
University of Southern Queensland

Faculty of Engineering & Surveying

Video Compression using ITU-T Recommendation H.264

A dissertation submitted by

B. Farmer

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering(Computer Systems)

Submitted: October, 2005

Abstract

The H.264 standard defines a compliant bitstream and methods of decoding this bit-

stream to reconstruct a video sequence.

This research project introduces H.264 video compression techniques including FMO,

CAVLC, Deblocking Filter, logarithmic quantisation and integer transformation.

The encoding process for the baseline profile is discussed in detail, specific implemen-

tation procedures detailed and references made to available source code. Encoders are

required to provide conforming bitstreams consistent with their stated profile and level.

A decoder that declares its conformance to a specific profile must be able to support

all of the features of that profile. Interoperability between individual encoders and

decoders is achieved through this profile and level compliance.

The provision of a GUI allows user interaction with the encoder and decoder. Parame-

ters may be varied in order to suit particular applications. The variation of parameters

require tradeoffs between fidelity, file size and bit rate to be made.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

B. Farmer

0011120187

Signature

Date

Acknowledgments

I would like to thank my supervisor, Dr Wei Xiang for his assistance and guidance

throughout this research project.

On a personal note I would thank my husband, Aaron for his support not only through

this research project but throughout my entire degree.

Finally to my daughter, Jordi who arrived half way through this year and my son,

Samuel, both of whom are a welcome distraction from study, I thank you both for your

patience and love.

B. Farmer

University of Southern Queensland

October 2005

Contents

Abstract i

Acknowledgments iv

List of Figures xi

List of Tables xiv

Glossary xvi

Chapter 1 Introduction 1

1.1 Reference Software . 2

1.2 Video Compression . 2

1.3 Overview of the Dissertation . 3

Chapter 2 Video Compression Techniques 5

2.1 Chapter Overview . 5

2.2 Video Compression Encoding . 6

CONTENTS vi

2.3 Video Compression Decoding . 6

2.4 Frame Components . 7

2.5 Video Compression Techniques . 7

2.5.1 Motion Compensation . 8

2.5.2 Spatial Prediction . 9

2.5.3 Transformation . 10

2.5.4 Quantisation . 10

2.5.5 Entropy Coding . 11

2.6 Evolution of MPEG and H26L Codecs 11

2.7 Chapter Summary . 13

Chapter 3 The H.264 Recommendation 14

3.1 Chapter Overview . 14

3.2 H.264 Profiles . 15

3.3 Bitstream Formats . 17

3.4 Network Abstraction Layer . 18

3.4.1 Data Partitioning . 19

3.5 Slices . 19

3.6 Motion Compensated Prediction . 20

3.7 Flexible Macroblock Ordering . 21

3.8 Arbitrary Slice Ordering . 22

CONTENTS vii

3.9 Integer Transform . 22

3.10 Logarithmic Quantisation . 23

3.11 Entropy Encoding . 23

3.12 Adaptive Deblocking Filter . 24

3.13 Video Formats . 24

3.14 Hypothetical Reference Decoder . 25

3.15 Chapter Summary . 26

Chapter 4 H.264 Encoder Principles 27

4.1 Chapter Overview . 27

4.2 The Encoder . 28

4.3 The Encoded Bitstream . 29

4.3.1 Parameter Sets . 31

4.3.2 Intra Video Coding Layer Network Access Layer Unit 32

4.3.3 Inter Video Coding Layer Network Access Layer Unit 48

4.4 Chapter Summary . 50

Chapter 5 H.264 Decoding Principles 52

5.1 Chapter Overview . 52

5.2 The Decoder . 53

5.3 The Bitstream . 54

CONTENTS viii

5.3.1 Parameter Sets . 54

5.3.2 Intra Video Coding Layer Network Access Layer Unit 55

5.4 Chapter Summary . 62

Chapter 6 Graphical User Interface 63

6.1 Chapter Overview . 63

6.2 Main Interface . 63

6.3 Encoder Interface . 64

6.4 Decoder Interface . 76

6.5 Chapter Summary . 77

Chapter 7 Results 78

7.1 Chapter Overview . 78

7.2 Parameter Effects . 79

7.3 Conforming Bitstream and Fidelity Testing 80

7.3.1 Methodology . 81

7.3.2 Results . 81

7.4 Fidelity and Storage Comparison . 82

7.5 Peak Signal to Noise Ratio . 83

7.6 User Software Interaction . 85

7.7 Chapter Summary . 85

CONTENTS ix

Chapter 8 Conclusion 86

8.1 Achievement of Objectives . 86

8.2 Future Work . 87

List of References 88

Appendix A Project Specification 91

Appendix B NAL and Picture Parameters 93

B.1 Chapter Overview . 93

B.2 Network Access Layer Parameters . 93

B.3 Slice Parameters . 95

B.4 Macroblock Parameters . 98

B.5 CAVLC Parameters . 99

Appendix C Sequence Parameter Set 101

C.1 Chapter Overview . 101

C.2 Parameters . 101

C.3 Bitstream information . 104

C.4 SPS NALU Bitstream . 108

Appendix D Picture Parameter Set Bitstream 109

D.1 Chapter Overview . 109

CONTENTS x

D.2 Parameters . 109

D.3 Bitstream info . 113

D.4 PPS NALU Bitstream . 116

Appendix E VCL Bitstream 117

E.1 Chapter Overview . 117

E.1.1 Slice Header Bitstream . 117

E.1.2 Macroblock Header Bitstream 118

E.1.3 Macroblock Image Bitstream . 119

E.2 Intra VCL NALU Bitstream . 126

List of Figures

3.1 Slice group maps available for use with Flexible Macroblock Ordering. 22

4.1 H.264 Encoder Block Diagram . 28

4.2 The original first frame from the container qcif.yuv video sequence . . . 33

4.3 A magnified 4×4 block of macroblocks of the top left corner of the first

frame of the original YUV video. 36

4.4 Integer Transformation Method. 39

4.5 Second frame of container qcif.yuv sourced from Kansas State University. 48

4.6 Magnified view of 2×2 block of macroblocks from the first frame of the

original YUV video. 49

4.7 Magnified view of 2×2 block of macroblocks from the second frame of

original YUV video. 49

5.1 H.264 Decoder Block Diagram . 53

5.2 The decoded frame of container qcif. 53

5.3 The second frame of container qcif.264 decoded without the deblocking

filter. 61

LIST OF FIGURES xii

6.1 Start Screen of H264 Baseline Software 64

6.2 Information Screen of H264 Baseline Encode. 64

6.3 Main Screen of H264 Baseline Encode. 65

6.4 Picture Screen of H264 Baseline Encode. 66

6.5 Control Tab of H264 Baseline Encode. 67

6.6 FMO Tab of H264 Baseline Encode - No FMO. 69

6.7 FMO Tab of H264 Baseline Encode - Interleave Slice Map. 70

6.8 FMO Tab of H264 Baseline Encode - Dispersed Slice Map. 71

6.9 FMO Tab of H264 Baseline Encode - Foreground with left-over Slice Map. 71

6.10 FMO Tab of H264 Baseline Encode - Box-out Slice Map. 72

6.11 FMO Tab of H264 Baseline Encode - Raster Scan Slice Map. 72

6.12 FMO Tab of H264 Baseline Encode - Wipe Slice Map. 73

6.13 FMO Tab of H264 Baseline Encode - Explicit Slice Map. 73

6.14 Filter Tab of H264 Baseline Encode. 74

6.15 Rate Control Tab of H264 Baseline Encode. 74

6.16 Misc Tab of H264 Baseline Encode. 75

6.17 Main Screen of H264 Baseline Decode. 76

6.18 Advanced Screen of H264 Baseline Decode. 77

7.1 a. Decoded Frame using WinDVD Platinum. b. Decoded Frame using

ImToo MPEG Encoder. 81

LIST OF FIGURES xiii

7.2 a. MPEG 1 b. MPEG 2 c. DVD Format. 83

7.3 A decoded P Slice with an average PSNR values of 38.33dB. 84

List of Tables

4.1 Differences between original u chroma values and best mode predicted

values. 36

4.2 The first 4×4 block of luma values of the raw container qcif.yuv video. . 37

4.3 Calculated luma differences of the first 4×4 block. 37

4.4 The Integer Transform matrix used for 4×4 blocks. 38

4.5 The 4×4 block following horizontal transform. 39

4.6 The 4×4 block of transformed coefficients. 40

4.7 The 4×4 block of quantised values. 42

4.8 4×4 block of dequantised values. 43

4.9 4×4 block of inverse transformed values. 43

4.10 The first 4×4 luma block of macroblock 35 from frame 1. 50

4.11 The first 4×4 luma block of macroblock 35 from original frame 2. 50

5.1 The first 4×4 luma block following entropy decoding and rescaling. . . . 59

5.2 The first 4×4 decoded luma block following horizontal inverse transform. 60

LIST OF TABLES xv

5.3 The first 4×4 decoded luma block following the inverse vertical transform. 61

7.1 Effects of Parameter Changes. 80

Glossary

ABT ABT Adaptive Block-size Transform

AV C AV C Advanced Video Coding

ASO ASO-Arbitrary Slice Ordering

CABAC CABAC - Context Adaptive Binary Arithmetic Coding

CAV LC CAV LC - Context Adaptive Variable Length Coding

CBP CBP Coded Block Pattern

Chroma Chroma-Chrominance or Colour

CIF CIF -Common Intermediate Format

CODEC CODEC-Encoder/Decoder pair

DCT DCT -Discrete Cosine Transform

DPB DPB-Decoded Picture Buffer

DV D DV D-Digital Versatile Disk

EBSP EBSP - Emulation Byte Sequence Payload

FME FME- Fast Motion Estimation

FMO FMO-Flexible Macroblock Ordering

GOB GOB-Group of Blocks

GOP GOP -Group of Pictures

GUI GUI-Graphical User Interface

HRD HRD-Hypothetical Reference Decoder

IDR IDR-Instantaneous Decoding Refresh

Glossary xvii

IEC IEC-International Electrotechnical Commission

IGOP IGOP -Image Group of Pictures

ITU ITU -International Telecommunications Union

ISO ISO-International Standards Organisation

LSB LSB-least significant bit

Luma Luma-Luminance or Brightness

MPEG MPEG-Motion Pictures Expert Group

MSB MSB-most significant bit

MSE MSE-Mean Squared Error

NAL NAL-Network Abstraction Layer

NALU NALU -Network Abstraction Layer Unit

NNZ NNZ-Number of Nonzero Coefficients

PEL PEL-Picture Element

POC POC-Picture Order Count

PPS PPS-Picture Parameter Set

PSNR PSNR - Peak Signal to Noise Ratio

QCIF QCIF -Quarter Common Intermediate Format

QP QP -Quantisation Parameter

RBSP RBSP -Raw Byte Sequence Payload

SAD SAD-Sum of Absolute Differences

SATD SATD-Sum of Absolute Transform Differences

SEI SEI-Supplemental Enhancement Information

SODB SODB-String of Data Bits

SPS SPS-Sequence Parameter Set

V CEG V CEG-Video Coding Experts Group

V CL V CL- Video Coding Layer

V LC V LC- Variable Length Coding

Chapter 1

Introduction

The aim of this research project is to investigate the International Telecommunications

Union - Telecommunications (ITU-T) Recommendation H.264 and implement the video

compression algorithms.

ITU-T Recommendation H.264 is also known as International Standards Organisation /

International Electrotechnical Commission 14496 Part 10 or MPEG-4 Advanced Video

Coding becoming a standard in May 2003.

The ITU-T and the ISO / IEC are the two independent global standardisation organi-

sations for telecommunications.

The groups that are specifically responsible for video compression within these organ-

isations is the Joint Technical Committee (JTC), Sub Committee 29, Working Group

11 (WG11). The ISO/IEC JTC1/SC29/WG11, is more commonly known as Moving

Picture Experts Group (MPEG). The Video Coding Experts Group (VCEG) is the

ITU-T video compression group.

H.264 development was first initiated by the VCEG and became a collaborative effort

of both the VCEG and MPEG when a Joint Video Team (JVT) was established in

December 2001.

The H.264 Recommendation sought to respond to demands for better compression of

1.1 Reference Software 2

video and global interoperability. The Recommendation may be applied to many ap-

plications, including videoconferencing, television broadcasting, data storage, internet

streaming and communication.

The H.264 standard defines the parts of a compliant bitstream as well as the decoder

processing methods required to turn the bitstream back into video. The standard

intends to allow commercial applications to develop their own individuality, whilst

maintaining the global interoperability.

1.1 Reference Software

This research project used Joint Video Team (2004) Joint Model 9.0 (JM90) reference

software, that was last modified in October 2004. The reference software is constantly

being updated and the most recent software is called JM10.1. The reference software

was developed in conjunction with the Recommendation to test the viability of various

compression techniques.

The reference software has been refined during the course of this research project in

order provide a user friendly interface to the baseline profile of the H.264 Recommenda-

tion. These changes maintain a conforming bitstream and utilise the decoder processing

methods as defined by the Recommendation, whilst seeking to optimise the code with

respect to encoding and decoding complexity.

The software is written in C/C++ and is evaluated against other commonly used codecs

for fidelity, complexity and encoded data storage size.

1.2 Video Compression

Video compression provides the ability to encode and decode a stream of consecutive

digital images allowing for efficient transmission and storage. This is achieved using

a variety of video compression algorithms that compact or condense a digital video

sequence into a smaller number of bits than of original raw video.

1.3 Overview of the Dissertation 3

A digital video sequence samples a natural time varying real world event at consistent

time intervals converting the image to data. Frame samples are commonly taken at 25 or

30 frames per second to reproduce television quality moving video. Video compression

codecs are characterised by differing tradeoffs, such as complexity, encoded image data

size and the reproduced fidelity.

Video compression research started in the mid-1960s, whereby each picture within the

video stream was compressed separately and without reference to other pictures. The

separate compression of pictures is used in the JPEG standard and the video formed

by multiple consecutive pictures is known as motion JPEG.

1.3 Overview of the Dissertation

Chapter 2 discusses the typical video compression encoding and decoding methods,

from raw video through to the encoded data being ready for storage or transmission.

Common video compression techniques include motion compensation, transformation,

quantisation and entropy coding. This chapter further discusses the evolution of the

MPEG and H.26L series of codecs from the release of H.261 in 1990.

The three original profiles of H.264 are defined in Chapter 3. This chapter also discusses

video compression techniques particular to the H.264 standard including flexible mac-

roblock ordering (FMO), arbitrary slice order (ASO), adaptive deblocking filter, context

adaptive variable length coding (CAVLC), improved motion compensation methods and

logarithmic quantisation.

Chapter 4 provides a detailed insight into the algorithms used to compress the video

image. This chapter follows a 4×4 frame block through the transformation, prediction,

quantisation and entropy encoding process.

Chapter 5 follows the H.264 Recommendation for decoding a conforming bitstream.

This chapter seeks to provide the mathematical approach to entropy decoding, inverse

quantisation and inverse transform.

1.3 Overview of the Dissertation 4

Chapter 6 discusses the Graphical User Interface (GUI) allowing the user to investigate

various video compression parameters. The careful use of these parameters should allow

the user to determine a fidelity and data size combination. The GUI provides seven

tabs of encoder parameters that may be defined by the user.

Chapter 7 is the results chapter which discusses the fidelity, complexity, bit rate and

file size of the H.264 Recommendation. The H.264 software is evaluated with respect

to a variety of internal parameters, against other codecs, ease of use, signal to noise

ratio and for bitstream conformance.

Chapter 8 concludes the dissertation with a discussion on the achievement of the ob-

jectives of the research project. Future work relating to H.264 Recommendation and

for video compression is identified.

This dissertation is organised as follows:

Chapter 2 discusses common video compression techniques;

Chapter 3 identifies techniques particular to the H.264 standard, including FMO,

ASO, CAVLC;

Chapter 4 follows encoding algorithms from raw video to an encoded video sequence;

Chapter 5 details a decoding method for decoding a conforming H.264 bitstream;

Chapter 6 the GUI allows for user interaction with a variety of video compression

techniques;

Chapter 7 extensively evaluates the software for variations in fidelity, file size and

complexity;

Chapter 8 concludes the dissertation and suggests further work in the area of the

H.264 Recommendation.

Chapter 2

Video Compression Techniques

2.1 Chapter Overview

A digital image seeks to replicate a natural scene with respect to the colour, shape,

brightness and texture of the real world. Digital images taken at regular intervals and

displayed consecutively produce motion video.

This chapter seeks to provide an insight into the typical video compression procedures

for encoding and decoding consecutive digital images.

Each digital image is divided into smaller component parts known as slices and mac-

roblocks. Smaller sections of the image allow for more accurate video compression to

be achieved and the composition of these blocks are discussed further in the chapter.

Common video compression techniques described in this chapter include motion com-

pensation prediction methods, transformation, quantisation and entropy coding.

Finally a brief discussion on the evolution of video compression for both MPEG and

the H.26L series of codecs is included.

2.2 Video Compression Encoding 6

2.2 Video Compression Encoding

Typical video encoding occurs as follows:

An encoder takes in an incoming video bitstream and codes the video, picture by

picture, resulting in an encoded video sequence. This sequence should contain a smaller

number of bits than the original video whilst minimising the encoder induced distortion.

Each picture is predicted with respect to time, whereby one or more previous or future

frames may be referenced and the current frame predicted. The temporal differences

between the predicted and the real frame is referred to as motion compensated predic-

tion and produces a residual frame. The motion compensated prediction is typically

described by a set of motion vectors.

The similarities between neighbouring pixel blocks following temporal prediction of

the residual frame are exploited to produce residual samples. Spatial redundancy may

allow the data size of the picture to be reduced.

Following the spatial prediction the residual samples are transformed to become trans-

form coefficients. The transform coefficients then undergo quantisation in order to allow

the coefficients to be represented by a designated number of bits.

The quantised coefficients along with the motion vectors will be compressed by an

entropy encoder to produce a compressed bitstream. An entropy encoder exchanges

short binary codes for commonly occurring vector or coefficient sequences.

2.3 Video Compression Decoding

Typically video decoding is conducted in the reverse order. The incoming bitstream is

entropy decoded and inverse transformed to recreate a version of the original image.

The resulting decoded video sequence will be distorted when compared to the original,

meaning a reduction in fidelity. This distortion directly relates to the redundancy

techniques, quantisation and transformation.

2.4 Frame Components 7

2.4 Frame Components

Each individual picture within a video sequence is referred to as a frame and represents

a snapshot image at a particular instant in time. Each frame is further divided into

smaller components being slices and macroblocks.

Slices consist of consecutive macroblocks and they represent regions of a given frame.

A frame can contain one or more slices and each slice will employ identical video

compression techniques. Slices are able to be decoded independently of other slices.

A macroblock is a group of 16×16 picture elements and consists of luma and chroma

picture information. Video compression standards seek to condense the macroblock

data through the use of a number of video compression algorithms. A macroblock may

be further divided into smaller block sizes depending on the compression techniques

employed and the processing power available to the codec.

2.5 Video Compression Techniques

The two types of video compression techniques are lossless and lossy compression.

Lossless compression reproduces the original video perfectly and lossy compression

produces a distorted representation of the original.

Lossless compression is achieved by removing statistical redundancy from the original

video stream. Statistical redundancy is the replacing of commonly occurring image bit

patterns and replacing them with a reduced number of bits to represent the common

bit pattern.

Lossy compression attempts to compress the size of the video sequence by removing

elements that may negatively affect the fidelity of the encoded video sequence.

2.5 Video Compression Techniques 8

2.5.1 Motion Compensation

Motion compensation is using one or more video frames to predict a future frame. A

television quality video sequence will typically use a sampling rate of 25 to 30 frames

per second. A high sampling rate means the motion difference between consecutive

frames is typically small.

The most simple prediction method for motion compensation is to produce a residual

frame from the differences between a past frame with the current frame. The residual

frame created contains the motion information from this portion of the video sequence.

Block Based Motion Compensation

A macroblock is a 16×16 pixel region of a frame that is compared with macroblocks from

previously encoded frames to find a visually matching macroblock. Motion estimation

is the name of the process for finding the macroblock with the best match. This chosen

region is used as the prediction sample from which the difference between the current

and the predicted macroblock is found. A residual block is created from the difference.

This process is known as motion compensation. A motion vector transmits the residual

information to provide positional information for the decoder to locate the prediction

sample.

The main disadvantage in using block based motion estimation and compensation is

due to the fact that real world objects are rarely square.

Improving Block Based Motion Compensation

Better motion compensation may be produced by the use of smaller block sizes than

that of a complete macroblock. Using smaller block sizes will increase the complexity of

the encoded video sequence requiring an increased number of searches to find the best

possible match. Reduced residual information of smaller blocks results in an increase

in the number of motion vectors required.

2.5 Video Compression Techniques 9

H.264 allows for improved motion compensation through adaptive block sizes of 4×4,

8×8 and 16×16.

Motion compensation can also be improved using interpolation. This compensation

method starts from a block identified as the best match, but not identical to the block

to be predicted. This best match block will now be interpolated with each of its

neighbouring blocks to produce a new midway block, or half sample block, to be checked

for a match. Once the best match has been achieved a new midway block, or quarter

sample block, will be interpolated to derive the best prediction possible. This method

of motion compensation is known as sub-pixel prediction. As the focus of the motion

estimation is further defined the value provided from each subsequent improvement

in the motion compensated residual frame is less than the gain from the previous

interpolation.

