TL431/TL431A

Programmable Shunt Regulator

Features

- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance 0.20 Typical
- Sink Current Capability of 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typical
- Temperature Compensated For Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Description

The TL431/TL431Aare three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors These devices have a typical dynamic output impedance of 0.2 W Active output circuitry provides a very sharp turn-on characteristic, making these devices excel lent replacement for zener diodes in many applications.

Internal Block Diagram

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified.)

Parameter	Symbol	Value	Unit
Cathode Voltage	VKA	37	V
Cathode Current Range (Continuous)	IKA	$-100 \sim+150$	mA
Reference Input Current Range	IREF	$-0.05 \sim+10$	mA
Power Dissipation			
D, LP Suffix Package	PD	770	mW
P Suffix Package		1000	mW
Operating Temperature Range	TOPR	$-25 \sim+85$	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Cathode Voltage	VKA	VREF	-	36	V
Cathode Current	IKA	1.0	-	100	mA

Electrical Characteristics

($\mathrm{TA}=+25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Conditions		TL431			TL431A			Unit
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Reference Input Voltage	VREF	V KA $=\mathrm{V}_{\text {R }}$	F, IKA=10mA	2.440	2.495	2.550	2.470	2.495	2.520	V
Deviation of Reference Input Voltage OverTemperature (Note 1)	Δ VREF/ ΔT	VKA $=$ VREF, $\mathrm{IKA}=10 \mathrm{~mA}$ $\mathrm{T}_{\mathrm{MI}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {M }} \mathrm{XX}$		-	4.5	17	-	4.5	17	mV
Ratio of Change in Reference Input Voltage	$\Delta V_{\text {REF }} /$ $\Delta \mathrm{V}$ KA	$\begin{aligned} & \text { IKA } \\ & =10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \Delta V_{K A}=10 \mathrm{~V}- \\ & \text { V }_{\text {REF }} \end{aligned}$	-	-10	-2.7	-	-1.0	-2.7	mV / V
to the Change in Cathode Voltage			$\begin{aligned} & \Delta \mathrm{V} \mathrm{KA}=36 \mathrm{~V}- \\ & 10 \mathrm{~V} \end{aligned}$	-	-0.5	-2.0	-	-0.5	-2.0	
Reference Input Current	IREF	$\begin{aligned} & \text { IKA=10mA, } \\ & R_{1}=10 \mathrm{~K} \Omega, \mathrm{R}_{2}=\infty \end{aligned}$		-	1.5	4	-	1.5	4	$\mu \mathrm{A}$
Deviation of Reference Input Current Over Full Temperature Range	$\Delta \mathrm{l}$ REF/ $/ \Delta \mathrm{T}$	$\begin{aligned} & \hline \text { IKA }=10 \mathrm{~mA}, \\ & R_{1}=10 \mathrm{~K} \Omega, \mathrm{R}_{2}=\infty \\ & \mathrm{T}_{\mathrm{A}}=\text { Full Range } \end{aligned}$		-	0.4	1.2	-	0.4	1.2	$\mu \mathrm{A}$
Minimum Cathode Current for Regulation	IKA(MIN)	$V_{K A}=V_{\text {REF }}$		-	0.45	1.0	-	0.45	1.0	mA
Off - Stage Cathode Current	IKA(OFF)	$\begin{aligned} & \text { VKA }=36 \mathrm{~V}, \\ & \text { VREF }=0 \end{aligned}$		-	0.05	1.0	-	0.05	1.0	$\mu \mathrm{A}$
Dynamic Impedance (Note 2)	ZKA	$\begin{aligned} & \text { VKA=}=V_{\text {REF }}, \\ & \text { IKA }=1 \text { to } 100 \mathrm{~mA} \\ & \mathrm{f} \geq 1.0 \mathrm{KHz} \end{aligned}$		-	0.15	0.5	-	0.15	0.5	Ω

- T MIN $=-25^{\circ} \mathrm{C}, \mathrm{T}$ MAX $=+85^{\circ} \mathrm{C}$

Test Circuits

Figure 1. Test Circuit for VKA=VREF

Figure 3. Test Circuit for IKA(OFF)

Typical Perfomance Characteristics

Figure 1. Cathode Current vs. Cathode Voltage

Figure 3. Change In Reference Input Voltage vs.
Cathode Voltage

Figure 5. Small Signal Voltage Amplification vs. Frequency

Figure 2. Cathode Current vs. Cathode Voltage

Figure 4. Dynamic Impedance Frequency

Figure 6. Pulse Response

Typical Application

Figure 10. Shunt Regulator

Figure 11. Output Control for ThreeTermianl Fixed Regulator

$$
V_{O}=\left(1+\frac{R_{1}}{R_{2}}\right) V_{\text {ref }}
$$

Figure 12. High Current Shunt Regulator

$l_{0}=\frac{V_{\text {REF }}}{\mathrm{R}_{\mathrm{CL}}}$

Figure 13. Current Limit or Current Source
Figure 14. Constant-Current Sink

Mechanical Dimensions

Package

TO-92

$\xrightarrow{-\mid \quad 0.38_{-0.05}^{+0.10}}$

Mechanical Dimensions (Continued)

Package

8-DIP

Mechanical Dimensions (Continued)

Package

8-SOP

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
TL431ACLP	1\%	TO-92	$-25 \sim+85^{\circ} \mathrm{C}$
TL431ACD		8-SOP	
TL431CLP	2\%	TO-92	
TL431CP		8-DIP	
TL431CD		8-SOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Abstract

General Description The MAX4080/MAX4081 are high-side, current-sense amplifiers with an input voltage range that extends from 4.5 V to 76 V making them ideal for telecom, automotive, backplane, and other systems where high-voltage current monitoring is critical. The MAX4080 is designed for unidirectional current-sense applications and the MAX4081 allows bidirectional current sensing. The MAX4081 single output pin continuously monitors the transition from charge to discharge and avoids the need for a separate polarity output. The MAX4081 requires an external reference to set the zero-current output level (VSENSE $=0 \mathrm{~V}$). The charging current is represented by an output voltage from VREF to VCC, while discharge current is given from VREF to GND

For maximum versatility, the 76V input voltage range applies independently to both supply voltage ($\mathrm{V} C C^{\mathrm{C}}$) and common-mode input voltage (VRS+). High-side current monitoring does not interfere with the ground path of the load being measured, making the MAX4080/MAX4081 particularly useful in a wide range of high-voltage systems. The combination of three gain versions (5V/V, 20V/V, $60 \mathrm{~V} / \mathrm{V}=\mathrm{F}, \mathrm{T}, \mathrm{S}$ suffix) and a user-selectable, external sense resistor sets the full-scale current reading and its proportional output voltage. The MAX4080/MAX4081 offer a high level of integration, resulting in a simple, accurate, and compact current-sense solution. The MAX4080/MAX4081 operate from a 4.5 V to 76 V single supply and draw only $75 \mu \mathrm{~A}$ of supply current. These devices are specified over the automotive operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and are available in a space-saving 8-pin $\mu \mathrm{MAX}$ or SO package.

Applications

Automotive (12V, 24 V , or 42V Batteries) 48 V Telecom and Backplane Current Measurement
Bidirectional Motor Control
Power-Management Systems
Avalanche Photodiode and PIN-Diode Current Monitoring
General System/Board-Level Current Sensing Precision High-Voltage Current Sources

Features

- Wide 4.5V to 76V Input Common-Mode Range
- Bidirectional or Unidirectional Isense
- Low-Cost, Compact, Current-Sense Solution
- Three Gain Versions Available 5V/V (MAX4080F/MAX4081F) 20V/V (MAX4080T/MAX4081T) 60V/V (MAX4080S/MAX4081S)
- $\pm 0.1 \%$ Full-Scale Accuracy
- Low 100 1 V Input Offset Voltage
- Independent Operating Supply Voltage
- 75 HA Supply Current (MAX4080)
- Reference Input for Bidirectional OUT (MAX4081)
- Available in a Space-Saving 8-Pin μ MAX Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4080FAUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4080FASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4080TAUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4080TASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4080SAUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4080SASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4081FAUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4081FASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4081TAUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4081TASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX4081SAUA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4081SASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO

Selector Guide appears at end of data sheet.
Pin Configurations

76V, High-Side, Current-Sense Amplifiers with Voltage Output

ABSOLUTE MAXIMUM RATINGS

RS+, RS- to GND...-0.3V to +80V	
OUT to GND............-0.3V to the lesser of +18 V or ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$	
REF1A, REF1B to GND	
(MAX4081 Only)....-0.3V to the lesser of +18 V or ($\mathrm{V}_{C C}+0.3 \mathrm{~V}$)	
Output Short Circuit to GND..................................Continuous	
Differential Input Voltage ($\mathrm{V}_{\text {RS }}+-\mathrm{V}_{\text {RS }}$)	
Current into Any Pin... $\pm 20 \mathrm{~mA}$	

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin $\mu \mathrm{MAX}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 362 mW 8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 471 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=4.5 \mathrm{~V}\right.$ to $76 \mathrm{~V}, \mathrm{~V}_{\text {REF1A }}=\mathrm{V}_{\text {REF1B }}=5 \mathrm{~V}$ (MAX4081 only), $\mathrm{V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}+}-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage Range	VCC	Inferred from PSRR test		4.5		76	V
Common-Mode Range	CMVR	Inferred from CMRR test (Note 3)		4.5		76	V
Supply Current	ICC	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=76 \mathrm{~V},$ no load	MAX4080		75	190	$\mu \mathrm{A}$
			MAX4081		103	190	
Leakage Current	$\mathrm{I}_{\text {RS }+ \text {, }}$ IRS-	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {RS }+}=76 \mathrm{~V}$			0.01	2	$\mu \mathrm{A}$
Input Bias Current	IRS+, IRS-	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {RS }+}=76 \mathrm{~V}$			5	12	$\mu \mathrm{A}$
Full-Scale Sense Voltage (Note 4)	VSENSE	MAX4080F/MAX4081F			± 1000		mV
		MAX4080T/MAX4081T		± 250			
		MAX4080S/MAX4081S		± 100			
Gain	Av	MAX4080F/MAX4081F		5			V/V
		MAX4080T/MAX4081T		20			
		MAX4080S/MAX4081S		60			
Gain Accuracy	ΔA_{V}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=48 \mathrm{~V} \\ & (\text { Note 5) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.1	± 0.6	\%
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 1	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 1.2	
Input Offset Voltage	Vos	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=48 \mathrm{~V} \\ & (\text { Note } 6) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.1	± 0.6	mV
			$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 1	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 1.2	
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CC}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}+}=4.5 \mathrm{~V}$ to 76 V		100	124		dB
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {RS }+}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 76 V		100	122		dB
OUT High Voltage	(VCC - VOH)	$\begin{aligned} & \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {RS }}+ \\ & =48 \mathrm{~V}, \mathrm{~V}_{\text {REF1A }}= \\ & \mathrm{V}_{\text {REF1B }}=2.5 \mathrm{~V}, \\ & \text { lout }(\text { sourcing })= \\ & +500 \mu \mathrm{~A} \text { (Note 8) } \end{aligned}$	MAX4080F/MAX4081F, $V_{\text {SENSE }}=1000 \mathrm{mV}$		0.15	0.27	V
			MAX4080T/MAX4081T, VSENSE $=250 \mathrm{mV}$				
			MAX4080S/MAX4081S, VSENSE $=100 \mathrm{mV}$				

76V, High-Side, Current-Sense Amplifiers with Voltage Output

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=4.5 \mathrm{~V}\right.$ to $76 \mathrm{~V}, \mathrm{~V}_{\text {REF1A }}=\mathrm{V}_{\text {REF1B }}=5 \mathrm{~V}$ (MAX4081 only), $\mathrm{V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}+}-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUT Low Voltage	Vol	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {RS }+}=48 \mathrm{~V}, \\ & \mathrm{~V}_{\text {REF }} \mathrm{A}=\mathrm{V}_{\text {REF1B }}= \end{aligned}$	$\operatorname{lout}($ sinking $)=10 \mu \mathrm{~A}$		4	15	mV
		-1000 mV (for MAX4081 only)	$\begin{aligned} & \text { lout }(\text { sinking })= \\ & 100 \mu \mathrm{~A} \end{aligned}$		23	55	
REF1A = REF1B Input Voltage Range (MAX4081 Only)	$\begin{aligned} & \left(V_{\text {REF }}-\right. \\ & \text { GND } \end{aligned}$	Inferred from REF1A rejection ratio, $V_{\text {REF1A }}=V_{\text {REF1B }}$		1.5		6	V
REF1A Input Voltage Range (MAX4081 Only)	(VREF1A GND)	Inferred from REF1A rejection ratio, $V_{\text {REF1B }}=G N D$		3		12	V
REF1A Rejection Ratio (MAX4081 Only)		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=48 \mathrm{~V}, \mathrm{~V} \text { SENSE }=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {REF } 1 \mathrm{~A}}=\mathrm{V}_{\text {REF1B }}=1.5 \mathrm{~V} \text { to } 6 \mathrm{~V} \end{aligned}$		80	108		dB
REF/REF1A Ratio (MAX4081 Only)		$V_{\text {REF1A }}=10 \mathrm{~V}, V_{\text {REF1B }}=G N D$, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=48 \mathrm{~V}$ (Note 2)		0.497	0.500	0.503	
REF1A Input Impedance (MAX4081 Only)		$V_{\text {REF1B }}=\mathrm{GND}$			250		k Ω

76V, High-Side, Current-Sense Amplifiers with Voltage Output

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=V_{R S+}=4.5 \mathrm{~V}\right.$ to $76 \mathrm{~V}, \mathrm{~V}_{\text {REF1A }}=\mathrm{V}_{\text {REF1B }}=5 \mathrm{~V}$ (MAX4081 only), $\mathrm{V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}+}-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=100 \mathrm{k} \Omega, \mathrm{C}_{\text {Load }}=20 \mathrm{pF}$, $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITION		MIN	TYP	MAX	UNITS
Bandwidth	BW	$\begin{aligned} & V_{C C}=V_{R S+}= \\ & 48 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$	MAX4080F/T/S		250		kHz
			MAX4081F/T/S		150		
OUT Settling Time to 1% of Final Value		VSENSE $=10 \mathrm{mV}$ to 100 mV			20		$\mu \mathrm{s}$
		$V_{\text {SENSE }}=100 \mathrm{mV}$ to 10 mV			20		
Capacitive-Load Stability		No sustained oscillations			500		pF
Output Resistance	Rout	$V_{\text {SENSE }}=100 \mathrm{mV}$			0.1		Ω
Power-Up Time		$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {RS }+}=48 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=100 \mathrm{mV}$ (Note 9)			50		$\mu \mathrm{s}$
Saturation Recovery Time		(Notes 9,10)			50		$\mu \mathrm{s}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: $V_{\text {REF }}$ is defined as the average voltage of $V_{\text {REF1A }}$ and $V_{\text {REF1B }}$. REF1B is usually connected to REF1A or GND.
$V_{\text {SENSE }}$ is defined as $V_{\text {RS }+}-V_{\text {RS-- }}$
Note 3: The common-mode range at the low end of 4.5 V applies to the most positive potential at RS+ or RS-. Depending on the polarity of $\mathrm{V}_{\text {SENSE }}$ and the device's gain, either RS+ or RS- can extend below 4.5 V by the device's typical full-scale value of VSENSE.
Note 4: Negative VSENSE applies to MAX4081 only.
Note 5: $V_{\text {SENSE }}$ is:
MAX4080F, 10 mV to 1000 mV
MAX4080T, 10 mV to 250 mV
MAX4080S, 10 mV to 100 mV
MAX4081F, -500 mV to +500 mV
MAX4081T, -125 mV to +125 mV
MAX4081S, -50 mV to +50 mV
Note 6: $V_{\text {OS }}$ is extrapolated from the gain accuracy test for the MAX4080 and measured as (VOUT $-\mathrm{V}_{\text {REF }}$)/AV at $\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V}$, for the MAX4081.
Note 7: VSENSE is:
MAX4080F, 500 mV
MAX4080T, 125 mV
MAX4080S, 50 mV
MAX4081F/T/S, OV
$\mathrm{V}_{\text {REF } 1 \mathrm{~B}}=\mathrm{V}_{\text {REF1A }}=2.5 \mathrm{~V}$
Note 8: Output voltage is internally clamped not to exceed 18 V .
Note 9: Output settles to within 1\% of final value.
Note 10: The device will not experience phase reversal when overdriven.

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Typical Operating Characteristics

MAX4081F/T/S REFERENCE REJECTION RATIO vs. FREQUENCY

GAIN ACCURACY vs. TEMPERATURE

MAX4081F/T/S
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY

MAX4081F/T/S
SMALL-SIGNAL GAIN vs. FREQUENCY

76V, High-Side, Current-Sense Amplifiers with Voltage Output

MAX4081

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=48 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=0 \mathrm{~V}, \mathrm{CLOAD}=20 \mathrm{pF}, \mathrm{RLOAD}=\infty, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$V_{\text {OUT }}$ HIGH VOLTAGE
vs. IOUT (SOURCING)

MAX4080S
SMALL-SIGNAL TRANSIENT RESPONSE

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Typical Operating Characteristics (continued)
$\left(V_{C C}=V_{R S}+=48 \mathrm{~V}, V_{\text {SENSE }}=0 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}\right.$, RLOAD $=\infty, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

$20 \mu \mathrm{~s} / \mathrm{div}$

MAX4081F
LARGE-SIGNAL TRANSIENT RESPONSE

MAX4081T
SMALL-SIGNAL TRANSIENT RESPONSE

$20 \mu s / d i v$
$20 \mu \mathrm{~s} / \mathrm{div}$
$20 \mu \mathrm{~s} / \mathrm{div}$

MAX4081S
$20 \mu \mathrm{~s} / \mathrm{div}$

MAX4080S
LARGE-SIGNAL TRANSIENT RESPONSE

$20 \mu \mathrm{~s} / \mathrm{div}$

MAX4081S
LARGE-SIGNAL TRANSIENT RESPONSE

$20 \mu \mathrm{~s} / \mathrm{div}$

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{RS}+}=48 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=0 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}\right.$, RLOAD $=\infty, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

VCc-TRANSIENT RESPONSE

MAX4080F
SATURATION RECOVERY RESPONSE

MAX4080T STARTUP DELAY

76V, High-Side, Current-Sense Amplifiers with Voltage Output

PIN		NAME	FUNCTION
MAX4080	MAX4081		
1	1	RS+	Power connection to the external-sense resistor.
2	2	VCC	Supply Voltage Input. Decouple VCC to GND with at least a $0.1 \mu \mathrm{~F}$ capacitor to bypass line transients.
3, 6, 7	3	N.C.	No Connection. No internal connection. Leave open or connect to ground.
4	4	GND	Ground
5	5	OUT	Voltage Output. For the unidirectional MAX4080, VOUT is proportional to VSENSE. For the bidirectional MAX4081, the difference voltage (VOUT - VREF) is proportional to VSENSE and indicates the correct polarity.
8	8	RS-	Load connection to the external sense resistor.
-	6	REF1B	Reference Voltage Input: Connect REF1B to REF1A or to GND (see the External Reference section).
-	7	REF1A	Reference Voltage Input: Connect REF1A and REF1B to a fixed reference voltage ($\mathrm{V}_{\text {REF }}$). VOUT is equal to $\mathrm{V}_{\text {REF }}$ when $\mathrm{V}_{\text {SENSE }}$ is zero (see the External Reference section).

