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ABSTRACT 
 

 

A grid-connected photovoltaic system provides electrical energy to the power grid 

from power generated by a solar system.  The first requirement in connecting to the 

power grid is converting the DC voltage generated by the photovoltaic cells to AC.  

This is achieved using a single-phase switch-mode inverter.  The next requirements 

are that the output frequency matches that of the grid to which it is connected and its 

current is near sinusoidal.  Power supply authorities set stringent standards that limit 

the amount of DC delivered to the grid and therefore the inverter must be controlled 

to minimise the DC content of the sinusoidal output.  To produce this waveform, the 

inverter is operated in unipolar mode and controlled using sinusoidal pulse-width 

modulation.  This task is performed by a current controller circuit that controls the 

inverter output current by regulating the inverter transistor switching using tolerance 

band control. 

 

A current controller circuit using standard ICs and discrete electronic components had 

previously been designed for a switch-mode inverter.  The objectives of this project 

were to prove the existing current controller design for correct and suitable operation 

and to research the possibility of optimising it by implementation using modern 

technology such as PIC microcontrollers.  
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Chapter 1 INTRODUCTION 
 

 

1.1 Background Information 

 

A grid-connected photovoltaic system is a system designed to supply the power grid 

with electrical energy generated by photovoltaic cells.  The complete photovoltaic 

system is comprised of a number of smaller systems, such as the photovoltaic panels, 

DC to DC converter, maximum power tracker, current controller and inverter.  

Because of the complexity of the system, the area of research for this project was 

limited to the current controller, gate drive circuit and switch-mode inverter.  This 

section, as illustrated in figure 1.1, is referred to as the current controller system. 

 

The purpose of the current controller system is to connect the solar generated power 

to the power grid.  This requires AC conversion of the DC power supplied to the 

inverter so that its output frequency matches that of the grid to which it is connected.  

By including inductance in the inverter load and increasing the transistor switching 

frequency by approximately 100 times the output frequency, the output current is 

regulated to produce a sinusoidal waveform with minimal DC content.  To achieve 

this, the inverter is operated in unipolar mode and controlled using sinusoidal pulse-

width modulation.  This task is performed by a current controller circuit which 

regulates switching of the inverter transistors to keep the difference between the 

inverter output current waveform and desired waveform within a predetermined 

value.  This current control method, referred to as the tolerance band control 

technique, allows full control of the ripple content of the inverter output waveform.   
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Current Controller System Solar Panels 

 
Figure 1.1: Photovoltaic System Block Diagram.  

 

 

1.2 Project Objectives 

 

A current controller circuit for the photovoltaic system was previously designed using 

standard ICs and discrete electronic components.  In an attempt to reduce future 

manufacturing and material costs, it was anticipated that the existing electronics could 

be replaced by a single chip device.  The preferred device for this task was a PIC 

microcontroller. 

 

Improving the existing current controller by implementation of modern technology 

required research into PIC microcontrollers but this project also included researching 

the various components of the current controller system.  This included switch-mode 

inverters, current control techniques, optocouplers and gate drive circuits.  The 

activities involved in this project were to temporarily construct and test the original 

current controller system for correct and suitable operation, and to design and build 

printed circuit boards (PCBs) of the original current controller circuit.

 
DC to DC 
Converter 

and 
Maximum 

Power 
Tracker 

Switch-
mode 

Inverter Mains 
Supply 
50 Hz 

Current Controller 
and Gate Drive 

Circuit 

vc
+ vref  + 

vc

Voltage 
Controller 

Multiplier 

Current 
Sensor 

Step-down 
Transformer 

TA+ TB−

iref isen



Chapter 1 INTRODUCTION 

 3

The project specifications put forward at the start of this thesis were as follows. 

 

1. Temporarily construct and prove the existing current controller circuit. 

2. Research the possibility of replacing the standard IC’s with PIC microcontrollers 

or Digital Signal Processors (DSPs) if the PICs proved to be unsuitable. 

3. Replace the temporary current controller components with the new PICs or DSPs 

and make the necessary adjustment required to achieve the desired output. 

4. Design a PCB layout on the new circuit once it has be tested and proven. 

5. Construct the final circuit board and test. 

 

 

1.3 Dissertation Outline 

 

The first chapter of this dissertation provides an overview of a grid-connected 

photovoltaic system and explores the fundamental components that make up the 

current controller system. 

 

Chapter 3 outlines some of the applications and types of switch-mode inverter circuits 

available and provides a detailed analysis of the single-phase square-wave bridge 

inverter.  This chapter also includes sections on bipolar and unipolar sinusoidal pulse-

width modulation control techniques and concludes with the harmonic content of the 

unipolar control method. 

 

Chapter 4 outlines the basic principles behind common modulation techniques that are 

used to regulate the inverter transistor switching.  The chapter concludes with a 

detailed analysis of the tolerance band current control technique implemented by the 

photovoltaic system. 

 

Chapter 5 deals with the issue of implementing the current controller into the 

photovoltaic system.  This includes an operational explanation of the original current 

controller circuit, and the gate drivers and optocouplers required to interface the 

current controller with the inverter. 
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Chapter 6 outlines the steps involved in testing each section of the current controller 

system including the results obtained.  Vital timing conditions and results are 

illustrated with oscilloscope images for various stages of the current controller, gate 

drive circuit and inverter transistors. 

 

Chapter 7 concludes the dissertation with the outcome of the PIC microcontroller 

research.  This includes an introduction to PIC microcontrollers, PIC requirements for 

current controller implementation and a detailed description and sample code of the 

suggested PIC18C242 chip. 

 

 



 

 

 

Chapter 2 CURRENT CONTROLLER SYSTEM 

OVERVIEW 
 

 

This chapter outlines the primary function of a grid-connected system and how it is 

implemented to supply a free source of energy to the power grid.  The chapter also 

includes an overview of the fundamental components that make up the current 

controller system.  This includes the basic principle of operation of the current 

controller circuit, optocouplers, gate drive circuit and inverter, and how each is 

integrated into the system. 

 

 5



Chapter 2 CURRENT CONTROLLER SYSTEM OVERVIEW 

 6

2.1 The Grid-connected Photovoltaic System 

 

A photovoltaic system converts radiant energy from the sun into electrical energy.  A 

grid-connected system supplies this energy into the main power grid, providing a free 

source of renewable energy.  Figure 2.1 illustrates the basic principle of the grid-

connected photovoltaic system.  It demonstrates DC power generated by photovoltaic 

or solar cells that are exposed to the sun.  This power is converted to AC and then 

connected to the grid. 

 

Inverting the DC to AC is a much greater challenge than converting AC to DC, and 

when connecting to the power grid there are many variables that need to be 

controlled.  These are that the voltage amplitude and frequency must match the grid 

source and the waveform must be near sinusoidal with minimal DC content.  For this 

project, these requirements were achieved by the use of a current controlled single-

phase bridge inverter. 

 

 
 Figure 2.1: Illustration of a Grid-connected Photovoltaic System. 
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2.2 Current Controller System Overview 

 

The current controller system consists of the current controller, optocouplers, gate 

drivers, bridge inverter and a current sensor.  The system block diagram is illustrated 

in figure 2.2 and a description of the basic principle of operation is as follows. 

 

The control circuit begins with a reference current input to the current controller, 

which in the final system will be a sample of the grid supply.  The current controller is 

also supplied with an adjustable tolerance input that sets the magnitude of the 

tolerance band.  To close the loop, a negative feedback current is supplied by a hall-

effect sensor that monitors the inverter output current.  The output of the controller 

provides the gate signals for the inverter transistors but this signal first passes through 

optocouplers to electrically isolate the current controller from the inverter.  To ensure 

successful gate turn on, gate drive circuits are required to provide the higher currents 

required by the gates of the transistors.  The gate drive circuit is controlled by the 

current controller output signal.  The inverter transistors provide the switching 

interface between the control circuit and power circuit. 

 

The power circuit begins by supplying the inverter rails with the DC voltage 

generated by the solar panels.  Controlling of the transistors in the inverter bridge 

circuit regulates the load voltage to produce a sinusoidal AC output current.  This 

output is directly connected to the power grid to provide a free source of electrical 

energy. 
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 Figure 2.2: Current Controller System Block Diagram. 

 

 



 

 

 

Chapter 3 SWITCH-MODE INVERTERS 
 

 

To connect the DC voltage generated from the photovoltaic system to the main power 

grid, the DC must be inverted to AC.  This process is achieved by a common inverter 

circuit.  A simple inverter will oscillate the DC source from positive to negative at its 

output at a set frequency.  Basic inversion produces a square-wave output but 

techniques can be implemented to control the shape of the output waveform.  A 

switch-mode inverter is a power electronic circuit that provides these control 

capabilities and allow the output waveform to be shaped as desired. 

 

The grid-connected circuit required the inverter output to match the sinusoidal grid 

voltage with minimal DC content.  By employing a switch-mode inverter into the 

photovoltaic system and using pulse-width modulation control to regulate the 

transistor switching, the output current could be controlled to match that of the grid to 

which it was connected. 

 

This chapter outlines some of the applications and types of switch-mode inverter 

circuits available including an in depth look at the single-phase square-wave bridge 

inverter.  It continues with a detailed analysis of the bipolar and unipolar sinusoidal 

pulse-width modulation control techniques and concludes with the harmonic content 

of the unipolar control method. 
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3.1 Applications for Switch-mode Inverters 

 

In electronic systems it is often required to convert alternating currents to direct 

currents with the process being quite simple.  The simplest example of this would be a 

single diode in series with a sinusoidal AC source where the diode only allows current 

to flow in one direction and therefore only one half of each AC cycle passes through, 

thus producing a DC output.  Filtering the DC output can also be a simple task where 

a simple filtering capacitor might be suitable.  Contrary to AC to DC conversion, it is 

also common to have to convert direct current sources to alternating currents.  This 

inversion is more complicated than AC to DC conversion because the output 

waveform often has to be controlled to a specific shape and frequency.  For this 

reason, the electronics involved become more intricate and more components are 

required.  Feedback systems are usually required to monitor and control the output to 

provide the desired waveform.  Common inverter circuits that control the switching of 

the DC to produce AC outputs are switch-mode inverters. 

