report found that the utilisation factors suggested by the 

Transportation Research Board of the National Academies (2010) were much higher than 

those calculated from their trial sites. 

Karma et al. (2010) suggest that the utilisation of ATLs varies with the level of traffic flow 

throughout the day, aligning with the conclusions made above. Based on the observations 

made in the study, it suggests that the main factor contributing to the use of an ATL was the 

length of these lanes. 

Royce et al. (2006) found a direct correlation between the length of an ATL and its use. 

However, due to the limited sample size of this study, a mathematical relationship was unable 

to be produced. 

Transportation Research Board of the National Academies (2011) states that, based on 

empirical evidence, they have found that the two critical variables in determining ATL 

utilisation are the through movement degree of saturation on the subject approach and the 

approach geometry. However, if downstream lengths are too short, they may discourage 

drivers from choosing the lane due to the difficulty merging back into the adjacent continuous 

lane. 

Yang et al. (2018) found that lane changing frequency increased with traffic density in a 

freeway situation. Density increases with the degree of saturation, so this would support the 

above research. 
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2.9 Effect of travel speed on lane changing 

Golbabaei et al. (2014) undertook their research using a calibrated microscopic traffic 

simulator; it showed that reducing the speed deviation amongst vehicles decreased the amount 

of lane changing significantly. Archer et al. (n.d.) hypothesised that given lower speed limits 

would produce a smoother traffic stream; this would result in reduced lane-changing friction 

and travel speed variance amongst vehicles. Brubacher et al. (2018) found that speed limit 

changes might have a negligible effect on speed variance, though if there were any minor 

effect, increasing speeds would increase the variation slightly. This research would tend to 

indicate that, while it may only be marginal, lower speed limits would result in less lane-

changing manoeuvres. 

However, in conflict to this, Soriguera et al. (2017) found that for moderate demand levels, 

lower speed limits resulted in an increased probability of lane changing. 

All this research analysed uninterrupted flow environments such as freeways, so their 

applicability to lane changing at intersections is unknown. 

 

2.10 Determining lane utilisation for existing intersections 

Akcelik (1981) states that the lane utilisation for each lane can be calculated by direct 

measurement of the respective degrees of saturation (see section 2.5). As mentioned in section 

2.3 and equation 2.6, the degree of saturation is the flow rate (for the period analysed) divided 

by the saturation flow rate.  

As mentioned in section 2.5, Transportation Research Board of the National Academies (2010) 

states that a typical base saturation flow rate can be assumed, with individual lane saturation 

flows calculated from a set of adjustment factors applied to the base rate in line with equation 

2.10. It follows then that two lanes with similar conditions would have the same adjustment 

factors and therefore similar saturation flow rates. 

If equation 2.6 is substituted into equation 2.13: 

pi    =    Xi  /  X    =    (q1 c1  /  s1 g1)  /  (q c  /  s g) 

From equation 2.10, for two lanes with the same prevailing conditions: 

s1    =    s2    =    s3    =    …    =    s 

and given the lanes are on the same approach under the same signal phase: 

g1    =    g2    =    g3    =    …    =    g 
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and: 

c1    =    c2    =    c3    =    …    =    c 

Substituting: 

pi    =    q1  /  q                (2.14) 

From this, lane utilisation can be calculated by directly comparing the flow rate of the subject 

lane to that of the critical (highest flow) lane, provided the above conditions are satisfied. 

Akcelik (1981) proposed a similar methodology, showing that: 

pi    =     yi  /  y 

Where y is as defined in section 2.3. 

 

2.11 Current methods of estimating lane utilisation 

For new signalised intersections, or where changing an existing signalised intersections, it is 

not possible to directly determine the lane utilisation before construction. The designer must 

estimate the lane utilisation rates in these cases. 

(Bugg et al. 2013) had developed a lane choice model based on their observations (discussed 

in 2.8) and while it was able to determine relative probabilities, the report concluded that it 

was not accurate at predicting actual vehicle usage of each lane. 

2.11.1 Australian Road Capacity Guide method 

Early research presented by Australian Road Research Board (1968) considered the utilisation 

of short upstream auxiliary through lanes as a factor of its length. 

Where D in Figure 2-2 equals d1 in the terminology of this report. 

It states that if: 

d1    ≤    s g  /  150                (2.15) 

A reduction in the saturation flow for the kerbside lane occurs according to the equation: 

s    =    s0 [dp  +  fet (1  -  p)]               (2.16) 

Where dp is the proportion of the actual distance d1 to the minimum required by equation 2.15, 

and fet is a factor that relates the proportion of turning vehicles and the ease of turning if the 

lane is a shared lane. If there are no turning vehicles, F equals 0.03. 
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This model assumes that if d1 is longer than required, then the length of the short lane approach 

does not reduce the flow rate. 

 

 

Figure 2-2 - Auxiliary lane length (Australian Road Research Board 1968) 

2.11.2 Australian Road Research method 

Akcelik (1981) states that if lane flows are not known, such as when designing a new site, the 

flows can be estimated using: 

qTi = qT / 2n                (2.17) 

Where qT is the total traffic flow for the movement, qTi is the traffic flow in the underutilised 

lane and n is the number of lanes servicing that movement. The approach used determines the 

flow for the underutilised lane and divides the remaining through flow evenly amongst the 

remaining lanes. 

Karma et al. (2010) referenced this method, simplifying to say that applying this to two, three 

and four lane approaches suggests underutilised lane flows of 25%, 16% and 12.5% of the 

total through-flow respectively. 
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Figure 2-3 – Australian Road Research method  Lane flow estimations (Karma, Douglas-Jones & 

Jaglal 2010) 

Unfortunately, this is a rudimentary model that does not appear to have used any evidence or 

research in its development. 

A later reprint of this report by Akcelik (1989b) provided a methodology similar to that of 

Australian Road Research Board (1968) in section 2.11.1 for the saturation flow rate of a short 

lane: 

s0    =    3600 d1 /  j g               (2.18) 

where j is the average queue space (m) taken by each vehicle. 

2.11.3 SIDRA method 

SIDRA Intersection is a micro-analytical program developed by Akcelik & Associates Pty. 

Ltd., Akcelik & Associates Pty Ltd (2019) describes the short lane utilisation model used 

within the program, which essentially breaks utilisation into three zones: 

For dL > dfull, pu = 100             (2.19a) 

For dL ≤ dmin, pu = pd,min             (2.19b) 

For dmin < dL ≤ dfull , pu = pd,min + (100 – pd,min) [(dL – dmin) / (dfull – dmin)]
N  (2.19c) 

Where: 

pu =    Lane utilisation ratio (upstream) (%) 

pd,min =    Minimum lane utilisation ratio (downstream) (%) 

dL =    Downstream auxiliary lane length (m) =  d2  +  d3 

dmin =    Minimum downstream short lane length (m) 

dfull =    Downstream short lane length for full utilisation (m) 

N =    Model calibration factor (typically ~1.2) 
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d3 is measured from the approach stop line to the point of merging into the adjacent lane. The 

program assumes dfull = 200 m, dmin = 30 m, N = 1.2 and pd,min = 20%. It is not stated how these 

values have been determined. 

Akcelik & Associates Pty Ltd (2019) provides the following figure describing this relationship 

(where Ls  =  dL): 

 

Figure 2-4 - SIDRA lane utilisation (Akcelik & Associates Pty Ltd 2019) 

The method assumes a lane length of 200 m is sufficient for full utilisation; however, there is 

no evidence provided to support this and in fact field trials have found this to be inaccurate 

(Karma et al. 2010). 

Sample tests by Karma et al. (2010) have shown that it significantly overestimates lane 

utilisation when compared to observed rates. 
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2.11.4 Highway Capacity Manual method 

Transportation Research Board of the National Academies (2010) applies an adjustment 

factor, fLU, to the total base flow saturation for an approach as described in section 2.3: 

fLU    =    qg  /  Ne qc               (2.20) 

where: 

qg = Demand flow rate for the movement group (veh/hr) 

qc = Demand flow rate for the single exclusive lane with the highest flow rate (veh/hr) 

Ne = Number of exclusive lanes in the movement group (lanes) 

The report provides default values for fLU for use on intersection approaches but notes that 

these are not applicable for situations such as short lane drops. Institute of Transportation 

Engineers (2008) mimics the approach taken by the Highway Capacity Manual 2010. 

Transportation Research Board of the National Academies (2011) reiterated that the 

HCM2010 does not factor in lane utilisation for short lanes, with Lee et al. (2005) making 

similar findings. 

The method does not estimate the actual lane utilisation but instead applies a correction factor 

to the overall saturation flow rate for an intersection approach. 

2.11.5 Transport Research Board method 

Transportation Research Board of the National Academies (2011) NCHRP Report 707 

suggests that the primary variable in determining ATL utilisation is the through movement 

degree of saturation. The report presents some empirical data and gives the following equation 

for calculating the short auxiliary lane vehicle volumes: 

qATL    =    20.226  +  81.791  x  XT
2  +  1.65  x  qT

2  /  10,000                 (2.21) 

where: 

qATL     =    Predicted auxiliary lane flow rate (veh/ hr) 

XT  =    Through movement Degree of Saturation 

qT  =    Through movement flow rate (veh/hr) 

Upper bounds on these volumes are placed, limiting the flow to an equal degree of saturation 

across all lanes. 
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Figure 2-5 Transport Research Board model scatter plot (Transportation Research Board of the 

National Academies 2011) 

The report states that this equation has an R-square value of 0.781 for the empirical testing 

undertaken. 

2.11.6 Use of auxiliary through lane length as a model variable 

Two of the models examined in this section use flow rates to determine lane utilisation, 

however, as discussed above, these do not appear to be based on any research and tend to 

overestimate the utilisation of the short lane. 

Initial small scale research by Royce et al. (2006) identified that there was a direct correlation 

between the length of ATLs and their usage rates. While the length was a crucial variable in 

two of the models discussed, it found that the use of short lanes was substantially less than that 

predicted by these methods.  

Karma et al. (2010) undertook further research to confirm the existence of the relationship 

between ATL length and utilisation at sites across New Zealand. The correlation was 

confirmed (R2 = 0.75), though not as robust as the original research by Royce et al. (2006). 

Unfortunately, while the pattern was confirmed, the study collected insufficient data to 

develop a reliable model for predicting short lane utilisation. 



University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

21 

 

 

Figure 2-6 – Length to utilisation correlation (Karma et al. 2010) 

Lee et al. (2005) also found that the length of the lane formed a positive relationship with its 

utilisation. 

 

2.12 Short auxiliary through lane design guidance 

Transportation Research Board of the National Academies (2011) gives that many of the 

design criteria that apply to continuous lanes should also apply to auxiliary lanes: 

• The geometric design should meet driver expectations; 

• Signing and pavement markings should reinforce the message conveyed by 

the geometric design of the lane; 

• Adequate sight distance should be provided to facilitate decision making and 

emergency stops; and 

• Locate driveways and other impedances outside of the intersection influence 

area (this includes the entire length of the short auxiliary lane). 

Transportation Research Board of the National Academies (2011) goes on that the unique 

design characteristics that apply to ATLs are the determination of their length and the use of 

applicable signs and line marking. It suggests that the upstream length should be adequate to 

contain the predicted queue length for the lane, but also be longer than the queue length in the 
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adjacent continuous lane to ensure that the ATL remains accessible throughout the cycle. The 

downstream length is advised to be long enough to allow a stopped vehicle to accelerate to the 

prevailing traffic speeds before reaching the merging taper. The availability of gaps in the 

adjacent CTL also needs consideration, to allow comfortable and safe merging. The report 

implies that extending the length may be required if the availability of gaps is low. 

In section 2.11.1, Australian Road Research Board (1968) spelt out a similar requirement for 

approach length based on the likely back of queue length. 

 

2.13 Research methodology used in similar research 

Karma et al. (2010) used the following methodology sequence in their research to develop a 

correlation between ATL utilisation and auxiliary lane length: 

• Development of site selection criteria 

• Development of study limitations 

• Selection of sites 

• Grouping of sites by number of lanes 

• Collection of traffic volume data from SCATS 

• Collection of geometric data against aerial layout plans 

• Compare utilisation to lane length 

• Compare utilisation to demand volumes 

• Analyse prediction methods for lane utilisation. 

Following the development of this relationship, Karma et al. (2010) suggested that future 

research would gather a larger statistical sample of case study sites, and use multiple linear 

regression analysis to develop a model for relating auxiliary lane length and utilisation. 

In their report on traffic distribution on three-lane freeways, Okura and Somasundaraswaran 

(1996) followed a similar method, by first selecting a series of sample sites and collecting the 

applicable data. The independent and dependent variables were then plotted to visualise the 

patterns in the data, and then a model was developed using stepwise regression analysis. The 

report developed two different models here. The models were compared against R-squared 

values to determine the accuracy of the fit of each. From this, it was possible to decide on 

which model was more accurate and which independent variables had the most significant 

impact on the dependent variable. Hurley (1998) followed a similar methodology in his study 

into the utilisation of lane reductions downstream from double turning lanes. 
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Bugg et al. (2013) was interested in the likelihood of a driver choosing the auxiliary lane based 

on a given scenario, so the methodology used statistical analysis methods such as probit and 

logit models to develop the relationship, however the preceding methodology aligned with that 

used by Karma et al. (2010) and Okura and Somasundaraswaran (1996). 

Transportation Research Board of the National Academies (2011) developed their model for 

lane utilisation based on the degree of saturation using the following methodology: 

• Set data collection requirements 

• Collection of field data from case study sites 

• Plot various independent variable against the dependent variable (utilisation) 

to compare the relationship visually. 

• Develop a single variable relationship using least squares (regression) and 

compare the resulting accuracy of fit. 

• Compare the relevance of the selected variables. 

• Undertake non-linear multi-variable regression analysis to develop a model 

of the relationship from the key variables identified earlier. Development of 

two models was required, with upper limits placed on these. 
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3. Background Information 

3.1 SCATS (Sydney Coordinated Adaptive Traffic System) 

Lowrie (1992) describes SCATS as 

‘a computer-based area traffic signal control system. It is a complete system of hardware, 

software and control philosophy. It operates in real-time, adjusting signal timings 

throughout the system in response to variations in traffic demand and system capacity.’ 

This description carries on to state that the primary purpose of the SCATS system is to 

minimise stops and thus overall delays within the system; this maximises the total system 

capacity and reduces the possibilities of traffic jams by controlling queues. 

The program is an adaptive system, as opposed to a fixed-time system; this means that the 

system modifies cycle times and phase splits in response to real-time vehicle demand. These 

variables are reviewed every cycle and can be altered every cycle if required (Lowrie 1992). 

