
University of Southern Queensland

Faculty of Engineering & Surveying

Embedded IP for Small Devices

A dissertation submitted by

Simon Neil Brown

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer and Electronic)

Submitted: October, 2005

Abstract

Today technology utilising the Web is one of the most popular used computer technolo-

gies. It would be hard to imagine any computer user whom does not have a web browser

or used a web browser. A web browser can view web-pages developed or located within

any operating systems, whether that is a Windows, Linux or even iMac workstation.

The beauty of this technology is that the web client software (Web Browser) can com-

municate with any web-server using the Hyper-text Transfer Protocol (HTTP). Also

the pages displayed by these systems look identical even though they are generated by

a variety of computer systems.

With embedded systems in mind, it would be silly not to utilise this technology for

control and monitoring purposes. However, currently small embedded devices, those

that are classified with less than 10 kB of ROM, have limited IP connectivity. This is

because the current implementations occupy more than the device possesses.

The driver for this research project is the apparent lack of available IP implementations

for small embedded devices. Typical embedded IP stacks range from 14kB up to and

exceeding 500kB. For small devices, less than 10 kB, this puts this function out of

reach.

However, this project aims to implement a subset of Internet Protocols to provide a

means of control and monitoring for a small embedded device. It is envisaged that

control and monitoring will be achieved with the use of a Web Browser, such as Mi-

crosoft “Internet Explorer”. The project goals is to provide these services within a 2kB

envelope.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Simon Neil Brown

0050029170

Signature

Date

Acknowledgments

To Natalie, Jacqueline and Samuel for their understanding and support during this

worthwhile journey.

A special thanks to my supervisor Dr John Leis, who has provided guidance, a source

of motivation and friendship over the past year.

Simon Neil Brown

University of Southern Queensland

October 2005

Contents

Abstract i

Acknowledgments iv

List of Figures ix

List of Tables xi

Nomenclature xii

Chapter 1 Introduction 1

1.1 Overview of the Dissertation . 2

Chapter 2 Existing System Evaluation 4

2.1 Chapter Introduction . 4

2.2 Background Information . 4

2.3 Short-listed Implementations . 6

2.4 Code Size . 8

CONTENTS vi

2.5 Functions . 10

2.6 Security . 11

2.7 Chapter Summary . 11

Chapter 3 Embedded Platform and Development Tools 13

3.1 Chapter Introduction . 13

3.2 Microprocessor Core . 13

3.3 Software and Tools . 14

3.4 Chosen System: Hardware . 15

3.5 Chosen System: Software . 17

3.6 Chapter Summary . 20

Chapter 4 Software Development 21

4.1 Chapter Introduction . 21

4.2 Software Overview . 21

4.3 High-level Data Link Control . 24

4.4 Point to Point Protocol . 25

4.4.1 Link Control Program . 26

4.4.2 Password Authentication Protocol 27

4.4.3 Network Control Protocol . 28

4.5 Internet Protocol . 29

CONTENTS vii

4.6 Transmission Control Protocol . 30

4.7 Hyper-text Transfer Protocol . 32

4.8 RAM Utilisation . 33

4.9 Code Optimisation . 34

4.10 Chapter Summary . 34

Chapter 5 Testing and Security 35

5.1 Chapter Introduction . 35

5.2 Testing So Far . 35

5.3 Security . 37

5.4 Environmental and Hardware . 38

5.5 Chapter Summary . 38

Chapter 6 Conclusions and Further Work 39

6.1 Achievement of Project Objectives . 39

6.2 Further Work . 40

6.3 Conclusion . 42

References 43

Appendix A Project Specification 48

Appendix B Code Listing 50

CONTENTS viii

B.1 Source Code Listing . 51

Appendix C Manufacturer Datasheets 86

C.1 JED Micoprocessor Datasheets . 86

C.2 AVR ATmega128 Datasheet . 97

C.3 AVR ISP, In-System Programmer . 125

C.4 AVR033: Getting Started with the CodeVisionAVR C Compiler 128

C.5 LCD Display Datasheet . 145

C.6 RS232 Transceiver Datasheet . 150

List of Figures

3.1 The AVR570 module from “JED Microprocessor”. Note the In-System

Programmer interface (top right), reset switch in yellow (bottom left)

and the 64 pin surface mounted microcontroller (centre). 16

3.2 The AVR572 development board from “JED Microprocessor” revealing

the AVR570 module and the RS232 transceiver and DB-9 connector

(middle left) . 17

3.3 A screen snapshot of the ‘AVRCodeVision’ IDE. File management fa-

cilities are revealed on the (left) sub-window with the main coding area

(right). Convenient buttons are available for various functions includ-

ing, saving, compiling, searching and target programming are located

beneath the pull-down menus. A status message window is available for

debugging and monitoring purposes (bottom) 18

3.4 AVRCodeVision Device Programmer Interface. 19

4.1 Simplified Flow Diagram. 23

4.2 PPP General Frame Format, utilising HDLC. 24

4.3 Windows ME connection established window. 28

4.4 IP Frame, note the relative position of the checksum, which is within

the header. 29

LIST OF FIGURES x

4.5 TCP segment data transfer. 31

4.6 Browser Display of Served Web-Page from the embedded device. 32

4.7 Plethora of packets received on establishment of Link. 33

5.1 Screen shot of Ethereal Packet Analyser revealing a malformed checksum

calculation. 36

List of Tables

2.1 Short-Listed IP Implementations and approximate cost 7

2.2 Code Size . 9

2.3 Functions for the Short-listed Implementations 10

4.1 LCP Configuration Options . 26

Nomenclature

PPP Point to Point Protocol

LCP Link Control Protocol

PAP Password Authentication Protocol

IPCP Internet Protocol Control Protocol

IP Internet Protocol

UDP User Datagram Protocol

TCP Transmission Control Protocol

DHCP Dynamic Host Configuration Protocol

HTTP HyperText Transfer Protocol

ASCII American Standard Code for Information Interchange

AT Attention

CRC Cyclic Redundancy Check

IC Integrated Circuit

LED Light Emitting Diode

UART Universal Asynchronous Receiver / Transmitter

PC Personal Computer

USQ University of Southern Queensland

CPU Central Processing Unit

Nomenclature xiii

RAM Random Access Memory

ROM Read Only Memory

IDE Integrated Development Environment

ISP In-System Programming

NCP Network Control Protocol

JVM Java Virtual Machine

AUD Australian Dollars

SPI Serial Peripheral Interface

RTC Real Time Clock

LCD Liquid Crystal Display

GPRS General Packet Radio Service

Chapter 1

Introduction

Today technology utilising the Web is one of the most popular used computer technolo-

gies. It would be hard to imagine any computer user whom does not have a web browser

or used a web browser. A web browser can view web-pages developed or located within

any operating systems, whether that is a Windows, Linux or even iMac workstation.

The beauty of this technology is that the web client software (Web Browser) can com-

municate with any web-server using the Hyper-text Transfer Protocol (HTTP). Also

the pages displayed by these systems look identical even though they are generated by

a variety of computer systems.

With embedded systems in mind, it would be silly not to utilise this technology for

control and monitoring purposes. However, currently small embedded devices, those

that are classified with less than 10 kB of ROM, have limited IP connectivity. This is

because the current implementations occupy more than the device possesses.

The driver for this research project is the apparent lack of available IP implementations

for small embedded devices. Typical embedded IP stacks range from 14kB up to and

exceeding 500kB. For small devices, less than 10 kB, this puts this function out of

reach.

However, this project aims to implement a subset of Internet Protocols to provide a

means of control and monitoring for a small embedded device. It is envisaged that

1.1 Overview of the Dissertation 2

control and monitoring will be achieved with the use of a Web Browser, such as Mi-

crosoft “Internet Explorer”. The project goals is to provide these services within a 2kB

envelope.

The device will communicate via a PPP link, which would commonly be a serial link

(EIA232) interfaced via a modem but just as easily it could just be a direct serial

connection to a PC, in the form of EIA232 or USB. The PPP link, together with

the IP, will provide the underlying communication path for the higher level protocols

such as UDP, TCP and DHCP which in turn provide the baseline software platform to

provide the application layer with end to end reliable transport.

The most challenging aspect of this project has been the goal to implement these

services utilising only 2kB of text space. Currently the majority of these services have

been implemented in ’C’ and ported to the end target, with a current code envelope of

approximately 8 kB. This dissertation provides a documented journey of this process.

As with all research projects further work is required to engineer the product for man-

ufacture and commercial release and these issues are also briefly discussed.

1.1 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 presents and discusses the evaluation of existing commercial and open

source implementations currently available and evaluates them in terms of cost,

function and security.

Chapter 3 discusses, evaluates and selects a suitable micro-controller core, a devel-

opment environment and a suitable programming language for the development of

a working prototype. The evaluation aims to select software tools and hardware

to provide a portable system.

Chapter 4 discusses the software development with particular attention to the issues

faced with small embedded devices with limited resources.

1.1 Overview of the Dissertation 3

Chapter 5 discusses testing and security issues and considerations of embedded sys-

tems providing IP services.

Chapter 6 concludes the dissertation and suggests further work in the area of “Em-

bedded IP for Small Devices”.

Chapter 2

Existing System Evaluation

2.1 Chapter Introduction

This chapter presents and discusses the background research and evaluation of existing

systems available. Details are revealed of the results of this search and then evaluated

in terms of cost, security and function. Commercial and open source products are

considered.

2.2 Background Information

In line with the project objectives, as revealed in Appendix A, the first task in the

research project programme was the literature research of available systems and the

evaluation and review of these systems. For reader ease the first two programme re-

quirements are restated:

1. Research available systems.

2. Evaluate available systems in terms of cost, security and function, both open

source and commercial

2.2 Background Information 5

Before any review and evaluation studies begun it was important to gain an understand-

ing of the technical requirements and technical nomenclature used in their description.

The most concise documentation and literature found was the “Request For Comment”

(RFC) documents.

The RFCs provide an open platform for the development of computer networking,

focussing on the the “internet”. The following RFCs where found to be most useful in

the initial understanding of the project technical requirements;

RFC793: Transmission Control Protocol

RFC1547: Requirements for an Internet Standard Point to Point Protocol

RFC1661: The Point to Point Protocol

RFC2131: Dynamic Host Configuration Protocol

RFC0791: Internet Protocol

RFC2616: Hypertext Transfer Protocol

However, it was found that although the RFCs provided a concise specification of the

protocols and systems they generally lacked any real world implementation details. Two

texts, “TCP/IP Lean” (Bentham 2003) and the ebook “The TCP/IP Guide” (Kozierok

2003-2005) were found to provide more practical and useful information, and were

referenced often during the project.

The review process began with an exhaustive search via the internet for commercial

and open source implementations. In addition to the “internet” search the resources

of the University Library, both USQ and Monash, as well as trade journals (Embedded

Computer Design, Trade Journal 2005, PC/104 Embedded Solutions, Trade Journal

2005)specialising in embedded technology and systems were consulted.

An initial large list of embedded implementations was produced and details pertaining

to the products features where recorded on a spreadsheet. Where details were not

clearly stated in marketing literature, details were requested, usually by email. In the

2.3 Short-listed Implementations 6

first iteration 37 products where identified, in various forms, including both commercial

and open source products, but was reduced to around 25 in the second iteration.

The list of 25 products was further reduced. In a number of cases insufficient informa-

tion was available for the evaluation process and consequently these where removed.

In most cases it was due to lack of a response to an enquiry. The final list included 17

implementations and is discussed in the next section.

2.3 Short-listed Implementations

It was clear there are abundant commercial and open-source implementations available

from the results of my searches. A table of the short-listed implementations was made,

primarily filtered to reveal those which supported the services we were interested in,

namely PPP, IP, TCP, UDP, DHCP and HTTP.

In an attempt to keep an even playing field, pricing was requested for a single product,

complete for a small quantity of product of less than 500 units.

The pricing collected for each product is revealed in Table 2.1 1. The commercial

offerings came with varied and in some cases high price tags. From the literature

gathered, the justification for the price tags were summarised as follows:

a. Fully RFC Compliant

b. Warranty or Guarantee of stability and function.

c. Technical Support

d. Implementations, in some cases, offered for a large range of processors.

e. Available off the shelf.

f. Technical Performance such as throughput or memory / resource usage.
1The majority of quotations were provided in US dollars or Euro and have been converted to

Australian dollars. The exchange rate used was 0.77 and 0.597, which was current as of March 2005

for US dollars and Euro respectively.

2.3 Short-listed Implementations 7

The pricing did vary between products and it was hard to gauge to what effect the

pricing offered reflected product quality, stability, performance or efficiency. Some

companies offered demonstration code and differing licensing plans which seemed to

indicate different products had differing markets and market focus.

Table 2.1: Short-Listed IP Implementations and approximate cost

Product Open Source or

Commercial

Approximate Price

(AUD)

BLUNK Microsystems Commerical $12,730

CMX Systems Commercial $12,990

EBSnet Commercial $22,100

EmINET Microsystems Commercial $23,380

Ethernut Open Source $0

InterNiche Technologies Commercial $22,100

Iosoft Ltd Commercial $2,300

Kadak Products Commercial $27,530

MicriUm Commercial $20,150

NexGen Commercial $18,700

On Time Commercial $11,730

Quadros Commercial $20,130

Rabbit Commercial $500

TINI Network Platform Open Source $0

Tiny TCP Open Source $0

uIP 0.9, Contiki, lwIP & Miniweb Open Source $0

US Software Commercial $25,300

Many of the products listed, are bound by licensing agreements. Licensing agreements

are typically offered as single product licences, with and without royalties payable for

each product sold, single site licences, for any development at one site or project and

unlimited use licences. The unlimited licences usually included technical support for a

limited period from purchase.

The Open Source implementations also varied in their nature. Three of the short-

2.4 Code Size 8

listed implementations didn’t include a PPP option, while the fourth, the TINI2, has a

preloaded 64kB coded section which already contained a network stack. The TINI Dal-

las product supports full TCP/IP stack, including PPP, and was ready for development

in assembly, C or JAVA languages.

2.4 Code Size

In line with the project goals of implementing a stack within a 2kB code envelope, in-

formation was gathered relating to the compiled size of a number of implementations.

The results are shown in Table 2.2. From the results it was quite interesting to see a

large variation in the compiled sizes, even within the same product. However it would

be dangerous to make a judgement of these implementations without a detailed evalua-

tion3. Nevertheless it is clear from the comparison between the two ‘CMX’ compilations

that the selection of the end target can be important. The selection of differing word

platform sizes reveals the efficiency of the compiler math routines, in the case of the two

‘CMX’ implementations, between 8 bit and 16 bit cores. Mathematics used within the

IP and TCP protocols headers use identification and sequencing numbers with numbers

ranging from 16 bits to 32 bits, which require large math routines for 8 bit devices and

hence the large variations in size.

Characteristic effecting the compiled sizes were found to be:

1. Platform word size (8, 16, 32 bit . . .).

2. Instruction word size.

3. Technical Performance such as throughput and memory / resource usage.

4. Functions offered.

5. Differences between compilers and optimisers used.
2It may be argued that this implementation should actually be label as “commercial”, as the stack

is within a purchased product.
3Which of course could take years to complete and is certainly beyond the scope of this research

project.

2.4 Code Size 9

6. RFC compliant.

7. Stability and security.

Table 2.2: Code Size

Product Platform Functions Code Size(kB)

uIP AVR (8-bit) IP, ICMP & TCP 5.2

CMX-MicroNet Freescale HCS12 (16-bit) Modem, PPP,

IP, UDP, TCP &

HTTP server

14.2

CMX-MicroNet Atmel AVR (8-bit) Modem, PPP, IP,

TCP & HTTP

server

33

BLUNK Mi-

crosystems

32-bit Processors Full protocol

suite, PPP, IP,

TCP, UDP,

ICMP, FTP,

DHCP etc . . .

32 to 64

InterNiche Tech-

nologies

Philips 2100 (32-bit) Modem, PPP, IP,

TCP & HTTP

35

Iosoft, PWEB Microchip PIC (8-bit) Modem, SLIP, IP,

TCP & HTTP

5.7

Dallas, TINI DS80C400 (8-bit) confirm PPP, IPv4/v6,

TCP, UDP,

IGMP, ICMP,

DAD, SMTP,

DHCP, FTP,

HTTP, & TEL-

NET

64

2.5 Functions 10

2.5 Functions

For completeness, the functions of the short-list are compared to the requirements of

the project goals. A comparison is revealed in Table 2.3 of the implementations that

supported the services required. It was interesting to note, from the previous table,

Table 2.2, that the smallest implementation with the services of interest was 14.2 kB

on a 16 bit platform and from 32kB for an 8 bit device.

Table 2.3: Functions for the Short-listed Implementations

Product PPP, IP, UDP, TCP, DHCP & HTTP

BLUNK Microsystems Yes

CMX Systems Yes

EBSnet Yes

EmINET Microsystems Yes

Ethernut Yes

InterNiche Technologies Yes

Iosoft Ltd No PPP, only SLIP

Kadak Products Yes

MicriUm Yes

NexGen No DHCP

On Time Yes

Quadros Yes

Rabbit Yes

TINI Network Platform Yes

Tiny TCP No PPP

uIP 0.9, Contiki, lwIP & Miniweb No PPP, only SLIP

US Software Yes

2.6 Security 11

2.6 Security

An evaluation of security aspects of embedded system revealed that many of the imple-

mentations offer a version of IP called IPsec. This protocol provides encryption of IP

data and is a mandatory option of the new IP protocol, IPv6. As with any additional

feature additional resources are required to handle the additional overhead of these

services.

Other security aspects are the authentication systems available. Of particular inter-

est to PPP is that of the Password authentication Protocol (PAP) and the Challenge

Handshake Authentication Protocol (CHAP). These protocols provide methods of au-

thentication to which SLIP does not offer. Virtually all implementations offered PAP

and CHAP, however there were a few whom only offered PAP.

Of all implementations evaluated the marketing literature did not seem to discuss issues

relating malicious attacks, such as Denial of Service attacks. It seems that software

companies do not wish to discuss these issues or possibly there is an inherent weakness

in embedded systems?

2.7 Chapter Summary

Investigations have found that there wasn’t an implementation that satisfied the project

requirements for providing PPP, IP, UDP, TCP, DHCP and HTTP services within a

2kB envelope. However it was interesting to note that two of the open-source implemen-

tations, although not providing all the services required, were the smallest at around

6 kB. Generally all the commercial offerings boasted RFC compliant implementations

and as a result, the compiled size were a few orders of magnitude greater than the

project goal of 2kB, typically 15 to 64kB and varied greatly between 8, 16 & 32 bit

implementations.

Further, the commercial offerings gave the impression that they focused on differing

markets, and as such it was evident that perhaps there is no interest in development

of a “micro” TCP-IP stack. Only time will tell if demand results in a product of this

2.7 Chapter Summary 12

nature entering the main-stream market.

Chapter 3

Embedded Platform and

Development Tools

3.1 Chapter Introduction

This chapter details the background project requirements for a selection and devel-

opment tools for development of a working prototype. The working prototype was

required to be selected and code developed to implement the IP services required,

namely PPP, IP, UDP, TCP, DHCP and HTTP. The following selection describes the

selection process of the end core and development tools.

3.2 Microprocessor Core

A range of different cores where researched and it was found that a full year of research

could be consumed in this process alone. On offer where numerous cores ranging from

8 to 32 bit with a great range of peripherals, including Analogue to Digital Converter

(ADC), Timers, comparators, not to mention, flash RAM from kilobytes through to

Mega-bytes.

Due to the overwhelming range of cores on offer the evaluation process converged to

3.3 Software and Tools 14

a practical process which was further justified by the ever increasing consumption of

time. This selection process was therefore judged on what was readily available, had

solid tools for support, both for programming and code development, and was well

supported by industry.

It is clear that the use of a flash RAM device would be beneficial during the development

cycle as it could be programmed easily and often. The device therefore would need

to have the capability of “In-System Programming” (ISP), where the micro-controller

would not be required to be removed from the development circuit to be reprogrammed,

further reducing the programming development cycle. Further, with many of the micro-

controllers offered only as surface mounted devices, removal from the development

board was not practical for reprogramming.

Two manufacturers where short listed based on their availability and wide industry

use, the Microchip “PIC” (Peripheral Interface Controller) http://www.microchip.

com and ATmels AVR core http://www.atmel.com/products/avr/. Both of these

devices boast RISC architecture instruction sets and are 8 bit devices. These devices

are available in a wide range of memory configurations and an equally wide range of

on-device peripherals.

3.3 Software and Tools

To assist the software development, the use of higher level languages was required as

the development of TCP/IP stack would be a challenging task if written in assembly

language. Further, the use of assemble language would incur a further learning period

to become familiar with the selected platform instructions and its idiosyncrasies. In-line

with the project goals is the use of such a language that can provide software porta-

bility, as much as practicable in an embedded system. The use of assembly language

would therefore diverge from the project goal of providing portability across varying

manufactures.

The author has had experience in a number of programming languages during his

studies, including Java, Basic, Delphi (Pascal) and ’C’. The ’C’ language was chosen

http://www.microchip.com
http://www.microchip.com
http://www.atmel.com/products/avr/

3.4 Chosen System: Hardware 15

due to its support for virtually all offered IP implementations together with its strong

support within the embedded industry and the authors recent exposure within his

studies. With these considerations in mind the chosen core would need to have a strong

’C’ language compiler support and if possible an integrate development environment in

which the core programming and software management functions could be contained

as one interface, further reducing the “learning curve”.

3.4 Chosen System: Hardware

With the above characteristic in mind the AVR core was selected from the Atmel

range of micro-controller devices. Due the large support of these devices, the range of

available devices within the AVR range (memory, ADC, Timer etc) and support from

numerous compilers, both commercial and open source, this device was an easy choice.

Further, from the authors previous experience with the Microchip range of cores, the

banked memory architecture has lead to difficulties with programming as the memory

is split into banks which do not allow addressing of the complete ROM without setting

a bank flag or switch. Microchip have recently improved the architectural design of the

memory access problem but backward compatibility may be a problem for this design

for portability reasons. The Atmel range, utilising the AVR core, has an identical

architecture over devices ranging from 1 to 256 kB of ROM and 64 B to 8 kB of

RAM, which allows a wide range from which to choose a hardware platform for the end

product target.

As with both manufactures, the devices can be easily programmed in-circuit and the

Atmel AVR core boasts more than 10,000 re-write/erasure cycles. This provides a very

flexible development system which can easily be ported to a manufacturing environment

with relative ease.

Due to project time constraints a simple development system was procured from “JED

Microprocessor Systems” which satisfied the requirements of the previous evaluation

requirements. The AVR570 ATmega128 CPU module and AVR572 prototype develop-

ment board were purchased as well as an ISP (In-System Programmer).

3.4 Chosen System: Hardware 16

The ATmega128 device boasts 128kB of FLASH ROM and 4kB of RAM, which is more

than adequate for this development and was the only device offered in the convenient

development platform. This was not considered a problem as the Atmel AVR range of

8 bit devices can easily be scaled onto a device with limited memory and peripherals,

if required. The development hardware is revealed in Figure 3.1 and Figure 3.2.

Figure 3.1: The AVR570 module from “JED Microprocessor”. Note the In-System Pro-

grammer interface (top right), reset switch in yellow (bottom left) and the 64 pin surface

mounted microcontroller (centre).

3.5 Chosen System: Software 17

Figure 3.2: The AVR572 development board from “JED Microprocessor” revealing the

AVR570 module and the RS232 transceiver and DB-9 connector (middle left)

3.5 Chosen System: Software

’CodeVisionAVR’ by HP InfoTech, http://www.hpinfotech.ro/, was selected because

of its wide industry use and strong user support. This compiler supports the ’C’

language and provides a user friendly Integrated Development Environment (IDE). The

IDE provides project management, including file management, as well as an interface

to the Atmel In-System Programmer. Figure 3.3 reveals a screen snapshot of the main

interface.

http://www.hpinfotech.ro/

3.5 Chosen System: Software 18

Figure 3.3: A screen snapshot of the ‘AVRCodeVision’ IDE. File management facilities are

revealed on the (left) sub-window with the main coding area (right). Convenient buttons

are available for various functions including, saving, compiling, searching and target pro-

gramming are located beneath the pull-down menus. A status message window is available

for debugging and monitoring purposes (bottom)

AVRCodeVision provides a range of features in which the development of embedded

software is enhanced. The IDE provides many features including compiler optimisa-

tions, insertion of assembly within the ’C’ code, supports the AVR core of the Atmel

devices, built in code wizard and code completion tool, as well as supplementary li-

braries supporting external peripherals such as LCD (Liquid Crystal Displays), RTCs

(Real Time Clocks), temperature sensors and various signalling protocols (I2C, Dallas

3.5 Chosen System: Software 19

1 wire and SPI). The IDE also supports in-system programming with a simple 1 click

compile and program function.

More detailed programming, including the configuration and set-up of the device can

also be made via the programmer interface, revealed in Figure 3.4. The “Chip Pro-

grammer” provide a means to which the device’s contents may be read or written to

a file, in addition the set-up of the security configuration can be made to “lock” the

device to ensure the contents of the program can not be copied or overwritten.

Figure 3.4: AVRCodeVision Device Programmer Interface.

3.6 Chapter Summary 20

3.6 Chapter Summary

This chapter has evaluated a range of hardware platforms and software development

tools. This evaluation phase has established a baseline from which the development of

a working prototype can be made. The process has successfully evaluated and selected

an end core, namely the Atmel AVR, to which a portable software implementation can

be made. The use of the AVRCodeVision IDE will provide the necessary software and

hardware tools to foster the software development. The use of ’C’ as a programming

language will provide the portability due to its strong industry support, not only within

the Atmel AVR range but also across a large range of end hardware platforms.

Chapter 4

Software Development

4.1 Chapter Introduction

In this chapter I will describe the software implementation of the Internet Protocols with

an aim to provide the services within a 2kB envelope. This is certainly a challenging

task to squeeze this into a small code size. It was discovered early in the project that to

meet this objective certain compromises would need to be made to minimise the code

and as such is main technical challenge of this Research Project.

The Internet Protocols implemented, namely PPP, IP, TCP and HTTP, will be de-

scribed. Firstly an overview of the generic framework will be presented from which the

IP software is built upon. The TCP/IP protocols required to serve a simple web-page

will be discussed, beginning with the Host to Network layer (RS232 & PPP) through

to the Application layer (HTTP).

4.2 Software Overview

The underlying software structure provides device initialisation, modem emulation,

packet reception, packet transmission and link termination. The system was developed

with Windows 98 PPP client, a terminal application Comlab (Vanstan 2003) and a

4.2 Software Overview 22

popular packet analyser Ethereal (Combs 2005).

After reset the device is initialised. The initialisation routine configures the ports and

importantly the communication port to which the device communicates. The software

then provides responses to modem commands issued by the PC as the device is directly

connected to the PCs serial port. When the fundamental data link has been established

the software waits for a data stream.

When a data stream is received and stored it is inspected. The inspection process

determines what course of action it should take. If the packet is unrecognised or one of

which it is not interested in it is silently discarded. If a response is required a packet

is generated and sent via the communication port. A simplified flow diagram of the

software structure is revealed in Figure 4.1.

4.2 Software Overview 23

Figure 4.1: Simplified Flow Diagram.

4.3 High-level Data Link Control 24

A number of supporting functions are called during this process. They include reception

and transmission routines, various checksum calculations, insertion of escape sequences

and packet inspection functions.

4.3 High-level Data Link Control

The basis for all communication within the Point to Point Protocol is via the HDLC

data link control protocol. In this implementation the HDLC is used to encapsulate the

higher level protocols over an EIA232 link. In this case the HDLC protocol operates

over an asynchronous link and includes error detection via a Frame Check Sequence.

Figure 4.2 reveals the HDLC frame (Kozierok 2003-2005).

Figure 4.2: PPP General Frame Format, utilising HDLC.

With PPP the first three bytes are fixed in value. They are the Flag, Address and

Control fields, and are fixed as the link only ever connects between two hosts. It

is important to note that PPP doesn’t conform to HDLC rules, it uses HDLC as the

basis for its structure. The next field (protocol) specifies the protocol of the information

payload. In this implementation the protocol fields of interest are LCP, PAP, IPCP, and

IP. The higher level protocols, TCP and HTTP, are contained within the IP information

payload.

The start and end of each packet is signified with 7E hexadecimal (01111110 Binary)and

provides a means to detect the packet. As mentioned previously the HDLC packet

utilises error detection using a FCS. This is calculated over the entire frame, excluding

4.4 Point to Point Protocol 25

the start and ending Flags, and is positioned at the end of the frame. The position of the

FCS is convenient as it is calculated as the packet is being transmitted. The calculation

of IP and TCP checksum is a little more tricky as the checksums are positioned within

the headers, and as such the the checksums are required to be calculated prior to passing

them to the lower level protocols for subsequent transmission.