 

Switch-mode inverters produce AC by alternating the output from positive to negative 

at the desired frequency.  This often requires switching speeds to vary from 50 to 

many thousands of times per second.  In most power electronic applications, the 

inverter circuits are also required to handle high currents.  To handle these conditions, 

solid state silicon devices such as IGBTs, MOSFETs and BJTs are commonly used to 

do the switching (Mohan et al. 1985).  IGBTs feature lower on-state switching losses 

compared to MOSFETs and have higher reverse blocking capabilities and lower base 

current requirements compared to BJTs.  For these reasons, IGBTs were the chosen 

device used in the photovoltaic switch-mode inverter. 

 

The applications of switch-mode inverters generally fall into the category of either 

motor control or non-motor control (Lander 1987).  The basic differences between the 

two are variable or fixed output frequency.  Motor control inverters, also referred to as 

AC adjustable speed drives, control the speed of AC motors by varying the output 

frequency.  These drives can also adjust the motor torque by controlling the RMS 

voltage applied to the motor windings. 
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The constant frequency inverter is most commonly used as a standby power supply 

which provides an emergency power source at mains frequency in the event of mains 

failure.  These inverter systems generally have a battery bank to provide a voltage 

source to the inverter during mains failure.  There are two ways in which standby 

inverters are implemented, either to go online in the event of power failure for less 

critical situations, or to constantly supply power to the load and only use the mains 

power to keep the battery bank charged.  The former system would introduce a delay 

between change-over while the latter provides a true uninterruptible supply and would 

be used in critical situations such as life support machines in hospitals.   

 

Aside from the two most common inverter applications there are also more specific 

uses for switch-mode inverters such as providing power to the main grid which is the 

objective of this project. 

 

 

3.2 Types of Switch-mode Inverters 

 

The input to switch-mode inverters are most commonly supplied by a constant DC 

source and are referred to as voltage source inverters or VSIs (Mohan et al. 1985).  

This is the case for the photovoltaic system where the DC voltage is supplied by the 

solar panels.  The other less common inverter is the current source inverter or CSI and 

is only used for very high power AC motor drives (Mohan et al. 1985).   

 

The two most common VSIs are the square-wave and pulse-width modulation 

inverters.  Conventionally, both have the same circuitry but differ by their supply 

voltage with the square-wave inverter having a variable DC supply and the PWM 

inverter having a constant DC supply. 
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The single-phase square-wave bridge inverter produces a square-wave output voltage.  

A purely resistive load will produce a square-wave current in phase with the voltage.  

This waveform changes instantaneously at its edges but the PWM technique requires 

this current to have a steady rise and fall time.  The inclusion of inductance in the load 

achieves this by producing an exponential change of current and also results in 

reducing the magnitude of the output harmonics. 

 

For situations where the DC input voltage is constant, the PWM inverter is preferred 

because it controls both the output frequency and the RMS output voltage.  With a 

fixed inverter rail voltage, the magnitude of the voltage output is constant but the 

RMS value can be varied by controlling the mark to space ratio of the inverter 

switching. 

 

Modifications can be made to single-phase bridge inverters to produce three-phase 

outputs.  It is possible to supply a three-phase load by means of three separate single-

phase inverters with the output displaced 120° from each other.  Three-phase switch-

mode inverters are very common because they form the basis of variable speed drives 

which are used extensively in industry. 

 

There are various other switch-mode inverters such as the push-pull single-phase 

inverter. This circuit has the advantage of having half the required switches but the 

disadvantage of requiring a centre tapped transformer.  With the photovoltaic system 

being designed to be compact and relatively inexpensive, the inclusion of a 

transformer was not desirable and therefore the preferred device to perform the DC to 

AC conversion was the square-wave bridge inverter. 
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3.3 Operation of Single-phase Square-wave Bridge Inverter 

 

A single-phase square-wave bridge inverter circuit is displayed in figure 3.1.  It shows 

four switches TA+, TB+, TA− and TB− and feedback diodes DA+ to DB− connected to an 

inductive load.  The photovoltaic system incorporates IGBTs with inbuilt feedback 

diodes for these devices.  This inverter circuit can control the output voltage polarity 

and current direction independently.  This is referred to as four quadrant operation.   

The inverter load voltages and currents for a complete cycle are illustrated in figure 

3.2.  The figure also illustrates typical current patterns for each branch of the inverter 

circuit including the base currents of the 4 transistors.  Basic operation of the inverter 

is as follows. 

 

Starting with transistors TA+ and TB− on; the load voltage is equal to the DC voltage E 

and the current rises exponentially.  At half the full cycle TA+ and TB− are de-energised 

and TB+ and TA− are turned on.  This reverses the voltage across the load but the 

inductive load prevents the current from reversing instantaneously.  Instead, the load 

current decreases exponentially through the feedback diodes DB+ and DA− until it 

reaches zero and then starts to flow in the reverse direction through transistors TB+ 

and TA−.  In the situations when load current flows through the feedback diodes, 

power is being delivered back to the DC source by the inverter.  Once the full cycle is 

reached, TB+ and TA− are de-energised and TA+ and TB− are turned back on which 

forces the load current to flow through the feedback diodes DA+ and DB- until the 

zero crossing.  An important factor that must be addressed is that at no instance can 

the same side transistors, i.e. TA+ and TA− or TB+ and TB−, be energised simultaneously 

because this would result in shorting the DC supply rails.  This process completes one 

cycle and is repeated at the desired frequency which is determined by the switching 

periods of the transistors.   
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 Figure 3.1: Single-phase Square-wave Bridge Inverter.   

 

 
 Figure 3.2: Square-wave Output (Lander 1987, p184). 
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Although basic operation of the bridge inverter can control the output frequency it 

cannot control the magnitude of the voltage.  Varying the rms output voltage can be 

achieved by one of the following techniques. 

 

• Controlling the DC supply voltage. 

The inverter output voltage can be adjusted by controlling the voltage applied 

to the DC supply rails.  This is a simple approach but in practice the ability to 

vary the DC isn’t always available or efficient and therefore seldom used in 

practice.  The photovoltaic cells produce a constant DC supply and therefore 

another method of voltage control would be required. 

 

• Voltage cancellation. 

By introducing zero periods of voltages into the square-wave, the rms voltage 

can be reduced.  This alters the current pattern because the rate of change of 

current for an inductor is proportional to the magnitude of the voltage. 

Therefore the rate of change in load current will be less during the periods 

where there is zero voltage across the load.  The resulting waveform is known 

as a quasi-square-wave (Lander 1987).  Although this technique varies the rms 

voltage, it does not give good control of the output current waveform.  For this 

reason, a better method was desirable in the photovoltaic system. 

 

• Pulse-width modulation. 

The mark to space ratio of the inverter output voltage is controlled to regulate 

the rms voltage output and the current waveform (Mohan et al. 1985).  This 

technique controls the transistor switching periods by comparing a carrier 

signal to a modulating signal.  The photovoltaic system uses sinusoidal PWM 

control to produce an output current that matches the sinusoidal waveform of 

the grid supply.  This method can be implemented using either bipolar or 

unipolar control.  Both of these schemes are analyses in the following sections. 
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3.4 Bipolar Sinusoidal PWM Control 

 

Sinusoidal PWM to compares a carrier signal known as the triangular signal vtri with a 

sinusoidal signal known as the modulating or control signal vcontrol.  This section 

outlines the basic principle of bipolar operation. 

 

Bipolar sinusoidal PWM control allows the instantaneous load voltage vL to be either 

positive or negative during both cycles of vcontrol as illustrated in figure 3.3.  This 

control process works by energising TA+ and TB− while vcontrol is greater than vtri and 

TB+ and TA− while vcontrol is less than vtri.  The transistor switching strategy with 

respect to vcontrol and vtri is further simplified in table 3.1. 

 

 
 Figure 3.3: Bipolar Sinusoidal PWM Waveforms (Lander 1987). 

 

 

 Table 3.1: Transistor Switching Strategy (Bipolar). 

Transistor TA+ TB− TB+ TA− vL

vcontrol > vtri ON OFF E 

vcontrol < vtri OFF ON -E 
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The inverter switching frequency is determined by the frequency of vtri.  The 

frequency ratio of vtri to vcontrol is known as the modulating frequency ratio mf or 

simply tri
f

control

fm
f

= .  The amplitude modulation ratio ma is the ratio of the peak 

amplitudes of vcontrol to vtri or simply
ˆ

ˆ
control

a
tri

Vm
V

= . 

 

 

3.5 Unipolar Sinusoidal PWM Control 

 

Unipolar sinusoidal PWM control operates in the same way as the bipolar method 

with the exception that for each half cycle of vcontrol the load voltage vL is only of 

single polarity.  This effectively halves the switching potential difference which 

results in reduced magnitudes of the output harmonics.  

 

Switching of the transistors is done independently which results in four intervals per 

vcontrol cycle as illustrated in table 3.2.  For two intervals vL equals E or –E which 

forces the load current to increase exponentially in the positive or negative direction 

respectively.  This is similar to the bipolar method but the unipolar method differs for 

the remaining two intervals where the supply is isolated from the load.  In these 

intervals the inductive load discharges through the remaining energised transistor and 

the opposite feedback diode.  Figure 3.4 illustrates the voltages vAN, vBN and vL with 

respect to vcontrol and vtri. 

 

 Table 3.2: Transistor Switching Strategy (Unipolar). 

