Faculty of Engineering and Surveying

RURAL ARTERIAL ROAD OPERATING SPEED ASSESSMENT

A dissertation submitted by

Timothy Noel Taylor
in fulfilment of the requirements of Courses ENG4111 and ENG4112 Research Project

towards the degree of
Bachelor of Engineering (Civil)

Submitted: October 2008

Abstract

From the early last century, engineers have been designing roads to cater for the speed of motorised transport. This led to the development of the design speed approach, where a road link is designed based on a single theoretical speed. International research over the past few decades has found that actual speeds of vehicles often exceeded the design speed and that this has contributed to poor safety performance of some roads.

Since the 1970's road authorities around the world have been developing methodologies for predicting the actual speed that vehicles will travel on a road. In Australia, this began with the development of the Speed Environment Model in 1980 and continues with the ongoing evolution of the Operating Speed Model.

This dissertation has reviewed current international practice regarding the use of operating speed and design speed and has compared it with the methodology currently used in Australia. The Operating Speed Model has been reviewed in detail.

A new spreadsheet tool was developed to provide assistance to designers using the Operating Speed Model. This is the Operating Speed Interactive Spreadsheet Tool or OSIST. OSIST was used in a case study to apply the Operating Speed Model to a rural arterial road upgrade being planned by the Queensland Department of Main Roads.

The Operating Speed Model is a robust methodology for predicting operating speeds (or $85^{\text {th }}$ percentile speeds) along a road alignment. However, this dissertation has highlighted areas where the details of the methodology need to be further developed.

University of Southern Queensland
Faculty of Engineering and Surveying

ENG4111 and ENG4112 Research Project

Limitations of Use

Abstract

The Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of the material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, or the staff of the University of Southern Queensland.

The dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Prof Frank Bullen
Dean
Faculty of Engineering and Surveying

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Timothy Noel Taylor

Student Number: 0019220677

Date

Acknowledgements

The author gratefully acknowledges the support of colleagues at Parsons Brinckerhoff:-

- Bijan Behzadi
- Brian Betts
- Hugh Donaldson
- Gerard Ryan
- Tim K. Dougherty
- Richard Goddard
- Jake A. Keller
- John Louis
- Karl H. Winterstein
... as well as the assistance of colleagues at the Queensland Department of Main Roads:-
- Errol Cole
- Peter Vilic
- Bill Sleep
- Greg Lerch

All information, guidance and expressions of support, however minor, are much appreciated.

Table of Contents

Page Number

Abstract. i
Acknowledgements iv

1. Introduction 1
2. Literature Review 3
2.1 Operating Speed 3
2.1.1 Definition of Operating Speed 3
2.1.2 Relationship with Posted Speed Limit 4
2.2 Design Speed 5
2.2.1 Development of the Design Speed Approach 5
2.2.2 Definition of Design Speed. 6
2.2.3 Design Speed Safety Issues 6
2.3 Design Consistency 7
2.3.1 Inconsistent Design Implications for Road Safety 7
2.3.2 Limitations of Design Speed 8
2.3.3 Design Consistency on Successive Horizontal Elements 9
2.3.4 Effectiveness of Advisory Signs 9
2.3.5 Design Consistency in the United Kingdom 10
2.3.6 Design Consistency and the Operating Speed Model 10
3. Australian Speed Assessment Practice 11
3.1 Introduction 11
3.2 Speed Assessment Philosophy 11
3.3 The Speed Environment Model 11
3.4 The Operating Speed Model 12
3.4.1 Definitions and Implementation 12
3.4.2 Additional Speed Definitions 13
3.4.3 Speed Prediction Graphs 15
4. Speed Assessment Design Tools. 16
4.1 Interactive Highway Safety Design Model (U.S.) 16
4.2 OSroad (Australia) 16
4.3 Development of a New Design Tool 17
4.3.1 Objectives of the Design Tool 17
4.3.2 Choice of Development Software 17
5. Operating Speed Interactive Spreadsheet Tool (OSIST) 19
5.1 Functionality and Limitations of OSIST 19
5.2 OSIST Operations 20
5.2.1 Horizontal Alignment Data Entry 20
5.2.2 Determination of Desired Speed 20
5.2.3 Determination of Section Operating Speed 22
5.2.4 Determination of Element Operating Speed. 27
5.2.5 Design Consistency Checks 39
5.2.6 Reverse Direction Check. 42
5.2.7 Potential Future Development of OSIST 42
6. Case Study: Mt. Nathan Road 43
6.1 Background 43
6.2 Operating Speed Assessment 45
6.2.1 Eastbound Assessment. 45
6.2.2 Westbound Assessment. 48
6.2.3 Critical Horizontal Elements 50
6.2.4 Comparison with Road Crash Data 51
6.3 Recommendations 53
7. Conclusion 55
7.1 Review of the Operating Speed Model 55
7.1.1 Overview and Comparison with International Practice 55
7.1.2 Areas for Development. 56
7.2 Further Work 57
References 58

List of Appendices

Appendix A
Project Specification
Appendix B
Operating Speed Model Reference Material
Appendix C
OSIST Tables
Appendix D
OSIST Formulae
Appendix E
Mt Nathan Road Traffic Counts
Appendix F
Mt Nathan Road Accident Data
Appendix G
Mt Nathan Road Alignment Plan
Appendix H
Mt Nathan Road OSIST Output

List of Figures

No Title Page
1.1 Example of Design Inconsistency 2
2.1 Typical Speed Distribution Curve 3
5.1 Acceleration Zones 30
5.2(a) Low Speed Acceleration - Scenario 1 32
5.2(b) Low Speed Acceleration - Scenario 2 33
5.2(c) Low Speed Acceleration - Scenario 3 34
5.2(d) Low Speed Acceleration - Scenario 4 35
5.2(e) Low Speed Acceleration - Scenario 5 36
6.1 Case Study Map 44
6.2 Eastbound Approach to Element 3 46
6.3 Eastbound Approach to Element 23 47
6.4 Westbound Approach to Element 34 49
6.5 Westbound Approach to Element 30 49
6.6 Westbound Approach to Element 25 50
List of Tables
No Title Page
5.1 Horizontal Alignment Data Entry 20
5.2 Start Speed and Terrain Type 21
5.3 Desired Speed 22
5.4 Section Operating Speeds 23
5.5 Ranked Section Categories for Each Element 26
5.6 Derived Section Operating Speeds 27
5.7 Horizontal Element Classifications 28
5.8 Speed Increase for High Speed Zone 29
5.9 Deceleration on Curves 38
5.10 Maximum Side Friction Values 40
5.11 Design Consistency Checks - Sample Output 41
6.1 Critical Horizontal Elements 51
6.2 Collated Accident Data 52
6.3 Accident Data at Critical Elements 52

1. Introduction

Predicting the speed of a vehicle on a proposed road alignment is a critical part of the road design process. Research over the past few decades around the world has found that predicting the operating speed along the alignment is an iterative process. Previously roads have been designed by setting a design speed for a road alignment. Minimum horizontal curves and superelevation would then be designed based on this design speed. Minimum vertical curves and sight distance analysis would also be based on the design speed.

The issue with design speed is that on long straights and large radius curves it has little meaning. A vehicle travelling on such elements is not going to be constrained by the design speed. The operating speed of vehicles travelling on these elements may tend to exceed the design speed. The motorist will increase to a speed that they feel is appropriate for the road geometry, surrounding terrain and to some extent the speed limit. This speed may exceed the design speed which has been used to design the tighter radius curves. This results in an inconsistent design, where a vehicle is approaching a curve at a speed that exceeds the safe operating limit of that curve, an example of which is shown in Figure 1.1.

This has led to the development of an iterative design process to predict the actual driver speed and ensure that:-

1. the alignment is consistent with the expectations of motorists using the alignment;
2. superelevation and sight distance design is based on the predictions of actual driver speed rather than an arbitrary design speed.

In Australia this design process is the Operating Speed Model. This was first introduced by VicRoads in 1994. This model has been included as a national road design approach by Austroads in 2003, after some development of the Speed Environment Model. The Queensland Department of Main Roads is also now using the Operating Speed Model with some minor modifications.

The objectives of this dissertation are:-
o to examine the development of speed analysis methods used internationally
o to compare speed analysis methodologies currently employed in Australia
o to develop a design tool that complies with the Operating Speed Model used by the Queensland Department of Main Roads
o highlight areas of for further development with the Operating Speed Model used by the Queensland Department of Main Roads
o conduct a case study using the developed design tool

Figure 1.1 Example of Design Inconsistency

2. Literature Review

2.1 Operating Speed

2.1.1 Definition of Operating Speed

Operating speed is based on a statistical measure of actual driver speeds on roadways with various characteristics. The statistical measure that appears to be almost universally accepted is the $85^{\text {th }}$ percentile of the speed distribution curve, as shown in Figure 2.1.

Figure 2.1 - Typical Speed Distribution Curve

An additional characteristic of the operating speed is that occurs under free flow conditions, where the driver is able to select what he feels to be an appropriate speed.

NCHRP ${ }^{8}$ defined the operating speed as "the speed at which drivers are observed operating their vehicles during free flow conditions. The $85^{\text {th }}$ percentile is the most frequently used descriptive statistic for the operating speed associated with a particular location or geometric feature."

Both of the Australia publications reviewed in this dissertation agree with this definition. Refer to Chapter 3 for a detailed discussion of these publications.

Fitzpatrick et al^{6} provides a comprehensive list of definitions for operating speed since the 1950 's. AASHTO ${ }^{9}$ stated that the operating speed will not exceed the safe speed as determined by the design speed. Commenting on this definition, Fitzpatrick et al^{6} said that this assumptions loses validity as the functional classification of the roadway decreases.

2.1.2 Relationship with Posted Speed Limit

Fitzpatrick et al ${ }^{6}$ discusses the relationship between operating speed and the posted speed limit. The $85^{\text {th }}$ percentile operating speed is generally accepted to exceed the posted speed limit and most research seems to suggest by around 10%. Even the $50^{\text {th }}$ percentile speed (that is the mean speed) is noted to be just above the posted speed limit.

With regard to a link between operating speed and posted speed limit, there appear to be two sides to the debate. One states that drivers will operate their vehicles at a comfortable and safe speed with little regard paid to the speed limit. Others argue that the abovementioned statistical relationships between operating speed and speed limit are as a result of the average motorist's perception of the level of enforcement of the posted speed limit to avoid a fine.

Parker ${ }^{10}$ has studied this in some detail at a site where the speed limit was changed and stated that resultant change in operating speed was "not sufficiently large to be of practical significance".

However, Parker ${ }^{10}$ qualified this conclusion by stating that the sites selected were determined by local agencies according to certain criteria and therefore could not be considered a random sample.

Fitzpatrick et al^{6} conducted a more conclusive study and did find a relationship between posted speed limits and operating speed. Table 38 of that report details regression equations for various functional classes of road. For example, for rural arterial roads this relationship is defined by:-

$$
\begin{align*}
& \mathrm{ES}_{85}=36.453+(0.517 \times \text { PSL }) \tag{2.1}\\
& \text { where } \\
& \qquad \mathrm{ES}_{85} \text { is Estimated } 85^{\text {th }} \text { Percentile Speed }(\mathrm{mph}) \\
& \\
&
\end{align*}
$$

2.2 Design Speed

2.2.1 Development of the Design Speed Approach

Historically, geometric road design has been undertaken on the basis of a selected "design speed". Traditional design speed methodology applies a selected speed to a road link which is then designed to suit that speed. The use of design speed was developed in the 1930's. Young ${ }^{11}$ sated that roads should be planned with "all curves superelevated for the same theoretical speed. Barnett ${ }^{12}$ stated that design speeds should be selected based on "the reasonable uniform speed that would be adopted by the faster driving group of vehicle operators".

Hans Lorenz used this approach in the 1930's designing autobahns in Germany with smooth continuous mathematically defined road curves that could be driven at a constant speed. The curves were designed based on a specific design speeds (typically 80, 100 and 130km/h). Interestingly, in Germany in the 1970's research found that actual vehicle speeds often exceed these traditional design speed values.

2.2.2 Definition of Design Speed

The definition of "design speed" has varied and developed around the work since geometric road design using applied scientific principles commenced in the 1930's. To illustrate the development of this definition it is interesting to note the following definitions from North American design manuals.
"The maximum safe speed that can be maintained over a specified section of highway when conditions are so favourable that design features of the highway govern. The assumed design speed should be a logical one with respect to the character and terrain of the type of highway. Every effort should be made to use as high a design speed as practicable to attain a desired degree of safety, mobility and efficiency". (AASHO ${ }^{13}$)
"A speed selected as a basis to establish appropriate geometric design for a particular section of road" (TAC ${ }^{14}$)

A selected speed used to determine the various geometric features of the roadway". (AASHTO 2001)

Morrall and Robinson ${ }^{4}$ noted that three common principles are found in most definitions of design speed:-

1. Highest speed a motorist can travel
2. Speed at which a motorist is safe or comfortable
3. Speed resulting from the influence of geometric features

They also note that research from around the world has found that actual speeds often exceed traditional arbitrarily selected design speeds less than about $90 \mathrm{~km} / \mathrm{h}$.

2.2.3 Design Speed Safety Issues

The under-estimation of design speeds is a critical safety issue. The energy to be dissipated by a vehicle and the sight distance required it's driver is proportional to the square of the speed of the vehicle. The energy to be dissipated and the sight distance required for a vehicle travelling at $130 \mathrm{~km} / \mathrm{h}$ is twice that for a vehicle travelling at $90 \mathrm{~km} / \mathrm{h}$.

Morrall and Robinson ${ }^{4}$ stated that 75,000 people are killed on rural roads in OECD countries each year, 35% of which are single vehicle accidents. These accidents are predominant due to excessive speeds that cannot be safely maintained over the length of the alignment. Many such roads (especially in developing countries) have historical origins and inconsistent design characteristics which require constant monitoring and adaptation by the driver, increasing the risk of errors in judgement. As driving speeds are strongly influenced by geometric elements it should be possible in principle to control speed through the appropriate selection of geometric design standards.

2.3 Design Consistency

2.3.1 Inconsistent Design Implications for Road Safety

There has been considerable study undertaken over the last decade with regard to the consistency of the geometric design of a road with what the driver would expect from the road. Inconsistent design introduces an unexpected situation to the driver - usually a curve with a smaller radius and higher side friction demand than expected. This requires a higher level of decision making and attention by the driver and therefore increases the probability of the driver making an error in judgement, undertaking an unsafe manoeuvre and causing an accident.

For these reasons, Lamm et al ${ }^{17}$ introduced measures of road design safety that relate directly to design consistency. These are as follows:-

[^0]These criteria incorporate the concept of "relation design" which provides a quantitative measure of the alignment's consistency. This concept is not discussed further in this dissertation.

2.3.2 Limitations of Design Speed

Krammes ${ }^{5}$ discussed the selection of appropriate design speeds as outlined in AASHTO ${ }^{15}$, which states in part that "the design speed should fit the travel desires and habits of nearly all drivers" and should "be a high percentile value in the speed distribution curve". This definition does correspond to a degree with the operating speed definition discussed previously.

However, AASHTO ${ }^{15}$ also states that "there should be no restriction on the use of flatter horizontal curves ... where such improvements can be provided as part of an economical design". Such design freedom does not take into account the need for design consistency in the alignment.

The design speed concept presumes that a design will be consistent if each element of the alignment shares the same design speed. The fundamental limitation with this design philosophy is that the design speed has no practical meaning on straights.

McLean ${ }^{16}$ found that $85^{\text {th }}$ percentile speeds for curves with design speeds less than $90 \mathrm{~km} / \mathrm{h}$ were consistently faster than the design speed. Interestingly, for curves with design speeds greater than $90 \mathrm{~km} / \mathrm{h}$, the $85^{\text {th }}$ percentile speeds were consistently less.

Krammes ${ }^{5}$ also noted that curves with lower design speeds have $85^{\text {th }}$ percentile speeds greater than the design speeds. The side friction demand for $85^{\text {th }}$ percentile speeds are substantially greater than the maximum side friction nominated for curves with design speeds less than $90 \mathrm{~km} / \mathrm{h}$.

Fitzpatrick et al ${ }^{6}$ also found that operating speeds on rural roads were higher than design speeds when the design speed was less than about $90 \mathrm{~km} / \mathrm{h}$.

2.3.3 Design Consistency on Successive Horizontal Elements

Design consistency is especially relevant to the operating speed on successive horizontal elements, for example, a long straight followed by a tight curve. FHWA ${ }^{3}$ demonstrated clearly that there is a much stronger link between accident frequency and speed reduction between successive elements than on horizontal curvature alone. Where the speed reduction was between 10 and $20 \mathrm{~km} / \mathrm{h}$ the accident frequency is over three times higher than when the speed reduction is less then $10 \mathrm{~km} / \mathrm{h}$. Where the speed reduction is greater than $20 \mathrm{~km} / \mathrm{h}$, the accident frequency is over six times higher.

FHWA ${ }^{3}$ had the objective of providing a basis for predicting the operating speed for different combinations of horizontal and vertical geometry. Data was gathered from over 200 sites on two-lane rural highways. Statistical analysis was undertaken to determine $85^{\text {th }}$ percentile speeds for free flowing traffic conditions. The study found that operating speeds on large radii curves ($>800 \mathrm{~m}$) and long straights varied from 93 to $104 \mathrm{~km} / \mathrm{h}$. The operating speed drops dramatically when the curve radius drop below about 250 m.

This study also found that there is a strong relationship between design consistency and safety. This does provide clear evidence that inconsistent geometric design is a significant contributor to accidents on two lane rural roads. Minimising such speed reduction on successive elements provides are more effective (and usually more economical) method of improving the safety performance of rural roads.

2.3.4 Effectiveness of Advisory Signs

Design consistency issues could be resolved by increasing driver expectancy with appropriate signage. Krammes ${ }^{5}$ discussed the use of advisory speed signs on curves. He stated that they have the lowest compliance rates of all traffic control devices. At most curves, posted advisory speeds were well below prevailing traffic speed.

