
University of Southern Queensland

Faculty of Engineering & Surveying

An Inexpensive Hardware-Based Identification System for

Improved Computer Security

A dissertation submitted by

Matthew Quarisa

in fulfilment of the requirements of

ENG4112 Research Project

towards the degrees of

Bachelor of Engineering (Computer Systems)

Bachelor of Information Technology (Applied Computer Science)

Submitted: October, 2005

Abstract

There is presently a need for better security on computer systems. Usernames and

passwords are reasonably secure except for the fact that people cannot be trusted with

them. Social Engineers exploit this by manipulating users to extract their credentials.

If access to a computer system is protected by a two-factor authentication system,

Social Engineers cannot con their way into them.

Using a USB Mass Storage Device, a Hardware-based authentication system was cre-

ated. This device can be used with any PAM-aware application to provide a secure

logon system with good portability.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Matthew Quarisa

Q11215969

Signature

Date

Acknowledgments

I would like to thank my supervisor Dr. John Leis for the direction and opportunities he

provided me throughout this year. This would be a very different dissertation without

his help.

Also, I would like to thank Jonathon Fowler for his exceptionally good programming

skills. He helped me get through many brick walls this year.

Finally I would like to thank my family and friends, particularly my Mum and Dad,

for the love and support that has kept me going these past five years.

Matthew Quarisa

University of Southern Queensland

October 2005

Contents

Abstract i

Acknowledgments iv

List of Figures x

Chapter 1 Introduction 1

1.1 Background Information . 1

1.2 Project Objectives . 3

1.3 Overview of the Dissertation . 4

Chapter 2 Social Engineering Study 5

2.1 Background . 5

2.2 Security Considerations . 9

2.3 Chapter Summary . 12

Chapter 3 Current Authentication Methods 13

3.1 Two and Three Factor Authentication 13

CONTENTS vi

3.2 Smart Cards . 14

3.3 Biometrics . 14

3.3.1 Fingerprints . 15

3.3.2 Hand Geometry . 16

3.3.3 Voice Recognition . 17

3.3.4 Eye Authentication . 17

3.3.5 Facial Recognition . 18

3.4 Commercial Authentication Systems . 20

3.4.1 Cryptocard . 20

3.4.2 Dekart Logon . 20

3.5 Chapter Summary . 22

Chapter 4 Copy Protection Techniques 23

4.1 Duplication Prevention . 23

4.1.1 SafeDisc . 24

4.1.2 SecuROM . 24

4.1.3 Laserlock . 25

4.2 Duplication Techniques . 26

4.3 Application to the USB Security Device 27

4.4 Chapter Summary . 28

CONTENTS vii

Chapter 5 Authentication Subsystems in Linux 29

5.1 Current Systems Available . 29

5.2 PAM to the Rescue . 30

5.3 Chapter Summary . 34

Chapter 6 Project Methodology 35

6.1 Importance of Copy Protection . 35

6.2 Device Considerations . 36

6.2.1 Encryption Methods . 36

6.2.2 Programming Languages . 37

6.2.3 Target Hardware . 37

6.2.4 Authentication Layers . 38

6.2.5 Device Interface . 38

6.3 Assessment of Consequential Effects . 39

6.3.1 Sustainability Issues . 39

6.3.2 Safety Issues . 39

6.3.3 Ethical Issues . 40

6.4 Chapter Summary . 41

Chapter 7 A Hardware-Based Linux PAM Security System 42

7.1 USB Mass Storage Device . 42

CONTENTS viii

7.1.1 Encrypted Token . 43

7.1.2 Encrypted Filesystem . 44

7.1.3 Hidden Storage Areas . 44

7.2 A Pluggable Authentication Module . 46

7.3 The Gnome Display Manager . 48

7.4 AutoFS . 49

7.5 Utility Programs . 50

7.5.1 Mkconfig . 50

7.5.2 Addtoken . 50

7.5.3 Viewdb . 51

7.6 An Analysis of the Current Implementation 51

7.6.1 BIOS/CMOS Passwords . 52

7.6.2 Boot Sequences . 52

7.6.3 Boot-Loaders . 53

7.6.4 Physical Security . 53

7.7 Progress . 54

7.8 Chapter Summary . 56

Chapter 8 Extending The Security Device 57

8.1 Network/Distributed Authentication . 57

8.2 Client/Server Approach . 58

CONTENTS ix

8.3 Distributed/Peer to Peer Approach . 58

8.4 Chapter Summary . 61

Chapter 9 Conclusions and Further Work 62

9.1 Achievement of Project Objectives . 62

9.1.1 Researching . 62

9.1.2 Design and Implementation . 63

9.1.3 Evaluation of the Device . 64

9.2 Further Objectives . 64

9.3 Further Work . 66

References 67

Appendix A Project Specification 71

Appendix B Screenshots of the Logon Process 73

Appendix C Source Code Listings 76

C.1 Header Files . 77

C.2 Program Files . 78

List of Figures

B.1 First Stage of Logon . 74

B.2 Successful Logon . 75

Chapter 1

Introduction

1.1 Background Information

People are not the smartest bunch. No matter how smart security measures for com-

puters become, if they use a password, some user will give it out. It is a concept

that many users can simply not grasp; ”DO NOT GIVE OUT YOUR PASSWORD

TO ANYONE”. Now that seems like a simple enough request, however through social

engineering, an alarming number of users will give out their password to a third party

without realising what they have done.

When a malicious user knows a username/password pair for a system, they generally

can do whatever they please with it. Even if the account is a basic user or restricted

one, this can be used as a ”foot in the door” to launch a further attack on the system

from within the system itself.

Furthermore, no matter how good the security of a system is, it is only as good as the

password protecting it (Microsoft TechNet: 10 Immutable Laws of Security 2005). If

users are not forced to use reasonably secure passwords then the security of the system

cannot be guaranteed. There also are concerns about password expiration policies of

some enterprises; some requiring users to change passwords every month in cases. While

seeming to increase security, requiring these password changes so often can result in less

1.1 Background Information 2

security as users may begin to start jotting passwords down on post-it’s or in diaries;

”two people can keep a secret, but only if one of them is dead” (Microsoft TechNet:

10 Immutable Laws of Security 2005) or once a password is in a place other than the

user’s head, the password is not secret anymore.

So if a user cannot be trusted to keep their credentials for a system secret, how can the

security be maintained? Using a two (or in extreme cases a three) factor authentication

system will ensure this is the case.

Most people are familiar with a two-factor system already, namely ATM’s. To guar-

antee that someone is who they are, the machine requires something we know (our

PIN) and something we have (our card). There are many other security systems, such

as biometric devices that authenticate via fingerprints, our eyes and even our voice.

Smartcard authentication is very popular amongst enterprises, especially due to the

crypto functions being performed on the card itself rather than in software on the

computer.

It is only recently where we have seen the rapid growth of both two-factor or token

based authentication and biometric identification. For under $100 it is now possible to

purchase a stand-alone Microsoft fingerprint scanner which simply connects to a USB

port and allows users to logon to their computer simply by their finger. Some USB

storage devices now incorporate a fingerprint scanner into their devices to ensure that

if the user either loses or has their device stolen, the data onboard cannot be (easily)

compromised. Smart-card readers are also widely available now, allowing people to

login to their computers using either a smartcard or a smartcard/PIN pair and thus

creating a two-factor authentication system.

There are some pitfalls with these devices. The main drawback is that smartcard based

systems require the owner/operator to purchase a smartcard for every user that wishes

to use the system. While the cost of a card is relatively inexpensive, it still requires

purchasing something that the user probably does not have already.

Biometrics may seem to alleviate this problem; after all, practically everyone has fingers

and it’s not likely that they will lose them anytime soon. As mentioned by Kay (2005),

1.2 Project Objectives 3

the two big problems with fingerprint authentication are that the fingerprint readers can

be fooled the majority of the time with gelatin moulds of fingers. Secondly, if someone

manages to reproduce a fingerprint either electronically or by creating a mould, there

is no way to revoke that fingerprint as it cannot be (essentially) changed (Kay 2005).

1.2 Project Objectives

The aim of this project is to implement an authentication system for computers using

off the shelf hardware, such as a USB Flash Disk.

It is also expected that investigations and discussions into other security devices avail-

able would be made. This would also be extended to security measures and protocols

that can be used today.

The project hopes to:

• Evaluate all the popular and influential forms of authentication means for com-

puters at home and in business currently available.

• Research studies done in the past regarding social engineering and password crack-

ing.

• Show the effects on social engineering when a two or three factor authentication

system is used instead of traditional username/password pairs.

• Evaluate common copy protection techniques to limit access to a (storage based)

security device by a malicious user.

• Create a token based, two factor authentication system using a USB Mass Storage

Device, such as a USB Thumb Drive and integrate this into a login manager using

PAM modules or a modified GDM.

• Show whether or not the device is a secure, robust authentication device for a

computer.

• Discuss implementation of the device on other Operating Systems.

1.3 Overview of the Dissertation 4

• Describe a network authentication architecture that can take advantage of the

hardware device to help increase overall security.

1.3 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 details what Social Engineering is and how it affects computer security.

Approaches hackers use to gain information and strategies that can reduce the

effect of Social Engineering are explored.

Chapter 3 describes the current authentication systems that are available presently

for both home and enterprise computer systems. This chapter pays particular

attention to the field of Biometric Authentication including systems such as Voice

and Facial Recognition.

Chapter 4 discusses processes and technologies that are used in mainstream digital

media to prevent duplication. Methods of circumventing some of these protections

are also presented.

Chapter 5 shows how the Pluggable Authentication Module (PAM) system can be

used to allow an application to support multiple authentication subsystems, even

if not explicitly supported by the original application developer.

Chapter 6 discusses the different approaches that were available in designing the se-

curity device.

Chapter 7 describes the actual development of the USB security device, outlining

each component of the system.

Chapter 8 discusses the extension of the security device, adding features that would

appeal to enterprise users.

Chapter 9 concludes the dissertation and the overall results of the project. It details

the project goals that were achieved and discusses ones that were not. Finally it

discusses further work that may be commissioned for the device at a later date.

Chapter 2

Social Engineering Study

This chapter discusses what Social Engineering is and how it affects security. Tech-

niques that hackers use to gather information and exploit people are also mentioned.

Finally, strategies that can help reduce the effects of Social Engineering in a business

are presented including the use of multi-factor authentication systems, similar to the

device created in this project.

2.1 Background

Social Engineering (SE) is the practice of obtaining confidential information by the

manipulation of legitimate users (Social engineering (computer security) - Wikipedia,

the free encyclopedia 2005). SE has been made possible due to username/passwords

and the manipulation of users who are supposed to be protecting that data. While

business’s implement password security policies, it is mostly the users who are to blame

for networks being compromised. This is especially true for systems which have strong

security but users pick weak passwords (Microsoft TechNet: 10 Immutable Laws of

Security 2005). It goes onto say that many people simply use no password as their

password.

There are three forms of SE; they are, in order of occurrence:

2.1 Background 6

• Posing as IT staff or high-level management and telephoning users.

• Posing as high-level management and telephoning IT staff.

• Develop a relationship with a user or IT staff member and extract the information

directly.

The first, being the most common, works by the hacker telephoning a person at a

business and pretending to be from IT or someone higher up in the business. They

may then pretend there is a server issue and they are restoring the backups, but they

need the users’ name and password to verify that their files have been restored correctly.

The user will unknowingly give up these credentials thinking they are ensuring their

own data is not lost. Meanwhile, the hacker is using these credentials for whatever

purpose they wish.

The next form is where a hacker will pose as high-level management, calling the IT

staff directly and pretending to need some credentials due to some urgent matter. For

example, a hacker might telephone the IT staff and pretend to be a manager in a

panic because he cannot get access to his email and download his PowerPoint slides

for a presentation he is about to give. The hacker would then possibly threaten the IT

workers job if he does not reset the manager’s password at once.

Finally, the third form of SE, and by far the most deceitful form of social engineering.

This is where the hacker will develop a personal relationship with a user or IT staff

member, with the sole intention of “sweet-taking” the information out of the user

directly. This is deceitful because the user may develop a serious relationship with

the hacker and when the bond is broken (usually because the hacker has gotten the

information they need and has then disappeared), the user or in this case, the victim,

may become depressed or may even go as far as closing themselves off from social

activity.

A good social engineer has a few important qualities, the three most important ones

are:

• Good at acting/improvisation.

2.1 Background 7

• Good at reading people.

• Good researching abilities or information gathering techniques

If a social engineer is to be successful more times than not, they must be good at acting

or improvisation. They must be able to think on their feet in high pressure situations.

This becomes ever more important in a situation such as gathering information over the

telephone. A hacker may be trying to extract someone’s credentials from a helpdesk

operator. This operator may become suspect to the identity of the person requesting

the credentials. The hacker should not just hang up the phone and leave as this would

remove the doubt in the mind of the operator of the legitimacy of the request. It is by

far much better if the hacker can make up a plausible excuse and leave the conversation

much more calmly. One exit strategy can be simply the hacker pretends their credentials

are now working and thus there is now no need to have the password reset.

The ability to read people is another important quality for a social engineer. They

must be able to look at a mark or victim and know almost immediately what approach

will work the best to extract the information they need. One example of this is if the

hacker is posing as a courier while gathering information about the business, they may

notice the secretary is having trouble with their computer. This may show that the

secretary has poor computer skills and probably would not question any direction given

by someone posing as IT staff. So just by reading, who is possibly, the first person they

see upon entering a building, the hacker has a good chance of obtaining a username

and password which can be used to gain entry to the computer system and possibly

launch further attacks from the inside.

A social engineer is only as good as the information they know about their mark. It

is very important that they have a basic understanding of how the organisation works

internally. To improve their knowledge of the organisation, a hacker may phone the

business, poking for information related to something they need. This is usually met

with limited success as employees may start to suspect something is not quite right

when lots of questions are being asked. Another way is simply to use the internet to

find all the information available. This is once again usually of limited use as all the

information on corporate websites is only for the public’s interest.

2.1 Background 8

Failing to obtain the information using one of the above techniques, a social engineer will

resort to “dumpster diving”. This is where they will simply go through an organisations

waste bins looking for anything that can help them sound more credible while they are

conning. This works more times than not because of the lax security that usually

surrounds enterprises’ waste bins. The social engineer will look for anything that can

help, this includes:

• Draft reports

• Memos

• Letters

• Meeting minutes

• Internal phone directories

Internal phone directories are highly sought after, especially in large organisations.

Most of the time, these will have the persons full name, position in the company, and

phone number. This allows the hacker to target their con directly to the person to

whom it is suited, rather than going through layer and layer of helpdesk operators and

assistants, possibly making a mistake through one of the levels as the call is escalated.

Managers seem to think that if their staff are put through an IT introduction and they

touch on the importance of keeping usernames and passwords secure, then there is no

need to worry about computer security. They are so wrong. A survey conducted in the

UK back in 2003 showed that “Ninety per cent of office workers at London’s Waterloo

Station gave away their computer password for a cheap pen, compared with 65 per cent

last year” (Leyden 2003). That is a staggering statistic. The same survey went on to

say that workers were asked bluntly “What is you password?” (Leyden 2003) and 75

percent of the employees gave it out immediately.

In the year following, another unrelated survey was conducted using a similar technique.

The results this time were just as alarming; “70 per cent of people would willingly trade

their computer password for a bar of chocolate.” It then went on to say that “... 34

per cent would give away their password for nothing!” (Grammeman 2004).

2.2 Security Considerations 9

2.2 Security Considerations

It is very important that management take educating their employees about social

engineering seriously. The staff are the ones who will have an interaction with the

hacker most of the time so its critical that they can identify when they are being

conned and take appropriate action.

There are two sides to social engineering assaults, physical and psychological. Physical

attacks are catered for in most cases for many businesses, but they fail to raise awareness

to the psychological ones. Granger (2001) talks about removing the responsibilities of

staff to make judgment calls in certain situations. That way, if the hacker asks for

something that is against the security policy, the employee must deny the request. It

should also be part of employee training that they are taught to identify SE attacks.