Transistor TA+ TB− TB+ TA− vAN vBN vL = vAN - vBN

vcontrol > vtri ON OFF E 0 E 

vcontrol < vtri OFF ON 0 E -E 

-vcontrol > vtri ON OFF ON OFF E E 0 

-vcontrol < vtri OFF ON OFF ON 0 0 0 
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 Figure 3.4: Unipolar Sinusoidal PWM Waveforms (Mohan et al. 1985). 

 

 

3.6 Harmonic Content of the Unipolar Method 

 

Comparisons of the harmonic content of the unipolar and bipolar sinusoidal PWM 

methods show that the unipolar method has the ability to produce less harmonics and 

at lower amplitudes than the bipolar method.  The reason for the lower harmonic 

amplitudes is because the unipolar voltage switching difference of E is half the 

bipolar method of 2E, i.e. from E to –E.   
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The other advantage is derived from the fact that the unipolar method effectively 

doubles the switching frequency of the bipolar method.  To take advantage of this, the 

frequency modulation ratio mf should be chosen to be even.  This results in the even 

harmonics having the same phase because the voltage waveforms of vAN and vBN are 

displaced by 180° of the fundamental frequency (Mohan et al. 1985).  With the load 

voltage being the difference of vAN and vBN, the dominant harmonic component at the 

switching frequency in the output voltage vL will cancel.  In addition, the sidebands of 

the switching frequency harmonics will also cancel as will the dominant harmonic at 

twice the switching frequency.   The outcome of this setup is that the unipolar method 

will only produce odd numbered harmonics.   

 

If the amplitude modulation ratio is made less than one, the resulting equation for the 

harmonic order h can be written as the following (Mohan et al. 1985). 

 

 h =  for m( )2 fj m k± a<1; 

Where  h  = harmonic order 

 mf  = frequency modulation ratio 

 k  = odd integer 

 ma  = amplitude modulation ratio 

 

The photovoltaic system was designed to operate using the unipolar method over the 

bipolar method because of the advantage of reducing the inverter output harmonics.  

Although the bridge inverter load voltage will always be a square-wave, current 

control techniques provide regulation of the output current waveform.  The following 

chapter provides an overview of common current control methods available and 

concludes with a detailed analysis of the tolerance band technique implemented by the 

photovoltaic system. 

 

 



 

 

 

Chapter 4 CURRENT CONTROL TECHNIQUES 
 

 

As previously discussed, the photovoltaic system utilises a square-wave inverter to 

connect the DC supplied by the photovoltaic cells to the AC power grid.  

Implementing a current-modulating technique will allow the inverter to produce a 

sinusoidal output and limit the DC content.  Current control techniques are often used 

in power electronics applications to provide improved control, stability and speed of 

response.  A popular example of this is the DC to AC motor drive where the AC 

motor speed and torque can be controlled by the inverter (Rashid 1988). 

 

There exists many current-modulating techniques but all are designed with the same 

principle motive, to produce a specific inverter output waveform by controlling the 

duty cycle of the gate switching.  Most techniques offer control of the inverter output 

at the current controller input.  Many of these are open-loop and require either a 

predetermined modulating and carrier signal or a reference level and a fixed period of 

oscillation.  These techniques have the ability to vary the output waveform but do not 

offer full feedback control.  This was not desirable with the photovoltaic system 

because the inverter output would be required to match the grid at any instantaneous 

time and therefore a closed-loop technique was required that monitored the grid and 

controlled the inverter output accordingly.  The tolerance band current control 

technique is a closed-loop current control technique that does not use a modulating 

signal or fixed period and was therefore implemented in the photovoltaic system. 

 

This chapter starts by outlines the basic principles behind common modulation 

techniques and continues with an overview of the fixed frequency and constant off 

time current control techniques.  The chapter concludes with a detailed analysis of the 

tolerance band current control technique.  

 20
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t

4.1 Common Modulation Techniques 

Many of the available current control techniques use modulation control.  These 

operate with the same principles as the sinusoidal pulse-width modulation techniques 

described in the previous switch-mode inverter chapter.  That is, they compare a 

carrier signal with a modulating signal to control switching of the inverter gates.  A 

few of these techniques are the trapezoidal, staircase, stepped and harmonic injection 

modulation (Rashid 1988).  All of these techniques use a triangular wave as the 

carrier signal and only differ by the waveform of the modulating signal.  The name 

given to each of the modulating techniques often correspond to the shape of the 

modulating signal.  For example: the trapezoidal, staircase and stepped techniques all 

have coinciding modulating signals. 

 

One technique whose modulating waveform does not bear a resemblance to the shape 

of its name is the harmonic injected modulation technique.  This is an advanced 

technique that generates a modulating signal by adding selected harmonics to a 

sinewave (Rashid 1988).  This technique was designed to reduce the harmonic content 

in the output voltage by provide a higher fundamental amplitude (Rashid 1988).  It 

also reduces the amount of over modulation resulting in less distortion of the output 

voltage.  The modulating signal is commonly formed by the 

equation 1.15sin 0.27sin 3 0.029sin 9mv t tω ω= + − ω .  The typical shape of the 

modulating signal produces by this equation is illustrated in Figure 4.1.  This figure 

demonstrates the harmonic injected modulation technique and includes an example of 

the inverter output with respect to comparison of the carrier to modulating signal for 

bipolar operation. 
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 Figure 4.1: Harmonic Injection Modulation (Rashid 1988). 

 

4.2 Fixed Frequency Current Control 

 

To improve control of the inverter output current, closed-loop control techniques can 

be implemented that utilise negative feedback sourced from sensing the output 

current.  There a various closed-loop current control methods, one of which is the 

fixed frequency current control technique. 

 

Figure 4.2 shows a block diagram of the fixed frequency current control technique.  It 

illustrates the use of a current sensor, summing junctions, a PI controller and a 

comparator circuit.  Operation of the circuit starts by summing iref with isen to 

determine the error.  The error is amplified or passed through a PI controller to give 

an output vcontrol, which is compared with a fixed frequency triangular or sawtooth 

waveform to determine the state the inverter switches. 
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There are only two possible outputs from the comparator, either logical high or low.  

With reference to a single-phase square-wave inverter this would usually control the 

state of the A-side switch.  For example, if the error were below the reference current 

then the appropriate switch would remain energised so that the inverter output current 

would continue to rise.  Once the error reaches the reference current then the 

appropriate switch is de-energised which results in a reducing inverter output current.  

The comparator remains in this state until the sawtooth waveform drops to zero with 

which the comparator resets, thus, re-energising the switch.  Figure 4.3 illustrates a 

simplified version of this process.  It clearly demonstrates that the switches 

controlling the inverter output current are reset after a fixed period, which is the 

period of the sawtooth frequency. 

DC 
Input 

 
 Figure 4.2: Fixed Frequency Current Control Block Diagram. 
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4.3 Constant Off Time Current Control 

 

The constant off time current control technique operates in the same way as the fixed 

frequency technique with the exception that the sawtooth waveform is only 

introduced once the error reaches the reference current.  This results in the appropriate 

switch remaining off for a fixed period.  Therefore the on time for the energised 

which is not fixed and remains on until the error reaches the reference current.  Figure 

4.4 illustrates this process.    

 

Off
Set Period

Off
Set Period

On On

Reference Current

Controlled
Current

0

Off
Set Period

Off
Set Period

On On

Reference Current

Controlled
Current

0  
 Figure 4.4: Constant Off Time Current Control. 

 

 

4.4 Tolerance Band Current Control 

 

The tolerance band current control technique, also referred to as hysteresis or delta 

modulation (Rashid 1988), is a closed-loop technique that controls both the on and off 

time of the inverter switches without using a fixed period.  This is achieved by 

implementing a comparator and latch circuit and therefore no sawtooth waveform is 

required.  A block diagram of the tolerance band current control method is displayed 

in figure 4.5. 
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DC 
Input 

 
 Figure 4.5: Tolerance Band Current Control Block Diagram. 

 

Operation of the circuit begins by summing the reference and sense current, with the 

resulting difference being the error.  The error is amplified and then compared to the 

tolerance band.  If the error lies between the upper and lower tolerance band then no 

change takes place in the comparator latch circuit.  Once the error reaches either the 

upper or lower tolerance band the output is changed and remains in that state until the 

error reaches the opposite tolerance band.  Figure 4.6 illustrates this process.   
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 Figure 4.6: Tolerance Band Current Control. 
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With reference to the single-phase square-wave bridge inverter used in the 

photovoltaic system, unipolar operation of the tolerance band technique is as follows.  

Starting with positive polarity and opposite transistors TA+ and TB- are both on.  The 

inverter output current rises until it reaches the upper tolerance band with which the 

TA+ transistor is turned off and the current is forced to flow through the feedback 

diode DA-.  This results in the output current decreasing until it reaches the lower 

tolerance band, when at this instance transistor A+ is re-energised.  The process is 

repeated until the reference current reverses polarity and the both the TA+ and TB- 

transistors are de-energised.  The system is now operating with negative polarity and 

therefore the switching transistor are TA- and TB+.  The tolerance band current 

control process is repeated with transistor TA- being the controlled switch.  Figure 4.7 

illustrates this by showing the energised transistors during one cycle of inverter output 

using unipolar operation. 

 

Adjusting the magnitude of the tolerance band varies the duty cycle of the transistor 

switching.  This has the effect of controlling the ripple content of the output 

waveform.  Therefore, to achieve an output waveform with minimum ripple content, 

the magnitude of the tolerance band must be reduced.  Due to the finite switching time 

taken for all non-ideal electronic components, the ripple content cannot be reduced to 

zero.  There will always be a limit where saturation will occur. Common PWM 

techniques switch the transistors at approximately 100 times the inverter output 

frequency. 

 

 
 Figure 4.7: Tolerance Band Waveform and Inverter Switching (Mohan et al. 1985). 



