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Abstract 

 

The availability of affordable ready-to-fly consumer, commercial, and industrial drones has exploded 

over the past ten to fifteen years and in turn so have the sales figures. Unprecedented technological 

advancements in component and material production have largely been credited with the increased 

affordability and capabilities of consumer drones. Common out-of-the-box features that are standard 

on many consumer drones present the opportunity for them to be used maliciously. Malicious use 

cases are wide and range, for example, from illegal surveillance of individuals, to smuggling of 

contraband into prisons and across borders. Continued breaches of restricted airspace around sensitive 

sites such as nuclear power plants and airports are especially concerning. Current mitigation methods 

are insufficient, often failing to identify the drone or its operator, there is a pressing need to track 

these malicious drones back to their point of origin, without the use of expensive terrestrially based 

radar systems. Off-the-shelf drones flown in a swarm have been shown to adequately detect and track 

a malicious drone. The efficacy of swarm detection can be increased through optimal initial flight 

formations of the swarm. 

 

This research examined a ‘sunflower’ initial flight formation against benchmark formations identified 

within the literature; this evaluation was carried out through computer simulation. Two tracking 

methods were simulated for each formation: reactive tracking and reactive tracking with predictive 

pre-positioning. Multiple simulations for each formation were undertaken using both tracking 

methods at a variety of swarm sizes. The top speed of the drone swarm was then varied, and the 

simulations repeated. As the malicious drone is assumed to be of high capability, swarm top speed  

never exceeded the assumed malicious drone top speed. The output of the simulation was analysed to 

determine the optimum configuration that would provide the highest proportion of active tracking of 

the malicious drone while it was within the tracking area. 

 

The simulation results show that the sunflower initial flight formation outperformed the benchmark 

formations for every configuration under test. As the swarm size increased to values over 500 drones 

a point of diminishing returns was observable across the board for all formation and tracking strategy 

configurations at all swarm speeds. Additionally, the performance of the sunflower formation, when 

coupled with reactive tracking and a more competitive swarm speed, was demonstrated to outperform 

the benchmark formations even when they had the perceived advantage of predictive pre-positioning.  

 

 

 

 



ii 

 

University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

ENG4111/ENG4112 Research Project 

 

Limitations of Use 

 

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & 

Sciences, and the staff of the University of Southern Queensland, do not accept any 

responsibility for the truth, accuracy or completeness of material contained within or associated 

with this dissertation. 

Persons using all or any part of this material do so at their own risk, and not at the risk of the 

Council of the University of Southern Queensland, its Faculty of Health, Engineering & 

Sciences or the staff of the University of Southern Queensland. 

This dissertation reports an educational exercise and has no purpose or validity beyond this 

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the 

overall education within the student’s chosen degree program. This document, the associated 

hardware, software, drawings, and other material set out in the associated appendices should 

not be used for any other purpose: if they are so used, it is entirely at the risk of the user. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

ENG4111/ENG4112 Research Project 

 

Certification of Dissertation 

 

I certify that the ideas, designs and experimental work, results, analysis, and conclusions set 

out in this dissertation are entirely my own effort, except where otherwise indicated and 

acknowledged. 

I further certify that the work is original and has not been previously submitted for assessment 

in any other course or institution, except where specifically stated. 

 

Joshua Carter 

 

14/10/2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgements 

 

 

My partner, Dani, for her unwavering support over the past few years after I made the 

decision to tackle the degree fulltime. We welcomed our first child Ruben into the world in 

April and Dani has been instrumental in making sure I could still find the time for my studies 

and this project. 

 

My supervisor, Dr Jason Brown, for his support throughout and for providing extremely 

useful and timely advice and feedback. 

 

The University of Southern Queensland, for providing such a flexible online learning 

environment, I originally commenced this degree at another institution whilst working 

fulltime and had I not transferred to USQ I doubt I would have completed my studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Table of Contents 

 

Abstract .................................................................................................................................................... i 

Limitations of Use ................................................................................................................................... ii 

Certification of Dissertation ................................................................................................................... iii 

Acknowledgements ................................................................................................................................ iv 

Table of Contents .................................................................................................................................... v 

List of Figures ...................................................................................................................................... viii 

List of Tables ......................................................................................................................................... ix 

Glossary of Terms ................................................................................................................................... x 

Chapter 1 ................................................................................................................................................. 1 

1. Introduction ................................................................................................................................. 1 

1.1 Project Overview .................................................................................................................. 1 

1.2 Project Aims .......................................................................................................................... 1 

1.3 Project Objectives ................................................................................................................. 2 

1.4 Dissertation Overview........................................................................................................... 2 

Chapter 2 ................................................................................................................................................. 4 

2. Literature Review ....................................................................................................................... 4 

2.1 History................................................................................................................................... 4 

2.1.1 Evolution of the Drone Industry ....................................................................................... 4 

2.1.2 Civilian Drone Market Growth ......................................................................................... 5 

2.2 Malicious Drones .................................................................................................................. 7 

2.2.1 Potential Threats ............................................................................................................... 7 

2.2.2 Prevalence of Malicious Use ............................................................................................ 8 

2.3 Mitigation ............................................................................................................................ 10 

2.3.1 Legislative and Regulatory Controls............................................................................... 10 

2.3.2 Object Tracking via Drone Swarms ................................................................................ 12 

2.3.3 Tracking of Malicious Drones via Drone Swarms .......................................................... 13 



vi 

 

2.3.4 Tracking of High Capability Malicious Drones .............................................................. 15 

Chapter 3 ............................................................................................................................................... 17 

3. Simulation Design .................................................................................................................... 17 

3.1 Simulation Environment ..................................................................................................... 17 

3.1.1 MATLAB ........................................................................................................................ 17 

3.2 Simulation Implementation ................................................................................................. 17 

3.2.1 Tracking Area and Malicious Drone Flight Path ............................................................ 17 

3.2.2 Tracking Strategies ......................................................................................................... 18 

3.2.3 Implemented Initial Swarm Formations ......................................................................... 21 

3.2.4 Swarm Drone Movement Algorithm .............................................................................. 26 

3.3 Unimplemented Initial Swarm Formations ......................................................................... 28 

Chapter 4 ............................................................................................................................................... 30 

4. Methodology ............................................................................................................................ 30 

4.1 Methodological Approach................................................................................................... 30 

4.1.1 Assumptions .................................................................................................................... 30 

4.1.2 Simulation Characteristics and Variables ....................................................................... 32 

4.2 Methods Of Analysis .......................................................................................................... 34 

4.3 Data Collection ................................................................................................................... 38 

4.4 Methodology Justification................................................................................................... 39 

Chapter 5 ............................................................................................................................................... 40 

5. Results and Analysis ................................................................................................................ 40 

5.1 Analysis Overview .............................................................................................................. 40 

5.2 Results At Different Swarm Speeds .................................................................................... 40 

5.2.1 Swarm Speed 20m/s ........................................................................................................ 40 

5.2.2 Swarm Speed 25m/s ........................................................................................................ 42 

5.2.3 Swarm Speed 29m/s ........................................................................................................ 44 

5.3 Results Summary ................................................................................................................ 46 

Chapter 6 ............................................................................................................................................... 48 

6. Conclusions and Further Work ................................................................................................ 48 



vii 

 

6.1 Conclusions ......................................................................................................................... 48 

6.2 Further Work ....................................................................................................................... 49 

References ............................................................................................................................................. 51 

Appendix A Project Specification......................................................................................................... 54 

Appendix B Project Plan ....................................................................................................................... 55 

Appendix C Project Resources ............................................................................................................. 56 

Appendix D Risk Assessment ............................................................................................................... 57 

Appendix E MATLAB Simulation Code .............................................................................................. 58 

Appendix F Unimplemented Formation Codes .................................................................................... 63 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Figures 

 

Figure 1. Timeline of military vs civilian drone applications (Giones & Brem 2017). .......................... 5 

Figure 2. FAA Consumer Drone Registration Trends (Chavers 2018). ................................................. 6 

Figure 3. Point of Interest Flight Mode  (DJI 2015). .............................................................................. 7 

Figure 4. Drone swarm utilising intermittent RF signals to track target drone (Koohifar et al. 2018) . 14 

Figure 5.Malicious drone movement captured from MATLAB simulation animation ........................ 18 

Figure 6. Reactive tracking of malicious drone (Brown & Raj 2021a). ............................................... 19 

Figure 7. Reactive Tracking + Predictive Pre-Positioning of malicious drone (Brown & Raj 2021a). 20 

Figure 8. Random swarm formation code. ............................................................................................ 21 

Figure 9. Code for variables related to swarm size. .............................................................................. 22 

Figure 10. Circular swarm formation code ........................................................................................... 23 

Figure 11. Sunflower swarm formation code. ....................................................................................... 25 

Figure 12. Implemented formation examples ....................................................................................... 26 

Figure 13.Surveillance drone optimum bearing example (Brown and Raj 2021a). .............................. 27 

Figure 14. Unimplemented lattice formations ...................................................................................... 29 

Figure 15. Circular and sunflower formation swarms shown with varied angular orientations. .......... 34 

Figure 16. Simulation configurations for each swarm speed. ............................................................... 35 

Figure 17. Results for swarm speed u = 20m/s. .................................................................................... 41 

Figure 18. Results for swarm speed u = 25m/s. .................................................................................... 43 

Figure 19. Results for swarm speed u = 29m/s. .................................................................................... 45 

 

 

 

 

 

 

 

 

 



ix 

 

List of Tables 

 

Table 1: Summary of international regulatory authorities pertaining to drones. .................................. 11 

Table 2. Maximum speeds of readily available consumer drones ........................................................ 33 

Table 3. Summary of simulation specifications and variables. ............................................................. 38 

Table 4. Results of mean of 500 iterations used for plot generation where u = 20m/s ......................... 42 

Table 5. Results of mean of 500 iterations used for plot generation where u = 25m/s ......................... 44 

Table 6. Results of mean of 500 iterations used for plot generation where u = 29m/s ......................... 46 

Table 7. Project Plan. ............................................................................................................................ 55 

Table 8. Project Resources .................................................................................................................... 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

Glossary of Terms 

CASA – Civil Aviation Safety Authority 

CUAS – Counter Unmanned Aircraft Systems 

DJI – DJI Technology 

DRN – Dynamic Radar Network 

EO – Electro Optical 

FAA – Federal Aviation Administration 

FPV – First Person View 

FRIA – FAA Recognised Identification Area 

NAS – National Airspace System 

PID – Proportional Integral Differential 

PSO – Particle Swarm Optimization 

Remote ID – Remote Identification 

RePL – Remote Pilot License  

RF – Radio Frequency 

RPV – Remotely Piloted Vehicle 

RSSI – Received Signal Strength Indicator 

UAS – Unmanned Aircraft Systems 

UAV – Unmanned Air Vehicle 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1  

 

1. Introduction 

 

1.1 Project Overview 

 

The number of affordable ready-to-fly, consumer, commercial and industrial drones available to 

purchase  has exploded over the last ten to fifteen years, with civilian drone sales figures skyrocketing 

in turn. Driven by unprecedented technological advancements in component and material production, 

the capabilities and affordability of consumer drones have increased substantially. Common out-of-

the-box features that are standard on many consumer drones present the opportunity for the operator/s 

to use them nefariously. These features include ‘intelligent flight’ modes, high specification camera 

equipment, payload carrying capacity and long operational transmission ranges. Malicious drone use 

has been documented to be on the rise, notably in the United Kingdom, Australia, and the United 

States. Malicious use ranges from illegal surveillance of individuals, to smuggling of contraband into 

prisons and across borders, to potentially high-risk breaches of air space around nuclear power plants, 

airports, and other sensitive and restricted sites. Current malicious drone tracking strategies are 

expensive and often require the use of a terrestrial radar network. Research into tracking a malicious 

drone back to its origin using a swarm of surveillance drones has proved promising, even more so 

when combined with reactive tracking and predictive pre-positioning. Using MATLAB simulations 

this project sought to analyse and evaluate the effects of several different initial drone swarm 

formations on swarm tracking performance of a high capability malicious drone. Through repeated 

simulation with multiple formations and swarm sizes, it then sought to determine a more optimal 

swarm formation and size to those previously examined.  