Detailed Description

The MAX4080/MAX4081 unidirectional and bidirectional high-side, current-sense amplifiers feature a 4.5 V to 76 V input common-mode range that is independent of supply voltage. This feature allows the monitoring of current out of a battery as low as 4.5 V and also enables high-side current sensing at voltages greater than the supply voltage (Vcc). The MAX4080/MAX4081 monitors current through a current-sense resistor and amplifies the voltage across the resistor. The MAX4080 senses current unidirectionally, while the MAX4081 senses current bidirectionally.
The 76 V input voltage range of the MAX4080/MAX4081 applies independently to both supply voltage (VCc) and common-mode, input-sense voltage (VRS+). Highside current monitoring does not interfere with the ground path of the load being measured, making the MAX4080/MAX4081 particularly useful in a wide range of high-voltage systems.
Battery-powered systems require a precise bidirectional current-sense amplifier to accurately monitor the battery's charge and discharge. The MAX4081 charging current is represented by an output voltage from Vref to Vcc, while discharge current is given from Vref to GND. Measurements of OUT with respect to $V_{\text {REF }}$ yield a positive and negative voltage during charge and discharge, as illustrated in Figure 1 for the MAX4081T.

Current Monitoring

The MAX4080 operates as follows: current from the source flows through RSENSE to the load (Figure 2), creating a sense voltage, VSENSE. Since the internal-sense amplifier's inverting input has high impedance, negligible current flows through RG2 (neglecting the input bias current). Therefore, the sense amplifier's inverting input voltage equals Vsource - (ILOAD)(RSENSE). The amplifier's open-loop gain forces its noninverting input to the same voltage as the inverting input. Therefore, the drop across RG1 equals VSENSE. The internal current mirror multiplies IRG1 by a current gain factor, β, to give I $\mathrm{I}_{2}=$ $\beta \times \operatorname{IRG1}$. Amplifier A2 is used to convert the output current to a voltage and then sent through amplifier A3. Total gain $=5 \mathrm{~V} / \mathrm{V}$ for MAX4080F, 20V/V for the MAX4080T, and 60V/V for the MAX4080S.
The MAX4081 input stage differs slightly from the MAX4080 (Figure 3). Its topology allows for monitoring of bidirectional currents through the sense resistor. When current flows from RS+ to RS-, the MAX4081 matches the voltage drop across the external sense resistor, RSENSE, by increasing the current through the Q1 and RG1. In this way, the voltages at the input terminals of the internal amplifier A1 are kept constant and an accurate measurement of the sense voltage is achieved. In the following amplifier stages of the MAX4081, the output signal of amplifier A2 is levelshifted to the reference voltage ($\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REF1A }}=$ VREF1B), resulting in a voltage at the output pin (OUT)

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Figure 1. MAX4081T OUT Transfer Curve

Figure 2. MAX4080 Functional Diagram
that swings above $V_{\text {REF }}$ voltage for positive-sense voltages and below $V_{\text {REF }}$ for negative-sense voltages. Vout is equal to VREF when VSENSE is equal to zero.

Figure 3. MAX4081 Functional Diagram
Set the full-scale output range by selecting RSENSE and the appropriate gain version of the MAX4080/ MAX4081.

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Table 1. Typical Component Values

FULL-SCALE LOAD CURRENT, ILOAD (A)	CURRENT-SENSE RESISTOR (m Ω)	GAIN (V/V)	$\begin{aligned} & \text { FULL-SCALE } \\ & \text { VSENSE } \\ & (\mathrm{mV}) \end{aligned}$	MAX4081 FULL-SCALE OUTPUT VOLTAGE (VOUT - VREF, V)
0.500	1000	5	± 500	± 2.5
0.125	1000	20	± 125	± 2.5
0.050	1000	60	± 50	± 3.0
5.000	100	5	± 500	± 2.5
1.250	100	20	± 125	± 2.5
0.500	100	60	± 50	± 3.0
50.000	10	5	± 500	± 2.5
12.500	10	20	± 125	± 2.5
5.000	10	60	± 50	± 3.0
FULL-SCALE LOAD CURRENT, ILOAD (A)	CURRENT-SENSE RESISTOR ($\mathrm{m} \Omega$)	GAIN (V/V)	$\begin{gathered} \text { FULL-SCALE } \\ \text { VSENSE } \\ (\mathrm{mV}) \end{gathered}$	MAX4080 FULL-SCALE OUTPUT VOLTAGE (V)
1.000	1000	5	1000	5.0
0.250	1000	20	250	5.0
0.100	1000	60	100	6.0
10.000	100	5	1000	5.0
2.500	100	20	250	5.0
1.000	100	60	100	6.0
50.000	10	5	500	2.5
25.000	10	20	250	5.0
10.000	10	60	100	6.0

External References (MAX4081)

For the bidirectional MAX4081, the VoUT reference level is controlled by REF1A and REF1B. VREF is defined as the average voltage of $V_{\text {REF1A }}$ and $V_{\text {REF1B. }}$. Connect REF1A and REF1B to a low-noise, regulated voltage source to set the output reference level. In this mode, Vout equals VREF1A when VSENSE equals zero (see Figure 4).
Alternatively, connect REF1B to ground, and REF1A to a low-noise, regulated voltage source. In this case, the output reference level (VREF) is equal to $V_{\text {REF1A }}$ divided by two. Vout equals VREF1A/2 when VSENSE equals zero.
In either mode, the output swings above the reference voltage for positive current-sensing (VRS+ > VRS-). The output swings below the reference voltage for negative current-sensing ($\mathrm{V}_{\mathrm{RS}}+<\mathrm{V}_{\mathrm{RS}}$).

Applications Information

Recommended Component Values

Ideally, the maximum load current develops the fullscale sense voltage across the current-sense resistor. Choose the gain needed to yield the maximum output voltage required for the application:

$$
\text { VOUT }=\text { VSENSE } \times A V
$$

where VSENSE is the full-scale sense voltage, 1000 mV for gain of $5 \mathrm{~V} / \mathrm{V}, 250 \mathrm{mV}$ for gain of $20 \mathrm{~V} / \mathrm{V}, 100 \mathrm{mV}$ for gain of $60 \mathrm{~V} / \mathrm{V}$, and Av is the gain of the device.
In applications monitoring a high current, ensure that RSENSE is able to dissipate its own I2R loss. If the resistor's power dissipation is exceeded, its value may drift or it may fail altogether.
The MAX4080/MAX4081 sense a wide variety of currents with different sense-resistor values. Table 1 lists common resistor values for typical operation.

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Figure 4. MAX4081 Reference Inputs

The full-scale output voltage is Vout $=$ RSENSE \times ILOAD $($ MAX $) \times A V$, for the MAX4080 and Vout $=\operatorname{VREF} \pm$ RSENSE $\times \operatorname{ILOAD}($ mAX $) \times$ AV for the MAX4081. VSENSE(MAX) is 1000 mV for the $5 \mathrm{~V} / \mathrm{V}$ gain version, 250 mV for the $20 \mathrm{~V} / \mathrm{V}$ gain version, and 100 mV for the 60V/V gain version.

Choosing the Sense Resistor

Choose RSENSE based on the following criteria:

- Voltage Loss: A high RSENSE value causes the power-source voltage to degrade through IR loss. For minimal voltage loss, use the lowest RSENSE value.
- Accuracy: A high RSENSE value allows lower currents to be measured more accurately. This is due to offsets becoming less significant when the sense voltage is larger. For best performance, select RSENSE to provide approximately 1000 mV (gain of $5 \mathrm{~V} / \mathrm{V}$), 250 mV (gain of $20 \mathrm{~V} / \mathrm{V}$), or 100 mV (gain of $60 \mathrm{~V} / \mathrm{N}$) of sense voltage for the full-scale current in each application.
- Efficiency and Power Dissipation: At high current levels, the I2R losses in RSENSE can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor's value might drift if it is allowed to heat up excessively.
- Inductance: Keep inductance low if ISENSE has a large high-frequency component. Wire-wound resistors have the highest inductance, while metal film is somewhat better. Low-inductance, metal-film resistors are also available. Instead of being spiralwrapped around a core, as in metal-film or wirewound resistors, they are a straight band of metal and are available in values under 1Ω.

Because of the high currents that flow through RSENSE, take care to eliminate parasitic trace resistance from causing errors in the sense voltage. Either use a fourterminal current-sense resistor or use Kelvin (force and sense) PC board layout techniques.

Dynamic Range Consideration

Although the MAX4081 have fully symmetrical bidirectional VSENSE input capability, the output voltage range is usually higher from REF to VCC and lower from REF to GND (unless the supply voltage is at the lowest end of the operating range). Therefore, the user must consider the dynamic range of current monitored in both directions and choose the supply voltage and the reference voltage (REF) to make sure the output swing above and below REF is adequate to handle the swings without clipping or running out of headroom.

Power-Supply Bypassing and Grounding

 For most applications, bypass VCC to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. In many applications, VCC can be connected to one of the current monitor terminals (RS+ or RS-). Because V_{Cc} is independent of the monitored voltage, VCC can be connected to a separate regulated supply.If $V_{C C}$ will be subject to fast-line transients, a series resistor can be added to the power-supply line of the MAX4080/MAX4081 to minimize output disturbance. This resistance and the decoupling capacitor reduce the rise time of the transient. For most applications, $1 \mathrm{k} \Omega$ in conjunction with a $0.1 \mu \mathrm{~F}$ bypass capacitor work well. The MAX4080/MAX4081 require no special considerations with respect to layout or grounding. Consideration should be given to minimizing errors due to the large charge and discharge currents in the system.

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Power Management
The bidirectional capability of the MAX4081 makes it an excellent candidate for use in smart battery packs. In the application diagram (Figure 5), the MAX4081 monitors the charging current into the battery as well as the discharge current out of the battery. The microcontroller stores this information, allowing the system to query the battery's status as needed to make system power-management decisions.

Selector Guide

PART	GAIN (V/V)	ISENSE
MAX4080FAUA	5	Unidirectional
MAX4080FASA	5	Unidirectional
MAX4080TAUA	20	Unidirectional
MAX4080TASA	20	Unidirectional
MAX4080SAUA	60	Unidirectional
MAX4080SASA	60	Unidirectional
MAX4081FAUA	5	Bidirectional
MAX4081FASA	5	Bidirectional
MAX4081TAUA	20	Bidirectional
MAX4081TASA	20	Bidirectional
MAX4081SAUA	60	Bidirectional
MAX4081SASA	60	Bidirectional

Figure 5. MAX4081 Used In Smart-Battery Application
Typical Operating Circuit

Chip Information

TRANSISTOR COUNT: 185
PROCESS: Bipolar

76V, High-Side, Current-Sense Amplifiers with Voltage Output

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

BOTTOM VIEW

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	-	0.043	-	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.037	0.75	0.95
b	0.010	0.014	0.25	0.36
c	0.005	0.007	0.13	0.18
D	0.116	0.120	2.95	3.05
e	0.0256	BSC	0.65 BSC	
E	0.116	0.120	2.95	3.05
H	0.188	0.198	4.78	5.03
L	0.016	0.026	0.41	0.66
α	0∞		6∞	0∞
S	0.0207	BSC	0.5250	

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS
4. MEETS JEDEC MO-187C-AA.

APRROVAL	DOCUMENT CONTROL NO.		
	$21-0036$	J	$1 / 1$

76V, High-Side, Current-Sense Amplifiers with Voltage Output

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

+5V-Powered, Multichannel RS-232 Drivers/Receivers

General Description

The MAX220-MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V. 24 communications interfaces, particularly applications where $\pm 12 \mathrm{~V}$ is not available.
These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces power dissipation to less than $5 \mu \mathrm{~W}$. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for applications where printed circuit board space is critical.

Applications
Portable Computers
Low-Power Modems
Interface Translation
Battery-Powered RS-232 Systems
Multidrop RS-232 Networks

Features

Superior to Bipolar

- Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239)
- Low-Power Receive Mode in Shutdown (MAX223/MAX242)
- Meet All EIA/TIA-232E and V. 28 Specifications
- Multiple Drivers and Receivers
- 3-State Driver and Receiver Outputs
- Open-Line Detection (MAX243)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX220CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX220CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX220CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX220C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX220EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX220ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX220EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX220EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX220MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP

Ordering Information continued at end of data sheet. *Contact factory for dice specifications.

Selection Table

Part Number	Power Supply (V)	No. of RS-232 Drivers/Rx	No. of Ext. Caps	Nominal Cap. Value ($\mu \mathrm{F}$)	SHDN \& ThreeState	Rx Active in SHDN	Data Rate (kbps)	Features
MAX220	+5	2/2	4	4.7/10	No	-	120	Ultra-low-power, industry-standard pinout
MAX222	+5	2/2	4	0.1	Yes	-	200	Low-power shutdown
MAX223 (MAX213)	+5	4/5	4	1.0 (0.1)	Yes	\checkmark	120	MAX241 and receivers active in shutdown
MAX225	+5	5/5	0	-	Yes	\checkmark	120	Available in SO
MAX230 (MAX200)	+5	5/0	4	1.0 (0.1)	Yes	-	120	5 drivers with shutdown
MAX231 (MAX201)	$\begin{aligned} & +5 \text { and } \\ & +7.5 \text { to }+13.2 \end{aligned}$	2/2	2	1.0 (0.1)	No	-	120	Standard $+5 /+12 \mathrm{~V}$ or battery supplies; same functions as MAX232
MAX232 (MAX202)	+5	2/2	4	1.0 (0.1)	No	-	120 (64)	Industry standard
MAX232A	+5	2/2	4	0.1	No	-	200	Higher slew rate, small caps
MAX233 (MAX203)	+5	2/2	0	-	No	-	120	No external caps
MAX233A	+5	2/2	0	-	No	-	200	No external caps, high slew rate
MAX234 (MAX204)	+5	4/0	4	1.0 (0.1)	No	-	120	Replaces 1488
MAX235 (MAX205)	+5	5/5	0	-	Yes	-	120	No external caps
MAX236 (MAX206)	+5	4/3	4	1.0 (0.1)	Yes	-	120	Shutdown, three state
MAX237 (MAX207)	$+5$	5/3	4	1.0 (0.1)	No	-	120	Complements IBM PC serial port
MAX238 (MAX208)	$+5$	4/4	4	1.0 (0.1)	No	-	120	Replaces 1488 and 1489
MAX239 (MAX209)	$\begin{aligned} & +5 \text { and } \\ & +7.5 \text { to }+13.2 \end{aligned}$	3/5	2	1.0 (0.1)	No	-	120	Standard $+5 /+12 \mathrm{~V}$ or battery supplies; single-package solution for IBM PC serial port
MAX240	+5	5/5	4	1.0	Yes	-	120	DIP or flatpack package
MAX241 (MAX211)	+5	4/5	4	1.0 (0.1)	Yes	-	120	Complete IBM PC serial port
MAX242	+5	2/2	4	0.1	Yes	\checkmark	200	Separate shutdown and enable
MAX243	+5	2/2	4	0.1	No	-	200	Open-line detection simplifies cabling
MAX244	+5	8/10	4	1.0	No	-	120	High slew rate
MAX245	+5	8/10	0	-	Yes	\checkmark	120	High slew rate, int. caps, two shutdown modes
MAX246	+5	8/10	0	-	Yes	\checkmark	120	High slew rate, int. caps, three shutdown modes
MAX247	+5	8/9	0	-	Yes	\checkmark	120	High slew rate, int. caps, nine operating modes
MAX248	+5	8/8	4	1.0	Yes	\checkmark	120	High slew rate, selective half-chip enables
MAX249	+5	6/10	4	1.0	Yes	\checkmark	120	Available in quad flatpack package

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243	
Supply Voltage (VCC) ..-0.3V to +6V	20-Pin Plastic DIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .. 440 mW
Input Voltages	16-Pin Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ...696mW
TIN...-0.3V to (VCC - 0.3V)	16-Pin Wide SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 762 mW
Rin (Except MAX220) ... $\pm 30 \mathrm{~V}$	18-Pin Wide SO (derate $9.52 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......762mW
RIN (MAX220).. $\pm 25 \mathrm{~V}$	$20-P i n$ Wide SO (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 800 mW
Tout (Except MAX220) (Note 1) $\pm 15 \mathrm{~V}$	$20-P$ in SSOP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW
TOUT (MAX220)... $\pm 13.2 \mathrm{~V}$	16-Pin CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .800 mW
Output Voltages	18-Pin CERDIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .842 mW
TOUT... $\pm 15 \mathrm{~V}$	Operating Temperature Ranges
Rout ..-0.3V to (VCC + 0.3V)	MAX2_ _AC_ _, MAX2_ _C_ _ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Driver/Receiver Output Short Circuited to GND.........Continuous	MAX2__AE_ _, MAX2_ _E_ _ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	MAX2__AM__, MAX2__M ${ }_{\text {_ }}$ _.................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
16-Pin Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....842mW	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
18-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 889 mW	Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Note 1: Input voltage measured with TOUT in high-impedance state, $\overline{\mathrm{SHDN}}$ or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.
Note 2: For the MAX220, $\mathrm{V}+$ and V - can have a maximum magnitude of 7 V , but their absolute difference cannot exceed 13 V .
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243

$\left(V_{C C}=+5 \mathrm{~V} \pm 10 \%, C 1-C 4=0.1 \mu \mathrm{~F}, \mathrm{MAX} 220, \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

+5V-Powered, Multichannel RS-232 Drivers/Receivers

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)
$\left(V_{C C}=+5 \mathrm{~V} \pm 10 \%, C 1-C 4=0.1 \mu \mathrm{~F}, \mathrm{MAX220}, \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
TTL/CMOS Output Leakage Current	$\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{CC}}(\overline{\mathrm{SHDN}}=0 \mathrm{~V} \text { for MAX222}),$ $0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			± 0.05	± 10	$\mu \mathrm{A}$
$\overline{\mathrm{EN}}$ Input Threshold Low	MAX242			1.4	0.8	V
EN Input Threshold High	MAX242		2.0	1.4		V
Operating Supply Voltage			4.5		5.5	V
V_{CC} Supply Current $\left(\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}\right)$, Figures 5, 6, 11, 19	No load	MAX220		0.5	2	mA
		MAX222/232A/233A/242/243		4	10	
	$3 \mathrm{k} \Omega$ load both inputs	MAX220		12		
		MAX222/232A/233A/242/243		15		
Shutdown Supply Current	MAX222/242	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	10	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		2	50	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		2	50	
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		35	100	
$\overline{\text { SHDN }}$ Input Leakage Current	MAX222/242				± 1	$\mu \mathrm{A}$
SHDN Threshold Low	MAX222/242			1.4	0.8	V
$\overline{\text { SHDN }}$ Threshold High	MAX222/242		2.0	1.4		V
Transition Slew Rate	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { to } 2500 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \text { measured from }+3 \mathrm{~V} \\ & \text { to }-3 \mathrm{~V} \text { or }-3 \mathrm{~V} \text { to }+3 \mathrm{~V} \\ & \hline \end{aligned}$	MAX222/232A/233A/242/243	6	12	30	V/us
		MAX220	1.5	3	30	
Transmitter Propagation Delay TLL to RS-232 (normal operation), Figure 1	tPHLT	MAX222/232A/233A/242/243		1.3	3.5	$\mu \mathrm{s}$
		MAX220		4	10	
	tPLHT	MAX222/232A/233A/242/243		1.5	3.5	
		MAX220		5	10	
Receiver Propagation Delay RS-232 to TLL (normal operation), Figure 2	tPHLR	MAX222/232A/233A/242/243		0.5	1	$\mu \mathrm{s}$
		MAX220		0.6	3	
	tPLHR	MAX222/232A/233A/242/243		0.6	1	
		MAX220		0.8	3	
Receiver Propagation Delay RS-232 to TLL (shutdown), Figure 2	tPHLS	MAX242		0.5	10	$\mu \mathrm{s}$
	tPLHS	MAX242		2.5	10	
Receiver-Output Enable Time, Figure 3	ter	MAX242		125	500	ns
Receiver-Output Disable Time, Figure 3	tDR	MAX242		160	500	ns
Transmitter-Output Enable Time (SHDN goes high), Figure 4	tET	MAX222/242, 0.1 $\mu \mathrm{F}$ caps (includes charge-pump start-up)		250		$\mu \mathrm{s}$
Transmitter-Output Disable Time ($\overline{\mathrm{SHDN}}$ goes low), Figure 4	tDT	MAX222/242, $0.1 \mu \mathrm{~F}$ caps		600		ns
Transmitter + to - Propagation Delay Difference (normal operation)	tPHLT - tpLHT	MAX222/232A/233A/242/243		300		ns
		MAX220		2000		
Receiver + to - Propagation Delay Difference (normal operation)	tPHLR - tPLHR	MAX222/232A/233A/242/243		100		ns
		MAX220		225		

Note 3: MAX243 R2OUT is guaranteed to be low when R2IN is $\geq 0 \mathrm{~V}$ or is floating.