 

 

 

Chapter 5 CURRENT CONTROLLER 

IMPLEMENTATION 
 

 

With the fundamental components of the current controller system covered, it is now 

necessary to understand operation of the existing current controller circuit and how to 

integrate it into the photovoltaic system. 

 

As stated in chapter 2, the current controller system requires additional gate drivers 

and optocouplers.  This is because the output signal from the current controller circuit 

cannot provide enough current to ensure successful turn-on of the inverter transistors.  

Gate drive circuits are high speed switching circuits that provide this power.  

Optocouplers are used to provide electrical isolation between the inverter and current 

controller so that each can have an independent voltage reference. 

 

The chapter starts with a description of the principle operation of the current 

controller and provides a simplified operational diagram of the current controller 

circuit.  It continues with an overview of a typical gate drive circuit and provides a 

detailed analysis of the gate driver used during testing.  The chapter concludes by 

outlining the need for independent voltage references and provides details of the 

optocouplers used during testing. 
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5.1 Current Controller Circuit Operation 

 

This section is provided to explain the principle operation of the current controller.  

The complete electrical schematic is displayed in appendix B, while figure 5.1 

provides a simplified operational diagram of the circuit. 

 

The current controller circuit begins with a zero crossing input to determine polarity 

of the reference signal and hence, allow operation of either transistors (TA+ and TB-) 

or (TA- and TB+).  The 5k variable resistor across pins 5 and 6 of the LM311 voltage 

comparator provides tuning of the zero volt crossing.  This should be set before 

operating the current controller by grounding the Vz input and tuning to give zero 

volts output of the comparator.  This leg of the current controller circuit provides a 

direct gate output for the B-side transistors and allows operation of the A-side 

transistors in the current control latch circuit.  Operational transistors for the positive 

and negative reference current cycles are (TA- and TB+) and (TA+ and TB-) 

respectively.  There is a series RC circuit to provide a small time delay during 

transistor changeover to prevent shorting the inverter supply rails. 

 

The current control circuit begins by summing the negative feedback sensed at the 

inverter output and the reference signal to give a total error.  This error is then 

amplified by passing through a gain circuit.  The amplified gain, Ke, is then compared 

to the tolerance band input which controls the set and reset of a latch circuit.  The 

latch circuit controls the A-side transistors.  The tolerance band input is controlled 

externally and needs to be set to the desired level of tolerance.  This controls the 

ripple content of the inverter output current and therefore, by reducing the tolerance 

band input, the ripple content decreases resulting in a smoother output waveform.  

This increases the transistor switching frequency and because of time delays in the 

switching of real components there is a limit to how fast the transistors can be 

switched before saturation occurs. 
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 Figure 5.1: Current Controller Circuit Operation. 

 

 

5.2 Gate Drive Circuit 

 

The output of the current controller provides the switching signal for the inverter 

transistors.  This signal is sourced by CMOS schmitt triggers contained in the 

MC140106 chip but is inadequate in providing the required voltage and current levels 

to successfully control the transistors.  For this reason a gate drive circuit is required 

to amplify the logic signal from the current controller output.  Gate drive circuits can 

be constructed using standard electronic components as illustrated in figure 5.4.  This 

particular circuit illustrates the use of an optocoupler to isolate the signal source and is 

only designed to provide the gate current for a single IGBT.  The design of these 

circuits can be quite demanding and the challenge is made even more difficult when 

requiring both a high and low side driver.  This was the case for the inverter used in 

the current controller system and therefore an easier and more cost effective way was 

to use a gate driver that contained all the complex circuitry in a single chip. 
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The gate driver used in the testing phase of the current controller system was the 

IR2113 high and low side driver by International Rectifier.  The pinout diagram and 

pin description are displayed in figure 5.5 and table 5.1 respectively. 

 

 
 Figure 5.2: Single Gate Drive Circuit (Fuji Electric 2005). 

 

 

 
 Figure 5.3: IR2113 Pinout Diagram (International Rectifier IR2113). 

 

 Table 5.1: IR2113 Pin Description (International Rectifier IR2113). 
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Figure 5.6 illustrates the functional block diagram of the internal circuitry of the 

IR2113 gate driver.  It illustrates independent high and low side output channels.  This 

allows an independent voltage level shift for the high side transistor.  The device is 

designed to drive n-channel IGBTs up to 600V (International IR Rectifier IR2113).  

The logic inputs are both CMOS and TTL compatible.  The driver is not a stand alone 

device and requires external connection of a bootstrap diode and capacitors as 

illustrated in figure 5.7.  The bootstrap diode is required to operate at high speed and 

be capable of handling high bursts of current flow, typically in the tens of amps.  The 

part used during testing was a PBYR1645 Fast Schottky Diode by Phillips. 

 

The bootstrap capacitors provide the current source for the transistor gates.  The basic 

principle of operation is to have one bootstrap capacitor discharge into the transistor 

gate while the opposite capacitor charges.  The supply to these capacitors is provided 

by VCC and the bootstrap diode prevents the high side capacitor from discharging into 

the low side capacitor.  This cycle is repeated at the rate of the transistor switching 

frequency.  

 

 
 Figure 5.4: IR2113 Functional Block Diagram (International Rectifier IR2113). 

 

 
 Figure 5.5: IR2113 Typical Connection (International Rectifier IR2113) 
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5.3 Optocouplers 

 

Another issue faced with controlling the inverter transistors is that the reference 

voltage cannot be the same for both the high and low side transistors.  This is because 

the emitter of the high side transistor is directly connected to the collector of the low 

side transistor and therefore both emitters cannot have the same voltage reference.  

This causes the problem of not being able to simply supply the high side transistor 

gate with the same signal as the low side.  The gate drive circuit overcomes this 

problem by providing a voltage level shift to the high side transistor base and 

therefore equalising the base-emitter voltage for both transistors.  This is usually done 

in conjunction with electrically isolating the inverter circuit with the control circuit so 

that ground references can be independent of each other.  There are a few methods 

commonly used to achieve this isolation, one of which is to interface optocouplers 

between the controller and inverter.  The current controller system uses this method 

by passing the output of the current controller through optocouplers before feeding the 

logic inputs of the gate drive circuit. 

 

The specific component used during testing was the Fairchild Semiconductor HCPL-

2503 optocoupler.  The pinout diagram is shown in figure 5.2.  This figure also 

illustrates the internal components of the IC which consists of an LED optically 

coupled to a transistor.  The transistor is a high-speed photo-detector that permits 

logical switching up to 1 Mbps, permits insulation protection up to 480 V and is 

compatible with both CMOS and TTL technology (Fairchild Semiconductor HCPL-

2503).   

 

 
 Figure 5.6: HCPL-2503 Pinout Diagram (Fairchild Semiconductor HCPL-2503). 
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An important electrical characteristic that had to be considered while incorporating a 

transistor controlled optocoupler in the current controller system was the propagation 

rise and fall times.  This was due to the high speed switching generated by the pulse 

width modulation control technique and the requirement to have reactions times in the 

low microseconds when the error reached the tolerance band.  Figure 5.3 displays a 

plot sourced from the HCPL-2503 data sheets of the typical propagation delay times 

with respect to temperature.  It demonstrates a maximum delay time at 25° of 

approximately 530 and 420 ns for low-high and high-low transitions respectively.  

This time was less than the acceptable time of approximately 1µs and therefore 

guarantied successful implementation into the photovoltaic system  

 

 
 Figure 5.7: HCPL-2503 Propagation Delay (Fairchild Semiconductor HCPL-2503). 

 



 

 

 

Chapter 6 SYSTEM ANALYSIS AND TESTING 
 

 

To prove correct operation of the current controller, a temporary circuit including the 

gate drive and switch-mode inverter was constructed.  Initial testing was conducted in 

open-loop by proving sections of the complete circuit for correctness and then closing 

the circuit with negative feedback to produce the final sinusoidal output.  Once the 

circuit was proven a printed circuit board of the current controller was designed and 

constructed.  An image of the PCB is displayed in appendix B. 

 

The following sections of this chapter provide details of the components used, tests 

conducted and results obtained for each section of the current controller system. 
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6.1 Components List for Current Controller System Testing 

 

Table 6.1 provides a list of the main components used to construct and test the current 

controller system.  This table is provided as a guide for future work but equivalent 

parts may be substituted. 

 

 Table 6.1: Components List for Current Controller System Testing. 

Current Controller 

Part Description Manufacturer Quantity 
LM308 Operational Amplifier. National Semiconductor 4 

LM311 Voltage Comparator. National Semiconductor 3 

CD40106 CMOS Hex Schmitt Triggers. Texas Instrument 1 

MC14044 Quad-NAND RS Latch Motorola 1 

MC14071 Quad 2-Input OR Gate. Motorola 1 

MC14081 Quad 2-Input AND Gate. Motorola 1 

Resistors 5k Trim Pot 

1.5k 

3.3k 

4.7k 

8.2k 

15k 

27k 

56k 

1 

1 

1 

2 

1 

5 

2 

2 

Capacitors 33p 

100p 

330p 

10n 

4 

1 

2 

1 

Optocouplers 

HCPL-2503 
High speed transistor optocoupler  

(Single channel). 
Fairchild Semiconductor 4 

Gate Drivers 
IR2113 High and low side gate driver. International Rectifier 2 

PBYR1645 Fast Schottky Diode Philips 1 

Bridge Inverter 
IRG4BC30KD IGBT with ultra fast soft recovery diode. International Rectifier 4 
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6.2 Zero Crossing Section 

 

The first section tested was the zero crossing circuit.  Its primary function is to control 

the output for the IGBT gate drive circuit.  There are only two situations possible.  

The first is when the input voltage VZ is positive and the second when it is negative.  

For the first situation, gate B- is energised and A+ is made functional.  For the second 

situation, gate B+ is energised and A- is made functional. 