This is by far one of the most effective techniques against SE as every employee is

actively watching out for any suspicious activities.

Physical security is not that hard to maintain effectively. Obvious things such as ID

cards for every employee and if security is paramount, ensuring that these are checked

and verified upon entering and exiting the building (Granger 2001). Ensuring that all

doors that require security cards to access are kept closed at all times. This may require

employees once passed through the doors to wait a moment while the door shuts to

ensure it locks.

Network points should also be secured. This is usually done in large businesses by

disabling the port on the switch or router directly. Smaller businesses may simply

disconnect the port from the patch panel in their equipment racks. If this is not done

a hacker may simply be able to walk in and plug a laptop into the network and gain

access. Wireless networks are another concern for network security. They pose a much

larger problem for the business as there is no medium that can be locked down like a

wired network. This implies that strong encryption must be used over wireless links, not

using Wired Equivalent Privacy or WEP; it is by far not secure. Wifi Protected Access

(WPA) can be considered secure when bundled with a central RADIUS authentication

server.

2.2 Security Considerations 10

Still the transmissions can be intercepted and if data is highly sensitive then wireless

networks should be banned. This can be enforced by deploying access-points with rouge

network scanning features. These devices can then jam or disable the unauthorised

network automatically (Cisco Self-Defending Network - Cisco Systems 2005).

Physiological attack prevention is more difficult to implement effectively, but by no

means impossible. This can only be achieved by training employees on a regular basis.

Most companies have a security talk or presentation for new employees but leave it

at that. They do not have ongoing, updated sessions and they definitely do not keep

social engineering in the minds of their employees. If staff become lax about security,

even for a few days, this is more than enough time for a social engineer to compromise

many areas of a company.

The other important concern raised is that “A computer is only as secure as the ad-

ministrator is trustworthy”. Anyone who has administrator privileges on a system can

do whatever they want and cover their tracks so no one can detect them. There is no

security on a network if the administrator cannot be trusted. This is very important,

especially for larger organisations which may have huge amounts of confidential data

residing on servers. In these cases, background checks are usually performed on people

who have access to critical data. Of course, not every business has the resources to

check into every new administrator but if security is paramount, it should be carried

out. If a business uses some form of two-factor authentication for its users, rouge ad-

ministrators will have a harder time trying to spoof accounts, especially if the business

uses biometrics. It will not (usually) help keep files anymore secure as administrators

in most situations have full access to all files on any given server.

Another related Microsoft TechNet article “10 Immutable Laws of Security Adminis-

tration” talks about security concerns and observations that are more targeted towards

administrators than users. One such is “Law 2: Security only works if the secure way

also happens to be the easy way” (Microsoft TechNet; Security Administration: 10 Im-

mutable Laws 2005). There is no point trying to convince management to approve new

authentication systems if they are too expensive or would require too much training for

the users to interface with effectively. Most of the time, businesses will regard the secure

way to be username and passwords. These are still the dominant form of authentica-

2.2 Security Considerations 11

tion because in essence they are the easy way; especially when you consider that nearly

every operating system ever comes straight out of the box with everything necessary to

authenticate based on passwords. The other law that is of interest in the context of this

project is “Law 6: There really is someone out there trying to guess your passwords”

(Microsoft TechNet; Security Administration: 10 Immutable Laws 2005). No matter

how secure your network, nearly all are susceptible to password-guessing attacks. While

good passwords that are changed regularly can afford good protection from this type

of attack, it is not 100% secure. If a business uses a two-factor based system, such as

a smart card, or a form of secure biometrics, they will be effectively immune to these

attacks.

2.3 Chapter Summary 12

2.3 Chapter Summary

This chapter clearly showed how Social Engineering can undermine the security of any

password protected system. The three most common forms of SE were discussed along

with the qualities that make a good Social Engineer. These qualities enable them to

extract priviledged information out of users over 70 per cent of the time.

Methods of reducing SE were also discussed. There are two aspects to social engineering

attacks; these being physical and psychological attacks. Most businesses have little

or no trouble implementing protocols for reducing physical attacks, yet neglect the

psychological ones. Sometimes these psychological attacks can be reduced by simply

implementing policies where by users can not make judgment calls on certain issues; if

the policy denies a certain type of request, then the user must adhere to that.

Chapter 3

Current Authentication Methods

This chapter details various authentication devices used presently on computer systems.

Smart Cards are briefly discussed before a detailed look into Biometric Authentication is

undertaken. This includes evaluation of a number of Biometric Authentication Systems

such as Eye Scanning and Facial Recognition.

3.1 Two and Three Factor Authentication

When someone says do you have a two factor authentication system in place or have

you ever used a two factor authentication system, most people will shrug their shoulders

and say “I don’t know”; yet almost everyone has at some stage in their life used a two

or even three factor authentication system without even knowing it.

Debit or credit cards are by far the most common form of two factor authentication.

To withdraw money or to pay for purchases you need two things; something you have,

this being the actual card; and something you know, this is of course either the PIN or

the cardholders signature for debit and credit cards respectively.

The same principle applies to cheques. For a transaction to be successful, two things

are required, a cheque and a signature. Cheques however, can become three factor

authentication based when a bank or a cashier asks for some identification, such as a

3.2 Smart Cards 14

drivers license. This is done to further ensure that the person writing the cheque is

indeed who they claim to be.

In computer security terms, the base principles of two-factor authentication are still the

same; something we have and something we know. This can be extended to three-factor

authentication by the addition of some biometric identification, such as a fingerprint.

Now to access a system you need something you know, something you have and some-

thing you are.

3.2 Smart Cards

Authentication-wise, these work in a similar fashion to debit cards; you need the smart

card and usually a PIN to gain access to a system. Smart cards go one step further

than traditional magnetic strip cards by having a small embedded processor integrated

into the card. These usually perform cryptography functions using a small amount of

on-board memory. The point of this is to protect the actual key or key code on the

card from whatever is requesting authentication.

This abstraction makes smart card authentication quite secure. Since there is no way

to access the key on the card (short of scraping the top off one of the RAM chips

and using an electron microscope to read the data atom by atom!), the key cannot

be compromised. If something requests authentication, it can send a challenge to the

on-board processor and the processor can check the key before returning a success or

failure to the initial challenge.

3.3 Biometrics

While smart card authentication is quite good in itself, it is coming under threat by

another form of authentication, this being biometrics. Social engineering (computer

security) - Wikipedia, the free encyclopedia (2005) defines biometrics as “the study of

automated methods for uniquely recognizing humans based upon one or more intrinsic

physical or behavioral traits”.

3.3 Biometrics 15

Within the vast field of biometrics there are a few predominant authentication systems:

• Fingerprints

• Hand geometry

• Voice recognition

• Eye scanning

Iris

Retina

• Facial recognition

3.3.1 Fingerprints

Identifying a person by fingerprints has been a trusted means for many years. Police

by far are the biggest users of fingerprint identification, using them almost exclusively

(until the advent of DNA identification) for placing criminals at crime scenes when no

witnesses were around. Large businesses have been using fingerprint based authentica-

tion systems for years now with good results. Now though, this technology is making

its way into end user’s equipment. For example, Microsoft market a line of fingerprint

authentication peripherals such as keyboards and mice with fingerprint readers built

right into the device. Many PDA’s and laptops are now available with fingerprint

scanners integrated directly into the device.

While this sounds great for consumers who wish to secure their systems better, there are

some drawbacks to these ”consumer-friendly” scanners. Firstly some are slow; this is

also dependent on the computer’s specifications and secondly they are more susceptible

to counterfeit fingerprints.

A Japanese firm (find out who again) decided to test some consumer-grade fingerprint

readers. They began by lifting a fingerprint off one of the reader’s scanning plates.

This was not done by dusting for the print and using some contact adhesive sheet, but

by taking a photograph of it! They then used the photograph of the print to create a

3.3 Biometrics 16

gelatinous mould of the finger. Once the finger was created, they set out to test the

fingerprint readers. They were able to fool the readers and gain entry to the computer

system 80 percent of the time. This shows that a basic fingerprint scanner is by no

means foolproof, especially if it protects something that someone wants to get their

hands on badly.

Not wanting to have their system’s fooled or opened under wrong circumstances, the

Department of Energy in America has pulse or heart beat detectors along with pressure

sensors in their finger and hand authentication systems. This is to combat the use of

finger or hand moulds or to prevent a criminal from cutting off someone’s fingers or

hands to gain entry to the facility. If someone does try to use a severed limb, the system

will fail to detect a pulse and also the limb may seem flatter due to the loss of blood

and as such, will fail to authenticate the user.

3.3.2 Hand Geometry

Hand geometry or hand authentication has been used for over 20 years. It is a reliable,

non-invasive form of accepted authentication. How it works is by measuring the distance

between known points on the palm of ones hand. These are quite distinctive from person

to person and as such form the basic of hand geometry authentication. Many public

places use this form of identification, airports being one large users. Hand-prints help

speed up business people upon re-entry to the country. They simply swipe a card

and scan their hand and they are admitted without the need for an official to inspect

credentials.

Another use for this technology is in more harsh work environments, such as mechanical

workshops or mines. Since finer details such as fingerprints are not needed, employees

with dirty hands can still be authenticated successfully. Probably the biggest user of

hand identification is the US Prison System. Not only are the staff scanned for access,

but also the inmates and visitors. This means that at any one time an audit can be

conducted on the facility and everyone accounted with a relatively high accuracy. This

is especially important in situations such as a riot by inmates or an evacuation of the

facility.

3.3 Biometrics 17

3.3.3 Voice Recognition

Voice recognition technology is an ever changing field in biometrics. The two main

forms are authentication and dictation or text recognition. It is quite difficult for a

computer system to understand a user when they are talking and translate the spoken

words into text, especially with the correct punctuation and emphasis. This is due to

the many subtleties in human speech and as a result makes naturally speaking to a

computer a very mean feat to accomplish.

Recognising a small phrase or group of words accurately is vastly easier to do. By

working on a much, much smaller subset of words, say four or five, algorithms can

distinguish with a good degree of certainty any given person. Many large businesses use

this technology to protect access to computer rooms and vaults. Once again, because

this is a non-invasive authentication method, end users generally have no reservations

about embracing it.

3.3.4 Eye Authentication

Eye authentication is a relatively new system in mainstream business. It has been

around for many years but its use was severely limited to large businesses that have

something quite secure to protect or limit access too. Many people have concerns

about using an eye scanner. While some systems allow users to stand a few feet from a

scanner or camera, other more secure systems usually require users to place their faces

in a guide or position their eyes directly in front of a scanner like a pair of binoculars.

This is an invasive check; some people fear this and as a result, seem to shy away when

given the option to use it.

There are two methods of eye authentication, the first being retina based scanning. This

involves scanning the retina; using the blood vessels as unique identification markings.

Due to the need to scan the back of the eye, a user needs to be standing quite close to

the scanner and must keep the eye as still as possible. The results are quite accurate

though and as such have been used for over 15 years with only minor issues; namely

that retina patterns can change over time. This may be due to blunt trauma to the eye

3.3 Biometrics 18

or the head or simply just aging. As a result of this it is important that the system is

kept updated with ongoing “refresher” scans.

The second method, iris based scanning, is a better form of eye authentication. In this

method, the iris is photographed and the structure analysed using computer algorithms.

There are two advantages to this system. Firstly, it is less invasive than retina scanning.

All that is needed is a good quality camera and the iris pictures can be taken from a

short distance from the user. This also means that iris scanning can be done sometimes

without users knowing, good for tracking people through a public place. Secondly, a

person’s iris does not change over time, similar to a fingerprint, and as a result does not

need to be retrained on a regular basis. Furthermore, identical twins can be identified

accurately using iris analysis, making unique and accurate authentication possible when

fingerprints and sometimes retina scanning cannot.

3.3.5 Facial Recognition

Finally we come to facial recognition. This is a relatively new field when compared with

much older technologies such as fingerprinting and retina scanning. Facial recognition

uses pictures of a persons face as the basis for a uniqueness algorithm. An algorithm

attempts to map points on a face which do not change with either age or with disguises.

This means good facial recognition systems should be able to identify someone with

glasses on or who has changed their complexion to fool security.

The big problem with these systems is they require a lot of computing power to check

faces, especially when there are many cameras all feeding many frames per second. To

make matters worse, each frame may have several people in view, further complicating

the system. Performance issue like this can be handled in one of three ways usually:

• Reduce the video feeds frame rate or pause it entirely

• Reduce the image quality

• Increase the computing power

3.3 Biometrics 19

Reducing the frame rate is usually the preferred choice. Image quality is not sacrificed

and as long as there is no need to capture all the extra intermediate frames that we are

now ignoring, we can save on storage space when archiving the footage.

Reducing the image quality is usually a bad idea. Doing this usually results in a

reduction in recognition accuracy. Unfortunately there are some situations where this

has to be done, such as when a camera is mounted in a remote location and the only

communications infrastructure available is either a dialup or low-speed wireless modem.

In a larger, more mature area, such as a stadium or airport, reducing the image quality

will ease transmission and storage of the footage; it also will ease the load on the facial

recognition system as less data needs to be processed in any given video frame but the

accuracy will suffer. The most common way to reduce image quality is to compress

the image, usually by use of a video compressor/decompressor (codec). Most video

codecs are lossy, meaning that once the camera compresses the video for transmission,

elements of the video are lost and cannot be recovered.

Increasing the computing power to handle the load is the other solution. This is usually

only done if it is of the utmost importance that faces be matched accurately and timely.

An Olympic Game is the sort of magnitude that would warrant a large server upgrade;

traffic and street cameras in a town are something that would not usually be upgraded.

There is some hope though. A new breed of ”smart” cameras are starting to appear.

One company in America, Oxford Microdevices, has cameras that are outfitted with

”inexpensive but very powerful Digital Signal Processor chips” (Cringely 2005). These

cameras then can actively identify people from many distinguishing features. This

means no more monitoring hundreds of video screens and no more server farms to do

analysis from the cameras. When a camera finds something of value it then alerts a

command centre and begins to stream the video. That’s the brilliance of this system,

when you deploy 100 cameras, you are also deploying the processing power needed to

monitor those cameras. Do not think that because the camera has some intelligence

and it uses a few cheap DSP chips it is more a gimmick than a feature; most of these are

running at ”more than 50 gigaflops - 50 billion floating-point operations per second”

(Cringely 2005).

3.4 Commercial Authentication Systems 20

3.4 Commercial Authentication Systems

There are many different authentication means available for computer systems, but only

a handful are available for mainstream markets. Furthermore, only a small number of

these work under operating systems other than Windows. Smartcards seem to be the

only universal operating system authentication device; working in most OS’s and many

embedded devices.

3.4.1 Cryptocard

Cryptocard have bridged the operating system gaps with their UB-1 USB Authentica-

tion tokens and their Linux-supported smart card software. The USB token is really

a smart card and a smart card reader integrated into something the size of a USB

thumb drive; however these devices are not cheap, running in the order of $300 US for

a five pack. That is not the final cost though, as five licences on the authentication

software are required. When purchased in a starter pack, the five USB tokens and the

software with licences cost $500 US. Additional licences cost in the order of $1250 US

for 25 licences; not overly expensive for a large business, but definitely for a smaller

one (CRYPTOCard Corp 2005).

3.4.2 Dekart Logon

Dekart is another company who specialise in authentication solutions for home and

business users. Their authentication system is called Logon and can use basically any

media or authentication device to secure a system. It has no Linux support and licences

are about $40 US for personal or business use. The Dekart system may be less secure

than the Cryptocard system, especially when using the USB flash drive or CD/floppy

disk authentication methods; as the tokens may be copied easier off these devices

than the dedicated smartcard-like architecture of the Cryptocard system. However,

for Windows-based authentication, the Dekart system supports an impressive number

of devices including hardware USB tokens, Smartcards, and any other generic storage

devices such as USB thumb drives, CD’s etc. It can also interfaces with a number of

3.4 Commercial Authentication Systems 21

Biometric verification devices (Free download - secure login for Windows - USB flash

disk/smart card, biometric login with Dekart Logon 2005).