Why not Motion Compensation?

Intra prediction is the encoding of an image without motion compensation. Inter pre-

diction is the encoding of an image using motion compensation.

Motion compensation may not always produce the best compression of a video frame,

particularly when the current frame differs significantly from previous frames of the

video sequence. In this case an intra predicted frame may be required.

Each picture is predicted with respect to time. One or more previous or future frames

are referenced and the current frame is predicted. The temporal differences between the

predicted and the real frame is referred to as motion compensated prediction producing

a residual frame. This prediction is described by a set of positional motion vectors.

2.5.2 Spatial Prediction

Spatial prediction is also known as intra prediction and refers to using previously en-

coded samples from the current frame for the prediction of the current sample. Sullivan

and Wiegand (2005) define intra coding to be where ‘the picture is coded without re-

2.5 Video Compression Techniques 10

ferring to other pictures in a video sequence.’ This was one of the earliest developed

prediction methods used in video compression algorithms.

An advantage of regularly only using intra prediction for complete frames is to allow for

error resilience. This provides entry points into the bitstream which enables random

access by a decoder ensuring any corrupted data is not repeated beyond this point. A

complete picture coded using intra coding is referred to as an instantaneous decoding

(IDR) refresh picture.

2.5.3 Transformation

Video compression transformation seeks to transform the motion compensated resid-

ual frame into another domain. The transform should be reversible to allow it to be

decoded.

By transforming a complete 4×4 block of image pixel values, a transform block of 16

coefficient values is derived. No saving in bit information is made if 16 values are to be

transmitted. Transformation allows a few coefficients to be transmitted to reproduce a

distorted representation of the original 4×4 block.

Humans are sensitive to lower frequencies. Transforming the residual frame into fre-

quency domain coefficients and passing them through a low pass filter will remove higher

frequency content. A reduction in detail still allows the image to be recognisable.

2.5.4 Quantisation

Quantisation effectively smoothes the visual image by inducing distortion into the en-

coded image reducing fidelity. Quantisation is a lossy compression technique where

detail removed from the image cannot be replaced.

The distortion induced in the coded image is a result of the compression achieved

by quantization. The quantisation parameter is an integer amount that specifically

details the precision allowed of transformed values. The minimum amount of precision

2.6 Evolution of MPEG and H26L Codecs 11

is referred to as the step size.

2.5.5 Entropy Coding

Entropy coding is the process used to replace commonly occurring bit patterns derived

from vectors or motion prediction coefficients with short binary strings. Entropy coding

is a lossless video compression technique that further compresses the output of the image

data.

There are many types of entropy coding available. These have varying degrees of success

and complexity. Huffman coding is a type of entropy coding scheme that assumes

that certain bit strings will occur commonly throughout the image. The condensed

bit strings produced by Huffman entropy coding are fixed and cannot be changed if

inappropriate. Context adaptive entropy coding allows the short binary strings to

change depending on the requirements of the bitstream.

This video compression stage is typically the last stage in the image encoding process

prior to transmission or storage of the encoded data.

2.6 Evolution of MPEG and H26L Codecs

A codec is the name given to an encoder and decoder pair. The success of video

compression techniques and their inclusion in a codec is a result of many factors. Delays

in the commercial implementation of video compression techniques may be partially

attributed to processing power requirements.

Modern video compression methods date back to the first version of ITU-T Recommen-

dation H.120 released in 1984. H.120 improved compression efficiency by employing a

temporal redundancy method known as conditional replenishment. Data is passed to

indicate which areas of the picture can be repeated and which area will have its own

separate compression information. This method simply replaces parts of the image that

have been changed with new encoded information.

2.6 Evolution of MPEG and H26L Codecs 12

The second version of H.120 released in 1988 introduced spatial prediction techniques.

A linear quantisation method was used in all of the video compression techniques prior

to the H.264 standard.

H.261 was first released in 1990 and was the earliest hybrid codec standardised. Hybrid

codecs used both motion prediction and transformation. All H26L series and MPEG

standards from 1990 are hybrid standards.

ISO Standard MPEG-1 was released in 1993 and provided improved motion vector

support. This standard was the first to allow half sample interpolation for motion

estimation as well as bipredictive prediction. The motion compensated algorithms

included in the MPEG-1 standard were complex and stretched the processing power

that was available at that time. A two dimensional discrete cosine transform (DCT) of

size 8×8 was used in both the MPEG-1 and MPEG-2 standards.

H.262 is also known as MPEG-2 and was released in 1994. This was the first joint

standard to be developed and agreed between the ITU and ISO.

H.263 was released in 1995 and was primarily developed for videoconferencing and

streaming applications. The second version of this H.263 standard first allowed the use

of multiple reference frames for motion compensated prediction and the concept of B

slices was introduced. H.263 and MPEG-4 Part 2 introduced the concept of varying

block sizes and allow block sizes of 16×16 and 8×8.

The MPEG-4 Part 2 Visual standard released in 1999 is a highly flexible standard

including many different profiles. These profiles were each optimised for individual

applications, such as data storage or internet streaming.

H.264 also known as MPEG-4 Advanced Video Codec (AVC) development began in

2001 and was formally released in May 2003. This new standard sought to achieve

efficiency and reliability in its algorithm design. Three profiles were initially defined

as part of the original standard reducing the number defined in the MPEG-4 Part 2

standard.

H.264 increases the concept of varying block sizes, by including the additional sizes of

2.7 Chapter Summary 13

8×16, 16×8, 8×4, 4×8 and 4×4 to those allowed by H.263. H.264 uses a logarithmic

quantisation method whereby a change in 6 results in a doubling of the quantisation

step size.

H.264 introduces an adaptive deblocking filter and replaces the previous transformation

method with an integer transform. The context adaptive entropy coding methods used

by H.264 allow the compression of the bitstream to no longer assume which bit patterns

will be regularly occurring.

2.7 Chapter Summary

During this chapter a number of video compression techniques have been discussed.

These include motion compensation prediction methods, transformation, quantisation

and entropy coding. All MPEG and H.26L series video compression standards are

hybrid codecs that use both prediction and transformation techniques.

Motion compensated prediction algorithms are typically complex. With an increase

in commercially available processing power, these methods can further be refined and

improved. The evolution of both MPEG and the H.26L series of codecs is discussed

from the introduction of temporal prediction through to allowing varying image block

sizes for motion estimation.

Chapter 3

The H.264 Recommendation

3.1 Chapter Overview

The design overview of the H.264 Recommendation is stated in the Draft Standard

(2003, p. xiv) as:

The coded representation specified in the syntax is designed to enable a

high compression capability for a desired image quality. The algorithm is

not lossless, as the exact source sample values are typically not preserved

through the encoding and decoding processes. A number of techniques may

be used to achieve highly efficient compression. Encoding algorithms may

select between inter and intra coding for block-shaped regions of each pic-

ture. Inter coding uses motion vectors for block-based inter prediction to

exploit temporal statistical dependencies between different pictures. Intra

coding uses various spatial prediction modes to exploit spatial statistical de-

pendencies in the source signal for a single picture. Motion vectors and intra

prediction modes may be specified for a variety of block sizes in the picture.

The prediction residual is then further compressed using a transform to re-

move spatial correlation inside the transform block before it is quantised,

producing an irreversible process that typically discards less important vi-

sual information while forming a close approximation to the source samples.

3.2 H.264 Profiles 15

Finally, the motion vectors or intra prediction modes are combined with the

quantised transform coefficient information and encoded using either vari-

able length codes or arithmetic coding.

This chapter provides information regarding the H.264 standard with respect to avail-

able profiles, specific video coding techniques adopted and includes a brief discussion

on the formatting of the data prior to transmission or storage.

The H.264 standard quite simply defines an encoded video bitstream and a method of

decoding this bitstream.

3.2 H.264 Profiles

The first version of the standard defined three profiles and fifteen levels. These three

profiles are the Baseline, Main and Extended profiles. The Extended profile is an

expansion of the Baseline profile.

Encoders are required to provide conforming bitstreams consistent with their declared

profile and level. A decoder that conforms to a specific profile must be able to support

all of its features. Interoperability between individual encoders or decoders is achieved

through this profile and level compliance.

This research project specifically focuses on the Baseline profile which includes the

following video coding tools:

1. Entropy coding - Context-adaptive variable-length coding (CAVLC),

2. I and P Slices

3. Redundant Slices

4. FMO - Flexible Macroblock Ordering

5. ASO - Arbitrary Slice Ordering

3.2 H.264 Profiles 16

The Extended profile includes all of the techniques available within the Baseline profile

as well as the following:

1. SI, SP and B Slices

2. Data Partitioning

3. Interlace frame/field coding

4. Picture adaptive frame/field

5. Macroblock adaptive frame/field

The Main profile best supports entertainment video applications. This includes digi-

tal versatile disk (DVD) or broadcast video allowing the following video compression

techniques to be used:

1. Entropy coding - Context-adaptive variable-length coding (CAVLC) and

2. Entropy coding - Context-adaptive binary arithmetic coding (CABAC)

3. I, P and B Slices

4. Interlace frame/field coding

5. Picture adaptive frame/field

6. Macroblock adaptive frame/field

The fifteen levels defined in the standard vary for each profile and refer to decoder

processing load, memory availability and picture size.

It is envisaged that the Baseline profile would be primarily used for video conferencing

or conversational services over the internet. The Baseline profile particularly supports

applications with limited data rates and low latency requirements. The Extended

profile expands on the Baseline profile and supports streaming services where latency

is not an issue. It seeks to provide improved fidelity.

3.3 Bitstream Formats 17

Sullivan and Wiegand (2005) indicate that there are now four additional profiles relating

to the Fidelity Range Extensions (FRExt). These profiles are High, High 10, High 4:2:2

and High 4:4:4 profiles. These new profiles address different fidelity and input image

colour components for various applications. There is currently little literature available

on the specifics of these new profiles and they will not be addressed in this project.

H.264 deals with input images that consist of Y, Cr and Cb components. Y is the lu-

minance or luma component representing brightness. Cr and Cb represent the chromi-

nance or chroma components of the image, which is the amount that red and blue

deviate from grey.

Commonly the format for consumer applications such as video conferencing, digital

television and DVD is 4:2:0. This means that half of the bits used to represent the image

are for luminance and the other half for chrominance. The chrominance bits are further

halved into their red and blue components. Less bit information is required to represent

chrominance as the human eye is less sensitive to chrominance than luminance.

3.3 Bitstream Formats

There are two formats specified within the Recommendation. The Network Abstraction

Layer (NAL) unit stream format and the byte stream format. The two bitstreams are

essentially the same in that both formats consist of the necessary syntax structures in

a predesignated order. The byte stream format prefixes each NAL Unit (NALU) with

a start code prefix and may also include a number of zero-valued bytes.

For both formats, a NALU consists of a header followed by the video coding layer

(VCL) or non-VCL data. The unit stream format is a bitstream of consecutive NALUs

used for packet orientated transport.

The byte stream format provides a clear and distinct demarcation method between

consecutive NALUs by requiring a start code prefix. The start code is either a 3 or 4

byte code, being 0x000001. The 4 byte code, or long start code is required for NALUs

containing sequence parameter sets, picture parameter sets and the first VCL of a

3.4 Network Abstraction Layer 18

picture. All other NALUs may use at least a 3 byte start code. Any number of zero

bytes may be used prior to a NALU and once the start code is detected by the decoder

it is discarded.

The encoder bitstream used as an example in this paper uses the byte stream format

as shown in Appendices C, D and E.

An access unit is the set of VCL and non-VCL NAL units that are associated with a

single decoded picture. An access unit may also contain an end of stream or end of

sequence NAL unit which indicates the completion of the stream or video sequence.

3.4 Network Abstraction Layer

The NAL formats the encoded video and provides header information to package data

for transport. The packaged data may then be stored or passed to a transport protocol

for encapsulation and transmission. The NAL provides the interface between the video

codec itself and the outside world. A NALU is the individual unit used to provide the

generic formatting for the data.

NALUs can primarily be divided into two types, VCL and non-VCL. Table B.2 displays

the different kinds of data that make up each of these types.

The VCL deals directly with the actual video content and divides each picture into

slices and macroblocks to allow video compression to occur.

The non-VCL NALUs provide extra information such as the number of frames, frames

skipped and specific video compression techniques required for decoding. Non-VCL

NALUs may provide additional information relating to the entire video sequence or a

single frame.

The first byte of all NAL packets is a header byte and provides specific header infor-

mation including an indication of the type of data contained in the rest of the packet.

This allows the decoder to determine the requirements of the incoming bitstream.

3.5 Slices 19

A finite state machine also referred to as an entropy encoder ensures that start code

prefixes used prior to each NALU in the byte stream format are not accidentally em-

ulated within the completed NALU bitstream. This process is further investigated in

Chapter 4.

3.4.1 Data Partitioning

Data partitioning is allowed only in the Extended profile. This method is used to

increase the robustness of the video data. Data partitioning allows for intra, inter and

header information to be separated into their own partitions. Each data partition may

be placed into separate NALUs for transmission or storage.

3.5 Slices

There are five slice types supported by H.264, being:

I slices - All the macroblocks of the I or Intra slice are coded using intra prediction.

An instantaneous decoding refresh (IDR) picture contains only I slices.

P slices - Macroblocks of a P slice can be coded using intra or inter prediction. P or

Predictive slices allow only one MCP signal per macroblock to be used

B slices - Like P slices, the macroblocks of a B or Bipredictive slice can be coded using

intra or inter prediction, however two MCP signals may be used per prediction and if

so are combined using a weighted average.

SP slice - This allows P slices to be switched between different video streams efficiently.

An advantage of SP or Switching P and SI or Switching I slices is the ability to use

trick modes, such as fast-forward or fast reverse.

SI slice - The SI slice is an exact match for an SP slice for random access or error

recovery, while using only Intra Prediction.

3.6 Motion Compensated Prediction 20

Redundant Slices are also used to duplicate coded representations of all or some parts

of an image in order to increase the robustness of the code.

3.6 Motion Compensated Prediction

Intra Prediction

There are 3 types of intra coding supported by the H.264 Recommendation, Intra 4×4

prediction, Intra 16×16 prediction and I PCM.

Intra 4×4 prediction is commonly used when there is significant detail in the picture.

Intra 4×4 predicts the sixteen 4×4 luma blocks within one macroblock individually,

whereas 16×16 mode predicts the entire 16×16 luma block. A separate chroma block

prediction is also conducted for each type, however chroma prediction only occurs with

the entire 16×16 macroblock. Intra 4×4 prediction supports nine spatial prediction

directions whilst Intra 16×16 supports four.

The third type of intra coding is I PCM where raw values of the macroblock are sent

without prediction or transformation. This ensures that the number of bits needed

for an encoded macroblock will not be greater than the number required of an un-

compressed macroblock. This value is determined irrespective of the quantization step

size.

Inter Prediction

Inter prediction uses motion compensation in order to predict the macroblocks. Inter

prediction supports 16×16, 16×8, 8×16 and 8×8 block sizes.

H.264 allows smaller block sizes by using a tree structured form of partitioning the

macroblocks. Should the 8×8 block size be chosen, the block may be further divided

into 8×4, 4×8 or 4×4. The use of a smaller block size will produce a smaller encoded

frame and require additional motion vectors which may negate the positive effects

3.7 Flexible Macroblock Ordering 21

gained from using a smaller block size.

The standard uses a sum of absolute differences (SAD) approach for computing an

appropriate block size. Each 4×4 block is predicted for the best match and the SAD

values for adjacent blocks are added to produce bigger blocks. This method reduces

the requirement to test all of the possible H.264 block size combinations.

H.264 allows quarter-pel interpolation for motion estimation. This motion compensa-

tion method finds the best match complete block and seeks to refine the estimation by

moving the block by half or a quarter of the block size around the best match block.

The Main profile also allows for weighted prediction, bipredictive and direct prediction

motion compensation methods. Bipredictive motion compensation seeks to use the av-

erage of two reference pictures for the prediction values of the current block. Weighted

prediction scales the reference pictures. This method will also allocate each picture a

value and when combined will equal one. This value therefore determines how much in-

fluence each reference picture as on the current prediction value. Direct prediction does

not pass any prediction information, residual frame or motion vector to the decoder.

The decoder will perform the prediction by predicting the motion vector information

based on previous encoded pictures.

3.7 Flexible Macroblock Ordering

Flexible macroblock ordering (FMO) may be used to change the way macroblocks are

associated with slices. Macroblocks may be sent in a more flexible and efficient manner

using FMO as they are mapped to specific slice groups as opposed to being mapped as

consecutive macroblocks using raster scan.

H.264 allows macroblocks within pictures to use a variety of slice mapping patterns.

These include interleaving, dispersed, foreground groups, box-out, wipe, explicit and

raster scan. Slice groups may also be mapped in inverse raster scan, wipe left and

counter clockwise box out directions. Figure 3.1 diagramatically represents the available

slice group maps.

3.8 Arbitrary Slice Ordering 22

Figure 3.1: Slice group maps available for use with Flexible Macroblock Ordering.

3.8 Arbitrary Slice Ordering

Arbitrary slice ordering (ASO) allows slices to be decoded in a different order than their

designated display order. ASO improves upon loss robustness and delay reduction.

ASO is particularly important for real-time applications or for networks which may

commonly deliver data out of order.

Without ASO slices must allow the first macroblock of each slice to be in the correct

order for the raster scan of the picture. The raster scan of a picture requires that the

macroblocks begin at the top left proceeding left to right, and ending at the bottom

right macroblock of that picture.

3.9 Integer Transform

H.264 uses an integer transform that is less complex than previous codecs and may be

implemented by 16-bit processors. The integer transform is applied to all 4×4 blocks

and as defined will produce identical decoded video as originally transformed.

There are three transforms that may be applied in H.264. The first as previously

3.10 Logarithmic Quantisation 23

described is the integer transform that is applied to all 4×4 blocks. If the macroblock

is predicted using Intra 16×16, a second 4×4 transform is applied. This Hadamard

transform is applied for the processing of the luma components and 2×2 Hadamard

transform is applied to the chrominance components.

3.10 Logarithmic Quantisation

A quantisation parameter (QP) determines the quantisation or scaling of the transform

coefficients in H.264. The QP can take on 52 values. As the QP is determined loga-

rithmically the step size will double with each increment of six of the QP. The QP is

controlled by the encoder’s rate control algorithm.

3.11 Entropy Encoding

There are two types of entropy encoding supported by H.264. These being context-

adaptive variable-length coding (CAVLC) and context-adaptive binary arithmetic cod-

ing (CABAC). CABAC coding is only supported in the Main profile of H.264.

Both entropy coding types use Exp-Golomb code. Exp-Golomb code is defined in the

Draft Standard (2003, p149).

CAVLC entropy coding uses a total of 32 different VLC values which are mapped from

a 4×4 block of image coefficients following quantisation, transformation and prediction.

A total of 32 different VLCs are used in CAVLC entropy coding mode. There are four

VLC tables and the table chosen is dependant upon the coefficients’ values. Three of

the VLC tables are context conditional and therefore the coding efficiency is better

than for schemes using a single VLC table.

CABAC uses binary arithmetic coding allowing a noninteger number of bits to be

assigned to each symbol of the alphabet. CABAC uses rules based tables that are

not required to be stored. CABAC entropy coding uses probability models for symbol

occurrence and may use a single codeword for a string of symbols.

3.12 Adaptive Deblocking Filter 24

The major difference between these two methods lies in the mapping of the Exp-Golomb

codewords. CABAC coding is more complex than CAVLC, however bit rates are re-

duced by 10%- 15% when compared with the same quality video coded with CAVLC

(Sullivan and Wiegand, 2005).

3.12 Adaptive Deblocking Filter

H.264 defines an adaptive deblocking filter for the decoder to reduce the blockiness of

the image that results from block based encoding. The filtering process is conducted

in a loop which improves the visual quality as required by the Recommendation. The

deblocking filter is defined for use with raster scan ordering of macroblocks. Frames

may need to be reordered prior to display depending on the FMO in use.

The deblocking filter may be adjusted with respect to the filtering strength. This ranges

from zero to four, where zero equates to no filtering and four infers strong filtering.

3.13 Video Formats

A video frame contains two fields being the top field which has all of the even numbered

rows of an image and the bottom field which contains the odd numbered rows of the

image. This type of video frame is called interlaced video and the use of two fields aids

in the error resilience of the video sequence.

Interlaced video uses two sampling periods to capture one full frame of video, one

sampling period captures the top field and the next sampling period captures the

bottom field of the subsequent image. For the coding of interlaced video, H.264 supports

two coding modes, being frame and field mode.

3.14 Hypothetical Reference Decoder 25

Frame Mode

Progressive video format requires that both fields are to be captured during each sam-

pling period. Progressive video format is also referred to as frame mode and is the only

video formatting mode allowed by the Baseline Profile. The two fields of one frame are

coded together in frame mode.

Field Mode

The two fields of a frame are encoded separately for field mode and is a technique that

may be employed by both the Main and Extended Profiles.

These two different coding modes may be selected for each image or for each mac-

roblock. If they are selected for each image, it is known as Picture-adaptive frame/field

(PAFF), whereas if selected at macroblock level, it is referred to as Macroblock-adaptive

frame/field mode (MBAFF). Neither PAFF and MBAFF may be used for the Baseline

Profile.