The PPP packet is then transmitted with the start Flag, Address, Control, protocol

field , information payload, FCS and end Flag. However any byte within the frame that

is less than 20 hexadecimal or is 7E or 7D hexadecimal is treated differently. If such a

byte is found within the stream the byte is first exclusive-ORed with 20 hexadecimal

and transmitted with a 7D hexadecimal followed by the exclusive-ORed byte.

In this implementation the PPP frame is generated in a buffer, the FCS calculated and

then the buffer is sent to a transmission routine where the bytes are scanned to see if

they match the above criteria (< 20, 7E or 7D Hexadecimal) and sent.

4.4 Point to Point Protocol

PPP is a protocol that enables links over a variety of different physical layer connections.

In this implementation it is being utilised over EIA232, formally known as RS232,

however it can also operate over other mediums, such as USB and ethernet. It can

carry any type of network layer datagram, however we are only interested in the IP

and UDP protocols in this implementation.

PPP has taken over from the Serial Line Internet Protocol (SLIP) mainly due to the

former having security features such as authentication, the ability to support other

protocols other than IP and ability to dynamically allocation IP addresses during the

link establishment phase.

As we have briefly discussed in the preceding section, PPP operates using a HDLC-like

data link control protocol and provides a means to which two hosts can communicate

with Internet Protocols. However, before we can authenticate the user and exchange

data over the link, we must configure it. This is achieved within this implementation

4.4 Point to Point Protocol 26

via the Link Control Protocol, the Password Authentication Protocol and the Network

Control Protocol.

4.4.1 Link Control Program

This protocol is used to establish, configure and test the data-link. Firstly the PPP

link sends LCP packets to configure and test the data link. After each side of the link

has agreed to its peers configuration the basic link is established.

The protocol uses a system of requests, acknowledgements, negative-acknowledgements

to negotiate the options. However there are also may other configuration controls, refer-

ence should be made to RFC1661 (Simpson 1994b) for full implementation details. This

implementation provides the minimum negotiations required to establish the protocol

and is far from RFC compliance. This wholly justified by the fact that the project

goal is to provide a very small IP implementation. The implementation of an RFC

compliant design would therefore consume a large envelope of code diverging from the

project goal.

There are a number of configuration items that can be negotiated. In this implemen-

tation configuration of the minimum number of options to establish a link was made.

The minimum options for the peer are 2, 5, 7 and 8, whereas for the host (embedded

device) options 3,5, 7 and 8 were required. The options of interest are revealed in the

Table 4.1. It was found that the link could not be established, with the Windows 98

client, with any less than the options listed. Any attempt to reduce the options resulted

in the peer not agreeing and hence terminating the link.

Table 4.1: LCP Configuration Options

Option Descritption

2 Maximum Receive Unit

3 Authentication-Protocol.

5 Magic Number

7 Protocol-Field-Compression

8 Address-and-Control-Field-Compression.

4.4 Point to Point Protocol 27

The LCP configuration option 2 signifies that the host can receive larger packets, or to

request that the peer send smaller packets.

The default value is 1500 octets which seems to indicate it matches the maximum size

of an ethernet frame. However it was noticed during development that even if this

option was reduced, to say 200 bytes, the peer ignored the request and continued to

sent larger packets. Inspection of RFC1661 revealed the following “If smaller packets

are requested, an implementation MUST still be able to receive the full 1500 octet

information field in case link synchronisation is lost.”, however it didn’t seem to have

any bearing if synchronisation was not lost.

Option 3 of the LCP configuration specifies the authentication protocol. This may be

either the Password Authentication Protocol (PAP) or Challenge Handshake Authen-

tication Protocol (CHAP). The PAP authentication type was selected and negotiated

as it was simple to implement, whereas the CHAP requires a considerable overhead in

terms of software relative to PAP. PAP simply provides a mechanism to which a UserID

and Password are sent, in plain text, from the peer requesting the authentication. The

host then authenticates the requester by sending an acknowledgement. Conversely if

the UserID or Password are incorrect the host sends a Rejection.

The last two options 7 and 8 provide a means to which information within the HDLC

frame may be omitted to improve the through-put of the link. The first three bytes

of the HDLC frame, after the initiating Flag (7E), are always fixed. When this com-

pression is in use these bytes are simply not transmitted. However, each peer may still

transmit these bytes if it so desires. In this implementation these bytes are always

transmitted as it reduces the code envelope.

4.4.2 Password Authentication Protocol

Once the initial Link is established the authentication process begins with the negoti-

ated protocol PAP (option 3 in the LCP negotiation). The UserID and Password pair

is sent to the authenticator and if authenticated a Acknowledgement is sent.

In this implementation the software looks for a PAP packet with a REQ (Request) from

4.4 Point to Point Protocol 28

the peer and acknowledges that request. Currently the software provides no password

or user ID checking.

4.4.3 Network Control Protocol

The Network Control Protocol is a used to configure each network protocol which

intends on utilising the data link by use of network protocol configurations. For the case

of IP, the configuration protocol used is the Internet Protocol Control Protocol (IPCP).

With this protocol the IP configuration is negotiated and established. Such things as,

DNS, Gateway, netmasks and IP addresses can be configured with this protocol. In

this implementation the IP address for both the host and the peer is made. Again, the

minimum configuration was negotiated, that being the IP addressing of the host and

client only.

After the negotiations have been made and agreed by both hosts the Host to Network

layer is established and the link is available to accept IP traffic. In Windows the clients

signifies this by popping up a window confirming you have made a connection to your

host, as in Figure 4.3.

Figure 4.3: Windows ME connection established window.

4.5 Internet Protocol 29

4.5 Internet Protocol

At this stage we have successfully negotiated and established a PPP link which carry

our IP datagrams, which in turn carry the higher level protocols TCP and HTTP.

The implementation of the IP packet was relatively trouble-free as once the PPP link

is established it is just a matter of filling up the transmit buffer for the lower layer

to send. The only difficulty was the implementation of the checksum as it is located

within the header which is at the front of the datagram. Recall the checksum for the

HDLC frame is at the end of the data stream and was easy to calculate as bytes were

transmitted. In the IP case this involved the use of another temporary buffer in which

the checksum could be calculated prior to passing it to the lower layer.

Figure 4.4 reveals the datagram format detailing the position of the checksum within

the datagram.

Figure 4.4: IP Frame, note the relative position of the checksum, which is within the header.

IP provides a means in getting datagrams from the source to their destination. This

is achieved with addressing the datagram. As can be seen in Figure 4.4, the IP header

contains fields for the IP source and destination addresses. In this implementation they

are statically set however, using DHCP these could be dynamicly made.

4.6 Transmission Control Protocol 30

4.6 Transmission Control Protocol

The Transmission Control Protocol (TCP) proved to be the most challenging aspect

of the software development. As TCP is a connection orientated protocol it provides

mechanisms to ensure that data send over the link reaches its destination. This involves

the establishment of a logical connection, the passing of data and an acknowledgement

that the data is received. In addition each unique data transfer is handled in this set-up

and acknowledge method separately.

TCP first requires a connection to be established and in the case of a client requesting a

web-page the client first sends a SYN to begin the process. The server in this case also

sends a SYN and an ACK to the acknowledge the SYN. TCP provides a means to which

ACKs can be piggybacked to reduce traffic, as in the case of a SYN and ACK in one

response. Once this initial handshaking has taken place the client requests a web-page

with the HTTP GET command and also piggybacks the ACK to the previous server

response. The server then replies with a HTTP response, in this implementation in the

form of a HTTP/1.0 . . . “Hello World”, with an ACK to the previous segment to signify

it has received its request. Again the client sends an ACK to acknowledge the reception

of the webpage, and the server sends another ACK to acknowledge the clients ACK.

At this stage the web-page can be displayed. The webpage is only displayed when the

client knows the transfer has been received in order and that it is all it should receive.

Figure 4.5 (Bentham 2003) reveals this process described, note the use of piggy-backing

to reduce network traffic.

4.6 Transmission Control Protocol 31

Figure 4.5: TCP segment data transfer.

In addition to the handshaking taking place TCP provides a mechanism to ensure

that the segments transmitted are sequenced. As packets can be received out of order

each segment transmits a 32 bit sequence number which identifies the start of each

segment. When the peer acknowledges the segment it also acknowledges the sequence

number which is incremented by the number of bytes received in the TCP datagram.

Subsequent segments transmitted increment the sequence number by the size of payload

so that the receiver can determine the order in which the data should be placed in. In

this implementation the segment size has been kept small, less than 500 bytes, to reduce

the software management if datagrams where split over multiple packets.

TCP implements the sliding window method of data transfer to improve link efficiency

which is also another function of the sequence numbering. As the embedded device has

limited RAM, the window size has been limited to ensure that it only ever needs to

keep track of one segment (one packet). This has the secondary advantage of reducing

the software complexity and hence code size.

The second challenge of TCP was the calculation of the checksum. In TCP the check-

sum is not only is calculated over its header and payload, as a conventional checksum is

calculated, but also included is information from the IP layer. This provides additional

measures to ensure the TCP segment is directed to its intended recipient. It was inter-

esting to note that this violates the architectural layering principles of the OSI model

4.7 Hyper-text Transfer Protocol 32

in which each layer is a self contained unit.

The TCP checksum is calculated with a“Pseudo Header” and included within the

Pseudo Header is IP source and destination addresses, the IP protocol field (from

the lower IP layer) and the computed TCP length.

This presented some difficulties with the calculation as the TCP and IP layers were

closely bound. The software implementation therefore, was closely bound in the way

it operated as such we had two checksum to calculate prior to passing this down to the

PPP link for transmission.

4.7 Hyper-text Transfer Protocol

The application level protocol used to send and receive web-pages is the Hyper-text

Transfer Protocol. It provides a simple method of requesting web-pages from servers

and the format of the data from the server. In this implementation the device looks for

the “GET” ASCII byte sequence within the TCP payload. The device then reply to this

request with a simple response, in this case a static web-page is displayed. Figure 4.6

reveals the first web-page served on the embedded device.

Figure 4.6: Browser Display of Served Web-Page from the embedded device.

The implementation of this protocol was straightforward and only required the testing

of the TCP datagram, for a GET and the simple formulation of a static web-page which

4.8 RAM Utilisation 33

was passed down to the TCP layer.

4.8 RAM Utilisation

Currently the software utilises approximately 3kB of RAM. This is made up of 2 buffers

of 1kB for transmission and reception, in addition to a temporary buffer of 768 Bytes

plus the stack of approximately 240 Bytes. The transmit and temporary can be reduced

in size to around 150 Bytes. However the receive buffer needs to be larger as it was

found that some packets can cause a buffer over-run. This was caused by the plethora

of packets received once the link was established, and also as it is idle, and is revealed

in Figure 4.7.

Figure 4.7: Plethora of packets received on establishment of Link.

It is expected that the RAM utilisation can be easily reduced to around 1 kB (150 B

for transmit and temporary buffers, 500 B for receive buffer and 200 B for the stack)

which would be better suited to smaller devices.

4.9 Code Optimisation 34

4.9 Code Optimisation

Currently the prototype systems occupies a code envelope of 8 kB. This is discussed in

more detail, including further work, in Chapter 6.

4.10 Chapter Summary

This chapter has discussed the challenges encountered during this research project

and some of the difficulties working with an embedded system utilising the Internet

Protocols. It was interesting to discover that the Network (IP) and Transport layers

(TCP) were closely bound and how it presented implementation issues with the Pseudo

Header checksum calculation.

Chapter 5

Testing and Security

5.1 Chapter Introduction

This chapter introduces the system testing activities performed so far. The security

measures implemented and security considerations which are important to embedded

devices are also discussed. As the project has been primarily been focused on the

software implementation some hardware testing is discussed.

5.2 Testing So Far

The testing of this system has evolved through-out the project in line with the services

which were required for each project steps. The project began with the initial set-up

and testing of the basic EIA232 communication, the PPP link, then the IP and finally

the TCP layers to provide a working prototype.

The first step was the establishment of the basic EIA232 communication. This was a

simple task as ’C’ provided functions to send and receive bytes through the USART. The

AVRCodeVision IDE code wizard was used to set-up the communication parameters

of the port and a simple program was written to echo the characters send from a PC.

5.2 Testing So Far 36

The first challenge of the project was the implementation of the HDLC packet which was

fundamental to the operation of the TCP/IP stack as it provides the data link between

systems. The formulation of the HDLC was relatively easy however the calculation of

the Checksum provided some challenges. The packet analyser ’Ethereal’ was found to be

invaluable in the debugging process to provide feedback that the correct HDLC packet

was formed and sent with the correct checksum. Various packets were formulated and

sent to and from the embedded system to test the operation. This testing, with the

assistance of ’Ethereal’, proved that the software algorithms were functional correctly

including the reception and transmission of the correct escape sequences (7E, 7D, and

anything below 20 hex).

The process of testing with ethereal was extended to testing of the IP and TCP proto-

cols. It is interesting to note that the way in which the TCP/IP suite operates. If you

do not have the correct structure in your packets it just ignores them and ‘Ethereal’

again was used to debug malformed packets. For interest Figure 5.1 reveals a screen

shot of ’Ethereal’ capturing a malformed TCP checksum.

Figure 5.1: Screen shot of Ethereal Packet Analyser revealing a malformed checksum cal-

culation.

5.3 Security 37

Final testing of the system was performed with the system in its expected software

environment. Windows 98 was used as the PPP client and Microsoft Internet Explorer

as the browser. Further testing is required to prove its compatibility with differing PPP

clients and web-browsers. However, as HTTP is platform independent no issues are

expected. Further testing with Windows XP, and also a Linux client will be required

to provide further confidence.

The EIA232 interface was initially selected to operate at 9600 baud as a GSM radio

modem was available. However, it is necessary to test the system at higher baud speeds

to test the softwares handling of communications.

5.3 Security

The prototype system utilises Password Authentication Protocol as its method of au-

thentication. However the implementation so far does not provide any user or password

checking and simply allows any user to establish a connection. This is obviously un-

acceptable and hence will require implementation of user and password checking. The

other consideration is where that user may input executable code into both the userID

and password fields in an attempt to create a buffer overrun. This potentially could

corrupt the system stack if the buffer spanned into that area. No testing if this has yet

be provisioned.

Other aspects of this system is terms of security is that of Denial of Service attacks.

These attacks are where the device is continually bombarded with IP traffic, whether

it is HTTP requests, PING requests or general traffic overload. As the system only

responds to a very narrow and specific type of request the only significant problem is

that of TCP traffic. Currently the system is wide open in this respect. It is however

unlikely that this may happen unless a virus of some form was initiating the traffic

without the users knowledge. It would be unlikely that the user of the system would

be responsible for this attack.

5.4 Environmental and Hardware 38

5.4 Environmental and Hardware

As this device my be used potentially in a wide variety of harsh environments testing in

these environments would be required. This would include aspects such as temperature

extreme testing and testing within noisy electrical environments. At this stage as the

project has primarily been focused on the software implementation these hardware

considerations have not been fully investigated and hence tested.

5.5 Chapter Summary

This chapter has discussed the various aspects of testing and how the software testing

was closely bound with the software development. The layered approach to the Internet

Protocols has forced the software development not to continue until the underlying

protocols where functional. Some areas of testing, other than software, where discussed

and highlighted the need for an engineering approach to be taken to all aspects of the

system. Although this research project was wholly focused on software development

considerable work is therefore still required to produce a commercial product.

Chapter 6

Conclusions and Further Work

6.1 Achievement of Project Objectives

The following objectives have been addressed:

Research and Evaluation of Existing Systems Chapter 2 presented and discussed

the research and evaluation of existing systems available today. Details were pre-

sented of the available system and where evaluated in terms of cost, security and

function. Commercial and open source products were considered in the evalua-

tion. Investigations found that there wasn’t an implementation, both commercial

and open source, that satisfied the project requirements for providing PPP, IP,

UDP, TCP, DHCP and HTTP services within a 2kB envelope.

The commercial offerings boasted RFC compliant implementations and as a re-

sult, the compiled size were a few orders of magnitude greater than the project

goal of 2kB, whereas the open source implements, although smaller, didn’t pro-

vide a PPP option. The evaluation also highlighted that the selection of an end

target was critical in relation to the compiled code size. It was concluded the

code size was a function of word size (8, 16 and 32 bit devices).

Embedded Platform and Software Development Tools Chapter 3 evaluated a

range of hardware platforms and software development tools. The evaluation

6.2 Further Work 40

phase has established a baseline from which the development of a working pro-

totype was made. The successful selection of an end core and programming lan-

guage, namely the Atmel AVR and ’C’ respectively, to which a portable software

implementation was made. The use of the selected platform provided portability

between the Atmel range of AVR core devices and also others manufactures due

to the widely used industry supported ’C’ programming language.

Construction of a Working Prototype Chapter 4 detailed the software implemen-

tation of the Internet Protocols. The protocols PPP, IP, TCP and HTTP were

successfully implemented and provided a working prototype. However the UDP

and DHCP protocols were not implemented as the it was found that within the

Network Configuration Protocol the allocation of IP address was made. This

does not indicate that these protocols are not required, only that they were not

required for this implementation utilising PPP. Implementation of these proto-

cols would certainly we useful if the device were interfaced via another medium

such as Ethernet or within a GPRS network for self negotiation and allocation of

network addresses.

6.2 Further Work

The majority of the objectives of this project have been made however further work is

required to tidy up the software, optimise and enhance its data structures and RAM

usage and to improve its security.

The first and most obvious work required is to optimise the software structures to reduce

the code envelope. During the early parts of this research project it was understood

that some of the algorithms would need to be optimised in assembly to reduce the code

envelope. However as the project has matured and time has been available to reflect

back on the initial objective I feel that it is more important, in both a commercial and

technical sense, to ensure the system is portable.

As was discovered in the evaluation phase the selection of the end core had larger

repercussions for the end code envelope size. If for example a larger device, such a

6.2 Further Work 41

16bit type, was selected this would potentially made the prototype code smaller. Now,

if the software was then ported to a 8 bit device the compiled code size would increase,

as expected and revealed in the evaluation phase. This leads me to conclude that

software portability is more important than striving for the 2 kB goal. Yes, I believe I

could come close to this goal if I optimised the system in assembly but the system will

be inflexible and platform dependant.

The testing of the system at higher baud rates to assess the simple communication

method used is also of importance. To enable portability I did not utilise any interrupt

driven communications which certainly may reduce the devices top end communication

speed. Empirical testing of the device to establish this limitation is still required.

Another important consideration for further work is that of security. Security takes may

forms which all need consideration. For example the process of Password Authentica-

tion provides a level of security for access to the system, but at the same time does this

pose a security risk if the input buffer is over-run with executable code that corrupts the

stack? Other considerations that need further research is malicious attacks from exter-

nal parties in the form of Denial of Service attacks and what measures can be taken to

combat this. Consideration must also be made with respect to what access the device

provides if a users wishes to use the device as a stepping stone for attacks of another

computer systems. Currently the risk is considered very low as this implementation

provides a “skeleton” TCP/IP stack. However, further development of the system will

warrant these careful considerations, especially in a commercial environment.

The implementation of UDP and DHCP protocols for self configuration within a net-

work would certainly prove to be an excellent feature. This feature would be very

convenient for integration into ethernet networks for monitoring and control purposes.

I can also see a trend to use the GPRS as the transport mechanisms for remote devices

where monitoring is required without the hassles of dialing a device to access it 1.

Other areas of development for this project may extend to some datalogging functions.

It would be convenient to utilise the File Transfer Protocol (FTP) for this function
1The authors knowledge in this area is limited however, it would seem that the functions of DHCP

would also be advantageous to provide a “Plug-n-Play” monitoring/control device

6.3 Conclusion 42

and was the motivation for including it as a “As time permits” option in the Project

Specification.

The addition of dynamic web-pages, including such things as colour, buttons or even

graphics, would make the interface more informative and in-line with User expectations.

Another area of research could be the addition of a small mail client to send email

providing monitoring and status. Further research into this area would be required to

understand the mechanisms that govern small embebbed web-servers, be that memory

(RAM and ROM limitation) or processing power. It also leads the question of whether

the device would need an operating system to manage all these added features 2.

6.3 Conclusion

Technology utilising the Internet protocols is an exciting and fast developing area of

Engineering. This project has explored the available technology and found it lacking

in the area of small embedded software. It has captured the flexible nature of this

technology, via the simple to use web-browser tools, which will enable its ease of use

from a users point of view.

This product has a real opportunity to fill a market and the uses are limited only

by your imagination. For example, this technology can be incorporated into existing

networking hardware for monitoring, deployed via radio link technology in the field or

even in a smart home application.

The project has excited me personally in the possibilities and opportunities still avail-

able within the Engineering field, both in Electronic and Software Engineering.

2Hello, any sponsors out there!

References

B. Lloyd, W. S. (1992), RFC 1334 - PPP Authentication Protocols, Network Working

Group.

Bentham, J. (2003), TCP/IP Lean, Vol. 2, second edn, CMP Books, Lawrence, Kansas.

http://www.iosoft.co.uk.

Campbell, J. (1993), C Programmers Guide to Serial Communications, second edn,

Sams Pub, Indianapolis, Ind.

ChipWeb (collected March 2005), Iosoft, Cambridge, UK.

http://www.iosoft.co.uk.

CMX MicroNet (collected Febuary 2005), CMX Systems, Jacksonville FL, USA 32223.

http://www.cmx.com.

Combs, G. (2005), Ethereal, Open Source.

http://www.ethereal.com.

Droms, R. (1997), RFC 2131 - Dynamic Host Configuration Protocol, Network Working

Group.

Dynamic C with TCP/IP Libraries (collected March 2005), Rabbit Semiconductor.

http://www.rabbitsemiconductor.com.

Embedded Computer Design, Trade Journal (2005), John Black, Michael Hopper,

Wayne Kristoff, 13253 La Montana, Suite 207 Fountain Hills, AZ 85268.

http://www.embedded-computing.com.

http://www.iosoft.co.uk
http://www.iosoft.co.uk
http://www.cmx.com
http://www.ethereal.com
http://www.rabbitsemiconductor.com
http://www.embedded-computing.com

REFERENCES 44

Embedded TCP/IP Stack (collected March 2005), Unicoi Systems, Atlanta, GA 30040

USA.

http://www.unicoi.com.

ESF TCP/IP (collected March 2005), EmIment micosystems, Portland Oregon, USA

97202.

http://www.eminentmicro.com.

Ethernut (collected Febuary 2005), Egnite Software GmbH, 44575 Castrop-Rauxel, Ger-

many.

http://www.egnite.de.

Fusion RTOS, Fusion Net and Fusion HTTP (collected March 2005), Clarinox Tech-

nologies, Sandringham Melbourne, Australia.

http://www.clarinox.com.

Gadre, D. V. (2000), Programming and customizing the AVR microcontroller, McGraw-

Hill, CMP Books, New York.

INterNiche Lite TCP/IP and Portable PPP (collected March 2005), Intertniche Tech-

nologies, Cambell, CA 95008 USA.

http://www.iniche.com.

IPv6 Stack (collected March 2005), Acmet Technologies Private Limitied, Boxborough,

MA 01719.

http://www.acmet.com.

Kozierok, C. M. (2003-2005), The TCP/IP Guide.

http://www.tcpipguide.com.

KwikNet (collected March 2005), Kadak Products, Vancouver, BC, Canada.

http://www.kadak.com.

Loewen, M. (2002), Using PICmicro MCUs to Connect to Internet via PPP, Microchip

Technology Inc, 2355 West Chandler Blvd, Chandler, AZ 85224-6199.

http://www.microchip.com.

McGregor, G. (1992), RFC 1332 - The PPP Internet Protocol Control Protocol (IPCP),

Network Working Group.

http://www.unicoi.com
http://www.eminentmicro.com
http://www.egnite.de
http://www.clarinox.com
http://www.iniche.com
http://www.acmet.com
http://www.tcpipguide.com
http://www.kadak.com
http://www.microchip.com

REFERENCES 45

Nexgen IP and WEB (collected March 2005), Nexgen, Charville, France.

http://www.nexgen-software.com.

PC/104 Embedded Solutions, Trade Journal (2005), John Black, Michael Hopper,

Wayne Kristoff, 13253 La Montana, Suite 207 Fountain Hills, AZ 85268.

http://www.PC104online.com.

Perkins, D. (1993), RFC 1547 - Requirements for an Internet Standard Point-to-Point

Protocol, Network Working Group.

R. Fielding, J. Gettys, J. M. H. F. L. M. P. L. T. B.-L. (1999), RFC 2616 - Hypertext

Transfer Protocol – HTTP/1.1, Network Working Group.

RFC0793: Transmission Control Protocol (1981), University of Southern California.

RFC 791 - Internet Protocol (1981), University of Southern California.

Richard Barnett, Larry OCull, S. C. (2003), Embedded C programming and the Atmel

AVR, Delmar, Clifton Park, NY.

RomPager (collected March 2005), Allero Software Development Corporation, Boxbor-

ough, MA, USA 01719.

http://www.allegrosoft.com.

RTIP (collected March 2005), Segger Microcontroller Systems, Hinrich- Herzt, Ger-

many.

http://www.segger.com.

RTXC Quadnet TCP/IP v4/v6 (collected March 2005), Quadros Systems, Huston TX

USA.

http://www.quadros.com.

Simpson, W. (1993), RFC 1549 - PPP in HDLC Framing, Network Working Group.

Simpson, W. (1994a), RFC 1570 - PPP LCP Extensions, Network Working Group.

Simpson, W. (1994b), RFC 1661 - The Point-to-Point Protocol (PPP), Network Work-

ing Group.

http://www.nexgen-software.com
http://www.PC104online.com
http://www.allegrosoft.com
http://www.segger.com
http://www.quadros.com

REFERENCES 46

Target TCP (collected March 2005), Blunk Microsystems, San Jose, CA, USA 95120-

4558.

http://www.blunkmicro.com.

TCP-IP Stack (collected March 2005), EBSnet, Groton, MA, USA 01450.

http://www.ebsnetinc.com.

TCP/IP Suite (collected March 2005a), Interpeak AB, Stockholm,Sweden.

http://www.interpeak.com.

TCP/IP Suite (collected March 2005b), On Time Software, Groton, MA USA.

http://www.on-time.com.

TCP/IP Suite (collected March 2005c), QNX Software Systems, Ontaroi, Canada.

http://www.qnx.com.

TINI- Tiny InterNet Interfaces (collected March 2005), Maxim, Sunnydale, CA USA.

http://www.maxim-ic.com.

Tiny TCP (collected March 2005), Unusual research.

http://www.unusualresearch.com.

Treck IPv4/v6 Dual Stack (collected March 2005), Treck Inc, Ohio, USA.

http://www.treck.com.

uC/TCP-IP (collected March 2005), Micrium, Weston, FL USA.

http://www.micrium.com.

uIP (collected March 2005), Adam Dunkels, Swedish Intitute of Computer Science,

Kista,Sweden.

http://www.sics.se/∼adam/.

USNET (collected March 2005), Micro Digital, Costa Mesa CA, USA.

http://www.smxinfo.com.

Vanstan, G. (2003), COMLAB, Control Gadgets, Unit 1/20 Loweana St, Southport,

QLD, 4215, geoff@controlgadgets.com.au.

http://www.controlgadgets.com.au.

http://www.blunkmicro.com
http://www.ebsnetinc.com
http://www.interpeak.com
http://www.on-time.com
http://www.qnx.com
http://www.maxim-ic.com
http://www.unusualresearch.com
http://www.treck.com
http://www.micrium.com
http://www.sics.se/~adam/
http://www.smxinfo.com
http://www.controlgadgets.com.au

REFERENCES 47

Web Server (collected March 2005), Green Hills Software, Santa Babra CA 93101 USA.

http://www.ghs.com.

XPort Embedded Web Server (collected March 2005), Lantronix, Irvine CA, USA.

http://www.lantronix.com.

http://www.ghs.com
http://www.lantronix.com

Appendix A

Project Specification

49

University of Southern Queensland
Faculty of Engineering and Surveying

ENG 4111/2 Research Project
PROJECT SPECIFICATION

FOR: Simon BROWN
TOPIC: Embedded IP for Small Devices
SUPERVISOR: Dr John Leis

Project AIM:

To develop a useful subset of the IP protocol stack for use in embedded devices. Im-
plement PPP (point-to-point) protocol, the UDP (User Datagram Protocol, the TCP
(Transmission Control Protocol), and finally a subset of application protocols such as
DHCP (Dynamic Host Control Protocol and HTTP for transferring web pages. Ulti-
mately, this will allow embedded devices to act as miniature web servers, simplifying
the gathering of information from them.