 

1.2 Project Aims 

 

The principle aim of the project was to determine by simulation, the optimal drone placement, initial 

swarm size and formation required to achieve increased performance of tracking of a high capability 

malicious drone. 

 

It sought to evaluate and determine: 

 

• The effect on tracking performance of multiple different initial swarm formations and sizes. 
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• How simulation performance data compares with prior research. 

• Recommendations regarding the most efficient and high performing swarm formation and 

size combination. 

 

1.3 Project Objectives 

 

The specific objectives of this project were: 

 

1. Carry out background research on the history and increasing prevalence of consumer drones. 

 

2. Undertake a comprehensive literature review into the potential threats posed by high 

capability malicious drones and the various tracking methodologies. 

 

3. Develop a surveillance drone swarm simulation environment utilizing MATLAB. 

 

4. Evaluate and compare via simulation a range of potential initial swarm formations. 

 

5. Collate, assess, and compare data from the simulations against performance metric/s. 

 

6. Make recommendations regarding the most efficient and high performing swarm formation, 

spacing and size configuration. 

 

1.4 Dissertation Overview 

 

Chapter 1 provides a summarised overview, including a clear statement of the broad aims and specific 

objectives of the project. 

 

Chapter 2 is a literature review on prior research conducted on related topics. Including the evolution 

of the drone industry, drone market growth, malicious drone’s potential threats and prevalence, object 

tracking, malicious drone tracking, and high capability malicious drone tracking. 

 

Chapter 3 describes the design of the simulation used for the project. It provides details of the 

software being used for the simulation environment alongside explanations of key algorithms and 

sections of code. 
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Chapter 4 describes the methodology, including the data gathered and the method of analysis  

employed. The specific implementation of the simulation environment is also described. 

 

Chapter 5 provides the simulation results and includes all of the analysis for each simulation 

configuration, including comments on anticipated and unexpected outcomes. 

 

Chapter 6 contains the conclusions reached after project completion and assesses them against the 

objectives set out in Chapter 1. Potential further work in the field is suggested and discussed.  
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Chapter 2 

 

2. Literature Review 

 

2.1 History 

 

2.1.1 Evolution of the Drone Industry 

 

Unmanned air vehicles (UAVs), unmanned aircraft systems (UASs) and remotely piloted vehicles 

(RPVs) are closely related terms. UAVs usually possess the ability for partial or completely pre-

programmed flight in addition to remote control, RPVs on the other hand function more like a 

standard aircraft but with the pilot and cockpit located remotely in a safe location. In a military 

application UAVs would carry out surveillance largely without oversight from a pilot, RPVs allow 

combat missions to be flown by humans whilst removing the risk to the pilot. UAVs and RPVs are 

both examples of components of a UAS, the term UAS encompasses all system components not just 

the aircraft, this can include the remote controllers, data links and any other supporting equipment.   

 

UAVs, UASs and RPVs are all commonly known to the general public as drones. The ready-to-fly 

consumer drones and highly capable commercial/industrial drones available to purchase today are the 

culmination of a long and technical evolutionary process driven by a number of factors. 

 

One of the key factors driving drone technology throughout history has been its use by militaries 

around the world, the development of drones for target practice was first noted in the early 1900’s. In 

subsequent years the advantages of utilising unmanned vehicles for military operations became 

apparent, reconnaissance and surveillance missions and other high-risk activities could now be 

undertaken without personal risk to flight crew. Further technological developments lead to increased 

functionality and in turn increased emphasis on drone utilisation for military operations (Giones & 

Brem 2017).  

 

Sprague and Perritt (2016) concur that the development of civilian drones was partly born out of the 

extensive coverage of the use of military drones during the ‘war on terror’, particularly in the conflicts 

in Kosovo, Iraq, and Afghanistan. The potential of repurposing the military technology in order to 

serve civilian uses was identified by entrepreneurs and engineers, and they set about achieving this 

goal. They also identified a second factor driving civilian drone development, model aircraft 
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hobbyists seeking to generate income by modifying their aircraft with camera equipment and offering 

their services for real-estate photography, events such as weddings, and other applications. 

 

The subsequent introduction and uptake of civilian drones took place over a far shorter time period 

than that of military drones. 

 

This accelerated adoption of civilian drone technology was made possible because of the 

unprecedented advances in many of the technological areas that were relevant to drone component 

production. Miniaturization of electronic components and imaging equipment, development of lighter 

state-of-the-art construction materials, and increasingly powerful processors have all contributed to 

the explosion of the market from the early 2000’s (Sprague & Perritt 2016; Giones & Brem 2017).  

 

2.1.2 Civilian Drone Market Growth 

 

Civilian drone sales were predicted to rise over the ten-year period from 2015 to 2025, from 80,000 

units shipped to close to 2.7 million units shipped, representing an almost $4 billion industry by 2025. 

The resultant service industries built around the adoption of these drones also stand to generate a 

predicted $8.7 billion in 2025, a marked increase from the 2015 figure of $170 million (Seitz 2015).  

Figure 1. Timeline of military vs civilian drone applications (Giones & Brem 2017). 



6 

 

The increasing affordability of consumer drones has played a major role in this growth. For example, 

DJI technology (DJI) is a Chinese based drone manufacturer that in 2017 commanded 75% of the 

consumer market and in the same year launched a very affordable $500 (USD) entry level model 

(Bateman 2017).  Consumer drone sales within the United States can be quantified by looking to the 

Federal Aviation Administration’s (FAA) consumer drone registration numbers, with mandatory 

registration required from 2016 onwards. In January 2017, the number of registrations totalled 

670,000 drones, this dramatically increased to over 770,000 drones by late March of the same year 

and during 2018 the number of registrations surpassed the 1,000,000 mark. It should be noted that 

although the FAA mandates registration, not all consumer drones are registered, so the number of 

registered drones cannot be assumed to account for all consumer drones within the US.  In 2018 the 

FAA estimated that actual drone units were 500,000 higher than the official figure (Chavers 2018). 

 

 

With the number of consumer drones within the US alone conservatively predicted to hit 3.55 million 

units in 2021, regulators and law makers worldwide have a tough task ahead of them in managing the 

appropriate operation of these increasingly affordable, portable, versatile, and easy to use consumer 

drones.  

 

 

 

 

 

 

Figure 2. FAA Consumer Drone Registration Trends (Chavers 2018). 
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2.2 Malicious Drones 

 

2.2.1 Potential Threats 

 

The continuous expansion of commercial and consumer drone markets has led to the growth of a 

drone ecosystem large in scale and variety. Whilst it is accepted that the capabilities of these drones 

provide a range of positive and beneficial applications, Jackman (2019) asserts that the consumer 

drone will inevitably be associated with potential exploitation.  

They further identify several developmental trends which present greater potential drone risk should 

they be utilised maliciously. The introduction of ‘intelligent flight’ modes by leading manufacturers, 

including DJI and Parrot in 2015 and 2016 respectively, is one of these trends. These flight modes 

greatly increase the manoeuvrability and capacity of the drones and are marketed as easy to use tools 

which enable the user to capture ‘expert’ shots and footage. Key ‘intelligent flight’ modes include the 

use of predetermined waypoints, the ability to track objects, people, or points of interest and either 

follow or survey them using a holding pattern (DJI 2015).   

 

These flight modes mirror the capabilities of military drones and are able to track and target specific 

people, objects, and locations. This capability could be repurposed for malicious means, a ‘target’ 

could be tracked and surveyed whilst an operator waits for an ideal moment to ‘strike’, alternatively 

Figure 3. Point of Interest Flight Mode - Drone Automatically Revolves Around Designated Target (DJI 2015). 
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the surveillance itself could be malicious. ‘Intelligent flight’ modes when coupled with ongoing 

advancements in obstacle detection and avoidance, and the capability of flight without a GPS signal, 

have increased the potential for malicious drones to operate in restricted environments whilst 

identifying and tracking a target. The potential to evade defences is also increased. 

Another key developmental trend that lends itself to exploitation for malicious purposes is the 

increase in ease and amount of multimedia sharing, whether images or video are saved for later use or 

broadcast live. The potential for the invasion of corporate or personal privacy via drone surveillance is 

an ongoing issue within the industry, in its worst form surveillance flights over sensitive sites such as 

military bases or airports could compromise security and provide intelligence for a future physical 

attack. 

Jackman (2019) also identifies the trend amongst enthusiasts and hobbyists to modify drones, these 

DIY modifications have opened the door to intentional weaponization of recreational consumer 

drones. Increased payload carrying capacity has created the potential for any item, tool, or weapon to 

be fitted to a drone and remotely released or operated. There are a wide range of examples ranging 

from the integration of paintball guns to fully functional firearms and flamethrowers. Modifications 

are not limited to the hardware side of the drone; software modifications are common among the 

online community as enthusiasts seek to disable geo-fencing and other software-imposed restrictions 

like maximum flight altitude in order to experiment with the operational limits of the drone. 

Ultimately the prevalence of these hardware and software modifications within the community, and 

the apparent ease with which an ordinary citizen can perform them, represents a significant additional 

threat for malicious use. 

 

2.2.2 Prevalence of Malicious Use 

 

The use of drones for both nuisance and more sinister activities has been widely documented over the 

years, including the reported smuggling of contraband into prisons in the United Kingdom, Australia, 

the United States, and elsewhere. Drones have also been used as part of public demonstrations, for 

example in April 2015 a payload of radioactive sand was deposited using a drone onto the roof of the 

Prime Minister’s office in Japan in protest of the governments nuclear policy. Likewise, to protest the 

German governments surveillance policy a drone was flown within metres of German Chancellor 

Angela Merkel in September 2013 (Friese et al. 2016). 

 

Security breaches by unauthorised drones at critical infrastructure sites in the United Kingdom have 

been on the increase, with 37 reported incidents at nuclear power plants in 2014 alone. Similar 
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breaches also occurred in France during the same year, this is despite the law providing for harsh 

penalties for flying drones within a 5km exclusion zone around a power plant. In addition to the 

incidents at power plants within France, in February 2015 there were five occurrences of unauthorised 

drone flights over sensitive sites in Paris including the presidential palace and the American embassy. 

A common feature of all of the incidents in France was that, despite efforts to locate the drones in 

question and identify the operators, authorities were unable to accomplish either (Michaelides-Mateou 

2016). 

 

Similar activities have also been prevalent in the United States.  In September 2019 a swarm of drones 

flew over restricted airspace at the Palo Verde Nuclear Power Plant prompting the implementation of 

new security measures. Despite these additional security measures, the Palo Verde plants airspace was 

again encroached in December 2019. These airspace infringements were a fraction of the 57 known 

drone incidents across 24 nuclear sites within the United States between 2015 – 2019.  Similar to the 

incidents in Europe, often the drone and its operator/s are not identified and therefore neither are their 

intentions, at the time of reading 49 of the 57 incidents (constituting approximately 85% of the 

breaches) had been listed as ‘Closed Unresolved’ (Hambling 2020). 

The financial implications of malicious drone flights, whether nuisance or nefarious, are evident in 

some key incidents that have occurred in recent years. The Gatwick Airport drone incident occurred 

in December 2018, with multiple drone sightings resulting in large scale disruptions to airport 

operations as flights were halted in accordance with safety protocols. The incident spanned three days 

and initially cost the airport £1.4m, however an additional £4m was spent in the aftermath on anti-

drone technology. The airlines operating out of Gatwick suffered more significant losses, EasyJet 

alone reported compensation payments to passengers and lost revenue totalling £15m (Topham 2019).  

 

The September 2019 drone attacks on the Saudi Arabian oil processing facilities in Abqaiq and 

Khurais had much wider financial ramifications, with the countries stock market opening 2.3% lower 

as a result. As the world’s largest oil processing facility, the attack also threatened to increase the 

price of crude futures by up to $10 a barrel constituting an increase of 25¢ per gallon of petrol (Turak 

2019). 
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2.3 Mitigation 

 

2.3.1 Legislative and Regulatory Controls 

 

Mitigation of malicious drone use through policies that apply to recreational and commercial drone 

flight is a difficult task, the rapidly evolving drone ecosystem means that policy makers are often 

reactive. In many countries there are either no established drone laws or existing laws are antiquated.  