Signage should therefore be considered no more than a supplement to other methods to solve design consistency issues. The most effective solution is to introduce speed reduction curves.

2.3.5 Design Consistency in the United Kingdom

Morrall and Robinson ${ }^{4}$ discussed design consistency methodology used in the United Kingdom. In England, rural road alignments are used which are based on roads that have been in existence for centuries and are often constrained by landmarks and features of historical and cultural importance. U.K. design standards place a limit on a "bendiness" value which is a function of the degree of curvature per kilometre and the harmonic mean of available sight distance.

Design speeds are related to statistical measures of actual design speeds. A design speed is corresponds with the $85^{\text {th }}$ percecntile speed, while the next lowest design speed with the $50^{\text {th }}$ percetile speed and the next highest design speed with the $99^{\text {th }}$ percetile speed.

2.3.6 Design Consistency and the Operating Speed Model

Morall and Robinson ${ }^{4}$ found that European countries and Australia incorporate a feedback loop into the design process to identify and resolve design consistency issues. In Australia, this iterative process is part of the Operating Speed Model, which will be discussed in the next chapter.

3. Australian Speed Assessment Practice

3.1 Introduction

This section reviews the development of speed assessment methodologies in Australia. The review specifically reviews the speed assessment methodologies currently implemented by Austroads and the Queensland Department of Main Roads.

3.2 Speed Assessment Philosophy

Determining the operating speed of vehicles on a section of road is intrinsic to geometric road design. All the geometric parameters of the road are based on the "design speed" of a section of road. This is related to the operating speed or $85^{\text {th }}$ percentile speed - that is the maximum speed at which 85% of drives will choose. Austroads ${ }^{1}$ states that the 15% of drivers who exceed this speed are assumed to be aware of the increased risk they are taking and will thus reduce their reactions times. Both Austroads ${ }^{1}$ and Main Roads ${ }^{2}$ highlight the impracticability (particularly in economic terms) of designing roads to cater for $100^{\text {th }}$ percentile speed.

Where geometric elements are designed for $100 \mathrm{~km} / \mathrm{h}$ or less, drivers will vary their speed over different sections of the road. However, on these roads, the operating speed on straights and large radius curves will exceed the design speed of isolated elements with more constrained geometry. Main Roads ${ }^{2}$ states that this situation results in an increase of accidents.

3.3 The Speed Environment Model

Prior to the development of the Speed Environment Model, the design speed of a significant length of road would be based on the safe operating speed of the more constrained sections of road. However, the operating speed on less constrained sections of the road would then surpass the design speed, resulting in vehicles attempting to negotiate constrained geometric sections at a speed higher than the design speed.

Main Roads ${ }^{2}$ states that research in the late 1970's led to the development of the Speed Environment Model. This research showed that drivers' choice of an operating speed is primarily due to their perception of horizontal geometry and also the surrounding topography. It also found that vertical geometry and sight distance have little effect on the operating speed.

The Speed Environment Model was not well implemented in Australia due to its complexity and the subjectiveness with which it can be applied. VicRoads, the road authority for the State of Victoria, developed the Operating Speed Model in 1994. For the abovementioned reason, it was adopted by Austroads and the Queensland Department of Main Roads in lieu of the Speed Environment Model in 2003.

3.4 The Operating Speed Model

Main Roads adopted a modified version of the Operating Speed Model in 2003. Until 2007, Main Roads stipulated that the operating speed was to be assessed element by element. However, the 2007 update of Main Roads ${ }^{2}$ incorporates the use of "section operating speeds" as defined in Austroads ${ }^{1}$. This is an area where Australian practice appears to differ from international practice. These are discussed later in this dissertation.

3.4.1 Definitions and Implementation

Main Roads ${ }^{2}$ and Austroads ${ }^{1}$ have similar definitions of operating speed. Austroads ${ }^{1}$ states that operating speed is the $85^{\text {th }}$ percentile speed of vehicles when traffic volumes are low. Main Roads ${ }^{2}$ states that the operating speed is the $85^{\text {th }}$ percentile speed of vehicles under free flowing conditions past a nominated point.

Main Roads ${ }^{2}$ states that an improvement to the cross section as a result of a widening project will increase operating speed. This relates to the width of the entire pavement formation. Austroads ${ }^{1}$ discussion of cross section is limited to lane widths - it actually stipulates a reduction in operating speed of $3 \mathrm{~km} / \mathrm{h}$ for lane widths less than 3 m .

Austroads ${ }^{1}$ also recommends reducing operating speed estimates by 5 to $10 \mathrm{~km} / \mathrm{h}$ on poor pavements. So, the implication is that a pavement rehabilitation project which renews a poor pavement could increase operating speed by the same amount, moving the operating speed closer to the practical limits of the geometry.

3.4.2 Additional Speed Definitions

Main Roads ${ }^{2}$ introduces further speed definitions as part of the speed assessment process.

Target Speed

The "target speed" is an indicative operating speed for a road link that is set at the network planning level and is generally related to road function as well as community and political aspirations for the link.

Desired Speed

The "desired speed" is numerically equivalent to the Speed Environment under the previous Speed Environment Model. It is the speed drivers will choose for less geometrically constrained elements of a reasonably uniform section of road and generally relates to the surrounding topography, road characteristics and the speed limit. There may be an isolated element of the section of road through which a driver will typically travel faster (e.g. an overtaking lane) or slower (e.g. tight radius) than the desired speed for the section.

The desired speed is measured as the $85^{\text {th }}$ percentile speed on long less constrained sections of the road. These lengths need to be long enough so drivers will settle into a constant speed.

On sections of road of a high geometric standard, the speed limit is more influential on desired speed and this will generally be 10km/h more than the speed limit. The driver's perception of speed enforcement activity also has a bearing on operating speed, as Main Roads ${ }^{2}$ states that in remote areas operating speed may be up to $20 \mathrm{~km} / \mathrm{h}$ higher than the speed limit.

On sections of road with a lower geometric standard, the horizontal geometry will have a greater influence on the desired speed. On these roads, drivers will increase speed on straights and large radius curves and reduce speed as required by their perception of horizontal curvature. Main Roads ${ }^{2}$ highlights the importance of not exceeding the maximum decrease in design speeds between successive horizontal elements. Austroads ${ }^{1}$ focuses on the use of Section Operating Speeds, where a section is a combination of reasonably similar geometric elements. When entering a curve a driver will reduce speed to suit the curve or match the section operating speed.

Main Roads ${ }^{2}$ notes that when realigning a section of road it is necessary to take into account the desired speed of the existing road 1.5 km beyond each end of the realignment, including likely future upgrades of these sections. Main Roads ${ }^{2}$ suggests that on steep grades, horizontal geometry should be used to limit the desired speed in order to minimise speed differentials between light and heavy vehicles.

Design Speed and Design Value

The "design speed" is the speed adopted for the calculation of various design parameters and it must be greater than or equal to the operating speed for the particular horizontal element.

The "design value" as defined in Austroads ${ }^{1}$ is similar, although being greater than or equal to the operating speed is implied rather than stated. It states that the operating speed for each element of the road will in effect set the design value for that element.

Limiting Curve Speed

The "limiting curve speed" is the maximum speed that the curve can be negotiated given a particular combination of radius and superelevation. It is the case where the side friction demand equals the absolute maximum.

Section Operating Speed

Main Roads ${ }^{2}$ and Austroads ${ }^{1}$ have a similar methodology for identifying sections of reasonably consistent geometry and determining if individual elements should be stand alone sections. Both publications also have the same table of Section Operating Speeds with a corresponding range of curve radii, or a corresponding single curve radius. Main Roads ${ }^{2}$ relates "section operating speed" with "desired speed", indicating that the "section operating speed" may be capped at the desired speed rather than that shown in the table.

3.4.3 Speed Prediction Graphs

Both publications have the same graph for predicting vehicle acceleration on straights or large radius curves (Main Roads ${ }^{2}$ Figure 6.9.2(a) and Austroads ${ }^{1}$ Figure 7.2) and the same deceleration on curves graph (Main Roads ${ }^{2}$ Figure 6.9.2(b) and Austroads ${ }^{1}$ Figure 7.3).

The exception is that Main Roads ${ }^{2}$ provides for increased acceleration rates at speeds less than $70 \mathrm{~km} / \mathrm{h}$ up to about $80 \mathrm{~km} / \mathrm{h}$. This is a significant increase from the acceleration rates shown in Figure 7.2 in Austroads ${ }^{1}$. This discussed in more detail in Chapter 5 of this dissertation.

Copies of these figures from both publications are included in Appendix B.

4. Speed Assessment Design Tools

4.1 Interactive Highway Safety Design Model (U.S.)

The Interactive Highway Safety Design Model (IHSDM) is a suite of software developed by the Federal Highway Administration in the U.S. It is specifically for the evaluation of geometric design decisions on two-lane rural highways. The software contains various modules such as crash prediction, intersection and traffic analysis, driver behaviour, automatic checks of design values and design consistency.

The latter is the module of most relevance to this dissertation. The Design Consistency Module of the IHSDM produces a speed profile at each point along the road alignments based on $85^{\text {th }}$ percentile speeds on curves, desired speeds on long straights, acceleration and deceleration rates, and also takes into account vertical grades. The module identifies two design consistency issues:-
o Differences between assumed design speed and $85^{\text {th }}$ percentile speed
o Differences in $85^{\text {th }}$ percentile speeds between successive elements.
Horizontal curves that don't meet design criteria (or design 'policy' to use U.S. terminology) are highlighted so that the designer can make corrective adjustments to the alignment design.

4.2 OSroad (Australia)

The Queensland Department of Main Roads is currently finalising the development of OSroad software that can develop an operating speed profile along a road alignment. This will enable alignments to be assessed quickly, particularly as part of the concept phase so that operating speed inconsistencies can be identified and addressed before designs are further developed into preliminary design.

The software can work within the 12D road design software and follows the methodology outlined in Main Roads ${ }^{2}$. It also highlights any horizontal element that does meet certain design criteria or rules so these can be addressed.

4.3 Development of a New Design Tool

4.3.1 Objectives of the Design Tool

Conducting and operating speed assessment on a long road alignment is a demanding iterative process and can be particularly time exhaustive if a number of options need to be assessed. Main Roads recent development with OSRoad will save designers and engineers considerable time.

It is not the objective of this project to produce a design tool to compete with OSRoad in terms of functionality. The main purpose of this tool is to allow designers to conduct an operating speed assessment interactively and clearly observe the workings of the operating speed model. The process of compiling this tool enabled the author to review the operating speed model in considerable detail and find aspects of the methodology that may require further explanation and possibly research.

4.3.2 Choice of Development Software

One of the key objectives of this project is to prepare a design tool for use by technicians and engineers for the assessment of operating speed on two lane rural roads. This was to be developed in accordance with the operating speed assessment methodology outlined in Main Roads ${ }^{2}$. There was a choice of two proprietary software products in which to develop the tool: MATLAB and Microsoft Excel.

MATLAB has a much higher level of mathematical modelling capability than Excel. It can be used to produce regression curves for statistical relationships between various design parameters (for example, operating speed and curve radius). The desired functionality of the design tool may likely be produced more efficiently in MATLAB.

Routines developed in MATLAB can be readily transferred into standard programming languages such as Visual Basic or C++.

Microsoft Excel is more cumbersome for mathematical modelling. However, it has a strong advantage with its availability. The software is readily available by almost everyone and is comparatively inexpensive. MATLAB is more expensive software that is generally used for high level statistical analysis and mathematical modelling. Generally, it is only available and familiar to specialist users.

Microsoft Excel has the functionality and flexibility to produce an interactive design tool. It also has adequate logic, referencing and linear regression capability which was important to the development of the design tool.

Determination of operating speed is an approximation and prediction of actual driver speeds along a road alignment, so precise calculations are not critical. The information provided in Main Roads ${ }^{2}$ with respect to changing operating speed between alignment elements is generally tabulated or could easily be derived by linear interpolation. This was decided to be an effective strategy for the development of an interactive design tool.

Microsoft Excel was chosen to develop an interactive design tool due to its general availability, its almost universal familiarity, and the nature of the data provided by Main Roads. The design tool was named the Operating Speed Interactive Spreadsheet Tool (OSIST).

5. Operating Speed Interactive Spreadsheet Tool (OSIST)

5.1 Functionality and Limitations of OSIST

The Operating Speed Interactive Spreadsheet Design Tool (OSIST) requires the designer to input the horizontal alignment data, that is, the radius and the length of each element (transitions are not entered). OSIST is currently limited to fifty horizontal alignment elements.

Based on this horizontal alignment data, OSIST:-
o Determines a "desired speed" for the alignment;
o Splits the alignment into sections; and
o Determines the Section Operating Speed for each section.
The user is then also required to input the approach speed to the start of the alignment. The user may also enter acceleration parameters, but there are default values as set out in Main Roads ${ }^{2}$. OSIST will then determine an operating speed for each element. There are a number of checks to ensure that the operating speed is not underestimated.

Using the operating speeds along the alignment, the tool analyses the alignment for design inconsistencies in terms of maximum side friction increases and speed reduction between successive elements.

OSIST allows the user to change the horizontal alignment data, the approach speed or the acceleration parameters interactively and the above analysis will update instantly.

There are other critical alignment design parameters which are not assessed by OSIST. For example, the use of reverse curves, compound curves, curve transitions and broken back curves are not analysed. Also, the coordination of horizontal and vertical geometry, and the design of vertical curves and sight distance is not included.

5.2 OSIST Operations

5.2.1 Horizontal Alignment Data Entry

After initially entering project data into OSIST, the user inputs the horizontal alignment information for each individual element. That is, the radius and length. These are entered as shown in the Table 5.1, which is an extract from the data entry table in OSIST. Radii for straights are entered as "inf" denoting an infinite radius. Elsewhere in the spreadsheet the radii for straights are given values of $1,000,000$ to allow numerical calculation.

Table 5.1 - Horizontal Alignment Data Entry

Element	Radius	Length
1	inf	210
2	410	530
3	inf	400
4	2000	510
5	inf	120
6	550	170
7	750	230
8	inf	100
9	510	90
10	360	250

As data for each element is entered, the elements are automatically numbered.

5.2.2 Determination of Desired Speed

After the user has input the horizontal data into OSIST, a "Start Speed" and "Terrain Type" must be entered as shown in Table 5.2. Based on all the information entered, OSIST completes the rest of the information in Table 5.2.

Table 5.2 - Start Speed and Terrain Type

Enter Start Speed	110
Enter Terrain Type	Hilly
Total Length (m)	4640
Radii Range (m)	>600
Desired Speed $(\mathrm{km} / \mathrm{h})$	110

"Start Speed" is the operating speed of vehicles approaching the start of the alignment. This may be derived from an statistical analysis of actual speed readings taken from the section of road approaching the start of the alignment. However, it would usually be based on another speed assessment. Areas to be assessed are usually "problem" areas with constrained alignments that require a detailed assessment to prioritise alignment improvements or other remedial works. The approach sections would tend to be on less constrained alignments and therefore much easier to assess. For example, Main Roads ${ }^{2}$ states that a rural road with reasonable pavement condition, long sweeping curves and straights with a speed limit of $100 \mathrm{~km} / \mathrm{h}$ will likely have a consistent operating speed of 110km/h.

The "Terrain Type" is simply the closest description to the surrounding terrain that can be provided by the following options (which the user accesses via a pull down menu):-
o Flat
o Undulating
o Hilly
o Mountainous
The "Total Length" is simply the sum of the lengths of all the horizontal elements entered. "Range Radii" and "Desired Speed" are based on Table 5.3.

Table 5.3 - Desired Speed

Desired Speed					
Horizontal Curve Radii (m)	Design Speed (km/h)				
Range		Flat	Undulating	Hilly	Mountainous
0	75	80	80	75	75
75	300	90	90	85	80
150	500	110	105	95	90
300	500	110	110	110	105
600	inf	110	110	110	110

This table is based on Main Roads ${ }^{2}$, Table 6.3.1(b), but modified slightly with extrapolated values to allow OSIST to access information required to determine the desired speed. This table can be edited in the spreadsheet as more information based on further research is provided.

OSIST will analyse each element and determine which ranges of horizontal curve radii it falls within. The ranges overlap so each element will fall within more than one range. The total length of the alignment that fits into each range of curve radii is calculated. The range of curve radii with the greatest length of matching alignment is then used along with user selected terrain type to reference the matching "Desired Speed" from Table 5.3.

5.2.3 Determination of Section Operating Speed

Section Parameters

Table 5.4 shows the range radii of sections that will allow the alignment to be separated into sections. This table is based on Main Roads ${ }^{2}$, Table 6.9.2. To aid the analysis process within OSIST, this table also allocates a section category number to each range of curve radii.

Section Assignment

One of the more complex processes within OSIST is the automatic separating of the alignment into sections. To do this, OSIST analyses each element and determines which range of curve radii it would fit within.

Table 5.4 - Section Operating Speeds

Section Operating Speeds				
Category	Radii Range(m)		Single Curve Section Radii (m)	Sect Operating Speed (km/h)
1	45	65	55	50
2	50	70	60	52
3	55	75	65	54
4	60	85	70	56
5	70	90	80	58
6	75	100	85	60
7	80	105	95	62
8	85	115	100	64
9	90	125	110	66
10	100	140	120	68
11	105	150	130	71
12	110	170	140	73
13	120	190	160	75
14	130	215	175	77
15	145	240	190	79
16	160	260	210	82
17	180	285	235	84
18	200	310	260	86
19	225	335	280	89
20	245	360	305	91
21	270	390	330	93
22	295	415	355	96
23	320	445	385	98
24	350	475	410	100
25	370	500	440	103
26	400	530	465	105
27	425	560	490	106
28	450	585	520	107
29	480	610	545	108
30	500	640	570	109
31	530	inf	600	110

Main Roads ${ }^{2}$ states that a section may consist of the following characteristics:-

1. A single curve
2. A series of similar curves linked by short straights
3. A long straight
4. A large radius curve

However, Main Roads ${ }^{2}$ would appear to allow for additional characteristics of the sections. For example, large radius curves are considered to be practically equivalent to straights. So, OSIST modifies the second characteristic to allow the series of similar curves to also be linked by short large radius curves (that is, lengths less than 200 m and radii greater than 530m). So in this case, the short large radius curves have no bearing on the operating speed of the section. They just link the series of similar curves which determine the section operating speed. This is due to the larger radius curves being able to accommodate speeds larger than the smaller radius curves in the section. Also, the length of these curves is short enough that no significant acceleration will occur.

