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Abstract

Spatial point processes allow for model fitting to spatial point pattern data. These
spatial models estimate parameters, including covariates, based on the spatial location
of points of interest. Despite the effectiveness of this methodology in analysing point
pattern data, the software has difficulty in terms of computation for large, replicated
experiments. In these circumstances, the inferences that can be made from spatial
point processes are quite limiting and this promotes the use of a two-stage method.
The presence of design parameters from a replicated experiment and research interest
in relationships between genotypes advocates the implementation of the linear mixed
model framework in the second stage of the analysis. The viability of such a two-stage
method is investigated in this study with a weighted and unweighted use of the lin-
ear mixed model compared. The linking of spatial point processes and linear mixed
models has not been investigated before, and the findings will therefore shape similar
analyses in the future.

The development of spatial point pattern data can occur through the use of aero-
ponic platforms. In this study, the spatial point pattern data represents the position
of plant root tips. This data was collected from a designed experiment on wheat
plants grown in aeroponic platforms conducted at the Catholic University of Louvain
in Belgium. The hidden nature of plant root traits make their measurement difficult
and various methods have been implemented in an attempt to increase the accuracy
in measuring below ground traits. Aeroponic platforms allow accessibility to plant
root systems in a non-destructive manner, aiding the measurement of below ground
traits. Often, the primary research aim in these trials is to determine variation between
genotypes. A range of below ground traits can be investigated when attempting to
determine genotypic variation in the root architecture of plants. Such traits can be
measured and investigated using the spatial locations of plant root tips.

This study showed that linking spatial point processes and linear mixed models
through the use of a two-stage method is viable. The estimated parameters from
the spatial point processes were used as the response variable in the linear mixed
models, where differences in the results were evident. The unweighted linear mixed
models showed difficulty in estimating genetic variance across the width of the plant
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root systems. This was not the case for the weighted linear mixed models, which
accounted for the uncertainty in the parameter estimates to allow genetic variance to
be estimated. This study also highlighted key components of this two-stage method
which could be improved in the future.
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Chapter 1

Introduction

The architecture of a plant consists of both above ground and below ground compo-
nents. The measurement of above ground plant traits is generally easier than below
ground traits, due to easier access and visibility. Several methods have been attempted
to efficiently measure below ground traits, with the implementation of aeroponic plat-
forms one available option. An aeroponic platform suspends the plants in mid-air such
that plant root systems, which are usually below ground, are easily accessible (Draye
et al., 2018). In such plant trials, often a large number of genotypes are tested and
the purpose is to determine variation between them for a given set of traits. In recent
years, as aeroponic platforms have become increasingly viable for use in plant trials,
the spatial locations of plant root tips has become a focus of interest. The analysis of
these spatial locations can be conducted using spatial point processes.

For spatial data, each spatial location represents one occurrence of the object of
study (Baddeley et al., 2007). In this context, the object of study is a single plant root
tip at one point in time. The collection of spatial locations within a given spatial win-
dow create a spatial point pattern. Spatial point patterns are evident in many contexts
including those where points may represent the locations of cities, galaxies, crimes,
infectious disease cases or earthquake epicentres (Isham, 1981). Figure 1.1 displays a
spatial point pattern of the crime scene locations in Chicago. Spatial point processes
are used for the analysis of such patterns and often the objective is to predict future
locations of the object of study. Spatial point processes can also be used in an experi-
mental setting where multiple spatial point patterns are present in the data. Varying
spatial point processes can be fit to data based on the distribution of the spatial point
pattern, with each type of spatial point process requiring different assumptions to be
met. Often, computational issues impose a restricted implementation of spatial point
process analysis. For this reason, the use of linear mixed models in combination with
spatial point processes in the form of a two-stage analysis will be investigated to de-
termine its viability.
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Figure 1.1: A spatial point pattern where each point represents a crime scene location
in the city of Chicago (Baddeley et al., 2015).

A two-stage analysis method will be applied to the motivating dataset for this
project which comes from an experiment conducted by the Catholic University of
Louvain in Belgium. The experiment is partially replicated with 520 unique wheat
genotypes included. In this case, partial replication refers to the unequal replication
of these genotypes across the experiment. In this experiment, each plant root system
had multiple images taken over an 18 day period to provide an overall spatial point
pattern for the root tips within each root system. As such, there is an analysable spatial
point pattern for each plant root system in the experiment. Through these spatial point
patterns, the root tip data is intended to help understand the genotypic variation in
plant root architecture. Further details regarding the motivating dataset and method
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behind the development of the spatial point patterns are presented in Section 2.2.

The development of spatial point pattern analysis allows for the fitting of models
by parameterising the explanatory variables of the experiment. That is, these statistical
models can incorporate simple design terms of the experiment as well as any covari-
ates which are present. A number of seismological applications as described by Ogata
and Akaike (1982), Ogata (1983), Ogata and Katsura (1986) and Vere-Jones and Ozaki
(1982) examine the relationship between point processes and their covariates. Berman
and Turner (1992) raised the issue of many models resulting in negative estimated
parameter values due to the statistical properties of the estimators lacking clarity. The
major development to address this issue was the use of generalized linear models
(GLMs). The GLM formulation resulted in reliable estimators and as such, progressed
the accuracy and reliability of spatial point process models. This implementation of
spatial point process models is central to the analysis of spatial point patterns, and
this is the case for all types of patterns. The plant root tip data in use for this project
will be modelled according to this formulation, although the specific form the model
takes is dependent on the nature of the point pattern. There are several factors in-
volved in selecting an appropriate spatial point process to fit to the data, and these
will be discussed. Ultimately, spatial point processes will allow the key parameters of
the plant root tip data to be captured with the implementation of an appropriate model.

The linear mixed model is an extension of a linear model in that it allows for the
modelling of fixed, random and residual effects. Further to this, the implementation
of different variance structures at the random and residual levels are possible. This en-
ables extensions to point process models, such as capturing correlation between traits
at both the genetic and residual levels. The ability to attribute variation to genotype and
other design terms relating to the experiment is informative in drawing conclusions
from the analysis. The need for the linear mixed model arises from the issues spatial
point process modelling has in terms of computation. This is particularly the case with
large datasets for replicated experiments (Baddeley and Turner, 2004). Given that this
describes the motivating dataset for this project, a two-stage analysis combining spatial
point processes and linear mixed models is necessary. Spatial point processes remain
an important part of the analysis given the original data is a point pattern. The root tip
study is attempting to determine genotypic variation in the architecture of the plant
roots and as such, the ability of the linear mixed model to capture genetic correlations
is useful. The challenge, then, is to efficiently use both spatial point patterns and linear
mixed models sequentially, in a manner which produces meaningful results. Firstly,
the theoretical context in which this project sits will be established before the imple-
mentation of these models in the R (R Core Team, 2019) program is explored. This will
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be achieved through the use of the R packages spatstat (Baddeley and Turner, 2004)
and ASReml-R (Butler et al., 2018).

1.1 The measurement of plant root traits

The identification and measurement of plant root traits has evolved considerably over
recent years. The key evolution in this area has been the development of methods
which allow root traits to be accurately measured during the growth of the plant
without causing destruction to the root system. Root-related characteristics have been
neglected in the past due to limited knowledge of root system growth and functions,
as well as difficulty in measuring the traits themselves (Manschadi et al., 2006). The
measurement of such traits was extremely difficult given the below ground nature
of the plant roots in most trials. Due to the inherent variation in plant root traits, a
lack of accuracy in measurement can significantly influence the final interpretation.
As a result of this, the study of root traits via experiments was only deemed to be
necessary when the root information could not be accurately generated from a model
(Atkinson, 2000). As further research into plant root traits was conducted, the root
data coming from such experiments was found to be useful. Subsequently, focus was
quickly turned to alternate methods of conducting experiments where root traits were
of interest. Developments were key in the areas of enhancing both accuracy and ease
of measurement for plant root traits.

Automated high-throughput phenotyping is image-based technology which can
produce multiple images for each plant in an experiment each day. The benefits
of high-throughput phenotyping to agriculture include accelerated in-field measure-
ments of biologically relevant phenotypes. These are required by plant breeders to
determine which genomic characteristics and plant features are most critical to new
plant development. Furthermore, the technology is rapid and non-destructive, allow-
ing further measurements to be taken on the same plant over time where necessary
(Sideli et al., 2020). Given this, the implementation of automated high-throughput
phenotyping is ideal for the measurement of plant root traits. This specific technology
has been implemented to create the root tip data for this analysis, which also makes
use of aeroponic platforms to allow for ease of photography and access to the plant
root systems.The automated high-throughput phenotyping platform used in this ex-
periment that produced the motivating data for this research is shown in Figure 1.2.

Richard et al. (2015) and Das et al. (2015) both implement digital imaging in a high-
throughput phenotyping setting. Richard et al. (2015) tested two methods, clear pots
and growth pouches, to assess the angle and the number of seminal roots in wheat
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Figure 1.2: The aeroponic high-throughput phenotyping platform which was used in
the collection of the plant root tip data. Roots dangle freely and can easily be misted
with water/nutrients. The camera can run underneath the platform to take many high
quality images of the plant root systems in a non-destructive manner.

seedlings. The goal was to identify the best method for development of a low-cost
high-throughput phenotyping method to facilitate the selection of desirable root ar-
chitectural traits. It was found that the clear pot method had significant advantages
over all other previous methods for measuring plant root traits (Richard et al., 2015).
Das et al. (2015) also focus on improving methods for characterising crop root sys-
tem architecture. However, the primary objective of the paper is the development
of an open-source phenomics platform (DIRT). DIRT provides a storage solution for
the metadata linked to such experiments, and allows intuitive access to the analysis
methods and traits extracted from the images (Das et al., 2015). This was a critical step
forward in the history of data collection of plant root traits and forms the basis of how
such experiments are conducted today. The DIRT software may be altered for each
experiment, but the underlying functionality remains consistent. In the case of Das
et al. (2015), access to the data set and the accuracy of the data itself, would have been
compromised without the use of this software.

The variation and flexibility of root architecture is largely influenced by physiolog-
ical and genetic determinants (Hodge et al., 2009). Essentially, the growth of a root
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system over space and time is genetically driven, but modified in accordance to its
environmental conditions (Harper et al., 1991). There are two key concepts to address
regarding root architecture; the shape and structure of the system. The shape of the
plant root system refers to the manner in which the plant occupies the soil, or more
specifically, the location of the roots in space. To capture this, the key traits to measure
are lateral root expansion, root length density and root depth (Hodge et al., 2009).
Together, these traits can be used to gain a fundamental understanding of the shape
of a plant root system. The plant root structure relates to the internal makeup of the
plant root system. That is, it describes the relationship between the number of compo-
nents which are part of the root system. The key traits to describe plant root structure
are topology (branch structure), connection between roots, and root gradients (Hodge
et al., 2009). The variation in plant root architecture is significant, even within a species
(Cannon, 1949; Kutschera, 1960; Weaver and Bruner, 1926). This represents the interest
in conducting a trial with a large number of genotypes as is the case with the root tip
dataset.

Root function is key in understanding the operation of the plant root system as a
whole. The primary function of a root system in small plants is the uptake of water
and nutrients. Anchorage is a secondary function, which is more vital in trees and
similar species with extensive below ground structures (Hodge et al., 2009). It has
been discovered that plant roots display both physiological and morphological plastic-
ity, meaning that they can manipulate themselves to capture nutrients from transient
patches in the soil (Hodge, 2004, 2006). A strong link has been found between root
length and nutrient capture, where root length can be used as a predictor for nutrient
capture (Hodge et al., 1999, 2000; Robinson et al., 1999). Relationships such as this are
vital in understanding root function, and furthermore, the variability in efficiency of
root function between genotypes. Intricate differences in plant root systems have been
shown to correlate with significant differences in crop outputs (e.g. Yield). The details
of these differences in the context of barley breeding trials are explored in Robinson
et al. (2018). The development of designed experiments to measure plant root traits are
critical to developing knowledge surrounding plant root function further. Automated
high-throughput phenotyping methods as used to collect the plant root tip data, are
central to this continued development and research.

1.2 Spatial point processes

1.2.1 Poisson processes

Poisson processes are central to analyses of spatial point patterns and have a large
bearing on the way in which analyses are conducted. A Poisson process exhibits “no
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interaction” and “complete spatial randomness” (Moller and Waagepetersen, 2003).
That is to say, a spatial point pattern is Poisson if there is no detectable trend or depen-
dence between the points. If a point pattern is Poisson, it may be either homogeneous
or inhomogeneous. Homogeneous spatial point patterns exhibit constant intensity
throughout the entire spatial window. Intensity in this context refers specifically to
the number of points per unit area in the spatial window of interest. A homogeneous
spatial point process is therefore one which displays constant intensity. If the intensity
is not constant and varies throughout the spatial window, the pattern is an inhomoge-
neous spatial point process. Examples of these varying processes are evident through
simulations shown in Figure 1.3. The concept of ’intensity’ encompasses a large part
of any analysis where deviation from the Poisson process is investigated. A number of
functions and summary statistics have been developed to describe and parameterise
spatial point patterns. These vary depending on whether the pattern is homogeneous
or inhomogeneous.

Figure 1.3: Spatial point patterns which have been simulated in R using the spatstat
package (Baddeley and Turner, 2000). From left to right there is a homogeneous
Poisson pattern, an inhomogeneous Poisson pattern and a non-Poisson pattern.

Determining whether a point pattern is Poisson is a key determinant for how a
spatial point pattern analysis progresses. According to Ripley (1977), the methods
used to identify whether spatial point processes are Poisson can be divided into four
classes:

• Quadrat counts
• Distance or nearest-neighbour methods
• Second-order methods
• The “test-set” approach

Quadrat counts and nearest-neighbour methods tend to be appropriate in prelimi-
nary fieldwork while second-order methods and the ”test-set” approach employ useful
non-Poisson models to test against the fit of a proposed model (Ripley, 1977). The basis
model of a point process is the uniform Poisson point process in the spatial window
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with intensity defined by lambda (λ). According to Baddeley and Turner (2004), the
properties of the basis model are:

• the number of points in a given region (A) has a Poisson distribution with mean
(λ) x area (A)

• the locations of these points inside region A are independently and identically
distributed and uniformly distributed

• the contents of two separate regions A and B are independent

The uniform Poisson process is usually employed as the ‘null model’ in point pat-
tern analyses. Many analyses begin by establishing that the data does not conform to
a uniform Poisson process, which proves to be the case in many point patterns. After
confirming that the spatial point pattern is not uniform and Poisson, further investiga-
tions can be carried out to determine the specific nature of the point pattern. Methods
for fitting point process models have been available since the 1970’s, however most
of these produced models that were specific to the chosen context and lacked gener-
ality (Baddeley and Turner, 2004). The R package spatstat has provided an improved
method for model fitting and is now commonly used.

1.2.2 Spatstat

Baddeley and Turner (2000) describe an algorithm for fitting point process models of
a very general form and developed this into the R package spatstat. This method uses
approximate maximum pseudolikelihood to estimate the parameters of a spatial point
process. The maximum pseudolikelihood estimator is a practical alternative to the
maximum likelihood estimator (MLE). In cases where the variance-covariance matrix
is complex, the approximate maximum pseudolikelihood estimator has been shown to
be ideal (Baddeley and Turner, 2000). It is consistent and asymptotically normal under
suitable conditions as well as satisfying unbiased estimating equations. That is, the
estimated parameters are free from bias. This methodology opened up a wide variety
of spatial point process models known as Gibbs models. These models were found
to incorporate spatial trends, mark information, dependence on spatial covariates and
interaction between points (Baddeley and Turner, 2000). The range of models which
spatstat can fit is broad and as such, it is vital to implement appropriate modelling
from the options available for a given spatial point pattern.

1.2.3 Cluster processes

Cluster processes were one of the earliest and most prominent class of models studied
for the analysis of spatial point patterns (Neyman and Scott, 1972). In general, cluster
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processes consist of a parent process which is usually Poisson, and a corresponding
daughter process (Ripley, 1977). The cluster process is then a superposition of the
daughter process. Nearest neighbour distances and the Clark-Evans’ test are often
used to determine the difference between a cluster process and a Poisson process.
Nearest neighbour distances are used to compare what is believed to be a cluster pro-
cess to a Poisson process. The distribution of the nearest neighbour distances give a
clear indication of the nature of the process. That is to say, is the distribution of nearest
neighbour distances Poisson, or are a number of these distances very close together
indicating a cluster process? The Clark-Evans’ test is commonly used to see if the
data conform to a Poisson process and Figure 1.3 show simulations of various point
patterns. This test accounts for edge corrections which is important in achieving an
accurate result (Ripley, 1979). Edge corrections work on the principle that the spatial
window is a sample from a greater population rather than being abruptly cut off at
the windows peripheries. This ensures the spatial point pattern is represented as ac-
curately as possible in the model being fitted. In turn, this allows summary statistics
to be interpreted with confidence.

1.2.4 Marks and Covariates

Marked spatial point patterns and covariates add another element to analysis. Marks
and covariates are commonly confused; however, the difference is that marks are linked
to the point pattern response variable while covariates potentially explain the observed
variation in the response variable. In environmental and agricultural data, marks and
covariates are both often present and must be accounted for accordingly. The most
common example of marks is when time is involved. That is, the spatial location is
the response variable and the time of its occurrence is the mark. Covariates may be
spatial or geostatistical such as elevation above sea level. Baddeley and Turner (2004)
explain how covariates are included in the fitting of a point process model in terms
of the spatstat package. Ultimately, the goal of estimating the parameters remains the
same, and the covariates are estimated just as any other parameters in the analysis are
when fitting a model. The maximum pseudolikelihood approach used for estimation
is explained in section 1.2.2. Each explanatory variable in the model, including any
covariates, are fit through this parameterisation process. This methodology can be
appropriately applied to the analysis of plant root architecture and growth patterns.

Analysis surrounding plants has tended to be predominantly outcome based through-
out history. That is, understanding response variables such as yield, dry weight and
soil moisture content have been at the forefront of research. The architectural makeup
of plants and how this architecture develops over time is a much less known field,

9



and one which spatial point processes can help to address. Plant root architecture
varies depending on several covariates. Environmental factors may play a key role in
both architecture and growth; however, it is likely that the genetics of the plant is the
dominant reason for variation. The application of spatial point processes to a designed
experiment of plants allows for a meticulous analysis of plant root architecture. Fur-
thermore, if points are taken over time, growth patterns can also be analysed. Forming
spatial point processes of the plants allows for a model to be fitted as a space-time
process, as described by Chang and Schoenberg (2011). By parameterising the geno-
typic variation an elaborate understanding of how intensity varies among genotypes,
and the rate of this variation over time can be established. The use of inhomogeneous
point process methods are appropriate in this case given the variable intensity which
is evident across the spatial window. This is due to the greater intensity of plant root
tips created around the base of the seminal roots in contrast to the far less intense
peripheries of the plant (lateral roots). The use of linear mixed models can enhance
this analysis and provide more comprehensive results.

1.3 Linear Mixed Models

1.3.1 Background/Methodology

Linear mixed models are being increasingly used in applied statistics, and have wide
applications in an agricultural context. They have the ability to handle large datasets
for replicated experiments and can do so in a highly flexible manner. The flexibility
comes from the linear mixed model’s ability to partition effects into fixed, random
and residual components. Linear mixed models are an extension to linear models,
with some important differences. Perhaps the most important of these is that linear
mixed models have both regression (fixed) and variance (random) parameters (Muller
et al., 2013). The random effects are assumed to follow a Gaussian distribution which
exhibits a mean of zero and homogeneity of variance. The other key strength of the
linear mixed model is its ability to fit correlations between terms at both the random
and residual levels. In many agricultural experiments, this provides advantages for
researchers who are often interested in correlations modelled between genotypes. This
is not limited to a single experiment or genetic correlations. Correlations may be fit be-
tween different traits or environments which are both useful in certain circumstances.
The different variance structures which can be fit at the random and residual levels of
the linear mixed model are discussed in section 1.3.2.

There are several approaches to choosing a model, with the goal generally being to
select the most parsimonious. The Akaike information criterion, AIC (Akaike, 1973),
and Bayesian information criterion, BIC (Schwarz, 1978), are two key tools used in this
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process, where minimisation of these two values is sought after. Whilst these tools
are useful in model selection, they should not strictly decide which model is imple-
mented. The REML process of Patterson and Thompson (1971), as described in section
1.3.2, seeks to maximise the log-likelihood in the model fitting process. Models can
then be compared using the log-likelihood ratio test (LRT) which determines whether
the difference in log-likelihood is significant enough to justify the extra parameters.
The degrees of freedom for this test are calculated by the difference in the number of
parameters between the two models. The LRT, along with the AIC and BIC are key in
determining the parsimony of models and therefore aid in the model selection process.

Estimation of effects in linear mixed models are done in two ways. The fixed effects
are estimated using Best Linear Unbiased Estimation (BLUE) while the random effects
are estimated using Best Linear Unbiased Prediction (BLUP). Both estimation proce-
dures rely on the estimated variance parameters from the REML model fitting process
when they are unknown prior to model fitting. In reality, this is usually the case. In
this analysis, a two-stage approach is implemented, meaning that a set of parameters
from the spatial point processes are estimated first, before moving to the linear mixed
model. The spatial point process estimates will provide the response variable(s) in the
linear mixed model which then allow the estimation of variance components. Subse-
quently, these variance components are used in the estimation of the BLUEs and BLUPs.

1.3.2 ASReml-R software

ASReml-R implements the method of residual maximum likelihood (REML) to esti-
mate the parameters of the linear mixed model. Linear mixed models are an extensive
and flexible tool among many statistical applications which the implementation of
ASReml-R adequately supports. The analysis of balanced and unbalanced designed
experiments, multi-environment trials (METs), repeated measures, longitudinal and
multivariate data as well as regular or irregular spatial data are common use of the
linear mixed model. ASReml-R seeks to provide flexibility in the syntax for speci-
fying variance models for the random effects (Butler et al., 2018). This expands the
approaches which can be taken to any given analysis. ASReml-R warns users of the
dangers of overfitting or trying to fit inappropriate variance structures to small or
highly unbalanced datasets. The REML process itself uses the average information
(AI) algorithm in combination with sparse matrix methods to allow the efficient mod-
elling of large and complex datasets. The algorithm behind the computational engine
used by REML is that of Gilmour et al. (1995). The linear mixed model consists of
fixed effects, random effects and an error term. ASReml-R separates the model into
these three sets of effects, where both the random effects and residual errors have an
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underlying variance structure. The variance of the random effects is known as the G
structure and the variance of the residual errors is known as the R structure.

In ASReml-R (Butler et al., 2018), there are several variance structures which can
be fit at both the random and residual levels of the model. These structures may
be fit to terms such as genotype, environment and/or trait. Ideally, an unstructured
variance model is fitted as this does not restrict any estimation of the variance param-
eters. This ensures that the model is capturing as much of the variation in the data
as possible. The opposite end of the scale is the independent, or ‘diag’ model, which
only estimates heterogeneous variances and no covariances. This is very restrictive
and, as such, does not provide a comprehensive model. Despite this, the independent
model is commonly used as a starting point to ensure that the model is behaving as
expected. Often the unstructured model can be too difficult to estimate; this is partic-
ularly the case when there are a large number of parameters. Ultimately, this depends
on what ASReml-R can handle computationally, and as such, there are other variance
structures which can be fit. Perhaps the most common of these is the factor analytic
(FA) structure. The statistical intricacies of the FA structure will not be discussed in
this section, however the variance matrix is modelled as a combination of the factor
loadings, subject scores and the specific variances (Butler et al., 2018). Generally, lower
order FA models (fewer parameters estimated) are somewhat restrictive, however, the
higher the order of FA model, the closer it gets to the unstructured estimate (Smith
et al., 2015). Often, models which implement different variance structures are com-
pared by way of a log-likelihood ratio test (LRT). The purpose of a log-likelihood ratio
test is to investigate whether a statistically significant difference is evident between
the log-likelihoods of the two models. Ultimately, model selection is a case by case
basis and there are no concrete rules specifying which model to select. The options
discussed are the frequently used tools in model selection and give a strong indication
of which model is the most parsimonious.

The asreml() function itself gives an object of class asreml which has many accom-
panying functions. These include f itted(), resid(), summary(), plot(), coe f (), anova(),
predict(), variogram() and wald() which are key in both model selection and the produc-
tion of meaningful results. The Wald test (Searle, 1971) is the standard test used to
determine the significance of fixed effects, whether this be main or interaction effects.
The predict() function (Welham et al., 2004) is used to provide estimates of certain fac-
tors within the model and does so based on the asreml() model fit. The output of using
the predict() function will be either a set of BLUPs or BLUEs depending on the effects
being estimated. Functions such as resid(), plot() and variogram() are useful visual tools
in the sense that they indicate whether a transformation of the response variable is
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required to adhere to the assumption of homogeneity of variance. They are also key in
determining if spatial terms should be included in the model. Perhaps the most useful
function is summary() which provides key information regarding the fitted model. This
ranges from AIC and BIC values to the variance components of the fitted model. Thus,
it is ideal for ensuring the model is doing what you expect while providing some key
summary statistics as well.

1.4 Two stage methods

1.4.1 Background/Methodology

As the name suggests, two-stage methods have two parts. Depending on the context
in which a two-stage method is applied, the process may vary. In general, the first
stage involves determining some response or estimation to use in the second stage.
In most circumstances, the need for a two-stage method is required for two reasons.
The first of these is the inability of a given methodology to complete the analysis in
one stage through lack of computational ability (Gogel et al., 2018). In such cases, an
estimate of some form is predicted during stage one of the analysis which requires
less computational power, and is then carried forward to stage two of the analysis.
Another reason for the implementation of a two-stage method, perhaps less common,
is the linkage of two separate methodologies. In these cases, an initial estimation is
determined from the first methodology in stage one, and this is taken to complete
stage two using the second methodology. This process is usually completed to take ad-
vantage of certain aspects of both methodologies, which can benefit in answering key
research questions. Ultimately, the goal of a two-stage analysis is to achieve a result as
close as possible to what the one-stage analysis would have (Kackar and Harville, 1981).

In terms of the plant root tip analysis, the first stage is the fitting of spatial point
process models. The estimated parameters of the spatial covariates from the spatial
point process models provide the response variables for the second stage of analysis
in the linear mixed model. In any two-stage analysis, the second stage is to proceed
as if the estimated values from stage one are the true values (Kackar and Harville,
1981). When dealing with large datasets for replicated experiments, one-stage analy-
ses require significant computing resources and computational times are lengthy. In
some cases, the one-stage approach may not be feasible at all. This issue is exacer-
bated further in spatstat which requires significant computational time and power to
fit spatial point processes to large datasets for replicated experiments (Baddeley and
Turner, 2004). This problem surrounding one-stage analyses encompasses the need
for two-stage methods and infers the effectiveness of their use in these circumstances.
This is particularly the case for the plant root tip data, which in a one-stage analysis
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in spatstat would attempt to fit one spatial point process model which accounts for
all covariates in the experiment. This is computationally intense, and coupled with
the effectiveness of the linear mixed model at handling large datasets for replicated
experiments, indicates the necessity of a two-stage method.

One of the common applications of a two-stage approach is for multi-environment
trial (MET) analysis. Such trials include data from multiple experiments with the aim
of combining all of this data across experiments into a single statistical model. When
this is not computationally feasible, a two-stage analysis is implemented. Initially, each
environment within the MET is analysed as an individual trial. This constitutes stage
one of the analysis, with the genotype means from each trial taken with their variances
as weights to stage two of the analysis (Gogel et al., 2018). Weighting methods will be
discussed in detail in Section 1.4.2, but ultimately, they allow the differences in uncer-
tainty surrounding the response from stage one to be incorporated into stage two of
the analysis. In stage two, a more complex model is fit using all of the genotype means
from stage one. Gogel et al. (2018) describe a two-stage approach of this specific nature.

In the MET context, the two-stage approach allows the full set of genotype by envi-
ronment effects to be included, and their associated variance structure to be estimated
when the one-stage analysis is not feasible (Gogel et al., 2018). In the case of Gogel et al.
(2018), the linear mixed model framework is used in both stages of the analysis. There
are several aspects of a two-stage analysis which impact the effectiveness and efficiency
of the analysis. The biggest compromise moving from a one-stage to a two-stage anal-
ysis is in the fullness of the variance-covariance matrix which is taken from stage one
to stage two (Gogel et al., 2018). If in a two-stage analysis the full variance-covariance
matrix is utilised in stage two, the result of the two-stage analysis will mirror that of a
one-stage analysis (Gogel et al., 2018). In many cases this is not achievable and as such
a diagonal approximation is used, introducing a compromise to the full analysis. The
more sophisticated the model is in terms of genetic effects, the greater the impact of a
diagonal approximation is. The effectiveness of a two-stage analysis is also hindered
by the less accurate estimation of the non-genetic variance parameters. Depending on
the circumstance, significant information can be lost at this point. Finally, it is vital that
genotype lines are replicated as best as possible. Partial replications, particularly with
a low proportion replicated, prevent a two-stage analysis’ ability to provide reasonable
estimates (Gogel et al., 2018).

In recent years computing power has grown significantly, improving ASReml-R’s
ability to analyse large and complex multi-environment genotype trial data sets using
the one-stage approach. While the need for two-stage approximation is now needed to
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a lesser extent, there are still situations which require their use. The plant root tip data
in use for this analysis is one of these situations and requires the use of a two-stage
method.

1.4.2 Weighted and unweighted methods

When using two-stage methods with a linear mixed model in stage two, a weighted
or unweighted approach can be taken. A key benefit of two-stage methods is the
reduction in computing power required. Estimates are taken in the first stage to be
used in the second stage and a challenge in two-stage methods is how these estimates
should be weighted for the second stage. Möhring and Piepho (2009) propose four
published and three unpublished methods of weighting in a two-stage analysis of plant
breeding trials. Generally speaking, the use of a weighted diagonal matrix is attractive
given the speed the REML analysis runs with when it is used. The weighting methods
discussed in Möhring and Piepho (2009) are various combinations of the following:

• standard error of differences
• variance of differences
• standard error of the mean
• least squares estimate

For the methods involving least squares, the goal of the method generally involves
minimising the sum of the least squares. Various weighting methods are more appro-
priate than others depending on the circumstance. These circumstances include the
experimental design; this may be a completely randomised block design, incomplete
block design, partially replicated design, etc. The results of the analyses conducted by
Möhring and Piepho (2009) revealed that most of the weighting methods provided ac-
ceptable estimates. For the unweighted method, the variance-covariance matrix from
stage one is not used to create the diagonal matrix. The ignoring of this information
equates to the unweighted two-stage method which does not allow the separation
of the genotype by environment interaction and the residual variance (Möhring and
Piepho, 2009). As such, the estimated residual variance absorbs both the genotype by
environment interaction and the residual error. Many authors including Damesa et al.
(2017), Welham et al. (2010), Gogel et al. (2018) and Möhring and Piepho (2009) used
a weighting approach where two-stage methods were used. This is to account for the
heterogeneity present and thus, ensure the estimators are as reliable as possible. As
mentioned, the weighting method chosen is important and there is no straightforward
answer to which method is the best. The goal is to minimise the loss of information
and get as close to the estimate which a one-stage method would achieve.
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Damesa et al. (2019) compared weighted and unweighted stage wise analysis for
genome-wide association studies and genomic selection. For the dataset used by
Damesa et al. (2019), considerable heterogeneity was evident and this is where weight-
ings can be particularly valuable in a two-stage analysis. Spatial modelling techniques
help to account for the existing spatial variability and increase the efficiency of analysis.
Weighted methods tend to perform better than unweighted methods, however the de-
gree of difference between the two varies. In Damesa et al. (2019), the study concluded
that the weighted method was more highly correlated with the one-stage analysis and
therefore better than the unweighted method. Although this was the case, the dif-
ference between the two was quite small and showed that the unweighted method
is by no means inaccurate. As expected, the full variance-covariance matrix provides
the best result when using two-stage methods and as such this should be used where
it is feasible. Ultimately, the selection of a weighted or unweighted method, and if
weighted which method to use, is a circumstantial decision but should be treated with
great importance given the impact it can have on the analysis (Möhring and Piepho,
2009). The ability to account for heterogeneity is key to any linear mixed model anal-
ysis and allows for conclusions to be drawn with confidence in the knowledge that
the analysis has been completed in an accurate manner. The importance of two-stage
methods is clear given that one-stage methods are not always feasible. Therefore, it is
important to know that there is a reliable method to employ in this event and this is
why two-stage methods are critical to many analyses.

Two stage methods are frequently used for multi-environment trial (MET) analyses
but are not strictly limited to these. In MET analyses linear mixed models contain
residual variation which consists of the genotype by environment interaction and any
within trial error variation (Frensham et al., 1997). Heterogeneity of variance may be
present within each of these components and as mentioned, weights can play a key
role in accounting for this. Estimates of a variable are often what is taken from the first
stage to the second stage and as such it is the task of the weights to account for the
varying levels of uncertainty surrounding these estimates. In terms of the plant root
tip analysis, the estimated parameters from the spatial point process models will have
varying levels of error surrounding them. As such, a weighting method which effec-
tively accounts for the uncertainty in these estimates must be employed in the second
stage of analysis (the linear mixed model). The analysis would lose vital amounts of
information if the uncertainty present is not dealt with appropriately. It is clear that
this is a case by case situation and the impact of the factors discussed varies. It will
therefore be important to determine the effect of conducting a two-stage analysis on
the plant root tip data, as well as the difference in results depending on whether a
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weighted or unweighted method is utilised.

1.5 Research Questions

The analysis of the plant root tip data will merge the two methodologies of spatial
point processes and linear mixed models through the utilisation of a two-stage ap-
proach. Firstly, spatial point processes will be fit to the root tip data for each plant
root system separately and explored using estimated model parameters. This will
allow the determination of an appropriate response variable(s) to then take into the
linear mixed model framework. The linear mixed model framework will allow for all
estimates from the spatial point process models to be fit in one model. This is neces-
sary due to the lack of computational power of spatstat, which cannot fit one spatial
point process model inclusive of all plant root systems in the experiment. For this
reason, the use of a two-stage approach provides a more comprehensive analysis of
the plant root tip data through it’s ability to include all experimental information in one
model. The implementation of the linear mixed model will allow the examination of
relationships between estimated parameters through the modelling of covariance, and
therefore, the analysis may provide new knowledge relating to the root architecture
of particular wheat genotypes. This encompasses the need for a two-stage analysis of
the plant root tip data, but it is important to implement this in an appropriate manner.
Depending on the circumstance, there are a selection of different weighting methods
which can be used in a two-stage approach. The difference in estimation through the
use of a two-stage approach will be investigated and compared for a weighted and
unweighted method. This will aid in the determination of whether a weighted or
unweighted method results in meaningful differences, or whether the use of either is
arbitrary. Furthermore, this will indicate the confidence with which conclusions can be
made from this analysis. Ultimately, analysing the outcome of the two-stage method
will show the worth of such an analysis and indicate the depth of interpretation the
linear mixed model can provide after being translated from the spatial point process
methodology. As such, the research questions to be answered in this analysis are:

1. What is an appropriate spatial point process model to fit to the root tip data?
2. Can a linear mixed model be used in a two-stage approach for analysis of spatial

point patterns from replicated experiments?
3. Is there a difference in accuracy when a weighted or unweighted two-stage

method is used?

1.6 Importance of Research

The overarching importance of this research lies in the application of a two-stage
approach for analysing data from large, replicated experiments where the response

17



variable is a spatial point pattern. While analysis techniques used for spatial point
processes provide a useful introduction to what might be occurring at the plant level
in this experiment, the ability of linear mixed models to provide more comprehensive
model formulation and variance modelling is crucial to the research question. Com-
putational power is a legitimate concern for spatial point process modelling when the
dataset is large and arises from a replicated experiment. The ability of linear mixed
models to handle large datasets from replicated experiments and as such, include all in-
formation from an experiment in one model, is vital to the production of quality results.
Another advantage lies within linear mixed models’ ability to model correlations, thus
providing further insight into the relationships between estimated parameters within
the experiment. For these reasons, it is critical to determine an efficient two-stage
method for analyses such as this which link spatial point processes and linear mixed
models.

The difference in results from the two-stage method will be explored through the
comparison of weighted and unweighted two-stage models. The use of a two-stage
method allows the spatial point processes to capture the key spatial characteristics of
each plant root system. As such, carrying the estimated parameters from the initial
spatial point processes into the linear mixed model analysis brings key information
into the second stage. The importance of respecting the uncertainty in the parameter
estimates from stage one of a two-stage analysis varies depending on the experiment.
Due to the ability of weighting methods to account for uncertainty, determining the
difference in results between the weighted and unweighted methods will be vital in
concluding how similar analyses should be conducted in the future. Ultimately, the
determination of an appropriate two-stage method linking spatial point processes and
linear mixed models is central to this analysis and encompasses the importance of this
research. A flow chart describing the different components of this project is shown in
Figure 1.4.

From a practical perspective, the method developed through this research will
demonstrate the accuracy of measurement of root traits using an aeroponic high-
throughput phenotyping platform. It will lead to critical knowledge regarding the
root architecture of different wheat genotypes as well as the relationship between
estimated parameters from the spatial point processes. Subsequently, future analyses
may show links between plant architecture and critical traits to plant performance
such as yield. This research is not limiting and could include links to root function or
even response to varying pathogens. Such analyses may only be possible through the
implementation of a similar method to that developed here. Therefore, the research

18



conducted throughout this analysis is critical to future research into root architecture
and the effect it has on other plant traits.
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Figure 1.4: Flow chart of the analysis process carried out during the completion of
this project. It summarises how spatial point process models were used in stage one of
the analysis before linear mixed models were implemented in stage two. The different
forms of analysis using the linear mixed model framework are described.
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Chapter 2

Methods

2.1 Statistical methods

In this chapter, the statistical methods employed throughout this project will be de-
tailed. Section 2.1.1 discusses the statistical theory behind spatial point process models.
This includes the theory behind the spatial point process model itself as well as the
model selection process which is carried out to arrive at the final model. The removal
of outliers is also discussed before moving to the second topic of the two-stage method.
Section 2.1.2 discusses the statistical theory behind the unweighted linear mixed model,
while Section 2.1.3 discusses the statistical theory behind the weighted linear mixed
model. This includes the theory behind both the univariate and multivariate models
as well as the weighting method used. Finally, Section 2.2 outlines the methods used
to collect data from this experiment and how this translates into the x, y data present
for use in this project.

