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Abstract 
 

Conventional bridge building materials, like timber and steel, have problems that 

can limit their expected service life. These problems include termite and fungi 

attack for timber, and corrosion for steel. These problems do not affect the hybrid 

concrete–composite bridge produced by Wagners Composite Fibre Technologies. 

However, the use of composite materials in the infrastructure industry is relatively 

new. Their wide acceptance by the industry is therefore tributary on assessing 

their long-term durability.  

 

The aim of this project is to determine if there are any durability related concerns 

with the hybrid concrete-composite Bridge produced by WCFT. The durability 

investigation was carried out at Wagner Composite Fibre Technologies, and it 

dealt mainly with the durability of the adhesive joints used in the construction of 

the hybrid bridge. Indeed, adhesive joints were identified as the primary area of 

durability concerns within the FRP Bridge. After subjecting small coupons to a 

range of environments no considerable change in shear strength was observed. 

Due to the short time allocated to conducting this durability investigation, the 

findings were complemented with a literature review.   
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This investigation highlighted a number a key aspects that should be observed in 

future investigations; these include: 

•  having a long environmental exposure time, for example over 1 year 

• have many samples  

• investigate only one or two environmental conditions 

• have specifically dedicated resources 

• use an accurate method to measure weight variations 

 

The literature review also resulted in no alarming results. Some researchers have 

observed considerable changes in strength after exposure. These were the results 

of extreme environments that the bridge would be unlikely to be exposed to. 
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Chapter 1  
 

Introduction 
 

1.1 Current State of Civil Infrastructure  
 

The Institute of Engineers Australia estimates that over $40 billion will be 

required for upgrades and maintenance of Australian bridges [1]. Approximately 

60% of the 10,000 timber road bridges in Australia were built before the 1940’s. 

Only 100 –150 bridges are replaced each year. This infrastructure problem is even 

worse for the concrete bridges in the USA, Europe and Japan. This problem is due 

to the de-icing salts used in these countries [1]. 

 

Currently bridges are constructed using timber, steel and concrete. These 

conventional materials however have individual problems. These problems can 

lead to a reduced life span or make them unfeasible in certain situations.  

 

Most of the timber bridges in Australia only carry local traffic, usually over a 

small local creek. These bridges are relatively small and usually single span. In 

this situation timber is the ideal material. However the availability of suitable 



 
Chapter 1                                                                                                Introduction  

2 

 

timber is becoming increasingly harder to locate as a result of stricter anti-logging 

legislation.  

  

Termite attack is another problem with timber materials. To prevent termite attack 

the timber is chemically treated. If these chemicals leach into the environment 

more damage to the environment will be done. [2]. White rot is another problem 

with timber bridges. Figure 1.1 shows degradation caused by white rot. The figure 

shows where the fungus has degraded the timber bridge.  

 

 
Figure 1.1: White Rot Degradation of Frank Creek Bridge, Wide Bay 

District (Source: [3]) 

 

 

Concrete is another conventional material commonly used in bridge construction, 

however concrete is very heavy. The cost of transporting precast concrete can be 

significant. As most bridges are small and situated in remote areas it may not be 

feasible to pay the high transport cost.  

 

Another problem with concrete is that the steel reinforcement used corrode. When 

moisture has easy access to the reinforcing steel corrosion will occur, this will 
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reduce the strength of the steel. The access of moisture is dependant on the 

moisture in the environment and the protection of the steel.  

 

Although concrete has these problems it cannot be discarded completely as a 

building material. It is very durable and has a low cost. Concrete is also very 

effective at carrying compressive forces.  

 

Steel also has some durability issues when used as a building material in civil 

infrastructure. The major problem is the low corrosion resistance of some steels. 

During routine maintenance, paint may be applied to prevent corrosion. This to, 

can leach into the environment and cause damage [2]. This routine maintenance 

may not be done by a council because of personnel and budgetary restrictions. 

Steel is also relatively expensive.  

 

Fibre reinforced polymers (FRP) do not have any of these problems: be it 

corrosion or rotting. This makes them a suitable material to replace these 

conventional materials. They also have a number of advantages that make them 

perfect for use in various industries. 

 

The main advantage of FRP material is its strength to weight ratio, this can be up 

to five times that of steel. The fatigue strength of FRP material is better than steels  

[4]. FRP has a very good resistance to corrosion and chemical attack. They also 

have a very high resistants to termite attack [2]. Composites also have better noise 

and vibration properties than metal [4].  

 

The main disadvantage of composite materials is the higher initial cost. However 

this can be lowered by combing FRP material and concrete to construct the 

bridges. Hybrid concrete-FRP bridges also have no constant maintenance costs 

that a bridge constructed of conventional materials requires.   

 

Unlike conventional materials, designs including FRP materials are conducted 

without the use of design handbooks. Regarding other disadvantages, composite 
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also absorb moisture, which can affect the strength and dimensions of the 

material. 

 

Although the initial cost of a concrete-FRP bridge may be high, the low 

maintenance cost may offset this higher cost. The low maintenance cost however 

depends on the durability being assessed and proven. As FRP materials have a 

relative short history, the long-term durability is not yet fully proven.  

 

Two Australian companies, Wagner Composite Fibre Technologies (WCFT) and 

Fibre Composite Design and Development (FCDD), have already completed the 

technical prototyping of the hybrid concrete-FRP bridge. Also, the first FRP 

bridge deck installed in the road network in Australia has also been completed. 

This bridge was installed near Grafton, New South Wales in February 2003 [1]. 

This bridge can be seen in Figure 1.2.  

 

 

Figure 1.2: 1st FRP Bridge in the Australian Public Road Network (Source: 

[2]) 
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As WCFT has a good understanding of the design and construction of hybrid 

concrete-FRP bridges further investigation in this area is not required. However 

durability is not as well understood. Therefore this project will attempt to 

determine if there are any major durability concerns with the construction of the 

hybrid concrete-FRP bridge produced by WCFT.  

 

WCFT is a Toowoomba based company that was started in 2001 when they saw 

an opportunity to develop materials that would be used in a range of applications. 

The main projects being conducted utilizing FRP materials are bridges, beams, 

power pole cross arms and lightweight semi trailers.  

 

 

1.2 Fibre Reinforced Polymer Material Durability 
 

Durability testing of FRP materials are currently being conducted to evaluate the 

long-term reliability of the material. There are a number of factors that affect the 

durability of FRP material; these include moisture, temperature and exposure 

time. 

 

To determine the durability of FRP materials, previous studies will be reviewed. 

Tests will also be conducted at Wagners on the area of the hybrid concrete-FRP 

deemed to be susceptible to durability concerns. 

 

 

1.3 Durability Evaluation 
 

To determine the durability of the hybrid concrete-FRP bridge, it will be 

investigated as several sections. These individual sections will be investigated 

separately. These sections include the concrete, the FRP material and the adhesive 

joints. 
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To test these different areas, accelerated methods are to be used. These 

accelerated methods mimic the actual environment the bridge may encounter 

during its service life. For instance, it will experience cycles of dry and wet 

conditions, high and low temperatures, and UV light. However, the most 

deleterious environment is moisture ingress into the fibre/resin matrix. To test for 

this particular environment, samples of FRP are immersed in solutions like 

deionised water, and salt water.  

 

Freeze thaw cycling is another method of evaluating the durability of the different 

areas of the bridge. Evaluation of freeze thaw durability is not a major concern in 

Australia, however in snow prone areas like Canada, Russia and parts of the 

United States of America it is important. As WCFT has already constructed and 

installed a bridge in such an area, which can be seen in Figure 1.3, freeze thaw 

testing is important.   

 

 

Figure 1.3: Wagner Composite Technologies Bridge Installed in Erie County, 

New York, United States of America (Source: [2]) 
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1.4 Limitations of Current Investigations 
 

It is important to realise that the durability of FRP materials is not yet properly 

assessed. It is also important to realise that the information gained from this 

investigation will also be limited. The main limiting factor is the time allocated 

for the completion of this dissertation. This dissertation is to be completed over 

one year, which a very short time for conducting durability tests. As a result, the 

test samples will be subjected to the environments for only a few months.  

 

In addition, accelerated testing is carried out in extreme conditions. These 

environments may cause damage that is unlikely to occur during the service life of 

the FRP material.  

 

Once the limitation of the investigation is realised, the information that will be 

gained needs to be examined for a purpose. In this case the investigation will 

focus on the first years of use of the FRP bridge.  

 

 

1.5 Project Aim 
 

This project aims to determine if there is any major durability related concerns 

with the construction of a hybrid concrete-FRP bridge and determine if they are 

applicable to the bridge deck produced by Wagner Composite Fibre Technologies. 

 

 

1.6 Dissertation Overview  
 

Chapter 1: Introduction 

This chapter shows the problems with conventional bridge building materials and 

how FRP materials are a likely substitute for these materials. Durability 

evaluation and testing is also discussed. It also indicates the limitations of the 

investigations. 
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Chapter 2: Fibre Reinforced Polymers 

This chapter discusses the manufacturing processes, fibre types and resins that are 

used by FRP manufacturers like Wagners Composite Fibre Technologies. 

 

Chapter 3: Wagners Bridge Deck  

In this chapter the set up of the bridge deck produced by WCFT is discussed. The 

material produced by WCFT is also discussed. 

 

Chapter 4: Durability of Composite Fibre Material and Concrete 

This chapter involves a discussion about the durability of the different materials 

used in the construction of the bridge; this includes FRP, concrete and stainless 

steel.  

 

Chapter 5: Durability of Adhesive Joints 

This chapter details the pervious studies conducted on joints between FRP and 

FRP as well as the joint between concrete and FRP.   

 

Chapter 6: Test Sample Manufacture and Environmental Conditions 

In this chapter the methods of accelerated testing used in durability tests is 

discussed. The effects of these tests are also discussed.  

 

Chapter 7: Moisture Absorption and Shear Test Results 

The durability investigations conducted at Wagners Composite Fibre 

Technologies are detailed in this chapter. This testing will examine the durability 

of the adhesive joint between FRP materials. 

  

Chapter 8: Conclusion and Recommendations 

This chapter will conclude the literature review and present testing and give some 

recommendations as to further investigations that should be completed. 
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Chapter 2  
 

Fibre Reinforced Polymers 
 

2.1 Introduction 
 

Fibre reinforced polymers (FRP) are a combination of two materials: fibres and a 

polymer matrix, resin is the most common matrix. The fibres and polymer matrix 

have different functions. The fibres carry 70% to 90% of the structural load and 

ensure the structure has stiffness and strength. The polymer matrix provides the 

shape and rigidity of the material as it binds the fibres together [3]. 

 

There are three main types of fibre: carbon, glass and aramid, each of these fibres 

have slightly different characteristics and uses. Carbon fibres are used in high 

performance areas because of their high strength and high stiffness. However 

carbon fibres are rarely used because of their high cost. Aramid fibres are mainly 

used in ballistics because of their high-energy absorption. They are rarely used in 

infrastructure because of their inability to bond to resins. Glass fibres are the most 

common because of their relatively low cost and high flexibility [5]. As Wagners 

Composite Fibre Technologies (WCFT) only uses glass fibres, this will be the 

focus of the investigated 
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The second part of FRP materials is the resin. The three main types of resin used 

in civil infrastructure are epoxy, vinylester and polyester. Epoxy is the most 

common resin and is used in many different applications from pultrusion to 

bonding material. Vinylester and polyester are not quite as versatile as epoxy, but 

they are much cheaper which makes them a more viable resin.   

 

FRP materials have a number of advantages over conventional materials. The 

main advantage of FRP material are their high strength to weight ratio, this can be 

up to five times that of steel. Furthermore FRP do not corrode and are resistant to 

termite attack. This gives them advantages over steel and timber as these features 

means that there are low life cycle costs. FRP also have low thermal and electrical 

conductivity. There is also excellent flexibility in design of FRP bridges [2]. 

 

WCFT is a Toowoomba company that specialises in the production of FRP 

material. They have constructed and installed hybrid concrete-FRP bridges in 

Grafton, Darwin, Blackbutt and in the United States of America. WCFT have also 

been developing FRP cross arms for power poles, railway sleepers and a 

lightweight flattop semi-trailer [2]. 

 

FRP materials have been used in aerospace, marine, transport and leisure 

industries. Nowadays FRP materials are finding their way into civil infrastructure 

and now are the second major user [4]. In Australia, the first hybrid concrete-FRP 

bridge on a public road was installed in February 2003 near Grafton, New South 

Wales. WCFT and Fibre Composite Design and Development (FCDD) developed 

this bridge. It was then constructed and installed by WCFT. The installation of the 

bridge took only four days [6]. 
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2.2 Glass Fibres 
 

Glass fibres are account for about 90% of the fibres used in the composite 

industry. This is because of their low relative cost. They have been used in car 

bodies, boat hulls and in sporting applications like fishing poles [7]. Glass fibres 

are sold in two ways, in a woven fabric or as a continuos fibre on a roll. WCFT 

uses only glass fibres thus this will be the focus of this investigation. This section 

is only a brief introduction of glass fibres not a detailed investigation.  