PROGRAMME: Issue A, 3rd Feb 2005

1. Research available systems.

2. Evaluate available systems in terms of cost, security and function, both open
source and commercial.

3. Research / Investigate range of embedded platforms (Micro-controllers) & soft-
ware tools with a final goal of providing software portability, where practical.

4. Select target system hardware & programming language based on the previous
results.

5. Write code to implement PPP, UDP, TCP, DHCP & HTTP with aim to restrict
text size below 2 kB on chosen target system.

6. Construct working prototype of system.

As time permits

7. Implement FTP services for transferring of data files from embedded system.

Appendix B

Code Listing

B.1 Source Code Listing 51

B.1 Source Code Listing

Listing B.1: The Prototype Embedded IP Stack Source Code

#include <mega128 . h>
#asm . equ l c d p o r t = 0x15 ;
PORTC #endasm
#include <l cd . h>
#include <s t d l i b . h>
#include <de lay . h>
#include <s t r i n g . h>

// Standard Input /Output f unc t i on s
#include <s t d i o . h>

#define NILL 0
#define LCP 1
#define PAP 2
#define IPCP 3
#define IP 4
#define TCP 5

#define REQ 1
#define ACK 2
#define NAK 3
#define REJ 4
#define TERM 5

#define LCPState 1
#define PAPState 2
#define NCPState 3
#define IPState 4

// Declare your g l o b a l v a r i a b l e s here
unsigned char txBuf f [1 0 2 3] ,

rxBuf f [1 0 2 3] ;
unsigned short tx ptr , rx ptr , maxRx ;
unsigned short checkSum ;

unsigned char c l i e n t IP1 ;
unsigned char c l i e n t IP2 ;
unsigned char c l i e n t IP3 ;
unsigned char c l i e n t IP4 ;

unsigned char sourcePortH ;
unsigned char sourcePortL ;
unsigned char dest inat ionPortH ;
unsigned char des t inat ionPortL ;

unsigned char sequenceNumber1 ;
unsigned char sequenceNumber2 ;
unsigned char sequenceNumber3 ;
unsigned char sequenceNumber4 ;

unsigned char ackNumber1 ;
unsigned char ackNumber2 ;
unsigned char ackNumber3 ;
unsigned char ackNumber4 ;
unsigned char TCPFlags ;

B.1 Source Code Listing 52

unsigned char identIP = 0x00 ;
char tempChar [7 6 8] ;
unsigned long int sequenceNumber ;

// Declare some o f my procedures
void sendPacket (unsigned short l ength) ;
unsigned char rxPacket () ;
unsigned short crcCalc (unsigned char newByte ,

unsigned short checkSumIn) ;
unsigned char addByte (unsigned char newByte) ;
void dummyModemCommand() ;
void i n i t i a l i s e () ;
unsigned char rxProtocolType () ;
unsigned short rxPacketOptions () ;

unsigned char rxIdentNumber () ;
unsigned char generatePacket (unsigned char protoco l ,

unsigned char code ,
unsigned char i d e n t i f i c a t i o n ,
unsigned char ∗ t x s t r) ;

void s t o r e I p I n f o () ;
void storeTCPInfo () ;

void checkSumIP2 () ;
void checkSumTCP(unsigned char l ength) ;

// Main program s t r u c t u r e

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// MAIN PROGRAM
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void main (void)
{

//
// Declare your l o c a l v a r i a b l e s
// here
//
unsigned char s ta te , txCount ,

rxPacketID , rxNew , txNew , i ;

i n i t i a l i s e () ;

l c d i n i t (20) ;

while (! (UCSR0A & 0x80))
{ // wai t

/// f o r
///rxData
///

}

dummyModemCommand() ; // send
///some
/// responses
/// to
/// s im i l a t e
///modem
/// con t r o l
///

B.1 Source Code Listing 53

rxPacketID = 1 ;
txNew = 0 ;
rxNew = 0 ;
s t a t e = 0 ;

while (1)
{

// Something in the RX Buf fer ?
i f ((UCSR0A & 0x80))
{

l c d c l e a r () ;

// l c d pu t c ha r (’B ’) ;
i f (rxPacket ())
{

rxNew = 0x01 ;
l cd putchar (’C ’) ; // Val id

/// packe t
/// type ?
///

}
}

i f (rxNew)
{

// l c d pu t c ha r (’Y ’) ;
switch (rxProtocolType ())
{

case LCP: // l c d pu t c ha r
(’1 ’) ;

///
i f (rxBuf f [4] == REQ)
{ // i f

/// ac c ep t a b l e
/// t x
/// packe t
///

i f (rxPacketOptions () == 0x00D2)
{ // 2 ,5 ,7 ,8

/// op t ions
///

s t a t e = 11 ; // move
/// to
/// next
/// s t a t e ,
///PAP
///

}
}
else i f (rxBuf f [4] == ACK)
{

s t a t e = 1 ;
}

else i f (rxBuf f [4] == TERM)

B.1 Source Code Listing 54

{

//
// send term &
// c l o s e connect ion //
// Terminate connect ion
//
s t a t e = 14 ;

}
break ;

case PAP: // l c d pu t c ha r
(’2 ’) ;

///
i f (rxBuf f [4] == REQ)
{ // i f

/// ac c ep t a b l e
/// t x
/// packe t
///

s t a t e = 21 ; // send
///ACK,
/// ignore
///password
/// sen t .
///

}
else
{

//
// send term &
// c l o s e connect ion //
// Terminate connect ion
//
s t a t e = 14 ;

}
break ;

case IPCP : // l c d pu t c ha r
(’3 ’) ;

///
i f (rxBuf f [4] == REQ)
{ // i f

/// ac c ep t a b l e
/// t x
/// packe t
///

i f ((rxBuf f [7] < 0x0b) &&
(rxBuf f [1 0] == 0x00))

{ // l e s s
/// than
///10
/// by t e s
///

// send nak with address
s t a t e = 31 ;

}

B.1 Source Code Listing 55

else i f (rxBuf f [1 0] == 0x0a)
{

//
// send ACK as ip has
// been s e t
//
s t a t e = 32 ;
break ;

}

}
else i f (rxBuf f [4] == ACK)
{ // Peer

/// accep t s
/// con f i g u ra t i on
///

s t a t e = 40 ; // move
/// to
///PAP
/// s t a t e .
///

}
else i f (rxBuf f [4] == NAK)
{ // I

///don ; t
/// accep t
/// con f i g u ra t i on
///

s t a t e = 30 ; // can
///we
/// nego ia t e
///

}
else i f (rxBuf f [4] == REJ)
{ // Does

///not
/// agree
///wi th
///proposed
/// con f i g
///

s t a t e = 30 ;
}
else
{

//
// send term &
// c l o s e connect ion //
// Terminate connect ion
//
s t a t e = 14 ;

}

break ;

case IP :

B.1 Source Code Listing 56

// l c d pu t c ha r (’P ’) ;
s t o r e I p I n f o () ;

i f (rxBuf f [1 3] == 0x06)
{ // TCP

///
// l c d pu t c ha r (’T ’) ;
i f (rxBuf f [3 7] == 0x02)
{ // SYN

///Sent
///from
/// C l i en t
///

storeTCPInfo () ;
s t a t e = 50 ;
break ;

}

else i f ((rxBuf f [3 7] == 0x18) &&
(rxBuf f [4 4] == 0x47))

{ // ack
///and
///GET
///HTTP
///

storeTCPInfo () ;
s t a t e = 51 ;
l cd putchar (’A ’) ;
break ;

}
else i f ((rxBuf f [3 7] == 0x10) &&

(s t a t e == 55))
{

storeTCPInfo () ;
s t a t e = 53 ;
l cd putchar (’A ’) ;
break ;

}
s t a t e = 1 ;

}

break ;

case NILL :
l cd putchar (’ 5 ’) ;
s t a t e = 1 ;

break ; // must
///be
///no
/// r e c e i v ed
/// v a l i d
/// packe t
///

default :

// l c d pu t c ha r (’6 ’) ;
s t a t e = 1 ;

B.1 Source Code Listing 57

break ;

} // end
/// o f
/// sw i t ch
///

// l c d pu t c ha r (’7 ’) ;
txNew = 1 ;

} // end
/// o f
/// i f
///

i f (s t a t e == 1)
{

txNew = 0 ;
}

rxNew = 0 ;

i f (txNew)
{

switch (s t a t e)
{

case 0 : // LCP
///HOST
///send
///REQ
///

s t a t e = 0 ;
rxPacketID++;
tempChar [0] = 0x15 ; // l en g t h

///
tempChar [1] = 0x02 ; // ACCM

///
tempChar [2] = 0x06 ; // l en g t h

///
tempChar [3] = 0x00 ;
tempChar [4] = 0x0A ;
tempChar [5] = 0x00 ;
tempChar [6] = 0x00 ;
tempChar [7] = 0x03 ; // PAP

///
tempChar [8] = 0x04 ; // l en g t h

///
tempChar [9] = 0xC0 ; // Authenicat ion

/// type
///

tempChar [1 0] = 0x23 ; // cont
///

tempChar [1 1] = 0x05 ;
tempChar [1 2] = 0x06 ;
tempChar [1 3] = 0x01 ;
tempChar [1 4] = 0x02 ;
tempChar [1 5] = 0x03 ;
tempChar [1 6] = 0x04 ;
tempChar [1 7] = 0x07 ; // Compression

B.1 Source Code Listing 58

///
tempChar [1 8] = 0x02 ; // l en g t h

///
tempChar [1 9] = 0x08 ; // Compression

///
tempChar [2 0] = 0x02 ; // l en g t h

///
txCount = generatePacket (LCP,

REQ,
rxPacketID ,
&tempChar [0]) ;

sendPacket (txCount) ;
break ;

case 1 :
s t a t e = 1 ;
break ;

case 11 : // send
///ACK
///

tempChar [0] = 0x11 ; // l en g t h
///

tempChar [1] = 0x02 ; // ACCM
///

tempChar [2] = 0x06 ; // l en g t h
///

tempChar [3] = 0x00 ;
tempChar [4] = 0x0A ;
tempChar [5] = 0x00 ;
tempChar [6] = 0x00 ;
tempChar [7] = 0x05 ;
tempChar [8] = 0x06 ;
tempChar [9] = rxBuf f [1 6] ;
tempChar [1 0] = rxBuf f [1 7] ;
tempChar [1 1] = rxBuf f [1 8] ;
tempChar [1 2] = rxBuf f [1 9] ;
tempChar [1 3] = 0x07 ; // Compression

///
tempChar [1 4] = 0x02 ; // l en g t h

///
tempChar [1 5] = 0x08 ; // Compression

///
tempChar [1 6] = 0x02 ; // l en g t h

///
txCount = generatePacket (LCP,

ACK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;
s t a t e = 20 ;
break ;

case 14 : // send
///Term
///

tempChar [0] = 0x00 ; // l en g t h
///

B.1 Source Code Listing 59

txCount = generatePacket (LCP,
TERM,
rxIdentNumber ,
&tempChar [0]) ;

sendPacket (txCount) ; // send
/// packe t
/// immediate ly
/// to
/// terminate
/// connect ion
///

dummyModemCommand() ;
break ;

case 20 :
s t a t e = 20 ;
break ;

case 21 : // send
///send
///ACK
///

tempChar [0] = 0x00 ; // l eng th ,
/// zero
/// f o r
///PAP
///Ack
///

txCount = generatePacket (PAP,
ACK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;
s t a t e = 30 ;
break ;

case 30 : // IPCP
///send
///send
///REQ
///

s t a t e = 30 ;
break ;

case 31 : // send
///send
///NAK
///

tempChar [0] = 0x07 ; // l en g t h
///

tempChar [1] = 0x03 ; // IP
///Address
///

tempChar [2] = 0x06 ; // l en g t h
///

tempChar [3] = 0x0a ;
tempChar [4] = 0x01 ;
tempChar [5] = 0x01 ;

B.1 Source Code Listing 60

tempChar [6] = 0x01 ;
txCount = generatePacket (IPCP ,

NAK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;
s t a t e = 30 ; // temp

/// s t a t e
///

break ;

case 32 : // send
///send
///ACK
///

tempChar [0] = 0x07 ; // l en g t h
///

tempChar [1] = 0x03 ; // IP
///Address
///

tempChar [2] = 0x06 ; // l en g t h
///

tempChar [3] = 0x0a ;
tempChar [4] = 0x01 ;
tempChar [5] = 0x01 ;
tempChar [6] = 0x01 ;
txCount = generatePacket (IPCP ,

ACK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;

tempChar [0] = 0x07 ; // l en g t h
///

tempChar [1] = 0x03 ; // IP
///Address
///

tempChar [2] = 0x06 ; // l en g t h
///

tempChar [3] = 0x0a ;
tempChar [4] = 0x01 ;
tempChar [5] = 0x01 ;
tempChar [6] = 0x02 ;
txCount = generatePacket (IPCP ,

REQ,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;
s t a t e = 40 ;
break ;

case 40 : // send
///do
/// noth ing
///

s t a t e = 40 ; // temp
/// s t a t e

B.1 Source Code Listing 61

///
break ;

case 50 : // TCP
///Packet
/// rxed
///SYN
///from
/// C l i en t
///send
///SYN
///ACK
///

tempChar [1] = 0x45 ; // ver s i on
///

tempChar [2] = 0x00 ; // DSF
///

tempChar [3] = 0x00 ; // IP
///TCP
///frame
/// l en g t h
///

tempChar [4] = 0x30 ; // IP
///TCP
///frame
/// l en g t h
///

tempChar [5] = 0x00 ; // Ident
///

identIP++;
tempChar [6] = 1 ; // LSByte

/// p lu s
/// increment .
///

tempChar [7] = 0x40 ; // Flags
///

tempChar [8] = 0x00 ; // Fragment
/// o f f s e t
///

tempChar [9] = 0x80 ; // TTL
///

tempChar [1 0] = 0x06 ; // Protoco l
///6
///TCP
///

tempChar [1 1] = 0x00 ; // checkSum
///

tempChar [1 2] = 0x00 ; // checkSum
///

tempChar [1 3] = 0x0a ; // IP
///Source
///

tempChar [1 4] = 0x01 ; // IP
///Source
///

B.1 Source Code Listing 62

tempChar [1 5] = 0x01 ; // IP
///Source
///

tempChar [1 6] = 0x02 ; // IP
///Source
///

tempChar [1 7] = 10 ; // IP
///Des t ina t ion
///

tempChar [1 8] = 01 ; // IP
///Des t ina t ion
///

tempChar [1 9] = 01 ; // IP
///Des t ina t ion
///

tempChar [2 0] = 01 ; // IP
///Des t ina t ion
///

checkSumIP2 () ;

// TCP Part
ackNumber4++;
sequenceNumber4++;
tempChar [2 1] = dest inat ionPortH ; // Our

///Source
///

tempChar [2 2] = des t inat ionPortL ;

tempChar [2 3] = sourcePortH ; // Our
///Des t ina t ion
///

tempChar [2 4] = sourcePortL ;

tempChar [2 5] = ackNumber1 ; // Our
///Sequence
///Number
///

tempChar [2 6] = ackNumber2 ;
tempChar [2 7] = ackNumber3 ;
tempChar [2 8] = ackNumber4 ;

tempChar [2 9] = sequenceNumber1 ;
tempChar [3 0] = sequenceNumber2 ;
tempChar [3 1] = sequenceNumber3 ;
tempChar [3 2] = sequenceNumber4 ;

tempChar [3 3] = 0x70 ; // header
/// l en g t h
///n∗32 b i t
///words
///

tempChar [3 4] = 0x12 ; // SYN
///ACK
///

tempChar [3 5] = 0x20 ; // Window
/// s i z e

B.1 Source Code Listing 63

/// high
/// by t e
///

tempChar [3 6] = 0x00 ; // window
/// s i z e
///128
/// by t e s
///

tempChar [3 7] = 0x00 ; // CheckSum
///

tempChar [3 8] = 0x00 ;

tempChar [3 9] = 0x00 ; // Urgent
/// po in t e r
///

tempChar [4 0] = 0x00 ; // Urgent
/// po in t e r
///

tempChar [4 1] = 0x02 ;
tempChar [4 2] = 0x04 ;
tempChar [4 3] = 0x02 ;
tempChar [4 4] = 0x18 ;

tempChar [4 5] = 0x01 ;
tempChar [4 6] = 0x01 ;
tempChar [4 7] = 0x04 ;
tempChar [4 8] = 0x02 ;

checkSumTCP(28) ;

tempChar [0] = 0x31 ; // l en g t h
/// o f
/// t o t a l
/// packe t
///

txCount = generatePacket (IP ,
ACK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;
s t a t e = 1 ;
break ;

case 51 : // TCP
///Packet
/// rxed
///ACK
///HTTP
///GET,
///send
///ACK
///

tempChar [0 1] = 0x45 ; // ver s i on
///

tempChar [0 2] = 0x00 ; // DSF
///

B.1 Source Code Listing 64

tempChar [0 3] = 0x00 ; // IP
///TCP
///frame
/// l en g t h
///

tempChar [0 4] = 48 ; // IP
///TCP
///frame
/// l en g t h
///30
///hex
///48
///

tempChar [0 5] = 0x00 ; // Ident
///

tempChar [6] = 2 ; // LSByte
/// p lu s
/// increment .
///

tempChar [7] = 0x40 ; // Flags
///

tempChar [8] = 0x00 ; // Fragment
/// o f f s e t
///

tempChar [9] = 0x80 ; // TTL
///

tempChar [1 0] = 0x06 ; // Protoco l
///6
///TCP
///

tempChar [1 1] = 0x00 ; // checkSum
///

tempChar [1 2] = 0x00 ; // checkSum
///

tempChar [1 3] = 0x0a ; // IP
///Source
///

tempChar [1 4] = 0x01 ; // IP
///Source
///

tempChar [1 5] = 0x01 ; // IP
///Source
///

tempChar [1 6] = 0x02 ; // IP
///Source
///

tempChar [1 7] = 0x0a ; // IP
///Des t ina t ion
///

tempChar [1 8] = 0x01 ; // IP
///Des t ina t ion
///

tempChar [1 9] = 0x01 ; // IP
///Des t ina t ion

B.1 Source Code Listing 65

///
tempChar [2 0] = 0x01 ; // IP

///Des t ina t ion
///

checkSumIP2 () ;

// TCP Part
tempChar [2 1] = dest inat ionPortH ; // Our

///Source
///

tempChar [2 2] = des t inat ionPortL ;
tempChar [2 3] = sourcePortH ; // Our

///Des t ina t ion
///

tempChar [2 4] = sourcePortL ;

tempChar [2 5] = ackNumber1 ; // Our
///Sequence
///Number
///

tempChar [2 6] = ackNumber2 ;
tempChar [2 7] = ackNumber3 ;

// ackNumber4++;
tempChar [2 8] = ackNumber4 ;

tempChar [2 9] = sequenceNumber1 ;
tempChar [3 0] = sequenceNumber2 ;

sequenceNumber++;

sequenceNumber =
sequenceNumber +

rxBuf f [7] −
40 ;

i f (rxBuf f [6])
{

sequenceNumber += 255 ;
}

sequenceNumber4 = (unsigned char) sequenceNumber ;

tempChar [3 2] = sequenceNumber4 ;

sequenceNumber3 =
(unsigned char)

(sequenceNumber >> 8) ;

tempChar [3 1] = sequenceNumber3 ;

tempChar [3 3] = 0x70 ; // header
/// l en g t h
///n∗32 b i t
///words
///

tempChar [3 4] = 0x10 ; // SYN
///ACK
///

tempChar [3 5] = 0x20 ; // Window

B.1 Source Code Listing 66

/// s i z e
/// h igh
/// by t e
///

tempChar [3 6] = 0x00 ; // window
/// s i z e
///128
/// by t e s
///

tempChar [3 9] = 0x00 ; // Urgent
/// po in t e r
///

tempChar [4 0] = 0x00 ; // Urgent
/// po in t e r
///

tempChar [3 7] = 0x00 ;
tempChar [3 8] = 0x00 ;

tempChar [4 1] = 0x01 ;
tempChar [4 2] = 0x01 ;
tempChar [4 3] = 0x01 ;
tempChar [4 4] = 0x01 ;
tempChar [4 5] = 0x01 ;
tempChar [4 6] = 0x01 ;
tempChar [4 7] = 0x01 ;
tempChar [4 8] = 0x01 ;

checkSumTCP(28) ;

tempChar [0] = 49 ; // l en g t h
/// o f
/// t o t a l
/// packe t
///was
///49
///

txCount = generatePacket (IP ,
ACK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;

// delay ms (1000) ;
// SEND HTTP Page
tempChar [0 4] = 128 ; // IP

///TCP
///frame
/// l en g t h
///80
///hex
///128
///

tempChar [6] = 3 ; // LSByte
/// p lu s
/// increment .
///

B.1 Source Code Listing 67

tempChar [1 1] = 0x00 ; // Clear
///CheckSum
///

tempChar [1 2] = 0x00 ; // Clear
///CheckSum
///

checkSumIP2 () ;

// TCP Part
tempChar [3 4] = 0x18 ; // ACK

///PSH
///

tempChar [3 7] = 0x00 ; // Clear
///CheckSum
///

tempChar [3 8] = 0x00 ; // Clear
///CheckSum
///

// HTTP Data
i = 49 ;
tempChar [i++] = ’H ’ ;
tempChar [i++] = ’T ’ ;
tempChar [i++] = ’T ’ ;
tempChar [i++] = ’P ’ ;
tempChar [i++] = ’ / ’ ;
tempChar [i++] = ’ 1 ’ ;
tempChar [i++] = ’ . ’ ;
tempChar [i++] = ’ 0 ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’ 2 ’ ;
tempChar [i++] = ’ 0 ’ ;
tempChar [i++] = ’ 0 ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’O’ ;
tempChar [i++] = ’K’ ;
tempChar [i++] = 0x0d ;
tempChar [i++] = 0x0a ;
tempChar [i++] = ’C ’ ;
tempChar [i++] = ’ o ’ ;
tempChar [i++] = ’n ’ ;
tempChar [i++] = ’ t ’ ;
tempChar [i++] = ’ e ’ ;
tempChar [i++] = ’n ’ ;
tempChar [i++] = ’ t ’ ;
tempChar [i++] = ’− ’ ;
tempChar [i++] = ’T ’ ;
tempChar [i++] = ’y ’ ;
tempChar [i++] = ’p ’ ;
tempChar [i++] = ’ e ’ ;
tempChar [i++] = ’ : ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’ t ’ ;
tempChar [i++] = ’ e ’ ;
tempChar [i++] = ’x ’ ;
tempChar [i++] = ’ t ’ ;

B.1 Source Code Listing 68

tempChar [i++] = ’ / ’ ;
tempChar [i++] = ’h ’ ;
tempChar [i++] = ’ t ’ ;
tempChar [i++] = ’m’ ;
tempChar [i++] = ’ l ’ ;
tempChar [i++] = 0x0d ;
tempChar [i++] = 0x0a ;
tempChar [i++] = 0x0d ;
tempChar [i++] = 0x0a ;
tempChar [i++] = ’< ’ ;
tempChar [i++] = ’b ’ ;
tempChar [i++] = ’ o ’ ;
tempChar [i++] = ’d ’ ;
tempChar [i++] = ’y ’ ;
tempChar [i++] = ’> ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’F ’ ;
tempChar [i++] = ’ i ’ ;
tempChar [i++] = ’n ’ ;
tempChar [i++] = ’ a ’ ;
tempChar [i++] = ’ l ’ ;
tempChar [i++] = ’ l ’ ;
tempChar [i++] = ’y ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’ s ’ ;
tempChar [i++] = ’ o ’ ;
tempChar [i++] = ’m’ ;
tempChar [i++] = ’ e ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’ t ’ ;
tempChar [i++] = ’h ’ ;
tempChar [i++] = ’ i ’ ;
tempChar [i++] = ’n ’ ;
tempChar [i++] = ’ g ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’ ’ ;
tempChar [i++] = ’< ’ ;
tempChar [i++] = ’ / ’ ;
tempChar [i++] = ’b ’ ;
tempChar [i++] = ’ o ’ ;
tempChar [i++] = ’d ’ ;
tempChar [i++] = ’y ’ ;
tempChar [i++] = ’> ’ ;
tempChar [i++] = 0x0a ;

checkSumTCP(108) ; // was
///108
///

//
// tempChar [3 8] =
// tempChar [3 8] + 1 ;
//
tempChar [0] = 129 ; // l en g t h

/// o f

B.1 Source Code Listing 69

/// t o t a l
/// packe t
///was
///128
///

txCount = generatePacket (IP ,
ACK,
1 ,
&tempChar [0]) ;

sendPacket (txCount) ;

// SEND HTTP Page
tempChar [0 4] = 48 ; // IP

///TCP
///frame
/// l en g t h
///80
///hex
///128
///

tempChar [6] = 4 ; // LSByte
/// p lu s
/// increment .
///

tempChar [1 1] = 0x00 ; // Clear
///CheckSum
///

tempChar [1 2] = 0x00 ; // Clear
///CheckSum
///

checkSumIP2 () ;

// TCP Part
tempChar [2 8] = 82 ;
tempChar [3 4] = 0x11 ; // ACK

///FIN
///

tempChar [3 7] = 0x00 ; // Clear
///CheckSum
///

tempChar [3 8] = 0x00 ; // Clear
///CheckSum
///

checkSumTCP(28) ;

tempChar [0] = 49 ; // l en g t h
/// o f
/// t o t a l
/// packe t
///was
///49
///

txCount = generatePacket (IP ,
ACK,
rxIdentNumber () ,
&tempChar [0]) ;

B.1 Source Code Listing 70

sendPacket (txCount) ;

s t a t e = 55 ;

break ;

case 52 : // TCP
///Packet
/// rxed
///ACK
///from
/// C l i en t
///ACK
///and
///send
///HHTP
/// response
///

break ;

case 53 : // Send
///Fina l
///ACK
///from
///Webpage
/// serve
///

tempChar [0 1] = 0x45 ; // ver s i on
///

tempChar [0 2] = 0x00 ; // DSF
///

tempChar [0 3] = 0x00 ; // IP
///TCP
///frame
/// l en g t h
///

tempChar [0 4] = 48 ; // IP
///TCP
///frame
/// l en g t h
///30
///hex
///48
///

tempChar [0 5] = 0x00 ; // Ident
///

tempChar [6] = 5 ; // LSByte
/// p lu s
/// increment .
///

tempChar [7] = 0x40 ; // Flags
///

tempChar [8] = 0x00 ; // Fragment
/// o f f s e t
///

tempChar [9] = 0x80 ; // TTL

B.1 Source Code Listing 71

///
tempChar [1 0] = 0x06 ; // Protoco l

///6
///TCP
///

tempChar [1 1] = 0x00 ; // checkSum
///

tempChar [1 2] = 0x00 ; // checkSum
///

tempChar [1 3] = 0x0a ; // IP
///Source
///

tempChar [1 4] = 0x01 ; // IP
///Source
///

tempChar [1 5] = 0x01 ; // IP
///Source
///

tempChar [1 6] = 0x02 ; // IP
///Source
///

tempChar [1 7] = 0x0a ; // IP
///Des t ina t ion
///

tempChar [1 8] = 0x01 ; // IP
///Des t ina t ion
///

tempChar [1 9] = 0x01 ; // IP
///Des t ina t ion
///

tempChar [2 0] = 0x01 ; // IP
///Des t ina t ion
///

checkSumIP2 () ;

// TCP Part
tempChar [2 1] = dest inat ionPortH ; // Our

///Source
///

tempChar [2 2] = des t inat ionPortL ;
tempChar [2 3] = sourcePortH ; // Our

///Des t ina t ion
///

tempChar [2 4] = sourcePortL ;

tempChar [2 5] = ackNumber1 ; // Our
///Sequence
///Number
///

tempChar [2 6] = ackNumber2 ;
tempChar [2 7] = ackNumber3 ;

// ackNumber4++;
tempChar [2 8] = ackNumber4 ;

tempChar [2 9] = sequenceNumber1 ;

B.1 Source Code Listing 72

tempChar [3 0] = sequenceNumber2 ;

sequenceNumber++;

sequenceNumber =
sequenceNumber +

rxBuf f [7] −
40 ;

i f (rxBuf f [6])
{

sequenceNumber += 255 ;
}

sequenceNumber4 = (unsigned char) sequenceNumber ;

tempChar [3 2] = sequenceNumber4 ;

sequenceNumber3 =
(unsigned char)