2.1.1 Point process models

Point process models come in many forms, with different statistical models available
for varying types of data. If it is appropriate to fit a Poisson process to the data this
greatly simplifies the statistical analysis. This is due to the broad range of powerful
statistical techniques which can be implemented to these processes (Baddeley et al.,
2015). In order to be classed as a Poisson process, the data points must be random
and independent. This property is evident in the plant root tip data and allows the
exploration of model fitting for Poisson processes in this project.

The simplicity of a Poisson process is due to the fact that it is completely described
by the intensity function λ(u). That is, Poisson point processes are simply models of
intensity, where the model is an equation describing the form of the function λ(u) (Bad-
deley et al., 2015). For this reason, the statistical modelling of Poisson point processes
are relatively simple. A random variable X has a Poisson distribution with parameter
µ if RX = [0, 1 ,2 ,3 , ...] and:
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PX(k) =

 e−µµk

k! k ∈ RX

0 otherwise
(2.1)

where PX(k) is the probability of the random variable X occurring k times in this
Poisson distribution governed by the parameter µ, which is the mean of the Poisson
distribution (Last and Penrose, 2017). The Poisson process has two useful properties.
Firstly, if X∼Poisson(µ), then E(X) = µ and Var(X) = µ. That is, both the expected
value and variance of X are equal to µ. The second property is if Xi∼Poisson(µi), for
i = 1, 2, ...,n, and the Xi’s are independent, then X1+X2+...+Xn∼Poisson(µ1+µ2+...+µn).

Equation 2.1 shows the probability of obtaining k events according to the Poisson
distribution. In order to extend this to a Poisson point process, a test region, B, must
be present. It is known that the expected number of points in the test region, or spatial
window, B is En(X∩B) = λ|B|. As such, it is true that the random number of points
n(X∩B) has a Poisson distribution with mean µ = λ|B| (Baddeley et al., 2015). This
reiterates the importance the Poisson distribution has when it comes to point processes.
The homogeneous Poisson point process with intensity λ > 0 exhibits the following
properties. Firstly, the number of random points n(X∩B) in the spatial window B has
the mean value En(X∩B) = λ|B| defining the property of homogeneity. Secondly, for
the spatial windows B1,B2, ...,Bm which are not overlapping, the number of random
points n(X∩B1), ...,n(X∩Bm) in each spatial window are independent random variables,
defining the property of independence. Finally, the number of random points n(X∩B)
in the spatial window B has a Poisson distribution as defined in Equation 2.1.

An inhomogeneous Poisson process exhibits all properties of the homogeneous
process, except that the intensity parameter λ changes throughout the spatial window.
Suppose that the average intensity of points is defined as a functionλ(u), where u refers
to the spatial location within the spatial window B. Given the intensity is changing
throughout the spatial window, the expected total number of points in B is the sum of
the values λ(u)∆u, where ∆u is the area of a number of segments which make up the
spatial window. This can be defined by the integral∫

B
λ(u) du.

The inhomogeneous Poisson point process with intensity function λ(u) exhibits the
following properties. Firstly, the expected number of points in the spatial window B is
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defined by the integral µ =
∫

B
λ(u) du of the intensity function λ(u) over the window B.

Secondly, the property of independence holds in that the random patterns in spatial
windows which do not overlap are independent of each other. Finally, the number of
points in a given spatial window B has a Poisson probability distribution (Baddeley
et al., 2015). In the context of this project, the intensity function will govern the change
in intensity of plant root tips according to the spatial (x, y) dimensions of the data. The
key decision from this point becomes that of model selection. That is, what model
formulation adequately captures the intensity of the plant root tip data throughout the
spatial window. Firstly, it must be decided if the intensity is homogeneous or inho-
mogeneous. As defined above, homogeneous intensity is when the intensity of points
is constant throughout the spatial window and inhomogeneous intensity is when the
intensity of points is not constant and changes throughout the spatial window.

Inhomogeneous intensity can be modelled in different ways (Baddeley et al., 2015).
In a spatial situation such as the dataset used for this project, the x and y Cartesian
coordinates can effectively be implemented as spatial covariates. This is particularly
useful when it is suspected that the x and y positions of the data may influence the
intensity (Baddeley et al., 2015). Equation 2.2 shows one of the most simple inhomo-
geneous Poisson models which uses the x and y dimensions as spatial covariates.

λθ(x, y) = exp(θ0 + θ1x + θ2y) (2.2)

This first order loglinear model can be extended to various combinations of har-
monic and polynomial models. The challenge is to determine a model which effectively
uses Cartesian coordinates as spatial covariates without overfitting. Several model se-
lection tools are used to aid in this area.

Three key models were assessed when determining an appropriate Poisson process
model to fit to the plant root tip data. The general form of the loglinear model fit
when using the ppm function in spatstat is shown in Equation 2.3. This general form
can be adapted to include different terms for spatial covariates, including linear terms
(Equation 2.4), harmonic terms (Equation 2.5) and polynomial terms (Equation 2.6).
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λθ(u) = exp(B(u) + θTZ(u)) = exp(B(u) + θ1Z1(u) + θ2Z2(u) + ... + θpZp(u)) (2.3)

where B(u) and Z1(u),...,Zp(u) are known functions and θ1,...,θp are parameters to
be estimated. Z(u) = (Z1(u),..., Zp(u)) indicates the vector-valued function and this is
termed a modulated process by Cox (Cox, 1972). As defined earlier, u refers to the
spatial location within the spatial window. In the case of the plant root tip data, u is a
function of the Cartesian coordinates x and y (u(x, y)).

The task of selecting an appropriate model for the intensity of plant root tips
throughout the spatial window consisted of the comparison of three key models. All
of these models can be represented in the general form of the loglinear model fit (Equa-
tion 2.3). The simplest of these models was the linear model. The form of this model
is:

λθ(x, y) = exp(B + θ1abs(x) + θ2y + θ3abs(x)y) (2.4)

where λθ(x, y) is the intensity as a function of the x and y coordinates in the spa-
tial window. B is the intercept, while abs(x), y and abs(x)y are the known functions
which describe the change in intensity. θ1, θ2 andθ3 are the parameters to be estimated.

The implementation of these linear spatial covariates allows for intensity to change
in a linear fashion across both the x and y dimensions of the plant. In terms of the plant
root system, this corresponds to the width of the plant roots as the x dimension and
the depth of the plant roots as the y dimension. The abs(x) function forces the intensity
to change in a symmetric manner across the width of the plant roots, emanating out
from the central x-axis. The interaction term, abs(x)y, allows the change in intensity
over root width to vary as the depth of the plant roots change. However, this change
can only be linear in the current implementation seen in this model.

A somewhat different approach to modelling the change in intensity was imple-
mented through a second order harmonic model. A second order harmonic model is a
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non-linear process which is common place in optics (Yang et al., 2019). It’s modelling
employs the phenomenon of the two non-linear terms interacting with each other. The
specifics of this interaction are evident below. The form of the second order harmonic
model is:

λθ(x, y) = exp(B + θ1abs(x) + θ2y + θ3abs(x)y + θ4(abs(x)2
− y2)) (2.5)

where λθ(x, y) is the intensity as a function of the x and y coordinates in the spatial
window. B is the intercept while abs(x), y, abs(x)y and abs(x)2

− y2 are the known func-
tions which describe the change in intensity. θ1, θ2, θ3 and θ4 are the parameters to be
estimated.

As was the case for the linear model, the second order harmonic model allows for
intensity to change in a linear fashion across both the width (x) and depth (y) of the
plant roots. Once again, the abs(x)y function allows the intensity to change in a differ-
ent manner across the width of the plant roots as the depth of the plant roots change.
The addition of the second order harmonic model compared to the linear model is the
inclusion of the non-linear spatial covariate. The abs(x)2

− y2 spatial covariate describes
how the non-linear terms abs(x)2 and y2 interact by taking the difference of the two.
Section 3.1 illustrates the effectiveness of this term in capturing the properties of the
plant root tip data.

The third term for modelling the change in intensity was implemented through a
second order polynomial model. A second order polynomial model is an extension of
the linear model which includes second order terms to capture non-linearity. However,
unlike the second order harmonic model, the polynomial model implements separate
functions for non-linearity in the x and y dimensions rather than the two interacting
together. The form of the second order polynomial model is:

λθ(x, y) = exp(B + θ1abs(x) + θ2y + θ3abs(x)y + θ4abs(x)2 + θ5y2) (2.6)
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where λθ(x, y) is the intensity as a function of the x and y coordinates in the spatial
window. B is the intercept while abs(x), y, abs(x)y, abs(x)2 and y2 are the known func-
tions which describe the change in intensity. θ1, θ2, θ3, θ4 and θ5 are the parameters to
be estimated.

Similar to both the linear and second order harmonic models, the second order
polynomial model allows for intensity to change in a linear fashion across both the
width (x) and depth (y) of the plant roots. Furthermore, the abs(x)y function allows the
intensity to change in a different manner across the width of the plant roots as the depth
of the plant roots change. The extension of the second order polynomial model is in
the inclusion of both the abs(x)2 and y2 terms. This allows for intensity to change in a
non-linear fashion across both the width and depth of the plant roots. The importance
of this model is discussed in Section 3.1, supported by formalised statistical tests.

It is important to note that the absolute value of x has been used in the functionality
of all potential models. In the plant root tip data set, the x coordinates range from
-1200 to 1500 across the spatial window. These coordinates were implemented so that
the x coordinate of 0 is where the growth of the plant roots originate. The decision to
take the absolute value of x in the modelling process was based on several key factors.
Firstly, the nature of the aeroponic high-throughput phenotyping platforms used allow
the plant roots to dangle freely from side to side. Given that multiple images of each
plant root system are taken over an 18 day period, varying positions of the plant root
tips in the x coordinate dimension are common. For the purposes of this analysis, each
plant root system is analysed as a cumulative data set based on all images taken over
the 18 day period. That is, time is not being modelled. Further to this, the data set
for this analysis is two-dimensional data (x and y dimensions). A plant root system is
three-dimensional and through the imaging process implemented to develop this data
set, these three-dimensional systems are being transposed into two dimensions. This,
coupled with the ability of the roots to dangle freely across the x dimension, could
result in misleading interpretations post analysis. As such, the approach of taking the
absolute value of the x coordinates in the modelling process has been implemented to
mitigate this risk. Taking the absolute value of the x coordinates averages the model fit
over the symmetry of the spatial window such that the fitted model is symmetric about
the point x = 0. Forcing this symmetry in the x dimension allows the vital properties
of the data to be accurately investigated.

The model fitting process for a Poisson point process seeks a ’best fit’ for the combi-
nation of parameters which describe a given point pattern. Poisson point processes are
fit using maximum likelihood estimation which seeks to maximise the log-likelihood

26



of the fitted model by finding the ’most plausible’ parameter estimates (Baddeley et al.,
2015). Issues arise when using maximum likelihood estimation if the specified model is
not true, there are multiple parameters for few observations or model assumptions are
not met. As such, model selection is vital in order to efficiently implement the fitting
of Poisson point processes. For the plant root tip dataset, the intensity is modelled as a
loglinear function of the parameters, with this general form given in Equation 2.3. In
this generalised form, the functions which govern the model could be spatially variant
in any fashion. This infers the flexibility of this model specification (Baddeley et al.,
2015). For such a model, the log-likelihood of the loglinear intensity takes the form:

logL(θ) =

n∑
i=1

B(xi) + θT
n∑

i=1

Z(xi) −
∫

W
exp(B(u) + θTZ(u))du (2.7)

where all terms in Equation 2.7 are defined in the same manner as Equation 2.3.
Given the data is such that

∑
i Z j(xi) , 0 for all j, the maximum likelihood estimator

(MLE) exists and is unique (Baddeley et al., 2015). In this case, the MLE is the solution
of the score equations U(θ) = 0, with the score function being:

U(θ) = U(θ; x) =

n(x)∑
i=1

Z(xi) −
∫

W
Z(u)λθ(u)du (2.8)

where the score is the vector U(θ; x) = (U1(θ; x), ...,Up(θ; x)) with components:

U j(θ; x) =

n(x)∑
i=1

Z j(xi) −
∫

W
Z j(u)λθ(u)du (2.9)

for j = 1, ..., p, where p is the number of parameters. This explains the process being
completed using maximum likelihood estimation each time a Poisson point process
is fit for the loglinear model of intensity. These score equations cannot be solved
analytically. Therefore, numerical approximation is required to obtain the maximum
likelihood estimates.
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When modelling point processes Baddeley et al. (2015) use residual diagnostics as
the key tool for model selection. The diagnose.ppm function in the spatstat package
provides the user with four plots in the one window, and an example of this is shown
in Figure 2.1. These plots examine different aspects of the model fit and show whether
the model fit is adequate or not. The top left plot presents the fitted model overlapped
with the raw data points. This provides a visualisation of how well the fitted model
mirrors the raw data or whether it is clearly not appropriate. The top right and bottom
left plots display line graphs of the cumulative sum of raw residuals against the x
and y coordinates. For an appropriate model fit, the cumulative sum of raw residuals
should remain close to 0 for all coordinates. Where this is not the case, it is likely that
a key element of the data has not been captured in the model fit. The bottom right
plot displays the spatial window highlighting the positions within the window where
the model fit does not match the residuals as closely. The visual nature of this allows
the user to clearly see where trends have not been appropriately accounted for in the
spatial window. The use of these four plots in unison allows for a comprehensive
visualisation of the effectiveness of the model fit using residual diagnostics. Examples
of this are presented in Section 3.1. The limitation of residual diagnostics is the visual
subjectivity and as such, two users may reach different conclusions about the same
model fit. To help guard against this, several other model selection tools are also used.

The formalised statistical test used in spatstat for the comparison of two Poisson
point process models is an analysis of deviance. The use of a chi-squared test provides
a two-sided P-value for this analysis of deviance to indicate whether one fitted model
is an improvement over the other. If the P-value is less than 0.05, the chi-squared
test has concluded that the model is a significant improvement on that to which it
has been compared to. The Akaike Information Criteria (AIC) is also useful in the
model selection process. It ultimately compares the quality of statistical models to
each other (Burnham and Anderson, 2004). The AIC statistic is computed using the
maximum log-likelihood with an adjustment for the number of parameters estimated
in the model. As such, the AIC is calculated as:

AIC = 2k − 2logL(θ)

where k is the number of parameters in the model and logL(θ) is the maximum
log-likelihood value. A high log-likelihood and small number of model parameters
aid to minimise the AIC.

The final tool used for model selection is displayed in the output of a fitted point
process model in spatstat. In the output, a Z-value and corresponding significance
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level are presented for each fitted parameter. This reflects a simple Z test for each
parameter estimate which tests whether it is significantly different from zero. If this
is the case, it indicates that this parameter is important to the model fit and should
remain in the model. The important aspect to note from these Z tests are that they
should only be used to examine parameters within the model fit. That is, they cannot
be used for any kind of comparison between fitted models. The results of these model
selection tools are all presented in Section 3.1.

After carrying out the model selection process and determining an appropriate
point process model to fit to the plant root tip data set, 923 point process models were
fit for each plant root system in the data set. The experiment consisted of 990 plants,
however, 67 of these were not included in the data set due to lack of growth. Once
the 923 point process models were fit, the estimated parameters were examined for
outliers. This was done in two sections. Firstly, a visual assessment was completed
on all plants with a maximum y coordinate less than 4000. This point was chosen as
plants with a maximum y coordinate less than 4000 were potential plants which had
not grown satisfactorily in the experiment. These plants were compared to the other
replicate(s) of that genotype to determine whether they should remain in the analysis

Figure 2.1: An example of the visual residual diagnostic tool available in the spatstat
package. For each sub-figure, the top left plot shows how well the fitted model mirrors
the raw data, the top right plot shows the cumulative sum of raw residuals for the
y coordinate, the bottom left plot shows the cumulative sum of raw residuals for the
x coordinate and the bottom right plot shows any trends across the spatial window
which the fitted model is not accounting for.
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as legitimate plants or not. The 37 plant root systems which were deemed to have
not grown satisfactorily are displayed in Appendix A.1. As such, after completing the
visual assessments these 37 plants were removed from the analysis. The second stage
of outlier detection was implemented using the alternate outlier method (Gogel et al.,
2001) in stage two of the analysis using the linear mixed model. This was completed by
investigating the distributions of each of the estimated parameters, namely intercept,
abs(x), y, abs(x)y, abs(x)2 and y2. The standardised conditional residual was used to
determine which estimated parameters were outliers along with investigating the plots
of the raw data. Conditional residuals take into account both the fixed and random
effects of the model. To standardise the conditional residuals, each residual is divided
by its standard deviation. All plants with a standardised conditional residual greater
than 4 or less than -4 were removed for that parameter. The estimated parameters
which were found to be outliers and not belong in their respective distributions are
presented in Tables 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6.

The second stage of the analysis was completed with these outliers removed. The
x, y plant root tip data plots of these outliers can be found in Appendix A.2.

Table 2.1: The experimental details of the plants which have been removed from the
analysis based on the estimate of the intercept parameter after the fitting of the point
process models. scres represents the standardised conditional residual.

Plant platform strip position genotype scres Intercept

525 2 14 1 SUNTOP RIL114 316 -14.80 -17.05
719 2 56 4 SUNTOP SERI M82 264 -4.82 -9.63
702 2 52 3 SUNTOP ZWW10-128 434 -4.69 -8.93
809 2 76 3 SUNTOP DHARWAH DRY 33 -4.42 -8.80

Table 2.2: The experimental details of the plants which have been removed from the
analysis based on the estimate of the abs(x) parameter after the fitting of the point
process models. scres represents the standardised conditional residual.

Plant platform strip position genotype scres abs(x)

525 2 14 1 SUNTOP RIL114 316 9.75 4.84e-02
719 2 56 4 SUNTOP SERI M82 264 4.24 2.04e-02
520 2 12 5 SUNTOP FAC10-16 180 4.11 1.98e-02
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Table 2.3: The experimental details of the plants which have been removed from the
analysis based on the estimate of the y parameter after the fitting of the point process
models. scres represents the standardised conditional residual.

Plant platform strip position genotype scres y

20 1 5 1 SUNTOP WYLIE 350 -4.08 -2.34e-03

Table 2.4: The experimental details of the plants which have been removed from the
analysis based on the estimate of the abs(x)2 parameter after the fitting of the point
process models. scres represents the standardised conditional residual.

Plant platform strip position genotype scres abs(x)2

74 1 16 5 SUNTOP SERI M82 296 -5.11 -6.96e-05
895 2 94 2 SUNTOP DRYSDALE 57 -4.69 -6.43e-05
525 2 14 1 SUNTOP RIL114 316 -4.24 -6.09e-05
807 2 76 1 SPITFIRE-P9 -4.20 -6.00e-05

Table 2.5: The experimental details of the plants which have been removed from the
analysis based on the estimate of the abs(x)y parameter after the fitting of the point
process models. scres represents the standardised conditional residual.

Plant platform strip position genotype scres abs(x)y

453 1 98 2 SERI M82 PP -5.57 -9.36e-06
198 1 44 3 SUNTOP ZWB10-37 412 -4.44 -7.55e-06
446 1 96 5 SERI M82 PP 4.13 6.16e-06
787 2 71 4 SUNTOP DHARWAH DRY 22 -4.09 -6.73e-06
382 1 83 3 SUNTOP FAC10-16 175 4.01 5.74e-06

Table 2.6: The experimental details of the plants which have been removed from the
analysis based on the estimate of the y2 parameter after the fitting of the point process
models. scres represents the standardised conditional residual.

Plant platform strip position genotype scres y2

198 1 44 3 SUNTOP ZWB10-37 412 -9.18 -1.25e-06
868 2 88 4 SUNTOP ZWB10-37 413 -5.62 -8.70e-07
20 1 5 1 SUNTOP WYLIE 350 -5.32 -8.27e-07
163 1 37 3 ZWB10-37 P1 -4.99 -8.54e-07
453 1 98 2 SERI M82 PP -4.89 -8.05e-07
875 2 90 1 SUNTOP DRYSDALE 64 -4.81 -7.68e-07
11 1 3 1 SUNTOP SERI M82 252 -4.74 -7.49e-07
851 2 85 2 SUNTOP DHARWAH DRY 16 -4.63 -7.61e-07
575 2 25 4 SUNTOP WYLIE 376 -4.70 -6.71e-07
336 1 74 1 SUNTOP FAC10-16 158 -4.46 6.35e-07
674 2 46 3 SUNTOP FAC10-16 188 -4.38 6.53e-07
601 2 31 1 SUNTOP DRYSDALE 58 -4.19 6.26e-07
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2.1.2 The linear mixed model

The linear mixed model is implemented in stage two of this two-stage analysis. The
first approach considered for stage two of the analysis is an unweighted analysis, which
considers a single trait as the response variable for the model. The appropriate linear
mixed model to implement to model this data is shown in Equation 2.10. The linear
mixed model for each estimated parameter from the spatial point process models can
be written as:

y = Xτ + Zpup + Zgug + e (2.10)

where y is an n × 1 vector of the estimated spatial point process parameters fit to
each of n experimental units in the dataset, τ is the l × 1 vector of fixed effects with
corresponding n× l design matrix X, up is the q×1 vector of non-genetic random effects
(including structural effects relating to the experimental design) with corresponding
n× q design matrix Zp, ug is the m× 1 vector of genotype random effects where m is the
number of genotypes in the experiment with corresponding n × m design matrix Zg,
and e is the n × 1 vector of residual errors for the estimated parameters.

The random effects within the linear mixed model are assumed to follow a Gaussian
distribution where the mean is equal to zero and the variance matrix is as below:

var


up

ug

e

 =


Gp 0 0
0 Gg 0
0 0 R


As such, the variance of up is Gp and this relates to the trial specific effects, the

variance of ug is Gg and this relates to the genetic effects, while the variance of e is R
and this relates to the residual errors. The residual structure can take several different
forms and the simplest of these is R = σ2In, where it is assumed that each experimental
unit is independent of one another. In the root tip dataset, this independence between
experimental units holds true.

The second unweighted analysis approach considers multiple traits in a single
model. The appropriate linear mixed model to model this data is shown in Equation
2.11. The multivariate linear mixed model for the estimated parameters from the
spatial point process models can be written as:
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y∗j = Xτ∗j + Zpu∗pj + Zgu∗gj + e∗j (2.11)

where ( j = 1, ..., t), where t is the number of traits in the multivariate model. y j

remains an n × 1 vector of estimated parameters fit to each of n experimental units,
however now this is the case for each of t traits in the dataset. The same specification
remains for the fixed, random and residual effects as in Equation 2.10, although defined
for all t traits. The multivariate model can then be defined as a direct extension of
Equation 2.11 (Butler et al., 2018):

y∗ = (It ⊗ X)τ∗ + (It ⊗ Zp)u∗p + (It ⊗ Zg)u∗g + e∗ (2.12)

where y∗ = (y′1, ..., y
′

t)
′, τ∗ = (τ′1, ..., τ

′

t)
′,u∗p = (u′p1

, ...,u′pt
)′,u∗g = (u′g1

, ...,u′gt
)′, e∗ =

(e′1, ..., e
′

t)
′

The random effects follow a Gaussian distribution with mean 0 and variance ma-
trices G∗p, G∗g and R∗ as below:

var


u∗p
u∗g
e∗

 =


G∗p 0 0
0 G∗g 0
0 0 R∗


As such, the variance of u∗p is G∗p and this relates to the trial specific effects for each

trait, the variance of u∗g is G∗g and this relates to the genotype by trait effects, while the
variance of e∗ is R∗ and this relates to the residual errors for each trait. These matrices
are formed for each trait in the multivariate model as defined in Equation 2.12. That
is, there is now trial specific, genetic and residual variance for each trait. The structure
of these variance matrices will be discussed below.

For this analysis, interest is in modelling both residual and genetic correlations
between traits. As such, two variance structures will be tested at the random and
residual levels of the model to determine the most appropriate. An independent, or
’diag’ model in ASReml-R, allows for heterogeneous trial specific and genetic variance
to be fit for each trait but no correlations between traits. The dependent, or ’corgh’
structure in ASReml-R, allows for heterogeneous trial specific and genetic variance to
be fit for each trait as well as correlations to be fit between traits. The genetic variance
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matrix for the multivariate model can be represented as:

G∗g = Gt ⊗ Im

where t is the number of traits and m is the number of genotypes. For the indepen-
dent variance structure Gt takes the form:

Gt =


σ2

g1

0 σ2
g2

...
. . .

0 0 · · · σ2
gi


And for the fully unstructured, or dependent variance structure, Gt takes the form:

Gt =


σ2

g1

ρ12 σ2
g2

...
. . .

ρ1 j ρ2 j · · · σ2
gi


where σ2

gi
is the genetic variance and i = 1, .., t, and ρi j is the genetic correlation

between trait i and trait j where j = 1, .., t.

The same definition of variance holds true for the trial specific effects. For this
experiment, this applies to the platform variance, as well as the strip and position
variances where necessary. As mentioned, modelling correlations between traits at the
residual level is of key interest in this analysis. This is to be done at the residual level
given that each of the traits taken to the linear mixed model from the spatial point
process models, have been measured on the same experimental unit. As such, it is
appropriate to model correlations between traits at the residual level.

In the model selection process for the unweighted multivariate linear mixed model,
two residual variance structures were investigated. The first of these was the indepen-
dent, or ’diag’ structure, while the second was the dependent, or ’corgh’ structure. The
residual variance can be represented as:

R∗ = Rt ⊗ In

Where t is the number of traits and n is the number of experimental units. For the
independent variance structure Rt takes the form:
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Rt =


σ2

r1

0 σ2
r2

...
. . .

0 0 · · · σ2
ri


And for the fully unstructured, or dependent variance structure, Rt takes the form:

Rt =


σ2

r1

ρ12 σ2
r2

...
. . .

ρ1 j ρ2 j · · · σ2
ri


where σ2

ri
is the residual variance and i = 1, .., t, and ρi j is the genetic correlation

between trait i and trait j where j = 1, .., t.

The dependent variance structure is the least restrictive of all possible structures,
however, it is not always possible to fit in ASReml-R. Issues can arise in the fitting
of this model when a large number of traits are present in the residual structure. The
benefit of the dependent structure is that in addition to heterogeneous residual vari-
ances for each trait, heterogeneous correlations between traits are fit for every pairwise
combination.

Once determining an appropriate residual variance structure, an identical process
is completed for the random structure, and more specifically, the genetic variance
structure. Both the independent (’diag’) and dependent (’corgh’) variance structures
were investigated to model the genetic variance and their specification is presented
above. Once again, the dependent structure is far less restrictive than the independent
structure and will enable the modelling of genetic correlations between traits.

The variance structures of the linear mixed model tested in this analysis have now
been explored. The next key part of the linear mixed model is the estimation process.
The variance parameters are estimated using residual maximum likelihood (REML) as
discussed in section 1.3.2. This discusses the computational engine of Gilmour et al.
(1995) behind the use of REML in ASReml-R as well as the average information (AI)
algorithm used. The fixed effects of the linear mixed model are estimated as best linear
unbiased estimators (BLUEs) while the random effects are estimated as best linear
unbiased predictors (BLUPs).

The linear mixed model can be generalised to the form:

35



y = Xτ + Zu + e (2.13)

where u is a vector of the random effects such that u = (u′p, u′g)’ with corresponding
design matrix Z = [Zp Zg].

This allows a clear interpretation of the estimates of each respective part of the
model. From equation 2.13 the random effects have a mean of zero and a variance
matrix as given below:

var

ue
 =

G(γ) 0
0 R(φ)


where γ is the vector of variance parameters relating to u and φ is the vector of

variance parameters relating to e.

The estimation of the linear mixed model requires the solution of the mixed model
equations. The mixed model equations are:

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

 τu
 =

X′R−1y
Z′R−1y

 (2.14)

where the solution of these equations require the REML estimates of γ and φ.

The log-likelihood equation for REML can be defined as (Gilmour et al., 1995):

l = −
1
2

(log|X′H−1X| + log|H| + v log σ2 + y′Py/σ2) (2.15)

= −
1
2

(log|C| + log|R| + log|G| + v log σ2 + y′Py/σ2). (2.16)

where v = n − t,H = ZGZ′ + R,C is the coefficient matrix in Equation 2.14 and P is
defined as below:

P = H−1
−H−1X(X′H−1X)−1X′H−1
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If K is defined as K = (γ,φ), the REML estimates of σ2 and K will satisfy the
following equations:

∂l
∂σ2 = −

1
2

(v/σ2
− y′Py/σ4) = 0 (2.17)

∂l
∂Ki

= −
1
2

[tr(PHi) − y′PHiPy/σ2] = 0 (2.18)

The restricted maximum likelihood estimator is favourable due to its unbiased
nature. The solution of the score equations in Equations 2.17 and 2.18 allows for the
fixed and random effects of the linear mixed model to be estimated. The fixed effects
τ of the linear mixed model are estimated by:

τ̂ = (X′H−1X)−1X′H−1y (2.19)

and the random effects u of the linear mixed model are estimated by:

ũ = GZ′Py (2.20)

The parameter vectors to be used in these calculations are those which maximise
Equation 2.16.

This section has detailed both the structure and estimation of the linear mixed
model. The practicality of this is evident in Section 3.2 where the results of the un-
weighted linear mixed model fits are presented. The core attributes of the linear mixed
model remain true for the weighted models, however, some differences are present as
discussed in Section 2.1.3.

2.1.3 Weighted linear mixed models

Like the unweighted approach, the weighted approach to the second stage of the anal-
ysis takes two forms. The first of these is the fitting of univariate linear mixed models
for each of the estimated parameters from the first stage of analysis, that is, the spatial
point process models. In this instance, however, a weighted method is implemented in
the fitting of these models. This is also the case for the second approach in this section,
the weighted multivariate linear mixed model.

For both approaches, the weights used are calculated in the same fashion. The
calculation itself is simple, as given below:
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w =
1

se(y)
(2.21)

where w is the n×1 vector of weights and se(y) is the n×1 vector of standard errors
of the estimated spatial point process parameters from the spatial point process models.

As such, the weight for any given parameter estimate is simply the inverse of its
standard error from the spatial point process model. The goal of a weighted analysis
is to allow for data points with different variances, and respect this when it comes to
analysis. An estimate with a large standard error will be weighted low, and this is
particularly important in circumstances where that estimate causes misleading results
in an unweighted setting.

In ASReml-R, there are two ways to apply weights in the linear mixed model.
This depends on whether the weights are relative or absolute. Absolute weights
are defined as the reciprocal of known variances while relative weights are to be
scaled by the residual variance (Butler et al., 2018). In ASReml-R, the argument
f amily = asr gaussian(dispersion = 1) is used in the case of absolute weights. This will
fix all residual variances to 1. However, in this experiment, interest is in the differences
between residual variances and the ability to model correlations between traits using
them in the multivariate model. Respecting the variability in the residual variances of
this experiment is critical to the analysis. There are replicated values due to the nature
of the experiment and this allows the estimation of residual variances. The weights
are then used to account for the differences in precision surrounding the spatial point
process parameter estimates. As such, for this experiment it is ideal that the weights
are scaled by the residual variance. Therefore, the argument presented above is not
necessary.

The formulation of the univariate weighted linear mixed model can once again be
represented by equation 2.10. The difference comes in the calculation of the residual
or R structure of the model. If a structure is present in the residuals of the model,
the weights are applied as a matrix product. The inverse of the residual structure is
calculated as below (Butler et al., 2018):

R−1 = WS−1W (2.22)
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where W is an n× n diagonal matrix constructed from the square root of the values
in the weight variate w:

W =


w1

0 w2
...

. . .

0 0 · · · wn


where n is the number of experimental units. S is the n × n residual structure prior

to the impact of weights. After this matrix product, the residual structure is treated
as it would be in any other linear mixed model. As such, the estimation equations
2.19 and 2.20 both hold true, although the result will change due to the difference in
calculation of the R matrix.

The calculation of the R matrix changes again for the weighted multivariate linear
mixed model. The difference stems from the fact that in the multivariate setting the
matrix of weights must be applied to a set of response variables, or traits. In this case,
the residual or R structure is calculated as below:

R−1∗ = W∗S−1∗W∗ (2.23)

where W is an nt × nt diagonal matrix of weights constructed from the square root
of the values in the weight variate w:

W∗ =


w1

0 w2
...

. . .

0 0 · · · wnt


where n is the number of experimental units and t is the number of traits. R∗ is an

nt × nt matrix as is S∗. Once the R∗ structure has been calculated, the remainder of the
estimation process is as stated previously in this section.

The decision on the most appropriate linear mixed model to implement was made
using two key model selection tools. These were the log-likelihood ratio test (LRT)
and Akaike Information Criteria (AIC). The LRT uses a chi-squared test to determine
whether the log-likelihood of one model is a significant improvement on the log-
likelihood of another model given the difference in the number of parameters. The
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AIC provides an overall measure of parsimony where this value is sought to be min-
imised.

ASReml-R sometimes has issues with numerical estimation when dealing with
numbers of either a very small or very large scale in the response variable. To guard
against this, a number of the spatial point process estimated parameters are rescaled
before being used as the response variables in the linear mixed model. Table 2.7 shows
the transformation applied to each estimated parameter in this rescaling process. The
theory presented throughout this section will be implemented in a practical sense
in this project using the motivating data set provided by the Catholic University of
Louvain.

Table 2.7: The transformation applied to each spatial point process estimated param-
eter. These transformations rescaled the estimates to an appropriate magnitude for
ASReml-R to deal with.

Parameter Transformation

Intercept None
abs(x) x100
y x1000
abs(x)2 x100000
abs(x)y x1000000
y2 x10000000

2.2 Development of data set

The data set used for all analyses conducted in this project was supplied by an ex-
periment conducted at the Catholic University of Louvain in Belgium. Extensive
preparation went into the design, implementation and development of data for this
experiment. This section will detail the key aspects of this and ultimately explain how
the data set in use has come about.

The experiment was conducted on two aeroponic high-throughput phenotyping
platforms. Each of these platforms consisted of 99 strips where each strip had 5 plant
positions. Figure 2.2 displays the layout of one of these platforms. As such, 495 plants
were grown on each platform. The experiment in this project was conducted over two
platforms giving a total of 990 plants in the data set. The purpose of this experiment
was to investigate the plant root architecture of different wheat genotypes. A partially
replicated design was implemented for this experiment as there were 520 different
wheat genotypes used. This resulted in an average replication value of 1.9034 for
the experiment. That is, on average each wheat genotype occurs 1.9034 times across
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the two platforms. The implementation of aeroponic high-throughput phenotyping
platforms has made experiments with large numbers of genotypes more viable in
recent years, particularly with the development of imaging and robotics to allow for
the capture of intricate details of plant roots. The plant roots can be accessed in a
non-invasive manner while growing unimpeded (Draye et al., 2018). Currently, Draye
et al. (2018) state that the aeroponics platform at the Catholic University of Louvain
can assess the following root traits:

• Maximum root length (cm)
• Primary root elongation rate (cm.day-1)
• Embryonic roots number (nb of tips)
• Lateral root density (nb of lateral.cm-1 of branched embryonic root)
• Root angle between 2 first pair of seminals (° or rad)
• Mean/mode/median diameter (embryonic roots, lateral roots all roots, cm)
• Convex hull area (cm2)

This illustrates the usefulness of the aeroponic setup and the many types of analysis
which can be conducted from the resulting data.

The development of the data set begins with the imaging process. The first stage of
the process is the detection of the plant root tips. The initial image naturally includes
seed and shoot-borne roots which are not of interest in this analysis. These are filtered
out and the plant is reconstructed through the use of machine learning techniques.

The machine learning techniques used to reconstruct the plant root system have
been trained on simulated plant root systems (Draye et al., 2018). This aids in deter-
mining the nature of the plant root system being dealt with and yields appropriate
parameters which describe this system. The implementation of these techniques post
root tip detection allow for the image to be reconstructed as purely plant root tips. An
example of what this reconstruction looks like in this experiment is shown in Figure 2.3.

After the reconstruction process is complete, the data set of x, y data points is ready
for analysis. In this format, the data follows a spatial point pattern. Ultimately, without
the reconstruction of the data set into x, y data, the spatial point process component of
this analysis could not be completed.
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Figure 2.2: Experimental layout of one aeroponic high-throughput phenotyping plat-
form at the Catholic University of Louvain. Each platform consists of 99 strips where
each strip has 5 positions.
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Figure 2.3: The reconstruction of a plant root tip system from the motivating data set.
The dots show the plant root tips coming off each of the plant roots. The final data set
is developed from the (x,y) coordinates of all plant root tips.
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Chapter 3

Results

This chapter provides the key results from the analysis of root tip data collected from
wheat genotypes grown in the replicated experiment on the aeroponic platforms.
Firstly, Section 3.1 shows the results of the model selection process and summaries
of the estimated parameters from the fitted point process models. This includes the
distributions of the estimated parameters in addition to x, y data point plots of plants
which span the range of the estimated parameters. Section 3.2 shows the results of the
unweighted univariate and multivariate linear mixed models. Section 3.3 shows the
results of the weighted univariate and multivariate linear mixed models. Both Sections
3.2 and 3.3 include summaries of variance components for the respective models as
well as predictions of genotype effects. Furthermore, the residual and genetic correla-
tions between estimated parameters are provided from the multivariate models. This
will allow the unweighted and weighted methods to be compared, assisting in the
determination of differences between methods for this analysis.

3.1 Point process models

The results of the model selection process for the case of plant 90 in the experiment is
presented here in detail as an exemplar case. This plant has the maximum parameter
estimate of y2. Figure 3.1 contains three sub figures displaying the residual diagnos-
tics for the three respective point process models (linear, second order harmonic and
second order polynomial). Figure 3.1 shows a reduction in the cumulative sum of raw
residuals for the x coordinates (bottom left plot of each sub figure) for the second order
polynomial model (right) in comparison to the linear model (left) and second order
harmonic model (middle). This indicates that the second order polynomial model is
accounting for the properties of the raw data more effectively in the x dimension. The
top left plot of each sub-figure in Figure 3.1 shows that the second order polynomial
(right sub figure) mirrors the raw data points more closely than the linear and second
order harmonic models. This is to be expected given that the cumulative sum of raw
residuals in the x dimension is smaller for the second order polynomial model. The
cumulative sum of raw residuals for the y coordinate are reduced for the second order
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Figure 3.1: The residual diagnostics for plant 90 for all three models tested in the model
selection process. From left to right there is the linear model, second order harmonic
model and second order polynomial model. Each of these models are attempting to
appropriately model the change in intensity of plant root tips throughout the spatial
window. For each sub-figure, the top left plot shows how well the fitted model mirrors
the raw data, the top right plot shows the cumulative sum of raw residuals for the
y coordinate, the bottom left plot shows the cumulative sum of raw residuals for the
x coordinate and the bottom right plot shows any trends across the spatial window
which the fitted model is not accounting for.

harmonic and polynomial models compared to the linear model (Figure 3.1).