OSIST also allows for a curve of less than 200m in length, with a greater radius than adjacent curves (yet not necessarily greater than 530m) to be included in the same section as the adjacent curves. The reasons for this are the same as for above. It must be noted that this is only for the setting of an operating speed for the element. It does not determine that the series of curves linked by shorter large radius curves is either appropriate or safe. OSIST will also analyse the increase in side friction demand between curves, which will form part of the safety assessment of the alignment.

200 m is the critical length stated in Main Roads ${ }^{2}$ so that when an element is shorter than this length it may be deemed to be included in adjacent sections. OSIST uses a critical radius of 530 m rather than 600 m as implied in Main Roads ${ }^{2}$. This is because 530 m is at the minimum of the radii range of the highest section category (that is, the category that includes straights) that has a section operating speed of $110 \mathrm{~km} / \mathrm{h}$. Using 530 m as the critical radius will allow OSIST to provide more conservative and yet still reasonable predictions of operating speed along the alignment.

OSIST will assess each short element to see if it meets any of the following criteria:-
o Criterion 1: Radii > = 530m and Length $<200 \mathrm{~m}$
o Criterion 2: Radii < 530m and Radii >= Radius of previous element and Length < 200m
o Criterion 3: Radii < 530m and Radii >= Radius of following element and Length < 200m

Elements that meet any of the above criteria will have additional sections assigned as follows:-
o If the element meets criterion 1, than it will also apply to the section category of the element before or after it.
o If the element meets criterion 2, than it will also apply to the section category of the element before it.
o If the element meets criterion 3, than it will also apply to the section category of the element after it.

Note that the maximum Section Operating Speed from Table 5.4 is $110 \mathrm{~km} / \mathrm{h}$. Main Roads ${ }^{2}$ notes that this is the desired speed for "most intermediate speed rural roads and even some low speed rural roads". So OSIST limits the desired speed and Section Operating Speed to $110 \mathrm{~km} / \mathrm{h}$.

The result of the section assignment process is that each element will have a number of section categories that they may be assigned to; with the section categories ranked with the highest section category number first. This is shown in Table 5.5.

Section Ranking

The ranking is required because the higher the section category number, the higher the operating speed. So as OSIST groups the elements into sections, it will attempt to form sections with the highest section categories first. Also, where there is a choice for an element to be assigned to a section either before or after it, OSIST will pick the section with the highest operating speed. The sections assigned to each element are ranked as shown in Table 5.5.

Table 5.5 - Ranked Section Categories for Each Element

Element	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
1	31	0	0	0	0	0	0	0	0	0
2	$\mathbf{2 6}$	25	24	23	22	0	0	0	0	0
3	31	0	0	0	0	0	0	0	0	0
4	31	0	0	0	0	0	0	0	0	0
5	31	30	29	28	27	0	0	0	0	0
6	31	30	29	28	27	0	0	0	0	0
7	31	0	0	0	0	0	0	0	0	0
8	31	30	29	28	27	26	0	0	0	0
9	30	29	28	27	26	0	0	0	0	0
10	24	23	22	21	20	0	0	0	0	0
11	31	24	23	22	21	20	0	0	0	0
12	31	0	0	0	0	0	0	0	0	0
13	21	20	19	18	17	0	0	0	0	0
14	31	21	20	19	18	17	16	15	14	0
15	18	17	16	15	14	0	0	0	0	0
16	31	21	20	19	18	17	16	15	14	0
17	21	20	19	18	17	0	0	0	0	0
18	31	30	29	28	27	21	20	19	18	17

Selected Section Categories are in bold

Section Placement

To place the elements into sections, OSIST matches section categories with the elements before and after. It initially conducts a forward match where it will firstly look for the highest ranking section category of the element in the following element. If it does not find it, it will look for the next highest section category. For example, note Element 16 in Table 5.5. OSIST firstly attempts to find section category 31 in Element 17. It does not find it, so it looks for the next highest section category, 21, which it does find, so a link is created between the two elements.

OSIST will then conducts a reverse match using the same methodology, but starting at the last element and finding links back through the alignment. The reverse match may find different section links to the forward match. For example, Element 11 would link section category 24 with Element 11. So Element 11 has a forward match link of section category 31 with Element 12 and a reverse match link with section category 24 with Element 10. OSIST will select the highest section category, so in this case Element 11 will be grouped with Element 12, with section category 31 (that is, a section operating speed of $110 \mathrm{~km} / \mathrm{h}$). If Element 11 , was grouped with category 24 , it would have a section operating speed of only $100 \mathrm{~km} / \mathrm{h}$ which would result
in an underestimate of the prediction of the operating speed for Element 11. Considering that Element 11 is a 150 m long, 1800 m radius curve, followed by a long 8300 m radius curve the higher section operating speed is appropriate.

Based on the section categories into which the elements are placed, OSIST will group the elements into sections and determine section operating speeds derived from Table 5.4. This shown in Table 5.6 which builds on the data entered into Table 5.1.

Table 5.6 - Derived Section Operating Speeds

Element	Radius	Length	Section	Section Operating Speed (km/h)
1	inf	210	1	110
2	410	530	2	100
3	inf	400	3	110
4	2000	510	3	110
5	inf	120	3	110
6	550	170	3	110
7	750	230	3	110
8	inf	100	3	110
9	510	90	4	106
10	360	250	5	96
11	1800	150	6	110
12	8300	430	6	110
13	275	120	7	93
14	inf	30	7	93
15	200	70	8	79
16	inf	50	9	93
17	280	130	9	93
18	inf	40	10	110
19	540	100	10	110
20	inf	150	10	110

5.2.4 Determination of Element Operating Speed

The Section Operating Speed is the speed that the $85^{\text {th }}$ percentile driver will attempt to negotiate that section of road. However, based on the approach speed to the section, the actual speed of the first elements of the section may be somewhat higher than the section operating speed.

Also, if the approach speed is lower than the section operating speed, the driver will tend to accelerate through the section (including curves) until section operating speed is achieved.

Classification of Horizontal Elements

In order to conduct the appropriate analysis for each element, OSIST classifies each element according the classes defined in Table 5.7.

Table 5.7 - Horizontal Element Classification

Class A	As $<=O s$	AND	$\mathrm{As}<\mathrm{Hs}$
Class B	As $<=O \mathrm{~s}$	AND	As>=Hs
Class C	$\mathrm{As}>\mathrm{Os}$	AND	$\mathrm{Re}<=600$
Class D	$\mathrm{As}=\mathrm{Os}$	OR	$\begin{aligned} & (\text { Re>600 AND } \\ & \text { Le<200) } \\ & \hline \end{aligned}$
As is Approach Speed (km/h) Os is Section Operating Speed (km/h) Hs is lower limit of High Speed Acceleration Zone (km/h) - see Fig 5.1 Re is curve radius (m) Le is element length (m)			

OSIST will conduct an appropriate speed analysis based on the class of the element. The departure speed derived from the speed analysis is then compared with the section operating speed. So, OSIST determines the amount of acceleration or deceleration between each element with respect to the section operating speed. That is the element operating speed will only increase or decrease to match the section operating speed.

Acceleration Zones

OSIST follows the methodology outlined in Main Roads ${ }^{2}$. As highlighted in Chapter 3, the recent release of Main Roads ${ }^{2}$ provides a significant addition to the assessment of vehicle acceleration on straights and large radius curves. Main Roads ${ }^{2}$ Figure 6.9.2(a) and Figure 7.2 Austroads ${ }^{1}$ show the same figure for the prediction of speed increases on straights and large radius curves, except that Main Roads ${ }^{2}$ adds a condition for approach speeds less than $70 \mathrm{~km} / \mathrm{h}$. Main Roads ${ }^{2}$ states that when accelerating from
speeds of less than $70 \mathrm{~km} / \mathrm{h}$ that acceleration rate will be $1 \mathrm{~km} / \mathrm{h}$ per 5 m travelled. This is a substantial increase from the approx $1 \mathrm{~km} / \mathrm{h}$ per 30 m travelled provided by Figure 6.9.2(a).

Main Roads ${ }^{2}$ does not provide information on the research used to substantiate this increase in acceleration rates for low speeds, but it intuitively seems closer to actual driver behaviour. The desired speed on most rural roads would be tend to be above $90 \mathrm{~km} / \mathrm{h}$, so if a driver enters a section of road that tends to match that desired speed, it is a reasonable assumption that the driver will accelerate more quickly if the approach speed is lower. This is an area that should be subject to further research and study.

OSIST splits vehicle speeds into three acceleration zones; low speed, transition speed and high speed. The low speed zone is for speeds up to a default value of $70 \mathrm{~km} / \mathrm{h}$ and the acceleration for this zone will be a default value of $1 \mathrm{~km} / \mathrm{h}$ per 5 m travelled. The high speed zone is for speeds above the default value of $80 \mathrm{~km} / \mathrm{h}$. The default values can be changed by the user. The acceleration rates for the high speed zone will match those determined by Main Roads ${ }^{2}$ Figure 6.9.2(a). These values have been tabulated by interpolation and are shown in Table 5.8.

Table 5.8 - Speed Increase for High Speed Zone

Initial Speed	Length of Tangent								
	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$
$\mathbf{1 0}$	28	38	42	48	54	58	62	66	70
$\mathbf{2 0}$	33	40	46	52	57	61	64	68	71
$\mathbf{3 0}$	39	44	50	55	60	64	67	70	73
$\mathbf{4 0}$	49	52	56	60	64	68	71	74	77
$\mathbf{5 0}$	58	60	63	66	69	73	76	78	80
$\mathbf{6 0}$	67	70	72	74	75	79	82	84	85
$\mathbf{7 0}$	76	79	81	82	83	86	89	91	92
$\mathbf{8 0}$	85	88	90	91	92	95	97	99	100
$\mathbf{9 0}$	94	96	99	100	101	103	105	106	107
$\mathbf{1 0 0}$	103	106	108	109	110	112	113	114	114
$\mathbf{1 1 0}$	112	114	116	117	118	119	120	120	120

The transition speed zone is for speeds between $70 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$. The acceleration rate will vary by linear regression from $1 \mathrm{~km} / \mathrm{h}$ per 5 m travelled to
the rate determined by Table 5.8. The three acceleration zones are illustrated in Figure 5.1.

Distance over which acceleration occurs

Figure 5.1 - Acceleration Zones

Low Speed Acceleration Analysis

OSIST conducts low speed acceleration analysis for the element if the element classification is A from Table 5.7. The speed at the end of an element will depend on the acceleration rate and the length of the element. If the approach speed to an element is less than lower limit of the high speed zone (default is $80 \mathrm{~km} / \mathrm{h}$) and is lower than the Section Operating Speed for that element, OSIST conducts a Low Speed Acceleration Analysis for that element.

Low Speed Acceleration Analysis has 5 possible scenarios, each with a different formula for calculating the departure speed from the element. OSIST
will determine which of the five different scenarios matches the element. These are illustrated in Figures 5.2(a) - 5.2(e).

OSIST calculates the following acceleration lengths in order to establish which scenario matches the characteristics of the element and therefore the appropriate formula to calculate the departure speed from the element.
o L1 - Acceleration Length 1 - distance travelled from approach speed to Low Approach speed Upper Limit
o L2 - Acceleration Length 2 - distance travelled while accelerating through transition speed zone.
o L3 - Acceleration Length 3 - distance travelled from Low Approach Speed Upper Limit to the end of the element
o L4 - Acceleration Length 4 - distance travelled from approach speed to Transition Approach Speed Upper Limit
o L5 - Acceleration Length 5 - distance travelled from Transition Approach Speed Upper Limit

Scenario 1 - Le < L1

Figure 5.2(a) Low Speed Acceleration Analysis - Scenario 1

Scenario 1 is where the approach speed (As) is lower than the upper limit of the low speed zone (default is $70 \mathrm{~km} / \mathrm{h}$) and the element length (Le) is shorter than the length required to accelerate to the upper limit of the low speed zone (L1). So, the vehicle accelerates with the low speed acceleration rate (default is 5 m per $1 \mathrm{~km} / \mathrm{h}$) though the entire length of the element. For Scenario 1, the formula for the departure speed is:-

$$
\begin{equation*}
\text { Ds }=A s+((L e / L 1) \times(\text { Ls-As })) \tag{5.1}
\end{equation*}
$$

where Ds is departure speed $(\mathrm{km} / \mathrm{h})$
As is approach speed (km/h)
Le is element length (m)

L 1 is acceleration length 1 (m)
Ls is upper limit of low speed zone (km/h)

Scenario 2-Le < L1 + L2

Figure 5.2(b) Low Speed Acceleration Analysis - Scenario 2

Scenario 2 is where the approach speed (As) is lower than the upper limit of the low speed zone (default is $70 \mathrm{~km} / \mathrm{h}$) and the element length (Le) is longer than the length required to accelerate to the upper limit of the low speed zone (L1), but the length remaining is less than the length required to accelerate through the transition speed zone (L2). So the vehicle begins accelerating with the low speed acceleration rate, but the acceleration rate begins to drop before the vehicle reaches the end of the element. The vehicle does not reach the lower limit of the high speed zone (default is $80 \mathrm{~km} / \mathrm{h}$). For Scenario 2, the departure speed is:-
Ds = Ls + ((L3/L2) x (Hs-Ls))
where Ds is departure speed $(\mathrm{km} / \mathrm{h})$
As is approach speed (km/h)
L 2 is acceleration length 2 (m)
L3 is acceleration length 3 (m)
Ls is upper limit of low speed zone (km/h)

Hs is lower limit of upper speed zone (km / h)

Scenario 3-Le > L1 + L2

Figure 5.2(c) Low Speed Acceleration Analysis - Scenario 3

Scenario 3 is where the approach speed is lower than the upper limit of the low speed zone (default is $70 \mathrm{~km} / \mathrm{h}$) and the element length (Le) is longer than the length required to accelerate to the lower limit of the high speed zone (L1 + L2). So the vehicle begins accelerating at the low speed rate and the acceleration rate decreases so that by the end of the element, the acceleration rate is in accordance with Table 7 (RH). For Scenario 3, the departure speed is calculated with the following formula:-

$$
\begin{equation*}
\mathrm{Ds}=\mathrm{Hs}+\left(\mathrm{L}^{2} / \mathrm{Acl}_{\mathrm{H}}\right) \tag{5.3}
\end{equation*}
$$

where $\quad \mathrm{Ds}$ is departure speed $(\mathrm{km} / \mathrm{h})$
L5 is acceleration length 5 (m)
$\mathrm{Acl}_{\mathrm{H}}$ is the acceleration rate of the high speed zone (m per km/h)
L3 is acceleration length 3 (m)
Hs is lower limit of upper speed zone (km/h)

Scenario 4-Le < L4

Figure 5.2(d) Low Speed Acceleration Analysis - Scenario 4

Scenario 4 is where the approach speed is higher than the upper limit of the low speed zone (Ls), but the element length (Le) is shorter than the length required to accelerate to the lower limit of the high speed zone (L4). So the vehicle accelerates at a rate that decreases as it moves along the element, starting at a rate that is less than the low speed acceleration rate (RL) and finishing on a rate that is higher than the high speed rate (RH). For Scenario 4 , the departure speed is calculated with the following formula:-
Ds = As + ((Le/L4) x (Hs-As))
where \quad Ds is departure speed $(\mathrm{km} / \mathrm{h})$
As is approach speed (km/h)
Le is element length (m)
L4 is acceleration length 4 (m)
Hs is lower limit of upper speed zone (km/h)

Figure 5.2(e) Low Speed Acceleration Analysis - Scenario 5

Scenario 5 is where the approach speed (As) is higher than the upper limit of the low speed zone (Ls) and the element length (Le) is longer than the length required to accelerate to the lower limit of the high speed zone (L4). So the vehicle begins accelerating at a rate less than the low speed acceleration rate and this rate decreases until it matches the high speed acceleration rate derived from Table 7. For Scenario 5, the formula for determining the departure speed from the element is as follows:-

$$
\begin{equation*}
\mathrm{Ds}=\mathrm{Hs}+\left(\mathrm{L} 5 / \mathrm{Acl}_{\mathrm{H}}\right) \tag{5.5}
\end{equation*}
$$

where $\quad \mathrm{Ds}$ is departure speed $(\mathrm{km} / \mathrm{h})$
L5 is acceleration length 5 (m)
Acl_{H} is the acceleration rate of the high speed zone (m per km/h)
Hs is lower limit of upper speed zone (km/h)

OSIST uses the following default values which are based on RPDM:-

$\mathrm{Ls}=70 \mathrm{~km} / \mathrm{h}$	(upper limit of low speed zone)
$\mathrm{Hs}=80 \mathrm{~km} / \mathrm{h}$	(lower limit of high speed zone)
$\mathrm{Acl}_{\mathrm{L}}=5 \mathrm{~m}$ per $1 \mathrm{~km} / \mathrm{h}$	(acceleration rate of the low speed zone)

However, OSIST allows the user to modify these defaults to suit local conditions. For example, the road geometry and the surrounding terrain may indicate a lower desired speed which may dictate lower acceleration parameters.

High Speed Acceleration Analysis

Where the approach speed (As) to en element is higher then the lower limit of the high speed zone (Hs) and less than the Section Operating Speed (Os) for that element, OSIST conducts a high speed acceleration analysis. So this is for Class B elements as defined in Table 5.7. OSIST will determine an appropriate acceleration rate based on interpolation of the values in Table 5.8.

The length over which acceleration increases is not just the length of the element, but the remaining length of the section. This is appropriate as a vehicle travelling through the section will continue to accelerate through the whole length of the section or until it reaches the Section Operating Speed.