(sequenceNumber >> 8) ;

tempChar [3 1] = sequenceNumber3 ;

tempChar [3 3] = 0x70 ; // header
/// l en g t h
///n∗32 b i t
///words
///

tempChar [3 4] = 0x10 ; // SYN
///ACK
///

tempChar [3 5] = 0x20 ; // Window
/// s i z e
/// h igh
/// by t e
///

tempChar [3 6] = 0x00 ; // window
/// s i z e
///128
/// by t e s
///

tempChar [3 9] = 0x00 ; // Urgent
/// po in t e r
///

tempChar [4 0] = 0x00 ; // Urgent
/// po in t e r
///

tempChar [3 7] = 0x00 ;
tempChar [3 8] = 0x00 ;

tempChar [4 1] = 0x01 ;
tempChar [4 2] = 0x01 ;
tempChar [4 3] = 0x01 ;
tempChar [4 4] = 0x01 ;
tempChar [4 5] = 0x01 ;
tempChar [4 6] = 0x01 ;
tempChar [4 7] = 0x01 ;
tempChar [4 8] = 0x01 ;

B.1 Source Code Listing 73

checkSumTCP(28) ;

tempChar [0] = 49 ; // l en g t h
/// o f
/// t o t a l
/// packe t
///was
///49
///

txCount = generatePacket (IP ,
ACK,
rxIdentNumber () ,
&tempChar [0]) ;

sendPacket (txCount) ;
s t a t e = 1 ;

break ;

case 55 : // TCP
///Packet
/// rxed
///ACK
///from
/// C l i en t
///ACK
///and
///send
///HHTP
/// response
///

break ;

default :
s t a t e = 14 ;
break ;

}

txNew = 0 ;
} // end

/// o f
/// i f
///

} // end
/// o f
/// wh i l e
///

} // end o f main

// PROCEDURES

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// s t o r e I p I n f o
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void s t o r e I p I n f o ()
{

c l i e n t IP1 = rxBuf f [1 6] ;
c l i e n t IP2 = rxBuf f [1 7] ;
c l i e n t IP3 = rxBuf f [1 8] ;

B.1 Source Code Listing 74

c l i e n t IP4 = rxBuf f [1 9] ;
}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// storeTCPInfo
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void storeTCPInfo ()
{

sourcePortH = rxBuf f [2 4] ;
sourcePortL = rxBuf f [2 5] ;

dest inat ionPortH = rxBuf f [2 6] ;
de s t inat ionPortL = rxBuf f [2 7] ;

sequenceNumber1 = rxBuf f [2 8] ;
sequenceNumber2 = rxBuf f [2 9] ;
sequenceNumber3 = rxBuf f [3 0] ;
sequenceNumber4 = rxBuf f [3 1] ;

sequenceNumber =
(unsigned long) sequenceNumber1 <<

24 ;
sequenceNumber = sequenceNumber +

(
(unsigned long) sequenceNumber2 <<
16

) ;
sequenceNumber = sequenceNumber + ((unsigned long)

sequenceNumber3 << 8) ;
sequenceNumber = sequenceNumber + sequenceNumber4 ;

ackNumber1 = rxBuf f [3 2] ;
ackNumber2 = rxBuf f [3 3] ;
ackNumber3 = rxBuf f [3 4] ;
ackNumber4 = rxBuf f [3 5] ;
TCPFlags = rxBuf f [3 7] ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// 16 b i t CheckSum
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void checkSumIP2 ()
{

unsigned short tempShort = 0 ;
unsigned long int tempLong2 ,

tempLong = 0 ;
unsigned char i ;

for (i = 1 ; i < 21 ; i++)
{

tempShort = tempChar [i] ;
tempShort = tempShort << 8 ;
tempShort = tempShort & 0xFF00 ;
tempShort = tempShort + tempChar[++ i] ;
tempLong = tempLong + (unsigned long) tempShort ;

}

tempLong2 = tempLong >> 16 ;
tempLong = tempLong & 0xFFFF;
tempLong = tempLong + tempLong2 ;

B.1 Source Code Listing 75

tempLong = tempLong ˆ 0xFFFF;

tempChar [1 2] = (unsigned char) tempLong ;
tempLong = tempLong >> 8 ;
tempChar [1 1] = (unsigned char) tempLong ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// 16 b i t CheckSum
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void checkSumTCP(unsigned char l ength)
{

unsigned short tempShort = 0 ;
unsigned long int tempLong2 ;
unsigned long tempLong = 0x160b ;
unsigned char i = 21 ;

tempLong = tempLong + length ;
l ength = length + 20 ;

for (i = 1 ; i < l ength ; i++)
{

tempShort = tempChar [i] ;
tempShort = tempShort << 8 ;
tempShort = tempShort & 0xFF00 ;
tempShort = tempShort + tempChar[++ i] ;
tempLong = tempLong + (unsigned long) tempShort ;

}

tempLong2 = tempLong >> 16 ;
tempLong = tempLong & 0xFFFF;
tempLong = tempLong + tempLong2 ;

tempLong = tempLong ˆ 0xFFFF;

tempChar [3 8] = (unsigned char) tempLong ;
tempLong = tempLong >> 8 ;
tempChar [3 7] = (unsigned char) tempLong ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// rxProtocolType
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned char rxProtocolType ()
{

i f ((rxBuf f [2] == (unsigned char) 0xC0
) &&

(rxBuf f [3] == (unsigned char) 0x21))
return LCP;

else i f ((rxBuf f [2] == (unsigned char) 0xC0) &&
(rxBuf f [3] == (unsigned char) 0x23))

return PAP;
else i f ((rxBuf f [2] == (unsigned char) 0x80) &&

(rxBuf f [3] == (unsigned char) 0x21))
return IPCP ;

else i f ((rxBuf f [2] == (unsigned char) 0x00) &&
(rxBuf f [3] == (unsigned char) 0x21))

B.1 Source Code Listing 76

return IP ;

// l c d pu t c ha r (’E ’) ;
return NILL ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// rxPacketOpt ions
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned short rxPacketOptions ()
{

unsigned char packe t pt r = 8 ; // Pos i t i on
/// o f
/// f i r s t
/// opt ion
///

unsigned short opt ions = 0 ;
unsigned short temp = 1 ;
l cd putchar (’ 9 ’) ;
while (packe t pt r < maxRx)
{

temp = temp << (rxBuf f [packe t pt r] − 1) ;
opt ions = opt ions | temp ;
packe t pt r++;
packe t pt r = packe t pt r + (rxBuf f [packe t pt r] − 1) ;
temp = 1 ;

}

l cd putchar (’ 9 ’) ;
return opt ions ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// rxIdentNumber
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned char rxIdentNumber ()
{ // I d e n t i f i c a t i o n number

return rxBuf f [5] ;
}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// sendPacket
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void sendPacket (unsigned short l ength)
{

int i = 0 ;
unsigned short tCheckSum ;
putchar (0x7E) ; // Add

/// s t a r t
/// sequence
///

while (l ength)
{ // Ro l l

/// through
///array ,
///

putchar (txBuf f [i]) ; // u n t i l
///done . . .

B.1 Source Code Listing 77

///
i++; // Increment

/// through
///array
///

l ength −−; // Decrement
/// array
///count . . .
///

}

checkSum = checkSum ˆ 0xFFFF; // i n v e r t
///checksum ,
///ones
///complement .
///

tCheckSum = checkSum & 0xFF ;

i f ((unsigned char) tCheckSum <
(unsigned char) 0x20)

{
putchar (0x7D) ;
tCheckSum ˆ= 0x20 ;
putchar ((unsigned char) tCheckSum) ;

}
else i f ((unsigned char) tCheckSum == 0x7e)
{

putchar (0x7D) ;
putchar (0 x5e) ;

}
else i f ((unsigned char) tCheckSum == 0x7d)
{

putchar (0x7D) ;
putchar (0x5D) ;

}
else
{

putchar ((unsigned char) tCheckSum) ;
}

tCheckSum = checkSum >> 8 ;

i f ((unsigned char) tCheckSum <
(unsigned char) 0x20)

{

putchar (0x7D) ;
tCheckSum ˆ= 0x20 ;
putchar ((unsigned char) tCheckSum) ; // i n s e r t

/// escape
/// sequence
/// i f
///<
///0x20
///

}
else i f ((unsigned char) tCheckSum == 0x7e)

B.1 Source Code Listing 78

{
putchar (0x7D) ;
putchar (0 x5e) ;

}
else i f ((unsigned char) tCheckSum == 0x7d)
{

putchar (0x7D) ;
putchar (0x5D) ;

}
else
{

putchar ((unsigned char) tCheckSum) ;
}

putchar (0x7E) ;
}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// rxPacket
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned char rxPacket ()
{

unsigned char c ;

// l c d pu t c ha r (’ I ’) ;
r x p t r = 0 ;

// Rest r x p t r index
i f ((c = getchar ()) != 0x7E)
{

l cd putchar (’ 0 ’) ;
return 0 ;

}
else
{

while ((c = getchar ()) != 0x7E)
{ // t e s t second by t e f o r frame end

i f (c == 0x7D)
{

rxBuf f [r x p t r] = 0x20 ˆ (getchar ()) ; // xor
/// by t e
///wi th
///0x20
/// i f
/// so
///

}
else i f ((c == 0x21) && (rx p t r == 0))
{ // header

/// p ro t o co l
/// compression
///

rxBuf f [0] = 0xFF ;
rxBuf f [1] = 0x03 ; // only

/// i n t e r e s t e d
/// in
///IP
///header

B.1 Source Code Listing 79

///
rxBuf f [2] = 0x00 ;
rxBuf f [3] = c ;
r x p t r++;
rx p t r++;
rx p t r++;

}
else i f ((c != 0xFF) && (rx p t r == 0))
{ // header

/// compression
///used
///

rxBuf f [0] = 0xFF ; // f o r c e
/// to
/// zero .
///

rxBuf f [1] = 0x03 ;
rxBuf f [2] = c ;
r x p t r++;
rx p t r++;

}

else i f ((r x p t r == 1) && (c != 0x7D))
{

rxBuf f [1] = 0x03 ;
}
else
{

rxBuf f [r x p t r] = c ; // add
/// to
/// rx
///Buf fer
///

}

r x p t r++; // Increment
/// through
///array
///

}
}

// l c d pu t c ha r (’F ’) ;
maxRx = rx pt r ;
return 0x01 ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// HDLC crcCalc
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned short crcCalc (unsigned char newByte ,

unsigned short checkSumIn)
{

int i ; // Ca l cu l a t e
///new crc−16
///checksum ,

unsigned char f ; // performed on
/// a l l b y t e s

B.1 Source Code Listing 80

/// a f t e r 0x7E
f = checkSumIn >> 8 ; // exc l ude s

///crc , . . . n a t u r a l l y .
///

checkSumIn = (checkSumIn & 0xFF) ˆ newByte ;
for (i = 0 ; i < 8 ; i++)
{

i f (checkSumIn & 0x01)
checkSumIn = (checkSumIn >> 1) ˆ 0x8408 ;

else
checkSumIn >>= 1 ;

}

return checkSumIn ˆ f ;
}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// addByte
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned char addByte (unsigned char newByte)
{

unsigned count = 0 ;
checkSum = crcCalc (newByte , checkSum) ; // update

///CheckSum
///

i f (newByte < (unsigned char) 0x20)
{ // Do

///we
///need
/// to
/// i n s e r t
/// escape
/// sequence ?
///

txBuf f [t x p t r++] = 0x7D ; // i n s e r t
/// escape
/// sequence
/// i f
///<
///0x20
///

txBuf f [t x p t r++] = newByte ˆ 0x20 ; // XOR
/// by t e
///wi th
///0x20
///and
///add .
///

count++;
}
else i f ((newByte == 0x7E) | |

(newByte == 0x7D))
{

txBuf f [t x p t r++] = 0x7D ;
txBuf f [t x p t r++] = newByte ˆ 0x20 ; // XOR

/// by t e
///wi th

B.1 Source Code Listing 81

///0x20
///and
///add .
///

count++;
}
else

txBuf f [t x p t r++] = newByte ; // add
/// by t e
/// to
/// array .
///

count++;
return count ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// dummyModemCommand
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void dummyModemCommand()
{

p r i n t f (”OK\n”) ;

// l c d pu t c ha r (’M’) ;
delay ms (750) ;
p r i n t f (”OK\n”) ;

// l c d pu t c ha r (’M’) ;
delay ms (750) ;
p r i n t f (”OK\n”) ;

// l c d pu t c ha r (’M’) ;
delay ms (100) ;
p r i n t f (”OK\n”) ;

// l c d pu t c ha r (’M’) ;
}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// genera te Packet
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
unsigned char generatePacket (unsigned char protoco l ,

unsigned char code ,
unsigned char i d e n t i f i c a t i o n ,
unsigned char ∗ t x s t r)

{

unsigned char l ength ; // l en g t h
/// o f
/// in format ion
/// f i e l d
// /(
///no
///PPP
///header
///or
///CRC
///or
///$7E)

B.1 Source Code Listing 82

///
unsigned char count = 0 ; // r e s e t

/// by t e
///count ,
/// in c l ud e s
/// a l l
/// escape
/// sequences
///

t x p t r = 0 ; // r e s e t
/// b u f f e r
/// po in t e r
/// to
/// zero
///

checkSum = 0xFFFF;

count += addByte (0xFF) ;
count += addByte (0 x03) ;

i f (p ro to co l == LCP)
{

count += addByte (0xC0) ;
count += addByte (0 x21) ;
count += addByte (code) ;
count += addByte (i d e n t i f i c a t i o n) ;
l ength = t x s t r [0] ;
count += addByte (0 x00) ;
count += addByte (l ength + 3) ; // must

/// inc l ude
///code
/// o f
///code ,
///ID
///&
/// l en g t h
/// f i e l d s .
///

}

else i f (p ro to co l == PAP)
{

count += addByte (0xC0) ;
count += addByte (0 x23) ;
count += addByte (code) ;
count += addByte (i d e n t i f i c a t i o n) ;
l ength = t x s t r [0] ;
count += addByte (0 x00) ;
count += addByte (l ength + 4) ; // must

/// inc l ude
///code
/// o f
///code ,
///ID
///&
/// l en g t h
/// f i e l d s .

B.1 Source Code Listing 83

///
}

else i f (p ro to co l == IPCP)
{

count += addByte (0 x80) ;
count += addByte (0 x21) ;
count += addByte (code) ;
count += addByte (i d e n t i f i c a t i o n) ;
l ength = t x s t r [0] ;
count += addByte (0 x00) ;
count += addByte (l ength + 3) ; // must

/// inc l ude
///code
/// o f
///code ,
///ID
///&
/// l en g t h
/// f i e l d s .
///

}
else i f (p ro to co l == IP)
{

count += addByte (0 x00) ;
count += addByte (0 x21) ;
l ength = t x s t r [0] ;

}

i f (l ength)
{

l ength −−;
t x s t r = &t x s t r [1] ;
while (l ength)
{

l ength −−;
count += addByte (∗ t x s t r) ;
t x s t r++;

}
}
return count ;

} // end
/// o f
/// packe t
/// th ingy
///

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// I n t i a l i s e Chip
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void i n i t i a l i s e ()
{

PORTA = 0x00 ;
DDRA = 0x00 ;
PORTB = 0x00 ;
DDRB = 0x00 ;
PORTC = 0x00 ;

B.1 Source Code Listing 84

DDRC = 0x00 ;
PORTD = 0x00 ;
DDRD = 0x00 ;
PORTE = 0x00 ;
DDRE = 0x02 ;
PORTF = 0x00 ;
DDRF = 0x00 ;
PORTG = 0x00 ;
DDRG = 0x00 ;
ASSR = 0x00 ;
TCCR0 = 0x00 ;
TCNT0 = 0x00 ;
OCR0 = 0x00 ;
TCCR2 = 0x00 ;
TCNT2 = 0x00 ;
OCR2 = 0x00 ;
TCCR3A = 0x00 ;
TCCR3B = 0x00 ;
TCNT3H = 0x00 ;
TCNT3L = 0x00 ;
ICR3H = 0x00 ;
ICR3L = 0x00 ;
OCR3AH = 0x00 ;
OCR3AL = 0x00 ;
OCR3BH = 0x00 ;
OCR3BL = 0x00 ;
OCR3CH = 0x00 ;
OCR3CL = 0x00 ;
EICRA = 0x00 ;
EICRB = 0x00 ;
EIMSK = 0x00 ;
TIMSK = 0x00 ; // was 04 enab l e s

/// i n t e r up t on
///Timer/Counter 1 ,
///Overf low In t e rup t
///Enable

ETIMSK = 0x00 ;
UCSR0A = 0x00 ;

// Usart se tup
UCSR0B = 0x18 ;
UCSR0C = 0x06 ;
UBRR0H = 0x00 ;
UBRR0L = 0x5F ;
ACSR = 0x80 ;
SFIOR = 0x00 ;

// Timer
TCCR1A = 0x00 ;
TCCR1B = 0x00 ; // was 02 t imer

/// con t r o l r e g i s t e r
///02 = c l k /64

TCNT1H = 0x00 ;
TCNT1L = 0x00 ;
ICR1H = 0x00 ;
ICR1L = 0x00 ;
OCR1AH = 0x00 ;
OCR1AL = 0x00 ;
OCR1BH = 0x00 ;
OCR1BL = 0x00 ;
OCR1CH = 0x00 ;
OCR1CL = 0x00 ;

B.1 Source Code Listing 85

}

Appendix C

Manufacturer Datasheets

C.1 JED Micoprocessor Datasheets

AVR570 plug-in Atmel RISC CPU module
The AVR570 is a 47mm square module providing po-

tential users of the ATmega128 with a method of using the
most powerful CPU in the 8-bit Atmel range without
needing expensive surface mount design, masking, pick-
and-place machine programming and production runs to
justify it.

Instead, users can simply lay out a square pad layout for
four, 16-pin 0.1” spaced strip connectors (with 0.025”
square pins, i.e. 0.9mm holes) and have a plug-in module
which is mass-produced by JED and programmed by us-
ers using the on-board ISP (In System Programming) con-
nector either stand-alone in a test jig or installed in the fi-
nal board.

During the debug phase, users can connect the low-cost
Atmel JTAG ICE (In Circuit Emulator) to an optional 10-
pin socket and debug systems in their final environment,
with all I/O active.

Standard functions of the AVR570
The AVR570 has the close CPU functions provided,

i.e. the crystal for the CPU clock and the power-fail detec-
tor/reset generator.

The crystal is on the module, but the pins for the oscil-
lator are still available for external connection off-
module, but via Links 2 and 3 which much be bridged bef-
ore external use via pins 23 and 24. Normally a 3.6864
MHz crystal is installed, but special requests can be ac-
commodated. (The ATmega128 can run at up to 16 MHz.)

While external connection of the clock is possible, the
longer lines for the crystal oscillator pins down to the base
board would be a probable source of radio frequency ra-
diation and is NOT recommended practice. An external
clock could be fed to the CPU via these pins to XTAL1 via
Pin 24. The CPU oscillator output can also be used for off-

JED AVR570 ATmega128 CPU Module (Release April 14th, 2003) 1

AVR570 CPU module,

ATmega128-based

� High speed RISC CPU with 128K high-
security FLASH program memory, 4K Byte
of SRAM, 4K Byte of EEPROM;

� Module is 47mm square, and uses stan-
dard 0.1” spaced connectors on four sides
to connect to user-designed base-board
or JED AVR572 prototype or AVR573 base
boards;

� Two UART interfaces, available on pins at
CMOS levels, available for RS232, RS485,
GPS or GSM/GPRS;

� On-board reset/power fail detector;

� On-board optional 5 volt regulator;

� On-board 6-pin ISP programming port and
10-pin JTAG ICE connector;

� On-board RESET switch and on-board
RUN/PROGRAM switch;

� Physically and electrically compatible with
ATmega103 CPU module from Olimex Ltd,
but uses newer, more powerful ATme-
ga128 with improved 133 instruction set,
dual UARTs, hardware I2C system and ICE
debug system;

� Optional Real Time Clock (DS1305) via SPI
using port G pins for interface, with on-
board lithium battery behind board.

Designed and manufactured
in Australia by an Australian-
owned company.

JED MICROPROCESSORS PTY LTD
173 Boronia Rd, Boronia, (PO Box 30), Victoria, 3155, Australia

Phone: +61 3 9762 3588 Fax: +61 3 9762 5499

http://www.jedmicro.com.au email: jed@jedmicro.com.au

module functions, but if this is done, the os-
cillator power level should be set to CKOPT
ON. If the signal is not used externally, the
oscillator should be set to CKOPT OFF to
reduce RF radiation from the module.

There is a DS1233 CPU Reset generator
on the AVR570 to detect power supply
drops and reset the CPU. It also delays CPU
start-up until after the oscillator starts and
the CPU stabilises. A small slider switch
(SW2) across the RESET line can be used to
reset the CPU when desired during testing.

In-System Programming Port
Connector J2 is a 6-pin male ISP header

on the board for programming the FLASH
memory and the EEPROM memory in the
ATmega128 CPU. This connector is com-
patible with the Atmel STK500 prototype
board, connector J200.

It is also compatible with programming
devices from PC parallel and serial ports
available from JED, Kanda and Atmel. (A
simple cable scrambler can convert the ear-
lier 10-pin standard to this 6-pin standard.
The signals are electrically identical.)

A small slide switch (SW1) is closed in
the RUN mode, but opened in programming
mode, to isolate any base-board serial de-
vices from the RX0 line into the CPU.

Option: JTAG In Circuit Emulation (ICE)
This function is provided via 10-pin connector J3.

A cable from here connects to the Atmel JTAG ICE.
The JTAG interface is a 4-wire Test Access Port (TAP)
using the top 4 analog input pins ADC4 ... ADC7 and pro-
vides full device FLASH and EEPROM memory pro-
gramming and on-chip debugging support, allowing real-
time emulation of the micro controller while running in
the target system. It gives the user complete control of the
internal resources of the AVR CPU.

Its use reduces the number of analog channels available
during testing. This connector is across the four lines
mentioned, and even if the connector is installed, the ana-
log lines are available on the edge connectors pins 54 ...
57. User’s should not drive these analog data lines while
JTAG ICE is in use. A convenient way might be to have
series resistors which are removed during debug.

Option: DS1305 Real-Time-Clock
An optional RTC can be supplied, installed on the

AVR570, along with its associated 32,768 Hz crystal. The
alarm output of the RTC can be connected (via link 5) to
pin edge pin 18, and then on the base board, an inversion
FET can drive the gate of series power P- FET. This is to
enable systems to be built which automatically power up
under control of the alarm system in the RTC.

The RTC uses the Serial Peripheral Interface (SPI) port
on the ATmega128 CPU port pins PB1, PB2 and PB3, and
if the RTC is used, users should reserve these port pins for

SPI functions on their base board. User hardware should
enable the SPI functions for SPI peripherals as needed and
disable the CE or CE* pins on their SPI devices when not
in use so the RTC can use the SPI port when it needs to.
The CE pin (high true) enable for the RTC to use the SPI
port is actually pin 18 of the CPU, which is Port pin PG3.
Link 8 must be linked to connect PG3 to the RTC CE.
(The RTC CE pin is pulled low by a resistor so the RTC
communications is inactive during device programming
and before the port G is enabled as an output and set low.)

A FET is installed with this option in parallel with the
alarm output of the RTC, and this is driven from CPU pin
19, Port pin PG4. This allows the CPU to force the Alarm*
output low (active) on edge pin 18 and so allow alarms to
be set for some future time while the CPU is kept active,
and power is then turned OFF by taking Port pin PG4
LOW. This FET’s gate is also pulled low by a resistor
when PG4 is not initialised.

Option: 5 volt power supply regulator
To maintain compatibility with the Olimex ATme-

ga103 card, there is provision for an optional 5 volt regu-
lator on the AVR570. This is not recommended unless a
very small system is being built, as the off-board logic
should be run from the same 5-volt power supply as the
CPU, and the TO92 packaged device has only limited dis-
sipation. A 78L05 or a low dropout device can be used.

If used, Link 1 should be connected, and Vcc is avail-
able to the base board via pins 21 and 52.

If not used, Vcc is fed to the module via pins 21 and 52.

JED AVR570 ATmega128 CPU Module (Release April 14th, 2003) 2

AVR570 ATmega128 CPU module with optional Real Time Clock

Pin Number Pin Name

Pin 1 CPU-Pin1: PEN*

Pin 2 CPU-Pin 2: PE0 via SW1/RXD0

Pin 3 CPU-Pin 3: PE1/TXD0

Pin 4 CPU-Pin 4: PE2/XCK0

Pin 5 CPU-Pin 5: PE3/OC3A

Pin 6 CPU-Pin 6: PE4/OC3B

Pin 7 CPU-Pin 7: PE5/OC3C

Pin 8 CPU-Pin 8: PE6/T3/INT6

Pin 9 CPU-Pin 9: PE7/IC3/INT7

Pin 10 CPU-Pin 10: PB0/SS*

Pin 11 CPU-Pin 11: PB1/SCK

Pin 12 CPU-Pin 12: PB2/MOSI

Pin 13 CPU-Pin 13: PB3/MISO

Pin 14 CPU-Pin 14: PB4/OC0

Pin 15 CPU-Pin 15: PB5/OC1A

Pin 16 CPU-Pin 16: PB6/OC1B

Pin 17 CPU-Pin 17: PB7/OC1C

Pin 18 CPU-Pin 18:PG3/RTC
Int0 out for alarm

Pin 19 CPU-Pin 19: PG4/Batt.

Pin 20 CPU-Pin 20: RESET*

Pin 21 CPU-Pin 21: Vcc

Pin 22 CPU-Pin 22: Ground

Pin 23 CPU-Pin 23: X2/nc

Pin 24 CPU-Pin 24: X1/nc

Pin 25 CPU-Pin 25: PD0/SCL/INT0*

Pin 26 CPU-Pin 26: PD1/SDA/INT1*

Pin 27 CPU-Pin 27: PD2/RXD1/INT2*

Pin 28 CPU-Pin 28: PD3/TXD1/INT3*

Pin 29 CPU-Pin 29: PD4/IC1

Pin 30 CPU-Pin 30: PD5/XCK1

Pin 31 CPU-Pin 31: PD6/T1

Pin 32 CPU-Pin 32: PD7/T2

Pin Number Pin Name

Pin 33 CPU-Pin 33: WR*/PG0

Pin 34 CPU-Pin 34: RD*/PG1

Pin 35 CPU-Pin 35: PC0/A8

Pin 36 CPU-Pin 36: PC1/A9

Pin 37 CPU-Pin 37: PC2/A10

Pin 38 CPU-Pin 38: PC3/A11

Pin 39 CPU-Pin 39: PC4/A12

Pin 40 CPU-Pin 40: PC5/A13

Pin 41 CPU-Pin 41: PC6/A14

Pin 42 CPU-Pin 42: PC7/A15

Pin 43 CPU-Pin 43: ALE/PG2

Pin 44 CPU-Pin 44: PA7/AD7

Pin 45 CPU-Pin 45: PA6/AD6

Pin 46 CPU-Pin 46: PA5/AD5

Pin 47 CPU-Pin 47: PA4/AD4

Pin 48 CPU-Pin 48: PA3/AD3

Pin 49 CPU-Pin 49: PA2/AD2

Pin 50 CPU-Pin 50: PA1/AD1

Pin 51 CPU-Pin 51: PA0/AD0

Pin 52 CPU-Pin 52: VCC

Pin 53 CPU-Pin 53: GND

Pin 54 CPU-Pin 54: PF7/ADC7

Pin 55 CPU-Pin 55: PF6/ADC6

Pin 56 CPU-Pin 56: PF5/ADC5

Pin 57 CPU-Pin 57: PF4/ADC4

Pin 58 CPU-Pin 58: PF3/ADC3

Pin 59 CPU-Pin 59: PF2/ADC2

Pin 60 CPU-Pin 60: PF1/ADC1

Pin 61 CPU-Pin 61: PF0/ADC0

Pin 62 CPU-Pin 62: AREF

Pin 63 CPU-Pin 63: AGND

Pin 64 CPU-Pin 64: AVCC

JED AVR570 ATmega128 CPU Module (Release April 14th, 2003) Page 3

. JED AVR570 ATmega128 CPU Module (Release April 14th, 2003) Page 4

1 2 3 4 5 6 7 8

A

B

C

D

87654321

D

C

B

A

JED Microprocessors Pty Ltd
PO Box 30, Boronia, Vic, 3155, Australia.