The Akaike Information Criteria (AIC) was also a key tool to determine the most
appropriate point process model. The AIC for each of the fitted point process models
are presented in Table 3.1. In addition to the AIC values, Table 3.1 presents the results
of an analysis of deviance between the linear model and both the second order har-
monic model and the second order polynomial model. The AIC values and analyses
of deviance indicate that the second order polynomial model is the superior model
of the three. The second order harmonic model reduces the AIC by 80.83 from the
linear model. The second order polynomial model then reduces the AIC by a further
169.3 from the second order harmonic model. The analyses of deviance support the
AIC values in concluding the second order polynomial model should be selected. The
probability values from the analyses of deviance are calculated using a chi-squared
test. Table 3.1 shows the second order harmonic model to be a significant improve-
ment on the linear model as reflected by the P-value of <0.001. It is also evident that
the second order polynomial model has an even larger deviance (254.13) than that for
the second order harmonic model (82.831). The final point to note in Table 3.1 is that
the second order polynomial model has an extra degree of freedom compared to the
second order harmonic model due to the extra parameter in the model. The linear
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Table 3.1: The results of two analyses of deviance as well as the AIC for each model for
plant 90. A P-value is presented for each analysis of deviance using a chi-squared test.
The analysis of deviance between the linear and second order harmonic models can
be investigated by only looking at the first and second rows of the table. The analysis
of deviance between the linear and second order polynomial model can be viewed by
looking at the first and third rows of the table. Npar is the number of parameters, D f is
the degrees of freedom, Pr(>Chi) is the P-value where a value less than 0.05 indicates
a significant improvement and AIC represents the Akaike Information Criteria, where
the minimum AIC is bolded.

Model Npar Df Deviance Pr(>Chi) AIC

Linear 4 23806
Second order harmonic 5 1 82.831 <0.001 23725
Second order polynomial 6 2 254.13 <0.001 23556

model is shown to have four parameters which creates the difference in degrees of
freedom between the successive models to be one and two respectively in the analyses
of deviance. Ultimately, both the AIC and analyses of deviance are indicating the sec-
ond order polynomial model should be the final model selected. These model selection
results presented relate strictly to plant 90, the maximum y2 estimated parameter. This
identical process was conducted for all plants which span the range of each estimated
parameter (Table 3.2) to ensure the final model selected was appropriate for all types
of point processes in the dataset.

After conducting the model selection process, the second order polynomial model
was selected as the final model to fit the spatial point processes. As such, this model
was fit to each plant in the R package spatstat. Each of the estimated parameters
were then examined for outliers which were removed as necessary (see Section 2.1.1).
The summary of each of the estimated parameters distributions after the removal of
outliers are presented in Table 3.2. These distributions are displayed visually in the
form of histograms in Figure 3.2.

The summaries for each estimated parameter presented in Table 3.2 show the range
of the model fits. These are presented in Figures 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 in the
form of the x, y plant root tip data points for the specific plants which exhibit these
estimated parameters. Each figure displays the minimum, mean and maximum values
for that respective parameter. These figures provide an insight into the different types
of plant root systems which have been detected through the second order polynomial
point process model fit. Further to this, these figures display the characteristics of the
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Table 3.2: The summaries of each of the estimated parameters from the fitting of 923
point process models with outliers removed. For each parameter there is a six figure
summary consisting of the minimum, first quartile, median, mean, third quartile and
maximum estimated parameters. The NA′s reflect the number of missing values for
that parameter.

Parameter Minimum 1st Qu. Median Mean 3rd Qu. Maximum NA’s

Intercept -8.51 -6.33 -5.89 -5.95 -5.51 -4.02 41
abs(x) -1.69e-02 -1.98e-03 5.50e-04 8.60e-04 3.56e-03 1.84e-02 40
y -2.07e-03 -6.10e-04 -3.60e-04 -3.20e-04 -2.00e-05 1.61e-03 38
abs(x)y -6.38e-06 -1.31e-06 -4.00e-07 -4.40e-07 4.70e-07 4.51e-06 42
abs(x)2 -5.44e-05 -1.99e-05 -1.33e-05 -1.51e-05 -8.00e-06 3.80e-06 41
y2 -5.65e-07 -2.65e-07 -2.07e-07 -2.19e-07 -1.60e-07 1.06e-07 49

spatial point pattern which are being captured by each parameter.

The intercept parameter is indicating the average log-intensity of the spatial point
pattern. Figure 3.3 shows the plant root systems which exhibit the minimum, mean and
maximum intercept estimated parameters. At first glance, the mean plant root system
may appear to have a larger average intensity than the maximum, however this is not
the case. The concentration of the plant root tips near the top of the spatial window for
the plant root system with the maximum estimated parameter is far greater, resulting in
a larger average intensity. The abs(x) parameter describes the linear change in intensity
of plant root tips across the x dimension of the spatial window, or width of the plant
root system. Figure 3.4 shows a thin plant root system for the minimum parameter
which naturally exhibits little change in intensity across the x dimension. The mean
and maximum parameter plant root systems require a closer investigation. It is vital to
remember the absolute value of x has been taken in this analysis. The mean parameter
plant root system in Figure 3.4 is symmetric in places about the point x = 0 which
influences the fitting of the abs(x) parameter. In contrast, the maximum parameter
plant root system is not symmetric about the point x = 0 and shows a linear change
in intensity across the x dimension. The y parameter describes the linear change in
intensity over the y dimension, or depth of the plant root system. In Figure 3.5 it is
clear that there is little change in intensity over the depth of the minimum parameter
plant root system. The mean parameter plant root system exhibits a gradual change
in intensity of plant root tips over the depth while the maximum parameter plant
root system shows a sharper change in intensity. Figure 3.6 displays the plant root
systems for the minimum, mean and maximum abs(x)y estimated parameter values.
This parameter describes the change in intensity of plant root tips over the width of
the plant root system, as the depth of the plant root system changes. As such, it is
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Figure 3.2: The distributions of each estimated parameter from the 923 point process
models fitted to the plant root tip data. The intercept, abs(x), y and abs(x)y estimated
parameters resemble a normal distribution, while the abs(x)2 and to a lesser extent y2

parameters, display a left-skew.

evident in Figure 3.6 that the plant root system with the minimum abs(x)y parameter
is reasonably uniform over both dimensions in complete contrast to the plant root
system with the maximum abs(x)y parameter. In the maximum parameter plant root
system, the intensity of the plant root tips change considerably over the width of the
plant root system as the depth of the plant root system changes. The mean parameter
plant root system exhibits some change over the width of the system as the depth
changes but not to the extent of the maximum parameter plant root system. Figure
3.7 shows the minimum, mean and maximum parameter plant root systems for the
abs(x)2 estimated parameter. The abs(x)2 estimated parameter describes the non-linear
change in intensity of the plant root tips across the width of the plant root system.
The minimum parameter plant root system in Figure 3.7 displays very little change
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in intensity across the width of the plant root system while the maximum parameter
plant root system does. Not only does it exhibit change across the x dimension, but
this change is non-linear. The mean parameter plant root system also has this property
to a lesser extent but in both plant root systems, the curvature indicates the need for
this non-linear estimated parameter. Finally, Figure 3.8 displays the minimum, mean
and maximum parameter plant root systems for the y2 estimated parameter. The y2

estimated parameter is essential for modelling the non-linear change in intensity of
plant root tips over the depth of the plant root system. The minimum and maximum
parameter plant root systems in Figure 3.8 both show a change in intensity of plant
root tips over the depth of the system. Despite this, the maximum parameter plant
root system exhibits a non-linear change, while the change in the minimum parameter
plant root system has been captured in the y parameter.

Given the model fit to each plant root system has all six estimated parameters,
they work together to provide an overall model fit which is appropriate. For exam-
ple, this means that the plant root system with the greatest average intensity does not
strictly have the largest intercept estimated parameter. The same can be said for the
other estimated parameters. Despite this, the estimated parameters give a strong indi-
cation of the characteristics described which relate to each of the estimated parameters.

Figure 3.3: Three plots of the x, y root tip data points for the plant root systems with
the minimum, mean and maximum estimated intercept parameter.
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Figure 3.4: Three plots of the x, y root tip data points for the plant root systems with
the minimum, mean and maximum estimated abs(x) parameter.

Figure 3.5: Three plots of the x, y root tip data points for the plant root systems with
the minimum, mean and maximum estimated y parameter.
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Figure 3.6: Three plots of the x, y root tip data points for the plant root systems with
the minimum, mean and maximum estimated abs(x)y parameter.

Figure 3.7: Three plots of the x, y root tip data points for the plant root systems with
the minimum, mean and maximum estimated abs(x)2 parameter.
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Figure 3.8: Three plots of the x, y root tip data points for the plant root systems with
the minimum, mean and maximum estimated y2 parameter.

3.2 Unweighted linear mixed models

3.2.1 Univariate unweighted linear mixed models

The second stage of analysis involves taking the estimated parameters from the 923
spatial point process models into a linear mixed model framework. Firstly, this was
investigated in a univariate unweighted setting, where each estimated parameter was
analysed in a separate linear mixed model. The difference between this and a spatial
point process model is that all 923 plant root systems are included in one linear mixed
model. The variance components for each term in the unweighted univariate linear
mixed models are presented in Table 3.3.

Table 3.3 shows four different sources of variance from the experiment. The plat-
form variance comes from the differences between the two aeroponic platforms in
the experiment. The position component is only included where it was significant in
the linear mixed model by way of a log-likelihood ratio test. If present, the position
component relates to the differences between positions in the experimental layout.
The genotype variance component captures the differences between genotypes in the
experiment, while the residual variance component captures the differences between
each experimental unit (each plant). Table 3.3 shows the abs(x)y and abs(x)2 estimated
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Table 3.3: The variance components of each term in the unweighted univariate linear
mixed model. The position term was only included where significant by way of a
log-likelihood ratio test. The residual variance relates to each plant root system in the
experiment. This experimental unit is identified as ID in the plant root tip dataset.
The value of each variance component is the amount of variance in the estimated
parameter which can be attributed to that factor. Note that B indicates this variance
component is approaching the boundary of the parameter space and is constrained to
be approximately equal to 0.

Variance Component Intercept abs(x) y abs(x)y abs(x)2 y2

platform 0.0067 B 0.0095 0.0018 0.0343 B
position 0.0054 0.0103
genotype 0.0553 B 0.0157 0.0072 0.0002 0.1130
residual 0.3359 0.2037 0.2562 2.2836 0.9898 0.7192

parameters to have a large residual variance relative to their genetic variance. The
genetic variance of the y estimated parameter is higher relative to its residual variance,
while this ratio is higher again for the Intercept and y2 estimated parameters. The
abs(x) parameter has gone to the boundary of the parameter space which indicates the
genetic variance is constrained to be approximately 0. The platform variance com-
ponents are minimal for all estimated parameters except abs(x)2. The abs(x) and y2

platform variance components are boundary. Finally, the two estimated parameters
which required a position variance component were the y and y2 estimated parame-
ters. This indicates that the change in intensity of plant root tips over the depth of the
plant root systems was affected in some way by it’s position on the aeroponic platform.

For each of the unweighted univariate linear mixed models, the predict function
in ASReml-R was used to predict the estimated parameters for each genotype. That
is, six sets of predictions were calculated for the genotype effects, with one for each
estimated parameter. The full sets of predictions can be found in Appendix B.1, how-
ever, a subset of genotype predictions are presented in Table 3.4. It is evident in Table
3.4 that the genotype predictions for the abs(x), abs(x)y and abs(x)2 parameters have
little variation and this is to be expected given the minimal genetic variance for these
parameters (Table 3.3).
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Table 3.4: The genotype predictions for each unweighted univariate linear mixed
model, where each estimated parameter has its own model. A subset of 10 genotypes
are presented here, and it is important to note that these predictions are on the trans-
formed data scale with the exception of Intercept which did not require transforming.

Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP RIL114 319 -6.212 0.086 -0.385 -0.432 -1.520 -2.642
SUNTOP WYLIE 350 -6.193 0.086 -0.311 -0.435 -1.520 -2.187
SUNTOP EGA GREGORY 130 -6.214 0.086 -0.289 -0.443 -1.520 -2.287
SUNTOP DRYSDALE 54 -5.700 0.086 -0.310 -0.434 -1.519 -2.184
SUNTOP SPITFIRE 52 -5.810 0.086 -0.336 -0.440 -1.519 -2.372
SUNTOP EGA GREGORY 135 -6.004 0.086 -0.309 -0.427 -1.520 -2.037
SUNTOP RIL114 336 -5.931 0.086 -0.314 -0.432 -1.519 -2.051
SPITFIRE-P9 -5.785 0.086 -0.172 -0.469 -1.520 -2.207
SUNTOP SB062 239 -5.923 0.086 -0.219 -0.455 -1.520 -2.372
SUNTOP SPITFIRE 48 -6.140 0.086 -0.367 -0.438 -1.519 -2.647

3.2.2 Multivariate unweighted linear mixed models

After fitting the six unweighted univariate models and producing genetic predictions,
the fitting of an unweighted multivariate linear mixed model was conducted. In this
analysis, each estimated parameter is treated as a trait such that trait is a factor with six
levels. The response variable includes all estimated parameter values and as such, the
multivariate model allows investigation of relationships between these parameters.
This can be investigated in different manners depending on the residual and random
variance structures implemented.

Firstly, the residual variance structure must be chosen with any genetic variances
which are boundary removed from the model. This ensures the correct number of
parameters are used in the model for traits which are actually contributing genetic
variance. After fitting the multivariate model with an independent (’diag’) resid-
ual variance structure, the abs(x) trait was removed due to its genetic variance being
boundary. The genetic variance components of the model with an independent (’diag’)
residual structure are shown in the first row of Table 3.5. The dependent (’corgh’) resid-
ual structure was then fit which initially resulted in two further traits having boundary
terms for their genetic variance (second row of Table 3.5). After removing these two
traits and fitting the same model, one further trait went boundary as seen in the third
row of Table 3.5. As such, after settling on a dependent (’corgh’) residual variance
structure only two traits, the Intercept and y2 estimated parameters, remained in the
model.
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Table 3.5: The genetic variance components for each trait in the unweighted multi-
variate model. The ’Residual’ column reflects the residual variance structure fit while
the ’Genetic’ column reflects the genetic variance structure fit in the model. A ’B’
corresponds to a boundary term which has approximately 0 variance. The following
row will see these boundary terms removed until the final model is arrived at in the
final row.

Residual Genetic Intercept abs(x) y abs(x)y abs(x)2 y2

diag diag 0.0553 B 0.0002 0.0072 0.0157 0.1130
corgh diag 0.0260 0.0129 B B 0.0368
corgh diag 0.0351 B 0.0873
corgh corgh 0.0556 0.1217

The same structures were fit at the random level to model the genetic correlations
between traits. Given only two traits remain in the model, the dependent (’corgh’)
structure is only fitting one correlation between traits. Table 3.6 uses the model selec-
tion tools of the log-likelihood ratio test and AIC to determine the final unweighted
multivariate model. After removing the boundary genetic variance parameters as seen
in Table 3.5, the independent (’diag’) model is fit again with only the two remaining
traits. This model is then compared to the dependent (’corgh’) structure for both the
residual and genetic variance structures. The dependent (’corgh’) residual structure is
a significant improvement on the independent (’diag’) residual structure (Pr<0.001).
It also shows a large reduction in the AIC. The dependent (’corgh’) genetic variance
structure is also shown to be a significant improvement on the independent (’diag’)
genetic variance structure with a probability of 0.01.

As such, the unweighted multivariate model was fit with the dependent (’corgh’)
residual variance structure and dependent (’corgh’) genetic variance structure. This

Table 3.6: The model selection criteria used to determine the most appropriate residual
and genetic variance structure for the unweighted multivariate model. A P-value
is presented for each comparison of models. This P-value is generated from a log-
likelihood ratio test which uses a chi-squared test. Pr(>Chi) is the P-value where
a value less than 0.05 indicates a significant improvement and AIC represents the
Akaike Information Criteria, where the minimum AIC is bolded.

Genetic structure Residual structure LogLik Pr(>Chi) AIC

diag diag -384.77 784
diag corgh -356.18 <0.001 728
corgh corgh -352.89 0.01 724
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fits correlations between traits at both the residual and genetic levels in addition to
variance components for the design, genotype and residual terms for each trait. Table
3.7 shows the variance components from the fitted model. Table 3.7 indicates that
the ratio of genetic to residual variance for the y2 parameter is similar to the Intercept
parameter. The platform variance is minimal for the Intercept parameter and boundary
for the y2 parameter. The position variance component is only necessary for the y2

parameter. The residual correlation between the estimated parameters are low from
the fitted unweighted multivariate model at 0.21. Conversely, the genetic correlation
between the two estimated parameters is moderately high at 0.65.

As was done for the unweighted univariate linear mixed models, the predict func-
tion in ASReml-R was used to predict the estimated parameters for each genotype
from the unweighted multivariate linear mixed model. In this case, all predictions are
provided in one set, given the nature of the multivariate model. The full set of pre-
dictions from the multivariate model can be viewed in Appendix B.3, however, Table
3.8 presents a subset of 10 genotypes. Variation is evident in these predictions for both
the Intercept and y2 parameters. A larger Intercept prediction indicates a higher aver-
age intensity of plant root tips for that genotype, while a higher y2 prediction indicates
a larger non-linear change in intensity over the depth of the plant root for that genotype.

Table 3.7: The variance components of each term in the final unweighted multivariate
linear mixed model. The position term was only included where significant by way of
a log-likelihood ratio test. The residual variance relates to each plant root system in the
experiment. The experimental unit is identified as ID in the plant root tip dataset. The
value of each variance component is the amount of variance in the estimated parameter
which can be attributed to that factor. Any variance components with a ’B’ indicate
this term has gone boundary and is approximately 0.

Variance Component Intercept y2

platform 0.0067 B
position 0.0063
genotype 0.0556 0.1217
residual 0.3354 0.7157
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Table 3.8: The genotype predictions for the unweighted multivariate linear mixed
model, where each estimated parameter is incorporated in one model. A subset of
10 genotypes are presented here, and it is important to note that these predictions are
on the transformed data scale with the exception of intercept which did not require
transforming.

Genotype Intercept y2

SUNTOP RIL114 319 -6.318 -2.783
SUNTOP WYLIE 350 -6.195 -2.426
SUNTOP EGA GREGORY 130 -6.215 -2.445
SUNTOP DRYSDALE 54 -5.727 -2.054
SUNTOP SPITFIRE 52 -5.874 -2.292
SUNTOP EGA GREGORY 135 -5.953 -2.077
SUNTOP RIL114 336 -5.899 -2.059
SPITFIRE-P9 -5.806 -2.134
SUNTOP SB062 239 -5.976 -2.357
SUNTOP SPITFIRE 48 -6.254 -2.742

3.3 Weighted linear mixed models

3.3.1 Univariate weighted linear mixed models

The second approach taken to stage two of the analysis involved the implementation
of weights within the linear mixed model. As was the case for the unweighted models,
the weighted models were investigated in both a univariate and multivariate sense.
The weights were calculated as the inverse of the standard errors from the spatial point
process models such that a plant root system with greater uncertainty is assigned a
lower weight. Figure 3.9 shows the scatter plots of the weights against each trans-
formed estimated parameter. The relationship between the estimated parameter and
weight appears completely random for Intercept, abs(x), y, abs(x)y and y2, however, for
the abs(x)2 parameter there is an inclination for the weights to be larger as the estimated
parameter is larger. This indicates greater certainty around the larger parameter esti-
mates as opposed to the smaller estimates.

Table 3.9 presents the variance components for each term in the weighted univari-
ate linear mixed models. The ratio of genetic variance to residual variance is smallest
for the abs(x) and y parameters. This ratio is largest for the abs(x)2 and y2 parameters,
indicating that there is higher genetic variance for these non-linear parameter esti-
mates. The position term is once again necessary for the y and y2 parameters and the
platform variance component is greatest for Intercept. The remaining platform terms
show minimal variance with abs(x)2 being boundary.
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Figure 3.9: Scatter plots of each estimated parameter from the 923 point process mod-
els against their respective weights. The weights have been calculated as 1/se of each
transformed estimated parameter where se is the standard error. The estimated param-
eters have been transformed so that they are all on a similar data scale. a) shows the
Intercept parameter, b) shows the abs(x) parameter, c) shows the y parameter, d) shows
the abs(x)y parameter, e) shows the y2 parameter and f) shows the abs(x)2 parameter.

The predict function in ASReml-R was used to predict the estimated parameters for
each genotype. This was done for each of the weighted models to provide six sets of
genotype predictions and these are presented in Table 3.10. These predictions consider
the weights applied in the fitting of the model, and subsequently provide different
predictions to those seen in Table 3.4. The subset of 10 genotypes show a range of
predicted values for all estimated parameters in contrast to Table 3.4, which showed
minimal genetic variation for the abs(x), abs(x)y and abs(x)2 parameters. The full set of
genotype predictions are provided in Appendix B.2.
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Table 3.9: The variance components of each term in the weighted univariate linear
mixed models. The position term was only included where significant by way of a
log-likelihood ratio test. The residual variance relates to each plant root system in the
experiment. This experimental unit is identified as ID in the plant root tip dataset. The
value of each variance component is the amount of variance in the estimated parameter
which can be attributed to that factor. Any terms denoted by ’B’ indicate this term has
gone boundary and is approximately 0.

Variance Component Intercept abs(x) y abs(x)y abs(x)2 y2

platform 0.0144 0.0003 0.0072 0.0073 B 0.0070
position 0.0031 0.0073
genotype 0.0563 0.0105 0.0176 0.1355 0.1449 0.1340
residual 6.1578 5.4504 5.8360 19.2291 12.6142 7.1219

Table 3.10: The genotype predictions for the weighted univariate linear mixed models,
where each estimated parameter has its own model. A subset of 10 genotypes are
presented here, and it is important to note that these predictions are on the transformed
data scale with the exception of Intercept which did not require transforming.

Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP RIL114 319 -6.075 0.087 -0.361 -0.405 -1.381 -2.361
SUNTOP WYLIE 350 -6.045 0.067 -0.321 -0.441 -1.365 -2.109
SUNTOP EGA GREGORY 130 -6.151 0.134 -0.293 -0.618 -1.553 -2.259
SUNTOP DRYSDALE 54 -5.640 -0.030 -0.318 -0.430 -0.952 -2.102
SUNTOP SPITFIRE 52 -5.762 -0.017 -0.352 -0.580 -1.079 -2.338
SUNTOP EGA GREGORY 135 -5.981 0.164 -0.318 -0.185 -2.529 -1.951
SUNTOP RIL114 336 -5.910 0.024 -0.328 -0.389 -0.831 -1.930
SPITFIRE-P9 -5.773 0.087 -0.137 -1.190 -1.522 -2.094
SUNTOP SB062 239 -5.894 0.126 -0.176 -1.090 -1.946 -2.622
SUNTOP SPITFIRE 48 -6.036 0.064 -0.348 -0.465 -1.295 -2.321

3.3.2 Multivariate weighted linear mixed models

The final phase of the analysis was to conduct the fitting of the weighted multivariate
linear mixed model. This model incorporates the weights while also analysing all esti-
mated parameters in one model. That is, all estimated parameter values are included
in one response variable, with a ’trait’ factor distinguishing which value belongs to
which estimated parameter. As was the case for the unweighted multivariate model, an
appropriate residual and genetic variance structure must be determined. Any genetic
variances which are boundary must be removed from the model. The independent
(’diag’) residual variance structure did not show any boundary genetic variances as
seen in the first row of Table 3.11. When moving to a dependent (’corgh’) residual
variance structure the abs(x), abs(x)y and y estimated parameters all show boundary
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Table 3.11: The genetic variance components for each trait in the weighted multivariate
model. The ’Residual’ column reflects the residual variance structure fit while the ’Ge-
netic’ column reflects the genetic variance structure fit in the model. A ’B’ corresponds
to a boundary term which has approximately 0 variance. The following row will see
these boundary terms removed until the final model is arrived at in the final row.

Residual Genetic Intercept abs(x) y abs(x)y abs(x)2 y2

diag diag 0.0718 0.0191 0.1710 0.1981 0.0255 0.1636
corgh diag 0.0132 B B B 0.0704 0.0639
corgh corgh 0.0751 0.1789 0.1729

genetic variances and as such, were removed from the model. The dependent (’corgh’)
structure was then also fit at the random level to model genetic correlations and this
provides the final weighted multivariate model. The genetic variance components for
this model are shown in the final row of Table 3.11.

Table 3.12 shows the results of the model selection process to select the most appro-
priate residual and genetic variance structures for the weighted multivariate model.
After removing the boundary genetic variance parameters from Table 3.11, the in-
dependent (’diag’) model is fit again with the three remaining traits. This model is
then compared to the dependent (’corgh’) structure for both the residual and genetic
variance structures. The dependent (’corgh’) residual structure is a significant im-
provement on the independent (’diag’) residual structure (Pr<0.001). It also shows a
large reduction in the AIC. The dependent (’corgh’) genetic variance structure is shown
to be a significant improvement on the independent (’diag’) genetic variance structure
with a probability of 0.002.

Table 3.12: The model selection criteria used to determine the most appropriate residual
and genetic variance structure for the weighted multivariate model. A P-value is
presented for each comparison of models. This P-value is generated from a log-
likelihood ratio test which uses a chi-squared test. Pr(>Chi) is the P-value where
a value less than 0.05 indicates a significant improvement and AIC represents the
Akaike Information Criteria, where the minimum AIC is bolded.

Genetic structure Residual structure LogLik Pr(>Chi) AIC

diag diag -901.30 1823
diag corgh -851.82 <0.001 1730
corgh corgh -844.16 0.002 1720
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Based on this model selection criteria, the dependent (’corgh’) variance structure
was once again selected to model both the residual and genetic variance structures.
The variance components for the final weighted multivariate model are presented in
Table 3.13. The y2 parameter has the largest genetic variance relative to its residual
variance, with this ratio being similar for the abs(x)2 and Intercept parameters. The plat-
form and position variance components for y2 are small relative to the other variance
components while the platform variance component for abs(x)2 is boundary. Table 3.14
illustrates the residual correlations between parameters for the weighted multivariate
model. All residual correlations are low with the strongest correlation being between
Intercept and y2 (0.15). Table 3.15 shows moderately high genetic correlations between
the Intercept and abs(x)2 parameters (0.63) and the Intercept and y2 parameters (0.70).
The genetic correlation between y2 and abs(x)2 is much lower at 0.14.

Finally, genotype predictions were produced from the weighted multivariate model.
These predictions are produced as one set given the nature of the multivariate model.
The full set of weighted multivariate predictions can be found in Appendix B.4, how-
ever, Table 3.16 presents a subset of 10 genotypes. Variation in the genotype predictions
are evident for all three parameters. A larger Intercept prediction indicates a greater
average intensity of plant root tips for that genotype, a larger abs(x)2 prediction indi-
cates a greater non-linear change in intensity across the width of the plant roots and a
larger y2 prediction indicates a greater non-linear change in intensity over the depth
of the plant roots.

After conducting both the unweighted and weighted linear mixed model analyses,
the results can be compared. Figure 3.10 shows the weighted and unweighted BLUPs
plotted against each other for each estimated parameter from the univariate analyses.

Table 3.13: The variance components of each term in the final weighted multivariate
linear mixed model. The position term was only included where significant by way of
a log-likelihood ratio test. The residual variance relates to each plant root system in the
experiment. This experimental unit is identified as ID in the plant root tip dataset. The
value of each variance component is the amount of variance in the estimated parameter
which can be attributed to that factor. A ’B’ indicates any variance components which
are boundary meaning approximately 0.

Variance Component Intercept abs(x)2 y2

platform 0.0152 B 0.0076
position 0.0032
genotype 0.0751 0.1789 0.1729
residual 5.5189 11.4816 6.2542
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Table 3.14: The residual correlations between the three estimated parameters in the
weighted multivariate linear mixed model.

Intercept abs(x)2 y2

Intercept 1
abs(x)2 0.06 1
y2 0.15 0.002 1

Table 3.15: The genetic correlations between the three estimated parameters in the
weighted multivariate linear mixed model.

Intercept abs(x)2 y2

Intercept 1
abs(x)2 0.63 1
y2 0.70 0.14 1

Table 3.16: The genotype predictions for the weighted multivariate linear mixed model,
where all estimated parameters are analysed in a single model. A subset of 10 geno-
types are presented here, and it is important to note that these predictions are on the
transformed data scale with the exception of Intercept which did not require transform-
ing.

Genotype Intercept abs(x)2 y2

SUNTOP RIL114 319 -6.243 -1.571 -2.610
SUNTOP WYLIE 350 -6.108 -1.530 -2.308
SUNTOP EGA GREGORY 130 -6.317 -1.818 -2.509
SUNTOP DRYSDALE 54 -5.515 -0.680 -1.884
SUNTOP SPITFIRE 52 -5.777 -0.946 -2.263
SUNTOP EGA GREGORY 135 -6.374 -2.743 -2.031
SUNTOP RIL114 336 -5.684 -0.794 -1.920
SPITFIRE-P9 -5.819 -1.398 -1.989
SUNTOP SB062 239 -6.299 -1.969 -2.690
SUNTOP SPITFIRE 48 -6.137 -1.418 -2.508

The shrinkage of the unweighted BLUPs for the abs(x), abs(x)y and abs(x)2 estimated
parameters is evident in sub-figures b), d) and f) of Figure 3.10. The minimal change
in these BLUPs reflect the small, or boundary, genetic variance components for these
parameters. The weighted BLUPs show more variance for the univariate analyses,
most noticeably for the abs(x), abs(x)y and abs(x)2 estimated parameters.
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The results of the weighted and unweighted multivariate analyses can be compared
for the traits in common between the final two models. As such, Figure 3.11 shows
two plots, the weighted BLUPs against the unweighted BLUPs for the Intercept and
y2 estimated parameters. The Intercept parameter shows a lower correlation between
the weighted and unweighted BLUPs than the y2 parameter, although both are still
highly correlated. For both parameters, there is greater disparity between the weighted
and unweighted BLUPs for lower parameter estimates. As the parameter estimates
increase, the two sets of BLUPs come closer together.
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Figure 3.10: Plots of the weighted vs unweighted Best Linear Unbiased Predictors
(BLUPs) of the genetic effects for all estimated parameters from the univariate linear
mixed models analyses. a) shows the Intercept parameter, b) shows the abs(x) parameter,
c) shows the y parameter, d) shows the abs(x)y parameter, e) shows the y2 parameter
and f) shows the abs(x)2 parameter.
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Figure 3.11: Plots of the weighted vs unweighted Best Linear Unbiased Predictors
(BLUPs) of the genetic effects for the two estimated parameters in common from the
multivariate linear mixed models analyses. a) shows the Intercept parameter while b)
shows the y2 parameter.
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Chapter 4

Discussion and Conclusions

The analysis of point pattern data is conducted using the methodology of spatial point
processes. This methodology allows for statistical models to be fit which describe the
spatial point patterns in the data set. In the case of the plant root tip data, this means
that the spatial locations of plant root tips are modelled in an attempt to describe plant
root architecture. When applying spatial point processes to large, replicated experi-
ments often the analysis is computationally difficult and limited by the large number of
individual spatial point patterns that need to be modelled simultaneously. In compar-
ative experiments, the primary research aim is generally to detect differences between
genotypes. The computational difficulties in the fitting of spatial point processes for
large, replicated experiments compromise their ability to compare genotypes. As such,
it is necessary to investigate the use of other methodology to ensure the research aims
of the experiment are met. This led to the realisation of a two-stage method using
linear mixed models.

The linear mixed model’s ability to model replicated experimental data including
design parameters, allow the aims of this comparative experiment to be met. This
is achieved through including all experimental information, such as platform, strip,
position and genotype in one model, as opposed to multiple spatial point processes.
Further to this, the modelling of genetic and residual correlations between traits is an
additional strength of the linear mixed model. The primary aim of this study is to
determine whether differences are evident in the results of the two-stage method when
a weighted method is applied as opposed to an unweighted method. This has been
investigated in both a univariate and multivariate setting where the difference in results
are compared. There is limited research linking the two methodologies of spatial point
processes and linear mixed models. Therefore, the findings from this study will show
the capabilities of such an analysis, and seek to determine an appropriate analysis
approach moving forward.
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4.1 Point process models

The spatial point processes fit to the plant root tip data compared three different models.
The linear, second order harmonic and second order polynomial models were all tested
in an attempt to most effectively account for the change in intensity of plant root tips
throughout the spatial window. The second order polynomial model most effectively
accounts for the change in intensity of plant root tips for the plant root systems. It
was found that the linear model was not appropriate given the non-linear change in
intensity of plant root tips across both the width and depth of the plant root systems.
Fitting a linear model assumes that the intensity of plant root tips changes at a constant
rate across both dimensions. The description of plant root architecture provided by
Hodge et al. (2009) indicates that non-linearity in plant root systems is expected, and
this is created by the far denser base of the plant roots as opposed to the peripheries
of the system which exhibit far fewer plant root tips (Hodge et al., 2009). The second
order harmonic model accounts for non-linearity through an interaction term (x2 -
y2), however, it does not fit a parameter for each of these terms individually. In this
study, the individual x2 and y2 parameters have shown to be critical in modelling the
inhomogeneous intensity of plant root systems. Due to the non-linearity of plant root
systems (Hodge et al., 2009), the modelling of plant root tips using x2 and y2 spatial
covariates is critical. In summary, the results of the spatial point processes strongly
indicate that there is significant non-linearity in the intensity of plant root tips, and
furthermore, the modelling of spatial covariates in both dimensions (x and y) is key to
capturing the change in intensity of plant root systems.

4.2 Two-stage method

Two-stage analyses can be applied in many contexts including those described by
Möhring and Piepho (2009), Welham et al. (2010), Damesa et al. (2017) and Gogel et al.
(2018). Regardless of the situation, the estimates from stage one are treated as true
values in stage two (Kackar and Harville, 1981). The application of this methodology
is not new, however, the linking of spatial point processes and linear mixed models is.
In many contexts, the implementation of a weighted method is beneficial in two-stage
analyses (Möhring and Piepho, 2009). Weighting ensures that the uncertainty in stage
one of the analysis is respected in stage two and depending on the characteristics of
the data this can be vital. As such, the primary investigation in this study was deter-
mining the difference between weighted and unweighted methods in the context of
plant root tip data. The results of this study show differences between the weighted
and unweighted two-stage methods and the reasoning behind this will be explained.
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The spatial point process analysis (stage one) provided a useful insight into what
was occurring in each plant root system, but this stage of the analysis was limited to
evaluation of each plant individually. While spatial point processes have the ability to
include multiple point patterns in one model, for large replicated experiments, such
as the plant root tip data set, this is computationally difficult. In this study, compu-
tation was an issue and the reason for a separate spatial point process being fit to
each plant root system. Additionally, the spatial point process model for replicated
experiments is limited in the types of treatment and design terms that can be included
in the model. For this reason, the ability to model genetic relationships within the
experiment was restricted. The combination of these factors led to the implementation
of a two-stage method, with the second stage using the linear mixed model framework.

In this study, the implementation of a two-stage method greatly expanded the con-
clusions which could be drawn from the analysis. In the univariate analyses, the linear
mixed model allowed for all plant systems in the experiment to be included in one
model, as well as effectively including design parameters (Butler et al., 2018). This
provides a more complete analysis of the plant root tip data than the spatial point
processes do alone. This is achieved through the estimation of variance components as
evident in the results which allows predictions to be calculated for all genotypes in the
experiment from one model. In the univariate analyses, this is done for each estimated
parameter from the spatial point processes. The benefits of the two-stage method are
increased when the multivariate model is implemented through the ability of the lin-
ear mixed model to model correlations between traits at both the residual and genetic
levels. This allowed both the residual and genetic correlations between the estimated
parameters from the spatial point processes to be calculated for both the weighted and
unweighted multivariate models. As such, the implementation of a two-stage method
using linear mixed models was particularly advantageous for the multivariate analy-
ses, where residual and genetic correlations between the estimated parameters were
investigated. Although correlations between estimated parameters do not apply in
the univariate analyses, the two-stage method is still advantageous in its ability to in-
corporate point processes from all plant root systems in the experiment into one model.

4.3 Linear mixed models

In this study, four types of linear mixed model were fit. These were the univariate un-
weighted, multivariate unweighted, univariate weighted and multivariate weighted
models. The results generated from each of these models showed differences in the
estimation of variance components in stage two of the analysis.
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There was minimal genetic variation for some spatial parameters, and these were
mostly those associated with the x-dimension of the data, namely the abs(x), abs(x)y
and abs(x)2 parameters. This result shows that there was little discrimination in plant
root width between the genotypes. The results from the unweighted univariate mod-
els are contrasted with those from the weighted univariate models, estimating genetic
variation for all spatial parameters. The weights are accounting for uncertainty in
this x dimension which subsequently results in genetic variance increasing in these
weighted models. In this data set, the three-dimensional object of the plant root sys-
tem is transposed into two dimensions. The absolute value of x was implemented in
the model fitting process to force symmetry in this dimension about the point x = 0.
The implementation of weighting has improved the results of the univariate analyses
in detecting genetic variances which could not be estimated in the unweighted mod-
els. This is especially true for the abs(x), abs(x)y and abs(x)2 parameters. The remaining
three parameters show less shrinkage in the unweighted BLUPs relative to weighted
BLUPs, indicating that weights are not as important in the y dimension. Damesa et al.
(2017) state that weighting is vital when heterogeneity is present in the data. For the
plant root data, the use of weights is key in accounting for both the uncertainty and
heterogeneity in the x dimension.