 

Glass fibres are a combination of silica, bionic acid, limestone and several other 

products like clay and fluorspar. To create the glass, all the materials are melted in 

a high refectory furnace and then put into a fibre-drawing furnace. This molten 

glass is then fed through small openings of 1-3 mm and then through another 

aperture with a diameter of 3-20 �m [8]. This produces a continuos glass fibre. 

 

By adding different chemicals, glass fibres with different characteristics can be 

produced. These include A, E, C, S-2 and R glass. These different compositions 

have varying advantages, these can be seen in Table 2.1.  

 

Table 2.1: Glass Fibre Range and Advantages (Source: [7]) 

Glass Type Advantages 

E High Electrical Insulation 

A Good Chemical Resistance 

C Excellent Chemical Resistance 

S-2 Higher Tensile Strength 

R Good Alkali Resistance 

 

 

Glass fibres are commonly used because of their low specific gravity and their 

good insulating properties. Glass fibres are also relatively inexpensive [7]. 
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2.3 Resin 
 

Resins form the second part of the FRP material. A resin matrix is formed around 

the fibres through impregnation by one of several different manufacturing 

processes. Once the resin has cured the final product is produced. 

 

In the composite industry there are three main types of resins. These are epoxy, 

vinylester and polyester. WCFT use epoxy and vinylester to produce their 

different products. This section is only a brief introduction of resins not a detailed 

investigation. 

 

Vinylester and polyester are thermoset resins, typically cheaper than epoxy. A 

comparison of vinylester, polyester and epoxy is shown in Table 2.2. 

 

Table 2.2: Mechanical Properties of Epoxy Polyester and Vinylester   

(Source: [5]) 

 Density 
(kg/m3) 

Tensile 
Modulus 

(Gpa) 

Tensile 
Strength 

(Mpa) 

Compressive 
Strength 

(Mpa) 

Flexural 
Modulus 

(Gpa) 

Flexural 
Strength 

(Mpa) 

Approximate 
Cost 

(AUD$/kg) 

Epoxy 1000-1300 2.4-6 55-100 90-115 2.9 95-125 10-12 
Vinylester 1000-1200 3.2-3.6 70-90 105-125 2.8-3.4 100-145 6-8 
Polyester 1100-1460 2.8-3.4 40-80 100-120 2.5-3.2 80-100 3-4 

 

 

2.3.1 Epoxy 

 

Epoxy is the most common resin because it can be used in many different ways 

and applications.  It is a thermoset resin, this means once the resin has cured it 

cannot be remelted and reformed. Thermoset resins are brittle, but they have a 

better fibre penetration.  

 

The main advantage of epoxy is its excellent mechanical properties and its 

excellent adhesion. Epoxy is also safe while it is curing, as there are no volatile by 
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products released. However these properties mean that epoxy is one of the most 

expensive resins. There is also a longer curing time compared to other resins. By 

changing the chemicals involved in the manufacture of epoxy, these 

characteristics can be changed or improved.  

 

Epoxies are made of two parts, a catalyst and a hardener. By mixing these two 

parts together a curing reaction occurs. Changing the hardener can alter the cure 

rates of the epoxy.  

 

There are three forms of epoxy: liquid, semi solid and solid. These different forms 

allow epoxy to be used in many different applications. A liquid epoxy can be used 

in the pultrusion, filament winding and lay-up manufacturing processes. When the 

epoxy is solid it can be used to bond materials together.  

 

 

2.3.2 Vinylester 

 

Vinylester resin is a combination of epoxy and acrylic resins and has similar 

curing properties to epoxy. It was developed for use in corrosive environments. 

The other major advantage of vinylester is that it has better mechanical properties 

than most unsaturated polyesters [4]. This property means that they are being 

increasingly used in civil infrastructure.  

 

These improved properties mean that the cost of vinylester is more than the 

polyester. Vinylester resin is also sensitive to UV radiation. However this damage 

can be minimised with the use of a UV resistant coating. [9]  

 

 

2.3.3 Polyester 

 

Unsaturated polyesters are a very common type of resin, they account for 75% of 

the total resins used. They are however best known for their use in textiles and 
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clothing. Polyesters can be used in a variety of manufacturing processes and have 

been used to produce boats, truck components and furniture [10]. 

 

Polyester resins are a combination of reactive polymers and reactive monomers. 

To induce curing a catalyst is required. When polyester is curing nothing is 

released which makes it very safe. There are many different types of polyester, 

each with their own advantages. These include low shrinkage, weather resistant, 

chemical resistant and general purpose. [11] 

 

 

2.4 Production Methods 
 

The production of FRP material can be accomplished through many different 

processes. The most common of these processes are pultrusion, lay-up, filament 

winding and die moulding.  The processes used at WCFT are pultrusion and lay-

up. In this section, a basic introduction of these two processes is discussed.  

 

 

2.4.1 Pultrusion 

 

Pultrusion is an automated process that produces a continuous product of constant 

cross sectional shape. The fibres used in this process can be rovings, filament 

mats and fabrics. Figure 2.1 shows the layout of a pultrusion machine. 

 

 

 

 

 

 

 



 
Chapter 2                                                                         Fibre Reinforced Polymers  

15 

 

 

 

Figure 2.1: Pultrusion Machine (Source: [2]) 

 

 

This figure shows that the glass fibres are kept in rovings, stored in a rack. These 

glass fibres are pulled through a resin impregnator, this is where the fibres are 

‘wet out’ by the resin. This wet material then passes through a forming and curing 

die. The curing die heats the wet material to a temperature over 100oC in order to 

cure the resin.  

 

Throughout this process a set of pullers are used to keep the material moving at a 

constant rate. When the required length of material has been produced a cut off 

saw located at the end of the machine cuts the material. This process can produce 

a range of shapes. Figure 2.2 shows some of these shapes.  
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Figure 2.2: Typical Pultruded Shapes (Source: [12]) 

 

 

This process produces material with a fibre volume of about 60%. Pultrusion can 

produce products with very high strengths and can generally be performed at a 

low cost. This process also produces a low material scrap rate, as the control of 

the process is very good.  

 

 

2.4.2 Lay-up 

 

The lay-up method is the most common process of manufacturing FRP material. It 

is however very labour intensive. This process can produce material with many 

different shapes and cross-sections. The problem with this process however, is 

that it produces a low fibre content in the fibre material. The average is about 

40%. A lower fibre volume results in a material with lower strength and stiffness. 
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In this manufacturing process, dry glass roving and resin are combined using hand 

rollers. The orientation of the glass rovings that can be used in the lay-up process 

varies. Typical orientations include unidirectional fibres, and a combination of 

unidirectional and 45o rovings. FRP material can be designed to have adequate 

shear strength by varying the orientation of the fibres. The manufacturing process 

is the same for all the glass orientations.  Figure 2.3 shows the fibre orientation of 

a triaxial fibre. As a comparison biaxial fabric only has 0o and 45o fibres.  

 

 

Figure 2.3: Fibre Orientation for a Triaxial Fabric (Source: [13]) 

 

 

During the lay-up process, a layer of the resin is applied to a non-stick surface to 

ensure to material will be completely covered by the resin. The first layer of glass 

is applied to the resin and rollers are used to push the resin through the fibres to 

ensure there is a complete ‘wet out’ of the fibres. 

 

More resin and layers of glass fibre are applied until the required numbers of 

layers or thickness is obtained. This needs to be done fairly quickly to prevent the 

resin curing, resulting in large air bubbles being trapped in the material. This 

process can be seen in Figure 2.4. 
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Figure 2.4: Lay-up (Source: [14]) 

 

 

Lay-up is a simple manufacturing process that requires minimal equipment. The 

final product of the material can also be changed easily and does not need to be 

uniform. However there can be problems with the quality of the final product and 

some health issues may exist with some of the resins used.   

 

 

2.5 Major Applications of Composite Fibres 
 

FRP materials are used in many different engineering applications. These range 

from military and aerospace to the marine industry. Figure 2.5 shows the 

breakdown of the FRP market in the United States of America. This figure shows 

that the majority of FRP materials are used in the transport industry.  
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Figure 2.5: Market of Composite Shipments in 1999 and the Expected 

Shipment in 2000 (Source: [4]) 

 

 

Table 2.3 shows a range of industries and the applications in which FRP materials 

are used. It used in these industries because of they are lightweight, corrosion 

resistant and flexible in design.  

 

Table 2.3: Common Applications of FRP Materials (Source: [4]) 

Industry  Common Applications 

Aerospace Rudders, spoilers, doors etc in planes 

Construction Bridges, formwork and trusses 

Automotive Roof panel, bumper bar and radiator support 

Marine Hulls and decks 

Sporting Bike frames, tennis racquets and hockey sticks  
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Chapter 3  

 

The Wagner Bridge Deck and FRP Material 
 

3.1 Introduction 
 

To determine the durability of the hybrid concrete-FRP bridge constructed by 

WCFT, it is important to understand the bridges basic design. The design of the 

hybrid concrete-FRP bridge was performed in collaboration between FCDD and 

WCFT. This design has been used on the bridge near Grafton, NSW and for all 

the other bridges produced by WCFT. 

 

The bridge is made of different sections whose durability will need to be 

investigated separately. Most importantly, the bridges already constructed, have 

not been in service long enough to assess their durability directly from onsite 

observations. Therefore, it will be necessary to rely on previous studies dealing 

with the durability of FRP bridges in general, and FRP materials in particular, to 

gain an understanding of the long-term behaviour of these bridges.  
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The materials used in the construction of the bridge will also be detailed in this 

section. This is important as variations in the manufacture of the material may 

have large effects on the durability of the bridge.  

 

 

3.2 Basic Design 
 

The initial design of the concrete–FRP bridge is a product of the collaboration 

between several companies and the University of Southern Queensland. The 

companies involved where WCFT, Huntsman Composites, Main Roads 

Queensland, Connell Wagner and the New South Wales Road and Traffic 

Authority.  

 

Professor Gerard Van Erp et al. [1] presents the design of the hybrid bridge and 

the initial test results in a paper entitled: “An Australian approach to fibre 

composite bridges”, which can be accessed at www.fcdd.com.au. The basic 

design approach done by Professor Gerard Van Erp is presented in this section. 

 

The hybrid concrete–FRP bridge deck design is based on reinforced concrete 

fundamentals. To understand the design philosophy, first consider a reinforced 

concrete beam as shown on Figure 3.1. This beam uses steel reinforcement in the 

tension side, this is because concrete is poor in tension but strong in compression.  

 

Concrete beams designed in this manner have two main disadvantages, the first 

being that 75 – 80% of the beams weight is not directly contributing to the 

strength of the beam [1]. The second disadvantage is that during service the 

reinforcing steel may corrode if the beam is placed in a moist environment and is 

not properly protected. 
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Figure 3.1: Concrete Beam 

 

 

Based on the design of the concrete beam, and the aforementioned disadvantages, 

one may be tempted to redraw the section, and eliminate all the extra concrete that 

is not participating in the load carrying ability of the beam. This is shown in 

Figure 3.2.  This design would eliminate about 75 % of the total weight [1].   

 

 

Figure 3.2: Effective Section of a Concrete Beam 
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This idea inspired the design of the hybrid concrete-FRP beam, where the 

unnecessary concrete was simply replaced by FRP, which is much lighter and 

capable of carrying tensile forces. The FRP replaces the steel reinforcement, 

which are vulnerable to corrosion. The effective section of the FRP beam is 

shown in Figure 3.3. This figure can be compared to the beam shown in Figure 

3.2 to see the simple change that was made [1].   

 

 

Figure 3.3: FRP Flange Replaces the Steel Reinforcement 

 

 

Since concrete is a very good material in compression, it is utilised in the hybrid 

beam to carry the compressive forces that develop in the section above the neutral 

axis. In addition, this concrete also provides the bridge with a vehicular traffic 

surface that the public will view positively.   

 

As shown in Figure 3.4, two webs are used to separate the compression and 

tension sections of the beam. These webs replace ineffective concrete in a normal 

reinforced concrete beam. By replacing the concrete, the weight of the beam is 

reduced by about 66% [1]. 
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Figure 3.4: Complete Hybrid Concrete-FRP Bridge Section 

 

 

To construct the bridge deck, several of these beams are manufactured, and joined 

together as shown on Figures 3.5 and 3.6.  

