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Abstract

Boosted regression tree (BRT) and Bayesian additive regression tree (BART) mod-
els are both additive tree models that are theoretically well defined. However,
BART is a relatively new technique to the field of ecology, while BRTs are widely
used. By exploring the differences, range of obtainable results and relative lim-
itations of both methods, this project aims to fill a gap in ecologists” collective
knowledge to facilitate the use of both methods by ecologists in the future as well
as determine if BART has some benefits over the widely used BRT method.

100 BRT and 729 BART models were fit on each of two grasslands datasets.
One data set contained data from a period of drought, and the other dataset
represents the recovery phase from the drought.

These two grassland datasets had 13 hydroclimatic and land use predictor
variables. The response variable for both datasets was Enhanced Vegetation
Index (EVI) trend, which is interpreted as a measure of grassland degradation
and recovery. The settable parameters of both methods (BRT and BART) were
varied to compare the performance of each method.

The models for each method were evaluated using three prediction error
statistics; root mean square error (RMSE), mean absolute error (MAE), and the
coefficient of determination (R?). The best models across the two methods were
assessed by inspecting the relative importance of predictor variables and two-
way interactions, and the prediction error statistics. All analysis was conducted
in R using the dismo package to fit boosted regression trees, and the bartMachine
package to fit Bayesian regression trees.

BRT and BART models exhibited similar variable and interaction importance
selection abilities, but the BART method generated models with similar or more
favourable prediction error statistics than the BRT method (BART explained an
additional 10.17% of variation than BRT on the drought dataset, and an additional
11.92% on the wetting dataset), indicating that BARTs may be more effective at
modelling ecological data. BARTs also had other benefits including shorter run
times, more reasonable defaults in its software implementation, and greater func-
tionality of said software implementation, beyond model building and prediction

functions.
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There are some limitations to this study. Most notably, all models were only fit
to two datasets from the one ecology scenario (grassland decline and recovery).
Additionally, these datasets contained no missing data (and further, missing
data was not simulated), so the relative abilities of BRT and BART to fit models
and predict from missing data were not investigated. Therefore, future work in
this area should include studies comparing BRT and BART models on multiple
datasets (some of which should contain missing data) from a diverse range of
ecological scenarios.
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CHAPTER 1

Introduction

Regression is a type of analysis which is used to predict values of one (depen-
dant) variable using the values of one or more (predictor) variables. There are
numerous types of regression analyses such as linear, generalized linear models,
ordinary least squares, stepwise, ridge, and polynomial. Regression methods
have different assumptions and uses, but they share similar challenges. Specifi-
cally, when fitting a regression model, the goal is to produce a model that fits the
data well and produces good predictions with small errors, while not overfitting
to the specific sample the model is being trained on.

1.1 Statistics Methods
1.1.1  Treed Regression

Decision tree models are one type of regression analysis and have two sub-types;
regression trees which produce numeric predictions and classification trees which
produce categorical predictions (Breiman et al., 1984). These tree models partition
the predictor space into groups of homogeneous responses to these predictors by
employing a series of binary splits. Binary splits are repeatedly applied to the
output of the previous split until some pre-determined stopping condition is met
(Elith et al., 2008).

Decision trees consist of internal nodes (including one root node) and terminal
nodes (also known as leaves). Each internal node in the tree indexes a splitting
rule which contains a splitting predictor variable and a splitting value. An
observation is moved to the left child node if the splitting rule is satisfied for
that observation and is assigned to the right child node if the rule is not satisfied
(Breiman et al., 1984; Kapelner and Bleich, 2016).

Once the stopping condition is met, the final nodes are not split. These are the
terminal nodes. Terminal nodes do not have associated splitting rules, instead
they index a region in predictor space where the responses to predictor variables
are approximately homogeneous (Breiman et al., 1984; Elith et al., 2008). Figure
1.1 displays an example of a single tree.



/Root Node

X1§T1 /‘\
Y

Y1 \ Y2 Y3 / Ya
Terminal Nodes:

Figure 1.1: An example of a single decision tree, with four predicted responses;
Y1, Ys, Y3 and Y, three splitting predictor variables; X;, X, and X3 and three
splitting values; t;, t, and t;. The root node, internal nodes, and terminal nodes
are labelled.

Due to the hierarchical structure of trees, regression trees automatically model
interactions as the response in any non-root node depends on responses to nodes
higher in the tree (Elith et al., 2008). A terminal node represents a main effect only
when it depends on only one variable. This occurs when the terminal node is a
child of the root node, or when every internal node leading to the terminal node
has the same splitting variable. Alternatively, an interaction effect occurs when
the response depends on multiple variables, which is usually the case (Chipman
et al., 2010).

Regression trees have many advantages. These single tree models can be
easily visually represented in an intuitive way through the use of tree diagrams.
Additionally, little data preparation is required because predictor variables can be
of any type (numeric, binary, or categorical) and no assumptions are made about
the distribution of the data or errors (as regression trees are a nonparametric
method). They are also unaffected by differing scales of measurement among
predictors, insensitive to outliers, and can not only accommodate missing data
but also model any structure present in the missing data using surrogate splits
(Breiman et al., 1984; Elith et al., 2008).

Decision trees also have some disadvantages which introduce uncertainty in
their interpretation and limit their useability. They are not as accurate as other
methods such as generalized linear models (GLM) and generalized additive
models (GAM) and they also struggle to model smooth functions (Elith et al.,
2008). Additionally, the structure of a single tree depends on the particular

sample of data, and thus minor alterations in the training data can result in very



different tree structures. This is mainly due to the hierarchical nature of trees; an
erroneous split near the root of the tree is propagated to all the splits below (Elith
et al., 2008). Additive tree methods such as bagging or boosting (Section 1.1.2)
reduce this instability of single trees (Elith et al., 2008; Hastie et al., 2001).

1.1.2  Boosted Regression Trees

Boosted Regression Tree (BRT) models are a type of regression tree, specifically,
they are additive regression trees. Additive regression trees are models where
multiple individual simple trees are the terms of the model and BRTs use a process
called boosting to fit these multiple simple trees and combine them into the one
additive model (Elith et al., 2008).

Boosting is a sequential procedure, meaning that each simple tree is iteratively
titted and added to the model one after the other. This sequential nature is
essential as each new tree added to the model is fit on the residuals of the (up
to that point) current model. The processes of fitting these simple trees is also
stochastic, which improves the predictive performance of the overall model.
This stochasticity is introduced into the model via a parameter known as the
“bag fraction” which controls the degree to which the model is stochastic. Figure
1.2 provides a graphical representation of the model fitting process (Elith et al.,
2008).

Data used to fit Data used to fit
2nd tree 3rdtree
(BF% of Training (BF% of Training
EYE))] Data)

Data used to fit
1sttree

(BF% of Training Etc...

Training

Data

Data)

v

Tree 1 + Tree 2 + Tree 3 + ... =Model

Figure 1.2: Illustration of the boosting process. Single trees are sequentially fit on
the current model’s residuals on some proportion of the training data known as
the bag fraction (BF).

The bag fraction is the proportion of observations sampled from the complete
training set, without replacement, that a single simple tree is fitted to (once the
tree is fitted, then the data is replaced, and another sample is taken without
replacement). Each time a new simple tree is added to the model, it is fitted on
a subset of the training data and its structure is chosen (given the selected tree
complexity) to explain the maximum amount of variation in the data that is not
yet explained by the trees previously added to the model. This has the effect
of creating many trees that could contain very different splitting variables and
values from each other. Additionally, it also means that as the model acquires



more trees, they are increasingly focused on the observations that are harder to
accurately predict (Elith et al., 2008).

There is a similar process to boosting called bagging. While boosting is a
sequential, iterative procedure which adds new trees to the model to explain the
maximum amount of variation in the data that is not yet explained by the trees
previously added to the model, bagging is a procedure that can be parallelised as
fitting one simple tree does not depend on previous trees added to the model. This
can be quite confusing as the proportion of observations to be sampled at each
iteration of fitting a BRT model is called a bag fraction, however, BRTs employ
boosting, not bagging (Breiman, 1996, Quantdare, 2017). Figure 1.3 provides a
graphical illustration of the difference between the processes of fitting a single
tree, multiple trees via bagging, and multiple trees via boosting.

bagging boosting

1 iteration P parallel

Figure 1.3: Bagging and Boosting both fit multple trees when building a model.
When boosting, each new tree added to the model relys on all previous trees as
when a tree is added to the model, it is fit to the residuals of the current (up to this
point) model. However, when bagging, each tree is independant of one another.
Figure from Quantdare (2017).

When creating a BRT model, values for three parameters must be provided,
two of which provide regularisation (which is where some form of boundary or
limitation is introduced to limit the model from overfitting the data) (Elith et al.,
2008):

e The aforementioned bag fraction which controls the proportion of the train-

ing data to be sampled each time a tree is added to the model. Note that
a different sample is generated for each tree and more importance is given
to the observations that are not yet explained by the previous trees in the
model.

e The tree complexity which determines the maximum depth of the simple

trees and, by extension, whether or not interactions are fitted (and the



maximum order of interactions permitted to be modelled). Introduces
regularisation to the model.

e The learning rate (or shrinkage) which regulates the contribution of each
tree to the final model. Introduces regularisation to the model.

Together, the tree complexity and learning rate determine the number of trees
in the final model. Decreasing or slowing the learning rate increases the number
of trees required. Decreasing the tree complexity also increases the number of
trees required. Therefore, as the tree complexity is decreased, the learning rate
must be increased (and visa versa) to ensure sufficient trees are to be fitted in the
model. Furthermore, regularisation in BRT models is achieved through jointly
optimising the number of trees, learning rate, and tree complexity (Elith et al.,
2008).

Optimal values for all three of these parameters can be estimated using k-fold
cross validation (CV). CV is a re-sampling procedure used to test the effectiveness
of (usually machine learning) models by withholding some proportion of the data
when fitting the model to later test it. It can also be used to estimate optimal values
of parameters in BRT models (Hastie et al., 2001). The general process for using
cross validation to optimise a parameter of BRTs is outlined in Figure 1.4 (Elith
et al., 2008).

Divide data Create k different training sets, each with a Choose an initial value for the
randomly into n unique combination of the n-1 subsets (each [~ ™| parameters that an optimal
subsets training set has a subset excluded which is value is being tested for

later used for testing)

v

Simultaneously develop 10 models | Step forward If at least 10 iterations

(using parameter value) on each " parameter value have been conducted

training set. Test predictive

performance on the respective /

omitted data. Record mean deviance If less than 10 iterations Once at least 10 iterations have been

and standard deviation have been conducted conducted, compare predictive deviance of

the 6th to 10th previous iterations (previous

set) to those of the current to 5th previous
iterations (recent set)

Stop when the average predictive deviance
of the recent set is higher than the average
of the previous set. Record the value that
produced minimum prediction deviance, this
is the estimate of the optimal value for the
parameter

Figure 1.4: Flow diagram illustrating the process using of k-fold cross validation
to estimate optimal values of the boosted regression tree parameters.

BRT models are often comprised of hundreds or thousands of individual trees

so they can be quite complex. However, they are simple to generate predictions
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from and can be summarised, evaluated, and interpreted similarly to single
regression trees. Additionally, standard errors can be estimated with bootstrap
procedures (Elith et al., 2008).

BRTs can also be used to assess predictor importance. The relative influence
or contribution of a predictor variable to the model can be calculated based on
the number of times the variable has been used as a splitting variable, weighted
by the squared improvement to the model as a result of each split and averaged
over all the trees in the model (Elith et al., 2008).

1.1.2.1 Assumptions of Boosted Regression Trees

Boosted regression trees are a non-parametric method and therefore do not have
any distribution assumptions. As such, they are very flexible and so it is accept-
able to fit BRT models on many types of data including skewed, multimodal, and
categorical (Biodiversity and Climate Change Virtual Laboratory, 2019).

1.1.2.2  History of Boosted Regression Trees

Boosted regression trees were originally derived from machine learning but have
since been developed into an advanced form of regression (Elith et al., 2008). Fre-
und (1995) introduced the AdaBoost algorithm (aka Discrete AdaBoost algorithm)
which fit multiple weak classifying trees, on a sequential basis, to observations
in a data set with evolving weights. The AdaBoost algorithm was later further
refined by Freund and Schapire (1997) (Ridgeway, 1999).

Drucker (1997) first proposed and tested methods for extending boosting
to regression problems (earlier works had only dealt with classification trees)
and Breiman (1999) also explored the use of boosting in regression problems by
involving optimisation of a regression loss function (Ridgeway, 1999). Addition-
ally, Elith et al. (2008) wrote a paper which provided a working guide to boosted

regression trees, primarily targeted towards ecologists.

1.1.3 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) is an additive regression tree method
that differs to Boosted Regression Trees as it relies on a Bayesian probability model
and does not employ boosting Kapelner and Bleich (2016).

Bayesian techniques incorporate prior knowledge into statistical models in
order to preserve and refine uncertainty by adjusting prior beliefs when consid-
ering new data. This contrasts with frequentist methods which simply model the
probability of the data given a null hypothesis, whereas Bayesian methods allow
the modelling of the probability of a hypothesis given the data (van de Schoot
et al., 2013).



Bayesian techniques include three main components; a prior probability dis-
tribution, likelihood, and posterior probability distribution. The prior probabil-
ity distribution (hereafter “prior(s)”), allows for knowledge based on previous
experience about parameters to be included in a model. Priors can be either
informative (strong) or uninformative (weak). The likelihood is derived from the
data and is the probability of the observations in the dataset occurring assuming
that the prior is accurate. The posterior probability distribution (hereafter “pos-
terior(s)”) is the refined predictions calculated from combining the prior and the
likelihood (van de Schoot et al., 2013).

Because it is a Bayesian model, BART is comprised of several priors. Specif-
ically, it includes priors for the tree structure, leaf parameters given the tree
structure, and the error variance (which is independent of the other two priors).
These priors exist in order to provide regularisation, which weakens the indi-
vidual tree effects and thus prevents any single tree from dominating the model
as a whole (Kapelner and Bleich, 2016). This ensures that that each of the trees
explains a small and different part of the variation in the data (Chipman et al.,
2010). In BART regularisation is introduced through the use of priors, while in
BRT regularisation is introduced through the learning rate and tree complexity.

The tree structure prior is used to ensure shallow tree structures, so that
the complexity of any single tree is limited. The shallower (less complex) the
individual trees, the more model regularisation. Node depth is defined as the
distance of the node to the root (so the depth of the root itself is zero). Nodes
of depth d have prior probability a(1 + d)* of splitting and therefore of being
non-terminal (Kapelner and Bleich, 2016). Alpha (a) is the “base” probability
of splitting a terminal node (and therefore growing a tree), smaller values of «
will tend to yield smaller trees. Beta () controls the rate at which the likelihood
of a terminal splitting decreases as the terminal node’s depth increases. Larger
values of f make deeper nodes less likely to split, resulting in a lesser spread in
the number of terminal nodes in the prior distribution (Chipman et al., 2010).
For the tree structure prior, two hyper parameters (@ and ) need to be chosen
(Kapelner and Bleich, 2016). Figure 1.5 presents four possible tree structure priors
generated using different combinations of @ and f.

Figure 1.5 graphically illustrates how a and g affect the prior distribution of
the number of terminal nodes. The top left and right plots display distributions
that have been generated from the same f value (5 = 0.5), but differing a values
(@ = 0.5 and a = 0.95 respectively). a controls the base probability of splitting
a node, and this is reflected in the top two graphs; the top left has the smaller «
value and therefore the distribution is shallower than that of the top right plot
(which has the larger a value).



w - .
[=]
< Lo
S 3
S
3 ° B
8 K|
S o 2 . 3
o o o S
p
o J <
© r T T © T
0 5 10 15 20 25 30 [ 5 10 15 20 25 30
Number ot Terminal Nodes Number of Terminal Nodes
< 1
b T o
o
« 3
[=] o
£ £
o ¥l
2 3 3
e Q [
[N, [
] s
o J ,— - r
© r R T < r
0 B 10 15 20 25 30 0 5 10 15 20 25 30
Number of Terminal Nodes Number of Terminal Nodes

Figure 1.5: Prior Distribution on Number of Terminal Nodes. Top Left: a = 0.5,
p = 0.5, with prior mean 2.1; Top Right: a« = 0.95, f = 0.5, with prior mean 7;
Bottom Left: @ = 0.95, = 1, with prior mean 3.7; Bottom Right: « = 0.95, p = 1.5,
with prior mean 2.9. Figure from Chipman, George and McCulloch (1998).

The bottom left and right plots display distributions that have been generated
from the same «a value (¢ = 0.95), but differing g values (5 = 1 and g = 1.5
respectively). B controls the rate at which the likelihood of a terminal node
splitting decreases as the terminal node’s depth increases, this is illustrated in
the bottom two graphs; the bottom left has the smaller of § value and displays a
greater spread in the number of terminal nodes in the posterior distribution than
the bottom right plot (which has the larger g value).

The leaf prior controls the leaf parameter, which is the fitted value assigned to
any observation that falls within a particular terminal node. In other words, it is
the treed model’s estimate of the response in the particular partition of predictor
space that terminal node represents. The aim of this prior is to shrink the leaf
parameter towards the centre of the response distribution, introducing additional
model regularisation (Kapelner and Bleich, 2016).

The prior on each leaf parameter is given by i, YN (y u/m, ofl) where:

e The expectation (u,) is the range centre (Kapelner and Bleich, 2016).

e The variance hyperparameter (07) is chosen so that the range centre plus

or minus some number (k) of variances cover 95% of the responses in the
training set. Therefore, with m trees, 0, is chosen so that m, +k Vmo 4 = Ymin



and my, —k\mo, = Ymax- As k is increased, oi decreases which results in

greater model regularisation (Kapelner and Bleich, 2016).

For the leaf prior, one hyperparameter (k) must be chosen. The number of
trees (m) must also be defined. As k is increased, more shinkage is applied to the
leaf prior, resulting in a more conservative fit (Kapelner and Bleich, 2016).

The error variance prior controls the error variance and limits the probability
mass assigned to small values of ¢? to prevent overfitting. It is chosen to be
0% ~ InvGamma(%, %) A is calculated from the training data so that there is
a “q” percent a priori chance that the model will improve upon the root mean
square error (RMSE) from an ordinary least square regression. A larger value of
g results in more model regularisation (Kapelner and Bleich, 2016). v specifies
the shape of the inverse gamma distribution (Chipman et al., 2010).

In total, there are five adjustable hyperparameters; a, 5, k, v, and 4. The
number of trees, m, must also be chosen. As with boosted regression trees, the
estimates of optimal values for the hyperparameters can be obtained through use
of cross validation methods (Kapelner and Bleich, 2016).

The entire posterior probability distribution cannot be computed (except in
trivial models) because of the large number of possible trees, so a Metropolis-
within-Gibbs sampler is employed to explore the posterior. This algorithm simu-
lates a Markov chain sequence of trees which tends to gravitate towards regions
of higher posterior probability and is therefore used to search for higher posterior
probability trees (Chipman et al., 1998; Kapelner and Bleich, 2016).

The Metropolis-within-Gibbs sampler with an initial tree, T, and iteratively
transitions the tree from T; to T;,1 by proposing a change to T;’s structure which
is then either accepted or rejected. Depending on the specific implementation of
BART employed, there are three or four types of changes that could be proposed
(Chipman et al., 1998; Kapelner and Bleich, 2016):

e Grow: Randomly pick a terminal node, split it into two new ones by as-
signing a new splitting variable and value.

e Prune: Randomly pick a parent of two terminal nodes and turn it into a
terminal node by collapsing the nodes below it.

e Change: Randomly pick an internal node, and reassign it a new splitting
variable and value.

e Swap (optional type of change): Randomly pick a parent-child pair that are
both internal nodes, and swap their splitting variables and values (unless
the other child has the identical splitting variable and value, in which case
swap the splitting variables and values of the parent with that of both
children).



BART can also be used for classification problems with categorical response
variables. In this case, the error variance prior is not necessary, and the model
assumes 0? = 1. The prior on the tree structure remains the same but the leaf
prior requires some minor modifications (Kapelner and Bleich, 2016).

BART can also be used as a tool for variable selection. It is less effective
on models that have a large number of trees as the redundancy introduced by
many trees incorporates many irrelevant predictors into the model along with
the relevant ones. When the redundancy is reduced (by decreasing the number
of trees in the model) the predictors must compete with each other to improve
the fit of the overall model and thus, fewer irrelevant predictors are incorporated
in the model and used as splitting variables (Chipman et al., 2010).

1.1.3.1 Assumptions of Bayesian Additive Regression Trees

Bayesian additive regression tree models assume that that the error structure of a
model is normal, homoscedastic, and mean centred. Additionally, the likelihood
of responses in the terminal nodes are assumed to be a priori normal, and for
classification problems (when the response is a categorical variable) a probit
model is assumed. BART also requires convergence of the Metropolis-within-
Gibbs sampler (Kapelner and Bleich, 2016).

1.1.3.2  History of Bayesian Additive Regression Trees

Breiman et al. (1984) first popularised classification and regression tree models
within the statistical community. Then Chipman et al. (1998) proposed a Bayesian
approach for finding classification and regression tree (CART) models. Although
model averaging could be used with this method, it is not an ensemble method,
rather a single tree model. Chipman et al. (2010) then extended this previous
work to be an ensemble method and called the resulting model Bayesian Additive

Regression Trees.

1.1.4  Other Tree-Based Regression

There are several tree-based regression techniques other than BRT and BART. One
such technique is Bayesian treed models which, like BART, rely on a Bayesian
probability model. However, this method fits parametric sub-models to the
terminal nodes, rather than a simple mean or proportion. It is not an ensemble
tree method but could be extended to include it (Chipman et al., 2002).

Another tree-based regression method is random forests. It is an ensemble
tree method which introduces randomness by utilising bagging in addition to
titting each tree using a random subset of the predictor variables. In other words,
a different random selection of predictor variables and observations from the

full data set are used to fit each tree. This process is similar to bagging, but
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instead of just selecting a subset of cases/observations (as in bagging) a subset of
cases/observations and predictor variables are selected (Breiman, 2001).

Dynamic trees are yet another type of tree-based regression. This type of
model is a sequential, ensemble method (like BRT), but like BART, relies on a
Bayesian probability model. The dynamic trees model is designed to adapt with
the accumulation of new data and changes with additional data in such a way
that a new observation leads to only a small change in the posterior (Taddy et al.,
2011).

Figure 1.6 presents a “tree” of methods, to summarise the discussed models’
relationships to each other, and indicates the type of response variables the models
can be used with (continuous data, categorical data, or either). Models positioned
below another model type, are subtypes of that model (e.g. logistic regression is
a type of generalised linear model).

Classification and

/ resresson \
Single Decision

Generalized Linear
Model (GLM)
continuous and

‘ !
i t |
/ categorical \ / sl \
Non-Additive Tree

Tree
(continuous and

Simple Linear Logistic Regression Additive Tree Methods
Regression (categorical) Methods
(continuous) / l
Bayesian Treed
Boosted Models
Regression Trees (continuous)
(BRT) Bayesian Additive
(continuous and Regression Trees Dynamic Trees
categorical) (continuous and (continuous and
categorical) categorical)

Random Forests
(RF)
(continuous and
categorical)

Figure 1.6: Tree of methods summarising the relationships between the discussed
model types. Type of reponse variables that can be used with each model type is
inticated in blue.

1.1.5 Inference and Prediction from Additive Regression Tree Models
Statistical models have the ability to be utilised for prediction (where the goal

is to predict outcomes on new data points) and inference (where the goal is to
learn about the data generation process and test hypotheses). Different types of
modelling methods tend to be better suited to one of these two goals, although
elements of both can be present in the one model type. When a method is

used with the main goal of prediction, interpretability usually suffers, and when
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a method is used with inference in mind, the predictive power of the model
typically is compromised. Generally, machine learning methods are more suited
to predictive modelling as they are often treated as black boxes, greatly inhibiting
their interpretability and thus usefulness for inference. In contrast, Bayesian
methods are often used when inference is the main goal, due to their ability to
incorporate assumptions or prior information about the data generating process
(Doring, 2018; James et al., 2017).

Single decision trees have high interpretability, but due to the model limita-
tions (Section 1.1.1), have low predictive performance. However, the additive
and machine learning natures of BRT and BART inverts this relationship. Like
other machine learning methods, they can be considered black box methods due
to their low interpretability but have high predictive power. Despite their heavy
association with prediction, both these methods can also be used with inference in
mind. Both BRT and BART can be used for variable selection, to determine which
variables are contributing most to the response (a valuable aspect of inference
(James et al., 2017)). Additionally, BART is useful for inference as it relies on a
Bayesian model which allows it to incorporate assumptions and prior knowledge

of the data generating process.

1.1.6  Training and Test Sets

When building models, especially machine learning based methods, it is common
practice to employ the use of training and test sets. This involves splitting a
complete data set into two parts (one to train the model and one to test it).
The model is then fit on the training set, and performance of the model is then
evaluated using the test set. The purpose of this is to gain an unbiassed evaluation
of the model fit, using data that was not used to build the model (Brownlee, 2017;
James et al., 2017).

1.2 Ecological Context

Climate change is expected to increase the frequency and intensity of drought
globally, so it is important to study the degradation and recovery of various
environments during drought. Grasslands make an ideal candidate to study
under drought because of their high sensitivity to variation in climate conditions.
Kathetal. (2019) explored grassland responses a long-term drought using boosted
regression trees.

The grassland data set that Kath et al. (2019) analysed was chosen to be
used in this honours project for several reasons. Firstly, dismo, the R package
that will be used here to fit boosted regression tree models, was created with
ecologists in mind (Elith et al., 2008), so it was prudent to use ecological data
here. Additionally, Kath et al. (2019) used the gbm package (Greenwell et al.,
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2019) as well as several functions from the dismo package (Hijmans et al., 2017)
to fit boosted regression tree models to the data and inspect them. Therefore,
comparisons can be drawn between Kath et al’s BRT results with the BRT and
BART models fitted here.

Kath etal.’s grassland dataset was collected from an approximately 30,000 km?
area in the Darling Downs, Australia (Figure 1.7). It contains a mix of extensively
grazed native grasslands and dryland and irrigated cropping. It is also one of
Australia’s most agriculturally productive areas (Australian Bureau of Statistics,
2016; Kath et al., 2019).
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Figure 1.7: The study area of the Kath, Le Brocque, Reardon-Smith and Apan (2019)
grassland dataset in southern Queensland, Australia. Grey areas are grazing
lands from which enhanced vegetation index time series data from 2549 sites
(black squares) were extracted.
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The dataset contains 13 predictor variables (specifically eight hydroclimatic
and five land-use variables) to model the response variable, enhanced vegetation
index (EVI) trends in grasslands during drought and wet periods. The EVI
measure represents vegetation primary productivity and was remotely sensed
through satellite imagery (Kath et al., 2019).

1.2.1 Remotely Sensed Data

Satellite remote sensing (SRS) methods have been increasing in popularity amongst
ecologists in recent years. These methods have many advantages compared to
the more conventional alternatives such as unmanned aerial vehicles (UAVs) and
in situ monitoring (Pasetto et al., 2018).

In situ methods are time, cost and labour intensive, and UAVs have low
spectral resolution, limited flight endurance, and are often restricted by laws
limiting the use of drones. In comparison, SRS has high spectral resolution, almost
regular repetition of measurements (subject to atmospheric conditions), has been
freely available for the past 2-3 decades, and there is an ever-expanding list of
ready-to-use SRS products available (such as Landsat and MODIS). Additionally,
SRS products are certified through quality assurance tests and standards (Pasetto
et al., 2018).

1.2.2  Creating EVI Response Variable
EVI values in this dataset were gathered from the MODIS terra sensor. At each

site in the study area (of which there were 2549), EVI values were derived as a
time series. For each site, these values were then aggregated to mean monthly
values in order to be consistent with the monthly format of the hydroclimatic
predictor variables. Kath et al. (2019) then calculated trends over time in the EVI
using Mann-Kendall tests. A negative trend in the EVI was taken as a measure

of grassland decline and a positive change as a measure of grassland recovery.

1.2.3  Splitting the Dataset into Drought and Recovery Phases

Kath et al. (2019) used rainfall anomalies to split the complete dataset and classify
multiple year-long drought (May 2002-May 2007) and wetting (May 2006-May
2011) phases. Boosted Regression Trees were then used to determine drivers of
degradation and recovery in the drought and wetting phases respectively.

An overlap between the end of the drought phase and commencement of
the wetting phase was included in order to ensure that any trend identified in
the wetting phase was relative to drought condition — so the wetting phase data
began towards the end of the drought.
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1.2.4 Currently Used Methods in Ecology

Numerous statistical methods are currently used in ecology. Such techniques in-
clude; generalised additive models (GAMs), generalised linear models (GLMs),
principal component regression (PCR), penalised regression methods such as
ridge regression and least absolute shrinkage and selection operator (LASSO)
and dimension reduction methods such as sliced-inverse regression (SIR) and
principal Hessian directions (PHD). More recently various machine learning tech-
niques such as boosted regression trees (BRT), random forests (RF) and multivari-
ate adaptive regression splines (MARS) have begun to be utilised in ecological
contexts (Dormann et al., 2013).

1.3 Research Questions

This project aims to answer three main research questions:

1. Do BRT and BART differ in identifying important variables and pair-wise
interactions?

2. Is either model type (BRT or BART) more effective at modelling ecological
data (in terms of reduced prediction error and ease of use)?

3. Are the defaults of the BRT and BART software implementations reason-
able?

1.4 Importance of Research

Although both the BRT and BART methods are theoretically well defined within
statistical literature, BRTs are widely used in the field of ecology while the BART
method is a relatively new technique to the field. Specifially, a preliminary
search of the literature has found no evidence of the use of Bayesian trees in
ecology, while at the time of writing, Elith et al. (2008) “A working guide to
boosted regression trees” (which outlines the use of BRTs in ecology) has been
cited over 2000 times. As such, the differences, range of obtainable results and
relative limitations of BARTs has had limited or no exploration in an ecological
context. This project aims to contribute to filling this gap in ecologists” collective
knowledge to facilitate the use of both methods, by ecologists in the future as
well as determine if BART has some benefits over the widely used BRT method.
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CHAPTER 2

Methods

2.1 Reference Analysis Models

In order to illustrate the benefits of BRT and BART, some more common and
simple model types were first fit to the data as a form of reference analysis.
The methods considered here are; linear regression, single regression tree, and
random forest models.