Phone (03) 9762 3588
Fax (03) 9762 5499
Web www.jedmicro.com.au
Email jed@jedmicro.com.au

Number

Title

File

Date Sheet #
D:\570series\570\570v0\570v0.ddb - Documents\570v0.Sch

16-Sep-2002 0 of 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

mod1A

A
T

M
E

G
A

12
8-

M
O

D
U

L
E

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

mod1B

A
T

M
E

G
A

12
8-

M
O

D
U

L
E

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

mod1C

A
T

M
E

G
A

12
8-

M
O

D
U

L
E

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

mod1D

A
T

M
E

G
A

12
8-

M
O

D
U

L
E

PEN*1

PE0(PDI/RXD0) 2

PE1(PDO/TXD0) 3

PE2(XCK0/AIN0) 4

PE3(OC3A/AIN1) 5

PE4(OC3B/INT4) 6

PE5(OC3C/INT5) 7

PE6(T3/INT6) 8

PE7(IC3/INT7)
9

PB0(SS*) 10

PB1(SCK) 11

PB2(MOSI) 12

PB3(MISO) 13

PB4(OC0) 14

PB5(OC1A) 15

PB6(OC1B) 16

PB7(OC2/OC1C) 17

TOSC2/PG318
TOSC1/1PG419

RESET*20

VCC
21

GND
22

XTAL223

XTAL124

PD0(SCL/INT0*) 25

PD1(SDA/INT1*) 26

PD2(RXD1/INT2*) 27

PD3(TXD1/INT3*) 28

PD4(IC1) 29

PD5(XCK1) 30

PD6(T1) 31

PD7(T2) 32

WR*/PG033

RD*/PG134

PC0(A8) 35

PC1(A9) 36

PC2(A10) 37

PC3(A11) 38

PC4(A12) 39

PC5(A13) 40

PC6(A14) 41

PC7(A15) 42

ALE/PG243 PA7(AD7) 44
PA6(AD6) 45
PA5(AD5) 46
PA4(AD4) 47
PA3(AD3) 48
PA2(AD2) 49
PA1(AD1) 50
PA0(AD0) 51

VCC
52

GND
53

PF7(ADC7/TDI)
54PF6(ADC6/TDO)
55PF5(ADC5/TMS)
56PF4(ADC4/TCK)
57PF3(ADC3)
58PF2(ADC2)
59PF1(ADC1)
60PF0(ADC0)
61

AREF62

AGND63

AVCC64

TQFP64

ATmega 128

U2

ATMEGA128

GND

GND

GND

GND

GND
GND

VCC

VCC

VCC

VCC

AVCC

AREF

SM
R1
1K.

VCC

SM
C5

27PF.

SMC6

27PF.

SM

R3
4K7.

X1
32KHZ

X2

XTAL-3.6864

1 2
3 4
5 6
7 8
9 10

J3
JTAG

1 2
3 4
5 6

J2
PROGRAMMING CONNECTION

GND

LINK2

SOLDER_LINK
LINK3

SOLDER_LINK

AVCC

EDGE-PIN-18
EDGE-PIN-19
RESET*

PIN-33
PIN-34

PIN-43

EDGE-PIN-18

EDGE-PIN-19

RESET*

PIN-33
PIN-34

PIN-43

RESET*

PE1
PB1

VCC
EDGE_PE0

GND

SW1
SW-JUMPER-1

SM
R2

470R.

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

PD0
PD1
PD2
PD3
PD4
PD5

PD6
PD7

EDGE_PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7

PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7

VCC

GND

PF4

PF5
PF6

PF7

1
2

J1

LK2

IN1

G
N

D
2

OUT 3

78L05

U1

78L05
LINK1

ON BOARD REG

VCC

GND

RAW-POWER 5V

RESET*

U4
DS1233

SW2
RESET

SM

R4
100R.

X3

XTAL-32KHZ

BACKUP-VCC1

BATTERY-VCC2

X13

X2
5

NC 4

NC 6

NC 8

NC 19

NC 13

INT0* 7

INT1* 9

GND
10

SERMODE
11

CE 12

SCLK 14

SDI 15

SDO
16

VCC-INTERFACE 17

PF*
18

PRIMARY-VCC20

sm

U3

DS1305E.

C1
0.1UF

These 3 components are
are NOT normally

installed on JED systems

Link if U1 is installed

PB1
PB2
PB3

(SCK)
(MOSI)
(MISO)

LINK6LINK4

LINK7LINK5

LINK8

PIN-19
PIN-18

1a
2

1b

C
R

2354-1G
U

F BATT1

BATT-CR2354-1GUF

SM

R6
4K7.

S

SM

F1
2N7002

sm C2
10./10.

SM C7
0.47UF.

GND

SM

C3
0.47UF. SM

C4
0.47UF.

SM

R5
1M.

PE0

R
U

N

PR
O

G

1 2 3 4 5 6 7 8

A

B

C

D

87654321

D

C

B

A

JED Microprocessors Pty Ltd
PO Box 30, Boronia, Vic, 3155, Australia.

Phone (03) 9762 3588
Fax (03) 9762 5499
Web www.jedmicro.com.au
Email jed@jedmicro.com.au

Number

Title

File
Date Sheet #

C:\Program Files\Design Explorer 99 SE\PROJECTS\572\572V1\572v1.ddb - Documents\572v10.SCH
9-Aug-2004 0 of 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

mod1A

A
TM

EG
A

12
8-

M
O

D
U

LE

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

mod1B

A
TM

EG
A

12
8-

M
O

D
U

LE

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

mod1C

A
TM

EG
A

12
8-

M
O

D
U

LE

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

mod1D

A
TM

EG
A

12
8-

M
O

D
U

LE

GND

GND

GND
VCC

VCC

AVCC

AREF

PG3
PG4

RESET*

PG0
PG1

PG2

PA0
PA1
PA2

PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6

PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7

PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7

PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7

PEN*

XTAL1
XTAL2

1

2
J1

POWER

IN2

1

OUT 3

0

LM2940T

U2
LM2940T+HS

C6
0.1UF

C7
0.1UF R1

1K

LED1
3MM-RED

VCC

GND

+V 11C1+10

C1-12

C2+13

C2-14
-V 15

2

3

1

24

4

23

16

21 20

76

18

19

5

22

17

8
+5

V
9

T

T

T

T

R

R

R

R

5V 232

U1
MAX208E

C1

0.1UF

C2

0.1UF

C3

0.1UF

C5
0.1UF

C4
0.1UF

VCC

GND

Note that this component
 MUST be either a MAX208E
 or a ADM208E nothing
 else will do !

L1

5V Tx

L2

5V Rx

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

L5

LK16ST

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

L6

LK16ST

1
2
3
4
5
6
7
8
9L10

LK9S

L9

LK3A

L7

LK4ST

1
2
3
4
5
6
7
8
9
10L8

LK10S

IND2

IND-100 UH

IND1

IND-100 UH
VCC-CPU

GND

1 2 3 4 5

J2
MC5

1 2 3 4 5

J3
MC5

1 2 3 4 5

J4
MC5

1 2 3 4 5

J5
MC5

1 2 3 4 5

J6
MC5

1 2 3 4 5

J7
MC5

L3

RS232

L4

RS232

GND

GND

C8
10./10

C10
10./10

C9
10./10

Note that the long lead is the positive one.

C.2 AVR ATmega128 Datasheet 97

C.2 AVR ATmega128 Datasheet

Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 133 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

• Nonvolatile Program and Data Memories
– 128K Bytes of In-System Reprogrammable Flash

Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– 4K Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles

– 4K Bytes Internal SRAM
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security
– SPI Interface for In-System Programming

• JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface

• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and

Capture Mode
– Real Time Counter with Separate Oscillator
– Two 8-bit PWM Channels
– 6 PWM Channels with Programmable Resolution from 2 to 16 Bits
– Output Compare Modulator
– 8-channel, 10-bit ADC

8 Single-ended Channels
7 Differential Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

– Byte-oriented Two-wire Serial Interface
– Dual Programmable Serial USARTs
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with On-chip Oscillator
– On-chip Analog Comparator

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,

and Extended Standby
– Software Selectable Clock Frequency
– ATmega103 Compatibility Mode Selected by a Fuse
– Global Pull-up Disable

• I/O and Packages
– 53 Programmable I/O Lines
– 64-lead TQFP and 64-pad MLF

• Operating Voltages
– 2.7 - 5.5V for ATmega128L
– 4.5 - 5.5V for ATmega128

• Speed Grades
– 0 - 8 MHz for ATmega128L
– 0 - 16 MHz for ATmega128

8-bit
Microcontroller
with 128K Bytes
In-System
Programmable
Flash

ATmega128
ATmega128L

Summary

Rev. 2467MS–AVR–11/04

Note: This is a summary document. A complete document
is available on our Web site at www.atmel.com.

2 ATmega128
2467MS–AVR–11/04

Pin Configurations Figure 1. Pinout ATmega128

Note: The bottom pad under the MLF package should be soldered to ground.

Overview The ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega128 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PEN
RXD0/(PDI) PE0

(TXD0/PDO) PE1
(XCK0/AIN0) PE2
(OC3A/AIN1) PE3
(OC3B/INT4) PE4
(OC3C/INT5) PE5

(T3/INT6) PE6
(ICP3/INT7) PE7

(SS) PB0
(SCK) PB1

(MOSI) PB2
(MISO) PB3
(OC0) PB4

(OC1A) PB5
(OC1B) PB6

PA3 (AD3)
PA4 (AD4)
PA5 (AD5)
PA6 (AD6)
PA7 (AD7)
PG2(ALE)
PC7 (A15)
PC6 (A14)
PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PC0 (A8)
PG1(RD)
PG0(WR)

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 (
O

C
2/

O
C

1C
)

P
B

7
T

O
S

C
2/

P
G

3
T

O
S

C
1/

P
G

4
R

E
S

E
T

V
C

C
G

N
D

X
T

A
L2

X
T

A
L1

 (
S

C
L/

IN
T

0)
 P

D
0

 (
S

D
A

/IN
T

1)
 P

D
1

(R
X

D
1/

IN
T

2)
 P

D
2

 (
T

X
D

1/
IN

T
3)

 P
D

3
 (

IC
P

1)
 P

D
4

(X
C

K
1)

 P
D

5
 (

T
1)

 P
D

6
 (

T
2)

 P
D

7

A
V

C
C

G
N

D
A

R
E

F
P

F
0

(A
D

C
0)

P
F

1
(A

D
C

1)
P

F
2

(A
D

C
2)

P
F

3
(A

D
C

3)
P

F
4

(A
D

C
4/

T
C

K
)

P
F

5
(A

D
C

5/
T

M
S

)
P

F
6

(A
D

C
6/

T
D

O
)

P
F

7
(A

D
C

7/
T

D
I)

G
N

D
V

C
C

P
A

0
(A

D
0)

P

A
1

(A
D

1)
P

A
2

(A
D

2)

3

ATmega128

2467MS–AVR–11/04

Block Diagram

Figure 2. Block Diagram

PROGRAM
COUNTER

INTERNAL
OSCILLATOR

WATCHDOG
TIMER

STACK
POINTER

PROGRAM
FLASH

MCU CONTROL
REGISTER

SRAM

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
REGISTER

TIMER/
COUNTERS

INSTRUCTION
DECODER

DATA DIR.
REG. PORTB

DATA DIR.
REG. PORTE

DATA DIR.
REG. PORTA

DATA DIR.
REG. PORTD

DATA REGISTER
PORTB

DATA REGISTER
PORTE

DATA REGISTER
PORTA

DATA REGISTER
PORTD

TIMING AND
CONTROL

OSCILLATOR

OSCILLATOR

INTERRUPT
UNIT

EEPROM

SPIUSART0

STATUS
REGISTER

Z

Y

X

ALU

PORTB DRIVERSPORTE DRIVERS

PORTA DRIVERSPORTF DRIVERS

PORTD DRIVERS

PORTC DRIVERS

PB0 - PB7PE0 - PE7

PA0 - PA7PF0 - PF7

R
E

S
E

T

VCC

AGND

GND

AREF

X
TA

L1

X
TA

L2

CONTROL
LINES

+ -

A
N

A
LO

G
C

O
M

PA
R

A
TO

R

PC0 - PC7

8-BIT DATA BUS

AVCC

USART1

CALIB. OSC

DATA DIR.
REG. PORTC

DATA REGISTER
PORTC

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING
LOGICPEN

BOUNDARY-
SCAN

DATA DIR.
REG. PORTF

DATA REGISTER
PORTF

ADC

PD0 - PD7

DATA DIR.
REG. PORTG

DATA REG.
PORTG

PORTG DRIVERS

PG0 - PG4

TWO-WIRE SERIAL
INTERFACE

4 ATmega128
2467MS–AVR–11/04

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega128 provides the following features: 128K bytes of In-System Programma-
ble Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, 53
general purpose I/O lines, 32 general purpose working registers, Real Time Counter
(RTC), four flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte
oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential
input stage with programmable gain, programmable Watchdog Timer with Internal Oscil-
lator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for
accessing the On-chip Debug system and programming and six software selectable
power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-
down mode saves the register contents but freezes the Oscillator, disabling all other
chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asyn-
chronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all
I/O modules except Asynchronous Timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while
the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption. In Extended Standby mode, both the main Oscillator and the Asynchro-
nous Timer continue to run.

The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega128 is
a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmega128 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

ATmega103 and
ATmega128
Compatibility

The ATmega128 is a highly complex microcontroller where the number of I/O locations
supersedes the 64 I/O locations reserved in the AVR instruction set. To ensure back-
ward compatibility with the ATmega103, all I/O locations present in ATmega103 have
the same location in ATmega128. Most additional I/O locations are added in an
Extended I/O space starting from $60 to $FF, (i.e., in the ATmega103 internal RAM
space). These locations can be reached by using LD/LDS/LDD and ST/STS/STD
instructions only, not by using IN and OUT instructions. The relocation of the internal
RAM space may still be a problem for ATmega103 users. Also, the increased number of
interrupt vectors might be a problem if the code uses absolute addresses. To solve
these problems, an ATmega103 compatibility mode can be selected by programming
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in
use, so the internal RAM is located as in ATmega103. Also, the Extended Interrupt vec-
tors are removed.

5

ATmega128

2467MS–AVR–11/04

The ATmega128 is 100% pin compatible with ATmega103, and can replace the
ATmega103 on current Printed Circuit Boards. The application note “Replacing
ATmega103 by ATmega128” describes what the user should be aware of replacing the
ATmega103 by an ATmega128.

ATmega103 Compatibility
Mode

By programming the M103C fuse, the ATmega128 will be compatible with the
ATmega103 regards to RAM, I/O pins and interrupt vectors as described above. How-
ever, some new features in ATmega128 are not available in this compatibility mode,
these features are listed below:

• One USART instead of two, Asynchronous mode only. Only the eight least
significant bits of the Baud Rate Register is available.

• One 16 bits Timer/Counter with two compare registers instead of two 16-bit
Timer/Counters with three compare registers.

• Two-wire serial interface is not supported.

• Port C is output only.

• Port G serves alternate functions only (not a general I/O port).

• Port F serves as digital input only in addition to analog input to the ADC.

• Boot Loader capabilities is not supported.

• It is not possible to adjust the frequency of the internal calibrated RC Oscillator.

• The External Memory Interface can not release any Address pins for general I/O,
neither configure different wait-states to different External Memory Address
sections.

In addition, there are some other minor differences to make it more compatible to
ATmega103:

• Only EXTRF and PORF exists in MCUCSR.

• Timed sequence not required for Watchdog Time-out change.

• External Interrupt pins 3 - 0 serve as level interrupt only.

• USART has no FIFO buffer, so data overrun comes earlier.

Unused I/O bits in ATmega103 should be written to 0 to ensure same operation in
ATmega128.

Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega128 as listed
on page 70.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source

6 ATmega128
2467MS–AVR–11/04

current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega128 as listed
on page 71.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega128 as listed on page
74. In ATmega103 compatibility mode, Port C is output only, and the port C pins are not
tri-stated when a reset condition becomes active.
Note: The ATmega128 is by default shipped in ATmega103 compatibility mode. Thus, if the

parts are not programmed before they are put on the PCB, PORTC will be output during
first power up, and until the ATmega103 compatibility mode is disabled.

Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega128 as listed
on page 75.

Port E (PE7..PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega128 as listed
on page 78.

Port F (PF7..PF0) Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-
tors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a Reset
occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

Port F also serves the functions of the JTAG interface.

In ATmega103 compatibility mode, Port F is an input Port only.

Port G (PG4..PG0) Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source

7

ATmega128

2467MS–AVR–11/04

current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features.

The port G pins are tri-stated when a reset condition becomes active, even if the clock is
not running.

In ATmega103 compatibility mode, these pins only serves as strobes signals to the
external memory as well as input to the 32 kHz Oscillator, and the pins are initialized to
PG0 = 1, PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active,
even if the clock is not running. PG3 and PG4 are oscillator pins.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
19 on page 48. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter.

AREF AREF is the analog reference pin for the A/D Converter.

PEN PEN is a programming enable pin for the SPI Serial Programming mode, and is inter-
nally pulled high . By holding this pin low during a Power-on Reset, the device will enter
the SPI Serial Programming mode. PEN has no function during normal operation.

8 ATmega128
2467MS–AVR–11/04

Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

($FF) Reserved – – – – – – – –

.. Reserved – – – – – – – –

($9E) Reserved – – – – – – – –

($9D) UCSR1C – UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 191

($9C) UDR1 USART1 I/O Data Register 189

($9B) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 189

($9A) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 190

($99) UBRR1L USART1 Baud Rate Register Low 193

($98) UBRR1H – – – – USART1 Baud Rate Register High 193

($97) Reserved – – – – – – – –

($96) Reserved – – – – – – – –

($95) UCSR0C – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 191

($94) Reserved – – – – – – – –

($93) Reserved – – – – – – – –

($92) Reserved – – – – – – – –

($91) Reserved – – – – – – – –

($90) UBRR0H – – – – USART0 Baud Rate Register High 193

($8F) Reserved – – – – – – – –

($8E) Reserved – – – – – – – –

($8D) Reserved – – – – – – – –

($8C) TCCR3C FOC3A FOC3B FOC3C – – – – – 135

($8B) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 131

 ($8A) TCCR3B ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 134

($89) TCNT3H Timer/Counter3 – Counter Register High Byte 136

 ($88) TCNT3L Timer/Counter3 – Counter Register Low Byte 136

 ($87) OCR3AH Timer/Counter3 – Output Compare Register A High Byte 136

($86) OCR3AL Timer/Counter3 – Output Compare Register A Low Byte 136

($85) OCR3BH Timer/Counter3 – Output Compare Register B High Byte 137

($84) OCR3BL Timer/Counter3 – Output Compare Register B Low Byte 137

($83) OCR3CH Timer/Counter3 – Output Compare Register C High Byte 137

($82) OCR3CL Timer/Counter3 – Output Compare Register C Low Byte 137

($81) ICR3H Timer/Counter3 – Input Capture Register High Byte 137

($80) ICR3L Timer/Counter3 – Input Capture Register Low Byte 137

($7F) Reserved – – – – – – – –

($7E) Reserved – – – – – – – –

($7D) ETIMSK – – TICIE3 OCIE3A OCIE3B TOIE3 OCIE3C OCIE1C 138

 ($7C) ETIFR – – ICF3 OCF3A OCF3B TOV3 OCF3C OCF1C 139

($7B) Reserved – – – – – – – –

($7A) TCCR1C FOC1A FOC1B FOC1C – – – – – 135

($79) OCR1CH Timer/Counter1 – Output Compare Register C High Byte 136

($78) OCR1CL Timer/Counter1 – Output Compare Register C Low Byte 136

($77) Reserved – – – – – – – –

($76) Reserved – – – – – – – –

($75) Reserved – – – – – – – –

($74) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 206

($73) TWDR Two-wire Serial Interface Data Register 208

($72) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 208

($71) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 207

($70) TWBR Two-wire Serial Interface Bit Rate Register 206

($6F) OSCCAL Oscillator Calibration Register 39

($6E) Reserved – – – – – – – –

($6D) XMCRA – SRL2 SRL1 SRL0 SRW01 SRW00 SRW11 29

($6C) XMCRB XMBK – – – – XMM2 XMM1 XMM0 31

($6B) Reserved – – – – – – – –

($6A) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 87

($69) Reserved – – – – – – – –

($68) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 279

($67) Reserved – – – – – – – –

($66) Reserved – – – – – – – –

($65) PORTG – – – PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 86

($64) DDRG – – – DDG4 DDG3 DDG2 DDG1 DDG0 86

($63) PING – – – PING4 PING3 PING2 PING1 PING0 86

($62) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 85

9

ATmega128

2467MS–AVR–11/04

($61) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 86

($60) Reserved – – – – – – – –

$3F ($5F) SREG I T H S V N Z C 9

$3E ($5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 12

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

$3C ($5C) XDIV XDIVEN XDIV6 XDIV5 XDIV4 XDIV3 XDIV2 XDIV1 XDIV0 41

$3B ($5B) RAMPZ – – – – – – – RAMPZ0 12

$3A ($5A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 88

$39 ($59) EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0 89

$38 ($58) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF INTF1 INTF0 89

$37 ($57) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 106, 138, 158

$36 ($56) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 106, 139, 158

$35 ($55) MCUCR SRE SRW10 SE SM1 SM0 SM2 IVSEL IVCE 29, 42, 61

$34 ($54) MCUCSR JTD – – JTRF WDRF BORF EXTRF PORF 51, 256

$33 ($53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 101

$32 ($52) TCNT0 Timer/Counter0 (8 Bit) 103

$31 ($51) OCR0 Timer/Counter0 Output Compare Register 103

$30 ($50) ASSR – – – – AS0 TCN0UB OCR0UB TCR0UB 104

$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 131

$2E ($4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 134

$2D ($4D) TCNT1H Timer/Counter1 – Counter Register High Byte 136

$2C ($4C) TCNT1L Timer/Counter1 – Counter Register Low Byte 136

$2B ($4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 136

$2A ($4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 136

$29 ($49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 136

$28 ($48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 136

$27 ($47) ICR1H Timer/Counter1 – Input Capture Register High Byte 137

$26 ($46) ICR1L Timer/Counter1 – Input Capture Register Low Byte 137

$25 ($45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 156

$24 ($44) TCNT2 Timer/Counter2 (8 Bit) 158

$23 ($43) OCR2 Timer/Counter2 Output Compare Register 158

$22 ($42) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 253

$21 ($41) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 53

$20 ($40) SFIOR TSM – – – ACME PUD PSR0 PSR321 70, 107, 143, 228

$1F ($3F) EEARH – – – – EEPROM Address Register High 19

$1E ($3E) EEARL EEPROM Address Register Low Byte 19

$1D ($3D) EEDR EEPROM Data Register 20

$1C ($3C) EECR – – – – EERIE EEMWE EEWE EERE 20

$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 84

$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 84

$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 84

$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 84

$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 84

$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 84

$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 84

$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 84

$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 85

$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 85

$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 85

$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 85

$0F ($2F) SPDR SPI Data Register 168

$0E ($2E) SPSR SPIF WCOL – – – – – SPI2X 168

$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 166

$0C ($2C) UDR0 USART0 I/O Data Register 189

$0B ($2B) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 189

$0A ($2A) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 190

$09 ($29) UBRR0L USART0 Baud Rate Register Low 193

$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 228

$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 244

$06 ($26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 245

$05 ($25) ADCH ADC Data Register High Byte 246

$04 ($24) ADCL ADC Data Register Low byte 246

$03 ($23) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 85

$02 ($22) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 85

Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

10 ATmega128
2467MS–AVR–11/04

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

$01 ($21) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 85

$00 ($20) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 86

Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

11

ATmega128

2467MS–AVR–11/04

Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

12 ATmega128
2467MS–AVR–11/04

Mnemonics Operands Description Operation Flags #Clocks

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3

ELPM Rd, Z Extended Load Program Memory Rd ← (RAMPZ:Z) None 3

ELPM Rd, Z+ Extended Load Program Memory and Post-Inc Rd ← (RAMPZ:Z), RAMPZ:Z ← RAMPZ:Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

Instruction Set Summary (Continued)

13

ATmega128

2467MS–AVR–11/04

Mnemonics Operands Description Operation Flags #Clocks

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Instruction Set Summary (Continued)

14 ATmega128
2467MS–AVR–11/04

Ordering Information

Notes: 1. The device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

Speed (MHz) Power Supply Ordering Code Package(1) Operation Range

8 2.7 - 5.5V

ATmega128L-8AC
ATmega128L-8MC

64A
64M1

Commercial
(0oC to 70oC)

ATmega128L-8AI

ATmega128L-8AU(2)

ATmega128L-8MI

ATmega128L-8MU(2)

64A

64A

64M1

64M1

Industrial
(-40oC to 85oC)

16 4.5 - 5.5V

ATmega128-16AC
ATmega128-16MC

64A
64M1

Commercial
(0oC to 70oC)

ATmega128-16AI

ATmega128-16AU(2)

ATmega128-16MI
ATmega128-16MU(2)

64A

64A

64M1
64M1

Industrial
(-40oC to 85oC)

Package Type

64A 64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)

64M1 64-pad, 9 x 9 x 1.0 mm, Micro Lead Frame Package (MLF)

15

ATmega128

2467MS–AVR–11/04

Packaging Information

64A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

B64A

10/5/2001

PIN 1 IDENTIFIER

0˚~7˚

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes: 1. This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable

protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10 mm maximum.

A – – 1.20

A1 0.05 – 0.15

A2 0.95 1.00 1.05

D 15.75 16.00 16.25

D1 13.90 14.00 14.10 Note 2

E 15.75 16.00 16.25

E1 13.90 14.00 14.10 Note 2

B 0.30 – 0.45

C 0.09 – 0.20

L 0.45 – 0.75

e 0.80 TYP

16 ATmega128
2467MS–AVR–11/04

64M1

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,

 D64M1

8/19/04

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 b 0.23 0.25 0.28

 D 9.00 BSC

 D2 5.20 5.40 5.60

 E 9.00 BSC

 E2 5.20 5.40 5.60

 e 0.50 BSC

L 0.35 0.40 0.45

Note: JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

SEATING PLANE

A1

C

A

C0.08

1
2
3

K 0.20 – –

E2

D2

b e

Pin #1 Corner
L

Pin #1
Triangle

Pin #1
Chamfer
(C 0.30)

Option A

Option B

Pin #1
Notch
(0.20 R)

Option C

K

K

5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)

17

ATmega128

2467MS–AVR–11/04

Errata The revision letter in this section refers to the revision of the ATmega128 device.

ATmega128 Rev. I • Stabilizing time needed when changing XDIV Register
• Stabilizing time needed when changing OSCCAL Register

1. Stabilizing time needed when changing XDIV Register

After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.

Problem Fix / Workaround

The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:

1.Clear the I bit in the SREG Register.

2.Set the new pre-scaling factor in XDIV register.

3.Execute 8 NOP instructions

4.Set the I bit in SREG

This will ensure that all subsequent instructions will execute correctly.

Assembly Code Example:
CLI ; clear global interrupt enable

OUT XDIV, temp ; set new prescale value

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

SEI ; clear global interrupt enable

2. Stabilizing time needed when changing OSCCAL Register

After increasing the source clock frequency more than 2% with settings in the OSC-
CAL register, the device may execute some of the subsequent instructions
incorrectly.

Problem Fix / Workaround

The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.

A proposal for solving problems regarding the JTAG instruction IDCODE is presented
below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the pre-
ceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega128 is the only device in the scan chain, the problem is not visible.

18 ATmega128
2467MS–AVR–11/04

Problem Fix / Workaround

Select the Device ID Register of the ATmega128 (Either by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller) to read
out the contents of its Device ID Register and possibly data from succeeding
devices of the scan chain. Note that data to succeeding devices cannot be entered
during this scan, but data to preceding devices can. Issue the BYPASS instruction
to the ATmega128 to select its Bypass Register while reading the Device ID Regis-
ters of preceding devices of the boundary scan chain. Never read data from
succeeding devices in the boundary scan chain or upload data to the succeeding
devices while the Device ID Register is selected for the ATmega128. Note that the
IDCODE instruction is the default instruction selected by the Test-Logic-Reset state
of the TAP-controller.

Alternative Problem Fix / Workaround

If the Device IDs of all devices in the boundary scan chain must be captured simul-
taneously (for instance if blind interrogation is used), the boundary scan chain can
be connected in such way that the ATmega128 is the fist device in the chain.
Update-DR will still not work for the succeeding devices in the boundary scan chain
as long as IDCODE is present in the JTAG Instruction Register, but the Device ID
registered cannot be uploaded in any case.

ATmega128 Rev. H • Stabilizing time needed when changing XDIV Register
• Stabilizing time needed when changing OSCCAL Register

1. Stabilizing time needed when changing XDIV Register

After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.