 

 

Figure 3.5: Bridge Deck Produced Using FRP and Concrete 



 
Chapter 3                                             The Wagner Bridge Deck and FRP Material 

25 

 

 

Figure 3.6: Picture of a Hybrid Concrete-FRP Bridge Deck Produced by 

WCFT 

 

 

To guard against the corrosion of negative moment reinforcement, the concrete 

contains stainless steel reinforcement. This stainless steel, which has the same 

mechanical properties as normal steel, is suitable for long term service as it is less 

susceptible to corrosion. Having reinforcement in the concrete will also help 

prevent any cracks from appearing in the surface during installation and the life of 

the bridge.  

 

This new design has several advantages over existing bridges. This design can be 

tailored for any particular site. In addition, the materials are used efficiently and 

economically. The risk of corrosion is greatly reduced, since the bridge uses 

corrosion resistant materials: FRP, concrete and stainless steel. The low weight of 

the bridge means that the transportation cost is greatly reduced as fewer trucks are 

required.  
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3.3 Materials Used in Construction 
 

There are several different types of materials used to construct the bridge section. 

Wagners produce most of the materials using a high level of quality control.   

 

High strength concrete with a 28-day strength of about 60 Mpa, produced by 

Wagner’s concrete division, is used in the compression zone of the bridge. The 

final strength of the concrete is determined by compression tests carried out at the 

Wagner Concrete Laboratory.   

 

The laminates used for the webs are produced through pultrusion. The cross 

section is a 100 x 100 x 5 square hollow section made from glass fibres and 

vinylester resin. This material is used to make the webs. The fibre weight of this 

material is 78%; this was found through a burn-off test.  

 

WCFT also produce a pultruded plate of size 300 millimetres wide by 6 

millimetres thick, which contains 79% of fibres by weight. The tension flange is 

made from plate material glued together.  

 

 

3.4 Areas for Durability Issues 
 

To successfully assess the durability of the bridge, it is necessary to identify all 

the possible areas of concern. Based on the results of this preliminary 

investigation, testing of coupons will be carried out where deemed appropriate. 

However, for issues requiring longer periods of time, use will be made of existing 

studies published in the literature. As per Figure 3.4, a number of areas of concern 

can be identified as:  

 

• The adhesive joint between the concrete and the composite fibre material 

• The adhesive joint between the web material 

• The web material  
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• The adhesive joint between the web and flange material 

• The composite fibre flange material  

• The concrete 

• The stainless steel reinforcement 

 

These areas are highlighted on Figure 3.7. Investigating these areas separately will 

make it possible to identify the most vulnerable ones.      

 

 

Figure 3.7: Areas for Durability Investigation  

 

 

3.5 Preliminary Investigation 
 

Based on a preliminary literature investigation it appears that the major area of 

concern is the adhesive joint. Both Castro et al [15] and Beevers [16] identified 

adhesive joints as an area of uncertain durability. The adhesive joints used in their 

investigations were slightly different than that used in the hybrid concrete-FRP 

bridge. For this reason a durability investigation was undertaken to examine the 

adhesive joints used in the WCFT Bridge. This investigation and the results 

gained are given in chapters 6 and 7. 
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The next area of concern is the FRP material its self. As reported in [9] FRP can 

suffer damage from the moisture, temperature, ultraviolet light, creep and fatigue. 

All these aspects of the environment will be subjected to FRP material while it is 

in service. However the damage from some of these aspects can be reduced using 

specific techniques during the construction of the FRP material: for example using 

a UV resistant coating. For the other environmental aspects, durability 

investigations must be carried out. As there is limited time to conduct this 

research, the durability of the FRP material and the other areas of durability 

concern, shown on Figure 3.7, will be determined using previous investigations. 

The results from this investigation are detailed in chapters 4 and 5. 
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Chapter 4  
 

Durability of FRP Material and Concrete  
 

4.1 Introduction 
 

This chapter has been divided into four sections. These sections will investigate 

the previous durability studies conducted on pultruded and lay-up FRP material, 

concrete and stainless steel rods. Pultruded and lay-up FRP materials are 

considered different as the manufacturing process and the resin content may affect 

the durability of the materials.  

 

In this part of the investigation, tests conducted on material similar to that 

produced by WCFT are considered. For this reason, only glass fibres were 

investigated. The majority of the published work concerns vinylester, this is the 

main resin that is used in the production of the WCFT FRP material.  

 

To test for the durability of the material, a range of environments were 

investigated. This should give a good indication the effect these environments 
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have on the materials. The mechanical tests also vary, although the main type of 

test is the short beam shear test and the tensile test.  

 

In order to compare the results from all of the tests, they will be reported as a 

percentage of strength retained. This has been calculated by the following 

equation: 

 

StrengthInitial
xStrengthInitialStrengthFinal

tainedStrength
100

Re%
−=  

 

 

4.2 Lay-up FRP Material Durability  
 

Lay-up material is the main type of FRP produced. However, there is a limited use 

of this type of material in the WCFT Bridge. Nonetheless, it is important to 

examine this material as it may be applied to the bridge in future and give an 

indication of the durability of the FRP material itself.  

 

When this process is carried properly, the fibre volume of lay-up FRP material 

can be similar to that of pultruded material. However the fibre volume can be as 

low as 30% [17]. It is important to realise that this reduced fibre content may 

affect the long-term durability of the material.  

 

Wu et al. [18] investigated the effect of moisture on lay-up FRP materials. After 

12 months of immersion, the tensile strength and short beam shear results were 

very similar despite the differences in the immersion solutions used. Table 4.1 

shows the results from these tests.  
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Table 4.1: Reduction in Strength of Fibre Composite Material after 12 

Months of Immersion (Data Source: [18]) 

 Tensile Strength Short Beam Shear 

Environmental Condition 
% Reduction in 

Strength 

% Reduction in 

Strength 

Deionised Water 11.29 19.3 

Seawater 13.50 15.6 

Synthetic seawater 12.95 15.4 

 

 

Zhang et al. [17] conducted similar tests to Wu et al., however they resulted in 

slightly worse results. After 11 months in saltwater the samples lost 25.5% tensile 

strength. This may be a result of a lower fibre volume in these samples. Thermal 

cycling was also conducted on the lay-up material. After 120 cycles from 100oC 

to 15oC the strength of the samples reduced by only 11%. Natural weathering was 

also conducted, after 11 months only a 6% strength reduction was recorded.  

 

Karbhari et al. [19] used freeze thaw cycling to examine the FRP material. These 

experiments also showed the effect of different thawing solutions. The results of 

the tests conducted are shown in Figure 4.1 and 4.2. These figures show the 

change in strength when the samples were tested in tension and compression.   
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Figure 4.1: Change in Tensile Strength After 100 Days Exposure (Source: 

[19]) 

 

 
Figure 4.2: Effect of Environmental Exposure on Compressive Strength 

(Source: [19]) 

 

 

Both figures show that considerable damage has been done during the first 30 

days of exposure. They also show that the damage to the samples is increased 

when the thawing cycle is conducted within a solution. 
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Karbhari et al. [20] also conducted tests on samples with different fibre 

orientation in a range of different environments for a period of 57 weeks. Table 

4.2 shows the results from the tension and short beam shear tests. 

 

Table 4.2: Percent Reduction in Mechanical Properties after 57 Weeks 

Immersion (Data Source:  [20]) 

      0o Orientation 90o Orientation 

Fabric 

Orientation Exposure Layers 

Tensile 

Strength 

Tensile 

Modulus 

Short Beam 

Shear 

Tensile 

Strength 

Tensile 

Modulus 

Short 

Beam 

Shear 

Unidirectional Water at 23C 2 47% 12%   20% 2%   

    4 62% 13% 13% 14% 8% 53% 

  Water at 60C 2 64% 12%   47% 7%   

    4 47% 6% 24% 15% 13% 54% 

  PH 10 Buffer 2 23% 4%   22% 12%   

    4 27% 18% 15% 25% 7% 31% 

Biaxial Water at 23C 2 27% 19%   12% 10%   

    4 16% 5% 8% 21% 7% 5% 

  Water at 60C 2 68% 23%   56% 21%   

    4 60% 26% 16% 64% 14% 5% 

  PH 10 Buffer 2 24% 28%   10% 19%   

    4 1% 11% 14% 4% 8% 0% 

Triaxial Water at 23C 2 14% 23%   18% 12%   

    4 15% 4% 13% 8% 4% 8% 

  Water at 60C 2 57% 20%   61% 29%   

    4 55% 7% 34% 41% 7% 21% 

  PH 10 Buffer 2 4% 31%   15% 6%   

    4 13% -4% 27% 9% 11% 17% 

 

 



 
Chapter 4                                                  Durability of FRP Material and Concrete 

34 

 

These results show that over 57 weeks the effect of the water at room temperature 

has a greater effect on the tensile strength than the solution with a pH of 10. Most 

of the results show that the thicker the samples are the greater the resistance to 

degradation.   

 

 

4.3 Pultruded FRP Material Durability 
 

The main type of pultrusion is unidirectional pultrusion. This menas that the fibres 

are orientated in the same direction. This type of material is used in the tensile 

flange of the WCFT bridge. The fibre volume for this process is about 60% [21]. 

Since this is greater than the fibre volume for lay-up material the durability of 

pultruded material should be better. By having a higher fibre volume, the 

pultruded material should absorb less moisture. This should limit the damage that 

can be induced by the moisture. 

 

Liao et al. [22] found that after 164 days of immersion in deionised water, the 

pultruded samples lost 5% flexural strength when the samples were orientated at 

0o for testing. They also found that after 380 days of immersion, the samples lost 

30% tensile strength. However, the samples that these tests were conducted on 

had a fibre volume of 34%. This is well below the average fibre volume for 

pultruded material. Chopped fibre strand mats where also used in the production 

of this material. As a result of this, the samples absorbed 0.64% moisture after 

164 days, this is also higher than the average.  

 

Chu et al. [21] conducted tests on pultruded material at a range of elevated 

temperatures. He determined that the samples tested by a short beam shear test 

reduced by 50%. This was after being exposed to 80oC deionised water for 75 

weeks. He also found a 46% when an alkali solution was used. By conducting 

tests at elevated temperature a prediction of the strength retention can be 

determined. Figure 4.3 and 4.4 where developed from these experiments.  
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Figure 4.3: Prediction of Tensile Strength (Source: [21]) 

 

 

 

Figure 4.4: Prediction of Short Beam Shear Strength (Source: [21]) 

 

 

These graphs show that the strength retention during the life of the FRP material 

is dependant on its application, for example tension or bending. Chu also 
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determined that there was limited strength that can be recovered after the samples 

were subjected to these harsh environments.  

 

Chu’s results are similar to the tests conducted by Nishizaki et al. [23]. Their tests 

were conducted at different humidity levels and immersion times. Figure 4.5 

shows the test results determined from Nishizaki’s investigations. 

 

 

Figure 4.5: Retention of Bending Strength (Source: [23]) 

 

 

Nishizaki hypothesises that the strength reduction is caused by the separation of 

the fibres and resin when the samples are exposed to 60oC water. These 

temperatures may not be achieved in the actual environment and this degradation 

may not occur.  

 

Gentry [24] conducted tests on pultruded vinylester/E-glass plate with a thickness 

of 6.25 millimetres and a fibre volume of 22%. This is very similar to the material 

produced by WCFT although the fibre volume is much lower. Figure 4.6 shows 
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the results from tensile tests after the material was exposed to several 

environments. 
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Figure 4.6: Percent Tensile Strength Retention of Vinylester/E-glass 

Composite Bars Subjected to Varying Environments (Data Source: [24]) 

 

 

The results for the samples exposed to deionised water at room temperature are 

unusual. After a decrease of about 10% after 84 days the samples regain some 

strength so that only 3% strength is lost. The authors have not indicated a reason 

for this behaviour.   

 

FRP bars used as reinforcement were also investigated. This particular type of 

material is not used in the WCFT bridge but the control of the fibre volume is 

similar to the pultrusion material produced by WCFT.  

 

Sen et al. [25] conducted tests on bars in a solution with a pH of 13.5. These 

samples also had an applied stress. The combination of these two accelerated 

factors increased the degradation. The results of the tests were alarming since a 

sample exposed to 6 months with 25% ultimate load applied retained only 8% 

tensile strength while the other 5 samples failed within 173 days. When there was 

no load applied the samples lost 60% tensile strength after only 3 months.  
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Tannous et al. [26] investigated FRP bars subjected with a range of different 

environments. The strength reductions from these experiments are shown in Table 

4.3. Two types of resins where used in the production of these bars vinylester and 

polyester. These results are much better than the results determined by Sen. 