The system modifies the cycle time to maintain a degree of saturation overall of around 0.9, 

with phase splits varied by a small amount each cycle to give equal degrees of saturation on 

competing approaches (Roads and Maritime Services NSW n.d.). 

 

Figure 3-1 SCATS Interface (Department of State Growth & Wyminga 2019) 
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The system was developed in 1975 by the (then) Department of Main Roads NSW, now known 

as Roads and Maritime Services NSW, to provide more capacity and efficiency within the 

Sydney road network, however, it has since been adopted by Australian and New Zealand 

Government road authorities (as well as some overseas jurisdictions) as the preferred system 

of choice, with all major and minor cities in Australia and New Zealand using SCATS (Roads 

and Maritime Services NSW n.d.). 

The SCATS system records all the data it uses in the SCATS Traffic Reporter system. There 

are two modules within the Traffic Reporter, namely the Strategic Monitor and Traffic Flow 

modules. The Strategic Monitor can be used to extract the historical timing data used at the 

site; for this research, it includes the cycle times and phase times used. The Traffic Flow 

module records the number of vehicles crossing each detector within a specified time – as 

small as 5-minute bins (Department of State Growth & Wyminga 2019). 

 

3.2 Vehicle detectors at traffic signals 

Federal Highway Administration (2004) advises that vehicle detectors (sensors) are used to 

inform a traffic signal controller (the computer that controls the traffic signals) of the presence 

of a vehicle at a specified location at an intersection, such as a particular lane on a specific 

approach. They can also be used to determine the presence of a pedestrian or cyclist. 

Federal Highway Administration (2006) goes on to say that traffic monitoring data, both in a 

real-time and historical sense, is collected using these vehicle presence signals as well. 

Roads and Maritime Services NSW (n.d.) state that while the SCATS system can operate with 

many detector technologies, a preference for inductive loop detectors exists because of their 

high measurement accuracy and reliability. Mannering et al. (2009) describe this technology 

as a loop (or coil) of wire embedded in the pavement that has an electrical current passed 

through it. When a metal object (such as a vehicle) passes over the wire loop it alters the 

inductance level of the wire; this change in current is picked up by a monitor and registers as 

a vehicle. 
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Figure 3-2 SCATS vehicle detector layout (Department of State Growth & Wyminga 2019) 

 

3.3 Methods of collecting lane flow data 

Akcelik (1981) describes a technique used to determine lane flow and saturation flow rates by 

manual counts. The methods require counting the number of vehicles flowing in three different 

time segments of the movement phase. 

Karma et al. (2010) have shown that using detector loops to count vehicles (such as SCATS) 

is accurate to within 10-15% of manual vehicle counts when calculating lane utilisation at 

existing sites. 
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4. Methodology 

 

4.1 Selection of case study sites 

This research used case study sites to provide real-world data to analyse. A sufficiently large 

sample of case study sites must be analysed to ensure the accuracy and application of the 

resulting model. 

As discussed in detail in Chapter 2 Literature Review, there is a significant number of variables 

that can contribute to the utilisation of auxiliary through lanes. Research has been undertaken 

to identify those variables that have the most significant effect on auxiliary through lane 

utilisation, these are the subject of this report, but the project cannot discount the sum of those 

variables with minor impacts. Case study sites were selected where these minor variables were 

not present to remove the effect of these variables and isolate those variables that are the focus 

of this study. 

The scope of what constitutes a short auxiliary through lane also needed to be defined. For this 

study, a short auxiliary through lane is a lane that is added on the left of a continuous through 

lane immediately before an intersection and is dropped from the left immediately following 

an intersection. An upper limit of 1000 m applied to the commencement and termination of 

the lane. The study did not consider a drop off of a previously continuous lane after an 

intersection or the addition of a continuous lane following an intersection. 

The following set of site selection criteria applied in the selection of sites for this study: 

• The intersection is signalised. 

• The intersection is controlled by SCATS. 

• All approach lanes must have a separate vehicle detector. 

• A short auxiliary through lane must be present, as defined earlier. 

• Turning movements must separate from the auxiliary lane before the intersection. 

• Bus stops should not be present within or adjacent to the auxiliary lane, upstream or 

downstream of the intersection. 

• Sites should not have frequent parking and un-parking movements adjacent to the 

auxiliary lane. 

• Sites should not have a situation where motorists must use the auxiliary lane to enter 

a side road or other destination downstream. 
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• Consider the presence of accesses adjacent to the auxiliary lane, low volume 

residential accesses are unlikely to affect results but avoid accesses with large traffic 

generation. 

• The number of continuous through lanes should be no more than three. 

Approaches were analysed individually at intersections with multiple applicable approaches. 

Following the identification and selection of sites, the approaches were grouped by the number 

of continuous through lanes present, with analysis occurring as an aggregate of all approaches 

and in separate groups to control the potential variability that may result from differing lane 

numbers. 

Two sites were reserved from the analysis as they were used to test the model against other 

prediction models later in the project. 

 

4.2 Data collection 

4.2.1 Auxiliary through lane lengths 

The analysis determined the auxiliary lane length for each approach, dividing the length of the 

lane into three segments:  

• the approach length (d1);  

• the intersection length (d2); and  

• the departure length (d3).  

The analysis defined the end-points for the measurements as the stop lines (or projection 

thereof) and the taper point, i.e. it did not include the length of the taper. As discussed in 

Chapter 2 Literature Review, the length of the taper is not considered to affect the utilisation, 

given the layout provides enough distance to merge. 

Aerial imagery was used to measure the lengths, recorded to the nearest metre. 

The total length, D, was computed from these values as well, where: 

D    =    d1  +  d2  +  d3                 (4.1) 

 



University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

29 

 

 

Figure 4-1 Diagram of ATL length dimensions (Karma et al. 2010) 

4.2.2 Approach characteristics 

The study required the calculation of theoretical lane capacity (Q). For the Austroads (2017) 

method of calculating this, both lane widths and lateral clearances (i.e. shoulder widths) are 

required to determine the width factor (fw); capture of this data used scaled measurements of 

aerial imagery. The analysis identified a typical lane width and clearance for each approach. 

Austroads (2017) bunches lane widths into three groups: 2.7 m, 3.2 m and 3.7 m, and also 

bunches lateral clearance into three groups: 0 m, 1 m, and 2 m. While it is possible to 

interpolate between these values, given the level of accuracy able to be achieved from 

measurements of satellite imagery, this study categorises the approaches into these groupings. 

Approach grades need to be evaluated to determine the level of impact a heavy vehicle would 

have in the traffic stream, with the effects measured in terms of equivalent passenger car units 

(EHV); this combined with the proportion of heavy vehicles (PHV) was used to determine the 

heavy vehicle factor (fHV) in the capacity calculations. Austroads (2017) categorises grades for 

this purpose as level, moderate or long sustained. Site imagery was used to determine the 

magnitude of the slope from visual appearance, with each approach categorised into one of the 

three groups. 

4.2.3 Traffic flow data 

The analysis captured the flow rate of vehicles in each continuous through lane and the 

auxiliary through lane (qTL, qTR, qTC and qATL). As specified in the site selection criteria, SCATS 

controls each site, and each lane has an individual vehicle counter. Also from the selection 

criteria, turning traffic must separate from the lanes before the intersection, this means that the 

traffic counts extracted from the SCATS Traffic Reporter module will directly report the 

through movement flows for each lane. 
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Figure 4-2 SCATS Traffic Reporter output (Department of State Growth & Wyminga, 2019) 

As the peak hour is the most critical period for intersection capacity, it was the focus of this 

research. The project undertook analysis for both AM and PM peak hours for each case study 

site. As intersections (and indeed individual approaches) have differing peak hour times, the 

peak hour time period was determined individually for each approach based on the peak flow 

period observed. 

The final variable in determining the heavy vehicle factor (fHV) for capacity calculations is the 

proportion of heavy vehicles in the traffic stream (PHV). While SCATS was the source for 

traffic flow data, the vehicle detectors used at most intersections are unable to discern the type 

of vehicle detected — instead, collation of this data used nearby traffic counter sites. The 
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applicable State Road Authorities make this information available on publicly available 

websites, and this was the source used for this data. 

4.2.4 Speed limits 

The project used the legal posted speed limit data as a variable in the model. While prevailing 

traffic speeds will vary, it is related to the posted speed limit. Each approach to the same 

intersection can have different speed limits, so the speed limit was captured for each approach 

individually. 

The applicable State road authorities upload speed limit information as a spatial dataset; these 

were the primary source for the speed limit data. Where this information was unavailable or 

missing, online ‘street view’ imagery was used to locate speed limit signs to determine the 

applicable speed limit. 

4.2.5 Traffic signal cycle and phase timing data 

The project identified the following variables for consideration in the analysis: 

• Cycle Time (c) 

• Through Movement Green Time (G) 

• Through Movement Green Phase Split (G/c) 

The assumption that start loss and end gain can be considered equal, presented in section 2.2, 

was assumed here: 

g    =    G  –  start loss  +  end gain                (2.1) 

Thus, 

g    =    G 

This information is also required to calculate the capacity (Q) of each approach and thus, the 

movement degree of saturation (X). 

As discussed in section 3.1, the timing at a signalised intersection varies with the prevailing 

traffic conditions; this can be as often as every cycle. Timing parameters for AM and PM peaks 

were captured separately, as there are typically different timing parameters for each period. 

The analysis required selection of a typical representation of the cycle time and green time/ 

phase splits for each approach; these values are not constant throughout the hour, but the 

project is dealing with a single hour resolution.  
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The Strategic Monitor module within the SCATS Traffic Reporter was used to view historical 

timing data to understand the typical timing arrangements; this included review of the traffic 

signal configuration plan and specific reference to the phase diagram. 

 

Figure 4-3 SCATS Phase diagram (Department of State Growth & Wyminga, 2019) 

The capture of the timing arrangements was for the same period as the traffic flow data for 

each approach, and where possible were from the same day. 
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Figure 4-4 SCATS Strategic Monitor output (Department of State Growth & Wyminga, 2019) 

 

4.3 Data analysis 

4.3.1 Determination of observed lane utilisation 

The dependent variable in this study is the utilisation ratio of the auxiliary through lane. The 

utilisation ratio for the case study sites needed to be calculated to relate to other site variables 

in the analysis. The utilisation ratio of the subject lane (as identified in section 2.10) is 

calculated by dividing the degree of saturation of the subject lane by that of the critical lane: 

pi    =    Xi  /  X    =    (q1 c1  /  s1 g1)  /  (q c  /  s g) 

This equation can be simplified when considering lanes involving the same movement at the 

same approach, resulting in equation 2.14 (see section 2.10 for the derivation):  

pi    =    q1  /  q                (2.14) 

Simplification of the equation means that the only variables required to determine the 

utilisation ratio for the auxiliary lane (pATL) are the flow rate in the auxiliary lane (qATL) and the 

flow rate in the critical lane (qc). 

The critical lane is the lane having the highest flow rate in the traffic flow data. The study only 

calculated the utilisation of the auxiliary through lane. 

The flow rates at approaches vary with time over a day. As such, utilisation was calculated for 

each auxiliary through lane for their respective AM and PM peak hour periods. 
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4.3.2 Analysis of length parameters 

The first objective of this research was to confirm that a strong relationship exists between the 

length of auxiliary lanes and their utilisation, as suggested by previous research (see Chapter 

2). 

Section 4.2.1 identified three length variables, the relationship between lane utilisation and 

these length variables, as well as a combination of these length variables, were analysed: 

• Approach Length (d1) 

• Departure Length (d3) 

• Approach Length + Departure Length (d1  +  d3) 

• Approach Length + Intersection Width (d1  +  d2) 

• Departure Length + Intersection Width (d3  +  d2) 

• Approach Length + Departure Length + Intersection Width (D  =  d1  +  d3  +  d2) 

While there are two periods, the AM and PM peak periods, the analysis took the average 

utilisation across the two periods as the length variable is constant for both. Approaches were 

also analysed as an aggregate, as well as in their one, two and three continuous lane groupings. 

A scatter plot was produced for each variable (or set of variables) against the lane utilisation 

to provide a visual representation of the relationship.  

 

Figure 4-5 Scatter plot relationship (Karma et al. 2010) 

A line of best fit was generated using the linear regression/ least-squares method to define this 

relationship, and an R-squared value created to provide a measure of the goodness of fit of this 

relationship. 

The visual plot was considered alongside the R-squared value to determine if these 

relationships are strong. 
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4.3.3 Analysis of traffic signal timing parameters 

Previous research (see Chapter 2) also identified a correlation between lane utilisation and the 

green time parameters at traffic signals. While length is the primary variable investigated in 

this study; these variables were also considered alongside as they may provide some 

explanation of model variance that might not be explained by length alone.  

In particular, the analysis focused on the following traffic signal timing parameters: 

• Cycle Time (c) 

• Through Movement Green Time (G) 

• Green Time / Cycle Time Split (g/c) 

The start-loss was assumed to be equal to the end-gain, as discussed in section 2.2. Then from 

equation 2.1, g is equivalent to G: 

g    =    G  –  start loss  +  end gain                (2.1) 

Analysis of these three variables followed the same process as the length variables discussed 

in section 4.3.2; generation of a scatter plot, a line of best fit and an R-square value to 

determine the goodness of fit. As there are two periods with differing traffic signal timing 

parameters, the AM and PM periods were analysed separately for each approach. Approaches 

were also analysed as an aggregate, as well as in their one, two and three continuous lane 

groupings. 

The plots and R-squared values were considered to determine if the relationship is compelling. 

4.3.4 Analysis of the degree of saturation 

As with the traffic signal timing variables in section 4.3.3, the movement degree of saturation 

(X) was considered alongside the primary length variables, as they may be able to explain 

some model variance that is unexplained by the length variables alone. 

Firstly, the analysis required the calculation of the degree of saturation for the through 

movement (XT). Section 2.3 discussed the degree of saturation, with the following equation 

given: 

X    =    q  /  Q    =    q c  /  s g                (2.6) 

It defines the degree of saturation (X) as the ratio of the arrival flow rate (q) to the capacity 

(Q). 

The arrival flow rate for the through movement (qT) is simply the sum of the through vehicle 

movements in all through lanes (qTL, qTR, qTC and qATL) with this data captured in section 4.2.3.  
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The determination of the actual on-site lane capacity can be a complex task and is outside the 

scope of this study. Instead, the theoretical lane capacity was determined. The capacity was 

calculated by multiplying the saturation flow rate by the through movement green phase split. 

This study used the Austroads (2017) method presented in section 2.5 to calculate the capacity 

of a single uninterrupted lane, equivalent to the saturation flow rate: 

Q    =    2400 fw fHV               (2.11) 

The lane widths and lateral clearances for each approach were compared with Table 2-1 to 

determine the width factor (fw) for that approach, and the approach grades and heavy vehicle 

proportions for each approach were compared with Table 2-2 to determine the heavy vehicle 

factor (fHV) for that approach. 