Problem Fix / Workaround

The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:

1.Clear the I bit in the SREG Register.

2.Set the new pre-scaling factor in XDIV register.

3.Execute 8 NOP instructions

4.Set the I bit in SREG

This will ensure that all subsequent instructions will execute correctly.

Assembly Code Example:
CLI ; clear global interrupt enable

OUT XDIV, temp ; set new prescale value

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

SEI ; clear global interrupt enable

19

ATmega128

2467MS–AVR–11/04

2. Stabilizing time needed when changing OSCCAL Register

After increasing the source clock frequency more than 2% with settings in the OSC-
CAL register, the device may execute some of the subsequent instructions
incorrectly.

Problem Fix / Workaround

The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.

A proposal for solving problems regarding the JTAG instruction IDCODE is presented
below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the pre-
ceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega128 is the only device in the scan chain, the problem is not visible.

Problem Fix / Workaround

Select the Device ID Register of the ATmega128 (Either by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller) to read
out the contents of its Device ID Register and possibly data from succeeding
devices of the scan chain. Note that data to succeeding devices cannot be entered
during this scan, but data to preceding devices can. Issue the BYPASS instruction
to the ATmega128 to select its Bypass Register while reading the Device ID Regis-
ters of preceding devices of the boundary scan chain. Never read data from
succeeding devices in the boundary scan chain or upload data to the succeeding
devices while the Device ID Register is selected for the ATmega128. Note that the
IDCODE instruction is the default instruction selected by the Test-Logic-Reset state
of the TAP-controller.

Alternative Problem Fix / Workaround

If the Device IDs of all devices in the boundary scan chain must be captured simul-
taneously (for instance if blind interrogation is used), the boundary scan chain can
be connected in such way that the ATmega128 is the fist device in the chain.
Update-DR will still not work for the succeeding devices in the boundary scan chain
as long as IDCODE is present in the JTAG Instruction Register, but the Device ID
registered cannot be uploaded in any case.

ATmega128 Rev. G • Stabilizing time needed when changing XDIV Register
• Stabilizing time needed when changing OSCCAL Register

1. Stabilizing time needed when changing XDIV Register

After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.

Problem Fix / Workaround

The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:

1.Clear the I bit in the SREG Register.

2.Set the new pre-scaling factor in XDIV register.

20 ATmega128
2467MS–AVR–11/04

3.Execute 8 NOP instructions

4.Set the I bit in SREG

This will ensure that all subsequent instructions will execute correctly.

Assembly Code Example:
CLI ; clear global interrupt enable

OUT XDIV, temp ; set new prescale value

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

SEI ; clear global interrupt enable

2. Stabilizing time needed when changing OSCCAL Register

After increasing the source clock frequency more than 2% with settings in the OSC-
CAL register, the device may execute some of the subsequent instructions
incorrectly.

Problem Fix / Workaround

The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.

A proposal for solving problems regarding the JTAG instruction IDCODE is presented
below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the pre-
ceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega128 is the only device in the scan chain, the problem is not visible.

Problem Fix / Workaround

Select the Device ID Register of the ATmega128 (Either by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller) to read
out the contents of its Device ID Register and possibly data from succeeding
devices of the scan chain. Note that data to succeeding devices cannot be entered
during this scan, but data to preceding devices can. Issue the BYPASS instruction
to the ATmega128 to select its Bypass Register while reading the Device ID Regis-
ters of preceding devices of the boundary scan chain. Never read data from
succeeding devices in the boundary scan chain or upload data to the succeeding
devices while the Device ID Register is selected for the ATmega128. Note that the
IDCODE instruction is the default instruction selected by the Test-Logic-Reset state
of the TAP-controller.

Alternative Problem Fix / Workaround

If the Device IDs of all devices in the boundary scan chain must be captured simul-
taneously (for instance if blind interrogation is used), the boundary scan chain can

21

ATmega128

2467MS–AVR–11/04

be connected in such way that the ATmega128 is the fist device in the chain.
Update-DR will still not work for the succeeding devices in the boundary scan chain
as long as IDCODE is present in the JTAG Instruction Register, but the Device ID
registered cannot be uploaded in any case.

ATmega128 Rev. F • Stabilizing time needed when changing XDIV Register
• Stabilizing time needed when changing OSCCAL Register

1. Stabilizing time needed when changing XDIV Register

After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.

Problem Fix / Workaround

The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:

1.Clear the I bit in the SREG Register.

2.Set the new pre-scaling factor in XDIV register.

3.Execute 8 NOP instructions

4.Set the I bit in SREG

This will ensure that all subsequent instructions will execute correctly.

Assembly Code Example:
CLI ; clear global interrupt enable

OUT XDIV, temp ; set new prescale value

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

NOP ; no operation

SEI ; clear global interrupt enable

2. Stabilizing time needed when changing OSCCAL Register

After increasing the source clock frequency more than 2% with settings in the OSC-
CAL register, the device may execute some of the subsequent instructions
incorrectly.

Problem Fix / Workaround

The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.

A proposal for solving problems regarding the JTAG instruction IDCODE is presented
below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the pre-

22 ATmega128
2467MS–AVR–11/04

ceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega128 is the only device in the scan chain, the problem is not visible.

Problem Fix / Workaround

Select the Device ID Register of the ATmega128 (Either by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller) to read
out the contents of its Device ID Register and possibly data from succeeding
devices of the scan chain. Note that data to succeeding devices cannot be entered
during this scan, but data to preceding devices can. Issue the BYPASS instruction
to the ATmega128 to select its Bypass Register while reading the Device ID Regis-
ters of preceding devices of the boundary scan chain. Never read data from
succeeding devices in the boundary scan chain or upload data to the succeeding
devices while the Device ID Register is selected for the ATmega128. Note that the
IDCODE instruction is the default instruction selected by the Test-Logic-Reset state
of the TAP-controller.

Alternative Problem Fix / Workaround

If the Device IDs of all devices in the boundary scan chain must be captured simul-
taneously (for instance if blind interrogation is used), the boundary scan chain can
be connected in such way that the ATmega128 is the fist device in the chain.
Update-DR will still not work for the succeeding devices in the boundary scan chain
as long as IDCODE is present in the JTAG Instruction Register, but the Device ID
registered cannot be uploaded in any case.

23

ATmega128

2467MS–AVR–11/04

Datasheet Revision
History

Please note that the referring page numbers in this section are referred to this docu-
ment. The referring revision in this section are referring to the document revision.

Changes from Rev.
2467L-05/04 to Rev.
2467M-11/04

1. Removed “analog ground”, replaced by “ground”.

2. Updated Table 11 on page 38, Table 114 on page 287, Table 128 on page 306,
and Table 132 on page 323. Updated Figure 114 on page 239.

3. Added note to “Port C (PC7..PC0)” on page 6.

4. Updated “Ordering Information” on page 14.

Changes from Rev.
2467K-03/04 to Rev.
2467L-05/04

1. Removed “Preliminary” and “TBD” from the datasheet, replaced occurrences
of ICx with ICPx.

2. Updated Table 8 on page 36, Table 19 on page 48, Table 22 on page 54, Table
96 on page 243, Table 126 on page 302, Table 128 on page 306, Table 132 on
page 323, and Table 134 on page 325.

3. Updated “External Memory Interface” on page 24.

4. Updated “Device Identification Register” on page 255.

5. Updated “Electrical Characteristics” on page 321.

6. Updated “ADC Characteristics” on page 327.

7. Updated “ATmega128 Typical Characteristics” on page 335.

8. Updated “Ordering Information” on page 14.

Changes from Rev.
2467J-12/03 to Rev.
2467K-03/04

1. Updated “Errata” on page 17.

Changes from Rev.
2467I-09/03 to Rev.
2467J-12/03

1. Updated “Calibrated Internal RC Oscillator” on page 39.

Changes from Rev.
2467H-02/03 to Rev.
2467I-09/03

1. Updated note in “XTAL Divide Control Register – XDIV” on page 41.

2. Updated “JTAG Interface and On-chip Debug System” on page 46.

3. Updated values for VBOT (BODLEVEL = 1) in Table 19 on page 48.

4. Updated “Test Access Port – TAP” on page 248 regarding JTAGEN.

5. Updated description for the JTD bit on page 257.

6. Added a note regarding JTAGEN fuse to Table 118 on page 290.

24 ATmega128
2467MS–AVR–11/04

7. Updated RPU values in “DC Characteristics” on page 321.

8. Added a proposal for solving problems regarding the JTAG instruction
IDCODE in “Errata” on page 17.

Changes from Rev.
2467G-09/02 to Rev.
2467H-02/03

1. Corrected the names of the two Prescaler bits in the SFIOR Register.

2. Added Chip Erase as a first step under “Programming the Flash” on page 318
and “Programming the EEPROM” on page 319.

3. Removed reference to the “Multipurpose Oscillator” application note and the
“32 kHz Crystal Oscillator” application note, which do not exist.

4. Corrected OCn waveforms in Figure 52 on page 123.

5. Various minor Timer1 corrections.

6. Added information about PWM symmetry for Timer0 and Timer2.

7. Various minor TWI corrections.

8. Added reference to Table 124 on page 293 from both SPI Serial Programming
and Self Programming to inform about the Flash Page size.

9. Added note under “Filling the Temporary Buffer (Page Loading)” on page 282
about writing to the EEPROM during an SPM Page load.

10. Removed ADHSM completely.

11. Added section “EEPROM Write During Power-down Sleep Mode” on page 23.

12. Updated drawings in “Packaging Information” on page 15.

Changes from Rev.
2467F-09/02 to Rev.
2467G-09/02

1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.

Changes from Rev.
2467E-04/02 to Rev.
2467F-09/02

1. Added 64-pad MLF Package and updated “Ordering Information” on page 14.

2. Added the section “Using all Locations of External Memory Smaller than 64
KB” on page 31.

3. Added the section “Default Clock Source” on page 35.

4. Renamed SPMCR to SPMCSR in entire document.

5. When using external clock there are some limitations regards to change of
frequency. This is descried in “External Clock” on page 40 and Table 131,
“External Clock Drive,” on page 323.

6. Added a sub section regarding OCD-system and power consumption in the
section “Minimizing Power Consumption” on page 45.

25

ATmega128

2467MS–AVR–11/04

7. Corrected typo (WGM-bit setting) for:

“Fast PWM Mode” on page 96 (Timer/Counter0).

“Phase Correct PWM Mode” on page 98 (Timer/Counter0).

“Fast PWM Mode” on page 150 (Timer/Counter2).

“Phase Correct PWM Mode” on page 152 (Timer/Counter2).

8. Corrected Table 81 on page 192 (USART).

9. Corrected Table 102 on page 261 (Boundary-Scan)

10. Updated Vil parameter in “DC Characteristics” on page 321.

Changes from Rev.
2467D-03/02 to Rev.
2467E-04/02

1. Updated the Characterization Data in Section “ATmega128 Typical Character-
istics” on page 335.

2. Updated the following tables:

Table 19 on page 48, Table 20 on page 52, Table 68 on page 157, Table 102 on
page 261, and Table 136 on page 328.

3. Updated Description of OSCCAL Calibration Byte.

In the data sheet, it was not explained how to take advantage of the calibration
bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following
sections:

Improved description of “Oscillator Calibration Register – OSCCAL” on page 39 and
“Calibration Byte” on page 291.

Changes from Rev.
2467C-02/02 to Rev.
2467D-03/02

1. Added more information about “ATmega103 Compatibility Mode” on page 5.

2. Updated Table 2, “EEPROM Programming Time,” on page 21.

3. Updated typical Start-up Time in Table 7 on page 35, Table 9 and Table 10 on
page 37, Table 12 on page 38, Table 14 on page 39, and Table 16 on page 40.

4. Updated Table 22 on page 54 with typical WDT Time-out.

5. Corrected description of ADSC bit in “ADC Control and Status Register A –
ADCSRA” on page 245.

6. Improved description on how to do a polarity check of the ADC differential
results in “ADC Conversion Result” on page 242.

7. Corrected JTAG version numbers in “JTAG Version Numbers” on page 256.

8. Improved description of addressing during SPM (usage of RAMPZ) on
“Addressing the Flash During Self-Programming” on page 280, “Performing
Page Erase by SPM” on page 282, and “Performing a Page Write” on page
282.

9. Added not regarding OCDEN Fuse below Table 118 on page 290.

10. Updated Programming Figures:

26 ATmega128
2467MS–AVR–11/04

Figure 135 on page 292 and Figure 144 on page 304 are updated to also reflect that
AVCC must be connected during Programming mode. Figure 139 on page 299
added to illustrate how to program the fuses.

11. Added a note regarding usage of the PROG_PAGELOAD and
PROG_PAGEREAD instructions on page 310.

12. Added Calibrated RC Oscillator characterization curves in section
“ATmega128 Typical Characteristics” on page 335.

13. Updated “Two-wire Serial Interface” section.

More details regarding use of the TWI Power-down operation and using the TWI as
master with low TWBRR values are added into the data sheet. Added the note at
the end of the “Bit Rate Generator Unit” on page 204. Added the description at the
end of “Address Match Unit” on page 205.

14. Added a note regarding usage of Timer/Counter0 combined with the clock.
See “XTAL Divide Control Register – XDIV” on page 41.

Changes from Rev.
2467B-09/01 to Rev.
2467C-02/02

1. Corrected Description of Alternate Functions of Port G

Corrected description of TOSC1 and TOSC2 in “Alternate Functions of Port G” on
page 82.

2. Added JTAG Version Numbers for rev. F and rev. G

Updated Table 100 on page 256.

3 Added Some Preliminary Test Limits and Characterization Data

Removed some of the TBD's in the following tables and pages:

Table 19 on page 48, Table 20 on page 52, “DC Characteristics” on page 321,
Table 131 on page 323, Table 134 on page 325, and Table 136 on page 328.

4. Corrected “Ordering Information” on page 14.

5. Added some Characterization Data in Section “ATmega128 Typical Character-
istics” on page 335.

6. Removed Alternative Algortihm for Leaving JTAG Programming Mode.

See “Leaving Programming Mode” on page 318.

7. Added Description on How to Access the Extended Fuse Byte Through JTAG
Programming Mode.

See “Programming the Fuses” on page 320 and “Reading the Fuses and Lock Bits”
on page 320.

 Printed on recycled paper.

2467MS–AVR–11/04

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Microsoft®, Windows®, Windows NT®, and Windows XP®

are the registered trademarks of Microsoft Corporation. Other terms and product names may be trademarks of others.

C.3 AVR ISP, In-System Programmer 125

C.3 AVR ISP, In-System Programmer

The Atmel® AVR ISP is an In-System Programmer for Atmel’s AVR® Flash

microcontrollers. The AVR ISP gives the designer a compact and reliable

programming tool to program

all In-System Programmable

AVR microcontrollers through

a 6- or 10-pin ISP connector.

The AVR ISP uses AVR

Studio®, Atmel’s Integrated

Development Environment

(IDE) for code writing and

debugging.

The programming software

can be controlled from both a

Windows® environment and a

DOS command-line interface.

ISP

AVR Studio Operated

Serial In-System Programming

RS-232 Interface to PC

Upgrades are done from AVR Studio

Target Voltage 2.7 – 6.0V

Powered from Target. No Need for

Additional Power Supply

M I C R O C O N T R O L L E R S

In-System

Programmer

COMPACT AND EASY-TO-USE TOOL

FOR AVR IN-SYSTEM PROGRAMMING

A V R I N - S Y S T E M P R O G R A M M E RA V R I S P

© Atmel Corporation 2004. All rights
reserved. Atmel®, AVR® and AVR Studio®

and combinations thereof are the regis-
tered trademarks of Atmel Corporation or
its subsidiaries.
Windows® is a registered trademark of
Microsoft Corporation.
Other terms and product names may be
the trademarks of others.

2492D-AVR-02/04/15M

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
USA
TEL: (1)(408) 441-0311
FAX: (1)(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL: (41) 26-426-5555
FAX: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
TEL: (852) 2721-9778
FAX: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL: (81) 3-3523-3551
FAX: (81) 3-3523-7581

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

Ordering Information

The AVR ISP is available from Atmel franchised distributors.

The ordering code is ATAVRISP

The latest version of AVR Studio is available free of charge from Atmel web site: www.atmel.com

The AVR ISP is a compact and easy-to-use In-System Programming tool for

developing applications with Atmel’s AVR microcontrollers. Due to the small size, it

is also an excellent tool for field upgrades of existing applications using AVR micro-

controllers. The AVR ISP is powered by the target application and an additional

power supply is thus not required for AVR ISP Programmer.

ATtiny12

ATtiny13

ATtiny2313

ATtiny15

ATtiny22

ATtiny26

AT90S1200

AT90S2313

AT90S2323

AT90S2333

AT90S4414

AT90S2343

AT90S4433

AT90S4434

AT90S8515

AT90S8535

ATmega8

ATmega8515

ATmega8535

ATmega161

ATmega162

ATmega163

ATmega16

ATmega169

ATmega323

ATmega32

ATmega48

ATmega64

ATmega103

ATmega128

AT89S51

AT89S52

AT86RF401

The AVR ISP Programming interface is

integrated in AVR Studio. The Flash, EEPROM

and all Fuse and Lock Bit options ISP-

programmable can be programmed

individually or with the sequential automatic

programming option. The AVR clock frequency

and supply voltage can also be controlled from

AVR Studio.

A DOS Programming software is included for

efficient batch programming in a production

environment.

Note: Low power versions are also supported.

Supported Devices

C.4 AVR033: Getting Started with the CodeVisionAVR C Compiler 128

C.4 AVR033: Getting Started with the CodeVisionAVR

C Compiler

1

AVR033: Getting Started with the
CodeVisionAVR C Compiler

Features
• Installing and Configuring CodeVisionAVR to Work with the Atmel STK500 Starter Kit

and AVR Studio® Debugger
• Creating a New Project Using the CodeWizardAVR Automatic Program Generator
• Editing and Compiling the C Code
• Loading the Executable Code into the Target Microcontroller on the STK500 Starter Kit

Introduction
The purpose of this application note is to guide the user through the preparation of an
example C program using the CodeVisionAVR C compiler. The example, which is the
subject of this application note, is a simple program for the Atmel AT90S8515 micro-
controller on the STK500 starter kit.

Preparation
Install the CodeVisionAVR C Compiler in the default directory: C:\cvavr.

Install the Atmel AVR Studio debugger in the default directory:

C:\Program Files\Atmel\AVR Studio.

The demonstration program to be developed in the next few pages requires an Atmel
AT90S8515 microcontroller and the STK500 starter kit.

Set up the starter kit according to the instructions in the STK500 User Guide.

Make sure the power is off and insert the AT90S8515 chip into the appropriate socket
marked SCKT3000D3.

Set the VTARGET, RESET and XTAL1 jumpers. Also set the OSCSEL jumper
between pins 1 and 2.

Connect one 10-pin ribbon cable between the PORTB and LEDs headers.

This will allow displaying the state of AT90S8515’s PORTB outputs.

Connect one 6-pin ribbon cable between the ISP6PIN and SPROG3 headers.

This will allow the CodeVisionAVR IDE to automatically program the AVR chip after a
successful compilation.

In order to use this feature, one supplementary setting must be done:

Open the CodeVisionAVR IDE and select the “Settings|Programmer” menu option.

The dialog window as shown in Figure 1 will open.

Rev. 2500A–10/01

8-bit
Microcontroller

Application
Note

2 AVR033
2500A–10/01

Figure 1. Programmer Settings

Make sure to select as Chip Programmer Type the Atmel STK500 AVR and the corre-
sponding Communication Port that is used with the STK500 starter kit.

Then press the “STK500.EXE Directory” button in order to specify the location of the
stk500.exe command line utility supplied with AVR Studio.

The dialog window as shown in Figure 2 will open.

Figure 2. Directory Selection

Select the “c:\Program Files\Atmel\AVR Studio\STK500” directory and press the “OK”
button.

Then press once again the “OK” button in order to save the Programmer Settings.

In order to be able to invoke the AVR Studio debugger from within the CodeVisionAVR
IDE one final setting must be done.

3

AVR033

2500A–10/01

Select the “Settings|Debugger” menu option. The dialog window as shown in Figure 3
will open.

Figure 3. Debugger Settings

Enter “C:\Program Files\Atmel\AVR Studio\AvrStudio.exe” and press the “OK” button.

Creating a New
Project

In order to create a new project, select the “File|New” menu option or press the tool-
bar button.

The window shown in Figure 4 will be displayed.

Figure 4. New Project Window

Select “Project” and press “OK”.

Then the window shown in Figure 5 will be displayed.

Figure 5. Confirmation

Press “Yes” to use the CodeWizardAVR Automatic Program Generator.

4 AVR033
2500A–10/01

Using the
CodeWizardAVR
Automatic Program
Generator

The CodeWizardAVR simplifies the task of writing start-up code for different AVR
microcontrollers.

Figure 6. Selections

The window shown in Figure 6 opens and, for this example project, we shall select the
AT90S8515 microcontroller and set the clock rate to 3.68 MHz since that is the clock on
the STK500 starter kit.

5

AVR033

2500A–10/01

Configuring the
Input/Output Ports

Select the “Ports” tab to determine how the I/O ports are to be initialized for the target
system.

Figure 7. I/O Ports Initialization

The default setting is to have the ports for all the target systems to be inputs (Data
Direction bits to be all Is) in their Tri-state mode.

For this exercise, we want to set Port B (by selecting the Port B tab) to be all outputs and
we do this by setting all the Data Direction bits to O (by clicking on them). We also set
the Output Values to be all 1s since this corresponds to the LEDs on the STK500 being
off.

6 AVR033
2500A–10/01

Configuring Timer1 For this project, we want to configure Timer1 to generate overflow interrupts.

We select the Timers tab and then select the Timer1 tab resulting in Figure 8.

Figure 8. Timer Tab

Set the options as shown in Figure 8. We have selected a clock rate of 3.594 kHz (the
system clock of 3.68 MHz divided by 1024).

The timer is set to operate in the default “Output Compare” mode and to generate inter-
rupts on overflow.

To obtain the frequency of LED movement of 2 per second we need to reinitialize the
Timer1 value to 0x10000-(3594/2) = 0xF8FB on every overflow.

Completing the
Project

By selecting the File|Generate, Save and Exit menu option the CodeWizard will gener-
ate a skeleton C program with, in this case, the Port B and Timer1 overflow interrupt set
up correctly.

The dialog window shown in Figure 9 will appear.

Figure 9. Save Source File Dialog Box

7

AVR033

2500A–10/01

By pressing the button, a new directory C:\cvavr\led must be created.

It will hold all the files of our sample project.
Then we must specify the File name of the C source file: led.c and press the “Save”
button.

A new dialog window will open. This is shown in Figure 10.

Figure 10. File Name Specification

Here, we must specify the File name led.prj, as the project name and put it in the same
folder: C:\cvavr\led.

Finally, we will be prompted to save the CodeWizard project file, as shown in Figure 11.

Figure 11. File Save Prompt

We must specify the File name as led.cwp and press the “Save” button.

Saving all the CodeWizardAVR peripherals configuration in the led.cwp project file, will
allow us to reuse some of our initialization code in future projects.

The led.c source file is now automatically opened and available.

One can then start editing the code produced by the CodeWizardAVR.

The source listing is given on Appendix A of this application note.

In this example, only the interrupt handler code needs to be amended to manage the
LED display.

The small bit of code that was added is shown with bold font, the remainder was sup-
plied by the CodeWizardAVR.

8 AVR033
2500A–10/01

Viewing or Modifying
the Project
Configuration

At any time, a project configuration may be changed using the Project|Configure menu
option or by pressing the toolbar button.

The dialog window shown in Figure 12 will open.

Figure 12. Configure Window Dialog Box

To add, respectively remove, files from the project select the “Files” tab and use the
“Add”, respectively “Remove” buttons.

To change the target microcontroller, the clock rate or the various compiler options
select the “C Compiler” tab.

The dialog box shown in Figure 13 opens and the configuration may be altered.

Figure 13. C Compiler Configuration

9

AVR033

2500A–10/01

We may also select whether we wish to automatically program the target microproces-
sor after the Make or not.

This is chosen by selecting the “After Make” tab, which gives us the next window, shown
in Figure 14.

Figure 14. After Make Configuration

For the purposes of this example, “Program the Chip” option must be checked.

This will enable automatic programming of the AVR chip after the Make is complete.

10 AVR033
2500A–10/01

Making the Project The “Project” Pull-down menu gives the Make option. Click on it or on the button on the
toolbar.

After a successful compile and assembly, the Information window will be displayed as
shown in Figure 15.

Figure 15. Information Window

This window shows how the compiler used the RAM memory.

If the Assembler tab is clicked, the Assembler window shows the size of the assembled
code as shown in Figure 16.

11

AVR033

2500A–10/01

Figure 16. Assembler Information

Selecting the Programmer tab displays the value of the Chip Programming Counter.

Pressing the Set Counter button can initialize this counter.

12 AVR033
2500A–10/01

Figure 17. Programmer Information

If the Make process was successful, then power-up the STK500 starter kit and press the
Program button to start the automatic chip programming.

After the programming process is complete, the code will start to execute in the target
microcontroller on the STK500 starter kit.

Short Reference

Preparations 1. Install the CodeVisionAVR C Compiler

2. Install the Atmel AVR Studio Debugger

3. Install the Atmel STK500 Starter Kit

4. Configure the STK500 Programmer Support in the CodeVisionAVR IDE by
selecting: Settings→Programmer→
AVR Chip Programmer Type: STK500→
Specify STK500.EXE Directory: C:\Program Files\Atmel\AVR Studio\STK500→
Communication Port

5. Configure the AVR Studio Support in the CodeVisionAVR IDE by selecting:
Settings→Debugger→
Enter: C:\Program Files\Atmel\AVR Studio

13

AVR033

2500A–10/01

Getting Started 1. Create a new project by selecting:
File→New→Select Project

2. Specify that the CodeWizardAVR will be used for producing the C source and
project files: Use the CodeWizard?→Yes

3. In the CodeWizardAVR window specify the chip type and clock frequency:
Chip→Chip: AT90S8515→Clock: 3.86MHz

4. Configure the I/O Ports: Ports→Port B→
Data Direction: all Outputs→Output Value: all 1's

5. Configure Timer1: Timers→Timer1→
Clock Value: 3.594kHz→Interrupt on: Timer1 Overflow→Val: 0xF8FB

6. Generate the C source, C project and CodeWizardAVR project files by selecting:
File|Generate, Save and Exit→
Create new directory: C:\cvavr\led→
Save: led.c→Save: led.prj →Save: led.cwp

7. Edit the C source code

8. View or Modify the Project Configuration by selecting Project→Configure→
After Make→Program the Chip

9. Compile the program by selecting:
Project→Make

10. Automatically program the AT90S8515 chip on the STK500 starter kit:
Apply power→Information→Program.

Appendix A - The
Source Code /***

This program was produced by the

CodeWizardAVR V1.0.1.8c Standard

Automatic Program Generator

© Copyright 1998-2001

Pavel Haiduc, HP InfoTech S.R.L.

http://infotech.ir.ro

e-mail: hpinfotech@xnet.ro, hpinfotech@xmail.ro

Project :

Version :

Date :

Author :

Company :

Comments:

Chip type : AT90S8515

Clock frequency : 3.680000 MHz

Memory model : Small

Internal SRAM size : 512

External SRAM size : 0

Data Stack size : 128

***/

#include <90s8515.h>

14 AVR033
2500A–10/01

// the LED 0 on PORTB will be on

unsigned char led_status=0xFE;

// Timer 1 overflow interrupt service routine

interrupt [TIM1_OVF] void timer1_ovf_isr(void)

{

// Reinitialize Timer's 1 value

TCNT1H=0xF8;

TCNT1L=0xFB;

// Place your code here

// move the LED

led_status<<=1;

led_status|=1;

if (led_status==0xFF) led_status=0xFE;

// turn on the LED

PORTB=led_status;

}

void main(void)

{

// Input/Output Ports initialization

// Port A

PORTA=0x00;

DDRA=0x00;

// Port B

PORTB=0xFF;

DDRB=0xFF;

// Port C

PORTC=0x00;

DDRC=0x00;

// Port D

PORTD=0x00;

DDRD=0x00;

// Timer/Counter 0 initialization

// Clock source: System Clock

// Clock value: Timer 0 Stopped

// Mode: Output Compare

// OC0 output: Disconnected

TCCR0=0x00;

TCNT0=0x00;

// Timer/Counter 1 initialization

// Clock source: System Clock

// Clock value: 3.594 kHz

15

AVR033

2500A–10/01

// Mode: Output Compare

// OC1A output: Discon.