The next component of the study was the fitting of weighted and unweighted multi-
variate linear mixed models. The implementation of the dependent variance structure
at both the residual and genetic levels is essential to model correlations between traits
(Butler et al., 2018). The dependent variance structure as specified in ASReml-R is
fully unstructured in that it does not impose any restrictions. That is, all variances
and covariances between traits can be modelled. Through the iterative process of
implementing the variance structures tested (Table 3.5), a number of genetic variances
are estimated to be boundary, that is, have approximately 0 variance. This indicates
that when all estimated parameters are fit in one multivariate model, and the residual
covariance between the parameters is modelled, there is no additional genetic informa-
tion. The results highlight the importance of respecting the residual variance induced
in the experiment. Two key estimated parameters emerge as characterising the genetic
variation in the plant root tip data for the unweighted multivariate model. These
parameters are Intercept and y2. In practice, this means that the experiment detected
changes in spatial intensity of roots near the surface and in plant root depth. This result
is consistent with that seen for the univariate models. For the weighted analysis, the
abs(x)2 estimated parameter remains in the final weighted multivariate model along
with Intercept and y2. It is evident for the abs(x)2 parameter that estimates closer to 0 are
weighted higher, reflecting the greater confidence in these estimates. This changes the
manner in which this parameter is treated in the multivariate model and the outcome
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is that genetic variance can be estimated when weighting the spatial parameters. As
such, the weights once again account for the uncertainty in the x dimension as was
the case in the univariate analyses, and this ensures the non-linearity evident across
the width of the plant root system is respected. Plant root architecture is known to
vary across the width of a plant root system (Hodge et al., 2009), demonstrating the
importance of using weights for this plant root tip data set. Without the use of weights,
the abs(x)2 parameter would not be present in the final multivariate model causing a
key aspect of plant root architecture to be overlooked.

The model selection process for both the weighted and unweighted multivariate
models showed the dependent variance structure to be necessary at the residual and
genetic levels. Tables 3.6 and 3.12 show the log-likelihood ratio tests and AIC values
for the multivariate models fit in the model fitting process. The independent (’diag’)
variance structure does not model any correlations between traits, therefore it is not
surprising that the dependent structure shows significant improvement. Given inves-
tigating genetic relationships was a key research aim of the experiment, the fitting of
the dependent variance structure at both the residual and genetic levels was ideal. This
allowed correlations between the estimated parameters to be calculated which were
found to be 0.21 at the residual level and 0.65 at the genetic level for the unweighted
multivariate model. Both the weighted and unweighted models exhibit low residual
correlations between all traits which is to be expected given the inherent variation
in plant root architecture (Hodge et al., 2009). That is to say, just because a plant
root system has a large change in intensity for the non-linear root depth parameter
does not mean it will have a large change in intensity for the non-linear root width
parameter. Nonetheless, it is important to respect this residual relationship between
traits in the fitted model before investigating genetic correlations. Given only two
estimated parameters were present in the final unweighted multivariate model, only
one genetic correlation was fit. The correlation between surface intensity and non-
linear root depth of 0.65 is similar to the correlation between these two parameters for
the weighted model (0.70). The correlation between surface intensity and non-linear
root width is also moderately strong at 0.63, however, the correlation of 0.14 between
non-linear root depth and non-linear root width is low. This suggests that genotypes
with a large non-linear root depth parameter estimate often have a low non-linear
root width parameter estimate. Given the Intercept parameter estimates the average
log-intensity of the plant root tips, it is expected that this parameter is moderately to
strongly positively correlated to the y2 and abs(x)2 parameters. That is, if the non-linear
root depth or non-linear root width parameter is large, the average log-intensity will
also be somewhat similar.
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The BLUPs for the weighted and unweighted methods are generally well corre-
lated. This is true for the non-linear root depth parameter, however, more spread
is evident between the BLUPs for the surface intensity. This relates to the inclusion
of the abs(x)2 parameter in the weighted multivariate model. The inclusion of this
parameter influences the impact of the Intercept parameter given it represents the av-
erage log-intensity. There are some particularly notable points in Figure 3.11 which
are distanced from the main grouping. The three clearest points in sub Figure a) have
an unweighted BLUP of approximately -5.9 but a weighted BLUP of approximately
-6.3. This indicates a large amount of uncertainty in the Intercept estimated parameter
for these points, resulting in the weights having a large influence on the prediction of
BLUPs. The weights are therefore important in accounting for the uncertainty in these
particular estimates which are distanced from the main grouping.

Both the univariate and multivariate analyses have shown the weighted method to
account for the uncertainty in the plant root width dimension of the root tip data more
effectively than the unweighted models. The multivariate analysis has demonstrated
that the modelling of plant root tip data can be characterised by a handful of key
parameters.

4.4 Limitations of the data

The plant root tip data set consists of 923 plant root systems across two aeroponic plat-
forms. The primary limitation of the data set is the minimal replication of genotypes
within the experiment. When it comes to the modelling phase, conclusions regarding
genotypes and their plant root architecture could be made with greater confidence if
replication was increased. Given the average replication value of 1.90, some geno-
types are only present once, and this makes it difficult to determine the accuracy of
these plant root tip data points. Further to this, the low heritability of most plant root
traits means that increased replication is highly beneficial. The trade-off to increas-
ing replication for such a large genotype trial comes with experimental resources and
computational power when it comes to analysis. Nonetheless, increased replication of
genotypes would lead to a more comprehensive analysis of plant root architecture in
this case.

Another key limitation of the plant root tip data set is the reduction in dimension-
ality. The transposing of three-dimensional plant root systems into two dimensions
limits the conclusions which can be made regarding certain aspects of the plant. It is
possible that some important aspects of plant root architecture have been overlooked
due to this. The spatial point process methodology used in this study could handle
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three-dimensional data through the incorporation of a z covariate for the third dimen-
sion. Currently, the barrier to this lies in the practicalities of collecting the data. The
method of collecting the images as described by Draye et al. (2018) would need to be
modified to capture the appropriate three-dimensional data. If this technology can be
employed, it would improve the overall analysis conducted in studies such as this.

Finally, the outliers detected in this study have raised the issue of poor plant growth
in this experiment. Appendix A.1 displays the plant root tip data plots of 37 plant root
systems which were removed from the analysis due to lack of growth. Of these 37 plant
root systems, 35 were located on platform one of the experiment. This indicates an
issue relating to this aeroponic platform which prevented adequate growth. Research
into why this may have occurred and how to prevent it in the future is important to
similar experiments moving forward. Appendix A.2 shows the plant root systems
which were detected as outliers by way of the alternate outlier method for the various
estimated parameters. It is evident in a number of these plots that an issue has occurred
in the development of the point pattern. This is seen in the form of centering issues
and the occurrence of random or spasmodic points throughout the spatial window.
As such, improvement in the data generating process is critical to future experiments.
Despite these limitations in the plant root tip data set, the conclusions drawn from this
study remain informative and beneficial.

4.5 Practical outcomes

The inherent variation in plant root architecture is evident in the plant root tip data set.
Given all genotypes in the data set were the wheat crop type, the findings of this study
support the claims of Cannon (1949), Kutschera (1960) and Weaver and Bruner (1926)
that plant root architecture varies significantly, even within species. This is evident
in the range of estimated parameters fit in the spatial point process models, which
indicate the different characteristics of genotypes within the wheat species. The diffi-
culty in phenotyping plant root systems has been a major hurdle to accurate analyses
of plant root traits. The use of aeroponic high-throughput phenotyping platforms is
key to the production of accurate data in this study. The non-destructive manner in
which cameras can access the plant root systems ensures the experimental material
is not compromised while allowing for quality data to be collected. This study has
highlighted the use of aeroponic high-throughput phenotyping platforms as an ideal
source of plant root system data for high level statistical analysis..

A number of outliers were identified in the conduct of this study. Nine hundred
and ninety plant root systems were present in the initial experimental design, with 67
of these initially removed due to the plant root systems not growing appropriately. On
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inspection of the plant root tip data set, a further 37 plant root systems were identified
as not growing in a healthy way and these plants were removed from the dataset.
There are two likely causes of lack of growth in this experiment, namely poor seed
germination and difficulty growing on an aeroponic platform. The plant root tip data
plots of these outliers, along with those removed using the alternate outlier method
are shown in appendices A.1 and A.2. It is apparent when examining these plots, that
some plant root systems have been detected as outliers through the inability of the
data generating process to accurately capture the plant root architecture. That is, the
detection and positioning of some plant root tips appear to be inaccurate. There may
be several factors involved with this inaccuracy including the cameras themselves,
the transposing of three-dimensional objects into two dimensions and the machine
learning techniques used to develop the images into plant root tip data. Given the
variability intrinsic to plant root architecture, inducing further variability through the
data generating process is going to impact on the accuracy of analyses such as this.
This plant root tip study has highlighted this issue and illustrated that continued im-
provement in the accuracy of data generation is necessary for the evolution of spatial
point pattern analyses.

The inherent variation within the wheat genotypes in the plant root tip data is re-
flected through the high error variance compared to genetic variance in the results. The
residual variance is much greater than the genetic variance for all estimated parame-
ters, in both the univariate and multivariate models. The size of the error variances in
this study demonstrate the importance of collecting data which is as accurate as possi-
ble to ensure valid conclusions can be drawn from analysis. Further to this, increasing
replication of genotypes would aid in reducing error variance through enhancing the
information collected for each genotype. As stated by Hodge et al. (2009), the varia-
tion in plant root architecture is unavoidable and as such, planning experiments in a
manner which will allow this variation to be captured is vital to accuracy.

4.6 Theoretical outcomes

The linking of spatial point processes and linear mixed models using a two-stage ap-
proach has proven to be a viable method for the analysis of plant root tip data. The
spatstat R-package is purpose designed for the analysis of spatial point patterns, how-
ever, there are limitations to this (Baddeley and Turner, 2004). The fitting of spatial
point processes in this study brought the issue of computational power to the fore
illustrating the difficulty spatstat has in modelling spatial point patterns for large,
replicated experiments. This, coupled with the ability of linear mixed models to in-
clude both design parameters as well as complex covariance structures in the model,
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led to the implementation of a two-stage method. Often, the fitting of two-stage
methods is not ideal, however, in the case of the plant root tip data this methodology
enhances the analysis. This is achieved through the linear mixed model’s ability to
include all experimental information in one fitted model as well as model correlations
between traits. Including all experimental information in a single model increases the
accuracy of the analysis by borrowing strength through correlated data, and therefore
strengthens the conclusions which can be made in a comparative experiment.

Once determining that the two-stage method applied was feasible, the weighted
and unweighted models were compared. This study found differences in the results of
the weighted and unweighted models, particularly in terms of the influence weighting
had on the plant root width dimension. Respecting the uncertainty in an analysis is key
to producing valid results. Due to the high residual variation in plant root architecture,
accounting for uncertainty is especially important to provide informative results. As
such, the weighted method appears to be the preferred method to use for analyses
involving plant root architecture.

While the univariate linear mixed models provide useful results for each estimated
parameter individually, the multivariate models provide the complete picture. Interest
in plant root architecture involves how the different dimensions relate to each other
(Hodge et al., 2009). Therefore, the results from the multivariate model provide the
most information in this study. The weighted multivariate model determined that
the genetic variation in the spatial point patterns in the plant root tip data set can be
characterised by three key estimated parameters; surface intensity, non-linear plant
root depth and non-linear plant root width. This practical outcome of the weighted
multivariate model was reached through the modelling of dependent variance struc-
tures at the residual and genetic levels. It was through this that it was found that three
of the estimated parameters showed no additional genetic variance once the depen-
dent residual variance structure was modelled. Although research aims vary between
experiments, the theoretical findings of this study indicate that the implementation of
a two-stage method where the second stage is a weighted multivariate linear mixed
model provide the most comprehensive analysis of spatial point pattern data for plant
root systems.

4.7 Conclusions and Future work

This study has provided key insight into the viability of a two-stage method link-
ing spatial point processes and linear mixed models. Through addressing the three
research questions, potential for future work to improve similar analyses has been
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identified.

The first stage of this study showed the second order polynomial spatial point pro-
cess model to most effectively model the inhomogeneous intensity of the plant root
systems (Research Question 1). The linear model did not account for the non-linear
change in intensity present while the second order harmonic model was not as appro-
priate as the second order polynomial model. The fitting of this model provided the
estimated parameters for the second stage of the analysis. The implementation of the
linear mixed model was found to be a viable method to complete the two-stage analysis
(Research Question 2). It effectively models the design parameters of the experiment
and also provided the option to model residual and genetic correlations between the
estimated parameters in a multivariate model. There was found to be a difference
in accuracy between the weighted and unweighted methods in the second stage of
the analysis (Research Question 3). This was clear in the comparison of multivariate
models where the non-linear root width parameter exhibited genetic variance for the
weighted method but not the unweighted method. As such, the weights played a
key role in accounting for the uncertainty in the plant root width dimension of the
plant root systems. Given the inherent variation across both dimensions of plant root
systems, this indicated that the weighted method provided more accurate results than
the unweighted method.

An important potential future improvement in this analysis is the ability to evaluate
the performance of the two-stage method by computing the results from a one-stage
method. This will rely on an increase in computing resources and the spatstat package
to handle such a data set. Through this, further information would be gathered to
compare the weighted and unweighted methods. As mentioned, continued improve-
ment in the data generation phase is vital to the achievement of reliable results. This
will naturally progress in the future as camera technology and machine learning tech-
niques evolve further. Future work in this area can further investigate the relationship
between the estimated parameters fit in the models and various aspects of plant root
behaviour. In this analysis, residual and genetic correlations were modelled between
traits with the conclusions drawn primarily relating to these results. In future studies,
this research can be taken a step further by investigating what the estimated parame-
ters may actually mean in terms of plant root function. If such links were found, this
may allow certain plant root architectures to be identified for a specific purpose.
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Appendix A

Plant root tip data plots of outliers

A.1 This appendix contains 37 plant root tip data plots of the plants

which did not grow adequately on the aeroponic platform and

were removed from the analysis. These plots are presented as one

figure over the following seven pages.
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Figure A.1: Plots of the plant root tip data for the 37 plant root systems which were
deemed to have not grown in the experiment. Of these 37 plant root systems, 35 were
located on platform 1 of the experiment, with plants 590 and 764 the only 2 which were
on platform 2.
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A.2 Plants which were detected as outliers using the alternate outlier

method for each estimated parameter

Figure A.2: Plots of the plant root tip data for the 4 plant root systems which were
detected as outliers for the Intercept estimated parameter.
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Figure A.3: Plots of the plant root tip data for the 3 plant root systems which were
detected as outliers for the abs(x) estimated parameter.

Figure A.4: Plot of the plant root tip data for the 1 plant root system which was detected
as an outlier for the y estimated parameter.
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Figure A.5: Plots of the plant root tip data for the 4 plant root systems which were
detected as outliers for the abs(x)2 estimated parameter.
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Figure A.6: Plots of the plant root tip data for the 5 plant root systems which were
detected as outliers for the abs(x)y estimated parameter.
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Figure A.7: Plots of the plant root tip data for the 12 plant root systems which were
detected as outliers for the y2 estimated parameter.
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Appendix B

Full sets of genotype predictions

B.1 Univariate unweighted genotype predictions

Table B.1: The genotype predictions for each unweighted univariate linear mixed
model, where each estimated parameter has its own model. The full set of genotype
predictions are presented here, and it is important to note that these predictions are
on the transformed data scale with the exception of intercept which did not require
transforming.

Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

DHARWAR DRY PP -5.855 0.086 -0.348 -0.433 -1.519 -2.145
DRYSDALE PP -5.959 0.086 -0.379 -0.439 -1.520 -2.482
EGA GREGORY PP -5.827 0.086 -0.320 -0.430 -1.519 -2.164
EGA WYLIE PP -6.109 0.086 -0.434 -0.424 -1.520 -2.524
FAC10-16 P1 -5.721 0.086 -0.275 -0.447 -1.520 -2.176
MACE PP -5.758 0.086 -0.208 -0.447 -1.520 -2.008
MACE SB062 123 -5.739 0.086 -0.256 -0.438 -1.520 -2.076
RIL114 PP -5.964 0.086 -0.300 -0.438 -1.519 -2.110
SB062 PP -5.958 0.086 -0.260 -0.424 -1.519 -1.820
SERI M82 PP -6.100 0.086 -0.444 -0.443 -1.520 -2.549
SPITFIRE-P9 -5.785 0.086 -0.172 -0.469 -1.520 -2.207
SUNTOP DHARWAH DRY 1 -5.884 0.086 -0.343 -0.433 -1.520 -2.177
SUNTOP DHARWAH DRY 10 -5.836 0.086 -0.307 -0.431 -1.520 -2.051
SUNTOP DHARWAH DRY 11 -5.857 0.086 -0.294 -0.428 -1.520 -1.964
SUNTOP DHARWAH DRY 12 -5.807 0.086 -0.332 -0.436 -1.519 -2.193
SUNTOP DHARWAH DRY 13 -5.923 0.086 -0.351 -0.425 -1.520 -2.204
SUNTOP DHARWAH DRY 14 -5.980 0.086 -0.330 -0.431 -1.519 -2.060
SUNTOP DHARWAH DRY 15 -5.846 0.086 -0.310 -0.440 -1.520 -2.160
SUNTOP DHARWAH DRY 16 -6.070 0.086 -0.377 -0.441 -1.520 -2.187
SUNTOP DHARWAH DRY 17 -5.948 0.086 -0.285 -0.429 -1.519 -1.978
SUNTOP DHARWAH DRY 18 -5.930 0.086 -0.333 -0.434 -1.519 -2.240
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP DHARWAH DRY 19 -6.094 0.086 -0.341 -0.434 -1.519 -2.352
SUNTOP DHARWAH DRY 2 -6.072 0.086 -0.304 -0.439 -1.520 -2.072
SUNTOP DHARWAH DRY 20 -6.043 0.086 -0.320 -0.438 -1.520 -2.294
SUNTOP DHARWAH DRY 21 -5.918 0.086 -0.332 -0.427 -1.520 -2.261
SUNTOP DHARWAH DRY 22 -6.094 0.086 -0.252 -0.436 -1.520 -2.324
SUNTOP DHARWAH DRY 23 -5.815 0.086 -0.333 -0.428 -1.519 -2.109
SUNTOP DHARWAH DRY 24 -6.079 0.086 -0.312 -0.431 -1.519 -2.032
SUNTOP DHARWAH DRY 25 -5.819 0.086 -0.290 -0.445 -1.520 -2.201
SUNTOP DHARWAH DRY 26 -6.014 0.086 -0.313 -0.447 -1.519 -2.392
SUNTOP DHARWAH DRY 27 -6.106 0.086 -0.346 -0.434 -1.519 -2.316
SUNTOP DHARWAH DRY 28 -6.180 0.086 -0.292 -0.435 -1.519 -2.106
SUNTOP DHARWAH DRY 29 -5.924 0.086 -0.303 -0.446 -1.520 -2.397
SUNTOP DHARWAH DRY 3 -5.809 0.086 -0.254 -0.426 -1.519 -1.815
SUNTOP DHARWAH DRY 30 -6.004 0.086 -0.280 -0.422 -1.520 -1.947
SUNTOP DHARWAH DRY 31 -5.810 0.086 -0.311 -0.431 -1.519 -2.006
SUNTOP DHARWAH DRY 32 -5.934 0.086 -0.304 -0.443 -1.520 -2.408
SUNTOP DHARWAH DRY 33 -5.934 0.086 -0.268 -0.442 -1.520 -2.242
SUNTOP DHARWAH DRY 34 -5.853 0.086 -0.321 -0.434 -1.519 -2.084
SUNTOP DHARWAH DRY 35 -5.881 0.086 -0.326 -0.433 -1.520 -2.104
SUNTOP DHARWAH DRY 36 -5.943 0.086 -0.328 -0.431 -1.519 -2.125
SUNTOP DHARWAH DRY 37 -5.826 0.086 -0.298 -0.443 -1.520 -2.147
SUNTOP DHARWAH DRY 38 -6.035 0.086 -0.365 -0.430 -1.519 -2.307
SUNTOP DHARWAH DRY 39 -5.889 0.086 -0.328 -0.438 -1.520 -2.185
SUNTOP DHARWAH DRY 4 -5.830 0.086 -0.301 -0.434 -1.519 -2.005
SUNTOP DHARWAH DRY 40 -5.763 0.086 -0.275 -0.441 -1.519 -2.110
SUNTOP DHARWAH DRY 41 -5.964 0.086 -0.339 -0.428 -1.519 -2.140
SUNTOP DHARWAH DRY 42 -5.849 0.086 -0.284 -0.441 -1.519 -2.405
SUNTOP DHARWAH DRY 43 -6.136 0.086 -0.343 -0.438 -1.520 -2.307
SUNTOP DHARWAH DRY 44 -5.857 0.086 -0.305 -0.438 -1.520 -2.222
SUNTOP DHARWAH DRY 45 -6.012 0.086 -0.263 -0.441 -1.520 -2.065
SUNTOP DHARWAH DRY 46 -6.074 0.086 -0.296 -0.438 -1.520 -2.385
SUNTOP DHARWAH DRY 47 -5.907 0.086 -0.292 -0.429 -1.519 -2.076
SUNTOP DHARWAH DRY 48 -5.850 0.086 -0.329 -0.430 -1.520 -2.055
SUNTOP DHARWAH DRY 49 -6.049 0.086 -0.355 -0.429 -1.519 -2.116
SUNTOP DHARWAH DRY 5 -5.935 0.086 -0.321 -0.434 -1.519 -2.234
SUNTOP DHARWAH DRY 50 -5.834 0.086 -0.308 -0.431 -1.520 -2.045
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP DHARWAH DRY 51 -6.129 0.086 -0.306 -0.453 -1.520 -2.715
SUNTOP DHARWAH DRY 52 -5.900 0.086 -0.294 -0.442 -1.520 -2.188
SUNTOP DHARWAH DRY 6 -5.857 0.086 -0.271 -0.443 -1.520 -2.018
SUNTOP DHARWAH DRY 7 -6.018 0.086 -0.261 -0.451 -1.519 -2.456
SUNTOP DHARWAH DRY 8 -5.789 0.086 -0.310 -0.436 -1.520 -2.166
SUNTOP DHARWAH DRY 9 -5.857 0.086 -0.317 -0.432 -1.520 -2.135
SUNTOP DRYSDALE 100 -5.891 0.086 -0.324 -0.436 -1.520 -2.204
SUNTOP DRYSDALE 101 -5.984 0.086 -0.314 -0.429 -1.519 -2.124
SUNTOP DRYSDALE 102 -5.933 0.086 -0.295 -0.446 -1.520 -2.207
SUNTOP DRYSDALE 103 -5.924 0.086 -0.300 -0.442 -1.519 -2.323
SUNTOP DRYSDALE 104 -5.951 0.086 -0.309 -0.436 -1.519 -2.364
SUNTOP DRYSDALE 53 -6.169 0.086 -0.393 -0.428 -1.519 -2.587
SUNTOP DRYSDALE 54 -5.700 0.086 -0.310 -0.434 -1.519 -2.184
SUNTOP DRYSDALE 55 -5.904 0.086 -0.316 -0.448 -1.520 -2.561
SUNTOP DRYSDALE 56 -6.060 0.086 -0.355 -0.434 -1.519 -2.404
SUNTOP DRYSDALE 57 -5.854 0.086 -0.242 -0.447 -1.520 -2.120
SUNTOP DRYSDALE 58 -6.121 0.086 -0.401 -0.438 -1.519 -2.315
SUNTOP DRYSDALE 59 -6.011 0.086 -0.347 -0.433 -1.519 -2.335
SUNTOP DRYSDALE 60 -5.864 0.086 -0.292 -0.441 -1.519 -2.340
SUNTOP DRYSDALE 61 -5.929 0.086 -0.299 -0.438 -1.519 -2.167
SUNTOP DRYSDALE 62 -5.899 0.086 -0.312 -0.441 -1.519 -2.267
SUNTOP DRYSDALE 64 -6.255 0.086 -0.400 -0.436 -1.519 -2.237
SUNTOP DRYSDALE 65 -5.891 0.086 -0.307 -0.434 -1.519 -2.147
SUNTOP DRYSDALE 66 -5.886 0.086 -0.321 -0.435 -1.519 -2.141
SUNTOP DRYSDALE 67 -5.891 0.086 -0.326 -0.431 -1.519 -2.102
SUNTOP DRYSDALE 68 -5.871 0.086 -0.326 -0.430 -1.519 -2.161
SUNTOP DRYSDALE 69 -5.860 0.086 -0.319 -0.442 -1.519 -2.372
SUNTOP DRYSDALE 70 -5.988 0.086 -0.326 -0.430 -1.519 -2.086
SUNTOP DRYSDALE 71 -5.970 0.086 -0.324 -0.429 -1.520 -2.227
SUNTOP DRYSDALE 72 -6.016 0.086 -0.341 -0.443 -1.520 -2.536
SUNTOP DRYSDALE 73 -6.108 0.086 -0.352 -0.423 -1.520 -2.170
SUNTOP DRYSDALE 74 -5.966 0.086 -0.326 -0.437 -1.519 -2.199
SUNTOP DRYSDALE 75 -5.910 0.086 -0.313 -0.436 -1.519 -2.130
SUNTOP DRYSDALE 76 -5.950 0.086 -0.343 -0.430 -1.519 -2.169
SUNTOP DRYSDALE 77 -6.251 0.086 -0.361 -0.431 -1.520 -2.158
SUNTOP DRYSDALE 78 -5.890 0.086 -0.328 -0.428 -1.520 -2.123

Continued on next page

95



Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP DRYSDALE 79 -6.076 0.086 -0.337 -0.440 -1.519 -2.222
SUNTOP DRYSDALE 80 -6.023 0.086 -0.346 -0.438 -1.519 -2.223
SUNTOP DRYSDALE 81 -6.157 0.086 -0.307 -0.438 -1.520 -2.109
SUNTOP DRYSDALE 83 -5.851 0.086 -0.334 -0.435 -1.519 -2.157
SUNTOP DRYSDALE 84 -5.968 0.086 -0.363 -0.431 -1.520 -2.281
SUNTOP DRYSDALE 85 -6.022 0.086 -0.343 -0.433 -1.520 -2.243
SUNTOP DRYSDALE 86 -5.945 0.086 -0.301 -0.439 -1.520 -2.170
SUNTOP DRYSDALE 87 -6.059 0.086 -0.369 -0.433 -1.519 -2.347
SUNTOP DRYSDALE 88 -5.876 0.086 -0.197 -0.445 -1.520 -2.032
SUNTOP DRYSDALE 89 -5.764 0.086 -0.315 -0.437 -1.519 -2.170
SUNTOP DRYSDALE 90 -6.023 0.086 -0.333 -0.421 -1.521 -2.151
SUNTOP DRYSDALE 91 -5.786 0.086 -0.292 -0.433 -1.519 -2.017
SUNTOP DRYSDALE 92 -5.994 0.086 -0.304 -0.439 -1.519 -2.138
SUNTOP DRYSDALE 93 -6.154 0.086 -0.387 -0.418 -1.519 -2.177
SUNTOP DRYSDALE 94 -5.973 0.086 -0.332 -0.435 -1.520 -2.230
SUNTOP DRYSDALE 95 -5.901 0.086 -0.286 -0.448 -1.519 -2.491
SUNTOP DRYSDALE 96 -5.883 0.086 -0.299 -0.434 -1.520 -2.061
SUNTOP DRYSDALE 97 -6.007 0.086 -0.308 -0.438 -1.519 -2.229
SUNTOP DRYSDALE 98 -5.926 0.086 -0.283 -0.440 -1.520 -2.323
SUNTOP DRYSDALE 99 -5.958 0.086 -0.325 -0.433 -1.520 -2.147
SUNTOP EGA GREGORY 108 -5.880 0.086 -0.252 -0.436 -1.519 -2.109
SUNTOP EGA GREGORY 109 -5.913 0.086 -0.316 -0.437 -1.519 -2.292
SUNTOP EGA GREGORY 110 -6.182 0.086 -0.356 -0.434 -1.519 -2.316
SUNTOP EGA GREGORY 111 -5.832 0.086 -0.255 -0.448 -1.519 -2.358
SUNTOP EGA GREGORY 112 -5.795 0.086 -0.233 -0.441 -1.519 -1.927
SUNTOP EGA GREGORY 113 -6.056 0.086 -0.283 -0.438 -1.520 -2.059
SUNTOP EGA GREGORY 114 -5.925 0.086 -0.315 -0.437 -1.519 -2.293
SUNTOP EGA GREGORY 115 -5.911 0.086 -0.296 -0.438 -1.519 -2.044
SUNTOP EGA GREGORY 116 -6.020 0.086 -0.303 -0.434 -1.519 -2.203
SUNTOP EGA GREGORY 117 -5.866 0.086 -0.297 -0.448 -1.520 -2.349
SUNTOP EGA GREGORY 118 -5.940 0.086 -0.320 -0.430 -1.519 -2.200
SUNTOP EGA GREGORY 119 -5.678 0.086 -0.317 -0.444 -1.519 -2.232
SUNTOP EGA GREGORY 120 -5.769 0.086 -0.290 -0.444 -1.519 -2.479
SUNTOP EGA GREGORY 121 -5.925 0.086 -0.322 -0.428 -1.520 -2.178
SUNTOP EGA GREGORY 122 -5.862 0.086 -0.230 -0.445 -1.520 -2.062
SUNTOP EGA GREGORY 123 -5.921 0.086 -0.294 -0.437 -1.519 -2.054
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP EGA GREGORY 124 -5.854 0.086 -0.289 -0.439 -1.519 -2.203
SUNTOP EGA GREGORY 125 -5.954 0.086 -0.326 -0.438 -1.519 -2.241
SUNTOP EGA GREGORY 126 -5.890 0.086 -0.326 -0.431 -1.519 -2.244
SUNTOP EGA GREGORY 127 -5.931 0.086 -0.292 -0.445 -1.520 -2.351
SUNTOP EGA GREGORY 128 -5.780 0.086 -0.283 -0.430 -1.519 -1.984
SUNTOP EGA GREGORY 129 -5.791 0.086 -0.300 -0.445 -1.519 -2.246
SUNTOP EGA GREGORY 130 -6.214 0.086 -0.289 -0.443 -1.520 -2.287
SUNTOP EGA GREGORY 131 -5.738 0.086 -0.288 -0.437 -1.519 -2.118
SUNTOP EGA GREGORY 132 -5.986 0.086 -0.301 -0.445 -1.520 -2.245
SUNTOP EGA GREGORY 133 -6.022 0.086 -0.296 -0.436 -1.519 -2.139
SUNTOP EGA GREGORY 134 -6.024 0.086 -0.351 -0.432 -1.519 -2.208
SUNTOP EGA GREGORY 135 -6.004 0.086 -0.309 -0.427 -1.520 -2.037
SUNTOP EGA GREGORY 136 -6.061 0.086 -0.338 -0.431 -1.520 -2.179
SUNTOP EGA GREGORY 137 -5.901 0.086 -0.345 -0.434 -1.519 -2.330
SUNTOP EGA GREGORY 138 -5.896 0.086 -0.290 -0.434 -1.519 -2.197
SUNTOP EGA GREGORY 139 -5.868 0.086 -0.331 -0.436 -1.519 -2.316
SUNTOP EGA GREGORY 140 -6.073 0.086 -0.395 -0.432 -1.520 -2.634
SUNTOP EGA GREGORY 141 -5.942 0.086 -0.325 -0.426 -1.520 -2.095
SUNTOP EGA GREGORY 142 -5.962 0.086 -0.338 -0.422 -1.520 -2.154
SUNTOP EGA GREGORY 143 -5.855 0.086 -0.309 -0.445 -1.520 -2.222
SUNTOP EGA GREGORY 144 -6.096 0.086 -0.321 -0.440 -1.520 -2.211
SUNTOP EGA GREGORY 145 -6.004 0.086 -0.242 -0.439 -1.519 -2.014
SUNTOP EGA GREGORY 146 -5.826 0.086 -0.249 -0.441 -1.519 -2.144
SUNTOP EGA GREGORY 147 -5.974 0.086 -0.353 -0.434 -1.519 -2.402
SUNTOP EGA GREGORY 148 -5.981 0.086 -0.273 -0.441 -1.520 -2.128
SUNTOP EGA GREGORY 149 -5.841 0.086 -0.262 -0.436 -1.519 -2.040
SUNTOP FAC10-16 150 -5.952 0.086 -0.365 -0.431 -1.519 -2.265
SUNTOP FAC10-16 151 -5.967 0.086 -0.301 -0.430 -1.520 -2.146
SUNTOP FAC10-16 152 -5.998 0.086 -0.286 -0.432 -1.520 -1.991
SUNTOP FAC10-16 153 -5.960 0.086 -0.342 -0.436 -1.519 -2.272
SUNTOP FAC10-16 154 -5.879 0.086 -0.310 -0.437 -1.520 -2.153
SUNTOP FAC10-16 155 -5.880 0.086 -0.330 -0.430 -1.519 -2.113
SUNTOP FAC10-16 156 -5.843 0.086 -0.339 -0.434 -1.519 -2.216
SUNTOP FAC10-16 157 -6.148 0.086 -0.234 -0.445 -1.520 -2.158
SUNTOP FAC10-16 158 -5.806 0.086 -0.302 -0.442 -1.520 -2.172
SUNTOP FAC10-16 159 -5.828 0.086 -0.266 -0.440 -1.519 -1.992
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP FAC10-16 160 -6.036 0.086 -0.410 -0.427 -1.519 -2.559
SUNTOP FAC10-16 161 -6.041 0.086 -0.344 -0.424 -1.520 -2.115
SUNTOP FAC10-16 162 -5.816 0.086 -0.263 -0.426 -1.520 -1.911
SUNTOP FAC10-16 163 -6.011 0.086 -0.264 -0.438 -1.520 -2.018
SUNTOP FAC10-16 164 -5.955 0.086 -0.297 -0.441 -1.519 -2.195
SUNTOP FAC10-16 165 -5.935 0.086 -0.292 -0.440 -1.519 -2.253
SUNTOP FAC10-16 166 -5.884 0.086 -0.325 -0.422 -1.519 -2.188
SUNTOP FAC10-16 167 -6.009 0.086 -0.332 -0.433 -1.520 -2.174
SUNTOP FAC10-16 168 -5.946 0.086 -0.375 -0.421 -1.519 -2.237
SUNTOP FAC10-16 169 -5.842 0.086 -0.326 -0.430 -1.520 -2.161
SUNTOP FAC10-16 170 -6.012 0.086 -0.299 -0.446 -1.520 -2.454
SUNTOP FAC10-16 171 -6.046 0.086 -0.311 -0.441 -1.520 -2.198
SUNTOP FAC10-16 172 -6.022 0.086 -0.268 -0.435 -1.520 -2.042
SUNTOP FAC10-16 173 -5.831 0.086 -0.295 -0.438 -1.519 -2.127
SUNTOP FAC10-16 174 -5.950 0.086 -0.335 -0.433 -1.520 -2.261
SUNTOP FAC10-16 175 -5.994 0.086 -0.375 -0.445 -1.520 -2.583
SUNTOP FAC10-16 176 -5.998 0.086 -0.312 -0.427 -1.520 -2.021
SUNTOP FAC10-16 177 -5.816 0.086 -0.290 -0.436 -1.519 -2.036
SUNTOP FAC10-16 178 -6.043 0.086 -0.371 -0.435 -1.519 -2.237
SUNTOP FAC10-16 179 -6.080 0.086 -0.297 -0.437 -1.520 -2.104
SUNTOP FAC10-16 180 -6.175 0.086 -0.302 -0.431 -1.520 -2.113
SUNTOP FAC10-16 181 -5.883 0.086 -0.315 -0.430 -1.520 -2.034
SUNTOP FAC10-16 182 -6.012 0.086 -0.355 -0.431 -1.519 -2.326
SUNTOP FAC10-16 183 -5.969 0.086 -0.362 -0.429 -1.520 -2.211
SUNTOP FAC10-16 184 -5.979 0.086 -0.310 -0.436 -1.520 -2.129
SUNTOP FAC10-16 185 -6.016 0.086 -0.351 -0.434 -1.520 -2.283
SUNTOP FAC10-16 186 -5.912 0.086 -0.299 -0.435 -1.520 -2.025
SUNTOP FAC10-16 187 -5.977 0.086 -0.334 -0.435 -1.520 -2.311
SUNTOP FAC10-16 188 -6.358 0.086 -0.383 -0.443 -1.520 -2.304
SUNTOP FAC10-16 189 -5.810 0.086 -0.257 -0.443 -1.519 -2.421
SUNTOP FAC10-16 190 -6.027 0.086 -0.317 -0.434 -1.519 -2.057
SUNTOP FAC10-16 191 -6.074 0.086 -0.293 -0.434 -1.520 -2.256
SUNTOP PP -6.242 0.086 -0.287 -0.436 -1.519 -2.004
SUNTOP RIL114 299 -5.866 0.086 -0.287 -0.442 -1.520 -2.124
SUNTOP RIL114 300 -6.065 0.086 -0.271 -0.440 -1.520 -2.166
SUNTOP RIL114 301 -6.053 0.086 -0.318 -0.439 -1.520 -2.296
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP RIL114 302 -5.867 0.086 -0.233 -0.441 -1.519 -2.067
SUNTOP RIL114 303 -5.788 0.086 -0.337 -0.435 -1.519 -2.238
SUNTOP RIL114 304 -5.910 0.086 -0.305 -0.434 -1.519 -2.118
SUNTOP RIL114 305 -6.060 0.086 -0.297 -0.433 -1.519 -2.006
SUNTOP RIL114 306 -5.903 0.086 -0.334 -0.435 -1.519 -2.327
SUNTOP RIL114 307 -5.945 0.086 -0.313 -0.435 -1.520 -2.166
SUNTOP RIL114 308 -5.904 0.086 -0.315 -0.430 -1.520 -2.227
SUNTOP RIL114 309 -6.086 0.086 -0.344 -0.430 -1.519 -2.101
SUNTOP RIL114 310 -6.082 0.086 -0.287 -0.437 -1.520 -2.295
SUNTOP RIL114 311 -5.949 0.086 -0.330 -0.437 -1.519 -2.210
SUNTOP RIL114 312 -5.968 0.086 -0.266 -0.435 -1.520 -1.961
SUNTOP RIL114 313 -5.873 0.086 -0.271 -0.437 -1.520 -2.008
SUNTOP RIL114 314 -5.908 0.086 -0.331 -0.433 -1.519 -2.114
SUNTOP RIL114 315 -5.886 0.086 -0.295 -0.443 -1.520 -2.315
SUNTOP RIL114 316 -5.884 0.086 -0.381 -0.423 -1.520 -2.179
SUNTOP RIL114 317 -5.766 0.086 -0.280 -0.440 -1.519 -2.085
SUNTOP RIL114 318 -5.865 0.086 -0.297 -0.434 -1.519 -2.014
SUNTOP RIL114 319 -6.212 0.086 -0.385 -0.432 -1.520 -2.642
SUNTOP RIL114 320 -6.144 0.086 -0.267 -0.443 -1.520 -2.181
SUNTOP RIL114 321 -6.020 0.086 -0.324 -0.432 -1.519 -2.037
SUNTOP RIL114 322 -5.957 0.086 -0.283 -0.433 -1.519 -2.010
SUNTOP RIL114 323 -5.972 0.086 -0.292 -0.434 -1.519 -2.071
SUNTOP RIL114 324 -5.912 0.086 -0.239 -0.441 -1.520 -1.964
SUNTOP RIL114 325 -6.262 0.086 -0.296 -0.441 -1.520 -2.131
SUNTOP RIL114 326 -5.889 0.086 -0.266 -0.430 -1.519 -2.016
SUNTOP RIL114 327 -5.857 0.086 -0.314 -0.438 -1.519 -2.187
SUNTOP RIL114 328 -5.951 0.086 -0.311 -0.436 -1.520 -2.187
SUNTOP RIL114 329 -5.871 0.086 -0.306 -0.441 -1.520 -2.165
SUNTOP RIL114 330 -6.047 0.086 -0.314 -0.433 -1.520 -2.205
SUNTOP RIL114 331 -5.870 0.086 -0.310 -0.437 -1.520 -2.113
SUNTOP RIL114 333 -6.054 0.086 -0.348 -0.432 -1.519 -2.235
SUNTOP RIL114 334 -5.942 0.086 -0.321 -0.433 -1.519 -2.108
SUNTOP RIL114 335 -5.877 0.086 -0.314 -0.434 -1.520 -2.119
SUNTOP RIL114 336 -5.931 0.086 -0.314 -0.432 -1.519 -2.051
SUNTOP RIL114 337 -6.259 0.086 -0.312 -0.431 -1.520 -2.145
SUNTOP RIL114 338 -5.882 0.086 -0.314 -0.433 -1.519 -2.072
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP RIL114 339 -5.772 0.086 -0.286 -0.436 -1.519 -1.989
SUNTOP RIL114 340 -6.046 0.086 -0.312 -0.433 -1.520 -2.016
SUNTOP SB062 195 -5.946 0.086 -0.356 -0.432 -1.519 -2.374
SUNTOP SB062 196 -5.790 0.086 -0.174 -0.441 -1.520 -1.824
SUNTOP SB062 197 -5.947 0.086 -0.330 -0.432 -1.520 -2.151
SUNTOP SB062 198 -5.827 0.086 -0.327 -0.433 -1.519 -2.095
SUNTOP SB062 199 -5.964 0.086 -0.306 -0.435 -1.520 -1.975
SUNTOP SB062 200 -5.979 0.086 -0.311 -0.437 -1.520 -2.099
SUNTOP SB062 201 -5.940 0.086 -0.333 -0.438 -1.519 -2.216
SUNTOP SB062 202 -5.947 0.086 -0.324 -0.441 -1.520 -2.200
SUNTOP SB062 203 -5.890 0.086 -0.289 -0.436 -1.519 -2.198
SUNTOP SB062 204 -5.927 0.086 -0.336 -0.425 -1.520 -2.194
SUNTOP SB062 205 -5.943 0.086 -0.316 -0.430 -1.520 -2.141
SUNTOP SB062 206 -6.089 0.086 -0.359 -0.428 -1.520 -2.309
SUNTOP SB062 207 -6.214 0.086 -0.344 -0.431 -1.519 -2.066
SUNTOP SB062 208 -6.109 0.086 -0.305 -0.434 -1.520 -2.246
SUNTOP SB062 209 -5.940 0.086 -0.297 -0.430 -1.520 -1.995
SUNTOP SB062 210 -5.963 0.086 -0.331 -0.438 -1.519 -2.228
SUNTOP SB062 211 -6.043 0.086 -0.357 -0.432 -1.519 -2.073
SUNTOP SB062 212 -5.935 0.086 -0.238 -0.439 -1.520 -1.896
SUNTOP SB062 213 -5.976 0.086 -0.288 -0.442 -1.519 -2.098
SUNTOP SB062 214 -5.920 0.086 -0.297 -0.440 -1.520 -2.188
SUNTOP SB062 215 -5.989 0.086 -0.286 -0.421 -1.520 -2.021
SUNTOP SB062 216 -6.037 0.086 -0.334 -0.434 -1.520 -2.192
SUNTOP SB062 217 -5.913 0.086 -0.349 -0.442 -1.519 -2.344
SUNTOP SB062 218 -5.820 0.086 -0.224 -0.460 -1.520 -2.299
SUNTOP SB062 219 -5.829 0.086 -0.305 -0.442 -1.519 -2.214
SUNTOP SB062 220 -5.873 0.086 -0.298 -0.439 -1.520 -2.199
SUNTOP SB062 221 -5.906 0.086 -0.322 -0.429 -1.520 -2.112
SUNTOP SB062 222 -5.792 0.086 -0.280 -0.433 -1.520 -2.244
SUNTOP SB062 223 -5.985 0.086 -0.176 -0.448 -1.520 -1.946
SUNTOP SB062 224 -6.104 0.086 -0.336 -0.434 -1.520 -2.124
SUNTOP SB062 225 -6.021 0.086 -0.335 -0.420 -1.520 -2.112
SUNTOP SB062 226 -5.901 0.086 -0.352 -0.443 -1.520 -2.592
SUNTOP SB062 227 -5.858 0.086 -0.306 -0.443 -1.520 -2.201
SUNTOP SB062 228 -5.953 0.086 -0.269 -0.440 -1.519 -2.177