Then using equation 2.11 the through movement capacity for each lane was calculated. The 

overall capacity for the through movement (Q) at each approach is the product of the lane 

capacity and the number of through lanes (continuous lanes and auxiliary lane). 

All the information was then in a form that allowed calculation of the degree of saturation for 

the through movement at each approach. 

Using the same technique as discussed in sections 4.3.2 and 4.3.3, the analysis compared the 

degree of saturation and the auxiliary lane utilisation. As there are two periods, the AM and 

PM periods were analysed separately for each approach. Approaches were also examined as 

an aggregate, as well as in their one, two and three continuous lane groupings. 

Again, the relationship was reviewed to determine the strength of it. 

4.3.5 Speed limit analysis 

Previous research into the effect of speed limits on lane-changing behaviour are conflicting, 

and it is unclear how applicable this research is to lane changing behaviour at a signalised 

intersection, including lane changes into an auxiliary through lane. 

This study included the approach speed limit as a variable that may provide some explanation 

into the variance of lane utilisation. 

As with other variables, the analysis produced a scatter plot relating lane utilisation and the 

speed limit for each approach; this provided a visual representation of the relationship. The R-

square value was also determined; both were reviewed to conclude the goodness of fit of this 

relationship. 
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4.3.6 Multiple linear regression analysis 

After reviewing all the variables individually, multiple linear regressions methods were used 

to analyse the relationship between auxiliary lane utilisation and the variables combined. The 

project produced an equation of the following form: 

pATL    =    a  +  ∝1b  +  ∝2c …  +  ∝nz 

where: 

pATL  = Auxiliary Through Lane Utilisation Ratio 

a  = Constant 

∝1, ∝2, ∝n = Variable of Coefficient 

b, c, z  = Explanatory Variables 

A correlation matrix was also developed to refine the model further. The matrix shows the 

correlation between all the variables. The matrix was used to identify those variables that were 

highly correlated, enabling further analysis and removal from the model if applicable. The 

project defined that variables are correlated when the correlation value exceeds 0.5. 

As there are two periods, the AM and PM periods were analysed separately for each approach. 

Analysis of approaches was undertaken as an aggregate, as well as in their one, two and three 

continuous lane groupings. 

An R-squared value was produced to determine the goodness of fit of the relationship; 

however, the ‘adjusted’ R-squared value was used instead to account for the fact that the 

relationship involves multiple variables. A plot was produced to compare the predicted results 

made using the relationship and the observed results. Both results were considered to 

determine the strength of the relationship. 

4.3.7 Selection of final model 

In considering the relationships for the individual variables, the correlation matrix and the 

multiple variable analysis conducted in sections 4.3.2 to 4.3.6, the project selected the 

relationship with the most robust fit as the final mathematical model for this research. 
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4.4 Model comparison 

4.4.1 Predict utilisation using study model 

The model selected in section 4.3.7 was used to estimate auxiliary through lane utilisation at 

two sites to test its applicability. The sites used in this stage were different from those used to 

develop the model, as mentioned in section 4.1, with the data for these sites captured alongside 

the case study approaches. 

4.4.2 Predict utilisation using comparison models 

The short auxiliary lane utilisation at these sites was also predicted using the following 

methods discovered during the literature review: 

• Australian Road Capacity Guide method (see section 2.11.1) 

• Australian Road Research method (see section 2.11.2) 

• SIDRA method (see section 2.11.3) 

• Transport Research Board method (see section 2.11.5) 

4.4.3 Determine observed utilisation 

The observed lane utilisation was determined at the comparison test sites using the same 

method described in section 4.3.1. 

4.4.4 Model results comparison 

The analysis undertook an assessment of the observed utilisation and the predicted utilisations 

generated by each of the models. The actual and relative difference was calculated, with the 

average absolute difference used as a measure of error for each model. 

While this is only a small number of test sites for comparison, it will enable some discussion 

on the applicability of the model developed within this study. 
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5. Results 

5.1 Selection of case study sites 

The project sought intersections across multiple States to get a sufficiently large sample size. 

In the end, site selection incorporated intersections from Tasmania, Victoria and Western 

Australia. The first pass identified a large number of sites; however, application of the site 

selection criteria produced in section 4.1 reduced the size of the sample significantly. The final 

list of case study sites selected for this study, as well as their site ID, is below: 

Tasmania 

T1 – Brooker Highway/ Lampton Avenue, Derwent Park. 

T2 – Brooker Highway/ Derwent Park Road, Derwent Park. 

T3 – Brooker Highway/ Bowen Road, Ashbolt Crescent, Lutana. 

T4 – Brooker Highway/ Risdon Road, Lutana. 

T5 – Hobart Road, Kings Meadows Connector, Kings Meadows. 

T6 – Tarleton Street/ Wright Street, East Devonport. 

Victoria 

V1 – North Road/ Warrigal Road, Oakleigh. 

V2 – Warrigal Road/ South Road, Oakleigh South. 

V3 – Springvale Road/ Governor Road/ Hutton Road, Keysborough. 

V4 – South Gippsland Highway/ Camms Road, Cranbourne. 

V5 – Springvale Road/ Burwood Highway, Burwood East. 

V6 – Boronia Road/ Scoresby Road, Boronia. 

V7 – Canterbury Road/ Dorset Road, Bayswater North. 

V8 – Mt Dandenong Road/ Dorset Road, Croydon. 

V9 – Melton Highway/ Calder Park Drive, Sydenham. 

V10 – Princes Highway/ Geelong Street, Footscray. 

V11 – Heaths Road/ Derrimut Road, Hoppers Crossing. 

V12 – Princes Highway/ Murrumbeena Road, Murrumbeena. 
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V13 – Princes Highway/ Warrigal Road, Oakleigh. 

V14 – Princes Highway/ Wellington Road, Clayton. 

V15 – Princes Highway/ Gladstone Road, Dandenong.  

V16 – Princes Highway/ Old Geelong Road, Laverton. 

Western Australia 

W1 – Reid Highway/ Lord Street/ Daviot Road, Beechboro. 

W2 – Reid Highway/ West Swan Road, Caversham. 

W3 – Roe Highway/ Toodyay Road, Stratton. 

W4 – Lloyd Street/ Clayton Street, Midland. 

W5 – Albany Highway/ Royal Street, Kenwick. 

W6 – South Western Highway/ Thomas Road, Byford. 

W7 – Armadale Road/ Railway Avenue, Armadale. 

W8 – Cockburn Road/ Orsino Boulevard, Coogee. 

W9 – Tonkin Highway/ Thomas Road, Oakford. 

 

The analysis includes a total of 31 sites for review, with 57 applicable approaches. 

Categorising sites by their number of approach lanes gives 20 single-lane approach, 24 two-

lane approach and 13 three-lane approach sites. Attempts were made to increase the number 

of three full-length through lane approaches for analyses, but such large signalised 

intersections that fit the selection criteria are not overly frequent. 

The project reserved the western approach at site V2 and southern approach at site V9 from 

the case study pool for inclusion in the model comparison as proposed in section 4.1.  
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5.2 Data collection 

5.2.1 Auxiliary through lane lengths 

The analysis determined three length variables (d1, d2 & d3, as defined in section 4.2.1) through 

measurement of aerial imagery (to the nearest meter), with the total length D calculated from 

the sum of these elements. Table B-1 presents this data. 

5.2.2 Approach characteristics 

Typical lane widths, lateral clearances and approach grades were determined using aerial and 

street view imagery rounded to the nearest values presented in Table 2-1 and Table 2-2. Table 

B-2 presents this data. 

5.2.3 Traffic flow data 

The project captured traffic flow data for the 30th April 2019; this day was representative of 

traffic flows unaffected by weekends, public holidays or school holidays. 

Traffic signal site plans and configuration sheets were required to determine the loop number 

applicable to each respective lane at a site to enable extraction of traffic flow data; the project 

sourced this information from the Department of State Growth and Wyminga (2019), 

VicRoads (2019b) & Main Roads Western Australia and Saunders (2019). 

Department of State Growth and Wyminga (2019), VicRoads (2019a), Main Roads Western 

Australia and Saunders (2019) and VicRoads and Lee (2019) supplied the SCATS traffic 

detector counts for this study. 

Collection of heavy vehicle flow proportions used the Department of State Growth (2019b), 

Main Roads Western Australia (2019a) and VicRoads (2019c) databases. 

Table B-3 presents the traffic flows for each lane and the proportion of heavy vehicles in the 

traffic stream. 

5.2.4 Speed limits 

The Department of State Growth (2019a), Main Roads Western Australia (2019b) and 

VicRoads (2019d) databases provided the speed limit data. These datasets are spatially based 

with the speed limit directly read off the map using a legend, or by clicking on the road 

centreline to bring up the properties, depending on the source. Table B-4 tabulates this data. 
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Figure 5-1 Speed limit dataset (Main Roads Western Australia 2019) 

5.2.5 Traffic signal cycle and phase timing data 

Extraction of this data required the review of the configuration sheet for each signalised 

intersection to determine which phase(s) applied to the through movements in question; the 

Department of State Growth and Wyminga (2019), VicRoads (2019b) & Main Roads Western 

Australia and Saunders (2019) supplied these. 

The Department of State Growth and Wyminga (2019), Main Roads Western Australia and 

Saunders (2019), VicRoads and Lee (2019) and VicRoads (2019e) also supplied the SCATS 

Strategic Monitor data required to determine the timing settings used on the date and time in 

question. 

Unfortunately, data was unavailable for sites T5N and W9W; the project removed these sites 

from further analysis. 

Due to the nature of the SCATS system, cycle times and phase times are variable. The analysis 

selected a typical cycle times and phase time for each approach based on a review of times 

used over the peak period; Table B-5 presents this information. 
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5.3 Data analysis 

5.3.1 Determination of observed lane utilisation 

Calculation of the utilisation of each test case ATLs followed the proposed methodology given 

in section 4.3.1; Table C-3 presents these results. 

5.3.2 Analysis of length parameters 

Figure 5-2 through to Figure 5-13 presents the relationship for the length variables, and 

combinations of length variables, to the ATL utilisation in scatter plots. The first graph for 

each variable shows the association for all sites combined, while the second graph groups the 

sites by the number of CTLs present. 
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Approach length (d1) 

 

Figure 5-2 Approach length scatter plot 

 

Figure 5-3 Approach length (by CTLs) scatter plot 
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Departure length (d3) 

 

Figure 5-4 Departure length scatter plot 

 

Figure 5-5 Departure length (by CTLs) scatter plot 
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Approach length + departure length (d1  +  d3) 

 

Figure 5-6 Approach & departure length scatter plot 

 

Figure 5-7 Approach & departure length (by CTLs) scatter plot 
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Approach length + intersection width (d1  +  d2) 

 

Figure 5-8 Approach & intersection length scatter plot 

 

Figure 5-9 Approach & intersection length (by CTLs) scatter plot 
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Departure length + intersection width (d3  +  d2) 

 

Figure 5-10 Departure & intersection length scatter plot 

 

Figure 5-11 Departure & intersection length (by CTLs) scatter plot 
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Approach length + departure Length + intersection Width (D  =  d1  +  d3  +  d2) 

 

Figure 5-12 Approach, departure & intersection length scatter plot 

 

Figure 5-13 Approach, departure & intersection length (by CTLs) scatter plot 
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5.3.3 Analysis of traffic signal timing parameters 

The relationship for the three traffic signal timing parameters has been presented in Figure 

5-14 to Figure 5-19. The first graph shows the relationship with all sites combined, the second 

shows the relationships with the sites grouped by the number of CTLs. 

Cycle time (c) 

 

Figure 5-14 Cycle time scatter plot 

 

Figure 5-15 Cycle time (by CTLs) scatter plot 
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Green time (G) 

 

Figure 5-16 Green time scatter plot 

 

Figure 5-17 Green time (by CTLs) scatter plot 
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Green time / cycle time split (g/c) 

 

Figure 5-18 Green time/ cycle time split scatter plot 

 

Figure 5-19 Green time/ cycle time split (by CTLs) scatter plot 

y = -0.6565x + 0.6784
R² = 0.1065

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p
A

TL

Green Time / Cycle Time (g/c)

Green time / cycle time (g/c)

y = -0.1743x + 0.7509
R² = 0.0129

y = -0.1366x + 0.3235
R² = 0.0108

y = -0.4051x + 0.4912
R² = 0.0398

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p
A

TL

Green Time (g) / Cycle Time (c)

Green time / cycle time (g/c) grouped by no. CTLs

1 CTL

2 CTLs

3 CTLs



University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

53 

 

5.3.4 Analysis of the degree of saturation 

Figure 5-20 and Figure 5-21 show the relationship between the degree of saturation and the 

ATL utilisation, with the first graph showing the relationship for all sites combined and the 

second graph showing the relationship by the CTL quantity grouping. 

 

Figure 5-20 Degree of saturation scatter plot 

 

Figure 5-21 Degree of saturation (by CTLs) scatter plot 

y = -0.0612x + 0.4493
R² = 0.003

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

p
A

TL

Degree of Saturation (XT)

Degree of Saturation (XT)

y = 0.3708x + 0.5184
R² = 0.1257

y = 0.1515x + 0.1705
R² = 0.042

y = 0.2361x + 0.1338
R² = 0.0746

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

p
A

TL

Degree of Saturation (XT)

Degree of Saturation (XT) grouped by no. CTLs

1 CTL

2 CTLs

3 CTLs



University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

54 

 

5.3.5 Speed limit analysis 

Figure 5-22 represents the relationship between the posted speed limit on the approach and the 

ATL utilisation. 

 

Figure 5-22 Speed limit scatter plot 

 

5.3.6 Multiple linear regression analysis 

The relationships between the individual independent variables and ATL utilisation were 

found to be linear, so a linear regression analysis is appropriate. 

Initially, the multiple regression analysis considered all variables except the number of CTLs, 

producing ‘Model 1’, this resulted in an adjusted R-square value of 0.353. Section C.4.1  

presents the full results of this regression analysis.  

The analysis then included the number of CTLs present as a variable along with all other 

variables and undertook another multiple regression analysis; giving ‘Model 2’. Section C.4.2 

shows the full results, with the relationship giving an adjusted R-square value of 0.484.  

The project then removed the green time and cycle time/ green time split from the regression 

analysis, as results showed that they had large P-values; this produced the third model run, 

‘Model 3’. This relationship provided an R-square value of 0.487, section C.4.3 presenting the 

full results.  