 

Before supplying the circuit with VZ the 311 comparator output needed to be tuned to 

give zero volts output for zero volt input.  This was to ensure that switching was done 

as close to zero as possible for the oscillating input signal.  Tuning was achieved by 

grounding the positive input pin 2 and then adjusting the trim pot until the output was 

zero.  The next step involved replacing the ground to pin 2 with a 6 Volt 50 Hz signal.  

The supply came from a 12 VAC source with a 10 kΩ pot used to lower the input 

voltage.  The complete circuit is illustrated in figure 6.1 below. 

 

 
 Figure 6.1: Electrical schematic of zero crossing circuit. 
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Testing proved that the logic output from the comparator changed from high to low as 

VZ changes from positive to negative.  Correct logic was also confirmed through the 

inverters to the gate outputs.  The next important process to confirm was the delay 

between changing gate outputs to prevent IGBT’s momentarily shorting at 

changeover.  The time delay was achieved with a simple R-C circuit which delayed 

the high level input to a 2-input AND gate.  Figure 6.2 illustrates a delay of 

approximately 7 µs between the inverter output going high and the AND gate output 

going high to turn gate B+ on.  Figure 6.3 illustrates the resulting delay between gate 

B- turning off and gate B+ turning on. 

 
 Figure 6.2: Oscilloscope image demonstrating delay to turn gate B+ on. 
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 Figure 6.3: Oscilloscope image demonstrating delay between gate switching. 

 

 

6.3 Error and Latch Circuit 

 

Testing of the error and latch circuit began by supplying the isen, iref and Itol inputs with 

-2, +1 and +2 volts respectively.  This was achieved using a 12 volt source and 

adjusting 10 kΩ pots to produce the desired output voltage.  Figure 6.4 illustrates this 

set up.   

 

The next step was to check that the measured voltages at the summing and 

multiplying nodes were correct.  A summary of the calculated and measured values at 

these nodes are given in table 6.1. 
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 Figure 6.4: Electrical schematic of error circuit. 

 

 

 Table 6.2: Calculated and measured error values. 

Node e Gain (K) Ke 
Summation at 

Ke and Vtol

General equation 
2

sen refV V+ 271 19
1.5

+ = 19 e×  2
tolKe V+

 

Calculated -0.50 V 19 -9.50 V -3.75 V 
Values for 

Vsen = -2 V  

Vref = 1 V 

Vtol = 2 V 
Measured -0.48 V 20 -9.60 V -3.70 V 

 

 

With the error circuit operating correctly the procedure to prove the latch circuit was 

to adjust the Vsen voltage and determine the correct logic outputs of the 311 

comparators, labelled Va and Vb in figure 6.4.  These outputs Va and Vb operate the 

latch IC set and reset inputs respectively.  Once the 311 outputs were proven to be 

operating correctly the output logic of the 4044 IC was monitored which confirmed 

that the latch circuit was also operating correctly.   
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Table 6.2 illustrates the logic parameters for Va and Vb along with the truth table for 

the 4044 latch IC.  The table also illustrates the calculated and measured voltages of 

error required to set and reset the latch.  Figure 6.5 illustrates the electrical schematic 

of the latch circuit.  The two ‘noise delay’ R-C circuits connecting the latch output to 

its input are for the purpose of providing a very short delay at the latch set and reset 

change over.  This measure ensures smooth transitions by preventing unwanted 

oscillations due to CMOS sensitivity. 

 

The final check proved that gate outputs A+ and A- were enabled when Vz was 

positive and negative respectively and that the latch circuit isolated the A gates 

according to the truth table.  Figure 6.6 illustrates the A gate switching according to 

the polarity of VZ and the comparison of error to tolerance. 

 

 Table 6.3: Logic parameters for latch circuit. 

Output Va Vb 
4044 latch 

IC 
VZ

General 

Equation 

Low when 

0
2

tolKe V+
<

tolKe V∴ < −  

Low when 

2
tol

tol
Ke VV +

<

tolV Ke∴ <  

Positive Negative

Enabled Gate 
Values of Vsen to  

change logic 

state 

when  

Vref = 1 V 

Vtol = 2 V 

-1.21 V -0.79 V 

Va controls 

set input. 

 

Vb controls 

reset input. 

A+ A- 

Vsen < -1.21  L H L A+ On A- Off 

-1.21 < Vsen < 

-0.79 
H H Stay in same state 

-0.79 < Vsen H L H A+ Off A- On 
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 Figure 6.5: Electrical schematic of latch circuit. 

 

 
 Figure 6.6: Illustration of A gate switching. 
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6.4 Gate Drive and Switch-mode Inverter Circuit 

 

The next phase of testing was the gate drive circuit.  A single IR2113 high and low 

side driver was used to supply the IGBT gates with enough current to ensure correct 

turn on.  Care had to be taken with the selection of the bootstrap diode because it had 

to handle fast switching as well as a considerable amount of current.  A PBYR1645 

fast recovery schottky diode was used in the temporary test circuit and proved to be 

suitable.  2×IRGBC30KD IGBTs with internal soft recovery diodes were used to 

construct a temporary switch-mode inverter.  The initial test used only a 10 kΩ 

resistive load as illustrated in figure 6.7.  This would provide a square-wave output 

used to determine correct operation of the complete gate drive circuit.  The gate drive 

inputs were controlled by the current controller B gate outputs.  This provided a 50 Hz 

oscillation between + and – gates without interruption from the latch circuit.  A 22 Ω 

resistor was placed in series with the IGBT’s to prevent damaging the transistors in 

the event that they were energised simultaneously.   

 

Figure 6.8 illustrates the gate drive high and low output voltages with respect to 

ground while figure 6.9 illustrates the square-wave output with respect to the sine 

wave input VZ of the current controller.  The purpose of figure 6.8 is to demonstrate 

the gate signal to transistor A+ turning off before A- is energised.  Note that the 

emitter for transistor A+ is connected at the 15 V node and therefore the gate is off in 

the region where figure 6.8 demonstrates 15 V or less.  The noise in transistor A+ 

turning off was varying throughout the testing procedure and it was concluded that it 

was generated by the inconsistency of the connections in the breadboard test circuit.  

This problem was not expected to occur in the final printed circuit board.   
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 Figure 6.7: Electrical schematic of gate drive circuit. 

 

 
 Figure 6.8: Oscilloscope image demonstrating gate driver Ho and Lo output. 
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 Figure 6.9: Oscilloscope image demonstrating inverter output with pure resistive load. 

 

 

To generate an exponential output the 10 kΩ resistor was replaced with a 4.7 kΩ 

resistor and 1 µF capacitor circuit.  The results are shown in figure 6.10 which 

demonstrate an exponential rise and fall of capacitor voltage with comparison to the 

oscillating high to low gate signal to transistor A+. 

 
 Figure 6.10: Oscilloscope image demonstrating inverter output with R-C circuit. 
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The inverter output oscillates about +15 V but the current controller required 

oscillation around 0 V.  For this reason a differential amplifier circuit was constructed 

as illustrated in figure 6.11.  Figure 6.12 illustrates the inverted output that would be 

suitable to provide a signal to the current sensor input of the current controller. 

 
 Figure 6.11: Electrical schematic of inverter with differential amplifier. 

 

 
 Figure 6.12: Oscilloscope image demonstrating differential amplifier output. 
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6.5 Closed-loop Tests and Results 

 

With all open-loop tests functioning correctly the last test was to close the loop and 

analyse the entire circuit.  To connect the circuit in closed-loop the current controller 

gate outputs, A and B, were connected to the corresponding gate drive inputs.  The 2 

VDC reference input to the current controller was replaced with a 5 volt peak ac 

signal via a 10 kΩ pot in parallel with the 12 VAC VZ supply.  This ensured that the 

reference voltage was in phase with the zero crossing voltage.  The 10 kΩ pot 

connected to the current sensing input was removed with the new input connected 

directly to the inverter differential amplifier output.  The last important change was to 

modify the inverter R-C network to function in unipolar mode because the open-loop 

was simulated by a bipolar method which allowed the capacitor to discharge through 

the A- transistor only for half of each cycle.  In the closed-loop unipolar system the 

capacitor would be required to discharge many times for each half cycle without the 

use of the opposite IGBT.  To perform this task the 4.7 kΩ series resistor was 

replaced with a 1 kΩ resistor and another 1 kΩ resistor was connected in parallel with 

the capacitor, this would be used as a charge/discharge path for the negative and 

positive half cycles respectively.  The reduction in resistor values was used to shorten 

the R-C time constant to make the inverter more responsive.  Care was taken not to 

make the time constant too short because as the rise and fall times become too steep 

the system would operate erratically. 

 

Figure 6.13 illustrates the inverter output, or current sensor input, with the tolerance 

band set at 2 V.  The plot also shows the switching of the A- and A+ transistors in the 

positive and negative half cycles respectively.  It can be seen that the switching 

frequency was approximately 50 times the output sinusoidal frequency.  By reducing 

the tolerance the switching frequency would be increased and a smoother output sine 

wave would result.  Figure 6.14 illustrates this and compares the current sensor to the 

current reference at a tolerance of 0.16 V.  Saturation started to occurred for values of 

Vtol < 0.16 V.  The current sensor voltage is the inverse of the reference voltage 

because the controller uses a negative feedback to operate. 
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 Figure 6.13: Oscilloscope image demonstrating sinusoidal output with IGBT switching. 

 

 

 
 Figure 6.14: Oscilloscope image demonstrating sinusoidal output with small tolerance. 

 

 



 

 

  

Chapter 7 PIC IMPLEMENTATION 
 

 

The main objective of this project was to determine if implementation by modern 

electronics, such as a PIC, could optimise the original current controller.  The results 

of the research undertaken to perform this task are outlined in this chapter.  