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

+5V-Powered, Multichannel RS-232 Drivers/Receivers

ABSOLUTE MAXIMUM RATINGS—MAX223/MAX230-MAX241

$V_{C C}$	-0.3V to +6V
V+	$(\mathrm{V} C \mathrm{C}-0.3 \mathrm{~V})$ to +14 V
V-	+0.3 V to -14V
Input Voltages	
TIN ..-0.3V to (VCC + 0.3V)	
RIN... $\pm 30 \mathrm{~V}$Output Voltages	
Tout ... $\mathrm{V}+\mathrm{+}$ + 0.3 V) to (V- - 0.3V)	
Rout ...-0.3V to (VCC + 0.3V)	
Short-Circuit Duration, TOUTContinuous	
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
14-Pin Plastic DIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 800 mW	
16-Pin Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . .842 \mathrm{~mW}$	
20-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....889mW	
24-Pin Narrow Plastic DIP	
(derate $13.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)1.07W	
24-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 500 mW	
16-Pin Wide SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........ 762 mW	

$\text { ove }+70^{\circ} \mathrm{C} \text {) } \ldots800 \mathrm{~mW}$ ove $+70^{\circ} \mathrm{C}$) $\quad 941 \mathrm{~mW}$
derate $11.76 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 941 mW
Wide SO (derate 12.50mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)1W
44-Pin Plastic FP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 889 mW
14-Pin CERDIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW
16-Pin CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...... .800 mW
20-Pin CERDIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots889 \mathrm{~mW}$
24-Pin Narrow CERDIP (derate $12.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1 W
24-Pin Sidebraze (derate $20.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).........1.6W
28-Pin SSOP (derate 9.52mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............ 762 mW
Operating Temperature Ranges
MAX2 _ _ C _ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX2 _ _ E _ _ ..-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX2 _ _ M _ _ ... $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX223/MAX230-MAX241

(MAX223/230/232/234/236/237/238/240/241, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10$; MAX233/MAX235, $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{C} 1-\mathrm{C} 4=1.0 \mu \mathrm{~F} ;$ MAX231/MAX239, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}+=7.5 \mathrm{~V}$ to $13.2 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage Swing	All transmitter outputs loaded with $3 \mathrm{k} \Omega$ to ground		± 5.0	± 7.3		V
VCC Power-Supply Current	No load,$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	MAX232/233		5	10	mA
		MAX223/230/234-238/240/241		7	15	
		MAX231/239		0.4	1	
V+ Power-Supply Current		MAX231		1.8	5	mA
		MAX239		5	15	
Shutdown Supply Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	MAX223		15	50	$\mu \mathrm{A}$
		MAX230/235/236/240/241		1	10	
Input Logic Threshold Low	TIN; EN, $\overline{\text { SHDN }}$ (MAX233); $\overline{\mathrm{EN}}, \mathrm{SHDN}$ (MAX230/235-241)				0.8	V
Input Logic Threshold High	TIN		2.0			V
	EN, $\overline{\text { SHDN (MAX223); }}$ EN, SHDN (MAX230/235/236/240/241)		2.4			
Logic Pull-Up Current	TIN $=0 \mathrm{~V}$			1.5	200	$\mu \mathrm{A}$
Receiver Input Voltage Operating Range			-30		30	V

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

ELECTRICAL CHARACTERISTICS—MAX223/MAX230-MAX241 (continued)

(MAX223/230/232/234/236/237/238/240/241, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10$; MAX233/MAX235, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{C} 1-\mathrm{C} 4=1.0 \mu \mathrm{~F} ;$ MAX231/MAX239, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}+=7.5 \mathrm{~V}$ to $13.2 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
RS-232 Input Threshold Low	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Normal operation } \\ & \begin{array}{l} \text { SHDN } \\ =5 V \\ \text { SHDN } \end{array}=0 \mathrm{~V}(\text { MAX223 } 23 / 236 / 240 / 241) \end{aligned}$		0.8	1.2		V
		$\begin{aligned} & \text { Shutdown (MAX223) } \\ & \overline{S H D N}=0 V, \\ & E N=5 V(R 4\|N, R 5\| N) \end{aligned}$		0.6	1.5		
RS-232 Input Threshold High	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Normal operation } \\ & \overline{\text { SHDN }}=5 \mathrm{~V}(\text { MAX223 }) \\ & \text { SHDN }=0 V(\text { MAX235/236/240/241 }) \end{aligned}$			1.7	2.4	V
		$\begin{aligned} & \text { Shutdown (MAX223) } \\ & \overline{S H D N}=0 V \\ & E N=5 V(R 4\|N, R 5\| N) \end{aligned}$			1.5	2.4	
RS-232 Input Hysteresis	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, no hysteresis in shutdown			0.2	0.5	1.0	V
RS-232 Input Resistance	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			3	5	7	k Ω
TTL/CMOS Output Voltage Low	IOUT $=1.6 \mathrm{~mA}($ MAX231/232/233, IOUT $=3.2 \mathrm{~mA}$)					0.4	V
TTL/CMOS Output Voltage High	IOUT $=-1 \mathrm{~mA}$			3.5	VCC -0.4		V
TTL/CMOS Output Leakage Current	$\begin{aligned} & \frac{O V}{} \leq \text { ROUT } \leq V_{C C} ; \text { EN }=0 V(\text { MAX223 }) ; \\ & E N=V_{C C}(\text { MAX235-241 }) \end{aligned}$				0.05	± 10	$\mu \mathrm{A}$
Receiver Output Enable Time	Normal operation	MAX223			600		ns
		MAX235/236/239/240/241			400		
Receiver Output Disable Time	Normal operation	MAX223			900		ns
		MAX235/236/239/240/241			250		
Propagation Delay	RS-232 IN to TTL/CMOS OUT, $C L=150 \mathrm{pF}$	Normal operation			0.5	10	$\mu \mathrm{s}$
		$\begin{aligned} & \overline{\mathrm{SHDN}}=0 \mathrm{~V} \\ & \text { (MAX223) } \end{aligned}$	tPHLS		4	40	
			tPLHS		6	40	
Transition Region Slew Rate	MAX223/MAX230/MAX234-241, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $R \mathrm{~L}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ to 2500 pF , measured from +3 V to -3 V or -3 V to +3 V			3	5.1	30	V/us
	MAX231/MAX232/MAX233, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $R \mathrm{~L}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to 2500 pF , measured from +3 V to -3 V or -3 V to +3 V				4	30	
Transmitter Output Resistance	$\mathrm{V}_{\text {CC }}=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}$ OUT $= \pm 2 \mathrm{~V}$			300			Ω
Transmitter Output Short-Circuit Current				± 10			mA

+5V-Powered, Multichannel RS-232 Drivers/Receivers

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Note 4: Input voltage measured with transmitter output in a high-impedance state, shutdown, or $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX225/MAX244-MAX249

(MAX225, $\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \% ;$ MAX244-MAX249, $\mathrm{V}_{C C}=+5.0 \mathrm{~V} \pm 10 \%$, external capacitors $\mathrm{C} 1-\mathrm{C} 4=1 \mu F ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RS-232 TRANSMITTERS						
Input Logic Threshold Low				1.4	0.8	V
Input Logic Threshold High			2	1.4		V
Logic Pull-Up/Input Current	Tables 1a-1d	Normal operation		10	50	$\mu \mathrm{A}$
		Shutdown		± 0.01	± 1	
Data Rate	Tables 1a-1d, normal operation			120	64	kbits/sec
Output Voltage Swing	All transmitter outputs loaded with $3 \mathrm{k} \Omega$ to GND		± 5	± 7.5		V
Output Leakage Current (shutdown)	Tables 1a-1d	$\overline{\mathrm{ENA}}, \overline{\mathrm{ENB}}, \overline{\mathrm{ENT}}, \overline{\mathrm{ENTA}}, \overline{\mathrm{ENTB}}=$ $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {OUT }}= \pm 15 \mathrm{~V}$		± 0.01	± 25	$\mu \mathrm{A}$
		$\begin{aligned} & \text { VCC }=0 \mathrm{~V}, \\ & \text { VOUT }= \pm 15 \mathrm{~V} \end{aligned}$		± 0.01	± 25	
Transmitter Output Resistance	V CC $=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}$ OUT $= \pm 2 \mathrm{~V}$ (Note 4)		300	10M		Ω
Output Short-Circuit Current	VOUT $=0 \mathrm{~V}$		± 7	± 30		mA
RS-232 RECEIVERS						
RS-232 Input Voltage Operating Range					± 25	V
RS-232 Input Threshold Low	V CC $=5 \mathrm{~V}$		0.8	1.3		V
RS-232 Input Threshold High	$V_{C C}=5 \mathrm{~V}$			1.8	2.4	V
RS-232 Input Hysteresis	$V_{C C}=5 \mathrm{~V}$		0.2	0.5	1.0	V
RS-232 Input Resistance			3	5	7	k ת
TTL/CMOS Output Voltage Low	IOUT $=3.2 \mathrm{~mA}$			0.2	0.4	V
TTL/CMOS Output Voltage High	IOUT $=-1.0 \mathrm{~mA}$		3.5	VCC - 0.2		V
TTL/CMOS Output Short-Circuit Current	Sourcing VOUT = GND		-2	-10		mA
	Shrinking VOUT = V CC		10	30		
TTL/CMOS Output Leakage Current	Normal operation, outputs disabled, Tables 1a-1d, $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$, $\mathrm{ENR}_{-}=\mathrm{V}_{\mathrm{CC}}$			± 0.05	± 0.10	$\mu \mathrm{A}$

+5V-Powered, Multichannel RS-232 Drivers/Receivers

ELECTRICAL CHARACTERISTICS—MAX225/MAX244-MAX249 (continued)

(MAX225, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$; MAX244-MAX249, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$, external capacitors $\mathrm{C} 1-\mathrm{C} 4=1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; unless otherwise noted.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY AND CONTROL LOGIC						
Operating Supply Voltage		MAX225	4.75		5.25	V
		MAX244-MAX249	4.5		5.5	
VCC Supply Current (normal operation)	No load	MAX225		10	20	mA
		MAX244-MAX249		11	30	
	$3 k \Omega$ loads on all outputs	MAX225		40		
		MAX244-MAX249		57		
Shutdown Supply Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			8	25	$\mu \mathrm{A}$
	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				50	
Control Input	Leakage current				± 1	$\mu \mathrm{A}$
	Threshold low			1.4	0.8	V
	Threshold high		2.4	1.4		
AC CHARACTERISTICS						
Transition Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, measured from +3 V to -3 V or -3 V to +3 V		5	10	30	V/us
Transmitter Propagation Delay	tPHLT			1.3	3.5	$\mu \mathrm{s}$
Figure 1	tPLHT			1.5	3.5	
Receiver Propagation Delay TLL to RS-232 (normal operation), Figure 2	tPHLR			0.6	1.5	$\mu \mathrm{s}$
	tPLHR			0.6	1.5	
Receiver Propagation Delay TLL to RS-232 (low-power mode), Figure 2	tPHLS			0.6	10	$\mu \mathrm{s}$
	tPLHS			3.0	10	
Transmitter + to - Propagation Delay Difference (normal operation)	tphLT - tplht			350		ns
Receiver + to - Propagation Delay Difference (normal operation)	tPHLR - tPLHR			350		ns
Receiver-Output Enable Time, Figure 3	ter			100	500	ns
Receiver-Output Disable Time, Figure 3	tDR			100	500	ns
Transmitter Enable Time	tet	MAX246-MAX249 (excludes charge-pump start-up)		5		$\mu \mathrm{s}$
		MAX225/MAX245-MAX249 (includes charge-pump start-up)		10		ms
Transmitter Disable Time, Figure 4	tDT			100		ns

Note 5: The 300Ω minimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or $\mathrm{V}_{\mathrm{CC}}=$ 0 V is $10 \mathrm{M} \Omega$ as is implied by the leakage specification.

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Typical Operating Characteristics

MAX225/MAX244-MAX249

TRANSMITTER OUTPUT VOLTAGE (V+, V-) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Figure 1. Transmitter Propagation-Delay Timing

Figure 3. Receiver-Output Enable and Disable Timing

Figure 2. Receiver Propagation-Delay Timing

a) TIMING DIAGRAM

b) TEST CIRCUIT

Figure 4. Transmitter-Output Disable Timing

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Table 1a. MAX245 Control Pin Configurations

$\overline{\text { ENT }}$	$\overline{\text { ENR }}$	OPERATION STATUS	TRANSMITTERS	RECEIVERS
0	0	Normal Operation	All Active	All Active
0	1	Normal Operation	All Active	All 3-State
1	0	Shutdown	All 3-State	All Low-Power Receive Mode
1	1	Shutdown	All 3-State	All 3-State

Table 1b. MAX245 Control Pin Configurations

ENT	ENR	OPERATION STATUS		TRANSMITTERS		RECEIVERS	
		TA1-TA4	TB1-TB4	RA1-RA5	RB1-RB5		
0	0	Normal Operation	All Active	All Active	All Active	All Active	
0	1	Normal Operation	All Active	All Active	RA1-RA4 3-State, RA5 Active	RB1-RB4 3-State, RB5 Active	
1	0	Shutdown	All 3-State	All 3-State	All Low-Power Receive Mode	All Low-Power Receive Mode	
1	1	Shutdown	All 3-State	All 3-State	RA1-RA4 3-State, RA5 Low-Power Receive Mode	RB1-RB4 3-State, RB5 Low-Power Receive Mode	

Table 1c. MAX246 Control Pin Configurations

$\overline{E N A}$	ENB	OPERATION STATUS	TRANSMITTERS		RECEIVERS	
			TA1-TA4	TB1-TB4	RA1-RA5	RB1-RB5
0	0	Normal Operation	All Active	All Active	All Active	All Active
0	1	Normal Operation	All Active	All 3-State	All Active	RB1-RB4 3-State, RB5 Active
1	0	Shutdown	All 3-State	All Active	RA1-RA4 3-State, RA5 Active	All Active
1	1	Shutdown	All 3-State	All 3-State	RA1-RA4 3-State, RA5 Low-Power Receive Mode	RB1-RB4 3-State, RA5 Low-Power Receive Mode

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Table 1d. MAX247/MAX248/MAX249 Control Pin Configurations

ENTA	ENTB	ENRA	$\overline{\text { ENRB }}$	OPERATION STATUS		TRANSMITTERS		RECEIVERS	
					MAX247	TA1-TA4	TB1-TB4	RA1-RA4	RB1-RB5
					MAX248	TA1-TA4	TB1-TB4	RA1-RA4	RB1-RB4
					MAX249	TA1-TA3	TB1-TB3	RA1-RA5	RB1-RB5
0	0	0	0	Normal Operation		All Active	All Active	All Active	All Active
0	0	0	1	Normal Operation		All Active	All Active	All Active	All 3-State, except RB5 stays active on MAX247
0	0	1	0	Normal Operation		All Active	All Active	All 3-State	All Active
0	0	1	1	Normal Operation		All Active	All Active	All 3-State	All 3-State, except RB5 stays active on MAX247
0	1	0	0	Normal Operation		All Active	All 3-State	All Active	All Active
0	1	0	1	Normal Operation		All Active	All 3-State	All Active	All 3-State, except RB5 stays active on MAX247
0	1	1	0	Normal Operation		All Active	All 3-State	All 3-State	All Active
0	1	1	1	Normal Operation		All Active	All 3-State	All 3-State	All 3-State, except RB5 stays active on MAX247
1	0	0	0	Normal Operation		All 3-State	All Active	All Active	All Active
1	0	0	1	Normal Operation		All 3-State	All Active	All Active	All 3-State, except RB5 stays active on MAX247
1	0	1	0	Normal Operation		All 3-State	All Active	All 3-State	All Active
1	0	1	1	Normal Operation		All 3-State	All Active	All 3-State	All 3-State, except RB5 stays active on MAX247
1	1	0	0	Shutdown		All 3-State	All 3-State	Low-Power Receive Mode	Low-Power Receive Mode
1	1	0	1	Shutdown		All 3-State	All 3-State	Low-Power Receive Mode	All 3-State, except RB5 stays active on MAX247
1	1	1	0	Shutdown		All 3-State	All 3-State	All 3-State	Low-Power Receive Mode
1	1	1	1	Shutdown		All 3-State	All 3-State	All 3-State	All 3-State, except RB5 stays active on MAX247

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Abstract

Detailed Description The MAX220-MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 drivers, RS-232 receivers, and receiver and transmitter enable control inputs.

Dual Charge-Pump Voltage Converter The MAX220-MAX249 have two internal charge-pumps that convert +5 V to $\pm 10 \mathrm{~V}$ (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to double the +5 V input to +10 V on C3 at the V+ output. The second converter uses capacitor C 2 to invert +10 V to -10V on C4 at the V- output.
A small amount of power may be drawn from the +10 V $(\mathrm{V}+)$ and $-10 \mathrm{~V}(\mathrm{~V}-)$ outputs to power external circuitry (see the Typical Operating Characteristics section), except on the MAX225 and MAX245-MAX247, where these pins are not available. V+ and V- are not regulated, so the output voltage drops with increasing load current. Do not load V+ and V- to a point that violates the minimum $\pm 5 \mathrm{~V}$ EIA/TIA-232E driver output voltage when sourcing current from $V+$ and V - to external circuitry.
When using the shutdown feature in the MAX222, MAX225, MAX230, MAX235, MAX236, MAX240, MAX241, and MAX245-MAX249, avoid using V+ and Vto power external circuitry. When these parts are shut down, V - falls to $0 V$, and $V+$ falls to +5 V . For applications where $\mathrm{a}+10 \mathrm{~V}$ external supply is applied to the $\mathrm{V}+$ pin (instead of using the internal charge pump to generate +10 V), the C1 capacitor must not be installed and the $\overline{\text { SHDN }}$ pin must be tied to V_{C}. This is because V_{+} is internally connected to VCC in shutdown mode.