Frame mode is good for regions that are not moving. If there are moving regions it is

more efficient to use field or PAFF mode and code the fields separately.

3.14 Hypothetical Reference Decoder

The Hypothetical Reference Decoder (HRD) is employed as part of the encoder to

ensure a conforming H.264 bitstream is generated. Capacity constraints of the coded

picture buffer (CPB) and decoded picture buffer (DPB) are specified by the decoder.

The CPB is used to assess the timing of the coded bits and the DPB is used for the

storage of decoded pictures. The HRD allows for transmission of the video information

at a variety of bit rates and with regard to latency issues. The DPB buffer should also

be large enough to allow for multipicture buffering.

3.15 Chapter Summary 26

3.15 Chapter Summary

The H.264 Recommendation defines three profiles being Baseline, Main and Extended.

Video compression techniques specifically allowed by the Baseline profile include CAVLC

entropy coding, I and P Slices, redundant slices, FMO and ASO.

H.264 allows 4×4 blocks for motion compensated prediction and quarter pel interpo-

lation. An efficient integer transform replaces a discrete cosine transform that was

commonly used by previous video compression standards. Logarithmic quantisation is

defined by the standard and an adaptive deblocking filter is introduced to improve the

visual integrity of the video.

Chapter 4

H.264 Encoder Principles

4.1 Chapter Overview

The H.264 encoder principles are discussed in length within this chapter. The first block

of a raw video sequence is followed through the encoding process in detail, specifically

to highlight various compression techniques. The H.264 standard does not define an

encoder, however, the provision of a conforming bitstream and methods to decode this

bitstream are defined.

This chapter highlights the necessity of employing sequence and picture parameter sets

in order to achieve a successfully encoded bitstream.

Reference to particular sections of the encoder source code have been made to show

practical algorithms of H.264 video compression techniques. The encoder source code

has been derived from the public domain reference software that has been made avail-

able by Dr Karsten Suehring and the Joint Video Team (2004) with significant changes

made in order to optimise the code for the Baseline Profile.

The chapter follows the encoding process of a source frame from the container qcif.yuv

video sequence resourced from the Kansas State University website. The first block of

pixel values from this frame is following through the encoding process.

4.2 The Encoder 28

4.2 The Encoder

A typical H264 encoder diagram is shown in Figure 4.1.

Figure 4.1: H.264 Encoder Block Diagram

User defined parameters required for encoding a raw video sequence are used as control

parameters and directly determine the values employed by the various video compres-

sion techniques.

The raw video sequence is used for motion estimation comparisons and the resulting

motion compensation predictions are integer transformed. Depending upon the user

defined parameters, may also be Hadamard transformed.

The transformed coefficients are quantised and entropy encoded prior to transmission

or storage. The hypothetical reference decoder will inverse transform the frames at

the encoder and store the decoded frames to memory for future motion estimation

requirements.

4.3 The Encoded Bitstream 29

4.3 The Encoded Bitstream

The exact bitstream output from a H.264 compliant encoder is determined by not

only the incoming raw video, but the controlling instructions on how this raw video

is to be treated. The semantics that need to be provided to the encoder include the

output bitstream format, number of slices to use, macroblock mapping and quantisation

parameter.

The method by which the image data will be compressed and the quality of the resulting

decoded image is a result of not only the video compression techniques but the level

that they will be employed. This information is required to be passed to the decoder as

part of the encoded bitstream, to ensure that correct decoding techniques are employed.

The user of the research project software provides the necessary information to the

encoder software through the Graphical User Interface (GUI). Specific encoder para-

meters are made available to the user for changing. These parameters are written to a

text file, called encoder.cfg. The encoder executable will read this file to allow the pa-

rameter values to be employed in the encoding process. The encoder.cfg file is available

to be read by the user to revisit the last employed parameter values.

The encoder software stores all of the encoder.cfg parameters into the Input Parameters

structure called input. The input structure provides a storage and recall mechanism

for the user defined values. Image parameters are created directly from the input

parameters and the raw video bitstream.

The image parameters structure is used by the encoder for the values to be applied

for all of the necessary encoding algorithms, as well as detailing storage for coefficients

during various stages of compression. A portion of the ImageParameters structure

is listed below and has been commented in detail to highlight it’s importance to the

software’s encoding process.

4.3 The Encoded Bitstream 30

Listing 4.1: The ImageParameters structure listing may be found from Line 651 to Line
845 of Encoder header file global.h

typedef struct
{

int number; //!< current image number to be encoded
int pn; //!< picture number
int current mb nr; //!< current macroblock number
int total number mb; //!< total number of macroblocks of image
int current slice nr ; //!< current slice number within image
int type; //!< I frame (1) or P frame (0)
int structure ; //!< picture structure (Frame / Field)
int num ref frames; //!< number of reference frames
int max num references; //!< max number of ref pictures − encoder.cfg
int qp; //!< quant for the current frame − encoder.cfg
float framerate; //!< Frames per second − encoder.cfg
int width; //!< Number of pels − encoder.cfg
int height; //!< Number of lines − encoder.cfg
int subblock x; //!< current subblock horizontal
int subblock y; //!< current subblock vertical
int mb y upd; //!< number of intra macroblocks per frame

int block c x; //!< current block chroma vertical
int ∗∗ipredmode; //!< intra prediction mode

int cod counter; //!< Current count of skipped macroblocks in a row
int ∗∗∗nz coeff ; //!< number of coefficients per block (CAVLC)

int mb x; //!< current MB horizontal
int mb y; //!< current MB vertical
int block x; //!< current block horizontal
int block y; //!< current block vertical
int pix x; //!< current pixel horizontal
int pix y; //!< current pixel vertical
int pix c x ; //!< current pixel chroma horizontal
int pix c y ; //!< current pixel chroma vertical

int opix x; //!< current original picture pixel horizontal
int opix y; //!< current original picture pixel vertical
int opix c x; //!< current original picture pixel chroma horizontal
int opix c y; //!< current original picture pixel chroma vertical

imgpel mprr [9][16][16]; //!< all 9 prediction modes
imgpel mprr 2 [5][16][16]; //!< all 4 new intra prediction modes
imgpel mprr c [2][4][16][16]; //!< chroma intra prediction modes
imgpel mpr[16][16]; //!< current best prediction mode
int m7[16][16]; //!< diff pixel values btn orginal image and prediction

int ∗∗∗∗cofAC; //!< AC coeffs [8x8block][4x4block][level /run][scan pos]
int ∗∗∗cofDC; //!< DC coeffs [yuv][level /run][scan pos]

Picture ∗currentPicture; //!< The current coded picture
Slice ∗currentSlice ; //!< pointer to current Slice data struct
Macroblock ∗mb data; //!< array containing all MBs of a whole frame
SyntaxElement MB SyntaxElements[MAX SYMBOLS PER MB]; //!< temp MB se

int ∗quad; //!< Array of square values,used for snr computation

int∗∗∗∗∗∗ pred mv; //!< motion vector predictors for blocks and ref frames

4.3 The Encoded Bitstream 31

int LFDisableIdc; //!< Disable deblocking loop filter
int LFAlphaC0Offset; //!< Loop Filter Alpha Offset
int LFBetaOffset; //!< Loop Filter Beta Offset

int num ref idx l0 active ; //!< reference frame list

int nal reference idc ; //!< sent in slice header − type of NALU

int DeblockCall; //!< Used to indicate if Deblocking was performed

int pre frame num; //!< previous frame number

int slice group change cycle ;//!< Slice Group Change Rate − encoder.cfg

int pic unit size on disk ; //!< used with bitdepth luma and chroma
int bitdepth luma; //!< Brightness − encoder.cfg
int bitdepth chroma; //!< Colour − encoder.cfg
unsigned int dc pred value; //!< value for DC prediction
int max imgpel value; //!< max value that one picture element (pixel)
int max imgpel value uv; //!< max value for one chroma picture element

int yuv format; //!< Raw YUV format − encoder.cfg
int mb cr size x; //!< mb chroma size − x direction
int mb cr size y; //!< mb chroma size − y direction

} ImageParameters;

4.3.1 Parameter Sets

There are two parameter set types employed by H.264, being the Sequence Parameter

Set (SPS) and the Picture Parameter Set (PPS). A parameter set contains header

information that can apply to a large number of video coding layer (VCL) network

abstraction layer units and rarely changes.

The encoding of a picture requires both parameter sets. A SPS applies to an entire

video sequence, whereas a PPS applies to one or more pictures within that sequence.

Each picture within the sequence will specify which PPS it belongs to and each PPS

will specify an SPS.

Both parameter sets have their own NAL units (NALUs) which may be transmitted

separately to the VCL NALUs of the video sequence for error resilience purposes. If the

parameter sets are to be transmitted separately, a new data partition will need to be

created, however, only one partition is allowed in the Baseline Profile. The parameter

sets will be incorporated into this partition and will not be segregated for transmission

4.3 The Encoded Bitstream 32

or storage.

Appendices C and D explain the syntax elements of the SPS and PPS respectively.

These Appendices highlight the interaction of these syntax elements with the encoding

process and their inclusion into the bitstream. The specific formatting of the parameter

sets into NALUs is provided in Appendix B and the byte stream format for both

parameter sets is shown in Appendices C and D.

Figure 4.1, the encoder block diagram, places the parameter sets into the control block.

Although not depicted in Figure 4.1 the control block provides the necessary variables

to all of the other blocks on the diagram.

For the baseline profile the sequence parameter set, followed by the picture parameter

set are the first the first two NALUs to be placed onto the bitstream. The third NALU

to be placed onto the bitstream is the encoded intra picture data.

4.3.2 Intra Video Coding Layer Network Access Layer Unit

There are two types of encoding image data in the H.264 Recommendation, being intra

and inter prediction. An intra predicted frame is a frame that is predicted without

reference to any other frame. An inter predicted frame references other frames for

motion prediction, and although this increases the complexity of the encoding process,

the required file size is dramatically reduced.

An instantaneous decoding refresh (IDR) access unit is an intra picture that signals

that no future frames will reference any frames prior to the IDR picture. An IDR

picture may be used to ensure that errors are not propagated throughout the entire

video sequence, provide suitable entry points into the video stream and is therefore the

first encoded frame of a video sequence.

4.3 The Encoded Bitstream 33

Source Video Frame

The first frame is read in from the container qcif.yuv source file. The raw video uses

25344 bytes for defining the luma component and a further 6336 bytes for each of the

u and v chroma components of the frame. The raw video is therefore using YUV 4:2:0

format, as 6336 is a quarter of 25344, and there are two groups of 6336 bytes, one

for each of the chroma components. The original source frame is shown in Figure 4.2,

sourced from Kansas State University(n.d).

Figure 4.2: The original first frame from the container qcif.yuv video sequence

The length of the luma component, 25344 bytes, for a raw video frame is determined

by the horizontal pixel size of the source frame multiplied by the vertical pixel size

and the symbol size in bytes. The source frame dimensions are derived from the user

input provided in the encoder graphical user interface, GUI. Default values of 176

picture elements for image width and 144 picture elements for the image height, as

per the Quarter Common Intermediate Format, QCIF, have been used for the encoder

software.

The length of the chroma component may be determined by multiplying half of the

horizontal size of the source frame by half of the vertical size, and multiplying this by

the symbol size in bytes, equating to a quarter of the number of bytes required for the

luma component.

The source frame structure used in the encoder software may be found at L462 of

4.3 The Encoded Bitstream 34

global.h. The program listing is shown below.

Listing 4.2: The source frame structure listing

typedef struct
{

// Size information
int x size , y framesize, y fieldsize ;
int x size cr , y framesize cr , y fieldsize cr ;
imgpel ∗yf, ∗uf, ∗vf; // frame representation
imgpel ∗yt, ∗ut, ∗vt; // top field
imgpel ∗yb, ∗ub, ∗vb; // bottom field

} Sourceframe; // Used for the original yuv picture information.

The luma component is stored in the source frame structure’s yf array. The u and

v chroma components are stored in the uf and vf arrays respectively. The luma and

chroma components are then split into top and bottom fields of the frame.

The other parameters of this structure are determined by the frame format and the

YUV formatting used.

This part of the process is simply represented by the raw video input arrow of Figure

4.1, the encoder block diagram.

Preparing to Code a Picture

In preparation for encoding the video sequence, temporary memory is allocated to a

bitstream buffer to store raw video and for motion prediction.

The flexible macroblock ordering, (FMO), map is organised based on the user selection,

depicted in Figure 6.6. The map used for encoding of the container qcif frame uses no

FMO, whereby a map consisting entirely of zeros is used and macroblocks are allocated

to one slice group in raster scan order, as shown in Figure ??. Macroblock mapping

occurs prior to the start of encoding of all frames.

A memory allocation of 64000 bits is prepared for the outgoing NALU. The Slice header

is first to be placed into the bitstream buffer. The Slice header syntax elements include:

current mb nr equal to 0, due to this being the first macroblock of the slice, with

counting starting at 0;

4.3 The Encoded Bitstream 35

slice type indicates that the slice is an I slice;

pic parameter set id designates which picture parameter set was used to encode the

slice;

frame num frame slice belongs to;

idr pic id indicates that this is an IDR picture;

pic order cnt lsb derived by the number of frames to be encoded multiplied by the

number of frames to skip times the number of fields to be encoded;

no output of prior pics flag used for the decoded picture buffer (DPB);

long term reference flag used to ensure current IDR picture is used for long term

reference;

slice qp delta used with the user defined quantisation parameter;

The slice parameter information is described in Appendix B. Inclusion of the slice header

into the bitstream is shown in Appendix E for the example container qcif frame.

Selecting the most efficient prediction method

The H.264 Recommendation details the requirement to select the most efficient predic-

tion method. All of the possible prediction methods need to be tested on the original

image in order to determine the method with the least cost. When encoding the first

macroblock of the first slice and frame the only available prediction method is DC pre-

diction, referred to in the software as DC PRED 8, or mode 0. Each of the predicted

values are equal to 128 and the midpoint value of the available range.

The total cost of the original image data is derived using the I PCM method. This

method is treated as a prediction method in order to confirm that the total cost of the

predicted macroblock is less than that required for the original data.

Figure 4.3 is an expanded view of the top left corner of the first container ship frame

containing 16 macroblocks.

4.3 The Encoded Bitstream 36

Figure 4.3: A magnified 4×4 block of macroblocks of the top left corner of the first

frame of the original YUV video.

DC PRED 8 divides the macroblocks into blocks of 8×8, and each 8×8 block has one

4×4 chroma u block and one 4×4 chroma v block. This 8×8 block will also have four

4×4 block luma blocks.

The intra prediction of the chroma values of the macroblock is conducted first. The

individual differences between the u chroma values of the source image and the chroma

prediction values, determined to be 128, for each pixel of the first 4x4 block is deter-

mined. The first four each have a value of 135, therefore a difference of 7 will result.

The differences for this u chroma block are shown in Table 4.1.

uc0 uc1 uc2 uc3

ur0 7 7 7 7

ur1 9 9 10 10

ur2 9 9 9 9

ur3 9 9 9 9

Table 4.1: Differences between original u chroma values and best mode predicted values.

These differences in conjunction with whether a Hadamard transform is used determine

the cost associated with this first 4×4 chroma block. If Hadamard transform is not

used the absolute value of each of the differences is simply added, to derive a cost of

138.

The next three 4×4 u chroma blocks are also costed in this way, as well as the first four

4x4 pixel blocks of v chroma values. The subsequent addition of all of these eight costs

4.3 The Encoded Bitstream 37

is used to determine the best method for chroma prediction including a comparison

with original data costs.

Following u and v chroma prediction, allows motion estimation to be conducted on the

luma component. The original luma values for the first 4×4 block is shown below in

Table 4.2.

C0 C1 C2 C3

R0 106 106 106 106

R1 255 255 255 255

R2 231 231 230 231

R3 230 231 231 232

Table 4.2: The first 4×4 block of luma values of the raw container qcif.yuv video.

Comparing Table 4.2 with Figure 4.3 shows the luma difference between the first and

second row of the image and the large numerical difference between their respective

values.

The difference between the original Y or luma component of the source image and

the predicted value of 128 is evaluated for this 4×4 block. Table 4.3 shows these

difference values. These values are stored in the m7 array, see Listing 4.3, ready for

transformation.

i0 i1 i2 i3

j0 -22 -22 -22 -22

j1 127 127 127 127

j2 103 103 102 103

j3 102 103 103 104

Table 4.3: Calculated luma differences of the first 4×4 block.

The total cost of this frame is calculated to be 1419 which is less than the cost of the

original 4×4 block being 2491.

4.3 The Encoded Bitstream 38

Transforming the efficiently predicted block

The differences between each of these luma pixels and the prediction value is integer

transformed in the encoder function dct luma. This function provides several of the

compression techniques employed in this recommendation including quantisation of the

transformed coefficients prior to entropy coding and reestablishing a decoded frame for

referencing. This function is shown in Figure 4.1 as the area encompassing transform,

quantise, inverse transform, adding the prediction and storing the reference frame.

Earlier video compression standards employed a lossy discrete cosine transform (DCT).

H.264 introduces a lossless integer transform that uses different values. However the

transform is conducted using the same method. The matrix used for the integer trans-

form is detailed in the Draft Standard (2003, p. xiv) and is shown below in Table

4.4.

i0 i1 i2 i3

j0 1 1 1 1

j1 2 1 -1 -2

j2 1 -1 -1 1

j3 1 -2 2 -1

Table 4.4: The Integer Transform matrix used for 4×4 blocks.

Figure 4.4, is sourced from Malvar et al (2003) and is a graphical representation of the

transformation process. This diagram displays the interaction between the difference

values to produce the transform coefficients.

The integer transform is conducted in two parts. The horizontal transform is conducted

followed by the vertical transform. Listing 4.3 shows the transformation section of the

dct luma function.

Listing 4.3: Transformation section of dct luma function.

// Horizontal transform
for (j=0; j < BLOCK SIZE && !lossless qpprime; j++)
{

for (i=0; i < 2; i++)
{

i1=3−i;
m5[i]=img−>m7[i][j]+img−>m7[i1][j];

4.3 The Encoded Bitstream 39

Figure 4.4: Integer Transformation Method.

m5[i1]=img−>m7[i][j]−img−>m7[i1][j];
}
img−>m7[0][j]=(m5[0]+m5[1]);
img−>m7[2][j]=(m5[0]−m5[1]);
img−>m7[1][j]=m5[3]∗2+m5[2];
img−>m7[3][j]=m5[3]−m5[2]∗2;

}

// Vertical transform
for (i=0; i < BLOCK SIZE && !lossless qpprime; i++)
{

for (j=0; j < 2; j++)
{

j1=3−j;
m5[j]=img−>m7[i][j]+img−>m7[i][j1];
m5[j1]=img−>m7[i][j]−img−>m7[i][j1];

}
img−>m7[i][0]=(m5[0]+m5[1]);
img−>m7[i][2]=(m5[0]−m5[1]);
img−>m7[i][1]=m5[3]∗2+m5[2];
img−>m7[i][3]=m5[3]−m5[2]∗2;

}

The result of the horizontal transform is displayed in Table 4.5. These values become

the input img->m7 array to the vertical transform.

i0 i1 i2 i3

j0 -88 0 0 0

j1 508 0 0 0

j2 411 1 1 -2

j3 412 -4 0 -2

Table 4.5: The 4×4 block following horizontal transform.

4.3 The Encoded Bitstream 40

The vertical transform uses a transposed version of the integer transform matrix, see

Table 4.4, to calculate the vertical transform coefficients. Table 4.6 below shows the

results of the vertical transform.

i0 i1 i2 i3

j0 1243 -3 1 -4

j1 -903 7 -1 6

j2 -595 -5 -1 0

j3 -694 6 2 -2

Table 4.6: The 4×4 block of transformed coefficients.

The transformed coefficients are now be quantised.

Quantisation

Quantisation now occurs on the transformed coefficients. Listing 4.3.2 provides the

relevant source code reproduced from the dct luma function from the encoder software.

Listing 4.4: Quantisation code listing of dct luma function.

qp per = (currMB−>qp + img−>bitdepth luma qp scale − MIN QP)/6; // 6
qp rem = (currMB−>qp + img−>bitdepth luma qp scale − MIN QP)%6; //Remainder of 6
q bits = Q BITS+qp per; //increase binary representation from 15

if (img−>type == I SLICE)
qp const=(1<<q bits)/3; // intra (2ˆq bits) / 3

else
qp const=(1<<q bits)/6; // inter

// Quant

nonzero=FALSE;

run=−1;
scan pos=0;

for (coeff ctr =0; coeff ctr < 16; coeff ctr++)
{

i=SNGL SCAN[coeff ctr][0];
j=SNGL SCAN[coeff ctr][1];

run++;
ilev=0;

if (intra == 1)
level=(abs(img−>m7[i][j])∗LevelScale4x4Luma Intra[qp rem][i][j]+qp const)>>q bits;

else
level=(abs(img−>m7[i][j])∗LevelScale4x4Luma Inter[qp rem][i][j]+qp const)>>q bits;

4.3 The Encoded Bitstream 41

if (level != 0)
{

nonzero=TRUE;
if (level > 1 || lossless qpprime)
∗ coeff cost += MAX VALUE; // set high cost

else
∗ coeff cost += COEFF COST[0][run];

ACLevel[scan pos] = sign(level,img−>m7[i][j]);
ACRun [scan pos] = run;
++scan pos;
run=−1; // reset zero level counter

level=sign(level , img−>m7[i][j]);
if (qp per<4)
{
if (intra == 1)
ilev=(level∗InvLevelScale4x4Luma Intra[qp rem][i][j]+

(1<<(3−qp per)))>>(4−qp per);
else
ilev=(level∗InvLevelScale4x4Luma Inter[qp rem][i][j]+

(1<<(3−qp per)))>>(4−qp per);
}
else
{

if (intra == 1)
ilev=(level∗InvLevelScale4x4Luma Intra[qp rem][i][j])<<(qp per−4);

else
ilev=(level∗InvLevelScale4x4Luma Inter[qp rem][i][j])<<(qp per−4);

}
}

img−>m7[i][j]=ilev;
}

The number of quantisation bits used for the luma component is defined by the q bits

variable in Listing 4.4. Variables of this listing are defined below:

currMB->qp user defined Quant. for First Frame or Quant. for Remaining Frames

as described in Section 6.3.

img->bitdepth luma qp scale user defined Brightness variable defined later in Sec-

tion 6.3.