The linear models were fit in base-R (R Core Team, 2018) using the 1m func-
tion, however the single regression tree and the random forest models required
R packages. The single regression tree analysis was conducted using the “rpart”
package (Therneau and Atkinson, 2019) and graphs were created with the pack-
age “rpart.plot” (Milborrow, 2019). The random forest models were fit using
the package “randomForest” (Liaw and Wiener, 2002).

All of these models were fit using the defaults, with the exception of one
parameter in the random forest call. This parameter, “importance”, was set to
“TRUE” (its default is “FALSE”). This allowed the importance of predictors to be
assessed.

2.2 Boosted Regression Tree Models
2.2.1 Software

All boosted regression tree analysis was conducted in R (R Core Team, 2018),
using the R package gbm (Greenwell et al., 2019) and additional custom functions
written by Elith et al. (2008), contained in the R package dismo (Hijmans et al.,
2017). All plots that were not created in base R, were constructed in the R package
ggplot2 (Wickham, 2016).

The gbm package, or “Generalized Boosted Regression Models” package was
originally developed by Greg Ridgeway (2013), but has since been written by
Brandon Greenwell, Bradley Boehmke, and Jay Cunningham (2019). It contains
functions for both fitting, evaluating and interpreting boosted regression tree
models (Greenwell et al., 2019).

The dismo package, or “Species Distribution Modelling” package, was written
by Robert J. Hijmans, Steven Phillips, John Leathwick, and Jane Elith (2017) for
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modelling species distributions using BRT models and other methods such as the
“MaxEnt” (maximum entropy) model (Hijmans et al., 2017).

dismo is an extension of gbm and includes a function called gbm.step which
tits a BRT model to one (or more) response variables and utilises cross-validation
to determine the optimum number of trees to include in the model. This function
is an extension of the gbm function “gbm” which also fits BRT models (Elith and
Leathwick, 2017; Hijmans et al., 2017).

All dismo functions are designed to return exactly what the gbm functions re-
turn, but with extra components. Specifically, the gbm.step function includes
14 additional components, including gbm.call (contains details of the orig-
inal gbm.step call), fitted (contains fitted values from the final tree), and
fitted.vars (contains the variance of the fitted values) (Elith and Leathwick,
2017; Hijmans et al., 2017).

Aside from extending already existing gbm functions, dismo also includes
some original functions designed to improve interpretation of the BRT models
produced in either gbm or dismo. Such functions include gbm.plot which plots
the fitted functions from a BRT model and gbm.perspec which plots pairwise
interactions between variables (Hijmans et al., 2017).

Given the additional functionality available in dismo, this package was used
instead of gbm to fit the BRT models in this project. Additionally, Kath et al.
(2019), also used dismo functions when fitting their models, allowing a direct
comparison between their models and the models fitted here.

It should be noted that there exists a new version of gbm, gbm3 (Metcalfe, 2016).
However, this package was not completely developed at the time of writing, and
thus was not employed here.

Table 2.1 illustrates several adjustable parameters when fitting a BRT model
in both gbm (using gbm.fit) and dismo (using gbm.step). There are several
other adjustable parameters (such as the maximum number of trees the model-
building process will fit before stopping) but these are the most important as they

are required parameters used to fit the model.

2.2.2  Process
For each dataset (drought and wetting; each with a sample size of n = 2549), 100

different models (using all combinations of the parameter values in Table 2.2) were
titted to a 70% training set (n = 1784). The number of trees included in the models
were recorded. These models were fit using dismo’s gbm.step function, which
uses k-fold cross validation (See Section 1.1.2 for a brief discussion) to determine
the optimal number of trees given the other parameter values when fitting a
model. All models were then tested on 30% testing sets (1 = 765) by predicting
EVIon the test set observations and then calculating the RMSE (root mean square
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error), MAE (mean absolute error) and R* (coefficient of determination) using the
observed and predicted EVI values of the test set data.

Kath et al. (2019) fitted boosted regression tree models to each dataset with
a bag fraction of 0.75, learning rate of 0.01, and tree complexity of 5 (Kath, J
2019, pers. comm., 21 October). This parameter combination is one of the 100
combinations considered here (Table 2.2).

Table 2.2: All parameter values that were considered in this study, with a total of
100 combinations. Default values for the gbm. step function in the dismo package
are in red.

Parameter Values Tested

Bag Fraction (bf) 0.3,0.6,0.75,0.9
Learning Rate (Ir) 0.001, 0.005, 0.01, 0.05, 0.1
Tree Complexity (tc) 1,3,5,9,13

Values for the bag fraction lower than 0.3 were not considered because that
would mean that each tree would be trained on less than 30% of the data, which
would drastically increase the likelihood that the models would be trained on
non-representative data. Learning rate values were chosen to test the full range
of feasible choices on this specific dataset. The smallest learning rate (0.001) is
computationally slow and the gbm.step function would most often reach the
default limit of the number of trees it could fit (10000), but the tree limit was
then increased until the model-building process reached the optimum number
of trees. The largest learning rate (0.1) allowed the trees to learn so fast that
gbm occasionally refused to run the model because the model-building process
was moving too fast down the gradient of the loss function. The values for tree
complexity were also chosen to cover abroad range. The absolute minimum value
for tree complexity is 1, denoting a decision tree stump, so this is the smallest
value tested. Four more values for tree complexity, up to tc of 13 were also tested
(so in total, five tree complexities were tested). A tc of 13 is quite large and
indicates that each tree has the potential to fit 13-way interactions, meaning that
it is possible that each tree is fitting an interaction with all 13 variables (however
this is not certain as predictor variables can be used as splitting variables more
than once in a tree).

Elith et al. (2008) indicate that higher tree complexity paired with smaller
learning rates will provide the best model results. However, this is restricted by
computing time. The longest models (with tree complexities of 1 and learning
rates of 0.001) to fit took between 2 and 2.5 minutes to run.

Graphs were produced in R using ggplot2 to display how the number of
trees, and error statistics were affected by varying the tree complexity, learning
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rate, and bag fraction. Graphs to display variable importance, and calculations

to determine inclusion proportions were produced using the dismo package.

2.3 Bayesian Additive Regression Tree Models
2.3.1 Software

All Bayesian additive regression tree analysis was conducted in R (R Core Team,
2018), using the R package bartMachine (Kapelner and Bleich, 2016). This
bartMachine package, or “Bayesian Additive Regression Trees” package was
written by Adam Kapelner and Justin Bleich, and is maintained by Adam Kapel-
ner. It is an implementation of Bayesian Additive Regression Trees and contains
some expanded features for data analysis and visualization and has several useful
functions for testing the assumptions of BART models. Note that this implemen-
tation of BART does not include the “Swap” proposal as mentioned in Section
1.1.3 (Kapelner and Bleich, 2016).

There exists another BART implementation package for R. This package, called
BayesTree (Chipman and McCulloch, 2016), was written by the original authors
of the BART algorithm but has many drawbacks that make it unsuitable for this
project. Firstly, unlike bartMachine, BayesTree cannot save models across R
sessions, making it unsuitable for the comparison of multiple (several hundred)
models, as is this case in this study. Secondly, BayesTree has no external predict
function. It can predict on new data, but the test data must be included as an
argument to the model building function. Because of this, BayesTree cannot
predict on new data without refitting the model, making it cumbersome to use.
bartMachine avoids this issue by including an external predict function. Ad-
ditionally, BayesTree is significantly slower than bartMachine due it it’s lack of
parallelization. In contrast, bartMachine’s model building processis parallelized,
as are several features including prediction and variable selection (Kapelner and
Bleich, 2016).

bartMachine has several other useful features not found in BayesTree, but
were not strictly relevant to this project. These features include; plotting functions
for posterior credible and prediction intervals, plotting functions for visually
inspecting convergence of the Markov chain Monte Carlo, ability to incorporate
prior information on covariates, and ability to handle missing data in both the
model building and prediction processes (Kapelner and Bleich, 2016).

Table 2.3 illustrates several adjustable parameters when fitting a BART model
in bartMachine (using the function bartMachine). There are several other ad-
justable parameters (such as the number of MCMC samples to be discarded as
“burn-in”) but these are the most important as they are required parameters used
to fit the model.
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Table 2.3: Adjustable priors and hyperparamters with their descriptions, code parameter name, default values, and possible values for
the bartMachine function in the bartMachine package (Chipman et al., 1998, 2010; Kapelner and Bleich, 2016).

bartMachine
Adjustable Prior Adjustable Prior Description Adjustable Hyperparameter ~ Adjustable Hyperparameter Description (bartMachine) Possible Values
Code Default Value
Has ability to enforce shallow tree struc- a Controls the depth of trees. Shallower val- alpha 0.95 o€ (0,00)
Tree Prior tures, resulting in model regularisation. ues tend to produce shallower trees.
Nodes at depth d are nonterminal with prior
probability a (1 +d)~* Smaller values tend to result in greater
B spread in the number of terminal nodes in beta 2 B €[0,0)
the prior distribution (Figure 1.5).
Defines the variance of the leaf prior which
is chosen so that the range centre plus or mi-
. This prior has the ability to shrink the tree k nus k variances cover 95% of the provided k 2 k € (0, c0)
Leaf Prior parameters towards zero, limiting the effect response values in the training set. Larger
of the individual tree components by keep- values result in greater shrinkage.
ing them small. The prior on each of the leaf
parameters is given as: (i, YN At /m QNV
HET T m € (0, o)
Number of trees to be included in the BART
m num_trees 50 (must be
model. .
integer value)
Error Variance Controls the error variance. The prior is v m._umﬁmmm the shape of the gamma distribu- nu 3 v € (0,0)
Prior chosen to be ¢ ~ InvGamma @\ %v tion.
A is chosen from the data so that there is a
q a priori chance that the BART model will
improve upon the
RMSE from an ordinary least squares re-
q gression. g limits the probability mass q 0.9 q€(0,1)

placed on small values of 0° to prevent over-
fitting. So, the higher values of g, the larger
the values of the sampled 02, resulting in

more model regularisation.
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It should be noted that while Table 2.3 displays the ranges of each hyperpa-
rameter, bartMachine is coded in such a way that it will allow values of a that
are negative as well as values greater than 1. Additionally, negative values are
also allowed for p and k, and non-integer values are accepted for m, the number

of trees.

2.3.2 Process

For each dataset (drought and wetting; each with a sample size of N=2549), 729
different models (using all combinations of the hyperparameter values in Table
2.4) were fitted to a 70% training set (n = 1784). These models were fit using
bartMachine’s bartMachine function, which simply fits a BART model using the
given hyperparameter values. All models were then tested on a 30% testing set
(n = 765) by predicting EVI on the test set observations and then calculating
RMSE, MAE, and R* using the observed and predicted EVI values of the test set
data.

Table 2.4: All parameter values that were considered in this study, with a to-
tal of 729 combinations. Default values for the bartMachine function in the
bartMachine package are in red.

Parameter Values Tested

o 0.5,0.95, 2
B 0.5,0.95, 2
m 50, 100, 200
k 0.25,1,2

v 3,7,10

q 0.8,0.9,0.99

The hyperparameter values were chosen to display a range of possible values
for each hyperparameter. Because there are six different hyperparameter to be
set, time constraints dictated that only three values of each hyperparameter could
be tested (as opposed to the BRT analysis where hyperparameters had four or
tive tested values). This gave a total of 729 models, much more than the 100 BRT
models that were fitted. This was achievable because the BART models were
much faster to fit (around 20 to 40 seconds compared to the 2 to 2.5 minutes
required for the largest BRT models).

To ensure reasonable values of each hyperparameter was chosen to be tested,
multiple models were initially fitted on both data sets using the bartMachineCV
function which builds a BART model by cross-validating over a grid of hy-
perparameter choices, and fits a model with what it determines as the optimal
hyperparameter values from the options passed to it. The hyper parameter val-
ues that these models determined to be optimal (which were generally the same
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for both the drought and wetting datasets), were then included in the range of
hyper parameter values tested Kapelner and Bleich (2016).

The final consideration when selecting which hyperparameter values should
be tested, was the defaults of the package. All defaults (marked in red in Table
2.4) were tested.

Graphs were produced in R using ggplot2 to display how the error statis-
tics were affected by varying the hyperparameters. Graphs to display variable
importance, and calculations to determine inclusion proportions were produced
using the bartMachine package.

Note that the packages used to fit both model types (BRT and BART), have
more functionality for researches to employ than is discussed here (e.g. plotting
titted functions and assessing normality assumptions). The research presented
here is focused on determining the optimal parameters and best fitting models.

2.4 Comparison of Models
2.4.1 Statistics Employed

To find the “best” models, prediction error was assessed using three statistics;
root mean square error (RMSE), mean absolute error (MAE), and of coefficient
of determination (R?*). To calculate the MAE, the magnitudes of the errors are
summed to obtain the total error, which is then divided by n. This is shown
numerically in Equation 2.1. Calculating RMSE is only slightly more complex,
the errors are squared and then summed to obtain the total squared error, which
is then divided by n, and finally, the square root is taken (shown numerically in
Equation 2.2) (Willmott and Matsuura, 2005). R? is calculated using Equation 2.3.

MAE = n"! Z |P; — O (2.1)
=1
n 3
RMSE = [ -1 Z IP; — oi|2] (2.2)
i=1
n v — _. 2
R2 _ Zizl (Pz (il)z (23)
Y (Oi - Oi)

Where, Predictions: P;;i =1,2,---,n and Observations: O;;i =1,2,---,n

Both RMSE and MAE are utilised here because although RMSE is a commonly
used measurement of error, it is known to often be an inappropriate indicator
of “average” error due to the fact that each error contributes to the total in
proportion to its square (as opposed to its magnitude), meaning that large errors

have a greater influence on the total square error than the smaller ones. This has
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the effect of RMSE becoming increasing larger than MAE calculated on the same
data as the distribution of error magnitudes becomes more variable (Willmott and
Matsuura, 2005). R* was also used to provide a measure of prediction error that
was dissimilar in calculation to RMSE and MAE. The dismo and bartMachine
packages do not natively provide these statistics, they were instead calculated in
R using the formulae above.

2.4.2  Variable and Interaction Importance

Once the models with the least prediction error were identified, the importance
of each predictor variable and interactions among predictors were investigated,
to see if this relationship was consistent between both individual models and
model type (BRT and BART). This was done because part of the functionality
of treed methods is to assess predictor and interaction importance in the data
generation process. So, it is of interest if BRT and BART identified the same

predictor variables and interactions as influential.

2.5 Ecology Methods
No changes were made to the original dataset from Kath et al. (2019). Table 2.5

gives all the variables (and their units) that were used to form these datasets, as
well as the abbreviations used to denote them. Kath et al. (2019) describes in
detail how each variable was collected or calculated.

Table 2.5: All variable names, units, and abbreviations in the dataset from
Kath et al. (2019).

Variable Abbreviation
Potential evapotranspiration (PET) anomaly (atmospheric demand) (mm) evap_anom
Mid soil moisture layer anomaly (10-100cm) (mm) midsoil_anom
Top soil moisture layer anomaly (0-10cm) (mm) topsoil anom
Deep soil moisture layer anomaly (100- 500cm) (mm) deepsoil _anom
Mean cattle density Mean_cattle_density
Top Soil moisture layer trend (mm month™') s®_trend

Deep Soil moisture layer trend (mm month™) sd_trend

Mid Soil moisture layer trend (mm month™) ss_trend
Potential evapotranspiration (PET) trend (atmospheric demand) (mm month™!) e®_trend

Ratio of C3 to C4 grasses c3_c4ratio
Woody vegetation cover (proportion) AHGF _FPC
Dryland agriculture (proportion) Dryag_prop
Irrigated agriculture (proportion) Irrag-prop
Enhanced vegetation index (EVI) Trend EVItrend

2.6 Inclusion of predictors

Correlations between the variables in the drought and wetting datasets are shown
in Table 2.6. Both datasets contain both positive and negative correlations be-

tween the variables, however most correlations are less than | 0.7 |, which is the
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generally accepted level above which collinearity (when two predictor variables
are highly correlated with each other) can affect regression models and their
interpretation. The only exceptions are in the drought data set, where topsoil
moisture layer trend was correlated with both midsoil moisture layer anomaly
(r = 0.75) and topsoil moisture layer anomaly (r = 0.78) (highlighted in yellow in
Table 2.6).

When two variables have a correlation indicating collinearity, one of the vari-
ables is often removed from the dataset. In this case, top soil moisture layer trend
would be removed, rather than removing the two variables it is highly correlated
with (mid soil moisture layer anomaly and topsoil moisture layer anomaly).
However, the top soil moisture layer trend variable was not removed in this
study for two reasons. Firstly, leaving it in allows for direct comparison between
the models for both datasets, which would not be possible if the drought data
was missing a variable that was included in the wetting data. Secondly, Kath
et al. (2019) also retained the topsoil moisture layer trend variable (also to allow
direct comparison between the datasets), so this will allow comparison of our
models with theirs.

26



amymoude

o 61°0- 00 800 £0°0 200 S1°0- 200 1o $0°0- Iro- 800
poyedriay
amymorde
cro 170~ aro <00~ €10 €0 L9°0- €00~ €0 070 670~ 100
puedigq
I9A0D
61°0- 170~ 010~ 120 120~ €0 0T0 €00 120~ 10 €20 £0°0 uonejaSon
Apoopy
sasseid §D
<00 ST°0 01°0- 91°0- 80°0- 80°0- 000 600~ 0€°0- €€0 ¥e0- STo
03 €D JO oneyl
900 o 600 LT0 90°0- 8T0- 100 ¥T0 600~ ¥0°0 100 1€°0 puen 14d
puan
200~ 910~ L1°0 6€0 200 cro 20°0- €00 81°0- S0°0- 010 110 12e] amjsiowr
110S PIAL
puan
6070~ Se0- et 6C0 w0 ¥€0 690~ €00~ €9°0 650~ LE°0 70~ 1ofey amystow
1os deaqy
puan
S1°0- LS50~ 0T0 000 100 200~ 90~ S0°0 9¢°0- 80 SL°0 1o Tofey amystow
frog dog
Ayisuap
£00 €0°0- €00 600~ 900 ¥0°0- €00 €10~ 00~ 600 €10 020
9[}3ed U
Arewroue
100 feraly] 61°0- 10 61°0- ST0- L€0" 70 1ro- L8°0- €€°0- 00~ 194e] 21M3STOW
ros daa(g
Arewoue
cro- 170 0~ e0- 6£°0- €C0- 9%°0- 0€0 020~ 920 290 €0 1aAe] armystowr
tos dog,
Arewoue
900~ feraly] €T0- €00 8€°0- ¥0°0- 110~ 610 €10~ 9€0 S0 90°0- 194e] arnisiowr
[10s PIN
0T0 €0 800~ LT0 S1°0- cro- ST0- ¥€0 200~ 120 10~ £00 Arewoue 174
I2A0D puai} puai} puany Arewoue Arewoue Apewoue
amynotde arymoride sasse1d D) Ayisuap
uoneyadan puon} [qJ IoAe[amysiowr  1oke[amnjsiowr  I9Ae[ aImjsiouwt 12Ae armystowr  1aAe[amystowr  IaAe amysiowr  AJewroue JHJ
payedLu pueidiq 03 €D Jo oney 9[13ed UBaN
Apoop 1105 PTIN Ttos deaq Tog dog, 1ros deagq Tros dof, 110 PIN

"MO[[PA ur

P33y a1e | £ | PapPaddxe jey} suone[ario)) “(3xa3 anyq) jrey roddn a3 ur are jasejep 3unjom ayj} Ul SA[qeLIEA USd M) SUOTJL[ILIOD

pue ‘(pa1) Jrey 19.MO[ Y} UT 91k }9sejep JY3NOoIp S} Ul SI[eLILA UddMJI] SUOTJL[ILIO)) "SI[EIILA UddM)I] SUOTJL[IIOD JO XIIJ eI 19°Z d[qeL,

27






CHAPTER 3

Results and Discussion

To evaluate model performance, three error statistics (RMSE, MAE, and R?) and
variable and interaction importance were considered. This necessitates that the
results be presented in context and thus, the results and discussion sections have
been merged rather than presented as two separate sections. After the results
for each model type have been discussed, comparisons between them are given,
followed by discussions of the limitations of the model types, limitations of this
study, significance of the project from both statistical and ecological standpoints,
and possible future work.

3.1 Summary Statistics of Data Sets

Table 3.1 shows the five-number summary as well as the mean and standard
deviation for each of the variables in both ecological datasets. Four of the variables
(mean cattle density, woody vegetation cover, proportion of dryland agriculture
and proportion of irrigated agriculture) contain the same values across both
datasets as data for those variables was measured once for each site (Figure 3.1).

Of all the variables, mean cattle density has the greatest absolute mean and
standard deviation in both datasets and the dependant variable, EVI trend, has the
smallest absolute mean and standard deviation in both datasets. This however
does not indicate anything substantial as both variables (mean cattle density and
EVI trend) have units that are different from those of all other variables.

Each of the four variables that are consistent across wet and dry datasets
are shown in Figure 3.1. Mean cattle density, and the proportions of woody
vegetation cover, dryland agriculture, and irrigated agriculture are extremely
positively skewed and have outliers. This is to be expected for the mean cattle
density as it is bound on one end at zero but unbounded at the other, allowing
for a few more extreme positive observations which, when combined with a
high frequency of low cattle density, creates a positively skewed distribution.
The proportions of woody vegetation cover, dryland agriculture, and irrigated
agriculture are also constrained between zero and one. This does not necessarily

lead to a positive skew, but these three land use variables have low proportions
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at most sites, with a few high proportion outliers which, in this case, creates a

positive skew.

Table 3.1: Five number summary, mean and standard deviation for each variable
in each dataset (wetting and drought).

Variable Data Set Minimum Q1 Median Q3 Maxiumum Mean Standard Deviation
Potential evapotranspiration (PET) Drought  0.0258  0.0306 0.0318  0.0331 0.037 0.0318 0.002
anomaly (atmospheric demand) ~ Wetting  -0.0412  -0.0357 -0.0339 -0.0325 -0.0287 -0.0341 0.0023

(mm)
Mid soil moisture layer anomaly ~ Drought -0.475 -0.305 -0.2332 -0.1879 -0.0776 -0.2485 0.0845
(10-100cm) (mm) Wetting 0.0002 0.0779  0.1112  0.1626 0.3066 0.1221 0.059
Top soil moisture layer anomaly ~ Drought  -0.2242  -0.1477 -0.1182 -0.1047 -0.0598 -0.1258 0.0318
(0-10cm) (mm) Wetting 0.0354 0.0729  0.094 0.1162 0.184 0.0962 0.0283
Deep soil moisture layer anomaly ~Drought — -0.2162  -0.0441 -0.0128  0.0026 0.0105 -0.0285 0.0425
(100- 500cm) (mm) Wetting -0.148 -0.0381 -0.0226 -0.0107 0.1102 -0.0243 0.0219
Mean cattle densit Drought 0.0055 79003 13.7614 25.9185 524.422 25.9158 43.904
y Wetting 0.0055 79003 13.7614 25.9185 524.422 259158 43.904
Top Soil moisture layer trend (mm Drought  -0.1049  -0.0392 -0.0219 -0.0056 0.0073 -0.0251 0.0223
month™) Wetting 0.0174 0.0398 0.0558  0.094 0.2308 0.0718 0.0425
Deep Soil moisture layer trend ~ Drought  -2.3822  -0.6193 -0.2918 -0.1381 0.1706 -0.4123 0.351
(mm month) Wetting -0.1165 0.2127  0.6863  1.4192 7.7164 0.9427 0.9908
Mid Soil moisture layer trend (mm Drought  -2.1425  -0.5265 -0.38  -0.2889 0.0707 -0.4232 0.2166
month) Wetting -0.076 0.3839 0.5083  0.6916 4.7674 0.5803 0.3537
Potential evapotranspiration (PET) Drought -0.0308  -0.0211 -0.0185 -0.0155 -0.0075 -0.0182 0.004
trend (atmospheric demand) (mm ~ Wetting ~ -0.0362  -0.027 -0.0246 -0.0223 -0.015 -0.0248 0.0035
month ™)

Ratio of C3 to C4 erasses Drought 0.2043 02323 0.2696  0.3488 0.7925 0.2969 0.0788
& Wetting 0.2054 02336  0.2718  0.3509 0.7983 0.2986 0.0795
Woody vegetation cover Drought  0.0002 0.04 0.0736  0.1333 0.5047 0.0974 0.0773
(proportion) Wetting 0.0002 0.04 0.0736  0.1333 0.5047 0.0974 0.0773
Dryland agriculture (proportion) Drought 0 0 0.034 0.2363 0.9256 0.1576 0.2264
yland dg prop Wetting 0 0 0034 02363 09256  0.1576 0.2264
Irrigated agriculture (proportion) Drought 0 0 0 0 0.9239 0.02 0.072
Wetting 0 0 0 0 0.9239 0.02 0.072
Enhanced vegetation index (EVI) Drought ~ -0.0047  -0.0012 -0.0007 -0.0004 0.0012 -0.0008 0.0006
Trend Wetting -0.001 0.001 0.0015  0.0019 0.0052 0.0015 0.0007
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Figure 3.1: Boxplots of the four variables that are consistent across the wetting
and drought datasets. Top: Woody vegetation cover, Dryland agriculture, and
Irrigated agriculture (proportion of land used). Bottom: Mean cattle density.
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3.1.1 Drought Dataset

The other 10 variables differ between the drought and wetting datasets. Figure
3.2 shows boxplots of these variables for the drought dataset in a single plot and
Figure 3.3 contains multiple boxplots to better display the variables’ distributions.
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Figure 3.2: Boxplots of variables in the drought dataset. EVI trend and Ratio of
C3 to C4 grasses are unitless, all anomaly variables are measured in mm, and all
trend variables are measured in mm month™.

PET anomaly (mm), PET trend (mm month™!), mid soil moisture layer anomaly
(mm), and top soil moisture anomaly (mm) all appear to have approximately sym-
metric distributions (Figure 3.3). EVI trend, deep soil moisture layer trend (mm
month™!), mid soil moisture layer trend (mm month™), deep soil moisture layer
anomaly (mm), and top soil moisture layer trend (mm month™!) appear to have
negatively skewed distributions. The ratio of C3 to C4 grasses has an extremely
positively skewed distribution.
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Figure 3.3: Boxplots of variables in the drought dataset arranged on separate
y axes for enhanced readability. EVI trend and Ratio of C3 to C4 grasses are
unitless, all anomaly variables are measured in mm, and all trend variables are
measured in mm month™.
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3.1.2 Wetting Dataset

Figure 3.4 shows boxplots of the 10 variables that differ between the two datasets
variables for the wetting dataset in the one plot and Figure 3.5 contains multiple
boxplots to better display the variables” distributions.
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Figure 3.4: Boxplots of variables in the wetting dataset. EVI trend and Ratio of
C3 to C4 grasses are unitless, all anomaly variables are measured in mm, and all
trend variables are measured in mm month™.

Interestingly, many of the distributions of the variables in the wetting dataset
have switched direction of skewness compared to in the drought dataset (Figure
3.3 and Figure 3.5). In the drought dataset, EVI trend, deep soil moisture layer
trend, mid soil moisture layer trend, deep soil moisture layer anomaly, and top
soil moisture layer trend all have negatively skewed distributions. But in the
wetting dataset, they have positively skewed distributions (except for perhaps
deep soil moisture layer anomaly, which appears more symmetric).

EVI trend, the dependant variable in this study, has the smallest range of all
the variables, with a range 0f-0.0047 to 0.0012 in the drought dataset and -0.001
to 0.0052 in the wetting dataset (Table 3.1). These ranges indicate that there was
both grassland decline (negative EVI trend values) and recovery (positive EVI
trend values) in both the drought and wetting datasets. However, the majority
of the values in the drought dataset were negative, and positive in the wetting
dataset. Additionally, the outliers in the drought dataset generally consisted of
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very negative values while the outliers in the wetting dataset were mostly very

positive values.
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Figure 3.5: Boxplots of variables in the wetting dataset arranged on separate
y axes for enhanced readability. EVI trend and Ratio of C3 to C4 grasses are
unitless, all anomaly variables are measured in mm, and all trend variables are
measured in mm month™'.
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3.2 Model Type Results
3.2.1 Reference Analysis Results

As part of the reference analyses, linear regression, single tree, and random forest
models were fitted to the wetting and drought datasets as examples of initial
baseline methods. Although these methods were not needed to address the
research aims of this project, they help to illustrate the improvements in model fit
that can be gained by employing more complex methods and the ways in which
model performance can be evaluated. Figure 3.6 presents six graphs, each of
which plots the predicted EVI trend against the observed EVI trend for a dataset
regressed using one of the three methods employed here. It is evident that
none of these methods’ predictions were particularly accurate, with the random
forest models, performing slightly better than the linear regression and single
tree models.

Figure 3.7 graphically displays error statistics to quantify this prediction error.
Three statistics were used, root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?). See Appendix Table A.1 for table
of containing the numeric values of the error statistics displayed in Figure 3.7.

The RMSE and MAE statistics are both on the scale of the response variable, in
this case EVI trend. These statistics indicate that the single tree method produced
slightly less prediction error than the linear regression, and that the random
forest had far more prediction accuracy than either of the linear regression or
single tree. The R? statistic can be interpreted as the fraction of variance in the
response variable (EVI trend) that can be explained by the model. This statistic
indicates that the single tree modelled the data better than the linear regression,
but that the random forest explained more variation in EVI trend than either of the
other two methods. These reference analysis results highlight the improvements

in model fit that can be gained as more complex methods are employed.
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Figure 3.6: Predicted EVI trend against observed EVI trend for three model
types (linear regression, single tree, and random forest) on both the drought (top
graphs) and the wetting datasets (bottom graphs). The reference line where the
observed EVI trend equals the predicted EVI trend is shown in red.
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for each model in Figure 3.6. Left: RMSE and MAE. Right: R?>. Graphs are
faceted on dataset. See Appendix Table A.1 for table with numerical values of
these statistics.