Attempting to improve model accuracy further, the variable with the next highest P-value, the 

speed limit, was removed, and a fourth regression step analysed giving ‘Model 4’. The 

relationship holds an R-square value of 0.482, with section C.4.4 showing the full results. 

y = -0.0096x + 1.1024
R² = 0.1143

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

p
A

TL

Speed Limit (km/h)

Speed Limit



University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

55 

 

The analysis undertook another regression step based on ‘Model 3’ with just the total length 

(D) variable and not the approach (d1) or departure (d3) length variables in an attempt to 

simplify the relationship; giving ‘Model 5’; this produced an R-square value of 0.472 with the 

full results shown in section C.4.5. 

Table 5-1 – Correlation matrix for all variables 

  d1 d3 D c G g/c XT v pATL 

d1 1.0000                 

d3 0.2344 1.0000               

D 0.8183 0.7433 1.0000             

c 0.0011 -0.0863 -0.0559 1.0000           

G 0.1324 0.0391 0.0908 0.7921 1.0000         

g/c 0.1679 0.1464 0.1741 0.3465 0.8315 1.0000       

XT -0.1265 -0.1415 -0.1482 0.3593 0.0481 -0.1973 1.0000     

v 0.0177 0.0280 0.0369 0.5821 0.5501 0.3817 0.3350 1.0000   

pATL 0.2196 0.3034 0.3415 -0.4489 -0.4435 -0.3263 -0.0551 -0.3275 1.0000 

 

The analysis produced a correlation matrix for all variables. Reviewing this suggested a high 

degree of correlation between D and the d1 and d3 variables; the hypothesis expected this as 

they are not wholly independent of each other. The d1 and d3 variables are independent of each 

other and do not have a strong correlation, so an attempt was made to improve on  ‘Model 3’ 

(which had the highest R-square value so far) by removing the D variable from the regression 

analysis; giving ‘Model 6’; this did not improve the model’s variability as the R-square value 

dropped to 0.469 from 0.487. Section C.4.6 gives the full results of this analysis.  

A high correlation was also found to exist between the G variable and the c, g/c and v variables. 

However, the project had previously removed the G variable from Models 3-6 due to the high 

P-value, so further analysis was not required here. 

The v and c variables also register as having a degree of correlation; however, the project did 

not remove either from the analysis; this is discussed further in the discussion in section 6.3.6. 
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5.3.7 Selection of final model 

The third multiple variable regression attempt had the highest R-square value; however, the 

D, d1 and d3 variables exhibited high correlation and are not independent of each other, this is 

discussed further in section 6.3.6. Model 6 has been selected as the best relationship to use as 

a model for this study as the model with the least variability with independent variables. The 

variable coefficients determined by the analysis, shown in Table C-21, have been placed into 

an equation to produce the ATL utilisation model: 

   (%)     34.58 X   -  21.96 CTL  +  0.48 v  +  

                         0.05 d3  +  0.02 d1  -  0.38 c +0.71

ATL T =
                (EQN 5.1) 

 

Figure 5-23 Study developed model validity plot 

Figure 5-23 shows the results of a scatter plot created to compare the predicted ATL utilisation 
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5.4 Model comparison 

5.4.1 Predicted utilisation using study model 

The model developed in this study, presented at section 5.3.7, was used to predict the ATL 

utilisation for both AM and PM periods at the V2W and V9S sites; Table C-22 shows the 

model inputs and Table C-23 gives the results of the analysis. 

5.4.2 Predicted utilisation using comparison models 

The models selected for the comparison were each used to predict the ATL utilisation for AM 

and PM periods at the V2W and V9S test sites, the tables below show the inputs and results 

for the respective models: 

• Australian Road Capacity Guide method, in Table C-24. 

• Australian Road Research method, in Table C-25. 

• SIDRA method, in Table C-26. 

• Transport Research Board method, in Table C-27. 

5.4.3 Observed utilisation 

Section 5.3.1 included the calculation of these results, with Table C-3 showing these results as 

well. 

5.4.4 Model results comparison 

Table 5-2 summarises the results from the model predictions made in sections 5.4.1 and 

5.4.2, along with the observed ATL utilisation for the test sites from section 5.4.3. 

The residual value is the difference between the predicted and observed value for the ATL 

utilisation. 

The analysis computed the average of the absolute values of the residual for each model; this 

gave a measure for the average error for each model across all four test scenarios. 
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Table 5-2 Model comparison results 

  
Observed Study 

Model 

ACRG 

Method 

ARR 

Method 

SIDRA 

Method 

TRB 

Method 

V2W 

AM 

pATL 0.41775 0.29188 1.00000 0.42857 0.64872 1.18234 

Residual 0.00000 -0.1259 0.58225 0.01082 0.23097 0.76459 

V2W 

PM 

pATL 0.48812 0.28124 1.00000 0.42857 0.64872 1.22511 

Residual 0.00000 -0.2069 0.51188 -0.05955 0.16060 0.73699 

V9S AM pATL 0.63265 0.50387 1.00000 0.33333 0.49487 0.29724 

Residual 0.00000 -0.1288 0.36735 -0.29932 -0.13778 -0.33541 

V9S  

PM 

pATL 0.69565 0.45167 0.70586 0.33333 0.49487 0.22618 

Residual 0.00000 -0.244 0.01021 -0.36232 -0.20078 -0.46947 

 

Absolute 

Average 

Residual 

  
0.17638 0.36792 0.18300 0.18254 0.57662 
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6. Discussion 

6.1 Site selection 

The importance of rigorous site selection criteria cannot be understated here. As discussed by 

Royce et al. (2006), many variables can affect the utilisation of a lane at an intersection, with 

Lee and Park (2012) discussing the many factors affecting lane choice more generally. This 

research focuses on and examines only a select few of these factors. Outside factors need to 

be limited as far as practicable to isolate the effect of the subject variables. The site selection 

criteria set out in section 4.1 for this study aimed to eliminate any variance within the total 

sample caused by these external factors.  

Despite the best efforts to control the environment in this case study, the results show that the 

model still does not account for a significant amount of variance. The most robust adjusted R-

squared value of around 0.47 suggests that the model only accounts for 47 % of the variation 

in utilisation. It is likely that external factors occurring at the intersections also influenced the 

utilisation, leading to the additional variation between the predicted results and the observed 

results.  

There is inevitable variability in traffic streams and human behaviour generally, and whilst we 

can quantify most values at an intersection, no two intersections will operate or perform the 

same, so it is unlikely that a model could be produced to account for all variation, but the R-

square value provided does suggest that some variables were unaccounted for. 

It’s possible that if the methodology had made inclusions for some of these other variables, 

rather than attempting to exclude them, the variability could have been reduced; this would 

also provide the benefit of minimising the applicability limits of the model, as it would allow 

more accurate predictions at intersections where these additional variables are at play. 

The number of sites selected resulted in some 57 approaches, though two of these were unable 

to be analysed for all variables except for the ATL length variables due to strategic monitor 

data being unavailable. In the end, the research examined 55 approaches during the multiple 

regression analysis; this is considered to be a reasonable sample size from which to conclude. 

The sites also varied in their locality, with locations from around Tasmania, greater Melbourne 

and greater Perth. 

Two sites were removed from the development of the model to ensure that the model 

comparison, undertaken in section 5.4, was independent of the model’s development. 
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6.2 Data collection 

6.2.1 Auxiliary through lane lengths 

Identification of ATL lengths used scaled measurements of aerial imagery. While there is 

scope for some errors to be introduced using this method, the level of accuracy required for 

this data was not high; lengths captured to the nearest meter were acceptable. Collection of 

this data through a survey or manual measurements would not be practicable and would not 

have increased the accuracy of the research. 

6.2.2 Approach characteristics 

The resolution of the image limits the accuracy of capturing lane widths and lateral clearances 

from aerial imagery; in some cases, it was difficult to achieve accuracy greater than +/- 0.2 m. 

For this reason, and simplicity, it was decided to group approaches into the lane width and 

lateral clearance groups provided within Table 2-1, reproduced from Austroads (2017).  

The process of using predefined groupings instead of using the precise lane widths and 

interpolating the width factor does lead to some source of error in the approach capacity 

calculations; however, the effect is only considered to be minor. The method of theoretically 

calculating the approach capacity is only approximate, to begin with, so introducing this error 

source is not deemed to affect the results significantly. Capturing more accurate measurements 

than proposed by this project’s methodology would be impracticable and would not likely 

improve the outcomes of this research.  

Within this study, all approaches had multiple lanes; however, the approach capacity 

calculation methodology, given by Austroads (2017), only allowed for input of a single lane 

width or lateral clearance. Fortunately, most approaches had similar lane widths. The analysis 

averaged lane widths where this was not the case before placing the approach into the 

appropriate lane width bin. A single value for lateral clearance also needed to be specified, yet 

lateral clearance applies to both sides of all lanes and is typically dissimilar. Lateral clearances 

on each side of each lane were averaged, with the average of lateral clearances for all lanes 

then determined before placement in the standard lateral clearance bins.  

Improvements to the accuracy of the calculated approach capacity were possible had the 

methodology calculated the capacity for each lane individually and then summed them to form 

an approach capacity. The tactic taken in this research was to generalise a typical lane for the 

approach and determine it is capacity, then multiplying this by the number of lanes on the 

approach to reach the approach capacity. 

Determining the passenger car equivalent of a heavy vehicle requires the specification of the 

approach grade to the intersection. Table 2-2, reproduced from Austroads (2017), has three 
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bins for approach grade: level, moderate or long sustained. These terms are more a qualitative 

measure than a quantitative measure, so rather than seek to determine the actual approach 

grade as a numerical value, a qualitative analysis of street-level imagery was undertaken for 

each approach. Given the broad categories, this was considered acceptable with negligible 

errors as a result.   

The use of typical lane widths and lateral clearances may affect the accuracy of capacity 

calculated capacity for each approach; however, the capacity calculations themselves rely on 

several assumptions anyhow. This report considers that the methodology was acceptable for 

the purpose and the context of how the capacity value applied to this research. 

6.2.3 Traffic flow data 

The collection of vehicle flow data through SCATS was quite efficient and aligned well with 

the methodology required for this study. As discussed earlier, Karma et al. (2010) found that 

vehicle counts given by SCATS were acceptably similar to vehicle counts undertaken 

manually. 

As SCATS vehicle detectors are unable to classify vehicles, the methodology proposed using 

alternate sources of data for determining the proportion of heavy vehicles. For most sites, 

vehicle counters were present within a reasonable distance upstream to consider them directly 

relevant to that approach. Unfortunately, there were some sites where this was not the case 

and, in these situations, the analysis used the nearest applicable vehicle counter. For those sites 

without a directly relevant vehicle counter, the estimated heavy vehicle proportion would 

introduce some margin of error, notably, if the approach experienced significantly different 

heavy vehicle flows to that assumed in this research. 

In all cases, heavy vehicles flow proportions were only available as an average annual daily 

value. This value is not necessarily indicative of heavy vehicle flows during the morning and 

afternoon peak-hour flows. However, due to a lack of alternative data availability, the value 

was used for the approach capacity calculations regardless this is another source of error in 

determining the approach capacity, as heavy vehicle proportions can vary drastically over the 

day, typically being much lower during peak times. 

6.2.4  Speed limits 

Collection of speed limit data using road authority published maps was an effective method. 

Unfortunately, there was a minimal spread of speed limits within the study, with all but one 

site having a speed limit between 60 km/h and 80 km/h; this is reflective of the locations of 

traffic signals though, as their placement is typically on arterial roads which often have a 
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minimum speed limit of 60 km/h, and seldom are traffic signals placed on roads with speed 

limits higher than 80 km/h. 

6.2.5 Traffic signal cycle and phase timing data 

The selection of typical cycle times and green phase times for the entire peak period was a 

difficult task and may lead to the largest source of error in the calculation of approach 

capacities, as well as consideration as input variables to the model.  

The nature of the SCATS system, indeed one of its greatest strengths, is that these timing 

parameters are variable. The degree of saturation for each movement is monitored every phase 

to determine if the current time settings are appropriate, with changes potentially made every 

phase based on the current traffic flow (Lowrie 1992). The unit used for traffic flow is ‘vehicles 

per hour’; however, the flow rate usually varies within this period – particularly if the peak 

period is quite short. This variance in traffic flow throughout the period results in changes to 

the cycle time and green time throughout the peak hour. 

Cycle times tended to remain relatively stable over the peak period, shifting by no more than 

10 seconds, making the selection of a typical cycle time relatively easy. Phase times were 

much more erratic though, with some sites seeing variances in the order of 20 and 30 seconds 

across the peak hour. The selection of a typical phase time from within this range was seen as 

reasonable but may introduce errors when looking at the phase time as a variable influencing 

the use of the ATL – as this may change at every cycle. The methodology adopted in this 

research did not make provision for such variation in these parameters.  

If future work was undertaken to improve on the results of this research, the methodology 

needs to account for the sometimes-erratic behaviour of these variables over the study period. 

It may be that multiple shorter periods, say 5-minute intervals, need to be analysed for the 

timing parameter variables. 

 

6.3 Data analysis 

6.3.1 Observed lane utilisation 

Calculation of ATL utilisation using the methodology in section 4.3.1, adapted from Akcelik 

(1989a), required the assumption that the ATL and all CTLs on the approach would have the 

same saturation flow rate. Given that these are all dedicated through lanes and the sites have 

been selected to minimise the effect of other external variables, this assumption is considered 

to be fair. However, there is likely to be small differences in the actual saturation flow rate 

across the lanes. While this methodology does introduce some error into the results, the 
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difference is likely to be negligible and to have minimal effect on the calculated utilisation 

ratio. 

6.3.2 Length analysis 

Approach Length 

Comparing the observed ATL utilisation to the approach lengths for all sites combined (as 

seen in Figure 5-2) resulted in a poor relationship, the R-square value was only 0.05. A large 

proportion of the sites had approach lengths of between 10 m to 100m, with the ATL utilisation 

ranging from 8 % to 93 % in this small range alone. Most of the remaining sites had approach 

lengths between 100 m and 250 m, with similar patterns observed. 

Breaking the sites into CTL groups (shown in Figure 5-3) did not show any real improvement.  

The strongest relationship was the two CTL group, but this only improved the approach length 

relationship marginally to an R-square value of 0.073. The analysis finds though that the sites 

with 1 CTL tended to have higher ATL utilisation than those with two or three, which both 

had similar patterns of ATL utilisation. 

While the relationship is weak in all cases, the relationship was positive, suggesting that 

increased ATL approach lengths increase their utilisation; this supports the research by Karma 

et al. (2010) and Royce et al. (2006). 