RS-232 Drivers
The typical driver output voltage swing is $\pm 8 \mathrm{~V}$ when loaded with a nominal $5 k \Omega$ RS-232 receiver and $V_{C C}=$ +5 V . Output swing is guaranteed to meet the EIA/TIA232E and V. 28 specification, which calls for $\pm 5 \mathrm{~V}$ minimum driver output levels under worst-case conditions. These include a minimum $3 \mathrm{k} \Omega$ load, $\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$, and maximum operating temperature. Unloaded driver output voltage ranges from ($\mathrm{V}+-1.3 \mathrm{~V}$) to $(\mathrm{V}-+0.5 \mathrm{~V})$.
Input thresholds are both TTL and CMOS compatible. The inputs of unused drivers can be left unconnected since $400 \mathrm{k} \Omega$ input pull-up resistors to VCC are built in (except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all drivers invert. The internal input pull-up resistors typically source $12 \mu \mathrm{~A}$, except in shutdown mode where the pull-ups are disabled. Driver outputs turn off and enter a high-impedance state-where leakage current is typically microamperes (maximum $25 \mu \mathrm{~A}$)—when in shutdown
mode, in three-state mode, or when device power is removed. Outputs can be driven to $\pm 15 \mathrm{~V}$. The powersupply current typically drops to $8 \mu \mathrm{~A}$ in shutdown mode. The MAX220 does not have pull-up resistors to force the ouputs of the unused drivers low. Connect unused inputs to GND or Vcc.
The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240, and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver threestate control on the receiver outputs.
The receiver TTL/CMOS outputs are in a high-impedance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239MAX241), and are also high-impedance whenever the shutdown control line is high.
When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than $1 \mu \mathrm{~A}$ with the driver output pulled to ground. The driver output leakage remains less than $1 \mu \mathrm{~A}$, even if the transmitter output is backdriven between OV and (VCC + 6V). Below -0.5 V , the transmitter is diode clamped to ground with $1 \mathrm{k} \Omega$ series impedance. The transmitter is also zener clamped to approximately $\mathrm{VCC}+6 \mathrm{~V}$, with a series impedance of $1 \mathrm{k} \Omega$.
The driver output slew rate is limited to less than $30 \mathrm{~V} / \mu \mathrm{s}$ as required by the EIA/TIA-232E and V. 28 specifications. Typical slew rates are $24 \mathrm{~V} / \mu$ s unloaded and $10 \mathrm{~V} / \mu$ s loaded with 3Ω and 2500 pF .

RS-232 Receivers
EIA/TIA-232E and V. 28 specifications define a voltage level greater than 3 V as a logic 0, so all receivers invert. Input thresholds are set at 0.8 V and 2.4 V , so receivers respond to TTL level inputs as well as EIA/TIA-232E and V. 28 levels.

The receiver inputs withstand an input overvoltage up to $\pm 25 \mathrm{~V}$ and provide input terminating resistors with

Table 2. Three-State Control of Receivers

PART	SHDN	$\overline{\text { SHDN }}$	EN	EN(R)	RECEIVERS
MAX223	-	Low High High	X Low High	-	High Impedance Active High Impedance
MAX225	-	-	-	Low High	High Impedance Active
MAX235 MAX236 MAX240	Low Low High	-	-	Low High X	High Impedance Active High Impedance

+5V-Powered, Multichannel RS-232 Drivers/Receivers

nominal $5 k \Omega$ values. The receivers implement Type 1 interpretation of the fault conditions of V. 28 and EIA/TIA-232E.
The receiver input hysteresis is typically 0.5 V with a guaranteed minimum of 0.2 V . This produces clear output transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.

Low-Power Receive Mode

The low-power receive-mode feature of the MAX223, MAX242, and MAX245-MAX249 puts the IC into shutdown mode but still allows it to receive information. This is important for applications where systems are periodically awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communication at faster data rates. This operation conserves system power.

Negative Threshold-MAX243

The MAX243 is pin compatible with the MAX232A, differing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment.
The input threshold of the receiver without cable fault protection is -0.8 V rather than +1.4 V . Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or "OK to send" state. Normally, the MAX243's other receiver (+1.4 V threshold) is used for the data line (TD or RD), while the negative threshold receiver is connected to the control line (DTR, DTS, CTS, RTS, etc.).
Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA232E specifications. This means a receiver output goes high whenever its input is driven negative, left floating, or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this, the control lines must either be driven or connected with jumpers to an appropriate positive voltage level.

Shutdown-MAX222-MAX242

On the MAX222, MAX235, MAX236, MAX240, and MAX241, all receivers are disabled during shutdown. On the MAX223 and MAX242, two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions, the propagation delay increases to about $2.5 \mu \mathrm{~s}$ for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices, SHDN (SHDN for MAX241) also disables the receiver outputs.
The MAX225 provides five transmitters and five receivers, while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply current drops to less than $25 \mu \mathrm{~A}$ and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225, all five receivers are controlled by the $\overline{E N R}$ input. On the MAX245, eight of the receiver outputs are controlled by the ENR input, while the remaining two receivers (RA5 and RB5) are always active. RA1-RA4 and RB1-RB4 are put in a three-state mode when $\overline{E N R}$ is a logic high.

Receiver and Transmitter Enable Control Inputs

The MAX225 and MAX245-MAX249 feature transmitter and receiver enable controls.
The receivers have three modes of operation: full-speed receive (normal active), three-state (disabled), and lowpower receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown.

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Tables 1a-1d define the control states. The MAX244 has no control pins and is not included in these tables.
The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA) causes the four A -side receivers and drivers to go into a three-state mode. Similarly, the B-side control input ($\overline{\mathrm{ENB}}$) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one Aside and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shutdown mode when both the A and B sides are disabled $(\overline{\mathrm{ENA}}=\overline{\mathrm{ENB}}=+5 \mathrm{~V})$.
The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active. The device enters shutdown mode with a logic high on both ENTA and ENTB.
The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB.

The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three drivers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB. In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec.

Applications Information

Figures 5 through 25 show pin configurations and typical operating circuits. In applications that are sensitive to power-supply noise, VCC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device.

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

TOP VIEW

CAPACITANCE $(\mu \mathbf{F})$					
DEVICE	C1	C2	C3	C4	C5
MAX220	4.7	4.7	10	10	4.7
MAX232	1.0	1.0	1.0	1.0	1.0
MAX232A	0.1	0.1	0.1	0.1	0.1

Figure 5. MAX220/MAX232/MAX232A Pin Configuration and Typical Operating Circuit

Figure 6. MAX222/MAX242 Pin Configurations and Typical Operating Circuit

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

TOP VIEW

MAX225 FUNCTIONAL DESCRIPTION
5 RECEIVERS
5 TRANSMITTERS
2 CONTROL PINS
1 RECEIVER ENABLE ($\overline{\text { ENR })}$
1 TRANSMITTER ENABLE (ENT)

PINS ($\overline{\text { ENR }}, \mathrm{GND}, \mathrm{V}_{\mathrm{C}}$, T_{5} OUT) ARE INTERNALLY CONNECTED
CONNECT EITHER OR BOTH EXTERNALLY. T50UT IS A SINGLE DRIVER

Figure 7. MAX225 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 8. MAX223/MAX241 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 9. MAX230 Pin Configuration and Typical Operating Circuit

Figure 10. MAX231 Pin Configurations and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

TOP VIEW

() ARE FOR SO PACKAGE ONLY.

Figure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit

Figure 12. MAX234 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 13. MAX235 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

TOP VIEW

Figure 14. MAX236 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 15. MAX237 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

TOP VIEW

Figure 16. MAX238 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 17. MAX239 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 18. MAX240 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Figure 19. MAX243 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 20. MAX244 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Figure 21. MAX245 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

TOP VIEW

DIP

MAX246 FUNCTIONAL DESCRIPTION
10 RECEIVERS
5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE)
5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)
8 TRANSMITTERS
4 A-SIDE TRANSMITTERS
4 B-SIDE TRANSMITTERS
2 CONTROL PINS
ENABLE A-SIDE (ENA)
ENABLE B-SIDE (ENB)

Figure 22. MAX246 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

TOP VIEW

MAX247 FUNCTIONAL DESCRIPTION
9 RECEIVERS
4 A-SIDE RECEIVERS
5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)
8 TRANSMITTERS
4 A-SIDE TRANSMITTERS
4 B-SIDE TRANSMITTERS
4 CONTROL PINS
ENABLE RECEIVER A-SIDE (ENRA)
ENABLE RECEIVER B-SIDE (ENRB)
ENABLE RECEIVER A-SIDE (ENTA)
ENABLE RECEIVERr B-SIDE (ENTB)

Figure 23. MAX247 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Figure 24. MAX248 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Figure 25. MAX249 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232 Drivers/Receivers

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX222CPN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
MAX222CWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Wide SO
MAX222C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX222EPN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP
MAX222EWN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Wide SO
MAX222EJN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 CERDIP
MAX222MJN	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 CERDIP
MAX223CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX223CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX223C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX223EAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX223EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX225CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX225EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX230CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX230CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX230C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX230EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX230EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX230EJP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 CERDIP
MAX230MJP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 CERDIP
MAX231CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX231CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX231CJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 CERDIP
MAX231C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX231EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX231EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX231EJD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 CERDIP
MAX231MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 CERDIP
MAX232CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX232CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX232CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX232C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX232EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX232ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX232EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX232EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX232MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
MAX232MLP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 LCC
MAX232ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX232ACSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX232ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO

MAX232AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX232AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX232AESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX232AEWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX232AEJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX232AMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
MAX232AMLP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 LCC
MAX233CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX233EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX233ACPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX233ACWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX233AEPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX233AEWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX234CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX234CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX234C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX234EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX234EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX234EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX234MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
MAX235CPG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide Plastic DIP
MAX235EPG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide Plastic DIP
MAX235EDG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Ceramic SB
MAX235MDG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Ceramic SB
MAX236CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX236CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX236C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX236ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX236EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX236ERG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX236MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX237CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX237CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX237C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX237ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX237EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX237ERG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX237MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX238CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX238CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX238C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX238ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP

* Contact factory for dice specifications.

+5V-Powered, Multichannel RS-232
 Drivers/Receivers

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX238EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX238ERG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX238MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX239CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX239CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX239C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX239ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX239EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX239ERG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX239MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow CERDIP
MAX240CMH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Plastic FP
MAX240C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX241CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX241CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX241C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX241EAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX241EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX242CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX242CPN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
MAX242CWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Wide SO
MAX242C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX242EPN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP
MAX242EWN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Wide SO
MAX242EJN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 CERDIP
MAX242MJN	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 CERDIP

MAX243CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX243CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX243CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX243C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX243EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX243ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX243EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX243EJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
MAX243MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
MAX244CQH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 PLCC
MAX244C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX244EQH	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	44 PLCC
MAX245CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Plastic DIP
MAX245C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX245EPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Plastic DIP
MAX246CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Plastic DIP
MAX246C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX246EPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Plastic DIP
MAX247CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Plastic DIP
MAX247C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX247EPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Plastic DIP
MAX248CQH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 PLCC
MAX248C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX248EQH	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	44 PLCC
MAX249CQH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 PLCC
MAX249EQH	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	44 PLCC

* Contact factory for dice specifications.

LM5100A/LM5101A

3.0 Amp High Voltage High Side and Low Side Driver General Description
The LM5100A/LM5101A High Voltage Gate Drivers are designed to drive both the high side and the low side N -Channel MOSFETs in a synchronous buck or a half bridge configuration. The floating high-side driver is capable of operating with supply voltages up to 100 V . The outputs are independently controlled with CMOS input thresholds (LM5100A) or TTL input thresholds (LM5101A). An integrated high voltage diode is provided to charge the high side gate drive bootstrap capacitor. A robust level shifter operates at high speed while consuming low power and providing clean level transitions from the control logic to the high side gate driver. Under-voltage lockout is provided on both the low side and the high side power rails. This device is available in the standard SOIC-8 pin and the LLP-10 pin packages.

Features

- 3.0A Sink/Source current gate drive
- Drives both a high side and low side N-Channel MOSFET
- Independent high and low driver logic inputs (TTL for LM5101A or CMOS for LM5100A)

Simplified Block Diagram

FIGURE 1.

Connection Diagrams

20124002

FIGURE 2.

Ordering Information

Ordering Number	Package Type	NSC Package Drawing	Supplied As
LM5100A/01A M	SOIC-8	M08A	Shipped in anti static rails
LM5100A/01A MX	SOIC-8	M08A	2500 shipped as Tape \& Reel
LM5100A/01A SD	LLP-10	SDC10A	1000 shipped as Tape \& Reel
LM5100A/01A SDX	LLP-10	SDC10A	4500 shipped as Tape \& Reel

Pin Description

Pin \#		Name	Description	Application Information
SO-8	LLP-10			
1	1	V_{DD}	Positive gate drive supply	Locally decouple to $\mathrm{V}_{\text {SS }}$ using low ESR/ESL capacitor located as close to IC as possible.
2	2	HB	High side gate driver bootstrap rail	Connect the positive terminal of the bootstrap capacitor to HB and the negative terminal to HS. The Bootstrap capacitor should be place as close to IC as possible.
3	3	HO	High side gate driver output	Connect to gate of high side MOSFET with a short low inductance path.
4	4	HS	High side MOSFET source connection	Connect to bootstrap capacitor negative terminal and the source of the high side MOSFET.
5	7	HI	High side driver control input	The LM5100A inputs have CMOS type thresholds. The LM5101A inputs have TTL type thresholds. Unused inputs should be tied to ground and not left open.
6	8	LI	Low side driver control input	The LM5100A inputs have CMOS type thresholds. The LM5101A inputs have TTL type thresholds. Unused inputs should be tied to ground and not left open.
7	9	V_{SS}	Ground return	All signals are referenced to this ground.
8	10	LO	Low side gate driver output	Connect to the gate of the low side MOSFET with a short low inductance path.

Note: For LLP-10 package, it is recommended that the exposed pad on the bottom of the LM5100A / LM5101A be soldered to ground plane on the PC board, and the ground plane should extend out from beneath the IC to help dissipate the heat. Pins 5 and 6 have no connection.
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
V_{DD} to V_{SS}
V_{HB} to V_{HS}
LI or HI Inputs
LO Output
HO Output
V_{HS} to V_{SS}
V_{HB} to V_{SS}
Junction Temperature

Storage Temperature Range $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating HBM (Note 2) 2 KV
Recommended Operating Conditions

$V_{D D} \quad+9 \mathrm{~V}$ to +14 V
HS -1V to 100 V
HB $\quad \mathrm{V}_{\mathrm{HS}}+8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{HS}}+14 \mathrm{~V}$
HS Slew Rate $<50 \mathrm{~V} / \mathrm{ns}$
Junction Temperature $\quad-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Electrical Characteristics

Specifications in standard typeface are for $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$, and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO .

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SUPPLY CURRENTS						
I_{DD}	V_{DD} Quiescent Current	$\mathrm{LI}=\mathrm{HI}=0 \mathrm{~V}$ (LM5100A)		0.1	0.2	mA
		$\mathrm{LI}=\mathrm{HI}=0 \mathrm{~V}$ (LM5101A)		0.25	0.4	
$\mathrm{I}_{\text {DDO }}$	$\mathrm{V}_{\text {DD }}$ Operating Current	$\mathrm{f}=500 \mathrm{kHz}$		2.0	3	mA
I_{HB}	Total HB Quiescent Current	$\mathrm{LI}=\mathrm{HI}=0 \mathrm{~V}$		0.06	0.2	mA
$\mathrm{I}_{\text {HBO }}$	Total HB Operating Current	$\mathrm{f}=500 \mathrm{kHz}$		1.6	3	mA
$\mathrm{I}_{\text {HBS }}$	HB to $\mathrm{V}_{\text {SS }}$ Current, Quiescent	$\mathrm{V}_{\mathrm{HS}}=\mathrm{V}_{\mathrm{HB}}=100 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {HBSO }}$	HB to $\mathrm{V}_{\text {SS }}$ Current, Operating	$\mathrm{f}=500 \mathrm{kHz}$		0.4		mA
INPUT PINS						
$\mathrm{V}_{\text {IL }}$	Input Voltage Threshold (LM5100A)	Rising Edge	4.5	5.4	6.3	V
$\mathrm{V}_{\text {IL }}$	Input Voltage Threshold (LM5101A)	Rising Edge	1.3	1.8	2.3	V
$\mathrm{V}_{\mathrm{IHYS}}$	Input Voltage Hysteresis (LM5101A)			50		mV
$\mathrm{V}_{\text {IHYS }}$	Input Voltage Hysteresis (LM5100A)			500		mV
R_{1}	Input Pulldown Resistance		100	200	400	$\mathrm{k} \Omega$
UNDER VOLTAGE PROTECTION						
$\mathrm{V}_{\text {DDR }}$	V_{DD} Rising Threshold		6.0	6.8	7.4	V
$\mathrm{V}_{\text {DDH }}$	V_{DD} Threshold Hysteresis			0.5		V
$\mathrm{V}_{\text {HBR }}$	HB Rising Threshold		5.7	6.6	7.1	V
$\mathrm{V}_{\text {HBH }}$	HB Threshold Hysteresis			0.4		V
BOOT STRAP DIODE						
V_{DL}	Low-Current Forward Voltage	$\mathrm{I}_{\text {VDD-HB }}=100 \mu \mathrm{~A}$		0.52	0.85	V
V_{DH}	High-Current Forward Voltage	$\mathrm{IVDD-HB}=100 \mathrm{~mA}$		0.80	1.0	V
R_{D}	Dynamic Resistance	$\mathrm{I}_{\text {VDD-HB }}=100 \mathrm{~mA}$		1.0	1.65	Ω
LO GATE DRIVER						
$\mathrm{V}_{\text {OLL }}$	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{LO}}=100 \mathrm{~mA}$		0.12	0.25	V
$\mathrm{V}_{\text {OHL }}$	High-Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{LO}}=-100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{OHL}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LO}} \end{aligned}$		0.24	0.45	V
$\mathrm{I}_{\mathrm{OHL}}$	Peak Pullup Current	$\mathrm{V}_{\mathrm{LO}}=0 \mathrm{~V}$		3.0		A
$\mathrm{I}_{\text {OLL }}$	Peak Pulldown Current	$\mathrm{V}_{\mathrm{LO}}=12 \mathrm{~V}$		3.0		A
HO GATE DRIVER						
$\mathrm{V}_{\text {OLH }}$	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{HO}}=100 \mathrm{~mA}$		0.12	0.25	V
$\mathrm{V}_{\text {OHH }}$	High-Level Output Voltage	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{HO}}=-100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{OHH}}=\mathrm{V}_{\mathrm{HB}}-\mathrm{V}_{\mathrm{HO}} \\ & \hline \end{aligned}$		0.24	0.45	V
$\mathrm{I}_{\text {OHH }}$	Peak Pullup Current	$\mathrm{V}_{\mathrm{HO}}=0 \mathrm{~V}$		3.0		A
$\mathrm{I}_{\text {OLH }}$	Peak Pulldown Current	$\mathrm{V}_{\mathrm{HO}}=12 \mathrm{~V}$		3.0		A

Electrical Characteristics (Continued)
Specifications in standard typeface are for $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$, and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO .

Symbol	Parameter	Conditions	Min	Typ	Max	Units
HO GATE DRIVER						
THERMAL RESISTANCE						
$\theta_{\text {JA }}$	Junction to Ambient	SOIC-8		170		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		LLP-10 (Note 3)		40		

Switching Characteristics

Specifications in standard typeface are for $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$, and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
LM5100A						
$\mathrm{t}_{\text {LPHL }}$	Lower Turn-Off Propagation Delay (LI Falling to LO Falling)			20	45	ns
$\mathrm{t}_{\text {HPHL }}$	Upper Turn-Off Propagation Delay (HI Falling to HO Falling)			20	45	ns
$\mathrm{t}_{\text {LPLH }}$	Lower Turn-On Propagation Delay (LI Rising to LO Rising)			20	45	ns
$\mathrm{t}_{\text {HPLH }}$	Upper Turn-On Propagation Delay (HI Rising to HO Rising)			20	45	ns
$\mathrm{t}_{\text {MON }}$	Delay Matching: Lower Turn-On and Upper Turn-Off			1	10	ns
$\mathrm{t}_{\text {MOFF }}$	Delay Matching: Lower Turn-Off and Upper Turn-On			1	10	ns
$\mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\mathrm{FC}}$	Either Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		8		ns
t_{R}, t_{F}	Either Output Fall Time (3V to 9V)	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		0.26		$\mu \mathrm{s}$
	Either Output Rise Time (3V to 9V)	$C_{L}=0.1 \mu \mathrm{~F}$		0.43		
$\mathrm{t}_{\text {PW }}$	Minimum Input Pulse Width that Changes the Output			50		ns
t_{BS}	Bootstrap Diode Turn-Off Time	$\begin{aligned} & I_{F}=100 \mathrm{~mA}, \\ & I_{R}=100 \mathrm{~mA} \end{aligned}$		38		ns
LM5101A						
$\mathrm{t}_{\text {LPHL }}$	Lower Turn-Off Propagation Delay (LI Falling to LO Falling)			22	56	ns
$\mathrm{t}_{\text {HPHL }}$	Upper Turn-Off Propagation Delay (HI Falling to HO Falling)			22	56	ns
$\mathrm{t}_{\text {LPLH }}$	Lower Turn-On Propagation Delay (LI Rising to LO Rising)			26	56	ns
$\mathrm{t}_{\mathrm{HPLH}}$	Upper Turn-On Propagation Delay (HI Rising to HO Rising)			26	56	ns
$\mathrm{t}_{\text {MON }}$	Delay Matching: Lower Turn-On and Upper Turn-Off			4	10	ns
$\mathrm{t}_{\text {MOFF }}$	Delay Matching: Lower Turn-Off and Upper Turn-On			4	10	ns
$\mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\mathrm{FC}}$	Either Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		8		ns
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Either Output Fall Time (3V to 9V)	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		0.26		$\mu \mathrm{s}$
	Either Output Rise Time (3V to 9 V)	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		0.43		

Switching Characteristics (Continued)

Specifications in standard typeface are for $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$, and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{HB}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{HS}}=0 \mathrm{~V}$, No Load on LO or HO.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
LM5101A						
$t_{\text {PW }}$	Minimum Input Pulse Width that Changes the Output			50		ns
t_{BS}	Bootstrap Diode Turn-Off Time	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{R}}=100 \mathrm{~mA}$	38	ns		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.
Note 2: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. 2 KV for all pins except Pin 2, Pin 3 and Pin 4 which are rated at 1000 V .

Note 3: 4 layer board with Cu finished thickness 1.5/1/1/1.5 oz. Maximum die size used. 5 x body length of $C u$ trace on PCB top. $50 \times 50 \mathrm{~mm}$ ground and power planes embedded in PCB. See Application Note AN-1187.
Note 4: Min and Max limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate National's Average Outgoing Quality Level (AOQL)
Note 5: The θ_{JA} is not a given constant for the package and depends on the printed circuit board design and the operating environment.

Typical performance Characteristics

20124009
LM5100A/LM5101A Operating Current vs Temperature

20124011

20124010
IHB vs Frequency

20124014
LM5100A/LM5101A Quiescent Current vs Temperature

Undervoltage Rising Thresholds vs Temperature

Bootstrap Diode Forward Voltage

20124015
LO and HO Gate Drive-High Level Output Voltage vs Temperature

LM5100A Undervoltage Threshold Hysteresis vs Temperature

HO and LO Peak Output Current vs Output Voltage

20124016

LO and HO Gate Drive-Low Level Output Voltage vs Temperature

LM5100A/LM5101A
Typical performance Characteristics
(Continued)

LM5100A Propagation Delay vs Temperature

20124012
LM5100A Input Threshold vs Temperature

20124023

LM5101A Propagation Delay vs Temperature

20124013
LM5101A Input Threshold vs Temperature

20124024

Timing Diagram

20124004

FIGURE 3.

Layout Considerations

The optimum performance of high and low side gate drivers cannot be achieved without taking due considerations during circuit board layout. Following points are emphasized.

1. A low ESR / ESL capacitor must be connected close to the IC, and between $V_{D D}$ and $V_{S S}$ pins and between HB and HS pins to support high peak currents being drawn from VDD during turn-on of the external MOSFET.
2. To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor must be connected between MOSFET drain and ground (V_{SS}).
3. In order to avoid large negative transients on the switch node (HS) pin, the parasitic inductances in the source of top MOSFET and in the drain of the bottom MOSFET (synchronous rectifier) must be minimized.
4. Grounding Considerations:
a) The first priority in designing grounding connections is to confine the high peak currents from charging and discharging the MOSFET gate in a minimal physical area. This will decrease the loop inductance and minimize noise issues on the gate terminal of the MOSFET. The MOSFETs should be placed as close as possible to the gate driver.
b) The second high current path includes the bootstrap capacitor, the bootstrap diode, the local ground referenced bypass capacitor and low side MOSFET body diode. The bootstrap capacitor is recharged on the cycle-by-cycle basis through the bootstrap diode from the ground referenced V_{DD} bypass capacitor. The recharging occurs in a short time interval and involves high peak current. Minimizing this loop length and area on the circuit board is important to ensure reliable operation.

Power Dissipation Considerations

The total IC power dissipation is the sum of the gate driver losses and the bootstrap diode losses. The gate driver
losses are related to the switching frequency (f), output load capacitance on LO and $\mathrm{HO}\left(\mathrm{C}_{\mathrm{L}}\right)$, and supply voltage (V_{DD}) and can be roughly calculated as:

$$
P_{\text {DGATES }}=2 \cdot f \cdot C_{L} \cdot V_{D D}^{2}
$$

There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and HO outputs. The following plot shows the measured gate driver power dissipation versus frequency and load capacitance. At higher frequencies and load capacitance values, the power dissipation is dominated by the power losses driving the output loads and agrees well with the above equation. This plot can be used to approximate the power losses due to the gate drivers.

20124005
The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Since each of these events happens once per cycle, the diode power loss is proportional to frequency.

Power Dissipation Considerations
(Continued)
Larger capacitive loads require more current to recharge the bootstrap capacitor resulting in more losses. Higher input voltages $\left(\mathrm{V}_{\mathrm{IN}}\right)$ to the half bridge result in higher reverse recovery losses. The following plot was generated based on calculations and lab measurements of the diode recovery time and current under several operating conditions. This can be useful for approximating the diode power dissipation. The total IC power dissipation can be estimated from the previous plots by summing the gate drive losses with the bootstrap diode losses for the intended application.

Diode Power Dissipation $\mathrm{V}_{\mathrm{IN}}=50 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

RECOMMENDED LAND PATTERN

DIMENSIONS ARE IN MILLIMETERS
SDC10A (Rev A)
Notes: Unless otherwise specified.

1. For solder thickness and composition, see "Solder Information" in the packaging section of the National Semiconductor web page (www.national.com).
2. Maximum allowable metal burr on lead tips at the package edges is 76 microns.
3. No JEDEC registration as of May 2003.

LLP-10 Outline Drawing NS Package Number SDC10A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@ nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

LM2907/LM2917

Frequency to Voltage Converter

General Description

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.
The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA . The collector may be taken above V_{CC} up to a maximum V_{CE} of 28 V .

The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.
The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.

Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.

Advantages

- Output swings to ground for zero frequency input
- Easy to use; $\mathrm{V}_{\text {OUt }}=\mathrm{f}_{\mathrm{IN}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{R} 1 \times \mathrm{C} 1$
- Only one RC network provides frequency doubling

■ Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)

Features

■ Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickups

- Op amp/comparator has floating transistor output

■ 50 mA sink or source to operate relays, solenoids, meters, or LEDs

- Frequency doubling for low ripple
- Tachometer has built-in hysteresis with either differential input or ground referenced input
- Built-in zener on LM2917

■ $\pm 0.3 \%$ linearity typical

- Ground referenced tachometer is fully protected from damage due to swings above V_{Cc} and below ground

Applications

■ Over/under speed sensing

- Frequency to voltage conversion (tachometer)
- Speedometers

■ Breaker point dwell meters

- Hand-held tachometer
- Speed governors
- Cruise control
- Automotive door lock control
- Clutch control
- Horn control

■ Touch or sound switches

Block and Connection Diagrams

Dual-In-Line and Small Outline Packages, Top Views

Order Number LM2907M-8 or LM2907N-8
See NS Package Number M08A or N08E

Order Number LM2917M-8 or LM2917N-8
See NS Package Number M08A or N08E

Block and Connection Diagrams Dual-In-Line and Small Outine Packages, Top Views (Continued)

Order Number LM2917M or LM2917N See NS Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	28 V
Supply Current (Zener Options)	25 mA
Collector Voltage	28 V
Differential Input Voltage	
Tachometer	28 V
Op Amp/Comparator	28 V
Input Voltage Range	
Tachometer	$\pm 28 \mathrm{~V}$
LM2907-8, LM2917-8	0.0 V to +28 V
LM2907, LM2917	0.0 V to +28 V

Power Dissipation

LM2907-8, LM2917-8	1200 mW
LM2907-14, LM2917-14	1580 mW
See (Note 1)	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
\quad Dual-In-Line Package	
\quad Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see test circuit

Symbol	Parameter	Conditions	Min	Typ	Max	Units
TACHOMETER						
	Input Thresholds	$\mathrm{V}_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p}$ @ 1 kHz (Note 2)	± 10	± 25	± 40	mV
	Hysteresis	$\mathrm{V}_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p}$ @ 1 kHz (Note 2)		30		mV
	Offset Voltage LM2907/LM2917 LM2907-8/LM2917-8	$\mathrm{V}_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p}$ @ 1 kHz (Note 2)		$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Input Bias Current	$\mathrm{V}_{\mathrm{IN}}= \pm 50 \mathrm{mV} \mathrm{DC}$		0.1	1	$\mu \mathrm{A}$
V_{OH}	Pin 2	$\mathrm{V}_{\text {IN }}=+125 \mathrm{mV} \mathrm{DC}^{\text {(}}$ (Note 3)		8.3		V
V_{OL}	Pin 2	$\mathrm{V}_{\text {IN }}=-125 \mathrm{mV} \mathrm{DC}^{\text {(}}$ (Note 3)		2.3		V
$\mathrm{I}_{2}, \mathrm{I}_{3}$	Output Current	$\mathrm{V} 2=\mathrm{V} 3=6.0 \mathrm{~V}$ (Note 4)	140	180	240	$\mu \mathrm{A}$
I_{3}	Leakage Current	$12=0, \mathrm{~V} 3=0$			0.1	$\mu \mathrm{A}$
K	Gain Constant	(Note 3)	0.9	1.0	1.1	
	Linearity	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}$ (Note 5)	-1.0	0.3	+1.0	\%
OP/AMP COMPARATOR						
$\mathrm{V}_{\text {OS }}$		$\mathrm{V}_{\mathrm{IN}}=6.0 \mathrm{~V}$		3	10	mV
$\mathrm{I}_{\text {BIAS }}$		$\mathrm{V}_{\mathrm{IN}}=6.0 \mathrm{~V}$		50	500	nA
	Input Common-Mode Voltage		0		$\mathrm{V}_{\mathrm{Cc}}-1.5 \mathrm{~V}$	V
	Voltage Gain			200		V/mV
	Output Sink Current	$\mathrm{V}_{\mathrm{C}}=1.0$	40	50		mA
	Output Source Current	$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}-2.0$		10		mA
	Saturation Voltage	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$		0.1	0.5	V
		$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$			1.0	V
		$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$		1.0	1.5	V
ZENER REGULATOR						
	Regulator Voltage	$\mathrm{R}_{\text {DROP }}=470 \Omega$		7.56		V
	Series Resistance			10.5	15	Ω
	Temperature Stability			+1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	TOTAL SUPPLY CURRENT			3.8	6	mA

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $101^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for LM2907-8 and LM2917-8, and $79^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for LM2907-14 and LM2917-14.
Note 2: Hysteresis is the sum $+\mathrm{V}_{\mathrm{TH}}-\left(-\mathrm{V}_{\mathrm{TH}}\right)$, offset voltage is their difference. See test circuit.
Note 3: V_{OH} is equal to $3 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{OL}}$ is equal to $1 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}$ therefore $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}} / 2$. The difference, $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$, and the mirror gain, $\mathrm{I}_{2} / \mathrm{I}_{3}$, are the two factors that cause the tachometer gain constant to vary from 1.0.
Note 4: Be sure when choosing the time constant R1 $\times C 1$ that $R 1$ is such that the maximum anticipated output voltage at pin 3 can be reached with $I_{3} \times R 1$. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than $10 \mathrm{M} \Omega$ typically.

Note 5: Nonlinearity is defined as the deviation of $\mathrm{V}_{\text {OUT }}$ (@ pin 3) for $f_{I N}=5 \mathrm{kHz}$ from a straight line defined by the $\mathrm{V}_{\text {OUT }} @ 1 \mathrm{kHz}$ and $\mathrm{V}_{\text {OUT }} @ 10 \mathrm{kHz}$. C1 = 1000 pF , $\mathrm{R} 1=68 \mathrm{k}$ and $\mathrm{C} 2=0.22 \mathrm{mFd}$.

Test Circuit and Waveform

00794206

00794207

Typical Performance Characteristics

Total Supply Current

Normalized Tachometer Output vs Temperature

00794246

Tachometer Linearity vs R1

Op Amp Output Transistor Characteristics

Tachometer Linearity vs Temperature

00794247

Tachometer Input Hysteresis

 vs Temperature

Op Amp Output Transistor Characteristics

Applications Information

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit. The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single input is also fully protected against voltage swings to $\pm 28 \mathrm{~V}$, which are easily attained with these types of pickups.
The differential input options (LM2907, LM2917) give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application. Of course in order to allow the inputs to attain common-mode voltages above ground, input protection is removed and neither input should be taken outside the limits of the supply voltage being used. It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode.
Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input) the timing capacitor is either charged or discharged linearly between two voltages whose difference is $\mathrm{V}_{\mathrm{Cc}} / 2$. Then in one half cycle of the input frequency or a time equal to $1 / 2 \mathrm{f}_{\mathrm{IN}}$ the change in charge on the timing capacitor is equal to $\mathrm{V}_{\mathrm{Cc}} / 2 \times \mathrm{C} 1$. The average amount of current pumped into or out of the capacitor then is:

$$
\frac{\Delta Q}{T}=i_{C(A V G)}=C 1 \times \frac{V_{C C}}{2} \times\left(2 f_{I N}\right)=V_{C C} \times f_{I N} \times C 1
$$

The output circuit mirrors this current very accurately into the load resistor R1, connected to ground, such that if the pulses of current are integrated with a filter capacitor, then $\mathrm{V}_{\mathrm{O}}=\mathrm{i}_{\mathrm{c}} \mathrm{x}$ R1, and the total conversion equation becomes:

$$
V_{O}=V_{C C} \times f_{I N} \times C 1 \times R 1 \times K
$$

Where K is the gain constant-typically 1.0 .
The size of C 2 is dependent only on the amount of ripple voltage allowable and the required response time.

CHOOSING R1 AND C1

There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 500 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore $\mathrm{V}_{\mathrm{O}} / \mathrm{R} 1$ must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity. Also output ripple voltage must be considered and the size of C 2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:

$$
V_{\text {RIPPLE }}=\frac{V_{C C}}{2} \times \frac{C 1}{C 2} \times\left(1-\frac{V_{C C} \times f_{I N} \times C 1}{I_{2}}\right) p k-p k
$$

It appears R1 can be chosen independent of ripple, however response time, or the time it takes $\mathrm{V}_{\text {Out }}$ to stabilize at a new voltage increases as the size of C2 increases, so a compromise between ripple, response time, and linearity must be chosen carefully.
As a final consideration, the maximum attainable input frequency is determined by $\mathrm{V}_{\mathrm{CC}}, \mathrm{C} 1$ and I_{2} :

$$
\mathrm{f}_{\mathrm{MAX}}=\frac{\mathrm{I}_{2}}{\mathrm{C} 1 \times \mathrm{V}_{\mathrm{CC}}}
$$

USING ZENER REGULATED OPTIONS (LM2917)

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9 V to 16 V , a resistance of 470Ω will minimize the zener voltage variation to 160 mV . If the resistance goes under 400Ω or over 600Ω the zener variation quickly rises above 200 mV for the same input variation.

"Speed Switch" Load is Energized When $\mathrm{f}_{\mathrm{IN}} \geq \frac{1}{2 R C}$

Typical Applications (Continued)

00794210

00794212
Current Driven Meter Indicating Engine RPM
$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} @ 300 \mathrm{~Hz}$ or 6000 ERPM (6 Cylinder Engine)

Typical Applications (Continued)

Variable Reluctance Magnetic Pickup Buffer Circuits

Precision two-shot output frequency

equals twice input frequency

$$
\text { Pulse width }=\frac{V_{C C}}{2} \frac{C 1}{12}
$$

Pulse height $=\mathrm{V}_{\text {ZENER }}$

Typical Applications (Continued)
Finger Touch or Contact Switch

Frequency to Voltage Converter with 2 Pole Butterworth Filter to Reduce Ripple

$$
\begin{aligned}
& \mathrm{f}_{\text {POLE }}=\frac{0.707}{2 \pi \mathrm{RC}} \\
& \tau_{\text {RESPONSE }}=\frac{2.57}{2 \pi f_{\text {POLE }}}
\end{aligned}
$$

Overspeed Latch

Typical Applications (Continued)

Some Frequency Switch Applications May Require Hysteresis in the Comparator Function Which can be Implemented in Several Ways:

Changing the Output Voltage for an Input Frequency of Zero

Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage

00794232

Anti-Skid Circuit Functions
"Select-Low" Circuit

"Select-High" Circuit

Physical Dimensions inches (millimeters)
unless otherwise noted

Molded SO Package (M)
Order Number LM2907M or LM2917M
NS Package Number M14A

Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@ nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
ational.com	Français Tel: +33 (0) 141918790		

LM2576/LM2576HV Series

SIMPLE SWITCHER ${ }^{\circledR}$ 3A Step-Down Voltage Regulator

General Description

The LM2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required.
A standard series of inductors optimized for use with the LM2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.
$\underset{\text { Versions) }}{\text { Typical }}$ Application (Fixed Output Voltage

FIGURE 1.