 

In the recreational space, the common restrictions applied to drone use are related to line of sight, 

maximum flight height, distances from objects and/or people, the size/weight of the drone, and the use 

of restricted or prohibited airspace. In Australia drone safety rules are set by the Civil Aviation Safety 

Authority (CASA), for recreationally flown drones weighing under 25kg there is no requirement for a 

license or flight approvals provided the following rules are also adhered to; flight height capped at 

120m above ground level, flight area not within 5.5km of a controlled aerodrome or other restricted 

airspace, and not undertaking first person view (FPV) flight.  

 

Commercial drone flights are governed by additional regulations with requirements existing for pilots 

to obtain operator accreditations and in some cases a remote pilot licence (RePL), additionally 

registration is now mandated for commercially flown drones. CASA has the ability to enforce these 

rules with sanctions that include imposing financial penalties, imposing operational restrictions and in 

extreme cases, breaches can result in criminal charges with financial and custodial sentences (CASA 

2021).  

 

Table 1, summarises the regulatory authorities associated with drone use as detailed by Sprague and 

Perritt (2016) for a number of major developed countries, all of which have active aviation industries. 
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Country Regulatory Authority 

Australia Civil Aviation Safety Authority (CASA). 

Brazil National Agency for Civilian Aviation - Agência Nacional de Aviação Civil (ANAC). 

 

Canada Transport Canada via the Minister of Transport.  

China Civil Aviation Administration of China (CAAC). 

European 

Union 

European Aviation Safety Agency (EASA) in collaboration with member states 

national authorities. 

France Direction Générale de l'Aviation Civile (DGAC) 

Germany Luftfahrt-Bundesamt, “Federal Aviation Office” (LBA) 

India The Directorate General of Civilian Aviation (DGCA) 

Italy The Italian Civil Aviation Authority - Ente Nazionale per l'Aviazione Civile (ENAC) 

Japan Civil Aviation Bureau via the Ministry of Land, Infrastructure and Transport (MLIT) 

United 

Kingdom 

The UK Civil Aviation Authority (CAA) 

United 

States  

Federal Aviation Administration (FAA) 

Table 1: Summary of international regulatory authorities pertaining to drones. 

  

In the United States the FAA has taken steps beyond simply registering drones in an effort to integrate 

drone use safely and securely into the National Airspace System (NAS). The UAS remote 

identification (remote ID) initiative is a new rule being introduced that requires drones in flight to 

broadcast individual identification and location information. The information to be broadcast would 

include the drone’s unique identifier, a time mark, the drone’s velocity, latitude, longitude, and 

geometric altitude. Additionally, the latitude, longitude and altitude of the broadcast or control station 

would also be required to be broadcast.  

 

The FAA will require all manufacturers to either manufacture drones with remote ID broadcast 

capability or to manufacture remote ID broadcast modules that can be used to retrofit existing craft, 

this requirement will be effective from September 16th, 2022. By September 16th, 2023, drone pilots 

will be required to only operate drones that are either fitted with remote ID as standard or have been 

retrofitted with a broadcast module. The only exception to this rule is if the drone is being operated at 

a FAA Recognised Identification Area (FRIA) (FAA 2021).  

 

These mitigation methods rely largely on voluntary compliance by the operator and some compliance 

monitoring and enforcement by regulators. However, legislative and regulatory mitigation is less 

effective when the operator of a drone has malicious intentions. Likewise, the immobilisation of the 

drone may stop the immediate threat but without identifying the operator, the intentions of the flight 

will remain unknown, and the breach is at risk of being repeated. 

 

Currently the majority of techniques used to detect and locate the drone operator involve the use of 

Radio Frequency (RF), acoustic, radar and Electro-Optical (EO) sensors, these sensors must be 
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distributed around the flight area. Often these systems are expensive and challenging to implement 

due to the presence of other signals in the airspace (Osborne 2020).  

 

Additionally, as mentioned previously, drones operating using ‘intelligent flight’ modes may do so 

without any radio control signal being transmitted by the operator and therefore the sensors listed 

above are of little use in identifying operators. Accordingly, physically tracking the drone back to its 

point of origin provides a far more feasible method in a wider range of scenarios. This has resulted in 

a variety of research into malicious drone and object tracking using both single drones and drone 

swarms. The research literature in this regard is reviewed in the following sub-section. 

 

2.3.2 Object Tracking via Drone Swarms 

 

Earlier research carried out in this space focused on the tracking of ground-based targets using 

coordinated drone swarms. Cheng et al. (2013) sought to evaluate the performance of a decentralised 

controller against a centralised controller for a drone swarm undertaking a ground target engagement 

task. The decentralised control strategy governed the behaviour of the individual drones within the 

swarm through a set of rules, the individual drones operate without a supervisory drone and modify 

the task environment accordingly, the modified environment will then influence the future behaviour 

of the remainder of the swarm. The task simulated was the engagement of a moving ground-based 

target by a three-drone cooperative swarm, two of the drones continuously track the target while the 

third deploys an onboard weapon. The position of the target is triangulated via the tracking 

information from the two tracking drones and provides a targeting position for the weapon drone. The 

simulation found that the decentralised controller led to a very cooperative performance of the swarm 

without the need for a centralised controller. However, when the complexity of the task was increased  

the decentralised controller’s performance declined compared to that of a centralised controller. 

 

The algorithms deployed within the swarm by Ma'sum et al. (2013) differ to those mentioned above 

as each drone within the swarm has access to a global base rather than operating implicitly with each 

other through a pre-determined rule set. Similar to Cheng et al. (2013), the scenarios examined 

involved patrolling a defined area and the localization of both a stationary and a moving ground-based 

target. Again, a three-drone swarm was examined, object detection is achieved with the built-in 

cameras and an object detection algorithm, proportional integral differential (PID) control is used for 

the object tracking algorithm. A modified particle swarm optimization (PSO) algorithm was used for 

object localization and is evaluated through physical experimentation against a fully randomised 

moving algorithm. The results from the experiments demonstrated that the PSO algorithm 

outperformed the randomised algorithm in the stationary and moving target scenarios. 
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2.3.3 Tracking of Malicious Drones via Drone Swarms 

 

Guerra et al. (2020) sought to provide an alternative to relying on ground-based radar systems to 

identify and track malicious drones. This would be achieved via the use of a dynamic radar network 

(DRN) made up of a swarm of drones capable of highly accurate real time tracking. This research 

concluded via simulation that the DRN created by the swarm was far more flexible and able to be 

customised than currently available terrestrial radar systems, and ultimately provided improved 

tracking of a passive target. It is important to note that in this work it appears that the malicious drone 

is of lower capability to that of the swarm, this may explain why there are no specific simulations 

carried out on set starting or operating flight formations, instead the swarm formation is optimized via 

a control algorithm. 

 

The research carried out by Pozniak and Ranganathan (2019) into the hardware and software aspects 

of a counter unmanned aircraft system (CUAS) testbed yielded complimentary conclusions with 

regard to the efficacy of drone swarms, especially when compared to tracking via a single pursuit 

drone. In this work the swarm would utilise camera-based detection systems to identify their targets 

and then apply Dijkstra’s algorithm in order to determine the fastest route for interception. The 

testbed proposed countermeasures and mitigation that largely revolved around encircling the 

malicious drone to restrict its movement or using fixed onboard nets in order to capture the drone. 

Whilst these mitigation techniques are efficient and perhaps necessary in immediately dangerous 

situations, they compromise the ability to identify the operator of the drone. There is no explicit 

clarification of the malicious drone’s capabilities compared to that of the swarm in this research. 

However, the testbed is modular and highly scalable and could readily be applied to a scenario where 

the malicious drone is of higher capability then the swarm.   

 

Encirclement to restrict movement of the malicious drone is a common mitigation technique described 

in the literature.  The research undertaken by Brust et al. (2017), takes this a step further with the 

malicious drone being encircled and then escorted from the flight zone. This research examined a 

system that deploys an autonomous swarm of defence drones that progress through four phases of 

operation: clustering, formation, chasing and escorting. As a result of the extensive simulations 

carried out the defence swarm is shown to be resilient in the event of communication loss, and the 

encirclement and escort approach is concluded to be feasible. However, one of the assumptions 

included in the problem definition is that the malicious drone has a lower top speed than the swarm 

drones. Additionally, the proposed mitigation of escorting the drone from the flight zone once again 

removes any opportunity to identify the origin and operator of the malicious drone. 
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Koohifar et al. (2018) opted to investigate drone mounted radio frequency (RF) tracking as a 

malicious drone detection method in place of computer vision. Each drone is equipped with an 

omnidirectional received signal strength indicator (RSSI) and operates through a feedback loop of 

operational stages: Measurement of signal, estimation of target position, and path planning of swarm 

to reduce measurement errors. The key findings of the research concentrated on determining the 

optimum algorithms for the two main stages of the problem: estimation of the target position and path 

planning of the tracking swarm. In this regard the findings concluded that for the estimation or 

localization stage the recursive Bayesian estimator algorithm was the better performer and for the path 

planning stage the steepest descent algorithm was optimal. The capabilities of the malicious drone are 

never explicitly defined so the performance of the system with regard to a high capability malicious 

drone is unknown. The intention to track the malicious drone without attempting to restrict its 

movement or disable it does however allow for possible identification of the origin or operator of the 

drone. 

 

Wang et al. (2020) proposed an optimal guidance strategy and undertook simulation experiments to 

examine its efficacy. The strategy has been designed to be applied to a drone swarm specifically, 

which has distinctly different flight characteristics to the fixed wing aircraft and missiles that existing 

strategies were developed for.  The foundation for the proposed strategy is the pure-pursuit guidance 

law integrated with the Kuhn-Munkres optimal matching algorithm, additional emphasis is placed on 

collision avoidance between both the drones within the swarm and the target. Ultimately the 

simulations demonstrate that the proposed strategy leads to the swarm successfully intercepting the 

moving target within 3D space whilst holding a reasonable formation. Malicious drones and birds are 

listed as potential targets for the swarm; however, it is explicitly stated in the problem formulation 

Figure 4. Drone swarm utilising intermittent RF signals to track target drone (Koohifar et al. 2018) 
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chapter that the target in question must under all circumstances have a lower maximum speed than the 

swarm drones.  

 

2.3.4 Tracking of High Capability Malicious Drones 

 

The simulations undertaken by Arnold and Brown (2020) sought to determine the efficacy of three 

different drone swarm flight formations in tracking a target drone. These formations included, follow, 

surround, and cone. In contrast to the literature mentioned in the previous section the malicious drone 

in this case had three levels of flight capabilities, all of which were higher than that of the pursuing 

swarm drones. To ensure collation of adequate data the simulation was carried out multiple times 

using a mix of different parameters: three different malicious drone flight paths, three swarm 

formations, three levels of flight capability and a variable number of drones in the swarm. The 

simulations were carried out using OMNeT++ and determined that surround and cone formations 

were superior to the follow formation in effectively tracking the malicious drone, this was attributed 

to the encirclement characteristics present in these formations allowing for better reactions to changes 

in direction of the malicious drone.  Suggested further research includes the investigation of additional 

drone swarm formations to determine if superior performance can be achieved. 

 

Recognising that a high capability malicious drone has the potential to outrun a pursuing drone of 

lesser capability, Brown and Raj (2021a) sought to evaluate through simulation, any performance gain 

achieved by implementing  predictive pre-positioning of the swarm alongside reactive tracking. 

Simulations were undertaken using MATLAB, where a circular area of interest was populated with 

randomly positioned surveillance drones to make up the swarm. The malicious drone travelled 

straight through the centre of the area in question at a set top speed that at all times was faster than the 

swarm drones, the size of the drone swarms as well as their top speed capabilities were variable, and a 

number of simulations were carried out and averaged for each variable configuration. The main metric 

used for the evaluation is the proportion of time that the malicious drone is actively tracked by one or 

more of the swarm drones (reduction in tracking voids), against this metric it was concluded that 

reactive tracking and predictive pre-positioning outperformed reactive tracking alone. It is important 

to note that the initial starting formation of the swarm is in this case randomised and further research 

into the possible performance effects of different initial formations is suggested.  