 

Table 4.3: Percentage Strength Reduction in FRP Rebars After 6 Months 

Exposure (Data Source [26]) 

  Vinylester Polyester 

 Environment 10 mm dia 19.5 mm dia 10 mm dia 19.5 mm dia 

Water T=25C 3% 3% 6% 5% 

Hydrated T=25C pH=12 13% 11% 25% 19% 

Cement T=60C pH=12 20% 12% 29% 20% 

HCI pH=3 4% 4% 7% 6% 

NaCI 3.5% 6% 5% 11% 8% 

NaCI+CaCI2 7% 23% 6% 27% 12% Salt water   

 NaCI+MgCI2 7% 24% 8% 29% 11% 

UV 31.7x10-6 J/sec/cm2 - - 1% - 

 

  

This table indicates that the hydrated cement solution has the greatest effect on the 

bars. In three of the samples the effect of the higher temperature is minimal. The 

effect of the water and the acidic solution are very similar. It can also be seen that 

the polyester has a greater degradation in these environments. The UV exposure 

conducted on the polyester bar has a minimal effect on the strength.  

 

Gentry [24] also conducted tests on polyester FRP bars. The results are shown on 

Figure 4.7. These results are not as severe as the results found in the tests 

conducted by Sen [25], they are however similar to the results by Tannous [26]. It 

should be noted however that the environments used by Gentry are not as severe 

as those in the other two investigations but the exposure time for these tests are 

longer.  
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Figure 4.7: Percent Flexural Strength Retention of Polyester/E-glass 

Composite Bars Subjected to Varying Environments (Data Source: [24]) 

 

 

Sao et al. [27] conducted tests on FRP material with transverse rovings. They 

conducted tests on the flange of a FRP sheet pile. As the fibre volume for the 

flange is similar to the material produced by Wagner’s the results from this 

material are relevant and displayed on Figure 4.8.   
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Figure 4.8: Percent Tensile Strength Retention in FRP material with 

Transverse Fibres Tested in Tension (Data Source: [27]) 
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Sao also conducted freeze thaw tests on the same FRP material. After 564 cycles 

the samples retained only 53% strength [27]. Prior to the freeze thaw cycling the 

samples were immersed in 70oC for 192 days, this is where the majority of the 

damage was done. The freeze thaw cycling only caused 5% damage to the 

samples.  

 

 

4.4 Concrete Durability 
 

Concrete is used in the FRP bridge as the compression member of the structure 

and therefore its durability needs to be investigated. The concrete division at 

Wagners produces the concrete used by WCFT. Compression samples are taken 

each time to ensure high a quality of the concrete is used.  

 

Concrete can be attacked by seawater by either chemical or physical actions, the 

intensity of these is dependant on the location of the concrete relative to the sea. 

The dissolved salts in the seawater are the cause of these chemical attacks. 

 

Salt weathering can occur when the bridge is in direct contact with seawater and 

from air-borne salts. When the water evaporates, some of the dissolved salts can 

remain in the form of crystals.  Re-hydration and growth of the crystals occur by 

the repeated wetting of the concrete. An expansive force is then exerted on the 

concrete. Salt weathering can occur for several millimetres in the concrete [28]. 

The aggregate selected may also be subjected to damage. A dense and low 

absorption aggregate should be selected. The type of cement used is not as 

critical. 

 

De-icing salts can also cause salt weathering to occur on concrete bridges. De-

icing salts are used in snow prone areas to remove the snow from bridges. This 

practice can also cause scaling of the concretes surface and corrosion to occur to 
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the reinforcement. However, scaling can be reduced by the use of air entrainment 

in the concrete [28]. A high resistance to scaling is also shown in high strength 

concrete.  

 

Figure 4.9 shows the effect of the temperature on wet concrete. A range of 

temperatures were used to moist-cure the concrete for 28 days. The specimens 

were then moist-cured at 23oC for the remaining time. This figure indicates that 

the curing temperature has a long-term effect on the strength of the concrete as it 

takes longer for the samples to reach the 28-day strength.  

 

 

Figure 4.9: Effect of Curing Temperatures on the Compressive Strength of 

Concrete (Source: [29]) 

 

 

Freeze thaw resistance of concrete is an important feature for the hybrid concrete-

FRP bridge produced by WCFT as they have already installed a bridge in a snow 

prone area. Mohamed et al. [30] conducted investigations on concrete subjected to 

freeze thaw conditions at the Green Mount Dam, Colorado, United States of 

America. Table 4.4 shows the results from compressive tests conducted on 

concrete cores taken from the dam wall. The cement type shows the variations in 

chemical and physical characteristics of the cement used, these are standard 

groups set by the American Society for Testing Materials (ASTM). 
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Table 4.4: Percent Strength Increase of Concrete Cylinders (Data Source: 

[30]) 

Cement 

Type 

Concrete 

Number 

2 Year 

Exposure 

53 Year 

Exposure 

1 16 21 % 58 % 

1 16B 28 % 55 % 

1 18 28 % 55 % 

2 21 55 % 61 % 

3 31 15 % -36 % 

3 34 17 % 8 % 

3 34B 21 % 45 % 

4 42 106  % 102 % 

4 42B 87 % 117 % 

4 43A 70 % 71 % 

5 51 55 % 53 % 

 

 

The results show that most of the concrete samples increased in strength after 2 

and 53 years of exposure. Only sample 31 reduced in strength after the 53 years of 

service. It was observed in this sample that soluble salts migrated from within the 

wall and crystallised on the outer surface and the strength reduction was caused 

by disintegration of the internal structure. 

 

From these investigations the authors concluded with that air entrainment helps 

the concretes resistance to freeze and thaw, however distress may be caused by 

the freeze thaw action depending on the severity and frequency of the cycling. 

The authors also state that an air entrainment of 2-6% increases the concretes 

resistance to freeze thaw damage [30]. 
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4.5 Stainless Steel Durability 
 

Stainless steel is used in the hybrid concrete-FRP bridge to reduce any possible 

cracks from appearing in the concrete. It is used because of its ability to resist 

corrosion better than regular steel. This is a result of the large amount of 

chromium in the steel [31]. There are many different types of stainless steel, and it 

is important that the correct grade be chosen for the particular situation. 

 

Gonenc [32] conducted durability tests on two types of stainless steel bars. The 

environment the bars were subjected to was hot water. This environment is used 

to test the steel under the most intense environment. A comparison of the two bars 

used is shown in Table 4.5. 

 

Table 4.5: Comparison of Two Stainless Steel Bars Used in Experiments 

(Data Source: [32]) 

 

 

 

The specimens used in this experiment were exposed to water at range of 

temperatures from 44oC to 80oC for a period of up to 224 days. The solution used 

was 5% salt water. Once the exposure was complete the strength reductions were 

tested through flexural, tension and short beam shear tests. Through these tests the 

flexural yield strength, tensile strength and the shear yield strength were obtained, 

these are showed in the following graphs. 

 

Figure 4.10 and 4.11 shows the changes in the flexural yield strength of the two 

samples. When the two graphs are compared a number of similarities are obvious. 

The first observation is that the environment has caused an increase in the flexural 
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yield strength. Both set of the samples peaked after 112 days of exposure, but only 

stainless steel sample 2 showed a decrease of all temperature samples. The 68oC 

from sample 1 exhibited slightly different behaviour than the other temperatures. 

The author did not give a reason for this behaviour.  

  

1820

1840

1860

1880

1900
1920

1940

1960

1980

2000

0 50 100 150 200 250

Time (Days)

Fl
ex

ur
al

 Y
ie

ld
 S

tr
en

gt
h 

(M
P

a)

44

56

68

80

 

Figure 4.10: Flexural Yield Strength Changes at Different Temperature for 

Stainless Steel Sample 1 (Data Source: [32]) 
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Figure 4.11: Flexural Yield Strength Changes at Different Temperature for 

Stainless Steel Sample 2 (Data Source: [32]) 
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Figures 4.12 and 4.13 shows the test results from the short beam shear tests. Once 

again the two samples showed similar behaviour for all temperatures. Unlike the 

flexural tests, the shear yield strength did not decrease at the end of the test 

period. 
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Figure 4.12: Shear Yield Strength Changes at Different Temperature for 

Stainless Steel Sample 1 (Data Source: [32]) 
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Figure 4.13: Shear Yield Strength Changes at Different Temperature for 

Stainless Steel Sample 2 (Data Source: [32]) 
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Figures 4.14 and 4.15 show the tensile tests conducted on the two samples at two 

different temperatures. The results of these tests are very different and showed no 

similarities between the two samples. There are little similarities between the 

individual test samples unlike the bending and flexural tests.  
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Figure 4.14: Tensile Strength Changes at Different Temperatures for 

Stainless Steel Sample 1 (Data Source: [32]) 

 

 

In Figure 4.15, the 56 day test for the 68oC samples are lower than the other test 

results. The author does not give any explanation for this behaviour.  

 



 
Chapter 4                                                  Durability of FRP Material and Concrete 

47 

 

1150

1160

1170

1180

1190

1200

1210

1220

0 50 100 150 200 250

Time (Days)

Te
ns

ile
 S

tr
en

gt
h 

(M
P

a)
46

68

 

Figure 4.15: Tensile Strength Changes at Different Temperatures for 

Stainless Steel Sample 2 (Data Source: [32]) 

 

 

This investigation shows that stainless steel has a good resistance to this harsh 

environment. The flexural and bending test showed an increase in strength over 

the test period but the tension tests showed unusual behaviour.     
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Chapter 5  

 

Durability of Adhesive Joints 
 

5.1 Introduction 
 

This chapter covers the durability of the different applications of adhesive joints; 

namely: concrete to FRP joint, FRP to FRP joint and steel to steel or FRP joint. 

Since joints are the prime area of concern in durability, they have been given 

particular attention in durability studies [33-38].  Different types of environments 

and mechanical tests were used to gain a fairly good indication of the joints final 

characteristics. 

  

The change in the mechanical properties is reported as follows:  

 

 
 

By using this equation all of the different tests can be compared more easily. 
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5.2 Concrete to FRP Adhesive Joint 
 

The adhesive joint between the concrete and FRP is used in many different ways. 

The most common is when the FRP is used as an external reinforcement for 

beams and columns. It is also used to repair a damaged section in a structure, like 

a single beam in a bridge. This can be done instead of replacing the entire 

structure. [33] 

 

Green et al [33] conducted test on the concrete to FRP adhesive joint subjected to 

freeze thaw cycling. The cycling was done once a day from –18oC in a freezer to 

+15oC. The thaw cycle was done in water. To subject the joint to shear stresses 

the beam was tested in four point bending.  

 

Three types of beams were tested; these included a plain concrete beam, 

reinforced beam and beams with external glass fibre reinforcement. The adhesive 

used to glue the FRP to the concrete was an epoxy. The results of the tests are 

shown in Figure 5.1. 
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Figure 5.1: Strength Changes in Concrete Samples Subjected to Freeze Thaw  

Cycling (Data Source: [33]) 
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The effect of the freeze-thaw cycling caused a strength reduction in the beam with 

the FRP reinforcement. The authors hypothesise that this decrease could have 

occurred within the FRP material itself. Findings from Green [34] support this 

hypothesis. 

 

Karbhari et al [35] also conducted tests on beams externally strengthened by FRP 

material. The FRP material was produced using the lay-up method, this was done 

directly onto the concrete beams. Two types of epoxy were used, one from the 

Tonen Corporation and one from Epon.  

 

The samples were subjected to several different environments; these include 

freeze thaw cycling, water, salt water and freezing. This was done over a period of 

60 days. The mechanical test used in this experiment was also a four point 

bending test. The results of the tests are shown in Figures 5.2 and 5.3. 

 

 

Figure 5.2: Strength Changes in Samples Exposed to Different Environments 

with Tonen Epoxy (Source: [35]) 
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Figure 5.3: Strength Changes in Samples Exposed to Different Environments 

with Epon Epoxy (Source: [35]) 

 

 

By comparing the two figures, it can be seen that the type of epoxy affects the 

results. Under all of the environmental conditions the Tonen epoxy showed the 

greater degradation. This indicates that the durability of the adhesive joint 

between concrete and FRP is dependant on the adhesive used.  

 

Lyons et al. [36] conducted bond tests using a modified double cantilever beam 

test. The samples were first subjected to a range of hot and wet environments. 

 

To conduct these tests the FRP material is produced through lay-up directly onto a 

masonry substrate. One edge of the FRP materials is pulled up and the strain 

energy release rate (G) is calculated through a function of crack length, and load 

P. This is shown in Figure 5.4. The test was designed to analyse the bond between 

the FRP and concrete. 
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Figure 5.4: Modified Double Cantilever Beam Test (Source: [36]) 

 

 

Table 5.1 shows the results from the tests. The samples were either in hot air  

(dry) or at a humidity of 95% (wet). 