OSIST will determine the speed increase over the remaining length of the section, which will then be used to calculate an acceleration rate which is applied over the length of the element to determine a departure speed for the element.

Deceleration Analysis

Where the approach speed (As) to en element is higher then it's section operating speed and the radius of the element is less than 600m the vehicle will decelerate. These are Class C elements as defined in Table 5.7. On these elements, OSIST will conduct a deceleration analysis.

Deceleration on the element is based on Main Roads ${ }^{2}$ Figure 6.9.2(b) which is the same as Figure 7.3 Austroads ${ }^{1}$. Departure speed values have been interpolated from this figure and included in Table 5.9.

Table 5.9 - Deceleration on Curves

Approach Speed	Curve Radius											
	50	100	150	200	250	300	350	400	450	500	550	600
60	50	55	56	57	58	59	60	60	60	60	60	60
70	56	62	64	66	67	68	68	69	70	70	70	70
80	59	69	72	74	75	76	77	78	79	79	80	80
90	61	74	79	82	84	85	86	87	88	88	89	89
100	60	78	84	89	92	93	95	96	97	97	98	98
110	60	82	92	95	97	100	102	103	104	104	105	105
120	60	90	100	102	104	107	109	111	112	113	114	114

OSIST only applies deceleration analysis to curves with a radius under 600m. Main Roads ${ }^{2}$ Figure 6.9.2(b) does indicate deceleration on curves with a radius of up to 900 m with an approach speed of $110 \mathrm{~km} / \mathrm{h}$. According to Figure 6.9.2(b), a vehicle travelling at $110 \mathrm{~km} / \mathrm{h}$ will decelerate to $105 \mathrm{~km} / \mathrm{h}$ through a radius 600 m curve. However, this is inconsistent with the section operating speed assigned to curves with a 600 m radius in Table 6.9.2 RPDM. The section operating speed assigned is $110 \mathrm{~km} / \mathrm{h}$, which indicates that an $85^{\text {th }}$ percentile vehicle will not decelerate from $110 \mathrm{~km} / \mathrm{h}$ on a 600 m radius curve.

Main Roads ${ }^{2}$ does allow for this when providing direction as to the use of Figure 6.9.2(b), "follow the approach speed line ... to the intercept with the radius or the section operating speed (whichever comes first)".

Also, as stated previously, OSIST does not allow for operating speeds greater than $110 \mathrm{~km} / \mathrm{h}$. So, the deceleration analysis is limited to curves with radii less than 600 m .

5.2.5 Design Consistency Checks

OSIST now has operating speeds for each horizontal element of the alignment and can now perform design consistency checks on the alignment.

Side Friction Demand

The only information that the user has been required to enter into OSIST is the horizontal geometry data. Crossfall and superelevation has not been entered. However, to determine side friction demand on a vehicle the crossfall is required. To save the user producing a superelevation assessment and entering crossfall data OSIST will provide a range of side friction coefficient values based on maximum superelevation of $0.06 \mathrm{~m} / \mathrm{m}$ and normal crossfall of $-0.03 \mathrm{~m} / \mathrm{m}$. This maximum superelevation value is based on Main Roads ${ }^{18}$ Table 11.2. Side friction coefficient (unitless) is given by:-

$$
\begin{equation*}
f=\left(V^{2} /(127 R)\right)-e \tag{5.6}
\end{equation*}
$$

where $\quad \mathrm{V}$ is element operating speed $(\mathrm{km} / \mathrm{h})$;
R is element radius (m)
e is superelevation $(\mathrm{m} / \mathrm{m})$
The calculated side friction coefficients are then compared with the desirable and absolute maximum of side friction for the element operating speed provided by Main Roads ${ }^{18}$ Table 11.1A. This is reproduced in Table 5.10, which has also included interpolated values for every $5 \mathrm{~km} / \mathrm{h}$. OSIST then looks up the nearest value to the element operating speed.

The minimum side friction value calculated above (usually corresponding to the maximum superelevation value) is compared with the absolute and
desirable side friction values in Table 5.10. As part of the side friction check, if the side friction value is less than the desirable maximum it is labelled "Ok". If the value is less than the absolute maximum, but more than the desirable maximum it is labelled "Undesirable". If the value is greater than the absolute maximum it is labelled "Unacceptable".

Table 5.10 - Maximum Side Friction Values

Speed	Max Side Friction Values	
	Absolute	Desirable
40	0.35	0.30
45	0.35	0.3
50	0.35	0.30
50	0.34	0.27
60	0.33	0.24
65	0.32	0.22
70	0.31	0.19
75	0.29	0.18
80	0.26	0.16
85	0.22	0.15
90	0.20	0.13
95	0.18	0.13
100	0.16	0.12
105	0.12	0.12
110	0.12	0.12
115	0.11	0.11
120	0.11	0.11
130	0.11	0.11

The second side friction check relates to the maximum increase in side friction demand between elements. Main Roads ${ }^{18}$ sets a desirable limit of a 25\% maximum increase in side friction between successive elements, but does indicate that there are some situations where a greater increase may be acceptable. However, it acknowledges that the 25% increase is a good check. So, OSIST checks the increase between successive curves. If it is less than 25% it is labelled "Ok". If it is more than 25% it is labelled "Check". The user will then need to check the alignment in accordance with Main Roads ${ }^{18}$ to determine if the increase in side friction demand is acceptable.

OSIST also considers curves to be successive if they are separated by a short straight. Main Roads ${ }^{18}$ says that for reverse curves separated by a straight with a length of about two times the operating speed (Os km/h) the straight is long enough to revert to normal crossfall. If the straight is shorter than this value ($2 \times$ Os) crossfall will transition evenly between the curves. So, when intermediate straights between curves are shorter than two times the operating speed (2 x Os) than the curves are considered to be successive.

Speed Reduction

The final check that OSIST performs is to assess the speed reduction between successive elements. This is a straightforward calculation. The spreadsheet completes some conditional formatting on the results; speed reduction values greater than $5 \mathrm{~km} / \mathrm{h}$ are changed to a red colour; speed reduction values greater than $10 \mathrm{~km} / \mathrm{h}$ are highlighted in bold red.

OSIST does not have user input for direction of horizontal curves, so it is not able to determine if curves are reverse or compound. Main Roads ${ }^{2}$ Table 6.7.2 notes that while the desirable maximum decrease in speeds between successive elements is $10 \mathrm{~km} / \mathrm{h}$, it also notes that the maximum decrease in speed for compound curves is $5 \mathrm{~km} / \mathrm{h}$. So OSIST highlights the speed reduction as noted above and as shown below in Table 5.11. This should alert the designer to check these elements.

Table 5.11 Design Consistency Checks - Output Sample

Side Friction Check	Side Friction Increase	Speed Reduction
Unacceptable	Ok	7
Ok	Ok	-3
Ok	Ok	-4
Ok	Ok	0
Ok	Check!	0
Unacceptable	Ok	1
Undesirable	Ok	10

5.2.6 Reverse Direction Check

OSIST automatically conducts the same analysis in the reverse direction. The user is only required to input the starting speed for this direction.

5.2.7 Potential Future Development of OSIST

OSIST has currently been developed to provide assistance with using the operating speed model and conducting some design consistency checks. The design tool could possibly be developed further to integrate more of the alignment design process. Some suggested developments are:-
o Importing design information from design packages
o Checking vertical alignment and sight distance
o Providing suggested superelevation including development
o Flagging additional issues with horizontal alignment - broken back curves
o Entering chainages to match results with design plans
o Creating a speed profile - that is determining operating speed at say $5 m$ intervals

6. Case Study: Mt. Nathan Road

6.1 Background

Mt Nathan Road is the local road name for part of Beaudesert-Nerang Road in the Gold Coast hinterland. This two lane arterial road is managed by the Department of Main Roads. A map of the case study area is shown in Figure 6.1.

The properties either side of Mt Nathan Road have undergone considerable development over the last 15 years in the form of residential acreage subdivisions.

The southern end of the road links to the western limits of Nerang at the intersection of Nerang-Murwillumbah Road. Over the last 10 years, Nerang has experienced significant growth in terms of residential developments and in terms of its importance as a commercial centre.

The northern end of Mt Nathan Road links to Maudsland and Oxenford, which have undergone rapid expansion in terms of medium to low density residential developments.

Mt Nathan Road has become part of important western north-south corridor serving growing communities of Nerang and Oxenford. It is also has an important function in providing a western link from the Gold Coast to Tamborine, Canungra and Beaudesert.

Traffic figures from August 2007 (included in Appendix E), indicate an Average Daily Traffic (ADT) of 6200. They also indicate peak hourly traffic volumes of almost 600, which would provide a Level of Service (LOS) B with continuous overtaking sight distance (Main Roads ${ }^{19}$ Fig 5.12). However, the horizontal and vertical alignment of this road place significant limitations on available overtaking sight distance.

Traffic figures from November 2001 (also included in Appendix E) give an ADT of 5300, so the growth rate on Mt Nathan Road is a moderate 2.8\% per annum.

Figure 6.1 - Case Study Map

Traffic figures also indicate the proportion of heavy vehicles has grown from 4.4% to 7.1%. This represents a significant growth in the volume of heavy vehicles at 11.7% per annum. This, along with the steep vertical grades on sections of this road, indicates that providing overtaking opportunities along this road is a priority. This is also shown in Main Roads ${ }^{20}$ Table 15.2, which indicates that a two lane road with this volume of traffic and proportion of commercial vehicles requires overtaking opportunities along at least 70% of the road alignment. While this case study does not evaluate the limits of existing overtaking sight distance, the existing horizontal and vertical alignment would likely not provide even close to that level of overtaking opportunities. While current traffic volumes and growth do not appear to warrant duplication of Mt Nathan Road, there does seem to be adequate
justification for the provision of overtaking lanes along with possibly some realignment to provide more overtaking opportunities.

Mt Nathan Road traverses hilly terrain and this along with the location of the aforementioned acreage residential developments will constrain what can reasonably and economically be achieved to improve the safety performance of this road. This case study uses operating speed assessment to evaluate and prioritise the horizontal elements of the alignment, so that funds can be directed to the most critical sections of the road.

6.2 Operating Speed Assessment

An operating speed assessment was undertaken on Mt Nathan Road using the Operating Speed Interactive Spreadsheet Tool (OSIST), in both directions. The operating speeds determined by OSIST are the predictions of the $85^{\text {th }}$ percentile speeds of vehicles driving through each element of the alignment. OSIST then highlighted elements of particular concern. The outputs from the OSIST analysis of Mt Nathan Road are included in Appendix G. The following discussion relates to elements of particular concern in each direction.

6.2.1 Eastbound Assessment

The $85^{\text {th }}$ percentile speed for vehicles travelling from the west toward the study area would be $110 \mathrm{~km} / \mathrm{h}$. This is consistent with the characteristics of the roadway and surrounding terrain.

The first element of concern is the Element 3 as shown in Figure 6.2. This is a curve of radius 410 m . This results in a reduction in operating speed to $103 \mathrm{~km} / \mathrm{h}$ which results in a side friction demand just above the acceptable maximum.

OSIST highlighted Element 13 as having design consistency issues. This is a curve with a radius of 275 m . The approach speed to this element is 110km/h, and OSST indicates that a vehicle will drop more than the desirable maximum of $10 \mathrm{~km} / \mathrm{h}$ to $99 \mathrm{~km} / \mathrm{h}$.

This speed is too high for this element. It's side friction would be well beyond the acceptable limit, even with 6% superelevation.

OSIST also indicates that the increase in side friction demand from the previous element is greater than 25\%. However, as the previous curve is a long 8300m radius curve this could really be considered a straight. The visual queue of the sharp curve ahead should alert the driver to an increased demand in side friction. The main concern with this element is that the side friction demand is over 25% higher than the maximum acceptable side friction for $100 \mathrm{~km} / \mathrm{h}$.

Figure 6.2 - Eastbound Approach to Element 3

Elements 15, 17 and 21 are also of some concern. The side friction demand of vehicles negotiating these curves at the predicted operating speeds would be just beyond the acceptable range (that is, within 10\%).

It is noted that the speed limit reduces to $80 \mathrm{~km} / \mathrm{h}$ in Element 12 . Using Equation 2.1 based on research in the U.S. the operating speed is still about $100 \mathrm{~km} / \mathrm{h}$ where there is a posted speed of $80 \mathrm{~km} / \mathrm{h}$. However, OSIST makes no allowance for the change in posted speed limit.

The next element of serious concern is Element 23, a short tight curve with a radius of 95 m . The main design consistency issue with this element is that the predicted operating speed drops dramatically by from $103 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$. This is well beyond the absolute maximum decrease in operating speed between successive elements of $15 \mathrm{~km} / \mathrm{h}$. The reduced speed is also well beyond the safe limit for this radius curve. The side friction demand is 0.48 , almost twice the absolute maximum value of 0.26 .

Figure 6.3 - Eastbound Approach to Element 23

Once a vehicle has moved beyond the low speed Section 12, OSST predicts that a vehicle will accelerate back up to $100 \mathrm{~km} / \mathrm{h}$. Elements 30 and 34 have design consistency issues within the remainder of the alignment which generally has an operating speed of about $100 \mathrm{~km} / \mathrm{h}$. These elements are short tight curves with radii of 190 m and 140 m respectively. At the predicted operating speeds, both of these curves place side friction demands on the vehicles that are well beyond the absolute maximum. There also concerns with the increase in side friction demand and decrease in operating speed from the previous element.

6.2.2 Westbound Assessment

The $85^{\text {th }}$ percentile speed for vehicles travelling from the west will be substantially lower, as the vehicles are coming from an intersection and an urban environment. The alignment effectively stops at a t-intersection, so the starting speed arguably could be close to zero. However, for this assessment, the starting speed was set at $50 \mathrm{~km} / \mathrm{h}$. The lower starting speed and the constrained horizontal alignment tends to keep the predicted operating speed at lower than the opposite direction.

The first element of concern in this direction is Element 34, a curve with a radius of 140 m . At the predicted operating speed of $82 \mathrm{~km} / \mathrm{h}$, this element imposes a side friction demand 20\% higher than the absolute maximum side friction value. This element has the same issue in the reverse direction. As the element has a length of only 65 m , it is likely that motorists will attempt to drive a flatter curve, possibly even crossing the road centreline.

Element 30, a curve with a radius of 190 m also results in a side friction demand 30\% higher than the absolute maximum side friction demand.

The element which has the most serious concern on the alignment in this direction is Element 25, a tight curve with a radius of 95 m . This forms a reverse curve arrangement with a similar curve, Element 23 which has the same issues in the reverse direction.

Figure 6.4 - Westbound Approach to Element 34

Figure 6.5 - Westbound Approach to Element 30

Figure 6.6 - Westbound Approach to Element 25

Element 15, a short 200 m radius, is also a concern in terms of the side friction demand on a vehicle travelling at the predicted operating speed. The side friction value would be 25% more than the absolute maximum accepted value. The increase in side friction from the preceding curve would also need to be checked.

6.2.3 Critical Horizontal Elements

While the operating speed assessment indicated a dozen or so horizontal elements that may have undesirable characteristics, the forward and reverse assessments did highlight elements of particular concern that should be given priority for correction. These are shown in Table 6.1.

Table 6.1 - Critical Horizontal Elements

Element	Type	Length
$13 / 15$	Reverse Curves with $275 / 200$ radii	220
$23 / 25$	Reverse Curves with 95/95 radii	290
30	Single Curve -190 radius	135
34	Single Curve -140 radius	65
Total		$\mathbf{7 1 0}$

6.2.4 Comparison with Road Crash Data

Accident data from 1992 to October 2008 was sourced from the Department of Main Roads and is included in Appendix F. The data was extracted and collated into Table 6.2. The extracted data was taken between the two major intersections at either end of the alignment: Nerang-Murwillumbah Road and Oxenford-Coomera Gorge Road.

The accident numbers at these intersections were ignored, as the objective of this review was to determine the safety performance of the alignment characteristics. There are significant numbers of accidents at the intersections. The type of accidents at these intersections differs form those on the through alignment. Also the safety performance of the intersections is also strongly influenced by the design of the intersection and the available sight distance. The horizontal design of the through alignment, while contributing to the accidents at the intersection, would play a lesser role. The accident data at the intersections would skew the data that applies to the through alignment alone. It is for these reasons, that the assessment excludes the accident data that applies to the major intersections at either end of the study area.

This collated accident data is shown in Table 6.2. An interesting observation from this data is that 54% of the accidents are single vehicle accidents resulting from vehicles leaving the road. An additional 21% of the accidents are head-on resulting from vehicles entering the opposing lane (excluding those caused by overtaking manoeuvres). This means that 75% of accidents along this alignment are the result of vehicles leaving the travelled lane.

Table 6.2 - Collated Accident Data

DCA Code	Description	No
0	Pedestrian	2
10	Intersection	3
20	Head On	11
30	Rear End/Side Swipe	4
40	Manoeuvring	2
50	Overtaking	1
60	Obstacles	2
70	Leave Road - Straight	6
80	Leave Road - Curve	22
	Total	53

The predominant reason for vehicles leaving the travelled lane is that the driver loses control of the vehicle. As discussed in Chapter 2 of this dissertation, inconsistent design has a strong if not direct relationship with drivers losing control of their vehicles due the higher cognitive demand and the increased risk of errors in judgement.

The other reason why a vehicle may leave the travelled lane would be that the driver losing the ability to control the vehicle (for example, losing consciousness), but this would only apply to a small minority of these cases.

The accident data is consistent with the results of the analysis that show 14 curves on the alignment have less than desirable characteristics for the predicted operating speeds and are inconsistent with driver expectations.

The data for accidents that occurred within 100 metres of the critical horizontal elements was collated into Table 6.3.

Table 6.3 - Accident Data at Critical Elements

Element	Accidents	\% Leave Road	\% Head-On
$13 / 15$	3	100	0
$23 / 25$	6	66	16
30	5	80	20
34	4	50	25
Total	18	67	$\mathbf{1 7}$

This data is consistent with the findings of the operating speed assessment and the prioritisation of critical horizontal elements. These elements, while representing only 10% of the length of the alignment, account for over a third of the accidents along the alignment. Table 6.3 also shows that 84% of these accidents result from a vehicle leaving the travelled lane. This confirms the concern and the priority that should be given these critical horizontal elements.