The analysis considered removing two outlying sites with approach lengths of 551 m and 716 

m, but testing showed only marginal improvements in the relationship. The sites were also 

valid for all other variables, so they would still warrant inclusion in the multiple variable 

regression analysis. As such, it was decided to keep them in the dataset. 

The weak relationship developed in this study suggests that ATL approach length alone cannot 

be used as a determinant of ATL utilisation, though there does appear to be a positive 

relationship. The data may also imply that a site with a single CTL will have higher ATL 

utilisation than one with two or three CTLs. 

Departure length 

The departure length to ATL utilisation relationship for all sites (shown in Figure 5-4) was 

marginally stronger than that of the approach length with an R-square value of around 0.1, 

however, this is still considered to be a weak relationship. All but three sites had departure 

lengths between 0 m and 200 m, with high and low utilisation rates seen at both ends of this 

length range. While the relationship may not explain ATL utilisation variation well on its own, 

it does suggest a positive relationship between departure length and ATL utilisation. As with 
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the approach length results, this supports the research by Karma et al. (2010) and Royce et al. 

(2006). 

Looking at the CTL groups individually (seen in Figure 5-5) there appears to be a negligible 

improvement – except for the 3 CTL group, where the relationship achieved an R-square value 

of 0.36.  

As with the approach length, single CTL sites tended to have higher utilisation than two or 

three CTL sites. These two results suggest that the number of CTLs does have an impact on 

ATL utilisation. 

The analysis considered removing the outlying site with a departure length of 667 m; as with 

the outliers for the approach length though, the site was valid for other variables and removal 

did not produce a stronger relationship, so the decision was made to keep it in the dataset. 

The results of the study suggest that departure length cannot be used to determine ATL 

utilisation independently accurately. A positive relationship appears to exist between the two, 

suggesting that longer departure lengths typically lead to higher ATL utilisations though. The 

data repeats that founded in the approach length analysis that the number of CTLs has an 

impact on ATL utilisation as well. 

Approach and departure length combined 

Considering all sites together for the combination of approach and departure lengths (seen in 

Figure 5-6) resulted in a marginally stronger relationship with ATL utilisation than either of 

the variables alone, though it is still weak with an R-square value of around 0.11 - the positive 

correlation observed in the approach and departure length results individually remains. 

The CTL groups (shown in Figure 5-7) tended to average the results seen between the approach 

and departure length individual analyses. The 3 CTL group still had the most substantial 

relationship to length, though the R-square value dropped to around 0.22. Single CTL sites 

maintained higher utilisation than two or three CTL sites; reflecting the results of the approach 

and departure length variables analysed individually. 

This study shows that combining these two lengths produced a marginally stronger 

relationship than the length variables analysed individually, however, the association is too 

weak to be able to predict ATL utilisation without consideration of other explanatory variables. 

Approach and intersection length combined 

The addition of intersection length to approach length (shown in figures Figure 5-8 and Figure 

5-9) made a negligible difference to the strength of the relationships. It tended to move the 

results along the length axis by the value of the intersection length. Minimal difference was 
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observed between the sites as all but two intersections had intersection lengths in the range of 

30 m to 50 m. 

Departure and intersection length combined 

The results of adding intersection length to the departure length reflect those made with the 

approach length (seen in Figure 5-10 and Figure 5-11). 

Total length 

When considering all sites in aggregate, the relationship of the total length to ATL utilisation 

(shown in Figure 5-12) produced a stronger relationship than approach and departure length 

did individually or combined, with an R-square value of some 0.12. As all the components of 

the total length had positive relationships, the total length also has a positive relationship with 

ATL utilisation; this supports the research by Karma et al. (2010) and Royce et al. (2006). 

Breaking the sites into CTL groups (as in Figure 5-13) reflected similar results to those in the 

approach and departure length analyses. 

The study would suggest that use of total length as a variable is marginally superior to using 

approach or departure lengths individually; however, the relationship is still too weak to be 

used to predict ATL utilisation with this variable alone. A positively correlating relationship 

does seem to exist between ATL length and ATL utilisation, and the number of CTLs does 

appear to affect ATL utilisation, with single CTL sites typically having higher ATL utilisation 

than two or three CTL sites, and three CTL sites having a stronger relationship with ATL 

length than one or two CTL sites. 

ATL length overall 

This study was unable to produce the closely correlating relationships given by Royce et al. 

(2006) and Karma et al. (2010), where relations between ATL length and utilisation were 

found to have R-square values of above 0.6. Though these studies do still cite that the 

relationship is still somewhat weak due to the small gradient in the line of best fit. These 

studies only considered small sample sizes, which may explain the difference in results. The 

positive relationship between length and ATL utilisation produced by this study did correlate 

with previous research, however. 

6.3.3 Traffic signal timing parameters analysis 

Cycle Time 

When looking at the relationship of cycle time to ATL utilisation at sites overall (presented in 

Figure 5-14) there is a clear negative relationship, suggesting that shorter cycle times result in 
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increased ATL utilisation; this aligns with the research by Bugg et al. (2013) and McCoy and 

Tobin (1982). However, when broken into CTL groupings (as shown in Figure 5-15) the 

patterns differ. While the sites with two CTLs maintained a negative relationship, the single 

and three CTL sites have a positive relationship with ATL utilisation. Driver behaviour may 

change based on the number of lanes available, but this is outside the scope of this study; this 

is another example suggesting that the number of CTLs effects ATL utilisation. 

The strength of the relationship is stronger than that of the ATL lengths with an R-square value 

for all sites of 0.2, though this is still a weak relationship. Disaggregating the sites by CTL 

groups reveals particularly feeble relationships for the one and two CTL sites, but a slightly 

stronger relationship for the three CTL sites with an R-square of 0.25. 

The study reaffirms that cycle time is undoubtedly a variable for consideration when predicting 

ATL utilisation, but that the relationship with this variable alone is not enough without 

considering other factors. 

Green time 

A negative relationship was confirmed with the relationship between ATL utilisation and the 

green time at all sites (presented in Figure 5-16), though this was less pronounced after 

disaggregating sites by CTLs (as seen in Figure 5-17); this aligns with the research by Bugg 

et al. (2013) and McCoy and Tobin (1982). 

The strength of the relationship when considering all sites were still moderately weak with an 

R-square value of around 0.2 but becoming substantially weaker when considering by CTL 

groups individually. 

As with the cycle time variable, this study reaffirms that green time is a crucial variable in 

considering the utilisation of ATLs and that a negative relationship exists. However, the 

association is too weak at accurately predicting ATL utilisation on its own. 

Green time/ cycle time split 

The relationship between the green time/ cycle time split and ATL utilisation is much weaker 

than the relationship with cycle time or green time independently, whether looking at all sites 

combined (shown in Figure 5-18) or by CTL groups (shown in Figure 5-19). The analysis 

gives an R-square value of 0.11 for all sites combined, with significantly weaker relationships 

seen when disaggregating by CTL groups. Again, the study finds a negative correlation. 

This project considers that cycle time or green time would be more appropriate input variables 

than this ratio of the two values, given their stronger relationship independently. 
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6.3.4 Degree of saturation analysis 

Research by Transportation Research Board of the National Academies (2011) suggested quite 

a strong relationship between the degree of saturation of an approach and the ATL utilisation, 

with an R-square value of 0.78 reported in their research. That study also produced a positive 

relationship between the two variables. 

Comparing the results of that previous research and the results of this research gives mixed 

conclusions. When looking at the sites grouped by CTLs (seen in Figure 5-21) the positive 

relationship is reflected in this research, but the aggregate of all sites (shown in Figure 5-20) 

shows a slight negative relationship; this suggests a need to consider the number of CTLs as a 

variable when looking to predict ATL utilisation - a pattern emerging in most results of this 

research. 

The study did not observe a relationship between ATL utilisation and the degree of saturation 

when sites were aggregated, with an R-square of 0.003. However, analysing sites by CTL 

groups showed comparatively stronger relationships with R-square values of 0.13, 0.08 and 

0.04 for one, two and three CTL sites respectively; this suggests that a stronger relationship is 

present where a site only has one CTL than for sites with two and three CTLs, again 

highlighting the importance of the CTL variable. 

While this study could not reproduce the strong relationship between the degree of saturation 

and ATL utilisation, it did suggest that it is an important factor for consideration in a multiple 

variable analysis. The study confirmed positive correlations when reviewed by CTL groups, 

in line with previous research by the Transportation Research Board of the National 

Academies (2011). 

6.3.5 Speed limit analysis 

Excluding the single site with a 50 km/h speed limit, all sites fell between the three speed limit 

points of 60, 70 and 80 km/h. Given this limited spread, it is challenging to develop a definitive 

relationship with this variable alone.  

On average, the sites with 60 km/h speed limits had slightly higher ATL utilisation than those 

with 80 km/h speed limits, with the 70 km/h sites sitting somewhere in between. The 50 km/h 

site also had quite high ATL utilisation. Plotting a line of best fit between these then resulted 

in a negative relationship between the speed limit and ATL utilisation, confirming the 

hypothesis made in section 2.9 that higher speeds would result in less lane-changing 

behaviour, based on the research by Golbabaei et al. (2014), Archer et al. (n.d.) and Brubacher 

et al. (2018). The results do oppose those found by Soriguera et al. (2017), whose research 

showed the opposite trends to the papers mentioned above. 
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The relationship itself is still moderately weak with an R-square value of 0.11; however, the 

study suggests that it is still likely to be a contributing variable in a multiple variable analysis 

but could not be used on its own to predict ATL utilisation. 

6.3.6 Multiple linear regression analysis 

Multiple regression analysis allows consideration of numerous independent variables to form 

a relationship with a dependent variable; in this case, the ATL utilisation was the dependent 

variable.  

The first multiple regression analysis included all variables except for intersection width. 

Based on the results discussed above this variable appeared to have negligible effect on ATL 

utilisation so was excluded. However, at this stage in the project, CTLs had not been 

considered an independent variable in the study and was not included. This first pass, dubbed 

Model 1 (see section C.4.1 ), had a somewhat weak relationship with ATL utilisation with an 

adjusted R-square value of around 0.35. 

From a review of the results, it appeared evident that the number of CTLs was a significant 

factor in ATL utilisation, so in the second pass at multiple regression (Model 2, see section 

C.4.2 ), the CTL variable was included, this proved to form a moderately strong relationship 

with an adjusted R-square value of 0.484. 

The study then sought to remove variables that may be having a negligible effect on the model 

to reduce the variability further. The P-value for each variable was considered, with large 

values indicating that the variable is less significant in changes to the dependent variable. 

From Model 2, it was evident that the green time and green time/ cycle time split had quite 

high P-values; the next multiple regression step (Model 3, see section C.4.3 ) excluded these 

accordingly. This relationship had a slightly higher R-square value of 0.487. 

A further attempt was made to improve on this model by removing the variable with the next 

highest P-value, the speed limit, from the analysis in Model 4 (see section C.4.4 ), but this 

reduced the strength of the relationship slightly.  

An attempt was made to simplify the model in Model 5 (see section C.4.5 ) by removing the 

approach and departure length variables and relying on total length alone. However, this again 

reduced the strength of the relationship. 

The correlation matrix undertaken showed that the total length variable, D, was highly 

correlated with the approach and departure length variables, d1 and d3; this is expected, as D 

is not independent of the approach and departure length variables, as it is the sum of the these 

and the intersection length variable, d2. The analysis found little correlation between d1 and d3; 
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on this basis, the project proceeded to remove the total length ‘D’ from the regression analysis, 

giving Model 6 (see section C.4.6 ); this slightly increased the model’s variance, but was 

considered to be a stronger model than Model 3 as it relied upon independent variables only. 

The correlation matrix also identified a strong correlation between the green time variable and 

the cycle time and green time/ cycle time split variables; this is logical, as the cycle time is the 

sum of all phase times at a signalised intersection, and an increase in the subject phase time 

would increase the cycle time as well – unless reduction to another phase time occurred 

concurrently. However, the project had already removed the green time variable from Models 

3 to 6, so no further analysis was required. 

The final two variables identified as having a degree of correlation was the speed limit, v, and 

the cycle time, c; this does not appear immediately logical, as the two variables are set by road 

authorities independently. However, sites with higher speed limits typically sit on higher 

category arterial roads, of which there is more traffic demand. These sites will also usually 

have a longer cycle time to cater for this traffic demand, though this is not necessarily always 

the case. This project considered that as the variables are independent, although they may tend 

to correlate, they will remain in the analysis together.  

6.3.7 Final model selection 

The model selected as the study model was Model 6. It contains the following variables as 

inputs, in order of significance: 

• Degree of Saturation 

• Number of CTLs 

• Posted Speed Limit 

• Cycle Time 

• Departure Length 

• Approach Length 

While all these variables only had weak relationships with utilisation individually, when 

combined, they were able to produce a moderately strong association. The adjusted R-square 

value of 0.469 suggests that the model only accounts for 47% of the variance of ATL 

utilisation; this indicates that other variables are affecting the utilisation that the model has not 

considered. Attempts were made to limit this by carefully choosing the site selection criteria, 

but this may not have captured all possible external factors. It is also worth noting that traffic 

flows and human behaviour generally is inherently variable – not all drivers will respond the 

same way to a given set of circumstances. So, it is unlikely that any model could account for 

all variance in ATL utilisation. 
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The comparison of observed to predicted ATL utilisation using this model in Figure 5-23 

shows the unexplained variance clearly. However, it also shows that the predicted values 

typically follow the trend of the observed values. 

 

6.4 Model comparison 

Table 5-2 gives the results of the model comparison; these show that amongst the models 

tested, the model developed in this study has the smallest average absolute residual; this 

indicates that over the four scenarios tested the study developed model had the least average 

error when predicting the ATL utilisation. The comparison found that the study model was not 

always the closest; in fact, it was only the closest on one occasion. Overall though the study 

model produced the least error. 

The second smallest average absolute residual was from the Australian Road Research model, 

though this was only an insignificantly small margin lower than the SIDRA model. 

Interestingly, both of these models rely purely on a single variable – number of CTLs in the 

case of the Australian Road Research model and departure ATL length in the case of the 

SIDRA model, despite the results of this study suggesting that neither variable in their own 

right has a strong enough relationship to predict ATL utilisation accurately. 

The fourth and fifth smallest average absolute residuals, the Australian Road Capacity Guide 

and Transport Research Board models, respectively, get progressively larger. 

The model comparison only considered two sites in AM and PM periods for a total of 4 

samples, so it is not a conclusive test of the comparison of these models. However, it does 

indicate that the model developed in this study is likely to be comparably accurate, if not more 

accurate, than the current methods of estimating ATL utilisation. Had the methodology 

isolated more sites for comparison testing, the results of the comparison may have been able 

to be more conclusive. On the same token though, this would have reduced the number of case 

study sites used to develop the model which may have reduced its accuracy.  