3.5 Chapter Summary 22

3.5 Chapter Summary

This chapter discussed the main types of two- and three-factor authentication systems

currently available. Smart cards are a reliable form of authentication and have the

added advantage of being non-invasive for the user.

A few common forms of Biometric Authentication were then discussed. Fingerprint

scanning is the latest form with devices now cropping up, sporting fingerprint authen-

tication. The problem with these devices though is they can sometimes be tricked by

false fingerprints. Hand geometry is a valid form of authentication but lends itself to

larger security installations such as vaults, rather than portable devices such as PDA’s.

User identification by voice was also mentioned. Used mainly for phone-based ser-

vices, such as telephone banking, it is another non-invasive form of authentication.

Conversely, one of the Eye scanning techniques is invasive; this being retina-based

scanning. This method requires users to stand quite close to the scanner and remain as

still as possible. The other Eye scanning technique uses the iris to distinguish between

users. This method is much less invasive that retina-based scanning which is better for

the user. It is also able to discriminate between users much better than other biometric

methods, so well in fact that it can distinguish between identical twins. Finally Facial

Recognition was discussed including technological advances in processing ability.

Chapter 4

Copy Protection Techniques

This chapter discusses copy protection techniques used on digital media. A few common

copy protection systems are detailed. Methods of defeating these protections are also

given. In addition, the application of copy protection to the USB security device is

mentioned.

4.1 Duplication Prevention

There are many different copy protection systems in place today to protect digital

media. Music compact discs and computer programs or games are the biggest users

of copy protection. Companies do not want people duplicating their media; copying

songs, movies or games and reducing their profits.

The two big names in CD/DVD copy protection are SafeDisc and SecuROM, owned

by Macrovision and Sony respectively. These two methods, along with many others,

are used to secure primarily PC software, especially game titles, from unauthorised

duplication.

4.1 Duplication Prevention 24

4.1.1 SafeDisc

SafeDisc protection is a software based system whereby a digital signature is embedded

into the disc by a laser beam. Then the executable for the software is encrypted with

a loader program. When executed, the loader checks for the authentication signature,

and if it is available, decrypts the executable and runs it.

The actual program executable is stored in a .icd file for SafeDisc 1. The main exe-

cutable is merely only an authentication wrapper that does the signature checks and

the decryption of the .icd file. Under SafeDisc 2, the encrypted binary .icd file and

other key support libraries are embedded in the loader or authentication wrapper. The

wrapper or loader itself is encrypted as well, decrypting itself upon execution. Once this

has occurred it then loads a kernel driver named secdrv.sys. On a Windows NT-based

operating system, this driver is used to detect the presence of a debugger. If one is

found or it detects the presence of software breakpoints in kernel functions, the decryp-

tion of the loader will fail and prevent the decryption and execution of the protected

application. When the loader has been decrypted successfully, it checks the CD/DVD

for the digital signature “using direct SCSI operations on the CD driver” (SafeDisc

FAQs 2002). Once the key is verified, the .icd is decrypted and execution is transferred

over to it.

This sounds impressive but it is really just an inconvenience for someone who wishes

to duplicate a game or a program. Anyone with a CD/DVD recorder that can burn

in disc-at-once (DAO) RAW mode and software that supports this (such as CloneCD)

can defeat SafeDisc protection. Furthermore, people have gone onto creating software

that can remove the SafeDisc protection from programs.

4.1.2 SecuROM

SecuROM uses a similar protection technique to SafeDisc, however the software that is

being protected is usually aware of this, unlike some SafeDisc applications. New versions

of SecuROM also support “Trigger Functions”, similar in function to the features found

in the SafeDisc API . These allow programmers to place many authentication requests,

4.1 Duplication Prevention 25

all of which can be customised in any way, throughout their program. This attempts to

create a more secure copy protection system, as opposed to single check systems (CD

Media World - CD/DVD Protections - CD/DVD Copy Protections - CD/DVD 2005).

Most of these systems also have facilities in place to check whether the media currently

in use is a mastered disc or recordable medium, such as a CD-R.

While SafeDisc protection embeds a digital signature into “defect sectors” which are

designed to be hard to read yet can be read by a good CD recorder, SecuROM 4.8

and greater use a different approach. Data is stored on an optical disc in a large spiral

formation, starting off small from the centre of the disc and ending up large when near

the outer edge. Since the spiral varies in size throughout the disc, there are measurable

differences in read times for the CD drive to read a sector from one area to another.

SecuROM exploits this fact by using the time taken to read two sectors as the key. If

the delays do not match the set pattern, the disc is deemed copied or corrupt.

How this protection can work is because CD-R’s have this spiral track already embedded

into them when manufactured. The optical dye is impregnated into this track and

changes when the CD is recorded and thus, the time taken to read one sector to another

is fixed. The original track cannot be duplicated because the target medium already

has an invalid track before the CD is even written. It is impossible to make exact 1-to-1

copies of SecuROM discs.

4.1.3 Laserlock

Another company, MLS Laserlock International, has similar based CD/DVD protection

systems however they use distributed corrupted blocks on the disk, 20MB of them on

a typical CD-R. In these corrupted blocks, they hide what they call “good data”,

presumably the physical signature for the encryption software. They also mention

support for protecting memory cards, a technique which may be useful on a USB

storage device. Unfortunately, this seems to be a relatively new product for them and

as such their site says nothing more than “Available Soon”.

4.2 Duplication Techniques 26

4.2 Duplication Techniques

These techniques, for the most part, are reasonably secure. Unfortunately, they are

let down because while authentication signatures are hidden on the disc, they still

need to be read by the CD-ROM drive and because of this, it is possible to create

working copies of most titles with a good CD recorder. Lite-On (amongst others) have

CD recorders that are able to clone most copy protected games perfectly due to their

ability to read and write sub-channel data and write discs in RAW modes (DAO RAW)

using specialty cloning software. SafeDisc protection can be defeated with little effort

using this method.

It is also possible to make working copies of SecuROM discs. These copies are not

1-to-1 copies but for the most part, they will work as intended on most CD/DVD

drives. Software such as Alcohol 120% or Blindwrite’s Blindread have a feature that

can “monitor these delays and write them down in a file” (Zarathustra 2002), these

delays being the sector read delays. Under Alcohol 120% this feature is called Data

Positioning Measurement or DPM. These measurements are then stored in a separate

file that virtual CD/DVD emulators, such as Daemon Tools, can use to present what

appears to be a perfectly valid CD image to an application.

To actually create a physical copy (say to a CD-R) of a SecuROM disc, the reading

delay needs to be simulated. The most common way to achieve this is to burn the same

sector twice. There is no problem doing this except the sector number must also be

set identical. Since there are now two physical sectors with basically the same address,

the disc can no longer be considered to be technically a CD-R as it does not adhere to

the standard. Most optical drives will detect the problem though and only return one

sector, effectively fooling SecuROM into believing the delays are real.

While these techniques are not fool-proof for the determined hacker, they do keep

honest people honest and definitely help keep piracy lower than what it would be.

Furthermore, these systems can really only be applied to ISO9660 based media, so

CD-ROM and DVD-ROM discs are the only medium that can benefit.

4.3 Application to the USB Security Device 27

4.3 Application to the USB Security Device

Copy protection is even more important in security devices. There must be some

method in place eventually to try to prevent unauthorized duplication of the token.

Unfortunately, the three products above can only be used on optical media; they have

no application to a UMSD as they measure characteristics that belong to CD’s or

DVD’s.

Furthermore, since UMSD are designed to be quite open, there is no real way to prevent

the duplication of the token. The authentication data may be hidden in the filesystem

directly (Chapter 7) to obscure it, but this is still not immune to a low-level copy, such

as dd under Linux.

One can employ some techniques to the actual token data to reduce the effects of dupli-

cated however. The best method is similar to a rolling code in a vehicles keyless entry

system. The remote control generates a code which seems random to anyone eaves-

dropping on the transmission except for the receiver in the vehicle. It is programmed

with the same code algorithm as the remote and knows what code to expect next time.

In fact, most systems know what to expect for the next few hundred transmissions.

This is done to ensure accidental presses of the remote when away from the vehicle do

not remove the numerical link between car and remote.

An access code can be embedded into the token and updated on every logon. This code

would be recorded in the system’s database. When the user comes back to logon, the

system would check this code, see if it what should be there and if it is valid, replace the

code with another. This is in essence what a single-use password sets out to achieve.

If someone then duplicates the token, they must login with it before the real token

is used again or else their code will be invalidated and a new code stored on the real

token. In terms of achievable duplication prevention, this is probably the best that can

be achieved with a UMSD. This could be supplemented with a check of the model and

brand of the device from its ROM. While not foolproof, it would increase security as a

hacker would need the exact make and model of UMSD to be successful.

4.4 Chapter Summary 28

4.4 Chapter Summary

This chapter discussed in detail the two biggest forms of copy protection currently

available for optical media; SafeDisc and SecuROM. SafeDisc embeds a digital signature

on a disc by deliberately corrupting sectors.

Early versions of SecuROM used a similar technique however from version 4.8, it

switched to a different method. The time taken to read two known sectors from a

disc formed the basis of the new verification system. This ment for SecuROM that

every manufactured blank disc, whether CD or DVD, would be automatically deemed

invalid when recorded with a SecuROM protected application.

Finally, methods of securing the token on the USB security device were evaluated.

Embedding a random access code in the token and updating this on every logon is

probably the best protection that can be used on a standard UMSD.

Chapter 5

Authentication Subsystems in

Linux

This chapter discusses the authentication systems that can be used in Linux-based

distributions. It then goes on to show how PAM is used to bridge the gaps in these

systems and help programs use the available authentication systems effectively.

5.1 Current Systems Available

Currently there are not a great number of authentication systems for Linux. A short

list includes but is not limited to:

• /etc/passwd file

• Shadow passwords

• LDAP

• NT Authentication

• Kerberos

• Network Information Service

5.2 PAM to the Rescue 30

The problem with all these systems is that they require the client programs to have

support built in for each system. So if a developer of one program decides that shadow

password authentication is all that is needed, all the users of that program are locked

into using them too. What if the user wants to authenticate against an NT server or

a LDAP server? They can’t; either they change to a program that does authenticate

against what they want or they stop using the program.

This caused lots of problems, especially with mixed operating system environments

such as computer labs. User accounts may be stored on an NT server machine which

was fine for the Windows computers, but not fine for the Linux or Mac ones. So then

a NIS server would be setup to authenticate the Linux clients and a Mac OS server for

the Mac clients. That is all well and good until users need to be added to the system;

there are now three user databases that need to be updated simultaneously. To make

matters worse, when a user changes their password or an account is to be disabled,

again three databases need to be updated to reflect these changes. This is very tedious,

especially when there are hundreds or thousands of users.

5.2 PAM to the Rescue

The Pluggable Authentication Module System (PAM) puts an end to all this. PAM

separates the authentication methods from the client program both simplifying the pro-

gram code and improving security or “to separate the development of privilege grant-

ing software from the development of secure and appropriate authentication schemes”

(Morgan 2002). Program code is simplified as developers do not need to bother cod-

ing routines to interface with the different authentication systems. All that needs to

be included is code to interface with the PAM application programming interfaces or

API’s. This means more focus can be spent on the actual program itself rather than the

security of it. Security is improved as tested and trusted modules are used to handle

the authentication requests instead of modules coded by the developer. This helps to

ensure that simple exploits do not crop up in security-sensitive programs that may have

been programmed by more inexperienced developers.

5.2 PAM to the Rescue 31

PAM works by breaking down any authentication methods and tasks into modules that

can be stacked together or “pluggable”. This makes PAM a very flexible authentication

system. It can be used to mix and match different authentication databases together

across different platforms thus allowing us to have a single user database across both

Windows and Linux machines.

PAM handles four main tasks related to authentication and user management. These

are:

• authentication management

• account management

• session management

• password management

Authentication handles the identification of the user, whether this is prompting them

for a password, smartcard or other authentication means. It also handles the escalation

of privileges through some of its own procedures. Account handles non-authentication

related functions. This includes resource access, location-based and time of day access.

Session is responsible for pre- and post-logon tasks, such as opening a log file, creating

temporary directories or some passing of data from one program to another. Password

handles “updating the authentication token associated with the user” (Morgan 2002)

There is usually one Password handling module for every Authentication method spec-

ified.

Each of these module types (auth, account, session and password) has a control-flag

associated with it. This lets PAM know what should happen on a module success

or failure. Since PAM lets users stack many modules together, sometimes even with

the same name but different parameters, it is important that the control-flags let PAM

distinguish between and transfer control in a sensible matter. These module successes or

failures are not passed to the application that requested authentication; rather a success

or fail summary result is passed once PAM relinquishes control to the application.

There are five control flags which are supported in all versions of Linux-PAM, four

5.2 PAM to the Rescue 32

of which are module modifiers and one to aid in configuration of many PAM-aware

programs. The flags are:

• required

• requisite

• sufficient

• optional

• include

Required specifies that the success of this module is required for the overall success of

all the similarly named modules. It is important to note that if a module does fail, this

failure will not be noticed until all the remaining modules with the same name have

been executed.

Requisite is similar to required in the sense that it must succeed to succeed overall

however if a module does fail, control is returned immediately to the application and

the return code is from the first required or requisite module to fail. Requisite is handy

when it is important to check something important related to a user’s logon before

they are authenticated, such as day of week for time-based restrictions or against lists

of banned users.

Sufficient indicates that the success of this module is sufficient to ignore processing

the other similarly named modules in the stack. It may be used when a hardware

based authentication device is used on the system such as a smartcard reader. The

smartcard interaction module may be given the “sufficient” flag to ensure we do not

need to process the other authentication modules such as passwords.

Ignore sets a module as begin non-critical to the success or failure of the authentication

request by the application. Modules marked this way are usually ignored by PAM

unless all other modules have not returned definite results, such as PAM IGNORE.

Include is not a module modifier, rather a syntax operator. It tells PAM to “include all

lines of given type from the configuration file specified as an argument to this control”

5.2 PAM to the Rescue 33

(Morgan 2002). This allows users to create global PAM configuration files and include

relevant parts of each in the application’s PAM configuration.

5.3 Chapter Summary 34

5.3 Chapter Summary

This chapter discussed how PAM can be used to tie multiple authentication systems

together for a single application. PAM allows application developers to focus on the

features in their application rather than the security implementations. Furthermore,

PAM is hugely configurable, supporting a handful of basic control flags which allow for

some quite comprehensive authentication configurations. This allows system adminis-

trators to change the authentication system for any given PAM-aware application with

no consequence to the performance or reliability.

Chapter 6

Project Methodology

This chapter outlines the different approaches that could have been taken to create

each section of the device. Issues related to copy protection, encryption methods,

programming languages and device interfacing are discussed.

6.1 Importance of Copy Protection

Research in the copy protection area will be important for this project. USB Mass

Storage devices are inherently insecure due to their very open nature. This would

allow for quite easy duplication of tokens onto other storage devices. There are a few

methods employed by CD/DVD manufacturers, both in data and audio fields, to limit

copying and redistribution of material on these mediums. Investigation into a few of

the most common techniques/software would be performed. Another consideration is

the support of the protection scheme under other operating systems, such as MacOS

X and more importantly, due to the technical tasks in this project, Linux. This also

creates further considerations; due to Linux’s low level interfaces for hardware access,

we may find that many of the copy protection schemes can be circumvented under it.