MIN QP The minimum quantisation parameter is defined to be 8 bits.

qp per Values used in this example become (16 + 8 - 8)/6 = 2 with a remainder of 4.

qp rem This variable uses the remainder value from the evaluation of qp per.

q bits Q BITS is defined to be 15.

4.3 The Encoded Bitstream 42

qp const The intra qp const employed during this chapter is determined to be (2q bits)/3

which equals 43690.

The quantisation process may be followed for the first value of Table 4.6, 1243. The

transformed coefficient is multiplied by a quantisation value determined by pixel posi-

tion and qp rem. The quantised coefficient is ((1243*8192)+43690)/217 equalling 78.

The logarithmic quantisation employed by H.264 is depicted in the calculation of the

qp per variable where each increase in the user defined quantisation parameter of 6,

results in a doubling of the step size.

The SNGL SCAN array instructs the accessing of coefficients within the 4×4 block to be

conducted in the correct sequence. LevelScale4x4Luma Intra contains a predetermined

array of quantised coefficents.

Table 4.7 shows the transformed coefficients following quantisation.

i0 i1 i2 i3

j0 78 0 0 0

j1 -36 0 0 0

j2 -37 0 0 0

j3 -28 0 0 0

Table 4.7: The 4×4 block of quantised values.

Replicating the Decoder

The quantised values are rescaled, inverse transformed and stored in an enc picture

array. This array allows the encoder to exactly replicate the decoder and utilise differ-

ences imposed on the data as a result of the compression techniques.

The quantised value is scaled using a dequantisation coefficient determined using the

same positional details as previously used. Using a dequantisation coefficient of 256,

the first dequantised value is calculated by (256*78+2)/4, equalling 4992. The resulting

4x×4 block of dequantised values is shown in Table 4.3.2.

4.3 The Encoded Bitstream 43

i0 i1 i2 i3

j0 4992 -2880 -2368 -2240

j1 0 0 0 0

j2 0 0 0 0

j3 0 0 0 0

Table 4.8: 4×4 block of dequantised values.

These values further undergo an inverse horizontal integer transform, and the 4×4 block

appears as below.

i0 i1 i2 i3

j0 4992 4992 4992 4992

j1 -2880 -2880 -2880 -2880

j2 -2368 -2368 -2368 -2368

j3 -2240 -2240 -2240 -2240

An inverse vertical integer transform is also performed to complete the transformation

process. Table 4.8 shows the resulting 4×4 block and are the values anticipated at the

encoder.

I0 I1 I2 I3

J0 107 107 107 107

J1 255 255 255 255

J2 231 231 231 231

J3 232 232 232 232

Table 4.9: 4×4 block of inverse transformed values.

These values may be checked against the original values as shown in Table 4.7 to show

that minimum losses have occurred.

If another frame had been referenced the difference between the prediction and the

determined value would also be added. The complete transformation, quantisation and

decoder representation is continued until an intra 4×4 Macroblock consisting of 16×16

pixels has been coded.

4.3 The Encoded Bitstream 44

Intra Prediction 16×16 is now conducted to determine whether this prediction method

is of less cost that Intra4×4 prediction.

Prediction, horizontal and vertical integer transforms are now performed on both the

chroma u and v components. They are then quantised and inverse transformed. The

4×4 table below shows the reproduced values for the u chroma component.

I0 I1 I2 I3

J0 137 137 137 137

J1 137 137 137 137

J2 137 137 137 137

J3 137 137 137 137

The encoded v chroma component is shown below.

I0 I1 I2 I3

J0 126 126 126 126

J1 126 126 126 126

J2 126 126 126 126

J3 126 126 126 126

The quantised value shown in Table 4.7 will now have the motion vectors calculated.

Calculation of Motion Vectors

Due to this being the first macroblock of the first frame there are no motion vectors to

predict and the motion vector arrays are coded to 0.

The quantised values then undergo entropy encoding. The only entropy encoding

method available in the baseline profile is context adaptive variable length coding,

CAVLC.

4.3 The Encoded Bitstream 45

CAVLC Entropy Encoding

Entropy encoding is utilised to perform statistical redundancy checks and to ensure

start codes are not emulated within the encoded image bitstream.

The macroblock header is placed onto the Bitstream immediately following the slice

header. Macroblock header parameters are provided in Appendix B. Specific header

data and the encoded header bitstream are shown in E.

The entropy encoding procedure is discussed below.

The Number of Nonzero Coefficients (nnz) for Luma Blocks is sought, with the values

for the first macroblocks luma and chroma components set to 0.

The VLC code table used is dependant upon the nnz value. If the nnz value is less

than 2 table 0 is used. Listing 4.5 shows a portion of the length and code tables used

to determine the vlc values to be employed for NNZ coefficients.

Listing 4.5: Portion of VLC tables for length and code for NNZ use.

int writeSyntaxElement NumCoeffTrailingOnes(SyntaxElement ∗se, DataPartition ∗this dataPart)

static const int lentab [3][4][17] =
{
{ // i .e. lentab [0][0][4] = 10
{ 1, 6, 8, 9,10,11,13,13,13,14,14,15,15,16,16,16,16},
{ 0, 2, 6, 8, 9,10,11,13,13,14,14,15,15,15,16,16,16},
{ 0, 0, 3, 7, 8, 9,10,11,13,13,14,14,15,15,16,16,16},
{ 0, 0, 0, 5, 6, 7, 8, 9,10,11,13,14,14,15,15,16,16},

},
};

static const int codtab [3][4][17] =
{
{ 1, 5, 7, 7, 7, 7,15,11, 8,15,11,15,11,15,11, 7,4},
{ 0, 1, 4, 6, 6, 6, 6,14,10,14,10,14,10, 1,14,10,6},
{ 0, 0, 1, 5, 5, 5, 5, 5,13, 9,13, 9,13, 9,13, 9,5},
{ 0, 0, 0, 3, 3, 4, 4, 4, 4, 4,12,12, 8,12, 8,12,8},

},

The value of 7 using 10 bits will be added to the bitstream for the nnz value.

The coefficient values, levels and the number of encoded bits used, the length, are

VLC coded. If the absolute level value is greater than 17, the number of bits used to

represent the value is 28 bits. If the absolute level is less than 17 but greater than 9,

4.3 The Encoded Bitstream 46

19 bits are used if 8 or less, the absolute level value is multiplied by 2 to determine the

length of negative values and multiplied by 2 less 1 for original positive levels.

Listing 4.6: Part of WriteSyntaxElement Level VLCN function used for coefficient en-
tropy encoding.

int writeSyntaxElement Level VLCN(SyntaxElement ∗se, int vlc, DataPartition ∗this dataPart)
{

int iCodeword;
int iLength;

int level = se−>value1; //!< coefficient value

int levabs = abs(level); //!< absolute coefficient value
int sign = (level < 0 ? 1 : 0); //!< sign of coefficient value (pos or neg)

int shift = vlc−1; //!< vlc is the current coefficient number
int escape = (15<<shift)+1;

if (levabs < escape) //!< the higher numbered coefficients are allocated less bits
{

int numPrefix = (levabs−1)>>shift;

int sufmask = ˜((0 xffffffff)<<shift);
int suffix = (levabs−1)&sufmask;

iLength = numPrefix + vlc + 1;
iCodeword = (1<<(shift+1))|(suffix<<1)|sign;

}
else
{

iLength = 28;
iCodeword = (1<<12)|((levabs−escape)<<1)|sign; //!< 1<<12 = 4096

}
se−>len = iLength;
se−>inf = iCodeword;

The coded coefficient value for Table 4.7 position i0 j3, is determined by 4096 + (ab-

solute level value - 17) ×2 + 1. In this case the coefficient value is now 4119, and has

a length of 28 bits. This may be followed through Listing 4.6.

The next coefficient levels are also entropy coded whereby coefficient level -37 becomes

4109 using 28 bits, the third coefficient of -36 becomes 15 requiring 12 bits and level

78 becomes 26 and requires 14 bits of the bitstream.

The higher the number of a coefficient level, the less important it is to the decoding of

the bitstream and the fewer number of bits allocated to it as shown in Listing 4.6.

The total zeros, run before and coeff token syntax elements each use their own VLC

tables for entropy encoding. The coeff token parameter maintains the total number of

non-zero transform coefficient levels for individual luma and chroma coefficients.

4.3 The Encoded Bitstream 47

The rest of the 4×4 luma blocks of the macroblock are entropy encoded, followed by

the entropy encoding of the macroblock’s chroma coefficients.

All macroblocks are now encoded until the entire slice is finished. Where FMO is not

specified, macroblocks are written in a raster scan fashion, from left to right, top to

bottom as shown in Figure 3.1.

Start Code Emulation Checking

The bitstream is checked to ensure that none of the data emulates the start code, prior

to transmission or storage of the data. If the bitstream is not checked for extra start

codes, decoding of the data may not be possible. The start code emulation checking

occurs in the RBSPtoEBSP encoder function and is shown below in Listing 4.7.

Listing 4.7: RBSPtoEBSP function code for Start code emulation checking.
int RBSPtoEBSP(byte ∗streamBuffer, int begin bytepos, int end bytepos, int min num bytes)
{

int i , j , count;

for(i = begin bytepos; i < end bytepos; i++)
NAL Payload buffer[i] = streamBuffer[i];

count = 0;
j = begin bytepos;
for(i = begin bytepos; i < end bytepos; i++)
{

if (count == ZEROBYTES SHORTSTARTCODE && !(NAL Payload buffer[i] & 0xFC))
{

streamBuffer[j] = 0x03;
j++;
count = 0;

}
streamBuffer[j] = NAL Payload buffer[i];
if (NAL Payload buffer[i] == 0x00) //!< checks for start code emulation

count++;
else

count = 0;
j++;

}
while (j < begin bytepos+min num bytes) {

streamBuffer[j] = 0x00;
streamBuffer[j+1] = 0x00;
streamBuffer[j+2] = 0x03;
j += 3;
stats−>bit use stuffingBits[img−>type]+=16;

}
return j;

}

4.3 The Encoded Bitstream 48

If two zero bytes are detected in succession, after the startcode for that slice, the 0x03

emulation prevention byte is inserted into the bitstream. The bitstream count is also

incremented as a result.

Reference Frames

Pictures are allocated to the data picture buffer (DPB) for storage. IDR pictures are

placed into long term storage, and reference lists are updated.

As this picture is an IDR picture if the reference lists contained previous images, these

would be deleted to ensure that future frames cannot reference frames prior to the IDR

picture.

4.3.3 Inter Video Coding Layer Network Access Layer Unit

Figure 4.5: Second frame of container qcif.yuv sourced from Kansas State University.

Figure 4.5 is the original second frame from the sampled container qcif sequence. This

frame is able to reference other frames, therefore is inter coded and is allocated to a

P SLICE image type.

Figures 4.6 and 4.7 display a tiny portion of the original video frame. The small boat

appears to have actually moved by approximately 1 pixel from one frame to the next

4.3 The Encoded Bitstream 49

Figure 4.6: Magnified view of 2×2 block of macroblocks from the first frame of the

original YUV video.

Figure 4.7: Magnified view of 2×2 block of macroblocks from the second frame of

original YUV video.

frame.

A QCIF frame is 11 macroblocks wide and 9 macroblocks high. The top right hand

macroblock of the magnified view in raster scan order is macroblock 35.

Table 4.10 shows luma values of the top left 4×4 block of the original macroblock,

where the small boat is left most of the image.

Table 4.11 shows the luma values of the first 4×4 block of the original macroblock,

where the small boat is left most of the macroblock image portion.

Motion estimation methods are now conducted, which each possible prediction method

tested to define the method of least cost.

4.4 Chapter Summary 50

i0 i1 i2 i3

j0 148 100 103 104

j1 164 125 78 97

j2 163 162 91 54

j3 151 160 148 79

Table 4.10: The first 4×4 luma block of macroblock 35 from frame 1.

i0 i1 i2 i3

j0 158 109 98 105

j1 162 141 82 89

j2 159 168 114 51

j3 153 157 159 98

Table 4.11: The first 4×4 luma block of macroblock 35 from original frame 2.

DC prediction is determined from averaged values of the 4×4 blocks above and left and

gives a predicted value of 137 for each of the current blocks of Frame 2, Macroblock 35.

Horizontal Prediction uses the values of the macroblock to the immediate left of the

current macroblock for its prediction values. Vertical prediction uses the values of the

above block as the predicted values for the current block.

Each of the following motion estimation methods are conducted in order to find the

best prediction method, diagonal down left, vertical left, horizontal up, diagonal down

right, vertical right and horizontal down prediction.

The prediction method that incurs the least cost will be used to derive the motion

compensation differences. A motion vector will be passed to the entropy encoder,

giving the direction to the prediction values.

4.4 Chapter Summary

This chapter has discussed video compression techniques used in the Recommendation.

A source frame is followed from a raw video sequence through the encoding process to

4.4 Chapter Summary 51

a H.264 conforming bitstream.

Specific functions of the encoder source code have been referenced to show the practi-

cal implementation of H.264 video compression techniques. The encoder source code

was derived from the public domain reference software made available by Dr Karsten

Suehring and the Joint Video Team (2004). Extensive changes have been made in order

to optimise the code for the Baseline Profile.

Chapter 5

H.264 Decoding Principles

5.1 Chapter Overview

The H.264 standard does not define the semantics of a bitstream and the methods to

decode this bitstream. It is not necessary for the decoding methods defined in the

standard to be exactly followed but changes must ensure the bitstream is decoded as

intended.

This chapter presents a decoder block diagram and follows the decoding process with

a 4×4 luma block. Specific decoding techniques are selected through the use of defined

parameter sets and syntax elements.

The decoder source code listings have been supplied for major video compression tech-

niques. The decoder source code was derived from the public domain reference software

made available by Dr Karsten Suehring and the Joint Video Team (2004). The decoder

software has been optimised during this research project for the Baseline Profile.

5.2 The Decoder 53

Figure 5.1: H.264 Decoder Block Diagram

5.2 The Decoder

A H.264 encoded bitstream is stored in a buffer until required for entropy decoding.

The motion vectors are extracted from the bitstream and the remaining coefficients are

inverse quantised and transformed. These values are added to the referenced values

and pass through a deblocking filter prior to be output.

Figure 5.2 shows the decoded first frame of container qcif sequence. The differences

between this image and the original image Figure 4.2 are virtually indistinguishable.

Figure 5.2: The decoded frame of container qcif.

5.3 The Bitstream 54

5.3 The Bitstream

As with the encoder, the decoder also uses a configuration file to indicate the specific

bitstream file and its associated format. The decoder screens are displayed in Figures

6.17 and 6.18.

The information supplied in the decoder.cfg file is discussed in detail in Section 6.4.

The byte stream format has been used in this chapter and is defined in Annex B of the

Draft Standard (2003, pp205-7). The byte stream format specifies that each network

abstract layer unit (NALU) is to be preceded by a start code and specific NALUs

require a long start code.

The bitstream into the decoder is checked to locate the first start code of the first

NALU. The start code of the next NALU is also located in order to supply the decoder

with the NALU length.

Assuming an error free transmission or storage medium, the first NALU will be identical

to the NALU defined by the encoder. Appendix C defines a sequence parameter set

(SPS) NALU and if this was the first NALU of the bitstream, it would be 13 bytes

long and be consistent with an expected first NALU. The type of NALU is given in the

NALU header, the first byte of the NALU. Table B.2 lists the available NALU types.

5.3.1 Parameter Sets

The first NALU that will be present in a baseline profile conforming bitstream is an

SPS NALU. An SPS contains decoder parameters relevant to many pictures and plays

an integral role in the successful decoding process. These parameter are discussed in

Appendix C.

The second NALU header expected in the bitstream is the picture parameter set (PPS)

NALU and has a nal unit type of type 8. A PPS may specify appropriate parameter

values required for the decoding of one or more pictures. Further information regarding

PPS syntax elements and an example bitstream are located in Appendix D.

5.3 The Bitstream 55

5.3.2 Intra Video Coding Layer Network Access Layer Unit

The third NALU expected to be present in the bitstream is an IDR picture. Appendix

E.2 shows the partial bitstream of an encoded IDR picture from the container qcif

video sequence. The entire encoded IDR length is 9792 bytes. The NALU header

of this bitstream indicates a nal type 5, being a slice without partitioning thereby

conforming with the baseline profile. The nal reference idc is type 3 indicating that no

use of temporal prediction, therefore this NALU contains IDR picture information.

Incoming Buffer

The slice header immediately follows the NALU header for VCL data. Slice header

parameters are defined in Appendix B. A slice header is shown in byte stream format

in Appendix E.

Flexible macroblock ordering (FMO) is now initiated, based upon the information

supplied in the PPS. It is necessary for the decoder to use FMO information prior to

decode the macroblocks, in order to output the decoded video sequence in the correct

orders.

Error concealment arrays are reset to allow errors present on the bitstream to be iden-

tified.

The first macroblock’s header information follows the slice header, with parameters

defined in Appendix B. The macroblock header indicates the type of macroblock next

present in the bitstream. Appendix E shows a macroblock header of type I4MB meaning

that an intra macroblock that uses 4×4 blocks follows the header information.

The macroblock header details the chroma prediction mode, motion prediction temporal

data if used, the coded block pattern which indicates the number of blocks with non

zero coefficients.

The coded block pattern indicates whether there are coefficients in the current block.

The block is then checked to predict the nnz, which was 0. This value is used for the

5.3 The Bitstream 56

vlcnum, which lets us know which VLC table that is going to be used.

The bitstream is searched bit by bit to find a matching code from the VLC code table.

Using the bitstream that was encoded in Chapter 4 a code equal to 7 with a length of

10 details that there are 4 coefficients that are not zero.

Entropy Decoding and Demultiplexing

The 4 entropy coded coefficients are removed from the bitstream.

VLC table 0 is a fixed table that is used for the first coefficient and uses the function

readSyntaxElement Level VLC0 to identify the next bit equal to 1 in the bitstream.

This bit becomes the first bit of the data code. Using the first coefficient bits of

macroblock header byte 5 in Section E.2 there are 15 zero bits prior to the first 1 being

located.

The length of the numerical part of the code is determined by the number of zero bits

less 3, which equals 12 bits. The next 12 bits in Section E.2 provide a value of 23.

The level is found by the absolute value of 23 / 2 plus 16. The sign bit is tested and

the value is reduced by 1. The level value becomes -28. The vlc table number is also

changed to 2, therefore readSyntaxElement Level VLCN shown in Listing 5.1 will be

employed as the entropy decoding method for the rest of the coefficients.

The level array is updated with this value of -28, therefore levarr[3] = -28.

The source code listing used for entropy decoding of the remaining coefficients is the

readSyntaxElement Level VLCN function shown in Listing 5.1. This function calls

the ShowBits methods which is used to remove the desired number of bits from the

bitstream for checking.

Listing 5.1: The entropy decoding readSyntaxElement Level VLCN function code.

int readSyntaxElement Level VLCN(SyntaxElement ∗sym, int vlc, struct datapartition ∗dP)
{

Bitstream ∗currStream = dP−>bitstream;
int frame bitoffset = currStream−>frame bitoffset;
byte ∗buf = currStream−>streamBuffer;
int BitstreamLengthInBytes = currStream−>bitstream length;

5.3 The Bitstream 57

int levabs , sign ;
int len = 0;
int code, sb;

int numPrefix;
int shift = vlc−1;
int escape = (15<<shift)+1;
int addbit, offset ;

// read pre zeros
numPrefix = 0;
while (!ShowBits(buf, frame bitoffset+numPrefix, BitstreamLengthInBytes, 1))

numPrefix++; //basically counting the number of zeros

len = numPrefix+1; //the pre zeros of the VLC code
code = 1;

if (numPrefix < 15)
{

levabs = (numPrefix<<shift) + 1;

// read (vlc−1) bits −> suffix
if (vlc−1)
{

sb = ShowBits(buf, frame bitoffset+len, BitstreamLengthInBytes, vlc−1);
code = (code << (vlc−1))| sb;
levabs += sb;
len += (vlc−1);

}

// read 1 bit −> sign
sign = ShowBits(buf, frame bitoffset+len, BitstreamLengthInBytes, 1);
code = (code << 1)| sign;
len ++;

}
else // escape
{

addbit = numPrefix − 15;

sb = ShowBits(buf, frame bitoffset+len, BitstreamLengthInBytes, (11+addbit));
code = (code << (11+addbit))| sb;

len += (11+addbit);
offset = (2048<<addbit)+escape−2048;
levabs = sb + offset;

// read 1 bit −> sign
sign = ShowBits(buf, frame bitoffset+len, BitstreamLengthInBytes, 1);
code = (code << 1)| sign;
len++;

}

sym−>inf = (sign)?−levabs:levabs;
sym−>len = len;

currStream−>frame bitoffset = frame bitoffset+len;

return 0;
}

The next three incoming values of the first 4×4 block are entropy decoded from a

5.3 The Bitstream 58

bitstream value of 6 using 28 bits to a coefficient of -37, value of 3 using 28 bits

becomes the third coefficient of -36 and a value of 5 using 14 bits to become the fourth

coefficient value of 78.