3.2.1.1 Variable Importance

When interpreting both single trees and additive treed methods (such as random
forest), it is important to investigate variable importance. Additionally, linear
regression can also be used for variable importance inference by examining the
standardised coefficients (the higher the absolute value of the beta coefficient, the
greater the importance of the variable) (Gelman and Hill, 2006). Standardised co-
efficients for the linear regression models fit on the drought and wetting datasets
are presented in Table 3.2. Tree graphs for the drought and wetting single tree
models were produced (Figure 3.8). Variable importance can be inferred from
these trees based on the variables that informed the branching at each node. It is
worth noting that the single tree model required a deeper tree to model the wet-
ting dataset than it did for the drought dataset. Determing variable importance
based on the random forest models is slightly more complex. Due to the number
of individual trees in an additive tree model (such as a random forest model),
it would be impractical to inspect every tree in the two random forest models
to determine variable importance. Instead, variable importance measures are
calculated. Figure 3.9 displays the random forest models’ rankings of predictor
variables on two importance measures (¥IncMSE and IncNodePurity, see Liaw
and Wiener (2002) for a description of how these measures are calculated) for the
drought and wetting dataset respectively.
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Table 3.2: Table of standardised coefficients for the linear regression models fit
on the drought and wetting data. The higher the absolute value of the coefficent,
the greater the importance of the variable.

Variable Drought Data Wetting Data
Potential evapotranspiration (PET) anomaly 0.0204 -0.2617
Mid soil moisture layer anomaly 0.1934 0.0552
Top soil moisture layer anomaly 0.1265 0.0451
Deep soil moisture layer anomaly 0.0609 -0.0085
Mean cattle density 0.0024 -0.0769
Top Soil moisture layer trend 0.0380 0.0930
Deep Soil moisture layer trend -0.0795 -0.1570
Mid Soil moisture layer trend 0.2195 0.2062
Potential evapotranspiration (PET) trend -0.1197 -0.0228
Ratio of C3 to C4 grasses -0.1126 0.1838
Woody vegetation cover 0.1546 -0.1294
Dryland agriculture -0.1678 0.0907
Irrigated agriculture -0.0068 -0.0185

39



-834e-6
100%

—yes }-midsoil_anom < -0.26 {no |——

-0.0012 -601e-6
38% 62%

topsoil_anom < -0.095 Dryag_prop >=0.025
-0.0013
35%
c3_cdratio >=0.31 s0_trend < 0.0036

-0.0015 -0.0011 -376e-6 -866e-6 -56e-6 -469e-6
18% 17% 3% 22% 1% 39%

0.0015
100%
ss_trend < 1.11.
0.0015
98%
topsoil_anom = 0.087
0.0013 0.0018
40% 57%
Dryag_prop < 0.3 4 cd_cdratio < 0.3
0.0012 0.0015
30% 4459
sd_trend == 0.44 evap_anom == -0.038
0.0011 0.0014 0.0017F
27% 28% 18%.

evap_anom >= -0.036 midseil_anom < 0.18 cd_cdratio < 0.26
0.0011 0.0018
25% 16%

c3_cdratio = 0.25 el_trend = -0.022

8448 0.0012 0.0017Y (0.0015 0.0017 0.0012 0.0017Y (0.0018 0.0021 0.0022 0.0018% (D.00268
2% 18% 1% 3% 9% 15% 11% 14% 2% 2% 13% 4%

Figure 3.8: Tree graphs for the single tree models. Top: single tree on drought
dataset. Bottom: single tree on wetting dataset. See Table 2.5 for abbreviated
name meanings.
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Figure 3.9: Rankings of predictor variables identified by the random forest models
on two importance measures (See Liaw and Wiener (2002) for a description of
how these measures are calculated). Top Left: Variable importance of the model
built on the drought dataset, calculated using the %$IncMSE method. Top Right:
Variable importance of the model built on the drought dataset, calculated using
the IncNodePurity method. Bottom Left: Variable importance of the model built
on the wetting dataset, calculated using the %¥IncMSE method. Bottom Right:
Variable importance of the model built on the wetting dataset, calculated using
the IncNodePurity method. See Table 2.5 for abbreviated name meanings.
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The single decision trees and the random forest models do show some com-
monality in variable importance. For the drought dataset, the single tree model
(Figure 3.8) identified mid soil moisture layer anomaly (midsoil_anom), top
soil moisture layer anomaly (topsoil_anom), proportion of dryland agriculture
(Dryag_prop), ratio of C3 to C4 grasses (c3_c4ratio), and top soil moisture layer
trend (sO_trend) as important variables (the variables that informed splits at
each node). The random forest method (Figure 3.9) also identified these vari-
ables as important, but it indicated that PET anomaly (evap_anom) and PET trend
(e®_trend) were important as well. The linear regression (Table 3.2) was in
slightly less agreement. It, like the single tree and random forest models, iden-
tified mid soil moisture layer anomaly (midsoil_anom), proportion of dryland
agriculture (Dryag_prop), and top soil moisture layer anomaly (topsoil_anom) as
important, but it also identified mid soil moisture layer trend (ss_trend) and the
proportion of woody vegetation (AHGF_FPC) as important predictors of EVI trend
in the drought dataset.

The wetting models also had some variable importance commonality. The
single decision tree model (Figure 3.8) identified the ratio of C3 to C4 grasses
(c3_c4ratio) as the most important variable (as it appears three times in the tree),
and PET anomaly (evap_anom) as the second most important variable (appears
twice in the tree). Other variables identified by the decision tree as important
are; mid soil moisture layer trend (ss_trend), top soil moisture layer anomaly
(topsoil_anom), proportion of dryland agriculture (Dryag_prop), and mid soil
moisture layer anomaly (midsoil_anom). The random forest method (Figure 3.9)
also identified these variables as important (and one of the metrics indicated that
the ratio of C3 to C4 grasses (c3_c4ratio) and PET anomaly (evap_anom) are the
first and second most important variables respectively). However, each method
also identified several predictor variables as important that the other did not.
The decision tree also indicated that deep soil moisture layer trend (sd_trend)
and PET trend (e®_trend) were important and the random forest indicated that
the proportion of woody vegetation (AHGF_FPC), top soil moisture layer trend
(s®_trend), and mean cattle density (Mean_cattle_density) were important. The
linear regression (Table 3.2) indicated many of the same variables as important
that the single tree and random forest models did. Specifically, it identified PET
anomaly (evap_anom), mid soil moisture layer trend (ss_trend), the ratio of C3
to C4 grasses (c3_c4ratio), deep soil moisture layer trend (sd_trend), and the
proportion of woody vegetation (AHGF_FPC) as important predictors of EVI trend
in the wetting dataset.

When choosing the most appropriate model to use and interpret, both the
variable importance and the error statistics must be considered. Here the random
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forest model would be preferred as it produced the best predictions (low RMSE
and MAE, and high R?), and also identified many of the same important variables
that the linear regression and single tree did, indicating that these variables are
likely to indeed be important (as all three model types mostly agree). The linear
method would be a poor model choice as it produced the worst prediction error
statistics, however, the single tree method would also be a poor choice it has
similarly poor error statistics to the linear regression and also produced the
grouped predictions that single decision trees suffer from (due to their method

of repeating binary splits to group the observations).

3.2.2  Boosted Regression Trees

The number of trees comprising each boosted regression tree model is presented
graphically in Figure 3.10. Figure 3.11 presents the three prediction error statistics
(RMSE, MAE, and R?) for each model. See Appendix Table A.2 and Appendix
Table A.3 for values (rather than plots) of the number of trees and error statistics.
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Figure 3.10: Number of trees each BRT model fit with combinations of the pa-
rameters Learning Rate (x axis), Tree Complexity (coloured), and Bag Fraction
(faceted). Left: drought dataset models. Right: wetting dataset models. See
Appendix Table A.4 and Appendix Table A.5 for lists of missing models.

Figure 3.11 illustrates an interesting result where the models fit on the wetting
dataset had greater RMSE and MAE values, and lower R? values than the models
tit on the drought dataset. This indicates that observations in the wetting dataset
are more difficult to predict than their counterparts in the drought dataset.

In general, a tree complexity of 1 (simplest tree) performs badly on both
datasets in terms of prediction error (Figure 3.11) and also requires more trees in
the model which increases computing time (Figure 3.10). The prediction error
and number of trees steadily decreases, and the proportion of variance in the data
explained by the model increases as the tree complexity increases. The highest
two tree complexities tested (9 and 13) generally produced models with less trees,
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Figure 3.11: Error statistics (RMSE, MAE, and R?) for each BRT model fit with com-
binations of the parameters Learning Rate (x axis), Tree Complexity (coloured),
and Bag Fraction (faceted). Left Plots: drought dataset models. Right Plots:
wetting dataset models. See Appendix Table A.4 and Appendix Table A.5 for
lists of missing models.

lower RMSE and MAE statistics and higher percentages of variation explained
by the models (R?).

The value of the learning rate also has a similar effect on the number of trees
(Figure 3.10) and prediction error (Figure 3.11). That is, as the learning rate
increases, the prediction error and number of trees decreases and the variance in
the data explained by the model increases. However, too high value of learning
rate (around 0.1) seems to increase the prediction error. Therefore, it seems the
best learning rate for these datasets is around 0.01 or 0.05, although 0.005 also
appears to do well. It is also important to note that combinations of high learning
rate and tree complexity results in the software being unable to fit the model, as
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the individual steps down the loss function become too large (Appendix Table
A4 and Appendix Table A.5). Overall, it appears that for these two datasets the
best models have a high tree complexity (9 to 13), and a moderate learning rate
(0.01 to 0.05).

Interestingly, the value of the bag fraction does not appear to impact the
number of trees (Figure 3.10) or prediction error (Figure 3.11). This is counter to
the theory which states that that the stochasticity introduced by the bag fraction
would improve predictive performance (Elith et al., 2008).

3.2.2.1 Variable Importance

The six best performing models (in terms of RMSE, MAE and R2) are presented in
Table 3.3. The variable importance of the best performing model for each dataset,
using each of the tree prediction error statistics (highlighted red in Table 3.3) were
calculated and presented in Figure 3.12.

Table 3.3: Best performing BRT models calculated on each dataset, with each of
the three (RMSE, MAE, and R?) error statistics. Best models for each combination
of dataset and error statistic are highlighted in red.

Drought Data Wetting Data
BF LR TC Error Statistic \ BF LR TC Error Statistic

09 001 13 4.560x107* 03 0.001 13 5.353x107™
09 0.005 13 4.568x107 | 0.3 0.005 13 5.363x107*
RMSE 075 0.05 13 4572x107™ | 03 0.01 13 5.375x10~%
09 001 9 4576x107% | 0.6 0.005 13 5.377x107™
09 0.005 9 4.580x107* | 0.3 0.005 9 5.377x107%
075 0.01 13 4585x10™ | 03 0.05 9 5.378x107%
09 0.005 13 3.398x107% | 0.3 0.005 13  4.051x10*
09 001 13 3.399x107* | 0.3 0.001 13  4.056x10"*
MAE 09 0.005 9 3.400x10™% | 0.3 0.005 9 4.057x107%
075 0.01 13 3.408x10™™ | 0.6 0.005 13  4.060x107%
09 001 9 3.411x10™ | 0.6 0.005 9 4.062x107%
0.75 0.005 9 3.415x10™ | 0.6 0.01 9 4.066x107%
03 0.1 3 0.5213 03 005 5 0.4732
09 0.005 13 0.5166 09 01 5 0.4489
R2 09 005 3 0.5161 03 001 9 0.4464
075 0.1 5 0.5141 075 005 9 0.4436
03 005 13 0.5078 06 001 9 0.4371
09 001 9 0.5071 09 005 13 0.4357
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Figure 3.12: Variable Importance (measured with inclusion proportions — essen-
tially the proportion of times that a variable has been used in a splitting rule)
of each variable in the BRT models selected as “best” by three error statistics
(RMSE, MAE, R?). Left: models applied to drought dataset. Right: Models
applied to wetting dataset. Inclusion proportions calculated using the dismo
package (Hijmans et al., 2017).
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Each plotin Figure 3.12 shows that all of the six models clearly indicate a single
most important variable, and a single least important variable. The models fit on
the drought dataset have a steeper drop off in importance between the variables
than their wetting dataset counterparts, but all models display little difference in
variable inclusion between the mid-ranked variables.

The drought dataset models selected by RMSE and MAE are in almost total
agreement in terms of the variable importance rankings (Figure 3.12). The only
difference in rankings between the two models is that deep soil moisture layer
trend (sd_trend) and PET anomaly (evap_anom) swapped rankings. The most
important variables identified by the best R* model differ somewhat from those
identified by the best RMSE and MAE models, however most differences are in
order of importance. For example, across the three drought models; the propor-
tion of dryland agriculture (Dryag_prop) and mid soil moisture layer anomaly
(midsoil_anom) have been identified as the top two most important variables, the
ratio of C3 to C4 grasses (c3_c4ratio) and proportion of woody vegetation cover
(AHGF _FPC) are also somewhat important, and proportion of irrigated agriculture
(Irrag_prop) is consistently the least important variable.

Similarly, the wetting dataset models selected as “best” by the RMSE and
MAE statistics were also in very close agreement in terms of variable importance,
with the proportion of dryland agriculture (Dryag_prop) and top soil moisture
layer anomaly (topsoil_anom) flipped in ranking of importance (Figure 3.12).
The best R?> model differs more from those two models, but is still rather similar.
All models fit on the wetting dataset have identified the same top four most
important variables (in the same order) and have also all selected the proportion
of irrigated agriculture (Irrag_prop) to be least important.

In general, the drought dataset models indicate that the proportion of dryland
agriculture (Dryag_prop), mid soil moisture layer anomaly (midsoil_anom), and
ratio of C3 to C4 grasses (c3_c4ratio) are the most important variables influ-
encing EVI trend in the drought, and that the proportion of irrigated agriculture
(Irrag_prop), and deep soil moisture layer anomaly (deepsoil_anom) are the
least important. The wetting dataset models indicate that the mid soil moisture
layer trend (ss_trend), ratio of C3 to C4 grasses (c3_c4ratio), and proportion of
wood vegetation cover (AHGF_FPC) are the most important variables influencing
EVI trend during the wet phase, and that the proportion of irrigated agriculture
(Irrag_prop), deep soil moisture layer anomaly (deepsoil_anom), and deep soil

moisture layer trend (sd_trend) are the least important.

3.2.2.2  Interaction Importance

To assess the models’ identifications of interaction importance, the top eight
interactions identified by the models selected as “best” by RMSE, MAE, and
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R? for each dataset (highlighted red in Table 3.3) are presented in Table 3.4. It is
important to note that all interactions presented here are two-way interactions, as
the software (dismo) was not capable of calculating the importance of three-way
or higher interactions (Hijmans et al., 2017).

In terms of the drought dataset, the models selected by RMSE and MAE
have almost identical interaction importance, with just two interactions swap-
ping places (the interaction between mid soil moisture layer trend (ss_trend)
and mid soil moisture layer anomaly (midsoil_anom) swapped with the interac-
tion between the ratio of C3 to C4 grasses (c3_c4ratio) and top soil moisture
layer anomaly (topsoil_anom)). However, the model selected as best by using
the R? statistic has identified many interactions as important that the other two
models did not. In fact, this model only shares two interactions in common
with the interactions identified by the RMSE and MAE “best” models (interac-
tion between mid soil moisture layer trend (ss_trend) and mid soil moisture
layer anomaly (midsoil_anom), and between and top soil moisture layer anomaly
(topsoil_anom) and mid soil moisture layer anomaly (midsoil_anom)).

The wetting dataset models selected by the RMSE and MAE statistics are in
slightly less agreement in terms of interaction importance than their drought
data counterparts; they only share six (out of the top 8) interactions in common.
However, the R? model has identified five of the six interactions that the RMSE
and MAE models also identified, which is much more consistent than the drought
model selected by the R? statistic.

The models selected by the RMSE and MAE statistics tend to agree on variable
and interaction importance measures much more closely than the models selected
by the R? statistic. This is perhaps not surprising due to the similar nature of the
calculations used to produce the RMSE and MAE statistics (see Equation 2.1 and
Equation 2.2).
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Table 3.4: Top eight interactions identified by the BRT models selected as “best”
by RMSE, MAE, and R? for each dataset.

Variable 1 Variable 2 Relative Strgngth
of Interaction

topsoil anom  midsoil_anom 1.86x107%

Dryag_prop midsoil_anom 1.39x107%

e 06

Best RMSE Model ss,trend_ m1dso%1,anom 1.07><10_07
c3_cd4ratio topsoil_anom 9.06x10

(TC=13, LR=0.01, ; o
BF=0.9) Dryag_prop c3_c4ratio 8.10x10

e AHGF _FPC s®_trend 7.30x107%7

AHGF _FPC ss_trend 7.18x107%7

Irriag_prop e®_trend 5.95x10~%

topsoil_anom midsoil_anom 1.18x1070¢

Dryag_prop midsoil_anom 1.13x1070¢

c3_c4ratio topsoil_anom 1.03x10706

Drougﬁt }Data (Fl?gsj i\gﬁﬁzﬁdg ?)(G)Jé ss_trend midsoil_anom 1.02x107%
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—07

Best RMSE Model AHGF,FIPC ss,trend. 8.27><10707
(TC=13, LR=0.001 topsoil_anom  c3_c4ratio 8.18x10

- B,F—S)_ 7 evap_anom AHGF _FPC 7.06x107%7

- e®_trend c3_c4ratio 6.14x107%

AHGF _FPC c3_c4ratio 5.66x107%

evap_anom Dryag_prop 5.42x107%

evap_anom ss_trend 1.90x107%

ss_trend e®_trend 1.25x107%

: 06

Wetting Data Best MAE Model evap_anom c3_c4ratio 1.15><10_O7
Model (TC=13, LR=0.005 AHGF_FPC ss_trend 9.02x10

odels - B’F—3)_ “77  topsoil.anom  c3_c4ratio 8.58x10°"7

- e®_trend c3_c4ratio 7.42x107%7

evap_anom AHGF _FPC 7.21x107%7

evap_anom s®_trend 6.65x107%7
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( _B’F—3_ Rt deepsoil_anom midsoil_anom 1.71x107%

=3) AHGF _FPC c3_c4ratio 1.64x107%

evap_anom ss_trend 1.43x107%

ss_trend s0O_trend 1.43x107%
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3.2.3  Bayesian Additive Regression Trees

Figure 3.13 and Figure 3.14 present the three prediction error statistics (RMSE,
MAE, and R?) for each of the Bayesian regression tree models. These statistics
are averaged (with +1 standard error) over all 729 models fit for each data set.
Due to the high number of hyperparameters, two graphs for each error statistic
on each dataset were produced. See Appendix Table A.6 and Appendix Table
A7 for values of error statistics.
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Figure 3.13: Error statistics (RMSE, MAE, and R?) for each BART model fit on the
drought dataset. Left Plots: Average error statistics for models with combinations
of a (x axis), B (coloured), and m (faceted). Right Plots: Average error statistics
for models with combinations of k (x axis), v (coloured), and g (faceted). Error
bars denote +1 standard error.

Figure 3.13 and Figure 3.14 show that models fit on the wetting dataset had
greater RMSE and MAE values, and lower R? values than the models fit on the
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Figure 3.14: Error statistics (RMSE, MAE, and R?) for each BART model fit on the
wetting dataset. Left Plots: Average error statistics for models with combinations
of a (x axis), p (coloured), and m (faceted). Right Plots: Average error statistics
for models with combinations of k (x axis), v (coloured), and g (faceted). Error
bars denote +1 standard error.

drought dataset. This is similar to the results of the BRT models (Figure 3.11)
which also showed that the wetting models had worse error statistics. This
indicates that observations in the wetting dataset are more difficult to predict
than their counterparts in the drought dataset.

Across all hyperparameter combinations, and both datasets, the models with
an « value of 2 constantly performed terribly, explaining close to 0% of the
variation in the data. As the a hyperparameter controls the “base” tree depth
and forces regularisation, it is likely that the models where a=2 did not have
enough regularisation due to trees that were too deep. It also appears that
for both datasets, there is little difference between model performance between
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models with the differing values of k (hyperparameter for the leaf prior), v and g
(hyperparameters for the error variance prior) tested here. The values of a and f3
(hyperparameters for the tree prior), and m (number of trees) seem to be driving
the variation in model performance seen here.

Overall, it appears that for these two datasets, the best models have a lower a
value (0.5 to 0.95) and a lower f value (0.5 to 0.95) which would result in shallow
trees with a moderate to large spread in the number of terminal nodes in the prior
distribution. Despite the number of trees (1) influencing model performance, it
is difficult to assess the appropriateness of any tested value of m as it is unclear
if a lesser or greater number of trees is preferable for these datasets (Table 3.5).
Additionally, the values of k, v, and g tested here did not appear to affect model

performance.

3.2.3.1 Variable Importance
The six best performing models (in terms of RMSE, MAE and R?) are presented

in Table 3.5. The variable importance of the six best performing model for each
dataset, using each of the tree prediction error statistics (highlighted red in Table
3.5) were calculated and presented in Figure 3.15.

Table 3.5: Best performing BART models calculated on each dataset, with each of
the three (RMSE, MAE, and R?) error statistics. Best models for each combination
of dataset and error statistic are highlighted in red.

Drought Data Wetting Data
a B m k v q Error Statistic | o B m kv q Error Statistic
05 05 50 025 10 09 3.713x107% | 095 05 50 2 3 08 5.386x10704
095 05 200 2 7 08 4615x107% | 095 095 50 2 10 09 5.407x10704
RMSE 095 095 200 2 10 09 4625%x107% | 095 05 50 2 3 099 5416x107%
095 05 100 1 10 08 4630x107% | 095 05 50 2 7 099 @ 5425x107%
095 05 100 1 10 099 4.643x100®% | 095 05 50 2 7 09 5.427x10704
095 095 200 2 10 099  4.649x10°% | 095 095 50 2 3 08 5.428x10704
095 05 200 2 7 08 3457x107% | 095 05 50 2 7 09 4.066x107%4
095 05 50 2 309 3464x10°% | 095 05 50 2 3 099  4.080x107%
MAg 05 05 200 025 10 099 3.468x107% | 095 095 200 2 10 0.8  4.083x107%
095 05 100 1 10 08 3473x10°% | 095 05 50 1 10 0.8 = 4.084x107%
095 05 200 2 10 09 3477x107% | 095 05 200 2 10 09 4.091x1070
05 05 100 2 7 099 3477x107% | 095 2 200 2 7 09 4.092x10704
0.95 2 200 025 3 09 0.6230 095 05 200 1 10 09 0.5924
095 05 200 1 10 0.99 0.6216 095 05 200 1 3 099 0.5906
R 095 05 200 1 309 0.6203 095 05 200 1 7 09 0.5898
095 05 200 1 7 09 0.6195 095 05 200 1 10 0.99 0.5837
095 05 200 1 3 08 0.6180 095 05 200 1 7 099 0.5829
095 095 200 025 7 0.99 0.6165 095 05 200 1 3 09 0.5818
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Figure 3.15: Variable Importance (measured with inclusion proportions — essen-
tially the proportion of times that a variable has been used in a splitting rule)
of each variable in the BART models selected as “"best” by three error statistics
(RMSE, MAE, R?). Left: models applied to drought dataset. Right: Models ap-
plied to wetting dataset. Inclusion proportions calculated using the bartMachine
package (Kapelner and Bleich, 2016). Error bars denote +1 standard error.

Note that the plots in Figure 3.15 have error bars while equivalent BRT plots
in Figure 3.12 do not. This is because each model method requires a different
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technique to calculate the inclusion proportions. BART is a Bayesian method
meaning that the output consists of multiple posteriors, and thus the inclusion
proportions must be averaged across all these posteriors, requiring standard error
bars on the plots (Bleich et al., 2013).

Figure 3.15 shows that the three models on the drought dataset indicate a
most important variable, and a least important variable. The wetting dataset
models tend to only have a clear most important variable, with several variables
being similarly least important. The models fit on the drought dataset also have
a steeper drop off in importance between the variables than their wetting dataset
counterparts.

All three drought dataset models have similar variable rankings. They all
identified the ratio of C3 to C4 grasses (c3_c4ratio) as the mostimportant variable
and identified the proportion of dryland agriculture (Dryag_prop) and top soil
anomaly (topsoil_anom) as the next two most important variables. All the models
also identified the proportion of irrigated agriculture (Irrag_prop) as the least
important variable.

All three wetting dataset models also have similar variable rankings. They
all identified the ratio of C3 to C4 grasses (c3_c4ratio) as the most important
variable and identify mid soil moisture layer trend (ss_trend) as the second most
important. The models selected by the RMSE and MAE statistics identified PET
anomaly (evap_anom) as the third most important variable, while the best R?
model places it towards the middle of the rankings as 5". Additionally, all the
wetting dataset models identified deep soil moisture layer trend (sd-trend) as
the least important variable.

In general, the drought dataset models indicate that the ratio of C3 to C4
grasses (c3_c4ratio), proportion of dryland agriculture (Dryag_prop), and top
soil moisture layer anomaly (topsoil_anom) as the most important variables
influencing EVI trend in the drought. The proportion of irrigated agriculture
(Irrag-prop) is the least important variable. The wetting dataset models indicate
that the ratio of C3 to C4 grasses (c3_c4ratio), mid soil moisture layer trend
(ss-trend), and PET anomaly (evap_anom) are the most important variables in-
fluencing EVI trend in recovery, and that the proportion of irrigated agriculture
(Irrag-prop) is the least important.

3.2.3.2 Interaction Importance

To assess the models’ identifications of interaction importance, the top eight
interactions identified by the models selected as “best” by RMSE, MAE, and R?
for each dataset are presented in Table 3.6. It is important to note that similar to
the BRT interaction importance results (Section 3.2.2.2), all interactions presented

here are two-way interactions only, as the software (bartMachine) was not capable
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of calculating the importance of three-way or higher interactions (Kapelner and
Bleich, 2016). Additionally, note that Table 3.6 contains a column for the standard
deviation, whereas the BRT equivalent (Table 3.4) does not. This is due to the
same reason that Figure 3.15 has error bars but the BRT equivalent (Figure 3.12)
does not. That is, each model method requires a different technique to calculate
the inclusion proportions. BART is a Bayesian method meaning that the output
consists of multiple posteriors, and thus the relative interaction importance must
be averaged across all these posteriors, requiring a standard deviation measure
(Bleich et al., 2013).

In terms of the drought dataset, the models selected by RMSE and R? have al-
most identical interaction importance, identifying seven of the same interactions
as the most important (Table 3.6). The model selected by MAE, however, only
has identified four of these interactions as important.

The wetting dataset models selected by the MAE and R? statistics identified
six of the same interactions, while the model identified by RMSE identified five
of these (Table 3.6). It is also interesting to note that almost all of the top eight
interactions identified by all three of the wetting models were comprised of either
ratio of C3 to C4 grasses (c3_c4ratio) or mid soil moisture layer trend (ss_trend)

as a component in the pairwise interaction.
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Table 3.6: Top eight interactions identified by the BART models selected as “best”
by RMSE, MAE, and R? for each dataset.

Variable 1 Variable 2 Relative Stre'ngth of  Standard Dev.iation
Interaction of Interaction

s®_trend topsoil_anom 575.2 286.30
c3_c4ratio topsoil_anom 423.53 280.83
Best RMSE Model Dryag_prop c3_c4ratio 409.9 200.92
(@=05,=05, topsoil_anom midsoil_anom 406.37 224.32
m =50,k =0.25, c3_c4ratio s®_trend 347.17 198.50
v=10,9=0.9) Dryag-prop s@_trend 332.73 217.63
e0_trend midsoil_anom 304.37 191.11
s®_trend evap_anom 294.83 238.84
c3_c4ratio topsoil_anom 3565.7 559.68
Dryag_prop c3_c4ratio 3516.9 660.73
Drought Best MAE Model Dryag_prop topsoil _anom 3293.67 611.31
Data (@=0.95=05 c3_c4ratio midsoil_anom 3287.03 576.51
Models m=200,k=2,v=7, Dryag_prop sO_trend 3216.1 526.44
q=0.8) topsoil_anom midsoil_anom 3198.9 558.31
Dryag-prop ss_trend 3162.03 540.27
c3_c4ratio ss_trend 3122.1 686.30
s®_trend topsoil_anom 512.77 247.46
topsoil_anom midsoil_anom 421.7 263.30
Best RZ Model c3_c4ratio topsoil_anom 406.6 258.88
(a=095p8=2, Dryag_prop s®_trend 374.07 160.48
m =200,k =0.25, Dryag_prop c3_c4ratio 357.33 245.95
v=3,4=0.9) c3_c4ratio s0_trend 274.43 185.85
sd_trend topsoil_anom 262.33 189.24
e®_trend midsoil_anom 240.3 159.07
evap_anom c3_c4ratio 3546.3 595.55
ss_trend c3_c4ratio 3512.27 477.57
Best RMSE Model topsoil_anom c3_c4ratio 3345.9 649.97
(@=0.95=0.5, AHGF _FPC c3_c4ratio 3148.17 576.77
m=>50,k=2,v=23, Dryag-prop c3_c4ratio 3141.07 614.42
g=038) sO@_trend c3_c4ratio 3140.07 430.70
e®_trend c3_c4ratio 3097.13 441.41
ss_trend s®_trend 3080.6 514.76
ss_trend c3_c4ratio 3564.03 511.95
evap_anom c3_c4ratio 3464.6 737.26
Wetting Best MAE Model topsoil_anom c3_c4ratio 3453 494.58
Data (@ =0.95,=05, Dryag-prop c3_c4ratio 3349.43 464.56
Models m=50,k=2,v=7, AHGF _FPC c3_c4ratio 3202.17 603.71
g=09) topsoil_anom ss_trend 3125.1 567.20
evap_anom ss_trend 3011.53 499.69
Dryag_prop ss_trend 3010.17 591.55
ss_trend c3_c4ratio 2211.97 552.60
evap_anom c3_c4ratio 2204.67 468.41
Best R2 Model topsoil_anom c3_c4ratio 2091.73 375.88
(¢=095,=05, Dryag_prop c3_c4ratio 2039.57 413.10
m=200,k=1,v=10, Irriag-prop ss_trend 2027.93 463.32
g=0.9) Irriag_prop c3_c4ratio 2027.37 464.97
topsoil_anom ss_trend 2008.93 538.21
AHGF _FPC c3_c4ratio 1981.33 450.96
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3.3 Comparison of Model Types

Figure 3.16 presents the error statistics of the best performing BRT and BART
models (highlighted in red in Table 3.3 and Table 3.5). The models fit on the
wetting dataset appear to be producing less accurate predictions than those fit on
the wetting data due to the models fit on the wetting dataset having higher RMSE
and MAE values, and lower R? values than their drought dataset counterparts.
This discrepancy in prediction capability can also be seen in the graphsillustrating
the predicted EVI trend against observed EVI trend (Appendix Figure A.1 and
Appendix Figure A.2) as the models fit on the wetting dataset show increased
scatter around the reference lines (shown in red). This indicates that EVI trend is
more difficult to predict when the grassland is in recovery than when in drought.
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Figure 3.16: Graphical representation of the error statistics (RMSE, MAE, and R?)
for the best performing BRT and BART models calculated on each dataset. Left:
RMSE and MAE. Right: R?. Graphs are faceted on dataset. See Appendix Table
A.8 for table with numerical values of these statistics.