6.2 Device Considerations 36

6.2 Device Considerations

The largest part of the project will be the creation of the actual software to authenticate

from the USB device. This area will involve a few distinct paths of research:

• Suitable encryption methods

• Suitable programming languages

• Choice of target hardware, both computer and flash drive

• Research of authentication layers under Linux

• Preference of low level device handling

6.2.1 Encryption Methods

To ensure that the token/device cannot be compromised, it should have some form of

encryption. There are three main approaches to achieving this:

1. Create an encryption library from scratch using a simple cipher.

2. Use a freely available industry standard encryption library, dynamically linking

to it from the authentication software.

3. Use existing command line based encryption tools available for Linux.

Of the three approaches, the first is the most insecure and the most difficult. Creating

a secure encryption library basically from scratch could easily be a year long project on

its own and creating one as a sub-project is well out of the scope of this project. The

second and third approaches make more sense in a time-restricted task. Both are viable

alternatives which can achieve high levels of encryption security. The use of command

line tools would lend itself to be the most flexible solution, especially since the user

could substitute their preferred encryption program for the default one. This approach

also has the advantage that many programs could authenticate easily off the one token

6.2 Device Considerations 37

or key. Finally, the legal restrictions on encryption software in other countries are a

concern. Wherever possible, software and ciphers that are available in all countries

should be used in favour of encryption products with export restrictions.

6.2.2 Programming Languages

There are usually a handful of programming languages available to a developer that is

suitable for the task at hand; C/C++, Java, Visual Basic and more recently, C#. To

ensure ease of cross-platform portability, C/C++ is best suited for this project. While

Java has far better cross-platform portability, its use of a Virtual Machine severely

limits its direct access to hardware, which is essential to a secure authentication device.

C/C++ also has the advantage of the same compiler, GNU C Complier on Linux (as

gcc) and Windows (as MinGW or gcc provided through Cygwin emulation).

6.2.3 Target Hardware

The choice of target hardware needs to be considered, not so much for the computer,

but for the choice of USB Flash Drive. The computer is assumed to be a standard 32bit

x86 architecture based system with a USB controller (32 bit architecture is mentioned

intentionally as some crypto functions may behave differently on a 64 bit processor).

The USB drive, however, could be one of many hundreds of devices available. This can

then be extended to include other devices whose primary roles are not that of a USB

Mass Storage device but are secondary functions supporting a primary function, such

as the storage of photos in a digital camera or the storage of MP3 and OGG files in a

portable music player. For the time being, the focus will be on USB thumb drives as

the primary device for the storage of the token. Another factor that could increase the

security of the device is determining if some of the devices have unique (or semi-unique)

serial numbers in ROM onboard, this would allow the software to lock the token to a

particular hardware device and thwart most forms of token copying to other devices.

6.2 Device Considerations 38

6.2.4 Authentication Layers

Nearly all Linux distributions have an authentication layer that keeps the authenti-

cation systems separate from the programs that request authentication and on most

Linux systems, this is provided by PAM, the Pluggable Authentication Module system.

When a new authentication system is added to the system, if a PAM exists for it, then

any application that is PAM-aware can immediately use that new system for its au-

thentication. PAM saves developers - of both authentication systems and software that

requires authentication - a lot of time and effort; having a framework that can work

on different architectures to talk to different programs is a huge advantage. One other

advantage is that the quality of the code is improved due to the already secure nature

of PAM; the risk of creating bugs that reduce the effectiveness of the authentication

means is lower than the cost of creating the entire system from scratch.

One of the goals is to have the device working with a login manager, in our case the

Gnome Display Manager or GDM. Further research must be done to determine the

underlying authentication mean that GDM uses when granting access to a user. There

is a good chance that it uses PAM, which if this is the case, should not require too

much change to use a secondary authentication means.

6.2.5 Device Interface

Arguably the most difficult part of the project will be accessing the USB hardware

directly. Under Linux, direct access to the USB Flash Drive as a hard drive is rela-

tively straightforward, but accessing it as a USB device, independent of its actual role,

will be more difficult. Under Linux, this could be achieved via a kernel module that

sets-up a connection to the device and creates a device node in the /dev/ directory,

thus controlling direct access to the device from malicious users/programs. This may

be unnecessary if a suitable copy protection method can be found and successfully im-

plemented. Furthermore, we may not need any direct access to the device; this would

allow us to simply use the OS’s file system layer and access the token as a simple binary

file.

6.3 Assessment of Consequential Effects 39

6.3 Assessment of Consequential Effects

6.3.1 Sustainability Issues

With anything related to computers and technology, there is always the concern that

something will supersede a product. Whether it is CD writers being replaced by DVD

writers, parallel ATA drives being replaced by serial ATA drives, or even floppy discs

being replaced by memory cards or USB thumb drives, there is always something that

will come along and replace something else. For this reason, it is important that the

USB security device be forwards-compatible so users will not be disadvantaged both

financially and feature based. Forward or future-compatibility is usually ensured by the

use of firmware upgrades; allowing features to be added to the system at a later date

without requiring the purchase of an entirely new device. The only other way is if a

device is built using a technology that is unlikely to be removed from a computer system

in the foreseeable future. A keyboard is a good example of this. It is quite unlikely

that the keyboard will be removed from computers any time soon, or most probably

not until voice recognition technology reaches a stage where it is a useful and accurate

input technology. The same goes for USB. Pretty much every peripheral these days

can be connected to a computer via USB. Almost every digital camera, MP3 player,

printer, scanner, mouse and keyboard use USB for their interface to the computer. As

a consequence of this rapid uptake of USB interfaces, it is highly unlikely that USB

will be removed from computers for a very long time to come.

6.3.2 Safety Issues

It is important for any business who secures users data effectively that some way for

the business to gain access to that data quickly is available. This may be to check on an

employee’s progress for a task or to recover data of a recently fired employee from their

home drive. So there must be ways whereby the owner of the intellectual property,

which is being protected by our system, can gain legitimate access. This may involve

creating an administrator backdoor in the authentication system, for example, that

when provided with the correct (and usually more secure) administrator key/token,

6.3 Assessment of Consequential Effects 40

the administrator can access anything protected on the system. The concern here

though is that now there is a key/token that can bypass all the security measures -

what happens when this falls into the wrong hands (because it will eventually!)?

A related issue to this is fail-safe or backup authentication systems. Can we really

provide a backup system that, while more cumbersome to use, can still provide a similar

level of security that the primary means achieves? What if the fail-safe system asks

the user for their logon name, password and date of birth, would that be as secure as

a smartcard authentication or a USB based security device? Whatever backup system

is chosen, it is very important that it be able to match the security provided by the

device initially.

6.3.3 Ethical Issues

How can it be ensured that the system does not contain backdoors that can be exploited

by the programmer at a later date to gain unauthorised access? Could the code be

released under an open-source licence such as GPL. This way, anyone who had concerns

about the integrity of the system could audit the code. If the system is to be marketed

though, it is more likely that the code would be closed-source. While this will help to

generate profits, there is no real assurance for the users who purchase the system that

they are really secure. There is no way that most businesses could conduct a security

audit of the binary form of the software to ensure the integrity of both it and the

programmer/programming house. The system should be designed and programmed

with absolutely no backdoors, for this is a big ethics violation. This does not mean

override or full access codes/tokens should not be considered as many businesses would

like this ability in their systems. The distinction here is that a backdoor is a hidden

bypass or entry point in the system that can be exploited to gain unauthorised entry

whereas an override or full access code is a documented security override that can be

used by administrators of a network.

6.4 Chapter Summary 41

6.4 Chapter Summary

This chapter discussed the different approaches that could have been taken with each

section of the device. Copy protection issues were investigated briefly. A number of

aspects related to the device including encryption methods and programming languages

were detailed. Finally a brief assessment of the consequential effects was included.

Chapter 7

A Hardware-Based Linux PAM

Security System

This section of the project deals with the programming aspects of the security device.

There are a number of components that make up the entire USB security system; these

are:

• A USB Mass Storage Device

• A Pluggable Authentication Module

• The Gnome Display Manager

• AutoFS

• Utility Programs

7.1 USB Mass Storage Device

To begin the project, a USB Mass Storage Device (UMSD) is needed for storage of

the authentication token. In all, there are no restrictions on what type of UMSD is to

be used. The most sensible choice is a small USB Flash Drive or USB Thumb Drive.

These devices can be purchased for under $50 in most cases and support both USB

7.1 USB Mass Storage Device 43

1.1 and USB 2 specifications (Thunderbird Computing :: Price Lists 2005). However

there is no reason why another device that shows up to a computer as a UMSD cannot

be used as the storage. Devices which include UMSD support include but are by no

means limited to:

• Digital Cameras

• MP3 Players

• Portable Hard Disk Drives

• PDAs

Any of these could be used as the device without any ill effects. This would help to

improve the security of the system; it would not be apparent to a thief that the digital

camera needs to be connected to the computer to gain access.

The other important consideration for the device is how the authentication token or

credentials would be stored. Three possible methods were identified:

• Use of an encrypted token

• Use of an encrypted filesystem

• Use of hidden areas of the disk

7.1.1 Encrypted Token

By far the easiest method is to use an encrypted token. This also provides the system

with the least protection against duplication as the token file can be copied with relative

ease from one device to another. Other than that, the token is an acceptable form of

credential storage. All that is needed to access the token is simple C file input/output

functions such as fopen, read and write. This allows our supporting utilities to be much

simpler when creating tokens and updating the system database.

7.1 USB Mass Storage Device 44

7.1.2 Encrypted Filesystem

The use of an encrypted filesystem is a little more difficult to implement but still

achievable under a Linux-based operating system. This method involves taking over the

entire block device and using it as one large file. The original filesystem (usually FAT)

is completely corrupted and the device cannot be used as a conventional storage device

again unless it is reformatted. Note the word “conventional”; it is possible to provide

some crypto-loopback storage on the device once the entire disk is encrypted. The last

100 MB of a 128 MB drive may be a disk image that once the user is authenticated by the

system, it is decrypted in memory and the user can access it from a designated mount

point. Once the user logs out, the disk is unmounted from memory, re-encrypted and

copied back to the device. This would give the user secure storage for the transporting

of sensitive documents and could be implemented seamlessly with the PAM so zero

user interaction is required.

7.1.3 Hidden Storage Areas

The use of hidden areas of the disk is by far the most difficult to implement but would

return the greatest payoff. If implemented correctly, there would be no visible evidence

that the device contains authentication credentials. In this method, authentication

data is stored in unused areas of the disk, areas such as the master boot record (MBR),

boot sector of the filesystem and other hidden or reserved areas of the filesystem.

The master boot record is arguably the easiest of the three methods. This is space

reserved at the start of the disk as part of the partition table where usually a boot

loader is placed. There should be little or no impact by placing a few bytes of data

here. The only concern is if the computer is booted with the device connected and the

system is capable of USB booting. The system may think the device is bootable and

start loading the MBR into memory. This is quite undesirable, especially if the data

loaded does correspond to some CPU instructions and the computer actually executes

something instead of hanging. One way around this may be to take a standard Linux

boot loader, say LILO (LInux LOader), customize it to pass the boot loading to the

first hard disc drive, install it on the device and place our authentication data just after

7.1 USB Mass Storage Device 45

it.

Hiding data in the boot sector of a filesystem is a similar task to hiding it in the MBR.

The only difference is that the MBR is queried when the system is booting if specified

in the boot sequence whereas the boot sector of a partition can only be queried if

asked directly by a boot loader or failing to query a MBR, the first boot sector will be

activated if it contains bootable code. Other than that, once we have the start of the

boot sector we can access it as if we were accessing a MBR.

There is one big problem when programs start playing in the MBR; anit-virus programs.

If anything other than the operating system (and sometimes the OS is not exempt from

the restrictions too!) attempts to access the MBR of any disc on a system, the anti-

virus software will detect this as a boot-sector virus attempting to replicate to other

drives and will deny access. Since we are using Linux for the time being, this is of no

real concern except if the device is used in Windows as well. If the anti-virus program

uses a technique known as heuristics to help detect new and unknown viruses, it may

decide that the changes made to the MBR of the device are in line with a boot-sector

virus and will alert the user accordingly.

Linux filesystems such as Ext2 or Ext3 (Linux 2nd and 3rd Extended Filesystems) store

what is known as a superblock backup several times throughout a formatted filesystem.

Since these are all backup copies, there should be no need to use them in the general

operation of the filesystem. One of these superblocks could be erased and authentication

data placed in its space. This would result in exceptionally good data hiding which

is immune to nearly all duplication processes (except for dd). On paper this sounds

like a great solution except that the operating system updates all the superblocks after

a change to the master superblock and as a result, the authentication data would be

constantly lost. The only way this method would work was if it is possible to allocate

the superblocks on a device and then remove one of them from the list of superblocks

without re-allocating the space to the filesystem. This is probably not achievable as

the location of superblocks is not usually stored as a list of known locations but rather

a formula that is evaluated with respect to the size of the device. By far an easier

method may be to simply mark with software bad sectors on the device. This has the

benefits of never being overwritten by the filesystem as it is a (semi) permanent no-go

7.2 A Pluggable Authentication Module 46

barrier.

7.2 A Pluggable Authentication Module

A PAM must be created to interface between the client applications (GDM) and the

authentication device. This module handles the following tasks:

• Loading the configuration file

• Verifying that the user exists on the system

• Checking that a no-logon file exists

• Opening the token off the device and performing an MD5 sum

• Comparing this calculated MD5 sum to the one stored in the database

To speed up the development of the PAM, the pam permit module was used as a

starting framework. The sole purpose of this module is to simply return PAM SUCCESS

whenever called. While it does have all four PAM sections defined (authentication,

account, session and password), it only has logic under the authentication management

functions. This code simply checks the user exists on the system then permits them

while all the other sections blindly return a PAM SUCCESS code. There is no problem

with this implementation as the definition of the module is indeed to always return

success. This module was chosen to build upon because the simplicity of its code and

layout makes initial testing of basic functions easier than programming a full module

from scratch.

Upon execution, the module loads the default configuration file, namely /etc/usbsecure.conf.

This file contains the path to the token database and to the mount point for the UMSD.

Also the path to the no-logon or deny file is read at this time. This configuration is

stored in a binary format, not plain ASCII text. A configuration structure is created

using the supporting utilities and the actual structure is stored in the file directly.

Listing 7.1: usb config struct Configuration Structure.

7.2 A Pluggable Authentication Module 47

#ifndef CONFIG H

#define CONFIG H

#define CONFFILE ”/mnt/homes/matthew/uni / p r o j e c t / e t c / usbsecure . conf ”

struct u s b c o n f i g s t r u c t {

char t o k e n f i l e [4 0 9 6] ;

char d eny f i l e [4 0 9 6] ;

char d b f i l e [4 0 9 6] ;

} ;

#endif

Next the module sets out to verify that the user exists. The system does not want

to attempt to login someone who does not exist, especially if the system allows these

logins to occur and passes the root filesystem as the home directory. The call to

pam get user handles this. If the user is unknown to the system, a PAM USER UNKNOWN

value is returned and the module exits otherwise a PAM SUCCESS is returned and the

authentication can continue.

After the username is validated by the system, the module checks for a deny file. This

file is similar to the /etc/nologon file which prevents users from logging into a system,

especially useful when performing system maintenance on a live server. If this file

exists and it contains a ’k’ character (meaning ok to login) then authentication can

continue as normal. If any other character is found a PAM AUTH ERR is returned. This

deny feature is important in situations where a token may be compromised and it is

unknown which one exactly. The administrator can activate the deny file and prevent

all token logons until the situation is resolved. In this time, users will be simply forced

to use a backup authentication system, most probably a password.

Once the deny file condition has been passed, the module can begin reading the token.

To begin with the module loads the token database and attempts to locate the token

signature for the previously entered username. Even though the user is known to exist

7.3 The Gnome Display Manager 48

on the system at this point, the search can still fail if the user has not been granted

a corresponding token. If it is not found, a PAM AUTH ERR is returned. The token

signature is then passed along with the token path to the do md5 file function. This

function takes a file to compute the MD5 hash from and the expected MD5 hash and

returns 1 if they do not match and 0 if they do. If one is returned, the module once

again returns PAM AUTH ERR otherwise the success message is passed to the application

using the PAM conversation-¿conv function and a PAM SUCCESS is returned.