6.3 Recommendations

There are 14 horizontal curves that have less than desirable characteristics on this alignment. The terrain and to a lesser extent the surrounding development, will make realignment difficult and expensive.

The findings of this case study recommend that the critical horizontal elements listed in Table 6.1 should be given priority. Improving these elements should substantially improve the safety performance of Mt Nathan Road. There are two strategies that could be applied to the improvement of these elements:-
o Increasing the radius of the curve
o Introducing speed reducing curves
A combination of these two strategies would likely have the most effective outcome.

It must be noted, however, that this case study has not considered the vertical geometric elements as these have a minimal impact on operating speed, although the affect of grades could be considered.

The vertical geometry also determines sight distance, so the available sight distance should be compared with the minimum safe sight distance (and safe intersection sight distance where appropriate) for the operating speeds predicted by OSIST.

Therefore, it is recommended that a detailed analysis of the existing vertical geometry be completed. This may shift priorities if it is found that existing intersections have available sight distance that is well below the minimum required.

7. Conclusion

7.1 Review of the Operating Speed Model

7.1.1 Overview and Comparison with International Practice

This project has involved a detailed review of the Operating Speed Model as currently outlined by Main Roads ${ }^{2}$ for use in Queensland. The model does provide a detailed and comprehensive analysis of horizontal alignments to predict $85^{\text {th }}$ percentile speeds on two lane rural roads. It provides a prediction of actual driver speeds based on statistical distributions of speeds on various combinations of horizontal curves and straights.

These statistical distributions and regression relationships are based on field measurement of actual vehicle speeds at a sample of road sites. The reliability of the prediction will be based on the quality of the source data and the size of the sample. As vehicle performance and pavement technology have changed over time, the age of this data will also be a measure of its reliability.

The Operating Speed Model is generally consistent with worldwide practice for analysing the safety performance of road alignments, this being described broadly as:-

1. Determine $85^{\text {th }}$ percentile speed on horizontal elements;
2. Check for design consistency (in terms of side friction demand and reduction in speed);
3. Adjust alignment to cater for design consistency issues; and
4. Feedback loop to Step 1.

7.1.2 Areas for Development

Fitzpatrick et al^{6} did find a statistically significant relationship between operating speed and the posted speed limit. The Operating Speed Model currently makes no reference to speed limit. The "desired speed" and "section operating speed" are based only on horizontal geometry and surrounding terrain.

The Operating Speed Model as outlined in Austroads ${ }^{1}$ and Main Roads ${ }^{2}$ also require more detailed discussion and guidance for separating the alignment into sections of reasonably similar curves. There appears to be a level of subjectivity in the guidance currently provided which could be compensated by the experience of the designer. However, there is potential for the operating speed to be under-estimated.

The speed deceleration on curves figures in both Australia publications should be revised to be consistent with "section operating speeds". For example, using "section operating speeds" allows a vehicle to maintain a $110 \mathrm{~km} / \mathrm{h}$ desired speed through a curve radius of 600 m . However, the speed deceleration figures indicate the speed will reduce from $110 \mathrm{~km} / \mathrm{h}$ on any curve with a radius less than 900m. It does suggest that the regression plots on these figures are based on unreliable data.

Main Roads ${ }^{2}$ recent inclusion of a provision for higher acceleration rates from lower speeds, while intuitively closer to actual driver behaviour, does require further discussion. Further explanation and direction is required on exactly how to apply these higher acceleration rates within the context of the acceleration regression plots provided in Main Roads ${ }^{2}$ and Austroads ${ }^{1}$. Again, it does suggest that the regression plots on these figures are based on unreliable data.

$7.2 \quad$ Further Work

This project has found that the following additional research should be undertaken to further develop the Operating Speed Model:-
o Include the posted speed limit into the analysis to determine "desired speed"
o Develop more comprehensive guidance for separating the alignment into sections
o Conduct further research to revise regression plots for speed increase and decrease along the alignment which should provide consistency with the use of section operating speeds

References

1. Austroads, Rural Road Design: A Guide to the Geometric Design of Rural Roads, Austroads Incorporated, Sydney, 2003.
2. Department of Main Roads, Road Planning and Design Manual, Chapter 6: Speed Parameters, Queensland Government Publications, Brisbane, 2007.
3. U.S Department of Transportation; Federal Highway Administration, Evaluation of Design Consistency Methods for Two-Lane Rural Highways, Publication No. FHWA-RD-99-174, 1999.
4. Morrall, J.F. and Robinson, J.B.L., Design Speed Choices for Canadian Two-Lane Rural Highways, Presentation Paper, Annual Conference of the Transportation Association of Canada, 2003.
5. Krammes, R.A., Design Speed and Operating Speed in Rural Highway Alignment Design, Transportation Research Record 1701, Texas Transportation Institute, 2000.
6. Fitzpatrick, K., Carlson, P., Brewer, M.A., Wooldridge, M.D., Miaou, S., Design Speed, Operating Speed and Posted Speed Practices, NCHRP Report 504, Transportation Research Board, Washington D.C., 2003.
7. Design Manual for Roads and Bridges - Volume 6: Road Geometry, Section 1: Links, 1993.
8. NCHRP Report 400, Determination of Stopping Sight Distances, Transportation Research Board, Washington D.C., 1997.
9. A Policy on Geometric Design of Highways and Streets, AASHTO, Washington D.C., 2001.
10. Parker, Jr., M.R., Effects of Raising and Lowering Speed Limits on Selected Roadway Sections, Publication No FHWA-RD-02-084, Federal Highway Administration, Washington D.C., 1997.
11. Young, W.R., Road Design for Uniform Speed, Engineering News Record, Vol 105., 1930.
12. Barnett, J., Safe Side Friction Factors and Superelevation Design, HRB Proc. Vol 16., 1936.
13. A Policy in Geometric Design of Rural Highways, AASHO, Washington D.C., 1965.
14. Geometric Design Guide for Canadian Roads, Transportation Association of Canada, Ottawa, 1999.
15. A Policy on Geometric Design of Highways and Streets, AASHTO, Washington D.C., 1994.
16. McLean, J., Side Friction Factors for Horizontal Curve Design Standards, Australian Road Research Board, 1993.
17.Lamm, R., Psarianos, B., Mailender, T., Horizontal Highway Design and Traffic Safety Engineering Handbook, McGraw-Hill, 1999.
17. Department of Main Roads, Road Planning and Design Manual, Chapter 11: Horizontal Alignment, Queensland Government Publications, Brisbane, 2002.
18. Department of Main Roads, Road Planning and Design Manual, Chapter 5: Traffic Parameters and Human Factors, Queensland Government Publications, Brisbane, 2004.
19. Department of Main Roads, Road Planning and Design Manual, Chapter 15: Auxiliary Lanes, Queensland Government Publications, Brisbane, 2002.

University of Southern Queensland, Faculty of Engineering and Surveying

 Rural Road Operating Speed Assessment
Appendix A

Project Specification

Project Specification
 ENG4111/4112 - Research Project

For:-
Timothy Noel TAYLOR
Student No 0019220677

Topic:-

ASSESSMENT OF OPERATING SPEED ALONG A CURVILINEAR ROAD

 ALIGNMENTSupervisor:-
Trevor Drysdale
Sponsor:-
Parsons Brinckerhoff

Issue $\mathrm{A}\left(25^{\text {th }}\right.$ March 2008)

Project Aim

To review and compare operating speed assessment methodologies, develop a simulation program for operating speed and apply this to a real project case study.

Programme

1. Review of the "Operating Speed Model" as detailed in the recently released Chapter 6 of Main Roads Road Planning and Design Manual: "Speed Parameters".
2. Comparison of speed assessment methodologies used nationally and globally.
3. Research from national and global road authorities concerning the impact of steep vertical grade on the operating speed of general traffic (not trucks) and how this may impact on speeds determined by Main Roads Operating Speed Model.
4. Development of simulation program in MATLAB that:
a. Uses horizontal geometric information for an existing road and completes a speed analysis (in both directions) based on Main Roads Operating Speed Model
b. Uses vertical geometric information to complete sight distance calculations based on speeds calculated in previous step
c. Highlights and prioritises geometric elements that have safety concerns
5. Case Study: Mt Nathan Road, Gold Coast Hinterland
a. assess the existing geometry
b. prioritise elements along that alignment that are unsafe and require remedial work
c. review accident history to assess correlation with assessment results
d. review realignment options that have been developed by Main Roads
6. Prepare and submit academic dissertation

Programme (cont)

7. As time permits:-
a. Include impacts of steep grades into simulation program
b. Include superelevation and curve widening into simulation program

Agreement

Supervisor

Examiner/Co-examiner

Date

Date

University of Southern Queensland, Faculty of Engineering and Surveying
 Rural Road Operating Speed Assessment

Appendix B

Operating Speed Model Reference
Material

Note: To use graph - enter the base of the graph at initial speed of the vehicle, project vertically up to the line representing the length of the straight, then project horizontally left to read the speed at the end of the straight.

Figure 6.9.2(a) Increase in Speed on Straights

Details of Example

For the road section under consideration:

- It is in flat to undulating terrain.
- The link strategy has set a target speed of $110 \mathrm{~km} / \mathrm{hr}$ for the link, but recognises that a lower operating speed will be likely over this section because of local topographic constraints.
- It has horizontal curve radii ranging between 165 m and 320 m .
- It has a posted speed limit of $100 \mathrm{~km} / \mathrm{h}$.
- The pavement conditions are constant.
- The type cross section is the same for the entire length.

Figure 6.9.2(b) Deceleration on Curves Graph

Determination of Desired Speed

Given a combination of flat to undulating terrain and horizontal curve radii ranging between 165 m and 320 m , Table 6.3.1(b) indicates a desired speed of $110 \mathrm{~km} / \mathrm{h}$. This is reinforced by note ' c ' in the table, which indicates a desired speed of $110 \mathrm{~km} / \mathrm{h}$ for the $100 \mathrm{~km} / \mathrm{h}$ speed limit in this example.

Length of Road to be Analysed

As a first step, it is necessary to include segments that are approximately 1 km to 1.5 km at each end of the length of road for which speed estimates are required. This helps ensure more accurate approach speeds
for the alignment that is being assessed. It also helps ensure that there are no problems created downstream due to increases in operating speed. If the adjoining 1 km to 1.5 km lengths are likely to be upgraded in the future, the analysis of speeds should also cover the short term and long term scenarios.

If, for example, speed estimates were required for the curves between C and I in Figure 6.9.3(a), the speed study would extend from A to L, with speeds being assessed in each direction of travel on a two-way road.

Figure 7.2: Acceleration on Straights (Hilly to Mountainous Terrain)

Note: To use graph - enter the base of the graph at initial speed of the vehicle, project vertically up to the line representing the length of the straight, then project horizontally left to read the speed at the end of the straight.

Figure 7.3: Deceleration on Curves

University of Southern Queensland, Faculty of Engineering and Surveying

 Rural Road Operating Speed Assessment
Appendix C

OSIST Tables

SS Name: Operating Speed Interactive Spreadsheet Tool (OSIST) - Forward Direct
 Project: USQ Research Project
 Designer: Tim Taylor
 Case Study - Mt Nathan Road
 Client: Main Roads

Author: Tim Taylor Date: 30-Oct-08	Verified: Date:		
Rev \# Description			
1			
2			
3		Editor Verifier Date	
4			

tion

PR Rasisisisinor

Desired Speed 110						Starting Speed	110		Low Speed Acceleration Assessment						
Element	Radius	Length	Section	Section Length	Section Length Remaining	Op. Speed (km/h)	Element Speed	Element Class	Length Index	Higher Speed Accel (m per km/h)	Transition Speed Accel (m per km/h)	L1 - up to low speed upper limit	$\begin{gathered} \text { L2 - transition } \\ \text { length } \end{gathered}$	L3 - from low speed upper limit to end	L4-up to high speed lower limit
1	1000000	210	1	210	210	110	110	D	-	-	-	-	-	-	-
2	410	530	2	530	530	100	103	C	-	-	-	-	-	-	-
3	1000000	400	3	1530	1530	110	106	B	-	-	-	-	-	-	-
4	2000	510	3	1530	1130	110	110	B	-	-	-	-	-	-	-
5	1000000	120	3	1530	620	110	110	D	-	-	-	-	-	-	-
6	550	170	3	1530	500	110	110	D	-	-	-	-	-	-	-
7	750	230	3	1530	330	110	110	D	-	-	-	-	-	-	-
8	1000000	100	3	1530	100	110	110	D	-	-	-	-	-	-	-
9	510	90	4	90	90	106	109	c	-	-	-	-	-	-	
10	360	250	5	250	250	96	99	c	-	-	-	-	-	-	-
11	1800	150	6	580	580	110	102	B	-	-	-	-	-	-	-
12	8300	430	6	580	430	110	110	B	-	-	-	-	-	-	-
13	275	120	7	150	150	93	102	C	-	-	-	-	-	-	
14	1000000	30	7	150	30	93	93	D	-	-	-	-	-	-	-
15	200	70	8	70	70	79	88	C	-	-	-	-	-	-	-
16	1000000	50	9	180	180	93	89	B	-	-	-	-	-	-	-
17	280	130	9	180	130	93	93	B	-	-	-	-	-	-	
18	1000000	40	10	290	290	110	94	B	-	-	-	-	-	-	-
19	540	100	10	290	250	110	96	B	-	-	-	-	-	-	-
20	1000000	150	10	290	150	110	100	B	-	-	-	-	-	-	-
21	420	70	11	160	160	105	101	B	-	-	-	-	-	-	
22	1000000	90	11	160	90	105	104	B	-	-	-	-	-	-	-
23	95	120	12	290	290	66	80	C	-	-	-	-	-	-	-
24	1000000	30	12	290	170	66	66	D	-	-	-	-	-	-	-
25	95	140	12	290	140	66	66	D	-	-	-	-	-	-	
26	1400	170	13	510	510	110	91	A	5	42	5	20	233	490	0
27	1000000	140	13	510	340	110	95	B	-	-	-	-	-	-	-
28	570	100	13	510	200	110	96	B	-	-	-	-	-	-	-
29	1000000	100	13	510	100	110	100	B	-	-	-	-	-	-	-
30	190	135	14	135	135	79	90	C	-	-	-	-	-	-	-
31	1000000	140	15	315	315	100	94	B	-	-	-	-	-	-	-
32	360	110	15	315	175	100	96	B	-	-	-	-	-	-	-
33	1000000	65	15	315	65	100	100	B	-	-	-	-	-	-	-
34	140	65	16	65	65	73	89	C	-	-	-	-	-	-	-
35	1000000	200	17	200	200	110	93	B	-	-	-	-	-	-	-
36	265	90	18	90	90	86	89	C	-	-	-	-	-	-	-
37	1000000	150	19	250	250	107	93	B	-	-	-	-	-	-	-
38	470	100	19	250	100	107	96	B	-	-	-	-	-	-	-
39	750	150	20	330	330	110	100	B	-	-	-	-	-	-	-
40	1000000	180	20	330	180	110	103	B	-	-	-	-	-	-	-
41	310	110	21	150	150	96	97	C	-	-	-	-	-	-	-
42	1000000	40	21	150	40	96	96	D	-	-	-	-	-	-	-

PR Batisisisurf

Desired Speed 110							High Speed Acceleration Assessment											Deceleration Ass
Element	Radius	Length	Section	L5 - from high speed lower limit to end	Assessment Scenario	Departure Speed	Length Index	Speed Index	Look Up Values				1st Inter		Length Factor	Speed over Section	Departure Speed	radius index
1	1000000	210	1	-	-	-	-	-	-	-	-		.		.			
2	410	530	2	-	-	-	-	-	-	-	-		-	-	-	-	-	8
3	1000000	400	3	-	-	-	8	10	114	120	114	120	115.8	115.8	0.26143791	115.8	106.3464052	-
4	2000	510	3	-	-	-	8	10	114	120	114	120	117.807843	117.807843	0.45132743	117.807843	111.5192666	-
5	1000000	120	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	550	170	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	750	230	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	1000000	100	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	510	90	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10
10	360	250	5	-	-	-	-	-	.	-	-	-	-	-	-	-	-	7
11	1800	150	6	-	-	-	5	9	101	110	103	112	109.28	111.28	0.25862069	109.28	101.8068966	-
12	8300	430	6	-	-	-	4	10	109	117	110	118	110.445517	111.445517	1	110.445517	110.4455172	-
13	275	120	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6
14	1000000	30	7	-	-	-	-	-	-	-	-	.	-	-	-	.	-	-
15	200	70	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
16	1000000	50	9	-	-	-	1	8	85	94	88	96	92.47	94.64	0.27777778	92.47	89.45833333	-
17	280	130	9	-	-	-	1	8	85	94	88	96	93.5125	95.5666667	1	93.5125	93.5125	-
18	1000000	40	10	-	-	-	2	9	96	106	99	108	99	101.7	0.13793103	99	93.82758621	-
19	540	100	10	-	-	-	2	9	96	106	99	108	99.8275862	102.444828	0.4	99.8275862	96.22758621	-
20	1000000	150	10	-	-	-	1	9	94	103	96	106	99.6048276	102.227586	1	99.6048276	99.60482759	-
21	420	70	11	-	-	-	1	9	94	103	96	106	102.644345	105.604828	0.4375	102.644345	100.9346164	-
22	1000000	90	11	-	-	-	1	10	103	112	106	114	103.841155	106.747693	1	103.841155	103.8411547	-
23	95	120	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
24	1000000	30	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	95	140	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26	1400	170	13	0	2	91	-	-	-	-	-	-	-	-	-	-	-	-
27	1000000	140	13	-	-	-	3	9	99	108	100	109	99.9	100.9	0.41176471	99.9	94.66470588	-
28	570	100	13	-	-	-	1	9	94	103	96	106	98.1982353	100.664706	0.5	98.1982353	96.43147059	-
29	1000000	100	13	-	-	-	1	9	94	103	96	106	99.7883235	102.431471	1	99.7883235	99.78832353	-
30	190	135	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
31	1000000	140	15	-	-	-	3	8	90	99	91	100	98.775	99.775	0.44444444	98.775	93.76111111	-
32	360	110	15	-	-	-	1	9	94	103	96	106	97.385	99.7611111	0.62857143	97.385	96.03898413	-
33	1000000	65	15	-	-	-	1	9	94	103	96	106	99.4350857	102.038984	1	100.737035	100.7370349	-
34	140	65	16	-	-	-	-	-	$-$	-	-	-	-	-	-	-	-	3
35	1000000	200	17	-	-	-	1	8	85	94	88	96	92.74	94.88	1	92.74	92.74	-
36	265	90	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5
37	1000000	150	19	-	-	-	2	8	88	96	90	99	95.04	97.92	0.6	95.04	92.544	-
38	470	100	19	-	-	-	1	9	94	103	96	106	96.2896	98.544	1	96.2896	96.2896	-
39	750	150	20	-	-	-	3	9	99	108	100	109	104.66064	105.66064	0.45454545	104.66064	100.0946182	-
40	1000000	180	20	-	-	-	1	10	103	112	106	114	103.085156	106.075695	1	103.085156	103.0851564	-
41	310	110	21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6
42	1000000	40	21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PR Rasisisisior