 

The impacts of initial swarm formation on tracking of a high capability drone have recently been 

explored further by Brown and Raj (2021b) through a modification of their previous work. The 

simulations were repeated using the same parameters as before however this time the randomly 

positioned surveillance drones are evaluated against a circular formation consisting of uniformly 
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spaced concentric rings. The circular formation performed better than the randomised formation for 

both of the tracking strategies, with particular improvement shown for a predictive pre-positioning 

coupled with small swarm size scenario.  

 

Further research into modifications of the circular formation, or entirely new initial formations, is the 

next logical challenge for further optimising the tracking ability of the swarm through the reduction of 

tracking voids. 
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Chapter 3 

 

3. Simulation Design 

 

3.1 Simulation Environment 

 

3.1.1 MATLAB 

 

The resources required to undertake real-world physical experiments are extensive and time 

consuming and as such the use of a simulated environment is necessary. A simulated environment 

provides for the adaptive adjustment of variables, and for a far wider range of variables to be tested. 

For example, drone swarm sizes in the hundreds or thousands. This project sought to expand upon the 

work completed by Brown and Raj (2021a) and Brown and Raj (2021b), where the simulation 

environment utilised was the MATLAB application. MATLAB is a numeric computing environment 

built around the MATLAB programming language, key features include manipulation of matrices, 

plotting of data and functions and algorithm implementation. Accordingly, this project also utilised 

MATLAB for all simulations with the specific implementation detailed within this chapter, 

additionally the entire simulation code is attached in Appendix D. 

 

3.2 Simulation Implementation 

 

3.2.1 Tracking Area and Malicious Drone Flight Path 

 

A circular tracking area with a radius of 15km is utilised and is assumed to be centred around a point 

of interest that is susceptible to high capability malicious drone attacks (e.g., an aerodrome or power 

station). It would then be logical for the flight path of the malicious drone to pass through the centre 

of the tracking area, therefore during each iteration of the simulation the malicious drone traverses a 

diameter of the tracking area. Using the animation function built into the code the malicious drone’s 

movement through the tracking area can be observed. Figure 5 is a frame captured from this 

animation where the tracking area is occupied by a circular formation, the red circle represents the 

malicious drone on its way across the x-axis whilst the blue crosses represent the surveillance drones 

comprising the swarm.  
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3.2.2 Tracking Strategies 

 

Two different malicious drone tracking strategies will be simulated for each of the swarm formations 

under test, these strategies aim to reduce the duration of tracking voids and to compensate for the 

superior capability of the malicious drone by handing over tracking responsibility to better placed 

drones within the swarm. The algorithm pertaining to the movement of the swarm drones will be 

detailed in a later section within this chapter. 

 

Reactive Tracking 

 

The reactive tracking strategy involves individual drones within the surveillance swarm pursuing the 

malicious drone only when they have individually detected it and ceasing their pursuit once the 

malicious drone has left their detection range. This strategy assumes there is no communication 

between drones within the swarm regarding the malicious drone’s position, this results in the 

remainder of the swarm hovering in formation with only individual drones commencing pursuit when 

they detect the malicious drone. Figure 6 depicts a basic application of the strategy, the malicious 

drone (M) travels in a straight-line trajectory, the swarm drone (S1) detects and then pursues M until 

it is inevitably outpaced. Swarm drone (S3) is positioned further down the flight path and upon 

detecting M will commence its own pursuit, the tracking void exists where swarm drone (S2) is 

positioned such that M never comes into detectable range and therefore S2 only ever hovers in place. 

 

Figure 5.Malicious drone movement captured from MATLAB simulation animation 
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Reactive Tracking with Predictive Pre-Positioning 

 

Reactive tracking with predictive pre-positioning builds upon the previous strategy by incorporating 

intra swarm communications containing estimates about the malicious drone’s position, speed and 

bearing. Once a malicious drone is detected by any of the surveillance drones in the swarm the shared 

data is then used by every other surveillance drone to set a course for a more optimum tracking 

position. This could in theory result in a string of surveillance drones positioned along the entirety of 

the malicious drone’s flight path. Figure 7 demonstrates the implementation of this, once again S1 is 

first to come within detection range of M and begins its pursuit, however, in this scenario S1 has also 

communicated the estimated trajectory data of M to S2 and S3, both of which begin pre-positioning to 

an improved tracking position. The pre-positioning has completely removed the tracking void seen in 

Figure 6 as S2 is now within range of M and pursuit is handed over from S1. Once M has outpaced 

Figure 6. Reactive tracking of malicious drone (a) Surveillance 

drone S1 detects and pursues M. (b) M has outpaced S1 which 

has subsequently stopped pursuit, S3 has detected M and begun 

pursuit. S2 never detects M and never changes position (Brown 

& Raj 2021a). 
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S2, pursuit is handed over to S3 which has improved its starting position from the scenario in Figure 6 

and will be able to maintain M within its detectable radius for a longer period as a result.  

 

 

 

 

 

 

Figure 7. Reactive Tracking with Predictive Pre-Positioning of 

malicious drone (a) S1 detects M, begins pursuit, and relays 

M’s estimated trajectory to S2 and S3, who begin pre-

positioning. (b) S1, S2 and S3 are now positioned without 

tracking voids along M’s trajectory. (c) S1 has handed over 

pursuit to S2 and S3 (Brown & Raj 2021a). 
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3.2.3 Implemented Initial Swarm Formations 

 

As discussed in the literature review (Chapter 2), the basis for the work carried out by Brown and Raj 

(2021b) was the performance of the tracking strategies when applied to different initial flight 

formations of the swarm. In their work a randomly distributed swarm formation was evaluated against 

a circular formation, the results from this are replicated within this project and then utilized as a 

benchmark against which to evaluate new initial formations. The implementation of these formations 

within the code is discussed within this section. 

 

Random Formation 

 

The randomly positioned initial swarm formation was utilised by Brown and Raj (2021b) to provide a 

baseline comparison for their circular swarm formation. The construction of the circular formation 

was based on the principle that the distance between each swarm drone will be approximately the 

same across the test area, regardless of the swarm size. Therefore, for the random swarm formation 

and any subsequent formations under test, the same distribution principles should be implemented to 

allow meaningful direct comparison between formations. 

 

The random swarm formation is constructed by selecting the radial and angular coordinates of each 

swarm drone from a continuous uniform probability distribution. This ensures a radial coordinate of 

an approximate value between 0 and R, where R is the radius of the swarm, and an angular coordinate 

of an approximate value between 0 and 2π. This approach was originally found to yield a formation 

that, although random in nature, did not meet the required swarm distribution principle as there was a 

disproportionate number of drones concentrated around the centre of the tracking area. In order to 

avoid this issue, the radial coordinate used for each drone is the product of R and the square root of a 

random variable in the range of 0 to 1 having a continuous uniform probability distribution. Figure 8 

shows the section of the simulation code where the random formation is generated. 

 

      % random formation 
                swarmUAVPosMagnitude=FIELD_RADIUS*sqrt(rand... 
                    (numberOfSwarmUAVs(numberOfSwarmUAVsIndex),1)); 
                swarmUAVPosAngle=2*pi*rand(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                swarmUAVPosX=swarmUAVPosMagnitude.*cos(swarmUAVPosAngle); 
                swarmUAVPosY=swarmUAVPosMagnitude.*sin(swarmUAVPosAngle); 

 
 

 

 

Figure 8. Random swarm formation code. 
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Circular Formation 

 

The circular formation is constructed using evenly spaced concentric rings of evenly spaced swarm 

drones, it is assumed that at least one drone, no matter the swarm size, would be positioned directly 

over the point of interest, that is, located in the centre of the tracking area. To achieve the uniform 

spacing required between each drone and each ring, the total number of drones in the swarm increases 

in line with the progression of centred hexagonal numbers as additional rings are added. The first ring 

is constructed using six drones which each represent a vertex of a hexagon, inclusive of the 

centralised drone this means a total of seven swarm drones for a single ringed circular formation. 

With each additional formation ring implemented, the number of drones in a given ring will increase 

linearly with radius, this ensures compliance with the uniform drone spacing principle of the 

formation.  

 

Therefore, the inclusion of a second ring having twice the radius of the previous ring would require an 

additional 2 ∗ 6 = 12 drones, bringing the total to 1 + 6 + 12 = 19, and a third ring would require an 

additional 3 ∗ 6 = 18 drones, bringing the total to 1 + 6 + 12 + 18 = 37 and so on for nth rings. The 

total drones within the formation can then be calculated via summation of the centre drone and each 

existing ring, this summation can be simplified via the formula: 

 

𝑁 = 1 + 3𝑛(𝑛 + 1) 𝑓𝑜𝑟 𝑛 ≥ 1       (1) 

 

Where:  

• N = Total drones within the swarm.  

• n = Number of rings. 

Figure 9 demonstrates how the input and output of the formula above has been utilised to create 

variables within the code which dictate the total number of rings and subsequently the total number of 

drones within the swarm. The ‘numberOfSwarmUAVs’ variable is utilised by all formations under 

test to ensure uniform swarm sizes, whilst the ‘numberOfSwarmRings’ variable is only called upon by 

the circular formation.  

 

% Specify total number of UAV's in swarm formation 
numberOfSwarmUAVs= [7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397,... 
                   469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387]; 
% Specify number of swarm rings (circular formation only) 
numberOfSwarmRings=[1,  2,  3,  4,  5,   6,   7,   8,   9,  10,  11,... 
                   12,  13,  14,  15,  16,  17,   18,   19,   20,   21];  

Figure 9. Code for variables related to swarm size. 
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It is important to note that the malicious drone traverses the same path through the tracking area 

during each iteration of the simulation, to ensure an equitable comparison to the other formations 

under test it is necessary to randomise the angular position of the circular formation. This 

randomisation is accomplished with the addition of an angle within the range of 0 to 2π which is 

drawn from a continuous probability distribution. This method ensures that the formations response to 

the malicious drone is being simulated for a variety of different approach directions, Figure 10 

demonstrates the section of code responsible for constructing the circular formation and the variable 

‘randPosAngle’ can be seen to be instituting the necessary angular rotation on each loop through the 

code.  

 

 

        % circular formation 
                randPosAngle=2*pi*rand; 
                swarmUAVPosMagnitude = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                swarmUAVPosAngle = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                uavIndexAbsolute=2; 
                for ring=1:numberOfSwarmRings(numberOfSwarmUAVsIndex) 
                    NUMBER_OF_UAVS_IN_RING = (6*ring); 
                    for uavIndexInRing=1:NUMBER_OF_UAVS_IN_RING 
                        swarmUAVPosMagnitude(uavIndexAbsolute)=... 
                            FIELD_RADIUS*ring/numberOfSwarmRings... 
                            (numberOfSwarmUAVsIndex); 
                        swarmUAVPosAngle(uavIndexAbsolute)=randPosAngle... 
                            + 2*pi*uavIndexInRing/NUMBER_OF_UAVS_IN_RING; 
                        uavIndexAbsolute=uavIndexAbsolute+1; 
                    end 
                     
                end 
                swarmUAVPosX=swarmUAVPosMagnitude.*cos(swarmUAVPosAngle); 
                swarmUAVPosY=swarmUAVPosMagnitude.*sin(swarmUAVPosAngle);  

 

 

 

Sunflower Formation 

 

The spiralling pattern seen in the arrangement of sunflower seeds is observed throughout the natural 

world, often influencing the manner in which flowers, leaves and branches are spaced around their 

stems or trunks. In the commonly recognised case of the sunflower, the seeds are positioned to make 

efficient use of the available space, providing maximum room for each seed whilst minimising wastage 

of space.  

Figure 10. Circular swarm formation code 
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The goal here is to utilise such a pattern to uniformly distribute a predetermined set of points within a 

circle, or in the case of this project uniformly distribute surveillance drone swarms of varying sizes 

within the designated circular tracking area. The sunflower seed formation has already served as 

inspiration for other engineering endeavours, including the mirror arrangement in a solar concentrator 

array, an efficient showerhead design, and an efficient water mixer. It was anticipated that this formation 

would have the potential to reduce voids present in similar formations, such as the circular formation, 

due to the presence of multiple overlapping spirals which follow the Fibonacci sequence. 