Each of these coefficients are added to the level array, with levarr[0] becoming 78.

When the absolute value of the level is greater than the number in the vlc table, the

vlc table is changed.

The total zeros variable is searched for using the vlc table 3. The bitstream is now

stepped through the designated code table,and length tables trying specific bit lengths

for each code, in order to locate the next total zeros value within the bitstream.

The four run values are now retrieved from the bitstream, using the same method as

for the total zeros variable. The vlc number will determine the table and specific length

and code details need to be searched for bit by bit.

Inverse Scan and Quantisation

Dequantisation occurs in Listing 5.2 which is part of the readCBPandCoeffsfromNAL

function. After the rescaling of the coefficient values they are stored in the img-¿m7

array prior to transformation.

Listing 5.2: Dequantise code from readCBPandCoeffsfromNAL function.

//Dequantisation
else if (qp per<4)
{
if (intra == 1)
img−>cof[i][j][i0][j0]= (levarr [k]∗InvLevelScale4x4Luma Intra[qp rem][i0][j0]+qp const)>>(4−qp per);

else
img−>cof[i][j][i0][j0]= (levarr [k]∗InvLevelScale4x4Luma Inter[qp rem][i0][j0]+qp const)>>(4−qp per);

}
else
{
if (intra == 1)
img−>cof[i][j][i0][j0]= (levarr [k]∗InvLevelScale4x4Luma Intra[qp rem][i0][j0])<<(qp per−4);

else
img−>cof[i][j][i0][j0]= (levarr [k]∗InvLevelScale4x4Luma Inter[qp rem][i0][j0])<<(qp per−4);

}

Table 5.1 levarr[0] equals 78, coefctr equals 0, runarr[0] equals 0, i = 0. j = 0. img->cof

matrix is shown below, following the entropy decoding and dequantisation.

5.3 The Bitstream 59

i0 i1 i2 i3

j0 4992 0 0 0

j1 -2880 0 0 0

j2 -2368 0 0 0

j3 -2240 0 0 0

Table 5.1: The first 4×4 luma block following entropy decoding and rescaling.

The coefficients of rest of the macroblock are all entropy decoded and quantised prior

to inverse transformation.

Motion Compensated Prediction

Neighbours are sort for the macroblock in order to derive the prediction values. As no

neighbours are found, the prediction value used will be 128.

Inverse Transform

The coefficients are transformed firstly horizontally and then vertically. Listing 5.3

shows the inverse transformation source code for the incoming coefficients.

Listing 5.3: Inverse transform portion of source code from the itrans function.
void itrans(struct img par ∗img, //!< image parameters

int ioff , //!< index to 4x4 block
int joff , //!<
int i0 , //!<
int j0 ,
int chroma)

{
int i , j , i1 , j1 ;
int m5[4];
int m6[4];

Boolean lossless qpprime = ((img−>qp + img−>bitdepth luma qp scale)==0 && img−>lossless qpprime flag==1);

// horizontal
for (j=0;j<BLOCK SIZE && !lossless qpprime;j++)
{

for (i=0;i<BLOCK SIZE;i++)
{

m5[i]=img−>cof[i0][j0][i][j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]−m5[2]);

5.3 The Bitstream 60

m6[2]=(m5[1]>>1)−m5[3];
m6[3]=m5[1]+(m5[3]>>1);

for (i=0;i<2;i++)
{

i1=3−i;
img−>m7[i][j]=m6[i]+m6[i1];
img−>m7[i1][j]=m6[i]−m6[i1];

}
}
// vertical
for (i=0;i<BLOCK SIZE && !lossless qpprime;i++)
{

for (j=0;j<BLOCK SIZE;j++)
m5[j]=img−>m7[i][j];

m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]−m5[2]);
m6[2]=(m5[1]>>1)−m5[3];
m6[3]=m5[1]+(m5[3]>>1);

for (j=0;j<2;j++)
{

j1=3−j;
img−>m7[i][j] =(m6[j]+m6[j1]+DQ ROUND)>>DQ BITS;
img−>m7[i][j1]=(m6[j]−m6[j1]+DQ ROUND)>>DQ BITS;

}
}

for (i=0;i<BLOCK SIZE && lossless qpprime;i++)
for (j=0;j<BLOCK SIZE;j++)

img−>m7[i][j] = img−>cof[i0][j0][i][j];
}

}

The 4×4 block following the inverse horizontal transform is shown below in Table 5.2.

i0 i1 i2 i3

j0 4992 4992 4992 4992

j1 -2880 -2880 -2880 -2880

j2 -2368 -2368 -2368 -2368

j3 -2240 -2240 -2240 -2240

Table 5.2: The first 4×4 decoded luma block following horizontal inverse transform.

Table 5.3 shows the 4×4 block following the inverse vertical transform and addition of

the motion prediction information.

The rest of the macroblocks are decoded in the same order.

5.3 The Bitstream 61

i0 i1 i2 i3

j0 107 107 107 107

j1 255 255 255 255

j2 231 231 231 231

j3 232 232 232 232

Table 5.3: The first 4×4 decoded luma block following the inverse vertical transform.

Deblocking Filter

The deblocking filter is used to remove the blocking artifacts induced upon a video

sequence that uses a block based encoding scheme. Square image blocks are evident

in a decoded frame without the filter, particularly as very few objects within an image

have a square edge.

The final stage of the decoding involves applying the deblocking filter to the entire

picture.

A comparison of frames with and without the deblocking filter is shown in Figure 5.2

and Figure 5.3 respectively.

Figure 5.3: The second frame of container qcif.264 decoded without the deblocking

filter.

The deblocking filter works firstly on horizontal edges between 4×4 blocks and then on

the vertical edges. When the blocks are part of differing macroblocks, stronger filtering

5.4 Chapter Summary 62

is employed.

5.4 Chapter Summary

The decoding process is the more common of the encoding and decoding processes.

Typically a sequence will only be encoded once and will be decoded many times over.

As is the case for television streaming and file transfers.

During this chapter a practical example of many of the decoding video compression

techniques used by the H.264 Recommendation have been discussed including entropy

decoding, inverse scanning and dequantisation, inverse transform and the deblocking

filter.

Chapter 6

Graphical User Interface

6.1 Chapter Overview

The graphical user interface, GUI, provides user interaction with the H.264 standard.

Specifically, the interface allows for the investigation of many video compression para-

meters. The GUI provides much of the input parameter error checking by limiting the

user defined values.

The GUI consists of seven tabs of encoder parameters that may be defined by the user.

These tabs are Main, Picture, Control, FMO, Filter, Rate Control and Miscellaneous.

There are two decoder screens, detailing main and advanced parameters.

The GUI interfaces with the encoder and decoder through configuration files. The GUI

was developed using Microsoft Visual Studio.Net.

6.2 Main Interface

Figure 6.1 is the opening screen of the H264 Baseline Software. This screen provides

buttons to allow user interaction with the encoder and decoder parameters, as well as

providing a simple explanation regarding the software’s intent.

6.3 Encoder Interface 64

Figure 6.1: Start Screen of H264 Baseline Software

6.3 Encoder Interface

Encode Screen

Figure 6.2 displays a screen shot of the information tab. This highlights to the user

that changes effected to the H264 Encoder parameters may affect the fidelity of the

decoded video sequence or the encoded file size.

After changes are made to the encoder parameters, the user will be required to select

the Apply button in order to allow for the parameters to be written to the encoder.cfg

file in the correct sequence. This file is read by the encoder in order to provide the

relevant parameters to correctly encode the video sequence. The Apply button will also

initiate the encoding process.

The user may also select to cancel their interaction with the encoder.

Figure 6.2: Information Screen of H264 Baseline Encode.

6.3 Encoder Interface 65

I have determined that the parameters at the top the Encode screen are the most

important parameters for the encoder and specific file names are required to be changed

by the user.

Input File This file should contain the YUV sequence to be encoded.

Output File This file will contain the encoded video sequence.

Video Mode The user may select which bitstream format the output file will employ.

Saved Video If this parameter is selected, the encoded sequence will be in the

byte stream form, or as specified by Annex B. This is the default parameter.

Live Video If this parameter is selected, the encoded sequence will be in bit

stream format, Good for use for RTP, such as video conferencing.

Level The user may select the required level that the encoder will use. This affects the

decoded picture buffer size. There are 15 levels from which the user can choose.

Level 30 is the default level.

Main Tab

The main screen provides access to the major video sequence parameters.

Figure 6.3: Main Screen of H264 Baseline Encode.

Start Frame This parameter allows the user to select from where in the video sequence

that they would like to start encoding.

6.3 Encoder Interface 66

Frames to Encode This parameter allows the user to select the total number of frames

that they would like to encode. I have set the number of frames to 50.

Image Width and Image Height These parameters determine the width and height

of the image that the user would like to encode. As the width and height is

measured in pixels, they must be divisible by 16 in order to conform to the size

of macroblocks. The default is set for a QCIF size, 176 × 144 pixels.

Frame Rate This is the number of frames that should be displayed per second when

decoded and viewed. I have used a default value of 30 frames per second

Recon File The recon file is a file that should be what is seen at the decoder. The

encoder needs to know what the decoder is seeing, and therefore what predictions

they will be using for motion compensation.

Input File Header This parameter is the number of bytes of the input file that is for

header information. I have allowed a 0 default value.

Picture Tab

Figure 6.4 is a screen shot of the Picture screen of the H.264 Baseline Encode Software.

Figure 6.4: Picture Screen of H264 Baseline Encode.

The picture screen consists of only two parameters being search restrictions and refer-

ence frames restrictions.

Search restrictions allows 1 of 3 choices of searching for similar frames or blocks for

6.3 Encoder Interface 67

motion prediction. The search range may be restricted to using only older reference

frames, both blocks and reference frames or by allowing no search restrictions to be

used. I have set the Search Restrictions parameter to have a default value of No

Restrictions.

Restrict Reference Frames when unchecked allows reference frames to be checked for

forward prediction. The checkbox’s default is to no be selected.

Control Tab

Figure 6.5 is a screen shot of the Control tab of the H.264 Baseline Encode Software.

This tab page provides many control parameters that can be employed in the encoding

of a video sequence.

Figure 6.5: Control Tab of H264 Baseline Encode.

Each of the parameters that may be changed by the user listed on the Control Table

are discussed below.

Quantisation for First Frame This variable allows the user to define the quantisa-

tion parameter that will be used in the encoding of the first frame of the video

sequence. I have used a default quantisation parameter of 16.

Quantisation for Remaining Frames This parameter has a default of 28 and is

used for quantisation for the remaining frames of the video sequence.

6.3 Encoder Interface 68

Frames to Skip This parameter allows the user to specify the number of frames to

skip in between each frame to be encode. If this has a value of 1, then every

second frame of the video sequence will be encoded.

Search Range The search range is the range that will be searched for motion esti-

mation. If this value is greater than 0, then all of the surrounding blocks of a

block defined by a motion vector will be searched. If this value is 0, then only

the defined block will be looked at. I have allowed all of the surrounding blocks

of the motion vector indicated block to be searched as default.

Number of Motion Reference Frames The number of frames allowed must be a

value less than 16, and its main stipulation is that the memory requirements of

the decoder picture buffer must be capable of allowing that specific number of

frames. I have used a default value of 1.

P Slice List Ref Override This value determines the number of P Slices that will

be allowed in the reference list and is defaulted to 1.

Intra/Error Frames This parameter is used to provide error robustness to the en-

coded video sequence. No extra intra blocks or frames are encoded, if this para-

meter is 0. If the user defines this parameter to be 1, 1 group of blocks per frame

will be intra coded. If 2, 1 group of blocks will be intra coded every 2 frames.

This parameter is used to prevent past macroblocks errors to be continued to

future macroblocks. No extra intra blocks are to be encoded is the default.

Colour Offset This offset must be a value between -51 and 51. This parameter has

a default value of 0 and changes will affect how bright the image will be when

decoded.

Forced Intra Macroblocks This numerical value is used to define the minimum

number of macroblocks that should be intra coded per frame.

Period of I-Frame This checkbox allows the user to define that there should be a

minimum of 0 or 1 frames in between each encoded Intra Frames. I have used a

default value of 0 frames.

Force I-Frame The user would check this parameter to force intra pictures to be

encoded as IDR pictures. An IDR picture forces no frames to be allowed to use

6.3 Encoder Interface 69

any pictures prior to the IDR for motion compensation. I have left this parameter

unchecked as the default setting.

Use Hadamard Transform The user would select to use Hadamard Transform when

an additional transform is required.

Inter Block Search This parameter if checked allows all available block sizes to be

searched.

Fast Motion Estimation If FME is checked, motion estimation will be conducted

on the integer blocks, otherwise a full pel search for motion estimation is allowed.

The default setting allows for a full pel search to be allowed.

FMO Tab

Figure 6.6 is a screen shot of the FMO tab of the H.264 Baseline Encode Software.

This tab page allows the user to select the slice mode and whether to employ FMO.

There are four different slice modes that may be employed by the encoder. The first

slice mode is off and there are therefore no restrictions placed between the macroblocks

and the slice. This mode is the default slice mode. Fixed macroblocks is another slice

mode, and will allow only a specific number of macroblocks to be used per slice. Fixed

rate and Callback only allow slices to contain a specific maximum number of bits.

Should this number be exceeded, macroblocks will be removed from the slice.

Figure 6.6: FMO Tab of H264 Baseline Encode - No FMO.

6.3 Encoder Interface 70

Figure 6.6 is a screen shot used where FMO is not employed. The number of slice groups

allowed to reproduce the frame is 1. The macroblocks within the slice are processed

in raster scan order. This tab layout shows the default values used by the software.

When FMO is not employed the macroblocks are all included in one slice group and

processed in raster scan order.

The six defined macroblock mapping methods are shown in Figure ??. The explicit

map that is used to map individual macroblocks to slices should be contained in a text

file which will be referred to as the Slice Group File Name.

Interleave Slice Map

Figure 6.7: FMO Tab of H264 Baseline Encode - Interleave Slice Map.

Figure 6.7 is a screen shot used where FMO is employed with an interleave map for

ordering of the macroblocks within the slice. Each macroblock row is allocated to

consecutive slice groups.

Dispersed Slice Map

Figure 6.8 is a screen shot used where FMO is employed with a dispersed slice map.

Each consecutive macroblock will be allocated in turn to consecutive slice groups.

Foreground with left-over Slice Map

Figure 6.9 is a screen shot of where the slice group map is foreground slice groups

followed by a left over slice. A slice group map configuration file is required to specify

6.3 Encoder Interface 71

Figure 6.8: FMO Tab of H264 Baseline Encode - Dispersed Slice Map.

Figure 6.9: FMO Tab of H264 Baseline Encode - Foreground with left-over Slice Map.

the number of macroblocks that should be employed within each slice group.

Box-Out Slice Map

The FMO tab to use for a box-out slice map is shown in Figure 6.10. Box-out mac-

roblock ordering may be conducted either clockwise or counterclockwise. Consecutive

macroblocks are allocated to the same slice until a certain number of macroblocks is

reached as specified by the user defined slice group change rate parameter.

Raster Scan Slice Map

The raster scan FMO tab is shown in Figure 6.11. Raster scan macroblock ordering

is conducted from left to right, top to bottom. Macroblock ordering may also be

conducted in reverse raster scan order. Each slice group will contain the number of

6.3 Encoder Interface 72

Figure 6.10: FMO Tab of H264 Baseline Encode - Box-out Slice Map.

Figure 6.11: FMO Tab of H264 Baseline Encode - Raster Scan Slice Map.

macroblocks specified in the slice group change rate parameter.

Wipe Slice Map

The FMO tab shown in Figure 6.12 is used for wipe right macroblock ordering. The

slice group change rate defines the number of macroblocks allocated to each slice group

from top to bottom left to right. The macroblock ordering may also be conducted in

the reverse order.

Explicit Slice Map

The Explicit slice map used for FMO would be completely user defined, with each

individual macroblock being allocated to a specific slice group. This map would be

defined in the slice group file determined by the user.

6.3 Encoder Interface 73

Figure 6.12: FMO Tab of H264 Baseline Encode - Wipe Slice Map.

Figure 6.13: FMO Tab of H264 Baseline Encode - Explicit Slice Map.

Filter Tab

Figure 6.14 displays a screen shot of H.264 Baseline Encode Software’s Filter tab.

This tab allows the Deblocking Filter to be configured or disabled.

The Alpha and Beta offsets are used in conjunction with the quantisation parameter

to define when the deblocking filter will be employed. The filter is employed for small

changes and will be switched off if is a significant change in between blocks. Significant

changes are expected to be as a result of a change within an image, as opposed to

blocking artifacts. The larger the quantisation parameter the more block edges that

will be filtered.

An example of disabling the filter completely is shown in Figure 5.3.

6.3 Encoder Interface 74

Figure 6.14: Filter Tab of H264 Baseline Encode.

The default parameters used for the loop filter is for both the Alpha and Beta offsets

to be 0 and neither the loop filter configuration or disable boxes to be checked. Quan-

tisation table 0 should be employed for both offsets when determining whether filtering

should occur.

Rate Control Tab

Figure 6.15 shows the H.264 Baseline Encode Software’s Rate Control tab with the

preset default parameters.

Figure 6.15: Rate Control Tab of H264 Baseline Encode.

The rate control enable check box allows for rate control to be enabled. Number of MB

in unit allows the user to determine the number of macroblocks that will determine the

basic unit.

6.3 Encoder Interface 75

The YUV format needs to be known prior to encoding a YUV video sequence to ensure

that the luma and chroma components are encoded correctly. The Brightness or luma

and Colour or chroma may be enhanced using these parameters, as they are used in

conjunction with determining the quantisation parameter.

Misc Tab

The Miscellaneous tab allows for quantisation parameter changes to be effected part

way through a sequence and for the decoder buffer to be affected. Figure 6.16 displays

this screen.

Figure 6.16: Misc Tab of H264 Baseline Encode.

A leaky bucket is a buffer used by the encoder to represent the queue between the

communications channel and the decoder. The number of leaky buckets may be any

value between 2 and 255. The leaky bucket parameters file will need to be defined by

the user, in order to adequately utilise this parameter. The default for the number of

leaky buckets is 2.

Only Intra Pixels for Intra Prediction specifies that constrained intra prediction must

be used. Constrained intra prediction means that pixels encoded using intra prediction

methods, may not be used for encoding inter prediction blocks. This parameter uses

an unchecked box for default.

The Last Frame Number may be defined by the user to specify the last frame that

should be encoded into the H264 bitstream. Leaving this parameter as 0 indicates

6.4 Decoder Interface 76

Frames to Encode variable will be solely used in determining the sequence length.

The second start frame provides a specific start point to allow quantisation changes to

be made. The Second Intra Quant parameter specifies the quantisation parameter of

the first frame of the encoding of the second video sequence. The remaining frames

will use the quantisation parameter that is defined by Second Inter Quant.

6.4 Decoder Interface

Decode Screen

Figure 6.17 displays a screen shot of the main decode screen. The user is required

to define the H264 compliant bitstream and the required YUV output file. Once this

information is applied by the user and Apply is selected, the decoder.cfg file will be

saved for accessing by the decoder executable. As with the encode configuration screens,

the decoder will be initiated by the user selection of the Apply button.

Figure 6.17: Main Screen of H264 Baseline Decode.

The user may also select the incoming bitstream’s format. The saved video format

uses a byte aligned format and is ideal for storage. Real time applications that require

packets would employ the Live Video mode.

Advanced Decode Screen

The Advanced Decode screen is shown in Figure 6.18.

6.5 Chapter Summary 77

Figure 6.18: Advanced Screen of H264 Baseline Decode.

The user may define the rate, the buffer size and the delay. This has become a necessity

due to the large variety of memory capabilities available, the varying bit rates and

nominal delay rate. The delay rate will lower the fidelity of large pictures that take

longer than the nominal time period. The leaky bucket parameters file will provide the

necessary parameters to deal with the queue between the communications channel and

the decoder.

6.5 Chapter Summary

The Graphical User Interface allows the user to trial many video compression techniques

and the effects of altering specific parameters at the input.

The user is able to encode and decode a raw video sequence using the GUI and optimise

the parameters to fulfill their fidelity and storage needs.

Chapter 7

Results

7.1 Chapter Overview

There are no definitive guides regarding the effectiveness of a video compression codec.

Fidelity, complexity, encoded file size and application all play an integral role in deter-

mining the suitability of a codec.

This chapter seeks to evaluate the H.264 Recommendation in a variety of manners

including parameter changing, conformance, fidelity, peak signal to noise ratio and

complexity.