 

The initial section starts with an introduction to microcontrollers in general and then 

focuses specifically on PIC microcontrollers.  It gives details of the PIC 

microcontroller from its origins to the present day.   The section concludes with a 

description of PIC hardware, software and available accessories. 

 

The chapter continues by listing conditions that must be satisfied to ensure successful 

PIC implementation.  An overview of available PICs that meet the requirements is 

discussed with the final decision being the PIC18C242.  The following section lists 

significant characteristics of the PIC18C242 and includes the pinout diagram and 

description.   

 

The chapter concludes with a flow chart, which includes sample code and execution 

times, designed for the PIC18C242 implemented current controller. 

 

 48
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7.1 Introduction to PIC Microcontrollers 

 

A microcontroller is a special type of microprocessor that integrates all the required 

features on a single chip to give it the versatility to control outputs with various forms 

of inputs.  They are sometimes referred to as a single chip computer because they 

include all the basic computer devices such as a CPU, EPROM, RAM, I/O lines, 

Serial and Parallel ports, timers and built in peripherals such as A/D and D/A 

converters (Iovine 2004).  The majority of microcontrollers range from 4 to 16-bit but 

the market has been dominated by the 8-bit series since the early 1990s (Peatman 

1998).  Microcontrollers are used in most of today’s electronic equipment ranging 

from simple appliances such as toasters to more intricate equipment like mobile 

phones or computer printers.  Their world wide usage is approximately 30 times 

larger than the computer based processor (Peatman 1998). 

 

The PIC, or Peripheral Interface Controller, is a microcontroller designed by 

Microchip Technology Inc. (previously known as General Instruments).  They 

originally designed the chip in the 1970s to reintroduce the Harvard Architecture 

system, which uses separate memory and buses for communication (Predko 2002).  

This system utilised ROM to store the instruction program and a separate RAM for 

instruction execution.  This method equated to a much faster and efficient controller. 

 

Today, Microchip Inc. has a complete line of PICs on the market and they classify 

them as ‘low end’, ‘mid range’ and ‘high end’.  The low end range start at simple 8-

pin devices that do not include peripherals such as A/D converters and include only a 

simple 35-instruction set.  The high end PICs come in 40 to 84-pin packages and 

include high levels of peripheral integration such 16 channels of 10-bit D/A 

converters, multi-timers, vectored interrupt handling and various serial interface 

capabilities (Farnell 2005).  Their instruction set includes 58 single word instructions 

and are upward compatible with the lower end PICs. 
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To increase speed of execution, PICs use the technique of pipelining where an 

instruction is fetched from memory and ready to be executed during implementation 

of the previous instruction (Varley 1998).  The general programming code is low-

level language but there are PICs available that include and extra EEPROM, referred 

to as a Parallax Basic Stamp, which allow high-level coding.  These chips were 

designed to increase coding simplicity but have the disadvantage of increasing the 

instruction execution time and it was for this reason that they were not suitable for the 

current controller design.  The low-level program coding is done in the same way as 

standard assembly language where a basic text editor is used to write the program and 

an assembler compiles it.  The most common assembler used for PICs is the MPASM 

assembler supplied by Microchip.   

 

PIC development tools are available to give the user complete access to the PIC.  

These are available as either integrated boards that have various functions such as RS-

232 and USB interface, code compiler and PIC program transfer, or specialist boards 

that carry out a single function such as EPROM erasing.  Demo boards are available 

that allow PICs to be simulated.  These boards can be used to check the PIC for 

correct operation and provide a way for inexperienced users to gain familiarity with 

PICs.  Emulators are also available that give access to the internal bus lines which 

permit monitoring of the memory bus during program execution.   

 

 

7.2 PIC Requirements for Current Controller Circuit  

 

To ensure successful PIC implementation as the current controller, the following 

conditions must be satisfied by the PIC.   

 

• Gate switching times must be less than 200 µs. 

The inverter gate switching can be up to 100 times the output frequency, 

which will be 50 Hz.  This equates to a gate switching frequency of up to 5 

kHz or a period of 200 µs. 
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• Response time of approximately 5 µs once error reaches tolerance band. 

The desired error reaction time is approximately 5 µs.  This means that the 

PIC must be able to execute all instructions and change the required output 

within 5 µs once the error reaches the tolerance band.  Although this was the 

desired time for the discrete component current controller circuit it should not 

be as critical for the PIC circuit because all the controlling will be done 

internally. 

 

• Requires 10-bit or higher A/D converters. 

During testing of the original current controller it was demonstrated that 

saturation of the inverter output current occurred for tolerances below 0.16 V 

with a reference voltage of 10 Vp-p.  Taking into account the gain of 20 applied 

to Vtol and the logic circuit meant a tolerance band of Vref ±0.016 V.  To 

achieve equivalent results using a PIC would require the A/D converter to 

have a step size of 16 mV for a 10 Vp-p reference voltage or 10
16

V
mV

= 625 

steps.  A 10-bit A/D converter provides 210 or 1024 discrete steps to an analog 

signal.  Therefore, if the Vref line was set up to convert a 10 Vp-p range, the 

digital increments would be equivalent to 10
1024

V or 9.77 mV.  This would allow 

two steps either side of the reference voltage to produce an inverter output 

current equivalent to the original current controller circuit. 

 

• Requires 2×A/D converters. 

One converter for the current reference that will also determine voltage 

polarity and a second converter for the bridge inverter current sensor. 

 

• Requires 4×digital output lines. 

The PIC will control the states of 4 gates and will therefore require at least 4 

digital outputs. 

 



Chapter 7 PIC IMPLEMENTATION  

 52

Note, that the available memory was not considered because the current controller 

operation was relatively simple and even the low-end chips would have ample 

memory.  The main requirements that had to be met were speed of operation and the 

inclusion of A/D converters.  Although the desired error reaction time was 5 µs in the 

original current controller, excellent results should still be obtained if the time was 

increased slightly. 

 

 

7.3 Selecting a Suitable PIC 

 

Before selecting a suitable PIC, it first had to be determined if any PICs were 

available that fulfilled the guidelines mentioned in the previous section.  If it showed 

that PICs were not suitable then research would have to be done to find an alternative, 

such as DSPs (Digital Signal Processors).   

 

With such a large range of PICs available the obvious choice was to start at the most 

common PIC, the PIC16Cxxx series.  This range of chips varied from 20 to 24 MHz 

maximum clock speed, 13 to 52 I/O ports and up to 10×12-bit A/D converters (Farnell 

2005).  The number of I/O lines and A/D converters was substantial and so was the bit 

quality of the A/D converters.  The only uncertainty was the maximum clock speed.  

For the chips containing the 12-bit A/D converters, the clock speed was 20 MHz or a 

period of 6

1
20 10×

seconds = 50 ns.  These PICs take 4 clock cycles to execute 1 

instruction; therefore each instruction would take 200 ns or 0.2 µs.  This only allowed 

25 instructions to keep under the 5 µs target and therefore a faster operating PIC 

would be desired.   

 

Inspection of the high-end PIC range revealed that the PIC17Cxxx series increased 

the maximum clock frequency to 33 MHz but the A/D converters were limited to 8-bit 

(Farnell 2005).  The PIC18Cxxx offered up to 40 MHz maximum clock frequency 

with 10-bit A/D converters (Farnell 2005).  This series had the advantage of executing 

an instruction in half the time of the PIC16Cxxx series but at a compromise of a 

reduced A/D bit sample.
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An important factor to consider was the A/D conversion time.  Calculations made 

from the data sheets for a PIC16Cxxx running with a 20 MHz clock show a 

conversion time of 20.8 µs while the calculated conversion time for a PIC18Cxxx 

running with a 40 MHz clock was only 19.2 µs.  This data demonstrated that although 

the step size for the 12-bit A/D converter provided in the PIC16Cxxx series would be 

a quarter of the size of the 10-bit converter provided in the PIC18Cxxx series, it was 

disadvantaged by the conversion time.  For this and the fact that the PIC18Cxxx could 

execute instructions at twice the speed of the PIC16Cxxx, it was decided that the 

PIC18Cxxx series was the preferred choice of PIC.   

 

The PIC18Cxxx series consists of a number of chips but the bottom of the range chip, 

the PIC18C242, would be the choice for the current controller implementation.  This 

chip has a maximum clock speed of 40 MHz, 23 I/O lines from 3×ports, and includes 

5×10-bit A/D converters (Microchip PIC18Cxx2).  The following section gives a 

detailed look at the PIC18C242 chip. 

 

 

7.4 The PIC18C242 

 

This section gives an overview of some of the PIC18C242 characteristics that will be 

significant for the current controller implementation.  Refer to appendix C for the 

PIC18C242 block diagram and PIC18Cxxx instruction set.  The following 

information was obtained from data sheets supplied by Microchip Technology Inc.   

 

Item Description 

EPROM 16 kBytes  

Each single word instruction occupies 2 Bytes. 

Therefore the EPROM can store 8192 single word instructions. 

 

RAM 512 Bytes 

This will be more than sufficient for the current controller circuit. 
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Clock DC → 40 MHz osc/clock in 

At 4 cycles per instruction, this processes up to 10 million 

instructions per second. 

 

I/O Ports 3×8-bit Bi-directional I/O Ports 

The ports can be set up to be either TTL digital I/O, analog inputs, 

external clock input, interrupts and various other functions. 

 

A/D Converters 5×10-bit A/D Converters 

Conversion times are calculated as 12×TAD where TAD is the 

conversion time per bit.  The minimum recommended time to 

ensure accurate conversion is 1.6 µs. 

Therefore the minimum conversion time is 12×1.6 = 19.2 µs. 

TAD is set in the software. 

 

Other Features High Current Sink/Source (25 mA/25 mA) 

3×External Interrupts 

4×Timers 

 

 

The chip is available in the standard 28-pin DIP package as illustrated in figure 7.1.  