Desired Speed 110			;essment								
Element	Radius	Length	Section	speed index	look up values				1st Inter		Departure Speed
1	1000000	210	1	-	-	-	-	-	-	-	-
2	410	530	2	6	103	111	104	112	103	104	103
3	1000000	400	3	-	-	-	-	-	-	-	-
4	2000	510	3	-	-	-	-	-	-	-	-
5	1000000	120	3	-	-	-	-	-	-	-	-
6	550	170	3	-	-	-	-	-	-	-	-
7	750	230	3	-	-	-	-	-	-	-	-
8	1000000	100	3	-	-	-	-	-	-	-	-
9	510	90	4	6	104	113	105	114	109.4	110.4	109.4
10	360	250	5	5	95	102	96	103	99.2	100.2	99.2
11	1800	150	6	-	-	-	-	-	-	-	-
12	8300	430	6	-	-	-	-	-	-	-	-
13	275	120	7	6	100	107	102	109	102.1	104.1	102.1
14	1000000	30	7	-	-	-	-	-	-	-	-
15	200	70	8	4	82	89	84	92	88.3	91.2	88.3
16	1000000	50	9	-	-	-	-	-	-	-	-
17	280	130	9	-	-	-	-	-	-	-	-
18	1000000	40	10	-	-	-	-	-	-	-	-
19	540	100	10	-	-	-	-	-	-	-	-
20	1000000	150	10	-	-	-	-	-	-	-	-
21	420	70	11	-	-	-	-	-	-	-	-
22	1000000	90	11	-	-	-	-	-	-	-	-
23	95	120	12	5	78	82	84	92	80.4	88.8	80.4
24	1000000	30	12	-	-	-	-	-	-	-	-
25	95	140	12	-	-	-	-	-	-	-	-
26	1400	170	13	-	-	-	-	-	-	-	-
27	1000000	140	13	-	-	-	-	-	-	-	-
28	570	100	13	-	-	-	-	-	-	-	-
29	1000000	100	13	-	-	-	-	-	-	-	-
30	190	135	14	4	82	89	84	92	88.3	91.2	89.75
31	1000000	140	15	-	-	-	-	-	-	-	-
32	360	110	15	-	-	-	-	-	-	-	-
33	1000000	65	15	-	-	-	-	-	-	-	-
34	140	65	16	5	84	92	89	95	86.4	90.8	88.6
35	1000000	200	17	-	-	-	-	-	-	-	-
36	265	90	18	4	84	92	85	93	88.8	89.8	88.8
37	1000000	150	19	-	-	-	-	-	-	-	-
38	470	100	19	-	-	-	-	-	-	-	-
39	750	150	20	-	-	-	-	-	-	-	-
40	1000000	180	20	-	-	-	-	-	-	-	-
41	310	110	21	5	93	100	95	102	97.2	99.2	97.2
42	1000000	40	21	-	-	-	-	-	-	-	-
42											

Section	Length	Section Length	Section Length Remaining	Section	Length
1	210	210	210	1	210
2	530	530	530	2	530
3	400	1530	1530	3	1530
3	510	1530	1130	4	90
3	120	1530	620	5	250
3	170	1530	500	6	580
3	230	1530	330	7	150
3	100	1530	100	8	70
4	90	90	90	9	180
5	250	250	250	10	290
6	150	580	580	11	160
6	430	580	430	12	290
7	120	150	150	13	510
7	30	150	30	14	135
8	70	70	70	15	315
9	50	180	180	16	65
9	130	180	130	17	200
10	40	290	290	18	90
10	100	290	250	19	250
10	150	290	150	20	330
11	70	160	160	21	150
11	90	160	90		
12	120	290	290		
12	30	290	170		
12	140	290	140		
13	170	510	510		
13	140	510	340		
13	100	510	200		
13	100	510	100		
14	135	135	135		
15	140	315	315		
15	110	315	175		
15	65	315	65		
16	65	65	65		
17	200	200	200		
18	90	90	90		
19	150	250	250		
19	100	250	100		
20	150	330	330		
20	180	330	180		
21	110	150	150		
21	40	150	40		

USQ Research Project

Case Study - Mt Nathan Road
Operating Speed Interactive Spreadsheet Tool (CDate: 29 Oct 2008

Element	Radius	Length	Section	Op. Speed (km/h)	Vehicle Speed	Side Friction Range		Side Friction Check	Side Friction Increase	Speed Reduction	Comments
1	inf	210	1	110	110	-0.060	0.030	Ok			
2	410	530	2	100	103	0.144	0.234	Unacceptable	Ok	7	
3	inf	400	3	110	106	-0.060	0.030	Ok	Ok	-3	
4	2000	510	3	110	110	-0.012	0.078	Ok	Ok	-4	
5	inf	120	3	110	110	-0.060	0.030	Ok	Ok	0	
6	550	170	3	110	110	0.113	0.203	Ok	Check!	0	
7	750	230	3	110	110	0.067	0.157	Ok	Ok	0	
8	inf	100	3	110	110	-0.060	0.030	Ok	Ok	0	
9	510	90	4	106	109	0.125	0.215	Unacceptable	Ok	1	
10	360	250	5	96	99	0.155	0.245	Undesirable	Ok	10	
11	1800	150	6	110	102	-0.015	0.075	Ok	Ok	-3	
12	8300	430	6	110	110	-0.049	0.041	Ok	Ok	-8	
13	275	120	7	93	102	0.238	0.328	Unacceptable	Check!	8	
14	inf	30	7	93	93	-0.060	0.030	Ok	Ok	9	
15	200	70	8	79	88	0.247	0.337	Unacceptable	Ok	5	
16	inf	50	9	93	89	-0.060	0.030	Ok	Ok	-1	
17	280	130	9	93	93	0.183	0.273	Unacceptable	Ok	-4	
18	inf	40	10	110	94	-0.060	0.030	Ok	Ok	-1	
19	540	100	10	110	96	0.075	0.165	Ok	Ok	-2	
20	inf	150	10	110	100	-0.060	0.030	Ok	Ok	-3	
21	420	70	11	105	101	0.131	0.221	Unacceptable	Ok	-1	
22	inf	90	11	105	104	-0.060	0.030	Ok	Ok	-3	
23	95	120	12	66	80	0.476	0.566	Unacceptable	Check!	23	
24	inf	30	12	66	66	-0.060	0.030	Ok	Ok	14	
25	95	140	12	66	66	0.301	0.391	Undesirable	Ok	0	
26	1400	170	13	110	91	-0.013	0.077	Ok	Ok	-25	
27	inf	140	13	110	95	-0.060	0.030	Ok	Ok	-4	
28	570	100	13	110	96	0.068	0.158	Ok	Check!	-2	
29	inf	100	13	110	100	-0.060	0.030	Ok	Ok	-3	
30	190	135	14	79	90	0.274	0.364	Unacceptable	Check!	10	
31	inf	140	15	100	94	-0.060	0.030	Ok	Ok	-4	
32	360	110	15	100	96	0.142	0.232	Undesirable	Ok	-2	
33	inf	65	15	100	100	-0.060	0.030	Ok	Ok	-4	
34	140	65	16	73	89	0.382	0.472	Unacceptable	Check!	11	
35	inf	200	17	110	93	-0.060	0.030	Ok	Ok	-4	
36	265	90	18	86	89	0.174	0.264	Undesirable	Ok	4	
37	inf	150	19	107	93	-0.060	0.030	Ok	Ok	-4	
38	470	100	19	107	96	0.095	0.185	Ok	Ok	-4	

Forward

Element	Radius	Length
1	inf	210
2	410	530
3	inf	400
4	2000	510
5	inf	120
6	550	170
7	750	230
8	inf	100
9	510	90
10	360	250
11	1800	150
12	8300	430
13	275	120
14	inf	30
15	200	70
16	inf	50
17	280	130
18	inf	40
19	540	100
20	inf	150
21	420	70
22	inf	90
23	95	120
24	inf	30
25	95	140
26	1400	170
27	inf	140
28	570	100
29	inf	100
30	190	135
31	inf	140
32	360	110
33	inf	65
34	140	65
35	inf	200
36	265	90
37	inf	150
38	470	100
39	750	150
40	inf	180
41	310	110
42	inf	40
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0

Reverse

Element	Radius	Length
42	inf	40
41	310	110
40	inf	180
39	750	150
38	470	100
37	inf	150
36	265	90
35	inf	200
34	140	65
33	inf	65
32	360	110
31	inf	140
30	190	135
29	inf	100
28	570	100
27	inf	140
26	1400	170
25	95	140
24	inf	30
23	95	120
22	inf	90
21	420	70
20	inf	150
19	540	100
18	inf	40
17	280	130
16	inf	50
15	200	70
14	inf	30
13	275	120
12	8300	430
11	1800	150
10	360	250
9	510	90
8	inf	100
7	750	230
6	550	170
5	inf	120
4	2000	510
3	inf	400
2	410	530
1	inf	210