Continued on next page

100



Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP SB062 229 -5.785 0.086 -0.289 -0.434 -1.520 -2.058
SUNTOP SB062 230 -6.043 0.086 -0.304 -0.438 -1.519 -2.200
SUNTOP SB062 231 -6.037 0.086 -0.338 -0.442 -1.520 -2.435
SUNTOP SB062 232 -5.944 0.086 -0.343 -0.434 -1.519 -2.146
SUNTOP SB062 233 -5.815 0.086 -0.286 -0.435 -1.519 -2.020
SUNTOP SB062 234 -5.882 0.086 -0.304 -0.436 -1.520 -2.145
SUNTOP SB062 235 -5.834 0.086 -0.258 -0.432 -1.519 -1.880
SUNTOP SB062 236 -5.726 0.086 -0.312 -0.434 -1.520 -2.004
SUNTOP SB062 237 -6.128 0.086 -0.346 -0.434 -1.520 -2.245
SUNTOP SB062 238 -5.995 0.086 -0.315 -0.439 -1.520 -2.134
SUNTOP SB062 239 -5.923 0.086 -0.219 -0.455 -1.520 -2.372
SUNTOP SB062 240 -6.080 0.086 -0.316 -0.439 -1.520 -2.248
SUNTOP SB062 241 -5.995 0.086 -0.301 -0.440 -1.520 -2.237
SUNTOP SB062 242 -5.941 0.086 -0.342 -0.424 -1.519 -2.115
SUNTOP SB062 243 -5.929 0.086 -0.330 -0.431 -1.519 -2.155
SUNTOP SB062 244 -5.903 0.086 -0.363 -0.430 -1.520 -2.249
SUNTOP SB062 245 -6.047 0.086 -0.264 -0.442 -1.520 -2.078
SUNTOP SB062 246 -5.795 0.086 -0.269 -0.430 -1.519 -1.928
SUNTOP SERI M82 247 -5.985 0.086 -0.313 -0.432 -1.519 -2.080
SUNTOP SERI M82 248 -5.969 0.086 -0.269 -0.441 -1.520 -2.015
SUNTOP SERI M82 249 -6.033 0.086 -0.322 -0.444 -1.520 -2.285
SUNTOP SERI M82 250 -5.959 0.086 -0.331 -0.434 -1.520 -2.079
SUNTOP SERI M82 251 -6.129 0.086 -0.301 -0.438 -1.520 -2.279
SUNTOP SERI M82 252 -5.921 0.086 -0.376 -0.446 -1.520 -2.151
SUNTOP SERI M82 253 -5.989 0.086 -0.352 -0.425 -1.520 -2.101
SUNTOP SERI M82 254 -5.865 0.086 -0.244 -0.437 -1.519 -1.873
SUNTOP SERI M82 255 -5.998 0.086 -0.260 -0.449 -1.519 -2.465
SUNTOP SERI M82 256 -6.047 0.086 -0.333 -0.437 -1.519 -2.181
SUNTOP SERI M82 257 -5.884 0.086 -0.307 -0.438 -1.520 -2.103
SUNTOP SERI M82 258 -5.994 0.086 -0.337 -0.435 -1.519 -2.246
SUNTOP SERI M82 259 -5.942 0.086 -0.334 -0.432 -1.520 -2.066
SUNTOP SERI M82 260 -5.984 0.086 -0.326 -0.432 -1.519 -2.143
SUNTOP SERI M82 261 -5.932 0.086 -0.239 -0.435 -1.520 -1.911
SUNTOP SERI M82 262 -5.830 0.086 -0.306 -0.436 -1.519 -2.099
SUNTOP SERI M82 263 -5.832 0.086 -0.308 -0.436 -1.519 -2.060
SUNTOP SERI M82 264 -5.938 0.086 -0.356 -0.430 -1.520 -2.196
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP SERI M82 265 -5.869 0.086 -0.230 -0.438 -1.520 -2.037
SUNTOP SERI M82 266 -5.923 0.086 -0.343 -0.431 -1.519 -2.086
SUNTOP SERI M82 267 -5.932 0.086 -0.301 -0.437 -1.520 -2.021
SUNTOP SERI M82 268 -5.894 0.086 -0.325 -0.443 -1.520 -2.372
SUNTOP SERI M82 269 -5.889 0.086 -0.312 -0.432 -1.520 -2.072
SUNTOP SERI M82 270 -5.844 0.086 -0.306 -0.437 -1.520 -2.144
SUNTOP SERI M82 271 -5.942 0.086 -0.338 -0.436 -1.519 -2.287
SUNTOP SERI M82 272 -5.933 0.086 -0.279 -0.438 -1.519 -2.204
SUNTOP SERI M82 273 -5.960 0.086 -0.308 -0.434 -1.520 -2.088
SUNTOP SERI M82 274 -6.201 0.086 -0.385 -0.426 -1.520 -2.198
SUNTOP SERI M82 275 -6.107 0.086 -0.334 -0.439 -1.519 -2.213
SUNTOP SERI M82 276 -5.932 0.086 -0.322 -0.431 -1.520 -2.195
SUNTOP SERI M82 277 -5.818 0.086 -0.290 -0.435 -1.519 -2.060
SUNTOP SERI M82 278 -6.113 0.086 -0.368 -0.427 -1.519 -2.155
SUNTOP SERI M82 279 -5.982 0.086 -0.340 -0.436 -1.519 -2.435
SUNTOP SERI M82 280 -5.926 0.086 -0.324 -0.432 -1.519 -2.130
SUNTOP SERI M82 281 -5.882 0.086 -0.297 -0.436 -1.520 -2.066
SUNTOP SERI M82 282 -5.996 0.086 -0.311 -0.434 -1.519 -2.083
SUNTOP SERI M82 283 -6.055 0.086 -0.312 -0.432 -1.520 -2.024
SUNTOP SERI M82 284 -5.921 0.086 -0.292 -0.434 -1.520 -2.225
SUNTOP SERI M82 285 -5.885 0.086 -0.254 -0.439 -1.519 -1.992
SUNTOP SERI M82 286 -5.788 0.086 -0.302 -0.437 -1.519 -2.144
SUNTOP SERI M82 287 -5.952 0.086 -0.342 -0.439 -1.519 -2.301
SUNTOP SERI M82 288 -5.881 0.086 -0.307 -0.433 -1.519 -1.955
SUNTOP SERI M82 289 -5.872 0.086 -0.267 -0.440 -1.519 -2.114
SUNTOP SERI M82 290 -5.926 0.086 -0.255 -0.445 -1.520 -2.208
SUNTOP SERI M82 291 -6.087 0.086 -0.356 -0.435 -1.519 -2.172
SUNTOP SERI M82 292 -5.899 0.086 -0.330 -0.435 -1.519 -2.101
SUNTOP SERI M82 294 -5.973 0.086 -0.255 -0.437 -1.520 -1.885
SUNTOP SERI M82 295 -6.186 0.086 -0.324 -0.441 -1.520 -2.242
SUNTOP SERI M82 296 -6.051 0.086 -0.267 -0.431 -1.519 -1.970
SUNTOP SERI M82 297 -5.938 0.086 -0.336 -0.439 -1.520 -2.214
SUNTOP SERI M82 298 -5.894 0.086 -0.287 -0.438 -1.520 -2.035
SUNTOP SPITFIRE 1 -6.094 0.086 -0.214 -0.441 -1.520 -1.969
SUNTOP SPITFIRE 10 -5.994 0.086 -0.365 -0.430 -1.519 -2.389
SUNTOP SPITFIRE 12 -5.955 0.086 -0.345 -0.434 -1.520 -2.364
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP SPITFIRE 13 -5.898 0.086 -0.229 -0.439 -1.519 -1.991
SUNTOP SPITFIRE 14 -5.930 0.086 -0.284 -0.433 -1.520 -2.190
SUNTOP SPITFIRE 15 -5.791 0.086 -0.247 -0.443 -1.519 -2.141
SUNTOP SPITFIRE 16 -5.838 0.086 -0.308 -0.444 -1.519 -2.331
SUNTOP SPITFIRE 17 -5.794 0.086 -0.297 -0.438 -1.519 -2.206
SUNTOP SPITFIRE 18 -5.964 0.086 -0.264 -0.444 -1.519 -2.172
SUNTOP SPITFIRE 19 -5.934 0.086 -0.341 -0.429 -1.519 -2.341
SUNTOP SPITFIRE 2 -5.991 0.086 -0.295 -0.433 -1.520 -2.044
SUNTOP SPITFIRE 20 -5.974 0.086 -0.351 -0.435 -1.520 -2.268
SUNTOP SPITFIRE 21 -5.862 0.086 -0.315 -0.439 -1.520 -2.200
SUNTOP SPITFIRE 22 -5.899 0.086 -0.273 -0.441 -1.519 -2.211
SUNTOP SPITFIRE 24 -6.007 0.086 -0.332 -0.433 -1.520 -2.509
SUNTOP SPITFIRE 25 -6.178 0.086 -0.327 -0.436 -1.520 -2.321
SUNTOP SPITFIRE 26 -5.914 0.086 -0.262 -0.436 -1.519 -1.975
SUNTOP SPITFIRE 28 -5.905 0.086 -0.295 -0.433 -1.520 -2.195
SUNTOP SPITFIRE 29 -5.933 0.086 -0.326 -0.443 -1.520 -2.311
SUNTOP SPITFIRE 3 -5.979 0.086 -0.333 -0.435 -1.520 -2.354
SUNTOP SPITFIRE 30 -5.853 0.086 -0.257 -0.429 -1.520 -1.962
SUNTOP SPITFIRE 31 -5.970 0.086 -0.364 -0.435 -1.519 -2.367
SUNTOP SPITFIRE 32 -6.084 0.086 -0.271 -0.441 -1.519 -2.274
SUNTOP SPITFIRE 33 -6.193 0.086 -0.335 -0.436 -1.520 -2.257
SUNTOP SPITFIRE 34 -5.892 0.086 -0.311 -0.436 -1.520 -2.251
SUNTOP SPITFIRE 35 -6.103 0.086 -0.302 -0.443 -1.520 -2.328
SUNTOP SPITFIRE 36 -6.014 0.086 -0.373 -0.434 -1.519 -2.345
SUNTOP SPITFIRE 38 -5.900 0.086 -0.264 -0.438 -1.520 -2.090
SUNTOP SPITFIRE 39 -5.950 0.086 -0.347 -0.436 -1.519 -2.299
SUNTOP SPITFIRE 4 -6.049 0.086 -0.282 -0.437 -1.520 -2.150
SUNTOP SPITFIRE 40 -5.941 0.086 -0.326 -0.426 -1.520 -2.132
SUNTOP SPITFIRE 41 -6.006 0.086 -0.309 -0.433 -1.520 -2.076
SUNTOP SPITFIRE 42 -5.938 0.086 -0.304 -0.442 -1.520 -2.485
SUNTOP SPITFIRE 43 -5.842 0.086 -0.236 -0.461 -1.520 -2.478
SUNTOP SPITFIRE 44 -5.749 0.086 -0.231 -0.433 -1.520 -1.909
SUNTOP SPITFIRE 46 -5.932 0.086 -0.282 -0.441 -1.520 -2.278
SUNTOP SPITFIRE 47 -5.935 0.086 -0.303 -0.434 -1.520 -2.353
SUNTOP SPITFIRE 48 -6.140 0.086 -0.367 -0.438 -1.519 -2.647
SUNTOP SPITFIRE 5 -6.021 0.086 -0.284 -0.430 -1.520 -2.052
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP SPITFIRE 50 -5.892 0.086 -0.358 -0.435 -1.519 -2.398
SUNTOP SPITFIRE 51 -5.836 0.086 -0.317 -0.437 -1.519 -2.195
SUNTOP SPITFIRE 52 -5.810 0.086 -0.336 -0.440 -1.519 -2.372
SUNTOP SPITFIRE 53 -5.974 0.086 -0.334 -0.430 -1.520 -2.189
SUNTOP SPITFIRE 54 -5.939 0.086 -0.347 -0.443 -1.520 -2.620
SUNTOP SPITFIRE 6 -5.899 0.086 -0.349 -0.433 -1.520 -2.410
SUNTOP SPITFIRE 7 -5.899 0.086 -0.279 -0.435 -1.520 -2.153
SUNTOP SPITFIRE 8 -5.962 0.086 -0.246 -0.444 -1.520 -2.169
SUNTOP SPITFIRE 9 -5.935 0.086 -0.347 -0.432 -1.520 -2.298
SUNTOP WYLIE 341 -5.867 0.086 -0.324 -0.440 -1.520 -2.241
SUNTOP WYLIE 342 -5.868 0.086 -0.240 -0.443 -1.520 -2.142
SUNTOP WYLIE 344 -5.716 0.086 -0.307 -0.429 -1.519 -2.177
SUNTOP WYLIE 345 -5.990 0.086 -0.344 -0.432 -1.519 -2.314
SUNTOP WYLIE 346 -5.918 0.086 -0.356 -0.434 -1.520 -2.318
SUNTOP WYLIE 347 -6.106 0.086 -0.301 -0.437 -1.519 -2.081
SUNTOP WYLIE 348 -6.014 0.086 -0.371 -0.435 -1.520 -2.484
SUNTOP WYLIE 349 -5.923 0.086 -0.275 -0.435 -1.520 -2.139
SUNTOP WYLIE 350 -6.193 0.086 -0.311 -0.435 -1.520 -2.187
SUNTOP WYLIE 351 -5.930 0.086 -0.318 -0.430 -1.519 -2.128
SUNTOP WYLIE 352 -5.935 0.086 -0.311 -0.433 -1.519 -2.181
SUNTOP WYLIE 353 -5.845 0.086 -0.321 -0.434 -1.520 -2.216
SUNTOP WYLIE 354 -6.086 0.086 -0.367 -0.427 -1.520 -2.248
SUNTOP WYLIE 355 -6.015 0.086 -0.355 -0.437 -1.520 -2.213
SUNTOP WYLIE 356 -5.984 0.086 -0.371 -0.420 -1.519 -2.564
SUNTOP WYLIE 357 -5.879 0.086 -0.304 -0.432 -1.520 -2.167
SUNTOP WYLIE 358 -5.909 0.086 -0.300 -0.431 -1.520 -2.071
SUNTOP WYLIE 359 -5.858 0.086 -0.325 -0.438 -1.519 -2.175
SUNTOP WYLIE 360 -5.851 0.086 -0.247 -0.436 -1.519 -2.138
SUNTOP WYLIE 361 -5.925 0.086 -0.333 -0.440 -1.520 -2.200
SUNTOP WYLIE 362 -5.857 0.086 -0.283 -0.428 -1.519 -2.038
SUNTOP WYLIE 363 -6.056 0.086 -0.405 -0.423 -1.519 -2.462
SUNTOP WYLIE 364 -6.217 0.086 -0.365 -0.425 -1.520 -2.356
SUNTOP WYLIE 365 -5.923 0.086 -0.307 -0.438 -1.520 -2.228
SUNTOP WYLIE 366 -5.918 0.086 -0.278 -0.438 -1.520 -2.083
SUNTOP WYLIE 367 -5.960 0.086 -0.334 -0.428 -1.520 -2.230
SUNTOP WYLIE 368 -5.916 0.086 -0.306 -0.420 -1.520 -2.090
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP WYLIE 369 -5.843 0.086 -0.320 -0.440 -1.519 -2.226
SUNTOP WYLIE 371 -5.839 0.086 -0.289 -0.439 -1.520 -2.154
SUNTOP WYLIE 372 -5.832 0.086 -0.325 -0.435 -1.520 -2.215
SUNTOP WYLIE 373 -5.871 0.086 -0.308 -0.440 -1.519 -2.324
SUNTOP WYLIE 374 -5.948 0.086 -0.311 -0.437 -1.519 -2.360
SUNTOP WYLIE 376 -5.832 0.086 -0.378 -0.441 -1.520 -2.291
SUNTOP WYLIE 377 -5.819 0.086 -0.333 -0.427 -1.520 -2.375
SUNTOP WYLIE 378 -5.850 0.086 -0.315 -0.434 -1.519 -2.107
SUNTOP WYLIE 379 -5.890 0.086 -0.336 -0.436 -1.519 -2.281
SUNTOP WYLIE 380 -6.105 0.086 -0.338 -0.438 -1.520 -2.283
SUNTOP WYLIE 381 -6.032 0.086 -0.374 -0.420 -1.519 -2.467
SUNTOP WYLIE 382 -6.114 0.086 -0.389 -0.421 -1.520 -2.406
SUNTOP ZWB10-37 383 -5.935 0.086 -0.310 -0.435 -1.519 -2.131
SUNTOP ZWB10-37 384 -6.170 0.086 -0.344 -0.444 -1.520 -2.321
SUNTOP ZWB10-37 385 -5.867 0.086 -0.308 -0.440 -1.519 -2.127
SUNTOP ZWB10-37 386 -5.881 0.086 -0.303 -0.441 -1.520 -2.159
SUNTOP ZWB10-37 387 -6.107 0.086 -0.371 -0.440 -1.520 -2.523
SUNTOP ZWB10-37 388 -5.902 0.086 -0.324 -0.438 -1.519 -2.301
SUNTOP ZWB10-37 389 -6.046 0.086 -0.288 -0.435 -1.520 -2.127
SUNTOP ZWB10-37 390 -5.952 0.086 -0.320 -0.447 -1.520 -2.346
SUNTOP ZWB10-37 392 -6.166 0.086 -0.348 -0.437 -1.519 -2.336
SUNTOP ZWB10-37 393 -6.047 0.086 -0.331 -0.443 -1.520 -2.207
SUNTOP ZWB10-37 394 -5.895 0.086 -0.327 -0.437 -1.519 -2.197
SUNTOP ZWB10-37 395 -6.033 0.086 -0.290 -0.439 -1.519 -2.269
SUNTOP ZWB10-37 396 -5.968 0.086 -0.318 -0.434 -1.519 -2.106
SUNTOP ZWB10-37 397 -6.078 0.086 -0.376 -0.433 -1.520 -2.354
SUNTOP ZWB10-37 398 -5.982 0.086 -0.333 -0.435 -1.519 -2.153
SUNTOP ZWB10-37 400 -5.889 0.086 -0.310 -0.437 -1.519 -2.201
SUNTOP ZWB10-37 403 -5.832 0.086 -0.274 -0.436 -1.520 -2.104
SUNTOP ZWB10-37 404 -5.951 0.086 -0.311 -0.436 -1.520 -2.187
SUNTOP ZWB10-37 405 -5.846 0.086 -0.291 -0.436 -1.519 -1.971
SUNTOP ZWB10-37 406 -6.014 0.086 -0.309 -0.439 -1.520 -2.191
SUNTOP ZWB10-37 407 -5.971 0.086 -0.347 -0.429 -1.519 -2.161
SUNTOP ZWB10-37 408 -6.203 0.086 -0.351 -0.435 -1.519 -2.265
SUNTOP ZWB10-37 409 -5.975 0.086 -0.353 -0.434 -1.519 -2.187
SUNTOP ZWB10-37 410 -5.953 0.086 -0.284 -0.437 -1.520 -2.075
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP ZWB10-37 411 -5.956 0.086 -0.274 -0.434 -1.520 -2.036
SUNTOP ZWB10-37 412 -5.848 0.086 -0.264 -0.441 -1.519 -2.117
SUNTOP ZWB10-37 413 -6.208 0.086 -0.394 -0.436 -1.520 -2.397
SUNTOP ZWB10-37 414 -5.982 0.086 -0.299 -0.439 -1.520 -2.180
SUNTOP ZWB10-37 415 -5.554 0.086 -0.210 -0.441 -1.519 -1.958
SUNTOP ZWB10-37 416 -5.992 0.086 -0.354 -0.439 -1.520 -2.531
SUNTOP ZWB10-37 417 -5.851 0.086 -0.268 -0.430 -1.520 -1.929
SUNTOP ZWB10-37 418 -5.883 0.086 -0.323 -0.440 -1.519 -2.222
SUNTOP ZWB10-37 419 -5.839 0.086 -0.235 -0.432 -1.520 -1.971
SUNTOP ZWB10-37 420 -5.946 0.086 -0.339 -0.435 -1.520 -2.518
SUNTOP ZWB10-37 422 -5.920 0.086 -0.333 -0.437 -1.519 -2.163
SUNTOP ZWB10-37 423 -5.953 0.086 -0.269 -0.436 -1.519 -2.069
SUNTOP ZWB10-37 424 -6.160 0.086 -0.405 -0.430 -1.519 -2.553
SUNTOP ZWW10-128 425 -6.005 0.086 -0.280 -0.438 -1.519 -2.177
SUNTOP ZWW10-128 426 -6.033 0.086 -0.320 -0.435 -1.520 -2.084
SUNTOP ZWW10-128 427 -5.957 0.086 -0.308 -0.437 -1.520 -2.242
SUNTOP ZWW10-128 429 -5.857 0.086 -0.291 -0.430 -1.520 -1.998
SUNTOP ZWW10-128 430 -6.058 0.086 -0.359 -0.435 -1.519 -2.246
SUNTOP ZWW10-128 432 -5.919 0.086 -0.319 -0.433 -1.519 -2.171
SUNTOP ZWW10-128 433 -5.910 0.086 -0.265 -0.448 -1.519 -2.437
SUNTOP ZWW10-128 434 -5.880 0.086 -0.368 -0.432 -1.520 -2.163
SUNTOP ZWW10-128 435 -6.086 0.086 -0.311 -0.436 -1.520 -2.160
SUNTOP ZWW10-128 436 -5.949 0.086 -0.298 -0.431 -1.519 -2.020
SUNTOP ZWW10-128 437 -6.071 0.086 -0.334 -0.441 -1.519 -2.611
SUNTOP ZWW10-128 438 -6.074 0.086 -0.336 -0.436 -1.519 -2.503
SUNTOP ZWW10-128 439 -5.979 0.086 -0.353 -0.432 -1.520 -2.248
SUNTOP ZWW10-128 440 -6.050 0.086 -0.290 -0.430 -1.520 -1.960
SUNTOP ZWW10-128 441 -6.085 0.086 -0.363 -0.425 -1.520 -2.406
SUNTOP ZWW10-128 443 -6.012 0.086 -0.323 -0.434 -1.520 -2.148
SUNTOP ZWW10-128 444 -5.925 0.086 -0.248 -0.444 -1.520 -2.093
SUNTOP ZWW10-128 445 -5.808 0.086 -0.236 -0.432 -1.519 -1.870
SUNTOP ZWW10-128 446 -5.917 0.086 -0.312 -0.438 -1.519 -2.153
SUNTOP ZWW10-128 448 -6.081 0.086 -0.285 -0.434 -1.520 -2.096
SUNTOP ZWW10-128 449 -5.899 0.086 -0.292 -0.438 -1.520 -2.046
SUNTOP ZWW10-128 450 -6.049 0.086 -0.306 -0.437 -1.519 -2.090
SUNTOP ZWW10-128 451 -6.116 0.086 -0.357 -0.433 -1.520 -2.206
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Table B.1 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP ZWW10-128 452 -5.955 0.086 -0.290 -0.442 -1.520 -2.250
SUNTOP ZWW10-128 453 -6.157 0.086 -0.312 -0.427 -1.519 -2.076
SUNTOP ZWW10-128 454 -5.897 0.086 -0.276 -0.439 -1.520 -2.063
SUNTOP ZWW10-128 455 -6.066 0.086 -0.300 -0.437 -1.519 -2.178
SUNTOP ZWW10-128 456 -5.914 0.086 -0.306 -0.433 -1.519 -2.079
SUNTOP ZWW10-128 457 -5.775 0.086 -0.275 -0.442 -1.520 -2.137
SUNTOP ZWW10-128 458 -5.871 0.086 -0.260 -0.425 -1.520 -1.847
SUNTOP ZWW10-128 459 -5.851 0.086 -0.269 -0.433 -1.519 -1.963
SUNTOP ZWW10-128 460 -5.894 0.086 -0.323 -0.432 -1.519 -2.142
SUNTOP ZWW10-128 461 -5.968 0.086 -0.281 -0.437 -1.520 -2.063
SUNTOP ZWW10-128 462 -5.849 0.086 -0.299 -0.436 -1.520 -2.104
SUNTOP ZWW10-128 463 -5.773 0.086 -0.275 -0.437 -1.519 -2.130
SUNTOP ZWW10-128 464 -6.011 0.086 -0.317 -0.432 -1.520 -2.028
SUNTOP ZWW10-128 465 -5.943 0.086 -0.322 -0.433 -1.519 -2.103
SUNTOP ZWW10-128 466 -5.722 0.086 -0.266 -0.447 -1.520 -1.976
ZWB10-37 P1 -6.139 0.086 -0.390 -0.463 -1.520 -2.885
ZWW10-128 PP -5.859 0.086 -0.321 -0.437 -1.520 -1.989

B.2 Univariate weighted genotype predictions

Table B.2: The genotype predictions for each weighted univariate linear mixed model,
where each estimated parameter has its own model. The full set of genotype predic-
tions are presented here, and it is important to note that these predictions are on the
transformed data scale with the exception of intercept which did not require transform-
ing.

Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

DHARWAR DRY PP -5.784 0.032 -0.360 -0.429 -1.144 -2.008
DRYSDALE PP -5.939 0.076 -0.414 -0.503 -1.279 -2.553
EGA GREGORY PP -5.807 0.026 -0.285 -0.354 -1.099 -1.845
EGA WYLIE PP -6.069 0.121 -0.471 -0.204 -1.586 -2.561
FAC10-16 P1 -5.649 0.025 -0.272 -0.599 -1.316 -1.997
MACE PP -5.717 0.068 -0.174 -0.629 -1.369 -1.871
MACE SB062 123 -5.719 0.067 -0.275 -0.421 -1.290 -2.019
RIL114 PP -5.938 0.075 -0.329 -0.229 -1.224 -1.937
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SB062 PP -5.899 0.093 -0.262 -0.269 -1.009 -1.696
SERI M82 PP -6.064 0.068 -0.436 -0.565 -1.340 -2.490
SPITFIRE-P9 -5.773 0.087 -0.137 -1.190 -1.522 -2.094
SUNTOP DHARWAH DRY 1 -5.861 0.066 -0.363 -0.387 -1.237 -2.101
SUNTOP DHARWAH DRY 10 -5.805 0.054 -0.316 -0.361 -1.309 -1.958
SUNTOP DHARWAH DRY 11 -5.830 0.078 -0.301 -0.320 -1.356 -1.852
SUNTOP DHARWAH DRY 12 -5.787 0.029 -0.346 -0.422 -1.187 -2.123
SUNTOP DHARWAH DRY 13 -5.900 0.088 -0.364 -0.290 -1.434 -2.128
SUNTOP DHARWAH DRY 14 -5.959 0.054 -0.345 -0.324 -1.039 -1.967
SUNTOP DHARWAH DRY 15 -5.810 0.090 -0.316 -0.592 -1.720 -2.092
SUNTOP DHARWAH DRY 16 -6.042 0.087 -0.388 -0.544 -1.454 -2.109
SUNTOP DHARWAH DRY 17 -5.922 0.063 -0.300 -0.393 -1.325 -1.908
SUNTOP DHARWAH DRY 18 -5.906 0.027 -0.341 -0.408 -1.035 -2.182
SUNTOP DHARWAH DRY 19 -6.087 0.091 -0.382 -0.337 -1.186 -2.307
SUNTOP DHARWAH DRY 2 -6.026 0.107 -0.309 -0.540 -1.413 -1.924
SUNTOP DHARWAH DRY 20 -5.991 0.082 -0.330 -0.495 -1.293 -2.215
SUNTOP DHARWAH DRY 21 -5.881 0.089 -0.348 -0.186 -1.320 -2.217
SUNTOP DHARWAH DRY 22 -6.091 0.105 -0.227 -0.437 -1.824 -2.338
SUNTOP DHARWAH DRY 23 -5.746 0.046 -0.332 -0.293 -1.238 -1.860
SUNTOP DHARWAH DRY 24 -6.044 0.059 -0.334 -0.382 -1.261 -1.981
SUNTOP DHARWAH DRY 25 -5.771 0.063 -0.290 -0.626 -1.482 -2.159
SUNTOP DHARWAH DRY 26 -5.998 0.067 -0.323 -0.703 -1.270 -2.391
SUNTOP DHARWAH DRY 27 -6.096 0.053 -0.355 -0.404 -1.163 -2.239
SUNTOP DHARWAH DRY 28 -6.001 0.075 -0.322 -0.285 -1.241 -1.981
SUNTOP DHARWAH DRY 29 -5.882 0.082 -0.296 -0.604 -1.462 -2.358
SUNTOP DHARWAH DRY 3 -5.777 0.069 -0.252 -0.319 -1.306 -1.592
SUNTOP DHARWAH DRY 30 -5.923 0.084 -0.312 -0.283 -1.472 -1.937
SUNTOP DHARWAH DRY 31 -5.789 0.037 -0.318 -0.401 -1.157 -1.898
SUNTOP DHARWAH DRY 32 -5.902 0.078 -0.314 -0.556 -1.355 -2.363
SUNTOP DHARWAH DRY 33 -5.910 0.156 -0.252 -0.593 -1.557 -2.181
SUNTOP DHARWAH DRY 34 -5.844 0.040 -0.333 -0.396 -1.150 -2.004
SUNTOP DHARWAH DRY 35 -5.858 0.064 -0.336 -0.393 -1.354 -2.008
SUNTOP DHARWAH DRY 36 -5.920 0.060 -0.343 -0.308 -1.177 -2.047
SUNTOP DHARWAH DRY 37 -5.796 0.081 -0.304 -0.585 -1.614 -2.069
SUNTOP DHARWAH DRY 38 -6.014 0.061 -0.381 -0.352 -1.210 -2.275
SUNTOP DHARWAH DRY 39 -5.850 0.036 -0.342 -0.496 -1.424 -2.119
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP DHARWAH DRY 4 -5.783 0.010 -0.306 -0.391 -1.063 -1.841
SUNTOP DHARWAH DRY 40 -5.720 0.023 -0.263 -0.468 -1.018 -1.812
SUNTOP DHARWAH DRY 41 -5.953 0.057 -0.361 -0.277 -1.027 -2.095
SUNTOP DHARWAH DRY 42 -5.824 0.026 -0.301 -0.613 -1.164 -2.583
SUNTOP DHARWAH DRY 43 -6.115 0.111 -0.359 -0.479 -1.460 -2.283
SUNTOP DHARWAH DRY 44 -5.865 0.059 -0.315 -0.517 -1.467 -2.113
SUNTOP DHARWAH DRY 45 -5.981 0.115 -0.270 -0.548 -1.657 -1.974
SUNTOP DHARWAH DRY 46 -6.030 0.093 -0.338 -0.439 -1.373 -2.362
SUNTOP DHARWAH DRY 47 -5.888 0.061 -0.304 -0.382 -1.267 -2.019
SUNTOP DHARWAH DRY 48 -5.812 0.061 -0.332 -0.355 -1.452 -1.938
SUNTOP DHARWAH DRY 49 -6.037 0.086 -0.383 -0.220 -1.108 -2.017
SUNTOP DHARWAH DRY 5 -5.910 0.033 -0.331 -0.403 -0.916 -2.180
SUNTOP DHARWAH DRY 50 -5.800 0.055 -0.315 -0.304 -1.257 -1.935
SUNTOP DHARWAH DRY 51 -6.140 0.111 -0.328 -0.680 -1.527 -2.890
SUNTOP DHARWAH DRY 52 -5.877 0.061 -0.300 -0.525 -1.354 -2.138
SUNTOP DHARWAH DRY 6 -5.808 0.047 -0.263 -0.636 -1.425 -1.867
SUNTOP DHARWAH DRY 7 -6.013 0.065 -0.244 -0.826 -1.282 -2.611
SUNTOP DHARWAH DRY 8 -5.797 0.057 -0.320 -0.450 -1.380 -2.093
SUNTOP DHARWAH DRY 9 -5.829 0.031 -0.332 -0.392 -0.926 -2.030
SUNTOP DRYSDALE 100 -5.853 0.039 -0.335 -0.442 -1.281 -2.130
SUNTOP DRYSDALE 101 -5.952 0.056 -0.328 -0.331 -0.962 -2.082
SUNTOP DRYSDALE 102 -5.896 0.070 -0.296 -0.644 -1.387 -2.150
SUNTOP DRYSDALE 103 -5.894 0.086 -0.322 -0.523 -1.162 -2.275
SUNTOP DRYSDALE 104 -5.928 0.076 -0.319 -0.455 -1.202 -2.263
SUNTOP DRYSDALE 53 -6.153 0.112 -0.425 -0.207 -1.266 -2.633
SUNTOP DRYSDALE 54 -5.640 -0.030 -0.318 -0.430 -0.952 -2.102
SUNTOP DRYSDALE 55 -5.896 0.083 -0.331 -0.595 -1.519 -2.507
SUNTOP DRYSDALE 56 -6.047 0.086 -0.391 -0.407 -1.245 -2.532
SUNTOP DRYSDALE 57 -5.841 0.135 -0.248 -0.742 -1.432 -2.123
SUNTOP DRYSDALE 58 -6.094 0.040 -0.434 -0.512 -1.015 -2.254
SUNTOP DRYSDALE 59 -5.976 0.076 -0.367 -0.398 -1.274 -2.283
SUNTOP DRYSDALE 60 -5.841 0.065 -0.305 -0.509 -1.249 -2.245
SUNTOP DRYSDALE 61 -5.896 0.012 -0.303 -0.514 -0.992 -2.066
SUNTOP DRYSDALE 62 -5.864 0.053 -0.322 -0.566 -1.321 -2.236
SUNTOP DRYSDALE 64 -6.185 0.043 -0.448 -0.428 -1.132 -2.139
SUNTOP DRYSDALE 65 -5.849 0.029 -0.317 -0.381 -0.838 -2.064
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP DRYSDALE 66 -5.851 0.068 -0.330 -0.420 -1.242 -2.070
SUNTOP DRYSDALE 67 -5.851 0.081 -0.342 -0.325 -1.328 -1.977
SUNTOP DRYSDALE 68 -5.840 0.060 -0.342 -0.334 -1.124 -2.110
SUNTOP DRYSDALE 69 -5.809 0.013 -0.331 -0.585 -1.156 -2.315
SUNTOP DRYSDALE 70 -5.954 0.072 -0.338 -0.362 -1.298 -2.003
SUNTOP DRYSDALE 71 -5.947 0.121 -0.342 -0.133 -1.652 -2.175
SUNTOP DRYSDALE 72 -6.009 0.065 -0.365 -0.551 -1.531 -2.608
SUNTOP DRYSDALE 73 -6.087 0.132 -0.378 -0.228 -1.521 -2.103
SUNTOP DRYSDALE 74 -5.936 0.048 -0.339 -0.480 -1.186 -2.124
SUNTOP DRYSDALE 75 -5.881 0.063 -0.321 -0.454 -1.326 -2.040
SUNTOP DRYSDALE 76 -5.913 0.053 -0.356 -0.347 -1.238 -2.129
SUNTOP DRYSDALE 77 -6.213 0.129 -0.389 -0.300 -1.341 -2.079
SUNTOP DRYSDALE 78 -5.864 0.108 -0.345 -0.281 -1.497 -2.061
SUNTOP DRYSDALE 79 -6.070 0.081 -0.351 -0.564 -1.077 -2.181
SUNTOP DRYSDALE 80 -6.003 0.037 -0.367 -0.525 -1.136 -2.180
SUNTOP DRYSDALE 81 -6.160 0.173 -0.312 -0.510 -1.556 -2.006
SUNTOP DRYSDALE 83 -5.847 0.056 -0.353 -0.372 -1.206 -1.999
SUNTOP DRYSDALE 84 -5.954 0.065 -0.413 -0.228 -1.322 -2.371
SUNTOP DRYSDALE 85 -5.997 0.097 -0.361 -0.388 -1.451 -2.195
SUNTOP DRYSDALE 86 -5.921 0.100 -0.305 -0.501 -1.501 -2.103
SUNTOP DRYSDALE 87 -6.016 0.053 -0.374 -0.413 -1.276 -2.309
SUNTOP DRYSDALE 88 -5.850 0.106 -0.192 -0.635 -1.609 -1.949
SUNTOP DRYSDALE 89 -5.743 0.035 -0.324 -0.476 -1.193 -2.088
SUNTOP DRYSDALE 90 -6.008 0.131 -0.353 -0.269 -1.740 -2.115
SUNTOP DRYSDALE 91 -5.735 0.058 -0.294 -0.369 -1.238 -1.893
SUNTOP DRYSDALE 92 -5.906 0.101 -0.304 -0.531 -1.366 -2.056
SUNTOP DRYSDALE 93 -6.121 0.112 -0.420 -0.066 -1.307 -2.119
SUNTOP DRYSDALE 94 -5.942 0.077 -0.348 -0.427 -1.339 -2.170
SUNTOP DRYSDALE 95 -5.877 0.058 -0.305 -0.644 -1.296 -2.320
SUNTOP DRYSDALE 96 -5.849 0.081 -0.307 -0.420 -1.388 -1.997
SUNTOP DRYSDALE 97 -5.986 0.077 -0.313 -0.494 -1.258 -2.187
SUNTOP DRYSDALE 98 -5.901 0.092 -0.296 -0.545 -1.584 -2.270
SUNTOP DRYSDALE 99 -5.926 0.078 -0.341 -0.376 -1.359 -2.091
SUNTOP EGA GREGORY 108 -5.860 0.062 -0.281 -0.451 -1.225 -2.074
SUNTOP EGA GREGORY 109 -5.876 0.047 -0.325 -0.463 -1.132 -2.236
SUNTOP EGA GREGORY 110 -6.064 0.064 -0.356 -0.407 -1.077 -2.220
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP EGA GREGORY 111 -5.789 0.013 -0.266 -0.607 -1.120 -2.283
SUNTOP EGA GREGORY 112 -5.751 0.017 -0.239 -0.565 -1.145 -1.867
SUNTOP EGA GREGORY 113 -6.028 0.112 -0.281 -0.486 -1.490 -1.926
SUNTOP EGA GREGORY 114 -5.892 0.066 -0.325 -0.461 -1.264 -2.178
SUNTOP EGA GREGORY 115 -5.867 0.074 -0.287 -0.514 -1.279 -1.879
SUNTOP EGA GREGORY 116 -6.008 0.093 -0.314 -0.434 -1.324 -2.144
SUNTOP EGA GREGORY 117 -5.818 0.050 -0.303 -0.634 -1.418 -2.296
SUNTOP EGA GREGORY 118 -5.905 0.051 -0.336 -0.293 -1.188 -2.134
SUNTOP EGA GREGORY 119 -5.636 0.008 -0.324 -0.531 -1.163 -2.190
SUNTOP EGA GREGORY 120 -5.756 0.019 -0.313 -0.672 -1.165 -2.627
SUNTOP EGA GREGORY 121 -5.902 0.080 -0.331 -0.342 -1.403 -2.117
SUNTOP EGA GREGORY 122 -5.819 0.079 -0.249 -0.558 -1.458 -2.023
SUNTOP EGA GREGORY 123 -5.922 0.073 -0.305 -0.427 -1.219 -1.847
SUNTOP EGA GREGORY 124 -5.821 0.059 -0.304 -0.449 -1.274 -1.981
SUNTOP EGA GREGORY 125 -5.931 0.062 -0.339 -0.491 -1.281 -2.207
SUNTOP EGA GREGORY 126 -5.849 0.055 -0.346 -0.343 -1.263 -2.224
SUNTOP EGA GREGORY 127 -5.912 0.063 -0.311 -0.540 -1.424 -2.184
SUNTOP EGA GREGORY 128 -5.773 0.052 -0.287 -0.400 -1.268 -1.936
SUNTOP EGA GREGORY 129 -5.751 -0.008 -0.317 -0.622 -1.193 -2.207
SUNTOP EGA GREGORY 130 -6.151 0.134 -0.293 -0.618 -1.553 -2.259
SUNTOP EGA GREGORY 131 -5.686 0.005 -0.293 -0.474 -0.978 -2.059
SUNTOP EGA GREGORY 132 -5.946 0.077 -0.316 -0.552 -1.531 -2.144
SUNTOP EGA GREGORY 133 -5.964 0.080 -0.313 -0.445 -1.308 -2.087
SUNTOP EGA GREGORY 134 -5.988 0.065 -0.363 -0.416 -1.315 -2.134
SUNTOP EGA GREGORY 135 -5.981 0.164 -0.318 -0.185 -2.529 -1.951
SUNTOP EGA GREGORY 136 -5.907 0.059 -0.338 -0.177 -1.908 -2.028
SUNTOP EGA GREGORY 137 -5.853 0.008 -0.383 -0.347 -0.793 -2.412
SUNTOP EGA GREGORY 138 -5.867 0.046 -0.297 -0.409 -1.211 -2.090
SUNTOP EGA GREGORY 139 -5.825 0.043 -0.345 -0.462 -1.179 -2.274
SUNTOP EGA GREGORY 140 -6.036 0.088 -0.414 -0.362 -1.442 -2.630
SUNTOP EGA GREGORY 141 -5.908 0.068 -0.347 -0.339 -1.379 -2.014
SUNTOP EGA GREGORY 142 -5.929 0.074 -0.343 -0.356 -1.367 -2.090
SUNTOP EGA GREGORY 143 -5.798 0.053 -0.311 -0.614 -1.459 -2.116
SUNTOP EGA GREGORY 144 -6.049 0.080 -0.329 -0.519 -1.384 -2.153
SUNTOP EGA GREGORY 145 -5.983 0.046 -0.204 -0.580 -1.228 -1.738
SUNTOP EGA GREGORY 146 -5.792 0.056 -0.253 -0.507 -1.227 -2.055
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP EGA GREGORY 147 -5.956 0.068 -0.360 -0.410 -1.243 -2.298
SUNTOP EGA GREGORY 148 -5.923 0.084 -0.272 -0.564 -1.284 -2.066
SUNTOP EGA GREGORY 149 -5.794 0.056 -0.270 -0.452 -1.263 -1.977
SUNTOP FAC10-16 150 -5.917 0.056 -0.403 -0.379 -1.356 -2.314
SUNTOP FAC10-16 151 -5.937 0.076 -0.311 -0.403 -1.379 -2.074
SUNTOP FAC10-16 152 -5.972 0.117 -0.287 -0.402 -1.522 -1.913
SUNTOP FAC10-16 153 -5.938 0.059 -0.357 -0.438 -1.224 -2.242
SUNTOP FAC10-16 154 -5.842 0.062 -0.322 -0.466 -1.498 -2.064
SUNTOP FAC10-16 155 -5.847 0.038 -0.340 -0.235 -1.087 -2.006
SUNTOP FAC10-16 156 -5.797 0.015 -0.356 -0.394 -0.984 -2.155
SUNTOP FAC10-16 157 -6.095 0.168 -0.248 -0.588 -1.842 -2.109
SUNTOP FAC10-16 158 -5.740 0.021 -0.317 -0.568 -1.145 -2.099
SUNTOP FAC10-16 159 -5.755 0.069 -0.246 -0.572 -1.369 -1.808
SUNTOP FAC10-16 160 -6.008 0.065 -0.413 -0.294 -1.117 -2.450
SUNTOP FAC10-16 161 -6.019 0.136 -0.361 -0.222 -1.622 -2.028
SUNTOP FAC10-16 162 -5.786 0.073 -0.270 -0.337 -1.358 -1.768
SUNTOP FAC10-16 163 -5.981 0.073 -0.260 -0.512 -1.308 -1.842
SUNTOP FAC10-16 164 -5.935 0.061 -0.313 -0.562 -0.946 -2.159
SUNTOP FAC10-16 165 -5.909 0.082 -0.295 -0.555 -1.251 -2.208
SUNTOP FAC10-16 166 -5.865 0.059 -0.333 -0.321 -1.273 -2.125
SUNTOP FAC10-16 167 -6.011 0.081 -0.359 -0.371 -1.285 -2.087
SUNTOP FAC10-16 168 -5.909 0.067 -0.403 -0.222 -1.287 -2.245
SUNTOP FAC10-16 169 -5.831 0.075 -0.336 -0.351 -1.382 -2.111
SUNTOP FAC10-16 170 -5.996 0.131 -0.309 -0.693 -1.568 -2.595
SUNTOP FAC10-16 171 -6.025 0.100 -0.311 -0.504 -1.413 -2.017
SUNTOP FAC10-16 172 -5.980 0.108 -0.284 -0.434 -1.534 -1.991
SUNTOP FAC10-16 173 -5.782 0.061 -0.299 -0.517 -1.249 -2.018
SUNTOP FAC10-16 174 -5.923 0.086 -0.360 -0.345 -1.397 -2.266
SUNTOP FAC10-16 175 -5.881 0.078 -0.351 -0.615 -1.482 -2.478
SUNTOP FAC10-16 176 -5.988 0.095 -0.332 -0.351 -1.316 -1.899
SUNTOP FAC10-16 177 -5.735 0.025 -0.284 -0.460 -1.040 -1.870
SUNTOP FAC10-16 178 -6.024 0.031 -0.399 -0.440 -1.305 -2.199
SUNTOP FAC10-16 179 -6.058 0.118 -0.299 -0.476 -1.466 -1.993
SUNTOP FAC10-16 180 -6.066 0.071 -0.313 -0.392 -1.594 -2.025
SUNTOP FAC10-16 181 -5.851 0.080 -0.325 -0.341 -1.376 -1.900
SUNTOP FAC10-16 182 -5.982 0.069 -0.361 -0.383 -1.103 -2.261
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP FAC10-16 183 -5.960 0.068 -0.385 -0.356 -1.339 -2.163
SUNTOP FAC10-16 184 -5.956 0.082 -0.319 -0.445 -1.383 -2.060
SUNTOP FAC10-16 185 -5.992 0.075 -0.385 -0.407 -1.374 -2.305
SUNTOP FAC10-16 186 -5.885 0.085 -0.302 -0.425 -1.449 -1.886
SUNTOP FAC10-16 187 -5.953 0.090 -0.347 -0.367 -1.338 -2.114
SUNTOP FAC10-16 188 -6.383 0.110 -0.418 -0.585 -1.421 -2.276
SUNTOP FAC10-16 189 -5.781 0.037 -0.285 -0.509 -1.260 -2.197
SUNTOP FAC10-16 190 -5.973 0.083 -0.332 -0.393 -1.258 -1.951
SUNTOP FAC10-16 191 -6.007 0.102 -0.309 -0.427 -1.450 -2.156
SUNTOP PP -6.143 0.058 -0.303 -0.459 -1.450 -1.965
SUNTOP RIL114 299 -5.815 0.081 -0.277 -0.597 -1.492 -2.033
SUNTOP RIL114 300 -6.044 0.121 -0.269 -0.510 -1.731 -2.098
SUNTOP RIL114 301 -6.011 0.096 -0.336 -0.461 -1.487 -2.254
SUNTOP RIL114 302 -5.808 0.073 -0.194 -0.542 -1.304 -1.861
SUNTOP RIL114 303 -5.781 0.017 -0.346 -0.433 -1.205 -2.157
SUNTOP RIL114 304 -5.883 0.051 -0.311 -0.427 -1.125 -2.028
SUNTOP RIL114 305 -6.035 0.101 -0.301 -0.389 -1.316 -1.869
SUNTOP RIL114 306 -5.861 0.045 -0.339 -0.408 -1.222 -2.201
SUNTOP RIL114 307 -5.912 0.082 -0.323 -0.410 -1.277 -2.083
SUNTOP RIL114 308 -5.884 0.065 -0.323 -0.386 -1.337 -2.154
SUNTOP RIL114 309 -6.095 0.087 -0.361 -0.330 -1.241 -1.982
SUNTOP RIL114 310 -6.003 0.101 -0.285 -0.501 -1.432 -2.208
SUNTOP RIL114 311 -5.940 0.077 -0.347 -0.479 -1.224 -2.173
SUNTOP RIL114 312 -5.918 0.054 -0.298 -0.410 -1.349 -1.957
SUNTOP RIL114 313 -5.849 0.065 -0.276 -0.463 -1.361 -1.917
SUNTOP RIL114 314 -5.876 0.037 -0.349 -0.359 -1.051 -2.000
SUNTOP RIL114 315 -5.862 0.056 -0.319 -0.490 -1.224 -2.250
SUNTOP RIL114 316 -5.870 0.081 -0.425 -0.150 -1.466 -2.142
SUNTOP RIL114 317 -5.711 0.023 -0.283 -0.519 -1.162 -2.020
SUNTOP RIL114 318 -5.823 0.064 -0.306 -0.415 -1.220 -1.924
SUNTOP RIL114 319 -6.075 0.087 -0.361 -0.405 -1.381 -2.361
SUNTOP RIL114 320 -6.141 0.138 -0.257 -0.592 -1.455 -2.108
SUNTOP RIL114 321 -6.000 0.099 -0.336 -0.376 -1.414 -1.909
SUNTOP RIL114 322 -5.945 0.025 -0.311 -0.377 -0.908 -1.990
SUNTOP RIL114 323 -5.944 0.067 -0.300 -0.427 -1.233 -2.019
SUNTOP RIL114 324 -5.883 0.110 -0.205 -0.550 -1.517 -1.744
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SUNTOP RIL114 325 -6.304 0.187 -0.295 -0.601 -1.542 -2.049
SUNTOP RIL114 326 -5.832 0.072 -0.272 -0.374 -1.276 -1.939
SUNTOP RIL114 327 -5.816 0.025 -0.322 -0.504 -1.099 -2.107
SUNTOP RIL114 328 -5.918 0.071 -0.321 -0.446 -1.332 -2.109
SUNTOP RIL114 329 -5.833 0.089 -0.312 -0.552 -1.529 -2.098
SUNTOP RIL114 330 -6.036 0.091 -0.327 -0.334 -1.246 -2.143
SUNTOP RIL114 331 -5.816 0.080 -0.319 -0.512 -1.784 -2.007
SUNTOP RIL114 333 -6.023 0.061 -0.361 -0.390 -1.258 -2.178
SUNTOP RIL114 334 -5.918 0.077 -0.336 -0.362 -1.301 -2.006
SUNTOP RIL114 335 -5.834 0.063 -0.323 -0.408 -1.352 -1.989
SUNTOP RIL114 336 -5.910 0.024 -0.328 -0.389 -0.831 -1.930
SUNTOP RIL114 337 -6.288 0.184 -0.324 -0.320 -1.898 -2.058
SUNTOP RIL114 338 -5.837 0.063 -0.320 -0.387 -1.177 -1.894
SUNTOP RIL114 339 -5.716 0.031 -0.282 -0.457 -1.244 -1.799
SUNTOP RIL114 340 -6.016 0.099 -0.328 -0.368 -1.375 -1.950
SUNTOP SB062 195 -5.904 0.028 -0.350 -0.353 -1.066 -2.184
SUNTOP SB062 196 -5.752 0.071 -0.202 -0.735 -1.662 -1.727
SUNTOP SB062 197 -5.914 0.081 -0.343 -0.376 -1.303 -2.072
SUNTOP SB062 198 -5.769 0.019 -0.338 -0.390 -1.147 -1.963
SUNTOP SB062 199 -5.941 0.103 -0.313 -0.427 -1.484 -1.794
SUNTOP SB062 200 -5.968 0.093 -0.312 -0.556 -1.407 -1.986
SUNTOP SB062 201 -5.915 0.062 -0.355 -0.529 -1.259 -2.189
SUNTOP SB062 202 -5.928 0.081 -0.337 -0.569 -1.452 -2.167
SUNTOP SB062 203 -5.856 0.061 -0.296 -0.464 -1.210 -2.153
SUNTOP SB062 204 -5.903 0.027 -0.351 -0.258 -1.371 -2.072
SUNTOP SB062 205 -5.886 0.081 -0.319 -0.439 -1.298 -2.055
SUNTOP SB062 206 -6.055 0.106 -0.375 -0.307 -1.565 -2.111
SUNTOP SB062 207 -6.082 0.082 -0.354 -0.335 -1.209 -1.930
SUNTOP SB062 208 -6.034 0.096 -0.345 -0.343 -1.430 -2.200
SUNTOP SB062 209 -5.946 0.130 -0.306 -0.162 -1.427 -1.827
SUNTOP SB062 210 -5.937 0.080 -0.350 -0.497 -1.222 -2.206
SUNTOP SB062 211 -6.031 0.071 -0.387 -0.364 -1.276 -1.944
SUNTOP SB062 212 -5.869 0.042 -0.247 -0.587 -1.107 -1.749
SUNTOP SB062 213 -5.947 0.083 -0.283 -0.550 -1.352 -1.925
SUNTOP SB062 214 -5.893 0.086 -0.305 -0.509 -1.464 -2.089
SUNTOP SB062 215 -5.954 0.094 -0.304 -0.314 -1.397 -1.986
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SUNTOP SB062 216 -6.025 0.100 -0.354 -0.393 -1.684 -2.128
SUNTOP SB062 217 -5.892 0.041 -0.353 -0.563 -1.298 -2.275
SUNTOP SB062 218 -5.799 0.044 -0.243 -0.642 -1.426 -2.154
SUNTOP SB062 219 -5.790 0.023 -0.321 -0.603 -1.046 -2.180
SUNTOP SB062 220 -5.836 0.061 -0.305 -0.514 -1.339 -2.149
SUNTOP SB062 221 -5.861 0.085 -0.337 -0.248 -1.444 -1.997
SUNTOP SB062 222 -5.735 0.074 -0.266 -0.489 -1.451 -2.136
SUNTOP SB062 223 -5.987 0.107 -0.160 -0.725 -1.846 -1.787
SUNTOP SB062 224 -6.085 0.090 -0.357 -0.403 -1.376 -1.995
SUNTOP SB062 225 -5.992 0.090 -0.342 -0.204 -1.366 -2.013
SUNTOP SB062 226 -5.876 0.048 -0.373 -0.468 -1.306 -2.404
SUNTOP SB062 227 -5.812 0.053 -0.312 -0.615 -1.367 -2.151
SUNTOP SB062 228 -5.937 0.080 -0.247 -0.621 -1.342 -2.193
SUNTOP SB062 229 -5.734 0.061 -0.276 -0.501 -1.393 -1.916
SUNTOP SB062 230 -5.989 0.059 -0.323 -0.443 -1.042 -2.034
SUNTOP SB062 231 -6.001 0.078 -0.354 -0.565 -1.418 -2.519
SUNTOP SB062 232 -5.925 0.063 -0.361 -0.437 -1.250 -2.060
SUNTOP SB062 233 -5.797 0.058 -0.289 -0.424 -1.262 -1.894
SUNTOP SB062 234 -5.854 0.090 -0.310 -0.452 -1.399 -2.037
SUNTOP SB062 235 -5.797 0.067 -0.249 -0.370 -1.252 -1.634
SUNTOP SB062 236 -5.635 0.006 -0.322 -0.410 -1.136 -1.793
SUNTOP SB062 237 -6.096 0.124 -0.367 -0.378 -1.547 -2.213
SUNTOP SB062 238 -5.977 0.079 -0.327 -0.519 -1.405 -2.056
SUNTOP SB062 239 -5.894 0.126 -0.176 -1.090 -1.946 -2.622
SUNTOP SB062 240 -6.033 0.085 -0.328 -0.515 -1.404 -2.184
SUNTOP SB062 241 -5.975 0.097 -0.303 -0.585 -1.276 -2.186
SUNTOP SB062 242 -5.915 0.069 -0.364 -0.013 -1.222 -1.977
SUNTOP SB062 243 -5.895 0.062 -0.353 -0.320 -1.166 -2.059
SUNTOP SB062 244 -5.879 0.060 -0.365 -0.390 -1.429 -2.198
SUNTOP SB062 245 -6.017 0.113 -0.270 -0.558 -1.419 -2.007
SUNTOP SB062 246 -5.771 0.047 -0.288 -0.338 -1.245 -1.819
SUNTOP SERI M82 247 -5.923 0.063 -0.321 -0.358 -1.187 -1.999
SUNTOP SERI M82 248 -5.946 0.117 -0.255 -0.563 -1.497 -1.844
SUNTOP SERI M82 249 -6.015 0.052 -0.338 -0.564 -1.417 -2.226
SUNTOP SERI M82 250 -5.914 0.085 -0.349 -0.410 -1.331 -2.003
SUNTOP SERI M82 251 -6.171 0.167 -0.285 -0.616 -1.445 -2.239
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SUNTOP SERI M82 252 -5.887 0.051 -0.374 -0.535 -1.340 -2.053
SUNTOP SERI M82 253 -5.949 0.099 -0.373 -0.291 -1.379 -2.020
SUNTOP SERI M82 254 -5.825 0.034 -0.258 -0.456 -1.217 -1.781
SUNTOP SERI M82 255 -5.984 0.078 -0.309 -0.523 -1.274 -2.211
SUNTOP SERI M82 256 -6.025 0.089 -0.344 -0.474 -1.326 -2.109
SUNTOP SERI M82 257 -5.841 0.094 -0.309 -0.529 -1.568 -1.999
SUNTOP SERI M82 258 -5.975 0.054 -0.348 -0.422 -0.955 -2.205
SUNTOP SERI M82 259 -5.922 0.080 -0.348 -0.368 -1.363 -1.996
SUNTOP SERI M82 260 -5.963 0.064 -0.347 -0.340 -1.203 -2.029
SUNTOP SERI M82 261 -5.853 0.074 -0.256 -0.413 -1.373 -1.856
SUNTOP SERI M82 262 -5.818 0.054 -0.309 -0.538 -1.307 -2.109
SUNTOP SERI M82 263 -5.778 0.014 -0.316 -0.436 -0.958 -1.930
SUNTOP SERI M82 264 -5.914 0.071 -0.358 -0.349 -1.504 -2.084
SUNTOP SERI M82 265 -5.844 0.098 -0.253 -0.491 -1.636 -1.977
SUNTOP SERI M82 266 -5.879 0.057 -0.349 -0.348 -0.913 -1.961
SUNTOP SERI M82 267 -5.889 0.077 -0.311 -0.480 -1.345 -2.004
SUNTOP SERI M82 268 -5.861 0.049 -0.338 -0.619 -1.407 -2.401
SUNTOP SERI M82 269 -5.848 0.060 -0.321 -0.358 -1.291 -1.890
SUNTOP SERI M82 270 -5.783 0.069 -0.315 -0.485 -1.328 -2.046
SUNTOP SERI M82 271 -5.919 0.066 -0.363 -0.427 -1.123 -2.315
SUNTOP SERI M82 272 -5.908 0.072 -0.299 -0.476 -1.293 -2.133
SUNTOP SERI M82 273 -5.936 0.078 -0.318 -0.400 -1.350 -1.995
SUNTOP SERI M82 274 -6.120 0.095 -0.386 -0.326 -1.429 -2.149
SUNTOP SERI M82 275 -6.086 0.090 -0.347 -0.548 -1.404 -2.164
SUNTOP SERI M82 276 -5.905 0.077 -0.329 -0.394 -1.354 -2.121
SUNTOP SERI M82 277 -5.783 0.007 -0.299 -0.432 -0.979 -1.996
SUNTOP SERI M82 278 -6.093 0.082 -0.389 -0.295 -1.308 -2.103
SUNTOP SERI M82 279 -5.947 0.056 -0.343 -0.460 -1.212 -2.307
SUNTOP SERI M82 280 -5.895 0.061 -0.340 -0.351 -1.112 -2.040
SUNTOP SERI M82 281 -5.872 0.076 -0.314 -0.449 -1.342 -2.057
SUNTOP SERI M82 282 -5.981 0.096 -0.321 -0.373 -1.285 -1.958
SUNTOP SERI M82 283 -5.997 0.073 -0.318 -0.406 -1.345 -1.987
SUNTOP SERI M82 284 -5.893 0.064 -0.300 -0.371 -1.553 -2.184
SUNTOP SERI M82 285 -5.820 0.056 -0.236 -0.522 -1.081 -1.850
SUNTOP SERI M82 286 -5.716 0.023 -0.307 -0.483 -1.314 -2.055
SUNTOP SERI M82 287 -5.956 0.060 -0.361 -0.520 -1.241 -2.308
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SUNTOP SERI M82 288 -5.852 0.051 -0.308 -0.356 -1.150 -1.672
SUNTOP SERI M82 289 -5.842 0.062 -0.259 -0.607 -1.245 -1.977
SUNTOP SERI M82 290 -5.896 0.075 -0.247 -0.604 -1.340 -2.158
SUNTOP SERI M82 291 -6.076 0.091 -0.378 -0.421 -1.180 -2.018
SUNTOP SERI M82 292 -5.878 0.055 -0.351 -0.416 -1.093 -1.999
SUNTOP SERI M82 294 -5.902 0.088 -0.246 -0.481 -1.348 -1.677
SUNTOP SERI M82 295 -6.209 0.156 -0.340 -0.577 -1.856 -2.238
SUNTOP SERI M82 296 -5.979 0.091 -0.300 -0.388 -1.297 -1.958
SUNTOP SERI M82 297 -5.938 0.079 -0.356 -0.522 -1.355 -2.243
SUNTOP SERI M82 298 -5.851 0.125 -0.280 -0.548 -1.790 -1.795
SUNTOP SPITFIRE 1 -6.031 0.112 -0.215 -0.536 -1.261 -1.905
SUNTOP SPITFIRE 10 -5.961 0.053 -0.365 -0.369 -1.230 -2.306
SUNTOP SPITFIRE 12 -5.926 0.070 -0.363 -0.428 -1.402 -2.363
SUNTOP SPITFIRE 13 -5.891 0.046 -0.289 -0.471 -1.205 -2.044
SUNTOP SPITFIRE 14 -5.888 0.077 -0.294 -0.336 -1.432 -2.105
SUNTOP SPITFIRE 15 -5.757 0.041 -0.256 -0.571 -1.287 -2.060
SUNTOP SPITFIRE 16 -5.784 0.022 -0.313 -0.741 -1.334 -2.370
SUNTOP SPITFIRE 17 -5.762 0.042 -0.307 -0.472 -1.316 -2.140
SUNTOP SPITFIRE 18 -5.945 0.004 -0.226 -0.858 -1.212 -2.061
SUNTOP SPITFIRE 19 -5.910 0.055 -0.344 -0.343 -1.113 -2.243
SUNTOP SPITFIRE 2 -5.961 0.106 -0.300 -0.407 -1.564 -1.924
SUNTOP SPITFIRE 20 -5.963 0.100 -0.375 -0.411 -1.566 -2.250
SUNTOP SPITFIRE 21 -5.810 0.049 -0.327 -0.521 -1.332 -2.133
SUNTOP SPITFIRE 22 -5.861 -0.008 -0.273 -0.541 -1.020 -2.095
SUNTOP SPITFIRE 24 -5.963 0.098 -0.330 -0.438 -1.557 -2.336
SUNTOP SPITFIRE 25 -6.097 0.119 -0.336 -0.450 -1.549 -2.255
SUNTOP SPITFIRE 26 -5.888 0.076 -0.262 -0.448 -1.296 -1.849
SUNTOP SPITFIRE 28 -5.880 0.084 -0.305 -0.406 -1.375 -2.130
SUNTOP SPITFIRE 29 -5.899 0.060 -0.335 -0.533 -1.325 -2.232
SUNTOP SPITFIRE 3 -5.953 0.095 -0.348 -0.414 -1.456 -2.239
SUNTOP SPITFIRE 30 -5.845 0.082 -0.274 -0.303 -1.496 -1.884
SUNTOP SPITFIRE 31 -5.947 0.079 -0.410 -0.439 -1.089 -2.495
SUNTOP SPITFIRE 32 -6.103 0.092 -0.256 -0.590 -1.263 -2.257
SUNTOP SPITFIRE 33 -6.135 0.127 -0.347 -0.451 -1.513 -2.224
SUNTOP SPITFIRE 34 -5.846 0.086 -0.321 -0.454 -1.764 -2.233
SUNTOP SPITFIRE 35 -6.067 0.113 -0.311 -0.578 -1.532 -2.286

Continued on next page

117



Table B.2 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP SPITFIRE 36 -5.961 0.053 -0.394 -0.437 -1.296 -2.361
SUNTOP SPITFIRE 38 -5.870 0.085 -0.257 -0.562 -1.336 -1.956
SUNTOP SPITFIRE 39 -5.926 0.050 -0.359 -0.444 -1.299 -2.266
SUNTOP SPITFIRE 4 -6.058 0.137 -0.267 -0.484 -1.781 -2.026
SUNTOP SPITFIRE 40 -5.909 0.114 -0.332 -0.405 -1.552 -2.048
SUNTOP SPITFIRE 41 -5.988 0.103 -0.318 -0.368 -1.394 -1.928
SUNTOP SPITFIRE 42 -5.904 0.055 -0.310 -0.572 -1.342 -2.513
SUNTOP SPITFIRE 43 -5.808 0.087 -0.249 -0.723 -1.606 -2.366
SUNTOP SPITFIRE 44 -5.708 0.065 -0.252 -0.417 -1.344 -1.896
SUNTOP SPITFIRE 46 -5.899 0.079 -0.297 -0.519 -1.350 -2.169
SUNTOP SPITFIRE 47 -5.903 0.104 -0.311 -0.408 -1.453 -2.310
SUNTOP SPITFIRE 48 -6.036 0.064 -0.348 -0.465 -1.295 -2.321
SUNTOP SPITFIRE 5 -6.006 0.092 -0.259 -0.323 -1.363 -1.850
SUNTOP SPITFIRE 50 -5.851 0.026 -0.377 -0.434 -1.193 -2.378
SUNTOP SPITFIRE 51 -5.847 0.062 -0.324 -0.453 -1.303 -2.111
SUNTOP SPITFIRE 52 -5.762 -0.017 -0.352 -0.580 -1.079 -2.338
SUNTOP SPITFIRE 53 -5.948 0.076 -0.346 -0.353 -1.369 -2.141
SUNTOP SPITFIRE 54 -5.914 0.038 -0.351 -0.545 -1.370 -2.534
SUNTOP SPITFIRE 6 -5.864 0.067 -0.367 -0.384 -1.332 -2.423
SUNTOP SPITFIRE 7 -5.884 0.077 -0.266 -0.458 -1.458 -2.102
SUNTOP SPITFIRE 8 -5.936 0.089 -0.265 -0.542 -1.449 -2.108
SUNTOP SPITFIRE 9 -5.908 0.060 -0.356 -0.339 -1.567 -2.209
SUNTOP WYLIE 341 -5.824 0.043 -0.343 -0.608 -1.383 -2.246
SUNTOP WYLIE 342 -5.834 0.081 -0.256 -0.558 -1.497 -2.040
SUNTOP WYLIE 344 -5.672 0.004 -0.314 -0.285 -1.074 -2.132
SUNTOP WYLIE 345 -5.957 0.068 -0.349 -0.389 -1.059 -2.321
SUNTOP WYLIE 346 -5.891 0.073 -0.375 -0.506 -1.508 -2.356
SUNTOP WYLIE 347 -6.052 0.083 -0.317 -0.484 -1.250 -2.016
SUNTOP WYLIE 348 -5.982 0.067 -0.396 -0.421 -1.377 -2.548
SUNTOP WYLIE 349 -5.903 0.081 -0.296 -0.441 -1.436 -2.088
SUNTOP WYLIE 350 -6.045 0.067 -0.321 -0.441 -1.365 -2.109
SUNTOP WYLIE 351 -5.888 0.077 -0.334 -0.246 -1.167 -1.997
SUNTOP WYLIE 352 -5.897 0.059 -0.322 -0.325 -1.124 -2.099
SUNTOP WYLIE 353 -5.798 0.052 -0.332 -0.390 -1.441 -2.156
SUNTOP WYLIE 354 -6.050 0.086 -0.380 -0.296 -1.422 -2.197
SUNTOP WYLIE 355 -6.005 0.057 -0.376 -0.471 -1.508 -2.157
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SUNTOP WYLIE 356 -5.948 0.067 -0.356 -0.339 -1.315 -2.319
SUNTOP WYLIE 357 -5.838 0.076 -0.312 -0.337 -1.395 -2.073
SUNTOP WYLIE 358 -5.856 0.104 -0.300 -0.221 -1.797 -1.866
SUNTOP WYLIE 359 -5.803 0.070 -0.341 -0.500 -1.253 -2.124
SUNTOP WYLIE 360 -5.826 0.067 -0.263 -0.418 -1.383 -2.060
SUNTOP WYLIE 361 -5.901 0.053 -0.345 -0.500 -1.411 -2.145
SUNTOP WYLIE 362 -5.836 0.061 -0.296 -0.357 -1.258 -1.980
SUNTOP WYLIE 363 -5.996 0.078 -0.419 -0.211 -1.264 -2.384
SUNTOP WYLIE 364 -6.171 0.115 -0.363 -0.315 -1.427 -2.287
SUNTOP WYLIE 365 -5.882 0.076 -0.314 -0.498 -1.494 -2.165
SUNTOP WYLIE 366 -5.891 0.080 -0.278 -0.493 -1.363 -1.991
SUNTOP WYLIE 367 -5.933 0.078 -0.339 -0.351 -1.384 -2.163
SUNTOP WYLIE 368 -5.892 0.098 -0.310 -0.246 -1.404 -1.993
SUNTOP WYLIE 369 -5.784 0.026 -0.342 -0.487 -1.329 -2.186
SUNTOP WYLIE 371 -5.763 0.041 -0.273 -0.668 -1.281 -2.038
SUNTOP WYLIE 372 -5.794 0.027 -0.347 -0.426 -1.286 -2.198
SUNTOP WYLIE 373 -5.802 0.043 -0.317 -0.638 -1.151 -2.480
SUNTOP WYLIE 374 -5.924 0.071 -0.314 -0.478 -1.371 -2.225
SUNTOP WYLIE 376 -5.778 0.041 -0.365 -0.566 -1.459 -2.260
SUNTOP WYLIE 377 -5.754 0.043 -0.330 -0.365 -1.382 -2.251
SUNTOP WYLIE 378 -5.818 0.057 -0.326 -0.409 -1.243 -2.013
SUNTOP WYLIE 379 -5.860 0.038 -0.349 -0.454 -1.250 -2.240
SUNTOP WYLIE 380 -6.095 0.118 -0.365 -0.505 -1.384 -2.314
SUNTOP WYLIE 381 -6.017 0.084 -0.408 -0.106 -1.294 -2.499
SUNTOP WYLIE 382 -6.040 0.109 -0.372 -0.291 -1.678 -2.256
SUNTOP ZWB10-37 383 -5.906 0.065 -0.320 -0.434 -1.279 -2.015
SUNTOP ZWB10-37 384 -6.181 0.153 -0.385 -0.669 -1.738 -2.430
SUNTOP ZWB10-37 385 -5.825 0.042 -0.317 -0.527 -1.324 -2.051
SUNTOP ZWB10-37 386 -5.860 0.071 -0.315 -0.521 -1.448 -2.089
SUNTOP ZWB10-37 387 -6.102 0.147 -0.406 -0.527 -1.966 -2.492
SUNTOP ZWB10-37 388 -5.874 0.018 -0.330 -0.477 -1.141 -2.293
SUNTOP ZWB10-37 389 -6.039 0.117 -0.285 -0.465 -1.634 -2.057
SUNTOP ZWB10-37 390 -5.927 0.105 -0.330 -0.612 -1.698 -2.242
SUNTOP ZWB10-37 392 -6.229 0.062 -0.396 -0.520 -1.174 -2.508
SUNTOP ZWB10-37 393 -5.987 0.080 -0.351 -0.633 -1.405 -2.207
SUNTOP ZWB10-37 394 -5.855 0.048 -0.343 -0.470 -1.163 -2.147
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Table B.2 – continued from previous page
Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP ZWB10-37 395 -5.981 0.070 -0.309 -0.474 -1.326 -2.161
SUNTOP ZWB10-37 396 -5.937 0.069 -0.330 -0.393 -1.185 -2.006
SUNTOP ZWB10-37 397 -6.062 0.109 -0.408 -0.391 -1.557 -2.374
SUNTOP ZWB10-37 398 -5.960 0.053 -0.344 -0.427 -1.134 -2.081
SUNTOP ZWB10-37 400 -5.873 0.063 -0.320 -0.461 -1.294 -2.112
SUNTOP ZWB10-37 403 -5.780 0.076 -0.265 -0.442 -1.411 -1.964
SUNTOP ZWB10-37 404 -5.918 0.071 -0.321 -0.446 -1.332 -2.109
SUNTOP ZWB10-37 405 -5.797 0.061 -0.289 -0.440 -1.321 -1.785
SUNTOP ZWB10-37 406 -6.007 0.088 -0.318 -0.500 -1.307 -2.145
SUNTOP ZWB10-37 407 -5.951 0.059 -0.371 -0.243 -1.050 -2.089
SUNTOP ZWB10-37 408 -6.248 0.090 -0.393 -0.436 -1.185 -2.272
SUNTOP ZWB10-37 409 -5.958 0.040 -0.378 -0.386 -1.104 -2.142
SUNTOP ZWB10-37 410 -5.901 0.087 -0.264 -0.517 -1.440 -1.952
SUNTOP ZWB10-37 411 -5.929 0.088 -0.286 -0.405 -1.500 -1.966
SUNTOP ZWB10-37 412 -5.807 0.003 -0.249 -0.613 -1.178 -1.995
SUNTOP ZWB10-37 413 -6.216 0.095 -0.413 -0.463 -1.457 -2.225
SUNTOP ZWB10-37 414 -5.958 0.097 -0.304 -0.527 -1.487 -2.098
SUNTOP ZWB10-37 415 -5.545 -0.016 -0.242 -0.546 -1.052 -1.991
SUNTOP ZWB10-37 416 -5.969 0.077 -0.365 -0.501 -1.398 -2.446
SUNTOP ZWB10-37 417 -5.773 0.087 -0.241 -0.226 -1.520 -1.551
SUNTOP ZWB10-37 418 -5.885 0.073 -0.360 -0.175 -1.316 -2.092
SUNTOP ZWB10-37 419 -5.823 0.080 -0.251 -0.424 -1.459 -1.921
SUNTOP ZWB10-37 420 -5.921 0.074 -0.342 -0.432 -1.381 -2.333
SUNTOP ZWB10-37 422 -5.896 0.051 -0.337 -0.486 -1.147 -2.076
SUNTOP ZWB10-37 423 -5.920 0.061 -0.262 -0.461 -1.220 -1.898
SUNTOP ZWB10-37 424 -6.103 0.052 -0.401 -0.300 -1.099 -2.425
SUNTOP ZWW10-128 425 -5.979 0.076 -0.292 -0.493 -1.210 -2.114
SUNTOP ZWW10-128 426 -6.005 0.109 -0.328 -0.440 -1.517 -1.988
SUNTOP ZWW10-128 427 -5.927 0.092 -0.319 -0.494 -1.358 -2.189
SUNTOP ZWW10-128 429 -5.807 0.084 -0.287 -0.329 -1.409 -1.716
SUNTOP ZWW10-128 430 -6.038 0.065 -0.374 -0.412 -0.987 -2.192
SUNTOP ZWW10-128 432 -5.885 0.064 -0.334 -0.364 -1.273 -2.083
SUNTOP ZWW10-128 433 -5.883 0.048 -0.287 -0.577 -1.305 -2.213
SUNTOP ZWW10-128 434 -5.850 0.181 -0.397 -0.362 -2.168 -2.090
SUNTOP ZWW10-128 435 -6.051 0.102 -0.316 -0.478 -1.423 -2.104
SUNTOP ZWW10-128 436 -5.937 0.060 -0.295 -0.363 -0.950 -1.884
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Genotype Intercept abs(x) y abs(x)y abs(x)2 y2