The pinout diagram is displayed in figure 7.2 with a description of each listed in table 

7.1.   

 
 

 Figure 7.1: Image of PIC18C242 Chip (Microchip PIC18Cxx2). 
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 Figure 7.2: PIC18C242 Pinout Diagram (Microchip PIC18Cxx2). 

 

 

 Table 7.1: PIC18C242 Pinout Description (Microchip PIC18Cxx2). 
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 Table 7.1 cont. 

 

 
 

 



Chapter 7 PIC IMPLEMENTATION  

 57

7.5 PIC Implemented Flow Chart and Sample Code 

 

To demonstrate the procedure of the PIC designed current controller, a flow chart was 

design as illustrated in figure 7.3. 

 

With reference to the flow chart, note the following: 

 

• The chart refers to sensing voltages instead of currents even though this is a 

current controller.  This is because the photovoltaic system will incorporate 

current sensors that are current to voltage converters. 

 

• The voltage polarity is determined at the first decision point by the Vref 

reading taken from the A/D converter. 

 

• The order that the gates are energised and a 0.2 µs blanking time prevents 

common side transistors shorting the inverter bridge rails.  The 0.2 µs blanking 

time is a result of the 2 instructions required to turn off the appropriate A-side 

transistor and energise the opposite B-side transistor.  If future work illustrates 

that extra time is required due to gate propagation delays then all that is 

required would be to code a simple loop that takes the desired time to execute. 

 

• The system will have negative feedback therefore summing Vref and Vsen will 

be the same as the reference current minus the inverter output current. 

 

• There is no need for an external tolerance band input because the tolerance 

will be determined in the program and set by the difference between Vref and 

Vsen.  The flow chart illustrates a tolerance of 2 bits either side of the reference 

voltage, which is equivalent to tolerance bands at Vref ±0.195%. 

 

• The process is a loop that will run continuously while the photovoltaic system 

is operating. 
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A description of each process is provided in table 7.2.  This table also provides 

sample code for each step along with instruction execution times for a PIC running at 

40 MHz.  The code was provided to calculate an accurate prediction of the instruction 

times taken throughout the current controller.  To improve clarity and simplicity the 

sample code only demonstrates the condition for positive polarity and for Vsen below 

the tolerance band, therefore gate A+ is turned on.  The complete code is displayed in 

appendix D. 

 

The program was written with the use of Port A and Port B as follows: 

Bit Pin Assignment 

A0 2 A/D input for Vref

A1 3 A/D input for Vsen

A2 4 A/D V– (-5 V reference) 

A3 5 A/D V+ (+5 V reference) 

B0 21 Digital output for gate B+ 

B1 22 Digital output for gate B- 

B2 23 Digital output for gate A+ 

B3 24 Digital output for gate A- 

 

 

 Table 7.2: Flow Chart Description, Sample Code and Execution Time. 

Process Description 
Program Start, 

Initialise Ports 

 

The program is directed to the first program address, which is usually 0x00.  The 

function of each port is determined. For example, what lines are assigned as 

digital I/O and what lines are A/D converters, and whether they are inputs or 

outputs. 

 ORG 0  ;let program start at the first address 0x00 
 MOVLW 0xFD  ;configure Port A 
 MOVWF ADCOND1 ;set RA<3:0> as A/D inputs  
    ;let RA<0> = Vref & RA<1> = Vsen 
    ;let RA<2> = reference V- 
    ;let RA<3> = reference V+ 
 MOVLW 0xFF  ;value to configure data direction 
 MOVWF TRISA  ;set all of port A as inputs 
 CLRF PORTB  ;initialise port B by clearing output 
    ;let RB<0> = B+ & RB<1> = B- 
    ;let RB<2> = A+ & RB<3> = A- 
 MOVLW 0x00  ;value to configure data direction 
 MOVWF TRISB  ;set all of port B as outputs 
 
%Execution time N/A 
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Read Vref A digital reading is taken from the voltage applied to the A/D line assigned as 

the reference voltage input.  Deduct 512 bits (half of the total A/D bits) from the 

A/D value to centre the digital reading. 

READV MOVLW 0x85  ;configure Port A bit 0 ie. Vref 
 MOVWF ADCON0 ;start A/D conversion 
 MOVLW 0x200  ;load w register with 512 
 SUBLW ADRESH ;read value in A/D register and deduct 512 
 MOVWF 2  ;move result in w to f register 2 
 
%Execution time = 5 × 0.1 + 19.2 = 19.7 µs 
Determine Polarity The polarity is determined from the binary value of the voltage reference and the 

program branched to the appropriate address. 

 BN VNEG  ;branch to VNEG if value in w (Vref) is  
    ;negative 
 BNN VPOS  ;branch to VPOS if value in w (Vref) is 
    ;not negative 
 
%Execution time = (1 or 2) × 0.1 = 0.1 or 0.2 µs 
Set Initial Gate 

Outputs 

First, the 2×transistors not used in the particular voltage cycle are de-energised 

and then the opposite ‘B’ transistor gate output is set high.  

VPOS BCF PORTB,0 ;set bit 0 of port B to 0 ie. B+ to low 
 BCF PortB,3 ;set bit 3 of port B to 0 ie. A- to low 
 BSF PORTB,1 ;set bit 1 of port B to 1 ie. B- to high 
 
%Execution time = 3 × 0.1 = 0.3 µs 
Read Vsen A digital reading is taken from the voltage applied to the A/D line assigned as 

the sense voltage input.  Again, 512 is deducted to centre the digital reading. 

 MOVLW 0x8D  ;configure Port A bit 1 i.e. Vsen 
 MOVWF ADCON0 ;start A/D conversion 
 MOVLW 0x200  ;load w register with 512 
 SUBLW ADRESH ;read value in A/D register and deduct 512 
 
% Execution time = 4 × 0.1 +19.2 = 19.6 µs 
Sum 

Vref & Vsen

The binary values from the Vref & Vsen readings are added.  Because Vsen is 

negative, the result will be the difference.   

 ADDWF 2  ;add value in f register 2 to W register 
    ;ie. add Vref and Vsen 
    ;and store result in f register 2 
 
% Execution time = 1 × 0.1 = 0.1 µs 
Determine 

Difference 

The theoretical difference will determine which address to branch to for the 

appropriate ‘A’ gate to be controlled.  The actual value will be in the 2’s 

complement form.   

 MOVLW 0x03  ;load w with 3 
 SUBWF 2,0  ;subtract 3 from value in f register 2 
 BNN APLSH  ;branch to set gate A+ high 
 MOVLW 0x02  ;load w with 2 
 ADDWF 2,0  ;add 2 to value in f register 2 
 BN APLSL  ;branch to set gate A+ low 
 BRA READV  ;within tolerance so branch to read Vref 
 
%Execution time = (3 or 6 or 7) × 0.1 = 0.3 or 0.6 or 0.7 µs 
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Set ‘A’ Gate Output Depending on the voltage polarity, either the A+ or A- gates will be controlled 

and the result of the Vref & Vsen sum determines whether the gate output remains 

the same or changed to either high or low. 

APLSH BSF PORTA,2 ;set bit 2 of port B to 1 ie. A+ to high 
 
% Execution time = 1 × 0.1 = 0.1 µs 
Go To Read Vref To repeat the loop, the program jumps back to the Vref address. 

 GOTO READV  ;loop back to read reference voltage 
 
%Execution time = 0.2 µs. 
 

This demonstration illustrated a maximum time from initialising Vsen read to 

controlling the appropriate gate output was 20.4 µs.  The following calculation 

illustrates what effect this time delay would have on a typical photovoltaic system. 

For this example, let the following conditions apply. 

 

The inverter output voltage 230 2 325V V= × =  

The inductive load 100L mH=  

The change in time 20.4dt sµ=  

The voltage across an inductor  diV L
dt

=  

∴The change in inductor current Vdi dt
L

=  

Substituting in values yields 
6

3

325 20.4 10 66.3
100 10

di mA
−

−

× ×
= =

×
 

 

This illustrates that the change in the inverter output current due to the time taken 

modifying the appropriate gate would be 66.3 mA and confirms that good results 

would be obtained for a PIC current controller. 

 

The sample code demonstration also illustrated a maximum time of 40.6 µs for a 

complete loop.  This permits more than 500 loops for every 50 Hz cycle, which is 

ample for the pulse width modulation technique that operates at approximately 100 

times the output frequency. 

 

With all the PIC implemented current controller requirements fulfilled, it was 

established that the new controller would operate successfully. 



 

 

 

Chapter 8 DISCUSSION AND CONCLUSION 
 

 

8.1 Achievement of Objectives 

 

Referring to my project specification provided in appendix A, the objectives that I put 

forward changed slightly throughout the year.  Firstly, testing of the current controller 

included temporarily constructing the gate drive circuit and a modification of the 

bridge inverter.  The second change was that the research of implementing a PIC 

microcontroller into the current controller was only used as a theoretical guide and 

that purchasing the required equipment was not carried out due to time and money 

restrictions.  For this reason, it was decided that I would design and construct the 

PCBs based on the original current controller design.  With this said, a summary of 

the objectives that I completed included: 

 

• Construction and testing of the original current controller system with 

successful results. 

 

• Research into a PIC implemented current controller was successful and a 

complete program for this task was written for the PIC18C242 

microcontroller. 

 

• A PCB of the original current controller circuit was designed with 3 final 

boards manufactured and tested. 
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8.2 Further Work 

 

There are two areas of further work that have been greatly improved as a result of this 

project. 

 

The first is that further testing of the photovoltaic system, and specifically single-

phase bridge inverters, can now be carried out using the current controller PCBs that I 

have built and tested.  This will provide a quicker and more confident method of 

testing by eliminating the need to temporarily constructing a current controller circuit 

again.  It will also reduce typical breadboard errors such as faulty connections and 

extra noise picked up on the longer connecting wires and component legs.  It would 

be an advantage for the photovoltaic system if a future student were to design and 

construct a PCB of the inverter circuit. 