 

6.5 Future research 

The model, in its current form, outperforms the comparison model in the limited testing 

undertaken. However, the sample size of the test conducted is insufficient to be able to say if 

the model is validated and that it performs better than alternative methods with any confidence. 

The first task for any further research would be to validate the performance of this model 

against a significantly large number of case study sites – those sites being in addition to those 
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used to develop the model in this research. The comparative models could also be used at these 

case study sites to give a more valid set of results for the average error made by each model. 

There still exists a large amount of variability in the model; this variability will need to be 

reduced to make accurate predictions of ATL utilisation. The specifications of this research 

attempted to remove the effects of external factors not considered as input variables to the 

model by eliminating sites where such factors were present. However, the variability suggests 

that there may be other influencing factors not considered. The second task for additional 

research would be the identification of additional variables to be included within the model. It 

may be that factors previously identified within the literature review as having a negligible 

effect may indeed have a noticeable impact; this hypothesis needs to be tested. It may also be 

that the analysis needs to include previously unconsidered variables. For instance, the literature 

review for this project did not identify that the posted speed limit would affect ATL utilisation; 

however, this research does show a correlation. Such other variables will need to be identified, 

considered and tested. 

The method of restricting site selection to exclude those sites with specific characteristics is 

valid for analysing the effects of the subject variables. However, this presents limitations in 

the model's potential uses in that it cannot accurately make predictions at sites that do have 

these characteristics. While engineering judgement could be used to factor the model's results; 

this goes against the project aims of providing an accurate prediction. The third task for future 

research would be to test the applicability of the current model against sites with these 

characteristics to determine if the accuracy does decrease. If this is the case, the research 

should undertake the expansion of the model’s applicability by the inclusion of some or all of 

these previously excluded variables; a similar approach to the methodology used in this 

research would be applicable. Potentially, only a select few additional variables would be 

required. 

This project developed the model for the explicit purpose of determining auxiliary through 

lane utilisation, with the project defining these lanes as additional through lanes that 

commence and terminate immediately before and after a signalised intersection. Many roads 

will see a new lane added or a previously continuous lane dropped at signalised intersections. 

While these lane additions and drops have inherently different functions and subsequently 

unique factors affecting their utilisation, there may be some crossover. Further research could 

consider adapting the model to capture these situations as well; there is the potential for 

substantial crossover.  
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7. Conclusions 

This research project has achieved the objectives set out at section 1.3; it has examined current 

methods of determining lane utilisation, identified key variables contributing to the use of 

ATLs and analysed these relationships using case study sites. The project has developed a 

mathematical model and tested and compared it to other prediction models. At least in the 

limited testing undertaken, the model has greater accuracy over current prediction methods, 

achieving the aim of the project in improving analytical and microsimulation model’s ability 

to estimate intersection capacity. While a sub-aim of the project was to build a model primarily 

based on the length of an ATL, this did not prove to be feasible. Instead, the model included 

other key variables alongside the length variables. 

The project has advanced this field of knowledge by proposing a model for the prediction of 

ATL utilisation at signalised intersections that may prove more accurate than current methods. 

The project achieved this by undertaking original research in combining ATL length variables 

with other contributing factors in a multiple linear regression analysis for the first time. The 

research also tested a new hypothesis that the posted speed limit would influence ATL 

utilisation. 

The key findings of this research are summarised below: 

• Total ATL length produces a stronger relationship than individual ATL length 

elements alone. 

• A positive relationship exists between ATL length variables and ATL utilisation, 

suggesting ATL utilisation increases as length increases. 

• The relationship between ATL length and ATL utilisation is relatively weak, 

suggesting the variable cannot be used to predict ATL utilisation on its own. 

• Sites with 1 CTL tend to have higher ATL utilisation than sites with 2 or 3 CTLs. 

• Sites with 3 CTLs tended to have a stronger relationship between ATL length and 

ATL utilisation. 

• Cycle time, green time & cycle/ green time split produce moderately weak 

relationships with ATL utilisation on their own, but indeed, appear to be contributing 

factors. 

• A negative relationship exists between cycle time, green time or green/ cycle time split 

and the resulting ATL utilisation, suggesting shorter times (or smaller splits) result in 

higher utilisation. 

• The study shows a positive relationship between the degree of saturation and ATL 

utilisation, but only when considered in context with the number of CTLs. 
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• The relationship between the degree of saturation and ATL utilisation is too weak at 

predicting ATL utilisation on its own but is a contributing factor. 

• The study suggests there is a negative relationship between the posted speed limit and 

ATL utilisation, indicating that higher speed limits result in lower utilisation. 

• The relationship between the speed limit and ATL utilisation is too weak to be used 

as a variable on its own to predict ATL utilisation but is likely a contributing factor. 

• The project has created a multiple variable relationship with moderate strength; the 

project proposes the following model: 

   (%)     34.58 X   -  21.96 CTL  +  0.48 v  +  

                         0.05 d3  +  0.02 d1  -  0.38 c +0.71

ATL T =
 (EQN 5.1) 

• The model developed by this study is comparably accurate, if not more accurate than 

current methods of predicting ATL utilisation. However, further comparison of these 

models would be required to confirm this with any degree of certainty. 

As discussed within the report, many external factors contribute to ATL utilisation that have 

not been considered in the development of this model. Use of this model at sites where such 

variables are present may lead to inaccurate results. As such, the outcomes of this research are 

limited to those sites that comply with the defined site selection criteria. If it is used outside of 

these parameters, consideration would need to be given to the likely effects of the external 

factors.  
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ENG4111/4112 Research Project 

Project Specification 

For:  Nicholas Raymond Browne 

Title: Developing a model for the utilisation of auxiliary through lanes at signalised 

intersections 

Major:  Civil Engineering 

Supervisors: Soma Somasundaraswaran 

Enrolment: ENG4111 – EXT S1, 2019 

  ENG4112 – EXT S2, 2019 

Project Aim: The overarching aim is to improve the accuracy of analytical & 

microsimulation models to determine the capacity of signalised intersections 

with short auxiliary through lanes. 

The project aims to confirm previous research that a relationship exists 

between the utilisation of auxiliary through lanes and their length and develop 

a model for predicting utilisation based on this carriable. The project will also 

consider other variables that may explain variations in lane utilisation for 

inclusion in the model 

Programme: Version 3, 23rd July 2019 

The objectives of this project are to: 

1. Examine current methods of determining lane utilisation for existing 

signalised intersections and the prediction models currently available. 

2. Undertake case studies to determine the utilisation of auxiliary through lanes 

at existing intersections. 

3. Determine the key variables contributing to utilisation of auxiliary through 

lanes at signalised intersections. 

4. Analyse the relationship between the key variables identified. 

5. Develop a mathematical relationship between the selected variables and the 

utilisation of the auxiliary through lane. 

6. Estimate lane utilisation of auxiliary through lanes using the developed model 

and compare the results with other prediction models and case study results. 
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B.1  Auxiliary through lane lengths 

Table B-1 ATL Length 

Site ID Approach d1 (m) d2 (m) d3 (m) D (m) 

T1 S 89 30 51 170 

T2 S 64 35 52 151 

T2 N 551 35 81 667 

T3 S 103 33 141 277 

T3 N 194 33 161 388 

T4 S 187 29 79 295 

T4 N 91 26 141 258 

T5 N 55 37 50 142 

T6 N 50 35 45 130 

V1 S 83 36 124 243 

V1 N 67 37 54 158 

V1 E 87 40 12 139 

V1 W 22 39 50 111 

V2 W 123 48 87 258 

V2 E 261 49 159 469 

V3 S 103 42 114 259 

V3 N 98 40 93 231 

V4 N 37 27 66 130 

V5 S 42 57 49 148 

V6 W 30 40 30 100 

V7 S 162 46 62 270 
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V7 N 76 46 342 464 

V8 S 91 36 63 190 

V8 E 79 37 30 146 

V8 W 68 39 27 134 

V9 W 140 44 103 287 

V9 E 146 44 237 427 

V9 S 61 51 53 165 

V9 N 81 53 84 218 

V10 E 113 38 29 180 

V11 W 69 38 49 156 

V11 E 51 39 66 156 

V12 W 44 26 40 110 

V12 E 47 28 27 102 

V13 W 106 35 157 298 

V14 N 53 105 112 270 

V14 S 53 122 46 221 

V15 N 32 28 26 86 

V15 S 33 29 20 82 

V16 E 14 34 99 147 

V16 W 91 38 8 137 

W1 W 242 41 191 474 

W1 E 218 41 93 352 

W2 S 98 39 42 179 

W2 N 80 37 45 162 

W3 W 63 43 163 269 
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W3 E 162 42 50 254 

W4 W 71 45 63 179 

W4 E 61 48 36 145 

W5 W 50 41 58 149 

W6 N 215 36 80 331 

W6 S 98 42 90 230 

W7 S 114 42 32 188 

W7 N 49 42 45 136 

W8 S 186 27 667 880 

W8 N 716 29 146 891 

W9 W 109 33 98 240 
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B.2  Approach characteristics 

Table B-2 Approach Characteristics 

Site ID Approach  Lateral Clearance (m) Lane Width (m) Approach Grade 

T1 S 1 3.7 Moderate 

T2 S 1 3.7 Level 

N 1 3.7 Level 

T3 S 1 3.7 Moderate 

N 1 3.7 Moderate 

T4 S 0 3.7 Level 

N 0 3.7 Level 

T5 N 0 3.2 Level 

T6 N 1 3.2 Level 

V1 S 0 3.2 Level 

N 0 3.2 Level 

E 0 3.2 Level 

W 0 3.2 Level 

V2 W 0 3.2 Level 

E 0 3.2 Level 

V3 S 1 3.2 Level 

N 1 3.2 Level 

V4 N 1 3.2 Level 

V5 S 0 3.2 Moderate 

V6 W 1 3.2 Level 

V7 S 1 3.2 Level 

N 1 3.2 Level 

V8 S 0 3.7 Moderate 
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E 0 3.7 Level 

W 0 3.7 Moderate 

V9 W 1 3.2 Level 

E 1 3.2 Level 

S 1 3.2 Level 

N 1 3.2 Level 

V10 E 0 3.7 Level 

V11 W 1 3.2 Level 

E 1 3.2 Level 

V12 W 0 3.2 Level 

E 0 3.2 Level 

V13 W 0 3.2 Level 

V14 N 0 3.2 Level 

S 0 3.2 Level 

V15 N 0 3.2 Level 

S 0 3.2 Level 

V16 E 1 3.2 Level 

W 1 3.2 Level 

W1 W 1 3.2 Level 

E 1 3.2 Level 

W2 S 0 3.2 Level 

N 0 3.2 Level 

W3 W 1 3.2 Level 

E 1 3.2 Level 

W4 W 0 3.2 Level 

E 0 3.2 Level 

W5 W 0 3.7 Level 

N 1 3.7 Level 
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W6 S 1 3.7 Level 

W7 S 0 3.7 Level 

N 0 3.7 Level 

W8 S 1 3.7 Moderate 

N 1 3.7 Level 

W9 W 0 3.7 Level 
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B.3  Traffic flow data 

Table B-3 Traffic flow data 

Site ID Approach Lane 

q 

(Lane) 

AM 

(veh/hr) 

q 

(Movement) 

AM (veh/hr) 

q  

(Lane) 

PM 

(veh/hr) 

q 

(Movement) 

PM (veh/hr) 

Phv 

T1 S 

T(L) 515 

1174 

1032 

2245 0.089 T(R) 591 1112 

A 68 101 

T2 

S 

T(L) 526 

1224 

904 

1752 0.098 T(R) 536 742 

A 162 106 

N 

T(L) 828 

2162 

634 

1512 0.098 T(R) 942 641 

A 392 237 

T3 

S 

T(L) 699 

1456 

947 

2089 0.096 T(R) 686 1028 

A 71 114 

N 

T(L) 1043 

2462 

883 

1941 0.096 T(R) 1203 918 

A 216 140 

T4 

S 

T(L) 565 

1335 

789 

1812 0.106 T(R) 634 922 

A 136 101 

N 

T(L) 962 

2325 

869 

1905 0.106 

T(R) 1128 864 
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A 235 172 

T5 N 

A 208 

470 

285 

616 0.09 

T 262 331 

T6 N 

T 325 

358 

370 

394 0.132 

A 33 24 

V1 

S 

T(L) 538 

1440 

502 

1221 0.07 T(R) 604 493 

A 298 226 

N 

T(L) 452 

1006 

565 

1202 0.07 T(R) 389 502 

A 165 135 

E 

T(L) 498 

1111 

537 

1203 0.06 T(R) 548 600 

A 65 66 

W 

T(L) 488 

1132 

439 

1033 0.06 T(R) 591 545 

A 53 49 

V2 

W 

T(L) 358 

1397 

340 

1444 0.06 

T(C) 384 415 

T(R) 462 463 

A 193 226 

E 

T(L) 420 

1765 

313 

1309 0.07 

T(C) 466 411 

T(R) 576 450 

A 303 135 
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V3 

S 

T(L) 817 

2116 

504 

1203 0.06 T(R) 907 530 

A 392 169 

N 

T(L) 435 

1080 

725 

1887 0.06 T(R) 392 735 

A 253 427 

V4 N 

T(L) 502 

1155 

613 

1442 0.06 T(R) 584 764 

A 69 65 

V5 S 

T(L) 338 

1177 

469 

1701 0.06 

T(C) 328 512 

T(R) 383 532 

A 128 188 

V6 W 

T(L) 296 

588 

590 

1335 0.05 T(R) 251 667 

A 41 78 

V7 

S 

T(L) 332 

762 

418 

939 0.09 T(R) 356 397 

A 74 124 

N 

T(L) 442 

1022 

365 

820 0.07 T(R) 414 339 

A 166 116 

V8 S 

T(L) 224 

576 

410 

1152 0.07 T(R) 252 441 

A 100 301 
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E 

T(L) 375 

940 

265 

601 0.06 T(R) 405 274 

A 160 62 

W 

T(L) 207 

522 

498 

1252 0.06 T(R) 253 496 

A 62 258 

V9 

W 

T(L) 587 

1568 

397 

993 0.08 T(R) 675 462 

A 306 134 

E 

T(L) 299 

671 

576 

1478 0.06 T(R) 274 632 

A 98 270 

S 

T 98 

160 

92 

156 0.07 

A 62 64 

N 

T 127 

177 

231 

358 0.05 

A 50 127 

V10 E 

T(L) 392 

1460 

499 

1815 0.08 

T(C) 495 587 

T(R) 480 597 

A 93 132 

V11 

W 

T(L) 372 

753 

279 

607 0.04 T(R) 334 270 

A 47 58 

E 

T(L) 245 

565 

413 

897 0.06 

T(R) 300 446 
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A 20 38 

V12 

W 

T(L) 755 

2468 

808 

2560 0.06 

T(C) 752 801 

T(R) 786 755 

A 175 196 

E 

T(L) 803 

2602 

685 

2335 0.06 

T(C) 831 731 

T(R) 846 755 

A 122 164 

V13 W 

T(L) 450 

1823 

516 

2047 0.06 

T(C) 457 518 

T(R) 498 558 

A 418 455 

V14 

N 

T(L) 255 

1158 

423 

1660 0.07 

T(C) 330 484 

T(R) 448 536 

A 125 217 

S 

T(L) 513 

2063 

449 

1678 0.07 

T(C) 618 485 

T(R) 647 480 

A 285 264 

V15 N 

T(L) 211 

1382 

274 

1404 0.06 

T(C) 433 485 

T(R) 492 435 

A 246 210 
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S 

T(L) 414 

1578 

302 

1183 0.06 

T(C) 521 413 

T(R) 584 442 

A 59 26 

V16 

E 

T(L) 507 

1481 

720 

2070 0.06 

T(C) 537 674 

T(R) 405 548 

A 32 128 

W 

T(L) 702 

2214 

403 

1932 0.06 

T(C) 784 756 

T(R) 668 740 

A 60 33 

W1 

W 

T 517 

870 

411 

722 0.097 

A 353 311 

E 

T 366 

680 

510 

966 0.116 

A 314 456 

W2 

S 

T 145 

271 

364 

730 0.124 

A 126 366 

N 

T 391 

638 

190 

291 0.105 

A 247 101 

W3 

W 

T 85 

158 

222 

420 0.078 

A 73 198 

E 

A 197 

438 

100 

217 0.136 

T 241 117 

W4 W T 154 255 234 442 0.037 
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A 101 208 