Parameters values are changed to gain improvements in the Recommendation’s perfor-

mance for fidelity, file size, complexity or data rate.

Compatability testing is conducted against other freely available software to ensure a

conforming H264 bitstream is output from the encoder and to test the decoder fidelity.

The H264 Recommendation is compared against other codecs for fidelity and file size

considerations.

Peak Signal to Noise Ratio is discussed and values provided after the encoding of a

H264 video sequence for both I and P frames.

7.2 Parameter Effects 79

7.2 Parameter Effects

Varying a parameters values can cause significant effects upon the output of a codec.

Tradeoffs between the following video compression measurements are required:

• Fidelity,

• Complexity,

• File Size,

• Bit Rate.

I have used a subjective measurement for fidelity by giving a value between 0 and 10,

where 0 indicates that the image is unrecognisable and 10 indicates that there is little

or no difference between this image and the original.

The bit rate is a result of complexity and file size. If the processing required is too

complex, the incoming bitstream may stream faster than the decoder is capable of

processing the image, and the buffer may overflow. Alternatively, the encoded file may

be too large for real time transmission.

I have assumed a maximum bit rate of 128kbps is available that the number of bits

used to encode each frame is the same, ignoring the fact that I frames typically require

more bits than P frames.

The bit rate has been determined using Equations 7.1 and 7.2. The lower bit rate value

is the maximum value that is able to be employed.

FramesperSecond = MaxBitRate
F ileSize

NumberofFrames
× 8 (7.1)

Max Bit Rate = 128kbps File Size = The size of the encoded file in bytes Number of

Frames = Total Number of Frames encoded in file

ComplexityFramespersecond =
1

ComplexityRate
(7.2)

7.3 Conforming Bitstream and Fidelity Testing 80

The bit rate equations assume similar encoding and decoding times, a constant bit rate

and no data errors.

Parameter Changes Fidelity Complexity File Size Bit Rate

File/Complexity

Default Values 8 90ms 184KB 4.3 / 11.1

Quantisation Pa-

rameter

QP of 16 10 100ms 453KB 1.766 / 10

Quantisation Pa-

rameter

QP of 42 1 90ms 50KB 16 / 11.1

Inter Block Search Search all blocks 10 400ms 35KB 30.5 / 2.5

Disable Loop Fil-

ter

No Deblocking

Filter

5 60ms 184KB 4.3 / 16.7

Table 7.1: Effects of Parameter Changes.

Table 7.1 displays the effects of varying parameter values have on bit rates, complexity,

file size and fidelity. The minimum bit rate value is the one that may be employed.

These parameters changes have been selected to represent the more extreme variations

of changing values and that an improvement for one aspect may negatively impact

another. Tradeoffs are required in order to achieve an application’s individual require-

ments.

7.3 Conforming Bitstream and Fidelity Testing

The fidelity of an image is not easily measurable as there are many factors that may

influence the quality measurement.

Richardson (2005, p21) stated that ’there are no objective measurements systems that

completely reproduce the subjective experience of a man observer watching a video

display.’

Fidelity opinions are therefore used in the results section.

7.3 Conforming Bitstream and Fidelity Testing 81

7.3.1 Methodology

I have encoded the bitstream using the default parameters described in Chapter 6 to

produce a H.264 conforming bitstream named test.264.

The H264 file is decoded using optimised H264 Baseline software, and two freely avail-

able decoders, being InterVideo’s WinDVD Platinum player (2005) and ImToo Software

Studio’s MPEG Encoder (2005).

7.3.2 Results

Figure 4.2 shows the first frame of the original encoded sequence.

Figure 5.2 shows the first frame of the container qcif sequence decoded using the H264

Baseline software.

Figure 7.1: a. Decoded Frame using WinDVD Platinum. b. Decoded Frame using

ImToo MPEG Encoder.

In order to use the ImToo MPEG Encoder, the file extension was required to be changed

to test.h264.

Original Frame The original frame is very blocky for background areas of similar

colour. The original frame is not smoothed for consistency, has sharp edges and

the contrast is prominent.

Decoded Frame The decoded frame uses a contrast that is quite prominent, however

7.4 Fidelity and Storage Comparison 82

regions of a similar nature are blended together more than the original.

WinDVD Frame The decoded frame has been smoothed and also presents slightly

darker than the other frames and the contrast is not as defined. The background

has been smoothed to eliminated the blocky sky, but have also removed the water

ripple. The flag pole detail is barely visible and would not be identified if the

detail was unknown.

ImTooMPEGEncoder This image is overall lighter than the other decoded frames

and has been smoothed to the point that the image appears to be slightly blurry.

The water has been smoothed to remove ripple, however blocky luma variations

exist within the sky and water regions. The detail is significantly reduced around

the lighter coloured regions.

Commercial application of video compression techniques, generally require a tradeoff

between fidelity, complexity and storage needs. Whilst the WinDVD and ImToo MPEG

Encoder frames lacked detail, it was possible for the video sequences to be decoded

quickly and at the correct frame rate. The optimised H.264 Baseline software whilst it

provides a high fidelity video sequence, can only decode up to 5 frames per second.

7.4 Fidelity and Storage Comparison

Figure 7.2 displays the first frame of the container video sequence that has been encoded

using MPEG 1, MPEG 2 and DVD formats. The image quality is very comparable

with each other but the detail is significantly less than displayed in the original, see

Figure 4.2 and H264 decoded frame, displayed in Figure 5.2.

Fifty frames of a raw video sequence are coded using the same video compression codecs

as used for the fidelity comparisons. The resulting file sizes are listed below.

Raw YUV Video 1857KB

7.5 Peak Signal to Noise Ratio 83

Figure 7.2: a. MPEG 1 b. MPEG 2 c. DVD Format.

MPEG 1 270KB

MPEG 2 288KB

DVD Format 728KB

H264 84KB

The size of the H264 file is a reduction of over 30% when compared with the MPEG

formats. The data size of the H264 encoded video sequence is only 10% of the original

format.

7.5 Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio (PSNR) is used to describe the quality of an encoded

picture when compared with the original. The differences between the encoded and

original image values are used to determine this logarithmic ratio. Richardson (2005,

p24) defines Equation 7.3 which allows PSNR of an image to be calculated.

PSNRdB = 10log10
(2tn − 1)2

MSE
(7.3)

7.5 Peak Signal to Noise Ratio 84

n = number of bits per image sample MSE = Mean squared error between an original

and an impaired value

Richardson (2005, p24) informs that ’PSNR ratings do not necessarily correlate with

true subjective quality. A human observer gives a higher importance to the face region

and so is particularly sensitive to distortion in this area.’ This statement is in response

to a PSNR value where the background is blurred but the foreground or face maintains

a high quality may indicate a lower quality picture than an image with a better PSNR

value but is degraded in the wrong areas.

The PSNR values for the first frame, which is an IDR frame, of the encoded video

sequence using default values are 46.34 for the Y value, 48.60 for U and 48.53 for the V

component. The PSNR values for each subsequent frame is approximately 35.38 for Y,

39.9 for U and 39.7 for the V component. These values indicated that the IDR frame

is a much closer representation of the original frame than of the subsequent P slices.

The first original and decoded frames are shown in Figures 4.2 and 5.2 respectively.

The difference between the PSNR values may be seen in the fidelity comparisons of

Figure 4.5, the original frame versus Figure 7.3, an encoded P frame.

Figure 7.3: A decoded P Slice with an average PSNR values of 38.33dB.

The quality of the encoded images that the PSNR value represents is a measure that

should be considered in codec design however subjective measurements should also be

7.6 User Software Interaction 85

made when determining an the image quality of particular decoders.

7.6 User Software Interaction

The readme.txt file on the accompanying cd should be read in conjunction with the

installation and use of the software.

The GUI allows the software to be easily used and a variety of video compression

techniques to be investigated and parameters changed. The effects of these changes

may be viewed by a YUV viewer or H.264 viewing software. The developed software is

expected to be used in conjunction with Chapter 6 to allow an understanding of each

of the encoder and decoder parameters.

It is possible for the software to be employed without reference to this document, as

minimal parameter changes are required in order to effectively encode or decode a raw

video sequence.

7.7 Chapter Summary

This chapter has sought to provide a number of performance criteria from which to

evaluate the H264 Recommendation. These are fidelity, file size and complexity.

Whilst the project’s H264 Baseline software provides a conforming bitstream, repro-

duces high quality video sequences and is easy to use, further work is required to reduce

encoding and decoding times when compared with other available H.264 decoders.

The changing of parameter values has shown that an improvement in one area of a

codec’s performance does not necessarily improve all areas.

A H264 conforming bitstream is viewed favourably when compared with other codecs

due to the improved fidelity and file size. It is anticipated that increased processing

power will lessen the negative complexity issues of this codec.

Chapter 8

Conclusion

This research project investigated and implemented the International Telecommunica-

tion Union’s H.264 Recommendation also known as the International Standards Or-

ganisation’s MPEG-4 / Advanced Video Codec.

The H.264 Recommendation provides an interoperable global standard for effective and

reliable video compression. The standard uses advanced video coding techniques, with

effort made to encompass a broad application base to ensure it is well postured to be

widely employed internationally.

8.1 Achievement of Objectives

The objectives of the research project are contained in the Project Specification in

Appendix A.

All of the objectives were met with the exception of creation and evaluation of software

for real time applications and mobile solutions.

This dissertation combines H.264 video compression techniques with the relevant source

code to allow the display and the implementation of encoding and decoding algorithms.

Changes to the reference software were conducted in strict consultation with the defined

8.2 Future Work 87

Recommendation. This was in order to ensure a compliant bitstream availability at

the output of the encoder and that a conforming bitstream at the input to the decoder

would be treated appropriately.

The graphical user interface provides easy operation of the encoder and decoder and

allows the user to define their own video compression requirements.

The fidelity of an encoded video sequence is subjectively compared against other codecs,

H.264 decoders and with respect to parameter changes. The effects on bit rate changes

have been simulated and are directly affected by the complexity of the bitstream and

the tradeoff required with fidelity.

8.2 Future Work

As the ITU-T Recommendation was formally released in May 2003 and commercial

decoders are slowly being released onto the market. H.264 encoded video sequences are

not currently commonly available, however the standard is anticipated to be employed

by major video organisations in the near future.

There is a considerable amount of future work that can be conducted. Specifically for

real time applications of the Recommendation as detailed in objective 6 of Appendix

A.

The processing speed of the encoder and decoder used in this project needs to be

improved to enable its use for real time and streaming applications.

Video compression algorithms are continually being developed and with increased

processing power more complex techniques are able to be employed.

List of References

Ajay K. Luthra, G. J. S. & Wiegand, T. (2003), ‘Introduction to the Special Issue

on the H.264/AVC Video Coding Standard’, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 13, No. 7, July 2003 .

Atul Puri, X. C. & Luthra, A. (2004), ‘Video coding using the H.264/Avc compres-

sion standard’, Signal Processing: Image Communication, v 19, n 9 SPEC. ISS.,

October, 2004, p 793-849 .

Container.qcif (2005), Kansas State University .

Hancock, D. N. (2005), Research Project Project Reference Book, Distance Education

Centre, USQ, Toowoomba, Australia.

Henrique S. Malvar, Antti Hallapuro, M. K. & Kerofsky, L. (n.d.), ‘Low Complexity

Transform and Quantization in H.264/AVC journal =’.

InterVideo (2005), ‘Windvd platinum software’, InterVideo Website .

Jordi Ribas-Corbera, P. A. C. & Regunathan, S. L. (2003), ‘A Generalized Hpothetical

Reference Decoder H.264/AVC’, IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 13, No. 7, July 2003 .

Jorn Ostermann, Jan Bormans, P. L. D. M. M. N. F. P. T. S. & Wedi, T. (2004), ‘Video

coding with H.264/Avc: Tools, Performance, and Complexity’, IEEE Circuits and

Systems Magazine, v 4, n 1, First Quarter, 2004, p 7-28 .

Leis, J. (2003), Digital Signal Processing - A MATLAB-Based Tutorial Approach, Re-

search Studies Press Ltd.

LIST OF REFERENCES 89

Michael Horowitz, Anthony Joch, F. K. & Hallapuro, A. (2003), ‘H.264/AVC Baseline

Profile Decoder Complexity Analysis’, IEEE Transactions on Circuits and Systems

for Video Technology, Vol. 13, No. 7, July 2003 .

Organisation, I. S. (2004), Part 15: Advanced video coding (AVC) file format AS

ISO/IEC 14496.10, Standards Australia.

Peter List, Anthony Joch, J. L. G. B. & Karczewicz, M. (2003), ‘Adaptive Deblocking

Filter’, IEEE Transactions on Circuits and Systems for Video Technology, Vol.

13, No. 7, July 2003 .

Ralf Schafer, T. W. & Schwarz, H. (2003), ‘The Emerging H.264/AVC Standard’, EBU

Technical Review - January 2003 .

Richardson, I. E. G. (2003), H.264 and MPEG-4 Video Compression: Video Coding

for Next-generation Multimedia, John Wiley & Sons.

Studio, I. S. (2005), ‘Imtoo mpeg encoder software’, ImToo Website .

Suehring, D. K. & Team, J. V. (2004), ‘Joint model 9.0 software and documentation’,

Image Processing Internet Website .

Sullivan, G. J. & Wiegand, T. (2005), ‘Video Compression — From Concepts to the

H.264/AVC Standard’, Proceedings of the IEEE, Vol. 93, No. 1, January 2005 .

Tanenbaum, A. S. (2003), Computer Networks, Pearson Education International.

Thomas Wiegand, G. J. S. & Luthra, A. K. (2003a), Draft ITU-T Recommendation

and Final Draft International Standard of Joint Video Specification ITU-T Rec.

H.264 / ISOIEC 14496-10 AVC, ITU-T & ISO/IEC.

Thomas Wiegand, Gary J. Sullivan, G. B. & Luthra, A. K. (2003b), ‘Overview of the

H.264/Avc Video Coding Standard’, IEEE Transactions on Circuits and Systems

for Video Technology, Vol. 13, No. 7, pp 620-636, July 2003 .

Ville Lappalainen, A. H. & Hamalainen, T. D. (2003), ‘Complexity of Optimized H.26L

Video Decoder Implementation’, IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 13, No. 7, July 2003 .

LIST OF REFERENCES 90

Wedi, T. & Musmann, H. G. (2003), ‘Motion and Aliasing-Compensated Prediction

for Hybrid Video Coding’, IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 13, No. 7, July 2003 .

Wien, M. (2003), ‘Variable Block-Size Transforms for H.264/AVC’, IEEE Transactions

on Circuits and Systems for Video Technology, Vol. 13, No. 7, July 2003 .

Appendix A

Project Specification

92

FOR:
TOPIC:
SUPERVISOR:
ENROLMENT:

PROJECT AIM:

PROGRAMME:

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111/2 Research Project

PROJECT SPECIFICATION

Belinda FARMER
Video Compression using ITU- T Recommendation H.264.
Wei Xiang
ENG 4111 - SI, X, 2005;
ENG 4112 - S2, X, 2005.

This project aims to investigate the H.264 standard and implement
the video compression algorithms using low bandwidth solutions.
The scope of the project also includes evaluating the developed
software using varying fidelity and bit rates for both real time and
delayed applications.

Issue B, 25 March 2005

1. Research the background information relating to the ITU-T Recommendation
H.264/A VC.

2. Develop a program, written in C/C++, utili sing available H.264 Reference
Software as a basis for the optimized project code.

3. Provide a graphical user interface for the video compression software to
enable its use by a variety of users.

4. Evaluate the software using varying fidelity and bit rates.

5. Evaluate the software for both real time and delayed applications.

As time permits

6. Minimise the software for use with mobile solutions, whereby processor
speeds and memory availability are considerations.

AGREED: W~ XtM~
~---------------------

Belinda Farmer

Dated 25/3/05

~-------
Wei Xiang

. 7---/-'i-/--~f)~

Appendix B

NAL and Picture Parameters

B.1 Chapter Overview

The chapter includes the parameters that are required to make up a picture, including

slice and macroblock semantics.

Network access layer (NAL) parameters, nal unit types and header information is also

defined to enable the quick recognition of NALU header information from the bitstream.

CAVLC entropy encoding parameters are also defined later in this chapter.

B.2 Network Access Layer Parameters

The network access layer (NAL) is specified to allow the successful transmission or

storage of video data. A network access layer unit (NALU) is the individual unit that

is used to provide the generic formatting for the data.

NALUs can primarily be divided into 2 types, video coding layer (VCL) and non-VCL.

Table B.2 displays the different kinds of data that make up each of these types.

A NALU consists of specific header information, which includes what type of NALU it

B.2 Network Access Layer Parameters 94

is. This allows the decoder to determine the requirements of the incoming bitstream.

The Recommendation’s byte stream format requires that preceding the NALU header

information, a start code and extra padding bytes be included to distinguish between

subsequent NALUs. This demarcation method is not required for NALUs for packet-

oriented transport.

A Network Access Layer Unit has a one byte header that consists of the following

parameters:

forbidden zero bit This parameter is hardcoded to 0.

nal ref idc If this parameter is 0, it indicates that the slice or slice data partition

contained with the NAL unit is part of a non-reference picture, or of another

specified nal unit type.

nal unit type This parameter specifies the type of RBSP data structure contained in

the NALU unit.

This 8 bit header is constructed as follows:

Bit 7 - MSB forbidden zero bit

Bit 6 - nal reference idc MSB

Bit 5 - nal reference idc LSB

Bit 4 - nal unit type MSB

Bit 3 - nal unit type

Bit 2 - nal unit type

Bit 1 - nal unit type

Bit 0 - nal unit type LSB

B.3 Slice Parameters 95

Table B.2 combines the various NALU parameters into the one table for easy reference

when attempting to determine the bitstream.

nal unit type Content of NAL unit VCL/non-VCL nal ref idc

0 Unspecified - may be used by any

application

- -

1 Coded slice of a non-IDR picture VCL 6=0

2 Coded slice data partition A VCL 6=0

3 Coded slice data partition B VCL 6=0

4 Coded slice data partition C VCL 6=0

5 Coded slice IDR picture VCL 6=0

6 Supplemental enhancement infor-

mation SEI

non-VCL 0

7 Sequence Parameter Set non-VCL 6=0

8 Picture Parameter Set non-VCL 6=0

9 Access unit delimiter non-VCL 0

10 End of sequence non-VCL 0

11 End of stream non-VCL 0

12 Filler Data non-VCL 0

13-23 Reserved - Decoder will remove

NALU from bitstream and dis-

card

- -

24-31 Unspecified - may be used by any

application

- -

B.3 Slice Parameters

The parameters as described in the Recommendation are:

first mb in slice This parameter provides the address of the first macroblock in the

slice. As arbitrary slice order is allowed in the baseline profile, this value does

not have to be in numerical order for other slices of the same picture.

B.3 Slice Parameters 96

slice type This parameter indicates whether the slice is an I or P slice. The value of

0 or 5 indicates a P slice, whereas the value of 2 or 7 indicates an I slice. Other

slices, not conforming to the baseline profile, use other values between 0 and 9.

pic parameter set id This parameter specifies the picture parameter set, PPS, that

is in use. The value for this parameter will always be 0 when using this encoder.

frame num This value is used to identify the short term reference frame. If the picture

is an IDR picture, this value shall be set to 0, otherwise may be any value up to

an including the number of frames to be encoded.

field pic flag This syntax element is not required to be used in the bitstream, as

macroblock adaptive frame/field mode coding is used, mbaff, is not allowed in

the baseline profile.

bottom field flag This syntax element is also not required, as it refers to the bottom

coded field of an mbaff used slice.

idr pic id This syntax element identifies an IDR picture, the value is hardcoded to 0

in the encoder software.

pic order cnt lsb This parameter specifies the picture order count modulo MaxPi-

cOrderCntLsb for the top field of a coded frame.

delta pic order cnt bottom This parameter specifies the picture order count, POC,

difference between the top and bottom fields of a coded frame, and when it is not

present in the bitstream, it is inferred to be 0. This parameter is not used in the

slice header for this encoder.

delta pic order cnt[0] This parameter is used for the POC difference from the ex-

pected count for the top field. This parameter is only required for POC mode 1,

and when this parameter is not present, it is inferred to be 0.

delta pic order cnt[1 This parameter is used for the POC difference from the ex-

pected count for the bottom field. It is also only required for POC mode 1, and

if the parameter is not present, it is inferred to be 0.

redundant pic cnt This parameter is equal to 0 for slices belonging to the primary

coded picture. For a redundant coded picture this count shall be greater than 0.