All the MD5 functions are supplied by external code found on the internet. Writing a

message digest algorithm and the resulting functions is not an easy task from scratch.

Most implementations rely on either transformation tables, bitwise binary math or

even both in some cases. It was decided that time would be better spent integrating

different parts of the authentication system together rather than attempting to write

a MD5 library.

7.3 The Gnome Display Manager

The Gnome Display (or Desktop in recent times) Manager (GDM) is one of the most

widely used graphical login manager for Linux distributions. On system boot-up, it

starts the Xorg or XFree86 Windowing System and presents the user with a login screen.

GDM is a logical choice for this project as it is a PAM-aware application. This means

it requires no changes at all to the source code to add and manipulate authentication

methods. GDM can also be reconfigured to use what is known as a “face browser”;

this is similar to the welcome screen on a Windows XP machine with the icons or

“faces” with each user listed next to the corresponding picture. With the face browser

configured correctly, all a user needs to do is to connect the UMSD and double click

on their face to login.

Configuring the PAM’s for GDM is a relatively straightforward task. Under Gentoo

Linux, application-specific PAM configurations are found in the /etc/pam.d/ folder.

Each application then had a configuration file which corresponds with its name that

contains the PAM options. The required PAM configuration for GDM in this project

7.4 AutoFS 49

is shown below:

Listing 7.2: PAM configuration for GDM with USBSecure.

#%PAM−1.0

auth s u f f i c i e n t / l i b / s e c u r i t y /pam usbsec . so

s e s s i o n r equ i r ed / l i b / s e c u r i t y /pam motd . so

auth r equ i r ed / l i b / s e c u r i t y /pam env . so

auth r equ i r ed / l i b / s e c u r i t y /pam stack . so s e r v i c e=system−auth

auth requ i r ed / l i b / s e c u r i t y /pam nologin . so

account r equ i r ed / l i b / s e c u r i t y /pam stack . so s e r v i c e=system−auth

password r equ i r ed / l i b / s e c u r i t y /pam stack . so s e r v i c e=system−auth

s e s s i o n r equ i r ed / l i b / s e c u r i t y /pam stack . so s e r v i c e=system−auth

s e s s i o n op t i ona l / l i b / s e c u r i t y /pam console . so

It can be seen in the code above that the pam usbsec module is an authentication

(auth) module. Furthermore it is marked as being sufficient; as discussed earlier, if this

module succeeds then PAM is satisfied that the user is authenticated.

7.4 AutoFS

AutoFS is not a necessary component of the final system. This set of tools automatically

mounts and unmounts filesystems on demand without any user interaction. This was

ideal for the UMSD initially as when the PAM would attempt to access the token

the device would be auto-mounted. It was decided not to use it in the end due to

issues with some computers and the need for a kernel module. Some systems would

not auto-mount properly, failing to initialise on boot and thus failing to auto-mount

any filesystems. Secondly this implementation requires a kernel auto-mount module to

either be loaded or compiled into the kernel. While all 2.6 series Linux kernels feature

this module code, it was undesirable to require kernel level modifications to utilize the

device.

Since AutoFS was not to be used, there was still a need to mount the device prior to

authentication and to unmount it immediately after. This was accomplished by simply

7.5 Utility Programs 50

mounting the device manually using a mount call from the PAM before the token was

to be accessed and unmounting manually just after the token signature was computed.

This was deemed to be acceptable as access to the device is enabled when needed with

minimal effort.

7.5 Utility Programs

A small number of utility programs were created to handle configuring, administering

and querying the system. Currently there are three programs:

• mkconfig

• addtoken

• viewdb

7.5.1 Mkconfig

Mkconfig is used during the initial setup phase to create the configuration file for the

PAM. It creates a usb config struct structure and sets the token path, deny file path

and token database path and writes the structure to the configuration file as a binary

object.

7.5.2 Addtoken

Addtoken creates an entry in the token database and adds the user and token signature

to it. A db struct structure is created to hold the user information in the token

database. The definition of the db struct object is shown below:

Listing 7.3: db struct header definition.

struct db s t ruc t {

char username [1 2 8] ;

unsigned char tokenmd5 [3 3] ;

7.6 An Analysis of the Current Implementation 51

} ;

Once the structure is created the configuration file is read, followed by the hashing of

the new token. Next the user is prompted for the username to be associated with this

token. It is critical that this username corresponds with one on the system and that

it is entered exactly the same as in the system; this means identical case. Finally the

structure is appended to the end of the token database as a raw binary dump of the

structure data.

7.5.3 Viewdb

Viewdb is a simple utility program to view the contents of the token database. It

outputs every token found in the database, detailing username and token hash. It also

has the ability to check if a token is currently connected and if so, checks who the token

belongs to by indicating on the output if a token is currently attached.

Each of these utilities and the PAM itself all use a shared set of header files. One named

db.h contains the above db struct definition (Listing 7.3) and one named conf.h that

contains the usb config struct definition (Listing 7.1). These are used to ensure that

all functions and programs that require access to these interfaces are always using the

correct version as changing a header file means all dependencies are updated. This

is very important, especially if third party programs are used one day to modify the

token database. The program can simply include these files and it will have correct

definitions of all the structures. If the author simply copies this code directly into their

program, changes to the headers will not be propagated to their software and thus as

a result may cause severe problems or even data corruption.

7.6 An Analysis of the Current Implementation

The current implementation of the security system does have some limitations and

security concerns. Many of these are beyond the scope or control of this project but

still are important to consider. The main issue here is if a hacker gains control of the

7.6 An Analysis of the Current Implementation 52

root account on the system. If this occurs, there is zero security left on the system. The

token database, while protected by unauthorised changes through the use of filesystem

permissions, cannot be secured effectively against any root user1.

Root access can be made quite easy for a hacker to gain if a few simple checks or options

are not disabled or reconfigured from default settings or if simple procedures are not

in place. These include:

• Setting a BIOS/CMOS password

• Changing the default boot sequence

• Securing the default Linux boot-loader

• Physically securing the system

7.6.1 BIOS/CMOS Passwords

Having a BIOS or CMOS password set is one of the most basic and most important

steps in securing a system. While these passwords are easy to reset if a hacker can

gain physical access to the systems mainboard, they are the first line of defense in

protecting or enforcing the other options. If the default boot sequence is secured but

no password is set on BIOS, then the hacker can simply enter, change the boot sequence

to something that favours them and reboot.

7.6.2 Boot Sequences

“If a hacker can boot off an external drive, then it’s not your system anymore” (Microsoft

TechNet: 10 Immutable Laws of Security 2005). This is a very real concern, especially

with all the latest Linux Live-CD which allows you to boot up a full-blown Linux

system and access any filesystems on the machine, completely ignoring all filesystem

permissions. If a hacker can boot off a CD, floppy disk or even a UMSD, they can
1The exception to this rule is the immutable permission. When enabled, not even root can change

the standard file permissions (except of course root can remove the immutable permission!)

7.6 An Analysis of the Current Implementation 53

change boot-loader settings, create false accounts on the system or in this case, tamper

with the USB secure token database.

7.6.3 Boot-Loaders

Linux boot-loaders are often overlooked by most people as an entry point for hackers.

By default nearly every distribution installs its boot-loader (whether this is LILO or

GRUB) without any password. Many do give the option in setup to add a password,

however the option is usually small and has little or no emphasis drawn to it. By simply

appending the keyword “single” to the kernel options line in the boot-loader, nearly

all Linux distributions will be booted into what is known as ”single user mode”. In

this mode, root access is granted to the console immediately thus allowing a hacker to

bypass all security measures with great ease. Furthermore, a hacker could instruct the

boot-loader to boot some other foreign media, such as a CD, regardless of the BIOS

boot sequence option. This is a simple hole to plug, enabling the password option on

the boot-loader when installing will completely prevent this exploit on any system.

7.6.4 Physical Security

Without any physical security on a system, there is absolutely no point enforcing the

other points above. It is important to note that the amount of physical security is

directly proportional to the sensitivity of the data that needs to be protected. So for a

home user, simply placing a small padlock on the side of the case is ample. A paranoid

user may lock the case in a small cupboard next to the desk. If a business is to take

physical security seriously, servers should be locked in racks which are in turn locked in

a server room. By far the most secure server is one which is powered off, unplugged and

placed in a locked room. This is quite an extreme case, especially because the server

cannot actually do anything then other than take up storage space but the point is

still valid. A secure server is one which has its physical access restricted to authorised

personnel, is constantly patched with all the latest security updates and is continuously

monitored for any suspicion activity.

7.7 Progress 54

The last point there is one that is overlooked all too many times in industry. Many

system administrators will simply secure their servers in a room and ensure all the latest

security patches are applied as they are released and that’s it. They do not monitor

the server logs, check the event viewer, browse the filesystem or even check the running

process list for anything that looks out of the ordinary. For a system to be considered

secure, it must be monitored regularly by some personnel who have reasonably good

knowledge of the system.

7.7 Progress

The device and supporting software is at a usable state. There have been no major

authentication problems in the initial testing phase. Issues were found with the AutoFS

daemon on one of the test machines. Once installed and the devices defined, AutoFS

would simply fail to load, either on system start-up or when manually restarted. Since

AutoFS relies on kernel code to perform access detection and mount/unmount the

filesystem accordingly, the kernel of the problematic machine was inspected and found

to be fine. To be safe, the kernel was recompiled again with no change in the reported

errors.

Another bug was with the PAM conversation functions. These functions allow devel-

opers to pass messages from the PAM to the calling application, such as “Please enter

password” or “Swipe access card now”. Two conversations were initially coded into

the module; one for a successful login and one for a failed login. On successful logins,

the message was displayed correctly however failed logins initially displayed the correct

message but as the module progressed, it began to fail.

In worst cases this fault would cause GDM to restart rather than simply exiting and

letting the secondary login system work. This was remedied by simply commenting

out the conversation code for failures. It is unknown why this problem has occurred.

Further investigation by running GDM through a debugger such as gdb and monitoring

the segmentation faults and/or exceptions is probably the only way to resolve this issue.

The final device does not perform any encryption on the token. It was hoped to use

7.7 Progress 55

Gnu Privacy Guard (GPG) to encrypt the token so it could not be tampered with.

After researching control of GPG by a third-party application (namely the PAM) it

was found that the GPG Made Easy (GPGME) library was the best system for the

job. GPGME is an API that is suppose to make interfacing with a GPG installation

relatively straightforward. Anything that needs to be done can be coded into an ap-

plication directly and executed by the library at runtime. Unfortunately, GPGME was

quite difficult to grasp. It does come with many examples but these either did not

work as expected or were too complicated to reproduce in the PAM. In the end it was

decided to drop the encryption of the token and use a much simpler Message Digest 5

(MD5) hash of the token file.

While it may seem like not encrypting the token has significantly reduced the security

this device can provide, it should be noted that as long as the token is kept reasonably

secure, the security is no different to that of an encrypted token since the hacker cannot

obtain a copy of the token file. A simple example, most people would not give their car

keys or their credit card to someone they do not trust. If the same logic is applied to

the UMSD then it is obvious that there is no loss in system security. Sure if a hacker

obtains the device they could duplicate it, but it is also the same as giving a set of car

keys to a valet; they could duplicate the key and then have full access to that vehicle!

7.8 Chapter Summary 56

7.8 Chapter Summary

This chapter covered all the required software components for the project. A detailed

overview of the PAM was shown, including file definitions for important data structures.

The Gnome Display Manager is the application that was tested to use the USB security

device. A sample PAM configuration for GDM was also shown, examplifying how simple

configuring new authentication methods for existing PAM-aware applications can be.

The software also has a handful of supporting utility programs to perform system main-

tenance and gather information for administrators. Three programs were developed;

mkconfig, addtoken and viewdb. These allow administrators to create a default usb-

secure.conf configuration file, add a new token to the database and view the known

tokens in the database.

Finally it was shown that there are some ways to get around the security provided by

the device. All of these are common sense issues though and thus should already be

taken care of if the systems are administered by competent IT staff.

Chapter 8

Extending The Security Device

This chapter outlines enhancing the device to operate in a networked environment,

similar to ones present in large enterprises.

8.1 Network/Distributed Authentication

Without some form of network authentication, the potential applications for the device

are quite limited. An enterprise would definitely not consider a system that could not

be deployed and managed over a network to a large number of computers. There is

no way they would implement an authentication system whereby each machine has its

own list of users to authenticate to, it would become unwieldy very quickly!

There are two approaches that could be taken to implement a network-enabled version

of the device:

• A fully networked system using a single authentication server to process all au-

thentication requests.

• A fully networked system using a local database for authentication, but with the

ability to automatically import keys from surrounding computers.

8.2 Client/Server Approach 58

8.2 Client/Server Approach

The first approach is typical of most network systems currently available. NT Domain

Authentication is a prime example. For a workstation to be logged onto the network it

must be validated by a domain logon server or else it is denied access to any resources

on the network. Appling the same idea to the device, the local token database would be

moved to a central server and the direct file access commands replaced with networking

code.

Storing all the tokens on a central server is a good choice from an administration stand-

point. There is only one machine that needs to be secured well, after all the hackers

will have to target the server now to compromise the token database. Furthermore,

revoking a token is easy as there is only one system that needs updating, there is no

need to iterate through all the machines in a business, searching for a particular token

and revoking it when found.

8.3 Distributed/Peer to Peer Approach

The second approach is a much more elegant one. In this design there does not need to

be a central token server, machines can send authentication requests to one-another.

Each machine maintains a local token database as per the normal setup however there

is one fundamental change; if a device is connected and it is not found in the local

database, the machine can send a request to other machines for the token.

In this scenario a web of trust is created. A machine will trust itself and one or more

other machines. If a machine cannot handle a request, it is allowed to pass it up the

web a predetermined number of times. The beauty of this system means that a central

token server can still be sitting at the top of the web but would not usually be queried

on every logon as some machine below would have the desired token in its database.

A typical logon session may go something like this:

1. A user connects their token device to a workstation.

8.3 Distributed/Peer to Peer Approach 59

2. The system checks the token and cannot locate it in its local database.

3. The system then sends a request to the first machine from its trust list and asks

whether it has the token in its database.

4. If the queried machine has the token and it is valid, it sends a validation response

to the user’s workstation. If the machine does not know the token, it sends an

unknown response to the user’s workstation and optionally can inform the user’s

workstation of the computers it trusts to aid the user’s workstation in locating

the token. This step (4) is then repeated.

5. The user’s workstation then adds the token to its database automatically, however

it sets a remote trust flag that signifies that the token is trusted from a remote

source.

6. The user is then logged in as if their token was in the local database the entire

time.

In step 5 it is mentioned that a remote trust flag is set to signify the token is remotely

trusted. This is done so automatic revocation can be performed. If at a later date a

user’s token is revoked or deleted, it will be removed from the system with the initial

local copy however any system that logged the same user in remotely from the trust

this machine provided will still allow the user to login. With the remote trust flags

in place, the system will realise when the user connects the token that it is remotely

trusted and will then send a validation request to the machine the provided that trust

initially to see if the token is still valid. The remote machine will then return a token

revoked message and the system will deny the user access to the system and remove

the token from the local database.

Another important use for the remote trust flag is to ensure that if someone asks a

machine to check for a token, it must not return a validation response unless the token

is trusted locally. If it remotely trusts a token it should return a remotely trusted

message with the name of the system that locally trusts that particular token. That

way the system requesting validation can ask the machine with the token directly.

The other important consideration for the distributed method is how to exchange data

8.3 Distributed/Peer to Peer Approach 60

from one machine to another. A possible solution is to use the Secure Shell (SSH)

protocol with host keys. Each machine runs an SSH server and has an associated host

key. For a machine to trust another, it must have the remote machines host key stored

in its local .authorized keys file. This will then allow the machine to connect securely

and seamlessly to the other machine with no other required information.