 

Table 5.1 Strain Energy Release Rates at 60mm Crack Length for Samples 

Subjected to Different Environment (Source: [36]) 
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The results show that there is no correlation between exposure time and the 

energy release rate. There was also no statistical variance in the 60oC wet, 60oC 

dry and 100oC dry results.  

 

After the test was conducted the failure surface was examined. As the temperature 

increased the failures changed from within the FRP material to the bond between 

the FRP and the concrete.  

 

 

5.3 FRP to FRP Adhesive Joint 
 

This type of adhesive joint requires a detailed investigation as it is used in many 

different places in the bridge cross section.  It is used in the manufacture of the 

compression flange, joining the 100 x 100 material together to form the webs and 

joining the webs and tension flange together.  

 

Castro et al. [15] examined the epoxy bond between two pieces of graphite fibre 

reinforced polymer material. Even though this examination was done with 

graphite, the focus of the investigation was the adhesive joint. Two different 

environments were used in this investigation; moisture immersion and freeze thaw 

cycling. The mechanical test used after the environmental exposure was the lap 

shear test. The lap shear test was used because it will test the strength of the 

adhesive joint rather than the graphite material. Fatigue loading was also 

conducted on the freeze thaw samples 

 

The moisture immersion tests were conducted in water at room temperature. The 

samples were tested once they stoped absorbing moisture; the time this took was 

not reported. The lap shear test showed an increase of 23% shear strength [15]. 
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The freeze thaw samples were subjected to 1000, 30 minute cycles. Periodic 

testing showed that there was a 16% gain in shear strength after 800 cycles. The 

shear strength steadily decreased after this point. The authors hypothesised that 

this could be a result of the adhesive increasing in toughness with the exposure to 

small amount of moisture.  

 

Fatigue testing was also conducted on some samples. The samples used were first 

subjected to 1000 cycles of freezing thawing. The fatigue testing was conducted 

at: R = 0.1, 10 Hz. When the results were compared to the control samples there 

was no appreciable difference [15]. This could be a result of the low fatigue load 

used. 

 

 

5.4 Steel Adhesive Joints 
 

The adhesive joint between steel plates was also investigated. This will give a 

good indication of the degradation in the adhesive, as degradation should not 

occur in the steel members during the short time period. 

 

Beevers [16] conducted an investigation on an aircraft with steel adhesive joints 

that was constructed in 1963 and had been in service for 30 years. He also found 

lab samples from 1963. These two sets of samples were compared to samples 

made using adhesives used on the newer BAe 146 aircraft. These samples were 

tested using a lap shear test. The samples were then exposed to 24 weeks of 

immersion in 40oC water. The results are shown in Table 5.2. 
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Table 5.2: Test Results From Aircraft Samples (Data Source: [16]) 

Test Method 1963 Comet 1963 Lab 

samples 

BAe 146 

Aircraft 

Lap shear strengths (kN) 

                                (MPa) 

11.36 

36.4 

12.56 

40.2 

12.52 

40.1 

40C water immersion for 24 weeks 

(% Shear Strength retention) 

71% 74% 78% 

 

 

The lap shear test results are very similar. The results show a decrease of 10.5% 

between the samples from the plane in service compared to the lab samples. This 

is quite a low reduction after being in service for 30 years. 

 

The decrease in tensile strength is comparatively large for the samples immersed 

in 40oC for 24 weeks. However there is little difference between samples that 

have been in service to samples that have been sitting in a laboratory.  

 

Bowditch [37] published results from several different tests, two are of particular 

interest. The first was conducted on epoxy bonded aluminium. These samples 

were exposed a to high temperature environment. One environment had 5% 

humidity and the other had 100% humidity. The reductions in shear strength of 

these samples are shown in Figure 5.5. 
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Figure 5.5: Two Humidity Levels at 90oC For Epoxy Bonded Aluminium 

(Source: [37]) 

 

 

This figure shows that the samples at 100% humidity decreased in strength the 

most. It also shows that the degradation will stop once it reaches a certain stage. 

Some samples were dried for 24 hours before they were tested. The results from 

these samples indicate that most of the damage done can be reversed. 

 

Bowditch [37] also reported an investigation that was conducted over a period of 

eight years. The samples were subjected to a seawater environment for this period 

of time, and then tested using the tensile butt joint test. The results of the tests are 

shown in Figure 5.6. This shows that the samples gained strength during the 

exposure time. 
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Figure 5.6: Effect of Sea Water on Epoxy Bonded Butt Joints (Source: [37]) 

 

 

Karbhari et al. [38] investigated the joint between FRP material and steel. A range 

of environments were used, these included water, freeze thaw cycling and hot 

water. Two types of glass fibre was also investigated, E and T.  Epoxy was used 

in this investigation as the adhesive. 

 

The mechanical test used in this investigation was the wedge test. This test was 

chosen because of its sensitivity to environmental attack on the bond and is a 

more reliable test than the lap shear or peel tests.  After 2 weeks of initial 

exposure, a wedge was inserted into the adhesive joint and the samples were 

returned to the environment for a further 7 days. This is shown in Figure 5.7. The 

final crack length was measured and is shown in Figure 5.8 and 5.9. 
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Figure 5.7: Wedge Test (Source: [16]) 

 

 

 

Figure 5.8: Crack Length of Samples with E-Glass After 7 Days of Exposure 

(Source: [38]) 

 

 

Figure 5.9: Crack Length of Samples with T-Glass After 7 Days of Exposure 

(Source: [38]) 
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The results indicate that the effect of the environment depends on the type of fibre 

used. However the hot water has the greatest effect and the –18oC has the least 

effect on the samples. The effect of the deionised is similar to the effect of the 

seawater environment.  
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Chapter 6  

 

Test Sample Manufacture and Environmental 

Conditions 
 

6.1 Introduction 
 

In 2001 Wagners Composite Fibres Technology (WCFT) was established to 

provide a new technology for the construction industry using FRP materials. In 

the relative short existence of the centre, WCFT has already commercialised FRP 

bridges, cross arms for power poles, and currently working on a new lightweight 

semi-trailer. However, since FRP materials are relatively new as construction 

materials without any “experience of use”, naturally there are concerns about their 

long-term durability. To address these concerns, WCFT has embarked on a 

project to investigate the durability of these materials. 

 

WCFT uses the pultrusion process to produce FRP sections such as unidirectional 

laminates and RHS. To construct a bridge deck, as described in the third chapter, 

many of the pultruded elements are joined together to produce a beam section. 
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The beam sections are then joined together to produce a bridge deck. Unlike steel 

sections, FRP sections cannot be welded or riveted. Therefore, they have to be 

bonded using adhesive joints. These adhesive joints constitute the major area of 

durability concerns. There are limited numbers of studies conducted on adhesive 

joints. Therefore this short term testing will contribute to this knowledge. 

 

To conduct the durability tests on the adhesive joints, approximately 300 samples 

were manufactured using a range of configurations and adhesives. This was done 

to analyse all of the adhesive joints on the FRP bridge. The samples were 

constructed in large sheets, and then cut to a size of 200 mm by 50 mm. 

 

To test for durability, a range of environmental conditions are simulated. The 

environments include distilled and saltwater immersion, freeze thaw cycling and 

temperature cycling. These conditions were chosen because they would best 

mimic the environments that the bridges are likely to be exposed to during their 

service life.  

 

 

6.2 Test Sample Manufacture 
 

As these samples need to resemble adhesive joints used in the hybrid concrete-

FRP bridge, the same sample manufacturing process used was the same as the 

process used for constructing the bridge. To do this, large sections of adhesively 

bonded FRP plates were produced then cut to the appropriate sizes. To construct 

the sample 300 mm x 6 mm unidirectional pultruded FRP sheets were utilised. 

Before gluing the material together, the FRP plates were sanded and made dust 

free using a rag and acetone. Sanding and cleaning the FRP material will ensure 

that good adhesion is achieved. This process is also used when constructing a 

bridge.  

 

There are two main adhesives used in the construction of the Wagner FRP bridge:  

epoxy and vinylester. Samples were produced using both of these resins. The 
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majority of the samples produced were three layers thick. A sample is shown in 

Figure 6.1. This configuration is similar to that used in the bottom flange in the 

bridge produced by WCFT. Some samples were also produced with eight layers. 

This will increase the area affected by the environment.  

 

 

 

Figure 6.1: Durability Test Sample 

 

 

To glue the FRP together, a large table was prepared and greaseproof paper was 

laid out to ensure the final product did not stick to the table. Once the FRP sheets 

had been sanded and cleaned, the first plate was placed on the table. The adhesive 

was then applied to the sheet, and a second FRP plate is applied. The process is 

then repeated until the required number of layers has been glued.  The fibres are 

orientated in the same direction, this is similar to the bottom flange of the beams 

used in the bridge. Pressure is applied to the glued FRP materials by clamps and 

weights to ensure a good bond between the samples. Once the adhesive in the 

large sections has dried the clamps and weights are removed. The excessive glue 

that is squeezed out by the pressure is removed. The large section of FRP is then 

cut into samples of 200 millimetres long by 50 millimetres wide. This is done 

with a diamond bladed drop saw. 
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When the samples are cut, two different fibre orientations were produced. This 

was performed in order to investigate the effect of fibre orientation. The fibres are 

either longitudinal or transverse. The different orientations are shown in Figure 

6.2 and 6.3. 

 

 

 

 

Figure 6.2: Longitudinal Orientation of Fibres 

 

 

 

Figure 6.3: Transverse Orientation of Fibres 

 

 
The effect of edge protection on the durability of the adhesive joint was also 

examined. The edge protection applied to the samples was a thin layer of epoxy. 

This was applied only to the cut edges. This protection was used to mimic a 

sample taken from the middle of the bridge were moisture would be absorbed 

through the surface, not the edges.  

 

 

6.3 Environmental Exposure Conditions 

 
Different environments are chosen to mimic the range of possible conditions that 

the FRP bridge could be subjected to in its service life. These environments are 
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either constant immersion or cycles of dry air/immersion. Deionised and salt 

water are used as constant immersion environments. These environments will 

mimic the effect of moisture on the samples. Hot cold cycling and freeze thaw 

cycling are used to further investigate the effect of cycling on the samples. To 

determine the degradation caused by the different environments the initial strength 

of the samples needs to be determined. This will be achieved by having some 

samples in a controlled environment to minimise any degradation. 

 

Throughout the exposures the samples were kept in racks, which eliminates the 

possibility of the samples touching each other. This will allow moisture to gain 

access to the samples on all sides, and increase moisture ingress. Figure 6.4 shows 

a rack with a single sample. A single rack can hold up to 20 samples. 

 

 

Figure 6.4: Test Sample in a Rack Used to Assist Environment Exposure 

 

 

6.3.1 Immersion Environments 

 

By immersing the samples in water, the effect of moisture on the samples can be 

examined. Deionised and salt water are used as the immersion liquids. This 

immersion was conducted over a period of 22 weeks. During this period weight 
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measurements were taken to determine the amount of moisture the samples 

absorbed. Deionised water is used to ensure there were no chemicals in the water 

that could adversely affect the samples and give an incorrect indication of the 

samples absorption and degradation. The salt water solution is made with 35 

grams of salt per litre of deionised water.  

 

 

6.3.1.1 Effect of Immersion in Deionised Water 

 

Immersion of samples in deionised water is a very easy experiment to conduct. 

The samples are simply immersed in the solution. Special care should be taken to 

ensure that the samples are not in contact with each other. If this occurs, the 

weight gain results will not be correct, as it will take slightly longer for the 

samples to gain full saturation. 

 

As reported in the literature [9], moisture is mainly absorbed by diffusion through 

the resin.  It can also permeate through microcracks and voids along an imperfect 

surface. This can results in two effects, weight gain and reduction of strength in 

the FRP material. Once the moisture has been absorbed into the FRP, it can cause 

some damage at the microscopic level such swelling, plasticisation and leaching. 

The moisture in the resin can act as a plasticiser, which results in a loss of 

strength. Moisture uptake causes the samples to swell, which results in debonding 

of the fibre resin interface and cracking. Hydrolysis of the resin causes some 

microscopic particles to leach out. Some of the absorbed moisture may be 

removed simply by drying the samples. 

 

 

6.3.1.2 Effect of Immersion in Salt Water 

 

The process of salt water immersion is very similar to that described for the 

deionised water. However to make the solution salty a designated amount of salt 
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(Sodium Chloride, NaCl) is added before the samples are immersed. This amount 

is generally about 3.5% salt by weight. 

 

Salt water is used in durability tests to mimic two different environments. The 

first is a marine environment were the FRP could be in contact with seawater. The 

second is to mimic de-icing salts used in snow prone areas, MgCI2 and CaCI2 salts 

are used to mimic these environments. 