B.3 Slice Parameters 97

When this parameter is not present in the bitstream, it is inferred to be 0.

num ref idx active override flag This parameter is included in the bitstream for P

slices and will always be 0, because MBAFF coding is not allowed in the baseline

profile, therefore parameter num ref idx l0 active minus1 will always be between

0 and 15 inclusive.

ref pic list reordering flag l0 If this flag equals 1, it indicates that reordering of pic

nums idc is present for reference picture list 0.

reordering of pic nums idc This parameter specifies which of the reference

pictures will be remapped.

reordering of pic nums idc = 0 abs diff pic num minus1 is present and

therefore subtract this value from a picture number prediction value.

reordering of pic nums idc = 1 abs diff pic num minus1 is present and

therefore add this value to a picture number prediction value.

reordering of pic nums idc = 2 long term pic num is present and long-

term reference picture number is defined.

reordering of pic nums idc = 3 This value signifies the end loop for re-

ordering.

abs diff pic num minus1 This value gives the absolute difference between the

picture numbers for reordering.

long term pic num This value specifies the long term picture number to be

moved.

no output of prior pics flag This syntax element specifies how the decoded picture

buffer, DPB, treats previously coded pictures.

long term reference flag This parameter when 1 ensures that the current IDR pic-

ture is used for long-term reference.

adaptive ref pic marking mode flag This parameter is used for non-intra slices,

and when it is equal to 0, it uses a sliding window reference picture marking

mode, and when 1, an adaptive reference picture marking mode is used, as well

as the additional following parameters.

B.4 Macroblock Parameters 98

memory management control operations There are six memory manage-

ment control operations, being to end the loop, marking a short term picture

unused for reference, marking a long term picture as unused for reference, as-

signing a long term frame index to a short term picture, specifying the max-

imum long term frame index, marking all reference pictures as unused and

assigning a long term frame index to the current decoded picture. The follow-

ing additional parameters are further included depending upon the memory

management control operation used. Difference of pic nums minus1 is used

to mark a long term frame index or short term reference picture as unused.

Long term pic num is used to mark a long term reference picture as unused.

Long term frame idx is used to assign a long term frame index to a picture.

Max long term frame idx plus1 is used to specify the maximum value of the

index allowed for long term reference pictures.

slice qp delta This quantisation parameter is used for the user defined quantisation

parameter minus 26.

disable deblocking filter idc This parameter specifies the operation of the deblock-

ing filter, whether it should be disabled, and for what edges. If this parameter is

0 or 2, the following parameters are required.

slice alpha c0 offset div2 This parameter specifies the offset used in accessing

the a and t deblocking filter tables.

slice beta offset div2 This parameter specifies the offset to use in accessing

the b deblocking filter tables.

slice group change cycle This parameter is used to derive the number of slice group

map units to use in slice group 0 for the box-out, wipe or raster scan mapping

methods.

B.4 Macroblock Parameters

The parameters as described in the Recommendation are:

B.5 CAVLC Parameters 99

mb type This parameter specifies the macroblock type. For I slices the types avail-

able are Intra 4x4 prediction and Intra 16x16 prediction. For P slices, macroblock

types include one luma 16x16 partition and chroma samples, two luma 16x8 or

8x16 partitions and chroma samples, using a sub-macroblock and a final mac-

roblock type that indicates that there is no further data present for the mac-

roblock in the bitstream.

prev intra 4x4 pred mode flag This parameter specifies the intra 4x4 prediction

of the indicated 4x4 luma block.

intra chroma pred mode This parameter specifies the type of spatial prediction is

to be used for chroma, following the luma macroblock intra coding. The modes

are:

mode 0 DC prediction.

mode 1 Horizontal prediction.

mode 2 Vertical prediction.

mode 3 Plane prediction.

coded block pattern This parameter specifies which of the six 8x8 luma and chroma

blocks contain non-zero transform coefficient levels.

mb qp delta This parameter provides the difference between the luma quantisation

parameter of the previous macroblock and the luma quantisation parameter of

the current macroblock.

B.5 CAVLC Parameters

coeff token This value represents the total number of non-zero transform coefficient

levels and the number of trailing one transform coefficient levels in a level scan.

trailing ones sign flag This indicates that the corresponding transform coefficient

level should be decoded as 1.

level prefix This parameter specifies the value of a non-zero transform coefficient

level.

B.5 CAVLC Parameters 100

level suffix This parameter is used in conjunction with the level prefix to specify the

value of a non-zero transform coefficient level.

total zeros This parameter specifies the total number of zero-valued transform coef-

ficient levels.

run before The parameter is for the number of consecutive transform coefficient levels

in the scan with a zero value.

Appendix C

Sequence Parameter Set

C.1 Chapter Overview

A sequence parameter set is a set of syntax elements used to describe the necessary

common encoding information for a complete video sequence.

C.2 Parameters

The parameters as described in the Recommendation are:

profile idc This parameter indicates which profile the bitstream conforms to. The en-

coder in this research project conforms to the baseline profile, which is designated

by the value 66.

level idc This parameter indicates the level that the bitstream conforms to. The

meaning of the levels has been described in table .

constraint set0 flag This parameter indicates that the bitstream obeys all constraints

specified by the Baseline profile, when the flag is equal to 1. When the flag is

equal to 0 the bitstream may or may not obey the baseline profile constraints.

C.2 Parameters 102

constraint set1 flag This parameter is the same as the above flag, but with respect

to the H.264 Main profile.

constraint set2 flag This parameter is the same as the above flag, but with respect

to the H.264 Extended profile.

constraint set3 flag This parameter is not defined in my copy of the Recommenda-

tion, but I suggest that it is probably with respect to the FREXT parameters.

reserved zero 4bits This parameter is simply hardcoded to 0, and is ignored by the

decoder.

seq parameter set id The encoder used in this research project currently has the id

hardcoded to 0, however it can be any value between 0 and 31, inclusive. The

Recommendation indicates that the seq parameter set id should be changed when

the values of different syntax elements are used, as opposed to actually changing

the values of the syntax elements themselves.

log2 max frame num minus4 This parameter is a value between 0 and 12 inclusive.

It is derived by determining the minimum number of bits to represent the number

of frames to decode as retrieved from encoder.cfg, and then minus 4 for this

number of bits required. If this value is less than 0, the value will become 0.

Therefore the maximum number of frames that can be encoded is 21̂6 = 65536.

pic order cnt type This parameter determines whether POC mode 0, 1, or 2 will be

implemented to decode the picture order count. A picture order count is used for

decoder conformance checking.

POC mode 0 pic order cnt type is 0, then the SPS parameter log2 max pic

order cnt lsb minus4 is used, which specifies the value of the variable Max-

PicOrderCntLSB.

log2 max pic order cnt lsb minus4 This parameter is a value between

0 and 12 inclusive, it is derived by determining the minimum number of

bits to represent the twice the number of frames to encode multiplied

by the number of frames to skip plus 1 as part of the input parameters

required of the encoder. Once the number of bits is determined, four is

taken from this value.

C.2 Parameters 103

POC mode 1 delta pic order always zero flag If this flag is 0 it indicates

that delta pic order cnt[0] is present in the slice header and delta pic

order cnt[1] may be present in the slice header of the sequence.

offset for non ref pic This parameter is used to calculate the value of the

POC of a non-reference picture.

offset for top to bottom field This parameter used to calculate the the

POC of the bottom field of a frame.

num ref frames in pic order cnt cycle This parameter is used in the

decoding process for picture order count and is in the range of 0 to 255,

inclusive.

offset for ref frame[] This parameter is an element of a list of num ref

frames in pic order cnt cycle.

POC mode 2

num ref frames This parameters specifies the total number of short and long term

reference frames used for inter prediction of any picture in the sequence. This

value is in the range of 0 to 16 inclusive and is input by the user.

gaps in frame num value allowed flag This flag specifies the values of frame num

are allowed. If the flag is 0 and the frame num is not equal to the PrevRef-

FrameNum, then frame num needs to be equal to (PrevRefFrameNum + 1) %

MaxFrameNum. If frame num does not equal to either of these values, then the

flag which change to 1, to indicate the unintentional loss of pictures, and to begin

a decoding process to deal with these gaps.

pic width in mbs minus1 This parameter specifies the width of each picture in units

of macroblocks minus 1. This value is determined by the picture width in pels,

divided by 16, less 1.

pic height in map units minus1 This parameter specifies the height in slice group

map units of a decoded frame minus 1. This value is calculated from the picture

height in pels, divided by 16, less 1.

frame mbs only flag In order to conform to the baseline profile, this flag is hard-

coded to 1, which indicates that all of the pictures of this video sequence are

frames coded that contain only frame macroblocks.

C.3 Bitstream information 104

mb adaptive frame field flag This flag when 0 specifies that there is no switching

between frame and field macroblocks. This flag is inferred to be 0 when it is not

present, and must be 0 in order to conform with the baseline profile, it is not

included in the SPS of this project’s encoder.

direct 8x8 inference flag This flag is used only for B slices, and therefore is not

required for the baseline profile. It has been hardcoded to 0.

frame cropping flag When this flag is 1, it indicates that the frame cropping offset

parameters are next in the SPS, and when 0 specifies that the parameters are not

present.

frame crop left offset

frame crop right offset

frame crop top offset

frame crop bottom offset These parameters specify the horizontal and verti-

cal coordinates of a cropping rectangle, within which to encode the samples

of the frame.

vui parameters present flag This flag when 1 specifies that the vui parameters are

present next in the bitstream, and when 0, indicates that they are not present.

C.3 Bitstream information

The SPS is first created as a raw byte sequence payload.

A new data partition is created for the parameter set and contains the UVLC processing

function and a Bitstream data structure.

A Syntax Element for Profile IDC is parsed using the u v() function, where 8 bits

will be assigned to Profile IDC. The function is defined in the Recommendation as

u(n), where n refers to the number of bits that this syntax element will use. The

parsing process writes a binary representation of the parameters unsigned integer value

starting at the most significant bit (MSB) of the byte first. The syntax Element is of

type SE HEADER.

C.3 Bitstream information 105

The next syntax element which is contrained set0 flag is set to 1 indicating that the

bitstream will conform to the Baseline profile. This syntax element uses the u 1()

function, which means that the syntax element uses only 1 bit and is parsed using the

u(n) function.

The next three syntax elements are constrained set1 flag, constrained set2 flag and con-

strained set3 flag. Each of these flags are set to 0 and parsed using the u 1() function.

Reserved zero 4bits is set to 0 by bitstreams that conform to this Recommendation,

therefore the value of this bit is zero. The decoder ignores the value of this parameter.

This syntax element is parsed using u v() and uses 4 bits to represent its 0 value.

The next syntax element is level idc which is a value defined in the Graphical User

Interface (GUI). I have set a default value of this parameter to 30. This Syntax element

is parsed using u v(), and uses 8 bits.

The next syntax element is seq paramater set id and is currently hardcoded to 0. This

is parsed using ue v() which means that it is an unsigned integer Exp-Golomb-coded

syntax element with the left bit first. An unsigned Exp-Golomb coded integer is given

by the actual parameter’s value + 1.

The parsing process for these Syntax Elements is designated in the Recommendation

as ue(v). The value of the parameter is first converted to an Exp-Golomb bit string.

The parsing process for decoding Exp-Golomb codes begins with reading all of the

bits in the bitstream up to and including the first non-zero bit. When decoding the

bitstream, the number of leading bits that are equal to 0 are counted and shown in

Equation C.1 as the variable Number of Leading Zero Bits. The Number of Leading

Zero Bits is determined by the number of zeros at the current location in the bitstream

up to and including the first non-zero bit. The resulting variable termed codeNum in

the Recommendation may be determined by the following equation:

codeNum = 2NumberofLeadingZeroBits−1+(therestoftheExp−Golombbitstring) (C.1)

C.3 Bitstream information 106

The syntax element seq paramater set id uses a 0 value, therefore the Exp-Golomb

coded bit string will be a 1.

The next SPS parameters to be parsed are the log2 max frame num minus4 and the

pic order cnt type variable which use ue v().

The next SPS parameter is log2 max pic order cnt lsb minus4. I have used the value

of 7 for this parameter which was derived by using 300 for the number of frames to be

encoded and by skipping every second frame. 2×300×2 = 1200 or 100 1011 0000 and

by reducing the number of bits required (11) by 4 gives the parameter a value of 7.

If the POC mode was 1, the following parameters would also need to be set.

• delta pic order always zero flag

• offset for non ref pic

• offset for top to bottom field

• num ref frames in pic order cnt cycle

• offset for ref frame for each of the ref frames in the above parameter.

The next SPS parameter required for the bitstream is num ref frames and is parsed

using ue v().

Gaps in frame num value allowed flag parsed using u 1() is the next SPS parameter to

be included in the bitstream.

The parameter pic width in mbs minus1 specifies the width of each decoded picture

minus 1 in units of macroblocks and this syntax element is parsed using ue v().

The next SPS parameter for the bitstream is pic height in map units minus1 and spec-

ifies the height minus 2 in slice group map units of a decoded frame or field.

The next SPS parameter is frame mbs only flag. In order to conform to the baseline

profile, this flag must be equal to 1, which specifies that every coded picture of the

C.3 Bitstream information 107

coded video sequence is a coded frame containing only frame macroblocks. The value

of this parameter is therefore 1, and it is parsed using u 1().

The SPS parameter direct 8x8 inference flag is used for B slices. It is not required for

the baseline profile and has been hardcoded to 0. This flag is parsed using function

u 1().

The next SPS parameter is the frame cropping flag and I have used a value of 0, which

indicates that the frame cropping offset parameters are not present. This flag is also

parsed using u 1().

The next SPS parameter is the vui parameters present flag which indicates the the

vui parameters structure is not present next in the bitstream and is the last parameter

of the SPS.

The unfinished string of data bits (sodb) of the SPS is completed to the 8th byte. A 1

is added as the lsb and the rest of the byte is complete in 0s.

The rbsp is converted to a nalu using the Annex B byte stream format. A SPS NALU

requires a long start code which means that the start code prefix length is be 4 bytes

long.

The Annex B byte stream format provides the start code demarcation between NALU’s.

The first byte of the nalu buffer is filled with nalu header information. The 7th bit is

0, which is the hardcoded value of the nalu-¿forbidden bit. The 5th bit becomes the

nal reference idc value of 3. Finally the 5 lsbs are used to represent the nal unit type,

which is type 7, indicating it is a seq parameter set rbsp.

There have therefore been 104 bits written for the SPS NALU, including the start code,

the NALU header and the SPS. A completed sample bitstream is shown in the section

below.

C.4 SPS NALU Bitstream 108

C.4 SPS NALU Bitstream

1 2 3 4 5 6 7 8

Long Start Code - 4 bytes

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

SPS NALU Header

0 1 1 0 0 1 1 1

SPS Byte 1 B̄ (66)

1 0 0 0 0 0 1 0

SPS Byte 2 -̄ (128)

1 0 0 0 0 0 0 0

SPS Byte 3 -̄ (30)

0 0 0 1 1 1 1 0

SPS Byte 4 -̄ (154)

1 0 0 1 1 0 1 0

SPS Byte 5 !̄ (33)

0 0 1 0 0 0 0 1

SPS Byte 6 |̄(5)

0 0 0 0 0 1 0 1

SPS Byte 7 %̄o (137)

1 0 0 0 1 0 0 1

SPS Byte 8 -̄ (136)

1 0 0 0 0 0 1 0

Appendix D

Picture Parameter Set Bitstream

D.1 Chapter Overview

A picture parameter set is a set of syntax elements used to describe the necessary

common encoding information for a picture sequence.

The Network Access Layer that immediately follows the Sequence Parameter Set is the

Picture Parameter Set.

The Picture Parameter Set, PPS, is the set of parameters that is used for pictures in the

coded video sequence. This parameter set allows the encoder to designate particular

methods of coding the video sequence as well as the use of flexible macroblock ordering,

FMO.

D.2 Parameters

The parameters as described in the Recommendation are:

pic parameter set id This parameter is used in the slice header, to identify the pic-

ture parameter set associated with it. In the software of this research project, all

pic parameter set id is set to 0, however the Recommendation allows any value

D.2 Parameters 110

in the range of 0 to 255.

seq parameter set id This parameter is used to refer to the active sequence parame-

ter set and the Recommendation allows any value in the range of 0 to 31, however

in the software of this research project this value is set to 0.

entropy coding mode flag This parameter is used to indicate the method of entropy

encoding to be used. In order to conform to the baseline profile, this flag must

equal 0, specifying that only CAVLC entropy encoding is allowed. If this flag

equalled 1, CABAC entropy encoding would be indicated as allowed by the main

profile.

pic order present flag If this flag is equal to 1, it indicates that the picture order

count syntax elements are present in the slice headers, and when the flag is 0 it

states that the elements are not present in the slice headers.

num slice groups minus1 This parameter specifies the number of slice groups minus

1 are used for a picture. If this parameter equals 0, this indicates that all of the

slices of a picture belong to the same single slice group, meaning that FMO is

not permitted for this picture. For the baseline profile, this parameter may be

any value between 0 and 7 for map types 0, 1, 2 and 6. The following parameters

may also be used where FMO is employed.

slice group map type This parameter specifies how the slice group map units

relate to the slice groups and may be any value between 0 and 6.

slice group map type = 0 Uses Interleaved slice groups, whereby mac-

roblocks are assigned in turn for each row length to the required number

of slice groups.

run length minus1[i] This parameter is used for interleaving slice groups

to indicate the number of consecutive slice groups to be assigned to the

ith slice group, where i refers to the num slice groups minus1 variable.

slice group map type = 1 Uses Dispersed slice groups. Each individual mac-

roblock is assigned in turn to the next slice group.

slice group map type = 2 Specifies one or more foreground groups and a left-

over or background slice group. Varying sized rectangular regions form slice

D.2 Parameters 111

groups, and those macroblocks not allocated to a specific foreground group,

will automatically be allowed to the leftover group.

top left[i]

bottom right[i] These parameters are used to represent the top left and

bottom right corners of the rectangular regions.

slice group map type = 3 This type is known as box-out, and creates a box

starting from the centre of the frame to a specific size forming one slice

group, and the rest of the macroblock blocks form another slice group.

slice group change direction flag When this flag is 1, indicates that a counter-

clockwise box-out is to be used.

change rate minus1 This parameter specifies the number of slice group map

units that the size of a slice group can change from one picture to the

next.

slice group map type = 4 A Raster Scan is used to form this slice group,

whereby a specific number of macroblocks starting from the top-left, moving

left to right, top to bottom form a slice group, and the rest of the macroblocks

form another slice group.

slice group change direction flag If this flag is equal to 1, in indicates to

use a reverse raster scan.

change rate minus1 Again this parameter specifies the number of slice group

map units that the size of a slice group can change from one picture to

the next.

slice group map type = 5 This type is known as a wipe, and is similar to a

raster scan, but uses a vertical scan, starting again from the top left, but

moving from top to bottom, left to right.

slice group change direction flag As with the raster scan, when this flag is

equal to 1, a reverse direction is indicated, being to wipe left, as opposed

to right.

change rate minus1 Again this parameter specifies the number of slice group

map units that the size of a slice group can change from one picture to

the next.

D.2 Parameters 112

slice group map type = 6 This type indicates that slice group map units are

mapped to specific slice groups, and this map is user defined.

pic size in map units minus1 This parameter is used to indicate the

number of slice group map units that are in the picture.

slice group id This parameter is used to identify a slice group.

num ref idx l0 active minus1 This parameter specifies the maximum reference in-

dex for reference picture list 0 that should be used to decode each slice of the

picture.

num ref idx l1 active minus1 This parameter is not required to conform to the

baseline profile, at it is used specifically for B slices, however it is used is similarly

to above.

weighted pred flag This parameter is used to indicate whether weighted prediction

should be applied to P and SP slices, however in order to conform to the baseline

profile, this flag has been hardcoded to 0, meaning that it should not be applied

to P slices.

weighted bipred idc This parameter when equal to 0 indicates that weighted pre-

diction should not be applied to B slices, and again to conform to the baseline

profile, this parameter must be 0.

pic init qp minus26 This syntax element indicates the initial value minus 26 of the

quantisation parameter for each slice. This value is hardcoded to 0, as the actual

quantisation parameter used in the encoding exists in the slice header.

pic init qs minus26 This syntax element specifies the initial value for SP or SI slices,

and its value is therefore not required in order to conform to the baseline profile.

As well as this, it has been hardcoded to 0 as the slice header contains the actual

quantisation parameter used.

chroma qp index offset This parameter provides the offset that shall be added to

the quantisation parameters for colour alignment.

deblocking filter control present flag When 1, this flag is used to specify that the

deblocking filter syntax elements are present in the slices header, but when this

flag is 0, the inferred values are in effect.

D.3 Bitstream info 113

constrained intra pred flag When this flag equals 1, prediction of macroblocks us-

ing intra macroblock prediction modes only use residual data and decoded samples

from I or SI macroblocks. When 0, the usage of residual data and decoded inter

macroblock predicted samples may also be used.

redundant pic cnt present flag When this flag is equal to 1, it indicates that the

redundant pic cnt syntax element is present in all slice headers and data parti-

tions, when 0, it is only present in data partition A.

D.3 Bitstream info

A raw byte sequence payload (rbsp) is created to be filled by the PPS payload.

The first Syntax Element of the PPS NALU, is pic parameter set id. This element

is currently hardcoded to 0 and is parsed using ue v()function. The ue v() parsing

process is discussed in Appendix C.

The next syntax element to be parsed is the seq paramater set id is also hardcoded to

0 parsed using ue v().

The entropy coding mode flag and the pic order present flag are parsed using the u 1

function. Both of these parameters have been hardcoded to 0.

The syntax element num slice groups minus1 is parsed using ue v, and if this value is

allowed to be 0, it means that all slices of the picture belong in the same slice group

and that FMO is not employed.

The syntax elements of num ref l0 active minus1 is the number of reference frames

requested by the user for inter motion search. This value is defaulted to 1 in the GUI

therefore minus 1, a value of 0 is used for this parameter. The next syntax element,

num ref l0 active minus1 is hardcoded to 0, as it is not required for the baseline profile.