Data can then be passed to and from each machine. Commands such as “Do you have

this token?” or data such as the MD5 hash for a token may be passed with little effort.

Furthermore, this approach would allow trusted computers to not only be on the local

network, but anywhere across the internet. Since all communications using this method

are secured quite well with SSH, there is no worry as to the integrity of the data in

transit from one machine to another.

8.4 Chapter Summary 61

8.4 Chapter Summary

This chapter has described the basic framework for distributed authentication system

that could enable the use of this security device in a networked environment. A conven-

tional client/server architecture was briefly touched on before a detailed description of

a peer to peer based authentication system was given. This system works by creating

a “web of trust” between the computers (and if required, servers too) on the network.

Chapter 9

Conclusions and Further Work

This chapter concludes the dissertation. The objectives stated at the beginning are

compared with the results achieved on the completion of the project. Furthermore, a

brief discussion of further work that may be performed in the future that may improve

the quality of the system.

9.1 Achievement of Project Objectives

The following objectives have been addressed:

9.1.1 Researching

1. Research the current state of authentication systems for both Linux and Windows

operating systems.

2. Research the benefits of such a device in the public domain, including social and

economic issues of all involved parties.

3. Research cryptography and copy protection methods implemented on various media

and security devices.

9.1 Achievement of Project Objectives 63

Chapter 3 detailed the current authentication systems used in Linux-based operat-

ing systems. The specification also stated that research was to be conducted for the

Windows operating system however this was not completed fully. A broad overview

of security devices available was conducted, covering both Smart Cards and Biomet-

ric Authentication Devices. Two commercially available authentication systems were

also compared; Cryptocard and Dekart Logon. Cryptocard supports a wider range of

operating systems, but is more expensive than the Windows-only Dekart Logon.

The benefits gained by such a hardware-based security device was most evidently por-

trayed in Chapter 2. If hackers need a physical device to gain access to a system then

Social Engineering attacks will drop significantly. The characteristics of a good Social

Engineer were also discussed. The purpose of these qualities are to help hackers extract

information from their victims efficiently but these of course would be rendered useless

if a hacker was up against a two-factor authentication system.

Protection against token/device duplication is an important aspect of a security system.

Chapter 4 described how some of the most common forms of copy protection for optical

media are achieved. It then shows how these protections can then be circumvented

with common software packages available on the internet. Since a UMSD is quite

open, protection against duplication must be done within the token possibly by using

a single-use access code and embedding this into the token after every logon.

9.1.2 Design and Implementation

4. Using a USB flash device as the underlying hardware, design and implement a

security device under a Linux-based operating system.

The security device was created using a number of software components plus a USB

flash drive. These software components comprise of a PAM, GDM and three utility

programs. The PAM was developed using an existing module for the inital framework

and then expanded with further code to load a configuration file, open a token file and

compute a MD5 hash and then compare this hash to one from a local database. If the

hash corresponds with the correct entry in the database a success message is returned

9.2 Further Objectives 64

to GDM and the user is logged into their account without any further interaction. The

addition of token signatures to the database is handled by one of the supporting utility

programs. The other two programs allow administrators to view the token database

and create an initial configuration file.

Since GDM is already a PAM-aware application, no modifications to the code were

required to fully utilise the module. GDM successfully logged the test user in every the

time. GDM was also configured to drop back to a password box on an unsuccessfull

USB logon.

9.1.3 Evaluation of the Device

5. Analyse the performance of the device in terms of robustness, security and error-

recovery.

There were some initial debugging issues that caused numerous errors, mainly with

PAM conversations. After these setbacks, the authentication performance has been

exceptional. When a user clicks OK there is no noticeable delay while the PAM checks

the token. The other programming issues encountered were with the GPG Made Easy

Library. It was not successfully integrated into the USB security system and as a result,

the token has no encryption. This is not a grave concern as outlined in Chapter 7.

9.2 Further Objectives

6. Research the issues related to the implementation and porting of the security device

software on other Operating Systems including Windows NT based OS and Mac OS X.

Since this device is designed to work on Linux-based systems only, there have been

discussions arising throughout the project as to the feasibility of porting the security

device to other operating systems, namely Microsoft Windows and Mac OS. In porting,

there are a few areas that must be considered and evaluated thoroughly to ensure the

functionality and integrity of the device. These are:

9.2 Further Objectives 65

• Integration with authentication subsystems

• Choice of programming language and compiler

• Availability of system documentation

• Ability to port code inline or fork code-base

By far the biggest challenge is interfacing with the authentication system built into the

operating system. Under Windows this is difficult to achieve at best of times; due in

part to the closed-source nature of Windows. Microsoft does not release the source code

for its OS’s (or nearly anything they produce for that matter) and this makes developing

software to mesh with their products hard to achieve. They do have a comprehensive

Application Programming Interface (API) for their products, but these still do not give

the developer any indication how the system is performing those functions. This makes

low-level Windows programming slow and complex. Furthermore, a driver developer

kit is usually required to develop device drivers with any hope of success.

These obstacles are greatly reduced under Mac OS, Mac OS X in particular. This OS

is build upon a BSD base, named Darwin in Apple’s case and as a result gives the OS

a Unix-like feel especially when programming. Furthermore, Apple has been releasing

the Darwin portion of Mac OS X to the public for free, making it easier for developers

to get their hands on a copy. Darwin does not contain any graphical components of

Mac OS X and as a result cannot be used solely as the development platform although

it is a good place to start for low-level programming tasks such as device access.

7. Design and implement a basic client/server system allowing the device to support

roaming amongst different systems.

Chapter 8 outlines two approaches to network-enabling the security device. The first

method involves a conventional client/server relationship. This may simply be a central

token server or something more highly integrated, such as a Microsoft Windows Server

with an Active Directory syncronised with the token signatures.

The second method involves a distributed approach. Each machine trusts at least one

other machine for authentication information. When a user wishes to logon, if the

9.3 Further Work 66

machine does not know the user from its local database, it can send a request to any

machine it trusts in the hope that one will trust this user. This method could be

secured by using SSH to interface between machines.

9.3 Further Work

This project is currently in the infancy stage; there are many improvements that can

be made. These include but are by no means restricted to:

• Addition of a Graphical User Interface (GUI) for the management of the security

devices features.

• Encryption of the token.

• Addition of a single-use code to the token.

It would also be favourable to have the code inspected by another developer (or two).

The code is still messy at best in some parts. Any review of the code would ensure

that any design flaws or pitfalls that the initial developer may have missed would be

corrected in future revisions.

References

CD Media World - CD/DVD Protections - CD/DVD Copy Protections - CD/DVD

(2005), CD Media World.

http://www.cdmediaworld.com/hardware/cdrom/cd protections.shtml

current May 2005.

Cisco Self-Defending Network - Cisco Systems (2005), Cisco Systems, Inc.

http://www.cisco.com/en/US/netsol/ns340/ns394/ns171/ns413/

networking solutions package.html

current July 2005.

Conlab Pty Ltd (2005), Conlab Pty Ltd, Doncaster East, Victoria.

http://www.conlab.com.au

current May 2005.

Cringely, R. X. (2005), I, Cringely . December 20, 2001 - Good Morning, Osama —

PBS, PBS.org.

http://www.pbs.org/cringely/pulpit/pulpit20011220.html

current April 2005.

Cross Match: Introduction to Biometrics (2005), Cross Match Technologies Inc, USA.

http://www.crossmatch.com/biometrics intro.html

current April 2005.

CRYPTOCard Corp (2005), CRYPTOCard Corp, Canada.

http://www.cryptocard.com

current May 2005.

http://www.cdmediaworld.com/hardware/cdrom/cd_protections.shtml
http://www.cisco.com/en/US/netsol/ns340/ns394/ns171/ns413/networking_solutions_package.html
http://www.cisco.com/en/US/netsol/ns340/ns394/ns171/ns413/networking_solutions_package.html
http://www.conlab.com.au
http://www.pbs.org/cringely/pulpit/pulpit20011220.html
http://www.crossmatch.com/biometrics_intro.html
http://www.cryptocard.com

REFERENCES 68

Free download - secure login for Windows - USB flash disk/smart card, biometric login

with Dekart Logon (2005), Dekart, Republic of Moldova.

http://www.dekart.com/products/authentication access/logon/

current April 2005.

Grammeman, S. (2004), Would you trade your password for chocolate?, The Register.

http://www.theregister.co.uk/2004/05/28/password advice

current April 2005.

Granger, S. (2001), Social Engineering Fundamentals, Part I: Hacker Tactics, Securi-

tyFocus.

http://www.securityfocus.com/infocus/1527

current April 2005.

IIett, D. (2005), Linux targeted with two-factor authentication, ZDNet UK.

http://news.zdnet.co.uk/internet/security/0,39020375,39196891,00.

htm

current May 2005.

Kay, R. (2005), Biometric Authenticaton, Vol. 39, Computerworld.

EBSCOhost database Academic Search Premier

current April 2005.

Leyden, J. (2003), Office workers give away passwords for a cheap pen, The Register.

http://www.theregister.co.uk/2003/04/18/office workers give away

passwords

current April 2005.

Microsoft Mouse and Keyboard Hardware - Fingerprint Reader Products (2005),

Microsoft Corporation, USA.

http://www.microsoft.com/hardware/mouseandkeyboard/productlist.

aspx?fprint=yes

current May 2005.

Microsoft TechNet: 10 Immutable Laws of Security (2005), Microsoft Corporation.

http://www.microsoft.com/technet/archive/community/columns/

http://www.dekart.com/products/authentication_access/logon/
http://www.theregister.co.uk/2004/05/28/password_advice
http://www.securityfocus.com/infocus/1527
http://news.zdnet.co.uk/internet/security/0,39020375,39196891,00.htm
http://news.zdnet.co.uk/internet/security/0,39020375,39196891,00.htm
http://www.theregister.co.uk/2003/04/18/office_workers_give_away_passwords
http://www.theregister.co.uk/2003/04/18/office_workers_give_away_passwords
http://www.microsoft.com/hardware/mouseandkeyboard/productlist.aspx?fprint=yes
http://www.microsoft.com/hardware/mouseandkeyboard/productlist.aspx?fprint=yes
http://www.microsoft.com/technet/archive/community/columns/security/essays/10imlaws.mspx
http://www.microsoft.com/technet/archive/community/columns/security/essays/10imlaws.mspx

REFERENCES 69

security/essays/10imlaws.mspx

current April 2005.

Microsoft TechNet; Security Administration: 10 Immutable Laws (2005), Microsoft

Corporation.

http://www.microsoft.com/technet/archive/community/columns/

security/essays/10salaws.mspx

current April 2005.

Morgan, A. (2002), The Linux-PAM System Administrators’ Guide, Kernel.org.

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html

current April 2005.

SafeDisc FAQs (2002), Wine HQ.

http://www.winehq.com/hypermail/wine-devel/2002/04/att-0616/

01-safedisc.txt

current September 2005.

Shinder, D. (2005), How to Defend your Network Against Social Engineers, WindowSe-

curity.com.

http://www.windowsecurity.com/articles/Social Engineers.html

current April 2005.

Smart Cards (n.d.), Microsoft Corporation.

http://www.microsoft.com/resources/documentation/Windows/XP/all/

reskit/en-us/Default.asp?url=/resources/documentation/Windows/XP/

all/reskit/en-us/prdp log akio.asp

current April 2005.

Social engineering (computer security) - Wikipedia, the free encyclopedia (2005),

Wikipedia Foundation.

http://en.wikipedia.org/wiki/Social engineering %28computer

security%29

current April 2005.

Taschek, J. (2001), An Eye on Biometrics, EWeek.com.

http://www.microsoft.com/technet/archive/community/columns/security/essays/10imlaws.mspx
http://www.microsoft.com/technet/archive/community/columns/security/essays/10imlaws.mspx
http://www.microsoft.com/technet/archive/community/columns/security/essays/10imlaws.mspx
http://www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx
http://www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html
http://www.winehq.com/hypermail/wine-devel/2002/04/att-0616/01-safedisc.txt
http://www.winehq.com/hypermail/wine-devel/2002/04/att-0616/01-safedisc.txt
http://www.windowsecurity.com/articles/Social_Engineers.html
http://www.microsoft.com/resources/documentation/Windows/XP/all/reskit/en-us/Default.asp?url=/resources/documentation/Windows/XP/all/reskit/en-us/prdp_log_akio.asp
http://www.microsoft.com/resources/documentation/Windows/XP/all/reskit/en-us/Default.asp?url=/resources/documentation/Windows/XP/all/reskit/en-us/prdp_log_akio.asp
http://www.microsoft.com/resources/documentation/Windows/XP/all/reskit/en-us/Default.asp?url=/resources/documentation/Windows/XP/all/reskit/en-us/prdp_log_akio.asp
http://en.wikipedia.org/wiki/Social_engineering_%28computer_security%29
http://en.wikipedia.org/wiki/Social_engineering_%28computer_security%29

REFERENCES 70

http://www.eweek.com/article2/0,1759,45623,00.asp

current April 2005.

Thunderbird Computing :: Price Lists (2005), Thunderbird Computing.

http://www.thunderbirdcomputing.com.au/prices.php?do=memory

current October 2005.

Zarathustra (2002), Alcohol Support Forum -¿ Some facts about SecuROM v4.8x, Al-

cohol Soft.

http://forum.alcohol-software.com/index.php?act=ST\&f=32\&t=1395

current September 2005.

http://www.eweek.com/article2/0,1759,45623,00.asp
http://www.thunderbirdcomputing.com.au/prices.php?do=memory
http://forum.alcohol-software.com/index.php?act=ST&f=32&t=1395

Appendix A

Project Specification

University of Southern Queensland
Faculty of Engineering and Surveying

ENG 4111/4112 Research Project

PROJECT SPECIFICATION

For: Matthew Quarisa

Topic: USB Based Security Device

Supervisor: Dr John Leis

Sponsorship: Faculty of Engineering and Surveying, USQ

Project Aim: The aim of this project is to implement an authentication system for computers using off the shelf
hardware, such as a USB Flash Disk. It also endeavors to investigate and discuss other security
devices available as well as the security measures and protocols that can be used
with devices today.

Programme: Issue A, 24th March 2005

1. Research the current state of authentication systems for both the Linux and Windows operating systems.

2. Research the benefits of such a device in the public domain, including social and economic issues of all
involved parties.

3. Research cryptography and copy protection methods implemented on various media and security devices.

4. Using a USB flash device as the underlying hardware, design and implement a security device under a
Linux-based operating system.

5. Analyse the performance of the device in terms of robustness, security and error-recovery.

As time permits:

6. Research the issues related to the implementation and porting of the security device software on other
Operating Systems including Windows NT based OS and MacOS X.

7. Design and implement a basic client/server system allowing the device to support roaming amongst
different systems.

AGREED:

________________________________ ________________________________ ___ / ___ / ___

(student) (supervisor) (dated)

Appendix B

Screenshots of the Logon Process

74

Figure B.1: First Stage of Logon

75

Figure B.2: Successful Logon

Appendix C

Source Code Listings

C.1 Header Files 77

C.1 Header Files

Listing C.1: conf.h code listing.

// con f . h − Con f i g u r a t i on Header

// Matthew Quarisa − Q11215969

#ifndef CONFIG H

#define CONFIG H

// d e f a u l t c o n f i g f i l e pa th f o r t e s t i n g purpose s

#define CONFFILE ”/mnt/homes/matthew/uni / p r o j e c t / e tc / usbsecure . conf ”

struct u s b c on f i g s t r u c t {

char t o k e n f i l e [4 0 9 6] ;

char d eny f i l e [4 0 9 6] ;

char db f i l e [4 0 9 6] ;

} ;

#endif

Listing C.2: db.h code listing.