Block Diagram

3.3V R2 $=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For ADJ. Version
R1 $=$ Open, R2 $=0 \Omega$
Patent Pending

Ordering Information

Temperature Range	Output Voltage					NS Package Number	Package Type
	3.3	5.0	12	15	ADJ		
$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \\ \leq 125^{\circ} \mathrm{C} \end{gathered}$	LM2576HVS-3.3	LM2576HVS-5.0	LM2576HVS-12	LM2576HVS-15	LM2576HVS-ADJ	TS5B	TO-263
	LM2576S-3.3	LM2576S-5.0	LM2576S-12	LM2576S-15	LM2576S-ADJ		
	LM2576HVSX-3.3	LM2576HVSX-5.0	LM2576HVSX-12	LM2576HVSX-15	LM2576HVSX-AD 4	TS5BTape \& Reel	
	LM2576SX-3.3	LM2576SX-5.0	LM2576SX-12	LM2576SX-15	LM2576SX-ADJ		
	LM2576HVT-3.3	LM2576HVT-5.0	LM2576HVT-12	LM2576HVT-15	LM2576HVT-ADJ	T05A	TO-220
	LM2576T-3.3	LM2576T-5.0	LM2576T-12	LM2576T-15	LM2576T-ADJ		
	LM2576HVT-3.3 Flow LB03	LM2576HVT-5.0 Flow LB03	LM2576HVT-12 Flow LB03	LM2576HVT-15 Flow LB03	LM2576HVT-ADJ Flow LB03	T05D	
	LM2576T-3.3 Flow LB03	LM2576T-5.0 Flow LB03	LM2576T-12 Flow LB03	LM2576T-15 Flow LB03	LM2576T-ADJ Flow LB03		

Absolute Maximum Ratings (Note 1)		Minimum ESD Rating	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.		($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)	2 kV
		Lead Temperature	
		(Soldering, 10 Seconds)	$260^{\circ} \mathrm{C}$
Maximum Supply Voltage			
LM2576	45 V	Operating Ratings	
LM2576HV	63 V		
$\overline{\mathrm{ON}}$ /OFF Pin Input Voltage	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\text {IN }}$	Temperature Range	
Output Voltage to Ground		LM2576/LM2576HV	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
(Steady State)	-1V	Supply Voltage	
Power Dissipation	Internally Limited	LM2576	40 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	LM2576HV	60 V
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$		

LM2576-3.3, LM2576HV-3.3

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2576-3.3 LM2576HV-3.3		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	$\begin{gathered} \hline \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576HV	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\operatorname{Max}) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%

LM2576-5.0, LM2576HV-5.0
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with Figure 2 boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { LM2576-5.0 } \\ \text { LM2576HV-5.0 } \end{gathered}$		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$ Circuit of Figure 2	5.0	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & \text { 4.800/4.750 } \\ & 5.200 / 5.250 \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & \text { 4.800/4.750 } \\ & 5.225 / 5.275 \end{aligned}$	V V(Min) V(Max)

LM2576-5.0, LM2576HV-5.0

Electrical Characteristics
(Continued)
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with Figure 2 boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { LM2576-5.0 } \\ \text { LM2576HV-5.0 } \end{gathered}$		Units (Limits)
			Typ	$\begin{gathered} \text { Limit } \\ \text { (Note 2) } \end{gathered}$	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	77		\%

LM2576-12, LM2576HV-12

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2576-12 LM2576HV-12		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	12	$\begin{aligned} & 11.76 \\ & 12.24 \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	V $\mathrm{V}(\operatorname{Min})$ $\mathrm{V}(\mathrm{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576HV	$\begin{aligned} & \hline 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \end{aligned}$	V V (Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

LM2576-15, LM2576HV-15

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2576-15 LM2576HV-15		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	15	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576	$\begin{aligned} & \hline 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\operatorname{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \end{aligned}$	V V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

LM2576-ADJ, LM2576HV-ADJ Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { LM2576-ADJ } \\ & \text { LM2576HV-ADJ } \end{aligned}$		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \end{aligned}$ Circuit of Figure 2	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	$\begin{gathered} \hline \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure 2 } \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77		\%

All Output Voltage Versions
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and V_{IN} $=30 \mathrm{~V}$ for the 15 V version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-XX } \\ \text { LM2576HV-XX } \end{gathered}$		Units (Limits)
			Typ	Limit (Note 2)	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	$\mathrm{V}_{\text {Out }}=5 \mathrm{~V}$ (Adjustable Version Only)	50	100/500	nA
f_{O}	Oscillator Frequency	(Note 11)	52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	kHz kHz (Min) kHz (Max)
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {Out }}=3 \mathrm{~A}($ Note 4)	1.4	1.8/2.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Max}) \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 5)	98	93	$\begin{gathered} \% \\ \%(\mathrm{Min}) \end{gathered}$
I_{CL}	Current Limit	(Notes 4, 11)	5.8	$\begin{aligned} & 4.2 / 3.5 \\ & 6.9 / 7.5 \\ & \hline \end{aligned}$	A $A(\operatorname{Min})$ $A(\operatorname{Max})$
I_{L}	Output Leakage Current	$\begin{array}{ll} \hline \text { Notes 6, 7): Output }=0 \mathrm{~V} & \begin{array}{l} \text { Output }=-1 \mathrm{~V} \\ \text { Output }=-1 \mathrm{~V} \end{array} \end{array}$	7.5	2 30	$\begin{gathered} \hline \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
I_{Q}	Quiescent Current	(Note 6)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	$\overline{\text { ON }} /$ OFF Pin $=5 \mathrm{~V}$ (OFF)	50	200	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{Max})$

All Output Voltage Versions
 Electrical Characteristics (Continued)

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\text {IN }}$ $=30 \mathrm{~V}$ for the 15 V version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-XX } \\ \text { LM2576HV-XX } \end{gathered}$		Units (Limits)
			Typ	Limit (Note 2)	
DEVICE PARAMETERS					
$\begin{aligned} & \hline \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \\ & \theta_{\mathrm{JA}} \end{aligned}$	Thermal Resistance	T Package, Junction to Ambient (Note 8) T Package, Junction to Ambient (Note 9) T Package, Junction to Case S Package, Junction to Ambient (Note 10)	$\begin{gathered} \hline 65 \\ 45 \\ 2 \\ 50 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\overline{\mathrm{ON}}$ /OFF CONTROL Test Circuit Figure 2					
V_{IH}	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin Logic Input Level	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$	1.4	2.2/2.4	V (Min)
$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	1.2	1.0/0.8	V(Max)
I_{IH}	$\overline{\mathrm{ON}} /$ OFF Pin Input Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	12	30	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{Max})$
$\mathrm{I}_{\text {IL }}$		$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=0 \mathrm{~V}(\mathrm{ON})$	0	10	$\mu \mathrm{A}$ $\mu \mathrm{A}(\mathrm{Max})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576/LM2576HV is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5: Feedback pin removed from output and connected to OV .
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (60 V for high voltage version).
Note 8: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads in a socket, or on a PC board with minimum copper area.
Note 9: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 4$ inch leads soldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.
Note 10: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package. Using 0.5 square inches of copper area, θ_{JA} is $50^{\circ} \mathrm{C} / \mathrm{W}$, with 1 square inch of copper area, θ_{JA} is $37^{\circ} \mathrm{C} / \mathrm{W}$, and with 1.6 or more square inches of copper area, θ_{JA} is $32^{\circ} \mathrm{C} / \mathrm{W}$.

Note 11: The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Typical Performance Characteristics

(Circuit of Figure 2)

01147627

Typical Performance Characteristics (Circuit of Figure 2) (Continued)

Quiescent Current

Oscillator Frequency

JUNCTION TEMPERATURE ($\left.{ }^{\circ} \mathrm{C}\right)$
01147633

Standby Quiescent Current

Switch Saturation Voltage

01147634

Typical Performance Characteristics (Circuit of Figure 2) (Continued)

Minimum Operating Voltage

Minimum Operating Voltage

Quiescent Current vs Duty Cycle

Typical Performance Characteristics (Circuit of Figure 2) (Continued)

 AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

01147624

01147604

Switching Waveforms

$5 \mu \mathrm{~s} / \mathrm{div}$
$V_{\text {OUT }}=15 \mathrm{~V}$
A: Output Pin Voltage, $50 \mathrm{~V} / \mathrm{div}$
B: Output Pin Current, 2A/div
C: Inductor Current, 2A/div
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible.

Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Fixed Output Voltage Versions

01147607
$\mathrm{C}_{\mathrm{IN}}-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminum Electrolytic
Cout - $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D_{1} - Schottky, MBR360
$\mathrm{L}_{1}-100 \mu \mathrm{H}$, Pulse Eng. PE-92108
$R_{1}-2 k, 0.1 \%$
$\mathrm{R}_{2}-6.12 \mathrm{k}, 0.1 \%$

where $\mathrm{V}_{\mathrm{REF}}=1.23 \mathrm{~V}$, R1 between 1 k and 5 k .

FIGURE 2.

LM2576 Series Buck Regulator
 Design Procedure

PROCEDURE (Fixed Output Voltage Versions)

Given: $\mathrm{V}_{\text {OUt }}=$ Regulated Output Voltage (3.3V, $5 \mathrm{~V}, 12 \mathrm{~V}$, or 15 V) $\mathrm{V}_{\text {IN }}($ Max $)=$ Maximum Input Voltage $\mathrm{I}_{\text {LOAD }}(\mathrm{Max})=$ Maximum Load Current

1. Inductor Selection (L1) A. Select the correct Inductor value selection guide from Figures 3, 4, 5 or Figure 6. (Output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ or 15 V respectively). For other output voltages, see the design procedure for the adjustable version. B. From the inductor value selection guide, identify the inductance region intersected by $\mathrm{V}_{\text {IN }}(\mathrm{Max})$ and $\mathrm{I}_{\text {LOAD }}(\mathrm{Max})$, and note the inductor code for that region. \mathbf{C}. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in Figure 3. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of $1.15 \times \mathrm{I}_{\text {LOAD }}$. For additional inductor information, see the inductor section in the Application Hints section of this data sheet.
2. Output Capacitor Selection ($C_{\text {out }}$) A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation and an acceptable output ripple voltage, (approximately 1% of the output voltage) a value between $100 \mu \mathrm{~F}$ and $470 \mu \mathrm{~F}$ is recommended. B. The capacitor's voltage rating should be at least 1.5 times greater than the output voltage. For a 5 V regulator, a rating of at least 8 V is appropriate, and a 10 V or 15 V rating is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason it may be necessary to select a capacitor rated for a higher voltage than would normally be needed.
3. Catch Diode Selection (D1) A.The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2576. The most stressful condition for this diode is an overload or shorted output condition. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
4. Input Capacitor ($\mathbf{C}_{\text {IN }}$) An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.
5. Output Capacitor Selection (C $\mathrm{C}_{\text {OUT }}$) A. $\mathrm{C}_{\text {OUT }}=680$ $\mu \mathrm{F}$ to $2000 \mu \mathrm{~F}$ standard aluminum electrolytic. B. Capacitor voltage rating $=20 \mathrm{~V}$.
6. Catch Diode Selection (D1) A.For this example, a 3A current rating is adequate. B. Use a 20 V 1 N 5823 or SR302 Schottky diode, or any of the suggested fast-recovery diodes shown in Figure 8.
7. Input Capacitor (C_{IN}) A $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.

LM2576 Series Buck Regulator Design Procedure (Continued)

INDUCTOR VALUE SELECTION GUIDES (For
Continuous Mode Operation)

FIGURE 3. LM2576(HV)-3.3

01147610

FIGURE 5. LM2576(HV)-12

FIGURE 6. LM2576(HV)-15

FIGURE 4. LM2576(HV)-5.0

FIGURE 7. LM2576(HV)-ADJ

PROCEDURE (Adjustable Output Voltage Versions)

Given: $\mathrm{V}_{\text {Out }}=$ Regulated Output Voltage $\mathrm{V}_{\text {IN }}(\mathrm{Max})=$
Maximum Input Voltage $\mathrm{I}_{\text {LOAD }}(\mathrm{Max})=$ Maximum Load Current F = Switching Frequency (Fixed at 52 kHz)

1. Programming Output Voltage (Selecting R1 and R2, as shown in Figure 2) Use the following formula to select the appropriate resistor values.

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { where } V_{\text {REF }}=1.23 V
$$

R_{1} can be between 1 k and 5 k . (For best temperature coefficient and stability with time, use 1% metal film resistors)

$$
\mathrm{R}_{2}=\mathrm{R}_{1}\left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{V_{\mathrm{REF}}}-1\right)
$$

EXAMPLE (Adjustable Output Voltage Versions)
Given: $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V} \mathrm{~V}_{\text {IN }}(\mathrm{Max})=25 \mathrm{~V} \mathrm{I}_{\text {LOAD }}(\mathrm{Max})=3 \mathrm{~A} \mathrm{~F}=$ 52 kHz

1. Programming Output Voltage (Selecting R1 and R2)

$$
\begin{aligned}
& V_{\text {OUT }}=1.23\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { Select } R 1=1 \mathrm{k} \\
& R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)=1 \mathrm{k}\left(\frac{10 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right)
\end{aligned}
$$

$R_{2}=1 \mathrm{k}(8.13-1)=7.13 \mathrm{k}$, closest 1% value is 7.15 k

LM2576 Series Buck Regulator Design Procedure (Continued)

PROCEDURE (Adjustable Output Voltage Versions)
2. Inductor Selection (L1) A. Calculate the inductor Volt

- microsecond constant, E•T (V• Ls), from the following formula:

$$
\mathrm{E} \cdot \mathrm{~T}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right) \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {IN }}} \cdot \frac{1000}{\mathrm{~F}(\text { in } k H z)}(\mathrm{V} \bullet \mu \mathrm{~s})
$$

B. Use the E P T value from the previous formula and match it with the $\mathrm{E} \cdot \mathrm{T}$ number on the vertical axis of the Inductor Value Selection Guide shown in Figure 7. C. On the horizontal axis, select the maximum load current. D. Identify the inductance region intersected by the E•T value and the maximum load current value, and note the inductor code for that region. E. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in Figure 9. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of $1.15 \times \mathrm{I}_{\text {LOAD }}$ For additional inductor information, see the inductor section in the application hints section of this data sheet.
3. Output Capacitor Selection (Cout) A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation, the capacitor must satisfy the following requirement:

$$
\mathrm{C}_{\text {OUT }} \geq 13,300 \frac{\mathrm{~V}_{\text {IN }}(\operatorname{Max})}{\mathrm{V}_{\text {OUT }} \cdot \mathrm{L}(\mu \mathrm{H})}(\mu \mathrm{F})
$$

The above formula yields capacitor values between $10 \mu \mathrm{~F}$ and $2200 \mu \mathrm{~F}$ that will satisfy the loop requirements for stable operation. But to achieve an acceptable output ripple voltage, (approximately 1% of the output voltage) and transient response, the output capacitor may need to be several times larger than the above formula yields. B. The capacitor's voltage rating should be at last 1.5 times greater than the output voltage. For a 10 V regulator, a rating of at least 15 V or more is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason it may be necessary to select a capacitor rate for a higher voltage than would normally be needed.
4. Catch Diode Selection (D1) A. The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2576. The most stressful condition for this diode is an overload or shorted output. See diode selection guide in Figure 8. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
5. Input Capacitor ($\mathrm{C}_{\text {IN }}$) An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.

To further simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the SIMPLE SWITCHER line of

EXAMPLE (Adjustable Output Voltage Versions)
2. Inductor Selection (L1) A. Calculate E•T (V• Ls)

B. $\mathrm{E} \cdot \mathrm{T}=115 \mathrm{~V} \cdot \mu \mathrm{C}$ C. I LOAD (Max) $=3 \mathrm{~A}$ D. Inductance Region $=\mathrm{H} 150 \mathrm{E}$. Inductor Value $=150 \mu \mathrm{H}$ Choose from AIE part \#415-0936 Pulse Engineering part \#PE-531115, or Renco part \#RL2445.
3. Output Capacitor Selection ($\mathrm{C}_{\text {out }}$)
$\mathrm{C}_{\text {OUT }}>13,300 \frac{25}{10 \cdot 150}=22.2 \mu \mathrm{~F}$
However, for acceptable output ripple voltage select $\mathrm{C}_{\text {Out }}$ $\geq 680 \mu \mathrm{~F} \mathrm{C}_{\text {OUt }}=680 \mu \mathrm{~F}$ electrolytic capacitor
4. Catch Diode Selection (D1) A. For this example, a 3.3A current rating is adequate. B. Use a 30V 31DQ03 Schottky diode, or any of the suggested fast-recovery diodes in Figure 8.
5. Input Capacitor ($\mathbf{C}_{\text {IN }}$) A $100 \mu \mathrm{~F}$ aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.
is available on a ($3^{1 / 2 "}$) diskette for IBM compatible computers from a National Semiconductor sales office in your area.

$V_{\text {R }}$	Schottky		Fast Recovery	
	3A	4A-6A	3A	4A-6A
20V	1N5820 MBR320P SR302	1N5823	The following diodes are all rated to 100 V 31DF1 HER302	The following diodes are all rated to 100 V 50WF10 MUR410 HER602
30V	$\begin{array}{\|l\|} \hline \text { 1N5821 } \\ \text { MBR330 } \\ \text { 31DQ03 } \\ \text { SR303 } \end{array}$	50WQ03 1N5824		
40V	1N5822 MBR340 31DQ04 SR304	MBR340 50WQ04 1N5825		
50V	$\begin{aligned} & \text { MBR350 } \\ & \text { 31DQ05 } \\ & \text { SR305 } \end{aligned}$	50WQ05		
60V	$\begin{array}{\|l\|} \hline \text { MBR360 } \\ \text { DQ06 } \\ \text { SR306 } \end{array}$	$\begin{aligned} & \text { 50WR06 } \\ & \text { 50SQ060 } \end{aligned}$		

FIGURE 8. Diode Selection Guide

Inductor Code	Inductor Value	Schott (Note 12)	Pulse Eng. (Note 13)	Renco (Note 14)
L47	$47 \mu \mathrm{H}$	67126980	PE-53112	RL2442
L68	$68 \mu \mathrm{H}$	67126990	PE-92114	RL2443
L100	$100 \mu \mathrm{H}$	67127000	PE-92108	RL2444
L150	$150 \mu \mathrm{H}$	67127010	PE-53113	RL1954
L220	$220 \mu \mathrm{H}$	67127020	PE-52626	RL1953
L330	$330 \mu \mathrm{H}$	67127030	PE-52627	RL1952
L470	$470 \mu \mathrm{H}$	67127040	PE-53114	RL1951
L680	$680 \mu \mathrm{H}$	67127050	PE-52629	RL1950
H150	$150 \mu \mathrm{H}$	67127060	PE-53115	RL2445
H220	$220 \mu \mathrm{H}$	67127070	PE-53116	RL2446
H330	$330 \mu \mathrm{H}$	67127080	PE-53117	RL2447
H470	$470 \mu \mathrm{H}$	67127090	PE-53118	RL1961
H680	$680 \mu \mathrm{H}$	67127100	PE-53119	RL1960
H1000	$1000 \mu \mathrm{H}$	67127110	PE-53120	RL1959
H1500	$1500 \mu \mathrm{H}$	67127120	PE-53121	RL1958
H2200	$2200 \mu \mathrm{H}$	67127130	PE-53122	RL2448

Note 12: Schott Corporation, (612) 475-1173, 1000 Parkers Lake Road, Wayzata, MN 55391.
Note 13: Pulse Engineering, (619) 674-8100, P.O. Box 12235, San Diego, CA 92112.
Note 14: Renco Electronics Incorporated, (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729.
FIGURE 9. Inductor Selection by Manufacturer's Part Number

Application Hints

INPUT CAPACITOR ($\mathrm{C}_{\text {IN }}$)

To maintain stability, the regulator input pin must be bypassed with at least a $100 \mu \mathrm{~F}$ electrolytic capacitor. The capacitor's leads must be kept short, and located near the regulator.

If the operating temperature range includes temperatures below $-25^{\circ} \mathrm{C}$, the input capacitor value may need to be larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be greater than

Application Hints (Continued)

$$
1.2 \times\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{~T}}\right) \times \mathrm{I}_{\mathrm{LOAD}}
$$

where $\frac{t_{O N}}{T}=\frac{V_{O U T}}{V_{I N}}$ for a buck regulator
and $\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{T}}=\frac{\left|\mathrm{V}_{\text {OUT }}\right|}{\left|\mathrm{V}_{\text {OUT }}\right|+\mathrm{V}_{\text {IN }}}$ for a buck-boost regulator.

INDUCTOR SELECTION

All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements.
The LM2576 (or any of the SIMPLE SWITCHER family) can be used for both continuous and discontinuous modes of operation.
The inductor value selection guides in Figure 3 through Figure 7 were designed for buck regulator designs of the continuous inductor current type. When using inductor values shown in the inductor selection guide, the peak-to-peak inductor ripple current will be approximately 20% to 30% of the maximum DC current. With relatively heavy load currents, the circuit operates in the continuous mode (inductor current always flowing), but under light load conditions, the circuit will be forced to the discontinuous mode (inductor current falls to zero for a period of time). This discontinuous mode of operation is perfectly acceptable. For light loads (less than approximately 300 mA) it may be desirable to operate the regulator in the discontinuous mode, primarily because of the lower inductor values required for the discontinuous mode.
The selection guide chooses inductor values suitable for continuous mode operation, but if the inductor value chosen is prohibitively high, the designer should investigate the possibility of discontinuous operation. The computer design software Switchers Made Simple will provide all component values for discontinuous (as well as continuous) mode of operation.
Inductors are available in different styles such as pot core, toriod, E-frame, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin core type, consists of wire wrapped on a ferrite rod core. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more electromagnetic interference (EMI). This EMI can cause problems in sensitive circuits, or can give incorrect scope readings because of induced voltages in the scope probe.
The inductors listed in the selection chart include ferrite pot core construction for AIE, powdered iron toroid for Pulse Engineering, and ferrite bobbin core for Renco.
An inductor should not be operated beyond its maximum rated current because it may saturate. When an inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This will cause the switch current to rise very
rapidly. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.
The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.