SUNTOP ZWW10-128 437 -6.041 0.077 -0.340 -0.529 -1.304 -2.391
SUNTOP ZWW10-128 438 -6.103 0.055 -0.375 -0.319 -1.254 -2.711
SUNTOP ZWW10-128 439 -5.958 0.098 -0.380 -0.342 -1.419 -2.222
SUNTOP ZWW10-128 440 -6.025 0.056 -0.287 -0.353 -1.708 -1.801
SUNTOP ZWW10-128 441 -6.045 0.080 -0.370 -0.317 -1.310 -2.352
SUNTOP ZWW10-128 443 -5.992 0.095 -0.337 -0.395 -1.402 -2.071
SUNTOP ZWW10-128 444 -5.907 0.069 -0.287 -0.488 -1.398 -2.072
SUNTOP ZWW10-128 445 -5.766 0.024 -0.212 -0.373 -0.990 -1.683
SUNTOP ZWW10-128 446 -5.889 0.059 -0.319 -0.493 -1.319 -2.078
SUNTOP ZWW10-128 448 -6.070 0.101 -0.300 -0.449 -1.332 -2.057
SUNTOP ZWW10-128 449 -5.871 0.055 -0.320 -0.383 -1.185 -1.937
SUNTOP ZWW10-128 450 -6.029 0.065 -0.330 -0.410 -1.121 -2.061
SUNTOP ZWW10-128 451 -6.075 0.078 -0.381 -0.380 -1.343 -2.170
SUNTOP ZWW10-128 452 -5.908 0.082 -0.302 -0.546 -1.424 -2.150
SUNTOP ZWW10-128 453 -6.072 0.068 -0.323 -0.335 -1.309 -1.992
SUNTOP ZWW10-128 454 -5.877 0.063 -0.288 -0.481 -1.371 -2.010
SUNTOP ZWW10-128 455 -6.029 0.075 -0.290 -0.457 -1.291 -2.022
SUNTOP ZWW10-128 456 -5.889 0.044 -0.315 -0.373 -1.087 -1.996
SUNTOP ZWW10-128 457 -5.761 0.061 -0.295 -0.456 -1.384 -2.024
SUNTOP ZWW10-128 458 -5.854 0.079 -0.291 -0.309 -1.433 -1.756
SUNTOP ZWW10-128 459 -5.811 0.029 -0.265 -0.377 -1.315 -1.824
SUNTOP ZWW10-128 460 -5.862 0.064 -0.337 -0.366 -1.312 -2.075
SUNTOP ZWW10-128 461 -5.933 0.078 -0.291 -0.462 -1.352 -1.950
SUNTOP ZWW10-128 462 -5.816 0.055 -0.305 -0.474 -1.284 -2.026
SUNTOP ZWW10-128 463 -5.660 0.027 -0.263 -0.453 -1.101 -1.803
SUNTOP ZWW10-128 464 -5.992 0.085 -0.330 -0.398 -1.413 -1.873
SUNTOP ZWW10-128 465 -5.909 0.072 -0.339 -0.324 -1.058 -1.908
SUNTOP ZWW10-128 466 -5.637 0.053 -0.250 -0.629 -1.569 -1.764
ZWB10-37 P1 -6.168 0.068 -0.363 -0.901 -1.278 -2.998
ZWW10-128 PP -5.829 0.082 -0.338 -0.417 -1.412 -1.889

121



B.3 Multivariate unweighted genotype predictions

Table B.3: The genotype predictions for the unweighted multivariate linear mixed
model, where all predictions are generated from one model. The full set of genotype
predictions are presented here, and it is important to note that these predictions are
on the transformed data scale with the exception of intercept which did not require
transforming.

Genotype Intercept y2

DHARWAR DRY PP -5.857 -2.113
DRYSDALE PP -6.013 -2.467
EGA GREGORY PP -5.836 -2.119
EGA WYLIE PP -6.158 -2.568
FAC10-16 P1 -5.742 -2.081
MACE PP -5.746 -1.951
MACE SB062 123 -5.740 -1.997
RIL114 PP -5.947 -2.126
SB062 PP -5.889 -1.865
SERI M82 PP -6.150 -2.577
SPITFIRE-P9 -5.806 -2.134
SUNTOP DHARWAH DRY 1 -5.890 -2.150
SUNTOP DHARWAH DRY 10 -5.813 -2.002
SUNTOP DHARWAH DRY 11 -5.808 -1.928
SUNTOP DHARWAH DRY 12 -5.824 -2.118
SUNTOP DHARWAH DRY 13 -5.927 -2.184
SUNTOP DHARWAH DRY 14 -5.944 -2.091
SUNTOP DHARWAH DRY 15 -5.849 -2.107
SUNTOP DHARWAH DRY 16 -6.071 -2.308
SUNTOP DHARWAH DRY 17 -5.885 -1.986
SUNTOP DHARWAH DRY 18 -5.947 -2.230
SUNTOP DHARWAH DRY 19 -6.118 -2.416
SUNTOP DHARWAH DRY 2 -6.028 -2.152
SUNTOP DHARWAH DRY 20 -6.062 -2.348
SUNTOP DHARWAH DRY 21 -5.942 -2.242
SUNTOP DHARWAH DRY 22 -6.113 -2.396
SUNTOP DHARWAH DRY 23 -5.808 -2.041
SUNTOP DHARWAH DRY 24 -6.026 -2.123
SUNTOP DHARWAH DRY 25 -5.836 -2.132
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Genotype Intercept y2

SUNTOP DHARWAH DRY 26 -6.061 -2.421
SUNTOP DHARWAH DRY 27 -6.123 -2.400
SUNTOP DHARWAH DRY 28 -6.131 -2.233
SUNTOP DHARWAH DRY 29 -5.982 -2.375
SUNTOP DHARWAH DRY 3 -5.727 -1.765
SUNTOP DHARWAH DRY 30 -5.934 -1.991
SUNTOP DHARWAH DRY 31 -5.777 -1.944
SUNTOP DHARWAH DRY 32 -6.000 -2.395
SUNTOP DHARWAH DRY 33 -5.950 -2.238
SUNTOP DHARWAH DRY 34 -5.835 -2.037
SUNTOP DHARWAH DRY 35 -5.865 -2.069
SUNTOP DHARWAH DRY 36 -5.926 -2.127
SUNTOP DHARWAH DRY 37 -5.829 -2.087
SUNTOP DHARWAH DRY 38 -6.057 -2.351
SUNTOP DHARWAH DRY 39 -5.895 -2.158
SUNTOP DHARWAH DRY 4 -5.797 -1.959
SUNTOP DHARWAH DRY 40 -5.764 -2.018
SUNTOP DHARWAH DRY 41 -5.951 -2.161
SUNTOP DHARWAH DRY 42 -5.918 -2.344
SUNTOP DHARWAH DRY 43 -6.146 -2.403
SUNTOP DHARWAH DRY 44 -5.878 -2.181
SUNTOP DHARWAH DRY 45 -5.970 -2.114
SUNTOP DHARWAH DRY 46 -6.110 -2.439
SUNTOP DHARWAH DRY 47 -5.881 -2.059
SUNTOP DHARWAH DRY 48 -5.826 -2.011
SUNTOP DHARWAH DRY 49 -6.020 -2.181
SUNTOP DHARWAH DRY 5 -5.950 -2.230
SUNTOP DHARWAH DRY 50 -5.809 -1.994
SUNTOP DHARWAH DRY 51 -6.245 -2.777
SUNTOP DHARWAH DRY 52 -5.903 -2.158
SUNTOP DHARWAH DRY 6 -5.822 -1.978
SUNTOP DHARWAH DRY 7 -6.082 -2.486
SUNTOP DHARWAH DRY 8 -5.798 -2.073
SUNTOP DHARWAH DRY 9 -5.856 -2.102
SUNTOP DRYSDALE 100 -5.901 -2.168
SUNTOP DRYSDALE 101 -5.964 -2.151
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Table B.3 – continued from previous page
Genotype Intercept y2

SUNTOP DRYSDALE 102 -5.942 -2.210
SUNTOP DRYSDALE 103 -5.961 -2.300
SUNTOP DRYSDALE 104 -6.002 -2.360
SUNTOP DRYSDALE 53 -6.249 -2.685
SUNTOP DRYSDALE 54 -5.727 -2.054
SUNTOP DRYSDALE 55 -6.008 -2.522
SUNTOP DRYSDALE 56 -6.111 -2.463
SUNTOP DRYSDALE 57 -5.848 -2.081
SUNTOP DRYSDALE 58 -6.146 -2.443
SUNTOP DRYSDALE 59 -6.043 -2.365
SUNTOP DRYSDALE 60 -5.917 -2.285
SUNTOP DRYSDALE 61 -5.928 -2.170
SUNTOP DRYSDALE 62 -5.928 -2.240
SUNTOP DRYSDALE 64 -6.248 -2.453
SUNTOP DRYSDALE 65 -5.886 -2.121
SUNTOP DRYSDALE 66 -5.878 -2.105
SUNTOP DRYSDALE 67 -5.877 -2.086
SUNTOP DRYSDALE 68 -5.875 -2.131
SUNTOP DRYSDALE 69 -5.925 -2.319
SUNTOP DRYSDALE 70 -5.956 -2.122
SUNTOP DRYSDALE 71 -5.978 -2.239
SUNTOP DRYSDALE 72 -6.100 -2.559
SUNTOP DRYSDALE 73 -6.084 -2.257
SUNTOP DRYSDALE 74 -5.967 -2.210
SUNTOP DRYSDALE 75 -5.896 -2.111
SUNTOP DRYSDALE 76 -5.946 -2.178
SUNTOP DRYSDALE 77 -6.209 -2.326
SUNTOP DRYSDALE 78 -5.879 -2.097
SUNTOP DRYSDALE 79 -6.069 -2.286
SUNTOP DRYSDALE 80 -6.024 -2.266
SUNTOP DRYSDALE 81 -6.114 -2.234
SUNTOP DRYSDALE 83 -5.853 -2.107
SUNTOP DRYSDALE 84 -5.990 -2.291
SUNTOP DRYSDALE 85 -6.030 -2.285
SUNTOP DRYSDALE 86 -5.939 -2.170
SUNTOP DRYSDALE 87 -6.088 -2.400
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Table B.3 – continued from previous page
Genotype Intercept y2

SUNTOP DRYSDALE 88 -5.843 -2.004
SUNTOP DRYSDALE 89 -5.777 -2.062
SUNTOP DRYSDALE 90 -6.007 -2.202
SUNTOP DRYSDALE 91 -5.758 -1.938
SUNTOP DRYSDALE 92 -5.975 -2.166
SUNTOP DRYSDALE 93 -6.130 -2.299
SUNTOP DRYSDALE 94 -5.982 -2.245
SUNTOP DRYSDALE 95 -5.986 -2.450
SUNTOP DRYSDALE 96 -5.852 -2.027
SUNTOP DRYSDALE 97 -6.011 -2.262
SUNTOP DRYSDALE 98 -5.964 -2.307
SUNTOP DRYSDALE 99 -5.946 -2.157
SUNTOP EGA GREGORY 108 -5.863 -2.072
SUNTOP EGA GREGORY 109 -5.945 -2.264
SUNTOP EGA GREGORY 110 -6.188 -2.435
SUNTOP EGA GREGORY 111 -5.888 -2.282
SUNTOP EGA GREGORY 112 -5.744 -1.864
SUNTOP EGA GREGORY 113 -6.006 -2.131
SUNTOP EGA GREGORY 114 -5.958 -2.277
SUNTOP EGA GREGORY 115 -5.878 -2.038
SUNTOP EGA GREGORY 116 -6.017 -2.250
SUNTOP EGA GREGORY 117 -5.923 -2.301
SUNTOP EGA GREGORY 118 -5.944 -2.197
SUNTOP EGA GREGORY 119 -5.720 -2.087
SUNTOP EGA GREGORY 120 -5.867 -2.373
SUNTOP EGA GREGORY 121 -5.924 -2.167
SUNTOP EGA GREGORY 122 -5.834 -2.019
SUNTOP EGA GREGORY 123 -5.889 -2.051
SUNTOP EGA GREGORY 124 -5.867 -2.149
SUNTOP EGA GREGORY 125 -5.969 -2.245
SUNTOP EGA GREGORY 126 -5.914 -2.215
SUNTOP EGA GREGORY 127 -5.975 -2.333
SUNTOP EGA GREGORY 128 -5.746 -1.910
SUNTOP EGA GREGORY 129 -5.824 -2.160
SUNTOP EGA GREGORY 130 -6.215 -2.445
SUNTOP EGA GREGORY 131 -5.743 -2.013
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Genotype Intercept y2

SUNTOP EGA GREGORY 132 -5.999 -2.270
SUNTOP EGA GREGORY 133 -6.000 -2.188
SUNTOP EGA GREGORY 134 -6.021 -2.253
SUNTOP EGA GREGORY 135 -5.953 -2.077
SUNTOP EGA GREGORY 136 -6.044 -2.238
SUNTOP EGA GREGORY 137 -5.948 -2.298
SUNTOP EGA GREGORY 138 -5.902 -2.165
SUNTOP EGA GREGORY 139 -5.911 -2.269
SUNTOP EGA GREGORY 140 -6.175 -2.676
SUNTOP EGA GREGORY 141 -5.918 -2.102
SUNTOP EGA GREGORY 142 -5.952 -2.170
SUNTOP EGA GREGORY 143 -5.875 -2.176
SUNTOP EGA GREGORY 144 -6.086 -2.298
SUNTOP EGA GREGORY 145 -5.949 -2.063
SUNTOP EGA GREGORY 146 -5.828 -2.086
SUNTOP EGA GREGORY 147 -6.027 -2.404
SUNTOP EGA GREGORY 148 -5.961 -2.150
SUNTOP EGA GREGORY 149 -5.810 -1.991
SUNTOP FAC10-16 150 -5.972 -2.267
SUNTOP FAC10-16 151 -5.954 -2.163
SUNTOP FAC10-16 152 -5.940 -2.027
SUNTOP FAC10-16 153 -5.983 -2.275
SUNTOP FAC10-16 154 -5.878 -2.122
SUNTOP FAC10-16 155 -5.866 -2.077
SUNTOP FAC10-16 156 -5.863 -2.163
SUNTOP FAC10-16 157 -6.116 -2.264
SUNTOP FAC10-16 158 -5.808 -2.064
SUNTOP FAC10-16 159 -5.789 -1.938
SUNTOP FAC10-16 160 -6.123 -2.587
SUNTOP FAC10-16 161 -6.013 -2.176
SUNTOP FAC10-16 162 -5.749 -1.850
SUNTOP FAC10-16 163 -5.956 -2.071
SUNTOP FAC10-16 164 -5.954 -2.193
SUNTOP FAC10-16 165 -5.957 -2.250
SUNTOP FAC10-16 166 -5.893 -2.159
SUNTOP FAC10-16 167 -5.998 -2.213
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Genotype Intercept y2

SUNTOP FAC10-16 168 -5.959 -2.236
SUNTOP FAC10-16 169 -5.846 -2.107
SUNTOP FAC10-16 170 -6.075 -2.476
SUNTOP FAC10-16 171 -6.038 -2.256
SUNTOP FAC10-16 172 -5.970 -2.092
SUNTOP FAC10-16 173 -5.824 -2.061
SUNTOP FAC10-16 174 -5.968 -2.256
SUNTOP FAC10-16 175 -6.093 -2.589
SUNTOP FAC10-16 176 -5.949 -2.062
SUNTOP FAC10-16 177 -5.786 -1.970
SUNTOP FAC10-16 178 -6.044 -2.284
SUNTOP FAC10-16 179 -6.041 -2.188
SUNTOP FAC10-16 180 -6.127 -2.251
SUNTOP FAC10-16 181 -5.851 -2.015
SUNTOP FAC10-16 182 -6.044 -2.364
SUNTOP FAC10-16 183 -5.973 -2.225
SUNTOP FAC10-16 184 -5.959 -2.156
SUNTOP FAC10-16 185 -6.039 -2.328
SUNTOP FAC10-16 186 -5.872 -2.015
SUNTOP FAC10-16 187 -6.007 -2.326
SUNTOP FAC10-16 188 -6.373 -2.629
SUNTOP FAC10-16 189 -5.886 -2.335
SUNTOP FAC10-16 190 -5.983 -2.109
SUNTOP FAC10-16 191 -6.079 -2.326
SUNTOP PP -6.175 -2.136
SUNTOP RIL114 299 -5.855 -2.077
SUNTOP RIL114 300 -6.045 -2.230
SUNTOP RIL114 301 -6.072 -2.355
SUNTOP RIL114 302 -5.843 -2.031
SUNTOP RIL114 303 -5.819 -2.152
SUNTOP RIL114 304 -5.894 -2.098
SUNTOP RIL114 305 -6.000 -2.079
SUNTOP RIL114 306 -5.943 -2.291
SUNTOP RIL114 307 -5.937 -2.163
SUNTOP RIL114 308 -5.920 -2.202
SUNTOP RIL114 309 -6.047 -2.179
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Table B.3 – continued from previous page
Genotype Intercept y2

SUNTOP RIL114 310 -6.095 -2.362
SUNTOP RIL114 311 -5.955 -2.213
SUNTOP RIL114 312 -5.906 -1.988
SUNTOP RIL114 313 -5.826 -1.969
SUNTOP RIL114 314 -5.894 -2.103
SUNTOP RIL114 315 -5.927 -2.279
SUNTOP RIL114 316 -5.897 -2.149
SUNTOP RIL114 317 -5.759 -1.995
SUNTOP RIL114 318 -5.824 -1.978
SUNTOP RIL114 319 -6.318 -2.783
SUNTOP RIL114 320 -6.121 -2.291
SUNTOP RIL114 321 -5.975 -2.097
SUNTOP RIL114 322 -5.909 -2.026
SUNTOP RIL114 323 -5.933 -2.089
SUNTOP RIL114 324 -5.849 -1.953
SUNTOP RIL114 325 -6.211 -2.302
SUNTOP RIL114 326 -5.848 -1.990
SUNTOP RIL114 327 -5.866 -2.134
SUNTOP RIL114 328 -5.950 -2.193
SUNTOP RIL114 329 -5.873 -2.125
SUNTOP RIL114 330 -6.043 -2.271
SUNTOP RIL114 331 -5.855 -2.068
SUNTOP RIL114 333 -6.055 -2.294
SUNTOP RIL114 334 -5.920 -2.113
SUNTOP RIL114 335 -5.864 -2.081
SUNTOP RIL114 336 -5.899 -2.059
SUNTOP RIL114 337 -6.215 -2.339
SUNTOP RIL114 338 -5.858 -2.042
SUNTOP RIL114 339 -5.739 -1.907
SUNTOP RIL114 340 -5.990 -2.083
SUNTOP SB062 195 -5.995 -2.363
SUNTOP SB062 196 -5.711 -1.759
SUNTOP SB062 197 -5.934 -2.150
SUNTOP SB062 198 -5.816 -2.039
SUNTOP SB062 199 -5.905 -1.994
SUNTOP SB062 200 -5.950 -2.118
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Genotype Intercept y2

SUNTOP SB062 201 -5.948 -2.210
SUNTOP SB062 202 -5.950 -2.201
SUNTOP SB062 203 -5.900 -2.171
SUNTOP SB062 204 -5.931 -2.187
SUNTOP SB062 205 -5.931 -2.144
SUNTOP SB062 206 -6.105 -2.384
SUNTOP SB062 207 -6.150 -2.213
SUNTOP SB062 208 -6.106 -2.333
SUNTOP SB062 209 -5.889 -2.003
SUNTOP SB062 210 -5.972 -2.238
SUNTOP SB062 211 -6.002 -2.133
SUNTOP SB062 212 -5.858 -1.903
SUNTOP SB062 213 -5.950 -2.123
SUNTOP SB062 214 -5.923 -2.176
SUNTOP SB062 215 -5.937 -2.061
SUNTOP SB062 216 -6.030 -2.251
SUNTOP SB062 217 -5.957 -2.314
SUNTOP SB062 218 -5.863 -2.223
SUNTOP SB062 219 -5.851 -2.158
SUNTOP SB062 220 -5.885 -2.159
SUNTOP SB062 221 -5.888 -2.093
SUNTOP SB062 222 -5.824 -2.159
SUNTOP SB062 223 -5.917 -1.980
SUNTOP SB062 224 -6.068 -2.207
SUNTOP SB062 225 -5.991 -2.153
SUNTOP SB062 226 -6.013 -2.548
SUNTOP SB062 227 -5.872 -2.155
SUNTOP SB062 228 -5.951 -2.188
SUNTOP SB062 229 -5.770 -1.983
SUNTOP SB062 230 -6.035 -2.253
SUNTOP SB062 231 -6.098 -2.475
SUNTOP SB062 232 -5.935 -2.153
SUNTOP SB062 233 -5.784 -1.955
SUNTOP SB062 234 -5.879 -2.119
SUNTOP SB062 235 -5.768 -1.846
SUNTOP SB062 236 -5.702 -1.896
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Genotype Intercept y2

SUNTOP SB062 237 -6.122 -2.341
SUNTOP SB062 238 -5.975 -2.169
SUNTOP SB062 239 -5.976 -2.357
SUNTOP SB062 240 -6.085 -2.332
SUNTOP SB062 241 -6.004 -2.263
SUNTOP SB062 242 -5.923 -2.121
SUNTOP SB062 243 -5.922 -2.150
SUNTOP SB062 244 -5.922 -2.220
SUNTOP SB062 245 -6.007 -2.140
SUNTOP SB062 246 -5.745 -1.868
SUNTOP SERI M82 247 -5.954 -2.115
SUNTOP SERI M82 248 -5.921 -2.039
SUNTOP SERI M82 249 -6.047 -2.322
SUNTOP SERI M82 250 -5.929 -2.094
SUNTOP SERI M82 251 -6.134 -2.377
SUNTOP SERI M82 252 -5.913 -2.139
SUNTOP SERI M82 253 -5.961 -2.129
SUNTOP SERI M82 254 -5.793 -1.854
SUNTOP SERI M82 255 -6.064 -2.475
SUNTOP SERI M82 256 -6.033 -2.233
SUNTOP SERI M82 257 -5.868 -2.072
SUNTOP SERI M82 258 -6.002 -2.263
SUNTOP SERI M82 259 -5.911 -2.074
SUNTOP SERI M82 260 -5.966 -2.169
SUNTOP SERI M82 261 -5.861 -1.922
SUNTOP SERI M82 262 -5.819 -2.039
SUNTOP SERI M82 263 -5.811 -2.009
SUNTOP SERI M82 264 -5.951 -2.197
SUNTOP SERI M82 265 -5.838 -2.007
SUNTOP SERI M82 266 -5.899 -2.082
SUNTOP SERI M82 267 -5.890 -2.023
SUNTOP SERI M82 268 -5.952 -2.331
SUNTOP SERI M82 269 -5.859 -2.040
SUNTOP SERI M82 270 -5.843 -2.090
SUNTOP SERI M82 271 -5.967 -2.274
SUNTOP SERI M82 272 -5.940 -2.199
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SUNTOP SERI M82 273 -5.930 -2.105
SUNTOP SERI M82 274 -6.175 -2.337
SUNTOP SERI M82 275 -6.095 -2.298
SUNTOP SERI M82 276 -5.937 -2.190
SUNTOP SERI M82 277 -5.795 -1.994
SUNTOP SERI M82 278 -6.088 -2.257
SUNTOP SERI M82 279 -6.044 -2.443
SUNTOP SERI M82 280 -5.911 -2.118
SUNTOP SERI M82 281 -5.854 -2.040
SUNTOP SERI M82 282 -5.961 -2.122
SUNTOP SERI M82 283 -6.001 -2.097
SUNTOP SERI M82 284 -5.934 -2.212
SUNTOP SERI M82 285 -5.842 -1.977
SUNTOP SERI M82 286 -5.796 -2.068
SUNTOP SERI M82 287 -5.983 -2.306
SUNTOP SERI M82 288 -5.827 -1.936
SUNTOP SERI M82 289 -5.860 -2.081
SUNTOP SERI M82 290 -5.933 -2.198
SUNTOP SERI M82 291 -6.068 -2.253
SUNTOP SERI M82 292 -5.882 -2.082
SUNTOP SERI M82 294 -5.890 -1.917
SUNTOP SERI M82 295 -6.173 -2.368
SUNTOP SERI M82 296 -5.982 -2.042
SUNTOP SERI M82 297 -5.945 -2.205
SUNTOP SERI M82 298 -5.854 -2.010
SUNTOP SPITFIRE 1 -6.020 -2.064
SUNTOP SPITFIRE 10 -6.049 -2.413
SUNTOP SPITFIRE 12 -6.001 -2.362
SUNTOP SPITFIRE 13 -5.847 -1.978
SUNTOP SPITFIRE 14 -5.933 -2.187
SUNTOP SPITFIRE 15 -5.793 -2.051
SUNTOP SPITFIRE 16 -5.889 -2.270
SUNTOP SPITFIRE 17 -5.814 -2.112
SUNTOP SPITFIRE 18 -5.961 -2.194
SUNTOP SPITFIRE 19 -5.980 -2.326
SUNTOP SPITFIRE 2 -5.944 -2.076
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SUNTOP SPITFIRE 20 -5.991 -2.277
SUNTOP SPITFIRE 21 -5.874 -2.151
SUNTOP SPITFIRE 22 -5.908 -2.178
SUNTOP SPITFIRE 24 -6.086 -2.531
SUNTOP SPITFIRE 25 -6.194 -2.459
SUNTOP SPITFIRE 26 -5.854 -1.964
SUNTOP SPITFIRE 28 -5.911 -2.172
SUNTOP SPITFIRE 29 -5.969 -2.305
SUNTOP SPITFIRE 3 -6.021 -2.370
SUNTOP SPITFIRE 30 -5.796 -1.915
SUNTOP SPITFIRE 31 -6.013 -2.366
SUNTOP SPITFIRE 32 -6.094 -2.351
SUNTOP SPITFIRE 33 -6.186 -2.399
SUNTOP SPITFIRE 34 -5.916 -2.217
SUNTOP SPITFIRE 35 -6.129 -2.419
SUNTOP SPITFIRE 36 -6.047 -2.373
SUNTOP SPITFIRE 38 -5.878 -2.072
SUNTOP SPITFIRE 39 -5.983 -2.301
SUNTOP SPITFIRE 4 -6.029 -2.220
SUNTOP SPITFIRE 40 -5.927 -2.137
SUNTOP SPITFIRE 41 -5.968 -2.123
SUNTOP SPITFIRE 42 -6.025 -2.465
SUNTOP SPITFIRE 43 -5.928 -2.401
SUNTOP SPITFIRE 44 -5.687 -1.802
SUNTOP SPITFIRE 46 -5.962 -2.272
SUNTOP SPITFIRE 47 -5.981 -2.343
SUNTOP SPITFIRE 48 -6.254 -2.742
SUNTOP SPITFIRE 5 -5.979 -2.108
SUNTOP SPITFIRE 50 -5.952 -2.353
SUNTOP SPITFIRE 51 -5.849 -2.129
SUNTOP SPITFIRE 52 -5.874 -2.292
SUNTOP SPITFIRE 53 -5.973 -2.210
SUNTOP SPITFIRE 54 -6.052 -2.586
SUNTOP SPITFIRE 6 -5.970 -2.376
SUNTOP SPITFIRE 7 -5.895 -2.129
SUNTOP SPITFIRE 8 -5.955 -2.181
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SUNTOP SPITFIRE 9 -5.965 -2.287
SUNTOP WYLIE 341 -5.890 -2.188
SUNTOP WYLIE 342 -5.864 -2.102
SUNTOP WYLIE 344 -5.739 -2.055
SUNTOP WYLIE 345 -6.016 -2.325
SUNTOP WYLIE 346 -5.954 -2.291
SUNTOP WYLIE 347 -6.061 -2.176
SUNTOP WYLIE 348 -6.094 -2.515
SUNTOP WYLIE 349 -5.911 -2.129
SUNTOP WYLIE 350 -6.195 -2.426
SUNTOP WYLIE 351 -5.914 -2.122
SUNTOP WYLIE 352 -5.936 -2.182
SUNTOP WYLIE 353 -5.862 -2.151
SUNTOP WYLIE 354 -6.087 -2.324
SUNTOP WYLIE 355 -6.014 -2.251
SUNTOP WYLIE 356 -6.092 -2.577
SUNTOP WYLIE 357 -5.882 -2.136
SUNTOP WYLIE 358 -5.880 -2.061
SUNTOP WYLIE 359 -5.864 -2.128
SUNTOP WYLIE 360 -5.849 -2.092
SUNTOP WYLIE 361 -5.930 -2.186
SUNTOP WYLIE 362 -5.823 -1.994
SUNTOP WYLIE 363 -6.117 -2.510
SUNTOP WYLIE 364 -6.231 -2.496
SUNTOP WYLIE 365 -5.936 -2.209
SUNTOP WYLIE 366 -5.890 -2.072
SUNTOP WYLIE 367 -5.970 -2.236
SUNTOP WYLIE 368 -5.893 -2.079
SUNTOP WYLIE 369 -5.866 -2.177
SUNTOP WYLIE 371 -5.839 -2.089
SUNTOP WYLIE 372 -5.852 -2.156
SUNTOP WYLIE 373 -5.920 -2.278
SUNTOP WYLIE 374 -5.993 -2.354
SUNTOP WYLIE 376 -5.870 -2.217
SUNTOP WYLIE 377 -5.881 -2.293
SUNTOP WYLIE 378 -5.836 -2.054
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SUNTOP WYLIE 379 -5.925 -2.251
SUNTOP WYLIE 380 -6.110 -2.357
SUNTOP WYLIE 381 -6.097 -2.502
SUNTOP WYLIE 382 -6.150 -2.476
SUNTOP ZWB10-37 383 -5.919 -2.128
SUNTOP ZWB10-37 384 -6.178 -2.430
SUNTOP ZWB10-37 385 -5.859 -2.088
SUNTOP ZWB10-37 386 -5.879 -2.121
SUNTOP ZWB10-37 387 -6.177 -2.593
SUNTOP ZWB10-37 388 -5.935 -2.266
SUNTOP ZWB10-37 389 -6.020 -2.190
SUNTOP ZWB10-37 390 -5.993 -2.342
SUNTOP ZWB10-37 392 -6.185 -2.457
SUNTOP ZWB10-37 393 -6.043 -2.270
SUNTOP ZWB10-37 394 -5.903 -2.165
SUNTOP ZWB10-37 395 -6.048 -2.321
SUNTOP ZWB10-37 396 -5.941 -2.123
SUNTOP ZWB10-37 397 -6.108 -2.423
SUNTOP ZWB10-37 398 -5.967 -2.173
SUNTOP ZWB10-37 400 -5.898 -2.166
SUNTOP ZWB10-37 403 -5.818 -2.037
SUNTOP ZWB10-37 404 -5.950 -2.193
SUNTOP ZWB10-37 405 -5.801 -1.932
SUNTOP ZWB10-37 406 -6.006 -2.226
SUNTOP ZWB10-37 407 -5.961 -2.178
SUNTOP ZWB10-37 408 -6.200 -2.421
SUNTOP ZWB10-37 409 -5.972 -2.204
SUNTOP ZWB10-37 410 -5.923 -2.088
SUNTOP ZWB10-37 411 -5.916 -2.055
SUNTOP ZWB10-37 412 -5.841 -2.072
SUNTOP ZWB10-37 413 -6.258 -2.617
SUNTOP ZWB10-37 414 -5.975 -2.201
SUNTOP ZWB10-37 415 -5.538 -1.763
SUNTOP ZWB10-37 416 -6.089 -2.550
SUNTOP ZWB10-37 417 -5.784 -1.882
SUNTOP ZWB10-37 418 -5.899 -2.188
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SUNTOP ZWB10-37 419 -5.794 -1.927
SUNTOP ZWB10-37 420 -6.043 -2.507
SUNTOP ZWB10-37 422 -5.915 -2.147
SUNTOP ZWB10-37 423 -5.918 -2.082
SUNTOP ZWB10-37 424 -6.234 -2.656
SUNTOP ZWW10-128 425 -5.998 -2.219
SUNTOP ZWW10-128 426 -5.994 -2.130
SUNTOP ZWW10-128 427 -5.974 -2.253
SUNTOP ZWW10-128 429 -5.809 -1.950
SUNTOP ZWW10-128 430 -6.059 -2.298
SUNTOP ZWW10-128 432 -5.918 -2.163
SUNTOP ZWW10-128 433 -5.979 -2.405
SUNTOP ZWW10-128 434 -5.886 -2.135
SUNTOP ZWW10-128 435 -6.062 -2.235
SUNTOP ZWW10-128 436 -5.904 -2.031
SUNTOP ZWW10-128 437 -6.167 -2.652
SUNTOP ZWW10-128 438 -6.143 -2.558
SUNTOP ZWW10-128 439 -5.991 -2.263
SUNTOP ZWW10-128 440 -5.979 -2.034
SUNTOP ZWW10-128 441 -6.126 -2.466
SUNTOP ZWW10-128 443 -5.993 -2.190
SUNTOP ZWW10-128 444 -5.899 -2.084
SUNTOP ZWW10-128 445 -5.741 -1.819
SUNTOP ZWW10-128 446 -5.909 -2.136
SUNTOP ZWW10-128 448 -6.042 -2.176
SUNTOP ZWW10-128 449 -5.866 -2.027
SUNTOP ZWW10-128 450 -6.012 -2.152
SUNTOP ZWW10-128 451 -6.105 -2.313
SUNTOP ZWW10-128 452 -5.970 -2.251
SUNTOP ZWW10-128 453 -6.102 -2.210
SUNTOP ZWW10-128 454 -5.864 -2.036
SUNTOP ZWW10-128 455 -6.049 -2.241
SUNTOP ZWW10-128 456 -5.886 -2.069
SUNTOP ZWW10-128 457 -5.781 -2.051
SUNTOP ZWW10-128 458 -5.792 -1.833
SUNTOP ZWW10-128 459 -5.804 -1.931
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SUNTOP ZWW10-128 460 -5.887 -2.117
SUNTOP ZWW10-128 461 -5.930 -2.088
SUNTOP ZWW10-128 462 -5.838 -2.059
SUNTOP ZWW10-128 463 -5.778 -2.045
SUNTOP ZWW10-128 464 -5.963 -2.078
SUNTOP ZWW10-128 465 -5.918 -2.105
SUNTOP ZWW10-128 466 -5.691 -1.866
ZWB10-37 P1 -6.257 -2.911
ZWW10-128 PP -5.830 -1.972

B.4 Multivariate weighted genotype predictions

Table B.4: The genotype predictions for the weighted multivariate linear mixed model,
where all predictions are generated from one model. The full set of genotype predic-
tions are presented here, and it is important to note that these predictions are on the
transformed data scale with the exception of intercept which did not require transform-
ing.