// db . h − Token da ta ba s e header

// Matthew Quarisa − Q11215969

#ifndef DB H

#define DB H

struct db s t ruc t {

char username [1 2 8] ;

unsigned char tokenmd5 [3 3] ;

} ;

#endif

Listing C.3: md5.h code listing.

// Part o f t h e MD5.C l i b r a r y

#ifndef MD5 H

#define MD5 H

#ifndef uint8

#define uint8 unsigned char

#endif

#ifndef uint32

#define uint32 unsigned long int

#endif

typedef struct

{

uint32 t o t a l [2] ;

u int32 s t a t e [4] ;

u int8 bu f f e r [6 4] ;

}

md5 context ;

C.2 Program Files 78

int do md5 f i l e (char ∗ f i l e , unsigned char ∗thesum) ;

void md5 starts (md5 context ∗ ctx) ;

void md5 update (md5 context ∗ctx , u int8 ∗ input , u int32 length) ;

void md5 f in i sh (md5 context ∗ctx , u int8 d i g e s t [1 6]) ;

#endif /∗ md5 . h ∗/

C.2 Program Files

Listing C.4: pam usbsec.c code listing.

/∗ pam usbsec module ∗/

/∗

∗ $ Id : pam permit . c , v 1 .3 2004/09/22 09 : 37 : 49 kukuk Exp $

∗

∗ Writ ten by Andrew Morgan <morgan@parc . power . net> 1996/3/11

∗

∗ Now pam usbsec , by Matthew Quarisa − Q11215969

∗

∗/

#define DEFAULT USER ”nobody”

#include <s t d i o . h>

#include <s t d l i b . h>

#include <sys / s t a t . h>

#include <s t r i n g . h>

/∗

∗ here , we make d e f i n i t i o n s f o r t h e e x t e r n a l l y a c c e s s i b l e f u n c t i o n s

∗ in t h i s f i l e (t h e s e d e f i n i t i o n s are r e q u i r e d f o r s t a t i c modules

∗ bu t s t r o n g l y encouraged g e n e r a l l y) t h ey are used to i n s t r u c t t h e

∗ modules i n c l u d e f i l e t o d e f i n e t h e i r p r o t o t y p e s .

∗/

#define PAM SM AUTH

#define PAM SM ACCOUNT

#define PAM SM SESSION

#define PAM SM PASSWORD

#include <s e c u r i t y /pam modules . h>

#include <s e c u r i t y / pam macros . h>

// our i n c l u d e s

#include ”md5 . h”

#include ” conf . h”

#include ”db . h”

/∗ −−− a u t h e n t i c a t i o n management f u n c t i o n s −−− ∗/

PAM EXTERN

int pam sm authenticate (pam handle t ∗pamh , int f l a g s , int argc , const char ∗∗argv)

{

int r e t v a l ;

const char ∗user=NULL;

struct pam conv ∗ conver sa t i on ;

struct pam message message ;

struct pam message ∗pmessage = &message ;

struct pam response ∗ resp = NULL;

C.2 Program Files 79

struct s t a t s t ;

FILE∗ l o g f i l e = fopen (”/tmp/LOG. usbsec ” , ”a”) ;

fput s (”Begin l ogg ing . ” , l o g f i l e) ;

fput s (”\n” , l o g f i l e) ;

//

∗∗∗

// here we read the c o n f i g f i l e , i t i s a b ina ry one wi th a c o n f i g s t r u c t

struct u s b c on f i g s t r u c t c on f i g ;

FILE ∗ c o n f f i l e = fopen (CONFFILE, ” rb”) ;

i f ((f r ead (&conf ig , 1 , s izeof (struct u s b c on f i g s t r u c t) , c o n f f i l e)) < 1)

{

// e r r o r r ead ing f i l e

f c l o s e (c o n f f i l e) ;

return PAM AUTH ERR;

}

// f c l o s e (c o n f f i l e) ;

//

∗∗∗

// put t h e s e messages in a f i l e

char t e l l them [] = ”USBsecure i s a c t i v e but an authent i ca t i on e r r o r was found . ” ;

char goodie [] = ”Valid Token Found , USBSecure Logon Suc e s s f u l . ” ;

message . msg s ty l e = PAM TEXT INFO;

message . msg = te l l them ;

/∗

∗ a u t h e n t i c a t i o n r e q u i r e s we know who the user wants to be

∗/

r e t v a l = pam get user (pamh , &user , NULL) ;

i f (r e t v a l != PAM SUCCESS) {

D((” get user returned e r r o r : %s ” , pam stre r ro r (pamh , r e t v a l))) ;

return r e t v a l ;

}

i f (user == NULL | | ∗user == ’ \0 ’) {

D((”username not known”)) ;

r e t v a l = pam set item (pamh , PAM USER, (const void ∗) DEFAULT USER) ;

i f (r e t v a l != PAM SUCCESS)

return PAM USER UNKNOWN;

}

//

∗∗∗

// check f o r a deny f i l e , t h i s i s /tmp/ pam usbsec . deny

FILE ∗ d eny f i l e = fopen (c on f i g . d eny f i l e , ” r ”) ;

int tokva l = 0 ;

i f (’ k ’ != (char) f g e t c (d e ny f i l e)){

f c l o s e (d e ny f i l e) ;

tokva l = 1 ;

}

f c l o s e (d e ny f i l e) ;

i f (tokva l != 0) {

return PAM AUTH ERR;

}

C.2 Program Files 80

//

∗∗∗

// ok , so now i f we are here then us b s e c i s a v a l i d means and we must check t h e token

// g e t t h e tokenmd5 f o r t h e g i v en user

FILE ∗ db f i l e = fopen (c on f i g . db f i l e , ” rb”) ;

struct db s t ruc t userdata ;

unsigned char tokensum [3 3] ;

int tokenfound = 0 ;

i f (! d b f i l e){

p r i n t f (”Error read ing db f i l e \n”) ;

f p r i n t f (l o g f i l e , ” e r r o r read ing db f i l e ”) ;

f c l o s e (l o g f i l e) ;

return 127 ;

}

while ((f r ead (&userdata , 1 , s izeof (struct db s t ruc t) , d b f i l e)) > 0)

{

f p r i n t f (l o g f i l e , ”Username : %s\n Token MD5: %s” , userdata . username ,

userdata . tokenmd5) ;

i f (! strcmp (user , userdata . username)){

s t r cpy (tokensum , userdata . tokenmd5) ;

tokenfound++;

f p r i n t f (l o g f i l e , ” found use r s token\n”) ;

}

f p r i n t f (l o g f i l e , ” and the new tokenmd5 i s %s tokenfound %d\n” , tokensum ,

tokenfound) ;

}

user = NULL; /∗ c l e an up ∗/

f c l o s e (d b f i l e) ;

f c l o s e (l o g f i l e) ;

i f (! tokenfound){

// the token was not found , e x i t

return PAM AUTH ERR;

}

// the b i g check here − s ee i f t h e s i g n a t u r e s match

i f (do md5 f i l e (c on f i g . t o k en f i l e , tokensum)){

return PAM AUTH ERR;

}

// i f we reach here , t h e user i s a u t h e n t i c a t e d s u c c e s s f u l l y

message . msg = goodie ;

i f (pam get item (pamh , PAM CONV, (const void ∗∗)&conver sa t i on) == PAM SUCCESS &&

conver sa t i on) {

conversat ion−>conv (1 , (const struct pam message ∗∗)&pmessage , &resp ,

conversat ion−>appdata ptr) ;

C.2 Program Files 81

i f (resp) pam drop reply (resp , 1) ;

}

return PAM SUCCESS;

}

// ∗∗

PAM EXTERN

int pam sm setcred (pam handle t ∗pamh , int f l a g s , int argc

, const char ∗∗argv)

{

return PAM SUCCESS;

}

/∗ −−− account management f u n c t i o n s −−− ∗/

PAM EXTERN

int pam sm acct mgmt (pam handle t ∗pamh , int f l a g s , int argc

, const char ∗∗argv)

{

return PAM SUCCESS;

}

/∗ −−− password management −−− ∗/

PAM EXTERN

int pam sm chauthtok (pam handle t ∗pamh , int f l a g s , int argc

, const char ∗∗argv)

{

return PAM SUCCESS;

}

/∗ −−− s e s s i o n management −−− ∗/

PAM EXTERN

int pam sm open sess ion (pam handle t ∗pamh , int f l a g s , int argc

, const char ∗∗argv)

{

return PAM SUCCESS;

}

PAM EXTERN

int pam sm c lo s e s e s s i on (pam handle t ∗pamh , int f l a g s , int argc

, const char ∗∗argv)

{

return PAM SUCCESS;

}

/∗ end o f module d e f i n i t i o n ∗/

#ifde f PAM STATIC

/∗ s t a t i c module data ∗/

struct pam module pam permit modstruct = {

”pam permit” ,

pam sm authenticate ,

pam sm setcred ,

pam sm acct mgmt ,

pam sm open session ,

pam sm close se s s ion ,

pam sm chauthtok

C.2 Program Files 82

} ;

#endif

Listing C.5: md5.c code listing.

/∗

∗ RFC 1321 comp l ian t MD5 imp lementa t ion

∗

∗ Copyr i gh t (C) 2001−2003 Chr i s t ophe Devine

∗

∗ This program i s f r e e s o f twa r e ; you can r e d i s t r i b u t e i t and/ or modi fy

∗ i t under t h e terms o f t h e GNU General Pub l i c L i cense as p u b l i s h e d by

∗ t h e Free So f tware Foundation ; e i t h e r v e r s i o n 2 o f t h e License , or

∗ (a t your op t i on) any l a t e r v e r s i o n .

∗

∗ This program i s d i s t r i b u t e d in t h e hope t h a t i t w i l l be u s e f u l ,

∗ bu t WITHOUT ANY WARRANTY; w i t hou t even the imp l i e d warranty o f

∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See t h e

∗ GNU General Pub l i c L i cense f o r more d e t a i l s .

∗

∗ You shou l d have r e c e i v e d a copy o f t h e GNU Genera l Pub l i c L i cense

∗ a long w i th t h i s program ; i f not , w r i t e to t h e Free So f tware

∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

#include <s t r i n g . h>

#include <s t d i o . h>

#include ”md5 . h”

#define GET UINT32(n , b , i) \

{ \

(n) = ((uint32) (b) [(i)]) \

| ((u int32) (b) [(i) + 1] << 8) \

| ((u int32) (b) [(i) + 2] << 16) \

| ((u int32) (b) [(i) + 3] << 24) ; \

}

#define PUT UINT32(n , b , i) \

{ \

(b) [(i)] = (uint8) ((n)) ; \

(b) [(i) + 1] = (uint8) ((n) >> 8) ; \

(b) [(i) + 2] = (uint8) ((n) >> 16) ; \

(b) [(i) + 3] = (uint8) ((n) >> 24) ; \

}

int do md5 f i l e (char ∗ f i l e , unsigned char ∗thesum){

FILE ∗ t o k e n f i l e = fopen (f i l e , ” rb”) ;

i f (! t o k e n f i l e){

return 127 ;

}

md5 context ctx ;

int i , j ;

char buf [1 0 2 4] ;

unsigned char md5sum [1 6] ;

md5 starts (&ctx) ;

while ((i = f r ead (buf , 1 , s izeof (buf) , t o k e n f i l e)) > 0)

C.2 Program Files 83

{

md5 update (&ctx , buf , i) ;

}

md5 f in i sh (&ctx , md5sum) ;

for (j = 0 ; j < 16 ; j++)

{

s p r i n t f (buf + j ∗ 2 , ”%02x” , md5sum [j]) ;

}

f c l o s e (t o k e n f i l e) ;

i f (memcmp(buf , thesum , 32))

{

return 1 ;

} else {

// md5 was good ,

return 0 ;

}

// i f we g e t here , someth ings broked

return 1 ;

}

void md5 starts (md5 context ∗ ctx)

{

ctx−>t o t a l [0] = 0 ;

ctx−>t o t a l [1] = 0 ;

ctx−>s t a t e [0] = 0x67452301 ;

ctx−>s t a t e [1] = 0xEFCDAB89;

ctx−>s t a t e [2] = 0x98BADCFE;

ctx−>s t a t e [3] = 0x10325476 ;

}

void md5 process (md5 context ∗ctx , u int8 data [6 4])

{

uint32 X[1 6] , A, B, C, D;

GET UINT32(X[0] , data , 0) ;

GET UINT32(X[1] , data , 4) ;

GET UINT32(X[2] , data , 8) ;

GET UINT32(X[3] , data , 12) ;

GET UINT32(X[4] , data , 16) ;

GET UINT32(X[5] , data , 20) ;

GET UINT32(X[6] , data , 24) ;

GET UINT32(X[7] , data , 28) ;

GET UINT32(X[8] , data , 32) ;

GET UINT32(X[9] , data , 36) ;

GET UINT32(X[1 0] , data , 40) ;

GET UINT32(X[1 1] , data , 44) ;

GET UINT32(X[1 2] , data , 48) ;

GET UINT32(X[1 3] , data , 52) ;

GET UINT32(X[1 4] , data , 56) ;

GET UINT32(X[1 5] , data , 60) ;

#define S(x , n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 − n)))

#define P(a , b , c , d , k , s , t) \

C.2 Program Files 84

{ \

a += F(b , c , d) + X[k] + t ; a = S(a , s) + b ; \

}

A = ctx−>s t a t e [0] ;

B = ctx−>s t a t e [1] ;

C = ctx−>s t a t e [2] ;

D = ctx−>s t a t e [3] ;

#define F(x , y , z) (z ˆ (x & (y ˆ z)))

P(A, B, C, D, 0 , 7 , 0xD76AA478) ;

P(D, A, B, C, 1 , 12 , 0xE8C7B756) ;

P(C, D, A, B, 2 , 17 , 0x242070DB) ;

P(B, C, D, A, 3 , 22 , 0xC1BDCEEE) ;

P(A, B, C, D, 4 , 7 , 0xF57C0FAF) ;

P(D, A, B, C, 5 , 12 , 0x4787C62A) ;

P(C, D, A, B, 6 , 17 , 0xA8304613) ;

P(B, C, D, A, 7 , 22 , 0xFD469501) ;

P(A, B, C, D, 8 , 7 , 0x698098D8) ;

P(D, A, B, C, 9 , 12 , 0x8B44F7AF) ;

P(C, D, A, B, 10 , 17 , 0xFFFF5BB1) ;

P(B, C, D, A, 11 , 22 , 0x895CD7BE) ;

P(A, B, C, D, 12 , 7 , 0x6B901122) ;

P(D, A, B, C, 13 , 12 , 0xFD987193) ;

P(C, D, A, B, 14 , 17 , 0xA679438E) ;

P(B, C, D, A, 15 , 22 , 0x49B40821) ;

#undef F

#define F(x , y , z) (y ˆ (z & (x ˆ y)))

P(A, B, C, D, 1 , 5 , 0xF61E2562) ;

P(D, A, B, C, 6 , 9 , 0xC040B340) ;

P(C, D, A, B, 11 , 14 , 0x265E5A51) ;

P(B, C, D, A, 0 , 20 , 0xE9B6C7AA) ;

P(A, B, C, D, 5 , 5 , 0xD62F105D) ;

P(D, A, B, C, 10 , 9 , 0x02441453) ;

P(C, D, A, B, 15 , 14 , 0xD8A1E681) ;

P(B, C, D, A, 4 , 20 , 0xE7D3FBC8) ;

P(A, B, C, D, 9 , 5 , 0x21E1CDE6) ;

P(D, A, B, C, 14 , 9 , 0xC33707D6) ;

P(C, D, A, B, 3 , 14 , 0xF4D50D87) ;

P(B, C, D, A, 8 , 20 , 0x455A14ED) ;

P(A, B, C, D, 13 , 5 , 0xA9E3E905) ;

P(D, A, B, C, 2 , 9 , 0xFCEFA3F8) ;

P(C, D, A, B, 7 , 14 , 0x676F02D9) ;