 

The moisture, not the salt, causes most of the degradation of the FRP material 

immersed in salt water. The salt may however increase the cracks in the FRP 

material and allow more moisture to be absorbed.  

 

 

6.3.2 Freeze Thaw Cycling 

 

Freeze thaw cycling is done to mimic a real environment that FRP material may 

be subject to during service. This would occur over a long period, and range from 

a sever frost or light snow to the peak daytime temperature. In many parts of the 

world, structures undergo a large number of freeze thaw cycles, over 100 cycles is 

not unusual. When this is mimicked in the laboratory it is done on a much smaller 

time frame. 

 

To conduct freeze thaw cycling the guidelines given by ASTM C666 Standard 

Test Method for Resistance of Concrete to Rapid Freezing and Thawing [40], are 

generally used. The method consists of two procedures.  Procedure A states that 

the samples are surrounded by water during both the freeze and thaw stages while 

for procedure B the samples are surrounded by air during the freeze stage and 

water during the thaw stage. WCFT used procedure B for this durability 

investigation.  

 

Before cycling the samples are usually immersed in water until they have stoped 

gaining weight. This is where the samples sustain most of the damage. If the 
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freezing time is long enough, the moisture within the samples may freeze and 

expand. This causes larger cracks to form in the FRP material, which would allow 

more moisture to be absorbed and hence more damage would be caused. The 

effect of the freeze thaw cycling is not completely understood because of the 

differences in test methods reported in the literature. 

 

In Australia there is limited need to test for freeze thaw cycling. However, for this 

investigation it is important to study the effects of freeze thaw cycling because 

WCFT has installed a bridge in to Eire County, New York, United States of 

America. Figure 6.5 shows this bridge during the snow season. 

 

 

 

Figure 6.5: WCFT Bridge Deck in Eire County, USA (Source: [2]) 
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6.4 Other Durability Tests 
 

There are many other types of durability tests that can be conducted. The most 

common of these tests are high temperatures and ultraviolet light. These 

environments are usually combined with another durability test to either 

accelerate the effect or expose the samples to real environmental conditions. 

 

 

6.4.1 High Temperature 

 

High temperatures are used to accelerate the environmental conditions. This is 

either done is water or air, at temperatures over 40oC. It should be noted that post-

curing of the FRP may occur at elevated temperature. This could give unexpected 

results. Previous studies have shown that as the temperature increases, the effect 

on the strength of the material increases due partly to the post-curing phenomena. 

This is shown by Gentry et al [24] and Gonenc [32]. 

 

Damage to samples may occur through differences in thermal expansion 

coefficients. FRP has a similar thermal expansion coefficient to concrete. 

However, the adhesives expansion coefficient can be very different from that of 

the FRP. This would cause debonding of the samples during the environmental 

conditioning.  

 

Two different high temperature cycling regimes will be used in the current tests. 

The first high temperature cycling will be performed between 60oC and room 

temperature. The second temperature range was between 60oC and –5oC. For both 

environments, the cycling was performed every three hours. 
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6.4.2 Ultraviolet Radiation 

 

Ultraviolet radiation is used in tests to expose the samples to an environment very 

similar to Australian conditions. The radiation can be used alone or with a routine 

spray similar to rain. Using ultraviolet radiation will determine the strength 

degradation and the change in colour of the FRP during its service life. 

 

In previous studies ultraviolet radiation has been shown to minor effects on FRP 

[26]. This effect only occurs to a small depth below the surface. This will however 

be detrimental to the FRP material as the radiation will crack the resin and allow 

moisture to ingress. 

 

For the current investigation this type of conditioning will not be performed. 

However as Wagners use vinylester, UV testing is important, as vinylester is 

susceptible to degradation [8]. 
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6.5 Summary of Environments 
 

Table 6.1 shows the summary of the conditions and sample orientations used in 

the durability testing. The table also shows the cycling schedule and temperatures 

used. 

 

Table 6.1: Summary of Environmental Conditions Used in Durability Tests 

Environmental 

Condition 

Fibre 

Orientation 

Side 

protection 
Condition/Cycling Schedule 

Benchmark Samples 
Longitudinal  

Transverse 
Unprotected 

No conditioning, stored at room 

temperature 

H20 Immersion 
Longitudinal  

Transverse 

Unprotected 

& 

Protected 

Immersed in distilled H20 

continuously 

Salt/H20 Immersion 
Longitudinal  

Transverse 
Protected 

Immersed in distilled H20/ 3.5 % 

NACL solution continuously 

Freeze Thaw 

Cycling 

Longitudinal  

Transverse 

Unprotected 

& 

Protected 

1) 3 hours distilled H20 

2) 3 hours -10 o C 

3) Repeat* 

High Temperature 

Cycling 

Longitudinal  

Transverse 

Unprotected 

& 

Protected 

1) 3 hours Room Temperature 

2) 3 hours approx. 60 o C 

3) Repeat** 

High / Low 

Temperature Cycling 

Longitudinal  

Transverse 

Unprotected 

& 

Protected 

1) 3 hours Room Temperature 

2) 3 hours approx. 60 oC 

3) 3 hours Room Temperature 

4) 3 hours -10 o C 

5) Repeat*** 

*Cycling was stoped overnight and samples were kept in freezer or water  

** Samples were left at room temperature overnight 

*** Samples were left in freezer overnight 
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Chapter 7 
 

Moisture Absorption and Shear Test Results 
 

7.1 Introduction 
 

Moisture absorption is an important consideration when evaluating the durability 

of FRP materials. For this reason routine weight measurements were taken at the 

start of the immersion period. The shape of the graph drawn from these 

measurements will help determine if there has been any damage due to 

environmental degradation [9, 39]. 

 

Once the samples have been exposed to the environments, a mechanical test was 

used to determine the effect on the samples. The mechanical test chosen for this 

durability evaluation was a short beam shear or the three point bending test. This 

will directly test the strength of the adhesive layer between the FRP materials.  

 

As this was only a one-year project the environmental exposure was relatively 

short. This means that only short-term evaluations will be able to be made with 

the data.  
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7.2 Moisture Absorption Results 
 

Moisture absorption results can indicate what is occurring within the FRP 

material. Such behaviour can be seen in Figure 7.1. 

 

 

Figure 7.1: Moisture Absorption Behaviour of FRP Material (Source: [9, 39]) 

 

 

The LF curve is the most common moisture absorption pattern. This is 

characterised by Fickian behaviour, where there is a rapid initial increase in 

weight followed by equilibrium. This behaviour can be described analytically. 

Curve A shows the pseudo-Fickian behaviour, this indicates that the samples 

never reach equilibrium. The two-stage diffusion behaviour is shown as curve B. 

FRP material showing this behaviour appears to reach equilibrium before a further 

increase in weight. This second increase may be caused by a change in 
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environmental conditions like temperature, relative humidity or applied load. [9, 

39] 

 

The two adverse curves are C and D. These indicate that the absorbed moisture 

has caused damage to the FRP material. Curve C shows the samples have rapidly 

increased in weight, which may be caused by resin cracking or fibre/matrix 

debonding. The behaviour shown by curve D has resulted from chemical action or 

physical breakdown, allowing a leaching process within the FRP material. 

 

Absorption tests were conducted on epoxy and vinylester glued samples. Routine 

weight measurements were taken on a scale that reads to 0.1 grams in order to 

determine the amount of moisture that was absorbed. Before measuring the 

samples, a clean rag was used to remove any surface moisture, as this would 

affect the accuracy of the measurements.  

 

Figure 7.2 and 7.3 shows the amount of moisture absorbed by the different 

samples. The epoxy samples have shown a much larger increase in weight, 

however the weight gain is still linear, which indicates a Fickian diffusion 

process. The vinylester sample results in Figure 7.3 have shown some 

equilibrium.  

 

The results shown in Figure 7.2 shows that the epoxy samples with 7 layers 

absorbed much more moisture than the samples with three layers. This was 

expected because there is more FRP and resin which will absorb the moisture. 
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Figure 7.2: Weight Gain of the 3 and 7 Epoxy Samples 

 

 

The vinylester samples did not gain as much weight as the epoxy samples but they 

have shown some equilibrium. This can be seen for the saltwater samples in 

Figure 7.3. The samples immersed in deionised water with protected edges have 

not shown any equilibrium. No direct information on the effect of the water 

absorbed by these samples can be drawn as the weight measurements were 

stopped too early.  

 

The samples that had unprotected edges, and were immersed in deionised water, 

have shown some possible leaching. This was an unexpected result. This leaching 

may have been caused by the cut edges as this behaviour has not occurred in the 

samples with protected edges. As the vinylester samples absorbed very little 

moisture, the weight scales or method of weighing may not be accurate enough to 

confirm that the FRP material is leaching.  However, to complete a good moisture 

absorption test, longer immersion times are required, which is not feasible within 

the time frame allocated to this project.   
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Figure 7.3 Weight Gain of the Vinylester Samples from Saltwater and 

Deionised Water 

 

 

7.3 Test Method 
 

The samples were mechanically tested after exposure to the environment 

conditions. Short beam shear test was chosen since it will test the shear strength of 

the adhesive bond between the FRP laminates. The set-up for these tests is shown 

in Figure 7.5 and 7.6.  

 

 

Figure 7.4: Distances for Short Beam Shear Test 
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A jig was made to help test the samples. This is shown in Figure 7.6. This jig will 

ensure that the support spacing and load position will remain constant throughout 

the time that the tests are conducted.  

 

 

Figure 7.5:  Sample Set-up in Test Jig and Machine 

 
 

7.4 Test Results and Analysis  
 

From the shear tests the maximum load is determined. The apparent shear strength 

is then calculated using the equation given in ASTM D2344, Standard Test 

Method for Apparent Interlaminar Shear Strength of Parallel Fibre Composite by 

Short-Beam Method [41]. The equation given in this standard is: 

 

db
P

S B
H

75.0=   

SH = Shear Strength, N/m2 

PB = Maximum Load, N 

b = Width of Specimen, mm 

d = Thickness of Specimen, mm 

 

The results have been shown in different sections depending on the environment 

the samples were exposed to. The first column in all the graphs is the initial 
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strength of the manufactured samples. The standard deviation of the samples and 

the number of samples tested are also shown on the graphs. The complete results 

from the shear tests are given in Appendix B. 

 

 

7.4.1 Deionised Samples 

 

Figure 7.6 to 7.19 shows the apparent shear strength of the specimens immersed 

in deionised water. Figure 7.6 shows a steady increase in the apparent shear 

strength during the 22 week exposure.  

 

 

Figure 7.6: Apparent Shear of Samples Immersed in Deionised Water, 

Longitudinal Fibres and Protected Edges 

 

 

Figure 7.7 shows the samples with unprotected edges. The apparent shear strength 

of the adhesive joint increases after 5 weeks of immersion. However the shear 

strength for the 9 and 22 week samples are very similar to the initial shear 
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strength. This shows that very little damage has been caused by immersion in 

deionised water. 

  

 

Figure 7.7: Apparent Shear of Samples Immersed in Deionised Water, 

Longitudinal Fibres and Unprotected Edges 

 

 

The results from the transverse samples are shown in Figure 7.8 and 7.9. After an 

increase in shear strength of the adhesive joint after 5 weeks, the strength 

decreases for the 9 and 22 week samples. However the variation in the results 

from the samples with unprotected edges is more pronounced.  
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Figure 7.8: Apparent Shear of Samples Immersed in Deionised Water, 

Transverse Fibres and Protected Edges 

 

 

Figure 7.9: Apparent Shear of Samples Immersed in Deionised Water, 

Transverse Fibres and Unprotected Edges 
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7.4.2 Saltwater Samples 

 

The shear strength of the adhesive joint of the samples immersed in saltwater are 

shown in Figure 7.10 and 7.11. Both of these graphs show that the samples slowly 

increased in shear strength during the 22 week test period. This is similar to what 

occurred to the protected edge samples immersed in deionised water shown in 

Figure 7.6. 