3.3.1 Comparison of BRT and BART with Reference Analysis Methods

To briefly compare the reference methods (linear regression, single regression
tree, and random forest models) with BRT and BART, the error statistics of the
reference analysis methods, and the error statistics for the best performing BRT
and BART models respectively are compared (Figure 3.7 and Figure 3.16). By
comparing the values in these figures, the improvements in model fit that can
be gained by employing the more complex methods of BRT and BART can be
evaluated. Asexpected, the BRT and BART models consistently performed better
than the linear regression and single tree models across both datasets and all three
error statistics.

57



However, the random forest model results in error statistics that are similar to
the error statistics of the best BRT models, and in general the best BART models
performed slightly better than the BRT and random forest models (see Section
3.3.2 for a more in depth comparison between BRT and BART). This is somewhat
to be expected as random forests, BRT, and BART are all additive treed methods,
so it makes sense that they would perform somewhat similarly to each other in
comparison to linear regression and single tree models.

It is also worth noting that the random forest model presented here was fit
with the defaults of the randomForest package (Liaw and Wiener, 2002), so it is
possible that an even better fit could be accomplished by using different values
for the settable parameters (like what was done here for the BRT and BART
methods). However, even if such a model was found, and performed better
than the best BRT model, it is important to note that although random forests
reduce variance more than single trees, they do not reduce bias like BRTs. This
is because random forests employ bagging, not boosting. This means that each
tree is built on a bootstrap sample that is distributed in a similar way as the full
training set, and therefore the average bias of the model is the same as any one
tree. BRT models, by contrast, utilise boosting, which sequentially models the
residuals throughout the entire data space, including atypical observations that
are not well explained by the initial trees. In this way, boosting (and BRTs) reduce
both bias, through forward stagewise fitting, as well as variance, through model
averaging (Elith et al., 2008). Therefore, although the random forest and BRT
models fitted here perform similarly, with respect to error statistics, BRTs are the
better choice as they reduce not only variance, but bias as well.

Variable selection is an important facet of regression tree methods, therefore
it is of interest if the linear regression, single tree and random forest models
produced similar rankings of variable importance as the BRT and BART models.
In general, for both datasets, all five methods selected the same variables as most
important and least important. Section 3.3.2 contains a more comprehensive
comparison of variable importance selections between BRT and BART than the
brief comparison with single trees and random forests presented here.

The five methods (linear regression, single tree, random forest, BRT, and
BART) all identified the proportion of dryland agriculture (Dryag_prop) impor-
tant in predicting EVI trend in the drought data, and all but the linear regression
identified the ratio of C3 to C4 grasses (c3_c4ratio) as important. The linear
regression, single tree, random forests and BRT models also identified mid soil
moisture layer anomaly (midsoil_anom) as important, but BART did not. Addi-
tionally, the linear regression, single tree, random forest and BART models iden-

tified top soil moisture layer anomaly (topsoil_anom) as important, but BRT did
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not. All methods identified the proportion of irrigated agriculture (Irrag_prop)
as the least important predictor of grassland decline.

For the wetting dataset, all methods identified the ratio of C3 to C4 grasses
(c3_c4ratio) and mid soil moisture layer trend (ss_trend) as important in pre-
dicting EVI trend. Additionally, the linear regression, single tree, random forest
and BART models also identified PET anomaly (evap_anom) as important, but
BRT did not. All methods besides the linear regression and BART identified the
proportion of irrigated agriculture (Irrag_prop) as the least important predic-
tor, but the linear regression and BART models still indicated that it was not an
important predictor.

As all five methods generally were in agreement about variable selection (see
Table 3.2, Figure 3.8, Figure 3.9, Figure 3.12, and Figure 3.15 for variable impor-
tance measures for each method), it appears that in terms of variable selection,
there is little to gain by using BRT or BART rather than a random forest. Addition-
ally, it is likely worthwhile using an additive tree method (random forest, BRT,
or BART) rather than a single tree as additive tree methods provide a numerical

measure of variable importance that single trees do not.

3.3.2  Comparison of BRT VS BART

To compare BRTs and BARTS, the principal aim of this study, numerous aspects
should be evaluated. Here, the prediction error statistics, variable and interaction
importance, run time, difficulty in understanding how the model works and what
the settable parameters do, and the extra functionality of the packages will be
considered.

In this study three prediction error statistics were reported for every model;
RMSE, MAE, and R?. To assess the performance of the BRT and BART methods
relative to each other, the prediction error statistics of the best models on each
dataset (Table 3.3, Table 3.5, and Figure 3.16) will be compared.

In general, the BART models fitted on the drought dataset performed better
than the BRT models. The BRT and BART models chosen as “best” by the RMSE
statistic had RMSE values of 4.560x107%* and 3.713x10™* respectively. Lower
RMSE values indicate lower prediction error, and thus the BART model has
less prediction error than the BRT model. The BRT and BART models selected
as “best” by the MAE statistic had MAE values of 3.398x10~% and 3.457x10%
respectively. Lower MAE values indicate lower prediction error, and thus the BRT
model had less prediction error than the BART model. However, the values are
much closer together than the RMSE values (a difference of 0.057x10~%* compared
to 0.847x107%) indicating that the models had similar prediction errors, rather
than one being clearly better than the other. The final error statistic considered
is R? which indicates the proportion of variance in the data that is explained by
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the model. The BRT and BART models selected as “best” by the R? statistic had
values of 0.5213 (52.13% of variance explained) and 0.6230 (62.30% of variance
explained) respectively. The BART model explains the most variance in the data,
an additional 10.17% compared to the BRT model. Therefore, the BART method
appears to be more effective at modelling the drought data as it produced models
with preferable error statistics.

Similarly, the BART models fitted on the wetting dataset typically performed
similarly or better than the BRT models. The BRT and BART models cho-
sen as “best” by the RMSE statistic performed similarly, with RMSE values of
5.353%107% and 5.386x10% respectively (difference of 0.033x107%). The BRT
and BART models selected as “best” by the MAE statistic also performed simi-
larly, with MAE values of 4.051x107% and 4.006x10~ (difference of 0.045x107%).
However, the BART model chosen as “best” by the R? statistic had a higher R?
value (0.5924) than it’s BRT counterpart (0.4732). Specifically, the BART model
explains an additional 11.92% of the variation in the dataset compared to the BRT
model. Therefore, the BART method appears to be more effective at modelling
the wetting data as it produced models with similar or preferable error statistics
with compared with the BRT method.

Itis of interest if the BRT models identified the same variables and interactions
as important as the BART models. To this end, the variable importance in Figure
3.12 and Figure 3.15 are compared, as are the top eight interactions of each model
in Table 3.4 and Table 3.6. Typically, both model types (BRT and BART) agreed
on the importance of the variables for each dataset. In the drought dataset, they
both identified the ratio of C3 to C4 grasses (c3_c4ratio) and the proportion of
dryland agriculture (Dryag_prop) as important, and the proportion of irrigated
agriculture (Irrag_prop) as least important. However, the BRT models selected
the mid soil moisture layer anomaly (midsoil_anom) as important, but the BART
models did not, and the BART models identified top soil moisture layer anomaly
(topsoil_anom) as important, but the BRT models did not.

The BRT and BART models fit on the wetting dataset also typically agree
on variable importance. Both models identified the ratio of C3 to C4 grasses
(c3_c4ratio) and mid soil moisture layer trend (ss_trend) as important. They
also both identified the proportion of irrigated agriculture (Irrag_prop) as an
unimportant variable. However, most of the BRT models identified woody veg-
etation cover (AHGF_FPC) as important, but the BART models did not, and most of
the BART models identified PET anomaly (evap_anom) as important, but the BRT
models did not.

All six models fit on the drought dataset (three BRT and three BART) indicated

that the interaction between top soil moisture layer anomaly (topsoil_anom) and
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mid soil moisture layer anomaly (midsoil_anom) was important. This was the
only interaction that all six models identified, but there are several more that
most of these models selected. Namely, all three of the BART models, and
two of the BRT models fit on the drought dataset identified the interactions
between the ratio of C3 to C4 grasses (c3_c4ratio) and top soil moisture layer
anomaly (topsoil_anom), as well as the interaction between the proportion of
dryland agriculture (Dryag_prop) and the ratio of C3 to C4 grasses (c3_c4ratio)
as important.

The six models fit on the wetting dataset all identified two specific interac-
tions as important. Namely, the interactions between PET anomaly (evap_anom)
and the ratio of C3 to C4 grasses (c3_c4ratio), as well as top soil moisture layer
anomaly (topsoil_anom) and the ratio of C3 to C4 grasses (c3_c4ratio). Addi-
tionally, all three of the BRT models, and one of the BART models identified the
interaction between PET anomaly (evap_anom) and mid soil moisture layer trend
(ss_trend) as important, and one model of each method identified the interac-
tion between mid soil moisture layer trend (ss_trend) and top soil moisture layer
trend (s®_trend) as important.

Overall, there was some agreement across methods about which interactions
were important for each dataset, but it was not as stark as the agreement for vari-
able importance. This possibly is because the software can only assess importance
of pairwise interactions; but the models are all fitting higher order interactions
to reduce error as much as possible. This means that the selection of important
interactions is not reflective of all of the interactions that the models are fitting
and therefore the pairwise interactions that are selected as important may vary
between models, even if the models are all fitting similar higher order interactions
(Hijmans et al., 2017; Kapelner and Bleich, 2016).

In terms of running time, BART models are superior. The BART models
considered here usually took between 20 and 40 seconds to fit. The BRT models
varied greatly, with the longest taking around 2.5 minutes, and the shortest taking
around 30 seconds. However, neither run times for BRT or BART are particularly
long, so it is not of great concern.

Both BRTs and BARTs can be difficult to understand at first as they are not
simple, straightforward methods. However, it is decidedly easier to understand
how BRTs work and what the settable parameters do, compared to the BART
method. Firstly, the Bayesian framework of BARTs makes the methods chal-
lenging to understand and for non-statisticians, possibly extremely daunting on
tirst use, and users may therefore be likely to simply use the defaults of the soft-
ware. Secondly, BRTs have only three settable parameters, compared to BART’s
six hyperparameters. Furthermore, the concepts of bag fractions, learning rates,
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and tree complexities are far more straightforward and easier to understand
than BART’s hyperparameters, especially as multiple hyperparameters are used
to control just one prior (e.g. a and p both control the tree structure prior).
However, the developers of both packages have published detailed tutorials and
documentations to help researchers understand how these methods work and
how to implement them (Elith and Leathwick, 2017; Elith et al., 2008; Hijmans
et al., 2017; Kapelner and Bleich, 2016).

Both dismo (BRT implementation) and bartMachine (BART implementation)
also have additional functionality that was not implemented in the course of this
study. It is also worthwhile comparing this functionality to determine if one
package offers more useful functions than the other.

The dismo package has three extra uses related to BRTs other than what was
used in this study. Firstly, it allows for model simplification by testing dropping
up to n variables (where the user chooses 7). Secondly, it can plot the fitted
functions of the predictor variables, although this should be used with caution as
it can give misleading indications about the distributions of fitted values relative
to each predictor, especially if there are strong interactions present in the data or
if predictors are strongly correlated. Finally, it can plot the pairwise interactions
to a 3D surface which is useful when investigating how the predictors interact
(Elith and Leathwick, 2017; Elith et al., 2008; Hijmans et al., 2017).

The bartMachine package has six additional BART uses other than what was
discussed in this study. Firstly, it can check assumptions, including the mean
centredness of noise, and the convergence of the Gibbs sampler. Secondly, it can
generate uncertainty estimates in the form of credible intervals and prediction
intervals. Thirdly, bartMachine has the ability to test if any predictors in a user-
chosen set matter in predicting the dependant variable. Fourth, it can examine
partial dependence (how a predictor affects the dependant variable on average,
when controlling for all other predictors). Fifth, it has several variable selection
methods beyond simply calculating and graphing variable importance as done
here. Finally, due to BART’s Bayesian framework, bartMachine has the ability to
incorporate informed prior information about the predictors into a BART model
(Kapelner and Bleich, 2016). This can be incredibly useful and is one of the main
benefits of Bayesian methods.

3.4 Limitations of the Methods

It is important to note that while both datasets contained variables with skewed
distributions and outliers, these aspects of the data do not violate the assumptions
of either BRT or BART as they are non-parametric methods. There are however

some limitations to these methods. Namely, the dismo package (used to fit the
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BRT models) and the bartMachine package (used to fit the BART models), can
only calculate the importance of two-way interactions, even though the model
itself may model three way, or even higher, interactions. This limits the user’s
ability to assess the appropriate tree complexity (beyond inspecting error statistics
of multiple models with different tree complexities as done here), as well as the
ability to assess the importance of the interactions of the variables and make
inferences in context based on the interactions.

3.5 Limitations of the Study

This study has several limitations. Most importantly, all methods were applied to
only one ecology scenario (grassland decline and recovery), with two datasets. It
is possible that different types of ecology datasets would include data that would
be better fit by BRT rather than BART. Additionally, the nature of the data might
mean thatit would be better modelled with different values of the parameters than
what was most effective for the grassland data in this study. A further limitation
is that both BRT and BART are capable of modelling data with missing values
(Elith et al., 2008; Kapelner and Bleich, 2016), however the grassland datasets
considered here had no missing data, and furthermore, missing data was not
simulated (due to time limitations imposed on this study). This means that the
impact of missing data on BRT and BART were not compared. It is possible that
one method may handle missing data more effectively than the other, but this
has not been assessed.

Another limitation of this study is that partial dependence of predictors were
not investigated (both dismo and bartMachine have the ability to inspect partial
dependence (Hijmans et al., 2017; Kapelner and Bleich, 2016)). The effects of a
predictor (when controlling for all other predictors) can have important ecological
and management implications. It is possible, for example, that although the BRT
and BART models both identified the ratio of C3 to C4 grasses as an important
predictor of grassland degradation, the partial effect size at any given ratio of
the grasses could be different between model types. If this difference in partial
effect size is large enough, it could produce different ecological and management
implications for each model type. However, since the partial dependence was
not investigated, it is unknown if BRT and BART produced differing partial
effect sizes and would therefore produce differing ecological and management

implications.
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3.6 Significance of Study

3.6.1 Statistical Significance

As machine learning methods may in some cases be used as “black boxes” by
the users who apply them, it is of great interest if the packages that implement
BRT and BART can be used “out of the box” with their default parameter values
(Table 2.1 and Table 2.3). The majority of the default parameters in the dismo
and bartMachine packages were reasonable for the grassland datasets, however
there were some notable exceptions.

Of the three parameters that need to be defined to run a BRT model, dismo’s
gbm.step function offers two reasonable defaults, and one unrealistic default
(note that dismo has several other functions for diverse use-cases which also
differ in several ways, including default parameter settings) (Hijmans et al.,
2017). Firstly, for the data considered here, the bag fraction did not seem to affect
the number of trees in the model, nor any of the error statistics. Additionally,
Elith et al. (2008) determined that bag fractions between 0.5 and 0.75 perform
best for presence-absence data. Although the grasslands data is not presence-
absence, due to the lack of a clear best bag fraction value, the default of 0.75 seems
reasonable.

The default learning rate for gbm. step is 0.01. Again, this value is reasonable
for the grasslands data as Figure 3.11 indicates that learning rate values of 0.05,
0.01, and 0.005 produced the smallest error statistics without the learning rate
being so small that when combined with a moderate or high tree complexity the
resulting model could not be fit. Additionally, the default learning rate of 0.01
is the middle option of the three sensible values identified for this data, and this
lends credence to a learning rate of 0.01 being a reasonable default.

The default tree complexity for gbm.step is 1. Theoretically this tree com-
plexity is unreasonable for most data as this tree complexity results in trees that
have one split and two terminal nodes (known as a decision stump), meaning
that no interactions are modelled. This would only be appropriate for data where
the researchers would expect no interactions between variables in the data gen-
erating process. Figure 3.11 supports the assessment that a tree complexity of 1
is unreasonable as it shows that this tree complexity was consistently the worst
performing tree complexity of all the values tested.

It should also be noted that Elith et al. (2008) recommends fitting models
with at least 1000 trees as a heuristic. Both models that were fit using the default
parameter values, determined that the optimal number of trees required to model
the data were well above 1000 (5500 for the drought dataset and 4800 for the
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wetting dataset). Therefore, the defaults of gbm. step did not violate the number
of trees heuristic when applied to these datasets.

Of the six hyperparameters that are required for a BART model, bartMachine’s
bartMachine function contains five reasonable defaults and only one unreason-
able default. Firstly, none of the values tested for k, v, or g (which include the
default values) appeared to alter the model performance (Figure 3.13 and Figure
3.14). Therefore, the default values of k = 2, v = 3, and g = 0.9 are sensible values
for the two grassland datasets.

It is difficult to assess the appropriateness of the default m = 50 value as it
is unclear if a lesser or greater number of trees is preferable for these datasets
(Figure 3.13 and Figure 3.14). However, the default 50 trees is most likely the
best choice as a smaller number of trees leads to better variable selection because
it creates a bottleneck that forces the trees to only use predictor variables which
most improve prediction of the response variable as splitting variables (Chipman
et al., 2010)).

The default « value of 0.95 is a reasonable value for the grasslands data as
Figure 3.13 and Figure 3.14 indicate that lower a values (between 0.5 to 0.95)
resulted in better performing models.

The only hyperparameter that does not have an appropriate default value is
p (the default is 2). Figure 3.13 and Figure 3.14 indicate that lower g (0.5 to 0.95)
resulted in (albeit slightly) better performing models.

Overall, it appears that at least for the grasslands datasets, bartMachine
(BART implementation) offers better “out of the box” performance than dismo
(BRT implementation). This is because only one of its six hyperparameter’s
defaults is not appropriate, compared to dismo’s one of three inappropriate pa-
rameters. Additionally, the default value of § = 2 only resulted in slightly worse
models, whereas the default tree complexity of 1 not only resulted in substan-
tially worse models, but is also clearly theoretically inappropriate for most data
(including the grasslands dataset used in this study).

3.6.2  Ecological Significance
In Section 3.2.2 it was determined that for BRT models, the two highest tree

complexities tested produced the better performing models than the lower tree
complexities, however, such high tree complexities usually do not facilitate eco-
logical inference as high order interactions are complex and difficult to make
practical inferences from (Kath et al., 2018). Furthermore, the software used in
this study to fit BRT models (dismo) is unable to evaluate the importance of
non-pairwise interactions, therefore it is currently impossible to even attempt to
draw practical inferences from such high order interactions (Hijmans et al., 2017).
Fitting models with high tree complexities only serves to produce more accurate
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predictions, not to make inferences about predictor interactions which could be
used to make ecological management policy.

This is especially true for a tree complexity of 13 as, for the grasslands datasets,
this means that potentially all 13 predictor variables are interacting. Therefore,
although these high tree complexities produced the models with better error
statistics, it would be extremely difficult to make any meaningful interaction
inference from these models (even if the software allowed for the evaluation
of high order interactions). Despite having more prediction error, models with
lower tree complexity may facilitate better understanding of the data generating
process.

Sections 3.2.2 and 3.2.3 discussed the variable and interactions that the BRT
and BART models identified as important for each dataset. Therefore, the iden-
tified important variables and interactions for grassland drought and recovery
can be compared to the findings of Kath et al. (2019).

Kath et al. (2019) identified the proportion of dryland agriculture, mid soil
moisture later anomaly, ratio of C3 to C4 grasses and top soil moisture layer
anomaly as important for grassland decline. These predictors are the same ones
that the BRT and BART models selected as important. Kath et al. (2019) also
identified the proportion of irrigated agriculture as the least important predictor
of grassland decline, which is consistent with the BRT and BART models fitted
here.

Kath et al. (2019) determined that important predictors of grassland recovery
are mid soil moisture layer trend, the ratio of C3 to C4 grasses, PET anomaly,
and the proportion of woody vegetation. They also identified the proportion
of irrigated agriculture as the least important predictor of grassland recovery.
Again, this is consistent with the BRT and BART models fitted here.

Kath et al. (2019) does not report on interaction importance, but the models
tit on the drought dataset in this report indicate that the interaction between top
soil moisture layer anomaly and mid soil moisture layer anomaly was the most
important interaction of predictors grassland degradation, but the interactions
between the ratio of C3 to C4 grasses and top soil moisture layer anomaly, the
proportion of dryland agriculture and the ratio of C3 to C4 grasses, as well as
top soil moisture layer anomaly and mid soil moisture layer anomaly were also
important.

The models fit on the wetting dataset indicate that the interactions between
PET anomaly and the ratio of C3 to C4 grasses, as well as between top soil
moisture layer anomaly and the ratio of C3 to C4 grasses are the most important

interactions of predictors of grassland recovery, but the interactions between PET
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anomaly and mid soil moisture layer trend as well as between mid soil moisture
layer trend and top soil moisture layer trend were also important.

Section 3.3.2 also compared the prediction error statistics of the best BRT and
BART models. It was determined that in general, the BART method produced
models with more favourable prediction error statistics. In particular, the BART
model fit on the drought dataset that had the largest R? value (selected as “best”
by the R? statistic” explained an additional 10.17% of variation in the data than
it’'s BRT counterpart, and BART model fit on the wetting dataset that has the
largest R? values explained and additional 11.92% of variation in the data than
it’'s BRT counterpart. Currently, BRTs are widely used in ecological studies (at
the time of writing the Elith et al. (2008) paper, which outlines the use of BRTs in
ecology, has been cited over 2000 times) but the models fit here indicate that BART
models may offer improved predictive performance. However, the complexity
of the BART method makes it more difficult to understand and implement than
the BRT method (see section 3.3.2 for a more in-depth discussion), so BRT may
still be preferable in some cases.

3.7 Future Work

More research is needed to more comprehensively assess the benefits, limitations,
and differences between BRT and BART. Specifically, BRT and BART should be
assessed and compared on additional datasets from a diverse range of ecological
scenarios. In particular, the performances of BRT and BART on smaller datasets,
and datasets with missing values require further research. Additionally, due to
the similar performance of the random forest models in the reference analysis to
the best BRT and BART models identified here, future work could also include a

comparison of random forests with BRT and BART models.
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CHAPTER 4

Conclusion

The key finding of this project is that BART models are likely superior in mod-
elling ecological data than BRTs. As BRTs and BARTs have similar variable and
interaction importance selection capabilities (research question 1), the choice of
which model type to use becomes one of prediction error (research question 2),
run time, ease of altering parameters, functionality of the software implementa-
tion, and (to a lesser extent) reasonableness of the defaults of said implementa-
tions (research question 3).

The BART method is preferable to the BRT method in all but one of the above
categories. The BART models fitted on both datasets typically performed better or
similarly (in terms of prediction error statistics) to their BRT model counterparts.
BARTs also had shorter run times, more extensive functionality of the software
implementation, and more appropriate defaults in the software implementation.
The main drawback of BARTs compared to BRTs is that it is more complex, less
user friendly, and therefore it is more difficult to learn how to use properly and
effectively.

The findings of this project should be tempered with the knowledge that all
models were fit on only two ecological datasets, from one scenario (grassland
decline and recovery). Additional work should be conducted to determine if the

results are consistent on other datasets and ecological scenarios.
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APPENDIX A

Appendix of Additional Results

Table A.1: Error Statisics of reference analysis models (linear regression, single
tree, random forest) fit on each dataset (drought and wetting).

Regression Type Data Error Statistic Value
RMSE 5.35x10%
Drought MAE 4.07x10%

i i R? 0.3082

Linear Regression

RMSE 6.00x107%
Wetting MAE 4.65%107%

R? 0.2239
RMSE 5.18x10~%
Drought MAE 3.93x10%

2

Single Tree R 0.3433
RMSE 6.01x107%
Wetting MAE 4.59x10~%

R? 0.3053
RMSE 4.60x10°%
Drought MAE 3.41x107%

2

Random Forest R 0.5382
RMSE 5.36x10"%
Wetting MAE 4.02x10°%

R? 0.4782
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Table A.2: Error Statisics and number of trees of each BRT model fit on the drought

dataset. Blank entries means that a model could not be built with that combination of

parameter values.

Bag Learning Tree - Number of RMSE MAE R?
Fraction Rate Complexity Trees

0.3 0.001 1 12050 5.08x107% 3.84x107%* 0.3458
0.3 0.001 3 11750 4.83x107%  3.62x107% 0.4020
0.3 0.001 5 10450 4.74x107%  354x107% 0.4235
0.3 0.001 9 7850 4.67x107%  3.49x107% 0.4408
0.3 0.001 13 6450 4.64x107%*  3.46x107%¢ 0.4481
0.3 0.005 1 6250 497x107% 3.73x107% 0.3836
0.3 0.005 3 5900 4.68x107%  3.49x107% 0.4542
0.3 0.005 5 4300 4.64x107%  3.46x107%4 0.4737
0.3 0.005 9 2100 4.63x107%  3.46x107%* 0.4667
0.3 0.005 13 1950 4.62x107% 3.45x107%* 0.4874
0.3 0.01 1 3800 495x107%  3.71x107% 0.3994
0.3 0.01 3 3400 4.70x107%  3.50x107% 0.4590
0.3 0.01 5 2550 4.62x107%  3.45x107%* 0.4865
0.3 0.01 9 1400 4.63x107%  3.47x107% 0.4855
0.3 0.01 13 900 4.62x107%  3.45x107% 0.4814
0.3 0.05 1 3750 4.80x107% 3.61x107% 0.4821
0.3 0.05 3 950 4.71x107%  352x107% 0.4928
0.3 0.05 5 350 4.70x107%  3.49x10~%* 0.4669
0.3 0.05 9 300 4.66x107%  3.47x107% 0.4962
0.3 0.05 13 200 4.67x107%  352x107% 0.5078
0.3 0.1 1 2500 4.88x107% 3.67x107% 0.5028
0.3 0.1 3 550 4.76x107%  3.60x107% 0.5213
0.3 0.1 5

0.3 0.1 9

0.3 0.1 13

0.6 0.001 1 12900 5.09x107%  3.84x107%* 0.3344
0.6 0.001 3 8950 4.88x107%  3.66x107%* 0.3842
0.6 0.001 5 9500 4.75x107% 3.55x107%¢ 0.4141
0.6 0.001 9 7600 4.67x107%  3.48x107% 0.4369
0.6 0.001 13 5900 4.64x107%  3.46x107%% 0.4421
0.6 0.005 1 6850 5.00x107% 3.75x107%* 0.3852
0.6 0.005 3 5500 4.70x107% 3.49x107% 0.4538
0.6 0.005 5 4050 4.64x107%  3.45x107%% 0.4747
0.6 0.005 9 2700 4.60x107%  3.42x107% 0.4859
0.6 0.005 13 1650 4.60x107%  3.43x107%% 0.4747
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Table A.2: (continued)

Bag Learning Tree ' Number of RMSE MAE R?
Fraction Rate Complexity Trees

0.6 0.01 1 4600 4.96x107%  3.71x107% 0.3951
0.6 0.01 3 3450 4.66x107%  3.45x107%* 0.4655
0.6 0.01 5 1750 4.66x107%  3.47x107% 0.4603
0.6 0.01 9 1150 4.63x107%  3.45x107% 0.4719
0.6 0.01 13 800 4.60x107% 3.43x107% 0.4703
0.6 0.05 1 2750 4.83x107% 3.58x107%* 0.4400
0.6 0.05 3 800 4.70x107%  3.49x107% 0.5017
0.6 0.05 5 550 4.64x107%  3.45x107%* 0.4932
0.6 0.05 9 250 4.63x107%  3.46x107%* 0.4835
0.6 0.05 13

0.6 0.1 1 3050 4.79x107%  3.57x107%*  0.5006
0.6 0.1 3 400 4.66x107%  3.46x107%* 0.4834
0.6 0.1 5 200 4.69x107%  352x107% 0.4802
0.6 0.1 9

0.6 0.1 13

0.75 0.001 1 13150 5.09x107% 3.84x107%* 0.3278
0.75 0.001 3 11300 4.85x107%  3.63x107%* 0.3937
0.75 0.001 5 10250 4.74x107%  353x107% 0.4175
0.75 0.001 9 7100 4.67x107%  3.48x107% 0.4292
0.75 0.001 13 6250 4.63x107% 3.45x107% 0.4438
0.75 0.005 1 7050 5.01x107%  3.76x107%* 0.3826
0.75 0.005 3 6100 4.67x107%  3.48x107%* 0.4601
0.75 0.005 5 3950 4.64x107%  3.46x107%* 0.4694
0.75 0.005 9 2550 4.59%x107%  3.41x107%* 0.4809
0.75 0.005 13 1550 4.60x107%  3.43x107%* 0.4650
0.75 0.01 1 5500 4.95x107%  3.70x107%* 0.4004
0.75 0.01 3 3750 4.66x107%  3.46x107%* 0.4776
0.75 0.01 5 2200 4.64x107%  3.45x107%* 0.4811
0.75 0.01 9 1150 4.61x107%  3.43x107% 0.4717
0.75 0.01 13 850 4.59%x107%  3.41x107% 0.4772
0.75 0.05 1 2200 4.87x107%  3.61x107%* 0.4196
0.75 0.05 3 750 4.66x107%  3.48x107%* 0.4859
0.75 0.05 5 350 4.66x107%  3.46x107%* 0.4608
0.75 0.05 9 250 4.63x107%  3.45x107% 0.4987
0.75 0.05 13 200 457x107%  3.42x107%* 0.5035
0.75 0.1 1 2700 4.80x107% 3.58x107% 0.4792
0.75 0.1 3 450 4.70x107% 35010 0.5067
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Table A.2: (continued)

Bag Learning Tree | Number of RMSE MAE R2
Fraction Rate Complexity Trees

0.75 0.1 5 250 4.65x107%  3.48x107%* 0.5141
0.75 0.1 9

0.75 0.1 13

0.9 0.001 1 13750 5.09x107% 3.84x107% 0.3231
0.9 0.001 3 11950 4.85x107% 3.63x107% 0.3900
0.9 0.001 5 10550 4.73x107% 353x107% 0.4146
0.9 0.001 9 8900 4.64x107%* 3.45x107%% 0.4451
0.9 0.001 13 6300 4.62x107%  3.45x107% 0.4425
0.9 0.005 1 7250 5.03x107% 3.78x107%* 0.3793
0.9 0.005 3 6600 4.68x107%* 3.48x107% 0.4641
0.9 0.005 5 4450 4.63x107%  3.44x107%% 0.4797
0.9 0.005 9 3050 458x107%  3.40x107% 0.4953
0.9 0.005 13 2600 457x107%  3.40x10~% 0.5166
0.9 0.01 1 4050 5.02x107%  3.76x107%* 0.3844
0.9 0.01 3 4000 4.67x107% 3.47x107% 0.4815
0.9 0.01 5 1950 4.65x107%  3.45x107% 0.4654
0.9 0.01 9 1700 4.58x107% 3.41x107% 0.5071
0.9 0.01 13 1150 456x107% 340107 0.5036
0.9 0.05 1 2950 4.86x107%  3.61x107% 0.4282
0.9 0.05 3 1200 4.63x107%  3.43x107% 0.5161
0.9 0.05 5 550 4.66x107%  3.46x107% 0.5029
0.9 0.05 9 250 459x107% 3.42x107% 0.4890
0.9 0.05 13 200 4.62x107%  3.43x107% 0.4923
0.9 0.1 1 1650 4.86x107%  3.60x107% 0.4350
0.9 0.1 3 400 471x107% 3.49x107% 0.4854
0.9 0.1 5

0.9 0.1 9

0.9 0.1 13
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Table A.3: Error Statisics and number of trees of each BRT model fit on the wetting

dataset. Blank entries means that a model could not be built with that combination of

parameter values.