E 

A 373 

760 

72 

331 0.059 

T 387 259 

W5 W 

T 137 

227 

151 

237 0.07 

A 90 86 

W6 

N 

A 88 

349 

243 

738 0.149 

T 261 495 

S 

T 394 

673 

248 

460 0.151 

A 279 212 

W7 

S 

T 138 

267 

154 

286 0.069 

A 129 132 

N 

T 121 

200 

146 

255 0.069 

A 79 109 

W8 

S 

A 356 

732 

251 

510 0.098 

T 376 259 

N 

A 191 

496 

279 

708 0.068 

T 305 429 

W9 W 

T 189 

300 

270 

501 0.15 

A 111 231 
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B.4  Speed limits 

Table B-4 Speed limits 

Site 

ID Approach 

Speed Limit 

(km/h) 

T1 S 80 

T2 S 80 

T2 N 80 

T3 S 80 

T3 N 80 

T4 S 80 

T4 N 80 

T5 N 60 

T6 N 60 

V1 S 60 

V1 N 60 

V1 E 60 

V1 W 60 

V2 W 80 

V2 E 80 

V3 S 80 

V3 N 80 

V4 N 80 

V5 S 80 

V6 W 60 

V7 S 80 
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V7 N 80 

V8 S 70 

V8 E 70 

V8 W 70 

V9 W 80 

V9 E 80 

V9 S 70 

V9 N 70 

V10 E 80 

V11 W 60 

V11 E 60 

V12 W 80 

V12 E 80 

V13 W 80 

V14 N 80 

V14 S 80 

V15 N 80 

V15 S 80 

V16 E 80 

V16 W 80 

W1 W 80 

W1 E 80 

W2 S 70 

W2 N 70 

W3 W 60 
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W3 E 60 

W4 W 60 

W4 E 60 

W5 W 60 

W6 N 60 

W6 S 60 

W7 S 50 

W7 N 60 

W8 S 60 

W8 N 60 

W9 W 70 
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B.5  Traffic signal cycle and phase timing data 

Data for T5N and W9W were unavailable due to communications errors at the sites. 

Table B-5 Traffic signal cycle and phase time data 

Site 

ID 

Approach 
c AM 

(sec) 

G AM 

(sec) 

g/c AM 
c PM 

(sec) 

G PM 

(sec) 

g/c PM 

T1 S 148 52 0.351351 217 139 0.640553 

T2 

S 177 112 0.632768 183 119 0.650273 

N 177 112 0.632768 183 119 0.650273 

T3 

S 197 109 0.553299 209 137 0.655502 

N 197 109 0.553299 209 137 0.655502 

T4 

S 205 105 0.512195 171 91 0.532164 

N 205 105 0.512195 171 91 0.532164 

T6 N 82 32 0.390244 95 28 0.294737 

V1 

S 131 53 0.40458 130 47 0.361538 

N 131 53 0.40458 130 47 0.361538 

E 131 45 0.343511 130 46 0.353846 

W 131 45 0.343511 130 46 0.353846 

V2 

W 128 41 0.320313 132 43 0.325758 

E 128 41 0.320313 132 43 0.325758 

V3 

S 130 67 0.515385 130 54 0.415385 

N 130 67 0.515385 130 67 0.515385 

V4 N 128 61 0.476563 130 51 0.392308 

V5 S 130 64 0.492308 140 51 0.364286 

V6 W 130 63 0.484615 130 47 0.361538 

V7 

S 130 39 0.3 130 37 0.284615 

N 130 39 0.3 130 37 0.284615 

V8 

S 140 55 0.392857 130 35 0.269231 

E 140 39 0.278571 130 38 0.292308 

W 140 39 0.278571 130 38 0.292308 

V9 

W 130 56 0.430769 130 67 0.515385 

E 130 56 0.430769 130 67 0.515385 
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S 130 15 0.115385 130 24 0.184615 

N 130 15 0.115385 130 24 0.184615 

V10 E 120 40 0.333333 120 44 0.366667 

V11 

W 137 43 0.313869 120 51 0.425 

E 137 43 0.313869 120 51 0.425 

V12 

W 140 66 0.471429 140 63 0.45 

E 140 66 0.471429 140 63 0.45 

V13 W 140 67 0.478571 140 70 0.5 

V14 

N 138 47 0.34058 139 38 0.273381 

S 138 47 0.34058 139 38 0.273381 

V15 

N 129 78 0.604651 128 61 0.476563 

S 129 78 0.604651 128 61 0.476563 

V16 

E 120 51 0.425 120 76 0.633333 

W 120 51 0.425 120 76 0.633333 

W1 W 139 53 0.381295 123 47 0.382114 

E 139 53 0.381295 123 47 0.382114 

W2 S 120 30 0.25 120 26 0.216667 

N 120 30 0.25 120 26 0.216667 

W3 W 116 24 0.206897 99 23 0.232323 

E 116 24 0.206897 99 23 0.232323 

W4 W 85 44 0.517647 98 51 0.520408 

E 85 44 0.517647 98 51 0.520408 

W5 W 82 21 0.256098 75 13 0.173333 

W6 N 80 57 0.7125 80 50 0.625 

S 80 32 0.4 80 28 0.35 

W7 S 126 17 0.134921 110 18 0.163636 

N 126 17 0.134921 110 18 0.163636 

W8 S 83 48 0.578313 85 43 0.505882 

N 83 35 0.421687 85 31 0.364706 
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C.1  Capacity width factors and heavy vehicle factors 

This data was computed using Table 2-1 and Table 2-2. 

Table C-1 Capacity width factors and heavy vehicle factors 

Site 

ID 

Approach 
Lateral 

Clearance (m) 

Lane 

Width (m) 

fw Ehv Phv fhv 

T1 S 1 3.7 0.9 4 0.089 0.789266 

T2 

S 1 3.7 0.9 2 0.098 0.910747 

N 1 3.7 0.9 2 0.098 0.910747 

T3 

S 1 3.7 0.9 4 0.096 0.776398 

N 1 3.7 0.9 4 0.096 0.776398 

T4 

S 0 3.7 0.6

5 

2 0.106 0.904159 

N 0 3.7 0.6

5 

2 0.106 0.904159 

T5 N 0 3.2 0.6 2 0.09 0.917431 

T6 N 1 3.2 0.8 2 0.132 0.883392 

V1 

S 0 3.2 0.6 2 0.07 0.934579 

N 0 3.2 0.6 2 0.07 0.934579 

E 0 3.2 0.6 2 0.06 0.943396 

W 0 3.2 0.6 2 0.06 0.943396 

V2 

W 0 3.2 0.6 2 0.06 0.943396 

E 0 3.2 0.6 2 0.07 0.934579 

V3 

S 1 3.2 0.8 2 0.06 0.943396 

N 1 3.2 0.8 2 0.06 0.943396 

V4 N 1 3.2 0.8 2 0.06 0.943396 

V5 S 0 3.2 0.6 4 0.06 0.847458 

V6 W 1 3.2 0.8 2 0.05 0.952381 

V7 

S 1 3.2 0.8 2 0.09 0.917431 

N 1 3.2 0.8 2 0.07 0.934579 

V8 

S 0 3.7 0.6

5 

4 0.07 0.826446 

E 0 3.7 0.6

5 

2 0.06 0.943396 

W 0 3.7 0.6

5 

4 0.06 0.847458 

V9 

W 1 3.2 0.8 2 0.08 0.925926 

E 1 3.2 0.8 2 0.06 0.943396 
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S 1 3.2 0.8 2 0.07 0.934579 

N 1 3.2 0.8 2 0.05 0.952381 

V10 E 0 3.7 0.6

5 

2 0.08 0.925926 

V11 

W 1 3.2 0.8 2 0.04 0.961538 

E 1 3.2 0.8 2 0.06 0.943396 

V12 

W 0 3.2 0.6 2 0.06 0.943396 

E 0 3.2 0.6 2 0.06 0.943396 

V13 W 0 3.2 0.6 2 0.06 0.943396 

V14 

N 0 3.2 0.6 2 0.07 0.934579 

S 0 3.2 0.6 2 0.07 0.934579 

V15 

N 0 3.2 0.6 2 0.06 0.943396 

S 0 3.2 0.6 2 0.06 0.943396 

V16 

E 1 3.2 0.8 2 0.06 0.943396 

W 1 3.2 0.8 2 0.06 0.943396 

W1 W 1 3.2 0.8 2 0.097 0.911577 

E 1 3.2 0.8 2 0.116 0.896057 

W2 S 0 3.2 0.6 2 0.124 0.88968 

N 0 3.2 0.6 2 0.105 0.904977 

W3 W 1 3.2 0.8 2 0.078 0.927644 

E 1 3.2 0.8 2 0.136 0.880282 

W4 W 0 3.2 0.6 2 0.037 0.96432 

E 0 3.2 0.6 2 0.059 0.944287 

W5 W 0 3.7 0.6

5 

2 0.07 0.934579 

W6 N 1 3.7 0.9 2 0.149 0.870322 

S 1 3.7 0.9 2 0.151 0.86881 

W7 S 0 3.7 0.6

5 

2 0.069 0.935454 

N 0 3.7 0.6

5 

2 0.069 0.935454 

W8 S 1 3.7 0.9 4 0.098 0.772798 

N 1 3.7 0.9 2 0.068 0.93633 

W9 W 0 3.7 0.6

5 

2 0.15 0.869565 
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C.2  Approach capacity and degree of saturation 

Table C-2 Approach capacity and degree of saturation 

Site 

ID 

Approach  Q (AM) Q (PM) XT AM XT PM 

T1 S 1796.967 3276.072 0.653323 0.685272 

T2 S 3734.371 3837.678 0.327766 0.456526 

N 3734.371 3837.678 0.578946 0.393988 

T3 S 2783.681 3297.869 0.523048 0.633439 

N 2783.681 3297.869 0.884441 0.588562 

T4 S 2167.336 2251.832 0.615964 0.804678 

N 2167.336 2251.832 1.072746 0.845978 

T6 N 1323.796 999.814 0.270435 0.394073 

V1 S 1633.445 1459.669 0.881572 0.836491 

N 1633.445 1459.669 0.615876 0.823474 

E 1399.971 1442.09 0.793588 0.834206 

W 1399.971 1442.09 0.808588 0.716321 

V2 W 1740.566 1770.154 0.802612 0.815748 

E 1724.299 1753.611 1.023604 0.74646 

V3 S 2800.581 2257.184 0.755558 0.532965 

N 2800.581 2800.581 0.385634 0.673789 

V4 N 2589.623 2131.785 0.446011 0.676428 

V5 S 2403.129 1778.208 0.489778 0.956581 

V6 W 2658.462 1983.297 0.221181 0.673122 

V7 S 1585.321 1504.023 0.48066 0.624326 

N 1614.953 1532.135 0.632836 0.535201 

V8 S 1519.481 1041.322 0.379077 1.106286 

E 1229.919 1290.566 0.764278 0.465687 

W 1104.843 1159.322 0.472465 1.079942 

V9 W 2297.436 2748.718 0.6825 0.361259 

E 2340.784 2800.581 0.286656 0.527748 

S 414.0906 662.5449 0.386389 0.235456 

N 421.978 675.1648 0.419453 0.530241 
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V10 E 1925.926 2118.519 0.758077 0.856731 

V11 W 1738.349 2353.846 0.43317 0.257876 

E 1705.55 2309.434 0.331271 0.388407 

V12 W 2561.725 2445.283 0.963413 1.046914 

E 2561.725 2445.283 1.015722 0.9549 

V13 W 2600.539 2716.981 0.701008 0.75341 

V14 N 1833.401 1471.66 0.631613 1.127978 

S 1833.401 1471.66 1.125231 1.140209 

V15 N 3285.652 2589.623 0.420617 0.542164 

S 3285.652 2589.623 0.48027 0.456823 

V16 E 3079.245 4588.679 0.480962 0.45111 

W 3079.245 4588.679 0.719007 0.421036 

W1 W 1334.706 1337.573 0.651829 0.539784 

E 1311.983 1314.8 0.5183 0.734712 

W2 S 640.5694 555.1601 0.423061 1.314936 

N 651.5837 564.7059 0.979153 0.515313 

W3 W 736.997 827.5707 0.214384 0.50751 

E 699.3686 785.318 0.626279 0.276321 

W4 W 1437.631 1445.299 0.177375 0.305819 

E 1407.765 1415.274 0.539863 0.233877 

W5 W 746.7518 505.4206 0.303983 0.468916 

W6 N 2678.851 2349.869 0.13028 0.31406 

S 1501.303 1313.64 0.448277 0.350172 

W7 S 393.7815 477.5916 0.678041 0.598838 

N 393.7815 477.5916 0.507896 0.533929 

W8 S 1930.69 1688.881 0.379139 0.301975 

N 1705.699 1475.215 0.29079 0.47993 
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C.3  ATL observed utilisation 