P(B, C, D, A, 12 , 20 , 0x8D2A4C8A) ;

#undef F

#define F(x , y , z) (x ˆ y ˆ z)

P(A, B, C, D, 5 , 4 , 0xFFFA3942) ;

P(D, A, B, C, 8 , 11 , 0x8771F681) ;

P(C, D, A, B, 11 , 16 , 0x6D9D6122) ;

P(B, C, D, A, 14 , 23 , 0xFDE5380C) ;

P(A, B, C, D, 1 , 4 , 0xA4BEEA44) ;

P(D, A, B, C, 4 , 11 , 0x4BDECFA9) ;

P(C, D, A, B, 7 , 16 , 0xF6BB4B60) ;

P(B, C, D, A, 10 , 23 , 0xBEBFBC70) ;

P(A, B, C, D, 13 , 4 , 0x289B7EC6) ;

P(D, A, B, C, 0 , 11 , 0xEAA127FA) ;

C.2 Program Files 85

P(C, D, A, B, 3 , 16 , 0xD4EF3085) ;

P(B, C, D, A, 6 , 23 , 0x04881D05) ;

P(A, B, C, D, 9 , 4 , 0xD9D4D039) ;

P(D, A, B, C, 12 , 11 , 0xE6DB99E5) ;

P(C, D, A, B, 15 , 16 , 0x1FA27CF8) ;

P(B, C, D, A, 2 , 23 , 0xC4AC5665) ;

#undef F

#define F(x , y , z) (y ˆ (x | ˜z))

P(A, B, C, D, 0 , 6 , 0xF4292244) ;

P(D, A, B, C, 7 , 10 , 0x432AFF97) ;

P(C, D, A, B, 14 , 15 , 0xAB9423A7) ;

P(B, C, D, A, 5 , 21 , 0xFC93A039) ;

P(A, B, C, D, 12 , 6 , 0x655B59C3) ;

P(D, A, B, C, 3 , 10 , 0x8F0CCC92) ;

P(C, D, A, B, 10 , 15 , 0xFFEFF47D) ;

P(B, C, D, A, 1 , 21 , 0x85845DD1) ;

P(A, B, C, D, 8 , 6 , 0x6FA87E4F) ;

P(D, A, B, C, 15 , 10 , 0xFE2CE6E0) ;

P(C, D, A, B, 6 , 15 , 0xA3014314) ;

P(B, C, D, A, 13 , 21 , 0x4E0811A1) ;

P(A, B, C, D, 4 , 6 , 0xF7537E82) ;

P(D, A, B, C, 11 , 10 , 0xBD3AF235) ;

P(C, D, A, B, 2 , 15 , 0x2AD7D2BB) ;

P(B, C, D, A, 9 , 21 , 0xEB86D391) ;

#undef F

ctx−>s t a t e [0] += A;

ctx−>s t a t e [1] += B;

ctx−>s t a t e [2] += C;

ctx−>s t a t e [3] += D;

}

void md5 update (md5 context ∗ctx , u int8 ∗ input , u int32 length)

{

uint32 l e f t , f i l l ;

i f (! l ength) return ;

l e f t = ctx−>t o t a l [0] & 0x3F ;

f i l l = 64 − l e f t ;

ctx−>t o t a l [0] += length ;

ctx−>t o t a l [0] &= 0xFFFFFFFF;

i f (ctx−>t o t a l [0] < l ength)

ctx−>t o t a l [1]++;

i f (l e f t && length >= f i l l)

{

memcpy((void ∗) (ctx−>bu f f e r + l e f t) ,

(void ∗) input , f i l l) ;

md5 process (ctx , ctx−>bu f f e r) ;

l ength −= f i l l ;

input += f i l l ;

l e f t = 0 ;

}

while (l ength >= 64)

{

C.2 Program Files 86

md5 process (ctx , input) ;

l ength −= 64;

input += 64 ;

}

i f (l ength)

{

memcpy((void ∗) (ctx−>bu f f e r + l e f t) ,

(void ∗) input , l ength) ;

}

}

stat ic uint8 md5 padding [6 4] =

{

0x80 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

} ;

void md5 f in i sh (md5 context ∗ctx , u int8 d i g e s t [1 6])

{

uint32 l a s t , padn ;

u int32 high , low ;

u int8 msglen [8] ;

high = (ctx−>t o t a l [0] >> 29)

| (ctx−>t o t a l [1] << 3) ;

low = (ctx−>t o t a l [0] << 3) ;

PUT UINT32(low , msglen , 0) ;

PUT UINT32(high , msglen , 4) ;

l a s t = ctx−>t o t a l [0] & 0x3F ;

padn = (l a s t < 56) ? (56 − l a s t) : (120 − l a s t) ;

md5 update (ctx , md5 padding , padn) ;

md5 update (ctx , msglen , 8) ;

PUT UINT32(ctx−>s t a t e [0] , d ige s t , 0) ;

PUT UINT32(ctx−>s t a t e [1] , d ige s t , 4) ;

PUT UINT32(ctx−>s t a t e [2] , d ige s t , 8) ;

PUT UINT32(ctx−>s t a t e [3] , d ige s t , 12) ;

}

#ifde f TEST

#include <s t d l i b . h>

#include <s t d i o . h>

/∗

∗ t h o s e are t h e s tandard RFC 1321 t e s t v e c t o r s

∗/

stat ic char ∗msg [] =

{

”” ,

”a” ,

”abc” ,

”message d i g e s t ” ,

” abcdefghi jklmnopqrstuvwxyz ” ,

”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789” ,

” 12345678901234567890123456789012345678901234567890123456789012” \

C.2 Program Files 87

”345678901234567890”

} ;

stat ic char ∗ va l [] =

{

” d41d8cd98f00b204e9800998ecf8427e ” ,

”0 cc175b9c0f1b6a831c399e269772661 ” ,

”900150983 cd24fb0d6963f7d28e17f72 ” ,

” f96b697d7cb7938d525a2f31aaf161d0 ” ,

” c3fcd3d76192e4007dfb496cca67e13b ” ,

” d174ab98d277d9f5a5611c2c9f419d9f ” ,

”57 edf4a22be3c955ac49da2e2107b67a ”

} ;

int main (int argc , char ∗argv [])

{

FILE ∗ f ;

int i , j ;

char output [3 3] ;

md5 context ctx ;

unsigned char buf [1 0 0 0] ;

unsigned char md5sum [1 6] ;

i f (argc < 2)

{

p r i n t f (”\n MD5 Val idat ion Tests :\n\n”) ;

for (i = 0 ; i < 7 ; i++)

{

p r i n t f (” Test %d ” , i + 1) ;

md5 starts (&ctx) ;

md5 update (&ctx , (u int8 ∗) msg [i] , s t r l e n (msg [i])) ;

md5 f in i sh (&ctx , md5sum) ;

for (j = 0 ; j < 16 ; j++)

{

s p r i n t f (output + j ∗ 2 , ”%02x” , md5sum [j]) ;

}

i f (memcmp(output , va l [i] , 32))

{

p r i n t f (” f a i l e d !\n”) ;

return (1) ;

}

p r i n t f (” passed .\n”) ;

}

p r i n t f (”\n”) ;

}

else

{

i f (! (f = fopen (argv [1] , ” rb”)))

{

per ro r (” fopen ”) ;

return (1) ;

}

md5 starts (&ctx) ;

while ((i = f r ead (buf , 1 , s izeof (buf) , f)) > 0)

{

C.2 Program Files 88

md5 update (&ctx , buf , i) ;

}

md5 f in i sh (&ctx , md5sum) ;

for (j = 0 ; j < 16 ; j++)

{

p r i n t f (”%02x” , md5sum [j]) ;

}

p r i n t f (” %s\n” , argv [1]) ;

}

return (0) ;

}

#endif

Listing C.6: mkconfig.c code listing.

// mkconf ig − makes a con f f i l e f o r pam usbsec

// By Matthew Quarisa − Q11215969

#include <s t d i o . h>

#include <s t r i n g . h>

#include ” conf . h”

int main (void){

// make a c on f i g s t r u c t u r e

struct u s b c on f i g s t r u c t c on f i g ;

// now s e t t h e pa th s

// d e v e l o p e r d e f a u l t pa th s f o r t e s t i n g

s t r cpy (c on f i g . t o k en f i l e , ”/tmp/ token”) ;

s t r cpy (c on f i g . d eny f i l e , ”/tmp/pam usbsec . deny”) ;

s t r cpy (c on f i g . db f i l e , ”/tmp/usbsec . db”) ;

// and f i n a l l y w r i t e t h e s t r u c t u r e out as a b ina ry f i l e

FILE ∗ c o n f f i l e = fopen (CONFFILE, ”wb”) ;

i f ((fw r i t e (&conf ig , s izeof (struct u s b c on f i g s t r u c t) , 1 , c o n f f i l e)) != 1){

p r i n t f (”Error Writing St ructure data !\n”) ;

} else {

p r i n t f (” F i l e wr i t t en s u c e s s f u l l y .\n”) ;

}

f c l o s e (c o n f f i l e) ;

return 0 ;

}

Listing C.7: addtoken.c code listing.

// addtoken − adds a token to t h e da ta ba s e

//

// By Matthew Quarisa − Q11215969

#include <s t d i o . h>

#include ” conf . h”

#include ”md5 . h”

C.2 Program Files 89

#include ”db . h”

int main (void){

struct db s t ruc t userdata ;

//

∗∗∗

// here we read the c o n f i g f i l e , i t i s a b ina ry one wi th a c o n f i g s t r u c t

struct u s b c on f i g s t r u c t c on f i g ;

FILE ∗ c o n f f i l e = fopen (CONFFILE, ” rb”) ;

i f ((f r ead (&conf ig , 1 , s izeof (struct u s b c on f i g s t r u c t) , c o n f f i l e)) < 1)

{

// e r r o r r ead ing f i l e

p r i n t f (”Error load ing usbsecure conf f i l e \n”) ;

return 1 ;

}

p r i n t f (”Using db path as %s\n” , c on f i g . d b f i l e) ;

p r i n t f (”Make sure the USB dev ice has the token created and i s connected .\n”) ;

// ∗∗

// now open i t and md5 the f i l e

FILE ∗ t o k e n f i l e = fopen (con f i g . t o k en f i l e , ” rb”) ;

i f (! t o k e n f i l e){

return 127 ;

}

md5 context ctx ;

int i , j ;

char buf [1 0 2 4] ;

unsigned char md5sum [1 6] ;

md5 starts (&ctx) ;

while ((i = f r ead (buf , 1 , s izeof (buf) , t o k e n f i l e)) > 0)

{

md5 update (&ctx , buf , i) ;

}

md5 f in i sh (&ctx , md5sum) ;

for (j = 0 ; j < 16 ; j++)

{

s p r i n t f (buf + j ∗ 2 , ”%02x” , md5sum [j]) ;

}

f c l o s e (t o k e n f i l e) ;

s t r cpy (userdata . tokenmd5 , buf) ;

// then ask f o r t h e co r r e spond ing username

p r i n t f (” Please ente r the corresponding UNIX username EXACTLY as entered in to the

system : ”) ;

f g e t s (userdata . username , 127 , s td in) ;

i f (userdata . username [s t r l e n (userdata . username)−1] == ’\n ’){

userdata . username [s t r l e n (userdata . username)−1] = ’ \0 ’ ;

}

C.2 Program Files 90

// then save t h e two in a s t r u c t and w r i t e i t t o t h e end o f t h e d b f i l e

FILE ∗ db f i l e = fopen (c on f i g . db f i l e , ”ab”) ;

i f (d b f i l e){

i f ((fw r i t e (&userdata , s izeof (struct db s t ruc t) , 1 , d b f i l e)) != 1){

p r i n t f (”Error Writing user data !\n”) ;

} else {

p r i n t f (”Userdata wr i t t en (hope fu l l y) s u c e s s f u l l y .\n”) ;

}

} else {

p r i n t f (”Error opening f i l e \n”) ;

}

f c l o s e (c o n f f i l e) ;

f c l o s e (d b f i l e) ;

return 0 ;

}

Listing C.8: viewdb.c code listing.

// v iewdb − dumps th e c on t en t s o f t h e u s b s e cu r e db

//

// By Matthew Quarisa − Q11215969

#include <s t d i o . h>

#include ” conf . h”

#include ”md5 . h”

#include ”db . h”

// note , we shou l d t r y u s ing arg s here l a t e r

int main (void){

struct db s t ruc t userdata ;

//

∗∗∗

// here we read the c o n f i g f i l e , i t i s a b ina ry one wi th a c o n f i g s t r u c t

struct u s b c on f i g s t r u c t c on f i g ;

FILE ∗ c o n f f i l e = fopen (CONFFILE, ” rb”) ;

i f ((f r ead (&conf ig , 1 , s izeof (struct u s b c on f i g s t r u c t) , c o n f f i l e)) < 1)

{

// e r r o r r ead ing f i l e

p r i n t f (”Error load ing usbsecure conf f i l e \n”) ;

return 1 ;

}

p r i n t f (”Using db path as %s\n” , c on f i g . d b f i l e) ;

// now load the f i l e s t r u c t by s t r u c t and dump the data

FILE ∗ db f i l e = fopen (c on f i g . db f i l e , ” rb”) ;

i f (! d b f i l e){

p r i n t f (”Error read ing db f i l e \n”) ;

return 127 ;

}

while (f r ead (&userdata , 1 , s izeof (struct db s t ruc t) , d b f i l e))

{

p r i n t f (”Username : %s\n Token MD5: %s” , userdata . username , userdata . tokenmd5) ;

C.2 Program Files 91

i f (! do md5 f i l e (c on f i g . t o k en f i l e , userdata . tokenmd5)){

p r i n t f (” <− Current ly Attached .\n”) ;

} else {

p r i n t f (”\n”) ;

}

}

f c l o s e (d b f i l e) ;

f c l o s e (c o n f f i l e) ;

return 0 ;

}

	Abstract
	Acknowledgments
	List of Figures
	Chapter Introduction
	Background Information
	Project Objectives
	Overview of the Dissertation

	Chapter Social Engineering Study
	Background
	Security Considerations
	Chapter Summary

	Chapter Current Authentication Methods
	Two and Three Factor Authentication
	Smart Cards
	Biometrics
	Fingerprints
	Hand Geometry
	Voice Recognition
	Eye Authentication
	Facial Recognition

	Commercial Authentication Systems
	Cryptocard
	Dekart Logon

	Chapter Summary
	Chapter Copy Protection Techniques
	Duplication Prevention
	SafeDisc
	SecuROM
	Laserlock

	Duplication Techniques
	Application to the USB Security Device
	Chapter Summary

	Chapter Authentication Subsystems in Linux
	Current Systems Available
	PAM to the Rescue
	Chapter Summary

	Chapter Project Methodology
	Importance of Copy Protection
	Device Considerations
	Encryption Methods
	Programming Languages
	Target Hardware
	Authentication Layers
	Device Interface

	Assessment of Consequential Effects
	Sustainability Issues
	Safety Issues
	Ethical Issues

	Chapter Summary

	Chapter A Hardware-Based Linux PAM Security System
	USB Mass Storage Device
	Encrypted Token
	Encrypted Filesystem
	Hidden Storage Areas

	A Pluggable Authentication Module
	The Gnome Display Manager
	AutoFS
	Utility Programs
	Mkconfig
	Addtoken
	Viewdb

	An Analysis of the Current Implementation
	BIOS/CMOS Passwords
	Boot Sequences
	Boot-Loaders
	Physical Security

	Progress
	Chapter Summary

	Chapter Extending The Security Device
	Network/Distributed Authentication
	Client/Server Approach
	Distributed/Peer to Peer Approach
	Chapter Summary

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Researching
	Design and Implementation
	Evaluation of the Device

	Further Objectives
	Further Work

	References
	Appendix Project Specification
	Appendix Screenshots of the Logon Process
	Appendix Source Code Listings
	Header Files
	Program Files