Bag Learning Tree . Number of RMSE MAE R2
Fraction Rate Complexity Trees

0.3 0.001 1 12700 5.70x107%  4.40x107% 0.2592
0.3 0.001 3 10400 5.50x107%  4.20x107%* 0.3205
0.3 0.001 5 8300 5.40x107%  4.20x107% 0.3406
0.3 0.001 9 7300 5.40x107% 4.10x107%* 0.3746
0.3 0.001 13 6200 5.40x107%  4.10x107% 0.3861
0.3 0.005 1 4500 5.60x107%  4.30x107%* 0.2986
0.3 0.005 3 6000 5.50x107%  4.10x107%* 0.4006
0.3 0.005 5 3900 5.40x107% 4.10x107%* 0.4138
0.3 0.005 9 1950 5.40x107% 4.10x107% 0.4011
0.3 0.005 13 1700 5.40x107%  4.10x107% 0.4213
0.3 0.01 1 5350 5.60x107%*  4.30x107%* 0.343
0.3 0.01 3 2350 5.40x107% 4.10x107%* 0.3816
0.3 0.01 5 2000 5.40x107%  4.10x107%* 0.4096
0.3 0.01 9 1400 540x107%  4.10x107%*  0.4464
0.3 0.01 13 700 5.40x107% 4.10x107% 0.4003
0.3 0.05 1 1700 5.60x107% 4.20x107%  0.37
0.3 0.05 3 550 5501079 4.20x107% 0.4107
0.3 0.05 5 650 5501079 4.10x107% 0.4732
0.3 0.05 9 200 540x107% 4.10x107% 0.4137
0.3 0.05 13

0.3 0.1 1 550 5.50x107%  4.30x107%* 0.3468
0.3 0.1 3

0.3 0.1 5

0.3 0.1 9

0.3 0.1 13

0.6 0.001 1 13000 5.70x107%  4.40x107% 0.2404
0.6 0.001 3 11000 5.50x107% 4.20x107%* 0.3182
0.6 0.001 5 8650 5.50x107% 4.20x107%* 0.3388
0.6 0.001 9 7350 5.40x107% 4.10x107% 0.3714
0.6 0.001 13 5150 5.40x107%  4.10x107% 0.3649
0.6 0.005 1 4950 5.60x107%  4.30x107%* 0.2993
0.6 0.005 3 5000 5.40x107% 4.10x10"% 0.3821
0.6 0.005 5 3600 540x107% 4.10x10"% 0.4121
0.6 0.005 9 2250 5.40x107% 4.10x107% 0.4155
0.6 0.005 13 1450 5.40x107% 4.10x107% 0.4058
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Table A.3: (continued)

Bag Learning Tree | Number of RMSE MAE R2
Fraction Rate Complexity Trees

0.6 0.01 1 5000 5.60x107%  4.30x107%* 0.3337
0.6 0.01 3 2850 5.40x107% 4.10x107%* 0.3915
0.6 0.01 5 1600 5.40x107% 4.10x107%* 0.3918
0.6 0.01 9 1400 540x107%  4.10x10"% 0.4371
0.6 0.01 13 700 5.40x107% 4.10x107%  0.4026
0.6 0.05 1 3150 5.50x107%  4.20x107% 0.3883
0.6 0.05 3 550 5.50x107% 4.20x107%  0.39
0.6 0.05 5 300 5.50x107%  4.10x107%* 0.3982
0.6 0.05 9

0.6 0.05 13

0.6 0.1 1 1150 5.50x107%  4.20x107%* 0.3734
0.6 0.1 3 350 5.50x107% 4.10x107%* 0.4266
0.6 0.1 5 200 5.50x107%  4.10x107%* 0.4337
0.6 0.1 9

0.6 0.1 13

0.75 0.001 1 14350 5.70x107%%  4.40x107% 0.2416
0.75 0.001 3 11800 5.50x107% 4.20x107%* 0.3185
0.75 0.001 5 9250 5.50x107%  4.20x107%* 0.3394
0.75 0.001 9 6900 5.40x107% 4.10x107%* 0.3608
0.75 0.001 13 5650 540x107% 4.10x10~% 0.3747
0.75 0.005 1 4500 5.60x107%%  4.30x107%* 0.2841
0.75 0.005 3 4900 5.40x107% 4.10x107%* 0.3793
0.75 0.005 5 3800 5.50x107%  4.10x107%* 0.4041
0.75 0.005 9 2250 5.40x107%  4.10x107%* 0.4128
0.75 0.005 13 1300 5.40x107%  4.10x107%* 0.3906
0.75 0.01 1 4800 5.60x107%  4.30x107%* 0.3273
0.75 0.01 3 2350 5.50x107%  4.10x107%* 0.3722
0.75 0.01 5 2100 5.50x107% 4.10x107%* 0.4168
0.75 0.01 9 1050 5.40x107%  4.10x107%* 0.4062
0.75 0.01 13 700 5.40x107% 4.10x107%* 0.3988
0.75 0.05 1 1600 5.50x107% 4.20x107% 0.3511
0.75 0.05 3 500 5.40x107% 4.10x107%* 0.3801
0.75 0.05 5 350 5.40x107%  4.10x107%* 0.4065
0.75 0.05 9 300 5.40x107% 4.10x107% 0.4436
0.75 0.05 13

0.75 0.1 1 1700 5.60x107%  4.20x107% 0.3953
0.75 0.1 3 300 5.40x107%  4.10x107%* 0.3994

80



Table A.3: (continued)

Bag Learning Tree | Number of RMSE MAE R?
Fraction Rate Complexity Trees
0.75 0.1 5 200 5501079 4.10x107% 0.4232
0.75 0.1 9
0.75 0.1 13
0.9 0.001 1 13800 5.70x107%  4.40x107% 0.2234
0.9 0.001 3 14600 5.50x107% 4.20x107% 0.3277
0.9 0.001 5 9200 5.50x107%  4.20x107%* 0.3303
0.9 0.001 9 7150 5.40x107%  4.10x107% 0.3577
0.9 0.001 13 6650 5.40x107%  4.10x107%* 0.3869
0.9 0.005 1 5600 5.60x107%  4.30x107% 0.2907
0.9 0.005 3 5600 5.40x107%  4.10x107%* 0.3844
0.9 0.005 5 3150 5.40x107% 4.10x107%* 0.3809
0.9 0.005 9 2150 5.40x107%  4.10x107%* 0.3998
0.9 0.005 13 1450 5.40x107%  4.10x107% 0.3977
0.9 0.01 1 3550 5.60x107%  4.30x107%* 0.3022
0.9 0.01 3 3200 5.40x107% 4.10x107%* 0.3965
0.9 0.01 5 1300 5.50x107% 4.10x107%* 0.3625
0.9 0.01 9 950 5.50x107%  4.10x107%* 0.3625
0.9 0.01 13 750 5.40x107%  4.10x10~% 0.4031
0.9 0.05 1 3050 5501079 4.20x107% 0.3715
0.9 0.05 3 600 5.50x107% 4.10x107%* 0.3953
0.9 0.05 5 450 5501079 4.10x107% 0.4179
0.9 0.05 9 250 5.50x107%  4.10x107%* 0.4183
0.9 0.05 13 200 5.40x107%  4.10x107% 0.4357
0.9 0.1 1 600 5.60x107% 4.30x107%* 0.331
0.9 0.1 3 250 5.50x107%  4.20x107%* 0.3782
0.9 0.1 5 250 5.50x107%  4.20x107%* 0.4489
0.9 0.1 9
0.9 0.1 13
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Table A.4: BRT models that could not be trained on the drought dataset.

Bag Fraction Learning Rate Tree Complexity

0.3
0.3
0.3
0.6
0.6
0.6
0.75
0.75
0.9
0.9
0.9

0.1 5
0.1 9
0.1 13
0.05 13
0.1 9
0.1 13
0.1 9
0.1 13
0.1 5
0.1 9
0.1 13

Table A.5: BRT models that could not be trained on the wetting dataset.

Bag Fraction Learning Rate Tree Complexity

0.3
0.3
0.3
0.3
0.3
0.6
0.6
0.6
0.6
0.75
0.75

0.05 13
0.1 3
0.1 5
0.1 9
0.1 13
0.05 9
0.05 13
0.1 9
0.1 13
0.05 13
0.1 9

82



Table A.6: Error Statisics of each BART model fit on the drought dataset.

o B m kK v q RMSE MAE R?
05 05 50 025 3 08 4.94x107% 3.72x107% 0.3906
05 05 50 025 3 09 503x107% 3.75x107% 0.3978
05 05 50 025 3 099 498x107% 3.73x107%% 0.4081
05 05 50 025 7 08 496x107% 3.73x107% 0.4070
05 05 50 025 7 09 501x107% 3.79x107% 0.3905
05 05 50 025 7 099 4.99x107% 3.74x107%% 0.3951
05 05 50 025 10 0.8 5.05x107% 3.79x107% 0.4237
05 05 50 025 10 09 3.71x107% 4.92x107% 0.4027
05 05 50 025 10 0.99 4.92x107% 3.73x107%* 0.3992
05 05 50 1 3 08 485x107% 3.62x107% 0.4391
05 05 50 1 3 09 489Ix107% 3.64x107%* 0.4309
05 05 50 1 3 099 4.79x10™% 359x107% 0.4424
05 05 50 1 7 08 4.87x107% 3.63x107% 0.4287
05 05 50 1 7 09 486x107% 3.65x107% 0.4399
05 05 50 1 7 099 483x107% 359x107% 0.4375
05 05 50 1 10 08 4.80x107% 3.59x107% 0.4534
05 05 50 1 10 09 4.84x10™% 3.64x107% 0.4406
05 05 50 1 10 099 4.79x107% 3.61x107% 0.4416
05 05 50 2 3 08 4.78x107% 3.58x107%% 0.4481
05 05 50 2 3 09 473x107% 355x107% 0.4378
05 05 50 2 3 099 475x107% 3.56x107% 0.4410
05 05 50 2 7 08 473x107% 355x107% 0.4507
05 05 50 2 7 09 477x107% 3.59x107% 0.4370
05 05 50 2 7 099 478x107% 3.58x107% 0.4446
05 05 50 2 10 0.8 477x107% 357x107% 0.4309
05 05 50 2 10 09 477x107% 3.58x107%* 0.4504
05 05 50 2 10 099 4.84x107% 3.60x107%* 0.4381
05 05 100 025 3 0.8 4.82x10™% 357x107% 0.4188
05 05 100 025 3 09 4.87x10™% 3.63x107% 0.4296
05 05 100 025 3 099 4.99x10~% 3.72x107% 0.4531
05 05 100 025 7 0.8 4.89x107% 3.64x107%* 0.4356
05 05 100 025 7 09 4.86x107% 3.63x107% 0.4559
05 05 100 025 7 099 5.04x107% 3.75x107% 0.4302
05 05 100 025 10 0.8 4.82x107% 3.63x107% 0.4257
05 05 100 025 10 09 4.85x107% 3.63x107% 0.4316
05 05 100 025 10 0.99 4.90x107%* 3.67x107% 0.4403
05 05 100 1 3 08 4.72x107% 351x107% 0.4904
05 05 100 1 3 09 470x107% 351x107% 0.4822
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Table A.6: (continued)

o B m kv g RMSE MAE R?
05 05 100 1 3 099 470x107% 3.53x107% (0.4817
05 05 100 1 7 08 4.70x107% 3.54x107% 0.4808
05 05 100 1 7 09 475x107% 353x107% 0.4818
05 05 100 1 7 099 4.72x107% 353x107% 0.4930
05 05 100 1 10 08 4.74x107%* 3.56x107% 0.4860
05 05 100 1 10 09 4.73x107% 3.54x107% 0.4966
05 05 100 1 10 0.99 4.82x107% 3.58x107%* 0.4803
05 05 100 2 3 0.8 474x107% 3.55x107%* 0.4692
05 05 100 2 3 09 470x107% 351x107%* 0.4786
05 05 100 2 3 099 472x107% 3.52x107%* 0.4733
05 05 100 2 7 0.8 473x107% 3.56x107%* 0.4902
05 05 100 2 7 09 472x107% 3.53x107%% 0.4747
05 05 100 2 7 099 4.65x107% 3.48x107% 0.4842
05 05 100 2 10 0.8 4.68x107% 3.52x107% 0.4869
05 05 100 2 10 09 4.72x10™% 3.55x107% 0.4759
05 05 100 2 10 099 4.77x107% 3.54x107% 0.4804
05 05 200 025 3 0.8 4.80x10™% 3.59x107% 0.4914
05 05 200 025 3 09 473x107% 353x107% 0.4817
05 05 200 025 3 099 4.70x107% 354x107% 0.5122
05 05 200 025 7 08 4.81x107% 3.61x107% 0.5010
05 05 200 025 7 09 4.74x107% 355x107% 0.4948
05 05 200 025 7 099 4.77x107% 3.58x107% 0.4807
05 05 200 025 10 0.8 4.80x107%* 3.57x107% 0.5026
05 05 200 025 10 09 4.76x107% 3.59x107% 0.5161
05 05 200 025 10 0.99 4.65x107%* 3.47x107% 0.4715
05 05 200 1 3 08 470x107% 3.54x107% 0.5310
05 05 200 1 3 09 468x107% 351x107% 0.5262
05 05 200 1 3 099 467x107% 3.52x107% 0.5376
05 05 200 1 7 0.8 470x107%% 3.54x10"% (.5457
05 05 200 1 7 09 471x107% 3.54x107% 0.5399
05 05 200 1 7 099 4.70x107% 3.53x107% 0.5401
05 05 200 1 10 0.8 4.70x10™% 3.53x107% 0.5445
05 05 200 1 10 09 4.69x107% 352x107% 0.5237
05 05 200 1 10 099 4.71x107% 3.56x107% 0.5331
05 05 200 2 3 08 4.66x107% 349x107% 0.4919
05 05 200 2 3 09 4.69x107% 352x107% 0.5115
05 05 200 2 3 099 4.68x107% 353x107% 0.4933
05 05 200 2 7 08 4.67x107% 351107 0.5009
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Table A.6: (continued)

o B m kK v q RMSE MAE R?
05 05 200 2 7 09 473x107% 3.54x107% 0.4982
05 05 200 2 7 099 470x107% 352x107% 0.5029
05 05 200 2 10 08 4.65x107% 3.50x107% 0.4972
05 05 200 2 10 09 4.67x107% 3.53x107% 0.5021
05 05 200 2 10 099 4.70x107% 3.52x107% 0.4999
05 095 50 025 3 08 4.92x107% 3.72x107% 0.3952
05 095 50 025 3 09 503x107% 3.77x107%* 0.3998
05 095 50 025 3 099 494x107% 3.71x107%* 0.3980
05 095 50 025 7 08 495x107% 3.71x107% 0.4017
05 095 50 025 7 09 501x107% 3.78x107%* 0.3956
05 095 50 025 7 099 495x107% 3.76x107% 0.3967
05 095 50 025 10 0.8 4.93x107% 3.71x107% 0.4030
05 095 50 025 10 09 5.00x107%* 3.71x107% 0.3899
05 095 50 025 10 0.99 4.94x107%* 3.76x107% 0.4000
05 095 50 1 3 0.8 479x107% 3.61x107% 0.4351
05 095 50 1 3 09 4.88x107% 3.65x107% 0.4298
05 095 50 1 3 099 481x107% 3.62x107% 0.4486
05 095 50 1 7 08 4.84x107% 3.61x107% 0.4349
05 095 50 1 7 09 482x107% 359x107% 0.4273
05 095 50 1 7 099 4.84x107% 3.64x107% 0.4373
05 095 50 1 10 08 4.86x107% 3.63x107% 0.4306
05 095 50 1 10 09 4.86x107% 3.62x107% 0.4355
05 095 50 1 10 0.99 4.89x107%* 3.66x107% 0.4259
05 095 50 2 3 0.8 482x107% 359x107%* 04376
05 095 50 2 3 09 477x107% 3.61x107%* 0.4352
05 095 50 2 3 099 479x107% 3.60x10™% 0.4217
05 095 50 2 7 0.8 485x107% 3.65x107%* 0.4418
05 095 50 2 7 09 481x107% 3.63x107%* 0.4353
05 095 50 2 7 099 4.77x10™% 356x107% 0.4349
05 095 50 2 10 0.8 4.79x10™% 3.60x107% 0.4394
05 095 50 2 10 09 4.82x10™% 3.63x107% 0.4438
05 095 50 2 10 099 4.76x107% 3.57x107% 0.4430
05 095 100 025 3 0.8 4.88x107% 3.68x107% 0.4372
05 095 100 025 3 09 4.83x107% 3.60x107% 0.4258
05 095 100 025 3 0.99 4.89x107% 3.63x107% 0.4273
05 095 100 025 7 08 4.85x107% 3.65x107% 0.4269
05 095 100 025 7 09 4.85x107% 3.61x107% 0.4164
05 095 100 025 7 0.99 4.84x107% 3.62x107% 0.4280
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Table A.6: (continued)

o B m kv g RMSE MAE R?
05 095 100 025 10 0.8 4.88x10™% 3.65x107% 0.4314
05 095 100 025 10 09 4.97x107% 3.71x107% 0.4384
05 095 100 025 10 0.99 4.91x107% 3.66x107% 0.4221
05 095 100 1 3 08 4.78x107% 3.60x107% 0.4745
05 095 100 1 3 09 4.82x107% 357x107% 0.4514
05 095 100 1 3 099 4.77x107% 3.58x107% 0.4758
05 095 100 1 7 08 4.82x107% 358x107% 0.4962
05 095 100 1 7 09 4.82x107% 3.59x107% 0.4758
05 095 100 1 7 099 4.77x107% 3.59x107% 0.4817
05 095 100 1 10 0.8 4.76x107% 3.55x107%% 0.4747
05 095 100 1 10 09 4.75x107% 3.54x107%% 0.4797
05 095 100 1 10 0.99 4.77x107% 3.57x107% 0.4712
05 095 100 2 3 0.8 4.69x107% 3.53x107%* 0.4540
05 095 100 2 3 09 4.72x10™% 3.54x107% 0.4654
05 095 100 2 3 099 4.72x10™% 3.55x107% 0.4722
05 095 100 2 7 0.8 4.75x107% 355x107% 0.4651
05 095 100 2 7 09 475x107% 357x107% 0.4547
05 095 100 2 7 099 4.74x107% 3.54x107% 0.4618
05 095 100 2 10 08 4.71x107% 3.53x107% 0.4781
05 095 100 2 10 09 4.76x107% 3.56x107% 0.4591
05 095 100 2 10 0.99 4.71x107% 355x107% 0.4713
05 095 200 025 3 08 4.83x107% 3.62x107% 0.4977
05 095 200 025 3 09 493x107% 3.65x107% 0.5328
05 095 200 025 3 099 481x107* 3.61x10™%* 0.5009
05 095 200 025 7 0.8 483x107% 3.61x107%* 0.4923
05 095 200 025 7 09 477x107% 3.53x107%* 0.4866
05 095 200 025 7 099 482x107% 3.61x107% 0.5105
05 095 200 025 10 0.8 4.80x107%* 3.59x107% 0.4924
05 095 200 025 10 09 4.78x107%* 3.57x107% 0.5232
05 095 200 025 10 099 4.78x10™% 3.57x107% 0.4922
05 095 200 1 3 08 4.70x107% 3.54x10™% 0.5335
05 095 200 1 3 09 4.82x107% 3.61x107% 0.5461
05 095 200 1 3 099 476x107% 358x107% 0.5234
05 095 200 1 7 08 4.68x107% 351x107% 0.5081
05 095 200 1 7 09 471x107% 354x107% 0.5324
05 095 200 1 7 099 478x107% 3.58x107% 0.5201
05 095 200 1 10 08 4.72x107% 357x107% 0.5353
05 095 200 1 10 09 4.75x107% 3.54x107% 0.5244
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Table A.6: (continued)

o B m kK v q RMSE MAE R?
05 095 200 1 10 099 4.73x107% 3.52x107% 0.5243
05 095 200 2 3 08 4.69x107% 351x107% 0.4845
05 095 200 2 3 09 467x107% 351x107% 0.4785
05 095 200 2 3 099 4.72x107% 354x107% 0.4784
05 095 200 2 7 08 4.73x107% 3.54x107% 0.4828
05 095 200 2 7 09 4.69x107% 351x107% 0.4913
05 095 200 2 7 099 4.70x107% 3.54x107% 0.4799
05 095 200 2 10 0.8 4.70x107% 3.53x107%* 0.4930
05 095 200 2 10 09 4.68x107% 351x107%* 0.4789
05 095 200 2 10 0.99 4.70x107% 3.54x107%* 0.4822
05 2 50 025 3 0.8 496x107% 3.75x107%* 0.3944
05 2 50 025 3 09 495x107% 3.74x107% 0.3873
05 2 50 025 3 099 5.02x107% 3.75x107% 0.4030
05 2 50 025 7 08 4.99x107%* 3.77x107% 0.3985
05 2 50 025 7 09 497x10™% 3.74x107% 0.3942
05 2 50 025 7 099 497x10™% 3.76x107% 0.4013
05 2 50 025 10 0.8 4.90x107%* 3.69x107% 0.3953
05 2 50 025 10 09 4.95x107%* 3.74x107% 0.3998
05 2 50 025 10 0.99 5.00x107% 3.75x107% 0.4074
05 2 50 1 3 08 486x107% 3.66x107% 0.4216
05 2 50 1 3 09 494x107% 3.70x107% 0.4113
05 2 50 1 3 099 491x107% 3.68x107% 0.4171
05 2 50 1 7 08 491x107% 3.71x107% 0.4163
05 2 50 1 7 09 491x107% 3.66x107% 0.4139
05 2 50 1 7 099 489x107% 3.66x107%* 0.4160
05 2 50 1 10 0.8 490x107* 3.66x107%* 0.4153
05 2 50 1 10 09 495x107% 3.72x107% 0.4137
05 2 50 1 10 0.99 4.90x107% 3.70x107% 0.4276
05 2 50 2 3 0.8 4.88x10™™ 3.68x107% 0.4212
05 2 50 2 3 09 488x10™% 3.67x107% 0.4187
05 2 50 2 3 099 4.80x10™% 3.62x107% 0.4203
05 2 50 2 7 0.8 4.88x10™% 3.65x107% 0.4216
05 2 50 2 7 09 486x107% 3.64x107% 0.4177
05 2 50 2 7 099 4.89x107% 3.68x107% 0.4179
05 2 50 2 10 08 4.86x107% 3.66x107% 0.4136
05 2 50 2 10 09 4.84x107% 3.66x107% 0.4226
05 2 50 2 10 0.99 4.87x107% 3.63x107% 0.4195
05 2 100 025 3 08 4.89x107% 3.69x107% 0.4313
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Table A.6: (continued)

o B m kv g RMSE MAE R?
05 2 100 025 3 09 4.86x107% 3.66x107% 0.4296
05 2 100 025 3 0.99 4.85x107% 3.64x107% 0.4239
05 2 100 025 7 08 4.93x107% 3.71x107% 0.4298
05 2 100 025 7 09 4.86x107% 3.64x107% 0.4401
05 2 100 025 7 0.99 493x107% 3.70x107% 0.4222
05 2 100 025 10 0.8 4.93x107% 3.69x107% 0.4387
05 2 100 025 10 09 4.92x107% 3.72x107% 0.4399
05 2 100 025 10 0.99 4.86x107% 3.60x107% 0.4242
05 2 100 1 3 08 4.82x107% 3.62x107% 0.4627
05 2 100 1 3 09 485x107% 3.65x107% 0.4637
05 2 100 1 3 099 483x107% 3.60x107%* 0.4538
05 2 100 1 7 08 4.82x107% 3.63x107% 0.4644
05 2 100 1 7 09 483x107% 3.63x107%* (0.4512
05 2 100 1 7 099 4.77x107% 358x10"% 0.4510
05 2 100 1 10 0.8 4.83x10™% 3.62x107% 0.4706
05 2 100 1 10 09 4.80x107%* 3.58x107% 0.4573
05 2 100 1 10 099 4.77x107% 3.58x107% 0.4655
05 2 100 2 3 0.8 479x107% 3.59x107% 0.4412
05 2 100 2 3 09 4.83x107% 3.63x107% 0.4448
05 2 100 2 3 099 4.79x107% 357x107% 0.4457
05 2 100 2 7 08 4.82x107% 3.63x107% 0.4448
05 2 100 2 7 09 480x107% 3.61x107% 0.4506
05 2 100 2 7 099 4.80x107% 3.61x107% 0.4502
05 2 100 2 10 0.8 4.80x107% 3.60x107%* 0.4561
05 2 100 2 10 09 4.79x107%* 3.61x107% 0.4518
05 2 100 2 10 099 4.76x107% 3.56x107%% 0.4477
05 2 200 025 3 0.8 486x107% 3.64x107%* 0.4989
05 2 200 025 3 09 486x107% 3.64x107%* 0.5063
05 2 200 025 3 099 479x107% 3.60x10™%* 0.5035
05 2 200 025 7 0.8 4.87x10™% 3.65x107% 0.4749
05 2 200 025 7 09 478x10™% 3.59x107% 0.4818
05 2 200 025 7 099 4.85x107% 3.61x107% 0.4875
05 2 200 025 10 0.8 4.87x10™% 3.61x107% 0.4868
05 2 200 025 10 09 4.77x107% 359x107% 0.4871
05 2 200 025 10 0.99 4.78x107%* 3.60x107% 0.4804
05 2 200 1 3 08 4.75x107% 3.58x107% 0.5107
05 2 200 1 3 09 480x107% 3.61x107% 0.4952
05 2 200 1 3 099 481x107% 3.64x107% 0.5182
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Table A.6: (continued)