Genotype Intercept abs(x)2 y2

DHARWAR DRY PP -5.729 -1.070 -1.951
DRYSDALE PP -6.037 -1.253 -2.572
EGA GREGORY PP -5.681 -1.037 -1.791
EGA WYLIE PP -6.223 -1.635 -2.629
FAC10-16 P1 -5.653 -1.176 -1.859
MACE PP -5.701 -1.276 -1.792
MACE SB062 123 -5.706 -1.176 -1.899
RIL114 PP -5.851 -1.238 -1.938
SB062 PP -5.722 -1.029 -1.709
SERI M82 PP -6.137 -1.393 -2.565
SPITFIRE-P9 -5.819 -1.398 -1.989
SUNTOP DHARWAH DRY 1 -5.826 -1.181 -2.065
SUNTOP DHARWAH DRY 10 -5.737 -1.204 -1.853
SUNTOP DHARWAH DRY 11 -5.739 -1.286 -1.753
SUNTOP DHARWAH DRY 12 -5.748 -1.057 -2.039
SUNTOP DHARWAH DRY 13 -5.931 -1.425 -2.099
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SUNTOP DHARWAH DRY 14 -5.796 -1.039 -1.979
SUNTOP DHARWAH DRY 15 -5.933 -1.657 -2.019
SUNTOP DHARWAH DRY 16 -6.122 -1.599 -2.296
SUNTOP DHARWAH DRY 17 -5.819 -1.324 -1.855
SUNTOP DHARWAH DRY 18 -5.815 -0.973 -2.172
SUNTOP DHARWAH DRY 19 -6.085 -1.291 -2.425
SUNTOP DHARWAH DRY 2 -5.971 -1.519 -1.964
SUNTOP DHARWAH DRY 20 -6.017 -1.350 -2.300
SUNTOP DHARWAH DRY 21 -5.918 -1.284 -2.204
SUNTOP DHARWAH DRY 22 -6.315 -1.994 -2.471
SUNTOP DHARWAH DRY 23 -5.631 -1.082 -1.727
SUNTOP DHARWAH DRY 24 -5.972 -1.376 -2.073
SUNTOP DHARWAH DRY 25 -5.834 -1.351 -2.055
SUNTOP DHARWAH DRY 26 -6.070 -1.308 -2.488
SUNTOP DHARWAH DRY 27 -6.086 -1.300 -2.406
SUNTOP DHARWAH DRY 28 -5.910 -1.304 -2.016
SUNTOP DHARWAH DRY 29 -6.006 -1.422 -2.354
SUNTOP DHARWAH DRY 3 -5.566 -1.197 -1.404
SUNTOP DHARWAH DRY 30 -5.903 -1.502 -1.917
SUNTOP DHARWAH DRY 31 -5.650 -1.031 -1.774
SUNTOP DHARWAH DRY 32 -6.018 -1.338 -2.407
SUNTOP DHARWAH DRY 33 -6.032 -1.587 -2.207
SUNTOP DHARWAH DRY 34 -5.736 -1.066 -1.925
SUNTOP DHARWAH DRY 35 -5.826 -1.306 -1.950
SUNTOP DHARWAH DRY 36 -5.843 -1.170 -2.038
SUNTOP DHARWAH DRY 37 -5.877 -1.536 -1.976
SUNTOP DHARWAH DRY 38 -6.031 -1.273 -2.375
SUNTOP DHARWAH DRY 39 -5.891 -1.391 -2.076
SUNTOP DHARWAH DRY 4 -5.611 -0.942 -1.735
SUNTOP DHARWAH DRY 40 -5.524 -0.860 -1.655
SUNTOP DHARWAH DRY 41 -5.842 -1.020 -2.130
SUNTOP DHARWAH DRY 42 -5.947 -1.043 -2.580
SUNTOP DHARWAH DRY 43 -6.222 -1.661 -2.454
SUNTOP DHARWAH DRY 44 -5.915 -1.432 -2.084
SUNTOP DHARWAH DRY 45 -6.055 -1.776 -2.023
SUNTOP DHARWAH DRY 46 -6.147 -1.477 -2.505
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SUNTOP DHARWAH DRY 47 -5.824 -1.231 -1.976
SUNTOP DHARWAH DRY 48 -5.789 -1.379 -1.837
SUNTOP DHARWAH DRY 49 -5.911 -1.164 -2.091
SUNTOP DHARWAH DRY 5 -5.775 -0.848 -2.171
SUNTOP DHARWAH DRY 50 -5.717 -1.176 -1.827
SUNTOP DHARWAH DRY 51 -6.476 -1.713 -3.123
SUNTOP DHARWAH DRY 52 -5.889 -1.313 -2.103
SUNTOP DHARWAH DRY 6 -5.761 -1.373 -1.764
SUNTOP DHARWAH DRY 7 -6.167 -1.321 -2.742
SUNTOP DHARWAH DRY 8 -5.788 -1.262 -1.960
SUNTOP DHARWAH DRY 9 -5.668 -0.830 -1.968
SUNTOP DRYSDALE 100 -5.832 -1.217 -2.060
SUNTOP DRYSDALE 101 -5.806 -0.947 -2.101
SUNTOP DRYSDALE 102 -5.931 -1.369 -2.155
SUNTOP DRYSDALE 103 -5.892 -1.125 -2.263
SUNTOP DRYSDALE 104 -5.939 -1.186 -2.299
SUNTOP DRYSDALE 53 -6.305 -1.396 -2.887
SUNTOP DRYSDALE 54 -5.515 -0.680 -1.884
SUNTOP DRYSDALE 55 -6.110 -1.500 -2.554
SUNTOP DRYSDALE 56 -6.194 -1.362 -2.704
SUNTOP DRYSDALE 57 -5.870 -1.350 -2.065
SUNTOP DRYSDALE 58 -6.052 -1.104 -2.483
SUNTOP DRYSDALE 59 -6.018 -1.303 -2.361
SUNTOP DRYSDALE 60 -5.852 -1.149 -2.191
SUNTOP DRYSDALE 61 -5.774 -0.950 -2.064
SUNTOP DRYSDALE 62 -5.907 -1.263 -2.215
SUNTOP DRYSDALE 64 -6.161 -1.325 -2.483
SUNTOP DRYSDALE 65 -5.642 -0.728 -1.979
SUNTOP DRYSDALE 66 -5.805 -1.185 -2.005
SUNTOP DRYSDALE 67 -5.810 -1.279 -1.936
SUNTOP DRYSDALE 68 -5.778 -1.045 -2.068
SUNTOP DRYSDALE 69 -5.816 -1.024 -2.245
SUNTOP DRYSDALE 70 -5.897 -1.332 -2.021
SUNTOP DRYSDALE 71 -6.083 -1.704 -2.214
SUNTOP DRYSDALE 72 -6.244 -1.598 -2.726
SUNTOP DRYSDALE 73 -6.138 -1.690 -2.222
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SUNTOP DRYSDALE 74 -5.881 -1.178 -2.134
SUNTOP DRYSDALE 75 -5.845 -1.289 -1.995
SUNTOP DRYSDALE 76 -5.888 -1.222 -2.134
SUNTOP DRYSDALE 77 -6.168 -1.571 -2.254
SUNTOP DRYSDALE 78 -5.898 -1.466 -2.012
SUNTOP DRYSDALE 79 -5.977 -1.140 -2.267
SUNTOP DRYSDALE 80 -5.955 -1.177 -2.253
SUNTOP DRYSDALE 81 -6.162 -1.752 -2.142
SUNTOP DRYSDALE 83 -5.763 -1.132 -1.938
SUNTOP DRYSDALE 84 -6.041 -1.336 -2.427
SUNTOP DRYSDALE 85 -6.080 -1.549 -2.280
SUNTOP DRYSDALE 86 -5.982 -1.534 -2.110
SUNTOP DRYSDALE 87 -6.075 -1.357 -2.422
SUNTOP DRYSDALE 88 -5.884 -1.587 -1.877
SUNTOP DRYSDALE 89 -5.655 -0.987 -1.905
SUNTOP DRYSDALE 90 -6.150 -1.874 -2.193
SUNTOP DRYSDALE 91 -5.631 -1.087 -1.733
SUNTOP DRYSDALE 92 -5.898 -1.358 -2.047
SUNTOP DRYSDALE 93 -6.103 -1.475 -2.264
SUNTOP DRYSDALE 94 -5.969 -1.365 -2.203
SUNTOP DRYSDALE 95 -5.939 -1.250 -2.313
SUNTOP DRYSDALE 96 -5.807 -1.324 -1.898
SUNTOP DRYSDALE 97 -5.989 -1.316 -2.248
SUNTOP DRYSDALE 98 -6.054 -1.598 -2.288
SUNTOP DRYSDALE 99 -5.924 -1.366 -2.095
SUNTOP EGA GREGORY 108 -5.790 -1.149 -1.995
SUNTOP EGA GREGORY 109 -5.842 -1.055 -2.207
SUNTOP EGA GREGORY 110 -5.998 -1.139 -2.344
SUNTOP EGA GREGORY 111 -5.771 -0.981 -2.176
SUNTOP EGA GREGORY 112 -5.607 -1.001 -1.717
SUNTOP EGA GREGORY 113 -6.009 -1.629 -1.980
SUNTOP EGA GREGORY 114 -5.884 -1.220 -2.158
SUNTOP EGA GREGORY 115 -5.774 -1.248 -1.833
SUNTOP EGA GREGORY 116 -6.020 -1.397 -2.238
SUNTOP EGA GREGORY 117 -5.910 -1.316 -2.237
SUNTOP EGA GREGORY 118 -5.856 -1.152 -2.122
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SUNTOP EGA GREGORY 119 -5.595 -0.877 -1.961
SUNTOP EGA GREGORY 120 -5.914 -1.003 -2.599
SUNTOP EGA GREGORY 121 -5.929 -1.398 -2.106
SUNTOP EGA GREGORY 122 -5.811 -1.373 -1.899
SUNTOP EGA GREGORY 123 -5.771 -1.207 -1.807
SUNTOP EGA GREGORY 124 -5.748 -1.181 -1.886
SUNTOP EGA GREGORY 125 -5.952 -1.285 -2.237
SUNTOP EGA GREGORY 126 -5.872 -1.177 -2.207
SUNTOP EGA GREGORY 127 -5.965 -1.423 -2.181
SUNTOP EGA GREGORY 128 -5.670 -1.133 -1.766
SUNTOP EGA GREGORY 129 -5.740 -1.042 -2.078
SUNTOP EGA GREGORY 130 -6.317 -1.818 -2.509
SUNTOP EGA GREGORY 131 -5.556 -0.780 -1.858
SUNTOP EGA GREGORY 132 -6.048 -1.601 -2.199
SUNTOP EGA GREGORY 133 -5.952 -1.358 -2.134
SUNTOP EGA GREGORY 134 -5.999 -1.399 -2.200
SUNTOP EGA GREGORY 135 -6.374 -2.743 -2.031
SUNTOP EGA GREGORY 136 -6.069 -1.968 -2.001
SUNTOP EGA GREGORY 137 -5.785 -0.692 -2.399
SUNTOP EGA GREGORY 138 -5.807 -1.148 -2.032
SUNTOP EGA GREGORY 139 -5.835 -1.080 -2.225
SUNTOP EGA GREGORY 140 -6.261 -1.529 -2.793
SUNTOP EGA GREGORY 141 -5.887 -1.380 -1.998
SUNTOP EGA GREGORY 142 -5.931 -1.381 -2.100
SUNTOP EGA GREGORY 143 -5.839 -1.354 -2.033
SUNTOP EGA GREGORY 144 -6.099 -1.532 -2.286
SUNTOP EGA GREGORY 145 -5.780 -1.264 -1.724
SUNTOP EGA GREGORY 146 -5.741 -1.119 -1.960
SUNTOP EGA GREGORY 147 -5.989 -1.253 -2.351
SUNTOP EGA GREGORY 148 -5.889 -1.291 -2.061
SUNTOP EGA GREGORY 149 -5.692 -1.115 -1.826
SUNTOP FAC10-16 150 -5.998 -1.349 -2.340
SUNTOP FAC10-16 151 -5.940 -1.408 -2.089
SUNTOP FAC10-16 152 -5.961 -1.611 -1.923
SUNTOP FAC10-16 153 -5.952 -1.225 -2.283
SUNTOP FAC10-16 154 -5.884 -1.452 -2.004
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SUNTOP FAC10-16 155 -5.730 -1.025 -1.935
SUNTOP FAC10-16 156 -5.712 -0.868 -2.085
SUNTOP FAC10-16 157 -6.270 -2.064 -2.249
SUNTOP FAC10-16 158 -5.678 -1.033 -1.924
SUNTOP FAC10-16 159 -5.666 -1.245 -1.665
SUNTOP FAC10-16 160 -6.057 -1.149 -2.575
SUNTOP FAC10-16 161 -6.082 -1.749 -2.093
SUNTOP FAC10-16 162 -5.632 -1.215 -1.585
SUNTOP FAC10-16 163 -5.856 -1.366 -1.848
SUNTOP FAC10-16 164 -5.814 -0.923 -2.164
SUNTOP FAC10-16 165 -5.920 -1.230 -2.226
SUNTOP FAC10-16 166 -5.841 -1.202 -2.082
SUNTOP FAC10-16 167 -5.981 -1.363 -2.155
SUNTOP FAC10-16 168 -5.944 -1.269 -2.260
SUNTOP FAC10-16 169 -5.845 -1.306 -2.042
SUNTOP FAC10-16 170 -6.246 -1.629 -2.711
SUNTOP FAC10-16 171 -6.012 -1.520 -2.088
SUNTOP FAC10-16 172 -6.017 -1.647 -2.036
SUNTOP FAC10-16 173 -5.706 -1.122 -1.876
SUNTOP FAC10-16 174 -5.996 -1.401 -2.279
SUNTOP FAC10-16 175 -6.067 -1.440 -2.505
SUNTOP FAC10-16 176 -5.898 -1.380 -1.922
SUNTOP FAC10-16 177 -5.537 -0.857 -1.688
SUNTOP FAC10-16 178 -6.032 -1.374 -2.274
SUNTOP FAC10-16 179 -6.057 -1.622 -2.083
SUNTOP FAC10-16 180 -6.151 -1.820 -2.152
SUNTOP FAC10-16 181 -5.793 -1.331 -1.838
SUNTOP FAC10-16 182 -5.957 -1.117 -2.347
SUNTOP FAC10-16 183 -5.980 -1.375 -2.207
SUNTOP FAC10-16 184 -5.957 -1.432 -2.092
SUNTOP FAC10-16 185 -6.099 -1.465 -2.412
SUNTOP FAC10-16 186 -5.841 -1.442 -1.835
SUNTOP FAC10-16 187 -5.948 -1.362 -2.141
SUNTOP FAC10-16 188 -6.524 -1.824 -2.833
SUNTOP FAC10-16 189 -5.757 -1.098 -2.049
SUNTOP FAC10-16 190 -5.876 -1.299 -1.960
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SUNTOP FAC10-16 191 -6.090 -1.572 -2.269
SUNTOP PP -6.084 -1.568 -2.057
SUNTOP RIL114 299 -5.831 -1.409 -1.928
SUNTOP RIL114 300 -6.166 -1.898 -2.181
SUNTOP RIL114 301 -6.130 -1.605 -2.362
SUNTOP RIL114 302 -5.709 -1.217 -1.750
SUNTOP RIL114 303 -5.745 -1.054 -2.042
SUNTOP RIL114 304 -5.779 -1.078 -1.985
SUNTOP RIL114 305 -5.930 -1.428 -1.916
SUNTOP RIL114 306 -5.851 -1.145 -2.164
SUNTOP RIL114 307 -5.872 -1.262 -2.060
SUNTOP RIL114 308 -5.897 -1.298 -2.130
SUNTOP RIL114 309 -6.003 -1.378 -2.092
SUNTOP RIL114 310 -6.077 -1.515 -2.305
SUNTOP RIL114 311 -5.922 -1.224 -2.199
SUNTOP RIL114 312 -5.859 -1.357 -1.931
SUNTOP RIL114 313 -5.762 -1.289 -1.805
SUNTOP RIL114 314 -5.751 -1.004 -1.972
SUNTOP RIL114 315 -5.873 -1.156 -2.221
SUNTOP RIL114 316 -5.933 -1.440 -2.111
SUNTOP RIL114 317 -5.622 -0.972 -1.843
SUNTOP RIL114 318 -5.690 -1.109 -1.795
SUNTOP RIL114 319 -6.243 -1.571 -2.610
SUNTOP RIL114 320 -6.169 -1.664 -2.264
SUNTOP RIL114 321 -5.952 -1.511 -1.952
SUNTOP RIL114 322 -5.745 -0.885 -1.986
SUNTOP RIL114 323 -5.872 -1.252 -2.026
SUNTOP RIL114 324 -5.792 -1.513 -1.649
SUNTOP RIL114 325 -6.288 -1.823 -2.257
SUNTOP RIL114 326 -5.739 -1.193 -1.831
SUNTOP RIL114 327 -5.715 -0.975 -1.996
SUNTOP RIL114 328 -5.915 -1.332 -2.109
SUNTOP RIL114 329 -5.893 -1.475 -2.033
SUNTOP RIL114 330 -6.008 -1.312 -2.250
SUNTOP RIL114 331 -5.944 -1.777 -1.906
SUNTOP RIL114 333 -6.020 -1.338 -2.274
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SUNTOP RIL114 334 -5.862 -1.297 -1.993
SUNTOP RIL114 335 -5.780 -1.264 -1.895
SUNTOP RIL114 336 -5.684 -0.794 -1.920
SUNTOP RIL114 337 -6.496 -2.293 -2.429
SUNTOP RIL114 338 -5.713 -1.113 -1.815
SUNTOP RIL114 339 -5.585 -1.073 -1.634
SUNTOP RIL114 340 -5.963 -1.471 -2.000
SUNTOP SB062 195 -5.836 -1.020 -2.181
SUNTOP SB062 196 -5.718 -1.571 -1.540
SUNTOP SB062 197 -5.881 -1.295 -2.053
SUNTOP SB062 198 -5.658 -0.989 -1.856
SUNTOP SB062 199 -5.865 -1.535 -1.757
SUNTOP SB062 200 -5.937 -1.458 -1.995
SUNTOP SB062 201 -5.918 -1.245 -2.197
SUNTOP SB062 202 -5.982 -1.466 -2.176
SUNTOP SB062 203 -5.830 -1.146 -2.109
SUNTOP SB062 204 -5.899 -1.361 -2.058
SUNTOP SB062 205 -5.854 -1.272 -2.029
SUNTOP SB062 206 -6.126 -1.727 -2.200
SUNTOP SB062 207 -5.941 -1.328 -1.987
SUNTOP SB062 208 -6.102 -1.543 -2.311
SUNTOP SB062 209 -5.869 -1.465 -1.812
SUNTOP SB062 210 -5.932 -1.222 -2.233
SUNTOP SB062 211 -5.940 -1.379 -1.992
SUNTOP SB062 212 -5.663 -1.074 -1.666
SUNTOP SB062 213 -5.884 -1.392 -1.926
SUNTOP SB062 214 -5.926 -1.456 -2.065
SUNTOP SB062 215 -5.930 -1.449 -2.006
SUNTOP SB062 216 -6.140 -1.792 -2.218
SUNTOP SB062 217 -5.939 -1.263 -2.275
SUNTOP SB062 218 -5.821 -1.300 -2.030
SUNTOP SB062 219 -5.738 -0.932 -2.117
SUNTOP SB062 220 -5.845 -1.254 -2.083
SUNTOP SB062 221 -5.852 -1.412 -1.928
SUNTOP SB062 222 -5.769 -1.276 -1.978
SUNTOP SB062 223 -6.027 -1.946 -1.791
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SUNTOP SB062 224 -6.018 -1.505 -2.046
SUNTOP SB062 225 -5.961 -1.443 -2.051
SUNTOP SB062 226 -5.966 -1.241 -2.408
SUNTOP SB062 227 -5.841 -1.282 -2.080
SUNTOP SB062 228 -5.970 -1.353 -2.225
SUNTOP SB062 229 -5.689 -1.254 -1.758
SUNTOP SB062 230 -5.851 -1.064 -2.081
SUNTOP SB062 231 -6.220 -1.531 -2.668
SUNTOP SB062 232 -5.880 -1.250 -2.069
SUNTOP SB062 233 -5.685 -1.146 -1.767
SUNTOP SB062 234 -5.853 -1.351 -1.998
SUNTOP SB062 235 -5.611 -1.167 -1.521
SUNTOP SB062 236 -5.485 -0.896 -1.604
SUNTOP SB062 237 -6.202 -1.728 -2.356
SUNTOP SB062 238 -5.984 -1.477 -2.102
SUNTOP SB062 239 -6.299 -1.969 -2.690
SUNTOP SB062 240 -6.106 -1.537 -2.319
SUNTOP SB062 241 -5.980 -1.311 -2.243
SUNTOP SB062 242 -5.830 -1.216 -1.966
SUNTOP SB062 243 -5.807 -1.114 -2.034
SUNTOP SB062 244 -5.945 -1.400 -2.180
SUNTOP SB062 245 -6.006 -1.524 -2.074
SUNTOP SB062 246 -5.643 -1.118 -1.694
SUNTOP SERI M82 247 -5.832 -1.179 -1.996
SUNTOP SERI M82 248 -5.898 -1.552 -1.831
SUNTOP SERI M82 249 -6.076 -1.508 -2.298
SUNTOP SERI M82 250 -5.872 -1.334 -1.990
SUNTOP SERI M82 251 -6.209 -1.584 -2.417
SUNTOP SERI M82 252 -5.866 -1.316 -2.020
SUNTOP SERI M82 253 -5.923 -1.410 -2.023
SUNTOP SERI M82 254 -5.668 -1.137 -1.680
SUNTOP SERI M82 255 -5.987 -1.314 -2.260
SUNTOP SERI M82 256 -6.014 -1.425 -2.176
SUNTOP SERI M82 257 -5.886 -1.549 -1.928
SUNTOP SERI M82 258 -5.876 -0.957 -2.258
SUNTOP SERI M82 259 -5.886 -1.376 -1.982
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SUNTOP SERI M82 260 -5.879 -1.232 -2.045
SUNTOP SERI M82 261 -5.772 -1.335 -1.770
SUNTOP SERI M82 262 -5.805 -1.215 -2.023
SUNTOP SERI M82 263 -5.618 -0.867 -1.827
SUNTOP SERI M82 264 -5.980 -1.540 -2.094
SUNTOP SERI M82 265 -5.890 -1.600 -1.894
SUNTOP SERI M82 266 -5.695 -0.863 -1.933
SUNTOP SERI M82 267 -5.853 -1.327 -1.971
SUNTOP SERI M82 268 -6.016 -1.365 -2.419
SUNTOP SERI M82 269 -5.728 -1.214 -1.780
SUNTOP SERI M82 270 -5.761 -1.222 -1.936
SUNTOP SERI M82 271 -5.920 -1.099 -2.331
SUNTOP SERI M82 272 -5.900 -1.274 -2.131
SUNTOP SERI M82 273 -5.893 -1.373 -1.993
SUNTOP SERI M82 274 -6.180 -1.656 -2.323
SUNTOP SERI M82 275 -6.125 -1.566 -2.291
SUNTOP SERI M82 276 -5.915 -1.344 -2.115
SUNTOP SERI M82 277 -5.585 -0.796 -1.832
SUNTOP SERI M82 278 -6.087 -1.475 -2.253
SUNTOP SERI M82 279 -5.978 -1.214 -2.364
SUNTOP SERI M82 280 -5.793 -1.078 -2.006
SUNTOP SERI M82 281 -5.839 -1.287 -1.994
SUNTOP SERI M82 282 -5.895 -1.331 -1.983
SUNTOP SERI M82 283 -5.961 -1.436 -2.046
SUNTOP SERI M82 284 -5.992 -1.548 -2.175
SUNTOP SERI M82 285 -5.657 -1.003 -1.763
SUNTOP SERI M82 286 -5.706 -1.145 -1.927
SUNTOP SERI M82 287 -6.001 -1.254 -2.379
SUNTOP SERI M82 288 -5.641 -1.104 -1.597
SUNTOP SERI M82 289 -5.753 -1.167 -1.901
SUNTOP SERI M82 290 -5.914 -1.318 -2.149
SUNTOP SERI M82 291 -5.961 -1.276 -2.091
SUNTOP SERI M82 292 -5.764 -1.055 -1.962
SUNTOP SERI M82 294 -5.745 -1.359 -1.607
SUNTOP SERI M82 295 -6.405 -2.146 -2.434
SUNTOP SERI M82 296 -5.908 -1.367 -1.986
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SUNTOP SERI M82 297 -5.990 -1.371 -2.265
SUNTOP SERI M82 298 -5.892 -1.802 -1.702
SUNTOP SPITFIRE 1 -5.918 -1.341 -1.967
SUNTOP SPITFIRE 10 -6.013 -1.257 -2.395
SUNTOP SPITFIRE 12 -6.041 -1.404 -2.403
SUNTOP SPITFIRE 13 -5.796 -1.145 -1.988
SUNTOP SPITFIRE 14 -5.911 -1.407 -2.074
SUNTOP SPITFIRE 15 -5.696 -1.114 -1.887
SUNTOP SPITFIRE 16 -5.896 -1.233 -2.324
SUNTOP SPITFIRE 17 -5.734 -1.128 -1.974
SUNTOP SPITFIRE 18 -5.886 -1.220 -2.088
SUNTOP SPITFIRE 19 -5.876 -1.066 -2.253
SUNTOP SPITFIRE 2 -5.970 -1.657 -1.927
SUNTOP SPITFIRE 20 -6.080 -1.611 -2.289
SUNTOP SPITFIRE 21 -5.813 -1.225 -2.047
SUNTOP SPITFIRE 22 -5.741 -0.942 -2.029
SUNTOP SPITFIRE 24 -6.148 -1.636 -2.436
SUNTOP SPITFIRE 25 -6.280 -1.792 -2.488
SUNTOP SPITFIRE 26 -5.755 -1.261 -1.766
SUNTOP SPITFIRE 28 -5.898 -1.342 -2.097
SUNTOP SPITFIRE 29 -5.941 -1.301 -2.241
SUNTOP SPITFIRE 3 -6.039 -1.492 -2.287
SUNTOP SPITFIRE 30 -5.800 -1.456 -1.764
SUNTOP SPITFIRE 31 -5.994 -1.075 -2.539
SUNTOP SPITFIRE 32 -6.136 -1.421 -2.430
SUNTOP SPITFIRE 33 -6.268 -1.760 -2.445
SUNTOP SPITFIRE 34 -6.053 -1.752 -2.207
SUNTOP SPITFIRE 35 -6.242 -1.725 -2.485
SUNTOP SPITFIRE 36 -6.037 -1.314 -2.427
SUNTOP SPITFIRE 38 -5.805 -1.302 -1.893
SUNTOP SPITFIRE 39 -5.982 -1.301 -2.313
SUNTOP SPITFIRE 4 -6.186 -1.971 -2.133
SUNTOP SPITFIRE 40 -5.962 -1.571 -2.043
SUNTOP SPITFIRE 41 -5.935 -1.471 -1.962
SUNTOP SPITFIRE 42 -6.075 -1.323 -2.579
SUNTOP SPITFIRE 43 -5.968 -1.501 -2.274
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SUNTOP SPITFIRE 44 -5.583 -1.114 -1.625
SUNTOP SPITFIRE 46 -5.925 -1.330 -2.164
SUNTOP SPITFIRE 47 -6.014 -1.441 -2.325
SUNTOP SPITFIRE 48 -6.137 -1.418 -2.508
SUNTOP SPITFIRE 5 -5.916 -1.451 -1.889
SUNTOP SPITFIRE 50 -5.899 -1.118 -2.352
SUNTOP SPITFIRE 51 -5.813 -1.207 -2.026
SUNTOP SPITFIRE 52 -5.777 -0.946 -2.263
SUNTOP SPITFIRE 53 -5.980 -1.410 -2.184
SUNTOP SPITFIRE 54 -6.083 -1.352 -2.586
SUNTOP SPITFIRE 6 -5.995 -1.273 -2.445
SUNTOP SPITFIRE 7 -5.919 -1.437 -2.073
SUNTOP SPITFIRE 8 -5.983 -1.493 -2.133
SUNTOP SPITFIRE 9 -6.019 -1.576 -2.210
SUNTOP WYLIE 341 -5.904 -1.314 -2.200
SUNTOP WYLIE 342 -5.853 -1.433 -1.951
SUNTOP WYLIE 344 -5.595 -0.828 -1.948
SUNTOP WYLIE 345 -5.933 -1.051 -2.367
SUNTOP WYLIE 346 -6.038 -1.493 -2.361
SUNTOP WYLIE 347 -5.974 -1.325 -2.111
SUNTOP WYLIE 348 -6.198 -1.453 -2.704
SUNTOP WYLIE 349 -5.930 -1.439 -2.072
SUNTOP WYLIE 350 -6.108 -1.530 -2.308
SUNTOP WYLIE 351 -5.780 -1.122 -1.951
SUNTOP WYLIE 352 -5.820 -1.086 -2.089
SUNTOP WYLIE 353 -5.864 -1.385 -2.058
SUNTOP WYLIE 354 -6.110 -1.539 -2.318
SUNTOP WYLIE 355 -6.077 -1.607 -2.227
SUNTOP WYLIE 356 -6.039 -1.345 -2.406
SUNTOP WYLIE 357 -5.851 -1.333 -2.023
SUNTOP WYLIE 358 -5.933 -1.811 -1.804
SUNTOP WYLIE 359 -5.790 -1.152 -2.054
SUNTOP WYLIE 360 -5.824 -1.323 -1.970
SUNTOP WYLIE 361 -5.942 -1.405 -2.139
SUNTOP WYLIE 362 -5.737 -1.157 -1.868
SUNTOP WYLIE 363 -6.073 -1.312 -2.486
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SUNTOP WYLIE 364 -6.291 -1.698 -2.542
SUNTOP WYLIE 365 -5.957 -1.482 -2.136
SUNTOP WYLIE 366 -5.848 -1.343 -1.944
SUNTOP WYLIE 367 -5.978 -1.412 -2.193
SUNTOP WYLIE 368 -5.869 -1.393 -1.955
SUNTOP WYLIE 369 -5.802 -1.186 -2.090
SUNTOP WYLIE 371 -5.731 -1.184 -1.910
SUNTOP WYLIE 372 -5.812 -1.154 -2.133
SUNTOP WYLIE 373 -5.893 -1.014 -2.469
SUNTOP WYLIE 374 -5.975 -1.371 -2.246
SUNTOP WYLIE 376 -5.856 -1.304 -2.148
SUNTOP WYLIE 377 -5.811 -1.206 -2.137
SUNTOP WYLIE 378 -5.728 -1.124 -1.894
SUNTOP WYLIE 379 -5.879 -1.172 -2.220
SUNTOP WYLIE 380 -6.154 -1.492 -2.434
SUNTOP WYLIE 381 -6.139 -1.347 -2.626
SUNTOP WYLIE 382 -6.210 -1.843 -2.352
SUNTOP ZWB10-37 383 -5.835 -1.250 -1.979
SUNTOP ZWB10-37 384 -6.391 -1.988 -2.582
SUNTOP ZWB10-37 385 -5.791 -1.225 -1.969
SUNTOP ZWB10-37 386 -5.886 -1.409 -2.026
SUNTOP ZWB10-37 387 -6.431 -2.167 -2.650
SUNTOP ZWB10-37 388 -5.873 -1.072 -2.276
SUNTOP ZWB10-37 389 -6.102 -1.739 -2.135
SUNTOP ZWB10-37 390 -6.086 -1.727 -2.256
SUNTOP ZWB10-37 392 -6.295 -1.406 -2.740
SUNTOP ZWB10-37 393 -6.047 -1.470 -2.285
SUNTOP ZWB10-37 394 -5.806 -1.086 -2.098
SUNTOP ZWB10-37 395 -6.013 -1.396 -2.249
SUNTOP ZWB10-37 396 -5.832 -1.179 -1.994
SUNTOP ZWB10-37 397 -6.231 -1.704 -2.515
SUNTOP ZWB10-37 398 -5.873 -1.143 -2.110
SUNTOP ZWB10-37 400 -5.845 -1.237 -2.054
SUNTOP ZWB10-37 403 -5.735 -1.280 -1.819
SUNTOP ZWB10-37 404 -5.915 -1.332 -2.109
SUNTOP ZWB10-37 405 -5.684 -1.228 -1.678
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SUNTOP ZWB10-37 406 -6.006 -1.374 -2.221
SUNTOP ZWB10-37 407 -5.827 -1.034 -2.098
SUNTOP ZWB10-37 408 -6.250 -1.453 -2.550
SUNTOP ZWB10-37 409 -5.885 -1.107 -2.173
SUNTOP ZWB10-37 410 -5.879 -1.444 -1.925
SUNTOP ZWB10-37 411 -5.930 -1.536 -1.958
SUNTOP ZWB10-37 412 -5.714 -1.080 -1.895
SUNTOP ZWB10-37 413 -6.369 -1.771 -2.646
SUNTOP ZWB10-37 414 -6.012 -1.551 -2.137
SUNTOP ZWB10-37 415 -5.403 -0.726 -1.643
SUNTOP ZWB10-37 416 -6.145 -1.456 -2.579
SUNTOP ZWB10-37 417 -5.620 -1.448 -1.347
SUNTOP ZWB10-37 418 -5.860 -1.275 -2.047
SUNTOP ZWB10-37 419 -5.784 -1.382 -1.806
SUNTOP ZWB10-37 420 -6.034 -1.388 -2.389
SUNTOP ZWB10-37 422 -5.815 -1.114 -2.045
SUNTOP ZWB10-37 423 -5.774 -1.195 -1.852
SUNTOP ZWB10-37 424 -6.127 -1.200 -2.611
SUNTOP ZWW10-128 425 -5.936 -1.243 -2.179
SUNTOP ZWW10-128 426 -6.012 -1.617 -2.023
SUNTOP ZWW10-128 427 -5.971 -1.368 -2.223
SUNTOP ZWW10-128 429 -5.656 -1.302 -1.552
SUNTOP ZWW10-128 430 -5.929 -1.025 -2.269
SUNTOP ZWW10-128 432 -5.850 -1.229 -2.062
SUNTOP ZWW10-128 433 -5.903 -1.260 -2.192
SUNTOP ZWW10-128 434 -6.198 -2.255 -2.099
SUNTOP ZWW10-128 435 -6.068 -1.542 -2.193
SUNTOP ZWW10-128 436 -5.726 -0.944 -1.872
SUNTOP ZWW10-128 437 -6.131 -1.387 -2.537
SUNTOP ZWW10-128 438 -6.256 -1.330 -2.891
SUNTOP ZWW10-128 439 -6.020 -1.448 -2.265
SUNTOP ZWW10-128 440 -6.029 -1.846 -1.841
SUNTOP ZWW10-128 441 -6.128 -1.417 -2.487
SUNTOP ZWW10-128 443 -6.002 -1.488 -2.124
SUNTOP ZWW10-128 444 -5.911 -1.397 -2.053
SUNTOP ZWW10-128 445 -5.500 -0.852 -1.521
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SUNTOP ZWW10-128 446 -5.866 -1.287 -2.046
SUNTOP ZWW10-128 448 -6.043 -1.475 -2.157
SUNTOP ZWW10-128 449 -5.753 -1.138 -1.876
SUNTOP ZWW10-128 450 -5.923 -1.179 -2.129
SUNTOP ZWW10-128 451 -6.112 -1.505 -2.317
SUNTOP ZWW10-128 452 -5.947 -1.422 -2.140
SUNTOP ZWW10-128 453 -6.023 -1.478 -2.106
SUNTOP ZWW10-128 454 -5.837 -1.331 -1.943
SUNTOP ZWW10-128 455 -5.970 -1.383 -2.082
SUNTOP ZWW10-128 456 -5.740 -1.019 -1.941
SUNTOP ZWW10-128 457 -5.724 -1.220 -1.868
SUNTOP ZWW10-128 458 -5.754 -1.395 -1.672
SUNTOP ZWW10-128 459 -5.710 -1.235 -1.731
SUNTOP ZWW10-128 460 -5.837 -1.251 -2.028
SUNTOP ZWW10-128 461 -5.870 -1.370 -1.937
SUNTOP ZWW10-128 462 -5.773 -1.199 -1.945
SUNTOP ZWW10-128 463 -5.494 -0.894 -1.605
SUNTOP ZWW10-128 464 -5.924 -1.498 -1.893
SUNTOP ZWW10-128 465 -5.718 -1.017 -1.855
SUNTOP ZWW10-128 466 -5.592 -1.318 -1.549
ZWB10-37 P1 -6.369 -1.346 -3.191
ZWW10-128 PP -5.802 -1.374 -1.847
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