University of Southern Queensland, Faculty of Engineering and Surveying

 Rural Road Operating Speed Assessment
Appendix D

OSIST Formulae

PR Batisisisurf

Element	Radius	Length	Section	Op. Speed (km/h)	Vehicle Speed	Side Friction Range		
=IF(C6="'"'", 1)	inf	210	=IF(\$B6="', "',EG16)	=IF(\$B6="','"', EH16)	=IF(C6="','",'Speed Analysis'!17)	=IF(B6="'"'"',IF(C6="inf",-0.06,((G6^2)/(127* C))-0.06))		
	410	530	=IF(\$B7="', "', EG17)	=IF(\$B7="','"', EH17)	=1F(C77"'",'",'Speed Analysis'! ${ }^{\text {a }}$)		=IF(B7="'",'",IF(C7="inf",0.03,((G7^^))/(127*C7))+0.03))	
=IF(C8="'"',', $\mathrm{B} 7+1$)	nf	00	=IF(\$B8="', "', EG18)	=IF(\$B8="'" '"', EH18)	=IF(C8="', '", 'Speed Analysis'! ${ }^{\text {a }}$)	=IF(B8="'" '", IF (C8="'inf",-0.06,((G8^2)/(127*C8))-0.06))	=IF(B8="'","',IF(C8="inf",0.03,((G8^^)/(127**C8))+0.03))	
	2000	510	=IF(\$B9="', "', EG19)	=IF(\$B9="','"', EH19)	=IF(C9="'"',','Speed Analysis'!110)	=IF(B9="'"'", 1 IF(C9="inf",--0.06,((G9^2)/(127*C9))-0.06))	=IF(B9="'"'"',IF(C9="inf",0.03,((G9^^))(127**C9))+0.03))	
=IF(C10="', "', $\mathrm{B9} 9+1$)	inf	120	=IF(\$B10="','",',G20)	=IF(\$B10="'"',',EH20)	=IF(C10="','"','Speed Analysis'!\|11)	=IF(B10="'","',IF(C10="inft,--0.06,((G10^2)/(127*C10))-0.06))		
=IF(C11="'"'"', B10+1)	550	170	=IF(\$B11="'"',',EG21)	=IF(\$B11="',"', EH21)	=IF(C11="'"',','Speed Analysis'!12)			
=IF(C12="','"', B11+1)	750	230	=IF(\$B12="', '", $\mathrm{EG22}$)	=IF(\$B12="',"',EH22)	=IF(C12="','",'Speed Analysis'!113)		=IF(B12="', "', IF(C12="inf", $\left.\left.0.03,\left(\left(\mathrm{G} 12^{\wedge} 2\right) /\left(127^{*} \mathrm{C} 12\right)\right)+0.03\right)\right)$	
	inf	100	=IF(\$B13="'"',',EG23)	=IF(\$B13="',"',EH23)	=IF(C13z"'",'"', 'Speed Analysis'!114)		=IF(B13="', "', IF(C13="inf",0.03,((G13^2)/(127*C13))+0.03))	
	510	90	=IF(\$B14="',"','EG24)		=IF(C14"'",'",''Speed Analysis'!115)			
	360	250	=IF(\$B15="', '",',G25)	=IF(\$B15="','", EH25)	=IF(C15="','",','Speed Analysis'!116)			
=IF(C16="'"'"', B15+1)	1800	150	=IF(\$B16="'"',',EG26)	=IF(\$B16="'"'",EH26)		IIF(B16="'",'",IF(C16="inf",-0.06,((G16^2)/(127*C16))-0.06))		
	8300	430	=IF(\$B17="', '", EG27)	=\|F(\$B17 $=$ "','", EH27)	=IF(C17="','"','Speed Analysis'!118)	=IF(B17="'", "', IF(C17="inf",--0.06,((G17^^2)(127**C17))-0.06))		
=IF(C18="","",B17+1)	275	120	=IF(\$B18="","",EG28)	=IF(\$B18="","",EH28)	=IF(C18="","\%,'Speed Analysis'!119)	=IF(B18="","",IF(C18="inf",-0.06,((G18^2)(127*C18))-0.06))	=IF(B18="","",IF(C18="inf",0.03,((G18^2)/(127*C18))+0.03))	
=IF(C19 ${ }^{\text {"'",'"', }}$, $18+1$)	inf	30	=IF(\$B19="', '", EG29)	=IF(\$B19="',"',EH29)	=IF(C19="','"','Speed Analysis'! 20)			
=IF(C20="","",B19+1)	200	70	=IF(SB20=","",EG30)	=IF(\$B20="","",EH30)	=IF(C20="","",'Speed Analysis'!121)	=IF(B20="","",IF(C20="inf",-0.06,((G20^2))(127*C20))-0.06))	=IF(B20="","",IF(C20="inf",0.03,((G20^2)/(127* ${ }^{\text {c }}$ (20) $\left.)+0.03\right)$)	
-IF(C21="','", B20+1)	inf	50	=IF(\$B21="', '", EG31)	=IF(\$B21="','",EH31)	=\|F(C21="', "', 'Speed Analysis'! 122)		=IF(B21="', "', IF(C21="inf",0.03,((G21^2)/(127* ${ }^{\text {a }}$ (21) $\left.)+0.03\right)$)	
	280	130	=IF(\$B22="', '", EG32)	=IF(\$B22="',"',EH32)	=IF(C22="', "', 'Speed Analysis'!\|23)	=IF(B22="', "', IF(C22="inft,--0.06,((G22^2)/(127**C22))-0.06))	=IF(B22="', "',IF(C22="inf",0.03,((G22^2)/(127* ${ }^{\text {c }}$ (22) $\left.)+0.03\right)$)	
	inf	40	=IF(\$B23="',"', EG33)		=IF(C23" "', '", 'Speed Analysis'!\|24)		=IF(B23="', "', IF(C23="inf",0.03,((G23^2)/(127* 2 C23))+0.03))	
	540	100	=IF(\$B24="'"',',EG34)	=IF(\$B24="'"',',EH34)	=\|F(C24="'",'",'Speed Analysis'!	25)	IIF(B24="'", ", IF(C24="inf",--0.06,((G24^2)/(127**C24))--0.06))	
=IF(C25="'"',', B24+1) $^{\text {a }}$	inf	150	=IF(\$B25="',"', EG35)	=IF(\$B25="'"',', EH35)	=IF(C25="'"', ', 'Speed Analysis'!\|26)		=IF(B25="', "', IF(C25="inf",0.03,((G25^2)/(127* 2 C25))+0.03))	
	420	70	=IF(\$B26="',"',EG36)	=IF(\$B26="',"', EH36)	=IF(C26="','",','Speed Analysis'!\|27)	=IF(B26="', "', IF(C26="inf",--0.06,((G26^2))(127**C26))-0.06))	=IF(B26="', "', IF(C26="inf",0.03,((G26^2)/(127* ${ }^{\text {a }}$ (26)) +0.03$)$)	
=IF(C27="','", B26+1)	inf	90	=IF(\$B27="',"',EG37)	=IF(\$B27="','",EH37)	=IF(C27="'",'",'Speed Analysis'!\|28)	IIF(B27="', '", IF(C27="inf",--0.06,((G27^2)/(127**C27))-0.06))	=IF(B27="', "',IF(C27="inf",0.03,((G27^2)/(127*C27))+0.03))	
=IF(C28="","",B27+1)	95	120	=IF(\$828="","",EG38)	=IF(\$B28="","",EH38)	=IF(C28="","",'Speed Analysis'!129)	=IF(B28="","",IF(C28="inf",-0.06,((G28^2)(127*C28)-0.06))		
	inf	30	=IF(\$B29="','",EG39)	=IF(\$B29="','",EH39)	=IF(C29="', "', 'Speed Analysis'! 130)	IIF(B29="'"'",IF(C29="inf",-0.06,((G29^2)/(127**C29))-0.06))	=IF(B29="', "', IF(C29="inf",0.03,((G29^2)/(127* ${ }^{\text {a }}$ (29) $\left.)+0.03\right)$)	
	95	140	=IF(\$B30="', "', EG40)	=IF(\$B30="', "', EH40)				
=IF(C31="','", B30+1)	00	170	=IF(\$B31="',"', EG41)	=IF(\$B31="',"', EH41)				
	inf	140	=IF(\$B32="', '", EG42)	=IF(\$B32="',"', EH42)	=IF(C32="', "', 'Speed Analysis'!\|33)	=IF(B32="', "', IF(C32="inft,--0.06,((G32^2)/(127**C32))-0.06))	=IF(B32="', "', IF(C32="inf",0.03,((G32^2)/(127* ${ }^{\text {a }}$ (32$)$) +0.03$)$)	
	570	100	=IF(\$B33="',"', EG43)	=IF(\$B33="',"',', EH43)	=IF(C33="'",'",'Speed Analysis'! ${ }^{\text {a }}$ /34)	=IF(B33="', "', IF(C33="inft',-0.06,((G33^2))(127**C33))-0.06))	=IF(B33="', "', IF(C33="inf",0.03,((G33^2)/(127* ${ }^{\text {a }}$ (33$)$) +0.03$)$)	
=IF(C34="'"',',B33+1)	inf	100	=IF(\$B34="',"',EG44)	=IF(\$B34="',"','EH44)	=IF(C34="'"',','Speed Analysis'!\|35)			
=IF(C35="","",B34+1)	190	135	=IF(\$B35="","",EG45)	=IF(\$B35="","",EH45)	=IF(C35="","",'Speed Analysis'! 36)	=IF(B35="","",IF(C35="inf",-0.06,((G35 ${ }^{\text {^2 } 2)(127 * C 35))-0.06)) ~}$	=IF(B35="","",IF(C35="inf",0.03,((G35^2)/(127*C35))+0.03))	
	inf	140	=IF(\$B36="', '",'EG46)	=IF(\$B36="','",EH46)	=IF(C36="', "', 'Speed Analysis'! ${ }^{\text {a }}$ /37)	=IF(B36="', "', IF(C36="inf",--0.06,((G36^2))(127* C 36$)$)-0.06))	=IF(B36="', "', IF(C36="inf",0.03,((G36^2)/(127*C36))+0.03))	
=IF(C37="', '", B36+1)	360	110	=IF(\$B37="', "', EG47)	=IF(\$B37="',"', EH47)		=IF(B37="', '", IF(C37="inft,--0.06,((G37^2)/(127**C37))--.06))	=IF(B37="', "',IF(C37="inf",0.03,((G37^2)/(127* ${ }^{\text {a }}$ (37$)$) +0.03$)$)	
=IF(C38="','"', B37+1)	inf	65	=IF(\$B38="',"',EG48)	=IF(\$B38="','"', EH48)	=IF(C38="','"', 'Speed Analysis'!\|39)	IIF(B38="'","',IF(C38="inf",--0.06,((G38^2))(127**C38))-0.06))		
=IF(C39="","",B38+1)	140	65	=IF(\$B39="","',EG49)	=IF(\$B39="","",EH49)	=IF(C39=""," w ,'Speed Analysis'! 140)	=IF(B39="","",IF(C39="inf",-0.06,((G39^2) (127*C39))-0.06))		
=IF(C40="'"',', B39+1)	inf	200	=IF(\$B40="','",',EG50)	=IF(\$B40="','", EH50)	=IF(C40="', "', 'Speed Analysis'! 141)	IIF(B40="', '", IF(C40="inf",--0.06,((G40^2)/(127*C40))-0.06))		
	265	90	=IF(\$B41="', '", EG51)	=IF(\$B41="','"', EH51)	=IF(C41="'",'",'Speed Analysis'!\|42)			
=IF(C42="'"',', B41+1)	inf	150	=IF(\$B42="',"',EG52)	=IF(\$B42="'"',',EH52)	=IF(C42"'"', ', 'Speed Analysis'!\|43)	=IF(B42="'", ", IF(C42="inf",--0.06,((G42^2)(127**C42))--0.06))		
	470	100	=IF(\$B43="',"', EG53)	=IF(\$B43="'"',",EH53)	=IF(C43="'", "', 'Speed Analysis'! 144)	=IF(B43="'", "', IF(C43="inft,--0.06,((G43^2))(1227*C43))-0.06))	=IF(B43="', "', IF(C43="inf",0.03,((G43^2)/(127* 4 C43))+0.03))	
=IF(C44="'"',', B43+1)	750	150	=IF(\$B44="', '", EG 54)	=IF(\$B44="',"', EH54)	=IF(C44="'"',','Speed Analysis'!\|45)			
=IF(C45="'"',', B44+1)	inf	180	=IF(\$B45="', '", EG 55)	=IF(\$B45="',"', EH55)		=IF(B45="'", '",IF(C45="inf",--0.06,((G45^2)/(127**C45))--0.06))		
=IF(C46="'"',', B45+1)	310	110	=IF(\$B46="', '",',G656)	=IF(\$B46="'"'", EH 56)	=IF(C46="','"', 'Speed Analysis'!\|47)	=IF(B46="', "', IF(C46="inf",--0.06,((G46^2)/(127**C46))--0.06))	=IF(B46="', "',IF(C46="inf",0.03,((G46^2)/(127* ${ }^{\text {a }} 46$) $\left.)+0.03\right)$)	
=IF(C47="'"',', B46+1)	inf	40	=IF(\$B47="', '", EG57)	=IF(\$B47="',"', EH57)		=IF(B47="', "', IF(C47="inf",--0.06,((G47^2)/(127**C47))--.06))		
=1F(C48="'"',', B47+1)			=IF(\$B48="',"', EG58)	=IF(\$B48="'"'", EH 58)	=IF(C48="', '", 'Speed Analysis'!\|49)	=IF(B48="', "', IF(C48="inf",--0.06,((G48^2)/(127**C48))--0.06))	=IF(B48="', "',IF(C48="inf",0.03,((G48^2)/(127* $\left.{ }^{\text {a }} 488\right)$) +0.03$)$)	
			=IF(\$B49="',"',EG59)	=IF(\$B49="'"',', EH59)		=IF(B49="', '", IF(C49="inf",--0.06,((G49^2)/(127**C49))-0.06))		
=IF(C50="'"',', B49+1)			=IF(\$B50="', '", EG60)	=IF(\$B50="',"', EH60)	=IF(C50="'",'",'Speed Analysis'! ${ }^{\text {a }}$ (1)			
			=IF(\$B51="', '", EG61)	=IF(\$B51="',"', EH61)	=IF(C51="'",'",'Speed Analysis'! ${ }^{\text {a }}$ (1)	IIF(B51="'", "', IF(C51="inf",--0.06,((G51^2)/(127**C51))--0.06))	=IF(B51="', "',IF(C51="inf",0.03,((G51^2)/(127* ${ }^{\text {a }}$ (51$)$) +0.03$)$)	
=IF(C52="'"',', B51+1)			=IF(\$B52="', "', EG62)	=IF(\$B52="',"', EH62)	=IF(C52="', '", 'Speed Analysis'! ${ }^{\text {a }}$ (153)	IIF(B52="', "', IF(C52="inf",--0.06,((G52^2)/(127**C52))--0.06))	=IF(B52="', "', IF(C52="inf",0.03,((G52^2)/(127* ${ }^{\text {a }}$ (52$)$) +0.03$)$)	
			=IF(\$B53="',"',EG63)	=IF(\$B53="'"',', EH63)		=IF(B53="'", "', IF(C53="inf",--0.06,((G53^2)/(127**C53))--0.06))	=IF(B53="', "',IF(C53="inf",0.03,((G53^2)/(127* ${ }^{\text {a }}$ (53$)$) +0.03$)$)	
=IF(C54="'"', ', B53+1)			=IF(\$B54="'"',', EG64)	=IF(\$B54="'"'", EH 64)	=IF(C54""', '", 'Speed Analysis'!\|15)	=IF(B54="'", "', IF(C54="inf",--0.06,((G54^2)/(127*C54))-0.06))		
			=IF(\$B55="', "', EG65)	=IF(\$B55="'"'",'EH65)		IIF(B55="'", "', IF(C55="inf",--0.06,((G55^2))(127**C55))--0.06))		

Side Friction Check

 $=I F(B 8=" ", ", 1 / I F(M 1 N(H 8: 18)<=V L O O K U P(R O U N D U P(G 8 / 5,0) * 5, R \$ 49: T \$ 66,3, T R U E), " O K ", I F(M I N(H 8: 18)<=V L O O K U P(R O U N D U P(G 8 / 5,0) * 5, R \$ 49: T \$ 66,2, T R U E), " U n d e s i r a b l e ", " U n a c c e p t a b l e ")))$ IF(B9="","",IF(MIN(H9:19)<=VLOOKUP(ROUNDUP(G9/5,0)*5,R\$49:T\$66,3,TRUE),"Ok",IF(MIN(H9:19)<=VLOOKUP(ROUNDUP(G9/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable"))

IF(B18="",",IF(MIN(H18:I18)<=VLOOKUP(ROUNDUP(G18/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H18:I18)<=VLOOKUP(ROUNDUP(G18/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable")))

 IF(B21="","',IF(MIN(H21:121)<=VLOOKUP(ROUNDUP(G21/5,0)*5,R\$49:T\$66,3,TRUE),"Ok",IF(MIN(H21:I21)<=VLOOKUP(ROUNDUP(G21/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable"))) IF(B22=""'",",IF(MIN(H22:I22)<=VLOOKUP(ROUNDUP(G22/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H22:122)<=VLOOKUP(ROUNDUP(G22/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable"
 IF(B24="',"',"IF(MIN(H24:124)<=VLOOKUP(ROUNDUP(G24/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H24:124)<=VLOOKUP(ROUNDUP(G24/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable""))) IF(B25="'"'",IF(MIN(H25:125)<=VLOOKUP(ROUNDUP(G25/5,0)*5,R\$49:T\$66,3,TRUE),"Ok",IF(MIN(H25:125)<=VLOOKUP(ROUNDUP(G25/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable""))) IF(B26="'"',"IF(MIN(H26:126)<=VLOOKUP(ROUNDUP(G26/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H26:126)<=VLOOKUP(ROUNDUP(G26/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable"")) F(B27="" ""I IF(MIN(H27:127)<=VLOOKUP(ROUNDUP(G2715,0)*5,R\$49:T\$66,3,TRUE),"Ok",IF(MIN(H27:127)<=VLOOKUP(ROUNDUP(G27/5,0)*5,R\$49:T\$66,2,TRUE), "Undesirable" "Unacceptable")) \qquad
 $=I F(B 29="+", ", 1 F(M I N(H 29: 129)<=V L O O K U P(R O U N D U P(G 29 / 5,0) * 5, R \$ 49: T \$ 66,3, T R U E), " O k ", I F(M I N(H 29: 129)<=V L O O K U P(R O U N D U P(G 29 / 5,0) * 5, R \$ 49: T \$ 66,2, T R U E), " U n d e s i r a b l e ", " U n a c c e p t a b l e ")))$

 FF(B32="","',IF(MIN(H32:132)<=VLOOKUP(ROUNDUP(G32/5,0)*5,R\$49:T\$66,3,TRUE),"Ok",IF(MIN(H32:I32)<=VLOOKUP(ROUNDUP(G32/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable"))) IF(B33="'"'",IF(MIN(H33:I33)<=VLOOKUP(ROUNDUP(G33/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H33:I33)<=VLOOKUP(ROUNDUP(G33/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable" $"))$ IF(B34=""'"',IF(MIN(H34:I34)<=VLOOKUP(ROUNDUP(G34/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H34:134)<=VLOOKUP(ROUNDUP(G34/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirabbe","Unacceptable")))

 IF(B38=""'",",IF(MIN(H38:138)<=VLOOKUP(ROUNDUP(G38/5,0)*5,R\$49:T\$66,3,TRUE),"Ok",IF(MIN(H38:138)<=VLOOKUP(ROUNDUP(G38/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable"))

 IF(B41="'"'",IF(MIN(H41:141)<=VLOOKUP(ROUNDUP(G41/5,0)*5,R\$49:T\$66,3,TRUE),"OK",IF(MIN(H41:141)<=VLOOKUP(ROUNDUP(G41/5,0)*5,R\$49:T\$66,2,TRUE),"Undesirable","Unacceptable")))

 IF(B47-, , 'IF (MN (

PR PARSONS

University of Southern Queensland, Faculty of Engineering and Surveying Rural Road Operating Speed Assessment

Appendix E

Mt Nathan Road Traffic Counts

	Road Se	istric Sit Typ trea Clas Clas		BEA	TH CO EAUDE 150 me RAGE Stream Vehicle me	AS	T HINT	ERR	LAND	DIS	TRICT rings 43.3		ange	0			$\begin{aligned} & \text { Mean Cc } \\ & \hline 06-\mathrm{AU} \\ & \hline 12-\mathrm{AUC} \end{aligned}$		$\begin{aligned} & \text { ts for } \\ & 007 \\ & \hline 007 \end{aligned}$					
Hour	Monday	\%	Tuesday	\%	Wednesda	\% \%	Thursday	\%	Friday	\%	Saturday	\%	Sunday	\%	Average Week Day		Average Week End	\%	Average Day \%					
00-01	10	. 2	9	. 2	15	. 3	12	. 2	9	. 1	42	. 7	33	. 5	11	. 2	38	. 6	19	. 3				
01-02	11	. 2	9	. 2	4	.1	5	. 1	6	. 1	17	. 3	15	. 2	7	. 1	16	. 2	10	. 2				
02-03	2	. 0	8	. 1	7	. 1	5	. 1	9	. 1	16	. 3	23	. 3	6	. 1	20	. 3	10	. 2				
03-04	9	. 2	6	.1	11	. 2	13	. 2	9	. 1	14	. 2	16	. 2	10	. 2	15	. 2	11	. 2				
04-05	29	. 5	33	6	27	. 5	24	4	32	. 5	35	. 6	27	. 4	29	. 5	31	. 5	30	5				
05-06	134	2.2	143	2.4	117	2.0	113	1.9	120	1.8	62	1.0	42	. 6	125	2.1	52	. 8	104	1.7				
06-07	334	5.6	304	5.1	333	5.6	318	5.3	303	4.6	136	2.2	102	1.5	318	5.2	119	1.8	261	4.2				
07-08	445	7.4	448	7.6	435	7.4	447	7.4	438	6.7	230	3.7	211	3.1	443	7.3	221	3.4	379	6.1				
08-09	430	7.2	401	6.8	429	7.3	428	7.1	433	6.6	362	5.8	322	4.7	424	7.0	342	5.2	401	6.5				
09-10	397	6.6	386	6.5	412	7.0	372	6.2	404	6.2	464	7.4	468	6.9	394	6.5	466	7.1	415	6.7				
10-11	411	6.9	374	6.3	411	6.9	405	6.7	415	6.3	552	8.9	639	9.4	403	6.6	596	9.1	458	7.4				
11-12	380	6.4	355	6.0	401	6.8	374	6.2	421	6.4	623	10.0	733	10.8	386	6.4	678	10.4	470	7.6				
12-13	353	5.9	355	6.0	342	5.8	320	5.3	413	6.3	542	8.7	636	9.3	357	5.9	589	9.0	423	6.8				
13-14	410	6.9	356	6.0	358	6.1	375	6.2	392	6.0	534	8.6	608	8.9	378	6.2	571	8.8	433	7.0				
14-15	414	6.9	412	7.0	397	6.7	396	6.6	545	8.3	515	8.3	660	9.7	433	7.1	588	9.0	477	7.7				
15-16	508	8.5	490	8.3	493	8.3	501	8.3	550	8.4	470	7.5	629	9.2	508	8.4	550	8.4	520	8.4				
16-17	568	9.5	583	9.9	566	9.6	571	9.5	654	10.0	435	7.0	543	8.0	588	9.7	489	7.5	560	9.0				
17-18	514	8.6	506	8.6	467	7.9	506	8.4	523	8.0	441	7.1	450	6.6	503	8.3	446	6.8	487	7.8				
18-19	271	4.5	324	5.5	313	5.3	355	5.9	373	5.7	256	4.1	253	3.7	327	5.4	255	3.9	306	4.9				
19-20	122	2.0	144	2.4	137	2.3	165	2.7	162	2.5	141	2.3	141	2.1	146	2.4	141	2.2	145	2.3				
20-21	106	1.8	103	1.7	105	1.8	120	2.0	113	1.7	99	1.6	99	1.5	109	1.8	99	1.5	106	1.7				
21-22	63	1.1	82	1.4	77	1.3	111	1.8	110	1.7	90	1.4	75	1.1	89	1.5	83	1.3	87	1.4				
22-23	47	. 8	57	1.0	39	. 7	59	1.0	75	1.1	92	1.5	55	. 8	55	. 9	74	1.1	61	1.0				
23-24	16	3	26	4	21	4	19		55	. 8	64	1.0	32	. 5	27	. 5	48	. 7	33	. 5				
Peaks	Time Value		Time Value 12:00 623		$\begin{aligned} & \text { Time } \text { Value } \\ & \begin{array}{\|l\|} \hline 12: 00 \\ 733 \end{array} \end{aligned}$		$\begin{array}{c\|} \hline \text { Time } \\ \begin{array}{c\|} \text { Value } \\ \hline 8: 00 \end{array} \\ \hline \end{array}$		Time Value		Time Value													
AM	8:00	445	8:00	448	8:00	435	8:00	447			12:00	678			12:00	470								
PM	17:00	568	17:00	583	17:00	566	17:00	571	17:00	654			13:00	542			15:00	660	17:00	588	13:00	589	17:00	560
16 Hour	5,726	95.7	5,623	95.1	5,676	95.9	5,764	95.8	6,249	95.2	5,890	94.5	6,569	96.4	5,808	95.5	6,230	95.5	5,928	57.5				
18 Hour	$5,789$	96.7	5,706	96.5	5,736	96.9	5,842	97.1	6,379		$6,046$	97.0	6,656	97.7	5,890	96.9	6,351	97.4	6,022	7.0				
24 Hour	5,984	00.0	5,914	00.0	5,917	100.0	6,014 1	00.0	6,564	100.0	6,232 1	100.0	6,812	00.0	6,079 1	00.0	6,522 1	00.0	6,205	0.0				
AVG Week Day AVG Week End AVG Day		98.4\% 96.4\%	$\begin{array}{r} \hline 97.3 \% \\ \hline 95.3 \% \\ \hline \end{array}$		97.3\%95.4\%		98.9% 96.9%		$\begin{aligned} & 108.0 \% \\ & \text { 105.8\% } \end{aligned}$		$\begin{array}{\|r\|} \hline 95.6 \% \\ \hline 100.4 \% \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 104.4 \% \\ \hline 109.8 \% \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \frac{100.0 \%}{93.2 \%} \\ \hline 98.0 \% \end{array}$		107.3% 100.0% 105.1%		$\begin{array}{r} \frac{102.1 \%}{95.1 \%} \\ \hline 10.0 \% \end{array}$					