o B m kK v q RMSE MAE R?
05 2 200 1 7 08 477x107% 357x107% 0.5029
05 2 200 1 7 09 474x107% 357x107% 0.5111
05 2 200 1 7 099 4.84x107% 3.61x107% 0.4984
05 2 200 1 10 08 4.74x107% 357x107% 0.4989
05 2 200 1 10 09 4.76x107% 3.54x107%% 0.4991
05 2 200 1 10 0.99 4.78x107% 3.60x107%* 0.5061
05 2 200 2 3 08 476x107% 357x107% 0.4689
05 2 200 2 3 09 473x107% 3.54x107% 0.4688
05 2 200 2 3 099 475x107% 357x107% 0.4720
05 2 200 2 7 08 471x107% 355x107% 0.4657
05 2 200 2 7 09 475x107% 355x107%* 0.4665
05 2 200 2 7 099 474x107% 356x107% 0.4710
05 2 200 2 10 0.8 4.77x107% 357x107% 0.4603
05 2 200 2 10 09 4.74x107% 358x107% 0.4611
05 2 200 2 10 099 4.77x107% 358x107% 0.4625
095 05 50 025 3 0.8 493x107% 3.67x107% 0.4237
095 05 50 025 3 09 482x107% 3.62x107% 04111
095 05 50 025 3 099 4.89x107% 3.65x107% 0.4399
095 05 50 025 7 0.8 489x107% 3.68x107% 0.4295
095 05 50 025 7 09 480x107% 3.62x107% 0.4221
095 05 50 025 7 099 4.89x107% 3.67x107% 0.4337
095 05 50 025 10 0.8 4.98x107% 3.70x107% 0.4300
095 05 50 025 10 09 4.86x107% 3.66x107% (.4394
095 05 50 025 10 099 4.90x107% 3.66x107% (.4189
095 05 50 1 3 08 4.74x107% 3.50x107%* 0.4885
095 05 50 1 3 09 471x107% 351x10™% 0.5034
095 05 50 1 3 099 471x107% 351x107% 0.4937
095 05 50 1 7 08 4.69x107%% 351x10"% 0.4831
095 05 50 1 7 09 471x107% 356x107% 0.4950
095 05 50 1 7 099 474x107% 353x107% 0.5063
095 05 50 1 10 0.8 4.73x107% 3.54x107% 0.4900
095 05 50 1 10 09 4.66x107% 3.49x107% 0.4816
095 05 50 1 10 099 4.74x107% 3.53x107% 0.4872
095 05 50 2 3 08 468x107% 3.49x107% 0.4953
095 05 50 2 3 09 468x107% 3.46x107% 0.4765
095 05 50 2 3 099 4.69x107% 354x107% 04771
095 05 50 2 7 08 472x107% 353x107% (.4858
095 05 50 2 7 09 471x107% 353x107% 0.4914
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Table A.6: (continued)

o B m kv g RMSE MAE R?
095 05 50 2 7 099 468x107% 351x107% 0.4968
095 05 50 2 10 0.8 475x107% 3.55x107% 0.4975
095 05 50 2 10 09 4.69x107% 3.52x107% (0.4805
095 05 50 2 10 099 4.74x107% 3.55x107% 0.5016
095 05 100 025 3 0.8 4.82x107% 3.60x107% 0.5014
095 05 100 025 3 09 484x107% 3.60x107% (.4828
095 05 100 025 3 099 4.82x107% 3.60x107% 0.4996
095 05 100 025 7 0.8 4.84x107% 3.64x107% 0.4770
095 05 100 025 7 09 472x107% 352x107% 0.4791
095 05 100 025 7 099 4.88x107% 3.64x107% 0.4964
095 05 100 025 10 0.8 4.77x107% 3.54x107% 0.4985
095 05 100 025 10 0.9 477x107% 357x107% 0.4814
095 05 100 025 10 0.99 4.91x107% 3.65x107%* 0.4916
095 05 100 1 3 08 471x107% 3.52x107% 0.5274
095 05 100 1 3 09 474x107% 355x107% 0.5346
095 05 100 1 3 099 4.66x107% 350x107% 0.5526
095 05 100 1 7 08 4.72x107% 354x107% 0.5277
095 05 100 1 7 09 472x107% 354x107% 0.5342
095 05 100 1 7 099 477x107% 3.56x107% (.5392
095 05 100 1 10 0.8 4.63x107% 3.47x107% 0.5338
095 05 100 1 10 09 474x107% 3.56x107% (.5441
095 05 100 1 10 099 4.64x107% 3.48x107% (.5344
095 05 100 2 3 08 470x107% 3.52x107% 0.5319
095 05 100 2 3 09 4.65x107% 3.50x107% 0.5302
095 05 100 2 3 099 467x107% 351x107% 0.5212
095 05 100 2 7 08 4.68x107% 3.50x10™% 0.5416
095 05 100 2 7 09 470x107% 3.52x107% 0.5133
095 05 100 2 7 099 4.67x107% 3.49x107% 0.5094
095 05 100 2 10 0.8 4.67x107% 3.50x10"% 0.5207
095 05 100 2 10 09 4.66x107% 3.49x107% 0.5322
095 05 100 2 10 099 4.70x107% 3.51x10~% 0.5303
095 05 200 025 3 0.8 470x107% 351x107% 0.5303
095 05 200 025 3 09 476x107% 357x107% 0.5890
095 05 200 025 3 099 4.74x107% 3.58x107% 0.5590
095 05 200 025 7 0.8 481x107% 3.63x107% 0.5977
095 05 200 025 7 09 475x107% 3.59x107% 0.6103
095 05 200 025 7 099 4.88x107% 3.62x107% 0.5821
095 05 200 025 10 0.8 4.77x107% 3.56x107% 0.5816
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Table A.6: (continued)

o B m kK v q RMSE MAE R?
095 05 200 025 10 09 481x107% 3.62x107% 0.5911
095 05 200 025 10 099 4.83x107% 3.63x107% (.5682
095 05 200 1 3 08 475x107% 357x107% 0.6180
095 05 200 1 3 09 475x107% 359x107% 0.6203
095 05 200 1 3 099 473x107% 3.55x107% 0.6106
095 05 200 1 7 08 476x107% 358x107% 0.6013
095 05 200 1 7 09 468x107% 354x107% 0.6195
095 05 200 1 7 099 4.68x107% 351x10"% 0.5951
095 05 200 1 10 08 4.78x107% 3.58x107%* 0.5949
095 05 200 1 10 09 4.70x107% 3.54x10™% 0.5979
095 05 200 1 10 0.99 4.74x107%* 3.61x107% 0.6216
095 05 200 2 3 08 4.66x107% 3.50x107% 0.5440
095 05 200 2 3 09 466x107% 350x107% 0.5600
095 05 200 2 3 099 467x107% 351x107% 0.5465
095 05 200 2 7 08 461x107% 3.46x107% 0.5584
095 05 200 2 7 09 471x107% 353x107% 0.5604
095 05 200 2 7 099 471x107% 3.54x107% 0.5554
095 05 200 2 10 0.8 4.67x107% 3.49x107% 0.5483
095 05 200 2 10 09 4.66x107% 3.48x107% 0.5502
095 05 200 2 10 099 4.67x107% 3.49x10~% (.5498
095 095 50 025 3 0.8 491x107% 3.70x107% (.4452
095 095 50 025 3 09 483x107% 3.61x107% 0.4363
095 095 50 025 3 099 4.82x107% 3.61x107% 0.4290
095 095 50 025 7 0.8 481x107% 3.62x107% (.4420
095 095 50 025 7 09 4.86x107% 3.64x107%* 0.4238
095 095 50 025 7 099 4.89x107% 3.65x107%* 0.4339
095 095 50 025 10 08 4.92x107% 3.68x107%* 0.4408
095 095 50 025 10 09 4.86x107% 3.64x107%* 0.4440
095 095 50 025 10 0.99 4.83x107% 3.62x107% 0.4324
095 095 50 1 3 08 477x107% 3.58x107% (.4808
095 095 50 1 3 09 474x107%% 3.54x107% 0.4601
095 095 50 1 3 099 4.75x107% 351x107% 0.4817
095 095 50 1 7 08 481x107% 3.62x107% 0.4772
095 095 50 1 7 09 475x107% 357x107% 0.4755
095 095 50 1 7 099 477x107% 358x107% 0.4677
095 095 50 1 10 0.8 472x107% 3.54x107% 0.4672
095 095 50 1 10 09 476x107% 357x107% (.4589
095 095 50 1 10 099 4.79x107% 3.59x10°% (.4745
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Table A.6: (continued)

o B m kv g RMSE MAE R?
095 095 50 2 3 08 4.73x107% 3.54x107% 0.4669
095 095 50 2 3 09 4.75x107% 3.54x107%* 0.4650
095 095 50 2 3 099 471x107% 3.53x107% 0.4768
095 095 50 2 7 0.8 4.66x107% 350x107% 0.4635
095 095 50 2 7 09 4.69x107% 355x107% 0.4686
095 095 50 2 7 099 476x107% 355x107% (0.4723
095 095 50 2 10 0.8 4.73x107% 3.55x107% (0.4745
095 095 50 2 10 09 476x107% 3.54x107% 0.4909
095 095 50 2 10 0.99 4.73x107% 3.54x10™% 04715
095 095 100 025 3 08 4.80x107% 3.60x107%* 0.4972
095 095 100 025 3 09 4.81x107% 3.57x107% 0.5002
095 095 100 025 3 099 4.85x107% 3.58x10°% 0.4847
095 095 100 025 7 0.8 477x107% 357x107% (.4955
095 095 100 025 7 09 4.77x107% 355x10"% 0.4753
095 095 100 025 7 099 4.78x107% 3.55x107% 0.4833
095 095 100 025 10 0.8 4.81x107% 3.61x107% 0.5233
095 095 100 025 10 09 4.81x107%* 3.61x107% 0.4696
095 095 100 025 10 0.99 4.85x107% 3.62x107% 0.5011
095 095 100 1 3 08 471x107% 3.53x107% 0.5267
095 095 100 1 3 09 468x107% 3.54x107% 0.5376
095 095 100 1 3 099 476x107% 3.54x107% (.5345
095 095 100 1 7 0.8 471x107% 3.55x107% 0.5026
095 095 100 1 7 09 477x107% 3.60x107% 0.5104
095 095 100 1 7 099 4.68x107% 3.49x107% (.5354
095 095 100 1 10 08 4.70x10™% 3.53x10™% 0.5217
095 095 100 1 10 09 4.73x107% 3.55x107% 0.5202
095 095 100 1 10 0.99 4.74x107% 3.56x107%* 0.5210
095 095 100 2 3 08 4.68x107% 351x107% 0.5196
095 095 100 2 3 09 4.69x107% 3.53x107% 05113
095 095 100 2 3 099 4.72x107% 352x107% 0.5012
095 095 100 2 7 08 4.69x107% 3.51x107% 0.5059
095 095 100 2 7 09 471x107% 3.53x107% 0.4966
095 095 100 2 7 099 470x107% 353x107% 0.5074
095 095 100 2 10 0.8 4.71x107% 354x107% 0.5159
095 095 100 2 10 09 4.70x107% 3.55x107%* 0.5019
095 095 100 2 10 0.99 4.65x107% 3.49x10~% 0.5146
095 095 200 025 3 0.8 478x107% 3.59x107% (.5887
095 095 200 025 3 09 485x107% 3.68x107% 0.5997
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Table A.6: (continued)

o B m kK v q RMSE MAE R?
095 095 200 025 3 099 4.87x107% 3.63x107% 0.5968
095 095 200 025 7 0.8 473x107% 357x107% 0.5689
095 095 200 025 7 09 477x107% 357x107% 0.5721
095 095 200 025 7 099 484x107% 3.63x107% 0.6165
095 095 200 025 10 0.8 4.74x107% 3.55x107% (.5836
095 095 200 025 10 0.9 4.87x107% 3.67x107% 0.5737
095 095 200 025 10 0.99 4.92x107% 3.65x10~% 0.5778
095 095 200 1 3 08 4.75x107% 3.57x107% 0.5999
095 095 200 1 3 09 472x107% 355x107% 0.5837
095 095 200 1 3 099 4.82x107% 3.64x107% 0.6027
095 095 200 1 7 08 4.72x107% 3.56x107% 0.5704
095 095 200 1 7 09 4.75x107% 3.58x107% 0.5933
095 095 200 1 7 099 476x107% 358x107% (.5825
095 095 200 1 10 0.8 4.74x107% 357x107% 0.5727
095 095 200 1 10 09 480x10™% 3.61x107% (.5858
095 095 200 1 10 0.99 4.78x107% 3.59x10™% 0.6044
095 095 200 2 3 0.8 472x107% 354x107% 0.5378
095 095 200 2 3 09 4.65x107% 3.49x107% 0.5197
095 095 200 2 3 099 4.65x107% 352x107% 0.5293
095 095 200 2 7 0.8 4.66x107% 3.48x107% 0.5192
095 095 200 2 7 09 466x107% 350x107% 0.5296
095 095 200 2 7 099 4.66x107% 351x107% 0.5083
095 095 200 2 10 0.8 4.72x107% 3.55x107% (.5259
095 095 200 2 10 0.9 4.63x107% 3.49x10~% (.5251
095 095 200 2 10 0.99 4.65x10™%* 3.49x10™%* 0.5332
095 2 50 025 3 08 4.89x107% 3.65x107%* 0.4416
095 2 50 025 3 09 491x10™% 3.71x107% 0.4247
095 2 50 025 3 099 4.89x107%% 3.64x107% 0.4241
095 2 50 025 7 0.8 483x107% 3.65x107% (.4388
095 2 50 025 7 09 487x107% 3.64x107% 0.4294
095 2 50 025 7 099 497x107% 3.73x107% 0.4390
095 2 50 025 10 0.8 4.87x107% 3.63x107% 0.4245
095 2 50 025 10 09 494x107% 3.71x107% 0.4274
095 2 50 025 10 0.99 4.89x107% 3.65x107% 0.4181
095 2 50 1 3 08 481x107% 3.63x107% 0.4370
095 2 50 1 3 09 480x107% 3.60x107% 0.4410
095 2 50 1 3 099 482x107% 3.59x107% (.4420
095 2 50 1 7 08 485x107% 3.64x107% 04311
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Table A.6: (continued)

o B m kv g RMSE MAE R?
095 2 50 1 7 09 482x107% 3.63x107% 0.4567
095 2 50 1 7 099 483x107% 3.60x107% 0.4425
095 2 50 1 10 0.8 4.89x107% 3.64x107% 0.4380
095 2 50 1 10 09 483x107% 359x107% 0.4252
095 2 50 1 10 099 4.84x107% 3.63x107%* (.4441
095 2 50 2 3 08 479x107% 3.61x107% 0.4329
095 2 50 2 3 09 487x107% 3.63x107% 0.4390
095 2 50 2 3 099 479x107% 3.59x107%% (.4493
095 2 50 2 7 08 475x107% 3.56x107%* 0.4488
095 2 50 2 7 09 480x107% 3.60x107%* 0.4255
095 2 50 2 7 099 4.83x107% 3.62x107% 0.4430
095 2 50 2 10 08 4.82x107% 3.64x107%* 0.4355
095 2 50 2 10 09 478x107% 3.61x107%* 0.4325
095 2 50 2 10 099 4.82x107% 3.61x107% (.4388
095 2 100 025 3 0.8 4.83x107% 357x107% 04757
095 2 100 025 3 09 481x107% 3.60x107% 0.4949
095 2 100 025 3 099 494x107% 3.68x107% 0.4556
095 2 100 025 7 0.8 490x107% 3.69x107% 0.4727
095 2 100 025 7 09 486x107% 3.62x107% 0.4893
095 2 100 025 7 099 492x107% 3.67x107% (.4840
095 2 100 025 10 0.8 4.87x107% 3.66x107% 0.4730
095 2 100 025 10 09 481x107% 3.56x107% 0.4753
095 2 100 025 10 0.99 4.88x107% 3.66x107% 0.4772
095 2 100 1 3 08 476x107% 3.59x107% 0.4996
095 2 100 1 3 09 481x107% 3.61x107% 0.4929
095 2 100 1 3 099 4.74x107% 3.56x107%* 0.5045
095 2 100 1 7 0.8 484x107% 3.62x107% 0.4851
095 2 100 1 7 09 476x107% 357x107% 0.4856
095 2 100 1 7 099 4.77x107% 3.58x107%* (.4854
095 2 100 1 10 0.8 478x107% 357x107% 0.5080
095 2 100 1 10 09 4.68x107% 351x107% 0.4986
095 2 100 1 10 099 4.79x107% 357x107% 0.5040
095 2 100 2 3 08 478x107% 355x107% 0.4686
095 2 100 2 3 09 473x107% 356x107% 0.4826
095 2 100 2 3 099 475x107% 3.58x107% 0.4736
095 2 100 2 7 08 474x107% 3.54x107% 0.4790
095 2 100 2 7 09 472x107% 356x107% 0.4681
095 2 100 2 7 099 470x107% 3.52x107% (0.4703

94



Table A.6: (continued)

o B m kK v q RMSE MAE R?
095 2 100 2 10 0.8 4.73x107% 355x107% 0.4766
095 2 100 2 10 09 4.74x107% 3.56x107%* 0.4832
095 2 100 2 10 099 4.76x107% 355x107% (.4652
095 2 200 025 3 0.8 4.74x107% 3.55x107% (.5408
095 2 200 025 3 09 497x107% 3.71x107% 0.6230
095 2 200 025 3 099 4.82x107% 3.64x107% 0.5726
095 2 200 025 7 08 4.81x107% 3.62x107%* 0.5750
095 2 200 025 7 09 4.74x107% 3.58x107%* 0.5453
095 2 200 025 7 099 4.84x107% 3.65x107% 0.5677
095 2 200 025 10 0.8 4.70x107% 3.57x107% 0.5799
095 2 200 025 10 09 4.85x107% 3.64x107% 0.5467
095 2 200 025 10 0.99 4.76x107% 3.60x10~%* 0.5551
095 2 200 1 3 08 473x107% 356x107% 0.5410
095 2 200 1 3 09 470x107% 3.54x107% 0.5346
095 2 200 1 3 099 4.69x107% 351x107% 0.5339
095 2 200 1 7 08 4.69x107% 351x107% 0.5222
095 2 200 1 7 09 476x107% 358x107% 0.5477
095 2 200 1 7 099 4.73x107% 3.55x107%* 0.5356
095 2 200 1 10 0.8 477x107% 3.58x107% 0.5437
095 2 200 1 10 09 4.69x107% 3.53x107% 0.5330
095 2 200 1 10 099 4.72x107% 3.54x107% 0.5316
095 2 200 2 3 08 4.68x107% 353x107% (.4874
095 2 200 2 3 09 469x107% 351x107% 0.4931
095 2 200 2 3 099 4.67x107% 351x107% (.4965
095 2 200 2 7 08 472x107% 3.54x107% 0.4940
095 2 200 2 7 09 471x107% 352x107% (.4818
095 2 200 2 7 099 471x107% 3.53x107%* 0.4939
095 2 200 2 10 0.8 4.69x107% 3.53x107% 0.4927
095 2 200 2 10 09 4.67x107% 353x107% 0.4926
095 2 200 2 10 099 4.70x107% 3.53x107% 0.4964
2 05 50 025 3 08 650x107% 511x107% 0.0023
2 05 50 025 3 09 650x107% 5.11x107% 0.0021
2 05 50 025 3 099 650x107% 5.11x107% 0.0022
2 05 50 025 7 08 650x107% 5.11x107% 0.0022
2 05 50 025 7 09 650x107% 511x107% 0.0020
2 05 50 025 7 099 6.50x107% 5.11x107% 0.0021
2 05 50 025 10 0.8 6.50x107% 5.11x107% 0.0021
2 05 50 025 10 09 6.50x107% 5.11x107% 0.0021
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Table A.6: (continued)

o B m kv g RMSE MAE R?

2 05 50 025 10 0.99 6.50x107% 5.11x107% 0.0023
2 05 50 1 3 08 650x100% 511x107% 0.0021
2 05 50 1 3 09 650x100% 511x107% 0.0021
2 05 50 1 3 099 650x107% 511x107% 0.0022
2 05 50 1 7 0.8 650x100% 511x107% 0.0022
2 05 50 1 7 09 650x100% 511x107% 0.0023
2 05 50 1 7 099 650x107%% 5.11x107% 0.0021
2 05 50 1 10 08 6.50x107% 511x107% 0.0021
2 05 50 1 10 09 6.50x107% 5.11x107% 0.0021
2 05 50 1 10 099 6.50x107% 5.11x107%* 0.0022
2 05 50 2 3 08 650x107% 511x107% 0.0021
2 05 50 2 3 09 650x107% 511x107% 0.0021
2 05 50 2 3 099 650x107% 511x107%* 0.0021
2 05 50 2 7 08 650x107% 5.11x107% 0.0022
2 05 50 2 7 09 650x100% 5.11x107% 0.0022
2 05 50 2 7 099 650x107% 5.11x107% 0.0021
2 05 50 2 10 08 6.50x107% 5.11x107% 0.0022
2 05 50 2 10 09 650x107% 5.11x107% 0.0022
2 05 50 2 10 099 6.50x107% 5.11x107% 0.0022
2 05 100 025 3 0.8 6.50x107% 511x107% 0.0021
2 05 100 025 3 09 650x107% 511x107% 0.0021
2 05 100 025 3 099 6.50x107% 511x107%* 0.0021
2 05 100 025 7 0.8 6.50x107% 511x107% 0.0020
2 05 100 025 7 09 650x107% 511x107% 0.0022
2 05 100 025 7 099 6.50x107% 511x107% 0.0022
2 05 100 025 10 0.8 6.50x107%* 5.11x10~% 0.0021
2 05 100 025 10 0.9 6.50x107% 5.11x107% 0.0022
2 05 100 025 10 0.99 6.50x107% 5.11x107% 0.0022
2 05 100 1 3 0.8 6.50x107% 5.11x107%* 0.0021
2 05 100 1 3 09 650x107% 5.11x107% 0.0022
2 05 100 1 3 099 650x107% 5.11x107% 0.0022
2 05 100 1 7 08 650x107% 5.11x107% 0.0021
2 05 100 1 7 09 650x107% 5.11x107% 0.0021
2 05 100 1 7 099 650x107% 5.11x107% 0.0022
2 05 100 1 10 0.8 6.50x107% 511x107%* 0.0021
2 05 100 1 10 09 6.50x107% 511x107% 0.0022
2 05 100 1 10 099 6.50x107% 511x107%* 0.0021
2 05 100 2 3 0.8 650x107% 511x107% 0.0020
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Table A.6: (continued)

o B m kK v q RMSE MAE R?

2 05 100 2 3 09 650x107% 5.11x107% 0.0021
2 05 100 2 3 099 6.50x107% 5.11x107% 0.0021
2 05 100 2 7 0.8 650x107% 511x107% 0.0022
2 05 100 2 7 09 650x107% 5.11x107% 0.0021
2 05 100 2 7 099 6.50x107% 511x107% 0.0022
2 05 100 2 10 0.8 6.50x107% 511x107% 0.0022
2 05 100 2 10 09 6.50x107% 511x107% 0.0022
2 05 100 2 10 099 6.50x107% 511x107% 0.0022
2 05 200 025 3 08 6.50x107% 511x107% 0.0022
2 05 200 025 3 09 650x107% 511x107% 0.0022
2 05 200 025 3 099 6.50x107% 511x107% 0.0021
2 05 200 025 7 0.8 650x107% 511x107% 0.0022
2 05 200 025 7 09 650x107% 511x107%* 0.0020
2 05 200 025 7 099 650x107% 5.11x107% 0.0022
2 05 200 025 10 0.8 6.50x107% 5.11x107% 0.0020
2 05 200 025 10 09 6.50x107% 5.11x107% 0.0021
2 05 200 025 10 0.99 6.50x107% 5.11x107% 0.0022
2 05 200 1 3 08 650x107% 511x107% 0.0020
2 05 200 1 3 09 650x107% 511x107% 0.0022
2 05 200 1 3 099 6.50x107% 5.11x107% 0.0021
2 05 200 1 7 08 650x107% 511x107% 0.0022
2 05 200 1 7 09 650x107% 511x107% 0.0022
2 05 200 1 7 099 650x107% 511x107% 0.0022
2 05 200 1 10 08 6.50x107% 5.11x107% 0.0021
2 05 200 1 10 09 6.50x107% 511x107% 0.0022
2 05 200 1 10 099 6.50x107% 511x107% 0.0022
2 05 200 2 3 08 650x107% 511x107% 0.0020
2 05 200 2 3 09 650x107% 5.11x107% 0.0021
2 05 200 2 3 099 650x107% 5.11x107% 0.0022
2 05 200 2 7 08 650x107% 5.11x107% 0.0021
2 05 200 2 7 09 650x107% 5.11x107% 0.0021
2 05 200 2 7 099 650x107% 5.11x107% 0.0021
2 05 200 2 10 0.8 650x107% 5.11x107% 0.0021
2 05 200 2 10 09 650x107% 5.11x107% 0.0022
2 05 200 2 10 099 6.50x107% 511x107% 0.0022
2 095 50 025 3 0.8 650x107% 511x107% 0.0022
2 095 50 025 3 09 650x107% 5.11x107% 0.0021
2 095 50 025 3 099 6.50x107% 5.11x107% 0.0021
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Table A.6: (continued)

o B m kv g RMSE MAE R?

2 095 50 025 7 0.8 650x107% 5.11x107% 0.0021
2 095 50 025 7 09 650x107% 511x107% 0.0022
2 095 50 025 7 099 6.50x107% 511x107% 0.0022
2 095 50 025 10 0.8 6.50x107% 511x107%* 0.0021
2 095 50 025 10 09 6.50x107% 511x107% 0.0022
2 095 50 025 10 0.99 6.50x107% 5.11x107%* 0.0021
2 09 50 1 3 08 650x107% 511x107% 0.0022
2 095 50 1 3 09 650x107% 511x107% 0.0022
2 095 50 1 3 099 6.50x107% 5.11x10~% 0.0021
2 095 50 1 7 08 650x107% 5.11x107% 0.0022
2 095 50 1 7 09 650x107% 5.11x107% 0.0020
2 095 50 1 7 099 6.50x107% 511x107% 0.0022
2 095 50 1 10 0.8 6.50x107% 511x107%* 0.0021
2 095 50 1 10 09 6.50x107% 5.11x107% 0.0021
2 095 50 1 10 099 6.50x107% 5.11x107% 0.0021
2 095 50 2 3 08 650x107% 5.11x107% 0.0022
2 095 50 2 3 09 650x107% 5.11x107% 0.0021
2 095 50 2 3 099 650x107% 5.11x107% 0.0022
2 095 50 2 7 0.8 650x100% 511x107%* 0.0021
2 095 50 2 7 09 650x100% 511x107%* 0.0021
2 095 50 2 7 099 650x107% 511x107%* 0.0021
2 095 50 2 10 0.8 6.50x107% 511x107% 0.0022
2 095 50 2 10 09 650x107% 5.11x107% 0.0021
2 095 50 2 10 099 6.50x107% 5.11x107% 0.0020
2 095 100 025 3 0.8 6.50x107% 5.11x107%* 0.0022
2 095 100 025 3 09 6.50x107% 511x10~% 0.0021
2 095 100 025 3 099 6.50x107% 5.11x10~% 0.0021
2 095 100 025 7 0.8 6.50x107% 511x107%* 0.0021
2 095 100 025 7 09 650x107% 5.11x107% 0.0023
2 095 100 025 7 099 650x107% 5.11x107% 0.0021
2 095 100 025 10 0.8 6.50x107% 5.11x107% 0.0022
2 095 100 025 10 09 6.50x107% 5.11x107% 0.0021
2 095 100 025 10 0.99 6.50x107% 5.11x107% 0.0020
2 095 100 1 3 08 650x107% 5.11x107% 0.0022
2 095 100 1 3 09 650x107% 511x107%* 0.0021
2 095 100 1 3 099 6.50x107% 511x107%* 0.0021
2 095 100 1 7 0.8 650x107% 511x107% 0.0021
2 095 100 1 7 09 650x107% 511x107%* 0.0021

98



Table A.6: (continued)

o B m kK v q RMSE MAE R?

2 095 100 1 7 099 650x107% 5.11x107% 0.0021
2 095 100 1 10 0.8 6.50x107% 5.11x107% 0.0021
2 095 100 1 10 09 6.50x107% 5.11x107% 0.0021
2 095 100 1 10 099 6.50x107% 511x107% 0.0022
2 095 100 2 3 0.8 650x107% 511x107% 0.0020
2 095 100 2 3 09 650x107% 5.11x107% 0.0021
2 095 100 2 3 099 6.50x107% 511x107% 0.0022
2 095 100 2 7 08 6.50x107% 511x107% 0.0021
2 095 100 2 7 09 650x107% 511x107% 0.0021
2 095 100 2 7 099 6.50x107% 511x107% 0.0021
2 095 100 2 10 0.8 6.50x107% 511x107% 0.0023
2 095 100 2 10 09 6.50x107% 5.11x107% 0.0021
2 095 100 2 10 099 6.50x107% 5.11x107% 0.0022
2 095 200 025 3 0.8 650x107% 5.11x107% 0.0022
2 095 200 025 3 09 650x107% 5.11x107% 0.0022
2 095 200 025 3 099 650x107% 5.11x107% 0.0022
2 095 200 025 7 0.8 650x107% 5.11x107% 0.0022
2 095 200 025 7 09 650x107% 511x107% 0.0020
2 095 200 025 7 099 6.50x107% 5.11x107% 0.0021
2 095 200 025 10 0.8 6.50x107% 5.11x107% 0.0021
2 095 200 025 10 09 6.50x107% 511x107% 0.0020
2 095 200 025 10 099 6.50x107% 511x107% 0.0020
2 095 200 1 3 08 650x107% 5.11x107% 0.0021
2 095 200 1 3 09 650x107% 511x107% 0.0022
2 095 200 1 3 099 650x107% 511x107% 0.0022
2 095 200 1 7 08 650x107% 511x107% 0.0022
2 095 200 1 7 09 650x107% 511x107% 0.0022
2 095 200 1 7 099 6.50x107% 5.11x10"% 0.0021
2 095 200 1 10 0.8 6.50x107% 5.11x107% 0.0021
2 095 200 1 10 09 6.50x107% 5.11x107% 0.0021
2 095 200 1 10 099 6.50x107% 5.11x107% 0.0022
2 095 200 2 3 08 650x107% 5.11x107% 0.0022
2 095 200 2 3 09 650x107% 5.11x107% 0.0021
2 095 200 2 3 099 650x107% 5.11x107% 0.0022
2 095 200 2 7 0.8 650x107% 511x107% 0.0022
2 095 200 2 7 09 650x107% 5.11x107% 0.0021
2 095 200 2 7 099 6.50x107% 511x107% 0.0022
2 095 200 2 10 0.8 6.50x107% 511x107% 0.0022

99



Table A.6: (continued)

o B m kv g RMSE MAE R?