 

 

Figure 7.10: Apparent Shear of Samples Immersed in Saltwater, 

Longitudinal Fibres and Protected Edges 
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Figure 7.11: Apparent Shear of Samples Immersed in Saltwater, Transverse 

Fibres and Protected Edges 

 

 

7.4.3 Freeze Thaw Cycling 

 

The results from the freeze thaw cycling are shown in Figure 7.12 to 7.15. The 

behaviour for the unprotected and protected samples is similar irrespective of the 

fibre orientation. For the protected edge samples, there is decrease in the shear 

strength of the adhesive joint after 4 weeks of cycling. This is followed by an 

increase in shear strength to be similar to the initial strength. However for the 

unprotected edge samples there is an increase in strength after 4 weeks, the 

strength after 9 weeks is then similar to the initial shear strength. 
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Figure 7.12: Apparent Shear of Samples Subjected to Freeze Thaw Cycling, 

Longitudinal Fibres and Protected Edges 

 

 

Figure 7.13: Apparent Shear of Samples Subjected to Freeze Thaw Cycling, 

Longitudinal Fibres and Unprotected Edges 
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Figure 7.14: Apparent Shear of Samples Subjected to Freeze Thaw Cycling, 

Transverse Fibres and Protected Edges 

 

 

Figure 7.15: Apparent Shear of Samples Subjected to Freeze Thaw Cycling, 

Transverse Fibres and Unprotected Edges 
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7.4.3 Thermal Cycling 

 

The thermal cycling samples were separated into two sections depending on the 

temperatures used. The first section shows the samples cycled from room 

temperature to 60oC and the second set shows the samples cycled from –5oC to 

60oC. 

 

 

7.4.3.1 Room Temperature to 60oC Samples 

 

The affect of this thermal cycling regime produces a clear behaviour pattern for 

the longitudinal samples, as seen in Figure 7.16. This small increase in shear 

strength over the first 9 weeks of cycling can be explained by the post curing 

effect of the FRP. However after 13 weeks the samples have lost much of this 

shear strength and is slightly lower than the initial shear strength. 

 

 

Figure 7.16: Apparent Shear of Samples Subjected to Thermal Cycling From 

Room Temperature to 60oC, Longitudinal Fibres and Unprotected Edges 
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The post curing effect does not seem to occur with the transverse fibre samples, as 

Figure 7.17 shows. This thermal cycling has actually caused a decrease in shear 

strength of the adhesive joint. The decrease is only small after 9 weeks of cycling 

but a large decrease in shear strength is observed after 13 weeks of cycling. This 

decrease after 13 weeks is similar to the behaviour of the longitudinal fibre 

samples. 

 

 

Figure 7.17: Apparent Shear of Samples Subjected to Thermal Cycling From 

Room Temperature to 60oC, Transverse Fibres and Unprotected Edges 

 

 

7.4.3.2 -10oC to 60oC Samples 

 

The samples cycled from -10oC to 60oC exhibit similar behaviour irrespective of 

the fibre orientation as can be seen in Figure 7.18 and 7.19. Both sample sets 

show the adhesive joint shear strength has decreased during the cycling period. 

After about 10 weeks of cycling it was observed that the samples had broken apart 

at the adhesive joint. This indicates that either the environments were two extreme 

or the cycling time was to short. It would be highly unlikely that a bridge would 

undergo an environment quite as extreme as this.  
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Figure 7.18: Apparent Shear of Samples Subjected to Thermal Cycling From 

-10oC to 60oC, Longitudinal Fibres and Unprotected Edges 

 

 

 

Figure 7.19: Apparent Shear of Samples Subjected to Thermal Cycling From 

-10oC to 60oC, Transverse Fibres and Unprotected Edges 
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7.5 Conclusion 
 

From these test results a number of conclusions can be drawn. It was observed 

that the edge protection that was applied to the samples affected not only the 

absorption results but also the shear test results.  

 

The samples with their fibres orientated longitudinally were affected more than 

the transverse samples. As the fibres would have carried the load for the 

longitudinal samples, the thermal cycling may have affected the glass fibres 

and/or the fibre/matrix bond. 

 

The samples that were thermally cycled may have been subjected to a temperature 

greater than 60oC. As there are limited facilities at WCFT, the oven was shared 

between many research and development projects being conducted at the time of 

this investigation. This sharing may have resulted in the oven temperature being 

changed and not returned to the 60oC temperature. Therefore the samples may 

have been subjected to temperatures over 80oC, this temperature would affect the 

FRP material in a way that would not occur in service.   

 

The results derived from this investigation are limited for several reasons. The 

main reason is the limited time given to conduct this project. There is also too few 

samples to gain a reliable indication of the environmental effects, although over 

300 samples were produced to many environmental conditions were mimicked. 

As indicated above there is limited resources available at Wagners to conduct a 

thorough durability investigation. Therefore to conduct a durability investigation 

the following aspects of the investigation are important: 

 

• Long environmental exposure time, for example over 1 year 

• More samples for each test time 

• Less environmental conditions 

• Specifically dedicated resources 

• Accurate method to measure weight increase 
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These recommended aspects may mean that particular types of durability 

investigations would not be advised for private companies like WCFT. However 

some environmental conditions, like moisture immersion, would be recommended 

because it requires very little resources after immersion has commenced.      
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Chapter 8 
 

Conclusion and Recommendations 
 

 

8.1 Conclusions  

 
This project was conducted to determine if there is any major durability related 

concerns with the construction of a hybrid concrete-FRP bridge deck and 

determine if they are applicable to the bridge deck produced by Wagner 

Composite Fibre Technologies. 

 

This was done by: 

• Investigating FRP material and the construction of the hybrid-FRP bridge 

produced by WCFT 

• Determine the most susceptible area of the bridge to durability problems  

• Conduct tests and analyse the results on this area using various accelerated 

environments 



 
Chapter 8                                                           Conclusions and Recommendations 

90 

 

•  Analyse previous durability investigations relating to the construction of 

the concrete-FRP bridge to determine if there is any other areas of 

durability concern 

 

By analysing FRP material and the construction of the hybrid-FRP bridge helped 

identify a range of areas that could be have a durability concern. Investigating the 

design fundamentals of the bridge and the material produced by WCFT helped do 

this. 

 

From the initial analysis it was determined that investigations on the adhesive 

joints used in the bridge was the area most susceptible to durability problems. 

This investigation yielded some unusual and surprising results. The moisture 

absorption test yielded the most unexpected result, with a possible leaching 

problem with the FRP material revealed. Due to the limited time given for this 

investigation, the leaching observed in the vinylester samples may not be correct. 

 

The shear test indicated that no damage was sustained by the samples due to the 

different environments used. However due to the short time allocated to conduct 

this project, only a short environmental exposure times was used. Therefore the 

environmental conditions may not have enough time to affect the adhesive joint. 

 

From the investigation conducted at WCFT a number of recommendations can be 

made about future durability investigations. To conduct a thorough durability 

investigation, it is recommended the following aspects be considered:  

 

• Having a long environmental exposure time, for example over 1 year 

• Have many samples for each test period 

• Investigate one or two environmental conditions 

• Have specifically dedicated resources 

• Create an accurate method to measure weight increase 
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By investigating the other areas of the hybrid concrete-FRP bridge any other 

durability concerns would be highlighted. The only area that showed a possible 

durability problem was the adhesive joint between concrete and FRP. The 

literature however, is not entirely related to the bridge produced by WCFT. The 

reason for this is the construction of the test specimens used in the literature is not 

the same as that used in the concrete-FRP bridge. Therefore, durability tests may 

need to be conducted on the adhesive joint used by WCFT. The literature also 

highlighted that the durability of the adhesive joint between concrete and FRP is 

dependant on the adhesive used [35]. 

 

 

8.2 Recommendations for Further Study 
 

This investigation has identified a possible leaching problem with the FRP 

material produced by WCFT. However because of the possible errors in the 

weight scales and weighting process this cannot be confirmed. Therefore it is 

recommended that a longer immersion test be conducted on the FRP material, this 

does not necessarily need to be mechanically tested. This longer study will need to 

be more precise and consistent throughout the exposure period. 

 

It is also recommended that a longer study be completed on the adhesive joints. 

This does not need to involve as many environments used in this study but needs 

to be done over a longer period of time. The type of mechanical test may also be 

changed, for example a single or double lap shear test. 

 

A long-term investigation could also be conducted on the prototype bridge. This 

bridge is still in service at the Wagner quarry located at Wellcamp Downs, 

Toowoomba. Yearly inspections should be conducted to identify any signs of 

fatiguing or degradation.  A large investigation on this bridge should only be 

conducted after 10-20 years of service.  
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University of Southern Queensland 

 
FACULTY OF ENGINEERING AND SURVEYING 

 

ENG 4111/4112 Research Project 
 

PROJECT SPECIFICATION 
 
FOR:                    MARK PRASSER 
 
TOPIC: THE DURABILITY OF HYBRID CONCRETE-FRP 

BRIDGE DECKS 
 
SUPERVISOR:      Dr Amar Khennane 
 
PROJECT AIM: This project aims to determine if there are any major durability 

related concerns with the construction of a hybrid concrete-
FRP bridge deck and determine if they are applicable to the 
bridge deck produced by Wagner Composite Fibre 
Technologies 

 
SPONSERSHIP:    Wagner Composite Fibre Technologies 
 
PROGRAMME:  Issue B 1st August 2005 
 

1. Investigate the bridge decks and fibre composite material produced by 
Wagner Composite Fibre Technologies. 

 
2. Research the durability studies done that relate to the different components 

of the Wagner bridge decks. 
 

3. Determine what components require further investigation based on 
            the reviewed literature. 
 

4. Decide on test method and sample configuration that will test the gap in 
literature  

 
5. Analyse test data and determine if there is a durability problem 

 
As time permits: 
 

6. Analyse current bridges in service to determine any deterioration 
 

AGREED:                                       (Student)                                       (Supervisors) 
                        
                      __/__/________                                __/__/______  
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Initial Unconditioned Samples Longitudinal  

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

50 46.8 17.7 46.78 41.3  
51 43.6 17.8 43.62 37.7  
56 61.7 17.7 61.69 53.5  
78 51.8 17.6 51.79 45.1  

80E 55.5 17.6 55.47 48.5  
80W 59.49 17.2 59.49 53.0  
82 66.32 17.0 66.32 59.8  
227 52.4 17.9 52.35 44.9  
229 64.92 18.2 64.92 54.7  
247 55.4 17.4 55.36 49.0  
251 50.2 18.0 50.21 42.9  
280 58.4 18.5 58.38 48.5  

      
Average Max Load 55.53    
Average Shear 48.25    
Standard Deviation 6.28    
Coefficient of Variance 13%    
Number of Tests 10    

      
Initial Unconditioned Samples Transverse   

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

30 48.0 17.7 11.72 10.3  
158 48.8 18.3 13.92 11.7  
198 48.85 18.3 11.91 10.0  
209 49.0 18.1 12.46 10.5  
29 48.8 18.3 12.62 10.6  
      

Average Max Load 12.53    
Average Shear 10.64    
Standard Deviation 0.63    
Coefficient of Variance 6%    
Number of Tests 5    
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Immersion In Deionised Water - 5 Weeks Longitudinal Protected 
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

33 49.65 17.85 55.43 46.9  
36 49.3 18 52.88 44.7  
49 48.75 17.8 60.01 51.9  
249 49.8 17.95 57.92 48.6  

      
Average Max Load 56.56  2 tests deleted because of 
Average Shear 48.02  incorrect test method 
Standard Deviation 3.02    
Coefficient of Variance 6%    
Number of Tests 4    

      
Immersion In Deionised Water - 9 Weeks Longitudinal Protected 
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

34 49.3 17.7 59.26 50.9  
35 49.4 17.95 62.96 53.3  
37 49.8 17.75 56.83 48.2  
254 49.45 18.35 55.13 45.6  
255 49.6 18.9 68.29 54.6  
261 50 17.8 53.01 44.7  

      
Average Max Load 59.25    
Average Shear 49.55    
Standard Deviation 4.07    
Coefficient of Variance 8%    
Number of Tests 6    

      
Immersion In Deionised Water - 22 Weeks Longitudinal Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

38 49.3 17.7 60.91 52.4  
55 49.75 17.95 60.88 51.1  
256 49.45 17.95 60.99 51.5  
257 49.45 18.15 59.54 49.8  

      
Average Max Load 60.58  2 tests deleted because of 
Average Shear 51.19  incorrect test method 
Standard Deviation 1.09    
Coefficient of Variance 2%    
Number of Tests 4    
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Immersion In Deionised Water - 5 Weeks Longitudinal Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

58 48.9 17.6 58.53 51.0  
237 48.9 17.8 59.33 51.1  

      
Average Max Load 58.93    
Average Shear 51.06  1 tests deleted because of 
Standard Deviation 0.08  incorrect test method 
Coefficient of Variance 0%    
Number of Tests 2    

      
Immersion In Deionised Water - 9 Weeks Longitudinal Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

57 48.7 17.7 59.54 51.8  
60 49.5 17.55 57.45 49.6  

125 48 18.5 45.62 38.5  
238 48.95 17.8 44.74 38.5  
248 48.9 17.95 58.45 49.9  

      
Average Max Load 53.16    
Average Shear 45.68    
Standard Deviation 6.59    
Coefficient of Variance 14%    
Number of Tests 5    

      
Immersion In Deionised Water - 22 Weeks Longitudinal Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