 

A basic mathematical formula exists for defining the sunflower formation: 

 

𝜃 =
2𝜋

∅2 𝑛 and 𝑟 = 𝑐√𝑛      (2) 

 

Where: 

• c is an arbitrary constant. 

• n is the number of seeds/drones.  

• ∅ = the golden ratio = 
1+√5

2
. 

 

The implementation of the sunflower formation within the code is shown in Figure 11 and required 

some additional adjustments in regard to the boundaries to ensure the formation was constrained 

within the designated tracking area. It should also be noted that the angular rotation applied to the 

circular formation is replicated here to ensure an equitable comparison in relation to random 

malicious drone flight paths. Additionally, similar to the circular formation, there is also provision to 

lock one surveillance drone to the centre of the tracking area, this can be toggled for each simulation 

run as desired.  
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   % Sunflower formation 
                swarmUAVPosMagnitude = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                swarmUAVPosAngle = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                goldenratio = (1+sqrt(5))/2;            
                randPosAngle=2*pi*rand; 
                uavIndexAbsolute=2; % Change for UAV at center or not 
                for k=1:numberOfSwarmUAVs(numberOfSwarmUAVsIndex)- 1 
                    boundaryPoints = round(sqrt(k)); 
                    swarmUAVPosMagnitude(uavIndexAbsolute) =... 
                        FIELD_RADIUS*(sqrt(k-1/2)/sqrt(numberOfSwarmUAVs... 
                        (numberOfSwarmUAVsIndex)-(boundaryPoints+1)/2)); 
                    swarmUAVPosAngle(uavIndexAbsolute) = randPosAngle... 
                        + 2*pi*k/goldenratio^2; 
                    swarmUAVPosX=swarmUAVPosMagnitude.*cos... 
                        (swarmUAVPosAngle); 
                    swarmUAVPosY=swarmUAVPosMagnitude.*sin... 
                        (swarmUAVPosAngle); 
                    uavIndexAbsolute=uavIndexAbsolute+1; 
                end  

 

 

 

Initial Formation Plots 

 

Figure 12 shows the three implemented initial formations generated during the simulation, they have 

each been captured at two swarm sizes, the first comprising 91 drones and the second comprising 

1387 drones. 

 

Figure 11. Sunflower swarm formation code. 
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3.2.4 Swarm Drone Movement Algorithm 

 

Irrespective of the tracking strategy or formation being implemented, movement of the individual 

surveillance drones within the swarm is dictated by the guidance law utilised by Brown and Raj 

(2021a) and Brown and Raj (2021b). The guidance law algorithm enables calculation of the optimum 

bearing that a swarm drone should use to track a high capability malicious drone in order to minimise 

tracking voids. That is, to maximize the tracking time. 

Figure 12. Implemented formation examples with 91 drone swarm on L and 1387 drone swarm on R (a) Random formation. 

(b) Circular formation. (c) Sunflower formation.  
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The algorithm can best be described visually using Figure 13, where: 

 

• r  =  the detection radius of the surveillance drone. 

• u  =  the maximum speed of S. 

• v  =  the set speed of M in the direction of the x-axis (v is always  >  u as M is of higher 

capability). 

• φ  =  the angle between the line joining M and S and the x-axis ( - π/2  ≤  φ  ≤  + π/2). 

• θ  =  the angle relative to the x-axis in which S moves to track M ( - π/2  ≤  θ  ≤  + π/2).    

 

 

The guidance law also provides the derivation of the following formula for calculating the optimal 

value of θ that minimises tracking voids i.e., maintains the distance between S and M at less than or 

equal to r for as long as possible. 

 

𝜃𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = cos−1 (
2𝑢𝑣 sin 𝜑

√𝑢4+𝑣4−2𝑢2𝑣2 cos 2𝜑
) − tan−1 (

𝑣2−𝑢2

[𝑢2+𝑣2] tan 𝜑
)   (3) 

 

Figure 13.Surveillance drone optimum bearing example, surveillance drone 

(S) is detecting malicious drone (M) Brown and Raj (2021a). 
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This formula is implemented within the code to dictate the movement of each, and every 

swarm drone as required by the tracking strategy being utilised during that particular 

iteration.  

 

3.3 Unimplemented Initial Swarm Formations 

 

Three additional alternate initial swarm formations were proposed for evaluation and coded to some 

extent within MATLAB, however integration into the simulation did not eventuate. The adaptation of 

these formations to the radial and angular coordinate system utilised within the simulation 

environment proved to be more difficult than anticipated, this was in contrast to the sunflower 

formation, which due to its circular nature did lend itself to the coordinate system established by the 

benchmark formations. Ultimately excessive debugging in an attempt to implement these formations 

was beginning to encroach on the project timeline. 

 

The additional alternate  formations that were not further pursued in this project are all variations of 

Bravais lattice type structures, this type of structure is used to describe the geometric arrangement of 

the lattice points within the structure of a crystal. The lattice points themselves represent the vertices 

of a unit cell, which in crystallography is a space which fills the lattice space without any overlapping 

or voids. Therefore, it could be presumed that taking lattice type structures and placing individual 

swarm drones on the lattice points, could provide an efficient method with which to maximise 

malicious drone tracking time. Accordingly, these alternate formations should be considered in future 

research projects of this nature. 

 

In the two-dimensional plane there exists five Bravais lattices: monoclinic, orthorhombic, tetragonal, 

and hexagonal. The unimplemented formations partially coded for this project were the tetragonal, 

hexagonal, and a special case of the hexagonal lattice. The tetragonal lattice is also known as a square 

lattice which is a fairly self-explanatory structure, the hexagonal lattice is also referred to as the 

triangular lattice and is a little more complex. The triangular lattice involves repeating equilateral 

triangles as the unit cells, if picking any one lattice point a hexagon can be seen to be surrounding said 

point. The final formation under consideration is a special case of the hexagonal/triangular lattice 

known as the honeycomb lattice, the honeycomb lattice could be viewed as the merging of two offset 

triangular lattices, the centres of the hexagons of the honeycomb structure form a hexagonal/triangular 

lattice. These formations are best visualised and examples of each can be seen below in Figure 14, 

with the code used attached in Appendix F. 
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Figure 14. Unimplemented lattice formations. (a) Square Lattice. (b) 

Hexagonal/Triangular Lattice. (c) Honeycomb Lattice 
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Chapter 4 

 

4. Methodology 

 

4.1 Methodological Approach 

 

This project seeks to examine the effectiveness of a variety of surveillance drone swarm initial flight 

formations in reducing tracking voids when tracking a high capability malicious drone. To achieve 

this objective, it is imperative that quantitative data can be obtained from multiple replications of the 

same experiment, with different configurations for each replication. These configurations are 

determined by adjustable independent variables and must be free from external interference that could 

compromise the data. As previously discussed, the extensive resources and time required for physical 

experimentation determined that this project would be best completed utilising simulation. 

 

Although not a real-world representation, a simulated environment in this case provides many benefits 

including the elimination of external interference/s which could confound the results or delay the 

outcome of the experiment, such as inclement weather and equipment breakdowns. Additionally, as 

mentioned in previous chapters the use of a simulated environment allows for a far greater scope then 

that achievable in the real world with the resources and time frame available, for instance the largest 

simulated swarm size is to be 1387 drones, this scale is inconceivably large in financial requirements 

alone. Simulation also removes the health, safety and ethical risks that would accompany a real-world 

experiment of this form and by extension removes the need for risk assessments to be completed. 

 

4.1.1 Assumptions 

 

In order to keep the complexity of the project at a manageable level within the time frame provided, 

assumptions were made. An additional reason that these assumptions were made is that they largely 

mirror those made in the previous research highlighted within Chapter 2, this allows for a consistent 

and accurate replication of those results and by extension allows the project to meet the aim listed in 

Chapter 1 of enabling direct comparison to historical results. The assumptions that apply to this 

project include: 

 

• Acceleration is not considered in the simulation. 

• Turn speed of the drones is not considered. 
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• Intra swarm communication method is not specified. 

• No collision avoidance between other drones or the environment is considered. 

• All drones are at a constant altitude i.e., the simulation remains in the 2D plane. 

• Malicious drone detection occurs 100% of the time once within swarm drone detection radius. 

• There are no range limitations applied to the drones with regards to flight time, transmission 

distance or battery levels. 

 

Acceleration and Turn Speed 

 

In order to minimise the complexity of the code and to ensure a simulation environment which is 

consistent with that used in the previous research, drone acceleration is not considered. Instead, both 

the malicious and swarm drones within the simulation traverse the field at their set maximum speeds 

and move at these speeds instantaneously. Similarly, the orientation of the drones is never specified 

and therefore the drone turn speed is irrelevant as the drone is never required to ‘turn’. The omission 

of both acceleration and turn speed is not detrimental to the ultimate goal of characterising the 

potential increase in tracking efficiency brought about by implementing different initial swarm 

formations.  

 

Intra Swarm Communication 

 

The method of communication used within the drone swarm is not specified, intra swarm 

communication is however assumed to be present and is a key requirement for correct implementation 

of the predictive pre-positioning tracking strategy. Due to the tracking area being of a significant size 

(radius of 15km) it would be assumed that to maintain communication between all swarm drones, a 

terrestrial relay network would need to be utilised. However, for the purpose of evaluating initial 

flight formations it is not necessary to elaborate on the specific communication protocol being used. 

 

Collision Avoidance and Constant Altitude 

 

The flight altitude of both the swarm drones and the malicious drone is not specified and is considered 

to be a constant and equal value. This prevents a drastic increase in the complexity of the simulation 

coding by restricting the simulation to the 2D plane, and once again it enables an equitable 

comparison to historical results obtained in previous research. That being said, with appropriate time 

invested the existing code could be altered to operate in the 3D plane. Collision avoidance between 
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the individual drones in the swarm is not accounted for within the code, again this maintains the 

environmental assumptions made in prior research whilst reducing coding complexity. It is of note 

that many commercially available drones ship with collision avoidance sensors and software as 

standard. In a real-world scenario large swarm sizes such as that simulated within this project, would 

most likely require collision avoidance to be incorporated in the guidance law algorithm that was 

detailed in Chapter 3. 

 

Detection Accuracy and Range Limitations 

 

Detection of the malicious drone by a swarm drone is assumed to be 100% accurate as soon as the 

malicious drone encroaches the detection zone of the swarm drone. That is to say when the distance 

between the malicious drone and the swarm drone is less than or equal to 100m, it will be 

instantaneously detected, and tracking will be implemented as per the strategy being utilised at that 

time by the code. The method of malicious drone detection is also not specified, although examples 

are covered within Chapter 2, including the implementation of drone embedded radar and RF signal 

tracking. Ultimately this project is not attempting to evaluate different detection methods and 

although 100% accuracy is likely not achievable in a real-world setting, it is consistent across all 

simulations within this project and therefore appropriate for evaluating swarm formations. Similarly, 

the removal of all range limitations is not applicable to the real-world, however selecting any one 

specific drone model and its specifications as the basis for range limits within the simulation would 

pigeonhole the results obtained. The inclusion of range limitations would ultimately not provide any 

benefit in the comparison of flight formations in the general sense in which they are being evaluated 

within this project. 

 

4.1.2 Simulation Characteristics and Variables 

 

Swarm Drones 

 

In order to ensure an equitable comparison with the benchmark results identified within the literature 

review, the maximum speed of the drones comprising the swarm will be set at one of three levels for 

each simulation run: 20 m/s, 25 m/s, or 29 m/s. As a point of interest, if these maximum speeds are 

compared to the specifications of a range of consumer and commercial drones readily available today, 

it can be observed that they are within the realm of possibility for a real-world scenario. Table 2 

demonstrates the maximum speed specification of a range of drones currently available in the market 

as of October 2021. As identified within Chapter 2, DJI commands at least 75% of the industry 

market share and therefore is heavily represented within the table. Other performance specifications 
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with regard to flight range and acceleration are not considered as per the previous section and so are 

not provided within the table.  