2 095 200 2 10 09 650x107% 5.11x107% 0.0022
2 095 200 2 10 099 6.50x107% 511x107%* 0.0021
2 2 50 025 3 08 650x107% 5.11x10"% 0.0021
2 2 50 025 3 09 650x107% 5.11x107% 0.0022
2 2 50 025 3 099 650x107% 5.11x107% 0.0022
2 2 50 025 7 08 650x107% 5.11x107% 0.0021
2 2 50 025 7 09 650x107% 5.11x107% 0.0020
2 2 50 025 7 099 650x107% 5.11x107% 0.0022
2 2 50 025 10 0.8 6.50x107% 5.11x107% 0.0021
2 2 50 025 10 09 650x107% 5.11x107% 0.0022
2 2 50 025 10 0.99 6.50x107% 5.11x107% 0.0022
2 2 50 1 3 08 650x107% 5.11x107% 0.0021
2 2 50 1 3 09 650x107% 5.11x107% 0.0021
2 2 50 1 3 099 650x107% 5.11x107% 0.0022
2 2 50 1 7 08 650x107% 5.11x107% 0.0023
2 2 50 1 7 09 650x107% 5.11x107% 0.0020
2 2 50 1 7 099 650x107% 5.11x107% 0.0021
2 2 50 1 10 08 6.50x107% 5.11x107% 0.0022
2 2 50 1 10 09 650x107% 5.11x107% 0.0022
2 2 50 1 10 099 6.50x107% 5.11x107% 0.0022
2 2 50 2 3 08 650x107% 5.11x107% 0.0022
2 2 50 2 3 09 650x107% 5.11x107% 0.0020
2 2 50 2 3 099 650x107% 5.11x107% 0.0021
2 2 50 2 7 08 650x107% 5.11x107%* 0.0020
2 2 50 2 7 09 650x107% 5.11x107% 0.0021
2 2 50 2 7 099 650x107% 5.11x107% 0.0021
2 2 50 2 10 0.8 650x107% 5.11x107% 0.0021
2 2 50 2 10 09 650x107% 5.11x107% 0.0022
2 2 50 2 10 099 6.50x107% 5.11x107% 0.0021
2 2 100 025 3 08 6.50x107% 5.11x107% 0.0022
2 2 100 025 3 09 6.50x107% 5.11x107% 0.0023
2 2 100 025 3 099 6.50x107% 5.11x107% 0.0022
2 2 100 025 7 08 6.50x107% 5.11x107% 0.0021
2 2 100 025 7 09 6.50x107% 5.11x107% 0.0021
2 2 100 025 7 099 6.50x107% 5.11x10"% 0.0021
2 2 100 025 10 0.8 6.50x107% 5.11x107% 0.0021
2 2 100 025 10 09 6.50x107% 5.11x107% 0.0021
2 2 100 025 10 099 6.50x107% 5.11x10~% 0.0021
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Table A.6: (continued)

o B m kK v q RMSE MAE R?

2 2 100 1 3 08 6.50x107% 511x107% 0.0021
2 2 100 1 3 09 650x107% 5.11x107% 0.0021
2 2 100 1 3 099 650x107% 5.11x107% 0.0021
2 2 100 1 7 08 650x107% 5.11x107% 0.0021
2 2 100 1 7 09 650x107% 5.11x107% 0.0022
2 2 100 1 7 099 650x107% 5.11x107% 0.0021
2 2 100 1 10 0.8 650x107% 5.11x107%* 0.0023
2 2 100 1 10 09 650x107% 5.11x107% 0.0021
2 2 100 1 10 099 6.50x107%4 5.11x107% 0.0021
2 2 100 2 3 08 650x107% 5.11x107% 0.0022
2 2 100 2 3 09 650x107% 5.11x107% 0.0022
2 2 100 2 3 099 650x107%% 5.11x10"% 0.0021
2 2 100 2 7 08 6.50x107% 511x107% 0.0021
2 2 100 2 7 09 650x107% 511x107% 0.0021
2 2 100 2 7 099 6.50x107% 511x107% 0.0021
2 2 100 2 10 0.8 6.50x107% 5.11x107% 0.0021
2 2 100 2 10 09 6.50x107% 5.11x107% 0.0022
2 2 100 2 10 0.99 6.50x107% 5.11x107% 0.0021
2 2 200 025 3 0.8 650x107% 5.11x107% 0.0022
2 2 200 025 3 09 650x107% 5.11x107% 0.0022
2 2 200 025 3 099 6.50x107% 5.11x107% 0.0023
2 2 200 025 7 0.8 650x107% 5.11x107% 0.0022
2 2 200 025 7 09 650x107% 5.11x107% 0.0022
2 2 200 025 7 099 650x107% 5.11x107% 0.0022
2 2 200 025 10 0.8 6.50x107% 5.11x107%* 0.0020
2 2 200 025 10 0.9 6.50x107%% 5.11x107% 0.0021
2 2 200 025 10 0.99 6.50x107% 5.11x107%* 0.0020
2 2 200 1 3 08 650x107% 5.11x107% 0.0021
2 2 200 1 3 09 650x107% 511x107% 0.0022
2 2 200 1 3 099 650x107% 511x107% 0.0021
2 2 200 1 7 08 650x107% 5.11x107% 0.0021
2 2 200 1 7 09 650x107% 5.11x107% 0.0021
2 2 200 1 7 099 650x107% 5.11x107% 0.0021
2 2 200 1 10 08 6.50x107% 5.11x107% 0.0022
2 2 200 1 10 09 650x107% 5.11x107% 0.0021
2 2 200 1 10 099 6.50x107% 5.11x107% 0.0022
2 2 200 2 3 08 650x107% 5.11x107% 0.0022
2 2 200 2 3 09 650x107% 5.11x107% 0.0021

101



Table A.6: (continued)

o B m kv g RMSE MAE R?

2 2 200 2 3 099 650x107% 511x107% 0.0021
2 2 200 2 7 08 650x107% 5.11x107% 0.0022
2 2 200 2 7 09 650x107% 5.11x107% 0.0021
2 2 200 2 7 099 650x107% 5.11x107% 0.0022
2 2 200 2 10 08 6.50x107% 5.11x107% 0.0022
2 2 200 2 10 09 650x107% 5.11x107% 0.0021
2 2 200 2 10 099 6.50x107% 5.11x107% 0.0022
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Table A.7: Error Statisics of each BART model fit on the wetting dataset.

o B m kK v q RMSE MAE R?
05 05 50 025 3 08 56Ix107% 427x107% 0.3478
05 05 50 025 3 09 563x107% 4.29x107% 0.3386
05 05 50 025 3 099 56I1x107% 428x107% 0.3346
05 05 50 025 7 08 555x107% 4.27x107% 0.3428
05 05 50 025 7 09 552x107% 4.19x107% 0.3352
05 05 50 025 7 099 560x107% 426x107% 0.3332
05 05 50 025 10 0.8 556x107% 4.22x107% 0.3332
05 05 50 025 10 09 557x107% 4.24x107%* 0.3446
05 05 50 025 10 0.99 558x107% 4.23x107%* 0.3413
05 05 50 1 3 08 550x107% 4.13x107%* 0.3869
05 05 50 1 3 09 553x107% 4.19x107% 0.3818
05 05 50 1 3 099 561x107% 423x107% 0.3893
05 05 50 1 7 08 556x107% 422x107% 0.3922
05 05 50 1 7 09 552x107% 420x107% 0.3821
05 05 50 1 7 099 551x107% 4.14x107% 0.3784
05 05 50 1 10 0.8 551x107% 4.16x107% 0.3824
05 05 50 1 10 09 548x10™% 4.15x107% 0.3927
05 05 50 1 10 099 551x107% 4.17x107% 0.3942
05 05 50 2 3 08 546x107% 4.11x107% 0.3951
05 05 50 2 3 09 554x107% 4.19x107% 0.3888
05 05 50 2 3 099 552x107% 4.18x107% (.388
05 05 50 2 7 08 554x107% 4.20x107% 0.3879
05 05 50 2 7 09 546x107% 4.14x107% 0.3853
05 05 50 2 7 099 547x107% 4.16x107% 0.3848
05 05 50 2 10 0.8 549x107% 4.16x107%* 0.3865
05 05 50 2 10 09 552x107% 4.17x107% 0.3965
05 05 50 2 10 099 547x107%* 4.16x107% 0.3832
05 05 100 025 3 0.8 554x107% 4.23x107% 0.3773
05 05 100 025 3 09 567x107% 4.30x107% 0.3991
05 05 100 025 3 0.99 553x107%* 4.18x107% 0.3929
05 05 100 025 7 0.8 5.55x107% 4.22x107% 0.3771
05 05 100 025 7 09 555x107% 4.25x107% 0.3876
05 05 100 025 7 099 559x107% 4.21x107% 0.372
05 05 100 025 10 0.8 555x107%* 4.19x107% 0.3628
05 05 100 025 10 09 557x107% 4.25x107% 0.3876
05 05 100 025 10 0.99 5.60x107% 4.25x107%4 0.3801
05 05 100 1 3 08 548x107% 4.16x107% 0.4333
05 05 100 1 3 09 548x107% 4.12x107% 0.4233

103



Table A.7: (continued)

o B m kv g RMSE MAE R?
05 05 100 1 3 099 551x107% 4.13x107% 0.4165
05 05 100 1 7 0.8 549x107% 4.13x107% 0.4275
05 05 100 1 7 09 550x107% 4.14x107% 0.4458
05 05 100 1 7 099 558x107% 421x107% 0.4327
05 05 100 1 10 08 559x107% 4.20x107% 0.4361
05 05 100 1 10 09 553x107% 4.17x107% 0.431
05 05 100 1 10 0.99 548x107%* 4.12x107% 0.4265
05 05 100 2 3 0.8 550x107% 4.18x107%* 0.4289
05 05 100 2 3 09 545x107%* 4.10x107% 0.4292
05 05 100 2 3 099 547x107%* 4.14x107% 0.4165
05 05 100 2 7 08 550x107%* 4.16x107% 0.4224
05 05 100 2 7 09 547x107%* 4.11x107% 0.4369
05 05 100 2 7 099 549x107%* 4.14x107% 0.4248
05 05 100 2 10 0.8 546x107% 4.13x107% 0.4201
05 05 100 2 10 09 547x107% 4.12x107% 0.4295
05 05 100 2 10 099 544x107% 4.11x107% 0.4296
05 05 200 025 3 0.8 557x107% 4.19x107% 0.4397
05 05 200 025 3 09 554x107% 4.17x107% 0.4382
05 05 200 025 3 0.99 551x107% 4.14x107% 0.4489
05 05 200 025 7 08 549x107%* 4.15x107% 0.4359
05 05 200 025 7 09 559x107% 4.23x107% 0.4306
05 05 200 025 7 0.99 553x107%* 4.19x107% 0.4263
05 05 200 025 10 0.8 557x107% 4.17x107% 045
05 05 200 025 10 09 548x107%* 4.16x107% 0.4334
05 05 200 025 10 0.99 562x107% 4.20x107% 0.4207
05 05 200 1 3 08 557x107% 4.19x107%* 0.4908
05 05 200 1 3 09 554x107% 4.16x107%* 0.4949
05 05 200 1 3 099 557x107% 4.18x107%* 0.4987
05 05 200 1 7 08 562x107% 420x107% 0.5086
05 05 200 1 7 09 556x107% 4.16x107% 0.4954
05 05 200 1 7 099 554x107% 4.17x107% 0.4894
05 05 200 1 10 0.8 5.55x107% 4.14x107% 0.4951
05 05 200 1 10 09 5.60x107% 4.19x107% (0.489
05 05 200 1 10 099 5.60x107% 4.24x107% 0.4885
05 05 200 2 3 0.8 550x107% 4.16x107% (0.448
05 05 200 2 3 09 547x107% 4.14x107% 0.4402
05 05 200 2 3 099 547x107%* 4.13x107% 0.4471
05 05 200 2 7 08 546x107% 4.12x107% 0.4549
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Table A.7: (continued)

o B m kK v q RMSE MAE R?
05 05 200 2 7 09 550x107% 4.14x107%% 0.447
05 05 200 2 7 099 546x107% 4.13x107% 0.4397
05 05 200 2 10 08 545x107% 4.12x107% 0.4474
05 05 200 2 10 09 548x107% 4.14x107%% (0.451
05 05 200 2 10 0.99 549x107%* 4.11x107% 0.4493
05 095 50 025 3 08 558x107% 4.27x107% 0.3452
05 095 50 025 3 09 559x107% 427x107% 0.3344
05 095 50 025 3 099 560x107% 429x107% 0.3412
05 095 50 025 7 0.8 556x107% 426x107%* 0.3296
05 095 50 025 7 09 562x107% 4.32x107% 0.3329
05 095 50 025 7 099 565x107% 428x107%* 0.3482
05 095 50 025 10 0.8 557x107% 4.25x107%* 0.3558
05 095 50 025 10 09 556x107% 4.25x107% 0.3312
05 095 50 025 10 0.99 558x107%* 4.25x107% 0.3349
05 095 50 1 3 08 552x107% 4.18x107% 0.3806
05 095 50 1 3 09 557x107% 4.23x107% 0.3731
05 095 50 1 3 099 556x107% 421x107% 0.3693
05 095 50 1 7 08 561x107% 424x107% 0.3816
05 095 50 1 7 09 554x107% 420107 0.3679
05 095 50 1 7 099 551x107% 4.19x107% 0.3759
05 095 50 1 10 08 548x107% 4.16x107% 0.381
05 095 50 1 10 09 548x107% 4.12x107% 0.3786
05 095 50 1 10 0.99 550x107% 4.17x107% 0.3726
05 095 50 2 3 0.8 55Ix107% 4.18x107%* 0.3668
05 095 50 2 3 09 552x107% 4.16x107%* 0.3842
05 095 50 2 3 099 551x107% 4.17x107%* 0.3962
05 095 50 2 7 08 547x107% 4.14x107% 0.3828
05 095 50 2 7 09 554x107% 4.19x107% 0.3823
05 095 50 2 7 099 554x107% 4.21x107% 0.3813
05 095 50 2 10 0.8 546x10™% 4.15x107% 0.3844
05 095 50 2 10 09 549x107% 4.16x107% 0.3784
05 095 50 2 10 099 5.50x107% 4.17x107% 0.376
05 095 100 025 3 0.8 554x107% 4.22x107% 0.3543
05 095 100 025 3 09 554x107% 421x107% 0.3838
05 095 100 025 3 0.99 558x107% 4.24x107% 0.3873
05 095 100 025 7 08 552x107% 4.20x107% 0.3805
05 095 100 025 7 09 548x107% 4.17x107% 0.372
05 095 100 025 7 0.99 550x107% 4.21x107% 0.3685
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Table A.7: (continued)

o B m kv g RMSE MAE R?
05 095 100 025 10 0.8 5.60x107% 4.22x107% 0.373
05 095 100 025 10 09 5.66x107% 429x107% 0.3745
05 095 100 025 10 0.99 5.63x107% 4.26x107% 0.3879
05 095 100 1 3 08 549x107% 4.15x107% 0.4102
05 095 100 1 3 09 548x107% 4.10x107% 0417
05 095 100 1 3 0.99 552x107%* 4.21x107% 0.4248
05 095 100 1 7 08 556x107% 4.18x107% 0.4254
05 095 100 1 7 09 547x107% 4.13x107% 0.4196
05 095 100 1 7 099 546x107%* 4.11x107% 0.4115
05 095 100 1 10 0.8 554x107% 4.19x107%* 0.4323
05 095 100 1 10 0.9 555x107% 4.16x107%* 0.4166
05 095 100 1 10 0.99 555x107%* 4.14x107% 0.4214
05 095 100 2 3 08 551x107%* 4.13x107% 0.4174
05 095 100 2 3 09 555x107% 4.19x107% 0.406
05 095 100 2 3 099 554x107% 4.18x107% 0.4318
05 095 100 2 7 0.8 544x107% 4.15x107% 0.405
05 095 100 2 7 09 552x107% 4.16x107% 0.3998
05 095 100 2 7 099 548x107% 4.13x107% 0.4136
05 095 100 2 10 08 550x107% 4.19x107% 0.4077
05 095 100 2 10 09 545x107%* 4.12x107% 0.3938
05 095 100 2 10 0.99 555x107% 4.19x107%% 0.413
05 095 200 025 3 08 562x107% 4.26x107% 0.4636
05 095 200 025 3 09 557x107% 4.22x107% 0.4299
05 095 200 025 3 0.99 559x107%* 4.19x107% 0.4373
05 095 200 025 7 0.8 559x107% 4.17x107%* 0.4603
05 095 200 025 7 09 555x107% 4.17x107%* 0.4288
05 095 200 025 7 099 553x107% 4.18x107%* 0.4623
05 095 200 025 10 0.8 557x107% 4.22x107% 0.4377
05 095 200 025 10 09 552x107% 4.12x107% 0.4521
05 095 200 025 10 099 5.55x107% 4.17x107% 0.4408
05 095 200 1 3 08 551x107% 4.17x107% 0.4599
05 095 200 1 3 09 553x107% 4.14x107% 0.4949
05 095 200 1 3 099 558x107% 4.20x107% 0.4811
05 095 200 1 7 0.8 555x107% 4.16x107% 0.4848
05 095 200 1 7 09 555x107% 4.18x107% 0.4758
05 095 200 1 7 099 562x107% 422x107% 0.4783
05 095 200 1 10 08 554x107% 4.16x107%% 0.473
05 095 200 1 10 09 550x107% 4.12x107% 0.4779
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Table A.7: (continued)

o B m kK v q RMSE MAE R?
05 095 200 1 10 0.99 552x107% 4.13x107% 0.4671
05 095 200 2 3 0.8 548x107% 4.13x107%* 043
05 095 200 2 3 09 552x107% 4.16x107%* 0.4261
05 095 200 2 3 099 549x107% 4.14x107%* 0.4243
05 095 200 2 7 0.8 543x107% 4.11x107%* 0.4318
05 095 200 2 7 09 549%x107% 4.15x107%* 0.429
05 095 200 2 7 099 554x107% 4.18x107%* 0.4307
05 095 200 2 10 0.8 5.51x107% 4.16x107% 0.4208
05 095 200 2 10 09 5.52x107% 4.19x107% 0.4329
05 095 200 2 10 0.99 548x107% 4.13x107%* 0.4341
0.5 2 50 025 3 0.8 559x107% 4.26x107% 0.3195
0.5 2 50 025 3 09 557x107% 4.25x107% 0.3314
0.5 2 50 025 3 099 5.60x107% 427x107% 0.3271
0.5 2 50 025 7 0.8 5.61x107% 429x107% 0.3314
0.5 2 50 025 7 09 566x107% 431x107% 0.3298
0.5 2 50 025 7 099 5.60x107% 425x107% 0.3327
0.5 2 50 025 10 0.8 5.62x107% 4.28x107%* 0.3399
0.5 2 50 025 10 0.9 5.61x107% 428x107% 0.3392
0.5 2 50 025 10 0.99 5.70x107% 4.35x107%* 0.3226
0.5 2 50 1 3 08 5.60x107% 425x107%* 0.3565
0.5 2 50 1 3 09 556x107% 4.24x107% 0.3602
0.5 2 50 1 3 099 553x107% 422x10°% 0.3577
0.5 2 50 1 7 0.8 555x107% 420x107%* 0.3792
0.5 2 50 1 7 09 557x107% 4.22x107%* 0.3597
0.5 2 50 1 7 099 561x107% 4.29x10°% 0.365
0.5 2 50 1 10 0.8 5.48x107% 4.19x107% 0.3623
0.5 2 50 1 10 09 551x107% 4211079 0.3501
05 2 50 1 10 099 5.54x107% 4.20x107% 0.3659
0.5 2 50 2 3 08 554x107% 4.20x107% 0.3659
0.5 2 50 2 3 09 554x107% 4.18x107% 0.3846
0.5 2 50 2 3 099 554x107% 4.22x107% 0.3719
0.5 2 50 2 7 0.8 555x107% 4.23x107% 0.3591
0.5 2 50 2 7 09 555x107% 425x107% (0.3844
0.5 2 50 2 7 099 552x107% 4.19x107% 0.362
0.5 2 50 2 10 0.8 5.48x107% 4.15x107%* 0.3536
0.5 2 50 2 10 09 553x107% 421x107%* 0.361
0.5 2 50 2 10 099 551x107% 4.18x107%* 0.3718
0.5 2 100 025 3 0.8 561x107% 424x107%* 0.3734
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Table A.7: (continued)

o B m kv g RMSE MAE R?
05 2 100 025 3 09 559x107% 4.26x107% 0.3705
05 2 100 025 3 0.99 565x107% 4.30x107% 0.3748
05 2 100 025 7 08 553x107% 4.18x107% 0.3755
05 2 100 025 7 09 556x107% 422x107% 0.3646
05 2 100 025 7 0.99 557x107% 4.24x107% 0.3704
05 2 100 025 10 0.8 557x107%* 4.24x107% 0.3704
05 2 100 025 10 09 559x107% 4.25x107% 0.381
05 2 100 025 10 0.99 553x107%* 4.21x107% 0.3774
05 2 100 1 3 0.8 549x107% 4.15x107%* 0.3913
05 2 100 1 3 09 55x107% 4.16x107% 0.4076
05 2 100 1 3 099 55I1x107% 4.16x107%* 0.3998
05 2 100 1 7 08 555x107% 4.20x107%% 0.408
05 2 100 1 7 09 555x107% 4.20x107% (0.4142
05 2 100 1 7 099 555x107% 421x107% 0414
05 2 100 1 10 0.8 548x10™% 4.17x107% 0.3952
05 2 100 1 10 09 557x107% 4.20x107% 0.4131
05 2 100 1 10 099 551x107% 4.15x107% 0.4024
05 2 100 2 3 08 550x107%* 4.18x107% 0.3845
05 2 100 2 3 09 547x107% 4.18x107% 0.3845
05 2 100 2 3 099 552x107% 4.19x107% 0.3966
05 2 100 2 7 08 551x107% 4.17x107% 0.3875
05 2 100 2 7 09 552x107% 4.19x107% 0.3888
05 2 100 2 7 099 556x107% 421x107%* 0.3863
05 2 100 2 10 0.8 553x107%* 4.21x107% 0.3893
05 2 100 2 10 09 547x107%* 4.14x107% 0.3808
05 2 100 2 10 0.99 553x107% 4.20x10"% 0.3877
05 2 200 025 3 0.8 560x107% 4.18x107% 0.4379
05 2 200 025 3 09 558x107% 4.22x107% 0.4366
05 2 200 025 3 0.99 560x107% 4.19x107% 0.4258
05 2 200 025 7 08 558x107%* 4.19x107% 0.4363
05 2 200 025 7 09 558x107%* 4.19x107% 0.4363
05 2 200 025 7 099 559x107% 4.17x107% 0.4349
05 2 200 025 10 0.8 5.65x107% 4.25x107% 0.4431
05 2 200 025 10 0.9 559x107% 4.21x107% 0.4284
05 2 200 025 10 099 5.66x107% 4.24x107% 0.4471
05 2 200 1 3 08 553x107% 4.18x107% 0.4505
05 2 200 1 3 09 554x107% 4.17x107% 0.4589
05 2 200 1 3 099 563x107% 4.26x107% 0.4626
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Table A.7: (continued)

o B m kK v q RMSE MAE R?
05 2 200 1 7 08 558x107% 421x107% 0.4523
05 2 200 1 7 09 554x107% 4.19x107% 0.4424
05 2 200 1 7 099 557x107% 4.20x107% 0.4459
05 2 200 1 10 08 557x107% 4.21x107% 0.4576
05 2 200 1 10 09 554x107% 4.20x107%% 0.4451
05 2 200 1 10 0.99 549x107% 4.15x107% 0.4518
05 2 200 2 3 08 552x107% 4.18x107% 0.4095
05 2 200 2 3 09 55x107% 420x107% 0.4072
05 2 200 2 3 099 553x107% 4.18x107%* 0.4129
05 2 200 2 7 08 55I1x107% 420x107% 0.3973
05 2 200 2 7 09 552x107% 4.19x107% 0.4139
05 2 200 2 7 099 551x107%* 4.18x107% 0.4065
05 2 200 2 10 0.8 551x107% 4.18x107% 0.4006
05 2 200 2 10 09 552x107% 4.19x107% 0.4068
05 2 200 2 10 099 549x107% 4.16x107% 0.402
095 05 50 025 3 0.8 557x107% 420x10"% 0.3803
095 05 50 025 3 09 550x107% 4.18x107% 0.3643
095 05 50 025 3 099 5.65x107% 4.29x107% 0.3861
095 05 50 025 7 0.8 560x107% 425x107% 0.3752
095 05 50 025 7 09 557x107% 421x107% 0.3673
095 05 50 025 7 099 555x107% 4.25x107% 0.3678
095 05 50 025 10 0.8 552x107% 420x107% (.3824
095 05 50 025 10 09 5.66x107% 427x107% 0.3923
095 05 50 025 10 099 557x107% 423x107% 0.3778
095 05 50 1 3 0.8 548x107% 4.14x107% (.4244
095 05 50 1 3 09 544x107% 4.15x107%* 0.4338
095 05 50 1 3 099 548x107% 4.15x10™%* 0.4119
095 05 50 1 7 08 551x107% 4.17x107% (.4455
095 05 50 1 7 09 551x107% 4.16x107% 04277
095 05 50 1 7 099 552x107% 4.13x107% 0.446
095 05 50 1 10 0.8 545x107% 4.08x107% 0.4469
095 05 50 1 10 09 555x107% 420x107% 0.4503
095 05 50 1 10 0.99 555x107% 4.19x107% 0.4272
095 05 50 2 3 08 539x107% 4.11x107% 0.4459
095 05 50 2 3 09 545x107% 4.13x107% (0.4352
095 05 50 2 3 099 542x107% 4.08x107% 0.4328
095 05 50 2 7 0.8 548x107% 4.14x107% 0.4322
095 05 50 2 7 09 543x107% 4.07x107% 0.4375
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Table A.7: (continued)

o B m kv g RMSE MAE R?
095 05 50 2 7 099 543x107% 4.10x107% 0.425
095 05 50 2 10 0.8 549x107% 4.15x107% 0.4479
095 05 50 2 10 09 548x107% 4.14x107% 0.4382
095 05 50 2 10 099 5.46x107%% 4.10x107% 0.4347
095 05 100 025 3 0.8 561x107% 423x107% 0.4383
095 05 100 025 3 09 556x107% 420x107% 0.4235
095 05 100 025 3 099 562x107% 421x107% 0.4632
095 05 100 025 7 0.8 558x107% 426x107% (.4425
095 05 100 025 7 09 5.69x107% 4.26x107% 04517
095 05 100 025 7 099 5.60x107% 4.22x107% 0.461
095 05 100 025 10 0.8 5.51x107% 4.19x107% 0.4587
095 05 100 025 10 0.9 549x107% 4.12x107% 0.4515
095 05 100 025 10 0.99 557x107% 4.14x10"% 0.4281
095 05 100 1 3 08 555x107% 4.16x107% 0.5027
095 05 100 1 3 09 551x107% 4.14x107% 0.4976
095 05 100 1 3 099 550x107% 4.12x107% 0.4908
095 05 100 1 7 0.8 557x107% 4.15x10"% 0.5104
095 05 100 1 7 09 549x107% 4.14x107% 0.4937
095 05 100 1 7 099 560x107% 420x107% 0.5146
095 05 100 1 10 0.8 556x107% 421x107% 0.5022
095 05 100 1 10 09 555x107% 4.18x107% 0.52
095 05 100 1 10 099 552x107% 4.12x107% 0.506
095 05 100 2 3 0.8 552x107% 4.12x107% 0.506
095 05 100 2 3 09 548x107% 4.12x107% 0.4954
095 05 100 2 3 099 554x107% 4.19x107% 0.4752
095 05 100 2 7 08 550x107% 4.15x107% 0.4843
095 05 100 2 7 09 552x107% 4.15x107% 0.483
095 05 100 2 7 099 547x107%% 4.13x10"% 0475
095 05 100 2 10 0.8 548x107% 4.10x107% 0.4712
095 05 100 2 10 09 551x107% 4.14x107% 0.4981
095 05 100 2 10 099 550x107% 4.11x107% 0.4813
095 05 200 025 3 0.8 572x107% 422x107% 0.5364
095 05 200 025 3 09 567x107% 427x107% 0.5305
095 05 200 025 3 099 559x107% 4.17x107% 0.5315
095 05 200 025 7 0.8 570x107% 423x107% 0.5281
095 05 200 025 7 09 565x107% 423x107% 0.5331
095 05 200 025 7 099 571x107% 424x107% 0.5309
095 05 200 025 10 0.8 5.64x107% 4.19x107% 0.5316
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Table A.7: (continued)

o B m kK v q RMSE MAE R?
095 05 200 025 10 0.9 576x107% 4.33x107% 0.5456
095 05 200 025 10 099 5.69x107% 423x107% 0.5289
095 05 200 1 3 0.8 571x107% 425x107% 0.5766
095 05 200 1 3 09 562x107% 4.19x107% 0.5818
095 05 200 1 3 099 566x107%% 421x107% 0.5906
095 05 200 1 7 0.8 565x107%% 421x107% 0.5768
095 05 200 1 7 09 567x107% 421x107% (.5898
095 05 200 1 7 099 5.68x107% 4.26x107% 0.5829
095 05 200 1 10 08 5.75x107% 4.26x107%* 0.5618
095 05 200 1 10 09 5.67x107% 4.20x107% 0.5924
095 05 200 1 10 0.99 5.67x107% 4.22x107% 0.5837
095 05 200 2 3 08 553x107% 4.15x107% 0.5039
095 05 200 2 3 09 553x107% 4.15x107% 0.5271
095 05 200 2 3 099 551x107% 4.12x107% 0.5225
095 05 200 2 7 08 549x107% 4.12x107% 0.5098
095 05 200 2 7 09 551x107% 4.17x107% 0.534
095 05 200 2 7 099 548x107% 4.14x107% 0.5234
095 05 200 2 10 0.8 557x107% 4.17x107% 0.5251
095 05 200 2 10 09 549x107% 4.09x107% 0.5211
095 05 200 2 10 099 556x107% 4.16x107% 0.5287
095 095 50 025 3 0.8 553x107% 420x107% 0.3795
095 095 50 025 3 09 558x107% 422x107% 0.3829
095 095 50 025 3 099 556x107% 4.22x107% (.3868
095 095 50 025 7 0.8 545x107% 4.15x107% 0.4034
095 095 50 025 7 09 556x107% 4.21x107% 0.3835
095 095 50 025 7 099 554x107% 4.22x107% 0.3668
095 095 50 025 10 08 5.61x107%* 4.26x107%* 0.3638
095 095 50 025 10 09 5.55x107% 4.22x107% 0.3856
095 095 50 0.25 10 099 552x107% 4.18x10°% 0.3908
095 095 50 1 3 0.8 551x107% 4.18x107% 0.4245
095 095 50 1 3 09 546x107% 4.12x107% 0.4158
095 095 50 1 3 099 556x107% 4.18x107% 0.411
095 095 50 1 7 08 546x107% 4.10x107% 0.4332
095 095 50 1 7 09 548x107% 4.15x107% 0.4248
095 095 50 1 7 099 554x107% 420x107% 0.4191
095 095 50 1 10 0.8 555x107% 4.17x107% 04116
095 095 50 1 10 0.9 548x107% 4.17x107% 0.4107
095 095 50 1 10 099 5.58x107% 4.25x107% 0.4247
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Table A.7: (continued)