 

The second is that my current controller program, provided in appendix D, could be 

implemented in the design and manufacturing of a PIC implemented current 

controller.  This would involve purchasing a PIC18C242 microcontroller and 

appropriate development tools required to encode and test the PIC.  A temporary 

circuit should then be constructed to test the new current controller in the photovoltaic 

system and if it proves to be successful, a PCB of the new current controller could be 

designed and manufactured. 

 

 

8.3 Conclusion 

 

The topics covered by this dissertation included the power electronics involved in 

switch-mode inverters, pulse-width modulation, current control techniques and gate 

drive circuits.  It also provided a comprehensive chapter on how each section of the 

current controller system was tested and illustrated the results obtained.  The final 

topic provided information about PIC microcontrollers and made a recommendation 

including a sample program for a PIC18C242 implemented current controller. 
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University of Southern Queensland 
 

FACULTY OF ENGINEERING AND SURVEYING 
 

ENG 4111/4112 Research Project 
PROJECT SPECIFICATION 

 
FOR: ALISTA MILETIC 
 
TOPIC: CURRENT CONTROLLER FOR INVERTER BRIDGE 

DESIGNED FOR GRID-CONNECTED PHOTOVOLTAIC 
SYSTEM 

 
SUPERVISOR: Dr. Tony Ahfock 
 
ENROLMENT: ENG 4111 – S1, D, 2005; 
 ENG 4112 – S2, D, 2005 
 
PROJECT AIM: A grid-connected photovoltaic system includes an inverter 

which converts DC from the photovoltaic panels to AC. The 
inverter has to be controlled so that its output frequency 
matches that of the grid to which it is connected and its 
output current is near sinusoidal.  The aim of this project is to 
optimise the existing current controller design by using 
programmable ICs. The final stage will be to construct a 
professional PCB circuit board with the new design. 

 
PROGRAMME: Issue A, 21st March 2005
 
1. Temporarily construct and prove the existing current controller circuit. 
 
2. Research the possibility of replacing the standard IC’s with Programmable ICs (PICs) or Digital 

Signal Processors (DSPs) if the PIC’s prove to be unsuitable. 
 
3. Replace the temporary current controller components with the new PICs or DSPs and make 
 the necessary adjustment required to achieve the desired output. 
 
4. Design a PCB layout on the new circuit once it has be tested and proven. 
 
5. Construct the final circuit board and test. 
 
As time permits: 
 
6. Test the existing inverter bridge circuit. 
 
7. Design a PCB layout of the inverter bridge circuit and construct the final circuit board. 
 
AGREED: 
 ________________(Student) ________________(Supervisor) 
 
 ___/___/___ ___/___/___ 

  

 



 

 

 

 

 

 

Appendix B – CURRENT CONTROLLER 

SCHEMATIC AND PCB 
 

 

 

B.1 – Current Controller Schematic 
 
B.2 – Image of Printed Circuit Board 
 

 

 69



 

Appendix B.1 
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Appendix B.2 
 

 Current Controller PCB 
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Appendix C – PIC18C242 BLOCK DIAGRAM AND 

INSTRUCTION SET 
 

 

 

C.1 – PIC18C242 Block Diagram (Microchip PIC18Cxx2) 
 
C.2 – PIC18Cxxx Instruction Set (Microchip PIC18Cxx2) 
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Appendix C.1 
 PIC18C242 Block Diagram 
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Appendix C.1 

 PIC18Cxxx Instruction Set 
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Note  1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value 

used will be that value present on the pins themselves. For example, if the data latch is ’1’ for a 
pin configured as input and is driven low by an external device, the data will be written back 
with a ’0’. 

 2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler 
will be cleared if assigned. 

 3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two 
cycles. The second cycle is executed as a NOP. 

 4: Some instructions are 2 word instructions. The second word of these instruction will be 
executed as a NOP, unless the first word of the instruction retrieves the information embedded 
in these 16-bits. This ensures that all program memory locations have a valid instruction. 

 5: If the table write starts the write cycle to internal memory, the write will continue until 
terminated. 
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Appendix D – PIC18C242 CURRENT 

CONTROLLER CODE 
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 PIC18C242 Sample Code, wholly written by Alista Miletic 
 
 ORG 0  ;let program start at the first address 0x00 
 MOVLW 0xFD  ;configure Port A 
 MOVWF ADCOND1 ;set RA<3:0> as A/D inputs  
    ;let RA<0> = Vref & RA<1> = Vsen 
    ;let RA<2> = reference V-   
  
    ;let RA<3> = reference V+ 
 MOVLW 0xFF  ;value to configure data direction 
 MOVWF TRISA  ;set all of port A as inputs 
 CLRF PORTB  ;initialise port B by clearing output 
    ;let RB<0> = B+ & RB<1> = B- 
    ;let RB<2> = A+ & RB<3> = A- 
 MOVLW 0x00  ;value to configure data direction 
 MOVWF TRISB  ;set all of port B as outputs 
 
READV MOVLW 0x85  ;configure Port A bit 0 ie. Vref 
 MOVWF ADCON0 ;start A/D conversion 
 MOVLW 0x200  ;load w register with 512 
 SUBLW ADRESH ;read value in A/D register and deduct 512 
 MOVWF 2  ;move result in w to f register 2 
 
 BN VNEG  ;branch to VNEG if value in w (Vref) is 

;negative 
 BNN VPOS  ;branch to VPOS if value in w (Vref) is 

;not negative 
 
VNEG BCF PORTB,1 ;set bit 1 of port B to 0 ie. B- to low 
 BCF PortB,2 ;set bit 2 of port B to 0 ie. A+ to low 
 BSF PORTB,0 ;set bit 0 of port B to 1 ie. B+ to high 
 
 MOVLW 0x8D  ;configure Port A bit 1 ie. Vsen 
 MOVWF ADCON0 ;start A/D conversion 
 MOVLW 0x200  ;load w register with 512 
 SUBLW ADRESH ;read value in A/D register and deduct 512 
  
 ADDWF 2,1  ;add value in f register 2 to W register 
    ;ie. add Vref and Vsen 
    ;and store result in f register 2 
 
 MOVLW 0x03  ;load w with 3 
 SUBWF 2,0  ;subtract 3 from value in f register 2 
 BNN ANEGL  ;branch to set gate A- low 
 MOVLW 0x02  ;load w with 2 
 ADDWF 2,0  ;add 2 to value in f register 2 
 BN ANEGH  ;branch to set gate A- high 
 BRA READV  ;within tolerance so branch to read Vref 
 
VPOS BCF PORTB,0 ;set bit 0 of port B to 0 ie. B+ to low 
 BCF PortB,3 ;set bit 3 of port B to 0 ie. A- to low 
 BSF PORTB,1 ;set bit 1 of port B to 1 ie. B- to high 
 
 MOVLW 0x8D  ;configure Port A bit 1 ie. Vsen 
 MOVWF ADCON0 ;start A/D conversion 
 MOVLW 0x200  ;load w register with 512 
 SUBLW ADRESH ;read value in A/D register and deduct 512 
  
 ADDWF 2,1  ;add value in f register 2 to W register 
    ;ie. add Vref and Vsen 
    ;and store result in f register 2 
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 MOVLW 0x03  ;load w with 3 
 SUBWF 2,0  ;subtract 3 from value in f register 2 
 BNN APLSH  ;branch to set gate A+ high 
 MOVLW 0x02  ;load w with 2 
 ADDWF 2,0  ;add 2 to value in f register 2 
 BN APLSL  ;branch to set gate A+ low 
 BRA READV  ;within tolerance so branch to read Vref 
 
ANEGH BSF PORTB,3 ;set bit 3 of port B to 1 ie. A- to high 
 GOTO READV  ;loop back to read reference voltage 
ANEGL BCF PORTB,3 ;set bit 3 of port B to 0 ie. A- to high 
 GOTO READV  ;loop back to read reference voltage 
APLSH BSF PORTB,2 ;set bit 2 of port B to 1 ie. A+ to high 
 GOTO READV  ;loop back to read reference voltage 
APLSL BCF PORTB,2 ;set bit 2 of port B to 0 ie. A+ to high 
 GOTO READV  ;loop back to read reference voltage 
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Appendix E – GLOSSARY OF TERMS 
 

 

Bipolar – With respect to voltage: Is of dual polarity. 
 
BJT (Bipolar Junction Transistor) – A transistor constructed with three doped 
semiconductor regions separated by two pn junctions (Floyd 2002). 
 
Gate Driver – A device used to supply adequate voltage and current to ensure 
successful switching of power devices at high speed. 
 
IGBT (Insulated Gate Bipolar Transistor) – A hybrid power semiconductor device 
which combines the low saturation voltage of a bipolar transistor with the low input 
current requirements of a unipolar transistor (Mazda 1997). 
 
Inverter – A converter that changes a DC input to an AC output. 
 
MOSFET (Metal Oxide Semiconductor Field Effect Transistor) – A voltage 
controlled form of unipolar transistor capable of operating in enhanced or depletion 
mode. 
 
Optocoupler – An optically coupled high speed transistor IC used to isolate electrical 
signals.  
 
Photovoltaic Cells – Transducers that converters radiant energy into electrical 
energy. 
 
PIC (Peripheral Interface Controller) – A microcontroller designed by Microchip 
Technology Inc. (previously known as General Instruments). 
 
Power Grid – The major electrical network that supplies power to domestic, 
commercial and industrial areas. 
 
PWM (Pulse-width modulation) – A method for varying the mark-to-space ratio of 
the output voltage waveform during a cycle so as to minimise the magnitudes of the 
harmonics (Mazda 1997). 
 
Unipolar – With respect to voltage: Is of single polarity. 
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