 

 

As covered in the preceding chapter, the initial position of the swarm drones will be dictated by 

whichever formation is currently under test in the simulation. In instances where the formation under 

test is not the ‘random formation’, a sufficient level of randomness for each iteration is still achieved 

via the angular rotation of the formation. Intra-swarm communication is invoked for simulation runs 

that utilise the predictive pre-positioning tracking strategy, however as previously stated the method is 

not specified and therefore there is no characteristics or variables associated. 

 

Malicious Drone 

 

The malicious drones speed is constant for all simulation scenarios and is always greater than the 

speed of the swarm drones pursuing it. It is imperative to again align with the benchmark research in 

order to allow an equitable comparison, therefore the maximum speed is set to 30 m/s. The drone 

flight path remains constant for each iteration and traverses the x-axis in one metre increments. To 

adequately simulate malicious drone approaches from random directions, the formations themselves 

are either randomly distributed by nature or as previously mentioned, randomly offset via angular 

manipulation for each iteration, this can be observed in Figure 15. 

 

Manufacturer Model Top Speed  

DJI FPV 140 km/h – 38.89 m/s 

 Inspire 2 94 km/h – 26.1 m/s 

 Mavic 2 Pro 72 km/h – 20 m/s 

 Phantom 4 Pro 72 km/h – 20m/s 

Uvify OOri 50 mph – 80.47 km/h – 22.35 

m/s 

Yuneec Typhoon H3 72 km/h – 20 m/s 

Autel Evo II 72 km/h – 20 m/s 

Table 2. Maximum speeds of readily available consumer drones DJI (2021), UVify (2018), Yuneec (2021), Autel (2017) . 



34 

 

 

4.2 Methods Of Analysis 

 

Each time the simulation is run it sequentially loops through six different formation and tracking 

strategy pairings: 

 

• Reactive tracking (random formation) 

• Reactive tracking (circular formation) 

• Reactive tracking (sunflower formation) 

Figure 15. Circular and sunflower formation swarms comprising 61 drones, shown with varied angular orientations. 
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• Reactive tracking with predictive pre-positioning (random formation) 

• Reactive tracking with predictive pre-positioning (circular formation) 

• Reactive tracking with predictive pre-positioning (sunflower formation) 

 

Each pairing is simulated at 21 different swarm sizes, the swarm size increases in line with the 

progression of centred hexagonal numbers. This was previously detailed in Chapter 3, where swarm 

size is equal to the following subset of centred hexagonal numbers: 

 

1 + 3𝑛(𝑛 + 1) 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 21      (4) 

 

≡ (7, 19, 37, 61, 91, … , 1141, 1261, 1387)  

 

Each one of these configurations completes 500 unique iterations, resulting in 63,000 total iterations 

being completed for each simulation run, this translates to a simulation duration of approximately 16 

hours per run and the simulation is completed at least three times, once for each maximum swarm 

speed. These simulation configurations allow for meaningful analysis of the independent variables 

under test and can be visualised with the aid of Figure 16. 

 

 

This simulation structure allows for the creation of quantitative data relevant to the following 

particular project objectives laid out in Chapter 1: 

 

• Evaluation and comparison of the performance of initial swarm formations and sizes 

• The replication of and evaluation against benchmark results identified in the literature. 

 

Figure 16. Simulation configurations for each swarm speed. 
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The performance metric used to evaluate the benchmark tracking strategies and formations, was the 

proportion of time that any one or more surveillance drone/s were actively tracking the malicious 

drone whilst it traversed the tracking area. Using the simulation specifications detailed throughout this 

Chapter and in Chapter 3, this translates to the proportion of time that a malicious drone is within the 

100m detection range of any of the drones comprising the swarm. To maintain an equitable 

comparison to the benchmark results, the same metric is adopted for this simulation.  

 

As the malicious drone traverses the tracking area over the course of a single iteration, the distance 

between it and all of the drones comprising the swarm is calculated every simulation step using the 

standard formula for the distance between two coordinate points: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √[(𝑥𝑠𝑤𝑎𝑟𝑚 − 𝑥𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠)2 + (𝑦𝑠𝑤𝑎𝑟𝑚)2]      (5) 

 

Where the Y coordinate is only considered for the swarm position as the malicious drone traverses the 

X-axis exclusively. With a tracking area having a radius of 15,000m this translates to 30,000 

calculations being performed per iteration. Once calculated for all swarm drones the closest drone is 

found by locating the minimum value and if that value is less than or equal to the detection range of 

the swarm drones, a count is incremented. At the completion of one iteration i.e., one traversal of the 

tracking area by the malicious drone, the count value is stored, and the count is reset for the next 

iteration. This detection is also the trigger for the tracking strategy code detailed within Chapter 3 to 

be implemented and attempt, in line with the strategy applicable to the current configuration, to 

manoeuvre the swarm toward the malicious drone.  

 

At the completion of all iterations at a particular swarm size the mean is taken of all 500 count values, 

this value is then normalised by division by 30,000, stored and then subsequently plotted. This 

process repeats for all swarm sizes resulting in 21 data points for each of the tracking strategy and 

formation pairings under test. The resulting plots illustrate the proportion of time (Y-axis) that the 

malicious drone is actively tracked by any number of swarm drones, against the number of drones 

comprising the swarm (X-axis). At least three such plots are generated, one for each of the top speed 

pre-sets specified for the swarm drones.  

 

This data flow as it occurs in MATLAB can be  demonstrated via the following example using only 

five iterations for simplicity: 

 

𝑐𝑜𝑢𝑛𝑡𝐼𝑛𝑅𝑎𝑛𝑔𝑒𝐹𝑜𝑟𝑂𝑛𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = [6000; 6000; 15351; 15789; 15820] 



37 

 

For each of the five unique iterations the amount of simulation steps for which the malicious drone 

was being actively tracked are counted and stored, the mean is taken and then normalised prior to 

plotting: 

 

𝑚𝑒𝑎𝑛(𝑐𝑜𝑢𝑛𝑡𝐼𝑛𝑅𝑎𝑛𝑔𝑒𝐹𝑜𝑟𝑂𝑛𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 11,792 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 (𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔) = 11,792 ∗
1

30000
= 0.393 

 

This example was completed with the circular formation which by design will always provide some 

level of tracking due to the surveillance drone located at the centre, if the example were repeated with 

the random formation there would be a chance of count values equal to zero. For a low number of 

iterations this would create some large outliers that would greatly skew the plots, however the 500 

iterations used ensure these zero values are smoothed out prior to plotting. A summary of the 

simulation specifications detailed in this section is viewable in Table 3. 
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Variable Value 

Tracking area shape and size Circular area with a 15,000 m / 15 km radius 

Malicious drone flight path Diameter of the tracking area (the x-axis) 

Malicious drone maximum speed 30 m/s 

Simulation step size Malicious drone steps in 1m increments (30,000 

total) 

Total number of drones comprising the 

swarm 

Set to increment each loop as per: 

  
1 + 3𝑛(𝑛 + 1) 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 21 
 
≡ (7, 19, 37, 61, 91, … , 1141, 1261, 1387)  
 

Initial flight formation of the swarm Fixed for each simulation run as one of the 

following: 

 

Random formation  

Circular formation  

Sunflower formation 

 

See Chapter 3 for details. 

Tracking strategy implemented by the swarm Fixed for each simulation run as one of the 

following: 

 

Reactive tracking 

Reactive tracking with predictive pre-positioning 

 

See Chapter 3 for details 

Swarm drones maximum speed Fixed for each simulation run as one of the 

following: 

 

20 m/s, 25 m/s, 29 m/s 

Range of swarm drone/s when detecting 

malicious drone 

100 m 

Table 3. Summary of simulation specifications and variables. 

 

4.3 Data Collection 

 

The nature of the data collected as a result of the simulations has been touched on in the preceding 

section of this Chapter, it represents the proportion of time that the malicious drone is actively tracked 

whilst within the tracking area by one or more of the swarm drones. The data collected is numerical 

and represented by double-precision floating point numbers, which is the default format for numeric 

variables in MATLAB. 
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The code structure involves multiple nested loops as different configurations are cycled through, data 

is stored within MATLAB for the entirety of the simulation, the output data in question is stored for 

plotting and the global variables are reset at the completion of each configuration run.  The plot is not 

visible until completion of the whole simulation which encompasses all six pairing configurations, 

upon completion of each run the data used to generate the plot could be exported to excel or 

interrogated further within MATLAB itself if required. 

 

4.4 Methodology Justification 

 

The research conducted by Brown and Raj (2021a, 2021b) is to be used as a benchmark and so the 

methodology must be replicated in part. Additionally, the research in Brust et al. (2017), Wang et al. 

(2020), Guerra et al. (2020), and Arnold and Brown (2020) all utilize computer simulation with 

numerical analysis when determining their research outcomes. Although earlier research into object 

tracking via drone swarms by Ma'sum et al. (2013) utilised real-world experiments, the drone swarm 

was limited to three drones and the test area was only six by eight metres in size. Therefore, to 

achieve the project aims and proposed scope, the methodology detailed within this chapter is in line 

with those used throughout the literature and is appropriate. 
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Chapter 5 

 

5. Results and Analysis 

 

5.1 Analysis Overview 

 

The principle aims of this project as detailed in Chapter 1 were to determine by simulation, the 

optimal drone placement, initial swarm size and formation required to achieve increased performance 

of tracking of a high capability malicious drone. In order to demonstrate any increased performance, 

the benchmark results identified within the literature were replicated alongside a newly proposed 

formation. The simulation utilises independent variables including, swarm size, initial swarm 

formation, tracking strategy, and the maximum speed of the swarm drones. The malicious drone flight 

path and top speed specifications are fixed for all simulations. The performance defining dependent 

variable is the proportion of time that the malicious drone is actively tracked whilst within the 

tracking area.  Randomisation of the initial formation placement acts to simulate different malicious 

drone approach angles, and this is repeated for 500 iterations to provide a significant sample size for 

analysis. 

 

5.2 Results At Different Swarm Speeds 

 

The nature of the code means that for each full simulation run the independent variables with regards 

to swarm size, initial formation, and tracking strategy are cycled through automatically. The input 

variable adjusted externally prior to each run is the maximum speed of the drones comprising the 

swarm. Therefore, the results in this section will be analysed according to the swarm speed variable 

for that particular simulation run. Analysis will be carried out on the proportion of time that the 

malicious drone is actively tracked, calculated as the mean result of 500 iterations per configuration as 

detailed in Section 4.2. 

 

5.2.1 Swarm Speed 20m/s 

 

With the maximum speed of the swarm drones set to 20m/s this simulation represents the greatest 

discrepancy in capability between the pursuing drones and the malicious drone. It would be expected 

that actively tracking the malicious drone under these conditions would be difficult. It can be 

observed in Figure 17 and Table 4 below that the reactive tracking strategy provides limited 

performance under these conditions, where the mismatch in ability is quite large. It can however be 
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seen that at these performance levels the circular formation outperforms the random formation, as in 

the literature, and that the newly proposed sunflower formation subsequently outperforms both, albeit 

not by a significant amount.  

 

When considering reactive tracking with predictive pre-positioning, there is a clear gulf in 

performance almost immediately, this mirrors the results observed in the benchmarking studies. The 

circular formation can be seen to outperform the random formation for the duration of the simulation 

as expected, however once the swarm size hits approximately 400 drones the performance increase is 

less significant. The proposed sunflower formation outperforms both benchmark formations for the 

entirety of the simulation, but in contrast the largest difference in performance is within the 400 – 800 

drone swarm section. The sunflower and circular formation are not too significantly different at 

smaller swarm sizes, perhaps due to both being guaranteed some level of success due to having a 

centred surveillance drone. The larger difference observed at the greater swarm sizes, could be down 

to the nature of the sunflower formation at making more efficient use of the tracking area for its 

distribution of the swarm drones, it could also be that the Fibonacci sequence swirls being cut by the 

malicious drone’s flight path are far more varied than the ring structure of the circular formation. 

 

Figure 17. Results for swarm speed u = 20m/s. 