o B m kv g RMSE MAE R?
095 095 50 2 3 0.8 543x107% 4.10x107% 0421
095 095 50 2 3 09 555x107% 4.18x107% 0.4195
095 095 50 2 3 099 545x107% 4.16x107% 0.402
095 095 50 2 7 0.8 544x107% 4.10x107% 0.4096
095 095 50 2 7 09 548x107% 4.16x107% 04172
095 095 50 2 7 099 554x107% 421x107% 0.4219
095 095 50 2 10 0.8 544x107% 4.12x107% 0.4218
095 095 50 2 10 09 541x107% 4.11x107% 0.4039
095 095 50 2 10 0.99 5.50x107% 4.15x10™% 0.4076
095 095 100 025 3 08 5.55x107% 4.19x10°% 0.4407
095 095 100 025 3 09 570x107% 427x107% 047
095 095 100 025 3 099 551x107% 4.17x107% 0.4451
095 095 100 025 7 0.8 5.60x107% 422x107% (.4568
095 095 100 025 7 09 554x107% 4.14x107% 0.4567
095 095 100 025 7 0.99 558x107% 421x107% 0.4581
095 095 100 025 10 0.8 551x107% 4.13x10"% 0.4556
095 095 100 025 10 0.9 562x107% 422x107% 0.4669
095 095 100 025 10 0.99 559x107% 4.18x107% 0.4427
095 095 100 1 3 0.8 558x107% 4.19x107% 0.4742
095 095 100 1 3 09 564x107% 421x107% 0.4872
095 095 100 1 3 099 556x107% 4.16x107% 0.4785
095 095 100 1 7 0.8 569x107% 430x107% 0.5029
095 095 100 1 7 09 548x107% 4.14x107% 04713
095 095 100 1 7 099 551x107% 4.14x107% 0.4764
095 095 100 1 10 0.8 5.67x107% 4.23x107% 0478
095 095 100 1 10 09 556x107% 4.17x107% 0.4793
095 095 100 1 10 099 552x107% 4.14x107% 0.4772
095 095 100 2 3 08 550x107% 4.14x107% 0.4638
095 095 100 2 3 09 554x107% 4.16x107% 0.4619
095 095 100 2 3 099 554x107% 4.16x107% 0.4555
095 095 100 2 7 0.8 550x107% 4.14x107% 0.4582
095 095 100 2 7 09 550x107% 4.13x107% 0.4684
095 095 100 2 7 099 555x107% 4.17x107% 0.4756
095 095 100 2 10 0.8 550x107% 4.12x107% 0.4799
095 095 100 2 10 09 549x107% 4.13x107% 04617
095 095 100 2 10 0.99 547x107% 4.13x107% (.4452
095 095 200 025 3 0.8 562x107% 4.14x107% 0.5468
095 095 200 025 3 09 564x107% 4.18x107% 0.5079
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Table A.7: (continued)
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095 095 200 025 3 099 5.63x107%* 4.18x107% 0.5354
095 095 200 025 7 08 5.69x107% 4.22x107% 0.5352
095 095 200 025 7 09 5.73x107%* 4.23x107% 0.5352
095 095 200 025 7 099 5.64x107% 4.18x10°% 0.5037
095 095 200 025 10 0.8 5.69x107%* 4.21x107%* 0.5418
095 095 200 025 10 09 5.70x10™%* 4.27x107%* 0.5206
095 095 200 025 10 0.99 5.60x107% 4.19x107% (.5262
095 095 200 1 3 0.8 564x107% 421x107% 0.5411
095 095 200 1 3 09 554x107% 4.13x107% 0.5617
095 095 200 1 3 099 571x107% 4.25x10™% 0.5474
095 095 200 1 7 08 5.65x107% 4.22x107% 0.5505
095 095 200 1 7 09 557x107% 4.19x10~% (.5543
095 095 200 1 7 099 5.69x107% 4.24x107% 0.5663
095 095 200 1 10 0.8 563x107% 4.17x107% 0.5381
095 095 200 1 10 09 557x107% 4.16x107%* 0.5303
095 095 200 1 10 0.99 559x107% 4.17x107% 0.5548
095 095 200 2 3 08 546x107% 4.10x107% 0.483
095 095 200 2 3 09 556x107%* 4.16x107%* 0.4908
095 095 200 2 3 099 551x107%* 4.12x107% 0.493
095 095 200 2 7 08 555x107% 4.17x107% 0.472
095 095 200 2 7 09 551x107%* 4.16x107%* 0.4916
095 095 200 2 7 099 549x107%* 4.13x107%* 0.4902
095 095 200 2 10 0.8 546x107% 4.08x107% 0.4786
095 095 200 2 10 09 552x107% 4.16x107% (.4824
095 095 200 2 10 099 552x107% 4.12x107% 0.4795
095 2 50 025 3 08 5.60x107% 4.26x107%* 0.3758
095 2 50 025 3 09 554x107% 4.20x107% 0.3719
095 2 50 025 3 099 552x107% 4.18x107%* 0.3908
095 2 50 025 7 08 556x107% 4.23x107% 0.3649
095 2 50 025 7 09 574x107% 4.33x107% 0.3709
095 2 50 025 7 099 557x107% 4.25x107% 0.3666
095 2 50 025 10 0.8 5.60x107%* 4.23x107% 0.3629
095 2 50 025 10 09 555x107% 420x107% 0.3672
095 2 50 025 10 0.99 551x107% 4.18x10™% 0.3557
095 2 50 1 3 08 552x107% 4.16x107% 0.3848
095 2 50 1 3 09 547x107% 4.16x107%* 0.3829
095 2 50 1 3 099 556x107% 4.19x10°% 0.3957
095 2 50 1 7 08 556x107% 4.22x107% 0.3957
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Table A.7: (continued)
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095 2 50 1 7 09 547x107% 4.14x107% 0.3968
095 2 50 1 7 099 561x107% 427x107% 0.3825
095 2 50 1 10 0.8 546x107% 4.17x107% 0.3862
095 2 50 1 10 09 559x107% 425x107% 0.3925
095 2 50 1 10 099 548x107% 4.16x107% 0.3759
095 2 50 2 3 08 548x107% 4.14x107% 0.3845
095 2 50 2 3 09 555x107% 421x107% 0.3926
095 2 50 2 3 099 552x107% 420x107% 0.3754
095 2 50 2 7 08 554x107% 4.19x107% 0.4054
095 2 50 2 7 09 552x107% 4.19x107% 0.3906
095 2 50 2 7 099 545x107% 4.14x107% 0.3745
095 2 50 2 10 0.8 549x107% 4.16x107% 0.3762
095 2 50 2 10 09 550x107% 4.16x107%* 0.3955
095 2 50 2 10 099 559x107% 425x107% 0.3774
095 2 100 025 3 0.8 552x107% 4.17x107% 0.4466
095 2 100 025 3 09 559x107% 420x107% 0.435
095 2 100 025 3 099 550x107% 4.16x107% 0.4256
095 2 100 025 7 0.8 556x107% 420x107% 0.4389
095 2 100 025 7 09 556x107% 4.17x107% 0.4204
095 2 100 025 7 099 561x107% 4.19x107% (.4452
095 2 100 025 10 0.8 561x107% 421x107% 0.4441
095 2 100 025 10 0.9 553x107% 4.20x107% 0.439
095 2 100 025 10 0.99 553x107% 4.14x107% 0.4358
095 2 100 1 3 0.8 553x107% 4.19x107% 0.4451
095 2 100 1 3 09 558x107% 4.24x107% 0.445
095 2 100 1 3 099 561x107% 422x107% 0.4466
095 2 100 1 7 08 561x107% 422x107% 0.4466
095 2 100 1 7 09 560x107% 420x107% 0.4378
095 2 100 1 7 099 549x107% 4.13x107%* 0.4505
095 2 100 1 10 0.8 552x107% 4.15x107% 0.4477
095 2 100 1 10 09 553x107% 4.15x107% (.4487
095 2 100 1 10 0.99 556x107% 4.18x107% 0.4361
095 2 100 2 3 08 551x107% 4.19x107% 0.4257
095 2 100 2 3 09 552x107% 4.16x107% 0.4248
095 2 100 2 3 099 552x107% 4.18x107% 0.4156
095 2 100 2 7 08 547x107% 4.12x107% 0.4189
095 2 100 2 7 09 545x107% 4.10x107% 0.4201
095 2 100 2 7 099 559x107% 422x107% (.4245
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Table A.7: (continued)
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095 2 100 2 10 0.8 553x107% 421x107% 0.4183
095 2 100 2 10 09 549x107% 4.16x107% 0.4223
095 2 100 2 10 099 5.49x107% 4.14x107% 0.4137
095 2 200 025 3 0.8 570x107% 4.30x10~% 0.5139
095 2 200 025 3 09 559x107% 4.18x107% 0.4951
095 2 200 025 3 099 559x107% 4.18x107% 0.4951
095 2 200 025 7 0.8 578x107% 429x107% 0.5256
095 2 200 025 7 09 556x107% 4.18x107% (.4846
095 2 200 025 7 099 5.66x107% 424x107% (.4984
095 2 200 025 10 0.8 5.58x107% 4.17x107% 0.505
095 2 200 025 10 09 5.84x107% 4.31x107% 0.5349
095 2 200 025 10 099 5.67x107% 4.24x107% 0.4947
095 2 200 1 3 08 560x107% 4.18x107% 0.5021
095 2 200 1 3 09 552x107% 4.18x10"% 0.4867
095 2 200 1 3 099 559x107% 420x107% 0.4918
095 2 200 1 7 08 558x107% 420x10"% 0.5039
095 2 200 1 7 09 561x107% 423x107% 0.4948
095 2 200 1 7 099 559x107% 421x107% 0.4932
095 2 200 1 10 0.8 556x107% 420x107% 0.4924
095 2 200 1 10 09 552x107% 4.15x107% 0.49
095 2 200 1 10 099 557x107% 4.19x107% 0.5007
095 2 200 2 3 08 549x107% 4.16x107% 0.4399
095 2 200 2 3 09 550x107% 4.14x107% 0.4521
095 2 200 2 3 099 552x107% 4.16x107% 0.442
095 2 200 2 7 0.8 553x107% 4.19x107% 0.4367
095 2 200 2 7 09 544x107%% 4.09x107% 0.4461
095 2 200 2 7 099 553x107% 4.16x107% 0.434
095 2 200 2 10 0.8 553x107% 4.16x107% 0.434
095 2 200 2 10 09 547x107% 4.15x10"% 0.4407
095 2 200 2 10 099 556x107% 4.19x107% 0.4434
2 05 50 025 3 08 689x107% 541x107% 0.0142
2 05 50 025 3 09 689x107% 541x107% 0.0141
2 05 50 025 3 099 6.89x107% 541x107% 0.0144
2 05 50 025 7 08 689x107% 541x107% 0.0146
2 05 50 025 7 09 6.89x107% 541x107% 0.0144
2 05 50 025 7 099 6.89x107% 541x107% 0.0146
2 05 50 025 10 0.8 6.89x107% 541x107% 0.0146
2 05 50 025 10 09 6.89x107% 541x107% 0.0143
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2 05 50 025 10 0.99 6.89x107% 5.41x107% 0.0145
2 05 50 1 3 0.8 6.89x107% 541x107% 0.0142
2 05 50 1 3 09 6.89x107% 541x107% 0.0142
2 05 50 1 3 099 6.89x107% 541x107% 0.0144
2 05 50 1 7 0.8 6.89x107% 541x107% 0.0142
2 05 50 1 7 09 6.89x107% 541x107% 0.0145
2 05 50 1 7 099 6.89x107% 541x107% 0.014
2 05 50 1 10 0.8 6.89x107% 541x107% 0.0142
2 05 50 1 10 09 6.89x107% 541x10~% 0.0141
2 05 50 1 10 099 6.89x107% 541x107%* 0.0144
2 05 50 2 3 08 689x107% 541x107% 0.0142
2 05 50 2 3 09 6.89x107% 541x107% 0.0142
2 05 50 2 3 099 6.89x107% 541x107%* 0.0141
2 05 50 2 7 08 6.89x107% 541x107% 0.0144
2 05 50 2 7 09 689x107% 541x107% 0.0142
2 05 50 2 7 099 6.89x107% 541x107% 0.0142
2 05 50 2 10 08 6.89x107% 541x107% 0.0149
2 05 50 2 10 09 6.89x107% 541x107% 0.0144
2 05 50 2 10 099 6.89x107% 541x107% 0.0145
2 05 100 025 3 0.8 6.89x107% 541x107% 0.0143
2 05 100 025 3 09 6.89x107% 541x107% 0.0143
2 05 100 025 3 099 6.89x107% 541x107%* 0.0147
2 05 100 025 7 0.8 6.89x107% 541x107% 0.014
2 05 100 025 7 09 6.89x107% 541x107% 0.0146
2 05 100 025 7 099 6.89x107% 541x107% 0.0142
2 05 100 025 10 0.8 6.89x107% 541x107% 0.0138
2 05 100 025 10 09 6.89x107% 541x107% 0.0142
2 05 100 025 10 0.99 6.89x107% 541x107% 0.0145
2 05 100 1 3 0.8 6.89x107% 541x107% 0.0141
2 05 100 1 3 09 6.89x107% 541x107% 0.0142
2 05 100 1 3 099 6.89x107% 541x107% 0.0144
2 05 100 1 7 08 6.89x107% 541x107% 0.0144
2 05 100 1 7 09 689x107% 541x107% 0.0142
2 05 100 1 7 099 6.89x107% 541x107% 0.0143
2 05 100 1 10 0.8 6.89x107% 541x107% 0.0147
2 05 100 1 10 09 6.89x107% 541x107% 0.0144
2 05 100 1 10 099 6.89x107% 541x107% 0.0145
2 05 100 2 3 0.8 6.89x107% 541x107% 0.0145
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2 05 100 2 3 09 689x107% 541x107% 0.014
2 05 100 2 3 099 6.89x107% 541x107% 0.0142
2 05 100 2 7 0.8 6.89x107% 541x107% 0.0143
2 05 100 2 7 09 6.89x107% 541x107% 0.0142
2 05 100 2 7 099 6.89x107% 541x107% 0.0144
2 05 100 2 10 0.8 6.89x107% 541x107% 0.0142
2 05 100 2 10 09 6.89x107% 541x107% 0.0144
2 05 100 2 10 099 6.89x107% 541x107% 0.0144
2 05 200 025 3 08 6.89x107% 541x107% 0.0143
2 05 200 025 3 09 6.89x107% 541x107% 0.0141
2 05 200 025 3 099 6.89x107% 541x107% 0.0141
2 05 200 025 7 0.8 6.89x107% 541x107% 0.0145
2 05 200 025 7 09 6.89x107% 541x107% 0.0141
2 05 200 025 7 099 6.89x107% 541x107% 0.0143
2 05 200 025 10 0.8 6.89x107% 541x107% 0.0142
2 05 200 025 10 09 6.89x107% 541x107% 0.0142
2 05 200 025 10 0.99 6.89x107% 541x107% 0.0143
2 05 200 1 3 08 689x107% 541x107% 0.0142
2 05 200 1 3 09 6.89x107% 541x107% 0.0142
2 05 200 1 3 099 6.89x107% 541x107% 0.0141
2 05 200 1 7 08 6.89x107% 541x107% 0.0144
2 05 200 1 7 09 6.89x107% 541x107% 0.0144
2 05 200 1 7 099 6.89x107% 541x107% 0.0144
2 05 200 1 10 0.8 6.89x107% 541x107% 0.0144
2 05 200 1 10 09 6.89x107% 541x107% 0.0144
2 05 200 1 10 099 6.89x107% 541x107% 0.0143
2 05 200 2 3 0.8 6.89x107% 541x107% 0.0142
2 05 200 2 3 09 6.89x107% 541x107% 0.0144
2 05 200 2 3 099 6.89x107% 541x107% 0.0144
2 05 200 2 7 08 689x107% 541x107% 0.0146
2 05 200 2 7 09 689x107% 541x107% 0.0144
2 05 200 2 7 099 6.89x107% 541x107% 0.0144
2 05 200 2 10 0.8 6.89x107% 541x107% 0.0144
2 05 200 2 10 09 6.89x107% 541x107% 0.0145
2 05 200 2 10 099 6.89x107% 541x107% 0.0144
2 095 50 025 3 0.8 6.89x107% 541x107% 0.0144
2 095 50 025 3 09 6.89x107% 541x107% 0.0142
2 095 50 025 3 099 6.89x107% 541x107% 0.0143
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2 095 50 025 7 08 6.89x107% 541x107% 0.0142
2 095 50 025 7 09 6.89x107% 541x107% 0.0145
2 095 50 025 7 099 6.89x107% 541x107% 0.014
2 095 50 025 10 0.8 6.89x107% 541x107% 0.0146
2 095 50 025 10 09 6.89x107% 541x107% 0.0143
2 095 50 025 10 0.99 6.89x107% 541x107%* 0.0147
2 095 50 1 3 08 6.89x107% 541x107% 0.0142
2 095 50 1 3 09 689x107% 541x107% 0.0143
2 095 50 1 3 099 6.89x107% 541x10~% 0.0141
2 095 50 1 7 08 689x107% 541x107% 0.0142
2 095 50 1 7 09 689x107% 541x107% 0.0145
2 095 50 1 7 099 6.89x107% 541x107% 0.0144
2 095 50 1 10 0.8 6.89x107% 541x107% 0.0144
2 095 50 1 10 09 6.89x107% 541x107% 0.0139
2 095 50 1 10 099 6.89x107% 541x107% 0.0143
2 095 50 2 3 08 6.89x107% 541x107% 0.0145
2 095 50 2 3 09 689x107% 541x107% 0.0141
2 095 50 2 3 099 6.89x107% 541x107% 0.0142
2 095 50 2 7 0.8 6.89x107% 541x107% 0.0143
2 095 50 2 7 09 6.89x107% 541x107%* 0.0147
2 095 50 2 7 099 6.89x107% 541x107% 0.0144
2 095 50 2 10 0.8 6.89x107% 541x107% 0.0143
2 095 50 2 10 09 6.89x107% 541x107% 0.0143
2 095 50 2 10 099 6.89x107% 541x107% 0.0143
2 095 100 025 3 0.8 6.89x107% 541x107% 0.0144
2 095 100 025 3 09 6.89x107% 541x107% 0.0143
2 095 100 025 3 099 6.89x107% 541x107% 0.0146
2 095 100 025 7 0.8 6.89x107% 541x107%* 0.0141
2 095 100 025 7 09 6.89x107% 541x107% 0.0142
2 095 100 025 7 099 6.89x107% 541x107% 0.0144
2 095 100 025 10 0.8 6.89x107% 541x107% 0.0147
2 095 100 025 10 09 6.89x107% 541x107% 0.0144
2 095 100 025 10 0.99 6.89x107% 541x107% 0.0143
2 095 100 1 3 08 6.89x107% 541x107% 0.0142
2 095 100 1 3 09 6.89x107% 541x107% 0.0142
2 095 100 1 3 099 6.89x107% 541x107% 0.0143
2 095 100 1 7 0.8 6.89x107% 541x107% 0.0147
2 095 100 1 7 09 6.89x107% 541x107% 0.0144
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2 095 100 1 7 099 6.89x107% 541x107% 0.0146
2 095 100 1 10 0.8 6.89x107% 541x107% 0.0146
2 095 100 1 10 09 6.89x107% 541x107% 0.0142
2 095 100 1 10 099 6.89x107% 541x107% 0.0146
2 095 100 2 3 0.8 6.89x107% 541x107% 0.0145
2 095 100 2 3 09 6.89x107% 541x107% 0.0143
2 095 100 2 3 099 6.89x107% 541x107% 0.0146
2 095 100 2 7 08 6.89x107% 541x107% 0.0143
2 095 100 2 7 09 6.89x107% 541x107% 0.0142
2 095 100 2 7 099 6.89x107% 541x107% 0.0142
2 095 100 2 10 0.8 6.89x107% 541x107% 0.0144
2 095 100 2 10 09 6.89x107% 541x107% 0.0144
2 095 100 2 10 099 6.89x107% 541x107% 0.0144
2 095 200 025 3 0.8 6.89x107% 541x107% 0.0145
2 095 200 025 3 09 6.89x107% 541x107% 0.0144
2 095 200 025 3 099 6.89x107% 541x107% 0.0144
2 095 200 025 7 0.8 6.89x107% 541x107% 0.0141
2 095 200 025 7 09 6.89x107% 541x107% 0.0143
2 095 200 025 7 099 6.89x107% 541x107% 0.0141
2 095 200 025 10 0.8 6.89x107% 541x107% 0.0144
2 095 200 025 10 09 6.89x107% 541x107% 0.0142
2 095 200 025 10 099 6.89x107% 541x107% 0.0142
2 095 200 1 3 0.8 6.89x107% 541x107% 0.0144
2 095 200 1 3 09 6.89x107% 541x107% 0.0141
2 095 200 1 3 099 6.89x107% 541x107% 0.0146
2 095 200 1 7 08 6.89x107% 541x107% 0.0145
2 095 200 1 7 09 6.89x107% 541x107%* 0.014
2 095 200 1 7 099 6.89x107% 541x107% 0.0145
2 095 200 1 10 0.8 6.89x107% 541x107% 0.0143
2 095 200 1 10 09 6.89x107% 541x107% 0.0142
2 095 200 1 10 099 6.89x107% 541x107% 0.0144
2 095 200 2 3 08 689x107% 541x107% 0.0144
2 095 200 2 3 09 689x107% 541x107% 0.0144
2 095 200 2 3 099 6.89x107% 541x107% 0.0147
2 095 200 2 7 08 689x107% 541x107% 0.0142
2 095 200 2 7 09 6.89x107% 541x107%* 0.0143
2 095 200 2 7 099 6.89x107% 541x107% 0.0141
2 095 200 2 10 0.8 6.89x107% 541x107% 0.0144
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2 095 200 2 10 09 6.89x107% 541x107% 0.0144
2 095 200 2 10 099 6.89x107% 541x107% 0.0142
2 2 50 025 3 08 6.89x107% 541x107% 0.014
2 2 50 025 3 09 6.89x107% 541x107% 0.0143
2 2 50 025 3 099 6.89x107% 541x10~% 0.0141
2 2 50 025 7 08 6.89x107% 541x107% 0.0144
2 2 50 025 7 09 689x107% 541x107% 0.0144
2 2 50 025 7 099 6.89x107% 541x107% 0.0142
2 2 50 025 10 0.8 6.89x107% 541x10~% 0.0141
2 2 50 025 10 09 6.89x107% 541x107% 0.0144
2 2 50 025 10 0.99 6.89x107% 541x107% 0.0145
2 2 50 1 3 08 689x107% 541x107% 0.0141
2 2 50 1 3 09 6.89x107% 541x107% 0.0141
2 2 50 1 3 099 6.89x107% 541x107% 0.0148
2 2 50 1 7 08 6.89x107% 541x107% 0.014
2 2 50 1 7 09 689x107% 541x107% 0.0144
2 2 50 1 7 099 6.89x107% 541x107% 0.0143
2 2 50 1 10 08 6.89x107% 541x10™% 0.0142
2 2 50 1 10 09 6.89x107% 541x107% 0.0144
2 2 50 1 10 099 6.89x107% 541x107% 0.0142
2 2 50 2 3 08 689x107% 541x107% 0.0141
2 2 50 2 3 09 689x107% 541x107% 0.0143
2 2 50 2 3 099 6.89x107% 541x107% 0.0142
2 2 50 2 7 08 689x107% 541x107% 0.0142
2 2 50 2 7 09 689x107% 541x107% 0.0145
2 2 50 2 7 099 6.89x107% 541x107% 0.0143
2 2 50 2 10 08 6.89x107% 541x107% 0.0144
2 2 50 2 10 09 6.89x107% 541x107% 0.0144
2 2 50 2 10 099 6.89x107% 541x107% 0.0142
2 2 100 025 3 08 6.89x107% 541x10™% 0.0145
2 2 100 025 3 09 6.89x107% 541x107% 0.0147
2 2 100 025 3 099 6.89x107% 541x10™% 0.0144
2 2 100 025 7 08 6.89x107% 541x107% 0.0141
2 2 100 025 7 09 6.89x107% 541x107% 0.0143
2 2 100 025 7 099 6.89x107% 541x10™% 0.014
2 2 100 025 10 0.8 6.89x107% 541x107% 0.0145
2 2 100 025 10 09 6.89x107% 541x107% 0.0143
2 2 100 025 10 0.99 6.89x107% 541x107% 0.0143
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2 2 100 1 3 0.8 6.89x107% 541x107% 0.0144
2 2 100 1 3 09 6.89x107% 541x107%* 0.0145
2 2 100 1 3 099 6.89x107% 541x107%* 0.0141
2 2 100 1 7 08 6.89x107% 541x107%* 0.0144
2 2 100 1 7 09 689x107% 541x107%* 0.0143
2 2 100 1 7 099 6.89%x107% 541x107%* 0.0145
2 2 100 1 10 0.8 6.89x107% 541x107%* 0.0143
2 2 100 1 10 09 6.89x107% 541x107%* 0.0146
2 2 100 1 10 099 6.89x107% 541x107%* 0.0144
2 2 100 2 3 08 6.89x107% 541x107% 0.0142
2 2 100 2 3 09 6.89x107% 541x107% 0.0141
2 2 100 2 3 099 6.89x107% 541x107% 0.0144
2 2 100 2 7 0.8 6.89x107% 541x107% 0.0143
2 2 100 2 7 09 6.89x107% 541x107% 0.0145
2 2 100 2 7 099 6.89x107% 541x107% 0.0144
2 2 100 2 10 08 6.89x107% 541x107% 0.0144
2 2 100 2 10 09 6.89x107% 541x107% 0.0142
2 2 100 2 10 099 6.89x107% 541x107% 0.0143
2 2 200 025 3 0.8 6.89x107% 541x107%* 0.0144
2 2 200 025 3 09 6.89x107% 541x107%* 0.0141
2 2 200 025 3 099 6.89x107% 541x107%* 0.0144
2 2 200 025 7 0.8 6.89x107% 541x107%* 0.0143
2 2 200 025 7 09 6.89x107% 541x107%** 0.0146
2 2 200 025 7 099 6.89x107% 541x107%* 0.0144
2 2 200 025 10 0.8 6.89x107% 541x107%* 0.0143
2 2 200 025 10 09 6.89x107% 541x107% 0.0142
2 2 200 025 10 099 6.89x107% 541x107% 0.0142
2 2 200 1 3 08 6.89x107% 541x107% 0.0144
2 2 200 1 3 09 6.89x107% 541x107% 0.0139
2 2 200 1 3 099 6.89x107% 541x107% 0.0145
2 2 200 1 7 0.8 6.89x107% 541x107% 0.0143
2 2 200 1 7 09 6.89x107% 541x107% 0.0143
2 2 200 1 7 099 6.89x107% 541x107% 0.0143
2 2 200 1 10 08 6.89x107% 541x107% 0.0141
2 2 200 1 10 09 6.89x107% 541x107%** 0.0145
2 2 200 1 10 099 6.89x107% 541x107%* 0.0144
2 2 200 2 3 08 6.89x107% 541x107%* 0.0141
2 2 200 2 3 09 6.89x107% 541x107% 0.0147

121



Table A.7: (continued)

o B m kv g RMSE MAE R?

2 2 200 2 3 099 6.89x107% 541x107% 0.0141
2 2 200 2 7 08 6.89x107% 541x107% 0.0145
2 2 200 2 7 09 689x107% 541x107% 0.0146
2 2 200 2 7 099 6.89x107% 541x107% 0.0142
2 2 200 2 10 08 6.89x107% 541x107% 0.0143
2 2 200 2 10 09 6.89x107% 541x107% 0.0145
2 2 200 2 10 099 6.89x107% 541x107% 0.0141
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Best BRT Model (RMSE) on Drought Dataset Best BART Model (RMSE) on Drought Dataset
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Figure A.1: Predicted EVI trend against observed EVI trend for the best perform-
ing BRT (left) and BART (right) models on the drought dataset. The reference line
where the observed EVI trend equals the predicted EVI trend is shown in red.
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Best BRT Model (RMSE) on Wetting Dataset
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Figure A.2: Predicted EVI trend against observed EVI trend for the best perform-
ing BRT (left) and BART (right) models on the wetting dataset. The reference line
where the observed EVI trend equals the predicted EVI trend is shown in red.
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Table A.8: Error Statistics of best performing BRT and BART models calculated
on each dataset.

BRT BART
Droucht Best RMSE Model 4.560x107% 3.713x107%
Dat & . BestMAE Model 3.398x107  3.457x10"%
atase Best R2 Model 0.5213 0.623
Wetting  Best RMSE Model  5.353x10°%  5.386x10""
Datase‘f Best MAE Model  4.051x10™%  4.066x10~%

Best R? Model 0.4732 0.5924
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