Traffic Analysis and Reporting System WEEKLY SUMMARY REPORT

Traffic Analysis and Reporting System WEEKLY SUMMARY REPORT

District	1 SOUTH COAST HINTERLAND DISTRICT	
Road Section	202 BEAUDESERT - NERANG ROAD	
Site	$11431 \quad 150$ metres south of Crystal Springs Ct	
Tdist	43.3	
Site Stream	All Site Streams	
From	$06-A U G-2007$	To 12-AUG-2007

00-01	18	0	0	0	0	0	0	0	0	0	0	0	18
01-02	9	0	0	0	0	0	0	0	0	0	0	0	9
02-03	8	0	2	0	0	0	0	0	0	0	0	0	10
03-04	9	1	1	0	0	0	0	0	0	0	0	0	11
04-05	26	1	2	1	0	0	0	0	0	0	0	0	30
05-06	92	2	7	2	0	0	0	0	1	0	0	0	104
06-07	224	11	16	5	0	0	1	0	3	0	0	0	260
07-08	335	11	24	6	1	1	1	1	1	0	0	0	381
08-09	356	9	23	8	1	1	1	0	1	0	0	0	400
09-10	364	12	21	10	1	1	1	1	3	0	0	0	414
10-11	410	15	20	9	0	1	1	0	2	1	0	0	459
11-12	421	13	20	9	1	1	1	0	4	0	0	0	470
12-13	376	13	22	6	2	1	1	0	2	0	0	0	423
13-14	390	11	21	7	1	1	1	0	2	0	0	0	434
14-15	429	12	22	6	1	1	1	1	2	1	0	0	476
15-16	475	12	22	5	1	1	1	0	3	0	0	0	520
16-17	515	13	21	4	0	2	1	0	2	0	0	0	558
17-18	457	8	16	3	1	0	1	0	1	0	0	0	487
18-19	288	5	10	2	0	0	1	0	1	0	0	0	307
19-20	136	2	4	1	0	0	1	0	2	0	0	0	146
20-21	99	3	2	1	0	0	0	1	0	0	0	0	106
21-22	83	1	2	0	0	0	0	0	0	0	0	0	86
22-23	58	0	2	0	0	0	0	0	0	0	0	0	60
23-24	31	0	2	0	0	0	0	0	0	0	0	0	33
Total	5609	155	282	85	10	11	14	4	30	2	0	0	6202
	90.4	2.5	4.5	1.4	0.2	0.2	0.2	0.1	0.5	0.0	0.0	0.0	

Light \% Heavy \%	92.9			
		7.1		
Short \%	92.9			
Truck or Bus \%		6.1		
Art. Veh. \%			1.0	
Rd. Train				0.0

Austroads Class	Percentage
1	90.4
2	2.5
3	4.5
4	1.4
5	0.2
6	0.2
7	0.2
8	0.1
9	0.5
10	0.0
11	0.0
12	0.0

District	1 SOUTH COAST HINTERLAND DISTRICT
Road Section	202 BEAUDESERT - NERANG ROAD
Site	$11431 \quad 150$ metres south of Crystal Springs Ct
Tdist	43.3
Site Stream	Gazettal Direction
From	$06-A U G-2007$

Hour	1	2	3	4	5	6	7	8	9	10	11	12	Total
00-01	6	0	0	0	0	0	0	0	0	0	0	0	6
01-02	4	0	0	0	0	0	0	0	0	0	0	0	4
02-03	3	0	0	0	0	0	0	0	0	0	0	0	3
03-04	5	0	1	0	0	0	0	0	0	0	0	0	6
04-05	15	1	1	0	0	0	0	0	0	0	0	0	17
05-06	54	1	4	1	0	0	0	0	0	0	0	0	60
06-07	111	5	9	1	0	0	0	0	2	0	0	0	128
07-08	200	5	12	3	0	0	0	0	1	0	0	0	221
08-09	214	5	12	4	1	0	0	0	1	0	0	0	237
09-10	190	6	10	5	0	0	0	0	1	0	0	0	212
10-11	211	8	11	5	0	0	0	0	1	0	0	0	236
11-12	212	8	10	5	0	0	0	0	1	0	0	0	236
12-13	188	7	13	3	1	0	0	0	1	0	0	0	213
13-14	210	5	10	4	0	1	1	0	1	0	0	0	232
14-15	238	6	12	4	1	1	0	1	2	1	0	0	266
15-16	254	6	11	3	0	1	1	0	1	0	0	0	277
16-17	258	8	11	4	0	1	1	0	1	0	0	0	284
17-18	220	3	8	2	0	0	0	0	1	0	0	0	234
18-19	135	2	7	1	0	0	0	0	0	0	0	0	145
19-20	62	1	2	1	0	0	0	0	2	0	0	0	68
20-21	41	${ }^{2}$	1	0	0	0	0	0	0	0	0	0	44
21-22	27	0	1	0	0	0	0	0	0	0	0	0	28
22-23	25	0	1	0	0	0	0	0	0	0	0	0	26
23-24	11	0	1	0	0	0	0	0	0	0	0	0	12
Total	2894	79	148	46	3	4	3	1	16	1	0	0	3195
Class\%	90.7	2.5	4.6	1.4	0.1	0.1	0.1	0.0	0.5	0.0	0.0	0.0	

Light \% Heavy \% Short \%	93.2			
		6.8		
	93.2			
Truck or Bus \%		6.1		
Art. Veh. \%			0.7	
Rd. Train				0.0

Austroads Class	Percentage
1	90.7
2	2.5
3	4.6
4	1.4
5	0.1
6	0.1
7	0.1
8	0.0
9	0.5
10	0.0
11	0.0
12	0.0

District	1 SOUTH COAST HINTERLAND DISTRICT
Road Section	202 BEAUDESERT - NERANG ROAD
Site	$11431 \quad 150$ metres south of Crystal Springs Ct
Tdist	43.3
Site Stream	Gazettal Direction
From	$06-A U G-2007$

Hour	1	2	3	4	5	6	7	8	9	10	11	12	Total
00-01	6	0	0	0	0	0	0	0	0	0	0	0	6
01-02	4	0	0	0	0	0	0	0	0	0	0	0	4
02-03	3	0	0	0	0	0	0	0	0	0	0	0	3
03-04	5	0	1	0	0	0	0	0	0	0	0	0	6
04-05	15	1	1	0	0	0	0	0	0	0	0	0	17
05-06	54	1	4	1	0	0	0	0	0	0	0	0	60
06-07	111	5	9	1	0	0	0	0	2	0	0	0	128
07-08	200	5	12	3	0	0	0	0	1	0	0	0	221
08-09	214	5	12	4	1	0	0	0	1	0	0	0	237
09-10	190	6	10	5	0	0	0	0	1	0	0	0	212
10-11	211	8	11	5	0	0	0	0	1	0	0	0	236
11-12	212	8	10	5	0	0	0	0	1	0	0	0	236
12-13	188	7	13	3	1	0	0	0	1	0	0	0	213
13-14	210	5	10	4	0	1	1	0	1	0	0	0	232
14-15	238	6	12	4	1	1	0	1	2	1	0	0	266
15-16	254	6	11	3	0	1	1	0	1	0	0	0	277
16-17	258	8	11	4	0	1	1	0	1	0	0	0	284
17-18	220	3	8	2	0	0	0	0	1	0	0	0	234
18-19	135	2	7	1	0	0	0	0	0	0	0	0	145
19-20	62	1	2	1	0	0	0	0	2	0	0	0	68
20-21	41	${ }^{2}$	1	0	0	0	0	0	0	0	0	0	44
21-22	27	0	1	0	0	0	0	0	0	0	0	0	28
22-23	25	0	1	0	0	0	0	0	0	0	0	0	26
23-24	11	0	1	0	0	0	0	0	0	0	0	0	12
Total	2894	79	148	46	3	4	3	1	16	1	0	0	3195
Class\%	90.7	2.5	4.6	1.4	0.1	0.1	0.1	0.0	0.5	0.0	0.0	0.0	

Light \% Heavy \% Short \%	93.2			
		6.8		
	93.2			
Truck or Bus \%		6.1		
Art. Veh. \%			0.7	
Rd. Train				0.0

Austroads Class	Percentage
1	90.7
2	2.5
3	4.6
4	1.4
5	0.1
6	0.1
7	0.1
8	0.0
9	0.5
10	0.0
11	0.0
12	0.0

Site No. $\quad 32$ Site ID $\quad 11431$ Survey Dates Friday, 9 November 2001 to Thursday,15 November 2001

	Northbound	Southbound	Total	Northbound	Southbound
Average Daily Traffic	2590	2734	5324	Mean Speed 92	89
Average Weekday Traffic	2642	2802	5444	85\%ile Speed $\quad 102$	98
Percentage Heavy Vehicles	4.7\%	4.1\%	4.4\%		

Vehicle Distribution by AUSTROADS Classification

Direction 1 Northbound

Date	Day	Volume	Class	CI	cl	cl	cI	cl	cl	cl	cl	cl	c	c	cl
			1	2	3	4	5	6	7	8	9	10	11	12	13
9 9-Nov-01	${ }^{6}$	2767	2558	60	101	13	3	3	9	8	9	1	0	0	2
10-Nov-01	7	2359	2255	46	36	12	3	0	4	0	3	0	0	0	0
11-Nov-01	1	2561	2432	74	36	5	0	3	8	1	1	0	0	0	1
12-Nov-01	2	2421	2238	53	85	12	3	1	10	5	14	0	0	0	0
13-Nov-01	3	2663	2457	58	94	24	5	1	11	4	7	1	0	0	1
14-Nov-01	4	2667	2460	51	99	26	8	1	5	5	9	3	0	0	0
15-Nov-01	5	2692	2463	72	95	28	6	7	5	4	7	1	1	0	3
	Average	2590	2409	59	78	17	4	2	7	4	7	1	0	0	1
	Percent	100.0\%	93.0\%	2.3\%	3.0\%	0.7\%	0.2\%	0.1\%	0.3\%	0.1\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%
Direction 2	Southbound														

Date	Day	Volume	Class	Cl	$\begin{aligned} & \hline \mathrm{cl} \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{cl} \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Cl} \\ & 5 \end{aligned}$	$C 1$ 6	Cl	${ }_{8}^{C}$	Cl	Cl	cl	$\begin{aligned} & \hline 12 \\ & 12 \\ & \hline \end{aligned}$	Cl
9-Nov-01	6	2892	2678	70	95	16	2	2	5	3	17	3	0	0	1
10-Nov-01	7	2484	2376	49	41	5	2	1	7	2	0	0	0	0	1
11-Nov-01	1	2640	2545	63	25	2	0	3	2	0	0	0	0	0	0
12-Nov-01	2	2611	2437	49	78	13	2	1	6	4	16	0	0	1	4
13-Nov-01	3	2743	2542	65	82	26	5	1	8	3	9	0	0	0	2
14-Nov-01	4	2820	2620	53	94	22	5	2	5	2	14	3	0	0	0
15-Nov-01	5	2945	2735	72	82	31	2	6	2	3	10	0		0	
	Average	2734	2562	60	71	16	3	2	5	2	9	1	0	0	1

Combined Average Daily Volumes

Speed Distribution

HourEnding	Direction 1		Direction 2	
	$\begin{aligned} & \text { Ave } \\ & \text { Speed } \end{aligned}$	$\begin{gathered} 85 \% \\ \text { Speed } \end{gathered}$	$\begin{aligned} & \text { Ave } \\ & \text { Speed } \end{aligned}$	850\%
1:00	87	103	${ }^{83}$	${ }^{93}$
2:00	91	100	87	96
3:00	94	103	95	99
4:00	92	102	91	94
5:00	95	105	94	105
6:00	97	108	94	104
7:00	93	102	92	103
8:00	92	103	91	100
9:00	92	101	89	99
10:00	89	99	85	95
11:00	88	97	84	93
12:00	87	97	85	96
13:00	${ }_{91}$	100	86	96
14:00	90	99	86	95
15:00	91	101	85	94
16:00	${ }_{91}$	101	${ }^{86}$	96
17:00	92	101	88	97
18:00	${ }^{93}$	102	88	98
19:00	91	102	88	98
20:00	91	102	89	98
21:00	92	104	89	99
22:00	${ }^{93}$	105	89	99
23:00	92	103	90	99
0:00	94	105	94	101

University of Southern Queensland, Faculty of Engineering and Surveying

 Rural Road Operating Speed Assessment
Appendix F

Mt Nathan Road Accident Data

DEFINITIONS FOR CODING ACCIDENTS NOTE:- $\quad 1=$ Key vehicle direction. ie; The direction in which the key vehicle was

Queensland Government
Department of Main Roads

Road Crash 2 CRASH LISTING REPORT

Intersections

All Intersections

Road Crash 2 CRASH LISTING REPORT

Road Crash 2 CRASH LISTING REPORT

Road Crash 2

Road Crash 2

Road Crash 2

Department of Main Roads

University of Southern Queensland, Faculty of Engineering and Surveying Rural Road Operating Speed Assessment

Appendix G

Mt Nathan Road OSIST Output

USQ Research Project

Case Study - Mt Nathan Road
Operating Speed Interactive Spreadsheet Tool (CDate: 29 Oct 2008

Element	Radius	Length	Section	Op. Speed (km/h)	Vehicle Speed	Side Friction Range		Side Friction Check	Side Friction Increase	Speed Reduction	Comments
1	inf	210	1	110	110	-0.060	0.030	Ok			
2	410	530	2	100	103	0.144	0.234	Unacceptable	Ok	7	
3	inf	400	3	110	106	-0.060	0.030	Ok	Ok	-3	
4	2000	510	3	110	110	-0.012	0.078	Ok	Ok	-4	
5	inf	120	3	110	110	-0.060	0.030	Ok	Ok	0	
6	550	170	3	110	110	0.113	0.203	Ok	Check!	0	
7	750	230	3	110	110	0.067	0.157	Ok	Ok	0	
8	inf	100	3	110	110	-0.060	0.030	Ok	Ok	0	
9	510	90	4	106	109	0.125	0.215	Unacceptable	Ok	1	
10	360	250	5	96	99	0.155	0.245	Undesirable	Ok	10	
11	1800	150	6	110	102	-0.015	0.075	Ok	Ok	-3	
12	8300	430	6	110	110	-0.049	0.041	Ok	Ok	-8	
13	275	120	7	93	102	0.238	0.328	Unacceptable	Check!	8	
14	inf	30	7	93	93	-0.060	0.030	Ok	Ok	9	
15	200	70	8	79	88	0.247	0.337	Unacceptable	Ok	5	
16	inf	50	9	93	89	-0.060	0.030	Ok	Ok	-1	
17	280	130	9	93	93	0.183	0.273	Unacceptable	Ok	-4	
18	inf	40	10	110	94	-0.060	0.030	Ok	Ok	-1	
19	540	100	10	110	96	0.075	0.165	Ok	Ok	-2	
20	inf	150	10	110	100	-0.060	0.030	Ok	Ok	-3	
21	420	70	11	105	101	0.131	0.221	Unacceptable	Ok	-1	
22	inf	90	11	105	104	-0.060	0.030	Ok	Ok	-3	
23	95	120	12	66	80	0.476	0.566	Unacceptable	Check!	23	
24	inf	30	12	66	66	-0.060	0.030	Ok	Ok	14	
25	95	140	12	66	66	0.301	0.391	Undesirable	Ok	0	
26	1400	170	13	110	91	-0.013	0.077	Ok	Ok	-25	
27	inf	140	13	110	95	-0.060	0.030	Ok	Ok	-4	
28	570	100	13	110	96	0.068	0.158	Ok	Check!	-2	
29	inf	100	13	110	100	-0.060	0.030	Ok	Ok	-3	
30	190	135	14	79	90	0.274	0.364	Unacceptable	Check!	10	
31	inf	140	15	100	94	-0.060	0.030	Ok	Ok	-4	
32	360	110	15	100	96	0.142	0.232	Undesirable	Ok	-2	
33	inf	65	15	100	100	-0.060	0.030	Ok	Ok	-4	
34	140	65	16	73	89	0.382	0.472	Unacceptable	Check!	11	
35	inf	200	17	110	93	-0.060	0.030	Ok	Ok	-4	
36	265	90	18	86	89	0.174	0.264	Undesirable	Ok	4	
37	inf	150	19	107	93	-0.060	0.030	Ok	Ok	-4	
38	470	100	19	107	96	0.095	0.185	Ok	Ok	-4	

39	750	150	20	110	100	0.045	0.135	Ok	Ok	-4	
40	inf	180	20	110	103	-0.060	0.030	Ok	Ok	-3	
41	310	110	21	96	97	0.180	0.270	Unacceptable	Check!	6	
42	inf	40	21	96	96	-0.060	0.030	Ok	Ok	1	

[^0]: o Safety Criterion I - Achieve Design Consistency
 o Safety Criterion II - Achieve Operating Speed Consistency
 o Safety Criterion III - Individual Curved Roadway