// OC1B output: Discon.

// Noise Canceler: Off

// Input Capture on Falling Edge

TCCR1A=0x00;

TCCR1B=0x05;

TCNT1H=0xF8;

TCNT1L=0xFB;

OCR1AH=0x00;

OCR1AL=0x00;

OCR1BH=0x00;

OCR1BL=0x00;

// External Interrupt(s) initialization

// INT0: Off

// INT1: Off

GIMSK=0x00;

MCUCR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=0x80;

// Analog Comparator initialization

// Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80;

// Global enable interrupts

#asm("sei")

// the rest is done by TIMER1 overflow interrupts

while (1);

}

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Product Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

2500A–10/01/xM

Atmel®, AVR®, and AVR Studio® are registered trademarks Atmel Corporation.

Terms and product names in this document may be trademarks of others.

C.5 LCD Display Datasheet 145

C.5 LCD Display Datasheet

AN.No.CLCM-134E

 28

L2034

UnitSpecificationsItem

mm98.0 × 60.0 ×11.6
Module size (H × V × T)

(Reflective type)

mm98.0 × 60.0 × 15.8
Module size (H × V× T)

(Built-in LED backlight type)

mm76.0 × 25.2Viewing area (H× V)

mm2.95 × 4.15Character size (5 × 7 dot, H × V)

mm0.55 × 0.55Dot size (H × V)

mm0.05Dot space

mm93.0 × 55.0
Center to center dimension of

mounting holes (H ×V)

g55Weight (Reflective type)

g70Weight (Built-in LED backlight type)

VSS = 0V

UnitMax.Min.ConditionsSymbolItem

V6.0-0.3VDDPower supply
voltage VVDDVDD-12.0VLC

VVDD+0.3-0.3VINInput voltage

°C+500ToprOperating temp.

°C+60-20TstgStorage temp.

%RH+85+20≤ 48hrsStorage
humidity %RH+65+20≤ 1000hrs

VDD = 5V ± 5%, VSS = 0V, Ta = 0°C to 50°C

UnitMax.Typ.Min.ConditionsSymbolItem

V5.255.004.75VDDPower supply
voltage V11.04.0VDD -VLC

VVDD2.2VIH1High *Input
voltage V0.60VIL1Low

V2.4-IOH = 0.205mAVOH1High **Output
voltage V0.4IOL = 1.2mAVOL1Low

mA4.02.9Ta = 25°C
VDD = 5V

VLC = 0.25V

IDDCurrent
consumption mA2.01.2ILC

kHz300220140
Resistance
oscillation

fosc
Clock oscillation

frequency

* Applied to DB0 ~ DB7, E, R/W, RS
** Applied to DB0 ~ DB7

Viewing angle : 6 o'clock (∅ = 0°), Ta = 25°C, Vopr = 4.75V

UnitMax.Typ.Min.ConditionsSymbolItem

deg.

-15
C ≥ 2.0
∅ = 0°

θ1

Viewing angle 55θ2

70θ2 - θ1

42θ = 25°, ∅ = 0°CContrast

ms
400270θ = 0°

∅ = 0°
ton Response time (rise)

10060toffResponse time (fall)

ms
1100720θ = 0°, ∅ = 0°

Ta = 0°C
Vopr = 5.0V

ton Response time (rise)

350170toffResponse time (fall)

Viewing angle : 6 o'clock (∅ = 0°), Ta = 25°C, Vopr = 4.75V , Backlight OFF

UnitMax.Typ.Min.ConditionsSymbolItem

deg.

-10
C ≥ 2.0
∅ = 0°

θ1

Viewing angle 50θ2

60θ2 - θ1

42θ = 25°, ∅ = 0°CContrast

ms
400270θ = 0°

∅ = 0°
ton Response time (rise)

10060toffResponse time (fall)

ms
1100720θ = 0°, ∅ = 0°

Ta = 0°C
Vopr = 5.0V

ton Response time (rise)

350170toffResponse time (fall)

Vopr = VDD-VLC

50250Temperature (°C)

4.504.755.00Vopr (V)

D. Optical Characteristics
D-1 Reflective type

nnnnn Features of L2034 Series
� 20 characters × 4 lines
� STN gray type LCD is used
� 5 × 7 dot matrix + cursor
� 1/16 duty
� 5V single power supply

nnnnn Specification
A. Mechanical Characteristics

B. Absolute Maximum Ratings

C. Electrical Characteristics

D-2 Transflective type

E. Recommended Operating Voltage
The recommended value of (Vopr) for an ambient
temperature is as follows.

H : Horizontal, V : Vertical, T : Thickness (max.)

AN.No.CLCM-134E

 29

L2034

L203400J000Item
AMechanical Characteristics
BAbsolute Maximum Ratings
CElectrical Characteristics

D-1Optical Characteristics
ERecommended Operating Voltage

FunctionNameNo.No.
GNDVSS171
Power supply voltage +5VVDD182
Liquid crystal driving voltageVLC193
L : Instruction code input
H : Data input

RS204

L : Data write (LCM ← MPU)
H : Data read (LCM → MPU)

R/W215

EnableE226
Data bus lineDB0237
Data bus lineDB1248
Data bus lineDB2259
Data bus lineDB32610
Data bus lineDB42711
Data bus lineDB52812
Data bus lineDB62913
Data bus lineDB73014
NC3115
NC3216

Ω

±
±

×
±

Φ

±
Φ

±

±

± ±

±

nnnnn STN Reflective type F-1 Power Supply

F-2 Dimensions

F-3 Pin Functions F-4 Block Diagram

AN.No.CLCM-134E

 30

L2034

L2034B1J000Item
AMechanical Characteristics
BAbsolute Maximum Ratings
CElectrical Characteristics

D-2Optical Characteristics
ERecommended Operating Voltage

FunctionNameNo.No.
GNDVSS171
Power supply voltage +5VVDD182
Liquid crystal driving voltageVLC193
L : Instruction code input
H : Data input

RS204

L : Data write (LCM ← MPU)
H : Data read (LCM → MPU)

R/W215

EnableE226
Data bus lineDB0237
Data bus lineDB1248
Data bus lineDB2259
Data bus lineDB32610
Data bus lineDB42711
Data bus lineDB52812
Data bus lineDB62913
Data bus lineDB73014
AnodeVLED3115
CathodeVLEDG3216

Ω
Ω

±
±

×
±

Φ
±

Φ

±

±

± ±

±

nnnnn STN Transflective,
Built-in LED Backlight type

G-1 Power Supply

G-2 Dimensions

G-3 Pin Functions G-4 Block Diagram

AN.No.CLCM-134E

 31

L2034

Ta = 25°C
UnitSpecificationsSymbolItem
mA480IFLED forward current consumption *
V8VR LED reverse voltage
W2.0PDLED allowable dissipation

* LED forward current consumption and operating temperature
 characteristics are as follows.

Ta = 25°C
UnitMax.Typ.Min.ConditionsSymbolItem

V4.44.13.8IF = 240mAVF
LED forward
input voltage

mA2.4VR = 8VIRLED reverse
current

Ta = 25°C
UnitSpecificationsConditionsSymbolItem

cd/m24.5 min.
5 typ.

IF = 240mA
Vopr = 0VBp

Surface brightness
(panel upper side)

cd/m240 min.
50 typ.IF = 240mALLED brightness

h50,000 typ.LED service life
YellowgreenLED color

°

G-5 LED Backlight
G-5-1 LED Circuit Diagram

G-5-2 Absolute Maximum Ratings

G-5-3 Electrical Characteristics

G-5-4 Optical Characteristics

C.6 RS232 Transceiver Datasheet 150

C.6 RS232 Transceiver Datasheet

a
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 www.analog.com

Fax: 781/461-3113 © 2005 Analog Devices, Inc. All rights reserved.

REV. D

EMI-EMC-Compliant, �15 kV ESD Protected,
RS-232 Line Drivers/Receivers

FUNCTIONAL BLOCK DIAGRAM

C1+

C1–

C2+

C2–

VCC0.1�F
 10V

0.1�F
 10V

V+

V–

+5V TO +10V
VOLTAGE
DOUBLER14

12

13

5V INPUT

0.1�F
6.3V

+10V TO –10V
VOLTAGE
INVERTER

17 0.1�F
10V

T1 27 T1OUTT1IN

11

0.1�F

36 T2OUTT2IN

T3 120 T3OUTT3IN

T4 2821 T4OUTT4IN

T2

8 9

R3

R4

R5

25

27

23

18

4

19

26

22

24

5

R1

R2

ADM211E
ADM213E

R1OUT

R2OUT

R3OUT

R4OUT

R5OUT

R1IN

R2IN

R3IN

R4IN

R5IN

SHDN (ADM211E)
SHDN (ADM213E)

EN (ADM211E)
EN (ADM213E)

CMOS
INPUTS*

CMOS
OUTPUTS

EIA/TIA-232
OUTPUTS

EIA/TIA-232
INPUTS**

GND
10

NOTES:
 * INTERNAL 400k� PULL-UP RESISTOR ON EACH CMOS INPUT
** INTERNAL 5k� PULL-DOWN RESISTOR ON EACH RS-232 INPUT

15

16

FEATURES

Complies with 89/336/EEC EMC Directive

ESD Protection to IEC1000-4-2 (801.2)

�8 kV: Contact Discharge

�15 kV: Air-Gap Discharge

�15 kV: Human Body Model

Fast Transient Burst (EFT) Immunity (IEC1000-4-4)

Low EMI Emissions (EN55022)

Eliminates Costly TranZorbs®

230 kbits/s Data Rate Guaranteed

Single 5 V Power Supply

Shutdown Mode 1 �W

Plug-In Upgrade for MAX2xxE

Space Saving TSSOP Package Available

APPLICATIONS

Laptop Computers

Notebook Computers

Printers

Peripherals

Modems

GENERAL DESCRIPTION
The ADM2xxE is a family of robust RS-232 and V.28 interface
devices that operates from a single 5 V power supply. These prod-
ucts are suitable for operation in harsh electrical environments
and are compliant with the EU directive on EMC (89/336/EEC).
The level of emissions and immunity are both in compliance.
EM immunity includes ESD protection in excess of ±15 kV on all
I-O lines (1000-4-2), fast transient burst protection (1000-4-4) and
radiated immunity (1000-4-3). EM emissions include radiated
and conducted emissions as required by Information Technology
Equipment EN55022, CISPR22.

All devices fully conform to the EIA-232E and CCITT V.28
specifications and operate at data rates up to 230 kbps.

Shutdown and enable control pins are provided on some of the
products. See Table I.

The shutdown function on the ADM211E disables the charge
pump and all transmitters and receivers. On the ADM213E the

charge pump, all transmitters, and three of the five receivers are
disabled. The remaining two receivers remain active, thereby
allowing monitoring of peripheral devices. This feature allows
the device to be shut down until a peripheral device begins
communication. The active receivers can alert the processor
which can then take the ADM213E out of the shutdown mode.

Operating from a single 5 V supply, four external 0.1 µF capaci-
tors are required.

The ADM207E and ADM208E are available in 24-lead DIP, SO,
SSOP, and TSSOP packages. The ADM211E and ADM213E
are available in 28-lead SO, SSOP, and TSSOP packages.

All products are backward-compatible with earlier ADM2xx
products, facilitating easy upgrading of older designs.

Table I. Selection Table

Model Supply Voltage Drivers Receivers ESD Protection Shutdown Enable Packages

ADM206E 5 V 4 3 ±15 kV Yes Yes R-24
ADM207E 5 V 5 3 ±15 kV No No N, R, RS, RU-24
ADM208E 5 V 4 4 ±15 kV No No N, R, RS, RU-24
ADM211E 5 V 4 5 ±15 kV Yes Yes R, RS, RU-28
ADM213E 5 V 4 5 ±15 kV Yes (SD)* Yes (EN) R, RS, RU-28

*Two receivers active.

REV. D–2–

Table III. ADM213E Truth Table

SHDN EN Status TOUT1-4 ROUT1-3 ROUT4-5

0 0 Shutdown Disabled Disabled Disabled
0 1 Shutdown Disabled Disabled Enabled
1 0 Normal Enabled Disabled Disabled

Operation
1 1 Normal Enabled Enabled Enabled

Operation

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E–SPECIFICATIONS
(VCC = 5.0 V � 10%, C1–C4 = 0.1 �F. All specifications TMIN to TMAX unless otherwise noted.)

Parameter Min Typ Max Unit Test Conditions/Comments

Operating Voltage Range 4.5 5.0 5.5 V
VCC Power Supply Current 3.5 13 mA No Load

Shutdown Supply Current 0.2 10 µA

Input Pull-Up Current 10 25 µA TIN = GND
Input Logic Threshold Low, VINL 0.8 V TIN, EN, EN, SHDN, SHDN,
Input Logic Threshold High, VINH 2.0 V TIN

Input Logic Threshold High, VINH 2.0 V EN, EN, SHDN, SHDN
CMOS Output Voltage Low, VOL 0.4 V IOUT = 1.6 mA
CMOS Output Voltage High, VOH 3.5 V IOUT = –40 µA
CMOS Output Leakage Current 0.05 ±10 µA EN = VCC, EN = GND, 0 V ≤ ROUT ≤ VCC

EIA-232 Input Voltage Range* –30 +30 V
EIA-232 Input Threshold Low 0.8 1.3 V
EIA-232 Input Threshold High 2.0 2.4 V
EIA-232 Input Hysteresis 0.65 V
EIA-232 Input Resistance 3 5 7 kΩ TA = 0°C to 85°C
Output Voltage Swing ±5.0 ±9.0 V All Transmitter Outputs

Loaded with 3 kΩ to Ground
Transmitter Output Resistance 300 Ω VCC = 0 V, VOUT = ±2 V
RS-232 Output Short Circuit Current ±6 ±20 ±60 mA

Maximum Data Rate 230 kbps RL = 3 kΩ to 7 kΩ, CL = 50 pF to 2500 pF
 Receiver Propagation Delay

TPHL, TPLH 0.4 2 µs CL = 150 pF
Receiver Output Enable Time, tER 120 ns
Receiver Output Disable Time, tDR 120 ns
Transmitter Propagation Delay

TPHL, TPLH 1 µs RL = 3 kΩ, CL = 2500 pF
Transition Region Slew Rate 8 V/µs RL = 3 kΩ, CL = 50 pF to 2500 pF

Measured from +3 V to –3 V or
–3 V to +3 V

ESD Protection (I-O Pins) ±15 kV Human Body Model
±15 kV IEC1000-4-2 Air Discharge
±8 kV IEC1000-4-2 Contact Discharge

EMI Immunity 10 V/m IEC1000-4-3

*Guaranteed by design.

Specifications subject to change without notice.

Table II. ADM211E Truth Table

SHDN EN Status TOUT1-4 ROUT1-5

0 0 Normal Enabled Enabled
Operation

0 1 Normal Enabled Disabled
Operation

1 X Shutdown Disabled Disabled

X = Don’t Care.

REV. D –3–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E
ABSOLUTE MAXIMUM RATINGS*
(TA = 25°C unless otherwise noted.)

VCC . –0.3 V to +6 V
V+ . (VCC –0.3 V) to +14 V
V– . +0.3 V to –14 V
Input Voltages

TIN . –0.3 V to (V+, +0.3 V)
RIN . ±30 V

Output Voltages
TOUT . ±15 V
ROUT . –0.3 V to (VCC +0.3 V)

Short-Circuit Duration
TOUT . Continuous

Power Dissipation
N-24 PDIP (Derate 13.5 mW/°C above 70°C) . . 1000 mW
R-24 SOIC (Derate 12 mW/°C above 70°C) 900 mW

RS-24 SSOP (Derate 12 mW/°C above 70°C) 850 mW
RU-24 TSSOP (Derate 12 mW/°C above 70°C) . . . 900 mW
R-28 SOIC (Derate 12 mW/°C above 70°C) 900 mW
RS-28 SSOP (Derate 10 mW/°C above 70°C) 900 mW
RU-28 TSSOP (Derate 12 mW/°C above 70°C) . . . 900 mW

Operating Temperature Range
Industrial (A Version) –40°C to +85°C

Storage Temperature Range –65°C to +150°C
Lead Temperature (Soldering, 10 sec) 300°C
ESD Rating (MIL-STD-883B) (I-O Pins) ±15 kV
ESD Rating (IEC1000-4-2 Air) (I-O Pins) ±15 kV
ESD Rating (IEC1000-4-2 Contact) (I-O Pins) ±8 kV
*This is a stress rating only and functional operation of the device at these or any

other conditions above those indicated in the operation sections of this specifica-
tion is not implied. Exposure to absolute maximum rating conditions for extended
periods of time may affect reliability.

CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the ADM206E/ADM207E/ADM208E/ADM211E/ADM213E features proprietary ESD protection
circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges.
Therefore, proper ESD precautions are recommended to avoid performance degradation or loss
of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–4–

ORDERING GUIDE

Temperature Package Package
Model Range Description Option

ADM206EAR –40°C to +85°C SOIC R-24
ADM206EAR-REEL –40°C to +85°C SOIC R-24
ADM206EARZ* –40°C to +85°C SOIC R-24
ADM206EARZ-REEL* –40°C to +85°C SOIC R-24

ADM207EAN –40°C to +85°C PDIP N-24
ADM207EANZ* –40°C to +85°C PDIP N-24
ADM207EAR –40°C to +85°C SOIC R-24
ADM207EAR-REEL –40°C to +85°C SOIC R-24
ADM207EARZ* –40°C to +85°C SOIC R-24
ADM207EARZ-REEL* –40°C to +85°C SOIC R-24
ADM207EARS –40°C to +85°C SSOP RS-24
ADM207EARS-REEL –40°C to +85°C SSOP RS-24
ADM207EARSZ* –40°C to +85°C SSOP RS-24
ADM207EARSZ-REEL* –40°C to +85°C SSOP RS-24
ADM207EARU –40°C to +85°C TSSOP RU-24
ADM207EARU-REEL –40°C to +85°C TSSOP RU-24
ADM207EARU-REEL7 –40°C to +85°C TSSOP RU-24

ADM208EAN –40°C to +85°C PDIP N-24
ADM208EANZ* –40°C to +85°C PDIP N-24
ADM208EAR –40°C to +85°C SOIC R-24
ADM208EAR-REEL –40°C to +85°C SOIC R-24
ADM208EARZ* –40°C to +85°C SOIC R-24
ADM208EARZ-REEL* –40°C to +85°C SOIC R-24
ADM208EARS –40°C to +85°C SSOP RS-24
ADM208EARS-REEL –40°C to +85°C SSOP RS-24
ADM208EARSZ* –40°C to +85°C SSOP RS-24
ADM208EARSZ-REEL* –40°C to +85°C SSOP RS-24
ADM208EARU –40°C to +85°C TSSOP RU-24
ADM208EARU-REEL –40°C to +85°C TSSOP RU-24
ADM208EARU-REEL7 –40°C to +85°C TSSOP RU-24

ADM211EAR –40°C to +85°C SOIC R-28
ADM211EAR-REEL –40°C to +85°C SOIC R-28
ADM211EARZ* –40°C to +85°C SOIC R-28
ADM211EARZ-REEL* –40°C to +85°C SOIC R-28
ADM211EARS –40°C to +85°C SSOP RS-28
ADM211EARS-REEL –40°C to +85°C SSOP RS-28
ADM211EARSZ* –40°C to +85°C SSOP RS-28
ADM211EARSZ-REEL* –40°C to +85°C SSOP RS-28
ADM211EARU –40°C to +85°C TSSOP RU-28
ADM211EARU-REEL –40°C to +85°C TSSOP RU-28
ADM211EARU-REEL7 –40°C to +85°C TSSOP RU-28
ADM211EARUZ* –40°C to +85°C TSSOP RU-28
ADM211EARUZ-REEL* –40°C to +85°C TSSOP RU-28
ADM211EARUZ-REEL7* –40°C to +85°C TSSOP RU-28

ADM213EAR –40°C to +85°C SOIC R-28
ADM213EAR-REEL –40°C to +85°C SOIC R-28
ADM213EARZ* –40°C to +85°C SOIC R-28
ADM213EARZ-REEL* –40°C to +85°C SOIC R-28
ADM213EARS –40°C to +85°C SSOP RS-28
ADM213EARS-REEL –40°C to +85°C SSOP RS-28
ADM213EARSZ* –40°C to +85°C SSOP RS-28
ADM213EARSZ-REEL* –40°C to +85°C SSOP RS-28
ADM213EARU –40°C to +85°C TSSOP RU-28
ADM213EARU-REEL –40°C to +85°C TSSOP RU-28
ADM213EARU-REEL7 –40°C to +85°C TSSOP RU-28
ADM213EARUZ* –40°C to +85°C TSSOP RU-28
ADM213EARUZ-REEL* –40°C to +85°C TSSOP RU-28
ADM213EARUZ-REEL7* –40°C to +85°C TSSOP RU-28

*Z = Pb-free part.

REV. D –5–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

13

16

15

14

24

23

22

21

20

19

18

17

TOP VIEW
(Not to Scale)

12

11

10

9

8

1

2

3

4

7

6

5
ADM207E

T3OUT

T5IN

R2OUT

R2IN

T4OUT

T1OUT

T2OUT

R1IN

T3IN

T4IN

T5OUTR1OUT

T2IN

T1IN

GND

VCC

C1+ V–

R3IN

R3OUT

V+

C1–

C2–

C2+

Figure 3. ADM207E Pin Configuration

CMOS
INPUTS*

CMOS
OUTPUTS

T1IN

ADM207E

EIA/TIA-232
OUTPUTS

T1OUT

GND

8

T2IN

T3IN

T4IN

T2OUT

T3OUT

T4OUT

EIA/TIA-232
INPUTS**

R1IN

R2IN

R3IN

R1OUT

R2OUT

R3OUT

 *INTERNAL 400k� PULL-UP RESISTOR ON EACH CMOS INPUT
**INTERNAL 5k� PULL-DOWN RESISTOR ON EACH RS-232 INPUT

+5V TO +10V
VOLTAGE
DOUBLER

+10V TO –10V
VOLTAGE
INVERTER

0.1�F
6.3V

5V INPUT

VCC

V+

V–

C1+

C1–

C2+

C2–

0.1�F
10V

0.1�F
10V 0.1�F

10V

0.1�F

14

13

12

10

15

11

9

3

1

2

24

T3

T4

T2

T1

19

6

7

18

16

4

23

R1

R2

R317

22

5

T5IN T5OUT20T521

Figure 4. ADM207E Typical Operating Circuit

13

16

15

14

24

23

22

21

20

19

18

17

TOP VIEW
(Not to Scale)

12

11

10

9

8

1

2

3

4

7

6

5
ADM206E

T3OUT

SD

R2OUT

R2IN

T4OUT

T1OUT

T2OUT

R1IN

T3IN

T4IN

ENR1OUT

T2IN

T1IN

GND

VCC

C1+ V–

R3IN

R3OUT

V+

C1–

C2–

C2+

Figure 1. ADM206E DIP/SOIC/SSOP Pin Configuration

TTL/CMOS
INPUTS*

TTL/CMOS
OUTPUTS

T1IN

ADM206E SD

RS-232
OUTPUTS

T1OUT

GND

T2IN

T3IN

T4IN

T2OUT

T3OUT

T4OUT

RS-232
INPUTS**

R1IN

R2IN

R3IN

R1OUT

R2OUT

R3OUT

 *INTERNAL 400k� PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5k� PULL-DOWN RESISTOR ON EACH RS-232 INPUT

EN

+5V TO +10V
VOLTAGE
DOUBLER

+10V TO –10V
VOLTAGE
INVERTER

0.1�F
6.3V

5V INPUT

VCC

V+

V–

C1+

C1–

C2+

C2–

0.1�F
6.3V

0.1�F
16V 0.1�F

16V

0.1�F

8

14

13

12

10

15

11

9

20

3

1

2

24

T3

T4

T2

T1

19

6

7

18

21

16

4

23

R1

R2

R317

22

5

Figure 2. ADM206E Typical Operating Circuit

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–6–

13

16

15

14

24

23

22

21

20

19

18

17

TOP VIEW
(Not to Scale)

12

11

10

9

8

1

2

3

4

7

6

5
ADM208E

T2OUT

T4IN

R3OUT

R3IN

T3OUT

T1OUT

R2IN

R2OUT

T2IN

T3IN

T4OUTT1IN

R1OUT

R1IN

GND

VCC

C1+ V–

R4IN

R4OUT

V+

C1–

C2–

C2+

Figure 5. ADM208E Pin Configuration

CMOS
INPUTS*

CMOS
OUTPUTS

T1IN

ADM208E

EIA/TIA-232
OUTPUTS

T1OUT

GND

8

T2IN

T3IN

T4IN

T2OUT

T3OUT

T4OUT

EIA/TIA-232
INPUTS**

R1IN

R2IN

R3IN

R1OUT

R2OUT

R3OUT

 *INTERNAL 400k� PULL-UP RESISTOR ON EACH CMOS INPUT
**INTERNAL 5k� PULL-DOWN RESISTOR ON EACH RS-232 INPUT

+5V TO +10V
VOLTAGE
DOUBLER

+10V TO –10V
VOLTAGE
INVERTER

0.1�F
6.3V

5V INPUT

VCC

V+

V–

C1+

C1–

C2+

C2–

0.1�F
10V

0.1�F
10V 0.1�F

10V

0.1�F

14

13

12

10

15

11

9

20

1

2

24T3

T4

T2

T1

21

18

5

19

23

7

3

R1

R2

R3

4

22

6

R4INR4OUT 16R417

Figure 6. ADM208E Typical Operating Circuit

14

13

12

11

10

9

8

1

2

3

4

7

6

5

17

16

15

20

19

18

28

27

26

25

24

23

22

21

TOP VIEW
(Not to Scale)

ADM211E

T3OUT

R3OUT

R3IN

T4OUT

T1OUT

T2OUT

R2IN

R4OUT

R4IN

R2OUT

T2IN

T1IN

R1OUT

R1IN

GND R5OUT

T3IN

T4IN

VCC

C1+

V+

C1–

R5IN

C2+

C2–

V–

SHDN

EN

Figure 7. ADM211E Pin Configuration

CMOS
INPUTS*

TTL/CMOS
OUTPUTS

T1IN

ADM211E SHDN

EIA/TIA-232
OUTPUTS

T1OUT

GND

T2IN

T3IN

T4IN

T2OUT

T3OUT

T4OUT

EIA/TIA-232
INPUTS**

R1IN

R2IN

R3IN

R1OUT

R2OUT

R3OUT

 *INTERNAL 400k� PULL-UP RESISTOR ON EACH CMOS INPUT
**INTERNAL 5k� PULL-DOWN RESISTOR ON EACH RS-232 INPUT

EN

+5V TO +10V
VOLTAGE
DOUBLER

+10V TO –10V
VOLTAGE
INVERTER

14

12 11
0.1�F
6.3V

5V INPUT

VCC

V+

V–

C1+

C1–

C2+

C2–

0.1�F
10V

0.1�F
10V 0.1�F

10V

13

0.1�F

10

15
17

3

1

2

28

T3

T4

T2

T1

21

6

7

20

25

27

9

4

R1

R2

R3

5

8

16

R4IN

R5IN

R4OUT

R5OUT 18

23R4

R519

26

24

22

Figure 8. ADM211E Typical Operating Circuit

REV. D –7–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

14

13

12

11

10

9

8

1

2

3

4

7

6

5

17

16

15

20

19

18

28

27

26

25

24

23

22

21

TOP VIEW
(Not to Scale)

ADM213E

T3OUT

R3OUT

R3IN

T4OUT

T1OUT

T2OUT

R2IN

R4OUT*

R4IN*

R2OUT

T2IN

T1IN

R1OUT

R1IN

GND R5OUT*

T3IN

T4IN

VCC

C1+

V+

C1–

R5IN*

C2+

C2–

V–

EN

*ACTIVE IN SHUTDOWN

SHDN

Figure 9. ADM213E Pin Configuration

PIN FUNCTION DESCRIPTIONS

Mnemonic Function

VCC Power Supply Input: 5 V ± 10%.

V+ Internally Generated Positive Supply (+9 V nominal).

V– Internally Generated Negative Supply (–9 V nominal).

GND Ground Pin. Must Be Connected to 0 V.

C1+, C1– External Capacitor 1 is connected between these pins. 0.1 µF capacitor is recommended but larger capacitors up
to 47 µF may be used.

C2+, C2– External Capacitor 2 is connected between these pins. 0.1 µF capacitor is recommended but larger capacitors up
to 47 µF may be used.

TIN Transmitter (Driver) Inputs. These inputs accept TTL/CMOS levels. An internal 400 kΩ pull-up resistor to VCC

is connected on each input.