Table C-3 Observed utilisation 

Site 

ID 

Critical 

Lane 

AM 

qc AM 

(veh/hr) 

Critical 

Lane 

PM 

qc PM 

(veh/hr) 

qATL 

AM 

(veh/hr) 

qATL 

PM 

(veh/hr) 

pATL 

AM 

pATL 

PM 

T1S T(R) 591 T(R) 1112 68 101 0.115 0.091 

T2S T(R) 536 T(L) 904 162 106 0.302 0.117 

T2N T(R) 942 T(R) 641 392 237 0.416 0.370 

T3S T(L) 699 T(R) 1028 71 114 0.102 0.111 

T3N T(R) 1203 T(R) 918 216 140 0.180 0.153 

T4S T(R) 634 T(R) 922 136 101 0.215 0.110 

T4N T(R) 1128 T(L) 869 235 172 0.208 0.198 

T5N T 262 T 331 208 285 0.794 0.861 

T6N T 325 T 370 33 24 0.102 0.065 

V1S T(R) 604 T(L) 502 298 226 0.493 0.450 

V1N T(L) 452 T(L) 565 165 135 0.365 0.239 

V1E T(R) 548 T(R) 600 65 66 0.119 0.110 

V1W T(R) 591 T(R) 545 53 49 0.090 0.090 

V2W T(R) 462 T(R) 463 193 226 0.418 0.488 

V2E T(R) 576 T(R) 450 303 135 0.526 0.300 

V3S T(R) 907 T(R) 530 392 169 0.432 0.319 

V3N T(L) 435 T(R) 735 253 427 0.582 0.581 

V4N T(R) 584 T(R) 764 69 65 0.118 0.085 

V5S T(R) 383 T(R) 532 128 188 0.334 0.353 

V6W T(L) 296 T(R) 667 41 78 0.139 0.117 

V7S T(R) 356 T(L) 418 74 124 0.208 0.297 
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V7N T(L) 442 T(L) 365 166 116 0.376 0.318 

V8S T(R) 252 T(R) 441 100 301 0.397 0.683 

V8E T(R) 405 T(R) 274 160 62 0.395 0.226 

V8W T(R) 253 T(L) 498 62 258 0.245 0.518 

V9W T(R) 675 T(R) 462 306 134 0.453 0.290 

V9E T(L) 299 T(R) 632 98 270 0.328 0.427 

V9S T 98 T 92 62 64 0.633 0.696 

V9N T 127 T 231 50 127 0.394 0.550 

V10E T(C) 495 T(R) 597 93 132 0.188 0.221 

V11W T(L) 372 T(L) 279 47 58 0.126 0.208 

V11E T(R) 300 T(R) 446 20 38 0.067 0.085 

V12W T(R) 786 T(L) 808 175 196 0.223 0.243 

V12E T(R) 846 T(R) 755 122 164 0.144 0.217 

V13W T(R) 498 T(R) 558 418 455 0.839 0.815 

V14N T(R) 448 T(R) 536 125 217 0.279 0.405 

V14S T(R) 647 T(C) 485 285 264 0.440 0.544 

V15N T(R) 492 T(C) 485 246 210 0.500 0.433 

V15S T(R) 584 T(R) 442 59 26 0.101 0.059 

V16E T(C) 537 T(L) 720 32 128 0.060 0.178 

V16W T(C) 784 T(C) 756 60 33 0.077 0.044 

W1W T 517 T 411 353 311 0.683 0.757 

W1E T 366 T 510 314 456 0.858 0.894 

W2S T 145 A 366 126 366 0.869 1.000 

W2N T 391 T 190 247 101 0.632 0.532 

W3W T 85 T 222 73 198 0.859 0.892 
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W3E T 241 T 117 197 100 0.817 0.855 

W4W T 154 T 234 101 208 0.656 0.889 

W4E T 387 T 259 373 72 0.964 0.278 

W5W T 137 T 151 90 86 0.657 0.570 

W6N T 261 T 495 88 243 0.337 0.491 

W6S T 394 T 248 279 212 0.708 0.855 

W7S T 138 T 154 129 132 0.935 0.857 

W7N T 121 T 146 79 109 0.653 0.747 

W8S T 376 T 259 356 251 0.947 0.969 

W8N T 305 T 429 191 279 0.626 0.650 

W9W T 189 T 270 111 231 0.587 0.856 
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C.4  Multiple regression analysis 

C.4.1  Model 1 

 

Table C-4 Model 1 regression statistics 

Regression Statistics 

Multiple R 0.634555331 

R Square 0.402660468 

Adjusted R Square 0.353395352 

Standard Error 0.224470468 

Observations 106 
 

Table C-5 Model 1 ANOVA statistics 

  df SS MS F Significance F 

Regression 8 3.294639445 0.411829931 8.173338465 2.15105E-08 

Residual 97 4.887538115 0.050386991 
  

Total 105 8.182177561       

 

Table C-6 Model 1 variable statistics 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Intercept 1.612315 0.402555 4.005201 0.000121 0.813354 2.411277 

d1 -0.001086 0.001514 -0.717465 0.474811 -0.004091 0.001919 

d3 -0.000725 0.001525 -0.475153 0.635746 -0.003751 0.002302 

D 0.001527 0.001512 1.010490 0.314775 -0.001473 0.004527 

c -0.009054 0.003513 -2.577035 0.011471 -0.016027 -0.002081 

G 0.010929 0.006094 1.793295 0.076042 -0.001167 0.023025 

g/c -1.750748 0.772355 -2.266766 0.025625 -3.283659 -0.217837 

XT 0.158964 0.108121 1.470235 0.144734 -0.055627 0.373554 

v -0.002637 0.003093 -0.852486 0.396045 -0.008775 0.003502 
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C.4.2  Model 2 

Table C-7 Model 2 regression statistics 

Regression Statistics 

Multiple R 0.726803173 

R Square 0.528242852 

Adjusted R Square 0.484015619 

Standard Error 0.200520176 

Observations 106 
 

Table C-8 Model 2 ANOVA statistics 

  df SS MS F Significance F 

Regression 9 4.322176807 0.480241867 11.94383686 1.92532E-12 

Residual 96 3.860000753 0.040208341 
  

Total 105 8.182177561       

 

Table C-9 Model 2 variable statistics 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

CTLs -0.211506 0.041839 -5.055228 0.000002 -0.294555 -0.128456 

XT 0.279172 0.099469 2.806616 0.006063 0.081727 0.476616 

Intercept 0.901081 0.386147 2.333517 0.021707 0.134585 1.667577 

D 0.002495 0.001364 1.829421 0.070441 -0.000212 0.005202 

c -0.005629 0.003211 -1.753175 0.082764 -0.012003 0.000744 

d1 -0.002291 0.001373 -1.668111 0.098552 -0.005017 0.000435 

v 0.004955 0.003145 1.575815 0.118358 -0.001287 0.011198 

d3 -0.001926 0.001383 -1.392548 0.166973 -0.004670 0.000819 

g/c -0.701550 0.720488 -0.973715 0.332645 -2.131707 0.728607 

G 0.004319 0.005599 0.771361 0.442388 -0.006795 0.015433 
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C.4.3  Model 3 

Table C-10 Model 3 regression statistics 

Regression Statistics 

Multiple R 0.722112131 

R Square 0.52144593 

Adjusted R Square 0.487263497 

Standard Error 0.19988809 

Observations 106 
 

Table C-11 Model 3 ANOVA statistics 

  df SS MS F Significance F 

Regression 7 4.266563188 0.609509027 15.25479247 2.35271E-13 

Residual 98 3.915614372 0.039955249 
  

Total 105 8.182177561       

 

Table C-12 Model 3 variable statistics 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

CTLs -0.228052 0.039272 -5.807045 0.000000 -0.305986 -0.150119 

c -0.003432 0.000845 -4.059048 0.000099 -0.005109 -0.001754 

Intercept 0.610873 0.163302 3.740751 0.000309 0.286805 0.934941 

XT 0.303703 0.090313 3.362779 0.001102 0.124480 0.482927 

D 0.002751 0.001296 2.121803 0.036376 0.000178 0.005323 

d1 -0.002556 0.001296 -1.972383 0.051384 -0.005129 0.000016 

d3 -0.002227 0.001309 -1.700747 0.092162 -0.004825 0.000371 

v 0.004480 0.003089 1.449983 0.150256 -0.001651 0.010610 
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C.4.4  Model 4 

Table C-13 Model 4 regression statistics 

Regression Statistics 

Multiple R 0.714967992 

R Square 0.511179229 

Adjusted R Square 0.481553728 

Standard Error 0.200997973 

Observations 106 
 

Table C-14 Model 4 ANOVA statistics 

  df SS MS F Significance F 

Regression 6 4.18255922 0.697093203 17.25470314 1.44731E-13 

Residual 99 3.99961834 0.040400185 
  

Total 105 8.182177561       

 

Table C-15 Model 4 variable statistics 

  Coefficients Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Intercept 0.785502 0.110898 7.083089 0.000000 0.565456 1.005549 

CTLs -0.196208 0.032737 -5.993379 0.000000 -0.261166 -0.131250 

c -0.002890 0.000763 -3.789588 0.000259 -0.004403 -0.001377 

XT 0.304024 0.090814 3.347746 0.001153 0.123828 0.484219 

D 0.002834 0.001302 2.175893 0.031943 0.000250 0.005418 

d1 -0.002595 0.001303 -1.991337 0.049199 -0.005180 -0.000009 

d3 -0.002253 0.001316 -1.711759 0.090072 -0.004866 0.000359 
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C.4.5  Model 5 

Table C-16 Model 5 regression statistics 

Regression Statistics 

Multiple R 0.705367749 

R Square 0.497543661 

Adjusted R Square 0.472420845 

Standard Error 0.202760622 

Observations 106 
 

Table C-17 Model 5 ANOVA statistics 

  df SS MS F Significance F 

Regression 5 4.070990582 0.814198116 19.80445357 1.13211E-13 

Residual 100 4.111186978 0.04111187 
  

Total 105 8.182177561       

 

Table C-18 Model 5 variable statistics 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Intercept 0.701425 0.158523 4.424754 0.000025 0.386920 1.015929 

D 0.000344 0.000125 2.761742 0.006842 0.000097 0.000592 

c -0.003836 0.000837 -4.583382 0.000013 -0.005496 -0.002176 

XT 0.339772 0.089223 3.808133 0.000242 0.162756 0.516787 

v 0.004686 0.003132 1.496083 0.137781 -0.001528 0.010900 

CTLs -0.216076 0.039433 -5.479505 0.000000 -0.294310 -0.137841 
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C.4.6  Model 6 

Table C-19 Model 6 regression statistics 

Regression Statistics 

Multiple R 0.706725909 

R Square 0.49946151 

Adjusted R Square 0.469125844 

Standard Error 0.203392808 

Observations 106 

 

Table C-20 Model 6 ANOVA statistics 

  df SS MS F Significance 

F 

Regression 6 4.086683 0.681114 16.4645 4.47E-13 

Residual 99 4.095495 0.041369 
  

Total 105 8.182178       

 

Table C-21 Model 6 variable statistics 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Intercept 0.711779 0.158963 4.477633 0.000020 0.396362 1.027197 

d1 0.000168 0.000180 0.935645 0.351733 -

0.000188 

0.000524 

d3 0.000517 0.000209 2.478180 0.014897 0.000103 0.000931 

c -0.003796 0.000842 -

4.505766 

0.000018 -

0.005467 

-

0.002124 

XT 0.345800 0.089652 3.857142 0.000204 0.167911 0.523689 

v 0.004769 0.003140 1.518573 0.132057 -

0.001462 

0.011000 

CTLs -0.219597 0.039754 -

5.523895 

0.000000 -

0.298477 

-

0.140716 
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C.5  Model comparisons 

C.5.1  Study developed model 

Table C-22 Study developed model inputs 

  
V2W V9S 

  Coefficients AM PM AM PM 

CTLs -0.219597 3 3 1 1 

c -0.003796 128 132 130 130 

Intercept 0.711779 1 1 1 1 

XT 0.345800 0.802612466 0.815748 0.386389 0.235455729 

d1 0.000168 123 123 61 61 

d3 0.000517 87 87 53 53 

v 0.004769 80 80 70 70 

 

Table C-23 Study developed model results 

Site ID Period Predicted 

pATL 

Residuals 

V2W AM 0.29188305 -0.12587 

PM 0.281243276 -0.20688 

V9S AM 0.503866859 -0.12879 

PM 0.45167418 -0.24398 

 

 

C.5.2  Australian Road Capacity Guide method 

Table C-24 Australian Road Capacity Guide model calculations and results 

ID s 

(veh/hr) 

g 

(sec) 

ft reqd. d1 

(ft) 

dp F sATL pATL Residuals 

V2W 1358 41 371 404 - - 
 

1 0.58225 
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AM 

V2W 

PM 

1359 43 390 404 - - 
 

1 0.51187 

V9S 

AM 

1793 15 179 200 - - 
 

1 0.36734 

V9S 

PM 

1794 24 287 200 0.69676 0.03 1266 0.7058 0.01021 

 

 

C.5.3  Australian Road Research method 

Table C-25 Australian Road Research model calculations and results 

ID Period n qATL qC pATL Residuals 

V2W AM 4 0.125 0.2917 0.4286 0.0108 

 
PM 4 0.125 0.2917 0.4286 -0.0595 

V9S AM 2 0.25 0.7500 0.3333 -0.2993 

 
PM 2 0.25 0.7500 0.3333 -0.3623 

 

 

C.5.4  SIDRA method 

Table C-26 SIDRA model calculations and results 

ID Period dL 

(m) 

dfull 

(m) 

dmin 

(m) 

Criteria? pdmin pATL Residuals 

V2W AM 135 200 30 dmin<dL<dfull 20 0.6487 0.2310 

 
PM 135 200 30 dmin<dL<dfull 20 0.6487 0.1606 

V9S AM 104 200 30 dmin<dL<dfull 20 0.4949 -0.1378 

 
PM 104 200 30 dmin<dL<dfull 20 0.4949 -0.2008 
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C.5.5  Transport Research Board method 

Table C-27 Transport Research Board model calculations and results 

ID Period XT qT 

(veh/hr) 

qATL 

(veh/hr) 

CTLs 

(no.) 

qc 

(veh/hr) 

pATL Residuals 

V2W AM 0.8026 1397 394.930 3 334.023 1.1823 0.7646 

 
PM 0.8157 1444 418.701 3 341.766 1.2251 0.7370 

V9S AM 0.3864 160 36.661 1 123.339 0.2972 -0.3354 

 
PM 0.2355 156 28.776 1 127.224 0.2262 -0.4695 

 