INDUCTOR RIPPLE CURRENT

When the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage, the peak-topeak amplitude of this inductor current waveform remains constant. As the load current rises or falls, the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the DC load current (in the buck regulator configuration).
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation. Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the load current is light enough.

OUTPUT CAPACITOR

An output capacitor is required to filter the output voltage and is needed for loop stability. The capacitor should be located near the LM2576 using short pc board traces. Standard aluminum electrolytics are usually adequate, but low ESR types are recommended for low output ripple voltage and good stability. The ESR of a capacitor depends on many factors, some which are: the value, the voltage rating, physical size and the type of construction. In general, low value or low voltage (less than 12 V) electrolytic capacitors usually have higher ESR numbers.
The amount of output ripple voltage is primarily a function of the ESR (Equivalent Series Resistance) of the output capacitor and the amplitude of the inductor ripple current ($\Delta \mathrm{I}_{\text {IND }}$). See the section on inductor ripple current in Application Hints.
The lower capacitor values ($220 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$) will allow typically 50 mV to 150 mV of output ripple voltage, while larger-value capacitors will reduce the ripple to approximately 20 mV to 50 mV .
Output Ripple Voltage $=\left(\Delta I_{\text {IND }}\right)\left(E S R\right.$ of $\left.C_{\text {OUT }}\right)$
To further reduce the output ripple voltage, several standard electrolytic capacitors may be paralleled, or a higher-grade capacitor may be used. Such capacitors are often called "high-frequency," "low-inductance," or "low-ESR." These will reduce the output ripple to 10 mV or 20 mV . However, when operating in the continuous mode, reducing the ESR below 0.03Ω can cause instability in the regulator.
Tantalum capacitors can have a very low ESR, and should be carefully evaluated if it is the only output capacitor. Because of their good low temperature characteristics, a tantalum can be used in parallel with aluminum electrolytics, with the tantalum making up 10% or 20% of the total capacitance.
The capacitor's ripple current rating at 52 kHz should be at least 50% higher than the peak-to-peak inductor ripple current.

Application Hints
 (Continued)

CATCH DIODE

Buck regulators require a diode to provide a return path for the inductor current when the switch is off. This diode should be located close to the LM2576 using short leads and short printed circuit traces.
Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency, especially in low output voltage switching regulators (less than 5V). Fast-Recovery, High-Efficiency, or Ultra-Fast Recovery diodes are also suitable, but some types with an abrupt turn-off characteristic may cause instability and EMI problems. A fast-recovery diode with soft recovery characteristics is a better choice. Standard 60 Hz diodes (e.g., 1N4001 or 1N5400, etc.) are also not suitable. See Figure 8 for Schottky and "soft" fast-recovery diode selection guide.

OUTPUT VOLTAGE RIPPLE AND TRANSIENTS

The output voltage of a switching power supply will contain a sawtooth ripple voltage at the switcher frequency, typically about 1% of the output voltage, and may also contain short voltage spikes at the peaks of the sawtooth waveform.
The output ripple voltage is due mainly to the inductor sawtooth ripple current multiplied by the ESR of the output capacitor. (See the inductor selection in the application hints.)
The voltage spikes are present because of the the fast switching action of the output switch, and the parasitic inductance of the output filter capacitor. To minimize these voltage spikes, special low inductance capacitors can be used, and their lead lengths must be kept short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.
An additional small LC filter ($20 \mu \mathrm{H}$ \& $100 \mu \mathrm{~F}$) can be added to the output (as shown in Figure 15) to further reduce the amount of output ripple and transients. A $10 \times$ reduction in output ripple voltage and transients is possible with this filter.

FEEDBACK CONNECTION

The LM2576 (fixed voltage versions) feedback pin must be wired to the output voltage point of the switching power supply. When using the adjustable version, physically locate both output voltage programming resistors near the LM2576 to avoid picking up unwanted noise. Avoid using resistors greater than $100 \mathrm{k} \Omega$ because of the increased chance of noise pickup.

$\overline{\mathrm{ON}} / \mathrm{OFF}$ INPUT

For normal operation, the $\overline{\mathrm{ON}} /$ OFF pin should be grounded or driven with a low-level TTL voltage (typically below 1.6V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin can be safely pulled up to $+\mathrm{V}_{\mathrm{IN}}$ without a resistor in series with it. The ON /OFF pin should not be left open.

GROUNDING

To maintain output voltage stability, the power ground connections must be low-impedance (see Figure 2). For the 5 -lead TO-220 and TO-263 style package, both the tab and pin 3 are ground and either connection may be used, as they are both part of the same copper lead frame.

HEAT SINK/THERMAL CONSIDERATIONS

In many cases, only a small heat sink is required to keep the LM2576 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink will be required, the following must be identified:

1. Maximum ambient temperature (in the application).
2. Maximum regulator power dissipation (in application).
3. Maximum allowed junction temperature $\left(125^{\circ} \mathrm{C}\right.$ for the LM2576). For a safe, conservative design, a temperature approximately $15^{\circ} \mathrm{C}$ cooler than the maximum temperatures should be selected.
4. LM2576 package thermal resistances θ_{JA} and θ_{JC}.

Total power dissipated by the LM2576 can be estimated as follows:
$P_{\mathrm{D}}=\left(\mathrm{V}_{\text {IN }}\right)\left(\mathrm{I}_{\mathrm{Q}}\right)+\left(\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\text {IN }}\right)\left(\mathrm{I}_{\text {LOAD }}\right)\left(\mathrm{V}_{\text {SAT }}\right)$
where I_{Q} (quiescent current) and $\mathrm{V}_{\mathrm{SAT}}$ can be found in the Characteristic Curves shown previously, $\mathrm{V}_{\text {IN }}$ is the applied minimum input voltage, V_{O} is the regulated output voltage, and $\mathrm{I}_{\text {LOAD }}$ is the load current. The dynamic losses during turn-on and turn-off are negligible if a Schottky type catch diode is used.
When no heat sink is used, the junction temperature rise can be determined by the following:
$\Delta T_{J}=\left(P_{\mathrm{D}}\right)\left(\theta_{\mathrm{JA}}\right)$
To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient temperature.
$T_{J}=\Delta T_{J}+T_{A}$
If the actual operating junction temperature is greater than the selected safe operating junction temperature determined in step 3 , then a heat sink is required.
When using a heat sink, the junction temperature rise can be determined by the following:
$\Delta T_{J}=\left(P_{D}\right)\left(\theta_{J C}+\theta_{\text {interface }}+\theta_{\text {Heat sink }}\right)$
The operating junction temperature will be:
$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\Delta \mathrm{T}_{\mathrm{J}}$
As above, if the actual operating junction temperature is greater than the selected safe operating junction temperature, then a larger heat sink is required (one that has a lower thermal resistance).
Included on the Switcher Made Simple design software is a more precise (non-linear) thermal model that can be used to determine junction temperature with different input-output parameters or different component values. It can also calculate the heat sink thermal resistance required to maintain the regulators junction temperature below the maximum operating temperature.

Additional Applications

INVERTING REGULATOR

Figure 10 shows a LM2576-12 in a buck-boost configuration to generate a negative 12 V output from a positive input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to -12 V .
For an input voltage of 12 V or more, the maximum available output current in this configuration is approximately 700 mA . At lighter loads, the minimum input voltage required drops to approximately 4.7 V .

Additional Applications (Continued)

The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than 5A. Using a delayed turn-on or an undervoltage lockout circuit (described in the next section) would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.
Because of the structural differences between the buck and the buck-boost regulator topologies, the buck regulator design procedure section can not be used to to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between $68 \mu \mathrm{H}$ and $220 \mu \mathrm{H}$, and the output capacitor values must be larger than what is normally required for buck designs. Low input voltages or high output currents require a large value output capacitor (in the thousands of micro Farads).
The peak inductor current, which is the same as the peak switch current, can be calculated from the following formula:

$$
I_{p} \approx \frac{\operatorname{LLOAD}\left(V_{I N}+\left|V_{O}\right|\right)}{V_{I N}}+\frac{V_{I N}\left|V_{O}\right|}{V_{I N}+\left|V_{O}\right|} \times \frac{1}{2 L_{1} f_{O S C}}
$$

Where $\mathrm{f}_{\mathrm{osc}}=52 \mathrm{kHz}$. Under normal continuous inductor current operating conditions, the minimum V_{IN} represents the worst case. Select an inductor that is rated for the peak current anticipated.

FIGURE 10. Inverting Buck-Boost Develops -12V
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a -12 V output, the maximum input voltage for the LM 2576 is +28 V , or +48 V for the LM2576HV.
The Switchers Made Simple (version 3.0) design software can be used to determine the feasibility of regulator designs using different topologies, different input-output parameters, different components, etc.

NEGATIVE BOOST REGULATOR

Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 11 accepts an input voltage ranging from -5 V to -12 V and provides a regulated -12 V output. Input voltages greater than -12 V will cause the output to rise above -12 V , but will not damage the regulator.

01147615
Typical Load Current
400 mA for $\mathrm{V}_{\mathrm{IN}}=-5.2 \mathrm{~V}$
750 mA for $\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$
Note: Heat sink may be required.

FIGURE 11. Negative Boost

Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators can not provide current limiting load protection in the event of a shorted load, so some other means (such as a fuse) may be necessary.

UNDERVOLTAGE LOCKOUT

In some applications it is desirable to keep the regulator off until the input voltage reaches a certain threshold. An undervoltage lockout circuit which accomplishes this task is shown in Figure 12, while Figure 13 shows the same circuit applied to a buck-boost configuration. These circuits keep the regulator off until the input voltage reaches a predetermined level.
$\mathrm{V}_{\mathrm{TH}} \approx \mathrm{V}_{\mathrm{Z} 1}+2 \mathrm{~V}_{\mathrm{BE}}(\mathrm{Q} 1)$

Note: Complete circuit not shown.

FIGURE 12. Undervoltage Lockout for Buck Circuit

Additional Applications
(Continued)

Note: Complete circuit not shown (see Figure 10).

FIGURE 13. Undervoltage Lockout for Buck-Boost Circuit

DELAYED STARTUP

The $\overline{\text { ON }}$ /OFF pin can be used to provide a delayed startup feature as shown in Figure 14. With an input voltage of 20 V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit begins switch-
ing. Increasing the RC time constant can provide longer delay times. But excessively large RC time constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple, by coupling the ripple into the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin.

ADJUSTABLE OUTPUT, LOW-RIPPLE POWER SUPPLY
A 3 A power supply that features an adjustable output voltage is shown in Figure 15. An additional L-C filter that reduces the output ripple by a factor of 10 or more is included in this circuit.

Note: Complete circuit not shown.

FIGURE 14. Delayed Startup

FIGURE 15. 1.2V to 55V Adjustable 3A Power Supply with Low Output Ripple

Definition of Terms

BUCK REGULATOR

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a step-down switching regulator.

BUCK-BOOST REGULATOR

A switching regulator topology in which a positive voltage is converted to a negative voltage without a transformer.

DUTY CYCLE (D)
Ratio of the output switch's on-time to the oscillator period.

$$
\begin{array}{rlrl}
\text { for buck regulator } & D & =\frac{t_{O N}}{T} & =\frac{V_{O U T}}{V_{I N}} \\
\text { for buck-boost regulator } & D & =\frac{t_{O N}}{T}=\frac{\left|V_{O}\right|}{\left|V_{O}\right|+V_{I N}}
\end{array}
$$

CATCH DIODE OR CURRENT STEERING DIODE

The diode which provides a return path for the load current when the LM2576 switch is OFF.
EFFICIENCY (η)
The proportion of input power actually delivered to the load.

$$
\eta=\frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {IN }}}=\frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {OUT }}+\mathrm{P}_{\text {LOSS }}}
$$

Definition of Terms
 (Continued)

CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)

The purely resistive component of a real capacitor's impedance (see Figure 16). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in higher output ripple voltages.

FIGURE 16. Simple Model of a Real Capacitor
Most standard aluminum electrolytic capacitors in the $100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$ range have 0.5Ω to 0.1Ω ESR. Highergrade capacitors ("low-ESR", "high-frequency", or "lowinductance") in the $100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$ range generally have ESR of less than 0.15Ω.

EQUIVALENT SERIES INDUCTANCE (ESL)

The pure inductance component of a capacitor (see Figure 16). The amount of inductance is determined to a large extent on the capacitor's construction. In a buck regulator, this unwanted inductance causes voltage spikes to appear on the output.

OUTPUT RIPPLE VOLTAGE

The AC component of the switching regulator's output voltage. It is usually dominated by the output capacitor's ESR multiplied by the inductor's ripple current ($\Delta \mathrm{I}_{\mathrm{IND}}$). The peak-to-peak value of this sawtooth ripple current can be determined by reading the Inductor Ripple Current section of the Application hints.

CAPACITOR RIPPLE CURRENT

RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature.

STANDBY QUIESCENT CURRENT (I ${ }_{\text {stby }}$)

Supply current required by the LM2576 when in the standby mode ($\overline{\mathrm{ON}} / \mathrm{OFF}$ pin is driven to TTL-high voltage, thus turning the output switch OFF).

INDUCTOR RIPPLE CURRENT ($\Delta \mathrm{I}_{\mathrm{IND}}$)

The peak-to-peak value of the inductor current waveform, typically a sawtooth waveform when the regulator is operating in the continuous mode (vs. discontinuous mode).

CONTINUOUS/DISCONTINUOUS MODE OPERATION

Relates to the inductor current. In the continuous mode, the inductor current is always flowing and never drops to zero, vs. the discontinuous mode, where the inductor current drops to zero for a period of time in the normal switching cycle.

INDUCTOR SATURATION

The condition which exists when an inductor cannot hold any more magnetic flux. When an inductor saturates, the inductor appears less inductive and the resistive component dominates. Inductor current is then limited only by the DC resistance of the wire and the available source current.

OPERATING VOLT MICROSECOND CONSTANT (E•T ${ }_{\text {op }}$)

The product (in Volt $\bullet \mu \mathrm{s}$) of the voltage applied to the inductor and the time the voltage is applied. This $\mathrm{E} \bullet \mathrm{T}_{\text {op }}$ constant is a measure of the energy handling capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and the duty cycle.

Connection Diagrams (Note 15)

Side View

01147622
LM2576T-XX Flow LB03 or LM2576HVT-XX Flow LB03 NS Package Number T05D

Note 15: (XX indicates output voltage option. See ordering information table for complete part number.)

Physical Dimensions inches (millimeters)

unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Bent, Staggered 5-Lead TO-220 (T)
Order Number LM2576T-3.3 Flow LB03, LM2576T-XX Flow LB03, LM2576HVT-3.3 Flow LB03, LM2576T-5.0 Flow LB03, LM2576HVT-5.0 Flow LB03, LM2576T-12 Flow LB03, LM2576HVT-12 Flow LB03, LM2576T-15 Flow LB03, LM2576HVT-15 Flow LB03, LM2576T-ADJ Flow LB03 or LM2576HVT-ADJ Flow LB03 NS Package Number T05D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support@nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

[^0]
International ISR Rectifier

Typical Applications

- Integrated Starter Alternator
- 42 Volts Automotive Electrical Systems

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- $175^{\circ} \mathrm{C}$ Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET ${ }^{\circledR}$ Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a $175^{\circ} \mathrm{C}$ junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET ${ }^{\circledR}$ Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, VGS @ 10V	130®	A
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, $\mathrm{V}_{\text {GS }}$ @ 10V	$92 ®$	
I_{DM}	Pulsed Drain Current (1)	520	
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/ ${ }^{\circ} \mathrm{C}$
V_{GS}	Gate-to-Source Voltage	± 20	V
E_{AS}	Single Pulse Avalanche Energy ${ }^{(2)}$	390	mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current(1)	See Fig.12a, 12b, 15, 16	A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy (\%)		mJ
dv/dt	Peak Diode Recovery dv/dt (3)	4.6	V/ns
	Operating Junction and	-55 to +175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	$10 \mathrm{lbf} \cdot \mathrm{in}(1.1 \mathrm{~N} \cdot \mathrm{~m})$	

Thermal Resistance

	Parameter	Typ.	Max.	Units
$\mathrm{R}_{\text {өJC }}$	Junction-to-Case	-	0.45	C / W
$\mathrm{R}_{\theta C S}$	Case-to-Sink, Flat, Greased Surface	0.50	-	
$\mathrm{R}_{\theta J \mathrm{~A}}$	Junction-to-Ambient	-	62	

IRF1407

International IOR Rectifier

Electrical Characteristics @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	Drain-to-Source Breakdown Voltage	75		-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
	Breakdown Voltage Temp. Coefficient	-	0.09	-	V/ ${ }^{\circ} \mathrm{C}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-to-Source On-Resistance	-	-	0.0078	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=78 \mathrm{~A}$ (4)
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	2.0	-	4.0	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
g_{fs}	Forward Transconductance	74	-	-	S	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=78 \mathrm{~A}$
loss	Drain-to-Source Leakage Current	-	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	250		$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$
Igss	Gate-to-Source Forward Leakage	-	-	200	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-	-	-200		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
Q_{g}	Total Gate Charge	-	160	250	nC	$\mathrm{I}_{\mathrm{D}}=78 \mathrm{~A}$
Q_{gs}	Gate-to-Source Charge	-	35	52		$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}$
Q_{gd}	Gate-to-Drain ("Miller") Charge	-	54	81		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}(4)$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	-	11	-	ns	$\mathrm{V}_{\mathrm{DD}}=38 \mathrm{~V}$
tr_{r}	Rise Time	-	150	-		$\mathrm{I}_{\mathrm{D}}=78 \mathrm{~A}$
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time	-	150	-		$\mathrm{R}_{\mathrm{G}}=2.5 \Omega$
t_{f}	Fall Time	-	140	-		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ (4)
L_{D}	Internal Drain Inductance	-	4.5	-	nH	Between lead, 6 mm (0.25in.)
Ls	Internal Source Inductance	-	7.5	-		from package and center of die contact
$\mathrm{C}_{\text {iss }}$	Input Capacitance	-	5600	-	pF	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	890	-		$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}$
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	-	190	-		$f=1.0 \mathrm{KHz}$, See Fig. 5
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	5800	-		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=1.0 \mathrm{~V}, f=1.0 \mathrm{KHz}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	560	-		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=60 \mathrm{~V}, f=1.0 \mathrm{KHz}$
$\mathrm{C}_{\text {oss }} \mathrm{eff}$.	Effective Output Capacitance (5)	-	1100	-		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 60 V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	-	-	130®	A	MOSFET symbol showing the
ISM	Pulsed Source Current (Body Diode) (1)	-	-	520		integral reverse p-n junction diode.
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	-	-	1.3	V	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=78 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \quad$ (4)
$\mathrm{trr}^{\text {r }}$	Reverse Recovery Time	-	110	170	ns	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=78 \mathrm{~A} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \hline \end{aligned}$
Q_{rr}	Reverse RecoveryCharge	-	390	590	nC	
$\mathrm{t}_{\text {on }}$	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $\mathrm{L}_{S}+\mathrm{L}_{\mathrm{D}}$)				

Notes:

(1) Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
(2) Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=0.13 \mathrm{mH}$ $\mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=78 \mathrm{~A}$. (See Figure 12).
(3) $\mathrm{I}_{\mathrm{SD}} \leq 78 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 320 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$, $\mathrm{T}_{\mathrm{J}} \leq 175^{\circ} \mathrm{C}$
(4) Pulse width $\leq 400 \mu s$; duty cycle $\leq 2 \%$.
(5) $\mathrm{C}_{\text {oss }}$ eff. is a fixed capacitance that gives the same charging time as $C_{\text {oss }}$ while $V_{D S}$ is rising from 0 to $80 \% V_{D S S}$.
(6) Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
(7) Limited by $T_{\text {Jmax }}$, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

IRF1407

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International
IOR Rectifier

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF1407

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Internationa| IOR Rectifier

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current vs.Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of $\mathrm{T}_{\text {jmax. }}$. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as $\mathrm{T}_{\text {jmax }}$ is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P_{D} (ave) $=$ Average power dissipation per single avalanche pulse.
5. $\mathrm{BV}=$ Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. $\mathrm{I}_{\mathrm{av}}=$ Allowable avalanche current.
7. $\Delta \mathrm{T}=$ Allowable rise in junction temperature, not to exceed $\mathrm{T}_{\text {jmax }}$ (assumed as $25^{\circ} \mathrm{C}$ in Figure 15, 16).
t_{av} = Average time in avalanche.
$\mathrm{D}=$ Duty cycle in avalanche $=\mathrm{t}_{\mathrm{av}} \cdot \mathrm{f}$
$\mathrm{Z}_{\mathrm{thJC}}\left(\mathrm{D}, \mathrm{t}_{\mathrm{av}}\right)=$ Transient thermal resistance, see figure 11)

$$
\begin{aligned}
& P_{\mathrm{D}(\text { ave })}=1 / 2\left(1.3 \cdot \mathrm{BV} \cdot \mathrm{I}_{\mathrm{av}}\right)=\Delta \mathrm{T} / \mathrm{Z}_{\text {thJc }} \\
& \mathrm{I}_{\mathrm{av}}=2 \Delta \mathrm{~T} /\left[1.3 \cdot \mathrm{BV} \cdot \mathrm{Z}_{\text {th }}\right] \\
& \mathrm{E}_{\mathrm{AS}(\mathrm{AR})}=\mathrm{P}_{\mathrm{D}(\mathrm{ave})} \cdot \mathrm{t}_{\mathrm{av}}
\end{aligned}
$$

Fig 17. For N -channel $\mathrm{HEXFET}{ }^{\oplus}$ power MOSFETs

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES:
1 DIMENSIONING \& TOLERANCING PER ANSIY14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION:INCH 4 HEATSINK \& LEAD MEASUREMENTS DO NOT INCLUDE BURRS

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOTCODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/01
www.irf.com

LM78XX
 Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.
Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the out-
put, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 1 A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package

Voltage Range

LM7805C	5 V
LM7812C	12 V
LM7815C	15 V

Connection Diagrams

Bottom View Order Number LM7805CK, LM7812CK or LM7815CK See NS Package Number KC02A

Top View
Order Number LM7805CT, LM7812CT or LM7815CT See NS Package Number T03B

Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage
($\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V)
35 V
Internal Power Dissipation (Note 1) Internally Limited
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$

Maximum Junction Temperature

(K Package)	$150^{\circ} \mathrm{C}$
(T Package)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
TO-3 Package K	$300^{\circ} \mathrm{C}$
TO-220 Package T	$230^{\circ} \mathrm{C}$

Electrical Characteristics LM78XXC (Note 2)

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$ unless otherwise noted.

Output Voltage					5 V		12V		15V	Units
Input Voltage (unless otherwise noted)					10V	19V		23V		
Symbol	Parameter		nditions	Min	Typ ${ }^{\text {Max }}$	Min	Typ ${ }^{\text {Max }}$	Min	Typ ${ }^{\text {Max }}$	
V_{O}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}$		4.8	$5 \quad 5.2$	11.5	$12 \quad 12.5$	14.4 15 15.6 14.25 15.75 $\left(17.5 \leq \mathrm{V}_{\text {IN }} \leq\right.$ $30)$		V
		$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$		$\begin{array}{cr} 4.75 & 5.25 \\ \left(7.5 \leq \mathrm{V}_{\text {IN }} \leq 20\right) \end{array}$		$\begin{gathered} \hline 11.4 \quad 12.6 \\ \left(14.5 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. \\ 27) \\ \hline \end{gathered}$				$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{O}$	Line Regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=500 \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$	$\left(7 \leq \mathrm{V}_{\mathrm{IN}} \leq 25\right)$		$\begin{array}{r} 4 \quad 120 \\ \left.14.5 \leq \mathrm{V}_{\text {IN }} \leq 30\right) \end{array}$		$\begin{gathered} 4 \quad 150 \\ \left(17.5 \leq V_{\text {IN }} \leq\right. \\ 30) \end{gathered}$		$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
			$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq+125^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		$\begin{array}{r} 50 \\ \left.V_{\text {IN }} \leq 20\right) \end{array}$		$\leq \begin{array}{r} 120 \\ \left.V_{\text {IN }} \leq 27\right) \end{array}$		$\begin{aligned} & 150 \\ & .5 \leq \mathrm{V}_{\text {IN }} \leq \\ & 30) \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
		$\mathrm{I}_{0} \leq 1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		$\begin{array}{r} 50 \\ \left.\leq V_{\text {IN }} \leq 20\right) \end{array}$		$\begin{aligned} & 120 \\ & 6 \leq \mathrm{V}_{\mathrm{IN}} \leq \\ & 27) \\ & \hline \end{aligned}$		$\begin{aligned} & \quad 150 \\ & 7 \leq \mathrm{V}_{\text {IN }} \leq \\ & 30) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
			$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq+125^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$	(8 \leq	$\begin{array}{r} 25 \\ \left.\mathrm{~V}_{\text {IN }} \leq 12\right) \end{array}$	(16 \leq	$\begin{array}{r} 60 \\ \left.E V_{\mathrm{IN}} \leq 22\right) \end{array}$	(20	$\begin{array}{r} 75 \\ \left.\leq \mathrm{V}_{\text {IN }} \leq 26\right) \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
$\overline{\mathrm{V}} \mathrm{O}$	Load Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \\ & 750 \mathrm{~mA} \end{aligned}$		$\begin{array}{ll}10 & 50 \\ \\ & 25\end{array}$		$\begin{array}{ll}12 & 120 \\ & 60\end{array}$		$\begin{array}{lc}12 & 150 \\ & 75\end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq \\ & +125^{\circ} \mathrm{C} \end{aligned}$			50		120		150	mV
I_{Q}	Quiescent Current	$\mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \hline 8 \\ 8.5 \end{gathered}$		$\begin{gathered} \hline 8 \\ 8.5 \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\Delta \mathrm{l}_{\mathrm{Q}}$	Quiescent Current Change	$5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}$			0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$		(7.5	$\begin{array}{r} 1.0 \\ \leq V_{\text {IN }} \leq 20 \end{array}$		$\begin{array}{r} 1.0 \\ \left.\leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \end{array}$		$\begin{aligned} & 1.0 \\ & .9 \leq \mathrm{V}_{\mathrm{IN}} \leq \\ & 30) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$
		$\begin{aligned} & \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$		$\left(7 \leq \mathrm{V}_{\text {IN }} \leq 25\right)$		$\left(14.5 \leq \mathrm{V}_{\text {IN }} \leq 30\right)$		$\begin{gathered} \left(17.5 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. \\ 30) \end{gathered}$		$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$
V_{N}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		40			75		90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \text { or } \\ & \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq+125^{\circ} \mathrm{C} \end{aligned}$	62 62	80		72	54 54	70	dB dB
		$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		$\left(8 \leq \mathrm{V}_{\text {IN }} \leq 18\right)$		$\left(15 \leq \mathrm{V}_{\text {IN }} \leq 25\right)$		$\begin{gathered} \left(18.5 \leq V_{\text {IN }} \leq\right. \\ 28.5) \end{gathered}$		V
R_{O}	Dropout Voltage Output Resistance	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$			$\begin{gathered} \hline 2.0 \\ 8 \end{gathered}$		$\begin{aligned} & 2.0 \\ & 18 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 19 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} \Omega \end{gathered}$

Electrical Characteristics LM78XXC (Note 2) (Continued)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$ unless otherwise noted.

Output Voltage			5 V			12V			15V			Units
Input Voltage (unless otherwise noted)			10V			19V			23V			
Symbol	Parameter	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
	Short-Circuit Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	2.1			1.5			1.2			A
	Peak Output Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	2.4			2.4			2.4			
	Average TC of $\mathrm{V}_{\text {OUT }}$	$0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$	0.6			1.5			1.8			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$	Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}$		7.5		14.6			17.7			V

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.

Note 2: All characteristics are measured with capacitor across the input of $0.22 \mu \mathrm{~F}$, and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and the test conditions, see Electrical Characteristics.

Typical Performance Characteristics

Maximum Average Power Dissipation

Peak Output Current

DS007746-7

Ripple Rejection

Maximum Average Power Dissipation

Output Voltage (Normalized to 1 V at $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Ripple Rejection

Typical Performance Characteristics (Continued)

Output Impedance

Dropout Characteristics

Dropout Voltage

 DS007746-12

Quiescent Current

 JUNCTION TEMPERATURE (C)

Quiescent Current

Physical Dimensions inches (millimeters) unless otherwise noted

KC02A (REV C)
Aluminum Metal Can Package (KC) Order Number LM7805CK, LM7812CK or LM7815CK NS Package Number KC02A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-220 Package (T)
Order Number LM7805CT, LM7812CT or LM7815CT
NS Package Number T03B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com
[^1]National Semiconductor

Asia Pacific Customer

Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
www.national.com

DATA SHEET

74HC00; 74HCT00 Quad 2-input NAND gate

FEATURES

- Complies with JEDEC standard no. 8-1A
- ESD protection:

HBM EIA/JESD22-A114-A exceeds 2000 V
MM EIA/JESD22-A115-A exceeds 200 V

- Specified from -40 to $+85^{\circ} \mathrm{C}$ and -40 to $+125^{\circ} \mathrm{C}$.

DESCRIPTION

The $74 \mathrm{HC00} / 74 \mathrm{HCT} 00$ are high-speed Si -gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} 00 / 74 \mathrm{HCT} 00$ provide the 2 -input NAND function.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			74HC00	74HCT00	
$\mathrm{t}_{\text {PHL }} / \mathrm{tPLH}$	propagation delay nA, nB to nY	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	7	10	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per gate	notes 1 and 2	22	22	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
C_{L} = output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ total load switching outputs;
$\Sigma\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)=$ sum of the outputs.
2. For 74 HC 00 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

For 74 HCT 00 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

FUNCTION TABLE

See note 1.

INPUT		OUTPUT
$\mathbf{n A}$	$\mathbf{n B}$	$\mathbf{n Y}$
L	L	H
L	H	H
H	L	H
H	H	L

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;

L = LOW voltage level.

Quad 2-input NAND gate
74HC00; 74HCT00

ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
	-40 to $+125^{\circ} \mathrm{C}$	14	DIP14	plastic	SOT27-1
74 HCT 00 N	-40 to $+125^{\circ} \mathrm{C}$	14	DIP14	plastic	SOT27-1
$74 \mathrm{HC00D}$	-40 to $+125^{\circ} \mathrm{C}$	14	SO14	plastic	SOT108-1
$74 \mathrm{HCT00D}$	-40 to $+125^{\circ} \mathrm{C}$	14	SO14	plastic	SOT108-1
74 HCOODB	-40 to $+125^{\circ} \mathrm{C}$	14	SSOP14	plastic	SOT337-1
$74 \mathrm{HCT00DB}$	-40 to $+125^{\circ} \mathrm{C}$	14	SSOP14	plastic	SOT337-1
74 HCOOPW	-40 to $+125^{\circ} \mathrm{C}$	14	TSSOP14	plastic	SOT402-1
$74 \mathrm{HCT00PW}$	-40 to $+125^{\circ} \mathrm{C}$	14	TSSOP14	plastic	SOT402-1
74 HCOOBQ	-40 to $+125^{\circ} \mathrm{C}$	14	DHVQFN14	plastic	SOT762-1
$74 \mathrm{HCT00BQ}$	-40 to $+125^{\circ} \mathrm{C}$	14	DHVQFN14	plastic	SOT762-1

PINNING

PIN	SYMBOL	DESCRIPTION
1	1 A	data input
2	1 B	data input
3	1 Y	data output
4	2 A	data input
5	2 B	data input
6	2 Y	data output
7	GND	ground $(0 \mathrm{~V})$
8	3 Y	data output
9	3 A	data input
10	3 B	data input
11	4 Y	data output
12	4 A	data input
13	4 B	data input
14	$\mathrm{~V}_{\mathrm{CC}}$	supply voltage

Fig. 1 Pin configuration DIP14, SO14 and (T)SSOP14.

(1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input.

Fig. 2 Pin configuration DHVQFN14.

Fig. 3 Logic diagram (one gate).

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	74HC00			74HCT00			UNIT
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {CC }}$	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
V_{1}	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
V_{O}	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	see DC and AC characteristics per device	-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	1000	-	-	-	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	6.0	500	-	6.0	500	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	400	-	-	-	ns

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+7.0	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{O}	output source or sink current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 25	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 50	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40$ to $+125^{\circ} \mathrm{C} ;$ note 1	-	500	mW

Note

1. For DIP14 packages: above $70^{\circ} \mathrm{C}$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$.

For SO14 packages: above $70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$.
For SSOP14 and TSSOP14 packages: above $60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN14 packages: above $60^{\circ} \mathrm{C}$ derate linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

Quad 2-input NAND gate

74HC00; 74HCT00

DC CHARACTERISTICS

Type 74HC00

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$; note 1							
V_{IH}	HIGH-level input voltage		2.0	1.5	1.2	-	V
			4.5	3.15	2.4	-	V
			6.0	4.2	3.2	-	V
VIL	LOW-level input voltage		2.0	-	0.8	0.5	V
			4.5	-	2.1	1.35	V
			6.0	-	2.8	1.8	V
V_{OH}	HIGH-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & \mathrm{~V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-4.0 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-5.2 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ 6.0 \end{array}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{array}{\|l\|} 2.0 \\ 4.5 \\ 6.0 \\ 4.32 \\ 5.81 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V} \mathrm{IL} \\ \mathrm{I}_{\mathrm{O}} & =20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =4.0 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0.15 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{LI}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	-	-	± 1.0	$\mu \mathrm{A}$
I_{OZ}	3-state output OFF current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	6.0	-	-	$\pm .5 .0$	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$	6.0	-	-	20	$\mu \mathrm{A}$

Quad 2-input NAND gate

74HC00; 74HCT00

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\mathrm{amb}}=-40$ to $+125{ }^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		2.0	1.5	-	-	V
			4.5	3.15	-	-	V
			6.0	4.2	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		2.0	-	-	0.5	V
			4.5	-	-	1.35	V
			6.0	-	-	1.8	V
V_{OH}	HIGH-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & \mathrm{~V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-4.0 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \\ & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =4.0 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & 6.0 \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	6.0	-	-	± 1.0	$\mu \mathrm{A}$
l_{Oz}	3-state output OFF current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	6.0	-	-	± 10.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0$	6.0	-	-	40	$\mu \mathrm{A}$

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Quad 2-input NAND gate

Type 74HCT00

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1							
V_{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	1.6	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		4.5 to 5.5	-	1.2	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 4.4 \\ 3.84 \end{array}$	$\begin{array}{\|l\|} 4.5 \\ 4.32 \end{array}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0.15 \end{aligned}$	$\begin{array}{\|l\|} 0.1 \\ 0.33 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	5.5	-	-	± 1.0	$\mu \mathrm{A}$
l_{Oz}	3-state output OFF current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	5.5	-	-	± 5.0	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	5.5	-	-	20	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current per input	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	4.5 to 5.5	-	150	675	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=\mathbf{- 4 0}$ to $+125{ }^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		4.5 to 5.5	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} \end{array}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l} \hline 4.4 \\ 3.7 \\ \hline \end{array}$	$\mid-$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\mid-$	$\mid-$	$\begin{array}{\|l\|} \hline 0.1 \\ 0.4 \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \hline \end{array}$
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	5.5	-	-	± 1.0	$\mu \mathrm{A}$
l Oz	3-state output OFF current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \\ & \hline \end{aligned}$	5.5	-	-	± 10	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{0}=0 \end{aligned}$	5.5	-	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current per input	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	4.5 to 5.5	-	-	735	$\mu \mathrm{A}$

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Quad 2-input NAND gate

AC CHARACTERISTICS

Type 74HC00
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	V_{Cc} (V)				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA, nB to nY	see Fig. 6	2.0	-	25	115	ns
		see Fig. 6	4.5	-	9	23	ns
		see Fig. 6	6.0	-	7	20	ns
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		2.0	-	19	95	ns
			4.5	-	7	19	ns
			6.0	-	6	16	ns
$\mathrm{T}_{\text {amb }}=-40$ to $+125{ }^{\circ} \mathrm{C}$							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA, nB to nY	see Fig. 6	2.0	-	-	135	ns
		see Fig. 6	4.5	-	-	27	ns
		see Fig. 6	6.0	-	-	23	ns
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		2.0	-	-	110	ns
			4.5	-	-	22	ns
			6.0	-	-	19	ns

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Type 74HCT00
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP	MAX	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; note 1							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA, nB to nY	see Fig. 6	4.5	-	12	24	ns
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		4.5	-	-	29	ns
$\mathrm{T}_{\text {amb }}=-40$ to $+125{ }^{\circ} \mathrm{C}$							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nA, nB to nY	see Fig. 6	4.5	-	-	29	ns
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		4.5	-	-	22	ns

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC WAVEFORMS

74HC00: $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
74HCT00: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .
Fig. 6 Waveforms showing the input ($n A, n B$) to output ($n \mathrm{Y}$) propagation delays.

Quad 2-input NAND gate

74HC00; 74HCT00

PACKAGE OUTLINES

DIP14: plastic dual in-line package; 14 leads ($\mathbf{3 0 0}$ mil)
SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}	\mathbf{Z} $\mathbf{m a x}$.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT27-1	050G04	MO-001	SC-501-14	\square ¢	$\begin{aligned} & -99-12-27 \\ & 03-02-13 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{array}{\|l\|} \hline 0.010 \\ 0.004 \end{array}$	$\begin{aligned} & \hline 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{array}{\|l\|} \hline 0.019 \\ 0.014 \end{array}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & \hline 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{array}{l\|} \hline 0.244 \\ 0.228 \\ \hline \end{array}$	0.041	$\begin{aligned} & \hline 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT108-1	076E06	MS-012		\oplus	$\begin{aligned} & 99-12-27 \\ & 03-02-19 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m a x}$. | | $\mathbf{A}_{\mathbf{1}}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.6	6.6	1	0.75	0.4		0.2	0.13	0.1	0.72
	0.05	0.80		0.19	0.1	4.9	4.3	0.6	6.2	1	0.50	0.3	0.2		0.38	0°		

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT402-1		MO-153		\square ¢	$\begin{aligned} & -99-12-27 \\ & 03-02-18 \end{aligned}$

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$

0
$\underbrace{2.5}_{\text {scale }}$
DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ max.	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(1)}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1	0.05	0.30	0.2	3.1	1.65	2.6	1.15	0.5	2	0.5	0			
	0.00	0.18	0.3												
	0.3	0.3	0.3	0.05	0.1										

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT762-1	---	MO-241	---		$\begin{aligned} & 02-10-17 \\ & 03-01-27 \\ & \hline \end{aligned}$

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition-Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

[^0]: National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^1]: National Semiconductor Europe

 Fax: +49 (0) 180-530 8586 Email: europe.support@nsc.com
 Deutsch Tel: +49 (0) 6995086208
 English Tel: +44 (0) 8702402171
 Français Tel: +33 (0) 141918790