TOUT Transmitter (Driver) Outputs. These are RS-232 signal levels (Typically ±9 V).

RIN Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 kΩ pull-down resistor to GND is
connected on each input.

ROUT Receiver Outputs. These are CMOS output logic levels.

EN/EN Receiver Enable (Active High on ADM213E, Active Low on ADM211E); This input is used to enable/disable the
receiver outputs. With EN = Low ADM211E (EN = High ADM213E), the receiver outputs are enabled. With EN
= High (EN = Low ADM213E), the receiver outputs are placed in a high impedance state.

SHDN/SHDN Shutdown Control (Active Low on ADM213E, Active High on ADM211E); Refer to Table II. In shutdown the
charge pump is disabled, the transmitter outputs are turned off and all receiver outputs (ADM211E), receivers R1,
R2, R3 (ADM213E) are placed in a high impedance state. Receivers R4 and R5 on the ADM213E continue to
operate normally during shutdown. Power consumption in shutdown for all parts reduces to 5 µW.

TTL/CMOS
INPUTS1

TTL/CMOS
OUTPUTS

R5OUT
3

T1IN

ADM213E SHDN

RS-232
OUTPUTS

T1OUT

GND

T2IN

T3IN

T4IN

T2OUT

T3OUT

T4OUT

RS-232
INPUTS2

R1IN

R2IN

R3IN

R1OUT

R2OUT

R3OUT

NOTES
1INTERNAL 400k� PULL-UP RESISTOR ON EACH CMOS INPUT
2INTERNAL 5k� PULL-DOWN RESISTOR ON EACH RS-232 INPUT
3ACTIVE IN SHUTDOWN

EN

+5V TO +10V
VOLTAGE
DOUBLER

+10V TO –10V
VOLTAGE
INVERTER

14

12 11
0.1�F
6.3V

5V INPUT

VCC

V+

V–

C1+

C1–

C2+

C2–

0.1�F
16V

0.1�F
16V 0.1�F

16V

13

0.1�F

10

15
17

3

1

2

28

T3

T4

T2

T1

21

6

7

20

25

27

9

4

R1

R2

R3

5

8

16

R4IN
3

R5IN
3

R4OUT
3

18

23R4

R519

26

24

22

Figure 10. ADM213E Typical Operating Circuit

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–8–

Typical Performance Characteristics

LOG FREQUENCY – MHz

80

70

0
0.3 300.6 1

60

50

10

40

30

20

3 6 18

LIMIT

dB
�

V

TPC 1. EMC Conducted Emissions

LOAD CAPACITANCE – pF

–3

500 25001000 2000

7

5

3

1

–1

–5

–7
0 1500 3000

9

Tx
 O

/P
 –

 V

Tx O/P HI

Tx O/P LO

TPC 2. Transmitter Output Voltage High/Low vs.
Load Capacitance @ 230 kbps

2 4 6 8 10

Tx O/P HI

15

10

5

0

–15

LOAD CURRENT – mA

T
x

O
/P

 –
 V

0

–10

–5

Tx O/P LO

TPC 3. Transmitter Output Voltage vs. Load Current

START 30.0 MHz STOP 200.0 MHz

LIMIT

dB
�

V

80

70

60

50

40

30

20

10

0

TPC 4. EMC Radiated Emissions

VCC – V

–1

5.5 6.04.0 4.5 5.0

9

7

5

3

1

–3

–5

–7

–9

T
x

O
/P

 –
 V

Tx O/P HI LOADED

Tx O/P LO LOADED

TPC 5. Transmitter Output Voltage vs. VCC

SD

V+

V–

1

CH 3
CH 2 CH 1CH 1 5.00V 5.00V M 50.0µs 3.1V

5.00V V+, V– EXITING SD

T

T

T

2

3

TPC 6. Charge Pump V+, V– Exiting Shutdown

REV. D –9–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

VCC – V

350

0
4.5 4.7

IM
P

E
D

A
N

C
E

 –
 �

4.9 5.1 5.3 5.5

300

250

200

150

100

50

V–

V+

TPC 7. Charge Pump Impedance vs. VCC

LOAD CURRENT– mA

15

5 10 15 20

10

5

–5

–10

–15
0

V
+/

V
–

–
V

0

V+

V–

TPC 8. Charge Pump V+, V– vs. Current

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–10–

GENERAL DESCRIPTION
The ADM206E/ADM207E/ADM208E/ADM211E/ADM213E
are ruggedized RS-232 line drivers/receivers which operate from
a single 5 V supply. Step-up voltage converters coupled with level
shifting transmitters and receivers allow RS-232 levels to be devel-
oped while operating from a single 5 V supply.

Features include low power consumption, high transmission rates,
and compatibility with the EU directive on electromagnetic
compatibility. EM compatibility includes protection against
radiated and conducted interference, including high levels of
electrostatic discharge.

All RS-232 inputs and outputs contain protection against electro-
static discharges up to ±15 kV and electrical fast transients up to
±2 kV. This ensures compliance to IE1000-4-2 and IEC1000-4-4
requirements.

The devices are ideally suited for operation in electrically
harsh environments or where RS-232 cables are frequently being
unplugged. They are also immune to high RF field strengths
without special shielding precautions.

Emissions are also controlled to within very strict limits. CMOS
technology is used to keep the power dissipation to an absolute
minimum allowing maximum battery life in portable applications.
The ADMxxE is a modification, enhancement, and improve-
ment to the AD230–AD241 family and its derivatives. It is
essentially plug-in compatible and does not have materially
different applications.

CIRCUIT DESCRIPTION
The internal circuitry consists of four main sections.

1. A charge pump voltage converter

2. 5 V logic to EIA-232 transmitters

3. EIA-232 to 5 V logic receivers

4. Transient protection circuit on all I-O lines

Charge Pump DC-DC Voltage Converter
The charge pump voltage converter consists of an 200 kHz
oscillator and a switching matrix. The converter generates a
± 10 V supply from the input 5 V level. This is done in two
stages using a switched capacitor technique as illustrated below.
First, the 5 V input supply is doubled to 10 V using capacitor
C1 as the charge storage element. The 10 V level is then inverted
to generate –10 V using C2 as the storage element.

Capacitors C3 and C4 are used to reduce the output ripple. If
desired, larger capacitors (up to 47 µF) can be used for capaci-
tors C1–C4. This facilitates direct substitution with older
generation charge pump RS-232 transceivers.

The V+ and V– supplies may also be used to power external
circuitry if the current requirements are small. Please refer to
TPC 9 in the Typical Performance Characteristics section.

S1

S2
C1

S4

S3

C3

V+ = 2VCC

VCC

VCC

INTERNAL
OSCILLATOR

GND

Figure 11. Charge Pump Voltage Doubler

S1

S2
C2

S4

S3

C4

V– = –(V+)

V+ GND

INTERNAL
OSCILLATOR

GND

FROM
VOLTAGE
DOUBLER

Figure 12. Charge Pump Voltage Inverter

Transmitter (Driver) Section
The drivers convert 5 V logic input levels into EIA-232 output
levels. With VCC = 5 V and driving an EIA-232 load, the output
voltage swing is typically ±9 V.

Unused inputs may be left unconnected, as an internal 400 kΩ
pull-up resistor pulls them high forcing the outputs into a low
state. The input pull-up resistors typically source 8 µA when
grounded, so unused inputs should either be connected to VCC

or left unconnected in order to minimize power consumption.

Receiver Section
The receivers are inverting level shifters which accept EIA-232
input levels and translate them into 5 V logic output levels.
The inputs have internal 5 kΩ pull-down resistors to ground
and are also protected against overvoltages of up to ± 25 V.
The guaranteed switching thresholds are 0.4 V minimum and
2.4 V maximum. Unconnected inputs are pulled to 0 V by the
internal 5 kΩ pull-down resistor. This, therefore, results in
a Logic 1 output level for unconnected inputs or for inputs
connected to GND.

The receivers have Schmitt trigger input with a hysteresis level
of 0.65 V. This ensures error-free reception for both noisy
inputs and for inputs with slow transition times.

ENABLE AND SHUTDOWN
Table II and Table III show the truth tables for the enable and
shutdown control signals. The enable function is intended to
facilitate data bus connections where it is desirable to three-state
the receiver outputs. In the disabled mode, all receiver outputs
are placed in a high impedance state. The shutdown function is
intended to shut the device down, thereby minimizing the quies-
cent current. In shutdown, all transmitters are disabled and all
receivers on the ADM211E are three-stated. On the ADM213E,
receivers R4 and R5 remain enabled in shutdown. Note that the
transmitters are disabled but are not three-stated in shutdown,
so it is not permitted to connect multiple (RS-232) driver out-
puts together.

The shutdown feature is very useful in battery-operated systems
since it reduces the power consumption to 1 µW. During shut-
down the charge pump is also disabled. The shutdown control
input is active high on the ADM211E, and it is active low on
the ADM213E. When exiting shutdown, the charge pump is
restarted and it takes approximately 100 µs for it to reach its
steady state operating condition.

REV. D –11–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E
High Baud Rate
The ADM2xxE feature high slew rates permitting data transmis-
sion at rates well in excess of the EIA-232-E specifications.
RS-232 levels are maintained at data rates up to 230 kb/s even
under worst case loading conditions. This allows for high speed
data links between two terminals, making it suitable for the new
generation modem standards which require data rates of 200 kb/s.
The slew rate is internally controlled to less than 30 V/µs to
minimize EMI interference.

 tDR

3V

0V

EN INPUT

VOH

VOL

RECEIVER
 OUTPUT

VOH –0.1V

VOL +0.1V

NOTE:
EN IS THE COMPLEMENT OF EN FOR THE ADM213E

Figure 13. Receiver Disable Timing

 tER

3V

0V

EN INPUT

RECEIVER
 OUTPUT

+3.5V

+0.8V

NOTE:
EN IS THE COMPLEMENT OF EN FOR THE ADM213E

Figure 14. Receiver Enable Timing

ESD/EFT Transient Protection Scheme
The ADM2xxE use protective clamping structures on all
inputs and outputs that clamp the voltage to a safe level and
dissipates the energy present in ESD (electrostatic) and EFT
(electrical fast transients) discharges. A simplified schematic of
the protection structure is shown in Figures 15a and 15b.
Each input and output contains two back-to-back high speed
clamping diodes. During normal operation, with maximum
RS-232 signal levels, the diodes have no effect as one or the
other is reverse-biased, depending on the polarity of the signal.
If, however, the voltage exceeds about ±50 V, reverse breakdown
occurs and the voltage is clamped at this level. The diodes are
large p-n junctions designed to handle the instantaneous cur-
rent surge which can exceed several amperes.

The transmitter outputs and receiver inputs have a similar pro-
tection structure. The receiver inputs can also dissipate some of
the energy through the internal 5 kΩ resistor to GND as well as
through the protection diodes.

The protection structure achieves ESD protection up to ±15 kV
and EFT protection up to ±2 kV on all RS-232 I-O lines. The
methods used to test the protection scheme are discussed later.

RIN

RX

D1

D2

RECEIVER
INPUT

R1

Figure 15a. Receiver Input Protection Scheme

RX

D1

D2

TRANSMITTER
OUTPUT

TOUT

Figure 15b. Transmitter Output Protection Scheme

ESD TESTING (IEC1000-4-2)
IEC1000-4-2 (previously 801-2) specifies compliance testing
using two coupling methods, contact-discharge and air-gap
discharge. Contact discharge calls for a direct connection to the
unit being tested. Air-gap discharge uses a higher test voltage
but does not make direct contact with the unit under test. With
air discharge, the discharge gun is moved toward the unit under
test, developing an arc across the air gap; hence the term air
discharge. This method is influenced by humidity, temperature,
barometric pressure, distance, and rate of closure of the discharge
gun. The contact-discharge method, while less realistic, is more
repeatable, and is gaining acceptance in preference to the air-
gap method.

Although very little energy is contained within an ESD pulse,
the extremely fast rise time, coupled with high voltages, can
cause failures in unprotected semiconductors. Catastrophic
destruction can occur immediately as a result of arcing or heat-
ing. Even if catastrophic failure does not occur immediately, the
device may suffer from parametric degradation that may result in
degraded performance. The cumulative effects of continuous
exposure can eventually lead to complete failure.

I-O lines are particularly vulnerable to ESD damage. Simply
touching or plugging in an I-O cable can result in a static
discharge that can damage or destroy the interface product
connected to the I-O port. Traditional ESD test methods such
as the MIL-STD-883B method 3015.7 do not fully test a
product’s susceptibility to this type of discharge. This test was
intended to test a product’s susceptibility to ESD damage dur-
ing handling. Each pin is tested with respect to all other pins.
There are some important differences between the traditional
test and the IEC test:
(a) The IEC test is much more stringent in terms of discharge
(energy. The peak current injected is over four times greater.
(b) The current rise time is significantly faster in the IEC test.
(c) The IEC test is carried out while power is applied to the device.

It is possible that the ESD discharge could induce latch-up in
the device under test. This test, therefore, is more representative
of a real-world I-O discharge where the equipment is operating
normally with power applied. For maximum peace of mind, how-
ever, both tests should be performed, thus ensuring maximum
protection both during handling and later during field service.

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–12–

R1 R2

C1
DEVICE

UNDER TEST

HIGH
VOLTAGE

GENERATOR

ESD TEST METHOD R2 C1

H. BODY MIL-STD883B 1.5k� 100pF

IEC1000-4-2 330� 150pF

Figure 16. ESD Test Standards

100

I P
E

A
K

 –
 %

90

36.8

10

 tDLtRL TIME t

Figure 17. Human Body Model ESD Current Waveform

100

I P
E

A
K

 –
 %

90

10

TIME t
 30ns

 60ns

 0.1 TO 1ns

Figure 18. IEC1000-4-2 ESD Current Waveform

ADM2xxE products are tested using both of the above mentioned
test methods. All pins are tested with respect to all other pins as
per the MIL-STD-883B specification. In addition, all I-O pins
are tested per the IEC test specification. The products are tested
under the following conditions:
(a) Power-On—Normal Operation
(b) Power-On—Shutdown Mode
(c) Power-Off

There are four levels of compliance defined by IEC1000-4-2.
ADM2xxE products meet the most stringent compliance level
for both contact and for air-gap discharge. This means that the
products are able to withstand contact discharges in excess of
8 kV and air-gap discharges in excess of 15 kV.

Table IV. IEC1000-4-2 Compliance Levels

Contact Discharge Air Discharge
Level (kV) (kV)

1 2 2
2 4 4
3 6 8
4 8 15

Table V. ADM2xxE ESD Test Results

ESD Test Method I-O Pin (kV)

MIL-STD-883B ±15
IEC1000-4-2

Contact ±8
Air ±15

FAST TRANSIENT BURST TESTING (IEC1000-4-4)
IEC1000-4-4 (previously 801-4) covers electrical fast transient
burst (EFT) immunity. Electrical fast transients occur as a
result of arcing contacts in switches and relays. The tests simu-
late the interference generated when, for example, a power relay
disconnects an inductive load. A spark is generated due to the
well known back EMF effect. In fact, the spark consists of a burst
of sparks as the relay contacts separate. The voltage appear-
ing on the line, therefore, consists of a burst of extremely fast
transient impulses. A similar effect occurs when switching on
fluorescent lights.

The fast transient burst test defined in IEC1000-4-4 simulates
this arcing, and its waveform is illustrated in Figure 19. It consists
of a burst of 2.5 kHz to 5 kHz transients repeating at 300 ms
intervals. It is specified for both power and data lines.

 300ms 15ms

t

V

5ns

 0.2/0.4ms

50ns

V

t

Figure 19. IEC1000-4-4 Fast Transient Waveform

REV. D –13–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E
Table VI.

V Peak (kV) V Peak (kV)
Level PSU I-O

1 0.5 0.25
2 1 0.5
3 2 1
4 4 2

A simplified circuit diagram of the actual EFT generator is
illustrated in Figure 20.

The transients are coupled onto the signal lines using an EFT
coupling clamp. The clamp is 1 m long and it completely sur-
rounds the cable providing maximum coupling capacitance
(50 pF to 200 pF typ) between the clamp and the cable. High
energy transients are capacitively coupled onto the signal lines.
Fast rise times (5 ns) as specified by the standard result in very
effective coupling. This test is very severe since high voltages are
coupled onto the signal lines. The repetitive transients can often
cause problems where single pulses do not. Destructive latch-up
may be induced due to the high energy content of the transients.
Note that this stress is applied while the interface products are
powered up and are transmitting data. The EFT test applies
hundreds of pulses with higher energy than ESD. Worst-case
transient current on an I-O line can be as high as 40 A.

Test results are classified according to the following:

1. Normal performance within specification limits

2. Temporary degradation or loss of performance that is self-
recoverable

3. Temporary degradation or loss of function or performance
that requires operator intervention or system reset

4. Degradation or loss of function that is not recoverable due to
damage

ADM2xxE products have been tested under worst-case condi-
tions using unshielded cables, and meet Classification 2. Data
transmission during the transient condition is corrupted, but it
may be resumed immediately following the EFT event without
user intervention.

RC RM

CC

HIGH
VOLTAGE
SOURCE

L

ZS

CD
50�
OUTPUT

Figure 20. IEC1000-4-4 Fast Transient Generator

IEC1000-4-3 RADIATED IMMUNITY
IEC1000-4-3 (previously IEC801-3) describes the measure-
ment method and defines the levels of immunity to radiated
electromagnetic fields. It was originally intended to simulate the
electromagnetic fields generated by portable radio transceivers
or any other device that generates continuous wave radiated
electromagnetic energy. Its scope has since been broadened to
include spurious EM energy which can be radiated from fluores-
cent lights, thyristor drives, inductive loads, etc.

Testing for immunity involves irradiating the device with an EM
field. There are various methods of achieving this, including use
of anechoic chamber, stripline cell, TEM cell, GTEM cell. A
stripline cell consists of two parallel plates with an electric field
developed between them. The device under test is placed within
the cell and exposed to the electric field. There are three severity
levels having field strengths ranging from 1 V to 10 V/m. Results
are classified in a similar fashion to those for IEC1000-4-4.

1. Normal operation

2. Temporary degradation or loss of function that is self-
recoverable when the interfering signal is removed

3. Temporary degradation or loss of function that requires
operator intervention or system reset when the interfering
signal is removed

4. Degradation or loss of function that is not recoverable due to
damage

The ADM2xxE family of products easily meets Classification 1
at the most stringent (Level 3) requirement. In fact, field strengths
up to 30 V/m showed no performance degradation, and error-
free data transmission continued even during irradiation.

Table VII. Test Severity Levels (IEC1000-4-3)

Field Strength
Level V/m

1 1
2 3
3 10

EMISSIONS/INTERFERENCE
EN55 022, CISPR22 defines the permitted limits of radiated
and conducted interference from information technology (IT)
equipment. The objective of the standard is to minimize the
level of emissions both conducted and radiated.

For ease of measurement and analysis, conducted emissions are
assumed to predominate below 30 MHz and radiated emissions
are assumed to predominate above 30 MHz.

CONDUCTED EMISSIONS
This is a measure of noise that is conducted onto the line
power supply. Switching transients from the charge pump that
are 20 V in magnitude and containing significant energy can
lead to conducted emissions. Other sources of conducted emis-
sions can be due to overlap in switch on times in the charge
pump voltage converter. In the voltage doubler shown below, if
S2 has not fully turned off before S4 turns on, this results in a
transient current glitch between VCC and GND which results in
conducted emissions. It is therefore important that the switches
in the charge pump guarantee break-before-make switching
under all conditions so that instantaneous short-circuit condi-
tions do not occur.

The ADM2xxE have been designed to minimize the switching
transients and ensure break-before-make switching thereby
minimizing conducted emissions. This has resulted in the
level of emissions being well below the limits required by the
specification. No additional filtering/decoupling other than the
recommended 0.1 µF capacitor is required.

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–14–

Conducted emissions are measured by monitoring the line power
supply. The equipment used consists of a LISN (line impedance
stabilizing network) which essentially presents a fixed impedance at
RF, and a spectrum analyzer. The spectrum analyzer scans for
emissions up to 30 MHz. A plot for the ADM211E is shown in
Figure 23.

S1

S2
C1

S4

S3

C3

V+ = 2VCCVCC

INTERNAL
OSCILLATOR

GND VCC

Figure 21. Charge Pump Voltage Doubler

ø1

ø2

SWITCHING GLITCHES

Figure 22. Switching Glitches

LOG FREQUENCY – MHz

80

70

0
0.3 300.6 1

60

50

10

40

30

20

3 6 18

LIMIT

dB
�

V

Figure 23. Conducted Emissions Plot

RADIATED EMISSIONS
Radiated emissions are measured at frequencies in excess of
30 MHz. RS-232 outputs designed for operation at high baud
rates while driving cables can radiate high frequency EM energy.
The reasons already discussed which cause conducted emissions
can also be responsible for radiated emissions. Fast RS-232
output transitions can radiate interference, especially when
lightly loaded and driving unshielded cables. Charge pump
devices are also prone to radiating noise due to the high frequency
oscillator and high voltages being switched by the charge pump.
The move towards smaller capacitors in order to conserve
board space has resulted in higher frequency oscillators being
employed in the charge pump design. This has resulted in higher
levels of emission, both conducted and radiated.

The RS-232 outputs on the ADM2xxE products feature a
controlled slew rate in order to minimize the level of radiated
emissions, yet are fast enough to support data rates up to
230 kBaud.

DUT

TURNTABLE

RADIATED NOISE

ADJUSTABLE
ANTENNA

TO
RECEIVER

Figure 24. Radiated Emissions Test Setup

Figure 25 shows a plot of radiated emissions versus frequency.
This shows that the levels of emissions are well within specifica-
tions without the need for any additional shielding or filtering
components. The ADM2xxE were operated at maximum
baud rates and configured in a typical RS-232 interface.

Testing for radiated emissions was carried out in a shielded
anechoic chamber.

START 30.0 MHz STOP 200.0 MHz

LIMIT

dB
�

V

80

70

60

50

40

30

20

10

0

Figure 25. Radiated Emissions Plot

REV. D –15–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E
OUTLINE DIMENSIONS

24-Lead Plastic Dual In-Line Package [PDIP]
(N-24)

Dimensions shown in inches and (millimeters)

24

1 12

13

1.185 (30.01)
1.165 (29.59)
1.145 (29.08)

0.295 (7.49)
0.285 (7.24)
0.275 (6.99)

0.150 (3.81)
0.135 (3.43)
0.120 (3.05)

0.015 (0.38)
0.010 (0.25)
0.008 (0.20)

0.325 (8.26)
0.310 (7.87)
0.300 (7.62)

SEATING
PLANE

0.015 (0.38) MIN
0.180
(4.57)
MAX

0.022 (0.56)
0.018 (0.46)
0.014 (0.36)

0.150 (3.81)
0.130 (3.30)
0.110 (2.79) 0.100

(2.54)
BSC

0.060 (1.52)
0.050 (1.27)
0.045 (1.14)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

COMPLIANT TO JEDEC STANDARDS MO-095AG

24-Lead Standard Small Outline Package [SOIC]
Wide Body

(R-24)
Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

COMPLIANT TO JEDEC STANDARDS MS-013AD

8�
0�

0.75 (0.0295)
0.25 (0.0098)

� 45�

1.27 (0.0500)
0.40 (0.0157)

SEATING
PLANE

0.30 (0.0118)
0.10 (0.0039)

2.65 (0.1043)
2.35 (0.0925)

1.27 (0.0500)
BSC

24 13

121
10.65 (0.4193)
10.00 (0.3937)

7.60 (0.2992)
7.40 (0.2913)

15.60 (0.6142)
15.20 (0.5984)

COPLANARITY
0.10

0.33 (0.0130)
0.20 (0.0079)

0.51 (0.0201)
0.31 (0.0122)

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–16–

28-Lead Standard Small Outline Package [SOIC]
Wide Body

(R-28)
Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

COMPLIANT TO JEDEC STANDARDS MS-013AE

0.33 (0.0130)
0.20 (0.0079)

8�
0�

0.75 (0.0295)
0.25 (0.0098)

� 45�

1.27 (0.0500)
0.40 (0.0157)

SEATING
PLANE

0.30 (0.0118)
0.10 (0.0039)

0.51 (0.0201)
0.31 (0.0122)

2.65 (0.1043)
2.35 (0.0925)

1.27 (0.0500)
BSC

28 15

141

18.10 (0.7126)
17.70 (0.6969)

10.65 (0.4193)
10.00 (0.3937)

7.60 (0.2992)
7.40 (0.2913)

COPLANARITY
0.10

24-Lead Shrink Small Outline Package [SSOP]
(RS-24)

Dimensions shown in millimeters

24 13

121

8.20
7.80
7.40

5.60
5.30
5.00

0.38
0.22 SEATING

PLANE

0.05 MIN 0.65
BSC

2.00 MAX

1.85
1.75
1.65

0.95
0.75
0.55

0.25
0.09

8�
4�
0�

0.10
COPLANARITY

8.50
8.20
7.90

COMPLIANT TO JEDEC STANDARDS MO-150AG

OUTLINE DIMENSIONS

REV. D –17–

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E
OUTLINE DIMENSIONS

28-Lead Shrink Small Outline Package [SSOP]
(RS-28)

Dimensions shown in millimeters

0.25
0.09

0.95
0.75
0.55

8�
4�
0�

0.05
MIN

1.85
1.75
1.652.00 MAX

0.38
0.22 SEATING

PLANE

0.65
BSC

0.10
COPLANARITY

28 15

141

10.50
10.20
9.90

5.60
5.30
5.00

8.20
7.80
7.40

COMPLIANT TO JEDEC STANDARDS MO-150AH

24-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-24)

Dimensions shown in millimeters

24 13

121
6.40 BSC

4.50
4.40
4.30

PIN 1

7.90
7.80
7.70

0.15
0.05

0.30
0.19

0.65
BSC

1.20
MAX

0.20
0.09

0.75
0.60
0.45

8�
0�

SEATING
PLANE

COMPLIANT TO JEDEC STANDARDS MO-153AD

0.10 COPLANARITY

REV. D

ADM206E/ADM207E/ADM208E/ADM211E/ADM213E

–18–

Revision History
Location Page

4/05—Data Sheet changed from REV. C to REV. D.

Changes to SPECIFICATIONS . 2

Changes to ORDERING GUIDE . 4

Updated OUTLINE DIMENSIONS . 16

3/01—Data Sheet changed from REV. B to REV. C.

Features
Change 460 kbits/s to 230 kbits/s . 1

Specifications Table
Changed in Min, Typ, Max, Test Conditions/Comments columns . 2

Absolute Maximum Ratings
Deleted some items . 3

Figures
Change made in Figure 6 . 5

Typical Performance Characteristics
Changes made in plots . 7, 8

Table V.
Column removed . 11

28-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-28)

Dimensions shown in millimeters

4.50
4.40
4.30

28 15

141

9.80
9.70
9.60

6.40 BSC

PIN 1

SEATING
PLANE

0.15
0.05

0.30
0.19

0.65
BSC

1.20
MAX

0.20
0.09

0.75
0.60
0.45

8�
0�

COMPLIANT TO JEDEC STANDARDS MO-153AE

COPLANARITY
0.10

OUTLINE DIMENSIONS

–19–

–20–

C
00

06
8–

0–
4/

05
(D

)

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	Chapter Introduction
	Overview of the Dissertation

	Chapter Existing System Evaluation
	Chapter Introduction
	Background Information
	Short-listed Implementations
	Code Size
	Functions
	Security
	Chapter Summary
	Chapter Embedded Platform and Development Tools
	Chapter Introduction
	Microprocessor Core
	Software and Tools
	Chosen System: Hardware
	Chosen System: Software
	Chapter Summary
	Chapter Software Development
	Chapter Introduction
	Software Overview
	High-level Data Link Control
	Point to Point Protocol
	Link Control Program
	Password Authentication Protocol
	Network Control Protocol

	Internet Protocol
	Transmission Control Protocol
	Hyper-text Transfer Protocol
	RAM Utilisation
	Code Optimisation
	Chapter Summary

	Chapter Testing and Security
	Chapter Introduction
	Testing So Far
	Security
	Environmental and Hardware
	Chapter Summary

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Further Work
	Conclusion

	References
	Appendix Project Specification
	Appendix Code Listing
	Source Code Listing
	Appendix Manufacturer Datasheets
	JED Micoprocessor Datasheets
	AVR ATmega128 Datasheet
	AVR ISP, In-System Programmer
	AVR033: Getting Started with the CodeVisionAVR C Compiler
	LCD Display Datasheet
	RS232 Transceiver Datasheet