43 

 

continues to achieve good results with increases in performance on both benchmark formations at all 

swarm sizes. The increased swarm speed seems to provide for the most improvement at smaller 

swarm sizes, with key performance thresholds being hit much earlier than the previous swarm speed 

setting. For instance, the random formation achieves ≥ 0.5 proportion of time tracked with a 217-

drone swarm, for the preceding swarm speed, 271 drones were required. The circular formation 

utilised only 127 drones compared to the previous requirement of 217, and the sunflower formation 

reached the threshold with 91 drones, compared to 169. Performance increases at the larger swarm 

sizes are nowhere near as significant, the sunflower formation at the maximum swarm size of 1387 

drones only improved to 0.9547 from 0.9522.  

 

 

 

 

 

 

 

Figure 18. Results for swarm speed u = 25m/s.  
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tracked threshold at swarm sizes of 37 and 19 respectively. The sunflower formation outperforms the 

benchmark formations for all swarm sizes bar the 37-drone formation, where the circular formation 

narrowly edges it. It is worth noting that once the swarm size reaches 1027 or greater the sunflower 

formation almost converges with the reactive only iteration of itself. It is also noteworthy that once 

again at the larger swarm sizes the performance increases are not very significant over the preceding 

inferior swarm speeds. Achieving active tracking thresholds within proximity of 0.9 or greater 

requires similarly sized swarms regardless of the gap in capabilities between the swarm and the 

malicious drone. 

 

 

 

 

 

 

 

 

 

Figure 19. Results for swarm speed u = 29m/s.  
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implement the simpler tracking strategy in specific scenarios where intra-swarm communication is 

difficult to implement.  

 

A common observation across all three simulation scenarios is that the reactive tracking with 

predictive pre-positioning strategy seems to generate a similarly shaped curve each time, for smaller 

swarm sizes there are huge performance gains made for each swarm size increase, this steep plot 

eventually reaches a knee point and then begins to plateau.  This knee point in the data seems to occur 

at approximately the 0.85 proportion of time threshold, past this point large increases in swarm size 

are having minimal effect on the performance, perhaps representing a point of near constant returns or 

diminishing returns. This is easily observable when we look at Table 6, the sunflower formation 

achieves a performance value of approximately 0.75 with a swarm size of 271 drones, to achieve 

approximately 0.85 an additional 198 drones are required (469 drones total), however in order to 

achieve approximately 0.95 an additional 792 drones are required (1261 drones total) when compared 

to the 0.85 threshold. Additionally, none of the configurations tested or simulations run could produce 

a maximum performance value ≥ 0.96, larger swarm sizes or better performing formations may be 

required to achieve or surpass this threshold. 

 

It can then be determined based on the configurations tested and simulations run that the sunflower 

formation is the highest performing and most efficient initial flight formation for all applications. 

When determining the optimal swarm size, the characteristics mentioned above with regard to 

diminishing returns may play a part, if maximum tracking performance is an essential requirement,  

then the biggest swarm size should be selected. If there is flexibility on the minimum performance and 

a score of 0.85 is acceptable for the individual system, then swarm size can be greatly reduced. The 

capabilities of the swarm drones will also influence the optimal swarm size, designing for a worst-

case scenario in relation to a capability mismatch between swarm and malicious drones may be the 

safest course of action. Applying this to the scenario simulated for this project would mean a system 

comprising 547 swarm drones, each with a maximum speed of 20m/s, distributed in accordance with 

the sunflower formation, and implementing reactive tracking with predictive pre-positioning. This 

would achieve a performance score of 0.85 whilst tracking a malicious drone with a top speed of 

30m/s. 
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Chapter 6 

 

6. Conclusions and Further Work 

 

6.1 Conclusions 

 

This project sought to further examine the optimal initial swarm size and formation required to 

achieve increased performance of tracking a high capability malicious drone. A performance 

benchmark was adopted from studies identified within the literature review, utilising the 

methodologies applied within these studies allowed for an equitable comparison. The results of this 

project would determine whether the flight formation proposed would outperform those used in the 

benchmarking studies, and therefore contribute to an improved benchmark for tracking performance. 

The swarm performance was tested for multiple iterations at multiple configurations in order to 

provide a sufficiently large sample size, the results of 500 unique iterations for each configuration are 

then averaged, providing the final output. 

 

The performance of each configuration is determined via this output, which represents the proportion 

of time that the malicious drone is actively tracked by one or more swarm drones whilst within the 

tracking area. Multiple assumptions were made with regard to the simulation environment, this was 

partially to maintain the methodology of the benchmark research as well as to reduce complexity 

whilst increasing the scope of the project within the available time frame. These assumptions remove 

many real-world characteristics that may otherwise have been used to aid in selection of optimal 

system arrangements. However, when solely evaluating the performance of the flight formations at 

different swarm sizes, it is sufficient to mirror previously used methodologies to document 

performance increases.  

 

The analysis of the simulation output at the three different maximum swarm speed values (20m/s, 

25m/s, 29m/s) yielded several important results. Firstly, the benchmark results were replicated with 

reactive tracking with predictive pre-positioning outperforming reactive tracking on its own for the 

random and circular formations at all three swarm speeds. Secondly, the newly proposed sunflower 

formation was successfully evaluated against these benchmark results, where it was found to 

outperform  both benchmark formations for all swarm speeds, at all swarm sizes, and with both 

tracking strategies being implemented. This is a significant result as any increase in active tracking 

time increases the chances that the malicious drone and/or its operator can be identified at its origin 

and therefore mitigate any further malicious incursions on the tracking area under surveillance.  
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These performance improvements are not limited strictly to the achieved tracking time values, but 

also affect some of the input variables, for instance at all swarm speeds the sunflower formation will 

hit performance thresholds whilst utilising smaller swarm sizes than the benchmark formations. These 

factors all contributed to the sunflower formation being deemed the highest performing and most 

efficient initial flight formation. Theoretically the optimal swarm size is as large as possible, however 

realistically the swarm size is dictated by the proposed performance of the system and the speed of the 

malicious drone, which is of course unknown prior to detection. The optimal swarm size in the 

simulation environment and results was found to be a 547-drone swarm, as detailed in Chapter 5. 

 

Initially it appeared that the optimal tracking strategy was consistent with previous work, as in the 

literature reactive tracking with predictive pre-positioning had universally outperformed reactive 

tracking only. This was largely replicated until the final simulation run where the swarm drones’ 

capabilities were much more closely matched to the malicious drone (29m/s to 30m/s). For these 

values the reactive strategy when coupled with the sunflower formation actually outperformed the 

benchmark formations for swarm sizes of 817 drones and above, where the benchmark formations 

were implementing the additional predictive pre-positioning tracking strategy. This unprecedented 

result means that reactive tracking could still provide a viable alternative in specific scenarios where 

intra-swarm communication may not be possible in order to facilitate predictive pre-positioning or 

where the hardware and software being used cannot implement the more complex code required.  

 

This project has replicated historical results identified within the literature and successfully used them 

as a benchmark to evaluate a new initial formation. Consequently, this makes an important 

contribution to the research by establishing a new performance benchmark. An optimal configuration 

for the simulation environment is proposed and this is complemented by discussion of potentially 

optimal configurations for other simulation environments. In combination the project outcomes and 

discussion contribute to the development of tools to assist with developing specifications for any 

potential real-world implementation.  

 

6.2 Further Work 

 

There is a range of potential future works that could be based either directly or indirectly on this 

research. Three additional initial formations were considered for inclusion in this project, alongside 

the sunflower formation and the two benchmark formations, these proposed formations are detailed in 

Chapter 3 Section 3.3 and could be simulated using the sunflower formation as a benchmark to 

determine potentially further increases in performance.  
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The premise of expanding the scope from the 2D plane to the 3D plane is a necessary step for 

providing data that is more applicable to the real world, modification of the current simulation 

environment would most likely accommodate this, however the simulation environment as it stands 

already takes approximately 16 hours per run, so a more efficient test environment may need to be 

developed rather than retrofitting the existing test environment. Transitioning to a 3D simulation 

environment would allow some of the assumptions made for the project to be removed and collision 

avoidance and terrain could be introduced, bringing more real-world characteristics into the 

environment. 

 

An example of further assumptions that could be removed would be if further research into malicious 

drone detection methods could provide for a more detailed implementation of malicious drone 

detection, removing the assumption of 100% accuracy and introducing some error will most likely 

provide a more realistic result. Investigation into removal of any of the assumptions made within 

Chapter 4 Sub-Section 4.1.1 of this project could provide important future work that help to create a 

more realistic and complete model. 

 

In relation to the malicious drone, a more varied flight path and/or the implementation of evasive 

tactics presents a possible research area. The implementation of multiple malicious drones within the 

tracking area at one time would be another worthwhile variable to explore. A combination of any or 

all of these malicious drone characteristics would again help to increase the realism of the simulation 

and subsequently the results, whilst also increasing the scope. 

 

The ultimate goal of these simulation configurations is to provide tools to assist in the development of 

real-world drone swarms to further assess performance, and ultimately, to allow drone swarms to be 

deployed effectively and efficiently to mitigate the real-world risks posed by malicious drones. 
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Appendix A Project Specification 

 

 

 

ENG4111/4112 Research Project 

Project Specification 

For:   Joshua Carter 

Title:  Drone Swarm Simulation for Tracking High Capability Malicious Drone 

Major:   Electrical and Electronic Engineering 

Supervisors: Dr. Jason Brown 

Enrollment: ENG4111 – EXT S1, 2021 

  ENG4112 – EXT S2, 2021 

Project Aim: To determine by simulation, the optimal drone placement and initial swarm 

formations to achieve increased high capability malicious drone tracking 

performance. 

 

Programme: Version 1, 17th March 2021  

1. Complete initial background research on the history and increasing prevalence of 

commercially available drones. 

2. Conduct a comprehensive literature review into the threat posed by high capability malicious 

drones, passive tracking of high capability malicious drones using surveillance swarms, 

reactive tracking, predictive pre-positioning, initial swarm formations, drone placement and 

surveillance swarm simulations. 

3. Develop a surveillance swarm simulation environment utilizing MATLAB. 

4. Investigate and determine the optimal drone placement to ensure uniform spacing with 

regards to the high capability malicious drones predicted trajectory. 

5. Investigate and determine the optimal swarm formation via simulation of a range of potential 

formations.  

6. Collate, assess, and compare data from simulations to determine any improvements against 

performance criteria.  

7. Make recommendations regarding the most efficient and high performing swarm formation, 

spacing and size combination. 

If time and resource permit: 

8. Expand scope of simulations from the 2D plane into the 3D plane. 

9. Expand scope of simulations to include multiple high capability malicious drones. 
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Appendix B Project Plan 

 

 

 

 

 

 

Table 7. Project Plan. 
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Appendix D Risk Assessment 

 

 

At the project specification stage, it was noted that no risk assessment or ethics application are 

required due to the nature of this project being entirely conducted through simulation. Instead, the 

risks to the project were related to the possibility of missed deadlines on the project timeline and the 

subsequent insufficient level of new research this may result in. An additional risk that was 

considered and mitigated was that of equipment failure and subsequent data loss or corruption. 

 

To mitigate the instance where project timeline deadlines were missed one proposed formation was 

integrated into the simulation environment at a time, with full characterisation required before 

attempting to integrate another, ensuring some level of new research is obtained. 