Both of these parameters are parsed using ue(v), and therefore each return a value of

1.

D.3 Bitstream info 114

The weighted pred flag is the next syntax element to be placed on the bitstream and

has been hardcoded to 0, in order to conform to the baseline profile. It is parsed using

the u 1() function.

The weighted bipred flag is also hardcoded to 0 to conform to the baseline profile

however is parsed using u(v) as 2 bits are used to describe this syntax element.

The parsing process required by the pic init qp minus26 uses the se(v) descriptor,

meaning that it is a signed integer value as its Exp-Golomb-coded syntax element.

Being a signed integer value, means that both negative and positive values need to be

taken into consideration. Initially the parameter value will be doubled if a negative

value and doubled and reduced by 1 for a positive value. This value is Exp-Golomb

coded as per the descriptor ue(v) for unsigned integer values. If this parameter is 0,

this parsing process will add a 1 to the end of the current bitstream.

The next two parameters, being pic init qs minus26 and chroma qp index offset both

also have a signed integer value that needs to be Exp-Golomb coded. I have used a

default value of 0 for both as the quantisation parameters exist in the slice header and

these values will not be used.

The next three parameters are deblocking filter control present flag, constrained intra

pred flag and redundant pic cnt present flag and all use the u 1() parsing process. I

have used a value of 0 as the default in the GUI for each of these parameters. All of

the necessary PPS parameters have now been included in the bitstream.

As the sample PPS bitstream shown in the next section finished neatly at the completion

of the byte, it is necessary to finish of the rbsp with a string of data bits, (sodb). In

this case the msb of the byte is set to 1 and the remaining bits are set to 0. The rbsp

is now converted to a nalu.

The first byte of the nalu buffer is filled with nalu header. The 7th bit is 0, which is the

hardcoded value of the nalu-¿forbidden bit. The 5th bit becomes the nal reference idc

value of 3, and as this value is not 0, it infers that the NAL unit does not contain a

slice or a slice data partition that is part of a non-reference picture. Finally the bit is

used to represent the nal unit type, which is type 8, which indicates that it is of type

D.3 Bitstream info 115

pps parameter set rbsp.

Using Annex B byte stream format, a long start code length is specified to be used for

PPS NALUs. This means that the start code prefix length will be 4 bytes long.

The start code is then written to the relevant output file, as specified in the encoder.cfg,

followed by the PPS NALU header byte and the 3 bytes of the PPS.

In total using the GUI’s default parameter values, there have been 64 bits written for

the PPS NALU, including the start code, the NALU header and the PPS.

D.4 PPS NALU Bitstream 116

D.4 PPS NALU Bitstream

1 2 3 4 5 6 7 8

Long Start Code - 4 bytes

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

PPS NALU Header

0 1 1 0 1 0 0 0

PPS Byte 1 -̄ (206)

1 1 0 0 1 1 1 0

PPS Byte 2 8̄ (56)

0 0 1 1 1 0 0 0

PPS Byte 3 -̄ (128)

1 0 0 0 0 0 0 0

Appendix E

VCL Bitstream

E.1 Chapter Overview

The Network Access Layer Unit, NALU, that immediately follows the Sequence Para-

meter Set, SPS) and the Picture Parameter Set, PPS contains the first picture data for

the video. The first NALU must be an Intra picture, which is a picture that does not

reference any other pictures in the video sequence.

This NALU follows the encoding of the first frame from the container qcif.yuv video

sequence, sourced from the Kansas State University.

E.1.1 Slice Header Bitstream

The first syntax element of a slice header is the current mb nr, which for an IDR

picture would be equal to 0. This syntax element is parsed using the ue(v) descriptor

for unsigned integer Exp-Golomb coded syntax elements.

The next slice header parameter is the slice type. This parameter is parsed using the

ue(v) descriptor and as it is an I Slice, it has been given a value of 7.

The next parameter to be included is the reference to the appropriate picture parameter

E.1 Chapter Overview 118

set, PPS. The pic parameter set id is hardcoded to 0 and is parsed using ue(v).

The frame num, represents the frame number and is the next parameter to be placed

into the bitstream, and is parsed using the u(n) function.

The next parameter to be placed onto the slice header is the idr pic id which is hard-

coded to 0 and parsed using ue(v).

The slice header parameter pic order cnt lsb is next to be placed onto the bitstream,

has a value of 0 and is parsed using u(n).

The next two slice header parameters are no output of prior pics flag and long term

reference flag, and are used for reference pictures. Both of these parameters are 0 and

parsed using the function u 1().

The quantisation parameter is now inserted into the slice header, and is known as

slice qp delta. This parameter is determined by the quantisation parameter provided

by the user in the Graphical User Interface (GUI). The default values has been set to 16,

minus 26 minus pic init qp minus26. If pic init qp minus26 equals 0 the quantisation

parameter is will be -10. This parameter is parsed using the se(v) descriptor for signed

integers.

This completes the Slice Header with a length of 41 bits.

E.1.2 Macroblock Header Bitstream

Prior to the macroblock header being added to the bitstream, the prediction values and

coefficients are all determined for the first block.

The first macroblock has a type of I4MB, which has a defined value for mb type of 9,

and this is changed to a value of 0 for coding. This parameter is parsed using ue(v)

and therefore a 1 is added to the bitstream. This value is inserted as the next bit in

the current byte, therefore immediate following slice header information.

The next syntax element to be parsed is of type SE INTRAPREDMODE, and is the

E.1 Chapter Overview 119

first value of the intra prediction mode array, which has been hardcoded entirely to -1

as the macroblock is of type I4MB. The -1 is converted to 1 and is allocated 1 bit of the

bitstream. The rest of 15 bits of the intra prediction mode array is parsed in a similar

format, with the addition of 15 more 1’s to the bitstream.

The next parameter to be added to the bitstream is intra chroma pred mode and spec-

ifies the type of spatial prediction to be used for chroma. In this instance the value is

0, meaning DC prediction.

If this macroblock contained motion information it would be included into the bitstream

at this point.

The next parameter to be added to the bitstream is the coded block pattern, CBP,

which is of type SE CBP INTRA and has a value of 31. This CBP value, in conjunction

with the whether the source is of YUV or RGB format determines the cbp.

The next parameter to be put onto the bitstream is mb qp delta which is the differ-

ence between the luma quantisation parameter of the current block and the previous

macroblock’s luma quantisation parameter. This has a value of 0 and is parsed using

the ue(v).

E.1.3 Macroblock Image Bitstream

The nnz value is now predicted for the luma component where the prediction from the

Neighboring Blocks for the Number of Nonzero Coefficients for Luma Blocks is sought.

Given that this the first macroblock, the nnz value for both the luma and chroma

components is 0.

The value of 7, which is taken from the vlc code table is incorporated into the bitstream,

using 10 bits.

The specific reference point to the length and vlc code tables is determined by: if the

nnz value is less than 2 table 0 is used, the number of trailing ones that are required,

in this case 0, determines that row 0 is used and finally the column reference is 4 which

E.1 Chapter Overview 120

is the coefficient token when chroma dc prediction is used. The length vlc table is also

referenced to determine the number of bits to allocate to the vlc code. The variable

length coding for this entropy coding method has been evaluated.

The coefficient levels now are VLC coded, with the number of bits used in the bitstream

and the coefficient’s value determined by the level. The coefficient levels have previously

been developed from the original luma pixel value following horizontal and vertical

transforms and then quantised. If this level is equal to -28, the number of bits to be

used to represent the value is 28 bits as the absolute value of the level is greater than

17. If less than 17 but greater than 9, 19 bits will be used, and if 8 or less, the absolute

level value multiplied by 2, minus 1 if the original level value was positive.

The coded coefficient value is determined by 4096 + (absolute level value - 17) *2 +

1. In this case the coefficient value is now 4119, and will be written to the bitstream

using 28 bits.

The next coefficient level to be VLC coded is -37 and also requires 28 bits. The

coefficient value to be written to the bitstream is 4109 and was determined using the

same method as before.

The third coefficient level is -36, and after VLC coding becomes the value of 15, and

requires 12 bits.

The coefficient level 78 is the next value that undergoes VLC coding, becoming 26,

requiring 14 bits on the bitstream. The absolute value of the coefficient is determined

to be 78, and the sign has a value of 0, indicating a positive value. As this is the 4th

vlc variable, 15 is multiplied by 8, (given by 2thevlcnumber−1 plus 1, equalling 121. One

is then taken from the absolute coefficient value, and divided by 8, therefore giving

9. Given than 78 is less than 121, the number of bits required by the coefficient is

determined by 9 + the vlc number + 1 equalling 12. A suffix is then determined by

binary anding the absolute coefficient value minus 1, with minus 1 from 2 vlcnumber,

which equals 5. The codeword of 26 is finally determined by the vlc number multiplied

by 4 plus the sign value plus suffix value multiplied by 2.

The next parameter to be encoded is the total zeros syntax element, which has a value

E.1 Chapter Overview 121

of 6, and a vlc number of 3. These values are used to reference a CAVLC total zeros

table for the total number of bits to be used and coded total vlc variable. In this

instance the total zeros parameter equals 4, and will use a length of 3 bits.

The next parameter to be encoded is the run before syntax element, which has a value

of 5, and again the vlc number is 3. A CAVLC run table is referenced for both the

length in bits and the code value. The encoded value now becomes 5, which is allowed

a length of 3 bits.

The next run before syntax element is now encoded using the table for the bitstream.

Originally it had a value of 0, and a vlc number of 0. Following encoding, a single 1 is

placed on the bitstream.

The third run before parameter is now encoded from a 1 value and vlc number of 0 to

a 0 value, with length of 1.

The next parameter to be used in the bitstream is the coeff token, used to specify the

total number of non-zero transform coefficient levels. A CAVLC table is referenced,

and the value of 8 results to be put onto the bitstream, using 6 bits.

The next three 4×4 blocks of the macroblock are now written in the same format as

before, whereby the CAVLC changed coefficient levels, the total number of zeros and

the number of consecutive transform coefficient levels in the scan.

The chroma information is now determined and written to the bitstream. The syntax

element is now of type SE CHR DC INTRA. As with the luma component of the

macroblock, the first parameter to be added to the bitstream is for the coeff token.

The VLC table used to generate this parameter’s value and length is different to the

one used to generate the luma coefficient token value.

The first chroma coefficient contains the level prefix and level suffix parameters, whereby

a value of 4096 is derived and added to the bitstream, using 28 bits.

Following the coefficient is the total zeros parameter for U chroma. If the total zeros

parameter is a 1, a 1 is output to the bitstream.

E.1 Chapter Overview 122

The V chroma information is now prepared for the bitstream. The coeff token is de-

termined using the chroma coeff token table, and the value of 6, with a length of 6 bits

is derived from the reference information.

The trailing ones sign flag is given a 1 value to be placed onto the bitstream. This flag

indicates that the corresponding transform coefficient level should be decoded as -1.

The V chroma coefficient was previously determined to have a value of -4 for the first

macroblock of the sample frame and after encoding requires the value of 1 to be placed

onto the bitstream over 6 bits.

The total zeros parameter for the V chroma component is now encoded for the bit-

stream, and is a 1 which is to be represented over 2 bits. Finally, the run before

parameter is added to the bitstream for the V chroma component, whereby the value

of 0 will be represented by 1 bit.

The first macroblock has now been written to the bitstream. The bit counters and

macroblock addressing and counters are all reset and updated, in order to prepare for

the next macroblock. In total 510 bits were written to encode this macroblock.

The next macroblock is now encoded for the bitstream, until the entire slice is written.

Given that the number of slice groups to be used is set to 0, flexible macroblock ordering,

FMO, is not employed, therefore macroblocks are written in a raster scan order, from

left to right, top to bottom.

The second macroblock will now have a neighbour, being the neighbour to its left,

and this neighbour can be used in the determination of any applicable motion vectors.

A prediction value is determined for the U chroma block, being the average value of

the U chroma coefficients from the previous block. The U chroma average for the

previous macroblock was 137, therefore this is the predicted value for the next chroma

coefficient. This is known as horizontal prediction, and is termed HOR PRED 8. If

the above macroblock was available, vertical prediction may also occur, and when both

horizontal and vertical macroblocks are available, plane prediction will also be used.

The cost between the original value and the predicted value is now determined, given

E.1 Chapter Overview 123

that the original value is 136 for the U chroma component, and the predicted value of

137 exists, therefore there is a difference of -1 between these values. Summing up all of

these differences that were created using DC PRED 8 for the 4x4 block is 12.

The difference between the original value and the predicted value for the V chroma

component, using DC PRED 8 is also determined to be -1 for the first pixel, whereby

the original value is 125, and the predicted value is 126 and for the entire 4x4 block, a

difference of 14 exists. The entire macroblock cost for this type of prediction for both

U and V chroma values is 97.

The cost is now determined using horizontal prediction. For the first U chroma compo-

nent a difference of -1 again exists between the original value and predicted value and

again a cost of 12 is associated with the absolute value of all of the differences for this

macroblock. The same values exist for the V chroma component with a difference of

-1 between the original and horizontal predicted values. For the 4×4 V chroma block,

a difference of 14 exists and 97 is the cost for the U and V chroma values for this

macroblock.

As the cost associated with the horizontal prediction method is the same as the direct

prediction method, the DC PRED 8 method will be used as the chroma intra prediction

mode.

The Y values from the previous macroblock are averaged to determine the value to be

used for the DC luma prediction, giving (106 + 255 + 231 + 232)/4 = 206. Horizontal

luma prediction is now effected, whereby values are predicted using various algorithms

on the values of the previous macroblock.

Using DC PRED mode the difference for the first pixel of this macroblock is -100, and

for the entire 4x4 macroblock it is 791.

The luma component is now transformed first horizontally and then vertically and

subsequently quantised. The coefficient for the first luma pixel of this macroblock is

-64. This is continued for the rest of the macroblock.

The macroblock header information is now written to the bitstream for the second

E.1 Chapter Overview 124

macroblock, beginning with the macroblock type, which is I4MB, therefore a 1 is written

to the bitstream.

As with the first macroblock, the header is continued to be written with the in-

tra pred mode syntax elements followed by the intra chroma pred mode syntax ele-

ment, continuing through to write the necessary coefficients and finally the run before

VLC parameter. This second macroblock finishes with 126 bytes being written to the

bitstream.

In total there are 99 macroblocks written in the first I Slice. A string of 0 data bits is

used to complete the final byte in the slice and if the slice was completed on a full slice,

a complete zero byte would be inserted. The Slice is now in an RBSP format. The

final byte of this slice is at byte 9788. This includes the slice and macroblock headers,

as well as the actual data.

The RBSP stream is now checked in order to ensure that accidental start code emulation

does not occur within the NALU payload.

Deblocking is then conducted on each macroblock in order within the frame on the

vertical and then horizontal edges.

The distortion is determined for each of the components, with 38269 being determined

for the y component, 5688 for the u component and 5782 for the v component.

A NALU is created for the Intra Slice, of size 101376. A rbsp is created to be filled

by the PPS payload, and it is this payload that will be used in the NALU as the data

information.

The first byte of the nalu buffer is filled with nalu header. The 7th bit is 0, which is the

hardcoded value of the nalu-¿forbidden bit. The 5th bit becomes the nal reference idc

value of 3, and as this value is not 0, it infers that the NAL unit does not con-

tain a slice or a slice data partition that is part of a non-reference picture. Finally

four bits are used to represent the nal unit type, which is type 5 indicating type

slice layer without partitioning rbsp.

E.1 Chapter Overview 125

As I am using an Annex B byte stream format, a long start code length is specified to

be used for IDR NALUs. This means that the start code prefix length will be 4 bytes

long.

The start code is then written to the relevant output file, as specified in the encoder.cfg,

followed by the, NALU header byte and the 9788 bytes of payload.

There have therefore been 9792 bytes written for the first IDR NALU, including the

start code, the NALU header, Slice and Macroblock headers, and 99 Macroblocks of

image information.

E.2 Intra VCL NALU Bitstream 126

E.2 Intra VCL NALU Bitstream

1 2 3 4 5 6 7 8

Long Start Code - 4 bytes

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

Slice 1 NALU Header

0 1 1 0 0 1 0 1

Intra Slice Header Byte 1 -̄ (136)

1 0 0 0 1 0 0 0

Intra Slice Header Byte 2 -̄ (128)

1 0 0 0 0 0 0 0

Intra Slice Header Byte 3 ”̄ ” (32)

0 0 1 0 0 0 0 0

Intra Slice Header Byte 4 -̄ (0)

0 0 0 0 0 0 0 0

Intra Slice Header Byte 5 -̄ (10)

0 0 0 0 1 0 1 0

Intra Slice Header Byte 6 (MSB only) and Macroblock Header Byte 1 -̄ (255)

1 1 1 1 1 1 1 1

Macroblock Header Byte 2 -̄ (255)

1 1 1 1 1 1 1 1

Macroblock Header Byte 3 -̄ (234)

1 1 1 0 1 0 1 0

E.2 Intra VCL NALU Bitstream 127

Macroblock Image Byte 4 -̄ (3)

0 0 0 0 0 0 1 1

Macroblock Image Byte 5 (MSB only) and First Coefficient value for bitstream -̄ (128)

1 0 0 0 0 0 0 0

Macroblock Image Byte 6,7 and First Coefficient values continued̄- (0), - (128)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Macroblock Image Byte 8 and First Coefficient (5 bits), Second Coefficient (3 bits) -̄

(184)

1 0 1 1 1 0 0 0

Macroblock Image Byte 9, 10, 11 and Second Coefficient (24 bits) continued -̄ (0) - (8)

- (6)

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0

Macroblock Image Byte 12, and Third Coefficient (7 bits) = - (128)

1 0 0 0 0 0 0 0

Macroblock Image Byte 13, 14, Rest of Third Coefficient(5 bits) and Fourth Coefficient

(11 bits)= x(120) - (3)

0 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1

Macroblock Image Byte 15, Fourth Coefficient (3 bits), total zeros (3 bits) run before

(2 bits) = r (82)

0 1 0 1 0 0 1 0

Macroblock Image Byte 16, run before = - (196)

1 1 0 0 0 1 0 0

Macroblock Image Byte 17 = Completed by subsequent Luma Information for Mac-

roblock 1 - ()

E.2 Intra VCL NALU Bitstream 128

The next 3 8x8 luma blocks continue for another 45 bytes after this one.

0

Macroblock Image Byte 63, U Chroma Coefficient token(4 lsb) = - (177)

1 0 1 1 0 0 0 1

Macroblock Image Byte 64, = - (192)

1 1 0 0 0 0 0 0

Macroblock Image Byte 65 = - (64)

0 1 0 0 0 0 0 0

Macroblock Image Byte 66 = 4 (52)

0 0 1 1 0 1 0 0

Macroblock Image Byte 67 = - (21)

0 0 0 1 0 1 0 1

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Glossary
	Chapter Introduction
	Reference Software
	Video Compression
	Overview of the Dissertation

	Chapter Video Compression Techniques
	Chapter Overview
	Video Compression Encoding
	Video Compression Decoding
	Frame Components
	Video Compression Techniques
	Motion Compensation
	Spatial Prediction
	Transformation
	Quantisation
	Entropy Coding

	Evolution of MPEG and H26L Codecs
	Chapter Summary
	Chapter The H.264 Recommendation
	Chapter Overview
	H.264 Profiles
	Bitstream Formats
	Network Abstraction Layer
	Data Partitioning

	Slices
	Motion Compensated Prediction
	Flexible Macroblock Ordering
	Arbitrary Slice Ordering
	Integer Transform
	Logarithmic Quantisation
	Entropy Encoding
	Adaptive Deblocking Filter
	Video Formats
	Hypothetical Reference Decoder
	Chapter Summary
	Chapter H.264 Encoder Principles
	Chapter Overview
	The Encoder
	The Encoded Bitstream
	Parameter Sets
	Intra Video Coding Layer Network Access Layer Unit
	Inter Video Coding Layer Network Access Layer Unit

	Chapter Summary
	Chapter H.264 Decoding Principles
	Chapter Overview
	The Decoder
	The Bitstream
	Parameter Sets
	Intra Video Coding Layer Network Access Layer Unit

	Chapter Summary

	Chapter Graphical User Interface
	Chapter Overview
	Main Interface
	Encoder Interface
	Decoder Interface
	Chapter Summary

	Chapter Results
	Chapter Overview
	Parameter Effects
	Conforming Bitstream and Fidelity Testing
	Methodology
	Results

	Fidelity and Storage Comparison
	Peak Signal to Noise Ratio
	User Software Interaction
	Chapter Summary

	Chapter Conclusion
	Achievement of Objectives
	Future Work

	List of References
	Appendix Project Specification
	Appendix NAL and Picture Parameters
	Chapter Overview
	Network Access Layer Parameters
	Slice Parameters
	Macroblock Parameters
	CAVLC Parameters
	Appendix Sequence Parameter Set
	Chapter Overview
	Parameters
	Bitstream information
	SPS NALU Bitstream
	Appendix Picture Parameter Set Bitstream
	Chapter Overview
	Parameters
	Bitstream info
	PPS NALU Bitstream
	Appendix VCL Bitstream
	Chapter Overview
	Slice Header Bitstream
	Macroblock Header Bitstream
	Macroblock Image Bitstream

	Intra VCL NALU Bitstream