59 48.8 17.75 60.67 52.5  
65e 49.2 17.95 49.48 42.0  

      
Average Max Load 55.08    
Average Shear 47.28    
Standard Deviation 7.43    
Coefficient of Variance 16%    
Number of Tests 2    
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Immersion In Deionised Water - 5 Weeks Transverse Protected 

      
Sample 
Number 

Width (mm) Thickness (mm) Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

1 49.7 18.1 12.81 10.7  
4 49.5 18 13.32 11.2  
6 49.6 17.8 15.01 12.8  

141 50.35 18.75 12.81 10.2  
156 49.8 18.5 12.66 10.3  
161 50.8 18.65 13.53 10.7  

      
Average Max Load 13.36    
Average Shear 10.97    
Standard Deviation 0.94    
Coefficient of Variance 9%    
Number of Tests 6    

      
Immersion In Deionised Water - 9 Weeks Transverse Protected 

      
Sample 
Number 

Width (mm) Thickness (mm) Max Load,  P 
(kN) 

Max Shear 
Strength (MPa)  

2 50.2 17.9 11.51 9.6  
8 49.7 17.9 13.49 11.4  

166 49.9 19 12.01 9.5  
171 49.7 18.9 11.62 9.3  
176 50.35 18.8 13.31 10.5  

      
Average Max Load 12.39    
Average Shear 10.06    
Standard Deviation 0.88    
Coefficient of Variance 9%    
Number of Tests 5    

      
Immersion In Deionised Water - 22 Weeks Transverse Protected 

Sample 
Number 

Width (mm) Thickness (mm) Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

5 50.8 18.65 9.38 7.4  
141 49.7 18.1 12.71 10.6  
146 50.15 18.75 11.51 9.2  
151 49.6 17.8 12.4 10.5  
186 49.5 17.95 13.85 11.7  
291 49.85 18.5 15.3 12.4  

      
Average Max Load 12.53    
Average Shear 10.31    
Standard Deviation 1.80    
Coefficient of Variance 17%    
Number of Tests 6    
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Immersion In Deionised Water - 5 Weeks Transverse Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

199 48.9 18.25 13.14 11.0  
213 48.9 18.2 15.05 12.7  

      
Average Max Load 14.10    
Average Shear 11.86    
Standard Deviation 1.16    
Coefficient of Variance 10%    
Number of Tests 2    

      
Immersion In Deionised Water - 9 Weeks Transverse Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

194 48.8 18.2 8.78 7.4  
204 48.95 18.15 13.82 11.7  
290 50 18.2 12.6 10.4  

      
Average Max Load 11.73    
Average Shear 9.82    
Standard Deviation 2.18    
Coefficient of Variance 22%    
Number of Tests 3    

      
Immersion In Deionised Water - 22 Weeks Transverse Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

299 49.5 17.95 12.47 10.5  
304 49.3 18.15 10.01 8.4  

      
Average Max Load 11.24    
Average Shear 9.46    
Standard Deviation 1.51    
Coefficient of Variance 16%    
Number of Tests 2    
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Immersion In Saltwater - 5 Weeks Longitudinal Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

40 49.5 17.8 56.88 48.4  
42 49.75 18 58.46 49.0  
54 49.5 17.8 58.76 50.0  

223 50.2 18 53.34 44.3  
226 50.75 18.1 53.92 44.0  

      
Average Max Load 56.27    
Average Shear 47.14  1 tests deleted because of 
Standard Deviation 2.79  incorrect test method 
Coefficient of Variance 6%    
Number of Tests 5    

      
Immersion In Saltwater - 9 Weeks Longitudinal Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

39 49.2 17.9 55.23 47.0  
44 49.8 17.7 57.97 49.3  
53 49.4 17.85 56.32 47.9  

221 50.15 18.75 59.94 47.8  
225 50.75 18 58.6 48.1  

      
Average Max Load 57.61    
Average Shear 48.04    
Standard Deviation 0.83    
Coefficient of Variance 2%    
Number of Tests 5    

      
Immersion In Saltwater - 22 Weeks Longitudinal Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

41 50.25 18.2 56.76 46.5  
43 49.4 17.95 60.23 50.9  
52 49.75 17.8 60.7 51.3  

222 49.8 17.7 56.52 47.9  
279 50.1 18.5 61.79 50.0  

      
Average Max Load 59.20    
Average Shear 49.34  1 tests deleted because of 
Standard Deviation 2.06  incorrect test method 
Coefficient of Variance 4%    
Number of Tests 5    
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Immersion In Saltwater - 5 Weeks Transverse Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

5 50.8 18.65 9.38 7.4  
141 49.7 18.1 12.71 10.6  
146 50.15 18.75 11.51 9.2  
151 49.6 17.8 12.4 10.5  
186 49.5 17.95 13.85 11.7  
291 49.85 18.5 15.3 12.4  

      
Average Max Load 12.53    
Average Shear 10.31    
Standard Deviation 1.80    
Coefficient of Variance 17%    
Number of Tests 6    

      
Immersion In Saltwater - 9 Weeks Transverse Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

10 48.95 17.9 14.38 12.3  
14 49.6 17.8 12.51 10.6  
15 49.8 17.9 14.7 12.4  

201 50.8 18.65 12.87 10.2  
206 50.55 18.6 10.34 8.2  
216 50.6 18.9 15.28 12.0  

      
Average Max Load 13.35    
Average Shear 10.95    
Standard Deviation 1.61    
Coefficient of Variance 15%    
Number of Tests 6    

      
Immersion In Saltwater - 22 Weeks Transverse Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

16 49.75 18.15 12.99 10.8  
32 49.5 17.75 15.35 13.1  

196 50.2 18.5 12.04 9.7  
214 50.1 18.25 13.5 11.1  

      
Average Max Load 13.47    
Average Shear 11.17    
Standard Deviation 1.41    
Coefficient of Variance 13%    
Number of Tests 4    
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Freeze Thaw Cycling - 4 Weeks Longitudinal Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

20 49.20 18.2 51 42.7  
21 49.50 18.15 57.5 48.0  
22 49.85 17.9 58.5 49.2  

241 50.35 18.55 53 42.6  
246 50.50 18.65 57 45.4  
253 49.90 18.55 57.26 46.4  
266 50.40 18.45 52 41.9  
269 49.40 18.65 51 41.5  

      
Average Max Load 54.66    
Average Shear 44.71    
Standard Deviation 2.94    
Coefficient of Variance 7%    
Number of Tests 8    

      
Freeze Thaw Cycling - 9 Weeks Longitudinal Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

230 50.20 18.7 60.6 48.5  
217 50.40 18.5 57.16 46.1  
236 50.30 18.2 47.01 38.5  
28 49.40 18.1 61.24 51.4  

281 49.02 18.5 52.63 43.6  
234 50.15 18.6 47.64 38.3  
27 49.60 18.1 60.33 50.4  
26 49.60 18.0 55.83 46.9  
      

Average Max Load 55.31    
Average Shear 45.47    
Standard Deviation 4.99    
Coefficient of Variance 11%    
Number of Tests 8    
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Freeze Thaw Cycling - 4 Weeks Longitudinal Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

68e 48.90 17.45 56 49.2  
71w 49.00 17.65 59 51.2  
68w 48.90 17.45 56.5 49.7  
77w 48.92 17.55 59 51.5  

      
Average Max Load 57.63    
Average Shear 50.40  2 tests deleted because of 
Standard Deviation 1.13  incorrect test method 
Coefficient of Variance 2%    
Number of Tests 4    

      
Freeze Thaw Cycling - 9 Weeks Longitudinal Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

71 48.90 17.4 56.43 49.9  
267 48.80 18.4 52.89 44.3  
74E 48.80 17.4 58.12 51.5  
74W 48.93 17.5 56.46 49.5  
413 49.60 18.0 55.42 46.7  
265 49.25 18.2 50.24 42.2  

      
Average Max Load 54.93    
Average Shear 47.33  1 tests deleted because of 
Standard Deviation 3.60  incorrect test method 
Coefficient of Variance 8%    
Number of Tests 6    
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Freeze Thaw Cycling - 4 Weeks Transverse Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

148 49.90 18.55 13.5 10.9  
149 49.90 18.2 12.5 10.3  
159 50.00 18.45 9.5 7.7  

      
Average Max Load 11.83    
Average Shear 9.66   
Standard Deviation 1.71    
Coefficient of Variance 18%    
Number of Tests 3    

      
Freeze Thaw Cycling - 9 Weeks Transverse Protected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

143 49.75 18.7 15.73 12.7  
139 50.20 19.0 12.42 9.8  
138 50.05 18.8 12.79 10.2  

      
Average Max Load 13.65    
Average Shear 10.90   
Standard Deviation 1.59    
Coefficient of Variance 15%    
Number of Tests 3    
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Freeze Thaw Cycling - 4 Weeks Transverse Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, 
P (kN) 

Max Shear 
Strength (MPa)  

184 48.90 18.7 17 13.9  
189 48.90 18.2 13.84 11.7  
292 50.10 18.2 17.7 14.6  

      
Average Max Load 16.18    
Average Shear 13.39   
Standard Deviation 1.53    
Coefficient of Variance 11%    
Number of Tests 3    

      
Freeze Thaw Cycling - 9 Weeks Transverse Unprotected 

      
Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength 
(MPa)  

169 48.90 18.2 12.31 10.4  
174 48.95 18.2 10.38 8.7  

      
Average Max Load 11.35    
Average Shear 9.56   
Standard Deviation 1.16    
Coefficient of Variance 12%    
Number of Tests 2    
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Thermal Cycling - 4 Weeks Longitudinal Unprotected 

Min temp. 20C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

75 49.20 17.9 60.01 51.1  
81 49.80 17.7 57.04 48.5  

135 49.40 17.85 61.71 52.5  
      

Average Max Load 59.59    
Average Shear 50.71   
Standard Deviation 2.01    
Coefficient of Variance 4%    
Number of Tests 3    

      
Thermal Cycling - 9 Weeks Longitudinal Unprotected 

Min temp. 20C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

72 48.85 17.55 60.01 52.5  
73 48.8 17.5 57.04 50.1  

132 49.05 18.45 61.71 51.1  
      

Average Max Load 59.59    
Average Shear 51.24   
Standard Deviation 1.21    
Coefficient of Variance 2%    
Number of Tests 3    
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Thermal Cycling - 4 Weeks Transverse Unprotected 

Min temp. 20C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

208 48.95 17.9 11.1 9.5  
193 49.6 17.8 12.6 10.7  
295 49.8 17.9 11.52 9.7  

      
Average Max Load 11.74    
Average Shear 9.97   
Standard Deviation 0.65    
Coefficient of Variance 6%    
Number of Tests 3    

      
Thermal Cycling - 9 Weeks Transverse Unprotected 

Min temp. 20C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, 
P(kN) 

Max Shear 
Strength (MPa)  

31 48.8 17.6 12.6 11.0  
61 48.5 17.6 11.52 10.1  
64 48.5 17.6 11.1 9.8  
      

Average Max Load 11.74    
Average Shear 10.29   
Standard Deviation 0.64    
Coefficient of Variance 6%    
Number of Tests 3    
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Thermal Cycling - 4 Weeks Longitudinal Unprotected 

Min temp. -5C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

124 49.2 17.9 44.27 37.7  
123 49.8 17.7 41.92 35.7  
67 49.4 17.85 50.15 42.7  
      

Average Max Load 45.45    
Average Shear 38.67   
Standard Deviation 3.59    
Coefficient of Variance 9%    
Number of Tests 3    

      
Thermal Cycling - 9 Weeks Longitudinal Unprotected 

Min temp. -5C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, P 
(kN) 

Max Shear 
Strength (MPa)  

274 48.75 18.5 41.96 34.9  
      

Average Max Load 41.96    
Average Shear 34.89  Other samples failed before 
Standard Deviation -  tests could be done 
Coefficient of Variance -    
Number of Tests 1    
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Thermal Cycling - 4 Weeks Transverse Unprotected 

Min temp. -5C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, 
P (kN) 

Max Shear 
Strength (MPa)  

63 49.6 17.8 12.56 10.7  
173 48.95 17.9 11.7 10.0  

      
Average Max Load 12.13    
Average Shear 10.34   
Standard Deviation 0.46    
Coefficient of Variance 4%    
Number of Tests 2    

      
Thermal Cycling - 9 Weeks Transverse Unprotected 

Min temp. -5C Max temp. 60C   
      

Sample 
Number 

Width 
(mm) 

Thickness 
(mm) 

Max Load, 
P (kN) 

Max Shear 
Strength (MPa)  

62 48.85 17.65 11.56 10.1  
178 48.8 18.4 9.81 8.2  

      
Average Max Load 10.69    
Average Shear 9.12   
Standard Deviation 1.32    
Coefficient of Variance 14%    
Number of Tests 2    

 
 