 

To mitigate equipment failure and data loss, the entire project folder including the MATLAB path 

folder were routinely copied to a second location on iCloud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

Appendix E MATLAB Simulation Code 

 

% Drone Swarm Simulation for Tracking High Capability Malicious Drone  
% 
% Simulation code developed using sample code provided by Project  
% Supervisor: Dr Jason Brown. 
%  
%  
% 02/08/2021 

  
% Reset Workspace  
clc; 
clear; 

  
% Toggle Simulation Animation 
ANIMATION=0; 

  
% Set Simulation Variables 
FIELD_RADIUS = 15000; % m 
MAX_TRACK_DISTANCE = 100; % m 
NUMBER_ITERATIONS = 500;  
MUAV_STEP = 1; % Simulation Step Interval 1m 
u=29; % Swarm UAV speed m/s 
v=30; % Malicious UAV speed m/s 

  
% Initialize random number generator 
rng('shuffle'); 

  
% Specify total number of UAV's in swarm formation 
numberOfSwarmUAVs= [7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397,... 
                   469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387]; 
% Specify number of swarm rings (circular formation only) 
numberOfSwarmRings=[1,  2,  3,  4,  5,   6,   7,   8,   9,  10,  11,... 
                   12,  13,  14,  15,  16,  17,   18,   19,   20,   21]; 

  
% Small data set for testing purposes                
%numberOfSwarmUAVs= 61; 
%numberOfSwarmRings=4; 

  

  
% plotInstance 1: reactive mobility of individual swarm UAVs - random 
% positioning 
% plotInstance 2: reactive mobility of individual swarm UAVs - circular 
% positioning 
% plotInstance 3: reactive mobility of individual swarm UAVs + proactive  
% mobility based upon networking - random positioning 
% plotInstance 4: reactive mobility of individual swarm UAVs + proactive  
% mobility based upon networking - circular positioning 
% plotInstance 5: reactive mobility of individual swarm UAVs - sunflower 
% positioning 
% plotInstance 6: reactive mobility of individual swarm UAVs + proactive  
% mobility based upon networking - sunflower positioning 

  
% Begin Test loop 
for plotInstance=1:6 

     
    meanProportionInRangeOverAllIterations=zeros... 
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    (length(numberOfSwarmUAVs),1); 

     
    for numberOfSwarmUAVsIndex=1:length(numberOfSwarmUAVs) 

  
        countInRangeForOneIteration = zeros(NUMBER_ITERATIONS,1); 

  
        for iteration=1:NUMBER_ITERATIONS 

  
            % set up initial positions of swarm UAVs 

             
            if plotInstance == 1 || plotInstance == 3  
                % random formation 
                swarmUAVPosMagnitude=FIELD_RADIUS*sqrt(rand... 
                    (numberOfSwarmUAVs(numberOfSwarmUAVsIndex),1)); 
                swarmUAVPosAngle=2*pi*rand(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                swarmUAVPosX=swarmUAVPosMagnitude.*cos(swarmUAVPosAngle); 
                swarmUAVPosY=swarmUAVPosMagnitude.*sin(swarmUAVPosAngle); 
            elseif plotInstance == 2 || plotInstance == 4  
                % circular formation 
                randPosAngle=2*pi*rand; 
                swarmUAVPosMagnitude = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                swarmUAVPosAngle = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                uavIndexAbsolute=2; 
                for ring=1:numberOfSwarmRings(numberOfSwarmUAVsIndex) 
                    NUMBER_OF_UAVS_IN_RING = (6*ring); 
                    for uavIndexInRing=1:NUMBER_OF_UAVS_IN_RING 
                        swarmUAVPosMagnitude(uavIndexAbsolute)=... 
                            FIELD_RADIUS*ring/numberOfSwarmRings... 
                            (numberOfSwarmUAVsIndex); 
                        swarmUAVPosAngle(uavIndexAbsolute)=randPosAngle... 
                            + 2*pi*uavIndexInRing/NUMBER_OF_UAVS_IN_RING; 
                        uavIndexAbsolute=uavIndexAbsolute+1; 
                    end 

                     
                end 
                swarmUAVPosX=swarmUAVPosMagnitude.*cos(swarmUAVPosAngle); 
                swarmUAVPosY=swarmUAVPosMagnitude.*sin(swarmUAVPosAngle); 
            else  
                % sunflower formation 
                swarmUAVPosMagnitude = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                swarmUAVPosAngle = zeros(numberOfSwarmUAVs... 
                    (numberOfSwarmUAVsIndex),1); 
                goldenratio = (sqrt(5)+1)/2;            
                randPosAngle=2*pi*rand; 
                uavIndexAbsolute=2; % Change for UAV at center or not 
                for k=1:numberOfSwarmUAVs(numberOfSwarmUAVsIndex)- 1 
                    boundaryPoints = round(sqrt(k)); 
                    swarmUAVPosMagnitude(uavIndexAbsolute) =... 
                        FIELD_RADIUS*(sqrt(k-1/2)/sqrt(numberOfSwarmUAVs... 
                        (numberOfSwarmUAVsIndex)-(boundaryPoints+1)/2)); 
                    swarmUAVPosAngle(uavIndexAbsolute) = randPosAngle... 
                        + 2*pi*k/goldenratio^2; 
                    swarmUAVPosX=swarmUAVPosMagnitude.*cos... 
                        (swarmUAVPosAngle); 
                    swarmUAVPosY=swarmUAVPosMagnitude.*sin... 
                        (swarmUAVPosAngle); 
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                    uavIndexAbsolute=uavIndexAbsolute+1; 
                end 

         
            end 

                         
            oldSwarmUAVInRange = zeros(numberOfSwarmUAVs... 
                (numberOfSwarmUAVsIndex),1); 
            theta = zeros(numberOfSwarmUAVs(numberOfSwarmUAVsIndex),1); 
            phi = zeros(numberOfSwarmUAVs(numberOfSwarmUAVsIndex),1); 

  
            mUAVDetected = false; 

  
            count=0; 

  
            % move malicious UAV across field 
            for mUAVPosX=-FIELD_RADIUS:MUAV_STEP:FIELD_RADIUS 
                distance = sqrt((swarmUAVPosX - mUAVPosX).^2 +... 
                    swarmUAVPosY.^2); 
                minDistance = min(distance); 
                if min(distance) <= MAX_TRACK_DISTANCE  
                    count=count+1; 
                    mUAVDetected = true; 
                end 

  
                % identify swarm UAVs that have just come into range and 
                % calculate their theta values 

  
                swarmUAVInRange = distance <= MAX_TRACK_DISTANCE; 
                    newSwarmUAVInRange = swarmUAVInRange &... 
                        ~oldSwarmUAVInRange; 
                    phi(newSwarmUAVInRange) = atan(-swarmUAVPosY... 
                        (newSwarmUAVInRange)./(swarmUAVPosX... 
                        (newSwarmUAVInRange) - mUAVPosX)); 

                     
                    theta(newSwarmUAVInRange) = acos(2*u*v.*sin(phi... 
                        (newSwarmUAVInRange))./sqrt... 
                        (u^4+v^4-2*(u^2)*(v^2).*cos(2.*phi... 
                        (newSwarmUAVInRange))))-atan((v^2-u^2)./... 
                        ((u^2+v^2).*tan(phi(newSwarmUAVInRange)))); 
                    %adjustment for negative phi angles 
                    theta(theta > pi/2) = theta(theta > pi/2) - pi; 

  
                    oldSwarmUAVInRange = swarmUAVInRange; 

                     
                % move swarm UAVs that are in range of malicious UAV 
                swarmUAVPosX(swarmUAVInRange) = swarmUAVPosX... 
                    (swarmUAVInRange) +... 
                    (u/v)*MUAV_STEP.*cos(theta(swarmUAVInRange)); 
                swarmUAVPosY(swarmUAVInRange) = swarmUAVPosY... 
                    (swarmUAVInRange) + (u/v)*MUAV_STEP.*sin... 
                    (theta(swarmUAVInRange)); 

                 
                if ANIMATION == 1 && mod(mUAVPosX, 1000) == 0 
                    scatter(swarmUAVPosX, swarmUAVPosY, 'x'); 
                    xlim([-FIELD_RADIUS,FIELD_RADIUS]); 
                    ylim([-FIELD_RADIUS,FIELD_RADIUS]); 
                    set(gca, 'XAxisLocation', 'origin',... 
                        'YAxisLocation', 'origin'); 
                    daspect([1 1 1]); 
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                    hold on; 
                    plot(mUAVPosX,0,'ro'); 
                    hold off; 
                    drawnow; 
                end 

                

  

  
                if plotInstance == 3 || plotInstance == 4 ||... 
                        plotInstance == 6 
                    % move other swarm UAVs towards the mUAV trajectory  
                    % unless they are already on it 
                    if mUAVDetected 
                        swarmUAVPositiveYAndNotInRange =... 
                            ~swarmUAVInRange & swarmUAVPosY > 0; 
                        swarmUAVPosY(swarmUAVPositiveYAndNotInRange) =... 
                            swarmUAVPosY(swarmUAVPositiveYAndNotInRange)... 
                            -(u/v)*MUAV_STEP; 
                        swarmUAVNegativeYAndNotInRange =... 
                            ~swarmUAVInRange & swarmUAVPosY < 0; 
                        swarmUAVPosY(swarmUAVNegativeYAndNotInRange) =... 
                            swarmUAVPosY(swarmUAVNegativeYAndNotInRange)... 
                            +(u/v)*MUAV_STEP; 
                    end 
                end           
            end 

  
            countInRangeForOneIteration(iteration)=count; 

  
        end 
        meanProportionInRangeOverAllIterations(numberOfSwarmUAVsIndex)=... 
            mean(countInRangeForOneIteration)*MUAV_STEP/(2*FIELD_RADIUS); 

  
        %histogram(countInRange,'Normalization', 'probability', 'BinWidth', 

2*MAX_TRACK_DISTANCE); 

  
    end 
    if plotInstance == 1  
        plot1 = meanProportionInRangeOverAllIterations; 
    elseif plotInstance == 2  
        plot2 = meanProportionInRangeOverAllIterations; 
    elseif plotInstance == 3  
        plot3 = meanProportionInRangeOverAllIterations; 
    elseif plotInstance == 4 
        plot4 = meanProportionInRangeOverAllIterations; 
    elseif plotInstance == 5 
        plot5 = meanProportionInRangeOverAllIterations; 
    elseif plotInstance == 6 
        plot6 = meanProportionInRangeOverAllIterations; 
    end  

    
end 

  
plot(numberOfSwarmUAVs', plot1,'-r', numberOfSwarmUAVs', plot2,'-b',... 
    numberOfSwarmUAVs', plot5,'-g', numberOfSwarmUAVs', plot3,'--r',... 
    numberOfSwarmUAVs', plot4,'--b',numberOfSwarmUAVs', plot6,'--g'); 
set(gca, 'FontName', 'Times New Roman') 
xlabel('Number of swarm UAVs');  
ylabel('Proportion of time malicious UAV is directly tracked'); 
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ylim([0,1]); 
legend({'Reactive tracking (random formation)',... 
    'Reactive tracking (circular formation)',... 
    'Reactive tracking (sunflower Formation)',... 
    'Predictive pre-positioning (random formation)',... 
    'Predictive pre-positioning (circular formation)',... 
    'Predictive pre-positioning (sunflower formation)'},... 
    'Location','southeast') 
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Appendix F Unimplemented Formation Codes 

 

% Generate square lattice  
 

x = -100:10:100; 
y = -100:10:100; 

  
[X,Y] = meshgrid(x,y); 

  
plot(X,Y,'*r'); 

 

 
% Triangular Lattice 
% Equilateral Triangle 

 
close all 
clear; 

  
horz = 5; % triangle base length 
vert = sqrt(horz^2-(horz/2)^2); % triangle vertical height 

  
% X,Y Limits 
xlim = 100; 
ylim = 100; 

  
% Generate triangular lattice 
trilattice = []; 
previous_y = 0; 
x = 0; 
offset = 0; 
while previous_y < ylim 
    if offset == 0 
        x = [0:horz:xlim]'; 
        y = ones(length(x), 1)*previous_y; 
        offset = 1; 
    else 
        x = [horz/2:horz:xlim]'; 
        y = ones(length(x), 1)*previous_y; 
        offset = 0; 
    end 
    trilattice = [trilattice; [x,y]]; 
    previous_y = previous_y + vert; 
end 
%centre about (0,0) 
trilattice = bsxfun(@minus, trilattice, max(trilattice)./2);  
% Plot 
figure() 
plot(trilattice(:,1), trilattice(:,2), 'r*'); 
grid on; 

 

% Generate hexagonal lattice 

 
radius = 1; 
apothem = radius*sqrt(3) / 2; 

  
[x y] = meshgrid(0:1:41); 
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n = size(x,1); 
x = apothem * x; 
y = y + repmat([0 0.5],[n,n/2]); 

  
% Plot  
[xx yy] = voronoi(x(:),y(:)); plot(xx,yy,'*R') 
axis equal, axis([10 20 10 20]), zoom on 

 




